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Conjugat e-Gradient Method s
Fat L ge-scale Nonlinear Optimizatlon t

Philip E. Gill and Walter Murray
Systems Optimization L aboratory

Department of Operations Research
Stanford University
Stanford , CA 94305

ABSTRACT

In th is paper we discuss several recent conjugate-gradient type method s for
solving large..cale nonlinear optimization problems. We demonstrate how the
performance of these methods can be signi6cantly improved by careful impkmen.
tation. A method based upon ite,atin preconditioning will be suggested which
performs reasonably efficiently on a wide var iety of significant test problems

Our results indicate that non linear conjugate -gradient methods behave in a
similar way to conjugate-gradient methods for the solution of systems of linear
equations These method s work best on problems whose Hessian matrices have sets
of clustered eigenvalues. On more general problems, however, even the best method
may require a prohibitively larg e number of iterations. We present numerica l
evidence that indicates that the use of theoretical analysis to predict the perfor-
man ce of algorithms on general problems is not straightforward.

tlnviled paper , the Institute of Management Sciences XXIV Int ernat ional Meeti ng,
HawaiI, June 1979.
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1. IntroductIon

This report describes the progress of a search for an efficient algorithm to find
the minimum of a general nonlinear fun ction subj ect to uppe r and lower bounds
upon the variables. In particular we are interested in solving problems for which
the number of variables n is very Larg e, say of the order of several hundred.

Our interest in the solution of bound-co nstrained problems as opposed to
unconstrained problems stems from two observations. Firstly, i t is rare for there
to be no constraints at all upon the indi vidual variables. Secondly, even if the
solution does not lie upon any of the bounds , their pre sence can prevent the func-
tion from being evaluated at unrea sonable or nonsensi cal points. Intuiti vely, one
would expect that it would be possible to construct a more efficient algorithm by
providing more informat ion about th e region in wh ich the solution is expected to
lie. For some classes ‘~f al gorithm this is indeed the case , but we shall show in later
sections that the presence of bounds upon the variables may adversely affec t the
performance of conjugate-gradient methods.

The most successful al gorithms for bound-constrained minimization proceed
as follows. At any stage of the algorithm the variables are partitioned into two
sets: the set of fixed variables which ar e at their upp er or lower bounds , and
the set of tree variables which are currently being optimized . An unconstrained
minimizat ion is performed with respect to the free variab les. This unconstrained
problem is altered occasionally ii a free variable violates a bound or a fixed variable
is allowed to become f ree. (For th e precise details of how the free variables are
selected , see Gill and Murray , 1976). Clearl y, bound-constrained minimization is
closely related to unconstrained minimization and this is reflec ted in the content
of this paper.

Probably the most commonly-used techni ques for minimizing a general un-
constrained nonlinear funct ion are the class of quasi-Newton methods (see Dennis
and More, 1977 , for a survey). However , such methods require the storage of
an n X n approximate Hessian matrix of second derivativ es and as n becomes
larg e these methods become impractical . The first algorithm that could be app lied
specifically to large-scale unc,nstra iaed optimization was due to Fletcher and
Reeves (1964), their algorit sm being a genera l ization of the Hestenes and Stiefel
conjugate -grad ient method for solving the linear equations Ax b for a positive-
definite symmetric i i x n matrix A. The Hestenes and Stielel algorithm is itcrht ive
and if no rounding error is made , requires n itera tions or fewer to find a solution .
A fundamental advantage of the metbod is that no matrix storage is required over
and above the storage of the problem itself.

The work of Hestenes and Stiefel was motivated in part by a misconception
that prevailed in the early 1950’s concern Ing the numerical stabilit y of direct
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methods for solving linear equations. It was believed that the rounding error
involved in solving even small systems of equations would always prevent an

• accurate answer from being found . It wa s expected that an iterative procedu re
such as the conjugate -gradient method would prove to be inherently more stable
because an inaccura te iterate would automatically be refined in subsequent itera-
tions. Ironically the opposite is true; the conju gate -gradient method is far more
susceptible to rounding error than a typ ical direct method . Morcover, rounding
error may cause the algorithm to require many more than n iterat ions to find the
solution. This feature of the al gorithm is pa rticularl y d isappointing, especially
when it can be argued that even n is an excessive number of iterations for lar ge
prob lems. However , even when finite-prec ision arithmetic is being used, there
are lInear equations which can be solved in far fewer than n iterations. These
problems tend to have coefficient matrices whose elgenva lues are clustered into
sets containing eigenvalu es of simila r ma gnitude.

The development of conjugate-gradient methods foroptimiution closely paral.
leled that of conjugat e-gradient methods for linear equat ions in the sense that
initii ’tl enthusias m for the method was quickly dispelled by disappoin ting numerical
performance. Extensive test ing during the late 1960’s and early 1910’s showed
that the Fletcher-Reeves al gorithm was genera lly inferior to the beat of the alter-
native methods whenever the storag e of an n X n matrix was not an impediment
to th e apph~ation of alternative methods. Durin g the last few year s there have
been significant improvements in the design of conjugate -gradient al gorithms (we
shall discuss some of these improvements in this paper), but in many cases these
have been more than outweighed by improvements in the rival techniques. In par-
ticular there has been considerable interest in mod ified-Newton and quasi-Newton
method s (or nonlinear problems with sparse Hessian matrices (Gill and Murray,
1973; Curtis , Powell and Reid , 1974; Toint , 1977).

However, there is a class of unconstrain ed problems for which conjugate-
grad ient method s are currently the only techniques that can be applied. This is
the class of problems for which the Hessian matrix is very large , but not sparse .
Such prob lems ari se in larg e-scale linearl y-constrained and nonlinear ly-constrained
minimizat ion (see Gill and Mu rray, 1974b; Murray and Wri ght , 1978). In this
situation the Hessian matrices are of the form ZTGZ where G and Z are larg e
matrices which may be sparse, but whose product ZTGZ is large and dense.

In Section 2 we discuss the Fletcher.Reeves conjugate-gradient method and its
recent improvements by Beale and others. We demonstra te how the performance
of these algorithms can be significantly improved by careful implementat ion . In
Section 3 we consider the class of limited-memory quasi-Ne wton methods suggested
by Perry (1977) and Shanno (1978a). This is followed by a discussion of methods
which attempt at each iteration to precondition the prob lem so that th e rate of
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convergence of conjugate-gradient and limited-memory quasi-Newton methods can
be improved. A diagonal preconditioning technique is suggested which can be used
improve the performance of most conjugate-grad ient typ e methods.

Finall y, in Section 7 we describ e some extensive numerical tests which indicate
that nonlinea r conjugate -gradient methods behave very similarly to conjugate-
grad ient methods for linear equations . Problems whose Hessian matrices at the
solution contain sets of clustered eigenva lues may be minimized in significantly
fewer than n iterations. Problems without this property may require anything
from between n and Sn iterations, with approximately 2n iterations or fewer being
a common figure for moderately difficult problems . The numerical results sug-
gest that a pr ecoaditioning based upon a diagonal scaling may lead to significant
improvements in performance on general problems.

2. Tb. traditional conjugat.-grsdi.nt method and Iti modifications

2.1 The Fletcher-Reeves algorithm

The Fletcher-Reeves conjugate-gradient algorithm for minimizing a general
nonlinear funct ion P(z) proceeds as follows. Let s~ be a given starting point and
let Ic denote the current iteration , starting with k — 0. The iteration requ ires ~~~,

the gradient vector VP(z) evaluated at zs, the k-th estimate of the minimum. At
each iteration a vector p~ (known as the direction of search ) is computed and
the new estimate ~~~~~ is given by xa+ o&P a where a~ (the step length) minimizes
the function F(x* + a~pi) with respect to the scaler ak During the firs t iteration ,
p

~ 
Is just the steepest-descent direction —gfr ). On completion of the k-th linea r

minimization, the direction of search for the next iteration is found from the
formula

(2.1)

wheee

— ~~~~~~~~~ (2.2)

and HuH, denotes the Euclidean norm of a vector u.
When we are minimizing a quadratic function P(z) — cTz + ~zTQx with Q a

symmetr ic positive-definite mat ri x and c an n.vector, the directions obtained from
the Fletcher-Reeves algorithm are identical to those of the Hestenes and Stiekl
coajugate-gradlent method fot solving the linear equations Qz — —c (Hestenes
and Stlefel, 1952). In the quadratic case the step length a& can be computed in

• closed form as a~ — —gZ’pi/p~
’Qp5; moreover It can be shown (see, for example,
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Fletcher, 1972) that the direct ions of search are mutually conjugate , i.e.

p~Qp, u — O , i~~~i,

and that the set of grad ient vectors (g~) are mutu ally orthogonal , i.e.

g~g, — 0 , s. ,Sj.

It is relatively easy to demonstrate tha t the conjugacy of the set of directions
gives vs-step termination on quadratic functions. If we make the transformation
x — Pu, where P is the matrix with columns equal to the directions P~,PI ~• • - P
P~.—I . then the transformed quad rati c function ~(u) — F(Pu) ii separable in the
var iables u and can be minimized by successively minimizing 4 with respect to
each of the variables u~ in turn.

The formul a for fi~ used by Fletcher and Reeves was one of several suggested
by Hestenes and StiefeL Theor etically these formulae are equivalent for a quad-
ratic function and Hestenes and Stiefe l sought to choose a formu la with the best
propertie. when the computation is subject to rounding erro r. The first step in

• the derivation of all the formulae for ~~ is the recognition that the concept of
coejugacy may be replaced by one of orthogoni? iCy. For a quadratic function
the vector ~~ , which is defined as the difference between the gradients at any two
iterates z~4..1 and X~, is given by

Consequently the conjugacy condition pTQp, 0 is equivalent to the ortbogona lity -

condition y~
’p, — 0. The most obv ious formula for flj ~ follows from pre -multip lying

(2. 1) by ~ and choosing $i such th at yTps+i — 0, i.e.

(2.3)

If we make use of the fac t that ~~~~~ and vr~i~ 
vanish if an exact Linear search

is made then
— —‘i”
— —u~(--~~+m~_ips-i)
— II~H,.

Thi. leads to the formula given by Polak and Ribiêre (see Polak, 1971):

(2.4)
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Finally, since the gradients are mutually orthogonal for a quadra tic function we
have ~~~~~~ equal to H~+LII~, giving (2.2).

For general nonlinear functions the alternative formulae for $s are no longer
equivalent. We prefer to use (2.3) since ~ is orthogonal to p

~+i irrespective of
the accuracy of the linear search or any possible non-quadratic behavior of the
objective function . Moreover, Powell (1977) has shown that the use of (2.2) may
cause slow convergence in the general nonlinear case when exact linear searches
are made. The ortho gona lity of ~ to p54.~ in the absence of an exact li near search
is particularly important because it allows the traditional conjugate- gradient al-

• gorithm to be generalized to perform inexact linear searches . The ability to use
inexact linear searches is a prerequ isite for any algorithm designed to minimize
bound-constrained problems.

The finite termination propert y of conjugate-gradient methods on quadra tic
funct ions motivated Fletcher and Reeves to abandon th e use of (2.1) after a cycle
of vs linear searches and set ~~~~ as the steepest -descent direction , —g a . This
strategy is kno wn as restarting or resetting . Restarting with the steepest-descent
direc t ion is based upon the questionab le assumption that the reduction in F(z)
along the restart direction will be greater than that obtained if the usual formula
were used .

We shall refer to th~ conjugate-gradient algorithm that uses (2.3) for the
definition of 5~ and restarts with the steepest-d escent direction every n iterations
as the traditional conjugate-gradient method.

2.2 The tradition al conjuga te-grad ient method with inexact linear searches

The difficulty and cost of finding the exact minimum of F(x)  along p~ have
resulted in many implementations of the tr aditional conjugate -gradient method
allowing value s of a~ which do not necessarily give a zero directional derivative
9(xt + arp a ) Tp m.  For example , in the imp lementation of Fletcher and Reeves Q~
is computed by taking increuing multiples of a scalar until a point is reached
with a positive direct ional derivative . This point and the latest point at which the
direc t ional derivative is negative ar e then used as a basis for cubic interp olation.

• This Interpolation is continued un ti l a point is obtained at which the function
value I. less than F (ss).

Foe a quasi-Newton method there are essentially two conditions that must be
satisfi ed if convergence is to be guara nteed. The fi rst condition is that the function
F(s) must be sufficiently red uced at each iteration. The second condition is that
the search direction must not become arbitrar ily close to being orth ogonal to the
st ssçist-desceat direction ; this is equivaleat to requiring that —g~

’pa/Il~ flzII~’JIz
6
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is greater than a constant that is bounded away from zero.
The firs t condition is satisfied for any a~ computed by the following step.

length algorithm.

Step.length algorithm QNSL

Let {o’) define a sequence of point. that tend in the limit to the minimum
of F(s) along p~. (If F(x) is smooth this sequence can be compu ted by means of
some safeguarded polynomial interpolation algorithm.) Let t be the index of the
first member of this sequence such that

Ig(xi + o~p 1)Tp~1 ~ (ci)

where ’s (0 � r j <  1) ii some constant scalar. Let ~a (0 <~~ � ~
) be another

constan t scalar. Find the smallest non-n egative integer r such that

— F (x~, + 2 ’ a%) � —2~ ’a~ g~ps (c2)

and set a~ — 2 ’ a~..

If 0* is compu ted accordin g to this rule it can be shown (Gill and Murray ,
1973) that

f _9T\~~~
15— F(x~ + a ’ps) >41 * 1, (2.5)

‘¼ IIPsII /
where 4 is a function such that , for any sequence {C*},

lim 4(cs) — 0  implies lim C~ 0. (2.6)

An important prop erty of conditions (ci) and (c2) is that if ~ is chosen as a small
value (say 10—i) then , unless F(s) is a pathologically ill-behaved function , any
value & satisfying (ci) automatically satisfies (c2) with r — 0. In this case the
step-length algorithm reduces to finding a scaler O~ such that

g(z~ -3- a~p~)”p~j � ~~~~~~

The value of r~ can be specified by the user and can be used to give a step length
that is well-suited to the problem being solved. If v~ is chosen as 0.9 the algorithm
will generally compute a TMcrude” value of a~, provided it satisfies (c2). This value
is usual ly a , the value u ed  to sta rt the iterative method that compu tes the min-
imum of F(s) along p~. If ~ is chosen as zero, a5 will be the point that minimizes
F(s) along ~~~~~.

7
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It ii importan t to note that a step-length algorithm based upon the inequalities

~g(sa, + as p I )Tp sI < —vig p s and F’5 — F*~ i � —,4akg~p k

for fi xed values of ~s an d i~ is not sat isfactory since no member of the sequence
(a ’) may satisfy these inequalities simultaneously.

it is a feature of both Newton-typ e and qua si-Newton method s that , as t he
iterates approach the solution , the unit step will invariably satisfy bot h the con-
ditions (ci) and (c2). This property is useful because o~ 1 can be used to initiate
the sequence (a.~). II by cha nce unity is not an acceptable value for Q~ , t he next in-
terpolated value generally will be. This property of quasi-Newton method s imp lies
that it usually requires an average of between one and two functio n evaluations
only per iteration to obtain overall convergence.

If we are to apply a similar step-length algorithm to conjugate -gradient
methods, it is necessary to add an additiona l condition on 01 . 11 (2 .1 ) , the formula
for p~.H, is pee-multiplied by gr+1 we find that

— 9~
’
+i~~+~ +~ *g~

’
±1p~

. (2.7)

If an exact linear search is made , 
~~~~~~~~~~~~~~ 

is zero and the direction p~ i must be a
descent direct ion with respect to~~ ÷~ since ~r+ 1p~+~ is just the negati ve quantity

—gZ÷ 1~~+i.  However , il an arbitrary inexact linear search is made , the poi nt 
~ *±

may be such that is positive and larger t h an 
~~~~~~~~~~~~~ 

Con sequently,
there is the possibility that ~~~ will not be a descent direction since ~~ ~ps - .- i

may be positive or zero. A typical remedy for such an eventuality is to r estart the
algorithm with p~. as the steepest-descent direc t ion. Consequentl y, a 1 cru de”
step -length may c .use the efficiency of the algorithm to be severely impaired by
the use of a large number of steepest-descent iterations.

This problem is easily overcome if algorithm QNSL is used with an additional
condition on the terminatio n of the sequence (a ’). The tol lowing al gorithm is based
on a useful property of conjugate-gradient methods whereby the initial directional
derivative for the next iteration can be computed rela tive ly cheaply during the
computatio, of the sequence (a’).

Step-kngth algorithm TCGSL

Let a be a small positive scalar and h4.1’ P5.f 1 and ~~ denote the quantities

~~~~~ , p~~ and $~ respectively, computed at the point z~ + a’p~. Compute a as
in algor ithm QNSL but with the additional condition tha t

DL~.i~s+i � °IIDs-t-illaILPs-i.iII2~ 
(~ )

8
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If this condition is not satisfied we proceed with computing the sequence (a ’) unt il
it is satisfied or the minimum along p~ is found. ~

• Note that ~~~~ need not be computed explicitl y, since can be com-
puted by using 

~~~~~~~~~~~ ~~ and ~I4 1p~. If the first value of a~ satisfies the
condition (c3) then there is no extra cost involved in this test since these quantit ies
are used elsewhere in the algorithm.

A desirable feature for any step-length algorithm is the facility for imposing an
u pper bound ~ upon the step length; that is, the final 0~ must satisfy a k I I p k lj 2  < X.
This bound may be used in several ways: to prevent overflow in the user -su pp lied
functio n routines (see Section 7, for examp le); to increase efficiency by ensuring

• that F(s) is evaluated only at sensible value s of z; to prevent the step-length
• algorithm from returning an inordinately large step because no smaller step v~ould

satisfy the convergence criterion; to guarantee that the new point 1k4 1 remain s
feasible when the step -length routine ii being used for constrained minimization.
It is clear that the convergence of an algorithm that relies upon an exact linear
searc h in the computation of C~ will be imped ed if the distance to the bound is less
than the step to the minimum. For the traditional conjugate-gradient method ,
the implications are more serious because the computation of the restricted step
may prevent ps+’ fro m being a descent direction . From (2.7) it is clear that if

is positive then ~~~~~~~ may also be positive. II a~ is rest ricted to be
ku than some value i~ (say), there may be no acceptable value of a for which
9k+IPS+1 is negative.

Another disadvantag e of the trad itiona l conjugate-gradient method with in-
exact linear searc hes is that the al gorithm will be efficient onl y for problems for
whic h the gradient vector can be computed with approximat el y t he same cost or
less as the objective functi on. If g(x)  is expensive to compute , t hen the sequence
{aa )  should be computed by a method ut i lizing fun ct on values only; for examp le,
if F(s) is smooth, the sequence may be computed by means of safeguarded quad-
ratic interpolation. Under these circumstances condition (c i) should be replaced
by

F(xi + L’p~) — F(xs + o1p~,) � —~~
(&‘ —

where v is any estimate of the optimal a such that i’ <a 1 (see (; ill and Murray,
19?4c). Unfortunately , we cannot avoid the computat ion of the grad ient at the
point X~ + a p e, as it is r equired to check that condition (c3) holds. Thi s implies
that a relatively accurate linear searc h must always be made within a conjugate-
grad ient method that has been adapted to accept finite-difference approximations
to the derivatives.. This will impair the efficiency of the algorithm on those problems
for whic h the cost of a function evaluation dominates the cost of an iteration.
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It is a property of conjugate -gradient methods that a~ often varies enormousl y
in magnitude , even whe n the relati ve change in the objective function is very small.
This implies that a sensible choice of a~ is crucial if the algorithm is to be efficient.
In general , the direct ion of search rarely approxima tes the Newto n direction and
consequently the unit  step is a poor choice for ~~~ (it is precisely because of this
that the user should be encourag ed to place reasonable bounds upon the variables
whenever possible. The use of bounds in this way is likely to prove even more
effective for conjugate -gradient method s than it is for quasi-Newto n methods.)

A choice of init ial step length that we have found most successful is one
suggested by Davidon (1959):

— 
1_2(~

’s — F11 ~)/g~p~1, if —2(F~ — Fe,f ) / g Tp k � 2 8( I k t*S 95 Pk

where F,1~ is a user-spec ified estimate of the function value at the solution. (It
may appear unreasonable to expect the user to provide such an estimate , bu t  in
ou r experience , it is rare for a user to have absolutely no idea of the value of the
function at the solution. If F,1~ is not specified , t he software has the faci l i ty for
always choosing the unit step length for 00.) In many situations the use of (2.8)
was essential in order to avoid overflow during the computation of the objective
function during the firs t iteration. A unit step along (he steepest-descent direct ion
will often compute the function at very large values of : if the function is badly
scaled .

Alternatives tried were

o 2(F~_ 1 — Fk)a — — ——

gL pk

and a value of ~ 0 whic h was increased or decreased from that of the previous
iteration according to the value of 0k 1 •  However , since neither of these estimates
was particularly more effective than (2.8) and the value of F,1~ was requ ired to
prevent the possibility of overflow during the firs t iteration, (2.8) was used in all
the algorithms compared in Section 7.

2.3 Beak’s method

Although the function is guaranteed to decrease along the steepest-descent
restart direction, the actual reduction is often poor compared with the reduction
that ~vuld have occurred if restarting had not taken place. It would seem useful,
therefore, it a cycle of n iterations could commence with the last direction of the

10
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previous cycle. However , if an arbitrary vector is used as the initial direction in
the computation of the sequence (2.1), then finite termination will not occur on
quadratic functions because th e vectors {p~) are not mutually conjugate. Beale
(1972) has shown that , given an arbitrary initial direction p~, the sequence of
vectors

— —
~~+i 4 ~sps +~~~ ,

where 9~ — y~,~~i/yTps and y~ y~~~+i/v~
’p0, are mutually conjugate. The

simple extension of this formula to nonlinear problems involves computing a cycle
of n directions

— 
_

~~+& + ~~ + ~kPt, (2.9)

where 8~ — y~p4+i/v~ps an d y~ — vT~÷11vT1~. The direction p, is known as
the restart direction and is the last direction of the previous cycle along which a
linear search was made. Bette r performance will be obtained if the coefficients ~~
and ~~ are computed as the solution of the linear system

(vr ~& WrPt )(~s) — (wT%~+. 
I)  (2.10)

yg ps ~~~

This ensures that pj
~~ 

is orthogonal to both ~,a and y, even when F(x) is not
quadratic. These equation s are solved by a single back substitution since yipk is
fi xed at zero from the choice of fij~~ and ~~~~ At the k-th iteratio n , (2.9) and
(2.10) are used to compute ‘~~~‘ 

unless better progress can be made by using (2.1).
If Beak’s formula is considered unsatisfactory, a new cycle commen ces with p k as
the restart direction and with ~~~ computed from (2.1). Note that if (2.9) is used
in a nonlinear conjugate -gradient al gorithm , p54.1 may not be a descent direction ,
even if an exact linea r search is mide.

Powell (1977) has suggested a condition for restartin g based upon the property
th at the gradient vectors are mutually or thogona) in the minimi za t ion of a quad-
ratic function. If the grad ient vectors are not sufficiently orthogonal , then a restart
is made. Specifically, a restart will take place if

igr,-+-~i �0.2lI,+iIi~, 
(2.11)

or there have been n linear searches in this particular cycle. A restart will take
place also if p~~. i is not sufficiently downhill , an adequate downhill direction being
one that satisfies the ii~’qualities

—1.2Il~~+ifl~ � ~r+1Pi+i � —O.8b4.III~.

11
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Apart from the firs t direction , the steepest-descent direction ii very rarel y used;
it must be used, however, if an upp er bound u pon the step length prevents the
traditional conjugate-gradien t direction from being a descent direction.

Beale’s algorithm may be generalized to accept inexact linear searches by
replacing the direct ion P~+~ 

in condition (c3) by the direc tion that would be used
if a restart were made in the (k+ 1)-th iteration. Thus , althoug h a linear search is
made along a direction gener ated by (2.9) the condition (c3) is checked by means
of a direction computed from (2.1). It is necessary to alter the test for ps+i being
sufficientLy downhill to

9~+iP5+ l � 0llP*~+-1II2II9i+1II2. (2.12)

The rea sons for this will become clearer in Section 5 when we d iscu ss convergence
of the algorithm.

3. [,lmIt.d-msmory quasi-Newton rnsthods

Although we have shown how to implement the conjugate -gr idient . method
with an inexac t linea r search , the resulting al gorithm may not always behav e
exactly as we should like when bounds are present or the gradient is expensive to
compute . For this reason we seek method s which give a desc~nt directio n under
much milder restrict ions upon the step length. In this section we consider a class
of such methods.

First we need some backgr ound thwry on quasi-Newton methods . A quasi-
Newton thetbod computes the direction of search as the solution of the set of
equatio ns

(3.1)

where Ba+g is an approximation to the Hessian matrix . At each iteration the ap-
proximate Hessian is updated by a matrix of rank two. The most popular updating
formula is the BFGS formula ,

— Ba — 

~r~~~
B5aasrBa + -f-tav r1 (3.2)

where ~a — — ~ and .~ — — — ~~~ (The reader should note that
the notation used here differs slightly from that of the general literature on quasi-
Newton methods. It is customary to order the k-tb iteration of a quasi-Ne wton
method so that p~ is computed f irst , with the approximate Hessian being updated
last of all. In ordet to make the notation consistent with that of conjugate-gradient
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methods our quasi-Newton scheme computes the direction for the next iteration
after updating the approximate Hessian.)

There are many alternati ve updating formulae , but they all generalLy satisfy
the quasi-Newton condition:

—

In this paper we shall mainly consider updating formulae from the Broyden
one-parameter fami ly

Br+1 — Bt — 3
~saarB~ + + ~~~~~~~~~~~~

where 1 1
tLJ5 — —

~~~
—

~~~~~ 
— Btsa,

Y~ ‘~

and 
~~ 

is a scalar function of ~ and Bts~ (see Broyden, 1970). For all positive ~~
it can be shown that Bt+~ will be positive definite if B is positive definite and

y~
s
~ 

is positive. The positive definiteness of Bt+1 ensures tha t P a .~ is a descent
direction.

The quasi-Newton direction can also be computed by up dating the inver se of
the approximate Hessian , and computi ng

P5+1 — —J4+ i~~+t (3.3)

For example , th e up dating formula for the approximat e inverse which correspond s
to the BFGS for mula for th e approxima te Hessian matrix itself is given by

+~~~ ( +  
vr~ia

)s&1k .  ( . )

For each update of Bt for the approximate Hessian , there is a corr esponding
update for the approximate inverse Hessian. In the following discussion we shall
need to refer to different up dating formulae without explicitly display ing them.
Let

—

denote the up dating formula used for a particular value of .

Perry (1977) and Shanno (1978a) have considered method s based upon com-
puting p~~ j as —‘4~

j
~~.j where 144.1 is a matrix obtained by up dating the

13
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identity matrix with a limited number of quasi-Newton corrections. The storage
of an n x n matrix is avoided by storing only the vectors that define the rank-
two correct ions, and consequently Shanno calls such method s “memory leu quasi -
Newton methods ” . Since the methods require non-negligible storage , which may be
substantial on some occasions, we prefer the term limited-memory quasi-Newton
method& The precise method depends upon the number of updating vectors stored
and the quas i-Newton updating formula used . For examp le, the direc t ion obtained
with the “one-step” limited-memory BFGS update is given by (3.3), us ing (3.4)
with 14 equal to the identity matrix viz

— _—
~~ +1 + +wT ~ +1sk)

— 
lk~~ +1 (1 + ~~~~ (3.5)

Althoug h the direc t ion of searc h is computed as the product of a matrix and a
vector , the matrix 14~~ is never computed explicitly.

It may be verified by inspec t ion of (3.5) that if the one-step limited-memory
BFGS formula is app lied with an exact lin ear search then p5+ 1 is identical to the
direction obtained from the conjuga te-gradient method (all vectors multiplied by

~~~~~~ 
vanish). Hence it is possible for the limited-memor y quas i-Newton method

to generate mutually conjugate direc t ions, but. only if an exact linear search is
made. This is demonstrated as follows: if the quasi -Newton condition is written
Ira terms of the inverse Hessian we have sa — J4+it.~; consequently

—

—

Thus ortbo gona lity between ~ and p~.4 i will occur only if g~4.1ra is zero, that is,
if an exact Linear search is made.

Before we discu other method s related to the BFGS formula , we sha ll describe
a general r-step formula (for more details see Nazareth and Nocedal, 1978). For
an a -step formula, the matrix 14+1 is Implicitly defined by a approximate Hessian
matrices U1, (.4, .. ., U, such that

!4+i — F (U,,~i,,,i1,),

where the subscr ipt ~ denotes any quasi -Newton updating formula , a, is one of the
indices of the a pairs of vectors {y,,s,) and each U~~1 is related to its predecessor
by the rule

u,÷1 ~~~~~~~~~~
14 



— --- a

with U1 usually equal to the identity matrix . The a pairs of vecto rs {y, , s,} can
be selected from any of those defined In earlier iterat ions and any combination
of quasi-Newton updates can be used . (Strict ly, we should have a suffix j on th e
parameter 

~ , but we have attempted to keep the notation as simple as possible.)
In this notation we can define Iwo methods based on the BF’GS formula:

The one-step BFGS formula

At each iterat ion define U1 as the identity matrix and set

H1~ 1 — F BPGS( UI , 
~~

, s~J . (3.6)

The two-step BFGS f ormula

At each iteration define U1 as the identity matrix and set

1.4 — F a ( U i,~~~ i,~~~i), 3 7H~~1 — r ~~~~(L4,~~ t.). ( . )

If the vectors (U,i~,,} and fs ,} are known for j  1, . . . , r, then H k÷ lg k± 1
can be computed by the sequence of linear combinations

— 1c{Ui~~+j ,  U1y,1,i,1}
— ic{ L4~~. 

~
, U2&4,~ e, )

H *~ +1 ~~~~~~~~~~~~~~~

A set of a pairs of vectors 
~~~~~~~ 

define a single approximate Hessian
matrix 14+~

.
Nazareth (1979) suggests a limited-memory quasi-Newton method in which

as many pairs of vectors {y, ,s,} are kept as storage will allow. Unfortunately,
storing only y, and s

~ 
substantially increases the cost of computing the direction of

search since an additional r( r + 1)/2 linear combinations must be used to compute
the vectors U,i~,. This additional cost is negligible for small values of a, but care
must be taken lest the work required to compute the direction of search should
dominate the computing cost of a single iterat ion.

The justific at ion for using limited- memory quasi -Newton formulae is that P5+1
is guaranteed to be a descent direction if all the inner products ~~~ are positive -

for all vectors y~ and sj used in the updating formulae. These inner products will
nearly always be positive if the step-length is computed by means of algorithm
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QNSL. Suppose that conditions (ci) and (c2) ire satisfi ed with a equal to zero.
Condition (ci) implies that

0 � (g(x~ + 0bp s) — ~~~~~~ < VrP1~
which implies that y~s* is positive since 0k is positive. There is a very slight chance
that p5~~1 will not be a descent direction if the enforc ement of condition (c2) causes

• vrst, to be negative. However , this must imply that , for a step length smaller than
&, the directions) derivative at Z~4.1 must be larger than at x~. The function P(x)
would need to be hig hl y irregular for this to occur. I1p5~~i is not a descent direction
and a full quasi -Newton method is being used , then the approximate Hessian is
not updated during that itera tion. For a one-step limited-memory quasi-Newton
method , the same strategy suggests taking a steepest-descent step. For a multi-
step formula , some of the upd ates will need to be ignored.

Restarts can be incorporated into the limited-memory quasi-Newton scheme
by performing a two step update using s~, ~ and information from a res tart : sg
and ~~. Shanno (1978a) baa suggested the following algorithm:

(3 8)
14+i Fa,cs(U,, 

~~
, a,~) ,

where 8 denotes the self-scaled BFGS formula

—

+ ~~~~(1 ~~~~~~~
with y — vr.s/vr 14&~. (See Oren , 1974 and Oren and Spedicato, 1976, for a
discussion of the self-scaled BFGS formula. ) This algorithm is one of those tested
In Section 7.

4, Pr.eoadiUora.d oojugst. grsdiest m.thoda

Precondstsoailng has been used for some time to aid the solution of linea r equa-
tions by conjugate-grad ient methods. The purpose of preconditioning is to alter the
coefficient matrix of the problem so that its condition number is reduced. It is hoped
that this action will reduce the number of iterations required. Preconditioning
can also be regarded as a technique which capitalizes on any structure occurr ing

• _
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in the coeffi cient matrix, and it is from this viewpoint that we shall discuss the
application of precondition ing to nonlinear problems.

Suppose we are minimizing a quadratic function cTx + ~JQz where the
Hrsei .n matrix Q can be written in the form

Q— M — N,

with M a positive-definite symmetric matrix which is easy to invert (for examp le,
M might be diagonal). The procedure for computing the direction of search may
be generalized as follows (see Concus et al , 1976). Solve the linear equations

M~~~1 — —~~+i

and set
— p5+1 + ~9iP&~ (4.1)

where 8~ — —y~’~ ÷j/yrpa. As in the traditional conjugate-gradient algorithm,
the directions {p~) are mutually conjugate with respect to the matrix Q, but the
algorithm has the additional prop erty that the vectors {z, ) are conjugate with
respect to the matrix M.

This algorithm may be extended to nonlinear problems by using a matrix A4
that varies from iteration to iteration; for example, Nazareth and Nocedal (1978)
suggest using an r-step limited-memory approximate Hessian matrix for M~~’. If

• the Hessian matrix is sparse, we can form a complete approximation to the Hessian
matrix by using finite differences (Gill and Murray, 1973; Curtis et al. 1974), or a
sparse ana logue of any of the well k nown updat ing formulae (Toint , 1977; Shanno ,-
19?8b) . If we denote the approximate Hessian as B5.4 1 the iteration requires the
solut ion of the sparse equations

Bi+isi+i — —a+i (4.2)

One of the most effective methods for solving the sparse positive-definite equations
As — 6  is to form the LDLT factorization

A — W I ?,

where L is a unit-lower triangular matrix and D is a diagon al matrix. The vector
x may then be found by successively solving the tr iangu lar systems

Lv— b and LTx — D 1v.
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Unfortunately , wha tever the method used to approximate the sparse Hcssian ,
can not be guaran teed to be positive definite. If indefinite ness occurs , not

only is the Cholesky algorithm numerically unstable but also p54.~ may not be
a descent direc t ion. We can remove both these difficulties by using the modified
LDLT tactorizatioa of the matrix fl~~1. The modified LDLT factori zat ion of a
matrix A is such that

A WLT _ E,

where L and D are defined as before and E is a d iagonal matrix which is zero if
A is positive definite (see Gill and Murray , 1974a).

If there is little fil l- in during the factori zation it is not worthwhile computing
the direction ~~~ since ~~~ is a perfectly adequate düec t ion of descent (compare
Equation s 3.1 and 4.2). However , there are some problems for which the amount of
fill-in is too larg e for the factor s to be held in core. In these situations the modified
LDLT factorisation can be computed so that any unwanted fil l-in is ignored . In
this case

A _. WLT _ E ,

where the matrix E is not a diagonal matrix. Alternati vely, if the Hessian matrix has
some specific structure , such as a band structure, but there ate some “complicating
elements” which cause significant fill-in during the factorization process, these
elements can be ignored . Techniques of this kind have been used successfully to
precondition linear systems (see Meij er ink and Van der Vor st , 1977; Mu nksgaard ,
1979).

Techniques based upon matrix factori zat ions are specifically designed for
sparse systems. Since we are primarily concerned with problems whose Hessian
matrix cannot be stored , we shall not consider these method s further in this paper.

One technique that can be applied to general problems is a preconditioning
based upon a diagonal scaling. If the direc t ion of search is obtained from Equation
(3.1) the quas i-Newton formulae from the Broyde n class may be simp lified so that
the matrix B5 does not appear in the rank two correction; for example , the BFGS
formula becomes

B5~1 — B 5+  ~~~~~+ 0~~~&~vr. (4.3)

This result implies that even if the off-diagonal elements of B5 ar e unknow n , the
diagonal element , can still be recu rred. These diagonal elements may be used to
precondition the conjugate-gradient method. Let lj and 

~, 
denote the j-th elements

of ~ and ~~ respectively . If 
~~~~ 

— diag(11,.. ., 7~) and ~~ j , — diag (61 , . . . , ~~.)
denote the approximate diagonal H.islaus during the (k+ 1)-tb and k-tb iterat ions

18 



respectively, then
1 1I_

~
I+ ,I~~ 

,+ ,~~ ~ 
(4.4)

and
— ~~~~~~~~~~~~~~~ (4.5)

The BFGS recurrence of A1 has some theoretical justifica tion since, in the
quadratic case with exact linear searches , the search directions generated by the
two algorithms are identical (see Nazareth, 1979). The motivation for using this
algorithm on general nonlinear functions is to scale the search directions so that
the initial step along p~ will be a better pred iction of the minimum. We shall
demonstrate in Section 7 that this is indeed the case.

To ensure that the elements of ~~~~~~~~~~~ are positive, a diagonal is not updated if
the result will be negative. An algorithm must also be used to prevent the condition
number of ~~~~ from becoming excessive. 110 denotes a prese t bound on the
condition number of A~~.1 and ~ > (1 where ~ — 1,,, .,/1,,,,,~, then we use for
the new diagonals, where w — log0/ log~c. The value of the bound ~‘c is thc same
as that used by Gill ci al. (19?2b), viz

1? — 1/(lOOn Ie),

where c is the relative machine prec ision. It should be noted that this bound on
the condition number was never ach ieved in any of the computer runs discussed

• in Section 7.
The traditional conjugate -grad ient algorithm and Beak’s algorithm precondi-

tioned by a diagonal matrix still suffer from the disadvan tage that the rate of con-
vergence may deteriorate if there is a bound upon the step length . Fortunate ly, the
limited-memory quasi-Newton methods can also be generalized to accept diagonal
preconditioning. In the r-step formula, the sequence of r approximate Hessian
matrices f /i , .  . . , (I , is started with U~ equal to a diagonal preconditioning matrix
rather than the identity matrix . For example, the preconditioned two-step BFGS
algorithm is given by~
The diagonal ly preconditioned twodep BF GS f ormula

At each iteration define U~ as the diagonal matrix ~~~~ and set

46( . )
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5. Some commsnts on convsrgenca proofs

It is impor tant to realize that all proofs concerning the convergence of conjugate-
gradient algorithms are thu~etica1 in the sense that they ignore the effects of
rounding error. Rounding error may u pset some of the most fundamental theory
of conjugate-gradient algorithms, as the following example will illustrate.

Consider the quadratic function

F(z) — ~~~ dj( 1 —
j—i

where d1 — (j /n) ’ , p> 0. For all values of ~‘i and p this function has the solution
— (1, . . . ,  l)T , at which point F(x) is zero . The Hessian matrix of this function

is of the form Q — diag((l/n) ’, (2/n)’,. .., 1) and has condition number n~. For
p 3 and vs — 50 the condition number of Q is 1.25 x 10’. This case was run on
an IBM 370/168 using doub le-precision arithme tic , the relative machine precision
being approximately 1.0 x l0~~’. In theory, the conjugate-gradient algorithm
should give zero values of F(x) and lIg(x) II at iteration ri. However , the function
and gradient values were 9.8 X 10~~ and 9.8 X iO~~ respect ively. At iteration 2n
the function value and grad ient norm were 1.3 X 10~~ and 8.0 X J0 ’. Clearly
the property of vs-step termination does not app ly in this case, yet the condition
number of ~ is not excessive in relation to the precision of the arithmetic being
used.

It is illuminating to compare this result with that obtained by another method
which theoretically should compute exactly the same numbers when minimizing a
quadratic function. Nazareth (1979) has shown that on a quadratic function with
exact linear search es, the search direc t ions generated by the BFGS method are
identical to those generated by the traditional conjugate-gradi ent method. If we
use the BFIGS formula to minimize the quadratic function (2.5) we find that at the
50th iteration the function value is 2.1 X 10 ’ and the norm of the gradient vector
is 8.8 X 1 0 ’ . However, at iteration 55 the method recove rs and the function value
1. essentially zero at 4.1 X l O ’ ~ with gradient norm 1.5 X ~~~~~

These results indicate that in pract ice, even on a quadratic function , the se-
quen ce generated by a conjugate -gradien t algorithm will be infinite. Consequently,
we must not be surprised if behavior pred icted by a theoretica l result based upon
some es-step property is not observed in pract ice. The most useful theorems are
those which provide negative results, that is, results which tell us that convergence
will not occur, even if infinite-precisios arithmetic is used. For example , one such
result was established by Powell (1976): if the Initial direction of search for a
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sequence of iterates designed to minimize a quadratic function is not the stccpeat-
descent direction then the traditional conjugate-gradient method will converge
only at a linear rate.

The mo~t powerful convergence proof for the traditional conjugate-gradient
algorithm with exact linea r searches was established by Powell (1977). However,
for Powe’I’s proof to be correct, it is necessary to modif y the statement of the
theorem.

• Theorem 1 (Convergence with exac t linear searches).

Let (x~} an d {p~} be computed from the formulae (2.1) and (2.3) for aU k.
Choose each a1 such that it is the local minimum along P1 which is the smallest
in magnitude. If the set { z F(s) � F (xo) )  is bounded , if g(x) is continuous and
if the quanti ties H.r*+ i — .r4Iz tend to zero, then

F u r n  fl~~ fl — 0. •

Our specification of the sequence differs from that of Powell in the require-
ment th at each O~ be the local minimum along pa that is closest to x~. This must
be done to ensure that members of the sequence {ak ) sati sfy the condition (2.5)
(see Ortega and Rheinb olt , 1970 , pp. 483-484). If the sufficient decrease is not
made , the proof given by Powell does not hold since (2.5) is needed to show that
limk. ...~, g~

’pi/flpstl 0 and hence that lima .o~,H~~j i 0. The unmodified theorem
breaks down under the following circ u mstances.

Let a’1 be the minimum of F(z5+ops) closest to zero. Suppo se that the initial
member of the sequ ence (a ’) lies beyond a .  If F(s) is a non-unimoda l function it
is possible for g (z~ 4- aOp i) Tp & to be negative and ror F(xa + a°pa) to be less than
F1. The step-length algorithm will then proceed to locate a value of 01 that is
greater than a .  When this occurs the function may be reduced by an arbitrarily
small amount and it is not possible to der ive a condition anal ogous to (c2). In
practical computatio n it is relati vely simple to deri ve an acceptab le step length
fro m any local minimu m of F(xs + ap i) by simply reducing the step by multiples
of a constant less than u nity. Unfortunately the resulting step length does not
give the required orthogonality between 

~~~~ 
and pa, which is an essential feature -~

of Powell ’s analysis.
It must be emphasized that the need to determine the first minimum along Pa

renders the algorithm analysed in Theorem 1 unsuitabk for compu ter implemen- -

tation. If we are to be sure that a~ is the fi rst min imum along p~ for general
functions , we need to be able to compute all the minima of P(xa+opa) . Nonetheless,
Theorem I does have practical relevance for convex functions or functions that
are unimodal along each direction p~.
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We shall now present a convergence theorem for the algorithm with inexact
linear searches, which is ana logous to Theorem 1.

Theorem 2 (Convergence with inexact linear searches).

Let pa and $~ 
be computed as in Theorem 1. Let 0~ be computed by means of

the step length algori thm TCGSL. If O~ is computed as the firs t minimum along
p~ only on those occasions th at the condition (c3) is not satisfied then

lim ~~~ fi — 0.

Proof
Gill and Murray (1974c) have shown that the step-length algorithm QNSL

gives an 0~ such that (2.5) is true. Consider the step lengths generated by algorithm
TCGSL. If a value of a~ is found that eventually satisfies (c3), then 0~ will satisfy
(2.5) since it can he regarded as being computed by means of QNSL but with
modified values of ‘1 and ~s. Alternatively, if the minimum of F(xs + api) is found ,
then (2.5) is seen to be true from the analysis presented by Ortega and Rheinbolt
(1970, pp. 484-486).

Auume that the th eorem is not true and that a limit point is obtained which
is not a stat ionar y point of F(s). We can choose an integer m and a small scalar
e such that for all k �

II~II> ~~. (5.1)

Since the quantities Hz*+i —rail tend to zero we must have lims._,~~F*—Fs±i — 0,
which Implies from (2.8) that for m sufficiently large,

T

lipall
Thus from (5.1),

Tpa
lI~ ii li;’&H

for all k � ~n. However this implies that O~ will be compu ted with an exact
linear search and the algorithm will behave precisely as the conjuga te-gradient
algorithm discussed in Theorem 1. Since such an algorithm is convergent we have
a contradiction and the theorem must be true. .

McCormick and Pearson (1969) have shown that for a wide class of funct ions,
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the restarted conjugate-gradient method is n-step superlinearly convergent , i.e.

lim ~~~~~ 
—
,
z f f  

—
i-~~ liz1, — 5 Ii

The proof of n-step superlinear convergence is critically dependent upon the
use of restarting. Powell (1976) has shown that algorithms that do not contain a
restarting strategy almost always converge linearly.

The reader should note that the term n-step .uper linear convergence has
very little meaning when n is large since the computation of enough values for
the asymptotic convergence theory to hold would be infeasible. In our view ,
any conjugate-gradient method that requires more than 2n or 3n iterations to
achieve any meaningful accuracy should be considered to have failed. Conjugate-
gradient methods are intended for values of ri that may be in excess of 1000 (fo r
example, in molecular chemistry , problems with several thousand variables are
routine). Computing several thousand values of the objective function is likel y to
be prohibitively expensive for all but the simplest of problems.

In summary, our experience is that , except in very special circumstances (such
as when F(s) is a weil..conditioned quadratic function), the conjugate-gradient
method is always linearly convergent, regardless of whether or not restarting takes
place. 

-

6. Restarting strategies and .xtss~oos

In our view , the accepted theoretical justifica t ion for restarting in the nonlinear
case needs to be re-examined. In particular , restarting every n iterations would
appear to be unnecessary since we should not expect to perform more than 2n or
3n iterations in total. It is unlike ly that one or two iterations with the steepest-
descent direction will make much difference to the progress of the min imization.

It would appear that the same argument could be used to dismiss the case for
restarting with arbitrary direct ions, as is done in Beak’s algorithm. However , the
results of Section 7 show that , on average, Beale’s algorithm with Powell rcstarts
generally requires fewer iterations and func tion evaluations than the traditional
conjug ate-gradient method . Initially we found this puzzlin g since i~ seemed unlikely
that a direction , kept for what could be a cycle of thirty or forty itera tions , could
possibly provide any useful information. However, this question was answered
when the runs were closely investigated On many of the problems a restart was
being made every one or two iterations. It was extremely rare for a directi on to
be used for more than ten iterations. Clearly in these cues, the term “restarting ”
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is misleading. The fact that Powell’s restart criterio n cau ses frcqucnt r cstarts is
not surprising, since a criterio n based upon the orthogonality of the gradient vec-
tors will have no meaning when inexact linear searches arc made (Powell’ s paper
considered the conjugate -gradient method with exact linear searches).

We believe that the major contri buting (acto r to the improvements obtained
by restarting is the additional informatio n that is being used dur in g the computa-
tion of the search direc tion , namely, the restart di rection p~ and its corresponding
gradient difference y~. In the quadrat ic case the conjugate -gradient direct ion pk+ 1
of (2.1) ii essentially of the form

PH- I —g&+ i + ~~~~~~ (8.1)

with w~ — 8& and w~ 0 for 0 � < k.  In the nonlinear case , all the w~ will be
nonzero and Beale ’s algor ithm can be interpreted as a normal conjugate-grad ient
iteration with a recent direction being maintai ned in the recurrence.

However, there are some aspects of restarting tha t remain inexp licable. In a
numerical experiment , two implementations of Shanno ’s method were tested on
the examples listed in Section 7.3. The method s were identical except that  one
algorithm was restarted every iteration while the other was restart ed accordi ng to
Powell’s criter ion. Althoug h th L number of (u nction evaluation s required was of the
same order of magnitude for both techniques , the algor i thm which was restarted
every iteration required more evaluations , on average , t h an i ts competitor, desp ite
the fact that the Powell criterion forces a restart very frequently. In our op inion
this behaviou r is not ad equatel y exp lained by the currently accepted theory .

it ii clear that we need to be able to compute a direction incorporating in for-
mation from past iterations without significan t ly increasing the storage. We shall
now describe a techni que that we have found to be quite successful in practice.
After a sequence of iteration s of a conjugate-gradient method we could prete nd
that we had obtained the current point by taking just one step along the vector
representing the total change in the variables. We would expect this vector to be
a good direction of descent since a substantial decrease in F(s) must have already
occurred . A feature common to all conjugat e-gradient type method s is that even-
tually very small steps are taken with very little reduction in the function value.
We can reg ard the computation of the total change in z as a method of identifying
the “trend ” of a sequence of smaller steps. We can utilize these observations by
modif ying any of the conjugate-gr adien t methods so that a cycle of iterations is
made with the recur rence relation includ ing a term of the form
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(6.2)

where t is the index of the iterat ion In which the current cycle commenced . The
corresponding change in the gradie nt is

~ — a— g i —” Ev,. (6.3)
I— ’

A new cycle should start when th e reduction in F(s) begins to become small in
relation to the total reduction that has occurred since the start of the current
cycle. One method of achieving th is objective is as follows.

Let I, be a scala, which is constant during the q-th cycle; a new cycle starts
at iteratio n k (i.e. t is set equal to k) if

F 5— F~~1 ~~~~~~~ —F~~1), (6.4)

where F,+i is the value of the function on completion of the firs t iteration of cycle
q. The parameter O .k ’ will be larger or smaller than 8, according to whether or
not F, — F,±i, the reduction in F(s) during the last iteration of cycle q, is larger
or smaller than Fg+s — F,+,, the reduction obtained during the first iteration of
cycle q+ 1. The precise method for fixing ~~~ is as follows: initially, Do — 10 2;
after the f irst iteration of the (q + 1)-tb cycle which started at iteration t :

• 
f 2 ç,  if F,— F,~~1 � ~~~~~ —F ,~ 3);

~~ Ui,, if F, —F,~ 1 > 2(F1÷1 — Fi+z).

In Section 7 we describe an implementation of this scheme with a preconditioned
two-step BFGS formula. The precise algorithm is ~i follows:

The diagonally precondit ioned two-step BF GS formula with accumulated step

At each Iteration define U~ as the diagonal matrix A~~~ and set

— I’i ,~s(Ui, Pa1. ii) (65. )
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7. Numarlcal r.sulta and discussion

In this sect ion we discuss th e numeric al behaviour of several of the method s
discussed in earlier sections. It was not feasible to test every technique that has
been d~acribed , but we have attempted to select those algorithms which are either
in common use or show the most promise from a theoretical point of view. The
method used to compare algorithms consists of applying them to a set of test
problems. We do not claim that this is a completely satisfactory means of com-
parison , but we believe that , if the test problems are selected car elully , t he evidence
obtained can be a valuable aid in the selection of the best algorithm.

7.1 The assessment criterion

All optimiza t ion software requires a criterion for terminating the computation
of the sequence {x,j . Ideally, if we wish to measure the comparative efliciency
of routines we should set the same termination criterion in all the routines tested
and then compute the cost of a minimization , in terms of the number of function
evaluations for instance. However , t here is no universal agreement on what is the
best termination criterion and a different criterion u sed by another researcher may
result in a wide variation in the accur aq of the answer obtained . The question
remains , therefore , as to the point at which we should assess the efficiency of the
various methods. The assessment criterion used here is to take the first point 5k

for which
Fs—F( z ) < r( l + ~F( z ) D ,  (7.1)

where r is a scalar. Some authors have argued against the use of (7.1) because it
includes F(z’), which is unknown on real problems. We believe that such authors
are confusing an assessment criter ion , where the use of F(x’) ii legitimate , with a
termination criter ion , where it is not.

If the criterion (7.1) is to give a realistic assessment of the performance of an
algorithm , the choice of i- must give a point X~ which is close to a final estimate
of x obtained with a real istic termination criterion. The relative performance of
algorithms with super linear convergence is almost invariant with the choice of r
and a very small value can be used . For examp le, on an IBM 370/168, ~s here
the function can be compu ted to appro ximatel y fiftee n decimal places in double
precision , a reasonable choice of r is 10_b . However, for conjugate-gradient type
methods , which exhibit a linea r rate of convergence, the per formance can vary
widely with the choice of r. it is not unusual for the number of fun ction evaluations
to be three times greater for r 10_IS than for v — lO~~ . In this case it jg
important that a moderate termination criterion be used. In all the tests carried
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out for this stud y, r was set at 10~~.

7.2 The algorithms tested

The results of Section 7.5 illustrate the numerical behaviour of eight algorithms
for large-scale unconstrained minimization .

The following four conjugate -grad ient algorithms all incorporate the step-
length algorithm TCGSL.

Algorithm CG
The traditional conjugate-gradient algorithm (see 2.1 , 2.3 and 2.8).

Algorithm PCG
Diagonall y preconditioned traditional conjugate-gradient algorithm (see 2.1,

2.3, 4.1 , 4.4 and 4.5).

Algorithm BCG
Beak’s algorithm with the Powell restart criterion (see 2.8, 2.9, 2.10 , 2.11 and

2.12).

Algorithm PBCG
Algorithm BCG with diagonal preconditioning.

The following fou r limited-memory quasi-Newton algorithms all incorporate

. step-length algorithm QNSL.

Algorithm Shanno
An implementation of Shan iio’s algorithm (see 3.8 and Shanno , 19?8a). Apart

from the use of (3.8), we have attempted to follow the description of Shanno ’s
algorithm as closely as possible. However, we must emphaszse that the results
obtained will not neceuarily agree with those of other implementations.

Algorithm PLMI
Diagona lly preconditioned one-step BFGS formula (see 3.6). The direction of

search is computed as —Hè.~i~~+~ where Ha.~i is given by

A lgorithm PLM2
Diagonally preconditioned two..tep BFGS formula (see 3.7 and 4.6).

Algorithm PLMA

27
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Diagona lly preconditioned Iwo-step BFGS formula with accumulated step (ice
6.5, 6.2, 6.3 and 6.4).

For comparison purposes, the smaller test p blems were run on two .tl go.
rithms designed to solve s,iia~I dense problems.

Algorithm MNM
A modified Newton method using first and second derivatives (see Gill and

Murray , 1974a).

A lgorithm QNM
A quasi-Newton method using the full n x ii BFGS update of th e approximate

Hessian Matrix (see Gill and Murray , 1972a).

7.3 The test examp les

The provision of suitable test problems is extremel y difficult .  Problems that
are used to measu re the efficiency of algorithms for small dense problems are
completely unsatisfactor y since the al gorithms considered here are inten d ed on ly
fet large-scale problems. For example , it is pointle ss to test a t~~ -step limited
memory quasi-Newton method on a two dimensional problem since the algorithm
will be effectively per forming a full qv.isi- Newton itera t ion !

A serious difficult y with using ver y large test probkrns is that , for all but
the most trivial examples, the CPU time necessary to compute the objective func-
tion will be very large. This is typ ically the case if we attempt to use real-world
problems for testing purposes. Moreover , it is desirable that problems be defined
in such a way that they may be u sed by other researchers . Large-scale real-world
problemi almost invariably are writ ten in a non- portable form or can be run onl y
with vast quantities of numerica l data.

In this study we have attempted to compromise on these issues by coll ecting a
set of non-trivial problems that can be run with moderate ease at other installations.
A total of 25 problems are considered . Of these, 20 problems are of dimension 50 or
greater and 9 problems are of dimension 100. For the purposes of the compariso n ,
each algorithm being tested was run a total of 93 times. It is necessary to present
an extensive number of results because, as we shall demonstrate in Section 7.5,
the performance of conjugate-gradient methods is generall y erratic. I f we are to
identify which strategy gives a true improvement in performan ce, a wide spect ru m
of result, must be considered.

The test examples may be separated into two classes. The first class con-
tains problems whose Hessian matrix at the solution has clustered elgenva lues;
the second contains probkms whose Hessian matrix has an arbitrary eigenvalue
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distribution.

Example 1. Pea l (Gill et *1., 1972b)

The solution varies with n, but Zj — zj.1..~, i — 1,..., n — 1. All the runs made
were with a — 1, b — 10 ”. With these values, the Hessian matrix at the solution
has n — 1 eigenvalues 0(1) and one eigeavalue O(1O~~ ). The Hessian matrix is
full and consequently, for large values of n, conjugate-gradient type methods are
the only tech niques available ,

Example 2. Pen2 (Gill et al., 1972b)

F(z) —

+~~ (~~~ n _ i + I x ~_ 1)
2
+ (z1

_ ~

)
2)

2
,

where c~ — e”~~ + c~~~’~/” f o r e  — 2 . .. , ri. The aolution varies with n, but
— Xj~~~~ for I — l, . . . , n— 1. ThIs example was also run with a — 1 and b —

lO~~ . For these values the Hessian matrix at the solution has n — 2  elgenvalucs
0(1) and two cigeavalues 0(10 ’). The Hessian matrix is full.

Example 3. Pea3
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F(x) — a~ 1 + .“ ~~ (x + 2x.+i + 1Ox .~., —

10x~~3— (2z~+ xi+i 3)2)
i—i

+ ~~~~~~~~ 2x~+ ii+i 3)2}
s-Il

s_ I

At the minimum , this funct ion has n/2 elgenvalues 0(1) and n/2 elgenvalues
0(10 ”). The Hessian matrix is full.

Example 4. PSP (Taint, 1978)

F(x) — ~~~~ a,(x~ — 5)2 + ~~s_I 1—1
S

where

~~~ z,+ ~~
IEA(() lED(s)

- 
_ Ii/& i~,h ( y ~) 1100(0.1—vJ+ 1O, y~<O.1,

and the constants o~, $~ and dj are given by Taint (1978) together with the sets
of indies. A(s) and 8(i) which are subsets of the indices (1,2,3,... ,50}. This
example has a spans Hessian matrix.

The remaining examples have arbitrary distributions of elgeuvalues at the
solut ion.

Example 5. Chebyquad (Fktcber, 1965) 
—

I
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F(s) —
i—I

where

14z)_ f T ( s d z_ !E T ~f ri) , i — 1 ,... n,

and T (x) I. the it/i-order shifted Chcbyshev polynomial. The Hessian matrix is
full.

Example 6. Watson (Brent, 1973)

F(s) — z,{j — i)(~-~~
’ )i_* 

— (
~ 

~,(i 
; 

i)
~~~

1

)

2
_ 

)

2

1—2 —2 ~—I

+4+ (~ 
—~~~~~—

This problem was included to demonstra te the poor convergence of conjugate-
grad ient typ e methods on mildly ill-conditioned problems whose eigenva lues arc
uniformly distributed . On ly the value n — 6 was tested, the condition number of
the Hessian matrix being approximately 8.6 X ~~~

Example 7. GenBose
This funct ion isa generalization of the well-known two-dimensional R.osenbrock

function (Rosenbeock , 1960).

F(s) — I + E(100(x — x!~~~)~ + (1 —

Our ImplementatIon of this function differs from most others in that F(s) is unity
at the solution rather than zero. This modification ensures that the function can-
not be computed with unusually high accuracy at the solution and is therefore
more typical of practical problems (for a more detailed disc~assion of this point,
the reader Is referred to Gill and Murray, 1979).
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The next four examples arise from the discreti zation of probl ems in t h e  cal-
culus of variations. Similar problem s arise in numerical solution of optimal contr ol
problems. The general continuous problem is to find the minimum of the functional

J ( x( t) )  f f ( t ,z( t), x’(t)) dt ,

over the set of piecewise differentiable curves with the boundary conditions x(O) —

a, z(l) — b. If z( t)  is expres sed as a linear sum of functions that spa n the space of
piecewise cubic polynomials then minimization of J becomes a finite-dimen sional
problem with a tn -diagonal Hessian matrix .

Example 8. Calvarl (Gill and Murray , 1973)

J(r(t)) — / {z (t) 2 + x’(t) tan~~ 1(t) — log(1 + 1(t)2) t }  dt ,

with the boundary conditions z(O) — 1, z(l) — 2.

Example 9. Calvar2

J(:(t)) — / {100(z(t) — x’(t) ’)2 
+ (1 — ~1(t)) 2} dt ,

with the boundary conditions z(O) — z(1) — 0.

Example 10. Calvar3 (Gill and Murra y, 1973)

J(x( t)) — 
/

1 

{e
_3 to’(I(t)3 — l)}dt,

with the boundary conditions z(0) — 1, r(1) — 0.

Example 11. Var~~) (Taint , 1t78)

J(x(t)) — 1.’ {~‘(t)2 + 2)?(0}dt

with the boundary conditions z(O) — s(l) — 0.
This function I. discretized using piecewise linear funct ions instead of piecewise

cubic.. Like the other discretized problems, the Hessian is tn -diagonal. The
problem is quadratic for ) — 0 .
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Example 12. QOR (Toint, 1978)

50 U ,~~

F(s) — E a~x~ + E ~ (da — E z~ + E s~)~
i—I s—I leA(s) IED(~)

where the constants a , 8i, d~ and sets A(i) and B(i) are the same as those used in
example PSI’. This functio n is convex with a sparse Hessian matrix.

Exam ple 13. GOR (Tain t , 1978)

50 33
F(s)— 

E
;(x

~
) +

~~~~~~~~
s(

~~~)’
s - i s-ui

where
C 5 1 k,g,(1+s~), x~<0,

~~ 1+ E Zj
lEA(s) jED(s)

and

lh<O .

Again the constan ts a5, ~~, d, and sets A(i) and B(i) are defined as in Exam ple PSP.

This funct ion is convex but there are discontinuities in the second derivatives.

Example 14. ChuR ose (Taint, 1978)

F(s) — 1 + ~~ (4a (s~.~i — :~~ + (1 —

where the constan ts 01 are those used In the example PSP. The value of F(s) at the
solution has been modified as in Example 7. The Hessian matrix is trl-diagonal.

7.4 StartIng point.

The star ting pou ts used were the following.
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%.~~~
‘ n-~- l ’ n+ 1’ ‘

Start 5
l i i  ~\T

Start 8
7’

so — (—1 , — 1,..., —1)

7.5 Discussion of the results

All the algorithms are coded in double-precision Fortran iv. The runs were
made on an IBM 370/188, for which the relative machine precision , c , is ap-

• proximately 10—I s .
Each prob lem was solved using three values of ~ , the step-length accuracy.

These values were 0.25, 0.1 and 0.001. Each algorithm requires t~o addit ional -

user-specified parameters: X , the bound upon the change in x at each iteration ,
(the quantity II x~+’ 

— xsfl~) and F,~1, an estimate of the value of the obj ective
(unct ion at the solution. The value of ~ was set at IO~ (or .11 problems except
Pen i , Pen2 and Chebyquad where it was set at 10 to avoid overflow during the
computation of the objective function. In every case F.4( was set to the value of
F(s) at the solution.

The full set of results are contained in Tables A 1—A8 of the appendix. Table Al
contains the number of function evaluations required by conjugate-grad ient type
method s on problems whose Hessian matr ices have clustered elgenvalue s. Table
A2 gives equivalent result. for limited-memory quasi-Newton methods. Tables A3
and A4 give the number of funct ion evaluat ions required by conjugate-gradient
methods and limited-memory quas i-Newton methods on general problems.

In order to limit the computing costs, an uppe r bound was placed upon the
number of funct ion evaluat ions made during each minimization. In all cases where 
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this bound was achieved the (unction was still being reduced (albeit slowly !). The
bound varied from problem to problem, but in most cases where the bound was
achieved , the progress of the minimization was sufficient ly slow that considerabl y
more function evaluations would have been required to obtain any meaningful
accuracy. An upper limit of 2000 function evaluations was placed on all problems
except Watson , for which the limit was 700. The large value of the limit (relative
to the size of ,s) for Watson reflected the fact that the objective function is inex-
pensive to compute. Two algonithmr., PBCG and PLMA, successfully solved all
the test problems.

it is help ful if the result. of the appendix are summarized so that the methods
may be easily “compared” . Tables I and 2 contain the total number of function
evaluations required by each method on the two classes of test examp le. Clearly
the reader should be wary of using these tables as the only means of comparison
since the tota ls will depend upon the ri-values u sed and the limit on the total
number of function evaluations. However, we believe that Tables 1 and 2 serve as
a useful introduction to the tables given in the appendix .

The results indicate that the performance of conjugate-gradient type methods
may be erratic. For example, quasi-Newton methods almost invariably have the
property that the number of iterations decreases monotonically as the step -length
parameter ‘~ 

is reduced to zero. This implies that the “best” value of , determined
by averag ing the resu lts for a large set of teat problems will be close to the “best”
v~ for each individual problem. However , for conjugate-gradient type methods the
variation in the numbe r of iterations as ‘1 changes is often far from uniform . (In
this case a user may find it worthwhile to experiment with the choice of q if a
large number d similar problems are being solved.)

Table 1
Total Number of Func tion Evaluations Required
to Solve Problems With Clustered Eigenvalues

METHOD EVALUAT IONS

CG 2189
DCC 1922
PCG 2269
PBCG 2177
Shan no 1858
PLIM 1 2062
PLM2 2085
PLMA 1948
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This erratic behavior makes it very difficult to draw firm conclusions about whether
one algorithm is any better than another. However , there is one aspect concern-
ing the implementatio n of the methods on which a firm statement can be made.
The implementations of all the algorithms disc u ssed in this report incorporate a
sophisticated routine to compute the step length. We believe that such a routine
is vital for both efficiency and robustness.

The results of Tables A 1— A 4 indicate that the traditional conjugat e-gradient
method and Beale’s method are very effective for problems whose Hessian matrix
has clustered eigenvalues. However , these method s may require a prohibitively
large number of function evaluations for general problems. We believe that  the
reputatio n of the traditional conjugate-gradient method for unreliabili ty par tly
stems from the use of an inadequate step..length routine. The results reported
here are quite acceptable but may represent the best that can be achieved with
an unmod .~ed algorithm.

We would expec t prec ond itioning to have a negative effec t upo n the rate
of convergence for problems whose Hessian matrix alread y has sets of cluste r ed
eigenvalues. However , the results of Table 1 show that the degradation in pcrlor-
mance on “naturally ” preconditioned problems is not serious. Moreover , as Table
2 shows, the improvement in per formance on general problems is quite dramatic
overall. For this reason we believe diagonal preconditi oning to be well worthwhile.

Table 2
Total Number of Function Evaluations Required

to Solve General Problems

- 
METHOD 

— 
EVALUATIONS

CG 32820
BCG 28588
PCG 16597
PHCG 14714
Shanno 24434
PLMI 17188
PLM2 16934
PLMA 13985

A feature of methods which use preconditioning is that the property of ii-
step termination is lost. (In Section 5 this property was shown to hold numer ically
onl y if the Hessian matrix is well-cond itioned.) A comparison of the results for the
well-conditioned quadratic function Var (0) shows that preconditioning may result
in three times the number of function evaluations required by an al gorithm that
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has n-step termination. However , this ratio is reduced significantly when the near-
quadratic function Var( 1) is minimized.

— We were surprised that the Iwo-step BFGS formula appeared to g ive little
advantage over the one-step BFGS formul a. For this reaso n it is not clear that
increasing the number of updates will necessarily improve the performance of a
limited-memory quasi-Newton method . This point is emphasised on the numerous
occasions that the limited-memory method PLMA out-performs the full  quasi-
Newton method .

The most successful method was PLMA , in terms of the total number of func-
tion evaluations required to solve thi s set of test problems. In a direc t comparison
with any sing le alternative routine , the number of problems on which PLMA was
more successful was noticeably greater than the number on which it was less suc-
cessful. Thus the additional storage required to implement a more sophisticated
routine seems to be warranted on the grounds of both improved efficiency and
robustness.

Tables A5 and A8 give a comparison of function evaluations for PLMA and
the two methods designed for dense problems. These results are summarized in
Tables 3 and 4. Tables A7 and A8 give a comparison of iterations for the same
problems. (The reader should note that the values of vi used for these comparisons
are not optimal for the methods MNM and QNM.)

Table 3
Total Number of Function Evaluations Required
to Solve Problems With Clustered Eigenvalues

METHOD 
— 

EVALUATIONS

PLMA 703
QNM 1738
MNM 274

Tab le 4
Total Numbe r of F unction Evalua tions Required

to Solve General Pro blems

METHOD 
- 

EVALUATIO NS

PLMA 
— 

5505
QNM 37S8
MNM 1819
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The compariso n of PLMA with MNM and QNM was not intended to bc au ex-
haustive one , but merely to demon strate the efficiency of method s specifically
designed for large-scale problems compared to general methods. As we m i g ht ex-
pect , on problems with clustered eigenva lues PLMA does relatively well , especiall y
compared to QNM. The overall performance of PLMA compared to that  of QNM
is also respectable. Perhaps the most noticeable feature of this ~ct of results is the
often spectacular p erformance of the modified Newton method MNM.

8. Summary

A n algor i thm (or large- scale optimization based upon preconditioni n g a t wo-
step BFGS limited-memory quasi-Newton method has been suggested . An im-
plementation of the method has been shown to be efficient on a selection of large

- test problems. We have shown that  the performance of this and other conjugate ..
gradient algorithms varie s s ignif icant l y wit h the accuracy to which the step leng L i.
is computed an d th e type of problem being solved . This suggests that a user should
exper iment with the step-length paramet er when solving many similar problems.

A key point when solving problems by a conjugate-gradient al gor i thm is not
to attempt to find too accurate a solution. The rate of convergence for all the
methods is effect ively linear.  On a machine with a t decimal dig it mantissa , we
suggest termination when t ’(rk) is estimated tohave , at most , m in {t/2 , 5} dig its of
accuracy. For many app lications t his approximate solution is more than adequate ,
but the low level of accuracy may imply that we are unable to determine that a
correc t solution has been found.

In order to solve very large problems , computing restrictions may require  the
numbe r of iterations to be a small multi ple of ru . It should be noted that , even
wit h the optimal value of the step-len~~h accuracy, the method jud ged to be the
best of those tested often failed to achieve this objective.
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APPENDIX

TABLE Al
Number of Fun ct ion Evaluations Required

by Conjugate-gradient Type Method s
on Problems With Clustered Eigenvalues

PROBLEM 
- 

CC BCC PCG P8CC

37 46 44 44
Pen i Start 3 n — 5 0  ,~— .1 27 27 31 31

_____________________ ~ — .0Ol 32 32 38 38
40 40 42 42

Pen i Start 3 i i— 100 u i — .! 9 9 ii 11
_______________________ 

i— .OO 1 9 9 11 11
PJ I.uP .25 19 19 82 81 

1Pea l Stizt 2 n — S O  ,~u — .1 25 32 54 57
______________________ e~~~.0O 1 33 33 62 50

17 17 62 67
Pea l Start 2 n — 100 — .1 45 45 84 72

_______________________ __________ 58 58 117 125
22 22 43 58

Pen2 Start 5 n — S O  ~~~~~ 24 24 45 44
_________________________ v~~~ .OO I 44 46 67 124 I

- 

r 1= .25 15 15 11 11
Pen2 Start 5 n — I D O  ,,~~~.i 13 13 12 12

______________________ ~~~~
.OO 1 21 19 18 18

KEY
CC - traditional conjugate-gradient method.
PCG - algorithm CC with diagonal preconditioning.
BCG - Beale’s method with Powell restarts.
PBCG - diagonally preconditioned Beale’s method.
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TABLE Al (continued)
Number of Fun ction Evaluations Required

by Conjuga te-grad ient Type Method s
on Problems With Clustered Eigeovalues

PROBLEM ‘1 CG DCC PCG PBCG
99 105 52 65

Pen2 Start 3 n — S O  ~ — .l 90 94 74 74
______________________ ~~—

.OOl 121 121 106 108
17 20 14 14

Pen2 Start 3 n — l 0 O  up — .l 13 19 17 17
_____________________ ~=

.0Oi 28 32 30 30
‘i— .25 97 79 64 71

Pen3 Start ! n — S O  ~~~~.l 94 84 77 57
_____________________ ~ — .O0i 119 89 94 73

105 77 70 74
Pen3 Start ! n— 1 0 0  v i ’ ’ .l 108 74 76 74

_______________________ ~~=
.OO1 133 92 132 99

- 

v~~~~I .25 123 69 82 78
Pen3 Start 3 n — S O  r — .l 117 75 90 76

______________________ v~— .OO 1 99 85 117 95
7 1 — 2 5  97 87 80 83

Pen3 Start 3 n— 100  ,i— .l 108 98 109 82
_______________________ - 

u~= .0O1 112 97 132 96
77 .25 5 5 5 5

PSP Start i n — S O  r~u.” .1 7 7 7 7
________________ v~— .0O1 7 7 7 7

KEY
CC - tradit ional conjugate -grad ient method.
PCG - algorithm CC with diagonal preconditioniug.
BCG - Besle’s method with Powell restarts.
PBCG - diagonally preconditioned Beale’s method.
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TABLF A2
Number of Function Evaluat ion. Required By

Limited-memory Quasi-Newton Methods
on Problems With Clustered Eigenvalues

PROBLEM 77 Sh.~ao PZ.MI PL M2 PLMA

77 .25 27 53 53 53
Pea l Start 3 n —S O  1 7 — 1  37 28 29 27

_______________________ — 77 .001 49 34 33 32
28 46 44 40

Peal Start 3 n— 100  ,~— .1 13 10 10 10
_______________________ ~ — .0O1 14 10 10 10

21 21 20 21
Pea l Start 2 n —S O  77— 1 23 28 28 32

______________________ — 17 .001 25 23 28 29
19 23 20 20

Pea l Start 2 n — l 0 0  v j — .l 45 41 41 44
______________________ - 

u~— .OO1 39 48 48 57
7 .1. 25 15 35 51 67

Pen2 Start S n —S O  ,7— .1 33 36 33 47
_______________________ 77 .OO1 42 67 77 112

8 10 15 28
Pen2 - Start 5 n—10 0 u~— .l 14 12 13 13

______________________ 1— 0 0 1 21 18 18 23

KEY
Shan no - Shanno ’s method.
PLM1 - preconditioned one-step BFGS.
PLM2 - preconditioned two -step BFCS.
PLMA - method PLM2 with accumulated step~
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TABLE A2 (continued)
Number of Function Evaluations Required by

Limited-memory Quasi-Newton Methods
on Problems With Clustered Eigenvalues

PROBLEM 17 Shsruio PL M I P LM2 PLMA
74 58 70 118

Pen2 Start 3 n —S O  17— 1 99 80 68 76
_______________________ _ _ _ _ _ _ _ _ _ _  

127 106 82 71
17 .25 17 12 16 28

Pen2 Start 3 n — l O 0  ~ — .1 18 17 15 18
_______ _ _ _ _ _ _ _ _ _ _ _  

77 .OO l 32 30 23 29
_______— 

17 .25 87 64 85 65
Pen3 Start ! p — S O  ,p— .1 81 82 90 82

_____________________ 17 .OOl 80 92 104 71
89 115 95 77

Pen3 Start 1 ui — 100 — .1 84 120 109 87
_ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _  

17 11.1 .001 81 132 94 79
7 7 — 2 5  83 89 101 76

Pen3 ~S art 3 n— SO i~— .1 75 89 107 76
________________________ 17 .001 85 117 116 71

711.1.25 85 82 87 85
Pen3 Start 3 n— 100  ,7— .1 . 79 84 Ill 94

_____________________ ?7 .001 94 132 124 83
17 .25 4 4 4 4

PSP Start ! n —S O  , — .1 6 7 6 6
______________________ i~~~ .O01 7 7 7 7

KEY
Shanno — Shan no’s method .
PLMI - preconditioned one-step BFGS.
PLM2 - preconditioned two-step BFCS.
PLMA - method PLM2 with accumulated step
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TABLE A3
Number of Function Evaluation. Required

by Coajugate-gradient Type Methods
on General Problems

PROBLEM ‘1 CC 8CC PCG P0CC

17 u.’ .25 23 14 22 18
Chebyquad Start 2 n — 6  ~~— .1 25 17 20 18

_____________________ ‘7 .1111.001 30 22 29 26
31 22 24 26

Chebyquad Start 2 n — 8  71— 1 31 30 26 27

______________________ 17 .0O1 32 34 34 37
109 85 89 79

Chebyquad Start 2 n — 2 0  s — .! 98 119 85 81
_____________________ 17 .1.11 .001 138 132 94 88

17 II— .25 556 135 >700 546
Watson Stall ! n — 8  7— .! 456 81 >700 200

_______________________ rj .OOI 470 161 >700 609
17 .25 652 551 216 190

GenRose Start 2 n — S O  ‘7— .I 687 599 219 202
______________________ 77 .001 748 664 269 250

17 .25 1 197 1057 325 318
GenRose Start 2 n—100  7 — 1  1247 1070 357 338

_______________________ 17 .OOl 1354 1239 494 457
17 — .25 >2000 >2000 346 427

Calvar l Start 1 n —S O  q —  .1 >2000 >2000 354 425 -
- g — .001 >2000 >2000 419 433

.25 >2000 >2000 815 828
Ca) var l Start 1 n — l O O  7 1 — 1  >2000 >2000 821 857

— .001 >2000 >2000 929 985

KEY
CG . tradit ional conjugate-grad ient method.
PCG - algorithm CC with diagonal preconditioning.
BCG - Beak’s method with Powell restarts.
P8CC - diagonally piwe.ditioned Beak’s method.
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TABLE A3 (continued )
Number of Function Evaluation. Required

by Conjugate -grad ient Type Methods
on General Problems

PROBLEM 
- 

‘1 CC 8CC PCC PBCG

17 .25 239 178 159 120
Calvar2 Start ! n — S O  ‘1— 1 239 191 164 129

- 
17 .001 251 190 168 124
77 — .25 520 409 299 284

C*lvar2 Start ! n — l 0 0  7 7 — 1  397 349 305 227
_______________________ 17 .001 475 371 312 238

17— 25 971 709 162 157
Calvar3 Start ! n —S O  q — .! 775 709 159 145

77 .1.1 .001 850 784 172 160
7

1111 .25 1903 1363 292 277
Calvar3 Start I n —  100 77 .11.1 1927 1340 275 280

_______________________ 77 .O01 1695 1507 290 284
‘7 — .25 200 200 675 673

Var(0) Start 4 n — 100 ‘~ 
— .1 200 200 701 529

_______________________ ~~~~.00l 200 200 774 512
S i .25 150 130 322 315

Var(1) Start 4 n — S O  ,p— .1 150 130 334 272
_______________________ , — .001 151 131 355 240

‘7
U111~~.25 344 284 638 839

Var(l) Start 4 n~~~!00 71”~ .l 344 284 665 555
17 1111. 001 347 289 717 544

KEY
CC - traditional conjugate-gradient method.
PCG - algorithm CC with diagonal precoudltioulag.
BCG . Beale’s method with Powell restarts.
P8CC - diagonally preconditioned Beak’s method.
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TABLE *3 (continued)
Number of Fu nction Evaluations Required

by Conjugate-gradient Type Methods
on General Problems

PROBLEM - ‘1 CO BCG PCC P0CC

i~~~~.25 27 27 29 29
QOR Star t l n — S O  vp — .l 27 27 29 29

______________________ ?7 .001 27 27 29 29
1P7 .25 87 81 72 71

GOR Start i n — S O  ‘ 7 — 1  87 81 76 76

— ~~~~.001 108 99 95 92
q— .25 81 82 74 57

ChnRose Start 6 n — 2 5  v~~~ .1 84 78 82 63
______________________ 77 1.111.001 100 106 86 95

KEY
CC - traditional conjugate -gradien t method.
PCG - algorithm CC with diagonal preconditioning.
8CC - Be. Ic’s method with Powell restarts.
P8CC - diagonally preconditioned Beale’s method.
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TABLE Ad
Number of Func tion Evaluations Required by

Limited-memory Quasi-Newton Methods
on General Problems

PROBLEM 17 Shinno PLMI PL.M2 PLMA
19 18 17 17

Chebyquad Start 2 n — 8  r~— .1 20 22 17 18
______________________ ~~~~.0O 1 24 27 23 26

27 26 28 21
Cbebyquad Start 2 n~~~8 7 7 — 1  29 27 30 21

______________________ tp — .001 43 34 34 26
17 .25 72 80 80 75

Chebyquad Start 2 n — 2 0  v~— .1 71 95 86 71
_____________________  

77 1.111.001 88 87 83 90
17 — .25 174 >700 >700 294

Wat son Star t 1 n — 8 ,
~~

— .1 175 >700 >700 406
______________________ 

77.1111 001 186 >700 >700 316
243 199 203 201

Genflose Start 2 n — S O  tp— .1 250 210 207 263
_______________________ j~~~.OO l 285 261 271 330

‘1 — .25 403 330 328 365
GenRose St..rt2 n—100 17— 1 416 348 361 410

— .001 526 480 478 528
17 .25 >2000 451 428 360

Calvar l Start 1 n— SO ‘7 — .! >2000 464 406 401
_____________________ 77 11.11.001 >2000 478 457 456

>2000 841 879 819
Calvar l Start ! n — l 0 0  7— .! >2000 951 904 854

______________________  77 1.11 .001 >2000 992 1025 905

KEY
Shanno - Shanno’s method.
PLM1 - preconditioned one-step BFGS.
PLM2 - preconditioned I~~-Mep BFGS.
PLMA - method PLM2 with accumulated step.
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TABLE *4 (continued)
Number of Function Evaluations Required by
Limited-memory Quasi-Newton Methods

on General Problems

PROBLEM 11 Sbanno P LMI PLM2 PLM*

71 1111111.25 382 168 127 106
Calvar2 Start ! n — S O  17— 1 275 159 134 118

______________________ 17— 11.001 192 _ 168 158 123
‘7.11.25 690 253 351 204

Calvar2 Start ! n — l O G  ,~— .1 548 308 310 206
______________________ ?7 .001 381 328 330 228
______________________ — 

1040 162 165 152
Calvar3 Start i n — S O  7- 1.1 861 172 170 155

_______________________ 77 1.1. 001 611 188 178 161
i~ u.I .25 1891 308 308 270

Calvai 3 Start ! n —  100 ,p— .1 >2000 304 306 281

_______________________ 77 1111111 .001 1322 318 314 284
77 1111.1.25 463 614 603 475

Var(O) Start d n— 100 ~p — .l 413 762 746 494
______________________ 77.11.001 201 787 783 579

• 
p .25 184 278 321 199

Var(!) Stsrt 4 n — S O  77 1.11.1 139 358 303 224
_______________________ 77 .001 128 347 361 261

17 .25 398 664 545 497
Var(1) Start 4 n —  100 7 — 1  412 690 654 534

______________________ ‘711.1. 001 288 720 713 547

KEY
Shanno - Shan no’s method.
PLM1 - preconditioned one-step BFGS.
PLM2 - preconditioned two-step BFGS.
PLMA - method PLM2 with accumalated step
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TABLE *4 (continued)
Number of Function Evaluations Required by

Limited-memory Quasi-Newton Methods
on General Problems

PRO BLEM 77 Shanno N.M I PLM2 PLMA

17 .1.1 .25 28 29 29 29
QOR Start! n — S M  77 .’..! 27 29 27 29

_______________________ 77 — 001 27 29 27 29
73 73 79 71

GOR Start ! n —S O  ? 7 ’ .l 78 81 77 76
______________________ 77 11.1 .00! 94 95 94 97

77— 25 60 69 57 82
ChnR.ose Start B n — 2 5  ~~— .! 82 102 103 76

_______________________ 7 7 — 0 01 95 108 116 119

KEY
Shanno . Shanno ’s method .
PLMI - precooditaoned one-step BFCS.
PLM2 - preconditioned two-step BFGS.
PLMA - method PLM2 with accumulated step.
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TABLE AS
Number of Function Evaluations Required

by Preconditioned Limited-Memory
Methods vs Modified-Newton and

Full Quas i-Newton Methods
on Probkms With Clustered Eigenvalue s

PROBLEM 
- 

17 PLMA MNM QNM

v~— .25 53 18 33
Pen! Start 3 n — S O  ,~— .1 27 25 26

______________________ 17 .111 .001 32 29 31
‘7 .1. 25 40 NR Nil

Pen l Start 3 n—100 ‘7— .l 10 Nil NR
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

77 .11 .001 10 Nil NR
17 .25 21 11 22

Pen ! Start 2 n — S O  ~— .1 32 16 30

_______________________ 77 .1111 .001 29 18 22
71 1.1 .25 20 NR Nil

Pen l Start 2 n — l O G  1p— .! 44 Nil Nil
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

77 11111 .001 57 Nil Nil 
-

?7 .25 67 15 214
Pen2 Start S n — S O  ,i— .1 47 18 239

______________________ ‘7 11.1.001 112 19 290
77

.1111 .25 28 Nil Nil
Pen2 Stsrt 5 n — l O G  ~~~~ 13 NR Nil

______________________  77 IIII .001 23 Nil NH
17 .1. 25 28 Nil Nil

Pen2 Start 5 n — l O G  77— .1 13 Nil Nil
______________________ 

, i.— .0O 1 23 Nil NH

KEY
PLMA - preconditioned two.step BFGS with accumulated step.
MNM - modified Newton method.
QNM - quasi-Newton method.
NR - Not run.
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TABLE *5 (continued)

Number of Function Evaluations Required
by Preconditioned Limited-Memory
Methods vs Modified-Newton and

Full Quasi-Newton Method s
on Problems With Clustered Eigenvalues

PROBLEM 
___________  

?LMA MNM QNM

118 17 242
Pen2 Star t 3 n — S O  v~— .1 76 31 322

_________________________ 77 .O0 1 71 26 341
77

1.11 .25 28 NIl NT~
Pen2 Start 3 n= 100 v i— .! 18 NIl NH

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
77’...OO l 29 Nil NH
17—25 65 14 115

Pen3 Start 1 n — 50 — .1 62 20 113

______________________  
77 .1111 .001 71 24 146
17 1 .25 77 NH NH

Pen3 Start 1 n 100 7, — .1 87 Nil NR
______________________ 77 .1. 001 79 NIl NR

76 44 135
• Pen3 Start 3 n — S O  11— 1 76 44 150

_______________________ _ _ _ _ _ _ _ _ _ _ _  

7! 48 155
~~ IlIui .2S 85 Nil Nil

Pen3 St.art 3 n — l O G  71- 1 .1 94 Nil Nil
______________________ vj .OO I 83 NIl Nil

‘7—25 4 2 5
PSP Star t !  n — S O  17— 1 6 2 7

I_______________________ 17 — 001 7 2 7 I

KEY
PLMA - preconditioned two-step BFGS with accumulated step.
MNM - modified Newton method.
QNM - quasi-Newton method.
Nil - Not run.
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TABLE *6
Number of Function Evaluations Required

by Preconditioned Limited-Memory
Methods vs Modified-Newton and

Full Quas i-Newton Methods
on General Problems

PROBLEM 
_ _ _ _ _ _ _ _ _ _  

PL.MA MNM QNM
17 18 13

Chebyquad Start 2 n— 6 ‘7— .! 18 39 15
__________________________ i~~~~.OO I 26 56 19

17 .25 21 38 21
Chebyquad Start 2 n — 8  71— 1 21 64 25

_________________________  
77 1.1 .001 26 68 36

75 121 65
Chebyquad Start 2 n—20 77- 1.1 71 116 67

_________________________ 17-1.001 90 161 92
77 .25 294 11 28

Watson Start! n — 8 
~~~~ 

.1 406 15 37
__________________________ I~~~.OO1 316 27 55

t~~~ .25 20! 202 287
Genilose Start 2 n — 50 

~~~~ 
.1 263 257 ~23

_________________________________ 
77 — .001 330 392 412
77 .1.11 .25 365 NH NH

GeuRose Start 2 ii — 100 vp~~ .1 410 NH NH
__________________________ ~~~.O01 528 NR Nil

77 .25 386 9 191
Calvarl Start 1 n— SO 1 7w .! 401 11 214 l

___________________________ 77 .001 456 17 269
17 .1111 .25 819 Nil Nil

Calvar l Start 1 n — 100 ~~~ .1 854 NR Nil
_________________________ 77.11.001 905 Nil Nil

KEY
PLMA - preconditioned two-step BFGS with accumulated step
MNM - modified Newton method.
QNM - quasi-Newton method.
Nil - Not run.

51



— 
__

~
_
w--__ • 

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
•- -  -- - -_

~~

TABLE A6 (continued)
Number of Func tion Evaluations Required

by Preconditioned Limited-M emory
Method s vs Modified-Newto n and

Full Quasi-Newton Method s
on General Problems

PRO BLEM 77 PLMA MNM QNM 1
v~— .25 108 4 52 1Calvar2 Start ! n — S O  ~~~~~ 118 4 54

_________________________ v~~~ .OO1 123 8 67
?7 .25 204 NH YR

Calva r2 Star t 1 n = 100 = .1 208 NH NH

— .001 228 NIl YR
17 .25 152 6 114

Calvar3 Start 1 n — 50 — .1 155 7 135
___________________________ v~~~~.001 161 11 161

77 1.1.25 270 NH YR
Calva r3 Start 1 n — 100 77 — .1 281 NIt YR

— .00 1 284 NIt YR
?7 .25 475 NH NH

Var(0) Start 4 n — 100 ~~~ .1 494 Nil NH
_________________________ _ _ _ _ _ _ _ _ _ _  

579 NH
?7 .25 199 3 102

Var (1) Start 4 n — 50 — .1 224 3 101
________________________  _ _ _ _ _ _ _ _ _ _  

261 4 102

~ 
.25 497 NH Nil

Var(l) Start 4 n = 100 ‘7 .1 534 NIl Nit
__________________________j ’7=

~

001 547 NR NH~~~

KEY
PLMA - preronditioned two-step BFGS with accumulaied step.
MNM - modified Newton method.
QNM - quasi-Newton method.
Nil - Not run.
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TABLE *8 (continued)
Numbe, of Function Evaluations Required

by Preconditioned Limited -Memory
Methods vs Modified-Newton and

Fu ll Quasi-Newton Methods
on General Problems

PROBLEM ‘7 PL .MA MNM QNM

?7 .25 29 3 39
QOR Start i n — S O  7 7 — .! 29 3 27

________________________ ij .OO 1 29 3 27
77 .25 71 5 59

COil Start 1 n —50 ~ 
.1 76 5 59

_______________________  ‘7 .111 .001 97 7 72
t~~~ .25 82 28 97

Chnilose Start 6 n — 25 ,
~~~ 

.1 76 48 122 -

— 
‘~ 
— .001 119 47 164

KEY
PL MA - preconditioned two-step BFGS with accumula ted step.
MNM - modified Newton method.

* 
QNM - quasi-Newton method .
Nil - Not run.
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TABLE *7
Number of Itera t ions Required

by Preconditioned Limited-Memory
Methods vs Modified -Newton and

Full Quasi-Newton Methods
on Problems With Clustered Eigenvalues

PROBLEM 
______ 

77 PLM * MN M Q~~M
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - 

V7 .25 22 17 27
Pen ! St.art 3 n~= SO ‘7- 1.1 8 9 8

— g— .OO! 8 7 8

‘ 7 — 2 5  17 NIt NH.
Pen ! Start 3 n= 100 r~— .1 2 Nil NH

~ 77 .1.11.00 1 2 NH YR
8 11 17

Pen ! Start 2 n — S O  77- 1 .1 11 6 10 
7 7 - 1.00 1 7 5 5
77 ..i .25 9 Nil YR

Pen ! Start 2 n ’— IOO ,~— .1 13 NH NH
___   

17-1 .00 1 14 NH Nil
i~~~ .25 31 14 98

Pen2 Start 5 n — 5 O  ~~~~~ 15 8 72
_____-  - 

v2= .001 27 5 62
t~— .25 13 NIl Nil

Pen2 Start S n i— lOG ~~~~~ 6 NIl Mt

- 
71 11.11 .001 6 Nil Nil

KEY
PLMA - preconditioned two-step BFGS with accumulated step.
MNM - modified Newton method .
QNM - quasi-Newton method .
Nil - Not run.
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TABLE AT (continued)
Number of Iterations Required

by Preconditioned Limited-Memory
Methods vs Modified-Newton and

Full Quasi-Newton Methods
on Problems With Clustered Elgenvalues

PROBLEM 77 PL MA MNM QNM

~7— .25 52 17 134
Pen2 Start 3 n —S O  17— .! 28 9 99

______________________  
77.1. 001 15 6 73

- 

1 7 — 2 5  14 NIl NH
Pen2 Start 3 n— . 100 7 — .! 7 Nil Nil

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
77 1.1 .001 7 NIl Nil

— 

17 .25 35 10 57
Peo3 Start ! n — S O  vp — .1 30 8 51

_______________________ 77 — 001 28 8 54
~~iuu. .25 39 Nfl Nil

Pen3 Start ! n — 1 0 0  77— 1 44 NIl Nil
_______________________ 17i- .0Ol 34 NR NR

7 7 — 2 5  40 40 67
Pea3 Star t 3 n — S O  ‘ 7 — 1  38 12 63

— 
17 .11 .00 1 28 11 56
77

.11* 25 49 Mt Nil
Pen3 Start 3 n — l O G  t i — i  48 Nil Nil

_______________________ 17~~3 .OO 1 35 Nil Nil
17 .25 3 2 4

PSP Start i n —S O  7 7 — 1  3 2 3
_______________________ 7— 00! 3 2 3

KEY
PLMA . preconditioned two-step BFGS with accumulated step.
MNM - modified Newtoa method.
QNM - quasi-Newto, method.
NB - Not run.
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TABLE A8
Number of Iterations Required

by Preconditioned Limited-Memory
Method s vs Modified-Newton and

Full Quasi -Newton Methods
on General Problems

PROBLE M ‘7 PLMA MNM Q~~ M I

8 4 8
Chebyquad Start 2 n — 8 ‘1 = .1 8 4 8

______________________ i~~~ .OO 1 9 6 7______________________ — 
77—25 10 6 14

Chebyquad Start 2 n=8 17i- .I 10 8 12
_________________________ 77 .OO 1 10 10 14

?7 .25 I 38 29 32
Chebyquad Start 2 n — 2 0  v — .1 33 24 28

__________________________ 17 — 0 0 1 33 30 28
150 11 25

Wat ~~n Start 1 n — 6 , — .1 188 7 18
___________________________ 17 .O01 129 8 1 ~~~~

77 .25 108 62 128
GenRose Start 2 n — S O  q — .l 119 66 118

___________________________ ?7 .001 119 88 118
i~~~ .25 191 NH. YR

GenRose Start 2 n — 1 0 0  7 7 - 1.1 192 Ml YR
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~ .001 188 NIt NR~~~

194 7 162
Cah ar l Start 1 n — 50 — .1 204 6 89

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  77 11.1 .001 205 6 88
423 YR NH

Calvar l Start ! n — l O G  17— .l 429 YR Nil
___________________ 7711. 001 416 Nfl YR

KEY
PLMA - preconditioned two-step BFGS with accumulated step.
MNM . modified Newton method.
QNM - quasi-Newton method.
Nil-  Not run.
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TABLF~ A8 (continued)
Number of Iterations Required

by Precondit ioned Limited-Memory
Methods vs Modified-Newton and

Full Quasi-Newton Methods
on General Probl ems

PROBL EM ‘7 PL.MA MNM QNM
64 4 28

Calvar2 Start ! n —S O  ~~~~~ 61 4 28
_______________________  ‘~~~ .OO 1 60 4 28

112 Ml Nil

Calvar2 Star t 1 n — 100 ~ — .1 107 NIl NH
- ‘ 7 — 0 0 !  113 Nil YR

80 6 90
Cah-ar3 Start ! n — S O  7 7 — .! 78 5 59

________________________ 17 .OO1 _77 5 59
143 NIl NR

Calvar3 Start ! n — l O G  77— .! 142 Nil YR
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

t j — .OO 1 138 YR YR
r~-..25 268 YR YR

Var(O) Start 4 n — l O G  ~...1 255 Nil Nil
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

77 .11.1.001 289 Nil YR
17 — 25 115 3 52

Var(!) Stsrt 4 n — S O  v~— .1 117 3 51
_______________________ ~ — .O0 1 129 3 5!

273 Nil Nil
Var(1) Star t 4  n — l O G  1 7 — 1  274 Nil YR

___________________ ~ — .O01 271 NR NH

KEY
PLMA - preconditioned two-step RFGS With accumulated step.
MNM - modified Newton method.
QNM - quas i-Newton method .
NB. - Not run.
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TABLE A8 (continued )
Number of Iterations Required

by Preconditioned Limited-Memory
Method s vs Modified-Ne wton and

Full Quasi-Newton Methods
on General Problems

PROBLEM t7 PL MA MNM Qr~M
77 11111 .25 14 3 23

QOH Start ! n — S O  ~ — .1 14 3 13
_________________________ 77 —1 .001 14 3 13
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - 

41 5 29
GOR Start ! n — S O  ‘7 1.1. 1 4! 5 29

_________________________ 77 1 .O0 l 42 5 29
77 1111 .25 40 15 48

CbnRo.e SIart 8 n —2 5  77— 1 37 16 46
__________________________ ?7 .OO1 43 12 47

KEY
PLMA - preconditioned two-step BFGS with accumulated step.
MNM - modified Newton method .
QNM - quasi-Newton method.
Nil - Not ru n.
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CONJUGATE-GRADIENT METHODS
FOR LARGE-SCALE NONLINEAR OPTIMIZATION

In this paper we discuss several recent conjugate-gradient type methods for
solving large-scale nonlinear optimi zation problems. We demonstrate how the
performance of these methods can be significantly improved by careful imple-
mentation. A method based upon I terative preconditloning will be suggested
which performs reasonably efficiently on a wide variety of significant
test problems.

Our resul ts Indicate that nonlinear conjugate-gradient methods behave in a
similar way to conjugate-gradient methods for the solution of systems of
linear equations . These methods work best on problems whose Hessian matrice~
have sets of clustered eigenvalues . On more general problems, however,
even the best method n~y require a prohibitively large nunther of Iterations .
We present numerical evidence that indicates that the use of theoretical
analysis to predict the performance of algori thms on general problems is
not straightforwa rd.
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