

NAVAL POSTGRADUATE SCHOOL Monterey, California

ADA0945\%2

(20. Continued

operational billet requirements is used to calculate operational and command tour opportunities or shortfalls for specific tour positions over projected fiscal years for each subcommunity. Model capability is demonstrated by adjusting organization requirements, billet requirements, grade requirements, and tour positions. The model confirms serious aviation shortfalls and provides analysts with the ability to test various manpower planning alternatives.

IMNCIASSTETEA

Approved for public release; distribution unlimited

> AIRTOURS: Application of an Interactive Computer Model to Analyze the Manpower Requirements and Operational Tour Opportunities of the Aviation Warfare Community

> by

Michael Lynn Scholes Lieutenant, United States Navy B.A., University of Washington, 1973

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MANAGEMENT
from the

NAVAL POSTGRADUATE SCHOOL
December 1980

Author
Approved by:
 \therefore lir Lore Dean of Information and Policy Sciences

This thesis presents application of an interactive computer model designed for more efifcient utilization of available manpower within the Aviation Warfare Community. Officer Master Billet File data are analyzed for the purpose of determining relevant aviation input parameters in five aviation subcommunities, including prop pilots, prop NFO's, jet pilots, jet $N F O^{\prime} s$, and helo pilots. Specific operational tour structures are defined for each subcommunity and current information for officer inventory and operational billet requirements is used to calculate operational and command tour opportunities or shortfalls for specific tour positions over projected fiscal jears for each subcommunity. Model capability is demonstrated by adjusting organization requirements, billet requirements, grade requirements, and tour positions. The model confirms serious aviation shortfalls and provides analysts with the ability to test various manpower pianning aiternatives.

TABLE OF CONTENTS

ACKNOWLEDGMENT 10
PREFACE 11
I. INTRODUCTION 12
II. THE NAVY'S OFFICER MANPOWER PLANNING SYSTEM 18
III. MODEL DESCRIPTION 26
A. LEVEL OF SPECIFICITY 25
B. AVIATION PARAMETERS 27

1. Aviation Subcategories 28
2. Tour Positions 30
3. Organizations 32
4. Command Categories 35
5. Billet Requirements 37
б. Supply 44
C. FUNCTIONAL DESCRIPTION 46
6. Model Objectives 46
7. Requirements 46
8. Supply 47
9. Results 50
D. MODEL ASSUMPTIONS AND LIMITATIONS 51
IV. MODEL OPERATION 55
A. GENERAL 55
10. Overview 55
11. Program Initiation 56
B. PROGRAM SUBFUNCTIONS 58
12. Display 58
13. Changes 61
14. Results 66
V. MODEL APPLICATION AND ANALYSIS 71
A. INTRODUCTION 71
B. ANALYSIS OF CURRENT SUBCOMMUNITY DATA 72
15. Prop Pilots 75
16. Jet Pilots 76
17. Helo Pllots 78
18. Prop Naval Flight Officers 79
19. Jet Naval Flight Officers 79
C. AVIATION PARAMETER ALTERATION 80
20. Billet Requirement Alterations 81
a. Organization Requirements 32
b. Billet Structure Changes 83
21. Tour Position Alterations 85
22. Multiple Parameter Alterations 88
VI. CONCLUSIONS AND RECOMMENDATIONS 91
APPENDIX A - Tour Position Indication Codes and Descriptions 95
APPENDIX B - Aviation Organizations and Command Categories 100
APPENDIX C - Tour Position Indicators 103
APPENDIX D - Discrete Operational Billets 106
APPENDIX E - Nondiscrete Operational Billets 110
APPENDIX F - Apportioned Operational Billets 113
APDENDIX G - Officer Inventory by Grade and YCS 118
APPENDIX H - Total Billet Requirements 148
APPENDIX I - Tctal Officers Available 151
APPENDIX J - Operational Tour Opportunities 154
APPENDIX K - Billet Rates 157
APPENDIX L - Apportionment Algorithms 160
APPENDIX M - Eillet Requirement Alterations 164
APPENDIX N - Tour Position Alterations 179
APPENDIX 0 - Multiple Parameter Alterations 188
AP?ENDIX P - AIRTOURS Computer Program 198
LIST OF REFERENCES 211
INITIAL DISTRIBUTION EIST 213

LIST OF TABLES

TABLE 1. NUMBER OF DISCRETE PROP PILOT OPERATIONAL BILLETS BY ORGANIZATION TYPE 39
TABLE 2. NONDISCRETE BILLETS ASSOCIATED WITH THE PROP PILOT SUB COMMUNITY 40
TABLE 3. NUMBER OF APPORTIONED PROP PILOT OPERATIONAL BILLETS BY ORGANIZATION TYPE 45
TABLE 4. TOUR POSITION INDICATORS 48
TABLE 5. THE TOUR-GRADE MATCH MATRIX 49
TABLE $5 . ~ A I R T O U R S ~ P R O G R A M ~ I N S T R U C T I O N S ~$ 57
TABLE 7. PROP SUBCOMMUNITV ORGANIZATIONS AND COMMAND CATEGORIES 59
TABLE 8. INVENTORY OF PROP PILOT OFFICERS FOR 1981 62
TABLE 9. TOTAL INVENTORY OF PROP PILOT OFFICERS 53
TABLE 10. SAMPLE CHANGE PROCEDURE 65
TABLE 11. NUMBER OF PROP PILOT SEA BILIETS 57
TABLE 12. NUMBER OF PROP PILOT OFEICERS 67
TABLE 13. SEATOUR OPFORTUNITIES (SHORTFALL) OF ELIGIBLE PROP PILOTS IN PERCENTAGE 68
TABLE 14. BILLET RATES (REQUIREMENT DIVIDED BY TOUR LENGTH) FOR PROP PILOT OFFICERS 69
TABLE 15. PLANNED PTR'S THROUGH POM-82 FYDP AND PLANNED NFOTRS THROUGH POM -82 FYDP 73

LIST OF FIGURES

FIGURE 1. AVIATION OFFICER PROFESSIONAL DEVELOPMENT PATH 24
FIGURE 2. AVIATION WARFARE OPERATIONAL TOURS 33

ACKNOWLEDGMENT

The author would like to thank the members of OP-13 and NMP-4, who provided assistance in the preparation of this thesis. Special thanks to CDR Steve Todd, ICDR Gary Johnson, and LCDR Ernie Morris, whose contributions were invaluable.

PREFACE

This thesis was completed as part of the Research in Officer Manpower and Fersonnel Planning sponsored by the Principal Deputy Assistant Secretary of the Navy (Manpower and Reserve Affairs) and the Deputy of Naval Operations (Manpower, Personnel, and Training, OP-O1).

The model is now accessible to manpower managers in OP-01 using the API*PLUS system of the Scientific Time Sharing Corporation. Potential users may readily familiarize themselves with the model by referring to Section IV and V, and accompanying appendices of this thesis.

I. INTRODUCTION

Manpower, always an important part of the national defense effort, has assumed even greater importance in recent years. During the era of the all-volunteer force, the acquisition of talented and qualified individuals has become a central issue for defense policy makers. As stated by Secretary of Defense, Harold Brown, in his Report to the Congress for Fiscal Year 1980 [Ref. 1]:
"The overiding Defenst anpower objective is to increase combat effectiveness of the Armed Forces. In that effort, the most important factor, often taken for granted in discussions of sophisticated equipment, is attracting and retaining capable, motivated people."

The goal of increased combat effectiveness through the retention of motivated people can be achieved only if scarce manpower resources are properly managed.
"Management", in this instance, is tre planning and integration of effort, judicious use of resources, motivation of people, and arovision of leadership in order to guide an organization toward its goals and objective in an efficient manner [Ref. 2]. To carry out the above functions, toward the end of increased combat effectiveness, defense managers are engaged in a continuous process of making decisions; therefore management may be considered equivalent to decision making.

In the past, decision making has been considered an "art"; a talent learned only through long years of experience using a methodology of trial and error. While the concept of management as an art is still valid, decision making based solely on experience and trial and error can be very costly and inefficient in today's dynamic national defense environment.

Military manpower managers in particular are faced with a number of serious problems which require systematic analysis, rather than piecemeal proceedures dependent on trial and error methods to solve. One such problem facing manpower managers in the United States Navy is the management of the Unrestricted Line Officer (URL) corps, which has incurred serious shortages in the recent past. These shortages, which permeate most URL communities, have been caused by various internal and external factors ranging from the arduous nature of Naval sea duty, to complaints of low pay and eroding benefits, to competion from the civilian sector. While the Department of Defense has taken positive steps to stem the outflow of experienced URL officer manpower, the closed nature of the military personnel system requires that manpower managers distribute the remaining line officers in ways that contribute to the successful accomplishment of defense mission objectives, i.e., combat effectiveness.

To properly plan for effective distribution of scarce officer manpower resources in an environment as dynamic as the defense community requires the collection, organization, and analysis of a diverse and voluminous amount of information in a short amount of time [Ref. 3]. Manpower planners must have the capability to interpret and integrate this information quickly and concisely. Concurrently, they must have the capability to analyze the effect that changing policies have on distribution decisions. The application of a computerized manpower planning model could provide this capability.

Research has recertly been completed at the Naval Postgraduate School on several interactive manpower models designed to enhance the decision making process of planners and analysts in all major Unrestricted Line Officer communities. Teply [Ref. 4] has developed a model for the Submarine Officer Corps, Morris [Ref. 5] provides an evaluation of career paths and a model for the VP (Maritime Patrol) Aviation Community, while Milch [Ref. 6] has developed a model for Surface Warfare Officers. All three of these models analyze sea tour opportunities in the "elevant URL community modelled.

This thesis continues research in this area by focusing on a segment of the URL community which is experiencing serious manpower problems: The Aviation Warfare Community.

Aviation manpower managers are currently faced with pilot inventories which are at their lowest levels in over 30 years. In the grade of Lieutenant alone, the Navy is short 1900 pilots, or 43 per cent of authorized requirements
[Ref. 3]. Aggravating the current shortfalls are pilot retention rates, which have plummeted from 62 per cent in Fiscal Year (FY) 1977, to less than 30 per cent in FY 1980. In October 1980, manpower planners in the Office of the Deputy Chief of Naval Operations, Military Personnel and Training Division (OP-13) stated:

> "The Navy's aviation officer community currently is operating at resource levels insufficient to fill all aviation officer requirements and its share of generalist billets. Although the pilot and NFo training rates are programmed for modest increases in the next few years, it will be years before the inventory can generate the total numbers and the desired year group experience mix to properly fill all these requirements. In the interim, continuing policy reviews and decisions will be required to insure that available resources are utilized in the most effective and efficient manner to meet priority fleet training, and management positions. At the same time, it will be essential that career development opportunities be maintained for the long term growth of the community and to provide retention incentives for individual officers [Ref. 7]."

It is obvious from the above statement, that aviation manpower planners are faced with a difficult situation that requires a systematic means of determining the impact of alternative management policies and actions on the viability of Naval Aviation. An interactive, computerized, manpower model of the Aviation Warfare Community could provide such a tool and enhance the capability to analyze alternative policies and decisions.

This thesis adapts the mathematical formulation and programming developed by Milch [Ref. 6] for determining the seatour opportunities of Surface Warfare Officers, to the Aviation Warfare Community. Although the Aviation Warfare Model (AIRTOURS) uses the algorithms of Milch's model, the diverse nature of the Aviation community required that specific aviation manpower requirements and officer career path criteria be developed. Several programming changes were also necessary to more accurately reflect the needs of the aviation community.

By individually modelling the operational career sequence of five different types of Aviation Warfare Officers, the AIRTOURS model determines the opportunities for an officer to obtain an operational tour position or the shortfall of operational tour positions to be fully manned. The AIRTOURS model uses several inputs to determine these opportunities. The number of aviation organizations in the future that must be manned and the number of billets per organization for each tour position, determine the manpower requirements or demand that must be met. Tour positions (the years of service necessary to be eligible to fill a billet and length of the tour in that billet), coupled with tour grade requirements and the stock of relevant officers in the future by year group and rank, are combined to determine the number of officers available to fill the
required billets. For each tour position, over future years, requirements are compared to availabilities yielding the ratio of seatour opportunities.

The power of the model lies in its ability to change input information. For instance, an analyst may want to see the effect that lengthening the first operational squadron tour has on meeting tour requirements. Similarly, he might want to determine what impact the decommissioning of an aviation squadron will have on the demand for aviation officer manpower over a series of fiscal years. The capability of the model to alter these and other input parameters permits the user to analyze various alternative allocation policies and detect unfavorable trends which may require policy alteration.

The analysis which follows briefly describes the Navy's manpower planning system, with particular attention to the Aviation Warfare Community. The parameters which effect aviation career development are then structured. A functional description of the model's computational algorithm is presented, followed by detailed instructions for nodel operation. The final sections of this thesis contain applications of the AIRTOURS model, including analysis of current aviation manpower data, as well as presentation of specific alterations designed to demonstrate the model's flexibility in analyzing alternative decisions.

II. THE NAVY'S OFFICER MANPOWER PLANNING SYSTEM

Examination of the Aviation Warfare community provides an excellent opportunity to observe an important segment of the Navy's Manpower planning process. Manpower planning within the aviation community is undoubtedly as intricate as any of the Navy's Unrestricted Line Officer communities.

An initial step, prior to an indepth discussion of the aviation community is to gain insight into the procedures and policies of the Navy's Manpower planning system in general.

The Chief of Naval Operations (CNO) directs and coordinates the development and implementation of the manpower planning system. The objectives of the system, as outined in The Manual of Navy Officer and Enlisted Manpower Policies and Procedures (OPNAVINST 1000.16D) [Ref. 8] are as follows:

Determine minimum military and civilian manpower requirements to achieve approved operational and mission demands.

Provide staffing standards for functions performed ashore and afloat, based on recognized management and industrial engineering techniques and objective determinations of workload.

Provide a system for the aggregation of manpower requirements information at the various levels above the activity level to support and justify Navy manpower requirements during all stages of the Planning, Programming, and Budgeting system.

Relate support manpower requirements within the shore establishment to the changing demands of the operating forces.

Minimize response time for manpower information by providing a capability to respond rapidly to management queries.

Ensure that manpower requirements for maintenance and operation of new weapons, equipments, systems, and initiatives are specified sufficientiy in advance of fleet introduction to allow their consideration in the programming cycle and development of requisite personnel skill levels.

Provide reliable planning information to personnel inventory managers, both military and civilian, so they may assess the feasibility and impacts of manpower management actions.

The responsibility for ensuring that these objectives are achieved rests with several Naval organizations. Of specific interest in the discussion of the Aviation Warfare community are the Deputy Chief of Naval Operations (DCNO) for Manpower Personnel and Training (OP-Jl), the Commander, Naval Military Personnel Command (NMPC), and the DCNO for Air Warfare (0P-05).

The DCNO (Air Warfare) is responsible for the promulgation of the Required Operational Capability (ROC) and Projected Operational Environment (POE) statements. In the case of aviation squadrons, the ROC and the POE are utilized in the Squadron Manpower Requirements Program. The ROC provides a precise definition of the squadron's mission statements and the POE is a description of the specific operating scenario In which the squadron is expected to operate in a wartime
environment. The ROC/POE presents squadron tasking in terms of mission areas, type and quantity of aircraft, flight hour utilization, flight crew composition, and other quantified factors.

The Squadron Manpower Requirements program, which is managed by the Deputy Chief of Naval Operations (Total Force Planning), uses the statements of mission tasking provided by the ROC and POE to document manpower requirements for the Navy's aviation squadrons and publishes them in Squadron Manpower Documents [Ref. 9]. The program was initiated to provide a methodology for documenting manpower requirements in aircraft squadrons. It specifies by individual billet, the minimum quantitative and qualitative manpower requirements to support accomplishment of all assigned missions and required operational capabilities in the designated environment.

The Squadron Manpower Documents (SQMDs), in conjunction with Ship Manpower Documents (SMD) and Shore Manpower Documents (SHMD), form the basis for the Manpower Authorization (MPA) (OPNAV Form 1000/2). The MPA indicates which billets are authorized by the CNO after considering current budgetary constraints, priorities, and manpower policies. The quality assigned to each billet authorized on the MPA shall normally be the same as the corresponding billet in the appropriate manpower document [Ref. 8]. "Billet quality" in this instance refers to the grade level required to fill the billet.

Manoower requirements planning is, therefore, dependent on a multitude of complex variables. The major impetus, however, is to structure a force of the proper skill and experience mix, a force that can accomplish mission demands in a dynamic operating environment.

Nowhere is the necessity for systematic planning better evidenced than the Aviation Warfare community. This community, predominantiy composed of pilots, designated 1310, and Navai Flight Officers (NFO's) designated l320, represents approximately one-half of the Unrestricted Line Officers of the Navy.

These officers fill operational aviation billets in the various fleet aviation squadrons, direct fleet support units, and are utilized in other aviation activities such as aviation ships, research and development units, and aviation special mission activities. Similarly, these officers are required to fill training billets, both as instructors and as students, as well as numerous supervisory and staff billets within the operational force and various support activities. In addition to the aforementioned requirements which specifically demand officers with an aviation designation, naval aviators and NFO's can also be assigned to generalized billets which are non-aviation oriented. These billets have a 1000 or a 1050 designation. The Aviation Warfare community is required to fill a "fair share" of these billet types.

Comensurate with requirements planning is the equally complex and equally necessary goal of development and employment of a qualified and motivated officer corps. Inventories must be kept in line with requirements and, at the same time, the systematic professional development of individual officers within the Aviation Warfare community is essential. The closed, pyramidal structure of the military personnel system requires that new aviation resources (i.e., pilots and NFO's) be accessed only at the bottom of the structure. Lateral hiring of personnel is generally not an option available to aviation manpower planners. Thus it is necessary to "cultivate" or "grow" a knowledgeable and professionally competent officer corps that will meet aviation mission demands both at present and in the future.

The Naval Military Personnel Command is responsible for the development or "growth" of the necessary inventory in the quantity and quality to meet the manower requirements established by the CNO. Working clusely with the Director, Military Personnel and Training Division (OP-13), who has primary responsibility for the development of personnel policies and plans in support of Navy Forces, the Assistant Commander for Distribution (NMPC-4) maintains and manages the inventory of personnel through the distribution process. As described in the Commanding Officers Addendum to the JRL Guidebook [Ref. 10], the mission of NMPC-4 is threefold:

To assign the best qualified officers available to meet the needs of the Navy as defined by the approved officer billet file.

To assign officers to billets which develop their professional expertise in order that the officer corps as a whole embodies the leadership, technical, and managerial skills necessary for the Navy to achieve its mission in war or peace.

To assign officers sensitively and fairly to ensure their continued motivation and dedication to the Navy.

Therefore it is the responsibility of NMPC-4 to assign officers systematically to meet current Naval manpower requirements while concurrently maintaining an officer professional development sequence which ensures a professional and well motivated force that is abie to meet future needs.

Figure 1 illustrates the professional development path of aviators as found in the Unrestricted Line officer Guidebook [Ref. 11]. This path is not a representation of an individual officer's career. It is intended as a general guide to a sequence of billet types which aviators should experience througnout their career. It must not be applied rigidly because a career development path must be responsive to constantly changing manpower policies and requirements as well as to the needs and aspirations of individual naval aviators. The timing of specific tours must contain a degree of flexibility to enable manpower planners the ability to accomplish these multiple objectives.

For the aviator who aspires to command, certain specific tours must be served so that he attains the requisite operational expertise called for by such a demanding assignment. This expertise is gained by serving in operational

billets in aviation squadrons and on aviation related ships and staffs. The Navy also has requirements for qualified aviation officers ashore. These billets are filled by officers in the shore segments of the patn depicted.

Given the serious manpower shortages which the aviation community is presently experiencing [Ref. 7], it is imperative that manpower managers have the ability to effectively distribute aviation manpower in such a way that all possibie requirements are met and officer professional development is assured. Accomplishment of this difficult task is enhanced by the use of management science techniques such as computer manpower models.

The following analysis develops such a model which should enable manpower planners to test alternative hypotheses regarding distribution and assignment policies, tour positioning, tour lengths, experience mix, and other manpower factors relevant to the aviation community.

III. MODEL DESCRIPTION

A. LEVEL OF SPECIFICITY

The numerous variables influencing the aviaticn manpower planning problem have been documented in the previous chapter. While aviation manpower management is complex, it is also constrained by certain rules which tend to give structure to the overall system. An example of a specific rule which helps structure the manpower planning process is the Aviation Cfficer Professional Development Path depicted in Figure 1. Although this path is flexible, it is sufficiently structured to be used as a guide and tool in implementing aviation assignments. Structure enables the use of mathematical modelling techniques for simulating aviation manpower systems.

A model is a simplified representation or abstraction of reality. It is simplified because reality is too complex to copy exactly and because much of the complexity is actually irrelevant to the specific problem [Ref. 2]. Although a model is a simplified version of reality, care must be taken to ensure that the model is valid; that is, that the model sufficiently represents the problem being modelled. If the set of assumptions and equations inherent in a mathematical model does not adequately represent the relationships which occur in the problem being studied, the
model will be of no use. If, however, the model is cluttered with relationships and assumptions designed to simulate all conceivable variations within a particular problem, the model will soon become cumbersome and unmanageable. It is necessary to find a proper balance between the level of simplification of the model and the representation of reality. The model will then have the potential to be a useful problem solving tool capable of aiding and supporting the manager's decision making process.
B. AVIATION PARAMETERS

The primary goal of the AIRTOURS model developed in this thesis, is to provide manpower planners with an interactive computer capability for rapid and easy determination of the impacts of alternative management policies and actions. To enable attainment of this goal, it was necessary to conduct an indepth analysis of the Aviation Warfare community. The purpose of this analysis was to define the unique parameters which affect officer career patterns and manpower requirements within the community.

The analysis was accomplished by extracting relevant information from the Officer Master Billet File (OMBF), through assistance from Manpower analysts in the Naval Military Personnel Command and in the Manpower Personnel/ Training (MPT) Division (OP-13) of the Office of the Deputy Chief of Naval Operations, and by examination of pertinent manpower publications.

1. Aviation Subcategories

Analysis of billet qualitative requirements as reflected in the Manpower Authorization (MPA) (OPNAV Form 1000/2) and the Officer Master Billet File demonstrated the need to make certain changes in the AIRTOURS model vis a' vis Milch's SWOTOURS model. Qualitative requirements for officer billets are identified in the MPA by designation, grade, descriptive billet title, Navy Officer Billet Classification Code (NOBC), and, when appropriate, by a Subspecialty code and an Additional Qualification Designation Code (AQD) [Ref. 12].

The diverse nature of the Aviation Warfare specialty requires that a billet incumbent possess the proper designator code, identifying the officer as either a pilot or Naval Figght Officer (NFO); additionally, virtually every aviation warfare billet specifies an $A Q D$ which identifles the type aircraft in which the officer must be qualified. Discussions with aviation detailers and placement officers in NMPC-4 also revealed that the Aviation Officer Professional Development path differed significantly for different types of Aviation Warfare Officers. For example, in the Jet community, Naval Flight Officers commence their initial squadron tour as much as one year prior, measured in years of commissioned service (YCS), to pilots in the same community. This tour start variability is caused by different training pipeline lengths. Similarily, commencement of the squadron department head tour varies significantly
among the various aviation subcommunities. Jet pilots have started the department head tour as early as the loth YCS, while prop pilots normally do not serve in that billet until the l2th or $13 t h$ YCS. Due to the existence of these manpower requirements and career development inconsistencies among the various aviation warfare communities, aggregation of the inventory and requirements information into a single officer category was deemed inappropriate and of insufficient detail to produce meaningful results. It was found expedient to classify the aviation community into the following five subcommunities, reflecting general aircraft type requirements and aviation designators:

PROP PILOT
PROP NFO
JET PILOT
JET NFO
HELO PILOT
These classifications contain sufficient detail
for meaningful analysis of the Aviation Warfare community while concurrently allowing the program to remain interactive. A more detailed level of data aggregation (i.e., P-3 pilot community, F-14 NFO community, etc.), while considered useful, was not undertaken because the relevant officer inventory information presently available was considered too incomplete for useful analysis at this level.

The five aviation subcommunities having been determined, it was then necessary to identify the relevant tours, organizations, command categories, and billets that represent the requirements structure for those subcommunities.

2. Tour Positions

Every aviation billet examined had, as one of its variables, a Tour Position Indication Code (TPIC). The TPIC indicated the approximate career point or experience level at which a billet was normally encountered by an officer. TPIC classification was selected for inclusion in the AIRTOURS model since it reflects the shape and composition of the aviation community requirements pyramid and is the only billet information available that reflects time.

Identification of aviation billet TPIC classifications was a computer generated process that assigned an alphanumeric code to every aviation billet in the Officer Master Billet File. Determination of the proper code was based on Activity Mission Code (AMC), Primary Naval Officer Billet Classification (PNOBC), Utilization Code (UCODE), billet grade, billet designator, and Unit Identification Code (UIC). Output from the TPIC generation program revealed that aviation TPIC's were divided into two general groups. The first, and most significant group consisted of TPIC's A through I and their subcategories (i.e., A, Al, A2, B, BI, etc.). These billets represented hard sea and shore requirements. The second group consisted of TPIC's U through
Z, representing individual account billets primarily composed of student and transient officer requirements. In total, 64 individual TPIC's were identified. Inclusion of all TPIC's in the AIRTOURS model would have restricted the interactive capability of the model; it was determined, therefore, to limit the analysis to operational aviation tours and aviation command tours.

An operational tour is defined as any tour which is considered sea duty, sea duty equivalent, or which generally occurs at a career point which coincides with tours which are considered sea duty or sea duty equivalents. An example of this last situation occurs in certain Fleet Support squadrons which are considered shore duty but contain billet requirements for pilots and NFO's at career points which coincide with traditional sea duty tours. The aviation command tours are those which require the incumbent to have been selected by a formal command screen board.

Fifteen separate TPIC's were identified as representing the relevant operational and command tours that an aviation officer would most likely encounter during a career.

Figure 2 illustrates the 15 tours chosen for inclusion in the AIRTOURS model. Each tour position represents the years of commissioned service (YCS) required to become eligible for the billets within the tour as well as the average length of the tour while serving in those billets.

Appendix A contains a complete list of the tours represented by the 15 TPIC's, including the billet qualitative requirements of each tour.

In general, the tours selected reflect a more detailed presentation of the operational and command portion of the Aviation Officer Professional Development path depicted in Figure 1 . This added detail permits a more precise analysis of manpower requirements within the five aviation subcommunities.

3. Organizations

Determination of the relevant aviation organizations necessary for inclusion in the AIRTOURS model was accomplished by generating a computerized list, using sort routines outlined in the Statistical Package for the Social Sciences [Ref. 13], consisting of all naval organizations (1.e., squadrons, ships, staffs, etc.) that had manpower requirements for Aviation Warfare Officers. This list was then manually screened to select only operational organizations which, in this case, are defined as any organization with billet requirements for aviation officers in the operational and command tours specified in Section III.2.

The operational organizations list identified over 250 separate Naval organizations representing all the Navy's TACAIR, ASW, and Force Support Squadrons, as well as Direct Fleet Support units (NAS, NAF, ASWOC, etc.), aviation ships (CV, CVN, LPH, etc.), major afloat staffs (CVW, CARGRU,

AVIATION WARFARE OPERATIONAL TOURS

Figure 2.

CRUDESGRU), numbered fleet staffs, and several other smaller aviation units with requirements for aviation officers. It was determined that the detail provided by this ponderous list was more than was necessary for accurate analysis of the Aviation Warfare community. Thus, it was necessary to condense this operational organization list by combining under a single title or organization name, all organizations which contained the same, or nearly the same, billet requirement structures. For example, examination of relevant SQMD's revealed that all twenty four Maritime Patrol Squadrons operated nine P-3 aircraft and consequently required the same quantities and qualities of pilots and NFO's. Therefore, since the billet requirements were essentially the same, the 24 squadrons were defined under a single organization name, i.e., VP. It was found that all TACAIR (VAL, VAM, VAQ, VAW, VF) and ASW (VS, HS, HSL, as well as VP) squadrons could be defined in a similar manner. Additionally, it was found that major afloat staffs, ASWOC's, and most aviation ship types contained billet structures similar enough to permit their designation as single organizations.

Aircraft carriers (CV) proved to be an exception, in that manpower requirements differed significantly enough among the various CV's to necessitate aggregation into four separate CV categories. These categories and the aircraft carriers contained in them are as follows:

AVT AVT 16 - Lexington

CV1	CV 41 - Midway
	CV 43 - Coral Sea
CV2	CV 59 - Forrestal
	CV 60

The remaining organizations chosen including Fleet Support Squadrons, overseas naval air stations, numbered fleets, and the other smaller aviation organizations contained unique billet requirements which necessitated defining them as separate organizations. Appendix B contains the organizations by subcommunity selected for use in the AIRTOURS model. Also displayed are the projected number of these organizations for the next six fiscal years.
4. Command Categories

The need to define command categories among the organizations to be considered was caused by the fact that a great many important opportunities for aviation command occur in organizations which are not considered operational duty as defined in Section III.B.2. For example, Aviation Training Squadrons (TRARONS) and Fleet Replacement Squadrons (FRS), although considered shore duty, represent a significant number of aviation command and sequential command in
grade (SCIG) opportunities for aviation officers in the grade of Commander. Since the units included on the organization list outlined in Section III.B. 3 comprised only operational organizations, many aviation command opportunities were excluded. Inclusion of these commands in the AIRTOURS model was considered useful since it would give manpower planners the ability to more fully analyze aviation command opportunities. This ability was deemed important since opportunity to command is such a vital element of aviation officer career development and since many officers view aviation command as their ultimate goal. Additionally, exclusion of a significant number of command opportunities from the AIRTOURS model would have produced misleading results. However, inclusion of all relevant shore organizations simply to enable model accuracy in these tours would have hampered the interactive capability of the model and was therefore deemed inappropriate. Consequently, four command categories were created for the purpose of maintaining model precision, minimizing data input and refining the ability to analyze command opportunity. The four command categories and the organizations they represent are as follows:

1. TRARON XO/CO - Aviation Training Squadrons.
2. FRS CO - Fleet Replacement Squadrons (RAGS)
3. MAJOR COMMAND -

18 - Service Force Ships
7 - Amphibious Ships
7 - LPHs
4 - Patrol Air Wings
4. SEQUENTIAL COMMAND - Sequential sea commands not detailed previously by the organization list. Specifically two LHSs, four PHIBRONS, and three SERVRONS.

These categories are included on the aviation subcommunity organization lists contained in Appendix B. Obviously, since these are categorical representations of several organizations, the quantity by fiscal years, as illustrated in Appendix B, should always remain at one (1).

5. Billet Requirements

Billet requirements information for the specific aviation organizations, command categories, and tour positions delineated earlier were manually compiled and catalogued again using the OMBF as the source document. Billet designator and $A Q D$ requirements necessitated the compilation of 10 separate files of billet requirement data. Five of the files were composed of discrete billet requirements for each of the aviation suocommunities. A billet was considered a discrete requirement if the billet $A Q D$ code and designator specifically identified the billet as recuiring a prop pilot, prop $N F O$, jet pilot, jet NFO, or helo pilot. If the billet in question contained insufficient qualitative information or allowed variability in efther designator or $A Q D$ requirements, it was classified into one of five nondiscrete billet files. Nondiscrete flles are categorized as follows:

Nondiscrete prop - This file contains billets which require prop aviation officers, but contain no specific designator requirement. That is, either a pilot or a NFO is considered eligible to fill the requirement.

Nondiscrete fet - This file contains billets which require jet aviation officers, but contain no specific designator requirement; i.e., either a pilot or a NFO is considered eligible to fill the requirement.

Nondiscrete pilot - This file contains billets which require pilots, but contain non-specific $A Q D$ requirements; i.e., either prop, jet, or helo pilots are considered eligible to fill the requirements.

Nondiscrete NFO - This file contains billets which require NFO's, but contain no specific $A Q D$ requirements; E.e., any prop or jet NFO is considered eligible to fill the requirements.

Nondiscrete aviation - This file contains billets which contain no specific designator and $A Q D$ requirements; i.e., any aviation warfare officer is eligible to fill the requirement.

The discrete billet files describe those billets
which are subcommunity specific while the nondiscrete files represent billets which may be filled by more than one subcommunity of aviators. The total number of billets for which any specific subcommunty of aviators is eligible is the sum of the number of discrete billets plus a portion of those nondiscrete billets which are applicable to that subcommunity. As an example, Table lilustrates the discrete billet requirements matrix for the prop pilot subcommunity. The billet requirements are defined by aviation organization or command category and by tour. These requirements are specific billets which may be filled only by prop pilots. Table 2 , on the other hand, contains the nondiscrete billet files associated with the prop pilot subcommunity. These files, while they are specific requirements for the class of

NUYBER OP OISCREE PROPAPILOT OPERATEONAL BILLETS GY ORGAYIZATIONTYPE

Table 2
Nondiscrete Billets Associated
With the Prop Pilot Subcommunity

 $\begin{array}{llr}\text { 14. } V C S & 3 & 8 \\ 23 . & A V \% & \\ 24 . & 6 V: & 1 \\ 25 . & C V 2 & \\ 26 . & C V H & \\ 33 & & 2\end{array}$ UAS GTYO BAT
HS KEPLAVIX HS KEFL
OTHERS OTHERS
TRAROA YOICO

1 2
1
1
41. TRAROA IO/CO

2112
11
2

2

40:	URGANEZASIOM	1	C CI	C2	5	${ }_{5}^{6}$	$\underline{5}$		62/3	64 15	96	81	82	83
19.	$V 66$				2									
18.	TACRON1 1				-				1					
19.	TAETOU 21/22				3				2					
21.	LFH									1				
24.	CV1									1	3			
27.	G7udescru													
29.	CAHCRU							1						
30.	2ND FLES\%								1					
37.	MS ADAK			$?$										
40.	OIHERS			5										
42.	72560					-				1				
43.	VAJOR C.VDS												11	
44.	SEGUEW*TAC CIDS													3

aviation officers they represent (prop aviators, pilots, etc.), do not necessarily represent the number of prop pilots required to fill them. The nondiscrete billet requirements must be shared among the subcommunities for which they are relevant. It was necessary, therefore, to devise a systematic means of sharing or apportioning the nondiscrete billets. Several apportionment schemes were investigated, but all had drawbacks of one type or another. After several discussions with manpower analysts in OP-13, it was decided to apportion the nondiscrete billets based on an algorithm which computed apportionment ratios for each tour. These apportionment ratios were based on the average inventory of officers available for a specific tour as defined by YCS and grade. Different apportionment ratios are associated with each of the nondiscrete billet files. For instance, to determine the total number of billets (b(apportioned)) which should be assigned to the prop pilot subcommunity in any specific tour, the model uses the following apportionment formuia:

$$
\begin{aligned}
b(\text { apportioned }) & =b \text { (discrete prop pilot) } \\
& +\frac{N_{1}}{N_{1}+N_{2}} b \text { (nondiscrete prop) } \\
& +\frac{N_{1}}{N_{1}+N_{5}+N_{3}} b \text { (nondiscrete pilot) } \\
& +\frac{N_{1}}{N} b \text { (nondiscrete aviator) }
\end{aligned}
$$

where:

$b($ discrete prop pilot $)=$	the number of discrete prop
	pilot billets for the
	applicable tour
$b($ nondiscrete prop) $=$	the number of nondiscrete
	prop communty billets for the
	applicable tour
$b($ nondiscrete pilot $=$	the number of nondiscrete
	pilot billets for the ap-
	plicable tour
$b($ nondiscrete aviator $)=$	the number of nondiscrete
	aviator billets for the ap-
	plicable tour

and where:

$$
\begin{aligned}
N_{1}= & \text { the average number of prop pilot officers } \\
& \text { eligible to fill the specified tour's billet } \\
& \text { requirements }
\end{aligned}
$$

In each case above, the average number refers to the officer inventory averages over the fiscal years modelled. At the present time the averages are computed for FYs 1980-86. The three apportionment ratios computed represent the ratio of the average prop pilot supply to the: average total prop
community supply, i.e., $\frac{N_{1}}{N_{1}+N_{2}}$, the average total pilot community supply, i.e., $\frac{N_{1}}{}$, and the average total aviation officer supply, i.e., $\frac{N_{1}}{N}$, for the specific tour in question. As shown, these apportionment ratios are multiplied by the applicable nondiscrete billets; the products, therefore, are the number of nondiscrete billets which should be filled by prop pilots in the tour being analyzed. Summation of all discrete and nondiscrete tour billet requirements results in total billets for prop pilots in the specific tour.

A specific application of the apportionment formula shown above was accomplished to compute the total number of

Cl tour CVN requirements which should be filled by prop pilots. The following actual values apply in this example:
$b($ discrete prop pilot $)=4$
$b($ nondiscrete prop $)=0$
$b($ nondiscrete $p i l o t)=2$
$b($ nondiscrete aviator $)=0$
also the average number of officers available for tour Cl are:
$N_{1}=143, N_{2}=197, N_{3}=142, N_{4}=248, N_{5}=219, N=949$
Substitution of these actual values into the apportionment
algorithm cited earlier results in the following:

$$
\begin{align*}
b(\text { apportioned }) & =4+\frac{143}{340}(0)+\frac{143}{504}(2)+\frac{143}{949} \tag{0}\\
& =4+.419(0)+.283(2)+.150
\end{align*}
$$

$=4+.566$
$=4.566$
If the results of the apportionment is a noninteger value, the program displays the result to the nearest integer. The Apportioned Billet matrix shown in Table 3 is the result of all such billet apportionments and is therefore the total requirements for aviation officers in the prop pilat subcommunity. Appendices D, E, and F contain the discrete, nondiscrete, and apportioned billet requirements matrices for all five Aviation Warfare subcommunities, while Appendix L depicts the individual Apportionment algorithms that are applicable to each subcommunity.

6. Supply

The aviation officer inventory data used by the AIRTOURS program was obtained from the Officer Data Simulation Model (ODSM) currently in use by analysts in the MPT DIvision (OP-13) of the Office of DCNO [Ref. 14]. The ODSM projected the supply of aviation officers, by subcommunity for seven fiscal years (1980-1986). This information was compiled by rank and years of service for each fiscal year available. Appendix G contains the supply of officers in each aviation subcommunity, tabulated by YCS and grade, for the six available fiscal years.

C. FUNCTIONAL DESCRIPTION

1. Model Objectives

The AIRTOURS program derives its mathematical formulation and basic program functions from Milch's SWOTOURS model [Ref. 6]; these functions are listed in Appendix 0. The program employs the APL programming language which allows for easy manipulation of vector and matrix data and also provides an interactive flow of information between computer and analyst.

The primary objective of the program is to calculate operational and command tour opportunities for each of the specified subcommunities of Aviation Warfare officers. These opportunities are expressed in the form of a ratio of manpower requirements to available supply.

2. Requirements

To compute the manpower requirements, which is the numerator of the opportunities ratio, the model uses data about the number of specific organizations and aviation command categories that are currently projected for the subcommunity in question, in the fiscal years to be modelled. This information is provided by the organization matrices, as illustrated in Appendix B. The second information required is the actual billets, as provided by the Apportioned Billet Requirement Matrices shown in Appendix F. These apportioned matrices are the summation of the discrete and
applicable nondiscrete billets by tour and represent the total manpower requirements for each individual organization and command category within the subcommunity being modelled. The model then computes (via matrix multiplication) the Requirements Matrix. This matrix has as its row dimension The fiscal years for which data analysis was requested and as its column dimension the tour position indication codes. Therefore, the contents of the Requirements Matrix are the total aviation manpower billet requirements by tour and fiscal year, for the aviation subcommunity requested. The Requirements Matrices for each subcommunity are detailed in Appendix H .

3. Supply

The projected supply of officers, the denominator of the opportunities ratio, is determined by a series of calculations. The total inventory of officers for each subcommunity is dimensioned by grade, years of commissioned service, and fiscal year. Computation of the officers eligible to fill a specific tour requires a complex process which was necessitated among other things, by billet quality requirements.

Billet eligibility is constrained by grade and years of commissioned service; for instance, it is not conceivable that a Lieutenant funior grade with three YCS be eligible for the H2 Major command tour. Therefore, an officer is considered eligible for a tour only if he has completed the proper
years of service and achieved the paygrade commensurate to the tour in question. The model allows the user to specify and vary these two constraints via the Tour Position Indicator Marrix as Illustrated by Table 4 and the Tour Grade Match Matrix shown in Table j.

Table 4

TOUR POSITION TYDIGATORS

10	CODE	VAME	BEGI!	LENCTH
1.	A	1ST OPERATIONAL	2.00	3.00
2.	C	SUBS OPER SQD	7.50	2.50
3.	61	SUBS OPER SHIP	7.50	2.00
4	$C 2$	SUBS OPER STAFE	7.50	2.00
5.	E	SGD OPER NON-DH	11.00	2.50
6.	$E:$	SQD OPER DH	12.00	2.50
7.	$E 2$	SHP OPER 5R.04	13.00	2.00
8.	61	OPER CDR	16.00	2.00
9.	62/3	SQD OPER XO/CO	16.00	2.50
10.	64/5	S.C.I.C.	18.50	1.50
11.	G6	SHE OPER DH	18.50	2.00
12.	H1	OPER CAPT	22.00	2.00
13.	\& 2	14A' SEA CHD	22.00	2.00
14.	43	SEQ SEA CYO	24.00	2.00
15.	W4	POST MA' CMD	24.00	2.00

The Tour Position Indicators constrain the eligiole supply oy specifying the required years of service necessary for any tour. Tabie 4 shows, for exampie, that to be eligible for Tour A, the officer must have completed two years of service as defired under the heading BEGIN. The Tour Position Indicators also determine the lengths of the indiVidual tours, thereby designating a span of years for which officers are considered eligicle for specific tours. The

T.

Length specified for the Ist Operational tour in the example above is three years. Thus, to be considered eisgible to Iill billet requirements in the lst Operational tour, the officer must be in his third, fourth, or Eifth year of commissioned service. The information contained in Table 4, therefore, is consistent with the tours shown earlier in Figure 2.

Table 5

THE TOUR-GRADE YATCH MATRIX

N0.	CODE	TOURNAMES	ENS	LTJG	52	LCDR	CDR	CAPT
1.	A	1St OPERATIONAL	1	1	1	0	0	0
2.	c	SUBS OPER SQD	0	0	1	1	0	0
3.	61	SUBS OPER SHIP	0	0	1	1	0	0
4.	$C 2$	SUES OPER STAFF	0	0	1	1	0	0
5.	E	SQD ORER NON-DH	0	0	0	1	0	0
6.	$\varepsilon 1$	SQD OPER DH	0	0	0	1	0	0
7.	$E 2$	SHP OPER SR. 04	0	0	0	1	0	0
8.	61	OPER CDR	0	0	0	0	1	0
9.	62/3	SQD OPER XOICO	0	0	0	0	1	0
10.	64/5	S.C.I.G.	0	0	0	0	1	0
11.	C6	SHP OPER DH	0	0	0	0	1	0
12.	H1	OPER CAPT	0	0	0	0	0	1
13.	42	mad sea cido	0	0	0	0	0	
14.	${ }^{\text {H }}$	SEQ SEA CMD	0	0	0	0	0	1
15.	H_{4}	POST MAJ CMD	0	0	0	0	0	1

The Tour Grade Match Matrix, on the other hand, allows the user to specify the officer grades that will be used by the model when computing the eligible officer supply For any specific tour. In the example depicted in Table 5 , For Instance, all Ensigns, Lieutenants junior grade, and Lieutenants are considered eligible to ill Tour A billets.

In addition to the constraints described above, the existence of concurrent and overlapping tours (for example, see Tours E, El, and E2 in Figure 2) further complicates the computation of eligible officers by requiring a logical apportionment of officers between the overlapping tours in question. The AIRTOURS model accomplishes the apportionment using routines specified in the SWOTOURS model [Ref. 6].

With the total supply of officers properiy constrained, the model then formats the Supply Matrix of Eligiole Officers. This matrix has, as many rows as the number of fiscal years for which data analysis was requested and, as many columns as the number of positions for the selected aviation subcommunity. It represents, therefore, the total supply of the specific subcommunty of Aviation Warfare Officers eligible to fill the operational and command tours in each fiscal year selected. Appendix G illustrates the supply data for each subcommunity for the projected fiscal years.

4. Results

Once the Requirements Matrix and the Supply Matrix of Eligible Officers have been formatted, the opportunity ratios are computed by dividing the former by the latter. The resultant output is the Operational Tours Opportunity Matrix, which is dimensioned in the same manner as the two matrices used to construct it; i.e., the rows stand for the fiscal years for which data analysis was requested while the columns represent the tours for the selected aviation subcommunity.

To facilitate display, a ratio of less than one is multiplied by 100 , thereby forming an integer value rather than a ratio. These vaiues indicate the probability of any one of the eligiole officers obtaining an operational billet in the specified tour position. A computed ratio greater than one implies that the tour is undermanned. Again, to provide a more meaningful and easily interpretable display, in this case the ratio is inverted, subtracted from one, and enclosed in brackets. This procedure was developed by Teply in Ref. 4. These bracketed figures represent the percentage of billet shortfall for the tour positions indicated.
D. MODEL ASSUMPTIONS AND LIMITATIONS

The utility of the AIRTOURS model lies in the ability to manipulate the data in the computation of the relevant tour opportunities. None of the various input parameters need be considered immutable; they can be altered either permanantly or temporarily, thereby allowing the user free rein in testing various manpower planning hypotheses.

Through model application analysts can more effectively detect trends necessitating immediate changes to current policies, test proposed alternatives, and analyze outcomes In a cost effective manner [Ref. 5].

Application of the model can be used to determine the effects of future procurement of ships, commissioning or
decommissioning of aviation squadrons, or any other billet requirement changes necessitated by restructuring the Navy's operational force. Changes can also be made in the professional development path through alterations in tour position start points and durations. As an example, the effects of lengthening the lst Operational tour to greater than three years can easily be determined. Due to the unique nature of the discrete and nondiscrete billet matrices, the effects of redefining nonspecific billet requirements among the various subcommunities can be examined.

It must be remembered, however, that the AIRTOURS program is a model; as such it does not perfectly mirror the Aviation Warfare community. The definition of any model requires certain assumptions to be made which govern model application. The following assumptions and limitations are those outlined in Ref. 5 and include those which are, additionally, pertinent to the AIRTOURS model:

1. The model presentiy analyzes only operational or sea duty tours, consequently the effects of model operation on the Navy's shore establishment is not directly measureable. However, certain influences concerning shore duty opportunities and shortages may be inferred from model results. For example, if the model indicates increasing shortfall trends in a series of operational tours (1.e., A tour, C tours, E tours, etc.) it is highly probable that manpower
shortages are also occuring in the shore assignments which proceed and follow the tours in question.
2. The model assumes that only officers with years of service matching the tour position parameters are available to fill tour requirements. At times this assumption fails to duplicate actual manoower assignment practices. For example, prop aviation detailers are presently filling billet shortages in the lst Operational tour with Lieutenant Commanders with over 10 YCS. Although the model cannot presently indicate the results of such a policy directly, it can and does indicate that this policy will no longer be possible in future years when the Eieutenant Commander tours also begin to show deficiencies.
3. The model assumes one hundred per cent manning of all types of organizations. Therefore manpower policies, such as those outlined in the Unrestricted Line Officer Manning ?lan [Ref. 15] which stipulates less than total manning of certain operational organizatior. types (Naval Air Stations, afloat staffs, etc.) are difficult to simulate.
4. The model does not "age" its own officer inventory data; therefore, projection accuracy is dependant on extramodel sources (i.e., The Officer Management Simulation Model). It must be understood that AIRTOURS is not an accession model. It will not predict the
number of officers that must be input at the bottom of the career structure to fill billet requirements in the future. The model was designed to project tour opportunities and shortialls utilizing given accession rates. One could, however, alter the inventory data arbitrarily to test for changes in the resulting tour opportunities.

IV. MODEL OPERATION

A. GENERAL

1. Overview
"The challenge of a computer programmed model is in simplicity of design to limit complications of operation to the end-user and still retain the rigor of the mathematical model so that the results will be meaningful and as accurate as aumpptions allow [Ref. 4]."

The AIRTOURS model was designed to facilitate the aviation manpower planning process by providing computerized support to planners, thereby extending the range and capability of their decision processes and helping them improve their effectiveness.

The AIRTOURS model contains several program functions and subfunctions (listed in Appendix P) which allow the manager to examine and alter the aviation data described in the previous sections. These data can be displayed and changed for each of the five aviation subcommunities defined earlier as comprising the Aviation Warfare Officer community. Examples of the various display, change, and result options will be demonstrated in the following sections. The operations described will include examples of only one subcommunity (prop pilots); this was done to avold redundancy since model functions operate the same way for each subcommunity.

2．Program Initiation
The main orogram function of the dIRTOURS model is inさこさated by specifying the number of years that are to be analyzed and the calendar year in which the analysis is to jegin．Currentiy the daza stored in the computer covers the ：ュscal jears 1930－36．İ che user wanted to ocserve the operational tour opportunities for six jears beginning in －981，ie vould enter： 6 AIRTOURS $198 i$ ．Is requested，$a \operatorname{set}$ 0：program imstructions would then be displayed inIIowed by a statement directing the user to speciny the aviation sui－ community to be examined．The detailed program instructions， as Nell as the－ive subcommunity options aveilabie for analysis are shown in Table 6 ．The AIRTOURS modei operates In a continuous loop，which permits the user to transier among the main model functions of dispiaying the data， changina the data，and disolaying the nesults．More specifically，once the user has selected the subcommunity he intends to examine，he is presented with the foilowing options：

9．DOUE WTTH ALL TORK：	TYPE
1．OISPLAY SOME OATA：	TYPE 1
2．GYANGE SOME DATA：	TYPE 2
3．DISPLAY RESULTS：	TYPE

It is through these main program subfunctions that the ver－ satility and usefullness of the AIRTOURS program in evidenced．

AYJATJON WAREARE OFFIGER MODEL

```
DO YOU WISH TO SEE DETAILED INSTRUGTIONST ANSNER YES OR N (NO):
yES
```

THIS PROGRAM GALGULATES OPERATIONAL AND COMMAMD TOUR OPPORTUNITIES OR SHORTFALLS
FOR TRE FOLLOWING FIVE(5) SUBCOMMUNITIES OF AYIATION WAREARE OFFICERS:

1. PROP PILOTS
2. PROP IFOS
3. JET PILOTS
4. JET IVFOS
5. AELO PILOTS
THE PROGRAA OFEERS THE FOLLOWIHG OPTIONS:
6. DISPLAY SOME DATA
7. CHANGE SOME DATA
8. DISPLAY RESULTS
SIX TYPES OE DATA MAY BE DISPLAYED FOR EACA SUBCOMMUNITY:
IUUGBER OF ORGARIZATIONS BY MYPE AND FISCAL YEAR
9. TOUR STARTS AND LENGTRS IS YCS EOR EACH TOUR
10. NUYBER OF BICLETS BY ORGAMIZATION IYPE AMD TOUR
11. GRADE ASSICNIENTS FOR EACH TOUR
12. INVENTORY OE OFFICERS BY YCS AND GRADE FOR A SINCLE ET
13. TOTAL LIVEITORY OE OEFICERS BY YCS AIND EISCAC YEAR
YOU MAY EITHER TEMPORARILY OR PERMENANTEY ALTER THE DATA
aY SELECTION OE THE EOLLOWING GHANGES:
14. CHANGE IUMBERS OF ORGARIZATIONS BI TYPE
15. GIAANGE THE BEGINNITG YEAR ANOIOR LENGTH OF ANY TOUR
. CHANGE NUMBER OF BILLETS BY ORCAVIZATION TYPE
CHAIGE THE GRADE ASSIGNMENT EOR SOME TOURS
CHANGE THE INVENTORY OF OFFICERS FOR SOME RISCAL YEAR
16. CHAMGE NUMEERS OF ORGAHIZATIONS BY EISCAL YEAR
gOUR TYFES OE RESULTS ARE AVAILABLE EOR DISPLAY:
17. BILLET REGUIREMENTS EOR EACH TOUR AND EISCAL YEAR
18. SUPPLY OF ELIGIBLE OEFICERS EOR EACH TOUR AVO FY
19. SEATOUR OPPORTUNETY (SHORTFALL) EOR EACH TOUR AND EY
20. BILLEZ RATES (REQUIREMEHTS DIVIDED BY TOUR LENGAHS)
NORMALLY THE VALUES OF THE OPERATIONAL (SEATOUR) OPPORTUNITY TABLE WILL SBOW
THE GHANCE OF BEIHG ASSIGNED TO AN OPERATIONAL OR COMMAND TOUR FOR OFFICERS
WITHIN THE SELECTED SUBCOMMUNITY WITH COINCIDENT TIME IN SERVICE AND GRADE.
IE THE VALUE IN THE TABEE IS IN PARENTRESES THE TOUR IS UNDERNANAED
AND THE VALUE IS THE PERCENTAGE BY WHICR THE TOUR IS SHORT.
YOU MAY SELECT ONE OF THE FOLIOUING SUBCONMUNITIES:

DONE	TYPE	0	
PROP PILOTS	TYPS	1	
PROP NEOS	TYPE	2	
JET PILOTS	TYPE	3	
UEF	HPOS	TYPE	4
UELO PILOTS	TYPE	5	

In the following sections each of these main subfunctions N111 be explained and demonstrated.
3. PROGRAM SUBFUNCTION

1. Display

The "DISPLAY SOME DATA" option is designed to
retrieve data used in the calculation of the tour opportunities. As shown below, six types of data may be displayed:
O. DOiIE WITH OISPLAYIMG DATA:

1. NUYBER OF ORGAMIZATIONS BY TYPE AND EISCAL YEAR:
2. TOUR STARTS AND LENGTYS IN YCS FOR EACH TOUR:
3. $\ U K B E R$ OF BILLETS BY ORGANIZATION TYPE AND TOUR:
4. GRADE ASSIGNMENTS FOR EACH TOUR:
5. INVEITORY OF OFEICERS GY YCS AND GRADE EOR A SINGLE EY: TYPE 5
6. TOTAL INVENTORY OF OFEICERS BY YCS AND EISCAL YEAR: TYPE 6

The first display avaflable enables the analyst to examine the number of organizations and command categories forecast for each fiscal year. As an example, the various aviation units which represent operational and command assignments for prop pilots are shown in Table 7. The organization forecasts for all ifve subcommunities are contained in Appendix 3.

The second display option enables examination of the tour starts and lengths of each tour in years of commissioned service. As explained in Section III.C.3., the start of the tour is the number of years of service the officer must have before he can fill the specified tour position while the length indicates the amount of time an officer will serve in the tour. The Tour Position Indication

Table 7
Prop Subcommunity Organizations and Command Categories

ZUMgER OF ORGANIZATEOUS EORECAST

NO.	ORGANIZATIOH	1981	1982	1983	1984	1985	1986
2.	$V P$	24	24	24	24	24	24
2.	VAH (E2B)	4	4	4	4	4	4
3.	$V A W(E 2 C)$	8	8	8	8	8	8
4.	VQ1	1	1	1	1	1	1
5.	VQ2	1	1	1	1	1	1
5.	V Q	1	1	1	1	1	1
7.	$V \mathrm{~V}^{4}$	1	1	1	1	1	1
8.	VCI(VR DET)	1	1	1	1	1	1
9.	$V C 2$	1	2	1	1	1	1
20.	$V 63$	1	1	1	1	1	1
11.	VC5	1	1	1	1	1	1
12.	$V C 8$	1	1	1	1	1	1
13.	VR24	2	1	1	1	1	1
14.	$V R C 30$	1	1	1	1	1	1
15.	VRC40	1	1	1	$\cdot 1$	1	1
16.	V FC50	1	1	1	1	1	1
17.	$V \times E 6$	1	1	1	1	1	1
18.	$\checkmark \times 178$	1	1	1	1	1	1
19.		1	1	1	1	1	1
20.	TACRON 1	1	1	1	1	1	1
21.	TACROM 21/22	1	1	1	1	1	1
22.	LPD	14	14	14	14	14	14
23.	LPH	7	7	7	7	7	7
24.	AVT	1	1	1	1	1	1
25.	CV 1	2	2	2	2	2	2
26.	CV 2	9	9	9	9	9	9
27.	CVil	2	3	3	3	3	3
28.	CEUOESGRU	8	8	8	8	8	8
29.	CARCRU	6	6	6	6	6	6
30.	ASWOC	8	8	8	8	8	8
31.	2HD FLEET	1	1	1	1	1	1
32.	6TH FLEET	1	1	1	1	1	1
33.	7TH ELEET	1	1	1	1	1	1
34.	PACIISEAAIFAC	1	1	1	1	1	1
35.	"AS GITHO BAY	1	1	1	1	1	1
36.	NAE SIGOHELLA	1	1	1	1	1	1
37.	US KEELAVIX	1	1	1	1	1	1
38.	NAS CUAI POINT	1	1	1	1	1	1
39.	NAS AGANA	1	1	1	1	1	1
40.	NAP MISAWA	1	1	1	1	1	1
41.	IS ADAK	1	1	1	1	1	1
42.	OTHERS	1	1	1	1	1	1
43.	TRARON XO/CO	1	1	1	1	1	1
44.	ERS 60	1	1	1	1	1	1
45.	MAJOR CHOS	1	1	1	1	1	1
46.	SEQUENTIAL GIVOS	1	1	2	1	1	1

Matrix shown earlier in Table 8 is an example of this display option; the remaining tour position indicators for the various subcommunities are contained in Appendix C.

The number of billets by organization type and tour is the next option available. If the user selects this function, he is directed by the model to choose the specific billet matrix to be observed. The billet matrices available include the discrete and nondiscrete billet matrices which are applicable to the particular subcommunity being analyzed. For example, in the prop pilot subcommunity, the billet matrices available for display include the discrete prop pilot billets, the nondiscrete billets which must be apportioned among all prop aviators (i.e., pilot and NFO's), the nondiscrete billets which must be divided among all pilots (i.e., prop, jet, and helo), and the nondiscrete billets which must be apportioned among all aviators; also available for display is the apportioned matrix, which contains the total billet requirements for prop pilots. Examples of the various prop pilot billet matrices were given in Section III.B.5.; the discrete, nondiscrete, and apportioned billet matrices for all aviation subcommunities are contained in Appendices D, E, and F respectively.

The fourth display option available is the grade assignments for each tour. Selection of this option displays the Tour Grade Match Matrix, which defines the paygrades the model uses for each tour position when computing the eligible
officer supply. An example of the Tour Grade Match Matrix was illustarted earlier in Table 5.

The innal two options display officer inventory data in one of two forms. The inventory data may be displayed by YCS and grade for a single fiscal year. Table 8 shows, for example, the prop pilot inventory forecast for 1981. The second means of displaying inventory data is illustrated by Table 9. This is the total inventory of prop pilots by VCS for the fiscal years selected during model initiation. Appendix G contains the officer inventory information for each fiscal year and aviation subcommunity.
2. Changes

The second major program function available enables AIRTOURS model users to change any of the matrices discussed under the display options. These change options are as foilows:

As shown, each option generally deals with changes to the data matrices explained in the preceding section.

The simpest of the changes is an alteration of the number of organizations projected. For example, suppose the number of Maritime Patrol Squadrons (VP) were increased

Table 8
IUVENTORY OF PROPAPILOT OEFICERS FOR 1981
YCS ENS LTJG LT LT LCDR GDR CAPT

1.	6	
2.	167	
3.		286
4.		167

5. 277
6. 199
7. 187
8. 120
9. 60 10
10. 6 68
11. 50
12. 255
13. 109
14. 125
15. 82316516.
62
16.

53
18.
19.40
20. 46
21. 27
22. 21 21
23. 27
24. 50
25. 51
26. 54
27. 41
28. 38
29. 19
30. 16
31. 12

Table 9

from 24 to 30 , at the rate of one squadron per year starting in 1981. To determine the effects on available prop pilot manpower, the only change needed would be to increase the number of VP squadrons in the organization. Table 10 is an example of the interactive procedures required to make this change. As shown in Table 10 , the alteration in the number of organizations is accomplished by first selecting change option 1 , then typing the number of the organization to be changed. Reference to the Organization Natrix in Table 7 shows that the number for VP squadrons in 1 . The model then displays the present numbers of VP squadrons for projected fiscal years selected earlier and asks the user if he wishes to change the projected data. If the user replies -YES, the model informs him how to alter the data, i.e., by typing in the new values separated by blank spaces. Once the required change has been made, the model enables the user to make alterations in additional organization quantities by specifying the proper organization number. If, as in the example depicted, no additional organizations need altering, the user simply input a zero (0) and the model then permits the user to specify whether the data should be changed permanently or only temporarily. If temporary alteration is specified, the original values (i.e., 24 VP Squadrons for each fiscal year) will replace the temporary numbers upon exiting from the model.

THE FOLLONTNG CRANGES MAY ES WADE IN THE DATA:

■:

1
TYPE NUMEER OP ORGANIZATIONTYPE FOR WHICR THE NUMBERS MAY HAVE TO BE CBAMGED: TYPING O HEANS HO MORE CHARGES ARE NEEDED.

ロ:
1

GURRENT NUMEERS						
yo. ORGANIZATION	1981	1982	1983	1984	1985	1986
1. $V P$	24	24	24	24	24	24

DO YOU WANT TO MAKE ANY CHANGES IN THE ABOVE DATA? AMSWER IES OR (I (YO): TES

TO GIVE NEW NUMEERS TYPE 6 JUMBERS (SEPARATED BY BLANK SPACES): D:
$\begin{array}{lllll}25 & 26 & 27 & 28 & 29\end{array} 30$
TYPE NUMBER OF QRGANIZATIONTYPE FOR WHICA THE NUMBERS MAY HAVE TO EE GBANGED: TYPIVG O MEARS NO MORE CHANGES ARE VEEDED.

U:
0
DO YOU WANT TO MAKE THESE CYAMGES PERMANENTT ANSNER YES OR (MO):
no
dO ALTERATION HAS BEEN MADE IN THE EILE.
CHANCE OPTIOLIS:
SONE-0/ORGAMTZATIONS-1/TOURS-2/BILLETS-3/GRADES-4/INVTRY-5 /ORGANIZATIONS BT EY-6 TYRE ONE OP THE WUMEERS LISTED ABOVE!
■:
0
OPTIONS: DOAE-0 IDATA-1 1CHANGE-2 /RESULT-3
TYPE ONE OF THE SUMBERS LISTED ABOVE:
$0:$
0
DO $10 U$ WANT 10 SELECT AHOTHER SUBCOMMUNTTYR ANSWER YES OR I (MO):
HO

When all desired changes to the organiaation list have been accomplished, the user is presented with a chart, reminder of the available change options, thereby enabing him to seject another group of data for alterations. The five remaining options include changes to the Tour Position Indicator Matrix, the discrete and nondiscrete billet matrices, the Tour Grade Match Matrix, and the various inventory matrices. Examples oi all types of changes will be discussed in Section V, Model Application and Analysis.
3. Results

Selection of the final major subfunction "DISPEAY RESULTS" causes the following options to be presented to the model user:

THE FOLLOWTNG RESULTS MAY BE DTSPLAYED BY TYPING THE APPROPRIATE NUMBER: O. DONE WITH DISPLAYIHG RESULT.S TYPE O

1. bILLET REQUIREMENTS FOR EACH TOUR AND PISCAL YEAR TYPE 1 2. SUPPLY OF ELIGIBLE OPFICERS FOR EACH TOUR AND FY TYPE 2
2. SEATOUR OPPRTUNITY (SHORTFALE) FOR EACH TOUR AND FY TYPE 3 4. BILLET RATES (REQUIREMENTS DIVIDED BI TOUR LENGTHS) TYPE 4

The first resuits matrix indicates the total billet requirements, for the subcommunfty selected, by tour and Eiscal year. Table 11 depicts the total manpower requirements for the prop pilot subcommunity. Also included in the display is the average number of billets for each five year period analyzed by the model. For instance, In the example shown, the model analyzed fiscal years 198186; therefore, for the five year intervals 1981-85 and 1982-86 average results are also shown. This averaging is a feature of all four results displays.

Each aviation subcommunity has specific requirements for the aviation ofificers within them. The requirements matrices for all aviation subcommunities are contained in Appendix H .

Table 11

YSAR	A	C	61	62	\underline{E}	$\underline{5} 1$	82	61	6213	64/5	65	H2	$\underline{H 2}$	$\underline{13}$	84
1981	1022	86	59	84	92	86	16	12	66	3	. 7	1	8	3	2
1982	1022	86	63	84	92	86	17	15	66	3	7	1	8	3	2
1983	1022	86	63	84	92	86	17	15	66	3	7	1	8	3	2
1984	1022	86	63	84	92	86	17	15	66	3	7	1	8	3	2
1985	1022	86	63	84	92	86	17	15	66	3	7	1	8	3	2
1986	1022	86	63	84	92	86	17	15	66	3	7	1	8	3	2
1981-85	1022	86	62	84	92	86	17	14	66	3	7	1	8	3	2
1982-86	1022	86	63	84	92	86	17	15	56	3	7	1	8	3	2

The supply of eligible officers for each tour and fiscal year is obtained by selecting the second results option. Table 12 illustrates an example of this matrix for the prop pilot suocommunity. The results shown indicate the number of prop pilots eligible to fill each operational tour. For example, the model projects that in 1985 there will be 1017 grop pilots of the proper YCS and grade eligible to fill billets in the ist Operational tour (tour A). The remaining supply matrices for the other subcommunities are depicted in Appendix I.

Table 12
NUNEER OE PROPSPEEOT OEPIESRS

$\underline{y} E A R$	A	C	C1	62	5	$\underline{5}$	82	$\underline{G 1}$	62/3	64/5	66	H1	$\underline{H 2}$	H3	R 4
1981	730	446	59	85	141	140	28	21	110	16	46	6	71	50	45
1982	772	417	65	87	92	109	31	26	117	13	45	4	46	30	38
1983	942	323	72	96	77	76	24	30	133	17	49	3	33	35	27
1984	989	384	59	76	64	53	12	35	150	19	53	3	30	23	18
1985	1017	453	51	69	70	45	11	32	146	19	57	3	31	17	12
1986	1030	496	43	58	73	47	10	20	105	24	65	3	31	15	12
1981-85	890	404	61	83	89	85	21	29	131	17	50	4	42	37	28
1982-86	950	424	58	78	75	68	18	29	130	18	54	3	34	28	21

The tour opportunities matrix is the third result option available for display. As stated in Section III.C.4., these values indicate the probability of one of the eligible officers cotaining ar operational or command biliet in the specified tour position, with the oracketed values indicating shortfalis within the tours so indicated. Table 13, which depicts the tour opportunities for prop pilots, shows shortfalls in tour A for every year depicted.

Table 13
SEATOUR OPPORTUHET (SHORTPALS) OE ELIGEBLE PROPAPITOT OPRICERS IN PERCEUTAGE

YEAR	A	\underline{C}	C1	$\underline{C 2}$	E	\underline{E}	$\underline{\underline{2}}$		13		$\underline{G 6}$	明	$\underline{H 2}$	$\underline{\square}$	$\underline{8}$
81	(29)	19	99	99	66	51	57	56	60	17	16	11	11	5	
82	(24)	21	97	97	(1)	79	55	55	57	20	16	17	17	5	
1983	(8)	27	${ }^{88}$	88	(17)	(12)	73	48	49	16	15	23	23	9	
1984	(3)	22	(1)	(7)	(31)	(38)	(27)	42	44	15	14	25	25	14	14
1985	(1)	19	(19)	(19)	(24)	(47)	(37)	45	45	14	13	24	24	19	19
1986	99	17	(32)	(32)	(21)	(46)	(40)	72	53	11	11	24	24	20	20
1981-85	(13)	21	(2)	(2)	(4)	(2)	80	49	so	16	15	18	18	9	
1982-86	(7)	21	(8)	(8)	(19)	(23)	97	51	51	15	14	22	22	11	11

The shortfalls shown may or may not exist in reality. In other words, the existence of a shortfall in an operational tour simply mea.1s that based on the given tours, manpower requirements, and the supply of officers considered eligible to fill the tour, there are more billets than eligibie officers In fact, for 1981 the model projects that 29% of tour A billets will be unfilled. However, the model does not account for various detailing practices which may actuaily take place to fill the billet requirements in the operational tours indicating shortfalls. Therefore, even though shortfalls may appear in the model, they may not be as severe in the
actual organizations modelled, and may even be totally eliminated by appropriate detailing procedures. An example of a detailing practice which would tend to reduce actual operational tour shortialls is the policy of granting tour extensions, vhich permits officers to remain in tours longer than the model parameters specify. This type of policy would effectively increase the supply of officers available to fill billets in specific tour positions and thus lower act:al shortialls experienced in the fleet. The extent of shortfall reduction would depend on the number of officers allowed to extend and the length of the extensions. The effects of this and cther manpower planning aiternatives will be discussed in Section V. Appendix J contains the tour opportunities for all subcommunities.

The final results option allows the user to display billet rates, which are defined as the requiremerts divided oy tour length. The billet rate then is the average yearly flow of officers through the tours indicated. For example, Table 14, which illustrates the billet rates for prop pilots, shows that the average annual turnover of prop pilots in the lst Operational Tour (Tour A) is 341.

Table 14

If the assumptions made in the model apply (i.e., all tour A billets will be filled by officers in their 3rd, 4th, or 5 th year of commissioned service), then the billet rate indicated for tour A represents the total number of prop pilots tnat must be trained each year to maintain the present billet requirements, since lateral entry into tour A is possible only for a limited number of prop aviators, namely, officers who have changed their designator and become prop pilots. Appendix K contains the billet rates for the remaining aviation subcommunities.

V. MODEL APPLICATION AND ANALYSIS

A. INTRODUCTION

Aviation manpower planners are currently faced with aviation officer inventory levels which are insufficient to meet all the Navy's needs. To cope with this critical situation, managers must use all the tools available to plan for the optimal utilization of aviation personnel. The AIRTOURS model can be used to assess the utility of various manpower planning alternatives by providing analysts with the capability of testing alternative policies in a simulated environment. Simulation of events has several advantages, including savings in time and resources, as well as the ability to examine hypothetical situations without actually. altering real world parameters.

The following analysis was designed to illustrate AIRTOURS model capability through simulation of various scenarios which represent possible manpower planning alternatives in the Aviation Warfare community. This analysis consists of a thorough examination of the results matrices for the five aviation subcommunities to determine the operational tours which are either currently, or are projected to be, manpower planning problems in future years. The analysis then, demonstrates the capability of the AIRTOURS model by implementing several different changes to subcommunity parameters.
B. ANALYSIS OF CURRENT SUBCOMMUNITY DATA

Appendices H through K contain the results matrices for all five aviation subcommities projected for the next six fiscal years with Appendix J illustrating the operational tour opportunities and shortfalls specifically. These results, as expected, show that the aviation community, as a whole, contains substantial manpower deficiencies within several critical tours in all five subcommunities.

For example, all subcommunities contain list Operational tour shortfalls of varying degrees of severity. In every Instance, however, these shortfalls are projected to decrease over the period analyzed by the model. The decreasing tour A shortfalls appear to be the result of increased P1lot and Naval Flight Officer Training Rates (PTR and NFOTR, respectively) projected by the POM-82 Five Year Defense Plan (FYDP) [Ref. 16]. Table 15 illustrates the planned PTR's and NFOTR's for the next six years. If the projected rates are attained, the ist Operational tour opportunities and shortfalls indicated by the AIRTOURS model are valid. If the projected training rates are not achieved, as has sometimes been the case in the past [Ref. 17], then the AIRTOURS model has probably underestimated the shortfalls or the opportunities in tour A.

Although the Subsequent Operational Squadron tour results indicate no billet fill difficulties for the pilot subcommunities,

Table 15
Planned PTR's Through POM-82 FYDP

Planned PTR's Through POM-82 FYDP			
FY	PROP	JET	HELO
81	322	324	251
82	333	313	304
83	359	315	321
84	359	315	366
85	359	320	366
86	359	330	366

Planned NFOTRS Through POM-82 FYDP

FY
PROP
JET

81
254
216
82
268
224
83
257
232
84
257
224
85
257
224
86
257
222
these data must be evaluated with caution. As presently constrained for all pilot subcommunities, the C tour occurs immediately following the A tour. It was constructed in this manner to account for the various squadron billet structures that require experienced aviators in the grade of Lieutenant, and to model actual manpower policy which allows certain pilots to be detailed to subsequent operational flying duty outside their primary warfare specialties. The positioning of this tour also represents the time frame when officers who were assigned as flight instructors immediately upon completion of training (SERGRADS) enter the operational fleet, and they are, in fact, a major source of manpower for this s tour.

The C tour billets are positioned, therefore, at a time point which is coincidental to traditional shore duty assignments. Current aviation officer detailing policy requires that many of these shore requirements must receive priority manning. CNO policy states, for example, that all recruiting command billets will be 100% manned [Ref. 15]. This policy is not necessarily confining in and of itself; however, Monthly Officer Status Report data [Ref. 18] published in April 1980, indicates a shortfall of over 800 Lieutenant Aviation Warfare Officers. Consequently, it may be assumed that shortfalls probably exist for pilots with years of service which would make them eligible to fill tour C requirements. The AIRTOURS model is presently
constrained to operational or sea duty analysis; therefore, it is unable to project total tour opportunities (i.e., shore and sea duty) at any point in time. What the model is able to project, in the case of C tour pilot requirements, is trends. For example, in the case of the prop pilot subcommunity, if shortfalls are assumed to be present even with an apparant tour C opportunity ratio of 19% (FY 81), then any increase in future FY's signals a greater overall manpower shortfall at this career point. Tour opportunity decreases In future years similarly would indicate a reduced manpower deficit, relative to the inftial benchmark.

Tour C for NFO's does not occur at the same time as it does for pilots, since there is very little fleet demand for experienced NFO's immediately following the lst Operational tour. For the NFO subcommunities modelled, current data reflects that the Subsequent Operational Squadron tour (Tour C.) occurs colncidentally with the Cl and C 2 tours, which are both considered as sea duty assignments. Therefore, tour C opportunities for the two Naval Flight Officer subcommunities may be interpreted directly as are the remaining operational tours.

1. Prop Pilots

Based on a projected PTR of 359 prop pilots after 1982, results of current data reveal that first tour shortfalls will be eliminated by 1986. Billet rate data in Appendix K also indicates that, given no other changes in
first tour requirements, a balanced A tour (i.e., approximately 100% tour opportunity) can be maintained by a PTR of 341 prop pilots per year. Tour C opportunities average 21% for the five year period 1981-85; however, the overall trend after 1984 is decreasing, indicating a possible improvement in the manpower supply at this career point.

Results indicate that after 1982, the Subsequent Operational Squadron (C1) and Staff (C2) tours, as well as the Lieutenant Commander Squadron tours (E and $E l$), will be increasingly difficult to fill. The squadron department head tour appears to be the most seriously affected, with almost 50% shortfalls in FY 85 and FY 86. Aviation Squadron Command opportunfties appear adequate until 1983, when the ratio drops below 50%. This decline is due to the greater numbers of officers becoming eligible for squadron command by virtue of having attained the required YCS. Overall average squadron command opportunity for the five year period 1981-85 remains at approximately 50\%. The trend in opportunities for both major and sequential commands is increasing over the time frame analyzed.
2. Jet Pilots

Results depicted for jet pilots are very similar to those outlined for the prop pilot community, although for many tours, the shortfalls are more severe. The exception to this is the first operational tour where shortfalls of
jet pilots are 18% in 1981 decreasing to 3% in 1986. Unlike the prop pilot community, the first tour shortages are not entirely eliminated by the PTR's projected, which indicates that PTR's even higher than those forecast may be necessary to meet tour A billet requirements for fet pilots.

Tour C opportunities for jet pilots are approximately twice as high as the same opportunities in the prop subcommunity. The opportunities trend is fluctuating over the six year period analyzed with a five year average of 38% for 1981-85. This relatively high tour opportunity could signal serious problems within the shore establishment, based on analysis cited earlier.

The Subsequent Operational Ship (C1) and Staff (C2) tours also exhibit shortfalls more critical than those projected for the prop community, averaging 18\% for FY 82-86. Perhaps the most critical problems projected for the fet pilot community occurs in Lieutenant Commander and Commander tours. In the E and El tours shortfalls are projected to increase every year after 1981, culminating in 1986 with a 72% deficiency in officers eligible to fill Squadron Department Head billets. Appendix I indicates that, ceteris paribus, there will be only 46 officers available to fill 167 tour El requirements.

The G2/3 Aviation Squadron Command tour also indicates some remarkable results. Opportunity to command an aviation squadron has traditionally been higher for jet pilots than for
other aviation communities due to the large number of single pilot aircraft in the Navy's jet aircraft inventory. However, the results depicted in Appendix J indicates a five year average opportunity of 76% with shortfalls projected for 1986! It is highly unlikely that the critical XO/CO tour will be gapped; however, the existence of this abnormally high opportunity for command (Navy wide average aviation command opportunity is 55%) indicates an inherent lack of selectivity available to aviation command screen boards. Analysis presented later will indicate several alternatives available to regain this selectivity and thereby ensure a supply of only the "best fitted" officers for aviation command. Relatively high major and sequential command opportunities also exist for jet pilots. This is to be expected, however, since command of aircraft carriers is presently limited to jet aviation officers. Should this policy change in the future, a more balanced major and sequential command opportunity would be realized.

3. Helo Pilots

Of the five aviation subcommunities examined, the helicopter community exhibits the fewest manpower shortages. With the exception of first tour shortages in 1981 and some relatively minor C1 and C2 tour shortfalls in FY 84 and FY 85 , the helo subcommunity appears healthy. The PTR for helo pilots is projected to increase significantly between 1981 and 1984. The commissioning of HCV 4 and HCV 5 in 1983 and

2984 respectively, as well as the introduction of the LAMPS MK III squadrons to the fleet commencing in late 1984, necessitate this increased training rate. If the projected rates are achieved, the helo subcommunity should be able to fulfill all billet requirements projected.
4. Prov Naval Flight Officers

Results of current data for prop NFO's also show maior shortages in the first tour position with these shortfalis being reduced gradually through 1986, although the shortfalls are not projected to have been eliminated entirely as was the case for prop pilots. This projected reduction in shortialis is again attributable to the increased NFOTR. Fulfillment of Subsequent Operational tours ($C, C 1, C 2$) will pose no problem until 1984, when these tours will also degin to experience shortfalls. Aviation squadron command opportunities for prop NFO's is slightly lower than for pilots in the same subcommunity. This is attributed to the fact that $N F O$'s are not presently eligibie for command of training squadrons whose mission is pilot training exclusively; therefore, there are fewer squadrons that NFO's are eligible to command.
5. Jet Naval Flight Officers

Other than first tour shortfalls, the jet NFO subcommunity will be able to fill all of the projected billet requirements through 1986 with no apparent problems. As will be demonstrated later, the existence of fairly "healthy" NFO
subcommunities provides planners with alternative manpower supplies to help cure the problems created by decreasing pilot inventories.

C. AVIATION PARANETER ALTERATIONS

There are several areas in which manpower managers may readily vary pertinent data to affect the outcome of tour opportunities:

Alterations in billet structure for specific duty assignments and tour positions.

Alterations in tour position through changes in starting points and durations.

Alteration of billet grade requirements.
Alteration of the supply of aviation officers eligiole to fill billet requirements.

The following analysis will attempt to demonstrate the utility and flexibility of the AIRTOURS model by implementing some of these types of alterations. The changes presented should not be considered reflective of offical manpower planning policies. The options investigated merely represent conceivable alternatives designed to demonstrate the manipulative capability of the AIRTOURS model. The discussion in the following sections will be more meaningful if referral is made to Appendices M through 0 , where the results of the computer sessions in which the specific changes were made are presented.

The tour opportunity matrices illustrated in Appendix J should be used as benchmarks with which to compare the tour opportunities that resulted when the current data were changed.

1. Billet Requirement Alterations

Manpower requirements for sea duty assignments will vary, depending on the rate of hardware aquisitions and disposals. Alterations in numbers of ships and squadrons will dictate changes in billet requirements which, in turn, require modifications in manpower policies to ensure efficient fulfillment or elimination of such requirements [Ref. 5]. When using the AIRTOURS model to analyze billet requirement alternatives, the model user must be cautious to ensure that the changes chosen provide manpower with the required rank, experience, and training to fill newly established billets. Similarly, when billets are eliminated, care should be taken to ensure that a proper balance or mix of billet quality is maintained.

The Unrestricted Line Officer Manning Plan (OMP)
[Ref. 18] provides justification for several of the manpower requirement alterations to be implimented here.

Present guidance indicates that reductions in aviation squadron manning below levels indicated by the officer Master Billet file are authorized and, in fact, are being implemented as policy. Similarly, the OMP recognizes the necessity to mismatch officers with billet grade and designator requirements when attempting to cope with an untenable manpower shortage.
a. Organization Requirements

Prior to instituting any changes in the aviation data, the ramifications of an increase in operational units is evident through examination of the data currently available. The various organization matrices (Appendix B) reveal that one CVN class aircraft carrier will be added to the fleet in 1982. The additional billet requirements cause various changes to all aviation subcommunities in the relevant tour positions affected. For example, these added requirements contributed to the increased manpower shortfalls projected for jet pilots in the Cl tour between 1981 and 1982. The jet pilot shortfalls in this tour cannot be completely attributed to the additional aircraft carrier, however. While the CVN will create seven new jet pilot billets in 1982, the supply of officers eligible to fill these billets is projected to decrease by 14 officers, thereby indicating that the new CVN will simply intensify an already deteriorating situation.

Current data for the helo pilot subcommunity also depicts the results of additional aviation organizations. HCV 4 and HCV 5 are scheduled to be commissioned in FY 83 and FY 84 respectively, while the LAMPS MK III squadrons will begin joining the fleet in 1984 with the commissioning of one additional squadron per year in 1985 and 1986. Referral to Appendix J shows that the inclusion of these new units will present no manpower problems to the helo pilot subcommunity due to concurrent projected increases in the helo pilot inventory.

As shown in Appendix M, Change I demonstrates the opposite alteration of manpower requirements. This change reflects the effect on the jet pilot communfty of the decommissioning of Fleet Support Squadrons $V C-2$ and $V C-7$, also, to remain in consonance with the OMBF, VC-6 billets were redesignated as shore duty eliminating yet another operational organization. The major effect of these changes occured in the first operational tour, where the AIRTOURS model projected that as a result all shortfalls will be eliminated by 1986. Slight shortfall reductions are also evidenced in the E and $E 1$ tours due to reduced requirements for Lieutenant Commander, as well as small reductions in squadron command opportunities. In the case of jet pilots, these reduced command opportunities should probably be viewed as a benefit, since they allow a slightly greater degree of selectivity in the command screening process.
b. Billet Structure Changes

Change II in Appendix M depicts the option of altering billet requirements by specific tour position, again using the jet pilot subcommunity as an example. Discrete jet pilot billet requirements in the Subsequent Operational Ship tour (Cl) were reduced by three jet aviators on all applicable aircraft carriers. The resulting opportunities matrix shows that virtually all jet pilot shortfalls were eliminated in this tour.

The three billets per CV eliminated for jet pilots, would undoubtedly have to be filled by another subcommunity. Change III illustrates the resultant tour opportunities if all three billets were designated as jet NFO requirements. As shown, no problems would occur until 1986 when slight tour Cl shortfalls were projected. This billet requirements change was a logical one since some jet pilot billets aboard carriers could be adequately filled by NFO's. For example, the Gunnery/Ordanance Cfficer, Assistant Catapult and Arresting Gear Officer, and the Assistant Carrier Air Traffic Control Officer are all Cl tour billets with designator requirements presently specifying jet pilots. These billets could undoubtedly be filled by jet NFO's. Change IV depicts an alteration to the jet pilot community similar to that presented in Change II. In this case, all Cl tour discrete jet pilot billets are converted to nondiscrete aviator billets. Redesignation of billet requirements into nondiscrete categories allows manpower planners increased flexibility in the assignment process, thereby enabling a more optimal utilization of available manpower. Change IV results indicate that a billet requirements alteration of this type would eliminate all Cl and C2 tour shortfalls in the jet pilot subcommunity. Of course, such a change will affect the other subcommunities as well and if it were actually contemplated the result of such a change on the other subcommunities would have to be analyzed and weighed in conjunction with the above results.

Change V is an example of a billet structure alteration in the prop pilot subcommunity. The alterations depicted in Appendix i show the reduction of mandated billet requirements by one aircrew per squadron for ASW and TACAIR units (VP and VW), and, where considered feasible, one aircrew per type aircraft flown for Fleet Support Squadrons (VQ, VC, VR, etc.). These reductions were apportioned among the A, E, and $E l$ tours by reducing the A tour billet requirement by two pilots and the E or El tour requirements by one pilot in all squadrons with three pilot flight crews (eg. VP, VQ). In squadrons with only two pilots per crew (eg. VAW), the billet reductions were evenly distributed between A and E tours. Results show that E tour shortfalls were eliminated in all years except 1984, while El deficits were also greatly reduced. Additionally, first operational tour shortfalls were reduced such that no shortfalls were projected after 1982.
2. Tour Position Alterations

Adjustments in tour positions must be undertaken with caution to consider properly the various qualitative billet requirements. For example, a model user may wish to modify the El Department Head tour such that its tour start point be at 6 YCS and concurrently alter the billet grade requirements to allow Lieutenants to fill El billets. However, an alteration of this type would not realistically reflect current policy, nor would it represent a realistic
alternative to current policy, given shore requirements at this same career point. Another such change would be to increase the duration of a tour without regard to the effects on the starts and durations of following tours. Probably the most important consequence of tour length alteration is the impact this type of change has on shore assignments. Any lengthening of the operational tours to gain additional eligible officers for sea duty assignments concurrently reduces the supplies available to fill shore assignments. If there were an overabundance of aviation officers to fill shore requirements this would not be a problem; unfortunately, the opposite is the case. As stated earlier, the Monthly Officer Status Report [Ref. 19] published by NMPC in April 1980, indicated inventory shortialls of over 800 Lieutenants in authorized shore duty billets. Although several of the following model applications may affect adjacent shore duty assignments, it must be kept in mind that the changes presented are designed to meet ileet requirements only.

The tour position adjustments described below are illustrated in Appendix N. As before, tour opportunity results must be compared with the benchmark matrices in Appendix J.

Change VI shows the effect on the jet NFO subcommunity of legthening the first operational tour by one year. Although implementation of this change would shorten following shore assignments significantly, operational
requirements may necessitate such measures. Tour opportunity results reveal that this option would completely eliminate all Tour A shortfalls for jet NFO's.

Change VII illustrates similar tour change for prop pilots. This alteration, however, lengthens the E and El tours to 3 years while simultaneously moving the tour starts to the end of the 10 th and llth years, respectively. This tour movement is in consonance with current officer detailing policy in the prop pllot subcommunity. The resulting opportunities matrix show that although tour E and El shortfalls would not be eliminated, they would be reduced significantiy.

An example of a tour change and an accompanying billet grade requirement alteration is depicted by Change VIII, again using the prop pilot subcommunity to illustrate the affects of the change. The Operational-Senior 04 tour, (E2) consisting of various carrier and staff billets, is normally reserved for Lieutenant Commanders who have completed an early squadron Lieutenant Commander tour. Implementation of Change VIII would alter tour E2 such that its start point would be moved to the end of the 14 th YCS; comensurate with this movement, a billet grade requirement alteration would be implemented allowing officers in the grade of Commander to be considered eligible for this tour. Results show that an alteration of this type would eliminate all E2 tour shortfalls for prop pilots.

The final tour position alteration, Change IX, was designed to show the effect on the jet pilot subcommunity of lengthening the GR/3 Squadron $X O / C O$ tour by six months and moving it one year earlier in the officer career path. A change of this type would be feasible, since an officer is screened for aviation command in his l3th year of commissioned service. Results of this change shown in Appendix N indicate that the command opportunity for jet pilots would be reduced to approximately 50% through FY 84; however, after 1984, opportunities are again very high with 1986 indicating a shortfall of greater intensity than was originally projected. Changes of the type proposed above were not designed to limit the command opportunities for aspiring jet pilots. They were proposed simply to allow the community greater selectivity in choosing officers for these critical billets.
3. Multiple Parameter Alterations

The following application is designed to illustrate model diversity through several combinations of changes for the purpose of fulfilling current requirements and eliminating manpower shortfalls. The prop pilot subcommunity was chosen for this application, although the changes implemented would be equally as applicable to the other subcommunities as demonstrated earlier. The computer session output for this concurrent change implementation is contained in Appendix 0.

Change X incorporates the following alterations:
a. VC2, VC7, and VC6 are eliminated from the operational organizations considered, as containing tour opportunities. This reflects the decommissioning and redesignation as shore duty mentioned earlier.
b. The first operational tour (A) is lengthened by six months and the subsequent squadron tour (C) is moved 6 months later in the career path.
c. Similarly, the E and El Squadron Lieutenant Commander tours are both increased in duration by 6 months and moved one year earlier.
d. The E2 tour is moved to commence at 14 years of service while tour quality requirements are altered to allow 05 billet fills.
e. Billet structure requirements are changed by eliminating one aircrew per squadron as explained in Change V.
f. All discrete prop pilct $C l$ tour ship billets are converted to the nondiscrete aviator category.

Results in Appendix 0 show that employment of these alterations would succeed in meeting practically all prop pilot billet requirements. The only exception would be minor Tour A shortfalls in 1981 and 1982. Again, the effect of these changes on other subcommunities would also have to be examined.

The application of the AIRTOURS program presented In this section has demonstrated the flexibility and utility
of this manpower planning tool. Model capability is in no way limited to the changes depicted for the individual subcommunities and many other feasible changes are possible. Manpower analysts, tasked with the difficult problem of declining aviator inventories, should find the AIRTOURS model a useful addition to their planning arsenal.

VI. CONCLUSIONS AND RECOMMENDATIONS

Management of the distribution of scarce aviation manpower resources will be of critical importance for several years to come if the combat effectiveness of Naval Aviation is to be maintained. The importance and far reaching effects of decisions concerning manpower management requires that planners use every means available in quest of optimal utilization policies. The decision making capability of aviation manpower planners can be greatly enhanced through the use of management science techniques, such as computerized planning models, which provide the capability to simulate and analyze alternative planning options. The models should contain enough detail so that potential users have confidence that the results derived from their use accurately reflects the situations being modelled; concurrently, the models must be easily interpretable so that wide dissemination of model output is enhanced.

Application of the AIRTOURS computer model, developed in this research, has shown how such an interactive management tool can be applied and integrated into the aviation manpower planninz process.

The results computed by the model have tended to confirm that Naval Aviation is currently experiencing a serious imbalance between requirements and available inventories in
many of the tours examined and that this imbalance, while more serious in the jet and prop pilot subcommunities, is not confined to them exclusively. The model has also indicated those aviation subcommunities which are not as seriously affected by declining inventories, and whose members may therefore, be able to provide a certain degree of slack in filling important manpower requirements in the future.

More importantly, however, the AIRTOURS model has demonstrated the ability to simulate alternative manpower policies. With this capability at their disposal, manpower managers may be able to revise current resource employment to meet more effectively the organizational goals of the Navy and the individual goals of Aviation Warfare Officers.

The AIRTCURS model is a useful planning tool as it currently exists. There are, however, a number of alterations possible that could be implemented through continued research, which would permit even greater capability. These recommendations are as follows:

1. The integration of shore duty assignments, including zppropriate 1000 and 1050 billets, could provide for a more complete analysis of aviation manpower requirements. While inclusion of these complicated requirements may tend to impair the interactive capability of the model, the benefit of a more sensitive model able to analyze total aviation manpower requirements may be worth the sacrifice.
2. The apportionment algorithms as explained in Section III.B.5., presently divide the nondiscrete billet requirements among the various subcommunities based entirely on average supplies. The ability to interactively alter these proportions based on other criteria (eg. requirements) would increase model accuracy and enable enhanced hypothesis testing capability.
3. The model currently analyzes five separate aviation subcommunities and displays results data individually for each. Data analysis capability would be enhanced with the ability to display aggregate data for the following subcategories:
a. All pilots
b. All NFO's
c. All prop community
d. All jet community
e. All aviation warfare community

These categories would be useful for manpower planning decisions at the increased levels of data aggregation. 4. While tour opportunity results at increased levels of data aggregation are useful for certain policy making decisions, a more detailed analysis would also be useful. For example, although the AIRTOURS model projects many shortfalls in the jet community, it does not contain sufficient detail to distinguish among types of jet pilots (i.e., $\mathrm{F}-14, \mathrm{~A}-7, \mathrm{~S}-3$, etc.). Therefore, while the subcommunity as a whole may be experiencing manpower shortfalls, supplies of certain types of jet
pilots may be sufficient to fill requirements. A computer model which distinguished Aviation Warfare Officers by the specific type aircraft they fly would enable more effective decision making at this micro level of aggregation and would therefore be a useful endeavor for continued research in this area.

Improvement of the control and management of scarce resources particularily those associated with aviation manpower, will continue to be a challenge in the future. This challenge will require Navy manpower planners to continue to develop extraordinary and innovative planning methods to attempt to cope with and hopefully reverse the serious aviation manpower shortages and thereby prevent the erosion of military combat effectiveness. Computer models carefully tailored to the manpower manager's needs could play an important role in this process.

APPENDIX A

TOUR POSITION INDICATION CODES AND DESCRIPTIONS

1. FIRST OPERATIONAL TOUR (A) - The tour represented by TPIC A was the first operational tour experienced by aviators upon completion of flight training. Assignments in this tour included all junior officer billets (paygrade 03 and below) in Tactical Aircraft (TACAIR), Antisubmarine Warfare (ASW), and Force Support squadrons. Additionally Search and Rescue, overseas Naval Air Station and certain aviation ship billets were also included in this classification.
2. SUBSEQUENT OPERATIONAL TOURS (TPIC'S C, CI, C2) - The tours represented by TPIC's $C, C 1$, and $C 2$ included those assignments experienced by aviation officers after their first shore duty. Traditionally these tours have been labelled "disassociated sea duty" since they included assignments outside che aviators normal warfare specialty. The "disassociated" $10: 1$ is misleading; although the incumbents of these billets may not utilize their specific warfare specialties directly, they are not disassociated from the aviation community. All of the billets with these tours specifically require an aviation warfare officer. Consequently, these tours were designated as "subsequent operational" tours, reflecting the requirement that billet incumbents be experienced aviation

warfare speciaissts. Although these touns occured at approximately the same point in the career development path, the diversity of assignments involved necessitated refinement into the following subsets:

Subsequent Operational - Squadron (C)
This tour contained lieutenant (03) billets in aviation squadrons where the requirements for experienced aviation ofificers, as addressed by the unit ROC/POE statements, exceeded biilet file allowances for experienced aviators in paygrades 04 and 05.

Subsequent Coerational - Ship (CI)
Any tour occuring at the specified career point involving assiznment to a ship's company oillet such as navigator, CIC officer, TSC officer, etc.

Subsequent Operational - Staff (C2)
Any tour that involved assignment to a sea going staff such as a carrier group or cruiser-destroyer group, or to stafis which were classified as sea duty such as overseas naval ain stations, certain ASWOC's and numbered fleets.
3. LCDR OPERATIONAL TOURS (TPIC'a, E, El, E2) - The tours represented by TPIC's E, EI, ane E2 were the operational tours normally encountered by aviation officers while in the grade of Lieutenant-commander.

Squadron Operation - Non-Department Head (E)
Any aviation squadron tour where the billet required an officer in paygrade 04 , but was not considered a department head position (i.e., Training Officer, Safety Officer, Natops Officer, etc.).

Squadron Operational - Department Head (EI)
Any aviation squadron tour where the billet incumbent was considered a department head. (Operations, Administrative, Maintenance).

Operational - Senior 04 (E2)
Those tours which required that the billet incumbent had previously served an 04 operational tour. These assignments included billets on carrier airwing (CVV) staffs and aboard carriers.
4. CDR' OPERATIONAL TOURS (TPIC'S GI, G2/3, G4/5, G6) - TPIC'S $G 1, G 2 / 3, G 4 / 5$, and $G 6$ indicated any sea tour requiring the billet incumbent to be in paygrade $0-5$ with additional restrictions as follows:

Operational - CDR (GI)
Any operational tour requiring an 05 incumbent and not requiring completion of an $\mathrm{XO} / 00$ tour.

Squadron Operational $\mathrm{XO} / \mathrm{CO}(\mathrm{G} 2 / 3)$
Any tour involving command of an aviation squadron. Since squadron executive officers normally "Fleet Up" to the commanding officer position, this tour represents a composite of the two billets.

Sequential Command In Grade (G4/5)
Any tour considered as a bonus command, including CVN commanders (CAG's), Carrier XO, and Fleet Replacement Squadron (FRS) CO's.

Ship Operational Department Head (G6)
Any ship board department head tour requiring an 05
incumbent who has completed an aviation command tour.
5. OPERATIONAL CAPTAIN TOURS (TPIC's H1, H2, H3, H4) - TPIC's H1, H2, $H 3$, and $H 4$ indicated any sea tour requiring the billet incumbent to be in paygrade 06, with the additional restrictions as follows:

Operational Captain (H1)
Any sea tour requiring an 05 incumbent but not requiring screening by the Aviation major Command Board.

Major Sea Command (H2)

Major sea commands for aviation captains consist of both amphibious and service force ships and Patrol Air Wings (PAN). To be considered eligible for this tour the incumbent must have screened and been selected by the Major Command Screen Board.

Sequential Sea Command (H3)
Sequential Sea Commands include Aircraft Carriers, LHA's, Phibrons, and Servrons. The billet incumbent must have held major sea command to be eligible for this tour.

Post Major Command (H4)
This tour consists entirely of CRUDES GRU Chief of Staff
billets. To be eligiole for this tour, the billet
incumbent must have held major command at sea.
AUYBER OR ORGANIZATIOUS EOREEAST

NO:	ORGAHIZATION	1981	1982	1983	1984	1985	1986
1.	$\checkmark P$	24	24	24	24	24	24
2.	\checkmark AN(E2B)	4	4	4	4	4	4
3.	V Vin (E2C)	8	8	8	8	8	8
4.	V01	1	1	1	1	1	1
5.	VQ2	1	1	1	1	1	1
5.	$V \in 3$	1	1	1	1	1	1
7.	VQ4	1	1	1	1	1	1
8.	VCISVR DET)	1	2	1	1	1	1
9.	VC2	1	1	1	1	1	1
10.	VC3	1	1	1	1	1	1
11.	VCS	1	1	1	1	1	2
12.	$V 68$	1	1	1	1	1	1
13.	VF24	1	1	1	1	1	1
24.	VRC30	1	1	1	1	1	1
15.	\checkmark RCU0	1	1	1	1	-1	1
15.	VRC50	1	1	1	1	1	1
17.	VXEG	1	1	1	1	1	1
18.	VXils	1	1	1	1	1	1
19.	VP(SPEC DET)	1	1	1	1	1	1
20.	TACROU 2	1	1	1	1	1	2
21.	TACRON 21/22	1	1	1	1	1	1
22.	LPD	14	14	14	24	24	14
23.	LPQ	7	7	7	7	7	7
24.	AVT	1	3	1	1	2	1
25.	CV 1	2	2	2	2	2	2
25.	CV 2	9	9	9	9	9	9
27.	CVI	2	3	3	3	3	3
28.	CIVDESGRU	8	8	8	8	8	8
29.	CARGRU	6	6	5	6	6	6
30.	ASWOC	8	8	8	8	8	8
31.	$2 i 5$ FLEET	1	2	1	1	1	1
32.	54id FLEET	1	1	1	1	1	1
33.	7TH ELEET	1	1	3	1	1	1
34.	PACHISRAIIEAC	1	1	1	2	2	1
35.	NAS GT:4O BAY	1	1	1	1	2	1
36.	NAF SIGONELCA	1	1	1	1	1	1
37.	IS KEELAVIX	1	1	1	1	1	2
38.	UAS GUBI POINT	1	1	1	1	1	1
39.	/IAS AGANA	1	1	1	1	1	1
40.	NAF MISAWA	1	1	1	1	1	1
41.	IIS ADAK	1	1	1	1	2	2
42.	OTHERS	1	1	1	1	1	1
43.	TRARON XO1CO	1	1	1	1	1	1
44.	FRS 60	1	1	1	1	1	1
45.	HAdOR CMDS	1	1	1	1	1	1
48.	SEQUENTIAL CMDS	1	2	1	1	1	2

APPENDIX B (CONT.)

JET COMMUNITV

UUYBER OF ORGANEATIONS FORECAST

NO.	ORGABI2ATION	1981	1982	1983	1984	1985	1986
1.	$V E(P 4)$	8	8	8	8	8	8
2.	$V E(F 14)$	16	16	16	16	16	16
3.	$V A L$	24	24	24	24	24	24
4.	$V A M$	12	12	12	12	12	12
5.	$\checkmark A Q$	9	9	9	9	9	9
6.	VS	11	11	11	11	11	11
7.	V01	1	1	1	1	1	1
8.	VQ2	1	1	1	1	1	1
9.	$V C 1$	1	1	1	1	1	1
10.	VC2	1	1	1	1	1	1
11.	VCS	1	1	1	1	1	1
12.	$V C 5$	1	1	1	1	1	1
13.	$V 67$	1	1	1	1	1	1
14.	$V C 8$	1	1	1	1	1	1
15.	VC10	1	1	1	1	${ }^{1} 1$	1
16.	$\checkmark R 24$	1	1	1	1	1	1
17.	VRC30	1	1	1	1	1	1
18.	VRC40	1	1	1	1	1	1
19.	$\forall 8 C 50$	1	1	1	1	1	1
20.	VAQ33	2	1	1	1	1	1
21.	VFP63	1	1	1	1	1	1
22.	TACRON 1	1	1	1	1	1	1
23.	TACRON 21/22	1	1	1	1	1	1
24.	AVT	1	1	1	1	1	1
25.	CV 1	2	2	2	2	2	2
26.	CV 2	9	9	9	9	9	9
27.	CVI	2	3	3	3	3	3
28.	GRUDESCRU	8	8	8	8	8	8
29.	CARGRU	6	6	6	6	6	6
30.	CVW	12	12	12	12	12	12
31.	2ND ELEET	1	1	1	1	2	1
32.	3FD ELEET	1	1	1	1	1	1
33.	6TH ELEET	1	1	1	1	1	2
34.	74H ELEET	1	1	1	1	1	1
35.	NAS CTMO BAY	1	1	1	1	1	1
36.	NS KEELAVIK	1	1	1	1	2	1
37.	MAE IAISAWA	1	1	1	1	1	1
38.	NS ADAK	1	1	1	1	1	1
39.	OTHERS	1	1	1	1	1	1
40.	TRARON XOICO	1	1	1	1	1	2
41.	ERS CO	1	1	1	1	1	1
42.	MAJOR CHOS	1	1	1	1	1	1
43.	SEQUENTIAL CMDS	1	1	1	1	1	1

APPENDIX B (CONT.)

HELO COMMUNITY

NUNBER
 08
 ORGANIZATIONS
 FORECAST

NO.	ORGANIZATION	1981	1982	1983	1984	1985	1986
1.	$H S$	11	11	11	11	11	11
2.	HSL	6	6	6	6	6	6
3.	H.Y	2	2	2	2	2	2
4.	HS1 (SEA)	1	1	1	1	1	1
5.	HC1 (SEA)	1	1	1	1	1	1
6.	HC1 (DET2)	1	1	1	1	1	1
7.	HC: (DETG)	1	1	1	1	1	1
8.	HC3 (SEA)	1	1	1	1	1	1
9.	HCG (SEA)	1	1	1	1	1	1
10.	$H C 11$ (SEA)	1	1	1	1	1	1
11.	HC16 (SEA)	1	1	1	1	1	1
12.	HCV4	0	0	1	1	1	1
13.	HCVS	0	0	0	1	1	1
14.	VC6	1	1	1	1	1	1
15.	VC8	1	1	1	1	1	1
16.	VR24	1	1	1	1	1	1
17.	$\cup \times E 6$	1	1	1	1	1	1
18.	$\triangle A C \pi O H 2$	1	1	1	1	1	1
19.	TACRON 21/22	1	1	1	1	1	1
20.	LPD	. 14	14	14	14	14	14
21.	LPH	7	7	7	7	7	7
22.	LHA	5	5	5	5	5	5
23.	AVT	1	1	1	1	1	1
24.	CV1	2	2	2	2	2	2
25.	CV2	9	9	9	9	9	9
26.	$C V N$	2	3	3	3	3	3
27.	CRUDESGRU	8	8	8	8	8	8
28.	CARGRU	6	6	6	6	6	6
29.	PHIEROU	4	4	4	4	4	4
30.	2iA ELEET	1	1	1	1	1	1
31.	3 SD ELEET	1	1	1	1	1	1
32.	PACUISRANEAC	1	1	1	1	1	1
33.	IIAS GITIO BAY	1	1	1	1	1	1
34.	NS KEFLAVIK	1	1	1	1	1	2
35.	\AS CUBI POINT	1	1	1	1	1	1
36.	NAS AGANA	1	1	1	1	1	1
37.	US ADAK	1	1	1	1	1	1
38.	OTHER SAR	1	1	1	1	1	1
39.	LAIPPS MK III	0	0	0	1	2	3
40.	OTHERS	1	1	1	1	1	1
41.	TRARON XOICO	1	1	1	1	1	1
42.	ERS CO	1	1	1	1	1	1
43.	MAJOR CMDS	1	1	1	1	1	1
44.	SEQUEUIIAL CMDS	1	1	1	1	1	2

APPENDIX

TOUR POSITION INDICATORS

PROP COMMUNITY

TOUR POSITION IHDICATORS

NO.	CODE	UAME	BECIN	NGTH
1.	A	1ST OPERATIONAL	2.00	3.00
2.	c	SUBS OPER SQD	5.00	2.50
3.	61	SUAS OPER SHIP	8.00	2.00
4.	62	SUBS OPER STAEE	8.00	2.00
5.	E	SQO OPER NOH-DH	11.00	2.50
6.	$E 1$	SQD OPER DH	12.00	2.50
7.	$\varepsilon 2$	SHP OPER SR. 04	13.00	2.00
8.	62	OPER CDR	16.00	2.00
9.	G2/3	SQD OPER XOICO	16.00	2.50
10.	$64 / 5$	S.C.I.G.	18.50	1.50
11.	G6	SHP OPER DH	18.50	2.00
12.	H1	OPER CAPT	22.00	2.00
13.	H2	MAS SEA CMD	22.00	2.00
14.	H3	SEQ SEA CMD	24.00	2.00
15.	${ }^{4} 4$	POST MAJ GHD	24.00	2.00

TOUR POSITION INDICATORS

NO.	6008	NAME	BEGIN	ENGTH
1.	A	IST OPERATIONAL	2.00	3.00
2.	6	SUBS OPER SQD	7.50	2.50
3.	$C 1$	SUAS OPER SHIP	7.50	2.00
4.	$C 2$	SUBS OPER STAEE	7.50	2.00
5.	ε	SUD OPER NON-DH	12.00	2.50
6.	$E 1$	SQD OPER DH	12.00	2.50
7.	E 2	SHP OPER SR. 04	13.00	2.00
8.	61	OPER CDR	16.00	2.00
9.	62/3	SQD OPER XOICO	16.00	2.50
10.	64/5	S.C.I.G.	18.50	1.50
11.	G6	SHP OPE'R DH	18.50	2.00
12.	H1	OPER GAPT	22.00	2.00
13.	H2	MAd SEA CMD	22.00	2.00
14.	${ }^{+}$	SEQ SEA CMD	24.00	2.00
15.	H_{4}	POST MAS CHD	24.00	2.00

2PENDIX C (CONT.)

JET COMMUNITY

PIIOTS

TOUR POSITION INDICATORS

NO:	CODE	NAME	BEGIN	LENGTM
1.	A	1ST OPERATIONAL	2.50	3.00
2.	c	SUBS OPER SQD	5.50	2.50
3.	61	SUBS OPER SHIP	8.00	2.00
4	62	SUBS OPER STAFE	8.00	2.00
5.	E	SQD OPER NON-DA	11.00	2.50
6.	$E 1$	SQD OPER DH	12.00	2.50
7.	$E 2$	SHP OPER SR. 04	13.00	2.00
8.	G1	OPER CDR	16.00	2.00
9.	62/3	SQD OPER XOICO	16.00	2.50
10.	64/5	S.C.I.G.	18.50	1.50
11.	G6	SHP ORER DH	18.50	2.00
12.	${ }_{H}$	OPER CAPT	22.00	2.00
13.	${ }^{1} 2$	HAJ SEA CMD	22.00	2.00
24.	43	SEQ SEA CMD	24.00	2.00
15.	H_{4}	POST MAJ CMD	24.00	2.00

NEO's

TOUR POSITION INDICATORS				
NO:	CODE	NA:1E	BEGIN	ENGTH
1.	A	1ST OPERATIOIAL	2.00	3.00
2.	c	SUSS OPER SQD	7.50	2.50
3.	61	SUES OPER SHIP	7.50	2.00
4.	C2	SUBS OPER STAFE	7.50	2.00
5.	E	SGO OPER NON-DH	11.00	2.50
6.	E 1	SQD OPER DH	12.00	2.50
7.	$E 2$	SHP OPER SR. 04	13.00	2.00
8.	61	OPER CDR	16.00	2.00
9.	62/3	SQD OPER XO1CO	16.00	2.50
10.	64/5	S.C.T.G.	18.50	1.50
11.	G6	SHP OPER DH	18.50	2.00
12.	H1	OPER CAPT	22.00	2.00
13.	${ }^{+}$	MAJ SEA CMD	22.00	2.00
14.	${ }^{H}$	SEQ SEA CMD	24.00	2.00
15.	H_{4}	POST MAJ GiYd	24.00	2.00

APPENDIX C (CONT.)

HELO COMMUNITY

PILOTS

No.	TOUR POSITION INDIEATORS			
	CODE	NA.YE	BEGIU	NGT:
1.	A	1ST OPERATIONAL	2.00	3.00
2.	c	SUBS OPER SQD	5.00	2.50
3.	61	SUBS OPER SHIP	7.50	2.00
4.	$C 2$	SUBS OPER STAFP	7.50	2.00
5.	E	SQD OPER NON-DH	11.00	2.50
6.	$E 1$	SQD OPER DH	12.00	2.50
7.	$E 2$	SHP OPER SR. 04	13.00	2.00
8.	61	OPER COR	16.00	2.00
9.	62/3	SQD ORER XOICO	16.00	2.50
10.	64/5	S.C.I.G.	18.50	1.50
11.	G6	SHP OPER DH	. 18.50	2.00
12.	H1	OPER CAPT	22.00	2.00
13.	H2	MAJ SEA CMD	22.00	2.00
14.	${ }^{+} 3$	SEQ SEA CIVD	23.50	1.50
15.	84	pOST MAJ GMd	24.00	2.00

APPENDIX D

DISCRETE OPERATIONAL BTLEETS

PROP PIIOT SUBCOMMUNETY

APPENDIX D (CONT.)

PROP NFO SUBCOMMUNITY

APPENDIX D (CONT.)

JET PIIOT SUBCOMMUNITY

vos	ORSANEEAESOR	A	6	51	62	E	81	51		9213	G4/9	6	H1	$\stackrel{H 2}{2}$	${ }_{60} 8$
1.	'P(PG)	9				1	1			1					
2.	$V E(E 14)$	9				1	2			1					
3.	TAL	10				1	3			2					
4.	VA.4	12	2			1	1			1					
3.	VAG	3				1	1			1					
6.	15	15				2	1			1					
7.	VGI	6	3			1	1								
8.	VG2	3	3			1									
9.	VC1	2				1	3			2					
80.	VC2	11	2			1	3								
11.	VCS	10	3				2								
13.	VC7	12				1	3			2					
14.	VCT	5					2			2					
15.	$V C 10$	5	3												
15.	VR2*	13				3	41								
27.	VRC30	-	3				2								
18.	$V R C 40$	9	3			2	1								
19.	$V E C S 0$	5	5				1								
20.	YA¢33	14	9				3			1					
21.	VFP53	8				1	1			2					
25.	CV 1			6				2	3			2			
26.	CV 2			-	-			2	3			2			
27.	CVit			7				2	1			3			
23.	CRUDESGRU				1				1						
29.	CARGRU				2				1						
30.	cViv				1										
12.	111O ELEEA				1				1	-					
3i.	3RD FLEEJ								2						
33.	6IE ELE5				1				1						
34.	7T゙刀 FLEET				1				2						
39.	OTHERS			2											
43.	FRS 60										7				

APPENDIX D (CONT.)

TET NFO SUBCOMMUNITY

IUYGER OR OISCRGTE SETSMPO OPSPATYOMAL BIELETS GI ORGAIIZATIONTYPE

APPENDIX D (CONT.)

HELO PILOT SUBCOMMUNITY

APPENDIX E

NONDISCRETE OPERATIONAL BILLETS

IUYOER OF RONOTSCRETE PROP OPERATIONAL GILEETS BY ORGANIZATIONTYPE

tio.	ORCASE2ATIOM	A	$¢$	61	62	E	81	52	6	6213	64/5	68	H1	d2	H3
20.	$\triangle A C R O N:$			-	7										
25.	CV 1											2			
26.	CV 2											1			
28.	CRUDESERU				1										
31.	2ND FLEET								1						
32.	6AS ELEET												1		
41.	IS ADAX				3										
42.	OTHERS				4										
43.	TRARON XO/CO									1					
44.	ERS 60										4				
45.	MAJOR CNDS													7	
46.	SEQUEITIAL CMDS														3

NUYBER OR HON-OISGRETS JET OPERATYONL GILLETS EY ORGANTEATIONTYPE

APPENDIX E (CONT.)

NUNBER OF NON-OTSCRETS NEO OPRSATIONAL BTLCETS BY ORGANTZATIONTYPR

HUMEER OR NON-DTSCRETE PILOT OPERATIONAL SILLEES GY ORGANEATIORTYE

SUNEER OP NOM OISCRETE AYIATION OPERATIONAL GILLEES GY ORGANIZATIONTYPE

APPENDIX F
 APPORTIONED OPERATIONAL BILLETS

PROP PILC? SUBCOMMUNITY

NUYBER OR APPORTYONEO PROPAPIEOR OPERATIORAL BILLETS GY ORGANTZATIONTYPE

10.	OROANIEAEIGH	A	$\underline{6}$	61	62	g	51	52	61	62/3	65/5	68	181	\underline{H}	83
1.	$V P$	30	1			2	2			1					
2.	VAs (528)	9				2	1			1					
3.	$\forall A N(E 2 C)$	7				1	1			1					
4.	Vid	16	2			3				1					
5.	$V=2$	20	2			2	2			1					
5.	VG3	17	12			2	2			2					
7.	VG4	34	10			3	2			1					
8.	UC1(VA DET)	3	3			2									
9.	VC2	1								2					
10.	VC3	6				1	3			2					
11.	YC5	1													
12.	VCB	d				1	3			2					
13.	VR24	25				8	g		2	2					
14.	$\forall 8630$	15	4			2	1			1					
15.	VAC40	17	4			1	2			2					
18.	$V \pi C 50$	17	13			1	1			1					
17.	VXEG	8	9			1	1			1					
18.	$V X N 8$	12	1			1	1			1					
19.	7P(SPEC DET)				7										
20.	AACROM 1				3	1									
21.	SACROA 21/22														
22.	L90			-											
23.	LP5					.									
24.	AVT			2				1				1			
25.	Cri			4				1	1			1			
25.	CV 2			4				1				1			
27.	671			3			-	1	$\cdot 3$						
28.	CRUEESGRU														
29.	CAAGRU														
30.	A $310 C$				2										
31.	2iO PLEET								1						
32.	6\%H FLEET				1								1		
33.	7ES ELEET				1				+						
34.	FACVISRAMFAC				4										
35.	WAS GT:1O BAY				6										
36.	WAP SIGONELLA	5			14										
37.	ISS KEFLAVIX				4										
38.	UAS CUBI POLYE	3			-		.								
39.	IAS AGANA	3			3										
40.	IAF MISAWA				5										
* 1.	NS ADAK				2										
42.	OTHENS				-										
43.	TRARON XO160.									11					
44.	PRS CO										3				
45.	MAJOR CMOS													-	
46.	SEqUEHTIAL CHOS														3

APPENDIX F (CCNT.

2ROP NFO SUECOMMUNITY

110.	ORCdNEZATEON	1	c	61	62	Σ	51	82	G1	6213	6415	g8	81	83	H
1.	$v P$	19	1			2	1			1					
2.	VAIN(E28)	10	2			1	1			1					
3.	$V A \cup(E 2 C)$	12	3				2			,					
4.	VQ1	23	9			1			1						
5.	Ve2	18	6			2	2		1						
6.	V03	18	9			1	1			1					
7.	V*	27	10			2	1			1					
8.	JCi(VR DEF)	1				1									
9.	VC2														
10.	VCJ	3	1			2				1					
11.	VGS	1													
12.	V68														
13.	VR24	3													
14.	VRC30														
15.	$V R C 40$														
15.	YRCSO	3							.						
17.	VIES	7	7			2				1					
18.	V2N\%	9				1	1			1					
19.	VP(SPEC DSt)	3	5			1									
20.	TACROH 1				*	2									
21.	TACİON 21/22					1									
22.	CPD														
23.	LPH														
24.	AV:														
25.	CY 1			3											
25.	CV 2			6											
27.	EV!			3				1							
2 d	CaUDESCRU				1										
29.	CAricku				1										
30.	AJ\#CC				3										
31.	2:O FLEET				1				1						
32.	6TH FLEET				1										
33.	7TH FLEE-								1						
34.	PACITESAAIEAC														
35.	\#AS GJH0 BAY														
36.	SAF SICOIECLA														
37.	WS KEFLAVIR														
33.	UAS GUBI POIMT														
39.	\#AS AGANA														
40.	JAP HISAUA														
4.	HS AOAK				2										
42.	OTHERS				3										
4.	TRAROH XOICO													-	
44.	F゙ก5 60										2				
45.	NAJOR CVOS													3	
46.	SEQUEITIAL CMDS		-												1

80	ORGANTZATIOR	1	E	C1	63	5	81	88	61	c1/3	64/5	68	成	9.	73
1.	$V P(E 4)$	9	2			1	1			1					
2.	VE(F14)	9	2			1	2			1					
3.	VAL	10				1	3			2					
4.	VA, 4	12	2			1	1			1					
5.	YAG	3				1	1			1					
6.	45	13				2	1			1					
7.	181	6	3			1	1								
0.	$\checkmark \leqslant 2$	3	3			1									
9.	$V C 1$	2				1	3			2					
10.	Y62	11	2			1	3								
11.	VCS	10	3				2								
12.	$V C 6$	1													
13.	VC7	12				1	3			2					
14.	$V C 8$	5					2			2					
13.	VC10	3	3												
16.	VR24	23				3	1								
17.	V IC30	*	3				1								
11.	$V R C 40$	9	3	-		2	1								
19.	VACS0	5	5				1								
20.	YAti3	14	9				3			1					
2:	VFF63	6				1	1			2					
22.	TACत̃0. 1				1	1									
23.	TACテण7 21/22				1	1	1			1					
24.	AVT			2				1				2			
25.	$6 \% 1$			6				2	3	3	1	3			2
26.	$\operatorname{cr} 2$			9				2	3	3	1	3			1
27.	6%			8				2	2	2	1	4			1
28.	CAUDESCRU				1					1					
29.	CATGIU				2				1	1			1		
30.	CVU				1			1			1				
31.	210 ELEET				1					2					
32.	3FO ELEET									2			1		
33.	6TH ELEET				1					1					
34.	7\%.H FLEET				1					2			2		
35.	\#AS CT:10 EAZ				1										
36.	US AEFLAVEK														
37.	HAF YISALA														
38.	HS ADAK														
39.	OTHERS			2	1										
0.	TRAEOU 20160									3	15				
41.	Prs CO										15				
42.	MAJOR CHDS													16	
43.	SEQUEHTIAL CNDS														1

APPENDIX F (CONT.)

JET NFO SUBCOMMUNITY

IUY

NO:	QaGAMEZAİg	4	ζ	61	62	8	81	82	CI	0213	C4/3	68	H1	$H 2$ $=0$	43
1.	VP(P4)	9	2				2			1					
2.	$V E(P 14)$	10	2			1	1			1					
3.	VAC														
4.	VA,	12	2				2			1					
5.	-19	13	1			1	2			+					
6.	VS	14	3			1	2			1	,				
1.	Vil	14	2			1	1								
1.	$V{ }^{\text {V2 }}$	15				1									
9.	VC1														
10.	V62														
11.	VCS														
12.	YCs	1								1	d				
13.	VC7														
15.	UC:					-									
15.	VC10														
16.	Vit 24														
17.	\checkmark HC30														
18.	$V R C 40$														
19.	V VG50				-										
20.	VAG33	11	19			1	2			1	1				
21.	YFP63														
22.	TAGAON 1				3	1									
23.	TAGRON 21/22				1	2	.								
24.	AV\%			1											
25.	CV 1			2				1				1			
26.	CY 2			5								1			
27.	CVIV			8								1			
28.	CRUCESERU														
29.	GARCRU				1										
30.	CW				1			1							
31.	2:\% PLEET				1				1						
32.	3nD ELEET														
33.	6 \% PLEET														-
34.	72d ECEET				1				1						
35.	HAS GTVYO BAI														
36.	. IS KËTLIVIX														
37.	UAF IUISAWA				1										
38.	AS AOAK				1										
19.	OTHERS				3										
40.	TRABOLI XOICO									1	1				
41.	FRS 60										4				
42.	VAJOR CIADS													4	
43.	SESUEVITAL CMOS														

APPENDIX F (CONT.)

EELO PILOT SUBCOMMUNITY

no.	ORCANIEATION	4	E	61	63	\underline{E}	51	82	61	6213	64/5	68	11	12	83
1.	35	14				1	3			2					
2.	HSE	30	9			3	3			2					
3.	4N	20				3	3			2					
4.	HS 1 (SEA)	13	6			1									
5.	\&C1 (SEA)	7	7			1				2					
6.	HC1 (DETZ)	15				1									
7.	HC (DET5)	3				5					,				
8.	463 (SEA)	14				6				2					
9.	HCS (SEA)	43	21			6				2					
10.	HC11 (SEA)	31	6			6	3			2					
11.	4616 (SEA)	10	3			5									
12.	HCV4	18				6	3		1	2					
13.	HC\% 5	28					3		1	2					
14.	VCS	1													
15.	86\%	7	3												
16.	VR24	4	4				1								
17.	VXE6	6	2			1	2								-
18.	TACROM 1					5									
19.	TACRON 21/22				1	1									
20.	iPD			1											
21.	EFH			4	*							2	-		
22.	6HA			5								1			
23.	AV:			3				1							
24.	C\%1														
25.	CV2			1											
26.	CVH			2											
27.	CRUDESCRU														
28.	GAAGRU														
29.	PHISROH				1										
30.	2NO PLEE\%														
11.	3RD FLEET								1						
32.	PAGYISRANEAC	1			9										
33.	NAS GZVO SAT	1			8										
34.	HS KEEEAVIK														
35.	\#AS CUAI POINT	2			9										
36.	UAS ACANA	1			6										
37.	US ADAK														
38.	OTHER SAA	39			26										
39.	LAMPS MK STI	39				15	3			2					
40.	OTHERS				4										
41.	TRARON XO/CO									4					
42.	FRS CO										6				
43.	MAJOR CNDS													5	
44.	SEQUENTEAL CMOS														3

APPENDIX G
 OFEICER INVENTORY BY GRADE AND VCS

IUVENTORY OF PROPAPILOT OEEICERS FOR 1981						
$Y C S$	EIV	LTJG	LT	LCDR	CDI	CAPT
1.	6					
2.	167					
3.		286				
4.		167				
5.			277			
6.			199			
7.			187			
3.			120			
9.			60	10		
10.			6	68		
11.				50		
12.			2	55		
13.				109		
14.				125		
15.				82	31	
16.					65	
17.					62	
18.					53	
19.					40	
20.					46	
21.					27	
22.					21	21
23.						27
24.						50
25.						51 54
26.						41
27.						38
28.						19
30.						16
31.						12

APPENDIX G (CONT.)
INVEUTORI OF PROPAPILOT OFEICERS EOR 1982
YCS ENS LTJG LT LCDR CDR CAPT

1. 7
2. 167
3. 300
4. 309
5. 163
6. 233
7. 126
8. 115
9. 83 10
10. 9 50541112.42
11. 50
12. 102
13. 102 16
14. 8417.
63
15. 59
16. 51
17. 36
18. 372
22 13
19. 25
20. 25
21. 45
22. 43
23. 50
24. 34
25. 28
26. 14
27. 16

APPENDIX G (CONT.)

INVENTORY OE RROPAPILOT OEEICERS EOR 1983						
Y6S	EVS	ETJG	LT	$\underline{L C D R}$	CDR	CAPT
1.	7					
2.	187					
3.		316				
4.		326				
5.			300			
6.			137			
7.			147			
8.			77			
9.			82	6		
10.			13	67		
11.				40		
12.				46		
13.				38		
14.				47		
15.				93		
16.					87	
17.					81	
18.					59	
19.					57	
20.					46	
21.					30	
22.					14	21
23.						13
24.						23
25.						23
25.						39
27.						40
28.						41
29.						25
30.						21
31.						14

APPENDIX G (CONT.)

IUVENTORY OE PROPAPILCT OFEICERS FOR 1984
YCS ENS LTJG LT LCDR CDR CAPT

1. 72. 187$3 . \quad 330$
2. 342
3. 317
6 252
4. 87
5. 90
6. 57
7. 14 66
8. 53
9. 34
10. 42
11. 36
12. 435816.
85
13.

77
8. 57
20. 5121.22.
31 51115
23. 21
24. 12
25. 21
26. 20
27. 36
28. 33
29. 30
30. 19
31. 21

APPENDIX G (CONT.)

IUVEMTORY OF PROPUPTLOT OFFICERS FOR 1985
YGS EIIS LTTUG LT LCDR CDR CAPT
1 7
2. 187
3. 330
4. 355
5. 332
6. 266
7. 160
8. 53
9. 69
10. 193211.12.13.14.45

$$
31
$$

$$
40
$$

15. 33
16. 23
17. 67
18. 80
19. 74
20. 51
21. 377
22. 15 20
23. 15
24. 19
25. 11
26. 18
27. 18
28. 29
29. 24
30. 22
31. 19

APPENDIXG (CONT.)

INVEUTORY OF PROPAPILOT OEFICERS FOR 1986
YCS EVS LTJG LT LCDR CDR CAPT

1. 7
2. 187
3. 330
4. 355
5. 345
6. 279
7. 168
8. 98
9. 40
10. 31 30
11. 2 3412.
45
12. 41
13. 29
14. 36
16.19
15. 30
16. 63
17. 78
18. 66
19. 3410
20. 17
2223.20
21. 14
22. 18
23. 10
24. 17
25. 15
26. 22
27. 18
28. 22123

APPENDIX G (CONT.)

INVE	RY 0	PROP		OEFICE	For	1981
YCS	EiS	LTJG	$\underline{L T}$	LSDR	CDR	CAPT
1.	66					
2.	177					
3.		159				
4.		74				
5.			173			
6.			163			
7.			135			
8.			150			
9.			95	16		
10.			6	81		
11.				66		
12.			4	71		
13.				70		
14.				56		
15.				20	9	
16.					56	
17.					47	
18.					44	
19.					39	
20.					29	
21.					25	
22.					3	11
23.						11
24.						,
25.						8
26.						11
27.						
28.						
29.						2
30.						
31.						

APPENDIX G (CONT.)

IVVENTORY OE PROPANEO				OEFICERS EOR		1982
$\underline{Y C S}$	ENS	LTJG	$L T$	LCDR	$C D R$	CAPT
1.	74					
2.	195					
3.		228				
4.		153				
5.			67			
6.			141			
7.			137			
8.			113			
9.			121	15		
10.			17	90		
11.				71		
12.				61		
13.				68		
14.				68		
15.				48	7	
16.		-			22	
17.					55	
18.					45	
19.					42	
20.					37	
21.					22	1
22.						13
23.						13
24.						11
25.						8
26.						8
27.						11
28.						
29.						
30.						2
31.						

APPENDIX G (CCNT.)

INVENTORY OF PROPANEO OFEICERS FOR 1983
YCS ENS LTJG IT LCDR CDR CAPT1. 72
2. 199
3. 243
4. 219
5. 14055
7. 118
8. 115 8
94
94 9.21110
80
11.
66
12.
58
13.
67
14.
65
15.
16. 42
17. 22
18. 53
19. 43
20. 40
21. 29
22. 13
23. 13
24. 13
25. 11
26. 8
27. 8
28. 11

APPENDIX, G (CONT.)

INVENTORY OE PROPAMEO OFEICERS EOR 1984
YCS EN ETJG E2 LCDR GDR CAPT

1. 72
2. 197
3. 246
4. 234
5. 200
114
45
6.

100
8. 100
10. 1785
9811.
12. 73
13. 63
14. 5715.64
42 16.
42
42
17.
17. 21
19. 50
20. 40
21. 26
22. 15
23. 13
24. 13
25. 13
26. 11
27. 8
28. 8
29. 11
30.31.

APPENDIX G (CONT.)

IUVENTORY OF PROPSIEO				OFEICERS FOR 1985		
$\underline{Y C S}$	EXS	L? ${ }^{\text {d }}$ G	LT	LCDR	CDR	CAPT
1.	72					
2.	197					
3.		245				
4.		237				
5.			213			
6.			163			
7.			95			
8.			39			
9.			88			
10.			38	61		
11.				76		
12.				90		
13.				70		
14.				61		
15.				54		
16.					37	
17.		.			50	
18.					40	
19.					20	
20.					47	
21.					24	6
22.						17
23.						15
24.						13
25.						13
25.						13
27.						11
28.						8
29.						11
30.						11
31.						

APPENDIX G (CONT.)

IUVENTORY OE		PROPAITEO		OFEICERS EOR		1986
YCS	ENS	LTJG	$\underline{5}$	$\underline{L C D}$	CDR	GAPT
1.	72					
2.	197					
3.		245	-			
4.		235				
5.			216			
6.			174			
7.			137			
8.			80			
9.			33			
10.			43	43		
11.			4	73		
12.				70		
13.				86		
14.				69		
15.				59		
16.					32	
17.					49	
18.					47	
19.					38	
20.					18	
21.					25	8
22.						18
23.						17
24.						15
25.						13
26.						13
27.						13
28.						11
29.						8
30.						8
31.						11

\underline{Y} CS	ENS	LTJG	LT	LCDR	CDR	CAPT
1.	6					
2.	168					
3.		288				
4.		173				
5.			304			
6.			272			
7.			171			
8.			97			
9.			70	12		
10.			5	65		
11.				49		
12.			4	90		
13.				147		
14.				136		
15.				131	51	
16.					135	
17.					89	
18.					96	
19.					74	
20.					89	
21.					56	
22.					11	37
23.						40
24.						56
25.						78
26.						82
27.						68
28.						66
29.						24
30.						17
31.						20

APDENDIXG_(CONT,)

INVEUTORY OF JETAPILQR OEEICERS FOR 1982YCS EUS LTJG LT LCDR CDR CAPT

1. 6
2. 163
3. 293
4. 305
5. 168
6. 278
7. 177
8. 1169.598
9. 10
54
10. 51
11. 42
12. 83
13. 142
11218
14.

129
17.
87
18.
94
19.
20.687821.3
22. 30
23. 43
24. 34
25. 52
26. 70
27. 76
28. 58
29. 48
30. 20
31. 17

APPENDIX G (CONT.)

INVENTORY OE JETAFILOT OEFICERS EFOR 1983
YCS ENS LTJG LT LCDR GDR CAPT

1. 6
2. 164
3. 288
4. 311
5. 296
6. 153
7. 181
8. 121
9. 74
5
44
10.1
43
10. 43
11. 38
12. 80
13. 132
14. 99
15. 131
16. 127
17. 86
18. 86
19. 60
20. 147
21. 29
22. 37
23. 32
24. 47
25. 65
26. 66
27. 42
28. 41
31 20

APPENDIX G (CONT.)

IUVENTORY OE JETAPILOT OFEICERS FOR 1984
$\underset{-}{Y}$ C ENS LTJG LT LCDR CDR CAPT

1. 6
2. 164
3. 289
4. 306
5. 301
6. 270
7. 100
8. 124
9. 80
10. 11 54
11. 35
12. 36
13. 40
14. 37
15. 74
16. 84
17. 96
18. 129
19. 124
20. 78
21. 631022.
47
22.

25
24.
34
25.
28
26.
43
27.
28. 56
29. 48
30. 36
31. 41

APPENDIX G (CCNT.)

INVEUTORY OE JETAPILOT OFEICERS FOR 1985
TCS ENS LTJG
LT LCDR CDR CAPT
1.
2. 6
2. $\quad 166$
3. 291
4. 308
5. 297
6. 275
7. 176
8. 68
9. 83
10. 25
40
11. 43
12. 30
13. 33
14. 39
15. 34
16. 42
17. 96
18. 94
19. 126
20. 113
21. 52
13
22. 43
23. 32
24 40
25. 23
26. 30
27. 26
28. 37
29. 41
30. 41
31. 36

APPENDIK G (CONT.)

INVEUTORY OF JETAPILOT OFEICERS FOR 1986
YCS EHS LTJG $L T \quad L C D R$ CDR CAPT
7
7 1 7
2. 171
3. 297
4. 310
5 299
6. 271
7. 179
8. 120
9. 45
10. 34 33
11. 2 43
12. 37
13. 27
14. 32
15. 36
16. 20
17. 54
18. 94
19. 92
20. 114
21. 682222.4023.43
24 。 27
25. 37
26. 21
27. 28
28. 23
29. 27
30. 35
31. 41

APPENDIX G (CONT.)

APPENDIX G (CONT.)

IIV	Y OE	JET		QEEICE	EOR	1982
$\underline{Y C S}$	EIS	LTJG	ET	$\underline{L C D R}$	$C D R$	$C A P T$
1.	65					
2.	179					
3.		226				
4.		157				
5.			122			
6.			204			
7.			150			
8.			121			
9.			148	18		
10.			19	100		
11.				78		
12.				75		
13.				89		
14.				104		
15.				53	9	
16.					51	
17.					48	
18.					50	
19.					50	
20.					31	
21.					33	1
22.						8
23.						8
24.						3
25.						6
26.						6
27.						6
28.						2
29.						
30.						2
31.						1

APPENDIX G (CONT.)

INVEUTORY OE JETSUEO OEEICERS FOR 1983
$\underline{Y} \mathbf{S} S$ LTJG LT LCDR CDR CAPT

1. 65
2. 179
3. 226
4. 217
5.
6. 142

- 112184

8. 1319.10210
27 138
9.
10. 91
11. 71
12. 69
13. 86
14. 101
15. 49
16. 51 48
17.
18.
19. 50
20. 50 30
21.22.
20
23.8
21. 4
22. 3
23.

27.6
28. 6
29. 2
30. 2

APPENDIX G (CONT.)

INVENTORY OE JETANEO OEEICERS FOR 1984YCS ENS LTJG ET LCDR CDR CAPT

1. 63
2. 176
3. 224
4. 217
5. 197
6. 131
7. 101
8. 161
9. 117
10. 2095
11. 125
12. 83
13. 65
14. 66
15. 83
16. 64
17. 49
18. 51
19. 48
20. 49
21. 40 6
22. 17
23. 21
24. 4
25. 4
26. 3
27. 6
28. 6
29. 6
30. 2
31.

APPENDIX G (CONT.)

I! V	\underline{Y} OF	JET $\triangle 1 E O$		OFEICE	EOR	1985
YCS	ENS	LTJG	\underline{T}	LCDR	$C D R$	CAPT
1.	63					
2.	174					
3.		221				
4.		215				
5.			197			
6.			181			
7.			118			
8.			88			
9.			145			
10.			45	74		
11.				87		
12.				114		
13.				76		
14.				- 2		
15.				64		
10.					47	
17.					77	
18.					49	
19.					51	
20.					47	
21.					36	9
22.						29
23.						17
24.						11
25.						4
26.						4
27.						3
28.						6
29.						6
30.						6
31.						2

APPENDIX G (CONT.)

IUENTORY OE JETSIGO OFETCERS EOR 1986YCS EUS LTJG LT LCDR GDR CAPT

1.	62
2.	173

3. 219
4. 213
5. 195
6. 181
7. 163
8 . 103
$9 . \quad 79$
$10 . \quad 74$
72
8. 59
9. 79
$13 . \quad 104$
$14 . \quad 73$
10. 60
11. 37
12. 63
13. 77
$19 . \quad 49$
14. 50
15. 31
11
16.
17.
18.
19.
20.
21.
22.
23.

29
29 29 9 11 4 4

APPENDIX G (CONT.)

YCS	ENS	LTJG	LT	LCDR	CDR	CAPT
1.	S		.			
2.	131					
3.		226				
4.		125				
5.			138			
6.			112			
7.			131			
8.			164			
9.			84	15		
10.			9	116		
11.				106		
12.			11	136		
13.				80		
14.				69		
15.				73	28	
16.					57	
17.					34	
18.					34	
19.					30	
20.					18	
21.					21	
22.					3	10
23.						10
24.						12
25.						23
26.						10
27.						6
28.						5
29.						
30.						
31.						1

APPENDIX G (CONT.)

IVV	RY OE	HELO	LOT	OPEIC	FO	1982
YCS	ENS	LTJG	[2	$\underline{C D D}$	CDR	CAPT
1.	6					
2.	157					
3.		252				
4.		251				
5.			125			
6.			130			
7.			95			
8.			114			
9.			134	16		
10.			14	78		
11.				105		
12.				95		
13.				130		
14.				77		
15.				56	10	
16.					78	
17.					57	
18.					33	
19.					33	
20.					23	
21.					15	1
22.						10
23.						12
24.						10
25.						11
26.						19
27.						8
28.						4
29.						
30.						
31.						

APPENDIX G (CONT.)

INVENTORY OF HELOAPILOT OEFICERS FOR 1983						
YCS	ENS	LTJG	$L T$	LCDR	CDR	CAPT
1.	6					
2.	157					
3.		285				
4.		278				
5.			251			
6.			118			
7.			110			
8.			83			
9.			95	9		
10.			23	119		
11.				71		
12.				95		
13.				90		
14.				125		
15.				75		
16.					53	
17.					78	
18.					54	
19.					32	
20.					26	
21.					20	
22.						9
23.						10
24.						12
25.						9
26.						9
27.						14
28.						5
29.						
30.						
31.						

APPENDIX G (CONT.)

YCS	E.JS	LTJG	LT	LSDR	CDR
1.	7				
2.	189				
3.		313			
4.		315			
5.			278		
る.			236		
7.			100		
8.			97		
9.			72		
10.			18	86	
11.				108	
12.				64	
13.				90	
14.				87	
15.				122	
16.					49
17.					54
18.					74
19.					53
20.					25
21.					19
22.					
23.					
24.					
25.					
26.					
27.					
28.					
30.					
31.					

APPENDIX G (CONT.)

IUVEITORY OE HELOAPILOT OFEICERS FOR 1985
YCS ENS $\leq \pm J G$
LT LCDR CDR CAPT

1. 7
2. 190
3. 335
4. 343
5. 315
6. 262
7. 200
8. 87
9. 86
10. 27
44
11. 79
12. 97
13. 61
14. 87
15. 84
16. 70
17. 58
18. 51
19. 72
20. 41
21. 16
4
22. 12
23. 10
24. 9
25. 9
26. 9
27. 5
28. 5
29.
30.
31.

APPENDIX G (CONT.)

INVENTORY OF HELOAPILOT OFFICERS EOR 1986
YCS EUS LIJG ET LCDR CDR CAPI

1. 7
2. 190
3. 336
4. 365
5. 343
6. 297
7. 222
8. 176
9. 78
10. 4241
11. 3 54
12. 71
13. 93
14. 59
15. 84
16. 50
17. 94
18. 55
19. 50
20. 56
21. 24
22.1223.24 。10
22. 8
23. 8
24. 7
25. 4

APPENDIX H

TOTAL BILLET REQUIREMENTS

PROP COMMUNITY

PILOTS

NFO's

				NUMBER OF PROPARFO				SEA AIELETS			G6	$\underline{18}$	${ }_{-2}$	83	
YEAR	A	\underline{C}	51	62	\underline{E}	E1	82	61	13						4
1981	708	103	69	68	66	48	2	4	4.2	2	5		3	1	1
1982	708	103	72	58	66	48	3	4	42	2	5		3	1	1
1983	708	103	72	68	65	48	3	4	42	2	5		3	1	1
1984	708	103	72	58	66	48	3	4	42	2	5		3	1	1
1985	708	103	72	68	66	48	3	4	42	2	5		3	1	1
1986	708	103	72	58	66	48	3	4	42	2	5		3	1	1
1981-85	708	103	72	68	66	48	3	4	42	2	5		3	1	1
1982-86	708	103	72	68	66	48	3	4	42	2	5		3	1	1

APPENDIX H (CONT.)

JET COMMUNITY

PILOTS

NUMEER OP JETAPILOT SEA EIELETS															
$\underline{E S A R}$	A	${ }_{c}$	61	$C_{6} 2$	\underline{E}	$\underline{E} 1$	$\underline{E} 2$	CI	62/3	64/5	G5	H1	$\underline{12}$	H3	84
1981	902	106	111	44	104	167	44	61	117	33	48	6	16	13	
1982	902	106	118	44	104	157	46	63	117	33	52	6	16	14	
1983	902	106	118	44	104.	167	46	63	117	33	52	6	16	14	
1984	902	106	118	44	104	167	46	63	117	33	52	6	16	14	
1985	902	106	118	44	104	167	46	63	117	33	52	6	16	14	
1985	902	106	118	44	104	167	46	63	117	33	52	6	16	14	
1991-85	902	106	117	44	104	167	46	63	117	33	51	6	16	14	
1982-65	902	106	118	44	104	167	46	63	117	33	52	5	16	14	

NFO's

				NUYBER OP JETANEO				SEA BILLETS			66	R1	H2	H ${ }^{-1}$	
$Y E A R$	A	c	63	62	\underline{E}	\underline{E}	E2	61	62-3	C4/5					H4
1981	688	135	64	27	41	99	12	4	60	12	9	2	4	1	
1982	689	135	69	27	41	99	12	4	- 60	12	9	2	4	1	
1983	688	135	69	27	41	99	12	4	60	12	9	2	4	1	
1984	638	135	69	27	41	99	12	4	60	12	9	2	4	1	
1985	688	135	69	27	41	99	12	4	60	12	9	2	4	1	
1986	689	135	64	27	41	99	12	4	60	12	9	2	4	1	
1981-85	688	135	68	27	41	99	12	4	60	12	9	2	4	1	
1982-86	688	135	68	27	41	99	12	4	60	12	9	2	4	1	

APPENDIX H (CONT.)

HETO COMMUNITY

PILOTS

APPENDIX I
 TOTAL OFFICERS AVAILABLE

PROP COMMUNITY

PILOTS

NEO's

APPENDIX I (CONT.)

JET COMMUNITY

PILOTS

NFO's

	NUYEER OF JETANFO														
YEAR	${ }^{A}$	\underline{E}	$\underline{C 1}$	$C_{2} 2$	E	\underline{E}	$E 2$	61	c213	64/5	$\underline{66}$	81	$\underline{82}$	83	84
1981	521	164	82	36	138	137	12	7	103	25	20	3	9	9	3
1982	505	182	97	38	115	152	17	7	108	25	31	3	8	10	2
1983	585	180	88	35	103	147	22	7	109	37	37	3	9	7	2
1984	638	155	85	34	111	124	18	7	109	36	41	7	18	8	1
1985	633	162	84	33	144	121	15	9	234	35	38	8	20	6	2
1986	627	150	65	28	119	146	15	10	147	37	36	11	27	12	3
1981-85	576	171	88	35	122	136	17	7	113	32	34	5	13	E	2
1982-86	598	168	84	34	118	138	17	-	121	34	37	7	15	8	2

APPENDIX I (CONT.)

HELO COMMUNITY

PILOTS

APPENDIX J

OPERATIONAL TOUR OPPORTUNITIES

PROP COMMUNITY

PILOTS

SEATOUR OPPORTUNITI (SHORTEALL) OF ELIGIBLE PROPAPILOT OPEIGERS IN PERCENTAGE

IEEAR	1	\underline{C}	C1	62	\underline{E}	E	$\underline{E} 2$	$\underline{9}$			G6	81	$\underline{\text { R } 2}$	23	$\underline{4}$
2981	(29)	19	99	99	66	61	57	36	60	17	16	11	11	5	
1982	(24)	21	97	97	(1)	79	55	55	57	20	16	17	17	6	6
1983	(8)	27	88	88	(17)	(12)	73	48	49	15	15	23	23	9	9
1984	(3)	22	(7)	(7)	(31)	(38)	(27)	42	44	15	14	25	25	14	14
1985	(1)	19	(19)	(19)	(24)	(47)	(37)	46	45	14	13	24	24	19	19
1986	99	17	(32)	(32)	(21)	(46)	(40)	72	63	11	11	24	24	20	20
1981-85	(13)	21	(2)	(2)	(4)	(2)	80	49	50	16	15	18	18	,	9
1982-86	(7)	21	(8)	(8)	(19)	(23)	97	51	51	15	14	22	22	11	11

NFO's

SEATOUR O		OPPORTUNITY		(SHORTEALL)		OF	LIGIBLE		PROPANEO		ORFICERS IN		PERCENTAGE		
$\underline{\text { Y A }}$ R	A	C	C1	C_{2}	$\underset{\sim}{E}$	$\underline{E} 1$	$\underline{E} 2$	G1	62/3	64/5	66	$\underline{1}$	$\underline{82}$	H3	84
1981	(43)	100	96	96	52	77	91	42	44	17	15	20	20	9	9
1982	(37)	93	90	90	55	61	53	38	40	14	13	16	16	11	11
1983	(15)	95	99	99	55	59	44	51	50	13	11	15	25	9	9
1984	(4)	(9)	(10)	(10)	52	60	46	61	55	13	12	13	15	7	7
1985	(2)	(26)	(29)	(29)	44	60	51	42	48	12	11	14	14	7	7
1986	(2)	(43)	(48)	(48)	47	52	46	40	42	26	19	12	12	7	7
1981-83	(20)	(5)	(5)	(4)	51	63	52	46	47	13	12	15	25	8	d
1982-86	(12)	(13)	(15)	(15)	51	58	48	45	47	14	13	14	14	8	8

APPENDIX j (CONT.)
JET COMMUNITY

PILOTS

SEATOUR OPPORTUNITY (SHORTFALL) OP ELIGIBLE JETAPIEOT OPFICERS IN PERCENTAGE

$\underline{Y E A R}$	1	c	51	$\underline{6}$	Σ	$\underline{E} 1$	E2	$\underline{1}$	6213	15	C6	H1	H2	${ }^{\text {H }}$	84
1981	(18)	37	(2)	(2)	62	80	79	84	90	64	57	23	23	11	11
1982	(18)	34	(19)	(19)	(7)	(1)	86	73	77	79	59	29	29	15	15
1983	(9)	34	(19)	(19)	(33)	(32)	96	51	67	67	59	34	34	22	22
1984	(4)	44	(11)	(11)	(45)	(57)	(45)	70	71	66	57	31	31	29	29
1985	(3)	41	(9)	(9)	(53)	(68)	(66)	83	01	50	50	31	31	34	34
1985	(3)	34	(31)	(31)	(50)	(72)	(58)	(6)	(5)	53	49	32	32	31	31
1981-85	(10)	38	(12)	(12)	(15)	(27)	(13)	73	76	64	56	29	29	19	18
1982-86	(7)	37	(18)	(18)	(38)	(46)	(32)	75	78	61	54	31	31	24	24

NFO's

SEATOUR OPPOETUNETY (SHOREAEL) OR ELIGIELE JEEANEO OPESEERS IN PEREENTAGE

YEAR	1	\underline{L}	C1	C2	E	E1	\underline{E}	61		15	G6	11	\%2	43	E4
1981	(24)	82	77	77	30	73	100	51	58	46	42	44	44	14	14
1982	(27)	74	72	72	36	85	71	\$2	55	47	29	48	8	15	15
1983	(15)	75	79	79	40	67	56	52	55	32	25	44	44	20	20
1984	(7)	82	80	80	37	80	70	51	55	33	22	21	21	26	26
1985	(8)	83	82	82	28	82	84	41	44	33	24	13	19	23	23
1985	(9)	90	98	98	33	68	81	37	41	31	23	14	14	11	11
1981-85	(16)	79	78	78	34	73	73	49	53	37	27	30	30	19	19
1982-86	(13)	80	81	11	35	72	71	46	49	34	25	23	23	18	17

APPENDIX J (CONT.)

HELO COMMUNITY

PILOTS

SEATOUR OPPORTUNITY (SHORTEALL) OF ELIGIELE HELOARILOT OEFICERS IN PGRGENTAGE															
YEAR	1	C	61	62	\underline{E}	E1	$\underline{E} 2$	$\underline{G 1}$	G2/3	15	G6	$\underline{11}$	H2	83	4
1981	(15)	39	72	78	37	62	51	68	72	92	75		32	15	
1982	91	43	67	67	40	52	58	50	56	75	72		30	20	4
1983	73	44	78	78	45	50	42	36	42	69	63		32	32	8
1984	73	30	(1)	(1)	68	54	38	41	45	63	50		38	30	9
1985	70	22	(5)	(5)	69	76	53	49	50	41,	45		35	34	8
1985	70	19	89	89	85	80	61	37	42	34	36		30	36	9
1981-85	81	33	82	82	50	58	47	46	51	63	61		33	25	6
1982-86	74	28	86	86	60	61	49	42	45	51	52		32	32	7

APPENDIX K
 BILLET RATES
 PROP COMMUNITY

PILOTS

GILLET RATE (REGUREMETT OIVIDED GY TOUR LEMGTH) FOR PROPAPILOT OEETCERS

YEAR	A	\underline{C}	C1	C2	\underline{E}	$\underline{E 1}$	52	61	13		G5	$\underline{12}$	$\underline{H 2}$	${ }_{4}^{13}$	$\underline{4}$
1981	341	34	29	42	37	34	8	6	26	2	4		4	2	1
1982	341	34	32	42	37	34	9	7	26	2	4		4	2	1
1983	341	34	32	42	37	34	9	7	26	2	4		4	2	1
1984	341	34	32	42	37	34	9	7	28	2	4		4	2	1
1985	341	34	32	42	37	34	9	7	26	2	4		4	2	1
1986	341	34	32	42	37	34	9	7	26	2	4		4	2	1
1981-85	341	34	31	42	37	34	8	7	28	2	4		4	2	1
1982-88	341	34	12	42	37	34	9	7	26	2	4		4	2	1

$\mathrm{NFO}^{\prime} \mathrm{S}$

APPENDIX K (CONT.)

JET COMMUNITY

PILOTS

GILLET RATE (REUUIREMENT DIVIDED BY TOUR LENGTH) POR JETAPILOT OREICERS

YEAR	A	\underline{C}	C1	$\underline{C 2}$	\underline{E}	E 1	$\underline{2}$			15	$\underline{65}$		2	3	4
1981	301	42	55	22	42	67	22	31	47	22	24	3	8	7	2
1982	301	42	59	22	42	67	23	32	47	22	26	3	8	7	2
1983	301	42	59	22	42	67	23	32	47	22	26	3	8	7	2
1984	301	42	59	22	42	67	23	32.	47	22	25	3	8	7	2
1985	301	42	59	22	42	57	23	32	47	22	26	3	8	7	2
1986	301	42	59	22	42	67	23	32	47	22	26	3	8	7	2
1981-85	301	42	58	22	42	67	23	31	47	22	25	3	8	7	2
1982-86	301	42	59	22	42	67	23	32	47	22	26	3		7	2

NFO's

BILLET RATE (REQUIREMENT DIVIDED BI TOUR LENGTH) FOR JETANPO													ORPICERS	
YEAR	1	\underline{C}	$\underline{C 1}$	$\underline{C 2}$	5	E1	$\underline{5}$		62/3		G6	$\underline{81}$	H2	R3
1981	229	54	32	14	16	40	6	2	24	8	4	1	2	1
1982	229	54	35	14	16	40	6	2	24	8	5	1	2	1
1983	229	54	35	14	16	40	6	2	24	8	5	1	2	1
1984	229	54	35	14	16	40	6	2	24	8	5	1	2	1
1985	229	54	35	14	16	40	6	2	24	8		1	2	1
1986	229	54	32	14	16	40	6	2	24	8	4	1	2	1
1981-85	229	54	34	14	16	40	6	2	24	8	5	1	2	1
1982-86	229	54	34	14	16	40	6	2	24	¢	5	1	2	1

APPENDIX K (CONT.)

HELO COMMUNITY

PILOTS

YEAR	A	6	61	C2	$\underline{5}$	\underline{E}	2	1	13		$\underline{66}$	㕲	42	R3	84
1981	191	42	44	34	29	25	2	2	21	5	10		3	2	
1982	191	42	45	34	29	25	2	2	21	5	10		3	2	
1983	197	42	45	34	32	25	2	3	21	5	10		3	2	
1984	219	42	45	34	38	29	2	3	23	5	10		3	2	
1985	232	42	45	34	44	30	2	3	24	5	10		3	2	
1986	245	42	45	34	50	31	2	3	25	5	10		3	2	
1981-85	206	42	45	34	34	27	2	3	22	5	10		3	2	
1982-86	$2: 7$	42	45	34	38	28	2	3	23	5	10		3	2	

APPENDIX L

APPORTIONMENT ALGORITHMS

The following algorithms are used to apportion the nondiscrete billet requirements among the indicated aviation subcommunities:

Prop Pilot Subcommunity

$$
\begin{aligned}
b(\text { apportioned }) & =b(\text { discrete prop pilot) } \\
& +\frac{N_{1}}{N_{1}+N_{2}} b \text { (nondiscrete prop) } \\
& +\frac{N_{1}}{N_{1}+N_{3}+N_{5}} b \text { (nondiscrete pilot) } \\
& +\frac{N_{1}}{N} b \text { (nondiscrete aviator) }
\end{aligned}
$$

Prop NFO Subcommunity
$b($ apportioned $)=b($ discrete prop $N F O)$
$+\frac{N_{2}}{N_{1}+N_{2}} b$ (nondiscrete prop)
$+\frac{N_{2}}{N_{2}+N_{4}} b($ nondiscrete NFO)
$+\frac{\mathrm{N}_{2}}{\mathrm{~N}} \mathrm{~b}$ (nondiscrete aviator)

APPENDIX L (CONT.)

Jet Pilot Subcommunity

$$
\begin{aligned}
b(\text { apportioned }) & =b(\text { discrete jet pilot }) \\
& +\frac{N_{3}}{N_{3}+N_{4}} b \text { (nondiscrete jet) } \\
& +\frac{N_{3}}{N_{1}+N_{3}+N_{5}} b \text { (nondiscrete pilot) } \\
& +\frac{N_{3}}{N} b(\text { nondiscrete aviator })
\end{aligned}
$$

Jet NFO Subcommunity

$$
b(\text { apportioned })=b(\text { discrete jet NFO })
$$

$$
+\frac{N_{4}}{N_{3}+N_{4}} b(\text { discrete jet } N F O)
$$

$$
+\frac{N_{4}}{N_{2}+N_{4}} b(\text { nondiscrete } N F O)
$$

$$
+\frac{\mathrm{N}_{4}}{\mathrm{~N}} \mathrm{~b} \text { (nondiscrete aviator) }
$$

APPENDIX L (CONT.)

Helo Pilot Subcommunity

$$
\begin{aligned}
b(\text { apportioned }) & =b(\text { discrete helo pilot }) \\
& +\frac{N_{5}}{N_{1}+N_{3}+N_{5}} b \text { (nondiscrete pilot) } \\
& +\frac{N_{5}}{N} b \text { (nondiscrete aviator) }
\end{aligned}
$$

where:

$$
\begin{aligned}
& \mathrm{b}(\text { discrete prop pilot })= \text { the number of discrete } \\
& \text { prap pilot billets for } \\
& \text { the applicable tour } \\
& \mathrm{b}(\text { nondiscrete prop })= \text { the number of nondiscrete } \\
& \text { prop community billets for } \\
& \text { the applicable tour } \\
& \mathrm{b}(\text { nondiscrete pilot }= \text { the number of nondiscrete } \\
& \text { pilot billets for the ap- } \\
& \text { plicable tour } \\
& \mathrm{b} \text { (nondiscrete aviator) }= \text { the number of nondiscrete } \\
& \text { aviator billets for the ap- } \\
& \text { plicable tour }
\end{aligned}
$$

APPENDIX L (CONT.)

and where:

$$
\begin{aligned}
N_{1}= & \text { the average number of prop pilot officers } \\
& \text { eligible to fill the specified tour's billet } \\
& \text { requirements }
\end{aligned}
$$

APPENDIX 1

BILLET REQUIRMENT ALTEPATIO:HS

CHANGE I
(JET PIEOTS)

```
GIANGE OPTSOIS:
```



```
TYPE ONS OF THE NUMAERS LISTEO ABOVE:
0:
    1
GYE yUVBEA OP ORGAMIZATIONTYPE FOR OHICH THE FUNBERS MAY HAVE TO BE CGANGED:
    TYPING O NEANS NO NORE GHAHCES ARE YEEDED.
U:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 10 & \multicolumn{6}{|l|}{CURREHS NUYBERS} \\
\hline 20: & ORGANIZATIOR & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 \\
\hline 10. & VC2 & 1 & : & 1 & 1 & 1 & \[
1
\] \\
\hline
\end{tabular}
LO YOU WANS TO MAKE ANI GAAKGES S.V THE ABOYE'DATAT ARSUER YES OR I (NO):
IES
TO GIVE AEN NUNBERS TYPE 6 BUMBERS (SEPARATSD BY blAMK SPACES):
0: 000000
TIPE NUMBER OR ORGANIZATIONTYPE FOR UHICE THE NUMGERS MAY HAVE TO gE CHANGED:
    THPIHG O MEANS HO NORE CHANGES ARE NEEDED.
C:
```



```
do you tant to make any changes in the above datat answer yes or n (mo):
155
TO GIVE NEW NUNBERS TIPE 6 NUMGERS (SEPARATED BY bLANX SPACES):
    000000
TYPE MUGEER OR ORGANIZATIONTYPE FOR WYICH THS NUNBERS NAY GAVE TO bE CHANGED:
    TYPIHG O NEAMS MO HORE CHAMGES ARE REEDED.
C:
            1 3
                GURRENT NUMEERS
\begin{tabular}{llrrrrrr} 
NO. ORGASEZATIOX & 1981 & 1982 & 1983 & 1984 & 1985 & 1985 \\
13. & 1 & 1 & 1 & 1 & 1 & 1
\end{tabular}
oo you want to make ant changes in the above datat answer yes or \(m\) (no): IES
```



```
000000
```


CHANGE I (CONT.)

TYPE NUNEER OF ORGANGZASIONTYPE FOR WHIGH THE NUNESAS MAY HAVE TO EE GHABGEDI TYPINE O NEALIS NO MORE CHANGES ARE NEEDSD.

D:

DO TOU HAMT TO MAKE THESE CHANGES PERMANENT? ANSWER IES OR N (NO): 10

NO ALTERATION HAS BEEN MADE IN THE PILE.

CHAMGE OPTIONS:															
TTPE ONE OP THE TUNEERS LISTED ABOVE:															
0															
OPTIONS: DOAE-0 /DATA-1 /CHANGE-2 /RESUCT-3															
TYPE OUE OE THE NUMBERS LISTED ABOVE:															
D:															
\$															
RESULT OPTIONS: DONE-O/REQUIREMENTS-1/SUPPLY-2/OPPORTUNTTE-3/BILLET RATES-4															
03															
3															
SEATOUR O		RTU	NITY	SSHOR	TEALL) OP	ELIGI	LE	ETAPI		OFEIC		PERC	17A	
YEAR	A	5	C1	CI	g	$\underline{5}$	$\underline{2}$		6213	13	65		${ }_{-12}^{2}$	H3	8
1981	(16)	17	(2)	(2)	60	77	77	83	89	64	57	23	23	11	11
1982	(16)		(19)	(19)	(5)	98	84	72	76	78	59	29	29	13	15
193	(7)		(19)	(19)	(3i)	(30)	94	50	66	67	59	34	34	22	22
1934	(1)		(11)	(11)	(44)	(56)	(43)	69	70	66	57	31	31	29	29
1935	(1)	40	(9)	(9)	(52)	(57)	(55)	12	80	50	50	31	31	34	34
1936	100	33	(31)	(31)	(48)	(71)	(67)	(4)	(4)	53	48	32	32	31	31
1981-35	(8)		(12)	(12)	(13)	(25)	(12)	72	73	53	56	29	29	19	18
1582-35	(5)	36	(10)	(18)	(36)	(45)	(30)	75	77	61	54	31	31	24	24

CHANGE II

(JET PILOTS)

```
C.HANGE OPTEOHS:
```



```
SYPE ONE OP THE IUNAERS ESSAED ABOVE!
U:
    3
GILCET NATRIX OPRTONS: JETAPTLOT-1 /JET-2 /PILOT-3 /AVIATION-4 /APPORIIONED-S
D:
        I
TYPE NUNBER OF ORGAMIZATION WHOSE gILEETS NAY HAVE TO BE CEANGED:
    TIPIHG O MEANS MO NORE CGAMGES ARE NEEDED.
D:
            25
                    GURREUT NUNBERS OP BILIEES
```



```
OO yOU wAMT TO NAKE ANY C&ANGES IN zME AGOVE DATAZ ANSUER JES OR I (NO):
18S
IO GIVE NEA GILLETS TYPE 15 NUNEERS (SEPARATED BY SLARK SPACES)
    003000230020000
TYPE NUNESR OP ORGANIZATION WHOSE BILLETS MAY hAVE TO aE GHGNGED:
    TYPING O NEAMS MO NORS GHANGES ARE ,VESDED.
C:
            26
```



```
do you vant to make any ghanges in the above datat afsuer yes or g (.ao):
yES
TO gIVE NEY BILLETS TYPE IS NUMGERS (SEPARATED BY BLANK SPACES)
0:
    O 0 S 0 0 0 2 3 0 0 200000
IYPE NUNGER OF ORGANIEATION WHOSE BILEETS MAY HAVE TO bE GHANGED:
    TYPING O NEANS NO MORE CYANGES ARE NEEDED.
L:
            2 7
```



```
YES
TJ GIVE NEN bILLEES TMPE 1S NUNAERS (SEPARATED GY bLAMK SPAGES)
G: 00.00022:0030000
GYPE IUNGEA OF ORGANIZATION HHOSE BILLETS MAY MAVE TO BS CRAMGED:
    IIPING O MEARS NO NORE CHAIGES ARE MEEDED.
```


CHANGE II (CONT.)


```
NO
YOU WANT TO NAKE THESE GHANGES PERMANGNTT ANSNER TES OR N (NO):
N
VO ALTERASEON RAS SESN HADE IN THE ELEE.
CHARGE OPTIOMS:
DONE-O/ORGAVIZATIONS-1/TOURS-2/GILLETS-3/CRADES-4/FAVTRI-5 /ORCAMIZATIONS BY FY-6
IXPE OUE OF SHS NUYEERS LISTED ABOVE:
    0
OPFIONS: DONE-O /DATA-1 /CHANGE-2 /RESULT-3
TYPE ONE OF SHS MUMBERS LISTED ABOVS!
4:
    3
RESUGE OPTIONS: DOHE-O/REQUIRENERTS-1/SUPPLE-I/OPPORTUNITY-3/BILCET RATES-4
TYFE OHE OF THE GUNBERS LISTED ASOVE:
C: }
```



```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2EAR & A & \(\underline{5}\) & 63 & 62 & \(\underline{8}\) & E1 & \(\underline{2}\) & 61 & 62/3 & 15 & -8 & \(\xrightarrow{H}\) & 42 & H3 & 4 \\
\hline 1981 & (18) & 37 & 76 & 76 & 62 & 80 & 79 & 84 & 90 & 54 & 57 & 23 & 23 & 11 & 11 \\
\hline 1982 & (18) & 34 & 92 & 92 & (7) & (1) & 86 & 73 & 77 & 79 & 59 & 29 & 29 & 15 & 15 \\
\hline : 983 & (9) & 34 & 91 & 91 & (13) & (32) & 96 & 51 & 67 & 87 & 59 & 34 & 34 & 22 & 22 \\
\hline 1984 & (4) & 4.4 & 33 & 13 & (45) & (37) & (45) & 70 & 11 & 68 & 57 & 31 & 31 & 23 & 29 \\
\hline 1935 & (3) & 41 & 11 & 11 & (53) & (68) & (68) & 83 & 81 & 50 & 50 & 31 & 31 & 34 & 34 \\
\hline 1996 & (3) & 34 & (7) & (7) & (50) & (72) & (68) & (6) & (5) & 53 & 48 & 32 & 32 & 31 & 32 \\
\hline 1951-45 & (10) & 38 & 84 & 84 & (15) & (27) & (13) & 73 & 76 & 64 & 56 & 29 & 29 & 19 & 1 \\
\hline 1382-85 & (7) & 37 & 30 & 90 & (38) & (46) & (32) & 76 & 78 & 61 & 54 & 31 & 31 & 24 & 24 \\
\hline
\end{tabular}
```


CHANGE III

(JET NFO's)

GAANGE OPTIONS
DOIEE-O/ORGAUIZATIONS-2/EOURS-2/BILLETS-3/GRADES-6/DAYTRY-S /ORGAMTZATSOMS EY FY-6 EYPE OUE OF SHE JUNEEAS LESEED ABOYE:
C:
bILLET MATRIX OPTIOAS: JETANPO -1 /SET-2 /BFO-3 /APIATION-4 /APPORTIONED-5 Cl

TYPS NULBEZ OF ORGANLZATION UROSE BLLLETS MAY ZAVE TO BE GZANGED: TYPIUG O MEANS WO MORE CGANGES ARE NEEDED.
©:

DO TOU WART TO NAKE AHY CHANGES IE THE ABOVE DATAT ANSHER YES OR I (MO): res

TO GIVE MEN BILLETS TYPS IS NUMBERS (SEPARATED BI BLANK SPACES) O:
00.000100000000

TYPS NUMBER OF ORGANIZATION WROSE BILLETS VAY HAYE TO BE GHANGED: tzPRAG O NEANS NO MORS CHABGSS ARE NEEDED.

C:
26
GURBEMS NUMBERS OP BITLETS

155
to give ney aitceis type is nungers (separated by blank spaces) G:

006000000000000
TTPE NUMASR OF ORGANIZATION WHOSS BILEETS MAY HAVE TO BE CHANGED: TYPING 0 MEANS MO MORS CHANGES ARE NEEOET.

Q:
27
CURRERT NUMEERS OF BILLETS

[^0]```
TYRE NUWAER OP ORGANIZASION UHOSE GILLETS NAZ HAVE TO BE GHANGED:
 TYPINE O .YEAHS NO MORE GHANGES ARE NESDED.
C:
 0
OO YOU #ANT IO NAKS CHANGES IN ANY-OTGER BICLET NATRIXY ABSUER YES OR N (NO):
40
DO YOU WANT TO HAKE TGESE CGANCES PERAANENT? ANSNER IES SA N (NO):
*O
MO ALTERATEON GAS BEEN YADF IN THE EILE.
CHAHGE OPTIOHS:
DONE-0/ORGA|&EATIONS-1/TOURS-2/BILLETS-3/GRADES-4/INVTRZ-5 /ORGAMIZATIONS BT FE-6
IYPE ONS OR IHE IUNAERS CISTSD ABOVE:
C:
 0
OPTIONS: DONE-0 /OATA-1 /CHA.VGE-2 /RESULT-3
TEPE ONE OP TGE FUNAERS LISTED ABOVE:
0:
 J
ASSULT OPIIONS: DONE-O/REGUIREMENTS-1/SUPPLY-2/OPPORTUNTTY-3/BILLET RATES-G IYPE ONE OF THE NOMBERS LISTED ABOVE:
■:
3
```



```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\underset{\sim}{8} 88\) & A & \(c\) & 61 & C2 & \(\underline{E}\) & E1 & 52 & Ci & 62/3 & 64/5 & G6 & 21 & H2 & \({ }^{H}\) \\
\hline 1981 & (24) & 98 & 93 & 93 & 30 & 73 & 100 & 51 & 58 & 46 & 42 & 44 & 44 & 14 \\
\hline 1982 & (27) & 19 & 86 & 86 & 36 & 63 & 71 & 52 & 55 & 47 & 29 & 48 & 48 & 15 \\
\hline 1383 & (25) & 90 & 93 & 95 & 40 & 87 & 55 & 52 & 55 & 32 & 25 & 44 & 44 & 20 \\
\hline 1984 & (7) & 99 & 97 & 97 & 37 & 80 & 70 & 51 & 55 & 33 & 22 & 21 & 21 & 26 \\
\hline 1985 & (8) & 100 & 99 & 99 & 28 & 82 & 84 & 41 & 44 & 33 & 24 & 19 & 19 & 23 \\
\hline 1986 & (9) & (1) & (15) & (15) & 35 & 68 & 11 & 37 & 41 & 31 & 23 & 14 & 14 & 11 \\
\hline 1981-05 & (16) & 95 & 94 & 94 & 34 & 73 & 73 & 49 & 53 & 37 & 27 & 30 & 30 & 19 \\
\hline 1982-86 & (13) & 97 & 98 & 98 & 35 & 72 & 71 & 46 & 49 & 34 & 25 & 23 & 23 & 18 \\
\hline
\end{tabular}
```


## CHANGE IV

## (JET PILOTS)

GHANGE OPTIOAS:
 IYPE OUE OF THE NUNBERS LISTED ADOVES
$\mathrm{Cl}_{1}$
BILLET NATRIX OPTIONS: JETAPILOT-1 /JET-2 /PILOT-3 /AYIATION-4 /APPORTIONED-3
D:
type nunaen of organization weose bicgets nat fave fo be cganged: TIPIMG 0 MEANS NO MORE CBAMGES ARE MESDSD.

0:
25
CURREMT RUYGERS OR GILCEES

DO YOU WAUT TO MAKE ANI GRANGES IN THE ABOVE DATAP ARSUEA YES OR
IES (DO):
IES
-O GIVE KEw aILEETS TYPE 15 dUUBERS (SEPARATED BY BLANK SPACES)
D:
000000230020000.

TYPIAG 0 MEANS NO MORE CHAMGES ARE NEEDED.
E:

26
GUREERTGUBERS OP GIELETS


DO YOU YAME IO MAKE ANY GHANGES IH THE ABOVE DATAY ANSNER TES OR I (NO):
Yes
TO GIYS NE: BILLETS TIPE 15 GUMBERS (SEPARATED BY BLANK SPACES)
L:
000000230020000
typs number of organtiation whose gillets may have to as changed: tipthe o means no mors cganges are negded.
$0:$
27
GURRENT MUYERS OR GITEETS

do zoU want to make amy cances in tat above datat answer iss or $n$ (nol:
IES
TO GIVE hew billets tipe is mumbers (separated ay blank spaces)
C:

## CHANGE IV (CONT.)



```
 BYPIME G MEAAS MO NORE GHANOES ARS HEEDED.
E:
0
```

 YES
 $0:$

TYPS NUHESR OP ORGAMIZATION HHOSE AILLETS VAY HAVE TO EE CAANGED: TTPIME O MEANS HO MORE CHAHCES ARE DESDED.

C:
25
GURRENT NUMBERS OR BILLEES


EO TOU WAMT TO MAXE ANY GHANGES IH THE ABOVE DATAT AMSWER IES OR W (MOI: IES

50 GIVE YEY BILLETS TYPE IS WUYBERS. (SEPARATED BY BLANK SPACES)
006000000000000
TYPF HUYBER OF ORGAFIEATYON HHOSE BILLETS NAT BAYE TO BE CEARCZO: TYPIAG O MEARS MO NORE GEARGES ARS NEEDED.

D:
26
CUPRENT NUNEERS OR GILEESS


DO TOU WAMT TO NAKE AAY Changes IN TGE ABOVE dATA\% ANSWER IES OR (NO): ItS

TO GIVE ISW BItLETS TYPE 15 nUMBERS (SEPARATED bí blank SPACES) $0:$

00000000000000
TIPG NUYBER OF ORGAHIZATION WHOSE BILLETS MAI HAVE TO AE GRARGED: typing o means no more changes are neeozo.
$0:$
27
CURRENT NUMBERS OF BILLETS


do you watt to make ant changes in the above datat ansusa yts on $n$ (no): 755


$$
001000000000000
$$

```
TYPE NUWGER OF OAGANTZAGIOIT WHOSE BILLETS MAY TAYE TO BE GRANCEDI
 TYPL.IG O MEANS NO MORE CHAMCSS ARE NEEDED.
U1
 O
DO TOU WANT TO MAKE GHANGES IN ANY OTHER BTGEET MATREXT ANSHER IES OR I (NO):
NO
DO YOU YAHF TO MAKS THESE CHANGES PERMANENTY AMSWER YES OR I (MO):
*O
WO ALTERATIOK RAS BEEN NADS IN TRE FTES.
```

CצAIIGE OPTEONS:

IYPE ONE OR THE UUNBERS LISTED ABOVE:
OPTIONS: DOHE-0 /DATA-1 /CHAKGE-2 /RESULT-3
TYPE ORE OE THE NUMSERS LISTED ABOVE:
$0:$
3
RESULT OPTSONS: DONE-Q/REQUTREUENTS-1/SUPPLY-2/OPPORTUNTEY-3/BILLETE RATES-4
TYPE OME OP THE HUNAERS LSSTED ABOVE:

C:
SEATOUR OPPORTUNITY (SHORTEALL) OP ELTGTGLE JETAPILOT OEFICSRS EV PERCENTAGE

| YEAR | 4 | 6 | 61 | 62 | $E$ | $\underline{E}$ | $\underline{E}$ | 61 | 22/3 | 64/5 | $\underline{66}$ | $\underline{H}$ | H2 | ${ }^{1} 3$ | H4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1981 | (18) | 37 | 47 | 47 | 62 | 80 | 79 | 84 | 90 | 64 | 57 | 23 | 23 | 12 | 12 |
| 1912 | (18) | 34 | 56 | 56 | (7) | (1) | 85 | 73 | 77 | 79 | 59 | 29 | 29 | 15 | 25 |
| 1983 | (9) | 34 | 56 | 56 | (33) | (32) | 96 | 61 | 57 | 87 | 59 | 34 | 34 | 22 | 22 |
| 1984 | (4) | 44 | 52 | 51 | (45) | (57) | (45) | 70 | 71 | 56 | 57 | 31 | 31 | 29 | 29 |
| 1985 | (3) | 41 | 50 | 50 | (53) | (58) | (66) | 83 | 81 | 50 | 50 | 31 | 31 | 34 | 34 |
| 1986 | (3) | 34 | 65 | 65 | (50) | (72) | (58) | (6) | (5) | 53 | 48 | 32 | 32 | 31 | 31 |
| 1981-85 | (10) | 30 | 52 | 51 | (15) | (27) | (13) | 73 | 76 | 64 | 56 | 29 | 29 | 19 | 10 |
| 1982-96 | (7) | 37 | 55 | 55 | (38) | (46) | (32) | 78 | 70 | 61 | 54 | 31 | 31 | 24 | 24 |

## CHANGE V

(PROP PILOTS)

```
CiAMGE OPTIONS:
```



```
STPE OHE OF THE NUNBERS LISTED ABOVE:
E:
GILLES MATRIX OPTIONS: PROPAPILOT-1 /PROP-2 /PIEOT-3 /AYIATION-G /APPORTIONED-5
H2
TYPE NUABEA OP ORGARIZATION HHOSE GILLETS MAT GAVE TO BE CHAMGED:
 TYPIMG O NEARS HO MORE G&ANGES ARE NEEDED.
[:
 1
iO: gRGANIZATION
 1. VP
GURREGT MUNGERS OF GIELEES
gO yOU waNT TO NAKE ANY CHANGES IN tHE ABOVE DATAT ANSNER YES OR (NO):
yES
TO GIVE HEW BILLETS TYPE IS NUYBERS (SEPARATED BY BLARK SPACES)
0: 2710021001000000
ITPE aUNBER OF ORGANIZATION UROSE BILLETS MAI GAVE TO 8E GHANGED:
 TYPIHG O MEAMS HO MORE CGANGES ARE NEEDED.
i:
 2
 CURREME NUMBERS OP BIELEETS
```



```
DO IOU &ANT TO MAKE ANY GHANGES IN THE ABOVE DATAT ANSWER YES OR I (DO):
IES
IO GIVE NEF gILCEAS TTPE 25 NUYBERS (SEPARAEED EI bLANK SPACES)
```



```
TYPE MUNBER Of ORGANTZATION WHOSE BILLETS MAY bAVE TO bE GHANGED:
 typIng o neaHS vo more changes are neEded.
O:
 3
 CURREMT MUNESRS OF GILEETS
```



res

```
TO GIVE WE% OLLLEES TYPE IS HUHBERS (SEPARATED SZ BCAKK SPACES)
Cl
 60001001000000
TYPE WUABER OP ORGAETEAETON WHOSE BILLETS MAY HAVE TO AE GHANGED:
 SYPIJG O MEARS NO NONE GAARCES ARE HEEDED.
u:
 *
```


## CHANGE V. (CONT.) <br> CURREME UUMBERS OR OILLETS

| - ORGAIESATSOM | 4 | $\underline{6}$ | 51 | $\underline{62}$ | 5 | $\underline{E}$ | 5 |  | 1 | 62.3 | 64/5 | G5 | 11 | [? |  | 3 | $\underline{94}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| val | 15 | 2 | 0 | 0 | 3 | 0 | 0 |  | 0 | 1 | 0 | 0 | 0 | 0 |  | 0 |  |

do you want to haks ant cganges in the abges dataz haswer tes of (no): res
go givs hew billets tipe is numbers (separated ay blank spaces) U:

14200200010000000
TIPS UUYBER OF ORCANIZATION WHOSE BILLETS MAY RAYE TO BE GHAMGED: TYPING O NEAMS NO NORE CHANGES ARE NEEDED.

4:
5


DO TOU WANE TO NAKE ANY CAANGES IV FHS ABOVE DATAG AMSUER IES OR (IOO) :
IES
TO GIVE NEA BILLETS OFPE IS NUNEERS (SEPARATED EI BLANR SPACES)
u:
1020021001000000
SYPE NUAAER OF ORGANTZACIOA WROSE BILLEFS MAT HAVE TO BE CHAMGED: IYPIMG O NEAMS HO MORE CHANGSS ARE NEEOED.

0:
5 GURRENT NUYOERS OE GILLETS.


DO YOU WAHS TO MAKE ANY CHAMCES IN TYE ABOVE DATAY AMSWER YES OR I (MO):
YES
TO GIVE HEW GLLCETS TYPE 15 MUNBERS (SEPARATED BI BLANR SPACES)
0:
1512001110010000000
 TYPIMG O MEANS NO MORE GHANGES ARE WESDED.
i:


do you dant to naxe any ghanges in the above dagat ansuer tes on m (no): res

TO GIVE UEW EILCEFS TYPE 15 WUNBERS (SEPARATED IY ILANK SPACES)
$0:$
12100012001000000
TZPE IUNAER OF ORGAMTZATION UHOSE BILEETS MAY RAVE TO BE CHARGED: TEPLMG O MEAMS HO MORE CHAMGES ARE MEEDED.
$0:$
10


## GURRENT AUMEERS OF GILEETS



```
do you waif to make amy cgamges in the above data} answer yes or a (yo):
IES
fo give new billets typE is dungers (separatgd by blank spaces)
0:
40012002000000
IYPE NUNAER OP ORGANIZATION WHOSS GICLETS HAY HAVE TO 8E GRANGED:
 TIPIIGC O NEANS yO MORE GHANGES ARE NEEDED.
E:
 1 2
MO: QRGNNIZATION
```


YES
TO GIVE NEV BILCEFS TYPE 15 सU: GEAS (SEPARATED GY SLANK SPACES)
E:
700012002000000
IYPE UUHAER OF ORGANIZATION UHOSE BILGETS MAT IAVE TO EE CHANCED:
TIPING $G$ MEANS WO MORS CRAMGES ARE NEESED.
u:
13
CURAERT MUYBERS OR BILLEES


15う
TO GIYE NEY AELGETS TYPE is NUNAEAS (SIPARATED BY DCAVK SPACES)

TPE NUVBER OF ORGAHIZATIOR WHOSE BILLETS MAT HAVE TO BE CHANGEO:
ITPIHG O MEANS MO NORE CHARGES ARE NEEDED.
U:
14
GURRENT NUYEERS OE BILLETS

DO TOU WART TO MAKE AHY CHANESS IE THE ABOVE DATAY AMSNER TBS OR M (MO):
YES
TO GIVE HEU BILLETS TYPE 15 MUMBERS (SEPARATED BY' ALAMK SPACES)
G: 1400011001000000
TYPE NUNEER OF ORGAMTZATION UEOSE EILLETS WAY HAVS TO EE CHAMEED:
TIPRNG O NEANS WO MORE CHANGES ARE HEEDED.
Es
15

## CHANGE V (CONT.)

## GURRENT MUMBERS OP GILIETS



```
CO YOU WANZ FO NAKE ANT CHANGES IM THE ABOVE DATAY AMSWER IES OR W (MO):
```

5ES
TO GIVE NEY BILLETS TTPE IS HUNEERS (SEPARATED BY BEABR SPACES)
L: 1640002002000000
TYPE TUHBER OF ORCAMIZAFION UROSE BILLSZS NAY HAYE TO BE CHANGED:
TYPIHG O NEAHS MO MORE GHANCES ARE NEEDED.
C:
16
CURRENT UUUBERS OR GIELETS

DO YOU WAMT TO NAKS ANY GHAMGAS IA THE ABOVE DATAT ARSNER YES OR M (NO):
TES
TO GIVE NEU GILLETS IFPE 15 NUMBERS (SEPARATSD BI BLAAK SPACES)
1*150001001000100000
EYPE NUYEER OF ORGARIZATION HHOSE BILLETS MAY RAVE TO 88 CRANGED:
ITPIAG O NEAHS NO MOAS CHAAGES ARE HEEDED.
in:
17

GUPRENT NUYBERS OR BICLETS

DO YOU WAMT TO MAKE ANY CHANGES TH THE ABOVE OATAY ANSWER YES OR (MO):
YES
TO GIVE UEN EILLETS TIPE 15 NUMEERS (SEPARATSD BY GLANR SPACES)
0
3900010010000000
TYPE GUXSER OF ORGAUIZATION WHOSE BILLETS MAY HAVE TO AE GHANCEDI
TIPIUG O NEANS HO MORE GHAHGES NRE HEEDED.
C:

13


DO YOU WAHP TO MARE AMY CHANGES IH THE ABOVE DATA? ANSNER IES OR IT (MO)I IES

TO GIVE NEW BILLETS TYPE 15 NUMEERS (SEPARATED BY BLABR SPACES)
0:
910001001000000
TZPE HUMSER OR ORGAMLZATIOA WHOSE BILLETS MAT RAVE TO BE CHAMCEOI SIPIHG O NEANS TO MORE CHANGES ARE NEEDEO.

U:
0
do you want to mare chances in aly other biclet mataixt ansusi yss or $m$ (mol: $\# 0$
yo
WO AGEERATIOII HAS BEEN MADE IY THE FILE.
CYAACE OPTIOUS:
COIE-O/ORGAMIZATIONS-1/TOURS-2/BILLETS-3/GRADES-4/INVTRY-S /ORGAMIZATIONS AY PY-6 TYPE OIIE OR THE WUNAERS LISTED ABOVE:
U:
0
OPTIONS: DONE-0 10ATA-1 /CHANGE-2 /RESULT-3 IYPE ONE OF THE WUMEERS LISTED ABOVE:
C:
1
DSSPLAT OFTIONS:
2ONE-O/ORGAUSZATTONS-1/TOURS-2/BLLLETS-3/GRADES-4/INVTRE-5/TOTAL INV-6
TYPE DKS OP JBE MUNBERS LISTED ABOVE:
L:
J
BILLET MASMLE OPTIONS: PROPAPILOT-1 /PROP-2 /PILOT-3 /AVIATION-4 /APPORTIONED-5 D:
1
NUKEER OP OTSCRETE PROPAPILOT OPERATIONAL BILEEES GY ORGANIZATYORYYPS

DO yOU want ant other bitlet natrix displayedt answer jes or in (mols

## CHANGE V (CONT.)

```
DISFLAF OPTIONS:
DONE-0/ORGAALZATIONS-1/TOURS-2/BILLETS-3/GRADES-4/INVTRI-S/FOTAL INV-5
TYPE ONE OF THE MUNBERS LISTED ABOVE:
[]:
 0
OPAYONS: DONE-0 /DATA-1 /CYANGE-2 /RESULT-3
TYEE ONE OP EUG BUNBERS LISTED NBOVE!
U:
 3
```

HESULT OPTIONS: DONE-O/REQUIRENENTS-I/SUPPCY-2/OPPORTUNTTF-3/BIELET RATES-4
ETPS OUE OF THE RUMEERS LISTED ABOVE:
Ct

3


| g5AR | A | $C$ | 61 | 62 | $\underline{E}$ | E1 | $\underline{E} 2$ | 61 | 13 | 15 | 68 | H1 | H2 | ${ }_{-2}$ | $\stackrel{18}{* *}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1981 | (20) | 19 | 99 | 99 | 49 | 45 | 42 | 56 | 80 | 17 | 18 | 11 | 11 | 5 | 5 |
| 1982 | (15) | 11 | 97 | 97 | 76 | 5 | 40 | 55 | 57 | 20 | 18 | 17 | 17 | 6 | 6 |
| 1983 | 97 | 27 | 38 | 88 | 91 | 3 | 53 | 48 | 49 | 16 | 15 | 23 | 23 | 9 | 9 |
| 1984 | 92 | 22 | (7) | (7) | (8) | (16) | (1) | 42 | 44 | 15 | 14 | 25 | 25 | 14 | 14 |
| 1985 | 90 | 19 | (19) | (29) | 100 | (28) | (14) | 46 | 45 | 14 | 13 | 24 | 24 | 19 | 19 |
| 1936 | 89 | 17 | (32) | (32) | 96 | (28) | (18) | 72 | 63 | 11 | 11 | 24 | 24 | 20 | 20 |
| :921-85 | (3) | 21 | (2) | (2) | 78 | . 75 | 59 | 49 | 50 | 16 | 15 | 18 | 18 | 9 | 9 |
| 1982-86 | 96 | 21 | (8) | (1) | 93 | 96 | 71 | 51 | 51 | 13 | 14 | 22 | 22 | 11 | 11 |

## APPENDIX N <br> TOUR POSITICN ALTERATIONS

## CHANGE VI

(JET NFO's)

```
CHAHGS OPTTONS:
```



```
#YPE OHS OF THE NUNEERS LISTED ABOVE!
u:
 2
DO YOU YTSA TO GAYE THE EOUR MATRTX OISPLATEDT AHSHER TES OR N (NOS:
 POUR POSIEION INDICATORS
\begin{tabular}{|c|c|c|c|c|}
\hline 80. & 6008 & HA.Y5 & EEGIN & LEXCTH \\
\hline 1. & A & 1S5 OPERACIONAL & 2.00 & 3.00 \\
\hline 2. & \(C\) & SUAS OPER SQD & 7.50 & 2. 50 \\
\hline 1. & \(C 1\) & SUES OPER SHIP & 7.50 & 2.00 \\
\hline 4. & \(C 2\) & SUES CPER STAEF & 7.50 & 2.00 \\
\hline 5. & \(E\) & SED OPER NON-DH & 11.00 & 2.50 \\
\hline 6. & E1 & SEO ORER DH & 12.00 & 2.50 \\
\hline 7. & \(E 2\) & SHP OPER SR.OH & 13.00 & 2.00 \\
\hline 8. & G1 & OPER CDR & 16.00 & 2.00 \\
\hline 9. & 62/3 & SLID OPER XOICO & 16.00 & 2.50 \\
\hline 10. & 64/5 & S.C.I.C. & 18.50 & 1.50 \\
\hline 11. & 65 & SdP OPER OM & 18.50 & 2.00 \\
\hline 12. & 41 & OPER CAFT & 22.00 & 2.00 \\
\hline 13. & 42 & HAJ SEA CHO & 22.00 & 2.00 \\
\hline 14. & 43 & SEE SEA CMD & 24.00 & 2.00 \\
\hline 15. & 14 & POST YAd G.VI & 24.00 & 2.00 \\
\hline
\end{tabular}
TYPE NUNBER OE TOUR UROSE SCGIN IEAR AND CENGTG WAY GAVE TO BS CGANGEO:
 TYPING O HEANS HO MORS CHANCES ARE IEEDED.
0:
 l
 TOUR POSIEION INDICATORS
NO: CODE ㅋAME SEGTH LENGTH
 1. A IST OPERATIONAL 2.00 3.00
DO YOU WANT TO GHANCE THE ABOVET ANSUER IES OR N (MO):
IES
TYPE TNO NUYBERS (SEPARATSD BY BLANK SPACE) FOR GEGIN YEAR AMD LENGTH OP ABOYE TOUR
 2*
TYPE IUYBEA OR TOUA WHOSE ESGIN TEAR AND LENGTH NAY HAVE TO BE CHANGEDI
 TYPJNG O HSANS HO MORE CRANGES ARE NEEOED.
4:
 0
DO TOU VAES T&E TOUR NATRIX DISPLAYED AGAINT ANSUER IES OR IV (NO):
85
```

TOUR POSTETON EHDICATORS

| yo: | c908 | HAYE | SECIM SENGEH |  |
| :---: | :---: | :---: | :---: | :---: |
| 1. | 1 | 155 OPERATIOUAC | 2.00 | 4.00 |
| 2. | 6 | SUBS ORER SQD | 7.50 | 2.50 |
| 3. | 61 | SUBS OPER SHIP | 7.50 | 2.00 |
| 4. | $C_{2}$ | SUBS OEEA STAPF | 7.50 | 2.00 |
| 5. | $E$ | SED OPER NOM-DE | 11.00 | 2.50 |
| 6. | $E 1$ | SGD OPER DH | 12.00 | 2.50 |
| 7. | $E 2$ | SHP OPER SR. 04 | 13.00 | 2.00 |
| 8. | G 1 | OPER CDR | 16.00 | 2.00 |
| 9. | C2/3 | SGD OPER XO/CO | 16.00 | 2.50 |
| 10. | C4/5 | S.C.I.G. | 18.50 | 1.50 |
| 11. | G6 | SHP OPER DE | 18.50 | 2.00 |
| 12. | ${ }_{4} 1$ | OPER CAPT | 22.00 | 2.00 |
| 13. | 82 | HAS SEA CND | 22.00 | 2.00 |
| 14. | 43 | SEC SEA GMD | 24.00 | 2.00 |
| 15. | 44 | POSI NAd CMD | 24.00 | 2.00 | 10

nO ALEERATIOA HAS BEEN VADE IN THE EILE.

```
CHANGE OPTIONS:
TYPE OHE OP THE NUIGERS LISTED ABOVE:
U:
 0
OPTIONS: DONE-0 /DATA-1 JCHANGE-2 /RESULT-3 TYPS OAE OF THE UUNBERS LISTED ABOVE: L:
```

COAE-0/ORGANIZATIOHS-I/TOURS-2/ALLLETS-3/GRADES-4/IAVTRI-5 /ORGAMI2ATIOIS BI FJ-6

RESULT OPTIONS: DOUE-O/REQUIRENENTS-1/SUPPLY-2/OPPORTUNTTY-3/BILLET RATES-4 TYPE ONE OR TEE AUMEEKS LISTED ABOVE:

E:
3
SEATOUR OPPORTUNITY (SHORTEALE) OE ELIGIBEE JETANFO OFFIEERS IN PERGENTAGE

| YEAR | 1 | $E$ | 51 | 62 | $\underline{5}$ | $E$ | $\underline{82}$ | 61 |  | 13 | G6 | H1 | H? | $\underline{n}$ | 84 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1981 | 100 | 82 | 77 | 77 | 30 | 73 | 100 | 51 | 58 | 46 | 42 | 44 | 44 | 14 | 14 |
| 1982 | 97 | 74 | 72 | 72 | 36 | 65 | 7: | 52 | 33 | 47 | 29 | 48 | 48 | 15 | 15 |
| 1983 | 99 | 75 | 79 | 79 | 40 | 67 | 56 | 52 | 55 | 32 | 25 | 44 | 44 | 20 | 20 |
| 1984 | 19 | 12 | 80 | 80 | 37 | 80 | 70 | 51 | 55 | 33 | 22 | 21 | 21 | 25 | 26 |
| 1985 | is | 43 | 82 | 82 | 21 | 12 | 84 | 41 | 44 | 33 | 24 | 19 | 19 | 23 | 23 |
| 1985 | 15 | 90 | 98 | 98 | 35 | 68 | 11 | 37 | 41 | 31 | 23 | 14 | 14 | 11 | 11 |
| 1911-85 | 94 | 79 | 71 | 78 | 34 | 73 | 73 | 49 | 53 | 37 | 27 | 30 | 30 | 19 | 19 |
| 1982-86 | 91 | 10 | 11 | 01 | 35 | 72 | 71 | 46 | 49 | 34 | 25 | 23 | 23 | 18 | 17 |

## CHANGE VII

(PROP PILOTS)

```
GHAYGS OPTCONS:
```



```
TYPE ONE OF THE HUABERS L&STED ABOVE:
C:
 2
DO YOU WISH TO GAVE THE TOUR MATRIX DISPCAYEDY ANSNER TES OR N (IOI:
10
TYPE NUMOER OE TOUR WNOSE BEGIN YEAR AND LENGTH MAY HAYE TO BE CGAMCED:
 TYPIIG O ,AEANS NO HORE CHANGES ARE IEEDED.
D:
 s
 TGUR POSITIOR CNOLENTORS
MOO: GOOE NANE SNE BEGIN LENGTR -
 3. S SOD OPER NON-OH 11.00 2.50
DO IOU VANT TO CHANGE TRE ABOVE? ARSHER YES OR N (JO):
YES
ITPS TOO NUMAERS (SEPARATED BI GLANK SPACE) FOR BEGTE TEAR AND LENGGR OF ABOVE TOUR
 103
TYPE MUIABER OF TOUR UHOSE SECTN YEAR AND LENGTR NAY HAYE TO BE GAANGED:
 JPIIG O MEAMS NO MORE CHABGES ARE NEEDED.
!
 6
 TOUR POSITION INOICATORS
```



```
DO TOU UANT TO CHANGS THE ABOVE? ANSWER YES OR N (HO):
YES
TYPE TWO HUNBERS (SEPARATBD BY BLAMR SPACE) POR BEGIN TEAR AND LENGTH OP ABOVE TOUR
L:
 $13
IYPE UUMEER OP TOUR HHOSE 8EGIN TEAR AND LENGTG NAT HAYS TO BE GHANGEDI
 TYPIUG O NEAAS NO MORE CHANGES ARE HESDED.
I:
 0
OO TOU WANT T&E TOUR MATRIX DISELAYED AGAINZ ARSWER YES OR N (MO)I
IES
```


## CHANGE VII (CONT.)



## CHANGE VIII

## (PROP PILOTS)

```
CHAIGGE OPSIONS:
```



```
TYPE O&E OF THE NUNAERS LISTED ABOVE:
0:
 2
EO YOU WISH TO AAVE THE TOUR MATRIX DISPLAYEDT ARSWER IES OR N (MO):
NO
TYPE HUYBER OF TOUR GHOSE BEGSN YSAR AKD GEHGTR NAY GAVE TO gS GAANGED!
 TTPINGO NEANS HO MORE CYAUGES ARS \EEDED.
E:
 7
 TOUR POSITION INDIEATORS
#O. CODE NAME BEGIM EENGIM
 7.E2 SHP OPER SR.O4 13.00 2.00
DO YOU #AÏT TO GHA|GE THE ABOVEZ AMSWER TES OR % (MOS:
EES
IYPE gTO NUNGERS (SEPARATED BY bLANR SPACE) POR bEGIM IEAR ABD LEMGTg OE ABOVE gOUR
0: 1* 2
TyPE uUGBER OF TOUR WHOSE GEGIN YEAR AND CENGTG MAY GAVE TO be CGAMGED:
 IYPIHG O MEANS NO NORE GHAMCES ARE MEEDED.
L:
 0
DO YOU WAHT IHE TOUR MATRIX DISPLATED AGAINT AMSUER YSS OR N (MO):
IES
 TOUR POSITIOM INOICATORS
\begin{tabular}{|c|c|c|c|c|}
\hline NO. & 6008 & NAME & gEGIN & LERGTH \\
\hline 1. & A & \(15 T\) OPERATIOHAL & 2.00 & 3.00 \\
\hline 2. & \(C\) & SUBS OPER SCD & 5.00 & 2.50 \\
\hline 3. & 61 & SUES OPER SHIP & 8.00 & 2.00 \\
\hline 4. & C2 & SUBS OPER STAPT & 8.00 & 2.00 \\
\hline 5. & \(E\) & Sid OpER NOH-DH & 11.00 & 2.50 \\
\hline 6. & \(E 1\) & SGD OPER DH & 12.00 & 2.50 \\
\hline 7. & \(E 2\) & SHP OPEA SR.O4 & 24.00 & 2.00 \\
\hline 8. & 61 & OPER CDR & 16.00 & 2.00 \\
\hline 9. & 62/3 & SGD OPER XOICO & 18.00 & 2.50 \\
\hline 10. & 64/5 & S.C.I.G. & 18.50 & 1.50 \\
\hline 11. & 66 & SHP OEER DH & 14.30 & 2.00 \\
\hline 12. & 81 & OPER EAPT & 22.00 & 2.00 \\
\hline 13. & H2 & MAd SEA CNO & 22.00 & 2.00 \\
\hline 14. & 43 & SEQ SEA CMD & 24.00 & 2.00 \\
\hline 15. & 4* & POST MAd GMD & 24.00 & 2.00 \\
\hline
\end{tabular}
dO yOU wANT TO mAKE THESE CHAMGES PERMAMEMT? AMSHER YES OR " (NO):
```

10

TO AETERATEON HAS OEEN MADE IN THE PIEE


## CiAANGE VIII (CONT.)

THE Tgutecracs vatcy yafisx


## CHANGE IX

(JET PILOTS)

```
GdAMGE OPTIO:7S:
DONE-O/ORGAULZATIONS-1/TOURS-2/BILCETS-3/GRADES-4/INVTRY-S /ORGAMTZATIOMS EI FI-6
TIPE OHE OF TAE NUMAERS LISTED ABOVE:
D:
 2
DO YOU WISK TO HAVE THE TOUR WATRIX DISPLAYEDZ ANSWER IES OR N (MO):
10
TIPE WUYBER OF TOUR WHOSE BEGIN YEAR AWD LENGTA MAY HAYS TO BE GHANGED:
 GYPING O NEAHS NO MORE CRANGES ARE NEEDED.
E:
 9
 SOUR POSITIOY INOTCATORS
```



```
CO YOU WANE TO CHANGE TRE AROVE? ANSNER IES OR N (NO):
IES
TYPE T:O NUNAERS (SEPARATSD BI BLANK SPACS) FOR BEGTN TEAR AND EEMGTH OF ABOVE TOUR
 15 3
TYPE HUMEER OE TOUR UBOSE SEGIN YEAR AMD LEHGTR HAY HAVS TO AS CHAMCED:
 TYPIIG O NEANS NO MORE GHAMGES ARE NEEDED.
C
 0
```



```
DO YOU WART TO NAKE THESE CGANEES PERMANENTT ANSUER YES OR N (MO)!
```

res


```
ARE YOU SURE YOU YAAT TO ALTER THE PERMANEKT FJLEP AMSUER YES OR ((NO):
HO
NO ALTSRATIOM HAS bEEN MADE IM THE TILE.
CHA/IGE OPTIOHS:
DONE-0/ORGAMIZATIONS-1/TOURS-2/BILLETS-3/GRADES-4/INVTRI-5 /ORGANIZATIONS AZ ET-G
TYPS ONE OR SHE NUNBERS LISTSD ABOVE:
0:
 0
OPTIONS: dONE-0 /DATA-1 /CHARGE-2 /RESULT-3
TIPE OHE OF THE HUNBERS LISTED ABOVE!
C:
 3
RESULT OPTIOUS: DONE-O/REQUIREMENTS-1/SUPPLY-2/OPPORTUNITY-3/BILLET RATES-4
TZPE ONE OF THE HUYGERS LJSTED ABOVE:
0:
SEAIOUR OPPORTUMTE (SHORTFALL) OP ELIGIGLE JETAPILOT ORFICERS IN PERCENTAGE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline YEAR & A & \(¢\) & \(\underline{51}\) & 62 & 5 & \(\underline{\Sigma}\) & \(\underline{E} 2\) & 61 & 6213 & - 5 & 68 & H1 & 82 & 83 & 44 \\
\hline 1981 & (18) & 37 & (2) & (2) & 62 & 80 & 79 & 75 & 49 & 54 & 51 & 23 & 23 & 11 & 11 \\
\hline 1982 & (18) & 34 & (29) & (29) & (7) & (2) & 86 & 66 & 48 & 53 & 51 & 29 & 29 & 25 & 15 \\
\hline 1983 & (9) & 34 & (19) & (19) & (33) & (32) & 96 & 55 & 49 & 56 & 52 & 34 & 34 & 22 & 22 \\
\hline 1984 & (4) & 44 & (11) & (11) & (45) & (37) & (45) & 63 & 56 & 52 & 49 & 31 & 31 & 29 & 29 \\
\hline 1985 & (3) & 41 & (9) & (9) & (53) & (58) & (85) & 74 & 80 & 42 & 43 & 31 & 31 & 34 & 34 \\
\hline 1986 & (3) & 34 & (31) & (31). & (50) & (72) & (68) & 96 & (13) & 45 & 43 & 32 & 32 & 31 & 31 \\
\hline 1981-85 & (10) & 31 & (12) & (12) & (15) & (27) & (13) & 68 & 54 & 52 & 49 & 29 & 29 & 19 & 18 \\
\hline 1982-85 & (7) & 37 & (18) & (38) & (38) & (48) & (32) & 64 & 81 & 50 & 47 & 31 & 31 & 24 & 24 \\
\hline
\end{tabular}
```

APPENDIX 0

## MULTIPLE PARAMETE: ALTERATIONS

## CHANGE X

(PROP PILOTS)

```
 6 AIRTOURS I2
rOU vAZ SELEET OUE OF THE TOLLOWING SUBGONNUNISIES,
DOİE TYPE O
PROP PILOTS TYPE 1
PROP :IFOS
SET PRLOTS TYPE 3
SET NPOS TYPE
\square:
 1
the gOLlOiIUG OPTRONS ARE AVAILABLE:
```



```
U:
 l
```

TYPE HUYGER OP ORCANIZATIOMTYPE FOR WHICH TAE NUNBERS MAY HAVE TO EE CHAMGED!
JIPIHC O MEAIIS NO NORE CHANGES ARE REEDED.
U:
9
CURREXT NUYBERS

| no. ORGAHIZATION | 1981 | 1982 | 1983 | 1984 | 1985 | 1985 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 9. | $2 C 2$ | 1 | 1 | 1 | 1 | 1 |


yes
TO GIVE NEW MUNBERS TYPE E NUNBERS (SEPARATED EY BLAKR SPACES):
d:
000000
EIPE NUNBER OF ORGANTZATTORTIPS FOR WHICA THE NUYAERS MAY BAYE TO BE GAAMED:
ETPIHG O MEANS HO NORE CHAMCES ARE MEEDED.
D:

## CHANGE X (CONT.)

## GURREUT NUY日ERS

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 80: & ORGAMEEATION & 1981 & 1982 & 1913 & 1984 & 1985 & 2988 \\
\hline 11. & VC8 & 1 & 2 & 1 & 2 & 1 & 1 \\
\hline
\end{tabular}
DO IOV HAAT TO NAKE AHI GHANCES IT THE ABOVE DATAT AHSWER IES OR N (NO):
YES
TO GIVE NEY NUNBERS TYPE 5 NUMBERS (SEPARATED BY BLANK SPACES):
D:
 00000
TYPE IUNAEA OF ORGAMIZATIORTYPE POR WGICG TGE MUMAERS MAY GAVE FO EE GZAMGED:
 TYPING O NEAMS NO MORE GRAHGAS ARE FEEDED.
0:
 O
OO YOU UAAF TO MAXE THESE CHANGES PERMANEVTY ANSNER IES OR N (HO):
iO
NO ALZERATIOU HAS EEEN MADE IN TRE FIEE.
GANGE OPTIORS
OOHE-O/ORGANIZATIONS-1/TOURS-2/BILLETS-3/GRADES-4/IHVTRY-5 /ORGAMIZATIOMS BY FT-6
ITPE OHE OF THE NUMBSRS LISTED_ABOVE:
C:
 2
DO YOU WISH TO HAVE THE TOUR MATRIX DISPLAYEDT AMSWER IES OR N (NO):
15S
 IOUR POSITION IMOTCATORS
\begin{tabular}{|c|c|c|c|c|}
\hline Y0. & cods & jATE & BEGIn & LENCTH \\
\hline 1. & \(A\) & 1ST OPERAATONAL & 2.00 & 3.00 \\
\hline 2. & \(C\) & SUES OPER SED & 5.00 & 2.50 \\
\hline 3. & 61 & SUBS OPER SHIP & 1.00 & 2.00 \\
\hline 4. & 62 & SUES JPER STAFP & 8.00 & 2.00 \\
\hline 5. & \(\delta\) & SED OPER NON-DH & 11.00 & 2.50 \\
\hline 6. & \(E 1\) & SED OPER DH & 12.00 & 2.50 \\
\hline 7. & \(E 2\) & SHP OPER SR.OU & 13.00 & 2.00 \\
\hline 8. & 61 & OPER CDR & 15.00 & 2.00 \\
\hline 9. & 62/3 & S60 OFER KO160 & 16.00 & 2.50 \\
\hline 10. & 64/5 & S.C.I.C. & 18.50 & 1. 50 \\
\hline 11. & 66 & SHP OPER DH & 18.50 & 2.00 \\
\hline 12. & \(\boldsymbol{4} 1\) & OPER GAPT & 22.00 & 2.00 \\
\hline 13. & 42 & MAd SEA CMD & 22.00 & 2.00 \\
\hline 14. & 43 & SEA SEA GHD & 24.00 & 2.00 \\
\hline 15. & \(4{ }_{4}\) & POST MAS CMD & 24.0n & 2.00 \\
\hline
\end{tabular}
TIPE HUWBER OP TOUR WHOSE EECIN TEAR AND LENGTR MAS HAVE TO EE CHANGRD: TYPIIG O MEAMS NO NORE CHAHEES ARE NEEDRD.
\(0:\)
1
EOUR POSITIOM SYDTCATORS
```




```
res
TYPE TEO UUHEERS (SEPARATED BY BLANK SPACE) POR GEGIN TEAR ARD GEAGTR OE ABOVE TOUR 23.3
```


## CHANGE X (CONT.)

TYFE wUNGER OF TOUR WHOSE BEGIN YEAR AND LENGYM MAI BAVE TO BE GAAMGED TYPIMG O MEANS NO MORS GAANGES ARE NEEDED.

O:
2
TOUR POSITIGN TXOTCATORS

## UO. CODE UAME BEGIN EENGTH <br> 2. 6 SUBS ORER SQD $5.00 \quad 2.50$

DO YOU WANE TO CBANGE THE ABOVET ANSUER YSS OR N (HO):
res
TIPE zNO HUMBERS (SEPARATED BY bLANK SPACE) fOR bEGTM yEAR and LENGTE of above tour O: 5.52 .5

IIPE HUMBER OF TOUR WHOSE BEGIN YEAR ANO CENGTR MAY gAVE TO aE CYAMESD: trping o ueaals no more changes are needed.

0:
5
TOUR POSITIOH TEDICATORS

do tou want to chance the abovet ansuer yes or in (mo):
yES
TIPE FWO IUMBERS (SEPARATED AT BLANK SPACE) EOR BEGIN TEAR AND LENGTR OP ABOVE TOUR 0: 103
 TYPIIG O MEANS NO MORE CHANGES ARE NEEDED.

C:
5
TOUR POSETIOM SHOTEATORS


DO YOU WANE TO GYANGE THE ABOVET AMSWER YSS OR $N$ (NO)!
$15 S$
IYPS GO NUGBERS (SEPARATED ES BLANK SPAGE) POR gEGIN YEAR ANO EEMGTA OP ABOVE TOUR
113
T1PE nUYGER OF TOUR WHOSE begin tEAR AMD LENGTA MAY GAYE TO at GBANGED: TTPIRG O NEANS VO MORE CHAMCES ARE NEEDEO.

E:
7
TOUN POSITION INDICATORS
sO: COOE MAYE EEGIN LENGTH
7. 52 SHP OPER SR.O4 13.002 .00

DO YOU WANT TO CHANGE THE ABOVET ANSWER ISS OR $N$ (YO):
$1 E 5$
IYPE TJO MUNOERS (SEPARATEO GY GLANK SPACS) FORE BEGTN TEAR ANO LENGTE OF ABOVE TOUR
14 2
 TIPING O MEAMS NO MORE CZANGES ARE NEEDED.

## CHANGE X (CONT.)

```
dO yOU WAMT THE SOUR HATRIT DISPLAYED AGALNT ANSHER IES OR (% (HO):
res
 TOUR POSITIOM IHOIGATORS
\begin{tabular}{|c|c|c|c|c|}
\hline 19. & c008 & HAYE & SECIN & LEHGTR \\
\hline 1. & \(A\) & 1SA OPERATIONAL & 2.00 & 3.50 \\
\hline 2. & \(c\) & SUAS OPSR SED & 5.50 & 2.50 \\
\hline 3. & 61 & SUES OPER SHIP & 8.00 & 2.00 \\
\hline 4. & 62 & SUSS OPER STAPP & 8.00 & 2.00 \\
\hline 5. & \(E\) & SED OPER NON-DA & 10.00 & 3.00 \\
\hline 6. & 51 & SED OPER DH & 11.00 & 3.00 \\
\hline 7. & \(E 2\) & SiP OPER SR.OU & 14.00 & 2.00 \\
\hline 8. & \(G 1\) & OPER COR & 16.00 & 2.00 \\
\hline 9. & 62/3 & SGD OPER XOICO & 16.00 & 2.50 \\
\hline 10. & 64/5 & S.G.I.G. & 18.50 & 1. 50 \\
\hline 11. & 65 & SHP OPER DH & 18.50 & 2.00 \\
\hline 12. & 41 & OPER CAPA & 22.00 & 2.00 \\
\hline 13. & 42 & MAS SEA CMO & 22.00 & 2.00 \\
\hline 14. & 43 & SEQ SEA CND & 24.00 & 2.00 \\
\hline 15. & 34 & 2OST . YAd CMD & 24.00 & 2.00 \\
\hline
\end{tabular}
OO TOU LANE TO MARE THESE CHANGES PERMANENTP ARSNER YSS OR | (NO):
O ALEERAIION HAS BEEN HADE IN TRE FILE.
CHADCE OPTTOAS:
CONE-O/ORGAUIZATIONS-1/TOURS-2/BILEETS-3/GRADES-4/INVTRY-5 /ORGARIZATIONS BY FY-6
IIPE ONE OF TZE NUYAERS CISTED ASOVE:
E:
 -
EO IOU WANS THE TOUR-GRADE MAFCH MAFRIX DISPLAYEDT AMSWER YBS OR J (MO):
NO
TYPG NUMEER OP TOUR WHOSE ASSIGMMENZ OF GRADES MAZ GAVE TO BE GHANGED:
 TYPINC O MEANS MO YORE CHAHGES ARE NEEDED.
O:
 7
 CURRENT GRADE ASSIGIRUENT
```



```
DO YOU YANT TO CHANGE TGE ABOVE ASSIGNMEMTT ANSNER YES OR ((NO):
YES
TO GIVE NEL ASSTGNNENT TYPE % NUHBERS (SEPARATED BY ELANK SPACES):
EACH NUYgER MUST EE O OR 1:
Li
 000.210
TYPE HUYEER OF TOUR WHOSE ASSICRNENT OF GRADES MAY HAVE TO BE GGAMGED:
 TIDI&GO YEANS MO NORE CHAMGES ARE HEEDED.
O:
 0
0
OO TOU WANE TO MAKE THESE CHARGES PERKANENTT ANSNER TES OR N (MO):
NO
#O ALSERATSOH HAS BEEN MADE I# THE RILE.
CHAlHGE OFTIONS:
CONE-O/ORGANIZATIONS-1/TOURS-2/BILLETS-3/GRADES-H/INVIRR-5 /ORGANIZATIONS AI EY-6
EXPE OHE OF THE NUNBERS LISTED ABOVE!
C:
```

AO'-A094 572 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/G 5/1 AIRTOURS: APPLICATION OF AN INTERACTIVE COMPUTER MODEL TO ANALY-EETC(U) DEC 80 ML SCHOLES
UNCLASSIFIEO


## CHANGE X (CONT.)

## 3

```
GLLET NATRIX OPTIONS: PROPAPILOT-1 /PROP-2 /PILOT-3 /AVIATION-G /APPORTIONED-S
G:
 1
TFE WUNBER OF ORGAWIZASEON WROSE BLCLETS MAI RAYS TO SE GEANGSD:
 TIPIHG O MEANS NO MORE CHANGES ARE NEEDED.
L:
```

            1
                                    CURREMI KUMBERS OP BILLETS
    
OO YOU WAHI TO NAKE AHT CZAMGES IN THE ABOVE DAGAG AMSWER JES OR $M$ (MO)!
YES
IO GIVE MEH BILLETS TTPE 15 WUMBERS (SEPARATED BY BLANK SPACES)
2710021001000000
$\qquad$
TYPE NUMAER OF OHGAMIZATION WHOSE BLLLETS MAY HAVE TO EE CHANGED:
EYPING O MEAUS NO NORE CHANGES ARE NEEDED.
E:
2
CURREMT NUMBERS OF BILLETS

DO YOU WANE TO NAKE AMY CGANGES IX THE ABOVE DAZA? AHSUER IES OR I (NO):
IES
TO GIVE IEE BILLETS TIPE 15 HUNBERS (SEPARATED AY GLAZK SPACES)
0:
80011001000000
tYPE NUMBER OP ORGAMIZATION WHOSE BILLETS MAY gAVE TO BE CHAREED:
TJPING 0 , YEANS NO NORE CBAMCES ARE MEEDED. -
D:
3
CURRENT NUMBERS OR BILLETS

do you wailt to nake any chaices in the above datat ansuer ies or in (mol:
755
JO GIVE UE: GILCETS TYPE IS NUMBERS (SEPARATEO BY BLANK SPACES)
C:
600001001000000
TYPE HUYAER OF ORGANIZATION WHOSE BILLETS YAY HAVE TO BE CHANGED:
TIPIHC O MEAMS BO MORE CRAMGES ARE NEEDED.
U:
4. CURRENT NUHBERS OF ETELETS

do you waht to make amy changes in the above datay answer yes of n (nol:
res
TO GIVE MEU BILEETS TYPE is NUMBERS (SEPARATED BI aCANK SPACES)
Ci
1420020001000000
EIYPE NUABER OP ORGANIZATION WHOSE BILLETSS MAY HAVE TO EE GHANGEO
tJPIMG o means mo more changes are aeeded.

## CHANGE X（CONT．）

SURRENT Mungens or getgis


```
OO YOU 由ANT TO NAKE ANY CHANGES IN THE ABOVE DATAT AHSNER IES OR W (NO):
YES
IO GIVE UEIG BIELETS TYPE 15 RUNBSRS (SEPARATED EY SGANK SPAGES)
C:
14200210010000000
ITPE NUYBER OF ORGAHIZATION UHOSS SILLETS YAY GAVE TO BE CHAHCED:
 TYPIHG O MEAMS HO NORE CHAMGES ARE IEEDED.
 0:
 6
 GURRCMT NUNgERS OF gTLEETS
```



```
CO TOU WANT TO HAKE ANY CHANGES IN THE ABOVE DATAT AMSWER YSS OR N (MO):
YES
IQ GIVE NEN AILLETS TYPE IS NUMAERS (SEPARATED GY BLANK SPACES)
C:
151200011 1 0 0 1 0 0 0 0 000
IYRF TUNGER OF ORGANTZATION UROSE GLLLEZS YAY HAYE TO BE CRANGED:
 TIPING O MEAHS NO MORE CHANGES ARE NEEDED.
\square:
7}\mathrm{ CURRENT MUMBERS OE BIEEETS
```



```
7. VQ4 34 10 0 0
DO YOU #ABT TO MAKE AHY GHANGES IN TRE ABOVE DATAT ANSWER YES OR (MO):
rES
TO GIVE IEW DILLETS TYPE 15 NUMBERS (SEPARATED AT BLANK SPAGES)
3210000:200010000000
TyPE aUYBER OP ORGANIZATION WHOSE bILLETS mAZ RAVE TO ge ChaNGED:
 IZPIHG O NEABS HO MONE CHANGES ARE NEEDED.
C:
 1 0
```



```
10. VC3
CURRENT NUYBERS OP BILCETS
DO YOU UAS＇t TO MAKE ANY CHANGES IN THE ABOYE DATAT AHSNEA TES OR I（HO）： YES
TO GIVE HEW ATELEZS TYPE IS MUMEERS（SEPARATED BY ELANR SPACES）
Ui 00012002000000
ITPE UUYESR OF OACANIZATION UHOSS ALLLETS NAY HAYE TO EE CHANGED：
GYPING O MEARS MO MORE CHAHGES ARE IEEDED．
C：
12
```


## CHANGE X (CONT.)

## CURREMT HUNBERS OR BIELETS



## CHANGE X (CONT.)

## CURREM RUNBERS OR GILLETE

| So: organtzation | 1 | 5 | ¢ | G1 | $\underline{9}$ | $\underline{5}$ | 51 | 52 |  | 62/3 | 6x/5 | 68 | 11 | $\underline{12}$ | 83 | \#8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16. Vacso | 17 | 15 |  | 0 | 0 | 1 | 1 | 0. | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |

00 YOU WAET TO NAKE AHY CHAAGES TH THE ABOVE DATAP AASUER 2ES OR A (HO): IES

TO GIVE NEW ELLLEES TYPE 15 NUMRERS (SEPARATED EY BLAHK SPACES) O:

14 1500001000100000000
TTPE NUMEER OP ORGAMIZATION UHOSE BILLETS MAT HAVE TO BE CHAMGED: IYPIHE 0 NEANS MO MORE CEANGES ARS NEEDED.

O:
17
GURREME NUNBERS OR gITLETS


DU IOU UAMT TO MAKE AHY CHAMCES IM THE ABOFE DATAT AHSWER IES OR (BO): IES

TO GIVE IEW EILLETS STPE 15 NUHBERS (SEPARATSD BY BLAIK SPACES)
D:
PYE RUMAEA OP ORGANTZATION WROSE BILLEES TAE RAVE TO BE CAANGED: TIPIVG O MEANS MO MORS CHANGES ARE IEEDED.

D:


DO TOU UART TO NAKE AAT GRANCES IH THE ABOYE DATA? AASWER IES OR I (MO):
IES

TO GIVE NEA BILLESS TYPE 15 NUYBERS (SEPARATED AY BCAHR SPAGES)

TYPE SUNAER OP ORGARIZATION UHOSE BILLETS MAY HAVE TO BE GHANGED: TTPIKG 0 HEARS NO MORE GHANGES ARE NEEDED.

L:
0
00 IOU WANT TO NAKE CHANCES IU ANI OTEER BIELET MATRIXI ANSUER IES OR F (MO):
TES
GILLET HATRIX OPRIONS: PROPAPILOT-1 /PROP-2 /PILOT-3 /AVIATIOI-4 /ABPORTIORED-S $0:$
TYPE MUNEER OF ORGAATZATTOM WAOSE BILLETS MAY HAVE TO BE CHANGED: TYPIMG 0 MEABS NO MORE CHANGES ARE NEEDED.

O:
25
GURRENT RUYBERS OE BITLETS


DO YOY WAHT TO MAKS AHY CHAHGES IH THE ABOVE DATA? ANSWER IES OR $H$ (HO)! TE5

TO GIVE HEW ETLLETS TYPE 15 WUNEERS (SEPARATED AY BLANX SPACES)
E:
00000101000000


## CHANGE X (CONT.)


YES
TO GLVG WEL ELLLETS TYPG 15 WUNEERS (SEPARAEEO BE BLAWK SPACES)
0
00000000000000
ETPE NUYBER OF ORGANIZATYOE WHOSE BILLETS MAT HAVE GO AE CEAFEEDI TYPING O NEAMS NO NORE GAANEES ARE NEEDED.
$0:$

 IES

TO GIVE aEU aILLETS TYPE is NUNBERS (SEPARATED BY bLAAK SPACES)
D:
004000000000000
 TYPING O MEAKS NO NORE GHAMGES ARE MEEDED.

C:
0
 10

DO YOU WANT TO NARE THESE CTANGES PERMANENTY AKSWER IES OR (NO):
10
MO ALTERATION HAS BEEN MADE IN THE PILE.
change options:
OGNE-OIORGAN[ZATIONS-1/TOURS-2/BILLETS-3/GRADES-4/IETERY-S /ORGAMIZATIOMS EY FY-6 TYPE OHE OE THE NUMBERS LISTED ABOVE:
C:
0
OPTIOIS: DOIEE-0 JDATA-1 CHABGE-2 JRESULT-3
TYPE OUE OF THE IUUNEERS LISTED ABOVE:
Li:
3
THE TOLLOUINC RESULTS HAY EE DISPLAYED BY TYPING THE APPROPRIATE BUMBER:
0. DOIIE EITH DISELAYIUG RESULTS

1. BILLET REGUIREUENTS EOR BACH TOUR AND IISCAL YEAR TYPE 1
2. SUPPLT OP ELIEIALE OEFICERS FOR EACH TOUR AND PY TYPE 2
3. SEATOUR OPPRTUNITY (SHORTPALL) POR EACH TOUR AND PY TYPE 3

- bILLET fates (requirements divided bi tour leyctas) type.

0: 3
SEATOUR OPPORTUNITY (SHORTPALL) OR ELIGIBLE PROPAPILOT OEFIEERS IM PERGEMTAGE

| YEAR | A | C | $C 1$ | $C 2$ | $\underline{L}$ | 51 | 52 | 61 | 62/3 | 64/5 | 68 | 81 | $\boldsymbol{n} 2$ | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1311 | (10) | 27 | 69 | 69 | 50 | 23 | 9 | 55 | 58 | 17 | 16 | 11 | 11 | 5 | 5 |
| 1982 | (4) | 34 | 58 | 66 | 68 | 40 | , | 54 | 35 | 20 | 18 | 17 | 17 | 8 | 6 |
| 1983 | 91 | 37 | 59 | 59 | 42 | 6 | 9 | 47 | 48 | 16 | 23 | 23 | 23 | 9 | 9 |
| 1984 | 13 | 45 | 73 | 73 | 73 | 82 | 17 | 40 | 43 | 15 | 14 | 25 | 25 | 14 | 14 |
| 1945 | 10 | 36 | 83 | 83 | 75 | 77 | 30 | 45 | 4 | $1{ }^{4}$ | 13 | 24 | 24 | 19 | 19 |
| 1986 | 79 | 30 | 99 | 99 | 87 | 15 | 31 | 70 | 81 | 11 | 11 | 24 | 24 | 20 | 20 |
| 1981-15 | 93 | 35 | 89 | 89 | 8t | 50 | 12 | 47 | 49 | 18 | 15 | 18 | 18 | 9 | 9 |
| 1982-86 | 67 | 36 | 74 | 74 | 77 | 65 | 14 | 49 | 49 | 15 | 1* | 22 | 22 | 11 | 11 |






## -vistletextiulo



198


duishdatalli]
GSiIS EN COLTAINS ALL THE SUBFUNCTIONS THAT DISPLAE VARYOUS PARTS OF THE DAFA. 1:SHIPLIST PC:INDPI $O$
2: BILLETLIST 日 $0 \rightarrow$ ST
Du:TC:HATCHLIST A 0 -ST


- MLSAKGEXTLLIN
(the AGAIMI







SHOKT:LF O OISPLAY OPTIONS:' O 'DONE-0/', SHIP.'S-1/TOUNS-2/BILLETS-3/GRADES-M/INVTRY-5/TOTAL INV-G'
'TYPE OHE OF THE NUYBERS IISTED ABOVEI'
DSHIPLIST[DI]V
SUIPLIST PIPST
SHIPLIST P:PSTRITITLESHEAD:TABLE
OTHIS FU LISTS THE NUABER OF SHIPS PROJECTED FOR THE PY'S SELECTED POR GACM SHIP TYPE.
TITCEFFSTK CEUTERAHDLTNE 'MUNAER OF , SHIP; 'S FORECAST'

- LTOUHCISTL[ITV TST-TOURLIST TSSR:TITLE:HEAD:TABLESI



## VAILLETLISTLIID 日ILLETLIST B; ZSA; FSTR;MEAD;PI:TITLE:TABLE





DSP:TITIE;HEAD: TABIE O ONIFHUMEI300
OESPOND IDO YOU UAHT ANY OTHEH HI


201
VTGYATCHLIST(U)D
TG:IATCULIST A;ESTR:TITLE; NEADITABLE

 TIEAD FSTR COLNAIESAHDLINE: WO. CODE,TOURNAMES'.CRD

 ST:LP O TYPE YEAR FOR SHICH YOU bANT IHVENTOKY OF OFEICERS DISPLAYED'

TITLE-FSTA CEITTERANDLIHE 'INVENTORY OP 'RMAME,' OFPICERS FOR 'VPY
TABLL FFSTR DPYT(IN;IUV[ + ITUD×FI; IJ) O LPITITLEIMEAD:TABLEILF O GOEIIEPFYAV
 VIOLIiVLIST[Li]
TOTIEYIIST INV;FS
GTHIS LU DISPLAYS THE TOTAL WUNBER OF OFEICERS PHOJECTBO FOA ALC PTSCAL YEARS. BY TCS. TITLE ESTR CEUTERAHDLINE TOTAL IWVENTORY OP "FHANE. OFEICERS'
 VEHAMGEDAAA[[1]จ

- CHALGGEDATA; ZEHO
MIHIS EH OEIERS THE USER A CHOICE OF SEVEMAL CHANGES TAAT MAY 日E MADE IM THE DATA. ERON TYPINC ORAWS \#O NORE CHAMGSS ARE EEEDED.

'INPUT EKROR. TRY AGAIN:'
SHIPCHHC:L:WL:PSTR;TITLE:HEAD;TABLE: HP


[^1]
 $z+(14 p T O U R S) 114 p$ B $\qquad$






 [19] exit:lf ○ :ho alteration has been nade ju the pile.'


|  |  |
| :---: | :---: |
| (1) | ne:hs fu e:tables the user to hake chatages iu the assignmeut op grades to sach tow |
| (2) | athe chalices chy le ehtered in the file at the useris chojcr. |
| (3) | -SEL hespoijo bdo you want the tour-grade match matrix displaysd |
| (4) | SEL:LP O TYPE Huvger of tour whose assignmett of grades may have fo be canmedit o zero |
| [ 5 ] |  |
| [6] |  |
| [7] | title-fstr centeraudine cupreut grade assicmment' |
| [8] | aeadofstr colnasissadithe i, no..code.tournane'.ghd |
| [9] |  |
| [10] | -sel nespoud do you want to change the above assignment' |
| [11] |  |
| [12] |  |
| [13] | A 1 [ $)$-HA 0 -SEL |
| [16) | lasti -pery hespond ddo you hant the tour-grade hatch matrix displayed again' o tcyatchlist a |
| [15] | PEEY:-EXIT RESPOLD do you hant to hake thesf chances permanenti |
| [16] | $\rightarrow$ exit respond 'ane you sune you want to alter the peunanent rile' |
| [17] | a lifkeplacs ruun 110 lf O Prile has afen alteredi' $0 \rightarrow 0$ |
| [18) |  |
| [19] | eaitile 0 -uo alteration has befm made in the file.' |
|  | จ [aychac[0]v |
|  |  |
| [1] | athis fu euables the user to chamg the invento it of officeiks fon piscal year fi, oy ycs and grade. |
| [2] | St:lp o tiype year for uhich invehtony of offictrs may have to be changed.' |
| (3) |  |
| (4) | -CH resyoud do you want the inventory matrix displayed. |
| (5) | FSTR + F3.0, ', (JC).'B18' |
| (6) | titlersth ceutehaluline ifuventory of officers pop '.⿹py |
| (7) | UEAD FSSR Coliantesandigne , ICS . GRD |
| (a) |  |
| (9) | CH: $\rightarrow$ ELE Respond do you want to change tife above inventory matrix' |
| (10) | - you hill be asked to cive imputs by ghanks' o but only for years op service (ycs) for mhick the munders are mot zero.' |
| (11] |  |
| (12) | LOOP:LE O TYPE THE MULEERS OP OPficers for the followilit grade and rcs:t |
| [13] |  |
| (14) | 'paess '"hejuru' ${ }^{\text {jo have all entries unchanged yor this ghade.' }}$ |
| (15) |  |
| [16] |  |
| [17] |  |
| (10) |  |
| [19] | PEh:a -exit hespond 'do you walt to make these changes peryautwt' |
| (20) | - Exit respond 'are you really sure jou waht to alter the permaneut file |
| (21) |  |
| (22) |  |
| [23] |  |
|  | lxitilp ${ }^{\text {eno alferation has aeem made in the pile.' }}$ |

$+4$
VSHIPYCNMG［Ti］V
SHIPYCANGSHY：IPIJ


 vassuiajaijy
－acjustsiviesh



[^2]


- VGC.AIVACLITJU

- q/outiyg[u]y
auvictroutes


## 

- ofoufziyglury houting cichoteses




DESTIU-PLACE ERRNESSAGE HESSAGE

vCEHEERANDLIHECDIP
TTLOFSTR CEUSERANDL
TTLGFSTR CEMEERADLIME TITLE

- GCOC:IA:AESAWDLIWECDIV
- HEAD-PSTR COLUAYESAIIDL

- REEPLSIUGSPVATD]D


- vcudifycily
- codes CODIf
- CODE $-S$ CODIFY UUYAERS INN



## IST OF REFERENCES

1. Department of Defense, Report of Secretary of Defense Harold Brown to Congress on the FY 1980 Budget, Washington, D.C.: Author, January 25, 1979.
2. Turban, Efraim, and Meredith, Jack R., Fundamentals of Management Science, Business Pubiications Inc., 1977.
3. Office of the Deputy Chief of Naval Operations (MPT), OP-132E2, Aviation Continuation Bonus Point Paper, Washington, D.C.: Author, Fall 1980.
4. Teply, John Fredrick, An Interactive Computer Model to Analyze the Seatour Opportunities of the Submarine Officer Corps, M.S. Thesis, Naval Postgraduate School, Monterey, March 1980.
5. Zorris, Ernest L., Jr., An Analysis of Officer Professional Development in tise VP (Maritime Patrol) Aviation Community with Arplication of an Interactive Computer Model for Seatour Opportunity Determination, M. S. Thesis, Naval Postgraduate School, Monterey, June 1980.
6. Milch, Paul R., An Interactive Computer Model to Analyze the Surface Warfare officers of the $U$. S. Navy, Naval Postgraduate School Technical Report, To be published in 1981.
7. Office of the Chief of Naval Operations, OPI32El Serial 693084, Aviation Officer Recuirement and Management Model Development, Washington, D. C.: Author, October 30, 1980.
8. Office of the Chief of Naval Operations, Manual of Navy Officer and Enlisted Manpower Policies and Procedures (OPNAVINST 1000.16D), Washington, D.C.: Author, 1977.
9. Office of the Chief of Naval Operations, A Treatise on Squadron Manpower Document Methodology, Washington, D.C.: Author, 1980.
10. Office of the Chief of Naval Operations, Director, Military Personnel and Training Division, Commanding Officers Addendum to the Unrestricted Line Officers Career Guldebook (NAVPERS 15197 Addendum), Washington, D.C.: Author, 1979.
11. Office of the Chief of Naval Operations, Director, Military Personnel and Training Division, Unrestricted Line Officers Career Guidebook (NAVPERS 15197A), Washington, D. C. : Author, 1979.
12. U. S. Bureau of Naval Personnel, Manual of Navy Officer Manpower and Personnel Classifications (NAVPERS 15839D), Vol. I, Washington, D. C.: Author, 19 July 1978.
13. Nie, N. H. , Hull, C. H., Jenkins, J. G., Steinbrenner, K., and Bent, D. H., Statistical Package for the Social Sciences, McGraw - Hill, 1975.
14. Office of the Deputy Chief of Naval Operations (MPT), OP-13002, The Officer Management Simulation Model, Washington, D. C.: Author, 1980.
15. Office of the Deputy Chief of Naval Operations (MPT), NMPC-46B, Unrestricted Line Officer Manning ?lan, Washington, D. C.: Author, 28 December 1979.
16. Office of the Chief of Naval Operations, OP597, Planned Pilot and Naval Flight Officer Training Rates through POM-82 FYDP, Washington, D. C.: Author, 1980.
17. Office of the Chief of Naval Operations, OP-05, Aviation Officer Requirements Analysis, Washington, D. C.: Author, May 1979.
18. Naval Military Personnel Command, NMPC-472C, Monthly Officer Status Report, Washington, D. C.: Author, 16 April 1980.
19. Defense Technical Information Center Cameron Station Alexandria, VA. 22314
20. Defense Logistics Studies Information Exchange ..... 1 Fort Lee, Virginia 23801
21. Library, Code 0142 ..... 2
Naval Postgraduate School Monterey, California 93940
22. Library, Code 55 ..... 1
Naval Postgraduate School
Monterey, CA 93940
23. Dean of Research ..... 1
Code 012
Naval Postgraduate School Monterey, CA 93940
24. Director, Total Force Planning Division (OP-11) ..... 1
Office of DCNO (MPT) Department of the Navy Washington, D.C. 20370
25. Director, Total Force Program Division (OP-12) ..... 1
Office of DCNO (MPT)
Department of the Navy Washington, D.C. 20370
26. Director ..... 1
Military Personnel/Training Division (OP-13) Office of DCNO (MPT)
Department of the Navy
Washington, D.C. 20370
27. Mrs. Mary Snavely-Dixon ..... 1
Office of DASN (Manpower) Department of the Navy Washington, D.C. 20350
28. LCDR Gary Johnson (OP-136C1) ..... 2
Office of DCNO (MPT)
Arlington Annex Washington, D.C. 20370
29. Dr. Robert F. Lockman ..... 1 Center for Naval Analyses 1401 Wilson Boulevard Arlington, VA 22209
30. CDR Dick Lyons (OP-132C1) ..... 1
Surface Officer Program Manager Office of DCNO (MPT) Arlington Annex Washington, D.C. 20370
31. Mr. M. K. Malehorn (OP-102) ..... 1
Office of DCNO (MPT) Arlington Annex Washington, D.C. 20370
32. Head Long Range MPT/MOB Planning Branch (OP-110) ..... 1 Office of DCNO (MPT) Arlington Annex Washington, D.C. 20370
33. CDR Dennis Jones (OP-132 D1A) ..... 1
Submarine Officer Community Manager Office of DCNO (MPT) Arlington Annex Washington, D.C. 20370
34. Primary Deputy Assistant Secretary of the Navy ..... 1 Manpower and Reserve Affairs Department of the Navy Washington, D.C. 20350
35. Joe Silverman (Code 303) ..... 1
Navy Personnel R\&D Center San Diego, CA 92152
36. Professor Robert E. Stanford ..... 1
Department of Management Auburn University Auburn, AL 36830
37. CDR James Clancy (OP-597C) ..... 1
Office of the Director Aviation Manpower and Training Department of the Navy Washington, D.C. 20350
38. CDR Steve Todd (OP-132E1) ..... 2
dviation Officer Program Manager Office of DCNO (MPT) Arlington Annex Washington, D.C. 20370
39. Professor R. Grinold ..... 1
Department of Business Adminstration University of California Berkeley, CA 94720
40. Dr. T. C. Varley (code 434) ..... 1
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217
41. Dr. Paul R. Milch, Code 55 Mh ..... 10
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93940
42. Dr. James K. Arima, Code 54 ..... 5
Department of Administrative Sciences Naval Postgraduate School Monterey, CA 93940
43. LCDR Ernest L. Morris, Jr. USN ..... 2
Naval Military Personnel Command (NMPC-432i) Arlington Annex Washington, D.C. 20370
44. Mr. Robert K. Lehto (OP-16) ..... 1
Director, Total Information Systems Management Office of DCNO (MPT) Arlington Annex
Washington, D.C. 20370
45. Dr. Michael Sovereign ..... 1
Director Special Projects Group Office of Secretary of Defense (Comptroller) $3 a 336$ Pentagon Washington, W.C. 20301
46. Msgt Jack Joiner1300 Newcastle DriveFort Walton Beach, FL 32548
47. Lt. Michael L. Scholes
5576 Lofty Pines Circle $S$. Jacksonville, FL 322103
48. Naval Postgraduate School Monterey, CA 93940
ATTN: R. Elster, Code 54 ..... 1
G. Thomas, Code 54 ..... 1
D. Gaver, Code 55 ..... 1
P. Jacobs, Code 55 ..... 1
P. Lewis, Code 55 ..... 1
K. Marshall, Code ..... 55 ..... 1
D. Schrady, Code ..... 013
C. Jones, Code ..... 541


[^0]:     IES
    
    0 :
    0000000000000

[^1]:    

[^2]:    
    
    
    
    
    
    
    
    －vBILL6ATESLU］V
    
    ゴゴッ゙きニ

