
TFWL-TR-
79-141
Pt. 3

AFWL－TR－79－141，Pt． 3

This final report was prepared by the United Technologies Corporation， West Palm Beach，Florida，under Contract F29601－77－C－0025，job Order 00011408 with the Air Force Neapors Laboratory，Kirtland Air Force 3ase，New Mexico． Captain J．Dale Holt（ARLO）was the Laboratory Project Officer．

When US Government drawings，specifications，or other data are used for any purpose other than a definitely related Government procurement operation，the Government thereby incurs no responsibility nor any obligation whatsoever，and the fact that the Government may have formulated，furnished，or in any way supplied the said drawings，specifications，or other data，is not to be regarded by implication or otherwise，as in any manner licensing the holder or any otner person or corporation，or conveying any rights or permission to manufacture，use， or sell any patented invention that may in any way be related thereto．

This report has been authored by a contractor of the United States Government．The United States Government retains a nonexclusive，royalty－free license to publish or reproduce the material contained herein，or allow others to do so，for the United States Government purposes．

This report has been reviewed by the Putiic Affairs Office and is releasabie to the National Technical Information Service（NTIS）．At NTiS，it will be available to the general public，including foreion nations．

This technical report has been reviewed and is approved for publication．
i つッチー～で
J．DALE HCLT
Captain，LUSAF
Froject Officer

FOR THE OIRECTOR

Colonel，USAF
Deputy Chief，Laser Development Division

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

SOQ USER GUIDE UPDATLS
June 1980 Updates to SOQ80128

INTRODUCTION

This document defines the changes made to the SOQ code (SOQ80128) between January and June of 1980 . The changes either correct shortcomings found in the code or, more usually, document the increased capability being continually built into the code. The SOQ code is raintained as SOQ80128 June PL, ID $=$ AFLOJRA as a NOS/BE-1 CDC update format file.

UPDATES

1. *ID FIXZRN

This update redefines the coeffiencets to be input to the Zernike subroutine. This new convention is more physically meaningful in that, at least for lower orders, the coefficients are in waves. For example, to impose one wave peak to peak of defocus (P_{4}) on a beam, one would input $P(4)=1$. The phase applied is now:

$$
\phi(I, J)=\sum_{k} P_{k} \pi Z_{k}(I, J)
$$

The subroutine affected is ZERN. This update does not effect the rest of the code.
2. *ID FIXJTR

This update ensures a correct definition of DF in subroutine JITRBG since when JITRBG is called from subroutine QUAL, the X-coordinate array contains $R A / D$ coordinates, not the spalial coordinates.

Only one line of the code is affected by this update.
3. *ID ROTZRN

Due to different coordinate system orientations for data, it became necessary to allow for this variation within subroutine ZERN.

Define the data x and y coordinates to be XROT and YROT, and the SOQ x and y coordinates to be XIN and YIN. The rotation angle is then defined to be θ (in radians).

June 1980 Updates to SOQ80128
Page 2

```
COSROT = cos(0)
SINROT = SIN(0)
XROT = XIN x COSROT + YIN x SINROT
YROT = -XIN x SINROT + YIN x COSROT
```

Application of Zernike polynomials to and SOQ point located at (XIN, YIN) would then be calculated using Z (XROT, YROT). The possibility of axis flips are also accounted for and are flagged by FLIPX or FLIPY not equal to zero. Namelist ZERNS is modified to include FLIPX, FLIPY and the rotation angle (in degrees) 2THETA. No common was modified. This update modified only subroutines GDL and ZERN.

$$
\begin{aligned}
& \text { * 2-ar. } \\
& \text { - LELETE 2RSIKE.115 } \\
& \text { CEL = 「fL.?.1415cze4 } \\
& \text { - CELETE 2FA.IME.1: }
\end{aligned}
$$

－ICEAT FIXGTR
＊ 1 －ITRF
 ［F＝1．／（FLCAI（APTS）MEX）
－icent retzra
＊$/$ ECL
＊celete zrainfc．？

＊IASERT ZRIJKE．「
C ZTHEIA＝THE CLCCKhISE ANGLE EF FCTATICA CF THE CECCACSITI
C \quad OXESCNTC THE SCG CCCRCIPATE SYSTEN
C FFFCFE CALCLATICA TF THE ZEPAIKE FCLYAGMIALS．
C It IS IArLtin deceres．

C RCT：TICN．
C FLJFY＝1．RESLLTSIA DFLIFPPCLT THE Y AXIS OFFCFS
C RCTATJCN．
＊こELFTE ZRNJAFC．
CIMrucICAE2Év（2C．10）
－INSEFT ZFA．INFC． 7
ZTHETA＝C．
FLIFY＝ 1 ．
FLIFY $=$ C．
＊Jnseft zfajnfces

PIESV（I2ERA，4）＝ELIFV
FZESV（12EHA，E）＝fLIFY
－CELETE 2FAINFC．IC．2FAIN＝C．11

x
x

FZSAVF（2上，JTFRA），FZSAVE（1，1ZERA））
－$/$ 2ERT．

SLEFOLTINE ZEFI（EJCNAY，YATFNZ，TRETA，FLJFX，FLJFY，FC，F）
－inseft zarijke．te
CCSROT $=$ CCS（THETS）
SIAFCT $=$ SIA（THETA）
－EELETE ZFRIKE．7E
－DELETE ZFNIKE．77
x In $=x(J X)$
YIA $=X(I Y)$
IF（FLIPY．FT．．E）YIT＝－YIA
JE（FLJEY．CT．．E）XIA＝－YIN
XFCI $=\quad$ IIA＊CCSRCT •YIA＊SIAPCT

1F（FLIFX．LT．－．E）YRCT＝－YFCT
IF（FL！PY．LT．－．E）XRCT＝－YACT
$X \subseteq C=X R C T * E$
$Y \leq r=Y F C T * *$
－CELETE ZFRIKE．fr
THET = OTANECYPCT,XFCT)

```
-l[E:T M!f!lN
    *INSrKT SlBN&y.EIs
    c
```



```
            ff[ FILf E&
C
hFITI（E．E\｛？
RELINE EC
TOCE REAC（ED．4OCE）IC1，（E
```



```
［
JF（ICI．EG．］）bRITF（E，？CEE）
WRITE（ 6.404 C\() \mathrm{Cz}\)
404 C FCRNAT（1（X．21A4）
ECTC TCCC
701E FRHINE EC
```


C
REWIAC 97

IF（EC＝（C7）．AE．C．）（C TC 4：15
IF（IC1．E（．1）hFITf（f，IC？E）
hFITE（E，4E4C）CE
CC TC 4 CCO
4C15 REhIA C？

C
FEbIN： 57
ECCCFEA［（ST，4C（E）ICI，CE
$I=(E O F(5 T)-N E \cdot C$.$) CCTC \in C J E$
IF（IC1．EG．．1）hRIT「（E．？（？E）
WRITE（F，4S4C）CE
CC TOECC
EClERELIN［ ci
bRITP（E，？J？
C
C ．．．（CPY TCPE（ISLNRY）IS CLTFLT：
REh］nc Islngy
ECCCFEAC（ISLMRY，？CCE）ICI．CE，C？
IC（EDF（ISUNRY）．NE．C．）CC TC 5015
IF（ICI．［G．］）由RITE（EG？（？E）

CC 12 EfC
EGIE REGITI ISUNRY
bRIT「（f，？（？
C MAMCCPY THFE（EC）Tn CLTFLT：
C

REWINT EC
ECGOREAC（EC，4OCES JCI．CE
IFEOF（EC）．NE．O．）（C TCECJE

$$
\cdots \cdots:+
$$

re 1r •

heITf(1, こ! 25)
i

UNCLASSIFIED
security elassification of this mage (mhen dme Enteroa)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
$\begin{aligned} & \text { T. REPORT NUMDER } \\ & \text { AFWL-TR-79-141 } \end{aligned}$	2. GOVT Aceession no.	3. RECIPIENT'S CATALOG NUMIER
```SYSTEM OPTICAL QUALITY USERS GUIDE Part 3 of 3```		5. TYPE OF AEPORT A PEAIOD COVERED Final Report
		6. PERFORMING ORG. REPOAT NUMOER
J. L. Forgham   S. S. Townsend   J. L. Campbel		8. CONTRACT OR GRANT NUMDER(s) F29601-77-C -0025
United Technologies Corporation West Palm Beach, FL 33402		10. PROGRAMELEMENT FUOJECT. TASK AREA WORKUNT NMEESK $00011408 / 63605 F$
		$\begin{aligned} & \text { 12. REPORT OATE } \\ & \text { March } 1980 \end{aligned}$
		13. 64 NUEER OF PAGES
14. MONITORING AGENCY NAME \& Aconessili diltrent trom Conerallina Officol		15. SECURITY CLASS. (ot (this Ioport) Unclassified
		15. OEECESSESEICAFION DOWNGRAOING

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT 'of the ebatract onterod in Elock 20, it dtterent from Report)

## 6. SUPPLEMENTARY NOTES

This report is divided into three parts. Part 1 consists of the front matter and text pages 1-34. Part 2 consists of text pages 35-296 and the References. Part 3 consists of Appendices A and B and distribution list (pages 297-360).
19. KEY wOhOS (Centimue on reverse alde If neceaserp and ifontlfy by bleck number)

Laser Optical System
Code High Power Laser
Optics
Optical Quality
High Energy Laser

This report describes the System Optical Quality (SOQ) code structure and the input to the code required for analyzing High Power Laser Optical Systems. The SOO code provides the designer with a physical optics model of the system. The code traces the beam from its point of origin in the resonator through the optical train into the far field. This report is divided into three parts. Part 1 describes the general structure of the SOQ code and establishes a correlation between the usual optical elements encountered in the optical

## 20. ABSTRACT (Continued).

train/gas dynamic laser resonator and the appropriate 500 models. Part 2 acquaints the user with the individual SOQ subroutines and their analytical formulations as manifested in Fortran within the SOQ framework. It also delineates the input required to exercise the subroutines, familiarizes the user with the operation of the SOQ model, and contains working input modules which carry the user through the usuat calculations of the SOQ code from input generation to loaded cavity calculations. $\rightarrow$ Part $3^{2}$ contains Appendices describing SOQ updates.


> SECTION V APPENDICES
> APPENDIX A
> SOQ USERS GUIDE UPDATES
> JANUARY 1977 TO JUNE 1978

## INTRODUCTION

This appendix documents those changes made to the initial SOQ code between January 1977 and June 1978. The changes incorporated in the code are those that have become generally useful for the physical optics simulation problems which have been solved using the SOQ code. The Users Guide Updates are also prepared to clarify and correct the initial description of the $S O Q$ code, as documented and delivered to AFWL on 1 March 1978, in the Preliminary SOQ Users Guide. This document supersedes previous written material on SOQ code documentation. The organization of the SOQ Users Guide Updates is

SECTION AI	New Subroutines
	1. Theory
	2. FORTRAN Updates
SECTION AII	Code Changes, Corrections
	1. Theory/Reason for Correction   2. rORTRAN Updates
SECTION AIII	Users Guide Corrections
SECTION AIV	SOQ Code Access

AI. NEW SUBROUTINES

## 1. THEORY

a. Beam jitter -- Relative motion between optical elements, such as mirrors, induces time varying positional displacement of the optical field. The typical term for this phenomenon is beam jitter, and the principle effect is to broaden the :ime-averaged effective beam illumination area, while reducing the time averaged intensity.

Beam jitter is both a near field and far field concern. Jitter in optical trains can overload apertures or cause energy deposition on areas outside the normal propagation path as well as cause a deterioration in the peak on-axis irradiance and integrated spot power.

The time-averaged effect of beam jitter may be modeled as the convolution of the intensity profile with an appropriate probability density function (PDF) for the jitter statistics. The current $S O Q$ model assumes that the jitter PDF is Gaussian with known mean and variance. The model allows the user to specify the Gaussian parameters and, for the selected beam jitter analysis location, to determine the near field and/or far field effect of beam jitter.

The following is a brief description of the analytical and SOQ Fortran implementation of beam jitter calculations:
b. Relevant formalism -- The effect on the beam may be found by convolution of the Gaussian jitter probability density function with the SOQ predicted intensity distribution:

$$
\begin{equation*}
I^{\prime}(x, y)=\iint_{-\infty}^{\infty} I\left(x^{\prime}, y\right) J\left(x-x^{\prime}, y-y^{\prime}\right) d x^{\prime} d y^{\prime} \tag{.11}
\end{equation*}
$$

The 1-D Fourier transform of the Gaussian function looks like:


## 2. FORTRAN UPDATES

The jitter model can be called in two ways. Each assumes that the jitter variance is the product of a jitter angle and the propagation distance from the jitter source.

$$
\begin{equation*}
\sigma=\theta_{J} \cdot Z \tag{A2}
\end{equation*}
$$

$\theta_{J}=$ Jitter angle ( $1 \sigma$, in microradians)
$Z=$ Distance from jitter source (in cm)
When the far field model is called from QUAL, the jitter angle has been incorporated into namelist QLOT while the propagation distance is the focal length found in QUAL. The jittered intensity is returned to array $C U$ as a phaseless field so it can be plotted, or written to a permanent file.

The other method of activating the jitter model is to call the near field jitter model from GDL with $I F L O W=23$. For this model both angle and jitter distance are entered in namelist JITTER.
Namelists modified:
Far Field
QLOT: SIGANG (rad) is added to specify the jitter angle
Near Field
JITTER: Contains -
JITANG (urad)
JITDIS - Jitter distance

## AII. CODE CHANGES/CORRECTIONS

## 1. THEORY/REASON FOR CORRECTIONS

a. Bare resonator calculations -- The SOQ resonator/optical-train calculation code may be used to simulate, in Cartesian coordinates, bare resonators. This added option is frequently used in the initial simulation studies of a resonator or a class of resonators.

The bare resonator optical configuration may be compared to its geometric counterpart using the SOQ code by simply invoking the IBARE option and associated updates now contained in the fundamental code. The fundamental approach in bare resonator calculations on the $S O Q$ code is to allow the user to use the same input and code for bare, semibare and loaded cavity calculations. Various options under the bare cavity calculations have been incorporated and are now described as input values for IBARE in Namelist START.
IBARE $=0$ (Default)
Loaded cavity calculations are performed as usual following the standard input which the user has supplied.

IBARE $=1$
Using the same input, the user will now perform bare cavity calculations in which the resonator is normalized to 1 W of circulating power. Mirrors are defaulted to have 100 percent reflectivity, and no power dependent or flux dependent distortion. The $S O Q$ output is modified to printout the resonator eigenvalue.

IBARE $=2$
Semibare resonator calculations are performed in which the user can perform bare resonator calculations that include optical aberrations generated by a flowing saturable gain medium. These aberrations may strongly effect mode shape/phase. This option provides a convenient method of studying their perturbational effect on the bare cavity mode.

For the semibare option, an additional update has been included in which the namelist MIRROR user may specify the desired power at each of the resonator mirrors. This allows the user of the semibare updates to apply mirror distortions as though the bare cavity mode had a significant power level. Specification of the DESIPW value in namelist MIRROR to some value other than 0.0 will cause the field incident on the mirror to be scaled to that power specified by the numerical value of DESIPW. Appropriate mirror distortions will be applied at the desired power level. The field leaving the mirror will then be rescaled to its incident power level. Subsequent calculations are done as specificed by the user typical namelist input.

An additional variation is allowed in which the parameter FLAG of cavity input namelist CAVTY2 can be used to execute a resonator with loaded gain, but no fixed phase perturbation in cavity. The input would correspond to $F L A G=0$; IBARE $=0$. Usual loaded resonator calculations are performed with mirror distortions as specified by the user.

All of the above variations of cavity/resonator calculations may be run from the standard loaded cavity input.

At the rear of this section are fortran listings of the code updates which have been included in the basic Cycle III SOQ code previously documented.
b. Mirror non-normal incidence angle -- In many optical train calculations the propagating optical field is incident on the mirrors in a nonnormal manner. Since, in general, the mirror surface may have a spherical figure, the field leaving the mirror will exhibit phase front aberrations introduced by nonnormal incidence of the field on the curved surface.

The SOQ MIRROR subroutine has been modified to incorporate an astigmatic aberration due to the nonnormal incidence on a spherical surface. The following is a brief description of the generation of the astigmatic aberration applied.

## Astigmatism in Resonator:

General astigmatism is introduced when a wavefiont is incident on a spherical (parabolic) surface in a nonnormal manner. This aberration occurs at each spherically-distorted turning flat, for example.


Thus $2 S_{s}^{\prime}$ is the resultant phase curvature being imposed on the beam. A cylindrical mirror can be used to model this with

$$
\begin{equation*}
R_{c_{s^{\prime}}}=2 S_{s}^{\prime}=-\sqrt{2} R_{c} \text { (neg since } R_{c} \text { is convex) for } \phi=45^{\circ} \tag{A3}
\end{equation*}
$$

Therefore, to represent the astigmatism introduced in the $x-p l a n e$ by a spherically-distorted turning flat, a cylindrical mirror is employed with a radius of curvature

$$
R_{c_{S_{S}^{\prime}}}=-\sqrt{2} R_{c}
$$

Rc is the power induced radius of curvature which is input or determined by the SOQ code.

Similarly, the tangential plane is described by

$$
{ }^{\Delta \theta_{S O Q}}{ }_{T}=\frac{2 \pi}{\lambda}\left(\frac{y^{2}}{2 S_{T}^{\prime}}\right)
$$

$$
\begin{align*}
S_{T} & =\frac{-R_{c} \cos \phi}{2}  \tag{A4}\\
& =\frac{-R_{c}}{2 v 2} \text { for } \phi=45^{\circ}
\end{align*}
$$

The new mirror subroutine including astigmatic effects has the form

$$
\begin{align*}
\Delta \theta_{S O Q} & =\frac{2 \pi}{\lambda}\left[\frac{x^{2}}{2 S_{S}^{\prime}}+\frac{y^{2}}{2 S_{T}^{\prime}}\right] \\
S_{S}^{\prime} & =\frac{R_{C}}{2 \cos \phi} \tag{A5}
\end{align*} \quad S_{T}^{\prime}=\frac{R_{c} \cos \phi}{2}
$$

The only additional input change is to the MIRROR routine namelist which is expanded to include the variable PHIAST, the beam incidence angle in degrees (default is PHIAST $=0$ ).
c. Beam rotation -- The mirror model has been updated to describe beam rotation introduced by optical elements, which are oriented in a skewed fashion. Many examples of this type of orientation are encountered in resonators and optical trains. The principle effect of skewed, or out-of-plane, orientation is to convolve or smooth the mirror distortion-induced aberrations over the total number of optical elements.

Rotation of the beam is accomplished by analytically rotating the mirror with respect to the beam, rather than rotating the beam within the mesh and then applying the mirror. By rotating the mirror with respect to the beam two modeling advantages result: First, analytical rotation of the mirror with respect to the beam is accomplished with no interpolation loss of information. Second, since the rotation is analytical, computer time is saved by not having to evaluate the field numerically. The following describes the rotation equations used in the code. The following sketch shows a base and rotated system.

$\alpha=$ Rotation Angle

Since,

$$
\begin{align*}
& x=x \cos \alpha+y \sin \alpha  \tag{A6}\\
& y=-x \sin \alpha+y \cos \alpha \tag{A7}
\end{align*}
$$

Then,

$$
\begin{equation*}
\Delta \phi=\frac{2 \pi}{\lambda R_{T}}\left\{\frac{(x)^{2}}{\cos \alpha}\right\}+(y)^{2} \cos \alpha \tag{A8}
\end{equation*}
$$

Here,
$(x, y)$ are the $S O Q$ coordinates
$(x, y)$ are the transformed (rotated) coordinates

The $S O Q$ field is modified as

$$
\begin{equation*}
C U_{O U T}=A \exp (\Delta \phi) C U_{I N} \tag{A9}
\end{equation*}
$$

where $A$ represents the completed transmittance effects included in mirror. The variable added to the SOQ MIRROR namelist input is PHIROT, which is the beam rotation angle in degrees. The default value is $\operatorname{PHIROT}=0.0$.
2. FORTRAN UPDATES

The attached printouts contain a listing of the updates, denoted as ROT, used to effect these changes.

```
|HF|| NuS
-I.jFNT hOT
 OUELETE CIOASTG.1
 AION(3.4), XSCQ(4).AHC(l*.20.0), TITLEJ(20). XOHAON(4).
 OULLETF CIOFLA.I
```



```
 *UELETE PIOASTG.Z.CIOASTG.J
 JATA WANILS.IONUTYOUINY,WHIAST,HMINUT/S*O.I
 OUELEPE CIDASTG.G
 A DELPA.HISTF,HCUTY.UINY,#A,VULS,PHIASI.PMINOT.DESIPW
 -INSEAT CINASTG.5
 C HMINOT IS THE mFAM HOTAIIUN AINGLF AT TMAT STATIONE= DEG
 C JESIDW IS TME OESIHED HOWEN LEVEL AT THAT STATIUN
 - INGEWF CInASPG.h
 AHC(!T,IMTH.C) =DH!H|T
 AHCIIW.IMIH.P!) = IESIHW
 2& OEGIPm = AHC(14,IMP品く)
 -HEtETF ClOAGPGOH
```



```
*IAGERT MIRHON. 2H
 OMIROTSHMIAT
- insert cinastg.le
 NHIRUR=NHINUT*HI/IAU.
 Pm!AOT=ก.0
 WHITF(n.80)HMINUN
 SINPHESIN(NNILOR)
 COSPHzCUS(NMIRUR)
-DELETF CIOASTG.15
 XPRMEX(J)*COSPH*X(I)*SINRM
 YPRM=-x(J)*SIANR+x(I)*CUSNL
 2HASE=AKY*((XPRM**R/HMSAG)*(YHNM**?/PMTAN))-AKY*NELL
-ueleff cinastg.24
 XPRM=X(J)*COSPN*X(I)*SINPR
 MNOM=-x(J)*SINNH*x(I)*CUSNK
```



```
UELETE. MIPMNG.&&
 BHINF(FHIASTOHII/1HO.
 RMSAG=BOOC/COS(PHIH)
 WMTANENOC*COS (PMIMI
 HHIHONF=PMIROTODI/IBO.
 HMIHOT =0.0
 S【NPK=SIN(PW!RUH!
 COSPH=COS(OHINUW)
*UELETE MIPQ(IN.91
 XH&MEx(J)*COSPK*X(I) OSINNW
 Yロ甠=-x(J)*SINHN*x(I) %COSPN
```



```
-INGENT MIDHOD.IDN
 WHITE(G.HG)OMIPON
 WNITF(A,G2O)RMSAG.HMTAN
```



AIII．USER＇S GUIDE CORRECTIONS

## 1．SUBROUTINE FUHS

a．Purpose－－Subroutine FUHS is used to calculate the phase change due to heat release as the molecules in the lower laser level decay to the ground state．The FUHS modeling includes the assumption generally made for supersonic flow and assumes the heat release has only a small perturbative effect on the flow．
b．Formulation－－The equations used here are based on those described by Biblarz and Fuhs，（Ref．10）and Fuhs，（Ref．11）．

The usual continuity，momentum，and energy equations for steady flow with heat addition are used as the basis for the analysis：

Continuity：$\quad \nabla \cdot(\rho \stackrel{\rightharpoonup}{u})=0$
Momentum：$\quad \rho \frac{D \vec{u}}{D t}+\overrightarrow{\nabla p}=0$
Energy：$\quad \nabla \cdot \rho \vec{u} h+\frac{\vec{u}^{2}}{2}=q$

These are linearized assuming

$$
\begin{align*}
& p=\rho_{\infty}+p^{\prime} \\
& p=p_{\infty}+p^{\prime} \\
& \vec{u}=\hat{i}\left(U+u^{\prime}\right)+\hat{j} u^{\prime} \tag{A10}
\end{align*}
$$

Resulting in

$$
\begin{equation*}
\text { Continuity: } \rho_{\infty} u_{x}^{\prime}+\rho_{\infty} v_{y}^{\prime}+U \rho_{x}^{\prime}=0 \tag{A11}
\end{equation*}
$$

$$
\begin{equation*}
\left(u_{x^{\prime}}^{\prime}=\frac{\delta}{\delta x} u^{\prime} ; \text { etc }\right) \tag{A12}
\end{equation*}
$$

Momentum: $\rho_{\infty}{\stackrel{V}{U} u^{\prime}}_{x}+p_{x}=0$

$$
\begin{equation*}
\rho_{\infty} U v_{x}^{\prime}+p_{y}=0 \tag{A13}
\end{equation*}
$$

Energy: $\quad \frac{P_{\infty} U}{Y-I} \frac{\delta}{j X}\left(\frac{P^{\prime}}{P_{\infty}}-\frac{Y p^{\prime}}{P_{\infty}}\right)=q$
The solution to these equations was first shown by Tsien and Bieloch, (Ref. 12), resulting in the following equations for a heat source $q$ in supersonic heat addition.

$$
\begin{align*}
& u^{\prime}=\frac{-(\gamma-1) q}{2 \gamma p^{B}} \delta(x-8 y)  \tag{A15}\\
& v^{\prime}=\frac{(\gamma-1) q}{2 \gamma D} \delta(x-\beta y)  \tag{A16}\\
& \mathbf{p}^{\prime}=\frac{(\gamma-1) M q}{2 a^{3} \beta} \delta(x-B y)-\frac{(\gamma-1) q}{a^{2} U} \delta(y) I(x) \tag{A17}
\end{align*}
$$

Where,

$$
\begin{array}{ll}
x=B y & \text { Defines a Mach Line } \\
\beta=\sqrt{M^{2}}-1 & \\
a=\frac{U}{M} & \text { Speed of Sound } \\
I(x)= \begin{cases}1, & x>0 \\
0, & x \leq 0\end{cases} &
\end{array}
$$

For a small volume, the heat addition is $q=h(x, y) d x d y$. The effects of all sources are then added; for example,

$$
\begin{align*}
U & =-\frac{(\gamma-1)}{2 \gamma p \beta} \iint h(x, y) \delta(x-\beta y) d x d y \\
& =-\frac{(\gamma-1)}{2 \gamma_{\mathrm{p}} \beta} \int_{0}^{s} h(x=\beta y) \sin \mu d s \tag{A18}
\end{align*}
$$

where the integral is taken along a streamline ( $x=y$ ) and $\sin \mu=1 / M$. $s$ is related to $x$ and $y$ by

$$
\begin{equation*}
x=s \cos \mu \quad y=s \sin \mu \tag{A19}
\end{equation*}
$$

By the Faltung theorem, for Fourier transforms, this can be written

$$
\begin{equation*}
I^{\prime}(x, y)=F^{-1}\{F[I(x, y)] \cdot F[J(x, y)]\} \tag{A20}
\end{equation*}
$$

The Fourier transform of the intensity is performed by the FFT, while the Fourier Transform for Gaussian density functions can be found analytically as

$$
\begin{equation*}
F\left\{\frac { 1 } { 2 \pi \sigma ^ { 2 } } \operatorname { e x p } \left[\left.\frac{-\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}\right|_{\}}=\exp \left[-2 \pi \sigma^{2}\left(f_{x}^{2}+f_{y}^{2}\right)\right]\right.\right. \tag{A21}
\end{equation*}
$$

From sampling theory, the discrete values of $f_{x}$ and $f_{y}$ can be found since

$$
\begin{equation*}
\Delta f=\frac{1}{L} \tag{A22}
\end{equation*}
$$

where
$L$ is the width of the SOQ calculation region (DCALC)
$f_{x}(I)$ is then (I-I) $1 f$. Recall from the discussion in FOURT, the $D C$ value is returned in the first position and the last half of the transformed data are really negative frequency information shifted by one period, illustrated below in one dimension.

where

$$
\begin{aligned}
& B=\frac{1}{\Delta x} \\
& \Delta x=\text { Sampling rate in real space }
\end{aligned}
$$

The equation for density change is, therefore,

$$
\begin{align*}
\frac{\Delta \rho}{\rho}=\frac{1}{\rho} & {\left[\left.\frac{(\gamma-1) M}{2 a^{5} \beta} \int_{0}^{s} h(x, y)\right|_{x=8 y} \sin \mu d s\right.} \\
& \frac{(\gamma-1)}{a^{2} U} \iint d x^{\prime} d y^{\prime} h\left(x^{\prime}, y^{\prime}\right) \delta\left(y-y^{\prime}\right) I\left(x-x^{\prime}\right) \tag{A23}
\end{align*}
$$

The first term describes the compression waves along the streamlines due to heat addition, while the second describes the wake resulting from those compression waves.

The heat release $h(x, y)$ for a laser can be written:

$$
\begin{equation*}
h(x, y)=C \int_{x^{\prime}}^{x} \Delta I\left(x^{\prime}, y\right) e^{-\frac{\left(x-x^{\prime}\right)}{R \tau}} \tag{A24}
\end{equation*}
$$

where $\tau$ is the time constant for the depopulation of the lower laser level. If the depopulation were instantaneous ( $\tau \rightarrow 0$ ), the heat release would be proportional to the intensity, since every molecule emitting a photon would then immediately relax to the ground state with an accompanying increase in translational energy. It has been shown that the above equation for the heat release can be used in all regions of the cavity with only small error introduced.

The constant c can be found by conservation of energy as shown following.

Consider the following 3-level molecule:


The quantum efficiency $n$ is defined as the ratio of the energy out divided by the total energy available, so for the gain/phase segment under consideration.

$$
\begin{equation*}
n=\frac{\text { (no. of molecules) }\left(E_{2}-E_{1}\right)}{(\text { no. of molecules })\left(E_{2}-E_{0}\right)}=\frac{\Delta P}{\Delta H+\Delta P} \tag{A25}
\end{equation*}
$$

Where

$$
\Delta H=\text { (no. of molecules) }\left(E_{1}-E_{0}\right)
$$

the above expression can be inverted to give

$$
\begin{equation*}
\Delta H=\left(\frac{1-n}{n}\right) \Delta P \tag{A26}
\end{equation*}
$$

with

$$
\Delta P=\iint \Delta I\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}
$$

and

$$
\Delta H=\iint h\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}
$$

assume, for this calculation, that ( 0,0 ) is at the corner of the sidewall and the NEP. Then

$$
\begin{align*}
\Delta H & =c \Delta z \int_{0}^{\infty} d y \int_{0}^{\infty} d x \int_{0}^{x} \Delta I\left(x^{\prime}, y\right) e^{-\left(x-x^{\prime}\right) / U \tau} d x^{\prime} \\
& \left.=c \Delta z \int_{0}^{\infty} d y \int_{0}^{\infty} d x \int_{0}^{\infty} I\left(x-x^{\prime}\right) \Delta I\left(x^{\prime}, y\right) e\right)^{-\left(x-x^{\prime}\right) / U \tau} d x^{\prime} \tag{A27}
\end{align*}
$$

Where, recall

$$
I\left(x-x^{\prime}\right)= \begin{cases}1, & x>x^{\prime} \\ 0, & x<x^{\prime}\end{cases}
$$

So,

$$
\begin{align*}
\Delta H & =c \Delta z \int_{0}^{\infty} d y \int_{0}^{\infty} d x^{\prime} \Delta I\left(x^{\prime} y\right) \int_{0}^{\infty} d x I\left(x-x^{\prime}\right) e^{-\left(x-x^{\prime}\right) / U \tau} \\
& =c \Delta z \int_{0}^{\infty} d y \int_{0}^{\infty} d x^{\prime} \Delta I\left(x^{\prime}, y\right) \int_{{ }^{\prime}}^{\infty} d x^{\prime \prime \prime} e^{-x^{\prime \prime} / U \tau} \\
& =c \Delta z \int_{0}^{\infty} d y \int_{0}^{\infty} d x^{\prime} \Delta I\left(x^{\prime}, y\right)\left(\frac{1}{1 / U \tau}\right) \tag{A28}
\end{align*}
$$

Or,

$$
\Delta H=c(\Delta z) U \tau \Delta P
$$

Or,

$$
c=\left(\frac{1-\eta}{\eta}\right) \frac{1}{U \tau \Delta z}
$$

Since the numerical kinetics routine returns information about the wake region itself and not just the heat addition terms, this information must be the data used. Thus, for the analytical kinetics model, one must find the value for the wake integral:

$$
\begin{align*}
& w(x, y)=\int_{0}^{x} d x^{\prime} h\left(x^{\prime}, y\right)=c \int_{0}^{x} d x^{\prime} \int_{0}^{x} d x^{\prime \prime} \Delta I\left(x^{\prime \prime}, y\right) e^{-\left(x^{\prime}-x^{\prime \prime}\right) / U \tau} \\
& =c \int_{0}^{\infty} d x^{\prime} I\left(x-x^{\prime}\right) \int_{0}^{\infty} d x^{\prime \prime} I\left(x^{\prime}-x^{\prime \prime}\right) \Delta I\left(x^{\prime \prime}, y\right) e^{-\left(x^{\prime}-x^{\prime}\right) / U t} \\
& =\iint_{0}^{\infty} i x^{\prime \prime} \Delta I\left(x^{\prime \prime}, y\right) \int_{0}^{\infty} d x^{\prime} I\left(x-x^{\prime}\right) I\left(x^{\prime}-x^{\prime \prime}\right) e^{-\left(x^{\prime}-x^{\prime \prime}\right) / U \tau} \\
& =c \int_{0}^{\infty} d x^{\prime \prime} \Delta I\left(x^{\prime \prime}, y\right) I\left(x-x^{\prime \prime}\right) \int_{x^{\prime \prime}}^{x} d x^{\prime} e^{-\left(x-x^{\prime \prime}\right) / U \tau} \tag{A29}
\end{align*}
$$

So,

$$
\begin{equation*}
w(x, y)=c \int_{0}^{x} d x^{\prime \prime} \Delta I\left(x^{\prime \prime}, y\right) U \tau\left(1-e^{-\left(x-x^{\prime \prime}\right) / U \tau}\right) \tag{A30}
\end{equation*}
$$

So, recalling

$$
\begin{equation*}
c=\left(\frac{1-n}{n}\right) \frac{1}{U \tau \Delta z} \tag{A31}
\end{equation*}
$$

And

$$
\begin{align*}
& \Delta I\left(x^{\prime \prime}, y\right)=2\left(\frac{1-G}{1+G}\right) \text { PPD } \quad \text { from SIMPGG } \\
& w(x, y)=\frac{2}{\Delta z}\left(\frac{1-G}{1+G}\right)\left(\frac{1-n}{\eta}\right) \int_{0}^{x} d x^{\prime} \text { PPD }\left(x^{\prime}, y\right)\left(1-e^{-\left(x-x^{\prime \prime}\right) / U \tau}\right) \tag{A32}
\end{align*}
$$

Now both numerical and analytical kinetics models return the same array, namely the value of the wake integral throughout the cavity. The effect of heat release due to lower level depopulation can be calculated without regard to the particular kinetics model chosen. The Fuhs effect is calculated in the following manner:

$$
H(I, J)=\frac{1}{\Delta x} \int_{X(I-1)}^{x(I)} h(x, y) d x=\frac{w(x(I))-w(x(I-1))}{\Delta x}
$$

Given this average heat release function, the integral along a characteristic can be performed. Note that reflection off the sidewalls must be included as can be seen in the following diagram:


The contribution at $P_{1}$ due to reflection is therefore found by finding the total heat released along the characteristic that reflects at $P_{2}$, then adding this to that found along $P_{2} P_{1}$.

The phase shift is found using the Gladstone-Dale law $n=1+C_{0}$

The phase change $\Delta \phi$ is

$$
\begin{equation*}
\Delta \phi=\frac{2 \pi}{\lambda}(\Delta n)(\Delta z)=\frac{2 \pi}{\lambda}\left(\frac{C \Delta \rho}{\partial_{0}}\right)_{\rho 0} \Delta z \tag{.+35}
\end{equation*}
$$

This is then added to that of the unloaded density field to establish the total phase change at the gain/phase segment.

## AIV．SOQ CODE ACCESS

1．SOURCE CODE
The following listing represents the source code necessary to update the $S O Q$ to include the corrections and modifications described on the preceding pages．

```
A..F.MNAH
*IIEPT JaHE
 *INSERT IGUL.CII
 IF (IHAWF.NE.|) GO TU GちO
 HMIR = 1.0
 OELTA = 0."
 \ISTF=0.n
 *NITF(AONAN) \HANF
```




```
 GSU C.JNTIP+HE
 - linsewt aHEza.?O
 *N!TF(7) (CU(17).!L=1.NUM)
 RENINI,?
 00ELFTF BNL.704.(gCL.70っ
 *JELETF (*UL.670.UNL.7)悉
 fF([CAV.E|.0) [日AHF=1
 IF(IFAME.EO.O\ GO TO nH1
 WHITE(PQ)(CFFL(IL),IL=1,iv().j).x
 NENINI) 2?
 NO कRY I=1.NOS
 CJ(I) = CFFL(I)
 7.) GAYI I=1.NHTS
 bo9l x(I) = KK(I)
 तITMM = ANC(1.1.1)/2.
 CALL APHTM(1)IANM.O..U.0.0.0.0.00.)
 POw=0.
 REAO(<Q)(CFFL(IL),IL=1,NUH) 部
 HEWINO <Q
 1)0 6an I=I - vi)s
 HOW = HOw * CU(I) * CONJ!(Cい(I))
 FUW = POW *(xK(2) - xN(1))*020(NHTS/NOY)
 WHITE(A.fHT) HOW
 OHT FORMATISX,* --E- HUWEN IN FEEOHACK NORMED TO UNITY HY *.
 xFlS.7./)
 GOTPOW = SOQT(NOw)
 OU GAN I=1.NOL
 CFFL(T) = CFFLII) / SNTHI)W
 GHG CFFL(T) = CFFLIIS SNTHI
 IF(IPADE.Eつ.O) GO TO LONZ
 IF(!*ITT.ANII...vNT, DESTKT)UU T: ה!
C OOON*O (alCiJLATE FIGENVALIJE

```




```
 wNTE(A.HG)FIG
 go F.JHMATIPOX.* ESTIMATEU EIGENVALUE = *.EIS.T.1)
 (a) PO Inの3
 NT WWITF(GORQ)
 NH FOHMAT(ZOX.AFIDST UASSPINHUT RUNEN NUT UNITY.EIG NUT EST:.*. N
 (i.) TO 100?
```

```
 lun2 CuntINIE
 CALL hFga[MINCT,iv!TEHI
 1003 [FIICFK.EJ.O) GU 「J 50h
#HELETE GINLACR.GOL.H3H
*!ELETE CAVITY.3
 * LLI.llD.IAARE)
*IvSENT CAVITY.lal
 IF(ILARF,NF.O) UU TU lOG
*uELETE CAVITY.IA3
 Ing wh[TF (') (CU(IL).IL=1,MUT)
*OELETF CIOMI.4T
```



```
*INSENT SOOTTCYI.10
 IF(IPARE.GT.O) GO) TO 12
-InSFht Cavity.zil
 G) TO 11
 12CG(I7)= CMNLX(COS(PHIM).SIN(PHIM))
OLELETE UENSY.?
 SUHNOUTINE DENSYIFLAG,RHUOXLENGYLEN,ZSI ARONPXONRY,IF,IN.NSYM.
 x INANEI
OlvSENT DENSY.lOS
 TF!IHAWF.E\.|I METUNN
 IF(LAG.GT.0) GN TO l2
 wHITE(H.13)
 17 FONMAT://IOX.bH**S .&FLAG = ". IN UEMSY*.bH ***/
 A 15x. .aLL JPDS SET TO 0.0*11)
 OETUNN
 12 cuntinue
-INSETT LROHI.Z
 OATA laARE/O/
-INSERT GOL.4T
 Tara nes!uw/O.l
*INSERT LHORI.I
 cummon thahes/ taARE
-INSENT GOL.?Z
 GOMMNN /HANFS/ lHARE
- IJELETE LHON1.3
 * -laAhe.plots
c
 imahf is flag fur loalei, hare, ur semimabag gavity
 = C FON LOAOEU NESUNATOR (DEFAULT VALUE)
 = I fon mame hesunator (unity gain.o mmase Changaf)
 = ? FOH SFMI-RAKE RÉSJNATUM (UIVITY GAIN,DEIVSITY DMASE CHANGF)
-INGERT GOL.430
 IOIH(G.ICAV) = IHAHE
-gNSENT GOL.437
 x.IDIO(G.ICAV)
 -DELETE GOL.439
 x propagativg ranameTER .12/* IHAHE= *.13)
 -DELETE GDL.444
 X NESTHT,INIH(4.ICAV), LLI(IGAV), LLO(ICAV),TO[H(5,ICAVI)
 -0.LFif GOL.5.30
 IFI.NUT.INITI GU TO 22
 DESIPm = 0.0
 - IIUSEAT GDL..245
 NOH = NPTSANPY
*UELETE MIOWNQ. }2
 70 [F(DESTOW.E(0.0.0) GU TO 300
 VIJH = NPYONNTS
 NOH2 = NURe?
C ** FINI INCIDENT PUWER
```

DOIN = 0.0
no 35 [ $2=1$ NOHC.?


IF (NRFG.EU.1. OR , NAEG.EO.S) PHWKBPHK/WNOW**?
THANS $=$ SGHT(OFS (DW/HNWR)
C *** scale thf heam to the desiren pumek. $0035612=1$, NOH2
$350 \quad \operatorname{CUR}(12)=$ CUR (ILI)THANS
WHITE (6.4nIO) DESIHWOPWWK.THANS
4010 FORMATI/5X.4TWTHE FIELU HAS UEEN SCALED TO DESIRED DOWEN/
x AX.12HOESIPW =.G1L.4/gx.12HMOWK =.G12.4/
$x$ EX.IZHTHANS $=0.612 .411$
OESIP = TRANS
$36 \cap$ IF (ARS (ANX).LE. O.0NOLUU.AND.AGS (ANY).I.F.D.00OIOU) GO TO 71

- delete cinastg.?

3 AHC(II,IMIR,4), ARC(IL,IMIH, L), ABC(13.IMIR,2), DESIPW)
[FIDESTPW.FW.O.0) GO 10 24
$C$-o\&\&* SCALE THE FIELU DACK UUWIV.
ou 35~ $I 2=1$.NUQ
354 CU(IT) = CU(IL)/DESIHW
WHITF ( 6.4000 )
400才 FORMATI/5x.30HTHE FIELU has heEN SCAI ED DOWN/)
?. GINTINUE

LUP: iv

```
 JITEN
 TEN
-PDENT JITTF.N
-JELETE GOL.PO
 x ICUT.MLT.IDK.IJTH,
 x ICNTZ4.ICNTZS.ICNTZ6.
 x itmoicfkonct
~HELETE GOL.PG
```



```
 -|ELETE GNL.PSO
 nO 173 IZEHO=1.CO
 *|ELETE GOL.314
 (0) 177 17500=1.17
 GINSFRT SOOTICY!.165
 C = 23 JITTERS THE dEAY AN ANGLE ANGJIT
 C = 24 DUMMY - LINE 24U IS TEMPUGARILY STORED IN JITTER IFLOW.
 C = 26 IUMAMY - LINE ZGU IS TEMMUHARILY STORED IN JITTER IFLOW.
 |Insert cormp.t
 UATA IJTR.JITANG.JITUIS 10.0.0.0.0/
 -UELETE GUL.POS.SOOTTCY1.107
 C / ln/ l7/ 1a/ la/ 20/ <l/ 22/ 23/ <4/ 2a/ 2G/
 x.150.170.1A0.190.200.210.365.230.240.250.2601.,IFLUW
 *UELETE GOL. 225,5UQ17CY!.100
 C /la, 171 la/ la/ 20/ 21/ 22/ 23/ 24/ 25/ 23/
 X.190.170.140.170.200,210,365.230.240.250.2501.1FL?m
 -IINSEAT GUL.P43
 c
 Namelict /JITTEH/ JITANG.JITDIS
 JITANG = fHE ANGLE UF JITTER (IN MICRORADIANS)
 JPTDIS = TME DISTANCE MRUNAGATEU SUCH TMAT THF JITTE.N
 SIGMA IS JIIANG*JITDIS*I.E-A
```

```
C
-UELETE GUL. 327
C
 230 \.JTN = \JTQ+1
 IF(.NUT.INIT) no To 23]
 HEAD(IN.JITTEH)
 AHC(G.IJTH.1) = JITANG*l.E-6
 ABC(G.IJPQ.2)= JITOIS
 231 SIGXY=A&C(6.IJTH.1)*ABC(O.IJTH,C)
 WNITF (6,1H36) AHC(6,IJTK,1).SIGXY
 IZ30 FOHMAT (45N *** GEAM JITTEH MUDEL CALLED ****.STO UFVIAA,
 XZ3HTIUN ANGLE (HAOIANS) = (GlC.b.8X,*: STN DEVIATIUN (SIG{Y) E*.
 x(12.5)
 no 233 !J=1,NOA
 2.33 US(IJ) = CUR(2*IJ-1)**2 CIJR(2*IJ)**?
 nx = x(2) - x(1)
 CALL JITHGG(DXOSIGXY)
 OU 235 IJ=1.NMB
 !JIJ=2*!.)
 CUN(TJTJ=1) =SOHP(US(IJ))
 235 CIR(IJIJ) = 0.0
 240 CJNTINUE
 250 CONTINIIE
 Lon e.jatimur
 ImNAL = 1
 (in) in cosa
arstur GOL.at
```




```
- brizem wul.1s
 * 0/S.CUH
 REAL jitang.uITUIS
-INSEht crcleq.a'
 nu l74 ilsl.NNTs
 134 x(1)= xSAVF(II)
-ueletf ahal.a
 SubROUTINE JuAL IINMASE,ISAVE.INL',TITLE.RA.ANG.IN.RF,SIGANGI
- InSent oual.il
 \ata N1/3.14150己mh/
-uelemr. jial.iny
 aj IFISTINAVG-1.F-G:7n.70.nh
 to gigxrafegigang
 wnitf (holagh) sigaivo
 loto funmat l45H *** hFam JllIER mUUEL LALLEO ****STM DEviA.
 xIGMITUN ANGLE = G20.5,
 CALL JIPMAG(nXGAVE.SIGXY)
 umax=0.
 H0 GH JEl:VNTS
 Jl=(N-1)ONDTS
 Tu na i=1,imis
 17=1.J1
 if (lmax.GF.uS(Izl)Gu fo ma
 UMAX=|S(1/)
 XDEAK=\(!)
 YHFGK=>(j)
 1!1<=P|!%
```



```
 C|H(1/1)=0.0
 ah CUNTPMIE
 70 camkEl!mex/l|\O.
- InGERT MAIN.TCO
 GumROIjPINE JITGMG(DX.SIGXy)
C TMIS SIMROMITINF MOIIFIES TME FAR FIELD INTENSITY DISTRIGUPIUN
```



 GY THE FET IM FACM H，JACIIIJ ALUNE MULTIPLYING PHE WFSULTS．

LfVE：P．C！．．CT
G：MDLa GU．E！
 Cimiann．／tG／C：（17110：
UIMERSIUN Yvi（ 2 ）


and＝an
叫 $=$ n．．．

$C I(M)=$ CMPLX（US（M）：O．U）
10 PP：$=$ WNW•US（M）
NNO（1）＝NPTS
NND（ 7 ）＝NPTS
NAH＝ZANHTSO
NPOZ＝NPTS／？
CALL FOURT（CI．NAH．PJNU．1）
SIGEXH＝2．＊（SiGxy＊HI）＊＊

うF＝．5／Sリした
า 0 2ก J＝1．NPTS
Y S（ $=(1 \mathrm{~J}-1)$ ONF）©

$J K=(. J-1)$ ©NHTS
OO 20 $\quad 1=1$ ．NHTS
$x S(1)=(1)-11 \times n F 1=2$

$K=I \cdot \mathrm{~J}_{\mathrm{K}}$

CALL FOUNT（CI．NAHDINNU．－1）
「ル） $30 K K \pm 1$ •NPTSU
！ 1 （KK）$=$ CABS（CI（KK））／NWTSW
30 DPWN＝$\mu P W N+U S(K K)$
PWHFAC $=$ POW／HDWN
DU $4 \cap \mathrm{MM}=1$ ．NPTSU
$4 U$ US（MM）$=$ US（MM）＊WWFFAC
WHITE（A，ION）PWKFAC
IOG FURMATI／／5X．©IHE POWEN HAS BEEN SCALEN GY A FACTOH UFOAGIZ．S． $x$ •IN SUNHOUTINF JTTKHG．0／／i
2ETJON
FNU
－UELETF MAIN．HO
NAMFLIST／はLIT／TITLE•IULT．DH•I $\triangle A V$ •IPHASE，RRH•RF•STGANG
－DELETE MAIN．？30
210 CALL＇AIAL IIPMASE•ISAV•IULT．TITLE．RGH．AS．OE•AF•SIGANGI
－INSEAT MAIN．？
OATA SIGANG／0．0／

APPENDIX B
SOQ USERS GUIDE UPDATES
JUNE 1978 TO JANUARY 1979

## INTRODUCTION

This appendix documents those changes made to the initial SOQ code between June 1978 and January 1979. The changes incorporated in the code are those that have become generally useful for the physical optics simulation problems which have been solved using the $50 Q$ code. The users guide updates are also prepared to clarify and correct the initial description of the SOQ code as documented and delivered to AFWL on 1 March 1978, in the Preliminary SOQ Users Guide. This document supercedes previous written material on SOQ code documentation. The organization of the SOQ Users Guide Updates is as follows:

Section BI New Subroutines

1. Subroutine ZERN
2. Subroutine CPUTIM
3. Subroutine LISTER

Section BII Code Changes/Correction

BI. NEW SUBROUTINES

## 1. SUBROUTINE ZERN

Zernike polynomial terms give the $S O Q$ code the ability to model mirrors with arbitrary surfaces. This subroutine also provides the determination of sensitivity of a given system to the level of these Zernike terms.
a. Relevant formalism -- The Zernike Polynomials are an orthogonal set of polynomials used to describe phase front aberrations. The low order terms of this set correspond to the low order Gauss-Seidel aberrations, such as piston, tilt, defocus, astigmatism, coma, and clover. A list of these polynomials, $Z(k)$, is given in Table $B-1$.

TABLE B1. ZERNIKE POLYNOMIALS

$k$	$Z_{k}$	$k$	$Z_{k}$
1	1.0	13	$\left(4 R^{4}-3 R^{2}\right) \sin 2 \theta$
2	$R \cos \theta$	14	$R^{4} \cos 4 \theta$
3	$R \sin \theta$	15	$R^{4} \sin 4 \theta$
4	$2 R^{2}-1$	16	$\left(10 R^{5}-12 R^{3}+3 R\right) \cos \theta$
5	$R^{2} \cos 2 \theta$	17	$\left(10 R^{5}-12 R^{3}+3 R\right) \sin \theta$
6	$R^{2} \sin 2 \theta$	18	$\left(5 R^{5}-4 R^{3}\right) \cos 3 \theta$
7	$\left(3 R^{3}-2 R\right) \cos \theta$	19	$\left(5 R^{5}-4 R^{3}\right) \sin 3 \theta$
8	$\left(3 R^{3}-2 R\right) \sin \theta$	20	$R^{5} \cos 5 \theta$
9	$R^{3} \cos 3 \theta$	21	$R^{5} \sin 5 \theta$
10	$R^{3} \sin 3 \theta$	22	$20 R^{6}-30 R^{4}+12 R^{2}-1$
11	$6 R^{4}-6 R^{2}+1$	23	$70 R^{8}-140 R^{6}+560 R^{6}-210 R^{4}$
12	$\left(4 R^{4}-3 R^{2}\right) \cos 2 \theta$	24	$252 R^{10-630 R^{8}+560 R^{6}-210 R^{4}}$

The phase applied is

$$
\begin{aligned}
\Delta \phi & =\sum_{k=1}^{24} 2 \pi P_{k} Z_{k}(R, \theta) \\
& =\Delta \phi(1, \theta) \\
\frac{r}{R_{0}} & =R<1
\end{aligned}
$$

$R>1$

If the Zernike radius $R_{0}$ is specified to be zero, it is a flag to set the phase identically equal to zero.
b. Fortran formalism -- Subroutine ZERN is called by GDL with IFLOW = 24. Namelist ZERNS contains the Zernike radius $R_{0}$ as well as the coefficients of the Zernike polynomials to be applied $P(I) I=(1,24)$.

Due to excessive use of the FRINGE program，one can also input fringe coefficients（PFRNG（1）），corresponding to the 24 Zernike polynomials to be applied．The PFRNG coefficients are converted to $P$ coefficients in subroutine GDL．

NAMELIST／ZERNS／	RO，P，PFRNG
Argument List	RO，P
Commons	／MELT／
Externals	None

IDENT ZRNIKE computer printouts follow．



```
 .1
```










```
 **
```



```
 r**
```




```
 FW! |.E = < < ! \F.
 \cdots+2* l=1.!
 か& 人!1) = '.
```



```
 \therefore4
```



```
 \M, 1=1.14
```




```
 N+1|し(ん, +4G)
```



```
 *(i) : '1.
 अ(\partial) = 比田*, !1)
 *!| = -トば心に!う!
```



```
 *:\infty) = UFW**:1+1
 ひ(ん) = んFんN!!!&!
```





```
 O(|,!)= =F,NN,(|!)
 *||| z பF二小|(M)
 -(1) = -6)J.vi(1\\)
 ~(1) = U5.dंप%(1)
 (1M1 = -t:氵, 1-1|)
```



```
 د(|ム) = ご年.,(1 \)
```

```
 -|!)= 2FW.|.1|4)
```




```
 -(入り) = 小人ふひ!(入ム)
```




```
 ~(+\) = -FNM,\ (4)
 m(>) = be:OM, (in)
 !F~「ち「 = 1
 |! د4n n=20.21
```



```
 H 能 M=r'0, &
```










```
 |!wal = :
 (01 f1, -(ry
 *HEFTE ;\&.うl
```








```
 r
 C. AOI = /FNPIAF IOLMGLI/ATION WAIIIUS.
 Il
 * 1:5FLT l'30N1.7.46
```



```
 LFVF!-\.clu
```



```
 COMOLFX C-H
 |IWF.,S!ON: د(<4)
```



```
 ,H1) lull lval. jur
```



```
 (<!) = x(|Y|0*)
 0" 100 Px=1. (1)P;
 x与は = (||x)**)
 IPNK=1x - 11
```



```
 THET s ATAND(A(TY),x(|x))
 N= N:IN|(W/Wll.l.)
 CT= CU\(TME゙T)
 C.CT = (:)S(?.*TAFT)
 Cat = CNG(T.*THET)
```



```
 Cit = &|S(G.*Pme'T)
 Sr = GI*(TME!!
 SoT=SIV(つ.*FMFT)
```





```
 H, =-*+>
 *! # ज*W>
 W4 = +0N3
 W'5 NeW4
 WM = tewn
```

```
 4.4 = +coun
 H\l= Wrenm
```



```
 N(4)(`.0nN-1.)
```














```
 [小い\ = 11N!日!
 .1F: = N1*?**4.1:150ran4
```



```
 4|N, = siv(.1ri)
 Cmes = C!F(!!:MN-i
```











```
 HFT!M,
O rollrd = \thereforerice.d~y
 !n a| l=1.!(!4
 l!=1* I
 1!* 1=1!-1
```



```
NO (..N(!|) = '0.1
```




```
 m+! m"
2．SUBROUTINE CPUTIM
Subroutine CPUTIM has been activated for the CDC computer to print out the amount of CPU seconds used by the kinetics package，which is driven by Subroutine REGAIN．On the Cyber 176 a system routine
\(A=\) Second（B）
returns the \(C P\) time since start of \(j o b\) ，in seconds，to both \(A\) and \(B\) ．
Argument List：
IT＝100＊time since start of program
Commons None
Externals None
```

FORTRAN：

IDENT CPUTIM computer printout follows．

```
Inf:1 (\cdotsa,tim
 -Pigur rumtt.
 courl:
 argleTt ::mars.>"
```




```
 2FCa!!.
 OHFETE WFGAIN.ちつ
 jF!.T = (|F|y-!पNT)/!\!.
```

3．SUBROUTINE LISTER
Subroutine LISTER was activated so that the output of the resonator． design program RESDES or an arbitrary file may be read internally and reprinted in the output of the SOQ code．LISTER reads an 80 －column file， designated as Tape $K$ ，and reproduces it in the SOQ－designated system output file with pagination defined the same as on Tape $K$ ．
FORTRAN：
LISTER is called anytime IRSDS，is nonzero in namelist START．
Argument List：
$K$（ $=$ IRSDS from START）
$=$ tape number of the file to be replicated
Commons：None
Externals：None
IDENT LISTER computer printout follows．


```
 * PHENT listFN
 LISTEN
 ONFLETE I.JMNYS.23.1MMMMYS.OS
 SUNDOUTIAF I.|STFD(F)
 C.** THIS HIMITNE CODIES TAPE K TO GMTPUTT.
 OPMENSION r(2O)
 HFWPMON
 C
 1 WF{n(r.5) ない.C
 if (Eir(k).ist.allan) (i| Tn ls
 GF:1Q14!(!l, P(1a)
 {F(TCl.E゙J.l) .UITF(R.3b)
 NHITS(N.1)) C
 10 FimAar(11x.2|A4)
 C HFan fat ivkt C{HO
 (i) TO l
```

```
 r
 l5 HEN|A|| K
 mम|TE(ด.2ム)
 35 Ei|MAAT(1+1)
 NFTINM
 ENT)
* 4 I I
 *\MCFDT M9TV.1G5
 |F(!LSUS.NF:.U) CALL L|うTFM(INSi)S)
 IF(.4WLOLF.O.) DFW[Mr 50
 I+STIS=7
```

                                    BII. CODE CHANGES/CORRECTIONS
    The code modifications and corrections included in the code are described below by their update file name．The reason for the change，the structure，and the listing are included below：

1．＊ID SOQMAP
This update provides a cross－reference map to the SOQ79128 code．The first section lists each routine in the order of appearance in the $S O Q$ code with its commons and externals．Also given is a list of all routines that call it．The second section lists every common block in the SCQ code with the subroutines possessing that common block．

```
IMFNT \JJMAN
 #Tlamir yoldmar)
 "AT!/
 *!!SFん! Y!!vocs
```



```
 r ruman\is amM expemanlig.
```



```
 WUHITNAG (O)AINN EXTEHNNAI. CALLEN HY
 SO.) FST (?) CIVGTN:4
 nFI| (?) i|v[I]N
 NLT>IS inL
 INitL ISNS
 H1.AO I.ISTFQ
 O|TYM L!GPM|
 MIWEG ITAN
 UUETYN
 BUAL
 F!MHT MM!
 JITGMS: NFLT (?). F!HMT
 CG (2)
 |5,
 ENEC
 E EMF
 HMal
 -
 SMINYY
 kINET
 PMEHML
```



		［vTTl	FIELOS	
		GFigrall	INTENW	
．		CTJMwL	TrLT	
		＇jVTYa	．JITintic	
		HIRES	MIHNOM	
$r$			Pilwid	
－			RFISAIT，	
$\bigcirc$			Heiner，	
r			QSTFD	
$\cdots$			31 IJFir	
－			らゆTJFん	
$\bigcirc$			CTEP	
$r$			THLOOM	
$\because$			THFITML	
$r$			1．FRN	
r	1ATEんW	－	－	AXICN
$r$				CAVITY
$r$				sne
$r$	IPLOT	－WEL（ ${ }^{\text {O }}$	nutpun	Gil．
「	IPL	NAY	：川「以！	JUSL
$\stackrel{+}{+}$		ULTSTif		
$r$	¢ IVFF	แunut	Ewfr．	GAINXY
$r$		SIAPT	A $1 \times$	
$r$		＊）じ「5		
$r$		FTIERC；		
$r$		，AIF．		
$r$		EACIFW		
$r$		1，FnCTH		
$r$	Milurim	NFLT（ ${ }^{\text {（ }}$ ）	AWRTH	（21）
$\stackrel{+}{+}$		ヘ．วเかก		
$r$		y 1 ¢		
$r$	＊ 11	Wromer	－	igATNXY
$r$		いMLFS		KINE
$r$		$\cdots 1 \mathrm{Tr}$		
$r$	AMHFN	NEI 1 （2）	Shtia	，
$r$		$\cdots \mathrm{Ar}$		
$\bigcirc$	Vf 4 －	MiFI，（2）	CO．JFFF	Sols
$r$		TIAE	いATF	
$r$		vit＊＊	hrluer．	
$r$			T－WFE！）	
$r$	パげい世	－ A $^{\text {P }}$	－	IPlor
$r$	い隹仿	$\cdots$	－	Caviry IPIUT
$C$		Hrsif		talunm
r				1HFFML
$r$			ド）ww（）：y	dual
r	シL「リア	－	－	gnl
r	prome	－	－	Plot
－	か．lw＊iw	－	－	JuAL
$r$	1314L	HFLT（ ${ }^{\text {P }}$	C．ENHAFR	sへu
r			drente	
C			1PLOT	
$r$			HLTOT	
$\stackrel{\sim}{+}$			－1＊＊＊＊	
$r$			STFW	
$\bigcirc$			TJLT	
$r$	WEしへ！	WFIT（2）	HLJMIT	Gnt．



```
Clll
r
C
2. *ID ABCMAP
```

Current allocations of the $A B C(I, J, K)$ array are presented here for ease in future updating.

Infaly a.ar.ant

- frifyt ardruan
rill
*irsfar mill.く45
$r$






C. $\triangle$ CHC(In.IMTH.4)

AHC(l) (ares)


 tFLUw=2, MIRQ日N
 [FLUW=3. טROO

 smC(10.IwFa.m)

 AHC.(1.MLT.G) THAOIGH AHC??.MLT.4) : IFLOWEI2. MILT

## 3. *ID PLTFIX

Ident PLTFIX modifies the printer-plotting package in the SOQ code.
This new plot package:
a. Prints DCALC, IMAX, DCALC FLUX along with the location of the center of the beam (DRX, DRY) and the bottom of every iso-intensity plot
b．Prints a blank for every value of intensity less than 0.01 ＊UMAX（UMAX is maximum intensity）and puts a border around the outside in column 1 of NPTS and row 1 to NPY
c．Allows for selective plotting，based on the new namelist parameter KPLOT in namelists PLOT and QLOT．

```
In+MT ATPFIA
 *inrar atitix
 TPLOT
 * liviFur lumml.g4
 DCF = 1%
 * lNaFDT (at,pl.ant
 OCF = :CF - is!J)
 *V\FWT LUNOl.o'
```






```
 * 1HFL!1x = 0.!11.5/174x.
 #NFI_FTH 1 QuND.4N
 lonolf(0nx|s) wretF(4.7.4A)
 ML
 *!HLFTE OML.ISM
 Na.AFI.IST/HLIT/ KWL.IT.IITLF.HANHLT
```



```
 C. A = D DAIIAL PLOTS
 r IGOTNTFVSTTY MLOTS
 r C = 1 x = axts ntory
 r n= Tgagonal pluts
```



```
 A2LOT = 11
```





```
 IWLTINTT)= <W|!T
```



```
 KPLOT = I|PI.T(INTT)
 Call [hlot(Kuluti
 H0%
 -1NSざんT L2ND1.3"
 HTMF:ISION m(14), x|(1)2H)
 -IVSFET L.NOHI.JG
 nath mLap:M.DN! /|m 0lH./
```



```
 ONFLFTELLOUI.7nO1.WINI.74
 Ul = |S(17)/1,NAx
 [k = l1.011 - 2
```



```
 [F(f.tu.l.(MN.T.fn.NPY) ix=14
 [F(J.FM.I.OM. I.EO.NDTS) |<=13
 2 Ali(f)=m(fa)
 4 wNITF(A.7) (>P!(!).|=l.NWY)
 * Elumar(1x.1>4al)
```



```
 U) = |S(IP)/IMAX
 [< = l|.0|! * ?
 |F(')|.lT..N|) [K=1
```



```
 [F(ノ.F゙ふ.l.n\.1.F(..JNTS) [K=1}
 12 !!(!)= = (!к)
```




4．＊ID ADDPRNT
This section of updates was included to add information on intermediate printout to CAVITY，STEP，GDL，and TILT：
a．CAVITY－The incoming and outgoing total flux at each gain／phase section is now printed．
b．STEP－At the beginning of STEP，current values for DRX，DRY，RAPTR，NREG，and WNOW are printed，and the incoming flux calculated．At the end of STEP，mod－ ified values of DRX，DRY，NREG，and WNOW are printed along with the percent flux lost during the propa－ gation step．This last parameter（percent flux lost） indicates how much of the beam has been propagated out of the calculation mesh and，therefore，lost by windowing in S－space and K－space（Fourier Transform Space）．
c．GDL－At the end of any IFLOW the code now prints out total DCALC FLUX，DCALC，and the location and magnitude of IMAX．
d．TILT－Subroutine TILT now prints out the mirror radius of curvature necessary to remove the beam radius of curvature found by TILT．


```
 *ligir misimurg
```




```
raypyy
```



```
 HMv. = 0.
 U.!n= = !.,
```

```
 *MFLFTE COVITY. 24n
 Ax-4x=<<tax
```




```
 4 114(4x) = \\N1|
```



```
 *HFLビTE CAVTTY.\supsetneqつ!
 JY.JY = - >& JV
```



```
 AOwn = mNWa * A|^|
 n4 |5(.Jy) = {|mT * |S(JY)
```






```
GTF%
 OIISFDT STEN.14
```





```
 * * NAWA*&TFUS:**
```



```
 fax.*nwr =*,F!!.4.
```





```
 &いNZ=n.
 د!w: = リ.
```




```
 |!= 201
```





```
 * [JCrwT STEん.2.34
 M(IF = N~TSOBNF
 IM)401 !=1.NO..2
 I!=2*!
```









```
 * UムWAMFTFHC:**
 x/Mx.0.1Hx ==.0.91,2.40
 X/MX.004Y =*.jl2.4.
```





```
 OOPLETE STRD.191
```



```
 *INSERT STED.jG4
 mNOW = 1.0
```



```
 -TIGFWI STFU.JN4
 *NON = 1.0
```

GIL

```
 ONFLFTK.(g)L.N&7.ri)L.H4R
 U4Ax=10.0
 xMAX = x(1)
 MMAX = x(1)
 i)U 7& J=1.NNY
 Jl = (N-1) - vNな';
 (J) 7a 1=1.NはTく
 IL=\*J!
 XYINT = CU(I/)*CNNJi(Cい!!/|)
 IF(IMAX,CTGOYINT) तon TO 7H
 IJMAX = XYIVT
 AMAX = X(I)
 YAAX = X(J)
 74 PPW = NHW*XYYNY
```



```
 IIMAXK = IIMAX/100!.
 WAINAAX = SOHI(XMAX**)+YMAX**?)
 -lelr PE GIM.oHoh
```



```
 -NELFTF igll.ATO
```




```
 x /4, x.4MAT Nal)(US.(91?.5)
 *)ELFTE Gil.H71
 IF('ISTFH.FO.I) WHITE(A.T7UI WPWK.OCALCP.IMAXF.XMAX,YMAX,QAIMAX
 -NFLFTE ENLOH7T
```






```
 GGidAL = 1
 (0) PO 494
PILT
OFFLFIE CYI:LE->.>73
 「*נN!r= = 2.*NAIC:%N
```



```
*HFIEEP (YCLE4.234
```



```
 /INx. MOTE - THIS CIMVATINF C.AN AF REMUVEN WITN A MTMROHE/
```



```
 x IOX,* N,Gi:ATP\F UANGIIN IS A CUTJVENGING WHASF FRONT WMICMC.I
```



```
 * 1.11)
```

5. *ID SCLPWK

Ident SCLPWR modifies the IFLOW $=12$ section of GDL to allow for scaling of the beam to a specific power TRANS．

```
INFNT GRLLNWN
 *rlevit selpath
 ini.
 *lishar r.ill.44a
 MMal; = 1.
```






```
 AMAl; = 44C(P.MLI!.d)
 THANS = WClい
```



```
 unuta= U."
 |n 3ヶ人 17=1.9.m
```




```
 IF(GUNE゙GOFG.1.OW.VWEG.FO.?) RNJEN=ONEW/WNUW**?
```



```
 STLAN;=S##T(1,)LU/PNEN)
```




```
 [F(THANS.CGE.|) [GNAI_=]
```


## 6．＊ID TBLUM

Two errors in subroutine TBLUM are corrected by this ident．The following listing is self－explanatory．


```
 #FiFEMT 「M||m
```



```
 *:FLFTE 「4L.NM.4?
```



```
 $!P.I.FTF TAL NOM.NA
```



## 7．＊ID REMSPH

Ident REMSPH allows the removal of defocus and／or tilt using a call to subroutine QUAL，and to continue with this optimized beam．This optimized field can be plotted and written to a local file specified by IWRITE．

IWRITE．FT． 0 sets IW $=$ IWRITE
IWRITE．LT． 0 sets in $I W=-$ IWRITE and returns to $S O Q$ immediately．

If desired，the non－optimized field can be read in using ISAV $=1$ in namelist QLOT．


```
 $l!ferv unvjum
 OINL
 *l|gr的 rinl.ol
```



```
 wl.4 = |H|S@',my
 I* = Pr.mifs
```

```
l5(TwWlTF.LT.|) in = -lwwTTt.
```



```
GFvIM! Im
wol(Tf(6.4N) :IO[OHASF
```



```
* * vlitr fumasf =&.!?/f
 IF(TWRITF.(F.N) O) TU &|
 |N-NT = |
```



```
 [F(KNLOT.FT.H) CALL !OLIT(KHLOT)
```



```
 \alphaFの「ツ!) >
 WET.IM's
 mo Cimertivue
*&\^
 *NFIFTE MA[N.<ZT
 フON KNLIT=lun:
 mFall(5.d) (T)
8. *ID CHGNPT
Ident CHGNPT increases the flexibility of IFLOW \(=6\) in two ways：
a．Reoverlap the beam，letting the code find the original DCALC by setting DIBEAM \(=0\)
b．Change the number of points in the beam，by interpolation， by specifying NENNPT and NEWNPY．On a subsequent call to START，set NNPTS equal to the value of NEWNPT or NPTS will be reset to the previous value of NNPTS．
```



```
 - rafi.f Curovar
 rnc
```



```
 lan luFa=lmta * I
```



```
 "bril(fNoHf(i\alphalO)
```



```
 15; (vim|l= = ArC(|O.ImFA,A)
 *T*Gfor Crcleqon
 HNTS = NOFNNOT
 Nuy = I.r.wNOY
 Mamg = R:NY*PIFTS
```





```
 GAMNLPN!: T+F FIFLO.
```





```
 NF.gest = n
 N+||Ny = n
 M!山今M=1
```




```
 14¢(1.101) = AF.dr.vY
 A+CC(+0.l-1)= =\ibS!A
 IF(N|MEANP.F'J.N.) ANC(I.l.l) = (x(?)=x(l))#FLOAT(NPYS)
```









```
enflefr (t)lloned
 19| ne l'in=>0.+b ve4pt
-HELFTE CrMOANE
```







```
 *N(1)=>() = 1.
```






## 9. *ID MISCFX

This ident corrects minor errors and adds two parameters to namelist START.
a. *D GDL 384,385 This change in format compacts this part of the printout to 80 columns for 4 or fewer struts.
b. *D GDL 884, 885 This change removes the $S$ from column 1 so that output can be put on microfiche. It also corrects an error in the BARE updates so that the CU field is read in at the end of a converged iteration.
c. *D CORR 1.23, 24 This change removes $\$$ from column 1 in the output.
d. *D JITTER . 83, 86 This change updates the indices in the $A B C$ array which were defined originally in reverse order.
e. *D BARE . 11 This change corrects the size of the loop from MUT to NOB.
f．＊D Cycle 9．119， 120 Previously for IPS $=2$ ， the iteration counter KOUNT was not updated．
g．＊I Cycle 9.99 Focal $=1 . E 50$ defaults the radius of curvature of the beam to＂infinity．＂
h．$\quad$ I STEP ． 40 This change activates the IIPS $\neq 0$ option in STEP．Setting DELZ $=0$ allows the removal of tilt and／or calculated sphere without propagating the field．
i．＊D GDL ． 827 This statement was redundant．
j＊D BARE ． 86 The parameter RGAIN allows the option of not calling REGAIN at the end of an iteration．

The parameter IFLGAP is included so that aperture loads are printed for all apertures in the optical train．


```
 *||F|「`!じF^
```



```
 vd*El!G! GIOmT.
 ほ|!.
```









```
 HFN|(H1) 't
L|STH,
```





```
Mi
```







```
 Cavity
 GNE!EPF HAWF.II
```



```
「!し「
 OMEl_FTE CYCLFG.llworrCLF.子.120
```




```
 *!:SFuT Crrif+.%%
 F.le%1. = 1.55..
GTE=
 |VGFO| ら「:P.4い
 #A!rim = &A!chd
```



```
94
 *MELFTE GM:.0met
 *MFLFTE mAHF.EA
```



```
4.4.4
 ||v&:%「malv.!?
 LMOICAL HONTM
 -INSFur Hinr.4
```






```
 WITAl%: = T-TJF.
 IWSilS= \
 IFLrinN = "
```



```
 IFLiar = i
```



```
 M.IMANE,PIMTS.NIGAIN.IRSNG
 - 「|GFLT \M\A.7
 O.)MM()N /GuTYA/ WGAIM|IFLGAD
sin
 *IsGFir inl.17
```



```
 *)HLFTF rol.**O!
```



10．＊ID FXQUAL
The quality program has been updated to include more options and more printouts．See also＊ID PROP and＊ID RRIVSPH for other additions to QUAL
a．IPRNT．This parameter was added to suppress the additional STEP output（from＊ID ADDPRNT）when STEP is called from subroutine QUAL．It was also added to namelist PROPGT for the same purpose．
b．The output of the focal plane search was modified to print out more information．
c．Additions to QLOT
RBB（New meaning）

IWRITE (see *ID RMVSPHP)
PROP (see *ID PROP)
IRYFF
KPLOT
I table
ICTRD
(1) RBB:

If RBB is input as other than one,
QUAL will find the quality infor-
mation for RBB ( $R \lambda / D$ )
(2) IRYTFF.GT. 0 writes far field to unit IRYTFF
(3) KPLOT.GT.O plots the far field by calling IPLOT (KPLOT)
(4) ITABLE $=0$ finds quality table and plots information $=1$ does not do the above
(5) ICTRD is used for ITABLE $=0$, $=0$ chooses the optimal focal length based on the highest 1.0 R $\lambda / D$ quaiity about IMAX, then constructs the quality table based on the better of the two beam qualities at that focal length (Default and same as previous).
= 1 calculates quality table about centroid for optimum.
$=2$ calculates quality table about IMAX for optimum.
= 3 finds the optimum value about either centroid or IMAX chosen for the highest 1.OR $\lambda / D$ quality.

```
INEAT Fa||IAL
 * rienr FxouNal
 JUAL
 *!VGFDT JTYTFN.1J4
```



```
 C APF+TINAF! PU A IIANAFTHN UH बIPH A CUNVFNGTNG LFNS UF FOCAL LFNGTM
```



```
 C. DLANF OAVF IS IHF STAF AS THAT IF THE CUHRENT CU FIELO.
 -INSFET C.YCLF&.17
 COMMIN/V /STNIJWI./ PP:ג!JT
 GOL
 -INSFHT (jul.1<C
 * - 10山NT
 -1NSFET INLLI3A
 C
 C IWWNT IS A FI.AIFFITH ORINTING NHFG ANII WNOW FNOM STFP
 C. = II NINPT WUINT
 C = 1 UNINT (')FFA|LT)
 - PrNFE! (サ)し.SM!
 IPUNT = 1
 *I!NGFQT GOL.SGO
 AGC(M.ISTEN.3) = FHUNT
 -I'VSFNT G')L.S93
 IIMQNT = ANC(a.1STEN.3) * . %111
 |NSEDT (GIL.IM
 CIMMMON /SINIJWI./ ITPHA&T
 n14L
 |||FF口T JTTTFw.l?&
 If(KPIOT.GY.7) WA[TE(G..习习ON) FFTITL
 J|ON FOGMar(lHl.E|A4/ノ)
 {F(KOLUT.NF.B) CALL IPLOI(KHLUT)
 INWVT = I
 IF(IAYTFF.NF.ij) WWITF(IPYTFF) (CU(IX),IX=1,NON), X, NWX,I)RY,NIT,SAVE
 |F(THY{FF.NE,.n) AFW{NU |WYTFF
 IF(PHYTFE.NE.n) WH(TF(N,AO|I ILYYFF
```



```
 GTFN
 *TVSFWT STEW.N
 COMMON /STEIJWI/ THRNT
 CAvPYY
 * T vFFRT Cavitr.o
 CU:AMAON /STHuwl./ [HUNT
 * TVGFHT CAvitr.lor
 |PW!|! = l
 MIAL
 *INSEWT JTTTEH.1ヵ4
```




```
 1)APA SAVF/1n0!./
 [PUNT = |
 HN1 = 1.!
 W4h = 5.0
 -lveful m|lalol*
```



```
 -losfar wlal.elm
 C.* ISAVF = I SAVE NFSH FlEI.O ON UNIT I.
```



```
 C.* [SAVF *-I : WEAN IFAD FPFLO FMGM IJNIT 4.
 -l'ISERT CYMIE".ja
```



```
 -HFLFTE INIAL. IIJ
```



```
 IF(ISTEP.FN.H) CALL NOWWOW(NNTS.OX,X.US.XPEAK,YMEAK.RHS.PRRS)
 IFIISTFN.FO.S.ANII.NA.NF.I.I
```



```
-NELFTE JIINL.DPlor|INL.IJ!
```




```
 IFIRH.Nt.I.I
```



```
 x LivGAVR.OH.STREHL
```





```
 XGHFL!IX=.G1P.4.nX.P?M HFFEHENCE NIAMFTERZ.FG.Z./
 x luH SimFHl. |MIENGITY *ofill.4/l
 mIJSINT = PHKCKK/DwSAVREIOO.
 NHOCNT = NQNGK/HWSAVN*lUn.
 WNITF(HOPOIOI HISEINT,HIJSCNT
```



```
 * CENTINFTFMS*/I* MO AHOHT [MAX FON SNL/U=*,GIZ.4.
```



```
ONFLFTE IHIAI_.11N
 CALL دOWWOW(IIOTS.NX.X..JS.xCINT,YCIVT.HHI.PHA)
 ZLISA = \1n*T!!!
*INSEHT JHaL.l?O
 IF(TSTEP.NF.O) (N) P| 2nOn
```



```
 CALL D(WWON(:DTE.INXOX.NG.XPEAK.YDFAK.HRG.PNKS)
 CALL PIMWW)N(NPTSOOX.X.US. XRINT,YCIINT,HAS.PNAG)
 WWNG = NHWG*ル!)SM
 NONSK = Pロ2G/loOn.
 DNGT = WNHC*ILIS\
 PRA5K = OOH5/10nत.
 FF(HH.FO.1.) GO TO z!ON
C.** FINM DuWFL IM -2N&RL/I
```



```
 (ALL H(OWWI)*(ANTSO.)X.X.IS.XCINT.YCINT.HB.NHGNR)
```



```
 NONGMK = OLRNF/101On.
 PQRAHE PUNHLEZLISN
```



```
C *** LFTILNN TO RENTIMETEAS FOH OUTMI!T.
 ?.OnO XCINT = XCPNT*ZLN
 YCINT = YCINT*LLI
 XPEAK = XPFAK*ILI
 YHEAK = YPFIK*TLN
 HH(ISTFP) = PAK
 H0lWI = PRO/NWSAVF*Inu.
 H(JCNT = DUQ/NUSAVF*InI).
 IF(UNON.NF.!.n) (B) in 3h!
*)HLFTE CYCIF'S.44.CYCLE:T.*H
 [5(1くTトN.FJ.1) wHITF(A.TQ1U)
```




```
 x Ax.gn SivFll. !,
```





```
 * xbFIR,YHEAK.xCINT,YCINI
```




*FFLETF CYCLF9.17


- INLFTH rYCl.FO.Al•CYCLFt.Ki

C-* FIJI LuCATTACA OF naxi WIM DUALITY AMIJUT I:AAX.


Hop $=$ +(l)
ISV=1
770 COMTINUK

(1) 375 $1=1.5$

pli\#TA =
ISVH $=1$
275 CUNTITVUE
$r$ - OFTFNHINE FICAI. I ENGTH FOH ONTIMAL CALCULATION

[F(ICTHI..F(:.1) iñT=!SV4
IF(ICTWI).MF. Al (GO rn 3 (an
IONT = TSV


- NELFTE J!!aL. 1 $\ddagger$

$x$;il $\mathrm{T}^{n}$ \#?
OMFLETF JUAL.I3n
GT IF IITANLE.F.H. I) ; 0 TO 345
WNITH(O.GH) XCTINT,YCINT.FF


XCINT $=\mathrm{XCTVI/RL'}$
YCINT = YCINT/LL
CILL NLTMT(NHTG•UX•X.UMAX.4...1JS.IPLT.
- 1ELFTF JT1TFん.IO?

$\times$ <PLOT.INHITE.ITAHLE.ICTス1),IHYTFF.NIT)
"n! !
-IFLETE JITTEW.?

× KMLNT.IWHITF.ITAタLE.ITTRT)•INYTFF
-INGFLT MATN.HO
$r$ HNOO z(I. DFAFINMS FICAL I.FNGTH IWTIMIZATION

(F = - NQ(IP) (INLY.
IWNITF.SI.O SFTS IN = IWHITF.

IRYTFF.HT.U WNITYS THF FAK FIEL! PII JNIT IPYTFF

ITAXLF = "FIVIS HIALITY TAHLE AIMN HLITS INFIHMATYIN
$=1$ grifs NOT DO PHE aROVF
ICIHI IS IJGFFFNW ITAHIF= ".
$=$ I PHUUSES THF UOTIMAL FOCAL LENETH HASEI) ON THE MIGMEST
IWI/i) JIALITY AROIIT IAAX. IMEIA CUNSTRUCTS THF DUALITY
PAMLF MASFI IN TMF AFPPFA OF IMF PWO HFAM JUALITIFS.
AT PMAT FOCAL LENTITH. (IFFAIJI ANT SAME AS DREVIOUSI
= I PAICJLATES JUALITY TAHLF AMOIT CENTHOIN FOR OPTIMIM.
$=$ ? PAICILATES UUALTIY TAALF AMIUT IMAX FIOO UPTIMIM.
$=3$ FIPN TME NWTIW!M VAI.IIE AMOIT EITMEH PENTHOIN OR IMAX
CMOGFN FOH THF MIIHEST I'RGO JIALITY.

```
*NELFTE JITPFH.3
```



```
 x KHL!P.IANIIF.ITAMLF.ICTRD.IKYTFF.HIT!
 N⿰亻⿱丶⿻工二心夊= = 10.0
 nPLOT = O
 NH=1.
 \*NIfF="
 loytfr = 0
 1Ta-1.E = 1
 1C!20=
 LrLTAN = 1
-\MgFuT ma!v.r>
 bata simane /n.%/
 nata NHON ハO.N/
 OATA KFLOT.INNITF.lUYTFF /U.O.0I
 0at\ ITAMLF.ICTUI)/O.O/
PI TMT
-lngFR! n\TMr.&3
 w山lfr(ho.<n|O) TlPLF
```



```
- lNSEEI ANNCb.!?
 #0}2n>5 i=1.j
```




## 11．＊ID FILAPR

Ident FILAPR increases the generality of the aperture routine APRTR by adding filleted apertures．

The outer fillet works by putting a circle in each of the four corners of radius $R_{f}$（input as RFOUT or RFMOUT）．


The lightly shaded region is removed by a regular rectangular aperture, while the heavily-shaded portion indicates the region removed by the fillet. A central obscuration can be applied in a similar fashion. The result is a rectangular aperture with rounded corners:


The input was a list of names for RFIN for namelist APTUR and RFMIN for namelist MIROR.

Subroutine APRTR has also been modified such that it now prints out maximum intensity on both the central obscuration, as well as on outer aperture.

The bare resonator normalization aperture has been generalized to include the fillet as well as being any particular mirror number IM. InFNT PILAHM

```
-plifyt eviland
```





```
AHNTR
 *NFLETE AMHFIx.大I
 AMXIN = %.
 AMx\capuT = 0.
 XMXIN = n.
```



```
 y+4al.u=n.
 YAA|lIT = n.
 *H+LFTE ANHFIX.GI,ANGFIX.54
 (FITIN.FW.l) OU TM in
 C -0*** ITN = " FOW MUTF:又 APPNTIJNF
```




```
 xMxilit = x
 vaxisur = r
 (0) ro no)
```



```
 T) AMAIN = AMAXI(SIN,T, A AX[N)
 IF(A|NT.NF.AHXIN) in TO m|
 XinxTV = Y
 Y*x[N = Y
 mo) CINAT!\ut
#NFLFTE APINF|x.A&.gUNFIX.Ol
 !F(T(N.Fi).|\ (i) T! T,
```




```
 LF(AIVI.NF.ANXOII) (GO TO AO
 xMx\capIIT = x
 yManUT = %
 GO In N|
C-*** IIN = I F\N INNEEH APFHTUME
 71) A:AXIN = AMAX,IA(NT,AMXIN)
 IF{AINT.NH.बAIM|N) (of) l| 40
 AMXIN = X
 YMXIN = Y
 #|) CINTIIPNIF
```



```
 AMX[n1 = AMXINOFXE/IONO.
```




```
 {l| FIWMAT! THF पAX INTFNGITY IIN THF INNEM AHEHTUHF QLATF IS*.
```




```
 JPOFGHMATI* TMAF GAX INTENGITY UN TMF INUTEM AFEHTUMF PLATE IS*.
```



```
*|FIFTF AजNF!x.l
```



```
 x xADWTn**ITGKI
#NFLFIt aHLFI*.A.AFOFI`.A
C MONIFIE!! 3/H/7T HY D.FII.FGFH FUQ &ECTANGILAN APFRTUHF OF
O ||TH#PERAOLTH ANM MFIGGT=?EYAONTW AINN A LEENTHAL
```



```
r WMAN WECTA\GULAN APERTULFS (IH SOJARE) ARF USEN, QAPHPR ANN
```



```
O A.JI CEWT&AL iJM&CIHATION COUNFHS HFSHFCTIVELP.
*IASFRI AW*FIX.15
 Q^NんTH = mWはTINT
 #!!GK = W\!sk!
*NFIFTH SNAUL. A SUADH.A
 Mत = P.*Yんれない
 HI = <.*YIISK
 A = P.EXABHIL
 * = 2.*&חT5K
ORFLFTE SNADH.N.S.JAOH.13
 I\ON FOWMATI/SMM CIUCULAN APENTUNE ADNLIFN //
 A lam IJTSINF OANIUS = fir.4/
 4 l'w INGTIF walll!S = Gl?.41
```



```
 A 2H*4 GUTSTINE OTMEVSIOIS ANE OGI?.4.9H HIGM FY 0GI2.4.SM WITE/
```



```
 (F(HaHmPH.NF:.N.) NH{TE(t.010)4) HAPHIN
```





```
 wRITH(A.InOt) xMNSerNUS
```




```
 -I.vくहんr SOAHm.l
 WHITF(N.1On3) <NGF•YロOS
 ONFLFTF ATWF|X.3?
 IFIIIN.EO.N.N゙NI.R.GF.RAPHTRI ITTCK=1
 IF\!TM.EO.1.A&U.Q.LF.HOISKI IVTCK=1
```



```
 a = xANHTN
 H = YANWTE
 \DeltaS :A - Namisfa
 HS = 4 - HADNTN
 HAII = WAONTW
 *IFLFTE ANNFIX.7!
```



```
 [F((ANG(X).LF.&N!SK.ANI).AHS(Y).LF.YUISKI.AND.IIN.FN.I) INTCK = I
 * (HSFUT ADRF1A.77
```



```
 *OLFFE AUHFIX.1C
```



```
 *IELFTF n=RFIX.7n
 IFIXMAX.LF.A.AW.YMAX.LF.fi) (g(; PO ?OU
 -lfLFTE R.DNF {X.,Z4.\DeltaUNFIX.ON
```



```
 II'= =
 A = <n|Sx
 M = Ynlsn
 \DeltaS =1 - 2חISK
 HS = + - WNISA
 WAI = N1, IGK
 (-1) P.1 1-E)
 .7n cnivitiult
 xF=\Deltaम(C(x) - \Deltai
 VF=AFT(y) - -)
 xh = {ilinN(xF.x)
 Yf = -l!ON(PR.Y)
 ~ = 4.小位|F**) &F**?)
```




```
 mUN = -11(xF.PF. 1. 11
```



```
 WAF = W`\xF.YF.-1, 1)
 AN| = -以ixF.r6. |&-1)
 NFW = 1.
```



```
 |F|!MAx.1E.HA`) (;) f:| こ!!
 W6% = ".
```




```
 HFw=(wal)g+m|!)/(wmnn=fur(v)
 (00) f1| <!%|
OHL
 iMr.il w|l.
```









```
 C LFAHIT # NAMI!!G NF FIILEF.
```




```
C. WFIIT =-ARTIS i| FITL&T.
```

```
 *T.15F+T mamF.1?
 Nt:ITv=0.
 WF\cdotA!)\1T = 0.
 UTST = औ.
-!.SFUT ب.!...
 \DeltaMC(|), (A1|+.&) = `.
```









```
*NPLETE. GIWF.GN.NANF.N!
 [^ = AWC(N.l.l) * .l)l
```











```
|(なん1)
 *MFIFTESIADL. ? /
```











```
 | g! T!r!0
rir.4.
 OUFI_FPF
 (1)|!PY = AHC(10.1N(N.4)
```




```
 HANTW = WGIT:
```



```
 -IVGFAT , ,ill.onlA
 *FiN = ".
 GFI:IT = ".
 mryr = = %
 -T.gFur crajom.ta
 AHC(7.|nH.4)=?.
 A.4C(A)|AD.t)=:1.
```




```
 A.JC(|-|aw.G) = &F|,ir
 Ami:(2.1,AD.क) = सFIN
```








```
 *J\\DeltavF= =AWia
```




```
 |F(2APTM.LE.V.O) , \AMTH=NASNVF
```



```
 4| NH=|゙.
 !" 1; i/% = 1. ज!⿱亠䒑日
```



```
 SNN* = POW*(A(R)-1(1))** 2*(N+TY/RNY)
```



```
)!NT= دH(.(1.|AL,4)*つ.
 JIN = ARC(\Omega, \ab,4)%.
```



```
 Y[rl = ANC(H,|AN,4)*z..
```



```
 IF(Y:HIT.NF.|..ONH.YIN.NE.I..) I)IN= AHC(G.IAP.4)*Z.
 IF(|OUJT.LT.O.N.AN|.|IIN*Lr.0.0)
```

    12. *ID NUDISKT
    Ident NUDISKT modifies the two I／O IFLOWS in GDL，IFLOW $=10$ and IFLOW $=16$ ．
a．IFLOW $=10$ Two new options have been added to this IFLOW．Multiple fields can now be written to the same file by not rewinding the file between writes （RWIND $=$ ．F．）．A file can also be written that can read at a terminal（READS＝．T．）．For this can the file is written in the following order：

TITLE，NPTS，NPY
（ $X,[I], I=1$, NPTS $)$
DO 141，$J=1$ ，NPTS
141 WRITE（IWRITE）（CU［I＋（J－I）＊NPTS $], I=$ 1，NPTS）

Symetric fields are unfolded before being written to tape for READS＝．T．
b．IFLOW $=16$ This IFLOW has been updated so that formatted data can be read in as well as written out．The format has been modified to include more digits．

```
[HGNT WH/\GKT
```



```
 *!じ
 *)FLETEGGML.7%
```






```
 NAMEIIST/H,I JCH/ KHFANOKWWITH
 C PLIG TS G EMWMAITFI: VFNGIGN GF O[SK!|.
```




```
 O
```




```
 NublTF = 0
 NEAN(INOHINICMI
```



```
 15(KLHALI.0F!.II) U.' $11 109
 HFAIIMMFAPI-Iかん) TYTLF
 lmh FOWMAT(ENA4)
 AOITr(O-ImA) <んF゙A.VIITLF
```



```
 i|) IGt J=1.NWY
```





```
 !! = P*(i*I*FF)
 CiN(II-l)= =1018!
 CUW(I|)=|!NF|
 Cim(||:|)= M|MD
 CIN(||*) = i|l献)
 Th7 CllortIM,F
```




```
 | 1:1 444
 |Au mitifs(m.lad) xatulf%
```






```
 4F.[`|! R.W!「F
```




```
P CFGIII =.T. AFANG HFA! OR JITIFF TU IAPF IN THNFE STEDSE
C WW(NI) = I. MFANG NFWINI\ WIITYEN(GFAI) TAHF.
```



```
 LEA:\S(tal!5) = पENN3
 Wwl|IS(mNG) = पwlvil
```



```
-I.5*-| G)ル.4ell
```



```
- |!.44+4| (g.11.045.!
 -FAI: 0F.
 Hwl 小N =.T.
OHI.rTE NOL.4n?
12 = 1N+M|
|F(finfa!).LT.1)\ lN = - [INFAM
```




```
*MFLETH rulL.47%
 IN=|んF\DeltaN
```








```
#いFlFTE (v)L.4丁!
```




```
*IFI.FTE (B)L.4/4
```




```
 IW& FOWMATIINX.*TWF FILE MAS NOT REEV NEWOUNOWI
*IrISEDP ran.475
```



```
 [F(POFA|,FT.I) GO TO llN
 WEAN(IMF.N!) TITLF.NJDXIAI.NPYIY
 (M) { य1 I=1.20
 |?! |T|PL(N|G.!) = Y{TLE(I)
```





```
 * /1x, ?044/)
```




```
 UM! = (j-1) WiND\{^:
```



```
 *WYG = NDX!V
 NWY = NDYIN
 IF(#mINri) NENI:IO IRFAO
```



```
 (G) In 4.44
```



```
 (in) 1>5 L=1.711
 IPG NTIPLINOSPI.1 = PTPLF(L)
 N|TF(H.!ea) IamITE.TITLF
```



```
 * /1x.>11苜)
 *HITF(TwINITF) T{TLF,NPTS.MNY
```



```
 IF(INOPS.F(S.NHY) (iO) TO) l40
C ** IJNFIIIO CII
 Du) 1.3n J=1. NuY
 JN! = (J-1) wNTS
 JTM| = {NPTS-11*&MTS
 @!1 {3| l=10.NWrS
 lJ=1*Jm!
 IJ!=|-リIMI
 1.30 Cい(TJ!) = Cい(!J)
 14110.) 141 J&|.N0TY
 JM! = (./-1) :.|「S
```



```
 TF(2W?N|!) 2FwTV%)!Nん|TE
```



```
 (*) 1.\ पч0
```

13．ID CY4KIN
The capabilities of the numerical SOQ kinetics package have been expanded to include oxygen，hydrogen，and R－branch transitions（ $9.4 \mu$ oand）．
a．Oxygen has been upgraded from a structureless mole－ cule to one that has structure．Therefore，there are now kinetics rate equations for the interaction of oxygen with the rest of the molecules from the combustion process．
b．Hydrogen has been included as a structureless collision partner．
c．Previously the code has used P－Branch transitions
（10．4 u）．Using GFACT less than 1 now activates the $9.4 \mu \mathrm{R}$－Branch transition．

In addition to the above major changes，two small additions have been made：
（1）Input the Gladstone－Dale constant GDC in name－ list CAVTYZ．
（2）Account for the gain length by the factor ZFACT， also in CAVTY2．







```
 OLu&Tt
 *NFLFTE HLIM11.11
```



```
 ray!pr
 *いーbif rav!iv.la
```



```
 * P,G&~「 l.Jいが.!n
 unta Mma/小./
```













－论．trefavirr． 124


－fli゙ャみ「 ravily．lis

－IniEGT C．avifr．ilic




$+\pi C($ PJCAVN $)=1 \cdot+2$
Пトッゼン



inc．$=$ STOMG
Pavity


rantlixy
－I ISFLT TAIM天y．15


HFLTAノ＝iFLTد／＊TFICTH



envity
－PMGFNT ravilr．in？
the $=$ trons
FFACT＝HACTム
＊INGfuT CavTYY．low
$\rightarrow$－DNF＝1．1！

rigancy

Fy＝S
－IFLFTE \＆！b＊T．11


－ifiptrfithsolly


## raligh

－ntleTF halinayoll

＊helfir tasivay．li？

＊HFLEPF TAT「IXY．1／

－fflete



－IUSENT GA VAY．JH

－IMSFDf falivar．ist


```
 Fxドコ=ー14つ?.
 1)FD=1 (m`l
```





```
 urJv=.7mrt-14*(NN+1.)
 FXF2=-10nत.
)FU=!う7!.
 10 COPTI \H/G
 OHFILETF GNINXY&*~
 ONFIFPF I.NONI.14.LWON!.15
```





```
 M\フFAC=19.Gくん
```





```
 #HFLFPF falvar.GA
```





```
 * m.*xmejr.
```





```
 bipinel = n.l
```




```
 と丈Fはいな=F\F二/T1
```



```
 -HFLFTH ',AT|AM,MY
 x -.-AMI*FX口(FXFGOT -NOTLONTSI)
<||FT
```





```
 *aFlfft<「㛂T.!l
```





```
 -1,GFW! NTVFT. \T
 F|DEx|c*|54m.
 |FサMy:!1=0.
 1f(ND!N = C.
 CH(iAGF = n.
 FxFHE=|ज@T.
```




```
 ***SFNT KINFT.*N
 EGみいつ#tGYいつ!
 -l*SFWT NIVFT.II
```




```
 (はF:)य&!&&)
```




```
 TMND=1. -FXP(-3354. 3|4/15)
 EWRI? (F.jNP=FG)\/f v?
```



```
 |+12=1.-117%xH
```






```
 & 1**ゃl
```





```
 (11) En+simalif
```





```
 *mpleftealvt!.7%
```



```
 -rifllftF kl!ifT.a3
```



```
 - ImGfor < \ver.l?!
 Fx&2\T zFXFF/T1
 IF(GFACT(I).LT.1.) EXFHOI=FXFQ/T?
 *OELFTE KINFT.l<%
```



```
M/
```








```
 r. (a)(|v|)-H> = C!l? * +%
```





```
 -[ngF.#T M|x..al
```



```
 Nप=\Mア/.345E-2 **S
```



```
 * /C./F-17 * XI2/4.4F-4) *NS
HFignI"I
 OHFILETE HEGMIH.l:
 G TITLF(PO).AVI;(5).TVI)P(G),FHP(5).NSYM
SIMP(if
 *OFLETE STMRI(G.1)
```



```
 C(MMMNV/GF^rTH%.iF^r.T(己)
```



```
 IF(GFACT(l).1 P.l.) Ela = 0.4.4
NaId
 *INSFOT malN.p!
 Main GillC/O.p>n/./FAIT/\.4F/
 -I HSFHT MAIN.I*T
 STOMF= =ins
 LFACTH=/Fact
 * TVFFNT matwoh
 (.)MM(IN /F.LA.!/ GTINF.IFACPF
```


## 14．＊MIRFIX

The MIRROR subroutine has been modified to calculate the effect of power－induced surface curvature when mirror reflectivities other than
the design value are used．The parameter，$\delta$ ，is modified to change the center to edge distortion as a function of the mirror reflectivity．The parameter，RFLFAC，is used to scale $\delta$ as input through the relation：

$$
\begin{equation*}
\delta^{\prime}=\delta\left(\frac{1-R^{-}}{I-R_{d}}\right)\binom{P}{P_{d}} \tag{B2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& R=\text { Mirror reflectivity } \\
& P=\text { Incident energy } \\
& d=\text { Design value }
\end{aligned}
$$

Further，the MIRROR routine has been updated to include the calculation of its own value of mirror flux－induced distortion factor when mirrors are encountered off axis as noted by PHIAST $\neq 0$ ．This update has not been activated，since it would mean input file changes for all users．It is included in the code and will be activated by each user，when so desired．

```
INHNI TINFIX
 Tifol mPLFI
```



```
 *NEl_FTF NTHん!!r. Th
 NWNES =1.FM
 UFL_TES = -W4L
 HFI.Far = (1.-NFL)/(|.-NF|'NFS)
```



```
 IFI.TA = VFLTA*WNEFAP*BFI.FAC
 * frg&uT MrNuOm.140
 |F(YOFH.FH.I.MR.NIRFF.FH.>) HFLL=FIELL/WNON**Z
 *MFLFTE WIT.E.
```



```
 *nflFTE R.luASf!olu
 IF(UGIAGT.VF..).) WRTTE(A.42II) PHIAST.RMSAGOAMTAN
 HELFTE CIIA夕だ.?
```






```
fonL
```








```
 !.) CO.NT!'|lE
```

15. *ID PROP

The SOQ code calculation of far field performance is based on the analytical equivalence between the Fraunhofer pattern and the propagation of a distribution with field curvature, $f$, a distance $Z=f$, using the Raleigh-Sommerfield formulation of the diffraction integral in the Fresnel degree of approximation. The SOQ far field calculation propagates the wave distribution, $C U$, a distance $f$, determined in a manner which preserves the correspondence between near field and far field coordinates, while accurately resolving the energy spectrum in far field coordinates.

In certain cases, however, it has become necessary to propagate the distribution CU to an arbitrary focal plane $Z$, using the SOQ calculational procedure, in order to obtain the effects of beam jitter at a fixed distance $Z$ and to obtain the far field information scaled to same focal length. Since far field calculations are based on the use of "vacuum" propagation, the far field at any plane $Z^{\prime \prime}$ is simply the scaled distribution at any other plane z'. This can be shown by comparing the far field distributions in terms of the Fresnel integrals at two arbitrary focal planes $Z^{\prime}$ and $Z^{\prime \prime}$, where a field curvature of $f^{\prime}=Z^{\prime}$ and $\mathbf{f}^{\prime \prime}=Z^{\prime \prime}$ has been applied to obtain the distribution. Comparison of these two distributions for the same transmitting aperture size leads to the following scaling.

$$
\begin{equation*}
C U_{Z^{\prime \prime}}=C U_{Z^{\prime}} \cdot \frac{f}{Z} \cdot e^{-i k(f-z)} \frac{-i k}{2 f} \vec{x}^{2}\left(1-\frac{Z}{f}\right) \tag{B3}
\end{equation*}
$$

And

$$
\begin{equation*}
\vec{x}^{\prime \prime}=\frac{Z}{\underline{Z}} \quad \vec{x}^{\prime} \tag{B4}
\end{equation*}
$$

where $f$ is the propagation focal distance obtained in the usual manner from the $S O Q$ code, and $Z$ is the "new" scaled propagation distance.

These changes are incorporated in the $S O Q$ code primarily in subroutine QUAL, as documented by the following Fortran changes.

```
|!F.|f wunD
 * tic if mborm
```




```
|M|
 * IriffF:*|A|.+4|
```






```
 F = -wleज!
 1.l: = <l1,/6atiri!
```



```
 M&! | =1,N,N「,
```



```
 41 (1) = x<evf(1)
```



```
 IISGAVF = |YC:JF/F.&APIU
 W氏.うつ = mK/つ.
 |(1) Ј=i :**r
 jM| = (.1-1)*O!NTT,
 YS(j = ^(N) #*)
```




```
 I!|,j+1= 1*I,:-1
```




```
 Clto = ril>(N)!)
 Gflm= Mlif(N..I)
```









```
 r ZFw's.
 ClM(T/I/)=1.F-1.1/FL(if.P(171%)
```



```
 mu (:ir T| |lt
```




```
1.4 1.
 *:NF!ETF JPTTPW.W!
```



```
 r fom)
```



```
n!1A!.
 *|!c&-4T (:YCLb4.d!
 {F(以س:)N.r|F.|.l) \SPFO=m
```











```
16. *ID ECSFIX
The updates for ECSFIX are included to correct original errors in dimensioning Level II variables，and to reduce the resident array sizes at load and execution of the code．
```

```
INFA!rersf!x
* TNE IT ECGFT:
 STM%
```



```
 x - A\Gammaid
 (い.MNAN/GTOLCA/ ADM
 Mrorsor
 OMFLFTF |E.vSY. P 2.CUHWR.S
```



```
 * C4(21.4l).44(PI).N4. UnCl. NHMMS(40774)
 CDVITY
 *OトLEPF: GOWい1.43
 *いEI.PPE (:lu!)ra.S.子
```



```
 ONFLFTF (AvTiY.P)
 PIJUlVALEN:CF (F.J(1).P!!H(1)):(CG(1).|S(1))
 DFGAIIV
 *NFLFTF SOHT7CYl.1AO
 *url.tTH r|い.)FNG.17
 CO:AMINA/GLAO/ STOIE.LFACTM
```



```
 #NFLFTE SOM7TCY1.1'+U.ClOOFAK. 34
 FOIIVALFMCF (DI)(I).C(;(!)) ((;)(1).CFIL.(1)).(H(1).CU(1))
```

17. *ID SEGSOQ

The SOQ code，as currently configured，is too large to run on the Cyber 176 under AFWL Small Core Memory（SCM）restrictions（high speed core）．The segmented load option of the CDC NOS／BE loader has been used to reduce execution time SCM requirements without loss of generality of the code．A segmentation loader，and the appropriate＂tree＂structure of the code segmen－ tation is required to take advantage of this feature．

To incorporate this scheme into the SOQ code，the SOQ code required additional JLOBAL commons to save certain values，as described on the follow－ ing Fortran listing．A segmentation tree was developed and is listed also． Further information on segmentation is available in the CDC／NOS／BE loader reference manual．This approach was selected instead of overlay structure iecause it is a more powerful tool，even though it is machine specific．


```
*|rir JT GF!ici:%
```




```
MEnisi
```




-I df゙ちT Cavily.1^




かいし
* MSETT (ッル.1A













m i) L/Ho1FI/fH
Malit








-

LOAIFF OHA TGE Priag ITB COMOHTFH. TME CHITICAL JCL IS



1.1.1).







Cavitr $\quad$ uliMal $\quad$ SFFiCVZ-SAVE.


18. *WNDOW

The aerodynamic window subroutine of GDL is used to model the effect of an aerodynamic window on the propagated field in a Monte-Carlo sense. The aerowindow subroutine simulates a random phase transmission function whose rectangularly distributed random phase information can be selected with arbitrary "strength" or variance. This version of AEROW is designed to simulate the phase field degradation with rectangular probability distribution in phase of $0.25 \lambda$.
trayt wiflow

- infart wivnion

GIOL
*HELETE GML.4AI
CALL afrniv
af Milo
*NFLFTE AFLINo,
Sthathlitils ir 2nw


COMnLix Cl.ceft

- fivSFat AFDMn. 3

LEVFL $? \cdot$. 11


cive=!




$\mathrm{P}=\mathrm{HANF}(l) \operatorname{sican}$
$\mathrm{CNT}=\mathrm{CH}$ - 1

$04 x=0$
20 CuNTLuF

-I'JSFRT afalower
WATPEleloloniwax. Pat
100


DISTRIBUTION

AUL/LDE, Maxwell AFB AL
DTIC/DDA, Cameron Sta, Alexandria VA
AFWL, Kirtland AFB NM
(SUL)
( HO O
(ARLO)
AFSC/DLiM, Andrews AFB DC
AFELM, Rand Corp, Santa Monica CA (Lib D)
Official Record Copy (Capt J. D. Holt/ARLO)

號

