

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other outhorized documents.

> The contents of this report are not to be stead to advertising, publication, or protocolonial publication Citation of made names does not constitute an official and restance of the descent

K

34 C

CA:

-5

1-81-6-2 Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Enter READ INSTRUCTIONS **REPORT DOCUMENTATION PAGE** BEFORE COMPLETING FORM 2. GOVT ACCESSION NO RECIPIENT'S CATALOG NUMBER . REPORT NUMBER 3. 9 ----A10453 Technical Repert GL-81-6 TYPE OF REPORT & PERIOD COVERED STRUCTURAL ANALYSIS COMPUTER PROGRAMS FOR RIGID MULTICOMPONENT PAVEMENT STRUCTURES WITH Report 2 of a series DISCONTINUITIES -- WESLIGID AND WESLAYER, Report 2. 6. PERFORMING ORG. REPORT NUMBER MANUAL FOR THE WESLIGID FINITE ELEMENT PROGRAM A AUTHOR(+) 8. CONTRACT OR GRANT NUMBER(A) 10 Yu T./ Chou 16 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK DHIT NUMBERS U. S. Army Engineer Waterways Experiment Station Project No 4A762719AT40 Geotechnical Laboratory P. O. Box 631, Vicksburg, Miss. Work Units 001 and 003 39180 11. CONTROLLING OFFICE NAME AND ADDRESS 11 May 🛥 81 Office, Chief of Engineers, U. S. Army 13. NUMBER OF PAGES Washington, D. C. 20314 139 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS, (of this report) Unclassified 154. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMEN Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES Available from National Technical Information Service. Springfield, Va. 22161. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Computer programs Rigid pavements Finite element method Structural analysis Loads (forces) WESLIQID (computer program) Pavement deflection 20. ABSTRACT (Continue as reverse olds if nearestary and identify by block number) This study was conducted to develop finite element computer programs to calculate stresses and deflections in rigid pavements with cracks and joints subjected to loads and temperature warping, as well as in the supporting subgrade soil. This report is presented as a user's manual for the WESLIQID program, which deals with pavements on a liquid foundation. The program allows for analysis of pavements with full or partial loss of subgrade support over (Continued) DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Unclassified SECURITY CLASSIFICATION OF THIS PAGE(Then Date Entered)

20. ABSTRACT (Continued).

designated regions of the pavements. Variable slab thickness and modulus of subgrade reaction k are incorporated and any number of slabs arranged in an arbitrary pattern can be handled. Also, multiple-wheel loads can be used, and the number of wheels is not limited.

The nature of the computer program and its programming logic are first delineated, followed by a general discussion on the efficient and correct usage of the program, e.g., the efficient way of arranging nodal numbers to minimize the bandwidth. The input guide to the computer program is presented with a detailed explanation for each input variable. Five example problems with input data are presented and the computer printouts of three problems are included with detailed explanations.

> Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

PREFACE

The study described herein was sponsored by the Office, Chief of Engineers, U. S. Army (OCE), as a part of the Mobility and Weapons Effects Technology RDT&E Project No. 4A762719AT40, Work Unit 001, "Airfield Pavement Design and Parametric Sensitivity Analysis," and Work Unit 003, "Rigid Airfield Pavement Load-Deformation Response Analysis."

This report is Report 2 of a three-report series concerning the computer programs WESLIQID and WESLAYER, which provide for analysis of rigid multicomponent pavements with discontinuities on liquid foundations (WESLIQID) and on linear layered elastic solids (WESLAYER). This report is a user's manual for WESLIQID. Report 1 provided a theoretical background and numerical results and discussed the capability and logic of the two programs. Report 3 will be a user's manual for WESLAYER.

The study was conducted by the U. S. Army Engineer Waterways Experiment Station (WES), Geotechnical Laboratory (GL), under the general supervision of Dr. Don C. Banks, Acting Chief, GL; Dr. Paul F. Hadala, Assistant Chief, GL; and Mr. Alfred H. Joseph, Chief, Pavement Systems Division (PSD), GL. Dr. Yu T. Chou, PSD, was in charge of the study and is the author of the report. Professor Y. H. Huang of the University of Kentucky, who originally developed the computer programs, assisted in the study.

COL John L. Cannon, CE, and COL Nelson P. Conover, CE, were Commanders and Directors of WES during this study and the preparation of this report. Mr. Fred R. Brown was Technical Director.

Accession For NTIS GRA&I DTIC TAP Unannounced Justification Bv. Distribution/ Availability Codes Avail and/or Special Dist

÷.,

Same and

DTIC SEP 0.4 1981

CONTENTS

	rage
PREFACE	. 1
CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)	
UNITS OF MEASUREMENT	• 3
PART I: INTRODUCTION	, 4
Background	, <u>կ</u>
	. 5
PART II: PROGRAM DESCRIPTION	. 6
PART III: PROGRAM APPROACH	. 8
PART IV: OPERATION OF THE PROGRAM	. 15
General Discussion	. 15
Element size and shape	. 15
Dimension requirements	. 15
Arrangement of slabs	. 16
Symmetries	. 18
Slab numbering system	, 20
Relaxation factors	. 22
Efficiencies of shear and moment transfer	. 22
Half bandwidth	. 23
Weight of concrete slab	, 23
Selected points of stress computations	, 24
Analysis of two-layer slabs	. 25
Temperature considerations	, 25
correctness and divergence of the obtained solution .	. 25
Input Guide	, 27
PART V: EXAMPLE PROBLEMS	, 63
Example Problem 1: A Single Slab with Many Input Options	. 63
Example Problem 2: A Single Slab With Separate Runs for	
Computing the Stresses and Deflections Due to the	
Applied Load Alone	, 64
Example Problem 3: A Two-Slab Pavement System,	
Symmetrical Along the X-Axis	, 71
Example Problem 4: A Nine-Slab Pavement System	. 71
Example Problem 5: A Four-Slab Pavement System with 50	
and Zero Percent Moment Transfer Along the Joints	• 79
Computer Output 1	. 85
Computer Output 2	. 107
Computer Output 3	• 117
PART VI: CONCLUSIONS AND RECOMMENDATION	. 137
APPENDIX A: ANALYSIS OF TWO-LAYER SLABS	. 41

ţ

5

CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

	Multiply	By	To Obtain
Fahrenh	eit degrees	0.555	Celsius degrees or Kelvins*
feet		0.3048	metres
inches		2.54	centimetres
pounds	(force)	4.448222	newtons
pounds	(force) per inch	175.1268	newtons per metre
pounds inch	(mass) per cubic	27,679.9	kilograms per cubic metre
pounds inch	(force) per square	6,894.757	pascals
square	inches	6.4516	square centimetres

To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use the following formula: C = 0.555(F - 32). To obtain Kelvin (K) readings, use: K = 0.555(F - 32) + 273.15.

STRUCTURAL ANALYSIS COMPUTER PROGRAMS FOR RIGID MULTICOMPONENT PAVEMENT STRUCTURES WITH DISCONTINUITIES--WESLIQID AND WESLAYER

MANUAL FOR THE WESLIQID FINITE ELEMENT PROGRAM

PART I: INTRODUCTION

Background

1. The U. S. Army Corps of Engineers (CE) has realized for many years that much of the maintenance of rigid pavements is associated with cracks and joints. The current CE rigid pavement design procedures have certain limitations that were imposed by the state of the art at the particular stage of development. During the development of the procedure, it was necessary to make simplifying assumptions and, in many instances, to ignore the effects of cracks and joints. Since the advent of high-speed computers and the development of the finite element method, a more comprehensive investigation than previously possible of the state of stress at pavement joints, cracks, and other locations in multicomponent pavement structures can now be achieved. Consequently, a better and more reasonable design procedure may be developed for rigid pavements.

Purpose

2. The development of the finite element programs and the analysis of computed results are presented in Report 1 of this series. This report presents a user's manual for a computer program named WESLIQID. The program computes the state of stress in a linear elastic plate (approximating a rigid pavement) supported on a liquid foundation, as well as in the supporting subgrade soil.

Scope

3. The computer program is described in the report to give users a concise understanding of the program without reference to Report 1. The logic of the programming is explained by use of flowcharts. An input guide to the computer program is given, and five example problems are presented to illustrate the input procedures for using the computer program. The computer printouts for three example problems are also explained.

1

Ş

PART II: PROGRAM DESCRIPTION

4. This report describes a finite element computer program named WESLIQID for the analysis of concrete pavements subjected to multiple-wheel loads. The program is developed for subgrade soil represented as a Winkler foundation (or a liquid foundation); i.e., only forces and deformations in the vertical direction are considered and the force is proportional to the deformation. The program can handle any number of rectangular-shaped slabs arranged in an arbitrary pattern. The slabs are connected to each other at joints by steel bars or other load transfer devices and can have cracks in directions parallel to or perpendicular to the joints.

5. The program determines stresses and displacements in the pavement and in the supporting subgrade soil due to loads and temperature warping. Part of the pavement can be out of contact with the supporting subgrade before applying the load and the temperature gradient, and the program determines the condition of contact at each nodal point after the application of loads and temperature gradient. Input data of the programs include (a) the physical properties and geometry of the pavement and subgrade soil, (b) the magnitude and distribution of the loads, (c) the temperature gradient, (d) gaps under the pavement at certain nodal points, if any, and (e) joint and crack conditions.

6. At a joint or a crack, the program considers both shear and moment transfer. Three options can be used for shear transfer: (a) the assumption of an efficiency of shear transfer at the joint, which is defined as a ratio between the deflection of the unloaded or less loaded slab and the deflection of the loaded slab; (b) the assumption of a spring constant at the joint, which is defined as the force in pounds per linear inch and which can be used for key joints or joints with aggregate interlock for shear transfer; and (c) consideration of the diameter and spacing of steel bars. The efficiency of moment transfer is not defined as the rotation ratio between the unloaded and loaded slabs, but as a fraction of the full moment, which is determined

by assuming that the rotations on both sides of the crack are the same. The theoretical development of the finite element model is presented in Report 1 of this series.

7. WESLIQID can analyze pavements with variable thicknesses. This option is useful for pavements with thickened edge joints or pavements adjacent to a cement-stabilized shoulder. Multiple-wheel loads can be input, and the number of wheels is not limited. The number of slabs is also not limited, but is subjected to the dimension and computer storage requirements. Also, the solution becomes more difficult to converge as the number of slabs and nodal points are increased. The slabs can have two layers with different physical properties. The interface of the layers can be either bonded or unbonded. The program is capable of considering variable subgrade reactive forces. This option is useful in dealing with nonuniform subgrade support.

PART III: PROGRAM APPROACH

8. The storage space required for the program depends on the total number of elements used in the problem. An iteration scheme is used in the program so that the computation is made only for one slab at each time. This scheme results in a great savings in computer time because the number of equations to be solved each time is reduced to only one slab. Two series of iterations are involved in the program: one is with respect to subgrade contact and the other is with respect to load transfer across the joint.

9. In the iteration with respect to subgrade contact, the contact condition at each node, i.e., whether the slab and subgrade are in contact or not, is first assumed; and the iteration with respect to load transfer proceeds until either the convergence criteria (DEL in Item 6 of Table 2,* the input guide) are satisfied or the maximum allowable number of iterations (ICL in Item 6 of Table 2) is reached. At this stage, the resulting contact condition is determined. If some nodes originally assumed in contact are found out of contact, or vice versa, the newly found contact condition is assumed, and the process is repeated until the same contact condition is obtained. This can usually be achieved in only a few iterations. The only control by the user is to specify the maximum number of iteration cycles NCYCLE . If NCYCLE = 1, the contact condition between the slab and subgrade is known <u>a priori</u>, and no iterations are needed.

10. In the iteration with respect to load transfer across the joint, the computation is made successively from the first slab to the last one. The reaction between two adjacent slabs can be either the superimposition of displacements or the transfer of shear forces along the joints. The rule to follow is that when the displacements for slab i are computed, the displacements along the joint will be superimposed to the adjacent slabs which have slab numbers greater than i , and the vertical shear forces will be transferred to the slabs that have

* Table 2 appears in Part IV where it is discussed in detail.

smaller slab numbers. The shear forces are computed from the deflections of elements adjacent to the joint through the stiffness matrix of the slab.

11. In the iterations with respect to load transfer, the vertical shear forces are also used for checking convergence. If the shear forces at the joints are changed too much between two iterations, the solution may diverge and the shear forces will become unreasonably large. To ensure convergence, a self-adjusting relaxation factor is incorporated into the program.

12. In this method, the vertical shear force at each node along the joints obtained in a given iterations is not used directly in the next iteration. Instead, an underrelaxation factor R_{f} is applied such that

$$F_{i+1} = F_{i-1} + R_{f}(F_{i} - F_{i-1})$$
(1)

in which F_{i+1} is the vertical force to be used at $(i+1)^{th}$ iteration; and F_i and F_{i-1} are vertical forces obtained during the ith and $(i-1)^{th}$ iterations, respectively. When $R_f = 1$, $F_{i+1} = F_i$, or the force obtained in iteration i is used directly in the next iteration, i + 1. It was found that for most problems, the solution could not converge when $R_f = 1$. An initial relaxation factor RFI must be specified by the user. An initial value of 0.5 can be arbitrarily assumed unless the user's experience indicates that a smaller value is more appropriate.

13. To adjust the relaxation factor automatically, a maximum shear force at a given node on a joint MAXFAJ must be specified by the user. If the shear force at the node exceeds MAXFAJ, the indication is that the solution is divergent and a smaller relaxation factor should be used. If it is desired, beginning from the sixth iteration, the program also checks the convergence of the specified vertical force after every five iterations. If the solution diverges or oscillates back and forth, the relaxation factor is reduced by one-half (or onequarter if desired), and the computation is restarted.

14. The program first computes the dimensions of certain important variables and checks them with the declared dimensions. If the computed value exceeds the declared value, the program will be stopped and unnecessary computations are avoided. Once the checks are performed, the program carries out the computations in the following sequence (see the flowchart, Figure 1):

a. Generate stiffness matrix for each element and then superimpose them to form an overall stiffness matrix.

Figure 1. Flowchart for computer program WESLIQID

ŧ

 Reading Control of the second sec second sec

1

- b. Store stiffness matrix adjacent to joints for later use.
- <u>c</u>. If it is known that gaps exist under certain nodes in the subgrade soil, the gaps are read into the program to combine them with the computed curls of the slabs due to temperature warping to form the initial subgrade contact condition.
- <u>d</u>. Determine the nodal reactive condition based on the subgrade contact condition.
- e. If externally applied loads are considered, the uniformly applied loads are distributed to the adjacent nodes using statics.
- <u>f</u>. Compute the displacements of slab 1, assuming that there is no shear and moment transfer along the joints; i.e., slab 1 has four free edges.
- g. Impose deflections along the joints to the adjacent slabs that have greater slab numbers. For illustrative purposes, a four-slab pavement system is chosen, as shown in Figure 2. Displacements of slab 1 at nodes 1, 2, and 3 of joint 3 and nodes 1, 4, and 7 of joint 2 are superimposed to slabs 2 and 3, respectively.
- Compute the displacements of slab 2. This is done with h. a fixed boundary condition at joint 3 and reactive forces at nodes 10, 13, and 16 of joint 1 that are induced from the deflections of slab 4 computed in the previous iteration cycle. At the first cycle, the reactive forces at the nodes are zero because the deflections of slab 4 have not been computed and are thus assumed to be zeros. The nodal reactive forces are identical to the vertical shear forces mentioned earlier. It should be pointed out that reactive forces at nodes 16, 17, and 18 at joint 3 induced by the deflections of slab 1 exist but are of no importance in the computation of displacements of slab 2 because the boundary condition at joint 3 is arbitrarily fixed as the prescribed displacement imposed by slab 1. Once the displacements of slab 2 are computed, the displacements at the joints are superimposed to the adjacent slabs which have greater slab numbers, such as slab 4 in Figure 2.
- i. Compute the nodal reactive forces at the joints between slab 2 and adjacent slabs that have smaller slab numbers, such as joint 3 in Figure 2. The reactive forces acting at nodes 1, 2, and 3 of slab 1 are induced by the deflections computed at slab 2. It may be worth mentioning here that the relaxation factor is used in transferring the shear forces from slab 2 to slab 1.

NOTE: NUMBER NEXT TO THE NODES DENOTES NODAL NUMBER. NUMBER INSIDE THE CIRCLE DENOTES ELEMENT NUMBER. NUMBER INSIDE THE SQUARE ALONG THE JOINT DENOTES JOINT NUMBER.

Figure 2. A four-slab pavement system

Once the shear forces are transferred, they become nodal reaction forces at slab 1. The adjusted nodal forces are computed from Equation 1.

- j. Compute the difference in deflection between the two slabs, which is equal to $\Delta_s + 2\Delta_c$, where Δ_s is the shear deformation of the dowel bars and Δ_c is the deformation of concrete due to the shear force on the dowel bar. The values of Δ_s and Δ_c are computed from Equations 18 and 19a of Report 1 of this series.
- <u>k</u>. Continue the process for slabs 3 and 4. The displacements in slab 3 are computed with fixed displacements at joint 2 superimposed from slab 1 and reactive nodal

forces at joint $\frac{1}{4}$ induced by the deflections of slab $\frac{1}{4}$. As explained earlier, the reactive forces are zero at the first cycle of iteration. Once the displacements at slab 3 are computed, the displacements are superimposed to slab $\frac{1}{4}$ at joint $\frac{1}{4}$, and the reactive forces at nodes 1, $\frac{1}{4}$, and 7 at slab 1 induced by the deflections of slab 3 are computed and the difference in deflection between slabs 3 and 1 is computed. With superimposed displacements at joints 1 and 4, the displacements at slab $\frac{1}{4}$ are computed.

- 1. With displacements of slab 4, the vertical nodal, or shear, forces at joints 1 and 4 are computed and the differences in deflections between slabs 2 and 4 and slabs 3 and 4 are computed. Assuming joint 1 is the joint designated for checking convergence, this completes the first cycle of iteration with respect to load transfer.
- <u>m</u>. With reactive nodal forces at joints 2 and 3, the displacements at slab 1 are computed again.
- n. Repeat steps <u>h</u> through <u>l</u> until the vertical forces along joint 1 converge to a specified tolerance. In step <u>h</u> at this time the displacements of slab 2 are computed by setting the deflections along joint 3 equal to the deflections of slab 1 minus the difference in deflections between slabs 1 and 2 computed previously and the reactive forces at joint 1 induced from displacements of slab 4.
- <u>o</u>. Once a convergent solution is obtained or the maximum allowable number of iterative cycles has been reached (ICL of Item 6 of Table 2), the signs of the deflections at each node are compared with those of the initial (or the previous) subgrade contact condition. A change of sign at any node indicates that the contact condition at these nodes has changed. Based on the renewed subgrade contact condition, the computational process from steps <u>g</u> to <u>k</u> is repeated. The iteration process stops when either the contact condition ceases changing or the maximum allowable number of iterations (NCYCLE, Item 6 of Table 2) has been reached.
- p. Once the subgrade contact condition no longer changes, the computational process from steps g through <u>k</u> is repeated once more with a refined convergence criterion. The controlling variables in the program are ICLF and DELF in Item 6 of Table 2.
- g. The stresses at selected nodal points are computed based on the curvature of the deflected slab, i.e., the nodal displacements.

- <u>r</u>. Compute stresses and deflections in the subgrade soil if so desired.
- <u>s</u>. Note for a single slab, i.e., NSLAB = 1, the steps from <u>g</u> to <u>n</u> are neglected.

15. In superimposing the displacements along the joint, both vertical deflection and rotations are involved. The amounts of vertical deflections superimposed are determined based on the three shear transfer methods. The rotations superimposed depend on the efficiency of moment transfer. For 100 percent moment transfer, the rotations are equal at both the loaded and unloaded slabs. For zero percent moment transfer, the moments are zeros at both slabs. For a percent moment transfer other than zero or 100 percent, the process becomes more complicated. In dealing with such cases, users should consult Part II of Report 1. Example Problem 5 in Part V of this report presents such a case.

PART IV: OPERATION OF THE PROGRAM

General Discussion

16. The input guide for the program is presented in this Part of the report. Special features in the correct and efficient use of the program are presented and discussed in the following paragraphs. Element size and shape

17. As with many other numerical procedures for solving structural problems, the accuracy of the finite element method depends greatly on the correct use of the technique. While the computational cost and computer storage space increase drastically with an increasing number of elements, the program does have a required number of elements. The element size should be smaller near the loads (such as 10 to 12 in. in one dimension) and joints where stresses are transferred to another slab. In some cases, the minimum number of elements for a particular problem has to be determined by a trial-and-error procedure. It was found that an insufficient number of elements can cause the solution to diverge. This is particularly true when temperature warping is considered and gaps exist under the pavement. Also, users should be aware that the aspect ratio of an element, defined as the ratio of the larger dimension to the smaller dimension of a rectangular element, should not exceed four or five to one. It is always a good practice for the beginning user of this program to familiarize himself with the program by using different numbers of elements for a particular problem and then comparing the results.

Dimension requirements

18. The method developed in this program can be applied to any number of slabs. Based on the present dimensions declared in this program, it can be applied to 9 slabs, 12 joints, 200 nodes, and 130 elements. Each slab can have as many as 15 X-coordinates and 15 Ycoordinates. A maximum of 75 nodal points may be out of contact from the subgrade support. If an axis of symmetry exists, each axis can have a maximum number of 50 nodes. If any of these dimensions is

exceeded, the corresponding dimensions should be increased accordingly. The variables whose dimensions are subject to increase are given in Table 1 for various conditions.

19. The dimensions of C, G, CL, and CU vary with the number of elements and the half bandwidth. The required dimensions are explained in the input guide. The storage, and consequently the cost, required for a particular problem depends primarily on the dimensions of C and G, and therefore the dimensions of C and G should be changed according to the requirement of the problem.

20. It should be noted that when the dimensions of certain variables are changed in the main program, they should also be changed accordingly in the subroutines when the dimensions of the same variables are declared.

Arrangement of slabs

21. Although the slabs can be arranged in any manner, there are rules to be followed. Along a joint between two slabs, the rules are: (a) the number of nodes along the joint should be equal, and (b) for a node on one side of the joint, there is one and only one corresponding node on the other side and the distance between the two nodes is the joint width.

22. The arrangements shown in <u>a</u> and <u>b</u> of Figure 3 are allowable. Arrangement <u>c</u> is not acceptable because at the intersection of the joints, the node in slab 3 corresponds not only to the node in slab 1 but also to the node in slab 2. This situation may be remedied by creating a fictitious joint in slab 3 as shown in Figure <u>3d</u>. The efficiencies of moment and shear transfers are both 100 percent along the fictitious joint. In this way, when the stresses are transferred along the joint between slabs 3 and 4, the node in slab 4 near the intersection of the joints corresponds to the node in slab 3. The same node in slab 4 corresponds to another node in slab 2 when the stresses are transferred along the joint between slabs 2 and 4, which is permissible. Similarly, the arrangement in <u>e</u> of Figure 3 is not acceptable because the number of nodes along the joint in slab 2 is greater than

Table 1. List of V	<u>ariable</u>	Names, t	the Dimensions of Which Are Subject to Increase
Conditions	Variable Main Program	Location Slab Subroutine	Dimensions of Variables Need to be Increased
When numbur of slabs exceeds 9	X		INITHP(9), JONO(<u>9</u> ,4), LASTNP(9), NB(9), NO(9), NOB(9), NX(9), NY(9)
		×	INITNP(9), JONO(<u>9</u> ,4), LASTEN(9), LASTNP(9), NB(9), NO(9), NOB(9), NX(9), NY(9), X(<u>9</u> ,15,, XX(9), <i>I</i> (<u>9</u> ,15), YY(9), AREA (<u>9</u> ,130)
When number of joints exceeds 12	×		EFF(12,3), ICK(12), IJOINT(12), ISLAB(12), ISNN(12,2), IST(12,2), LFNN(12,2), LLS(12), LUS(12), NJT(12,2), NKT(12,2), ISLAB1(12)
		×	BARNO(12,15), BD(12), BS(12), DC(12,15), DCGF(12), DID(12,15), DIDF(12), DE(12), EFF(12,3), FAJ(12,15,3), FGF(12), FOJ(12,15,3), ICK(12), IJOINT(12), ISLAB(12), ISNN(12,2), IST(12,2), LTNN(12,2), LLS(12), LTR(12), LUS(12), NJT(12,2), NHT(12,2), FFAJ(12,15,3), SCKV(12,2), SPCON(12), WJ(12), ISLABI(12), CEF(12,15)
When total number of nodes exceeds 200		×	AB(200), CURL(200), GAP(200), NCC(200), NCCP(200), NG(200), NP(200), NS(200), NT(200), SUBMOD(200), STR(200,6,2), T(200,2), XN(200), YN(200), AREA E(200).
When total number of concentrated formes (moments included)		×	NFF(200), NFI(200), NF(200)
exceeds 200	x		QANN
When total number of elements exceeds 130	×	х	DN(<u>130</u> ,2), NL(130), PC(130), Q(130), RM(<u>130</u> ,2), XDA(<u>130</u> ,2), YDA(<u>130</u> ,2)
When number of nodes at either X- o Y-axis of one slab exceeds 15	L	×	BARNO(12,15), DC(12,15), DFAJ(15,3), DID(12,15), DSB(15), FAJ(12,15,3), FOJ(12,15,3), PDFAJ(15,3), PFAJ(12,15,3), X(9,15), Y(9,15), FAJPD(15,3), CEP(12,15)
When the number of nodes at an axis of symmetry exceeds 50		×	NODSX (50), NODSY (50)
When number of nodal points out of contact exceeds 75		x	NODNC(75)
When number of nodes exceeds 130 in any slab		×	AREA (9. <u>130</u>)

Figure 3. Arrangements of slabs

that in slab 1. Again this can be remedied by creating a fictitious joint, as shown in the arrangement of Figure 3. <u>Symmetries</u>

23. The application of the finite element method for analyzing rigid pavements invovles solving a large set of simultaneous equations. However, because of symmetry, the number of simultaneous equations could be greatly reduced by considering only one quarter or one half of the slab. The symmetry is with respect to the load, the pavement geometry and property, the finite element grid space, and the load transfer device along the joint. The users are strongly urged to take advantage of the symmetry option provided by the program to arrange the loadings in such a way that the problem becomes symmetrical. A coded data input for a symmetrical example problem is presented in Part V. It should be pointed out that symmetry should not be placed at a joint, unless the joint is 100 percent rigid, i.e., 100 percent shear and moment transfers.

24. When the effects due to temperature and loadings are considered separately, the computed results due to temperature alone are expected to be symmetrical with respect to the pavement geometry. For instance, the stresses and deflections are the same at the four corner nodes in a square slab subjected to a temperature warping. This may not be the case, however, if the finite element grid lines are not divided symmetrically. In practical cases, smaller elements can be used around the applied loads, which may result in a nonsymmetrical finite element grid pattern. If this is the case, the computed results due to temperature alone may not be symmetrical as they ought to be and consequently may affect to a certain extent the final results when the temperature effect is combined with the effect of the load. The error in most cases is insignificant because the load effect usually outshadows that of the temperature. Nevertheless, users should be aware of this possible discrepancy. The finite element grid pattern shown in Figure 4can be used to illustrate this point.

25. In Figure 4, the loads are placed at the pavement's center next to the joint. Smaller elements are used around the loads and larger elements are used elsewhere. Although the finite element pattern is symmetrical with respect to the pavement center line and symmetrical with respect to the joint, the element sizes are not identical. Consequently, if there is no moment transfer along the joint, the computed results due to the temperature's effect at nodes 1 and 57 are not equal as they are theoretically supposed to be. Consequently, the final computed results are not strictly correct. However, the error is believed to be insignificant when the effect of applied loads is combined. It should be pointed out that the solutions obtained from the finite element application are by no means completely correct; they are only close, acceptable approximations. It is the correctness of the computed larger

IDTE NUMBER NEXT TO NODES DENOTES NODAL NUMBER. NUMBER INSIDE THE CIRCLE DENOTES ELEMENT NUMBER.

Figure 4. Finite element layout for Example Problem 3

values that is important. The smaller values computed at insignificant locations of the pavement, such as at places far away from the load, are of no significance in engineering problems.

Slab numbering system

26. The iterative scheme developed in this program provides the computation of displacements for one slab at a time; the computations

are then carried out for other slabs in a sequential order until the shear forces converge to a prescribed limit. The relationships among the slabs are (a) the superimposition of displacements to an adjacent slab through the joint and (b) the nodal reactive forces at the joints, which are induced by the deflections of adjacent slabs. When the displacements are superimposed from one slab to its adjacent slab, it makes sense only when the displacements of the imposing slab are greater than those of the slab being imposed upon; otherwise, the solution will either diverge or converge slowly. The rule of thumb in the numbering system is that the slabs are numbered such that the deflections in a slab are superimposed to the adjacent slab that has smaller deflections. Therefore, the slab with greater deflections should be numbered earlier than the neighboring slab that has lesser deflections. Accordingly, the slab subjected to the largest load is numbered first. Slabs that do not carry loads should be numbered based on the anticipated magnitude of deflections. For instance, in Figure 5a, slab 1 is subjected to the largest load and slab 2 to the smallest load. Since the deflections in slab 3 are anticipated to be greater than those in slab 4, slab 3 is numbered before slab 4. The numbering system shown in Figure 5a ensures proper convergence of the solution. If the loads on two slabs are nearly the same or it is difficult to judge which is greater, either order may be used. Figure 5b shows the proper slab numbering system for a five-slab pavement. For illustrative purposes, the slab numbers for the same five-slab pavement are changed as shown in Figure 5c. The load transfer mechanism along joint 1 will have a problem since the deflection in slab 5 is greater than that of slab 4, and thus the deflection should transfer from slab 5 to slab 4 along joint 1. According to the slab numbering system shown in Figure 5c, the deflections in slab 4 are transferred to slab 5, as the slab number of slab 4 is smaller than that of slab 5. However, it is not logical to transfer the deflections from slab 4, which has smaller deflections, to slab 5, which has greater deflections. In doing so, the solutions will either be divergent or erroneous.

Figure 5. Illustration of slab numbering system

Relaxation factors

27. In the iterations with respect to load transfer, the vertical shear forces at a specified node on a specified joint are checked for convergence. If the shear forces at the joints are changed too much between two iterations, the solution may diverge and the shear forces become unreasonably large. To ensure convergence, a self-adjusting relaxation factor is incorporated in the program. More information in this respect can be found in paragraphs 13 and 40 of this report. Efficiencies of shear and moment transfer

28. Detailed explanations of the definitions of efficiencies of shear and moment transfer are given in Report 1 of this series. It should be reiterated that the efficiency of shear transfer is defined as a ratio between the <u>deflection</u> of the unloaded, or less loaded, slab and the <u>deflection</u> of the loaded slab. Also, the efficiency of moment transfer is the ratio between the actual moment and the moment in the case of 100 percent moment transfer. One hundred percent efficiency of

moment transfer occurs when the rotations at both sides of the joints are the same, and consequently the moments at both sides of the joint are the same. Zero percent efficiency of moment transfer means that the crack opening is so large that moment does not exist along the joint. For an efficiency of 50 percent moment transfer, the moments are 50 percent of those computed from the 100 percent efficiency of moment transfer, and the moments on both sides of the joint are still <u>equal</u>. This is why when the efficiency of moment transfer for a certain joint is some value other than zero or 1, it is necessary to first run the problem with 100 percent efficiency.

29. When a joint has 100 percent efficiency for both shear and moment transfer, the cracks along the joint actually do not exist. A joint with 100 percent efficiency for shear transfer but zero percent efficiency for moment transfer physically means that the dowel bars placed along the joints are so strong that the deflections (and also the shear forces or stresses) on both sides of the joint are the same, but because the crack opening is so large, moments cannot be carried along the joint at all. The joint reacts as a hinge in which the shear force is 100 percent transferred through the joint, but the moment is zero. <u>Half bandwidth</u>

30. The definition of a half bandwidth of a matrix can be found in any structures book. The size of the half bandwidth directly influences the size of the storage space. A proper nodal numbering system may reduce the size of the half bandwidth. This is illustrated in the two different numbering systems shown in Figure 6. Both slabs in Figures 6a and 6b have 20 nodes and 12 elements, but the half bandwidth for the arrangement shown in Figure 6a is $(4 + 2) \times 3 = 18$ and that of Figure 6b is $(5 + 2) \times 3 = 23$. The rule of thumb is to arrange the finite element grid with the side having fewer nodes in the vertical direction. Note the rule used in the programs in the nodal point-numbering system is to 80 from left to right and to increase from bottom to top. Weight of concrete slab

31. In the classical Westergaard solution, the weight of the slab is not considered in the computation. Consideration of the weight

Figure 6. Influence of finite element arrangement on the size of half bandwidth

of the slab is an option in this computer program. When temperature and loads are not considered and the subgrade is uniform and in full contact with the slab, the weight of the slab only causes the slab to settle uniformly and induces no bending in the slab. Consequently, stresses are not induced in the slab. In some cases, the consideration of the weight of the slab is mandatory, as discussed below.

32. The major difference in procedure between full and partial contact between the slab and the subgrade is that it is not necessary to consider the weight of the slab in the case of full contact, but the weight of the slab must be considered in the case of partial contact; otherwise, the solution may diverge.

33. When problems involve temperature warping, the weight of the slab must be considered to avoid the possible divergence of the solution. This is particularly true when gaps exist under some nodes. For the case of partial contact, the weight of the slab must be considered even when temperature is not considered.

Selected points of stress computations

34. While the displacements are computed automatically for every

nodal point, the stresses are computed only on request. The stress matrix is used each time stresses at a nodal point are computed. Some computer time can be saved if the stresses at only a few selected nodes are computed.

Analysis of two-layer slabs

35. The program can be applied to two-layer slabs, either bonded or unbonded. The derivation of the two-layer system is presented in Appendix A.

Temperature considerations

36. When the temperature is considered, the dimensions of each slab have to be identical; otherwise, the execution of the program will be terminated. Also, the thickness of each slab has to be uniform. The deformed surfaces of the slabs are assumed in the program to be spherical. This assumption is not valid when the thicknesses of the slabs are not uniform.

37. The computed initial curlings are independent of the arrangement of the finite element grid pattern and concrete slab unit weight. The amount of initial curling at each node is computed by means of Equation 10b in Report 1 of this series. The only variable in Equation 10b is the distance R between the center of each slab and the node where the curling is computed.

Correctness and divergence of the obtained solution

38. Users of the computer program should always be scrupulous with the computed results. Stresses and deflections may be computed and tabulated, but the values still may not be meaningful. Certain features in the program deserve special attention and are explained below.

39. <u>Number of iterations.</u> When the number of iterations with respect to shear transfer IC has reached the maximum allowable number of iterations--ICL and ICLF (Item 6 of Table 2), the solution has not converged (or the specified criterion was too difficult to meet). The problem should be recomputed with larger values of ICLF (and also ICL in certain cases). However, it may be wise at this stage to see whether

the solution obtained is good enough for engineering purposes. In some cases, a solution may not be obtainable if the convergence criterion is too strict. The same reasoning can be used when checking the number of iterations with respect to subgrade contact NIC against the maximum allowable number of iterations (NCYCLE). The value of ICL is not as critical as the value of ICLF; however, a large difference between the actual value of IC (printed in the output) and specified ICL is not recommended.

40. <u>Reduction of relaxation factor RFI</u>. If convergent results cannot be obtained, the program reduces the factor automatically. Too small a value of the relaxation factor results in too small of a shear transfer across the joint during each iteration; consequently, the computed results could be erroneous because the convergence of the solution is artificially enforced. It was found that when the number of slab NSLAB is large, such as 7, and when the solution is difficult to converge, the option stated at the bottom of paragraph 13 of this report should be waived. To reduce the relaxation factor too rapidly could cause the solution to diverge.

41. Large number of concrete slabs. When a large number of slabs are involved in the computation, it is reasonable to have a lesser number of elements in the slabs that are far away from the load. However, users should be cautioned that the size of the elements next to the joints in these slabs should not be too large. Otherwise, the subgrade reactive forces along the joint in those slabs tend to become too large and affect the overall computed results without causing any divergence. The reason is that the joint where convergence criteria are checked is not at slabs far away from the load; convergent solutions may be obtained but the results may not be correct.

42. <u>Slab numbering systems.</u> The rule used for the numbering of the slab system was explained earlier in this section. Incorrect use results in either solution divergence or erroneous results. In the former case, the user has the chance to locate the mistake since the solution has not been obtained yet. In the latter case, however, the stresses and deflections are computed and tabulated but the accuracies

of the results are doubtful, depending on how incorrectly the slabs are numbered. Unfortunately, a warning system cannot be established in the program when the slabs are numbered incorrectly; users are thus urged to be cautious in numbering the slabs.

43. <u>Symmetries.</u> When symmetry in a given direction is used and deflections and stresses across a certain joint are supposed to be equal, the efficiency of load transfer across the joint should be input only as 100 percent. Otherwise, erroneous results will be computed.

Input Guide

44. The input guide for the program is given in Table 2, with detailed explanations of each entry presented as follows:

a. Item 1: Number of Runs Card (15).

Notes	Columns	Variables	Entry
(1)	1-5	NRUN	Number of runs to be computed

NOTES:

(1) The number of runs is first specified at the onset of computations. The nature of the problems in each individual run is generally different. However, results of one run can be used in the next run immediately followed by the input NREAD or NSTORE. They are explained in Item 6.

b. Item 2: Identification Card (A80).

Notes	Columns	Variables	Entry
(1)	1-80	TITLE(12)	Enter the heading in- formation to be printed with the output

NOTES:

(1) Begin each new run with a new heading card.

c. Item 3: Dimension of Matrices Card (1615).

Notes	Columns	Variables	Entry
(1)	1-5	NSLAB	Number of slabs in the model
(2)	6-10	NJOINT	Number of joints in the model

Table 2. Input Guide for WESLIGID -- Pavements on Winkler Foundation

15

Contraction of the second seco							arao -		11212								
STATENENT 05	2	š	ę	s	2					*		3	8	3	ę	213174301	
	ber of R	une Card (15)															
	-																
					· •				1	+ + + + + + + + + + + + + + + + + + + +		1 1 1 1 1	 				-
		4 5 6 4 4 5 1 4				- - -			-4-4-1-1-				++				-
						- - -		 - -		4 4 4 4 4					 		
IN 2. Ide	ntificet	100 Card (1246)											+				•
Prople	descript	ton (title) can	8	scribed in	column	8											-
			↓• • •	· · ·	· ·		· -			1 7 7 7 7	-	.1 1.1.1				4	
					-	- - -					-						
	-				-	- - -							+				
				1 1 1 1 1	1 1 7 7		•										
]				•		- - -		•		-	7 1 1 7 1	+		1		
1, , , , 1	-				-		- - - -			1 1		1 1 1 1			1		
IT SAL	p polage	E Mattices Card	ton 1								-				+ + + + + + + + + + + + + + + + + + + +		
	-			• • • • •		- - -					4 - 1 - 1	1 1 1 1 T					
-	Latoha	oh" i inderh	8-	3		1	•	 -		-	-	-			1		-
i and	TT. A	a of those	8		, should	활	1	₹. -	dimensio	ີ່ ມີ ອີສະ	ວີ ຊ ້	B	51 81			•	-
	• •						-	-	1.1.1			1.1.1.1			+	• • •	ł
		T D.TAT MAXEDT D.J	101	• • • •	• • •	-	-	:	• • •	•••••	-	•			1		
	(I)	Demor (I.I.) Demor	I.2)	(E, I) ONO	(YI)OMO		•	•									
		for each joint		(LICION	• •	- - -	+ + + + - +	• •									
	-		-					4	الم الم		4	**	- - -			-	
		•			• •	•	-						-				
															PAGE	•	
00 880 5 5 18	1521																
							ບ (ບ	nti	nued)					, she	+00	0 20 0	

(Sheet 1 of 9)

Table 2 (Continued)

-2

í

					1						Ī	
						FO	RTRAN STA	TEMENT				IDENTIFICATION
	:	÷	٤				8	45 5	35 60	5	2 8	-
Item 5. John	IL BUU	Lency Carda	(37.0.5)		؛ ، ا]	
			-								-	
		6	2)					4 4 4 4 4 4 4 4			-	
		tol jo ret	11 22	ater than	1	at Triou	It= 3).	continue to pert, de	th card using same for			
	ote: U	e a blank c	and if.	1-12								• • • • • • •
				· -	· ·]	• • • • • •
	cellage.	oue Data Car		· ·							-	
				· -							-	
Card L.	(915)	· ·									-	
ILAND.		noton.	đ	and the	a store				+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4	
			-	-	-							• • • • • •
Card	(915)	· · ·		-		-						
	ŭ	5I			ĩ	Ĩ						• • • • •
	 	· -	-	-	-	-	-				4	• • • • •
Cerra 2.	(sto)						· · · · · · · · · ·					
i i	Ŭ,		i i	ġ	2	ICEO					4	• • • •
					1 1 1 1			* * * * * * * * * * *			-	• • • • • • • •
Card	(615)							** ******				• • • • •
2	(1)	[145(2)]	Ē	5							-	
								<u> </u>				• • • • • •
Carris 5.	(arto.	5., 3HLQ-3.,1	7.95)	-					• • • • • •			
t)doelanta	(B.	<u>-</u>	8			1968 1968	P380	-	NCOMP
		1 1 1 1 1			- 4 - 1 - 1 - 4 - 1	- - -		****			-	
						•		• • • • • • • • •				
PROGRAMMER											PAOF	0t
WES FORM NO.	1021								1			

(Sheet 2 of 9)

(Continued)

1

Table 2 (Continued)

14.5

Ċ

٩

1

ĥ

ŝ

ř

19 1 - **-** - 5

C-COMMENT								
STATFMENT OF	2	8	2 *	FORTRAN STA	TEMENT	9	55 07 22	IDENTIFICATION
	The second s	Cand (S(TS, P)	1 51)					
			Stimmon (BS(2))					
		1						
Repter		5 950 1994 5	at mituber and the pitter	diriterent from Sun	(T)adadas (T)daa	.6 Str'at indat of		
I. Bote:	Une e blank	card if the su	interests base a unition	subgrade, spoulte,				
-		+ { + 						-
	┥ ┥ ┥ ┥ ┥							
	╶╸╸╇╺╺╸┥			1 1 1 1 1 1 1 1 1		1 1 1 1.1 1.4		
	201 1 1 1 1 1 1 1 1 1 	Stints Card	1 TTTTTTTTTT	11111111111				
T I)X		X(1.2)	(5.1)1	1			- - - - - - - - - - - - - - - - - - -	
		1.1.1.1.1.1.1.1		+ • • • • • • • • • • • • • • • • • • •				
de par aut	er of sides to	Stanter than	1. continue to next of	ata card wind your	roymet, until, the new	Erist) odele 10 10	in Ite 3) is setted	
	-							
								-
					7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
	rer Froperties	Carde (2(200	115-913 - Ch					
•	•							
त म			(T))(0.	T(1.2)				
-								
			ليبيبينينينينا				باليبيبيب ببب بب	
PROGRAMMER							PAGE	5
NES FORM NO. REV. SEPT. 1963	1021							
				(LONT)	nued <i>j</i>		(CF00+ 3	10 00

30

(Sheet 3 of 9)

Table 2 (Continued)

•

¢

C COMMENT	ROIL								1003	24 CT	A TENEN	Ŀ										3	
STATEMENT NUMBER	-		£	\$	~	ŝ	8		1 1 1 1 1			:	2	0	*		2	ž		•	. :		•
If the put	AT OF th		r 1e 1.	stop ti	topu	it at col	jum 20	1	hickne				thicks		fferen				Ř.		ter.		
						4	-		1		ب 1	1.1.1.1		ہ 1 				-	-		-	•	· · -
					-			1	1	ריי ד		1 1 1 1	1-1-1	-	-	1 1 1	-]			; 1	•
IN= 10.	Star this		Carde (2(1).	<u> </u>		1				۔ ۲		1.1.1	- - -	- - -	1 7 1			-		- -		
					- - -			י - +		•	; ;	r + 1	- - -		-				- 4	۱ 	۔ د		
т (т) ±	ž	(î) 1		1 (2)	+	T(T)	2.1	Ĭ	<u> </u>		<u></u>		۔ اور ا		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- -	E	3	۲. ۲		- -		
₩76(6)	ž	€(e)) #(e))			ŀ		1	Ē						ļ		E			-		F		-
1	-		1		+ + +	1.1.1		-	4 4 1	1 F T		1.1.1.1	1 1 7	- -	- -	1 - 1 - 1		1.1	- 1		-		•
Continue 1	Jugut a	10 13	1chmese	ee vaic		H feren				. Fr.		ber 9t	the Jey	4] 4	2° - Con	tinge (tran of	date	an br		5 5 1	t	_
	4	+ +					7			1 1.1.				-	-		-			- -	-	-	-
	-	+ +			- -	1.1.1.1.				1.1.1	1			-	-		-		• • -	-		-	· · · · ·
Mqtq: If	ije thick	dens 1.	e unifo		1	T, place		the cert	I for th	1at 199	1 1 1 1	in bler	it cerds	-	equitre.	14 F	bio mer	9) 9)	, For Por	 		:	
Lavers and	wai form.			4	1			1-1-1			- -			-	-	1.1	ا- 		- -		-	-	 - -
		+ - +	דיד דיד	1 1	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	
	Idint Inf	Ĩ	on Card	<u>- 13</u>	10.3	3TIO.5.	200.3	è			r r		1 7 1	-	1 1 1		-		-		-	-	· · ·
1						1 1 1	1	1	4			- - 	-	-		-		* * * *				-	
		(1) 1) [] -	Ê		198 - -	E 1		94]	Ξ		BCIN	ਜ <u>ੋ</u>		2 2 2 2 2	<u>с</u> 1 1 1 1 1 1 1 1		-	I) BOG	:		
			-	-	4	4-1-1-4		ן ד ד		1.1.1	-		-	-	-	-				-		ר ר	
If the put	t of jo	dat is	greates	T them	1. cont	dimue to	neat d	tte cen	aten bi		to to	5	H NOT	4) F			1. 8.	8. 8.	-			-	- -
24 9 15			199 199	8	3	AID8	2	2	the blen	1 11	9 4	Bot e	Tani to		하		뇌				ہ۔ بے		1
				-	1]	4 4	1 1 1	1	-	•	+	4 - 4	- - 1				-	-	-	
	-			4		-	4]	4	-	-	4	. 4 . 4 . 4	+	14	1	ز. به حد	1	1		ہ ب ب	1	
			4	-			4			1 1 1	-				1 1 1		-	1 7 7 1			.,	-	
				1]								-	-1					1	į
PROGRAMMER																				PAGE		ō	
NES FORM NO. REV. SEPT. 19	1021								1														

(Continued)

(Sheet 4 of 9)
ć

₹

3

ういい

1

387

Ξ,

AS

C-COMMENT	HO							
STATEMENT OF	198-			FORTRAN	STATEMENT	5		
1 2 4	1 7	11	2	15				
It 12. 1	Ntel Uni	toraly Applied Load	dard .(1.2.2)	- 1 . 1 . 1 . 1 . 1 . 1	· · · · · · · · · · · · · · · · · · ·			
					, , , , , , , , , , , , , , , , , , ,			
	3		+					
-				-				
Sets this		Name is no lond until	formity annihol on the	alabs. A black ce	bebend too at buy			
I III	anthe C	ards (15, 5010.5)						
							• • • • • •	
	Ř		(1.2)	ц (r т)	M(1.2)	0(1)	-	
				month in Item 6).	continue to next	data dard using sens for	· · · · · · · · · · · · · · · · · · ·	
								- - - -
Hete: Vat		dard 11 there is no	WHITE THAT WANTED	t par the state.				
	ہ ہ ہ		~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		, , , , , , , , , , , , , , , , , , ,			
Item Ih.	Subgrade	dogtact Card (1615)		7-7-1-6-7-6-	· · · · · ·			
	-			· · · · · · · · · · · · · · · · · · ·				
BODEC(1)	DIC(2)	monec(3)	L. L			TITE [adate(11)]	┺╋╍╼╼╓╓╓┍╋ ┷	
			incont c			-		
Chat ique	be input	until the number of	Latinger (Jesur, 1s)	Ithm 61 Ja. antiafier	9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		· · · · · · · · ·
		-						
Note: Ve		and if the slabs a	re intrativ in Mil.	contact, with the F	uberade.		-	
PROGRAMMER							PAGE	04
RES FORM NO. REV. SEPT. 194	1021							
				(Con	tinued)		(Sheet 5	of 9)

والمراجع و

ć

STATEMENT OF				FORTRAN ST	ATEMENT			IDENTIFIC ATION
NUMBER S	8	Q? \$1	25	35 40	43	53 60	65 70 12	24 61
Iten 15, 841	fester 1	rint Card (1615)			• • • • •			
					• • • • • •			
(T)a#	#P(2)	(v)ati (c)ati				. (21) 🖷		
	-							
	-							
Centique the	taput y	mtil the number of	ERIT (Iter 6) 18	satisfied. Ver a pl	ant card if the street	te at all podel point	a peeds to be printed.	
	-	-						
Item 16, 82		arda						
1 1	1 1							-
Card 1	1	try on X-arts card ((rers)					
	-							-
	DDBX(2)	NONEX(3)					(T) 1300	
						·	┝╌╋╌╿╌┲╌╅╌╉╴╽╌╎╴╽╴┫╴┫╴┫╶┙╴	
			1111111111					
		mber of addal points	of Ally Pre-1 a	The per per share	and to 'make 'n for		· • • • • • • • • • • • • • • • • •	
				****	-4	- 1 - 1 - 1 - 1 - 7 - 7 - 7 - 7 - 1		
Mete: Vet 4	रे राजन्य	ard if T-aris is not	the sets of even				++++++++++++++++++++++++++++++++++++++	
L . Card 2	. 87	try on Y-exts cord (0.615)				1	
TINDEX(T)	008Y(2)	ILCODEX(3)					(Et) Istada	-
				(Jan) (Jan)				
	-							
1, 1881 1	s the m	mher of nodel points	al Anta which is	an unis pf. symmetry	and is input, in Item	6,		•
PROGRAMMER							2044	٥٢
RES FORM NO. REV. SEPT. 1963	1021							

(Continued)

33

(Sheet 6 of 9)

e

والمستقد ومناغث والمعارين والمستنا والمستنا والمستنا والمعارين

ć

₹

1

1

5.3

	Numeric Equation Image in the interval interva	C-COMMENT	NOTI			EODTOAN CTA	LN3N91			
Alter II Revent Bart Breach Lin (1,1,1,1) Streen(1,2,1) Streen(1,1,1,1) Streen(1,2,1,1)	Alter II. Brunes and Theres and There and Theritions Read In Card Card 1 Card Brunes and Theres and There and There is a construction of the consthe consthe construction of the consthe construction of	STATEMENT NUMBER	-	2 2 2	2		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3	g	12 11 11 11 11 11 11 11 11 11 11 11 11 1
1. Certral 1. Detromente (670.0.5). Stremor(1, 1, 1, 1) Stremor(1, 1, 2, 1) Stremor(1, 2, 2, 1) Stremor(1, 1, 2, 1) 1. Former 1. Livit Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) 1. Former 1. Livit Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) 1. Former 1. Livit Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) 1. Former 1. Livit Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) 1. Former 1. Livit Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) 1. Former 1. Livit Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) 1. Use 0. Livit Livit Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) Stremor(1, 1, 2, 1) 1. Use 0. Livit Livit Livit Livit Livit Livit 1. Use 0. Livit Livit Livit Livit Livit Livit 1. Use 0. Livit Livit Livit Livit Livit Livit 1. Use	1 Carel 1. Streeno(1,2,1.) Streeno(1,3,1.) Streeno(1,2,1.) Streeno(1,2,1.) 1 Streeno(1,2,1.) Streeno(1,2,1.) Streeno(1,2,1.) Streeno(1,2,1.) Streeno(1,2,1.) 1 Streeno(1,2,1.) Streeno(1,2,1.) Streeno(1,2,1.) Streeno(1,2,1.) Streeno(1,2,1.) 1 H H H H H H H 1 H H H H H H H 1 H H H H H H H H 1 H <t< th=""><th>Iten 17.</th><th>Terral B</th><th>Mresses and Thermal I</th><th>eflections Read In C</th><th>F</th><th></th><th></th><th></th><th></th></t<>	Iten 17.	Terral B	Mresses and Thermal I	eflections Read In C	F				
I Grani D. Brynnier (670, 5) Stream(1, 2, 1) Stream(1, 2, 1) <th>1 Operation <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th>	1 Operation Operation <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>									
I streer (1,1,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) Breer (1,1,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) Breer (1,2,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) Breer (1,2,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) Breer (1,2,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) Breer (1,2,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) Breer (1,2,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) Breer (1,2,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) Breer (1,2,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) Breer (1,2,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) Breer (1,1,1) streer (1,1,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) Breer (1,1,1) streer (1,1,1) streer (1,2,1) streer (1,2,1) streer (1,2,1) Breer (1,1,1) streer (1,1,1) streer (1,1,1) streer (1,1,1) streer (1,1,1) Conv (1,2,1,2)	I stream(1, 1, L) stream(1, 2, L) stream(1, 1, L) stream(1, 1, L) stream(1, 1, L) I stream(1, 1, L) stream(1, 2, L) stream(1, 1, L) stream(1, 1, L) stream(1, 1, L) I stream(1, L) stream(1, 1, L) stream(1, 1, L) stream(1, 1, L) stream(1, 1, L) I stream(1, L) stream(1, L) stream(1, L) stream(1, L) stream(1, L) I stream(1, L) stream(1, L) stream(1, L) stream(1, L) stream(1, L) I stream(1, L) stream(1, L) stream(1, L) stream(1, L) stream(1, L) I stream(1, L) stream(1, L) stream(1, L) stream(1, L) stream(1, L) I stream(1, L) stream(1, L) stream(1, L) stream(1, L) stream(1, L) I stream(1, L) stream(1, L) stream(1, L) stream(1, L) stream(1, L) I upot L total stream(1, L) stream(1, L) stream(1, L) I upot L L L total stream(1, L) stream(1, L) I upot L L L L L L I upot L L L L L I upot L L L L L I upot L	1 . Cart	1. Btree	iee (6710.5)						
Image: Indication in the state of the st	I preservol 1, 1, 1 structrol 1, 1, 1 structrol 1, 1, 1 structrol 1, 1, 1 I preservol 1, 1, 1 structrol 1, 1, 1 structrol 1, 1, 1 structrol 1, 1, 1 I preservol 1, 1, 1 structrol 1, 1, 1 structrol 1, 1, 1 structrol 1, 1, 1 I preservol 1, 1, 1 structrol 1, 1, 1 structrol 1, 1, 1 structrol 1, 1, 1 I preservol 1, 1, 1 structrol 1, 1, 1 structrol 1, 1, 1 structrol 1, 1, 1 I preservol 1, 1, 1 structrol 1, 1, 1 structrol 1, 1, 1 structrol 1, 1, 1 I preservol 1, 1, 1 structrol 1, 1, 1 structrol 1, 1, 1 structrol 1, 1, 1 I preservol 1, 1, 1 structrol 1, 1, 1 structrol 1, 1, 1 structrol 1, 1, 1 I break structrol 1, 1 structrol 1, 1, 1 structrol 1, 1, 1 structrol 1, 1, 1 I break structrol 1, 1	•								• • • • •
Image: State in the second state in the	Instant (in) Street (in) Street (in) Street (in) Street (in) Instant (in) Street (in) Street (in) Street (in) Street (in) Instant (in) Street (in) Street (in) Street (in) Street (in) Instant (in) Street (in) Street (in) Street (in) Street (in) Instant (in) Street (in) Street (in) Street (in) Street (in) Instant (in) Street (in) Street (in) Street (in) Street (in) Instant (in) Street (in) Street (in) Street (in) Street (in) Instant (in) Street (in) Street (in) Street (in) Street (in) Instant (in) Street (in) Street (in) Street (in) Street (in) Instant (in) Street (in) Street (in) Street (in) Street (in) Instant (in) Street (in) Street (in) Street (in) Street (in) Instant (in) Street (in) Street (in) Street (in) Street (in) Instant (in) Street (in) Street (in) Street (in) Street (in) Instant (in) Street (in) Street (in) Street (in) Street (in)	otente	}ग^र†र	Steero(1,2,L)	STRETO(1,3,L)	STRETO(1, 4, L)	STRETO(1,5,L)	STRETO(1 161L)		• • • •
Image: 1 Streen(Lar, 1, 1) Streen(Lar, 2, 1) Streen(Lar, 4, 1) Streen(Lar,	Improving article i i i i i i Improving article Stresson(Larp_j, L) Stresson(Larp_j, L) Stresson(Larp_j, L) Stresson(Larp_j, L) Improving article Lar Lar Lar Lar Lar Lar Improving article Lar Lar Lar Lar </th <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		-							
Sprearon (Larg, 2.L) Sprearon (Larg, 5.L) Sprearon (Larg, 5.L) <td< th=""><th>Uppervol(are j.1,j) STRSTO((are j.1,j) STRSTO((</th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	Uppervol(are j.1,j) STRSTO((are j.1,j) STRSTO((-							
I where iffer if the forti number of moder for all the make considered I where iffer if the forti number of moder for all the make format for i = 2; otherwise i = 1. I where iffer if ships as a second horr, repeat the sum format for i = 2; otherwise i = 1. I where i = 1. I were iffer is ships as a second horr, repeat the sum format for i = 2; otherwise i = 1. I were i = 1. I were iffer is ships a second horr, repeat the sum format for i = 2; otherwise i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1. I were i = 1	I Woords Lar if the total amber of code for all the maker of considered I House Lar if the total amber of code for all the maker of the total amber of the to	spiraro()	(1.4.4	STRETO(LAP.2.L)	STRETO(LAP.3.L)	STRETO(Lar, 4, L)	STRSTO(LUP,5,L)	STRSTO(LEP.6,L)		
Imply Life id the cotri number of pooles for all the point of the same formation the transmission the point of the point of the same formation the point of the point of the same formation the point of the point of the point of the same formation the point of the point o	Image Law If the forted number of poder for all the above considered Both If the lamb has a second lawer, repeat the sem formut for L = 2; otherrise L = 1; Both If the lamb has a second lawer, repeat the sem formut for L = 2; otherrise L = 1; Both If the lamb has a second lawer, repeat the sem formut for L = 2; otherrise L = 1; Image blank cord if Brouge Image Image L = 2; otherrise Image blank cord if Brouge Image Image Image Image Image Image blank cord if Brouge Image Image Image Image Image Image Image Image		-							
Implete If the lish has a second light, repeat the see fromt for L = 2 i othertise L = 1. Implete Implete Implete Implete Implete Implete Implete Implete Implete Implete Implete Implete Implete Implete Implete Implete Implete Implete <td< th=""><th>Both: If the slib has a second lyver, repeat the same format for L = 2; otherwise L = 1. Use a black cord if BOYOE is not equal to 1. Use a black cord if Sound (of 0.5) Devel: Devel:</th><th> Have</th><th></th><th>te the total number of</th><th>Bodes for all the</th><th>tabs considered</th><th></th><th></th><th></th><th></th></td<>	Both: If the slib has a second lyver, repeat the same format for L = 2; otherwise L = 1. Use a black cord if BOYOE is not equal to 1. Use a black cord if Sound (of 0.5) Devel:	Have		te the total number of	Bodes for all the	tabs considered				
Implet: If the lath) has a second i get; trepet the see format for Le 2; otherrates Le 1; I Upe a blank creat if Errores (67%) 5; If the lath if the la	Imple: If the stable are orded 1 provent the sense formet for L = 2; otherwise L = 1; I Use a blank over if merrore is not equal to 1; is not equal to 1; is not equal to 1; I Use a blank over if merrore is not equal to 1; is not equal to 1; is not equal to 1; I Use a blank over if merrore is not equal to 1; is not equal to 1; is not equal to 1; Dary 1; Vertice3 deflectione (6700.5) is not equal to 1; is not equal to 1; Perrole11) Perrole12) Perrole12) Perrole12) Perrole12) Perrole12) Perrole13) Perrole12) Perrole12) Perrole12) Perrole12) Perrole12) Perrole13) Perrole13) Perrole13) Perrole12) Perrole12) Perrole12) Perrole13) Perrole13) Perrole13) Perrole13) Perrole12) Perrole12) Perrole13) Perrole13) Perrole13) Perrole13) Perrole12) Perrole14) Perrole13) Perrole13) Perrole13) Perrole14) Perrole14) Perrole14) Perrole13) Perrole14) Perrole14) Perrole14) Perrole14) Pe		-	-	-		-	-	-	
I Upe a blank cut if Fryns i af equal to 1, i a i i i i i i i i i i i i i i i i i i	I Use blank ckriif FFFORT i	Bot	: If the	alab has a second 1s	yer, repeat the seme	format for L = 2 ;	otherwise L = 1 .			
Amy E. Vertical deflections (6700.5) Fertical deflections (6700.5) Percola 1. Ferical def	Amy R. Vertical deflections (6700.5) 111111111111111111111111111111111111	I , Use	a blank o	tard if merolic is no	t equal to 1.					-
I Carri 2. Vertical derivations (6710.5) FF0.014(3) FF0.014(3) FF0.014(3) FF0.014(1) FF0.014(2) FF0.014(3) FF0.014(1) FF0.014(1) FF0.014(1) FF0.014(3) FF0.014(3) FF0.014(1) FF0.014(1) FF0.014(1) FF0.014(1) FF0.014(1) FF0.014(1) FF0.014(1)	I Carri 2. Verticeal Gerifician (6710.5) I	-		-			-	-	-	
Image: Line in the state of	I I <th>5</th> <th>A Ver</th> <th>ical deflections (87</th> <th>0.5]</th> <th></th> <th></th> <th></th> <th></th> <th></th>	5	A Ver	ical deflections (87	0.5]					
Image: Second 1 Periods (2) Periods (2) Periods (2) Periods (2) Image: Second 1 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 2 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Second 3 Image: Se	Image: Particular (1) Particular (1) Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Image: Particular (1) Ima	-								
Image: set of the stand of	Image: Section of the section of t	OLE.		PETORE(2)	PBTORE(3)			PBTORE(J.IP)		
I Bot: Use a Math curd if T-arts is not un arts of symetry. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	Implementation Books Use a land card if Taris is not as aris of spartry. Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementat						i -			
		. Bot	i Use e	blank card if Y-aris	is not an aris of my	etry.				
								_ + + + + + - + - + - + - + - + - + - +		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-							
		• • •								
Hussellsselssessessessessessessessessesses	La calle calle contract a contract contract			****						
	Productioners ess Poste and ess Serve 1021									
	ets 200m wo. 1021 ets 200m / 1021									

(Sheet 7 of 9)

(Continued)

3

i

₹

)

1

1

	NOLIN			FORTRA	N STATEME	NT			IDENTIFICATION
9 4 4388-4	1	15 21	04 55 0	8	9	2 2	3	65 70 72	73 00
Item 18. G	apa Read	In Card (5(15. F10.	1			• • • • • • •			
10(1)	T-RJ	(jac(1)) ac(2)	our1(BG(2))	mc(3)	Curt (10(3))		, ((4)0[])(1))	10(2) ' ' Chr. 1 (10(2)	
				wo (wow) ow	r) (#G #GAP)				
				-					• •
	blank o	dentif TGAP = 0.							
					+ + + + + + + + + + + + + + + + + + + +	4 · · · · · · · · · · · · · · · · · · ·			-
				┙ ┯┯┯┯┯ -		* * * * * * * *			
			LILLILLILLILL						
	arapeone.	Ned FORCES OF TO CHE	<u> 1945 - 1955 - 1957 - 1957 - 1957 - 1957 - 1957 - 1957 - 1957 - 1957 - 1957 - 1957 - 1957 - 1957 - 1957 - 1957</u>					╺╺┼╼╺╺╶╸╸╸	
	1 1 1	TT111111	111111111111				1 1 1 1 1 1 1 1 1 1 1	╶┯┼╍╼╺┍┯┥╼	
TTO I	1 TAL	- E×(1-(1)an)oa-	1 m(2) 1 mm(2)	x(1-(5)_4) da	-	1 1 1 1 T T	1 1 1 1 1 1 1 1 1 1		
		+ ((T),11)) +				111111111			
						•			
					-				
		1			-			╶┯╺┿╶╸╒╌┲╼┱╌╕╶╕╼╪╌╕╶╴┨	
L Conti	auf the	the part for any the re	des at which poperts	pr. conceptisted	forces ar	e specified (P		╺┲╋╼╍╼╼╼╼╸┥	
	-						<u>+</u> + + + + + + + + + + + + + + + + + +	• • • • • • • • • • •	
Hete: Use	blank	dard if there are no	concentrated forces	pr. moments,	- - - -				
					1				
		· · · · · · · · · · · · · · · · · · ·			1 - 1 - F			• • • • • • • • • • •	
		-+			+				
		+++++++++++++++++++++++++++++++++++++++			· · · · · · · · · ·	1 1 1 -1 1 1 1 -1 -1			
-	-					-4 1 4 1 4 1 4 1 4 1			
		-		* * * * *				-	
	4 				_			· · · · · · · · · · · · · · · · · · ·	
		╊╴╾╺╴╺╴┲╌┲╼╶┲╶╸┲ ┥							
		• • • • • • • • • • • • •						PAGE	of
PRUCRAWMER									
RES FORM NO.	1021								
				ن ب	ontinne	(Þe			
				2	N 11 T 1 110			(Sheet C	5 of 9)

35

and a survey of the

r tà

Table 2 (Concluded)

.*:

 $\nabla \Sigma$

į

C - COMMENT NY STATEMENT CONTON			FORTRAN ST	ATEMENT			IDENTIFICATION
1 2 2 4 7	10 15	20 25 30	15	•• ••	3	63 70	73 73 80
Item 20. Memoria	at Joints Read in Car	rds (6712-3),					
				-			
. (1.1)142	(2 I)VI		B),			FAJ(1.6)	
		TAIL IL OF					
			-	-			-
Candina to	marth data card using	for the next	hoint at which the e	ficiency of moment	ranafer is not equal	to D or J.	
Thte: Use A blan	Lord 12 BREADL A.	The series to lu					
	· · · · · · · · · · · · · · · · · · ·				, , , , , , , , , , , ,	* * * * * * * * * *	-
Ite 21. Efficie	act of Menent Cant (8)	(thorse in the second					
	17777777777			- 1 1 1 1 1 1 1 1 1 1 1			
, (Line, , 1	OK(2)			cok(timet.)			
					-		
L	Linumber of cease to	be solved for moment	transfer,				
ITEM 22.	SUB4KADE S	TRESS CARD	· · · · · · · · · · · · · · · · · · ·				
1 . 6 (1)	1 SE(2)	· · · E(2)				E(NGOMP)	D(NCOMP)
(E)N	N(R)						
1.2.2(1).				22(NE)			
, XRUD.	L YRUD	XR.(2)	(2) YR (2)			XR (NR)	YRINKI
NGTE : USE	F.A. BLANK &	CARD. IF. NC	o=dho				
1.7EM 23	KURGRADE	TRESS DIRE	CTIY INDER	ANONEA	10 AT 4 70	WT CAPN	
PEOGRAMMAN	NJP(1)	NTP(2)		NJP(NAJ)		11111111111111111111111111111111111111	
GI'I YNGL	JON (1,2)	JON(1,3)	JON(1,4)				
:	; Tau(4453)	(8, EANINAT 3)	: TAN (NAJ. 4)			(Sheat O	of a)
10N(NMN) NOT	LOW (MAY) NOL	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					16 10

36

Notes	Columns	Variables	Entry
(3)	11-15	LNOBD	Declared dimension of stiffness matrices C and G
(4)	16-20	LCUD	Declared dimension of matrix CU
(5)	21-25	LCLD	Declared dimension of matrix CL
(6)	26-30	NNPD	Declared number of nodal points, equaling 200
(6)	31-36	NELD	Declared element number, equaling 130

(1) The program is dimensioned for 9 slabs. If NSLAB is greater than nine, all subscripts with a dimension of 9 must be increased. When NSLAB is large, say greater than 5, element size at slabs away from the slab should be selected with care. Discussion in this report is given in Part IV in the section of the correctness of the obtained solution. For NSLAB = 1, the iterations between each slab are not performed.

(2) The program is dimensioned for 12 joints. If NJOINT is greater than 12, all subscripts with a dimension of 12 must be increased.

(3) The value of LNOBD is the declared dimension of stiffness matrix of C and G and <u>must be identical to the ones</u> <u>specified in the main program</u>. The required dimension of C and G will be computed and printed in the main program. If the computed dimension exceeds the input declared dimension (LNOBD), an error message will be printed, and the execution of the problem will be terminated. When this happens, the dimensions of C and G in the main program must be increased to the computed value. If LNOBD is mistakenly input less than the dimension of C and G specified in the main program but is more than that computed, the program will be executed with no error. The dimension of LNOBD can be computed by means of the equation

NSLAB Σ [NX(I) × NY(I)] × 3 × HB 1

where $NX(I) \times NY(I)$ equals the total nodal points in slab I, 3 is the number of equations at each node, and HB is the half bandwidth of slab I and is equal to $[NY(I) + 2] \times 3$.

(4) LCUD is the declared dimension of matrix CU, which is the upper band matrix to be stored at the joints and must be input identically with the CU in the main program. The computed dimension will be printed in the main program. If the computed dimension is greater than the declared dimension, an error message will be printed, and the execution of the program will be terminate. The dimension of CU is difficult to determine since it depends on the joint conditions. A value of 1000 may be used and can be modified later.

(5) LCLD is the declared dimension of matrix CL, which is the lower band matrix to be stored at the joints and must be input identically with CL in the main program. Similarly to LCUD, the dimension of CL is difficult to determine. A value of 500 may be used.

(6) The present dimensions declared in the program for NNPD and NELD are for 200 nodes and 130 elements, respectively. If the computed numbers of nodes and elements exceed declared, the program will be stopped.

							}
d.	Item	4:	Element	Coordinates	Cards	$(1615).^{1}$	'

Notes	Columns	Variables	Entry
	1-5	NX(I)	Number of nodal point in X-direction in slab I
	6-10	NY(I)	Number of nodal point in Y-direction in slab I
(2)	11-15	JONO(1,1)	Joint number on left side of slab I
(2)	16-20	JONO(1,2)	Joint number on right side of slab I
(2)	21-25	JONO(1,3)	Joint number on lower side of slab I
(2)	26-30	JONO(I,4)	Joint number on upper

NOTES:

(1) If the number of slab is greater than 1, continue to next data card using same format until the number of slab (NSLAB) is satisfied.

(2) The slabs are numbered according to the magnitude of load; i.e., the slab subjected to the largest load is numbered first. Detailed explanation of the numbering system is given earlier in this Part. The joints can be numbered <u>in any arbitrary order</u>. The joint number is zero for free edge. For the case of a single slab, the joint numbers should all be zeros. Figures shown in the example problems given in Part V illustrate the coordinates of each element. Item 5: Joint Efficiency Cards (2F10.5).⁽¹⁾

<u>Note</u> :	Use a <u>blank</u>	card if number	of slab is equal to 1.
Notes	Columns	Variables	Entry
(2)	1-10	EFF(1,1)	Efficiency of shear transfer at joint I
(2)	11-20	EFF(1,2)	Efficiency of moment transfer at joint I

NOTES:

e.

(1) If the number of joint is greater than 1, continue to the next data card using same format until the number of joint (NJOINT) is satisfied.

(2) EFF(NJOINT,j) is the efficiency of load transfer for each joint, with subscript j equal to 1 for shear transfer and 2 for moment transfer. The program will change the subscript from 2 to 3 if the moment is with respect to the Yaxis, instead of with respect to the X-axis. The value of efficiency across a joint varies from 0 to 1. If the efficiency of moment transfer for a certain joint is other than 0 or 1, it is necessary to run the problem twice. The first run uses an efficiency of 1 and determines the moments at the joint for 100 percent moment transfer. Depending on the efficiency of moment transfer, the second run will assign the appropriate moment at each of the nodes along the joint. These two runs can be performed at the same time with the second run immediately following the first. They can also be run separately by reading in the 100 percent moments at those joints whose efficiency is not zero or 100 percent. In this case, NREAD (Item 6) should be set to one. If LTR (input in Item 11) is equal to 1 or 2, EFF(I,1) must be input as 1. However, it does not mean that 100 percent shear transfer is used in the program.

f. Item 6: Miscellaneous Data Cards.

Card 1	(915)		
Notes	Columns	Variables	Entry
(1)	1-5	NLAYER	Number of layer in the concrete slab, either l or 2
(2)	6-10	NBOND	Bond between two layers in the concrete slab:
			EQ.1 only one layer exists or when two layers are bonded

Notes	Columns	Variables	Entry
			EQ.2 if two layers are not bonded
(3)	11-15	NOTCON	Total number of nodes at which reactive pressure is initially set at zero
(4)	16–20	NGAP	Total number of nodes at which a gap exists be- tween slab and subgrade; assign zero if no gap exists
(5)	21-25	NCYCLE	Maximum number of cycles for checking subgrade contact; generally use 10 or more

Also, when LTR is equal to 1 or 2, the efficiency of moment transfer should always be zero. In most cases, solution convergence is much more difficult when the efficiency of moment transfer is not zero. The following tabulation shows the proper use of joint efficiency:

ł

ļ

\$ } }

. .

LTR		Efficiency of Shear Transfer		Efficiency of Moment Transfer
0 1 2		Open l l		Open O O
(6)	26-30	NSTORE	Optio stres defle	ns for thermal s and thermal ctions:
			EQ.0	need not be read in from data cards punched
			EQ.1	needs to be read in from data cards punched
			EQ.2	the values deter- mined from the previous problems are used
(7)	31-35	NREAD	A par wheth joint data	ameter indicating er any moments at are to be read from cards:
			EQ.O	no
			EQ.1	ves

Notes	Columns	Variables	Entry
(8)	36-40	INDP	EQ.0 yes, i.e., dependent
			EQ.l no, i.e., independent
(9)	41-45	NPRINT	Number of nodes at which stresses and deflections are to be printed

(1) Description of the bond between the two layers of concrete slab can be found in Appendix A.

(2) Derivation of composite modulus and Poisson's ratio for bonded layers can be found in Appendix A.

(3) If the subgrade soil at certain nodal points is known to be not in contact with the pavement due to pumping or plastic deformation, the subgrade reactive pressure at these nodes can be initially set at zero to obtain speeding convergence. If NCYCLE = 1 (NCYCLE is listed in the following card), these nodes will never be in contact. If NCYCLE > 1, these nodes may or may not be in contact, depending on calculated results.

(4) Description of gaps can be found in Part II of Report 1 of this series. Note that gaps to not include those induced by the temperature warping but those due to pumping or plastic deformation. However, it is difficult to separate the gaps caused by temperature warping and other sources in the fields. If it is believed that the measured gaps include the temperature warps, the computation should be carried out by setting NTEMP = 0.

(5) If a Westergaard solution is desired, NCYCLE should be set to 1. In so doing, the subgrade is always in full contact with the slab, even though the slab should be curled up and <u>leaving gaps</u> between the slab and the subgrade soil due to either load or temperature differential.

(6) In the area of pavement design, engineers are interested in stresses induced by the applied load and the temperature warping. In the area of pavement research, however, engineers tend to measure only stresses due to the applied load because thermal stresses are difficult to measure. To compute stresses and deflections by the load alone, two separate but consecutive runs have to be conducted. The first run computes the thermal stresses alone. This is done by setting NSTORE = 0, NWT = 1, NTEMP = 1, NGAP > 0 (if it is the case), NOTCON > 0 (if it is the case), INDP = 1, and NLOAD = 0 in the first run. In the second run, the stresses induced by the applied load and the temperature warping are computed by setting NSTORE = 2 , NWT = 1 , NTEMP = 1 , NGAP > 0 (if it is the case), NOTCON > 0 (if it is the case), INDP = 0 , and NLOAD equal to the actual number of loads. The differences between those computed in the first and second runs are the stresses and deflections due to the applied load alone and are computed and printed as output data by the computer. Note that when temperature is considered, the slab and the subgrade may be in partial contact; the principal of superposition may no longer be held true (see paragraph 47 of Report 1 of this series). It should also be pointed out in the case of the first and second runs discussed above, the input measured gaps should not include the gaps due to the temperature warping because they are to be computed. More discussions on this can be found in the explanation of NGAP in note 4 of this item.

(7) If the problem involves the efficiency of moment transfer for a certain joint that is other than 0 or 1 and the moments at this joint with 100 percent moment transfer are known, they can be read in at this point by setting NREAD
= 1 . Users should refer to the notes in Item 5, the joint efficiency cards, and Item 21, the efficiency of moment card.

(8) When the stresses due to temperature (see NSTORE) or moments computed at 100 percent moment transfer (see NREAD) computed in the previous run are used in this run, this run is not considered to be independent and INDP should be 0, otherwise INDP is 1. Since the results from the previous runs are used in this run, the relaxation factor RFI used in the last iteration cycle in the previous run should be used in this run to obtain faster convergence.

(9) The deflections at each node are computed in the program, but the stresses at any node are computed only on request.

Card 2 (915)

Notes	Columns	Variables	Entry
(1)	1-5	NTEMP	Condition of temperature warping:
			EQ.O temperature gra- dient is zero
			EQ.1 temperature gra- dient is not zero
(2)	6-10	ICX	A parameter indicating whether temperature curl- ing exists in the X-direction:

Notes	Columns	Variables	Entry
			EQ.0 no
			EQ.1 yes
(2)	11-15	ICY	A similar parameter in the Y-direction
(3)	16-20	NLOAD	Number of elements on which load is applied; use 0 if there is no load
(4)	21–25	NMCF	Number of concentrated nodal forces and moments which are to be read in; assign 0 if no moments or forces are applied
(5)	26-30	NWT	Weight of slab considera- tion:
			EQ.0 weight is not considered
			EQ.1 weight is considered
(6)	31-35	NMT	Number of cases to be solved for moment transfer
(7)	36-40	NSX	Number of nodal points on X-axis, which is an axis of symmetry; assign 0 if X-axis is not an axis of symmetry
(7)	41-45	NSY	Number of nodal points on Y-axis, which is an axis of symmetry; assign 0 if Y-axis is not an axis of symmetry

÷

(1) When temperature is considered in the problem, the program works only when the slabs have identical dimensions. Also, erroneous results will be obtained if NAT(I) in card 4 of Item 6 is not 0.

(2) Most pavement slabs have temperature warping in both X- and Y-directions. However, in the case of a continuously reinforced concrete pavement, temperature warping should not be considered in the longitudinal direction if cracks in the pavement do not exist. Otherwise, the amount of curling will be too large.

(3) Because the uniformly applied surface load at each element is lumped into concentrated loads at the four nodal points, the accuracy of the solution can be improved if the size of the elements at which the loads are applied is reduced.

(4) The concentrated force is considered to be positive if it is acting downward and is negative if it is acting upward. Positive moment follows right-hand screw system (see Figure 1 of Report 1). The program is dimensioned for 200 concentrated forces and moments. If NMCF is greater than 200, dimensions of NFF, NFI, and NF must be increased.

(5) In the original Westergaard solution, the pavement slab was considered to be weightless, but temperature could be considered. Note that if the subgrade is assumed to be in full contact with the slab, the consideration of slab weight affects only deflections but not stresses. However, when the slab is in partial contact with the subgrade, slab weight has a significant effect on slab stresses.

(6) If the efficiency of moment transfer of a joint is 0.5, and it is desired to obtain solutions not only for an efficiency of 0.5 but also for efficiencies of 0.75 and 0.25, assign NMT to 3 and CM(NMT) in Item 21 to 1.0, 1.5, and 0.5, respectively. Set NMT = 1 if the efficiencies of moment transfer are zeros.

(7) The explanations on symmetry can be found earlier in this Part. When subgrade stresses and deflections are computed, symmetry should be used with caution. When either NSX or NSY is not zero, the total number of nodal reactive forces is reduced one half, and when both NSX and NSY are not zero, the total number of nodal reactive forces is reduced to one quarter. Symmetry should not be used at nodes along a joint.

Card 3 (815, 110)

Notes	Columns	Variables	Entry
(1)	1-5	JNCK	Joint number used to check convergence; one joint only
(2)	6-10	NBCK	Beginning node at the specified joint (JNCK) used for checking con- vergence. If NSLAB = 1 , use any integer number
(2)	11-15	NECK	Ending node at the joint used for checking conver- gence. If NSLAB = 1 , use any integer number

Notes	Columns	Variables	Entry
(2)	16–20	NNCK	A specified node between and including NBCK and NECK, which is used for determining whether the relaxation factor RFI should be reduced. If NSLAB = 1, use any integer number
(3)	21-25	ICL	Maximum number of itera- tions allowed for coarse control; generally use 150
(3)	26-30	ICLF	Maximum number of itera- tions allowed for fine control; generally use 300
(4)	31-35	IGNOR	A parameter indicating whether the reduction of relaxation factor RFI should be ignored:
			EQ.O if RFI is reduced
			EQ.l if RFI is not re- duced whenever the results diverge
(5)	36-40	MNRFR	Maximum number of times for which relaxation fac- tor is allowed to reduce in half; generally use 10 or more
(6)	41-50	MAXFAJ	Maximum shear force at one node that may exist along the joint

i

(1) The most efficient joint for checking convergence is the joint closest to the heaviest loads. If NSLAB = 1, JNCK can be any integer number.

(2) For a joint along the X-direction, the node is numbered from left to right; for a joint along the Y-direction, it is numbered from bottom to top. For instance, if the joint is along the Y-direction and there are seven nodes in the joint, and if the middle three nodes are used for checking convergence, thus NBCK = 3 and NECK = 5. If NSLAB = 1, NBCK, NECK, and NNCK can be any integer number.

(3) Coarse control is used before the subgrade contact condition is determined and fine control is used afterwards. For a given contact cc dition, coarse control is used to check the load transfer. Once the subgrade contact condition is finally determined, fine control is used to obtain accurate solutions. If NCYCLE = 1, coarse control is still used prior to the use of fine control. In some problems, ICLF may be exhausted before the criterion DELF is satisfied. Before rejecting the solution, it may be wise to check to see how far the solution is from satisfying the criterion. For instance, if DELF = 0.001 and computed divergence is 0.002 or 0.0025 and the computed results seem to be reasonable, the solution may be considered acceptable. In some problems, it may be very hard to satisfy the specified convergence criterion. Note: ICLF should always be greater than ICL .

(4) IGNOR is used to increase the flexibility of the program. In some cases, it may be desirable to check the convergence condition when the relaxation factor is fixed at a certain value. The numerical technique used in this program involves an iterative procedure in which a solution may not always be feasible. If a solution is not obtained and if it is noticed from the printed output that the solution was convergent at a reasonable rate during a particular cycle (or relaxation factor), the problem should be run again using the particular relaxation factor and setting IGNOR to 1. In this case, the maximum number of iterations may need to be increased.

(5) If NSLAB = 1, MNRFR can be any integer number.

(6)If the computed shear force at any node along the joint exceeds MAXFAJ, the relaxation factor will be reduced by one half and iterations restarted. Proper selection of MAXFAJ will expedite the convergence of the solution; however, the value of MAXFAJ varies with the problem. MAXFAJ can be estimated as the shear force acting on the particular node at which the convergence criterion is checked. If input MAXFAJ is less than the computed shear force, the solution will be difficult to converge. If this is the case, change the value according to the printed output or simply use a large number such as 5 or 10 times greater than the total load applied on that slab. The use of a larger value of MAXFAJ would ensure that the relaxation factor RFI is not reduced faster than necessary, and also it would not seriously affect the convergence, because when the solution is divergent and the relaxation factor RFI needs to be reduced, the computed shear forces at the joint tend to become extremely large and exceed the value of specified MAXFAJ, resulting in a reduction of RFI value. Consequently, too large a MAXFAJ tends to increase the computer

time but too small a MAXFAJ would reduce the RFI too rapidly and cause slow convergence or divergence. If temperature alone is considered, the shear force at a dowel bar at the joint should be equal to one quarter of the dead weight of the grid element at which the dowel is connected, which should be a very small force. For simplicity, a larger MAXFAJ can be used, such as from 500 to 10,000 lb. If NSLAB = 1, MAXFAJ can be any integer number.

Card 4 (815)

Notes	Columns	Variables	Entry
	1-5	NAS	Number of additional moduli of subgrade reac- tion to be read in; as- sign 0 if the subgrade modulus is uniform throughout
	6-10	NAT(1)	Number of additional thicknesses to be read in for the top layer; assign O if thickness is uniform throughout
	11-15	NAT(2)	Number of additional thicknesses to be read in for the bottom layer; as- sign 0 if thickness is uniform throughout or NLAYER = 1
(1)	16-20	IFPR	First cycle at which dis- placements are to be printed; if IFPR = 0 , no displacements will be printed until the end
(2)	21-25	ILPR	Last cycle at which dis- placements are to be printed; ILPR should be equal to or greater than IFPR
(2)	26-30	NPUNCH	Option for punching values of thermal stresses and deflections on cards:
			EQ.O no

EQ.1 yes

(1) Computed displacements during iteration may be printed for inspection. If it is desired to print out the displacements computed at second and third cycles, set IFPR to 2 and ILPR to 3.

(2) Cards can be punched if NPUNCH is equal to 1. NPUNCH is used when either NSTORE = 1 or NREAD = 1.

Card 5 (3F10.5, 3E10.3, F10.5)

Notes	Columns	<u>Variables</u>	Entry
(1)	1-10	SUBMOD(1)	Modulus of subgrade reac- tion, k , in pci
(2)	11-20	TEMP	Difference in tempera- ture, in degrees Fahr- enheit, between top and bottom of slab:
			EQ.positive slab curled upward
			EQ.negative slab curled downward
(3)	21-30	RFI	Initial relaxation factor at the joint; generally use 0.5
(4)	31-40	DEL	Tolerance of convergence for coarse control; usu- ally use 0.01
(4)	41-50	DELF	Tolerance of convergence for fine control; usu- ally use 0.001
(5)	51 - 60	YMSB	Young's modulus of dowel bars
(5)	61-70	PRSB	Poisson's ratio of dowel bars
(6)	71 - 75	NCOMP	Number of subgrade elas- tic moduli

NOTES:

A PARA

and the second sec

(1) If subgrade modulus is not uniform, SUBMOD(1) is the modulus of the uniform part; while the modulus SUBMOD(1) at node I, which is different from SUBMOD(1), will be read in later.

(2) If two layers are considered in the computation, the coefficient of thermal expansion is assumed to be equal for both layers.

(3) If convergent results cannot be obtained, the program will adjust the factor automatically. If LTR = 1 or 2 and a small spring constant or amount of dowels is used, a smaller RFI is recommended to reduce the number of iterations.

(4) DEL and DELF correspond to ICL and ICLD, respectively, in card 2 of this table. In the program when the ratio of the difference of shear force between two consecutive iterations to be shear force is greater than the specified DEL or DELF, the iteration cycle starts again.

(5) Any number can be used if LTR is not equal to 2.

(6) If stresses and deflections in the subgrade need not be computed, NCOMP <u>must</u> be input as zero. The value of the elastic modulus of the subgrade E (in psi) should correspond to the modulus of subgrade reaction k (in pci). Since direct relation between E and k does not exist, a trial-and-error method may have to be employed to determine an appropriate E value. Therefore, a number of subgrade E values may have to be used in computations.

g. Item 7: Subgrade Moduli Card (5(15, F10.5)).

Note: Use a <u>blank</u> card if the subgrade has a uniform subgrade modulus.

Notes	Columns	Variables	Entry
(1)	1-5	NS(I)	Node number at which sub- grade modulus is to be specified
(1)	6-15	SUBMOD(NS(I))	Subgrade modulus at node NS(I)

NOTES:

÷.

(1) Report NS(I) and SUBMOD(NS(I)) for each node at which the modulus is different from SUBMOD(1).

h. 1	tem 8:	Nodal	Points	Coordinate	Cards	(8	(F10.5)).	(1)	
------	--------	-------	--------	------------	-------	----	---------	----	-----	--

X-coordi	inate card		
Notes	Columns	Variables	Entry
(2)	1-10	X(I,1)	X-coordinate of the first node in slab I
(2)	11-20	X(I,2)	X-coordinate of the sec- ond node in slab I
		:	:
		:	:
(2)		X(I,NX(I))	X-coordinate of the last node in slab I

Y-coordinate card

<u>Notes</u>	Columns	Variables	Entry
(2)	1-10	Y(I,1)	Y-coordinate of the first node in slab I
(2)	11-20	Y(I,2)	Y-coordinate of the sec- ond node in slab I
		:	:
		:	:
(2)		Y(I,NY(I))	Y-coordinate of the last node in slab I

NOTES:

(1) If the number of slab is greater than 1, continue to the next data card after the nodal points on Y-axis are input, using the same format until the number of slab (NSLAB) is satisfied.

(2) Both X- and Y-coordinates starting from O and increasing from left to right for the X-coordinate and increasing from bottom to top for the Y-coordinate. If the value NX or NY in a slab exceeds 8, continue the input to the second data card.

<u>i</u> .	Item 9:	Layer Prop	erties Cards (2(2F10.5, E10.3)). ⁽¹⁾
	Notes	Columns	Variables	Entry
	(2)	1-10	T(1,1)	Thickness of layer l
		11-20	PR(1)	Poisson's ratio of layer l
		21-30	YM(1)	Young's modulus of layer l
		31-40	T(1,2)	Thickness of layer 2
		41-50	PR(2)	Poisson's ratio of layer 2
		51-60	YM(2)	Young's modulus of layer 2

NOTES:

As

(1) If the number of layer is 1, stop the input at column 30.

(2) If thickness is not uniform, thicknesses different from T(1,I) will be read in later.

j. Item 10: Slab Thickness Card (5(15, F10.5)). (1)

Note: If the thickness is uniform in the layer (i.e., NAT(1) = 0), place a <u>blank</u> card for that layer. Two blank cards are required if thicknesses in both layers are uniform (i.e., if NAT(2) also is zero).

Notes	Columns	Variables	Entry
(2)	1-5	NT(I)	Nodal number at which thickness is to be specified
(2)	6-10	T(NT(I))	Thickness at node NT(I)

NOTES:

(1) Continue the input for other thicknesses that are different from T(1,NLAYER), until NAT(j) is satisfied, where j varies from 1 to 2. If the number of additional thicknesses is greater than 5, continue the input to next data card. If the number of additional thicknesses to be specified exceeds 25, the dimension of variable NT should be increased accordingly.

(2) If the number of layer is 2, continue to next data card using same format.

<u>k.</u> Item 11: Joint Information Cards (15, F10.3, 3F10.5, 2F10.3, F10.5).⁽¹⁾

<u>Note</u>: Use a <u>blank</u> card if the number of slab is 1, i.e., <u>NSLAB</u> = 1. If the number of slab is greater than 1 and if LTR(I) for joint I is 0, use a blank card for joint I. For instance, if a pavement system has four joints and joints 1-3 have LTR(I) = 0 and joint 4 has LTR(I) = 2, use three blank cards and specify the joint detail in the fourth card.

otes	Columns	<u>Variables</u>	Entry
(2)	1-5	LTR(I)	Method for specifying shear transfer at joint I:
			EQ.0 efficiency of shear transfer is specified
			EQ.1 a spring constant is specified
			EQ.2 data on dowel bars are provided
(3)	6-15	SPCON(I)	Spring constant for aggregate interlock or key joint at joint I

Notes	Columns	Variables	Entry
(4)	16-25	BD(I)	Bar diameter at joint I
(4)	26-35	BS(I)	Bar spacing at joint I
(4)	36-45	WJ(I)	Width of joint I
(4)	46-55	SCKV(I,1)	Initial value for modulus of dowel support (or steel concrete k value) at joint I
(4)	56-65	SCKV(1,2)	Final value for modulus of dowel support at joint I
(5)	66-75	DCGF(I)	Deformation of concrete

(1) If the number of joint is greater than 1, continue to next data card using same format.

when good fit is obtained

(2) The efficiency of shear transfer is defined as a ratio between the deflection of the unloaded, or less loaded, slab and the deflection of the loaded slab.

(3) If LTR is not specified to 1, SPCON may be assigned 0, blank, or any value. However, 0 or blank is preferred.

(4) If LTk is not equal to 2, BD, BS, WJ, SCKV(NJOINT,1), SCKV(NJOINT,2), or DCGF(I) may be left 0, blank, or any value. Zero or blank is preferred.

(5) When the deformation of concrete under dowel is smaller than DCGF, SCKV(NJOINT,1) is needed; when greater, SCKV(NJOINT,1) and SCKV(NJOINT,2) are input the same. Leave blank if LTR is not equal to 2. Detailed explanation on DCGF and SCKV can be found in Part II of Report 1 of this series. The normal range for SCKV is between 300,000 and 1,500,000 pci.

1. Item 12: Total Uniformly Applied Load Card (F12.2).

Note: Skip this card if there is no load uniformly applied on the slabs, i.e., NLOAD = 0. A blank card is not needed.

Notes	Columns	Variables	Entry
(1)	1-12	RLOAD	Total uniformly applied load on the slab

NOTES:

(1) The total load refers to the uniformly applied load only. The total load should be divided by 2 or 4 if it is

.

symmetric with respect to one axis (X- or Y-axis) or both X- and Y-axis, respectively. Additional point loads applied at nodal points are excluded.

m. Item 13: Loading Cards (15, 5F10.5).⁽¹⁾

<u>Note:</u> Use a <u>blank</u> card if there is no load uniformly applied on the slabs, i.e., NLOAD = 0.

Notes	Columns	Variables	Entry
(2)	1-5	NL(I)	Element number over which load is applied
(3)	6-15	XDA(1,1)	Lower limit of loaded area in element I in X-direction
(3)	16 - 25	XDA(1,2)	Upper limit of loaded area in element I in X-direction
(4)	26 - 35	YDA(I,1)	Lower limit of loaded area in element I in Y-direction
(4)	36-45	YDA(1,2)	Upper limit of loaded area in element I in Y-direction
	46-55	Q(I)	Uniformly applied pres- sure in element I

NOTES:

(1) If the number of loaded elements is greater than 1, continue to next data card using same format.

(2) Beginning from the first slab and ending at the last slab, the nodes and elements are numbered consecutively from bottom to top and then from left to right, as shown in Figure 2.

(3) Use -1 to +1 if the load covers the whole length of element.

(4) Use -1 to +1 if the load covers the whole width of element.

n. Item 14: Subgrade Contact Card (1615).

<u>Note</u>: Use a <u>blank</u> card if the slabs are initially in full contact with the subgrade, i.e., NOTCON = 0.

Notes	Columns	Variables	Entry
(1)	1-5	NODNC(I)	Nodal number at which reactive pressure is ini- tially assumed 0, I = 1,NOTCON

(1) Continue the input until the number of NOTCON is satisfied. Continue to next data card if NOTCON is greater than 16.

o. Item 15: Stresses Print Card (1615).⁽¹⁾

Note: Use a blank card if stresses at all nodal points are printed, i.e., NPRINT = $\Sigma(NX(I) \times NY(I))$, I = 1, NSLAL

Notes	Columns	Variables	Entry
(2)		NP(I)	Nodal number whose stresses are to be
			printed, $I = 1$, NPRINT

NOTES:

(1) Deflections are printed for all nodal points.

(2) Continue the input until the number of NPRINT is satisfied. Continue to next data card if NPRINT is greater than 16.

p. Item 16: Symmetry Cards.

Card 1: symmetry on X-axis (1615)

Note: Use a blank card if X-axis is not an axis of symmetry, i.e., NSX = 0.

Notes	Columns	Variables	Entry
	1-5	NODSX(1)	First nodal number on X-axis
	6-10	NODSX(2)	Second nodal number on X-axis
		:	:
		:	:
		NODSX(NSX)	Last nodal number on X-axis

Card 2: symmetry on Y-axis (1615)

Note: Use a <u>blank</u> card if Y-axis is not an axis of symmetry, i.e., NSY = 0.

Notes	Columns	Variables	Entry
	1-5	NODSY(1)	First nodal number on Y-axis
	6-10	NODSY(2)	Second nodal number on Y-axis
		:	:
		:	:

Notes	Columns	Variables	Entry
		NODSY(NSY)	Last nodal number on Y-axis
Item 17: Card.	Thermal S	tresses and The	rmal Deflections Read In
<u>Note</u> : U blank ca	se a <u>blank</u> rd takes ca	card if NSTORE re of both STR	is not equal to 1. One STO and FSTORE .
Card 1:	Stresses (<u>6F10.5)</u>	
Notes	Columns	Variables	Entry
(1)	1-10	STRSTO(1,1,L)	Stress σ_x in node I, layer L = 1
(1)	11-20	STRSTO(1,2,L)	Stress σ_y in node I, layer L = 1
(1)	21-30	STRSTO(1,3,L)	Shear stress τ in node I, layer L = l
(1)	31-40	STRSTO(I,4,L)	Major principal stress in node I, layer $L = 1$
(1)	41-50	STRSTO(1,5,L)	Minor principal stress in node I, layer $L = 1$
(1)	51 - 60	STRSTO(I,6,L)	Maximum shear stress in

<u>q</u>.

(1) Each data card includes the six stress components for a nodal point. Repeat the data card at the same format for other nodal points, starting from node 1 to the last node (LNP). If the slab has a second layer, repeat the data cards with the same format for L = 2.

Card 2: vertical deflections (8F10.5)

Notes	Columns	Variables	Entry
(1)	1-10	FSTORE(1)	Vertical deflection at node 1
(1)	11-20	FSTORE(2)	Vertical deflection at node 2
		:	:
		:	:
(1)		FSTORE(LNP)	Vertical deflection at node LNP

NOTES:

2 P

6

(1) LNP is the total number of nodal points for all the slabs considered.

r. Item 18: Gaps Read In Card (5(15, F10.5)).

<u>Note</u> :	Use a blank	card if NGAP =	0.
Notes	Columns	Variables	Entry
(1)	1-5	NG(I)	Nodal number at which gap between slab and subgrade is specified
(2)	6-15	CURL(NG(I))	Amount of gap at node NG(I)

NOTES:

(1) Continue the input for other nodes at which the gap between slab and subgrade is specified until the number of NGAP is satisfied. If NGAP is greater than 5, continue the input to next data card.

(2) Gap is positive and precompression is negative.

<u>Note</u>: Use a <u>blank</u> card if there are no concentrated forces or moments, i.e., NMCF = 0.

Notes	Columns	Variables	Entry
	1-5	NFF(I)	Nodal number at which concentrated forces or moments are specified
(1)	6-10	NFI(I)	Nature of specified force at node I
(2)	11-20	FO(NFF(I)-1)×3 +NFI(I)	Concentrated force or mo- ment at node I

NOTES:

1

(1) NFI(I) = 1 for vertical force, 2 for moment about Xaxis, and 3 for moment about Y-axis.

(2) The magnitude of concentrated force or moment is input in. The equation number is related to nodal number by $(NFF(I)-1)) \times 3 + NFI(I)$. For instance, if a moment about Y-axis is applied at node 13, the equation number will be $(13-1) \times 3 + 3 = 39$. Note that the nodes are numbered consecutively from bottom to top and then from left to right beginning from the first slab and ending at the last slab.

Note: Use a blank card if NREAD is equal to 0.

Notes	Columns	<u>Variables</u>	Entry
(2)	1-12	FAJ(1,1)	Moment at first node at joint I computed in the previous run with 100 percent moment transfer
(2)	13-24	FAJ(1,2)	Moment at second node at joint I computed in the previous run with 100 percent moment transfer
(2)	25 - 36 F	AJ (I, Or NY(NJOINT) NY(NJOINT)	Moment at the last node at joint I computed in the previous run with 100 percent moment transfer

(1) If the number of joints is greater than 1, continue to next data card using same format.

(2) This card is needed only when the efficiency of moment transfer is not equal to 0 or 1; otherwise, this card should be skipped. For instance, if the efficiencies of moment transfer at joints 1, 2, 3, and 4 are 0.3, 0, 1, and 0.7, respectively, only joint 1 and joint 4 data cards are needed.

u. Item 21: Efficiency of Moment Card (8(F10.5)).

<u>Note</u>: Use a <u>blank</u> card if efficiencies of moment transfer are zeros, i.e., EFF(1,2) = 0.

Notes	Columns	Variables	Entry
(1)	1-10	CM(1)	Multiplying factor for efficiency of moment transfer for case l
(1)		CN (NMT)	Multiplying factor for efficiency of moment transfer for case NMT

NOTES:

(1) The use of CM in the program is to facilitate the input format when several efficiencies of moment transfer are involved. For instance, if efficiencies of 0.5, 0.25, and 0.1 are to be computed, an efficiency of 1 should first be computed in the first run with NREAD = 0. In the second run, NREAD is still 0 and the values of EFF in Item 5 should be set to 0.5, and CM's in this table should be set as 1, 0.5, and 0.2 because the products of 0.5×1 , 0.5×0.5 , and 0.5×0.2 are 0.5, 0.25, and 0.1, respectively, which are the efficiencies to be computed. The program is

developed in such a way that erroneous results will be computed if EFF in the second run is set as 1.0, and the CM's are set as 0.5, 0.25, and 0.1. If the results of a particular run are not used in the following run, CM must be set to 0.

v. Item 22: Subgrade Stresses Card

<u>Note</u>: Use a <u>blank</u> card if computation of subgrade stresses and deflections is not needed, i.e., YMSS = 0. One blank card takes care of NZ , NR , ZZ(I) , XR(I) , and YR(I).

Card 1: values of modulus and Poisson's ratio (4(F10.2,

F5.1)).			
Notes	Columns	Variables	Entry
	1-10	E(1)	Elastic modulus of the subgrade for the first computation
	11-15	v(l)	Poisson's ratio of the subgrade for the first computation
		:	:
		:	:
		E(NCOMP)	Elastic modulus of the subgrade for the NCOMP th computation
		v(NCOMP)	Poisson's ratio of the subgrade for the NCOMP th computation
Card 2:	number of a	computations (2110)
Notes	Columns	Variables	Entry
	1-10	NZ	Number of depths to be computed
	11-20	NR	Number of offsets at each depth to be computed
Card 3:	depth card	(8F10.5)	
Notes	Columns	Variables	Entry
	1-10	ZZ(1)	Depth of first computa- tion
	11-20	ZZ(2)	Depth of second computa- tion
	:	:	
	:	:	

58

1.1.1

Notes	Columns	Variables	Entry
		ZZ(NZ)	Depth of the last compu- tation
Card 4:	offset card	1 (8F10.5)	
<u>Notes</u>	Columns	Variables	Entry
(1)	1-10	XR(1)	X-coordinate of first computation
	11-20	YR(l)	Y-coordinate of first computation
	21-30	XR(2)	X-coordinate of second computation
	31-40	YR(2)	Y-coordinate of second computation
	:	:	-
	:	:	
		XR(NR)	X-coordinate of last computation
		YR(NR)	Y-coordinate of last computation

(1) Computations at each offset point are made at all the NZ depths. The origin of the coordinates is at nodal point 1, i.e., node 1 of slab 1. Referring to the nodal numbers shown in Figure 2, if stresses and deflections in the subgrade soil at various depths at three locations are to be computed, the first location is directly under node 1, the second location is the midpoint between nodes 5 and 8, and the third location is at the center of element 13. The input values of XR(1), YR(1), XR(2), YR(2), XR(3), and YR(3) should thus be 0., 0., 135., 90., -135., and -135. Note that nodes 1, 16, 21, and 36 shear the same location.

w. Item 23: Subgrade Stress Directly under a Node and Joint Card.

Card 1:	number of	locations and	information (815)
Notes	Columns	Variables	Entry
(1)	1–5	NAJ	Number of locations di- rectly under a node and along a joint
(2)	6-10	NJP(1)	Number of nodal points share the same location, first location

<u>Notes</u>	Columns	Variables	Entry
(2)	11-15	NJP(2)	Number of nodal points share the same location, second location
	:	:	:
	:	:	:
(2)		NJP(NAJ)	Number of nodal points share the same location, NAJ th location
Card 2:	nodal points	s sharing the	same locations (415)
<u>Note</u> : tions a	Skip this card long the joint	l if computat: t, i.e., NAJ	ion is not made at loca- = 0 .
Notes	Columns	Variables	Entry
(3)	1-5	JON(1,1)	Nodal number at one side of the joint that has the smallest nodal number, first location
(3)	6-10	JON(1,2)	Nodal number at the other side of a joint of node JON(1,1) that shares the same location with node JON(1,1), second location
(4)	11-15	JON(1,3)	Nodal number at the other side of a joint of either node JON(1,1) or node JON(1,2) that shares the same location with nodes JON(1,1) and JON(1,2), first location
(4)	16-20	JON(1,4)	Nodal number at the other side of a joint of either node JON(1,1) or node JON(1,2) or node JON(1,3) that shares the same location with these three nodes, first loca- tion
Note:	If there are m	nore computat:	ions at locations along

<u>Note</u>: If there are more computations at locations along the joint, i.e., NAJ is greater than 1, repeat the data cards with the same format for the second location: JON(2,1), JON(2,2), JON(2,3), and JON(2,4); the third location: JON(3,1), JON(3,2), JON(3,3), and JON(3,4); ... the last (NAJ) location: JON(NAJ,1), JON(NAJ,2), JON(NAJ,3), and JON(NAJ,4).

60

A . . .

.

(1) For a single slab, i.e., NSLAB = 1, NAJ should be input as zero. If NSLAB is greater than 1 and if the computation is made at locations directly under a node and also along a joint, NAJ is the total number of such locations.

(2) For NSLAB = 1, NJP(I) should be skipped. If NSLAB is greater than 1 and NAJ is greater than zero, NJP(I) is the number of nodal points sharing the same location. The sequential order of inputting nodal information for nodes located along the joints is of vital importance. A slight mistake in the order will result in erroneous results. The basic rule is to input nodal information of nodes of smaller numbers prior to larger numbers. This can best be illustrated by an example. For the four-slab pavement system shown in Figure 2, if the stresses and deflections under nodes 1, 2, 3, 4, 6, 10, 19, 20, 23, and 25 at various depths are to be computed, NAJ should be input as 7, as only 7 nodal points are located along the joint, i.e., 1, 2, 3, 4, 10, 19, and 20. The sequential order for inputting NJP(I), (I21,NAJ) should be 1, 2, 3, 4, 10, 19, and 20. At the location of nodal point 1, since nodes 16, 21, and 36 share the same location with node 1, NJP(1) should thus be input as 4. At nodal point 2, node 17 shares the same location with node 2 and thus NJP(2) is equal to 2. Similarly, the values of NJP(3), NJP(4), NJP(5), NJP(6), and NJP(7) should all be 2. It should be pointed out that if computations at node 24 are desired, node 4 should be used in the input to replace node 24, as 4 is smaller than 24 and also as nodes 4 and 24 share the same location.

(3) Since NAJ = 7, seven separate data cards are needed to indicate the nodal numbers of these 7 special computation locations. The first card corresponding to NJP(1) should be input as 1, 21, 36, and 16. It is of vital importance to input first nodal number 1; the order of the other three nodal numbers is of no importance. In other words, this card can be input as either $1 \ 16 \ 2 \ 36$ or $1 \ 36 \ 21 \ 16$, or $1 \ 2 \ 16 \ 36$, or $1 \ 16 \ 36 \ 21$, or $1 \ 36 \ 16 \ 21$. The important rule is to input first the smallest nodal number of the form nodal numbers.

The second card (of card 2) corresponding to NJP(2) should be input as 2 17. Nodal number 2 is input prior to nodal number 17 as 2 is smaller than 17. Similarly, the third card (of card 2) corresponding to NJP(3) is 3 18; the fourth card (of card 2) corresponding to NJP(4) is 4 24; the fifth card (of card 2) corresponding to NJP(5) is 10 30; the sixth card (of card 2) corresponding to NJP(6) is 19 34; and the seventh card (of card 2) corresponding to NJP(7) is 20 35. (4) JON(1,3) and JON(1,4) are not needed if NJP equals 2; JON(1,4) is not needed if NJP equals 3. Both JON(1,3) and JON(1,4) are needed if NJP equals 4.

THE W

PART V: EXAMPLE PROBLEMS

45. In this Part of the report, the input data of five example problems are presented. Printouts of the computer output for three example problems are presented and explained.

Example Problem 1: A Single Slab with Many Input Options

46. Figure 7 shows the finite element grid of a single slab. The nodes and elements are numbered consecutively from bottom to top and then from left to right. The input data consist of the following information:

The concrete slab is 10 in. thick with a Young's <u>a</u>. modulus of 6,000,000 psi and a Poisson's ratio of 0.2. The slab is underlain with a 4-in. stabilized layer,

Figure 7. Finite element layout for Example Problem 1

1.61

which has a modulus of 500,000 psi and a Poisson's ratio of 0.2. The condition of the interface between the layers is bonded. The subgrade has a k value of 100 pci.

- <u>b</u>. The thickness of the layers and the modulus of subgrade reaction k are not uniform throughout the slab.
 Table 3 gives the additional k values and thicknesses at particular nodal points.
- c. Gaps exist under the pavement at 22 nodal points. The amounts of gaps are 0.5 in. at nodes 1 to 9 and 0.25 in. at nodes 10 to 18, and also at nodes 82, 83, 91, and 92.
- d. The slab is subjected to four concentrated loads, 72,000 lb each, at nodes 62, 71, 80, and 89. There is no uniformly applied load.
- e. Stresses at all nodes (99) are printed.

Ta	bl	е	- 3
	~ -	~	

Additional	Subgrade	k	Values	and	Thicknesses
			-		

	Layer Thic	knesses, in.	
Node	Top Layer	Bottom Layer	Subgrade k Value, pci
1	12	2	65
2	3	3	65
3	13	1	65
4	9	5	65
5	8	<u>4</u>	65
6		10	

47. The input data for Example Problem 1 are given in Table 4. The readers should refer to the input guide, as necessary.

Example Problem 2: A Single Slab With Separate Runs for Computing the Stresses and Deflections Due to the Applied Load Alone

48. The purpose of Example Problem 2 is to illustrate the input procedure to compute stresses and deflections induced by the applied load alone. The reason for the need of this computation is explained in the input variable NSTORE (Item 6 of Table 2).

49. The finite element grid shown in Figure 7 is also used in this example problem. Input data used in Example Problem 7 are used except for the following differences:

Table 4. Example Problem 1--Input Data for Single Slab with Many Options

 $A \rightarrow$

C-COMMENT	NO								
STATEMENT	197				FORTRAN ST	ATEMENT			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
1 2000	۰ ، د ۱۵	5	82	#	35	2 5	1 55 66	2 2 2	•
11			-						
STRUE SUL	Tour o	UNCERTIFICATED LOAD	8	LAYING BOUDED.	THE PRATURE IS NOT CON				
1	0	9801	87	100	130				
	0		0						
BLAKE CARD	HOL OIL	SLA		• • • • • • • • •		1			
2	-	0	8	8		8			
0	0	0	0						
	T 1	τ, τ	-	51 64		10000			
5, 1, 1	5	9	0						
.001		0		0.25	1.0001-02	1.0001-03	3.0002-07	0.2	
T1	. 65		~	65	3 65		65.	5 65.	
	0.		8			100	216	240	23. 23.
	264	-	276.	26				-	
	0		9			180	216	252	276.
	266						-		
	ot ' '		9.8	0.600		0.2	0.5008+06		
	21 .		2	3			6	9	
4	2		2.	3	••		2		
1 6	01								
RATE CARD:	NO. JOI								
BLATE CARD:	NO. UNI	POPET APPLIED	TOND						
HARK CARD:	lioropi	- 0							
BLARK, CARD:	STREES.	B. AT ALL POPES	1						
PROGRAMMER								PAGE	30
RES FORM NO.	1021								

(Continued)

Table 4 (Concluded)

.

A

ć

	- 50 · • •				FD	RTRAN STA	TEMENT					i BENTIFICATION
4 10 APR -	<u>و</u>	*		2 2	£	Ş	.\$	3	55	60 65	10 12	73 80
BANK CLE	adta olt	STAL OF X-ACIS								• • • •		• • • • •
BIATE, CARD	and a speed	They on Y-ALLS										• • • •
BLAR CARS	I BRORE	I of this age of the			-		4 4 4 7 - F					
[[[]]]	6	2		0.5	3	0,5		-	0]	5 15 1111	0.5	• • •
6	0			2.0.5	80	0,51		6		5 20	0.25	
7	5	2		0.25	n	0.25		4	4	5 25	. 0.25	
94 1	0.9	5		0 25	67	0, 15		8	2-0-2	5, 83 , , , ,	. 0.25	
16	9.45	2		e. 25								
8		72,000,00		r L	72,000	8	80	-	72,000.90	89	1,1,1,72	00,000
RANK CAR										-		
00	000											
		· · · · · · · · · · · · · · · · · · ·										
		T T T T T T T I I I	- - - -		-	-	•			-+		
	1 1 1	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1 1 1 1								-+	• • • •
	+ + + + +			- 1. 1. 1. 1.		+ + + + + + + + + + + + + + + + + + + +	1-1-1					
					4.4.4.4.4.4		د . د. د					• • • • •
11												
						-			-		-	
11						-	-					
				•								
	•						• • • •					
11												
PROGRAMMER											PAGE	0F
BES FORM NO.	1021											

- a. The concrete slab is 15 in. thick and the slab is not underlain with a stabilized layer. Also, there is no gap under the pavement. The thickness of the slab and the subgrade k values are uniform throughout the pavement.
- <u>b</u>. A positive temperature differential of $+3^{\circ}F$ per in. of pavement is assumed. For a 15-in. concrete slab, the total difference between the top and the bottom of the slab is $+45^{\circ}F$.
- <u>c</u>. The slab is subjected to a uniformly applied load at the corner of the slab, i.e., element 50.
- <u>d</u>. There are only 20 nodal points where the stresses are computed and printed.

50. The input data for this problem are given in Table 5. In the first run, the stresses and deflections due to temperature, slal weight, and gaps are computed. This is done by defining the following variables in the input data as follows:

- <u>a.</u> NLOAD = 0 , NMCF = 0 , NWT = 1 , NTEMP = 1 , TEMP = $\frac{45}{10}$, NCYCLE ≥ 10 , and NGAP equals the exact number of nodes where gaps exist.
- <u>b</u>. NSTORE = 0 because thermal stresses and deflections are not read in from data cards.
- <u>c</u>. INDP = 1 because the computation does not depend on the results of the previous run.

51. In the second run, the stresses and deflections due to the applied load, temperature, and gaps are computed. This is done by defining the following variables in the input data as follows:

- <u>a</u>. NMCF = 0, NWT = 1, NTEMP = 1, TEMP = 45, NCYCLE \geq 10, and NLOAD and NGAP equal the exact number of nodes where gaps exist.
- <u>b</u>. NSTORE = 2 because the stresses and deflections due to the thermal effect computed in the first run should be used in the second run.
- <u>c</u>. INDP = 0 because this run is not independent of the previous run.

52. Once the stresses and deflections due to the applied load and temperature are computed, the differences between the results computed in the first and second runs are those due to the applied load alone. Such a computation was made and the computer output is presented later in this section in Computer Output 3 with detailed explanation.
Table 5. Example Problem 2--Input Data for Computing Stresses and Deflections Due to Applied Loads Alone

4

14.5

ć

2

								ΡŪ	S NVAL	UN LEWE									į	10 14 1 CM
2 2 3				. I 				•				:	; [22	:	
1 1 0 904 500 200 170 1	N										•	 - -		-	 - -	-	-			1
1 1 0 90 90 200 200 100 1 1 0 0 0 0 10 200 200 100 1 1 1 0 0 0 0 10 0 0 0 0 1 1 1 0 0 0 10 0 </td <td>TREFEASURE</td> <td>ALD SLAT</td> <td>VT. (LOAD IS NO</td> <td>Tr com</td> <td></td> <td>PIRST R</td> <td>(15</td> <td></td> <td></td> <td></td> <td>• •</td> <td></td> <td>• ·</td> <td></td> <td></td> <td>· ·</td> <td></td> <td></td> <td></td> <td></td>	TREFEASURE	ALD SLAT	VT. (LOAD IS NO	Tr com		PIRST R	(15				• •		• ·			· ·				
1 1 9									-		-	-			-	-	-		-	1
11 1 1 1 20 0	r	0	thois ' '	<u>8</u>	بر	8-	00.	130		-	• • •		:							
With Column Function Description Description Description Description Description 1 1 0 0 1 0 0 1 26 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 10 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 2 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 2	a	<u>م</u>		<u>.</u>		o.	<u>ہ</u>	-	-			-	- -	• • •	-				+ + + + + + + + + + + + + + + + + + + +	4
1 1 1 0 0 1 20 1 1 1 1 0 0 1 20 1 1 1 1 1 0 0 1 20 1 10 0 0 0 1 0 0 0 1 1 10 0 0 1 100 100 10 10 266 1 10 100 10 266 114 1000 266 266 266 1 10 266 144 100 266 266 266 266 266 266 266 266 266 276 <th>BIATE CARD:</th> <th>Inorth</th> <th>Littor on os o' -</th> <th>Ĕ</th> <th></th> <th>s, mont</th> <th></th> <th>-</th> <th>-</th> <th></th> <th>-</th> <th></th> <th>-</th> <th>-</th> <th></th> <th>-</th> <th></th> <th>+ •• •</th> <th></th> <th>-</th>	BIATE CARD:	Inorth	Littor on os o' -	Ĕ		s, mont		-	-		-		-	-		-		+ •• •		-
1 1 1 0 0 0 1000	7	-1	0	0	-	0	0	0	-	-	30		-			-			-	
0 0 0 0 1000 1000 0.2 1000 0 0 0 1000 0.2 1000 0.2 Revie cuest 10 0 0 10 0.2 200 200 200 200 215 1000 215 200 255 255 Revie cuest 10 200 0.600 206 144 130 215 255 Revie cuest 10 0 0.600 0.600 144 130 215 255 Revie cuest 10 0 0.600 0.600 144 130 215 255 Revie cuest 10 0 0.600 144 146 255				0	-	. 0	. न		-		•			- - ·				•		
Auge Loop No. No. <th< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td>8</td><td>• •</td><td>-</td><td></td><td>-</td><td>10000</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>1</td><td>]</td><td></td></th<>				-			8	• •	-		-	10000	-	-		-	-	1]	
Refer clare: 10. 4216. 226. 261. 276. 216. 226. 261. 276. 216. 226. 261. 276. 216. 226. 261. 276. 216. 226. 275. 276. 216. 226. 276. 11. 12. 216. 226. 288. 288. 216. 226. 216. 288. 288. 216. 226. 216. 288. 288. 216. 226. 216. 288. 288. 216. 226. 216. 288. 288. 216. 226. 216. 288. 288. 216. 226. 216. 288. 216. 216. 226. 216. 288. 216. 216. 226. 216. 288. 216. 216. 216. 216. 288. 216. 216. 216. 216. 299. 291. 292. 292. 216. <t< td=""><td></td><td></td><td></td><td>- - -</td><td>- - -</td><td></td><td> }</td><td></td><td></td><td></td><td>5</td><td></td><td>. ^ -</td><td></td><td>-</td><td>- -</td><td></td><td></td><td>1</td><td></td></t<>				- - -	- - -		 }				5		. ^ -		-	- -			1	
0 0 216, 2	-mot					(2 m		-	2n-inhor		¥	5	-	had non-	-				111	
90. 144. 180. 236. 144. 276. 276. 288. 246. 276. 276. 276. 288. 144. 180. 276. 276. 276. 288. 144. 180. 276. 276. 276. 288. 244. 20. 276. 288. 288. 288. 288. 276. 275. 288. 288. 288. 288. 276. 275. 288. 288. 288. 288. 276. 275. 288. 288. 288. 288. 276. 275. 288. 288. 288. 288. 288. 276. 288. 176. 276. 276. 276. 276. 288. 19. 190. 276. 276. 276. 288. 19. 19. 276. 276. 276. 288. 19. 19. 276. 276. 276. 288. 19. 19. 276. 276. 276. <th></th> <th></th> <th>TONINI SUBCEMENT</th> <th></th> <th></th> <th></th> <th> </th> <th>-</th> <th>-</th> <th></th> <th>-</th> <th>-</th> <th></th> <th></th> <th>-</th> <th></th> <th>-</th> <th></th> <th>7</th> <th></th>			TONINI SUBCEMENT				 	-	-		-	-			-		-		7	
364. 276. 288. 248. 248. 246. 225. 256. 308. 308. 96. 96. 96. 96. 266. 286. 208. 1.15. 0.49. 96. 96. 266. 286. 286. 208. 1.15. 0.49. 96. 96. 286. 286. 286. 208. 1.15. 0.49. 96. 114. 1280. 286. 295. 208. 1.15. 1.16. 1.16. 1.16. 1.16. 1.16. 275. 275. 201. 1.16. 1.16. 1.16. 1.16. 1.16. 1.16. 1.16. 201. 1.16. 1.16. 1.16. 1.16. 1.16. 1.16. 1.16. 201. 201. 201. 1.16. 1.16. 1.16. 1.16. 1.16. 201. 201. 201. 1.16. 1.16. 1.16. 1.16. 1.16. 1.16. 201. 201. 201. 201. 1.11. 1.12. 1.16. 1.16.		•		8	-	-	8	•	- - -		-	180.	- - -	-	216.	-	- -		1-1-1	8
9. 9. 49. 252. 144. 1360. 216. 225. 255. Ruyer curate 17. 17. 17. 176. 252. 144. Ruyer curate 10. 17. 176. 126. 255. 1 Ruyer curate 10. 17. 176. 176. 176. 176. 176. Ruyer curate 100. 10. 10. 114. 178		264	-	276.	-	(N) - -	88		-	- 	•			-	-	-	-			
200. 200. PLWE CAMP. 70. PLWE CAMP. 70. PLWE CAMP. 70. PLWE CAMP. 90.		0	•	48		• • •	8		141			180.			216.	· ·	N	S.		2
Functional 0.1 0.6000+01 Functional 0.1 0.6000+01 Functional 0 0.6000+01 Functional 0 0.6000+01 Functional 0 0 Funo	-	- 000		-	-	- -	-	- - -	-	-	-		-	- - -	-	-	-		!	
Image: Solution in the state of the sta	-	8			-	- , -	•	• • •	•		-	-	-	- - -	-	-	-	- -	-	
Ravier care: province in controlling to be read in. Faulte care: provint = 0 Faulte care: provint = 0 Faulte care: proserie =		. 15		ल ल	-	0.600	5	-	•	-	•	-			-	-	-			
statute class: provide 0 provide provide 0 provide provide provide	BIANT CARD		TIONAL THICHNESS	1 2 2			-	-	-		-	-	•	-			L. L. L. L		F 1 1-	
spurs case: From 0 9 spurs case: From 0 9 spurs case: From 0 10 spurs case: 10 11 spurs case: 11	RANK CARD	LIDOR	0		-	-		-	-	- 	•		•			-		۔ • •	-	
Rature canol: Provide: 0 71 72 73 73 73 73 73 73 73 74 7	BIANK CARD:	and a			-	-		-	-		-		-		-	-			т <u>т</u> т	ļ
60 61	BLANK CARD:	Introl	0						-				-	-	-	-	-		-	-
	8	61	62	5	-	69	70	1	-	12	18	2	-	80.	a	-	7	88	-	2
	8	5	8	8													-	 		-
	BLANK CARD	ans of	FIST OF X-AUG.						• •					-	d 					
	BLANK CAN	BOTS OF	ETHIC OF Y-MUTR.		-	-		-	-	- 	-		-	-		-	-			1
																				-
	848018-3-84					•		1										PAGE		or

(Sheet 1 of 3)

(Continued)

2

•

فرحمتك حميطينا ورما

Ċ

₹

	1		}		1	1						Ì								ļ	
	· · ·							5	RTRAN	STATE	MENT									ÛEN	TIFICATION
		÷		¢.	•.		Ŕ			ę		:	۶		:	3		\$	51 51	<u>_</u>	
BANK CAN	THOLE	TAUPE TOT	100						-		-								H		
BANK CARD	3	0			-			-				-		-	-	-	1 1 1 1		ہے۔ جب		
BLANK CARD	NO COM	A CELEVILLE	DRCE OR		TIM			-	-					-	-	-					
BLATE CARD		0		· -	· -			 			-	- - -	-		-	-		-			
•					 				-	 			-	-	-	-	-			-]
LAND. TROT	TATURE.	UTA EVIS ON	cont (Si		1				 	- 	 	• •	+				• •	• •	 		
~	, o,	801		8	. R	0	 	 	່ ອຸ			· ·									
7		• •		•		0	0	• •				• •			-	-					-
HANK CARD	THUOLE	0	-										-	-		-		-	<u> </u>	-	-
	-	- 0	-	- 		. o	- - (1)	-		-		50		-	•						
	-	-	-	-	-		-	- - -	- -		-	- 0	-	-	-	-	-	-	1	4	
•		• •	-		-		-	- - -	- o c	2	- 6	- : ≻ g	-	-		-				1	
-	2_ 		-		-		- -	- -	- •	<u>}</u>	N*N *	- 	-	•	-	-			+		
0	• - -	۰	-	- -	-	0.	o -		•	-	-	-	-	-	-	-	1.1.1.1	1.1.1.1	+	1	
. 1	-		-		°.	. 25	•	, 1,0	20-mod		0 -+	01-03	-	س	0000-	-	- - -	0,2,	4	5	
BANK CAR		TTONAL BUBY		putus.					-		-	-	-					-1-1-1	-	-	
	ð	-		8	-	-	8	-	-		-	-	189.	-	-	276.		12	ġ	-	Х Т
-	те Ус	-	2	9	-	~~.	8	-			-	-		-	-		, , ,		+		
	ġ			8	-		8	-	-	. t.	-	-	180.	-		276.		5	52.1	1	2
	2 8 8		-			o, 600j	ş	-	-			•	-	-	-	-	• •				•
	57	- - - -		<u>م</u>	-	-		-	-		-	-	+			-+ 			-	4	
BLAFF CAR		PTONAL THIC	- Beluite		•	-		-	-		•	-							-	1	
BAPE CLE	THOM				-		د -	- 1 7	-	-	7° 1 -	- 1 1 - 1	1		1					1	
+ • • • • • •	F F 7-		-		-			111	-				+	+ + + + + + + + + + + + + + + + + + + +	1-1-1						
				_			_					1						4	-	-	
PROGRAMME																			PAGE		01
NES FORM NO.	1021																				

(Sheet 2 of 3)

(Continued)

.

.

(-, -)

31. A. M. M. A. A.

-

Table 5 (Concluded)

*2

ś

.

Î

5

1					ļ	;											ſ
	2.5						FO	RTRAN S	TATEMEI	14						IDENTIFICATI	
	•	•	•		•.	*			¥	:	\$	ñ	8	5	27 07	"	8
DOME	90			-				; (- ; -									
3				•			1	-				1001	+ • •			• • • •	-
BLANK CAND	IL INTOOL											* * * * * *		******	-]
8	3	3	63	-	89	1	4	-	12	1 16 - 1-1	19	1 1 00 1 1 1 1 1 1 1		*******	8		8
	97		8	-				-				* 1 * * * * *		*******		•]
MANK CAR	12 NO. SDI	TAA. SE LAAN		1		 	-	-	- - 			* * * 1 - * 1 - * 1	-+			• • •	
BLANK CARD		TAL OF Y-AE			-	- 				7717	4					•	-
		NOT - BOLL - TO		-		- 	•	-		1 1 1 1			-+				-
RAE CAD		0	-	-	-	 	-	-				1 7 7 7 7 7 7				• • • • •	-
RAME CARD	10, COM	COLUMNED FORCE	1 1 1 1 1 1 1 1 1		TLIED AT		-					י ויז רזיז ו	-+	1-			-
RANK CARD				-	-	۔ 	-	-		-				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1
9	-	-		-	-			-		-	-	-	-		_	1	
BLANK	Ŝ	1: SUB 61	EADE	5	9 55 J	y V	DANO	TAT /	2	N HO	EEDE.	D.					
		-		-	-		-			-							
	-	-					-		-			-	-		-		
					-		-							• • • • • • •			
	-		-		-	-	-	-									
		-	-	-	-		-	-				1 1 1 1 1 1 1	-			• • •	•
-	-		-	-	- -	- -	•						1			•	
	-			-	-		-	-							-	•	-
	-			-		- - -	-		, - 							• • •	
	-	-		1.1.1	1 1 1 1		1	1 1 - 1							-	•	
-	-			-				-			-		1			• • •	-
							•				-					•	
0															PAGE	or	
C1 A12 538	1021																

(Sheet 3 of 3)

£.

Example Problem 3: A Two-Slab Pavement System, Symmetrical Along the X-Axis

53. The slabs involved are 15 by 12.5 ft. A uniformly applied load with a 7.5- by 10-in. rectangular imprint is applied near the center of the joint. Because of symmetry, it is only necessary to use half of the slabs for the computations. Figure 4 shows the finite element grid for the problem. According to the principle that the slab carrying the heaviest load is numbered first, the left slab is designated as slab 1 and the right slab as slab 2. Beginning from the first slab and ending at the last slab, the nodes and elements are numbered consecutively from bottom to top and then from left to right. The input data for the problem are presented in Table 6, with the special features listed below:

- a. The efficiency of shear transfer across the joint is assumed to be 100 percent and the efficiency of moment transfer is zero percent.
- b. Assuming good fit between the steel and the concrete, the initial and final values for the modulus of dowel support K are equal. The value of DCGF (item 11) is arbitrarily assumed to be 1 in. Since the deformation of concrete does not exceed 1 in., initial K value is always used in the computation.
- c. Because of symmetry, half of the total load is used in the problem, which is applied at element 43.
- d. Because the problem is symmetrical about the X-axis, the nodal numbers lying on the X-axis of symmetry are 1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85, 92, 99, 106, and 113.
- e. Nodal points 57, 58, and 59 are used for checking the convergence. Nodal point 57 is used for determining whether the relaxation factor RFI should be reduced. Accordingly, the values of NBCK, NECK, and NNCK should be 1, 3, and 1, respectively.

Example Problem 4: A Nine-Slab Pavement System

54. Figure 8 shows the finite element grid for a nine-slab pavement system. The system has a total of 196 nodal points, 122 elements, and 12 joints. In the real case, the number of elements may

Table 6. Example Problem 3--Input Data for a Two-Slab System. Symmetrical Along the X-Axis

12 00

La L	4011			17) NY 100	LTEMENT			
	9 	*	*			9	8	10EWTW1CATION
-								
	11 ST	At X DEOT TODAL	B. TTRALL AP. ING					
2	د	9639	200 200	130				
6	1	, , , , , , , , , , , , , , , , , , ,	0					
8	7	-	0					
90-t	8	0000000						
TTTTTTTTTTTTT	1	0		0	24			
0	0	9	0	1t	0			
T			661	51 0	7500			
0	0	0	0					
, téq.ea	00	00000 0	0.25000	1.0005-02	1,000-03	3,008-07	0,20000	0
		TION SUPERING ADD	thus.					
-	6	8			- 56	.31.	130	142.5
-	·bst							
j	6	0[-35			8	
	.9.1	10.	25.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8	.315.	150
	.6.	10.		35.		70.	8	-
	.	1.0.1.1.1.1.1.1	0.5003+01					-
R. C.R.		riotal records.						
2		2.4	2000 12.00	000	125 I. 500	1.500	00000'T 9040	
	7500.00							
13	. 9.000	20.1.1.2.00	00.1	00.0	00.0	00 200.000	8	
R Curr	111 101	interest of the state of the second	VITTE SUBGRADE.					
	•							
GRAMER							PAGE	õ
FORM NO. SEPT. 1963	1021							

(Continued)

20

-

l

Table 6 (Concluded)

Ċ

1

C-COMMENT	HOI.							
STATEMENT NUMBER	111			FURIRAN STA	ATEMENT			DENTIFICAT ON
•	-	=	2	* *	*	55 60	65 70	2 <u>1</u> 2
		8 361	88	1 1 1 2 1 1 1 2 1 1 2 0	8554	0928	63 63	
1 66	. 67	69 69	1 70 71	78 85	80 1 1 20 1			
	8	2011	20.1.36	1 1 13 1 1 50	191 1 12 1 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1001 100
EUL. 1								
THANK, CAR	NCS. ON :	ALLER OF X-AXIS.						
RANK, CAR		IS NOT BOILT TO DES.						
MARK, CAR	THO CAP	TO JE NEAD IE.						
BATE, CAR	: 10,00	CONTRACTOR NOTICES OR)		• • • • • • • • •				
BAFE, CAR	IBURND							
0, , 1	odogo,					1.1.1.1.1.1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1
0	-							
-	-	-		-				-
	-			-				
	-	-			-			
					1.4.5.1.4.1.6.4			
	-							
1								
	[
					• • • • •			
PROGRAMMER							DVd	E 0F
WES FORM NO.	1.55							

REA FORM NO. 1021 REV. SEPT. 1963

Figure 8. Finite element layout for Example Problem 4 need to be more to obtain more accurate results, but the dimensions of several variables have to be increased in the program.

Ċ

¥.

55. In Figure 8, the slab is numbered according to the magnitude of load and the expected magnitude of shear forces transmitted across the joint. Since the load is applied at the center slab, it is numbered slab 1. Because the load is applied at the upper right corner of the

74

1_

slab, greatest shear forces will be transferred to the right middle and upper middle slabs; therefore, they are numbered slabs 2 and 3, respectively. The choice between slabs 2 and 3 is arbitrary because the shear forces transferred from slab 1 to these two slabs are expected to be the same in magnitude. For the same reason, the right upper slab is numbered slab $\frac{1}{4}$ and the left middle and lower middle slabs are numbered slabs 5 and 6, respectively. Similar to slabs 2 and 3, the choice between slabs 5 and 6 is arbitrary. Similarly, slabs 7, 8, and 9 are numbered.

56. Beginning with slab 1 and ending at slab 9, the nodes and elements are numbered consecutively from bottom to top and then from left to right as shown in Figure 8.

57. The joints can be numbered arbitrarily. However, the joints shown in Figure 8 are numbered according to the magnitude of shear transfer across the joint. For illustrative purposes, the use of the element coordinates card for slab 1 is explained. Slab 1 has five nodal points in the X-direction and five nodal points in the Y-direction, and the slab is surrounded by joint 5 on the left, joint 1 on the right, joint 6 at the bottom, and joint 2 at the top. The element coordinates card in Item 4 of Table 2 should then be input as 5162. The same logic is used in the input for the other slabs.

58. The input data for the problem are presented in Table 7. Special features of the input are listed below:

At joints 1 to 10, the efficiency of shear transfer a. across the joint is assumed to be 100 percent and the efficiency of moment transfer is zero percent. At joint 11, a spring constant of 1000 psi is specified for shear transfer and zero percent for moment transfer. At joint 12 dowel bars are used for a shear transfer device and, similar to all other joints, moment transfer is assumed to be zero percent. The bars have a diameter of 1 in. and are spaced 18 in. apart. The final value for modulus of dowel support SCKV(12,2) is assumed to be 1,500,000 psi but the initial value SCKV(12,1) is assumed to be 600,000 psi when the deformation of concrete DCGF(12) is less than 0.01 in. It should be pointed out that the unusual and varied combination of load transfer options across the joints used in this problem is merely for illustrative purposes.

Table 7. Example Problem 4--Input Data for a Nine-Slab Pavement System

وحوارية والمتحديدة

Ċ

₹

2

;	5						FO	IRTRAN ST	ATEMENT						<u> </u>	ENTIFICATION
	2	÷	ę		5	£,		•	ç	4	8	5	\$	× 65	11 ZZ 0	3
-						-										
ELIG-STAB		ITTE JOINTS, 5		INCI THE			 		, , ,							
10	2	05811	100	201	10	- 8	2	- ·	•							
2		5	-			~			-							
2	`		.0		- - -	- m		- ·			 					
]	• •			-	.0		-	-							
			-		- - "m	. 0			-		-				+	
	1	0		- -	ີ - "ອ	- •	-		-		ן] 	
,			- - -		- - - -0	-	•		-			T 7 T-1 1				
			-		-	- 0			-	1-1-1-1						
		, , , , , , , , , , , , , , , , , , ,	-		- \^~c	-	-		-				1 1 1		1	
	-		?-:	-			-		-				1 - r r			
			1 - /			¥ -					-					
			• : :		-	•			-							
			.		-		-	• • •	-	-	-					
			6 - - -		• • •	-	-									
		1 1 1 1 1 1	•	1 1 1 1		-	-		-					*****		
		• • • • • •	, , ,	1.1.1.1.	-				-		, 		י ד ר			
		-	°.	-	-		-	-	-	-		-	-			
		· · ·	•			 										
			0													
-			o											-		-
		-	ò								· ·					
			0													
		• • •	-		1	-										
BUJULAMMER														ŝ	AGE	0E
SEA FORMO	:021															
	;							(Conti	inued)						, ,	1
														(Sheet	1 of	3)

continued)
C)
\sim
~
Table

ć

C-COMMENT	NO.							i			t					
STATEMENT	100					FOR	TRAN ST	ATEMEN'	b						ä	TIFI_ATION
s	• • •	5	R	ç	я	÷	9		5	8	55	3	5	2	11 21	e e
.4 . 1	0000	0000010				1.1.1.				-					- - - - -	-
τ	1		0		٩	. o	π	1	35				ہ - -			+
0, , 1	0	0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	יין ד ד	0.	٩	4 • • •	0		0					1		
1 1	د]		5	64	85	0	15	-	.	20000	- י ר י					
0, , , 1	0		0	0	0	-	-	-	-							
· toot	-			5ct - 6		00-T	01-02	-	1.0008-0	3, 1	-3,000#+	5	9.2	1	σ	
BLARK, CAR	NO ADD	TTORAL SUBGRADE AC	opting,					-	-		-	-	-			
					120.		136.		· ·	180.		-	-			
			60.	-	120.		156.	-	-	180.	-	-	-			
			24		9	-	120	_	-	180.	-	-	-	-		-
			8		्य	-	156.		-	180.	-	-	-	-		-
			60	-	120.	•	156.		-	180.	-	-	-			-
			24		8	1.1.1.	1 220	-	-	180.	-	-	-			
1 1 1		, , , , , , , , , , , , , , , , , , ,	34 J		9	-	. 1 12D.	-	- - -	100.	-	-	- - -			1
	1 - 1 - 1		24		9		120.	-	•	180.	-	-	-			
1.1.1	1.9.		60.		120.		1, 180.	-			•		-			
			60.		120-	1 - 1 - 1	. 126.	-		180.		-	-			
			60		, 1961		. 156.			180.	•					
	.0	1	60		'021		. 280.	•	•		•	-	•			
		******	60		ଜୁ	•	. 1.280.	•	• • • •						1 1.1.1	
		, , , , , , , , , , , , , , , , , , ,	2		9	1 1.1	1 120.	•	- - -	180.			1 1 1 1 1 1	L 1. L.1		
			24		8		1 1 120.	-		180.]
	·6 ·]	***	60	1	2		. 1. 180.	-					1,1,1,1,1,1		-	
	-				-									1	, <u> </u>	
PROGRAMMER														9 A G		01
RES FORM NO.	1021											1	}			
							(cont.	i ninad	-							

(Sheet 2 of 3)

/ nanurnunn/

いいいのであるとうのない

Table 7 (Concluded)

.....

1

ć

Ľ

ç

STATEMENT OF				FORTRA	N STATEMENT						
1 NUMBER 5 4	, to	15 20	* *	×	2	*		5 6C	5	7 6/	÷ F
	0,00000	00000-09	00000	10.0K	0000						
	0.00000	1 1 1 60.00000	00000 021	280.0X	2000						
	15.00000	00051-0-1-1-1	TO-BOOM.G.	* * * * ! ! !		1 1 1 1 1			1 7 7 7 7	• • • • • • •	
BLADK, CARD:		TIONAL THICHERS.	* 1 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1	- - - - -			1.1 1.1			+
THE RANK CA	2006, .30	ET ZAVE OF OL 1 SULL	B(I)								
1 1	1,0008+0	3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		1.1.1.1.1.1.1.1.1.				íí.	+	. 1	
1 - 1		00יד י	DQ0.81	, , , , , , , , , , , , , , , , , , ,	2*013\$51. 1.1	19°6	oj≣±06	54.9.1	LO-	dod to	
9	00.00							- 1 7 1 1 1	1		
9t ' ' I	, T0,81	500.1.1.1.005	14.0- 1 1 1 1 000	1 1 1 1 1 doi	1,00000,1	But LLL	- 1581¢-	1111	1 1.1 144		
BIARK, CARD:	Napager,	windo bat atreastants ao	ct motors P 0			1.1.1.1.1.1					
	2		5	7	8	JE	, , , , , , , , , , , , , , , , , , ,	ц. , ц	2		15 16
17	1.8	10 20	27 12	23.1	121	25 21	5	21 28	1	30	21, 256
1. 61	8	1				1.1 1.4 4.4	T 1 1 1 1				
BUNK, CARD	adis' oli	BITAN ON X MILE.			1 1 1 1 1		-		-		
BLAFE, CARD:	IIO STOR	THE OF LATS.	+		1-1-1-t-t-T-T-		+ - F - F - F - F	1 1 1 1 1 1			
BLARK, CARD:	I OVER	or squar to out .	+		• • • • • •			1 1 1 7 7			
BLARK, CARD:	10.01					1.1.1.1.1	1-1-1			+	
BARK, CARD:	10,00	DETERMINE FOR DE N	podates, APPLIED, AF PO		1 1 1 1 1 1 1 -	1.1.1.1.1.1	1-1-1	1 1 1 1 1 1	1-1-1-1-1		
BLANK, CARD:	TOWER				• • •						
						4 4 4 4 4 4 4	* * * * * * *				
.0.1								* * * * *		* + • • • • •	

						*****				·	
بلديما	•										
PROGRAMMER	!									PAGE	10
UES FORM NO.	1001										

(Sheet 3 of 3)

RES FORM NO. 1021 REV. SEPT. 1963

- b. A 60,000-lb single-wheel load with a contact area of 500 sq in. is applied at element 16. The loading card in Item 13 of Table 12 should thus be from -0.875 to 1 in both X- and Y-directions. With such a division of contact area in the element, the actual tire imprint has a contact area of 506.25 sq in. and a contact pressure of 118.51851 psi.
- <u>c</u>. Nodal points 23, 24, and 25 at joint 1 are used for checking convergence and nodal point 25 is used for determining whether the relaxation factor RFI should be reduced. Therefore, JNCK, NBCK, NECK, and NNCK in Item 4 of Table 2 are input as 1, 3, 5, and 5, respectively.

Example Problem 5: A Four-Slab Pavement System with 50 and Zero Percent Moment Transfer Along the Joints

59. As was explained in the input guide (Table 2), when moment transfer is other than 100 or zero percent, a separate computer run with 100 percent moment transfer must first be made and the computed moments along the joints are then used in the following run. Example Problem 5 presents the input data for such a case.

i

60. Figure 2 shows the finite element layout for the problem. Two uniformly applied loads are placed at the two upper slabs near the corner joints. Each load has a magnitude of 51,840 lb and a dimension of 36 by 36 in. Because the loads are equal in magnitude, the designation of slab 1 and slab 2 is arbitrary. Similarly, the designation of slab 3 and slab 4 is also arbitrary. Once the slab numbers are determined, beginning from slab 1 and ending at slab 4, the nodes and elements are numbered consecutively from bottom to top and then from left to right as shown in Figure 2. It should be pointed out that, for the convenience of presenting and explaining the output results of the comtistations, a minimum number of elements is used in this problem. The constation and discussion of the computer output is at the end of this contation.

The input data for the problem are presented in Table 8,
; evial features of the problem described below.

79

à

Table 8. Example Problem 5--Input Data for a Four-Slab Pavement System

٠,

1

.

•

ć

Ľ

E

					* * * *			
C-COMMENT	HOL							
STATEMENT C	<u>vi</u>			FURTRAN STI	VTEMENT			DENTIFIC ATION
		11	29 SS	35 40	**	\$5 60	53 72	71 80
2		-		-	-	-		-
PTROFT NUM	TATES OF	AT OOL NOT STATES I	Property in the second states	Pours suivas.		-		
4		9801 50	0 500 200	130				
1 3		3 3	0 0					
		3	3 0					
1			0					
[E, , ,]		0	-					
	- + + -	[
	4							-
	- + · ·							-
					 	· · ·		
τ, , , ,			-		8			
10, 1			2 0		0			
1 2	-	1 + + + 5 + + + + 1	91 191 19	1 0 12	10000			
0, , , 1) 		0 0		· · ·	· · ·		
. pot. 1	4	0,	9.25	1.000-02	1.0008-03	3.0001-07	0.2	
BLANK, CARD	: NO.ADI	otrional, subgrape mo	ortus.					
	1 1	6						-
			180.					
		8	180.					
	9.	96, , , , , , , , , , , , , , , , , , ,				-	-	-
	6 1 1		180.					
• • • • • • • • • • • • • • • • • • • •		8			-			
	-							
PROGRAMMER							PAGE	10
865 FORM HO REV. SEPT. 196	1021							

(Sheet 1 of 4)

(Continued)

1. and 1.

-1

₹

;

Ę

 Sec. 5. 5

......

-

			FORTR	ZAN STATE	MENT					IDEN FIFICA FION	
	× 5.	8	36	2	5	3	**	95	1 10		3
L . 0.0000	1 1 1 1 50605	180.0000	• • • • • • •			, , , , , , , , , , , , , , , , , , ,	* * * * * *		1-1-1-1-1-1		Π
1 9-000	50505	240.0000 J		•							-1
9. 0000 9.	15000	10+1001-0	1. 1 1 1 1								7
BLARK, CARD: NO. ADDITIONA	t Talconss.								1 8 8 8 9 9 7 1		-1
2	5.0.		3¢.	5140.0	2, 1, 1, 1, 1	6-150Eto		7.1501+07	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7
2	5.0		Je.	0,0912	5, , , , , , ,	P-1502+0	1 1 1 1	21500+07	1 1 1 1 1 1 1 1		7
2	0.1		ter le	0, 1250	8	9-150m		11500+07			П
	1.0			isat 'o'	8	o-jadeto	1	1,1500+07			7
1 103680.00.1						1 1 1 1					-1
	2'01 1 1.1			- 0- -		۴0.,			[[[]]]]]		
1 1 2 2 1 1 1 2 2 1 1	011 1111			- - - - -		- 		1 1 1 1 1 1 1	* *** ****	• • • • • • • • • •	7
BLANK CARD : NUMBER OF SU	ACTION OF ACTION	cr wortogii						1 1 4 1 1			7
1	13. 1.1.1.1.5L	111.181.111	' ET ' ' TT	- 	. P	- 11 -	1 1 20 L 1	1 1 1	23	8	8-
1 26 1 12 17	25 35.							1 1.4			
HANK CARD: NO. SPORTING	ON XTAXIB.	1 1 1 1 1 1 1 1			-11-11		1 T T 1 T		.1.1.1.1.1.1.1.1		7
HAAR CARD : BO, SYMMETRY	ON YTATS.	1 1 1 1 7 7 7 7							*****		Ţ
BLANK CARD: FIRMU BOT BY	WAL TO OFFILL		• • • • •	 		·· · · · · ·	****		***	• • • • • • • • • • •	7
BLANK CARD: PO. CAP	* 1 1 1 1 1 1 1 1 1 1						****				7
BLANK CARD: NO. OPHCEFTEN	TED PORCES OR	A GALLAR APPLICA	NODES.						1. L. L. L. L. L.	+++++++++++++++++++++++++++++++++++++++	7
BLANK CARD: FIREAD 9		1 1 1 1 1 1 1 1					*****				-1
1 . 1.0000	+	4-4-4-4-4-4-4-			T T T T T T T		1		*****	~~~~~	Ţ
SECOND AND NO. OFFAIL RES	ILTS FOR ZEGO. AL	D. 59 Funderstary Hong	TT TRAISTER, POU	R SLABS.							1
	2601. 1 590	T T 12601 7 T	300 139 .								
I										·····	Ŧ
PROGRAMMER									•	14GE 0F	7
NES FORM NO 1021											

(Continued)

 \sim

(Sheet 2 of 4)

A DESCRIPTION OF THE OWNER OF THE

Ś

C - COMMENT	NO											
STATEMEN.							FORTRAN SI	IATEMEN	-			IDENTIFICATION
-	-	5	~	57			1	9	45 10	11	8	72 73 00
Γ T	1 1	1	0		2	-						
5, 1, 1		9	6									
	5				7 1 2							
1		6		5								
1	0.1		2.0 .	-		}	-			-		
	0.4		0.5									
	0.4		0.5			-						
1	0.4		2.0					-				
		6	d '' ' '		0 1 1 1	-	10, 1, 1, 10,		129 1 1 1 1			
0, , , 1	0, 1	9	2		0	-	2	, 				
2	-	2			100							
01	Q	0	0			1		1				
10001	8		00000		22000	-						
				-				1 -				
		iterimiteri ener		nup., , ,		-		-			+ + - +	
	÷ 1	+ +	8		1 1 180.	-		+ + + +			+++++++++++++++++++++++++++++++++++++++	
		1 1 1 1 1 1	8 8		1 1 1 100.	-					1	
		1 1 1 1 1	8		1 , 180.	-	1 1 1 1 1 1		-			
	+ - -		8		1, 180.	-		-				
			8	-	.081	1						
	÷		8	-	1, 180.		-					
	6	-	8	-	160.							
	÷.		8	-	180			1 ·				
•- L	4	1 7 1 7 7	0	16	0.	DOBTOT						
			4	•								
PROC NAME R							1				3044	ō
WES FORM NO REV SEPT 194	, 102 ו											

(Sheet 3 of 4)

(Continued)

1919 - A

1

1

Table 8 (Concluded)

2-2

ć

.

1

																	1		
C-COMENT	QIX					ιĹ	ORTRAN	STATEM	IENT										
ALVERENT S	-	01 82	8	£	2	-		ę	:	8		\$	9		÷	٤			ä
RAN CAN	8	uptrional relations	-		 			-									<u> </u>		
2		00+8000	0		*		0	-p3125	1	0,150	10-	• •	0.150	ь	• •		· -		i .
1		0048000	5		9	· · ·		.03125		0,150	10-1		9-1502	Б	 	i.			
2		0005+00	-		ন			P3125		051.0	10+		9-150	5		م			
~		00+2000	-	-	শ		a	-p3125		0,150	10+		9-15 0 E	ю		-			
edt i i	8		-		1		· -		· -				 - - -		-	 	· -		
7		0.1	<u> </u>	8			0		0			10.0		· -	 	 		· ·	1
1		0,2		0	•		0.		9		_	40.9		 	· -		· · ·		
TAPE CAR		BER OF SUBCEADE NO	ound	T POTCON - 0.	-	-	-		-		-	-			-				
N.		3	9	90	. म	~		77	51	1t		8	8		53	đ.	 	8	୍ <u>କ୍</u>
R	┨ : ╋──	23	18			• •					- ·				- ·	 -		-	
NAR CAR	8	STREETS OF X-AXIS.		· · ·	• • •									· ·	· ·		• •	 	-
RAFE CAR		STREET'SY ON Y-AXIS.			÷			, . , .	- - -		· ·		• •		 	•	 		
RANK CAR		THO OF TAUPUT TO OF		· · · ·		•	- ·		-	1			• • •		• ·				•
RAM CUR	8					- ·					 				- ·				•••
RAR CUR	2	CONCENTIONATED FORCES	5	DETS APPLIED		10	• •					 							
BLANK CAR		0					-		· -	-	-		-	-				-	
1 . 1	-	0.												-			-	-	-
.9.1						1			-		-	-		-	-		-		-
			_					-			-	-		-	-			-	
												-	-	-					
					1				-		-				-		-	-	-
	-			* * * * * * *		1 1 1				-			-		-		-	-	-
						• • •		_			1	1 1 1							
PROGRAMMEN																		•	
RES FORM NO.	1021																1	1	

(Sheet 4 of 4)

Į

- a. Slab 1 has three nodal points in both X- and Ydirections, and has joint 3 on the left and joint 2 at the bottom. The slab coordinates card in Item 4 of Table 2 for slab 1 should thus be read as 3 3 3 0 2. The same reasoning is used for the other three slabs.
- b. The difference in the input data between the first and second run lies in the following variables: (1)
 EFF(I,2) of the joint efficiency card in Item 5 of Table 2, (2) NMT, number of cases to be solved for moment transfer in card 2 of Item 4 of Table 2, (3)
 INDP in card 1 of Item 4 of Table 2, and (4) CM(j) of the efficiency of moment card in Item 21 of Table 2. They are discussed separately as follows:
 - In the first run EFF(I,2) is input as 1.0, i.e., 100 percent efficiency, and the number of cases to be solved NMT and multiplying factor CM(1) are both 1. INDP is also equal to 1.
 - (2) In the second run, EFF(I,2) should be input as 0.5 and NMT = 2 (50 percent and zero percent moment transfers). INDP = 0 because moments computed at 100 percent moment transfer computed in the first run are used in this run. CM(1) and CM(2) are input as 1.0 and 0, respectively, because $1.0(CM(1)) \times 0.5(EFF(I,2)) = 0.5$, i.e., 50 percent moment transfer, and $0(CM(2)) \times$ $0.5(EFF(I,2)) \approx 0$, i.e., zero percent and moment transfer. Provisions are made in the program that other combinations of EFF and CM can be used. For instance, EFF(I,2) can be 0.25 and CM(1) and CM(2) can be 2.0 and 0, respectively. However, erroneous results will be computed if EFF is set as 1.0.

The moments along the joints computed in the first run are stored automatically in the memory. They are multiplied by the coefficient 0.5 or 0 and are used at the joints in the second run.

- <u>c</u>. Nodes 1 and 4 at joint 2 are used to check convergence, and node 1 is used for determining whether the relaxation factor RFI should be reduced. Therefore, JNCK, NBCK, NECK, and NNCK should be input as 2, 1, 2, and 1, respectively, in card 3 of Item 4 of Table 2.
- d. Dowel bars are used in all four joints to transfer shear forces. Bars 0.5 in. thick spaced 36 in. centerto-center are used in joints 1 and 2, and 1.0-in. bars spaced 12 in. center-to-center are used in joints 3 and 4. A good fit is assumed for all four joints and thus DCBF(j) is arbitrarily selected as 1 in. in Item 11 of Table 2, i.e., a very large value.

ALL AND

62. If it is desired to determine the stresses and deflections due to load alone and the coefficients of moment transfer across the joints are between 0 and 100 percent, the procedure of using NSTORE = 2 in card 1 of Item 5 of Table 2 becomes rather complicated. It is suggested that the stresses due to temperature alone and the stresses due to temperature and load be computed separately. The stress from the temperature alone may be subtracted from the stress from the temperature and load to give the stresses due to load alone.

63. The use of four slabs in this example is for illustration only. Because of symmetry with respect to the Y-axis, only the right half, or slabs 1 and 3, need actually be considered.

Computer Output 1

64. Table 9 shows the Computer Output 1 printout for Example Problem 5. For clarification, the input data for each run are first printed. Therefore, any mistakes in the input data can be easily checked. For convenience of explanation, entry numbers are used in places where explanations are needed. In many places the output printout is self-explanatory.

Entry 1

65. IFF(I,1) is input as 1.0 because LRT = 2 (Item 11 of Table 2). EFF(I,2) is also input as 1.0 because the efficiency of moment transfer in the first run is 100 percent.

Entry 2

66. Referring to joint 1 of Figure 2, the initial starting nodal numbers at the left side of the joint are nodes 10 and 30, and the last nodes at the right are nodes 16 and 36. For joint 3 in the up-and-down direction, the starting nodal numbers at the bottom are nodes 1 and 16, and the last nodes at the top are nodes 3 and 18. The information printed out can be useful to verify whether the finite element grid coordinate system is input correctly.

Entry 3

67. Unless all joints are 100 percent efficient, a problem

Table 9. Computer Output 1 Printout for Example Problem 5

<

₹

F

Ite	SLADS					' 9		0, 2 <u>9999 0</u>			đ		6	10	07 1.00000 07 1.00000 11 1	07 1.00000	- 21	13	23 24 26 29 15		16	81	67	21	22
	RANSFER ₆ 4							3006 08						7.41 6 80	07 0.150E	07 0,150E	90	00	29 22	1					
	NOMENY T				-		2	006-02 G.							25 9.15 9 5	10 0.150E	00 40.800	10 40,000	0449 15 17				AT NODES		
	S PERCENT					-	123000	105=01 011 70 BE REA	•					READ [N		0,128	1	10.201	TACT, NOTE				IT ABPLIES		
	S FOR 10		~~~				4 0 4 7	000 0110	000	0001	0000	0000	000	555 TO BE		12.8090	-1.8a8ne	-1.9090	RADE CONT	21813	Y-A319		ON POHE		
	TA RESUL	200	0 0 4	223		- 0 1 0 0	4 0 4 0	011. SUB	00 180.0	0.081 00	00 180-0	05 180.0	00 160.0	I. THICKN	0.50000	1,00000	0.24000	1.00000	NO SUNG	35 METRY ON	HETRY ON	R07 EQUA	C. FORCE	e.	
	TO OBTA		40	1.000	1,000	50	~ •	D. NO ADI	000.06	600.00	90.000	000.00	000 000	DUA ADD			00 10000 - 1	20000	D NO. OF	33 NO 64H	NAS ON O	D NREAD	NOU DA A	D NREAD1	
	FIRST RUN	* 19 19) IN IN (IN IN	1,00000	1.00000	40 40	10 N0	100.00000 BLANK CAR					0. 8. 0000	BLANK CAR	000	20	103660.	10	BLANK CAR	31 32 BIANK CAR	BLANK CAR	BLANK CAR	PLANK CAR	1.00000	0

(Continued)

(Sheet 1 of 18)

41.14

1

÷

с. ч.

r. 5

								Slab No.	Joint Ro.	1				36 147		16L= 0.1006-01 158= 0.20000						
	•		Γ	Ð	Ţ	•	ך ן	 0	 4	1 21		t.		ALS. LUDI		LERANCE					10 3	
	1		$\left \right $	- 10	+	+	-	9	m	A RE		int k Joint		NATRI NODAL	2	10 1					9.4001	
	NGĽD		L	•	Ī	•		ତ ଜ	ہ ۲	IO INT	(1	of joi ode of		55	00700	28080 28080					\$H\$	
	309	•	0	•	7			0	.,	1968 OF 3	(joint	e top node e bottom n		IPT BIMEN TOTAL NG	NSTORE - NLOAD- NDCAD- IACAJ-7	tt. by						
	NNPD-	2		•	6					N 90TH SI		IST for th IST for th		6 5 9		FACTOR 1					15080	
	500									NN) O		1/			JUOL U	ATTON						
	-0121	0	n	Ð	•	0000	0000	0000	0000	. ND. (LF	3)	- 	•	LI CNS , LNG	U-723 5 723 5 26 2 2	RELAX 0.3006 0					ATIO FRE	
51 ABS 75	00	•	•	•	0	1.4			1	NODAL	(joint	Joint .	•	20 EQUAT	62600	+85HY					N SINO	
A SENEN	- an					0	0	•	0	EINAL 27				10 10 10	EGAPE ICX9 IGX0RYE IBNORS	DONEL .					POISS	
	01 TO	-0405	-0486	-040r	-0405	3.0 9 00	1.000	1,000	1.0806	21 PAST	4	r 3) 7	•	D Gr LN085 T07AL		YENPP= MODL. OF	00.00000 00.00000	00000.0000	00,0000 00,00000	00000,00	00000	
SEET NR	4 =Q804	n	n	•	•	نو د و	5 F 6	EF.	اودا	NHS17 1	-	nio(,)	-	245 C AN	10 10 10 10 10 10 10 10 10 10 10 10 10 1		1 00000	1 00000	1 00000	1 00000	Ta 8.	
ANAC.	~	NYE	NYB	= Å N	e A N	ENCY	ENCY 6	ENCY B	ENCY E	AL NC	oint 2	 		iATR30	2	80	••		60		(NEgS	
	•	•	-	•	•	13183	13144	12144	13144	NG ROI	<u>.</u>	د: ۲۳ ۲۳	NHT AI	1131 ·		0:0\$01 1808-1					THICK	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-twlor	"X"	"XN	= x N	=×N	OINT 6	OINT E	OINT 5	DINT E	STARTI 16	55 <u>9</u> r	n tiger		STSFF Rix CL	248040 248040 244040 244141 244141	5- 		55	55 55	55		
	ž		•	•	*	- -	ہ م	т ю	₹ •	2 VF	VALUI	, VALUI	VALUI	TATION C	-2	SUBMO	•			•	-1	
084V	4	DN	9	. Of	NO.	1 NO.	T NO.	T KO.	Ň.	INI	AND	A DO	AN O	DINE N, O		TOLES	NO. 1	¥0.	NO. 2	NO.	NO.	NO.
T RUN TO	NGL AB =	FOR SLAB	FOR SLAB	POR SLAB	FOR SLAB	FOR JOIN'	FOR JOINT	FOR JOSNI	FOR JOINT	JOYNT NO.	JOINT NO.	1 1 Joint 1) Joint 1) 1 NO.	JOINT NO.	COMPUTED COMP, DIM	NLA 169= I NDP= NNT= NAT= NAT=	SUBG, MOD FINAL	FOR 31. 48	FOR SLAB	FOR SLAB	FOR SLAB	FOR LAYER	TOR JOINT
F1R5		_			_		Entry 1		_	Butry 2	۔ د	Entry 3	-	Entry h	-	~	-	-	-	-	-	-

(Sheet 2 of 18)

(Continued)

17

(Sheet 3 of 18)

(Continued)

5 -----CHECKING CONVERGENCE, FOR VO. DF ITERATION CYCLE -0.130E 05 -0.244E 04 0.204E 04 -0.504E 04 0.1945 02 0.107E 02 0.207E 02 Entry 9

SNEWGH SHEAR 300

1.60000

105680:00

TOTAL LORD CALOULATER.

1.0000

CH , 15

THE MULTIPLYING FACTOR FOR BFFICIENGY OF MOMENT TRANSCER,

TOTAL UNIFORMLY APPLIED LEAD INPLT. 103480.80

Entry 6

Entry TNO, OF ITERATION CYCLE FOR CUESKING CONTACT, ICC &

CASE NO. FOR NOMENT TRASFBRAKHT=

....

4 4 N G

325

AMOUNT OF INITIAL CURLING AND GAP AT \$WE NODES 180 2 0: 10 0: 11 0: 11 0: 12 0: 12 0: 7 0: 20 0: 22

Entry 5

HULTIPLYING FACTOR FOR SFFICSENCE OF HOMENY TRANSFERICH.

Entry 8

**

THE DIFFERENCES BETHEEN IN. THERATIONS ARE TABULATED BELOW, THE LAST THTEGER BETHE THE TTERATION NO.

88

Table 9 (Continued)

۲

SHEAR FRANSFER COCRELTS - 36.00002 Fixal Modulus of Domee Support, Screes 9.3966 39 1,00000 0,150E 07 2,00000

378. COMPT SCOME 4. 12390 JNJ MOD OFDOW SURVEY Commission Concrete New GOOD FIT is Office New Corfe

SPR, CONST, SPCOME 0. 100000 VCRT KIDTHINUE 0.12590 INI MGD OFDOM SUP.SCKY1E 0.1506 07 Deformation of concrete when good fit is obtimed.Dcofe 1.00000

• YDAI AND INTENSITY(0) AS SHOWN# -0,29000 40.4800° -0,20000 40.8800°

FINAL MODULUS OF DRAKER COLACINA. 20000 FINAL MODULUS OF DRAKEL SUPPORTISCHUZ- 12:0000

FOR JOINT NO. 4

×0 Slab

5

2

1

26 29 31

22 23

Slab 4

ő

578. CONST. \$PCOM. 8. 8. 9.08129 141 MGD 07004 0.5000 JC14T MIDTM.MJ. 0.08129 141 MGD 07004 50P.55K45. 0.1596 07 JC14T VIDTM.MJ. 07 CONCRETE UNEN 0008 718 18 08741MED.DC6F. 2.00008

24.08000 24.08000 9.1586 07

SHEAR FRAMERER COREL THE

FOR JOINT NO. 2

FON JOINT NO. 3 Shear tanger corriger 12.0400 Bar Sactingert 12.0400 Final Modulus of DGMEL Support.56KW20 0.1306 09

Entry 10

G

545447747 - 5454444443883 Chear Node Nc. • OR JOINT ND. 1 SHEAR AND JMENT AT THE MODES AREA 10 192.929 -2646.591 13 -3644.941 637973452

Moment

16 -0.524E401 -0.310E-02 -0.247E-01 $\Delta = \Delta_{et}^2 \Delta_{c}$ FOR JOINT ND. 1 SWEAR AND MOMENT IN OME DOWEL BAR AT THE NODES ANGO 10 154.343 -2185.235 13 -1337.960 933518.991 16 -7599.956 -1131957490 Joint 1

-2736243.344 d. For Joint No. 1 Bearing Stress of Conbrete and Snear and Tending Stresses of Dovels at The "Popes are 10 -371.61 astress 966.040 -173487734 13 16 -37013.305 astress 972371027375

1^{94.017} -279379A2 FOR JOINT NO. 2 SHEAR AND MEMENT AT THE NODES ARE# 1. -9517.086 -140795.631. 4 -3876.832 7855.53

7 9.2076002 0.6326-04 0.5046-03 FOR JOINT NO. 2 DIFFERENCE IN BEFLEGTION BETWEEN THO SLABS,SHEAB EEFORMATION OF DOWELTAND ELASTIC DEFORMATION of the concrete at the modes are = 1 -0.525E-01 -0.3106-02 -0.247E-b1 4 =0.1876-01 -0.402E-03 -0.505E-02 7 9.207E=02 0.432E-04 0 Joint 2

155.213 -22857153 FOR JOINT ND. 2 SHEAR AND MDMENT IN ONE DDHEL BAR AT THE WODES ARE 1 -7613.664 -112628.477 4 -1590.741 435830.653

-2764685.969

-5,206 • FOR JOINT NO. 3 SHEAR AND MARGNT AT THE MADES ARE# 1 -22.359 137457.797 1 -22.359 137457.797

74887192

3 -8.2896405 40.1416-94 -0.1386-05 FOR JOINT NO. 3 DIFFERENCE IR DEFLECTION BETWREN THO 3LABS,SHEAB DEFORMATION OF DOMELTAND ELASTIC DEFORMATION of the connete at the nobre are 9 1 0.496e-05 0.2438-06 9.2306end3 2 40.6306-05 -0.3044-06 -0.2956-05 3 -0.2436-05 40.1416-06 -0 Joint 3

FOR JOINT NO. 3 SWEAR AND MORENT IN OME DOWEL BAR AT THE NODES AME# 1 2:362 53929,347 2 55294,441 14327,706

-1,388 19957518

182017.410 FOR JOINT MO. 3 BEARING STRESS OF CONBRETE AND SHEAR AND BENDING STRESSES OF DONELS AT ^The Nopes are 1 3.946 3.946 3.083 7.987 5.98797625 2 281581345 2

716467854 ċ 21 FOR JUINT NO. 4 SMEAR AND MDMENT AT THE NUDES ARE# 19 -2.350 -2327.785 20 14.492 29246"189

FOR JOINT NO. 4 DIFFEGENCE IN DEFLECTION BETWEEN THO BLABS, SHEAB DEFORMATION OF COMELIAND ELASTIC DEFORMATION

. ÷ 21 0. 20 0.402E-05 9.1974-06 0.1916-05 OF THE CONCRETE AT THU NODES ARE -19 -0.1316-05 -0.6416-07 -0.6236-06 Joint 4

FOR JOINT NO. 4 SHEAR AND MOMENT IN ONE DOMEL BAR AT THE NODES AMEA 29 -0.629 -620.721 20 1.922 3899.492 21

19153741 ÷

FOR JOINT NO. 4 BEARING STRESS OF CONDRETE AND SWEAR AND BENDING STRESSES OF DOWELS AT THE NODES ARE -0.03190 -0.044 -0.0481 -0.0481 -0.03190 -0.0 21 0.0

10.128856402 0.5 10.128856402 0.5 10.1288566402 0.5 10.228376402 10.2 10.228356402 10.2 -0.49056-02 0.1039E-04 -0.3529E-04 -0.19156-02 0.10146-04 0.35556-04 0.96906-02 0.13216-03 0.22416-03 0.56686-03 -0.1 0.1/246-03 -0.2 0.10396-04 -0.3 HOIAT.X 0.24506 -100 100 100 0.2076E-01 0.24 0.014 27 NODE

(Continued)

(Sheet 4 of 18)

0.22826-05 0.27966-05 0.56286-04 0.19376-04 66403 40.553

39790.733

0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 YO.1448466402 24 0.1448466402 24 0.10086601 27 0.9115601 28 0.9114601 39 0.09114601 30 0.27016401 30 0.27016401
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.56736-03 -0.20896-03 -0.30896-03 -0.44396-05 -0.44396-05 -0.44896-05 -0.20646-03
1
-0000000
100 1124 01124 01124 0120 0120 0120 0120
9 - 00.814966-021 9 - 00.11096-022 9 - 00.11096-002 9 - 00.83176-023 1 - 00.11016-023 1 - 00.1100 1 - 00.1000 1 - 00.1000 1 - 00.1000 1 - 00.1000 1 - 00.1000 1 - 00.10
-1-1 (4 (4 (4 (4 (4)

THE DIFFERENCES BETWEEN TWO ITEBATIONS ARE TABULATED BELOW, THE LAST INTEGER BEING THE ITERATION ND. 15

		-14074779 h 2
	12	-9510.240
	16=	3.6
2 80.6995 81 0.3755 93 2 80.8915 81 0.2266 93 2 80.2145 81 0.1266 93 2 80.2145 81 0.1266 93 2 80.1195 81 0.7465 02	FOR CHERKING CONVERSENCE,	MENT AT THE NODES ARE# 13 -3892,457 483647,056
NODE SHEAR HOHEN' 1 0-294E 01 0-590E 02 1 0-294E 01 0-590E 02 1 0-739E 00 0-176E 02 1 0-297E 00 0-991E 01	NO. OF ITERATION CYCLE	FOR JUINT NO. 1 BHEAR AND ME 10 192.529 -2690.195

16 -9.9296401 -0.3106-82 -0.2476-01 FOR JOINT MO. 1 DIFFEGENCE IN DEPLECTION BETWEEN THO BLABB,SMEAR DEPORMATION OF DOWELIAMD ELASTIC DEFORMATION of the concrete at the nodes are = 10 0.1006-02 0.6286-04 0.9006-03 13 00.1876-01 -0.6344-03 -0.5066-02 16 -0.92956401 -0.3106-02 4 13 80,1876-81 48,6346-03 -0,506E-02

FOR JOINT NO. 1 SWEAR AND HOMENT IN ONE DOWEL BAR AT THE MODES AREA 10 154.023 -2180-156 13 -1556.763 233424:023 14

-7686.208 -1125947882

-2732646.625 FOR JOINT NO. 1 BEARING STRESS OF CONBRETE AND SWEAR AND BENDING STRESSES OF DOMELS AF THE MODES ARE 10 750.123 784×422 +1730731330 13 16 -37053,479 430746×287 49144275 491451375

FOR JOINT NO. 2 SHEAR AND MOMENT AT THE HODES ARES 1 -9311.990 -140648.982 4 -3090.944 583777.840

-26737227 192.789 •

FOR JOINT NO. 2 DIFFERENCE IN DEFLECTTOM BETWEEN THD SLABS,SMEAR DEFORMATION OF DOWELLAND ELANTIC DEFORMATION of the concrete at the worder are = 1 =0.535e=01 =0.3108=02 =0:247e=01 = 0.03107e=01 =0.039e=03 =0:305e=02 = 0.4205e=02 =0.638e=94 (

7 9.206E40P 0.628E-94 0.504E-03 4 40,1076-01 -0,6342-03 -0,9056-02

154,231 -21487990 POR JOINT NO. 2 SWEAR AND MOMENT IN ONE DDWEL BAR AT THE NODES ARES 1 -7009.272 -112303.142 4 -1590.378 43311.130 7

-2735682.906

n FOR JOINT NO. 3 SHEAR AND MOMENT AT THE NDDES ARE 1 0.459 20,9935.400 2 82.419 238.413

76817695 5-0.1-

FOR JOINT MO. 3 DIFFEGENCE IN DEFLECTION BETNEEN TWO SLABS.SMEAB GEFORMATION OF GONELEAND ELASTIC DEFORMATION Of the concrete at the modes are = 1 0.3395e-06 0.1796-07 0.1746-06 2 40.0706-06 -0.3200-07 -0.3196-06 3 -0.905E2405 50.2066-07 50

3 -9.965E40% 40.284E-87 -0.278E-06

-0.281 2027718 FOR JOINT NO. 3 SHEAR AND MORENT IN ORE DONEL BAR AT THE NODES ARES 1 0.176 95992,791 2 80.322 19424,419 3

FOR JOINT NO. 3 BEARING STBESS OF CONBRETE AND SHEAR AND BENDING STRESSES OF DOWELS AT TME NOPES ARE 1 0.201 0.201 0.224 572357667 2 -0.478 -0.478 -0.478 3 -0.417 -0.417 -0.388 28084.776

188084.236

(Continued)

FOR LOINT NO. 4 SHEAR AND MOMENT AT THE NODES AREN

(Sheet 5 of 18)

ومركان ومشاركة فالمكامية بالمحالي فركاتها كالمشت كالمتحد والمراكر وتعلم ومعلوي

Ľ

713907722 ō 5 1.389 29106.093 20 -2335,386 -0.116 61

• FOR JOINT NO. 4 DIFFEGENCE IN DEFLECTION BETHEEN THO SLABS,SHEAB DEFORMATION OF DUHELJAND ELASTIC DEFORMATION Of The Concrete at the Modes are 0 19 -D,646E-07 -0;3168-08 -0.307E-07 20 0.304E-06 0.179R-07 0.174E-06 21 9. 0.

FOR JOINT NO. 4 SHEAR AND HORENT IN ONE DOHEL BAR AT THE NODES AVEN 19 -0.031 -682.700 20 20 0.170 300.012 21

190477526 ÷

-	> 00 00 00 00 00 00 00 00 00 00 00 00 0	1898221281281282 88882828282828884488448848 888888888	10/u ²
12	200000 0000 000 0000000000000000000000	2020 2020 2020 2020 2020 2020 2020 202	۳ ب
7640		おちっちってい ちょうてき ちょうしょう しょうしょう	× đe
ñ			¥
	下てるうちょううたちょうない		
	00000000000		
234	55555555555555555555555555555555555555	2012 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3	76 60 76 66 6 70 70 6 76 60 67 60 70 00 00 76 60 67 60 70 00 00 76 60 67 60 70 00 76 60 00 76 60 00 76 60 00 76 60 70 76 70 70 70 76 70 70 70 70 70 70 70 70 70 70 70 70 70 70		
ł			
	0 2 2		
261	*****		
•			:
	400000400400000 0000000000000000000000	©	
	9999999999999	ແມ່ນ ມີມີ ສີດ ສີກ ສິດ ອີດອີ ອີອີອີອີອີອີອີອີອີອີອີອີອີອີອີອີອີ	
	X004400000000 -000000000000	1000 00 00 00 00 000 1000 00 00 00 00 1000 00 00 00 00 1000 00 00 00 1000 00 00 00 1000 00 00 00 1000 00 00 1000 00 00 1000 00 00 1000 000	
50	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-1
n n		000 55 56 55 5 1	0
1.1		99 99 99 99 99 99 99 99 99 99 99 99 99	4326
570 970	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	
12			
•	-		10.0
20.0	++++++++++++++++++++++++++++++++++++++		
1-	100046466604 00046466604 00046466664		
	00000000000000000000000000000000000000	00000000000000000000000000000000000000	acs
	404666666666		1
-0	► C + + + + + + + + + + + + + + + + + +	24564 24542000 000000 X0000 00000000 00000	4 X
	2 7 7 8 6 7 7 8 6 6 NN6 0 NNNNN NGN MMNG	1000 100 100 100 100 100 100 100 100 10	
70			10 160 1
	8014008440844 04000047409017 9477774000000 74577740000000		
	•••••••••		ž
32	H 4 4 7 0 7 4 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	2	-1
	ž 1		
	try.		

91

(Sheet 6 of 18)

K = B

16 -9510.755 -1407057140

FOR JOINT NO. 1 SHEAR AND MOMENT AT TAE NODES ARE# 10 192.532 -2690.741 13 -3692.433 583682(339 ND. OF ITERATION CYCLE FOR CHECKING CONVERGENCE.

1

10=

16 -9.525E401 40.310E-82 40.247E-01

FOR JOINT MD. 1 DIFFERENCE IN DEFLECTION BETWEEN THD SLADS, SMEAB EEFORMATION OF DOWELLAND ELASTIC DEFORMATION Of THE Concrete at THE NODES are -10 0-1006-02 0,6286-04 0;3006-03 13 00-10/5-01 -D,6384-03 00,506-02 16 -D,9256-01 00,3106-92 -0.

FOR JOINT NO. I SHEAR AND MDHENT IN DHE DDHEL BAR AT THE NODES ANE# 10 154.025 -2120.435 13 -12546.993 435412936 14 -7608.604 -1125447128

(Continued)

:

い そうけい あつみのの

-2732484.531 FOR JOINT NO. 1 BEARING STRESS OF CONCRETE AND SHEAR AND RENDING STRESSES OF DOVELS AT THE MORES ARE 10 550.135 784.444 -1731121200 13 16 -37055.425 430750.226 4513050.375

FOR JOINT NO. 2 SHEAR AND HOMENT AT THE NODES ARE# 1 -9511.472 -140603.307 4 -3891.604 -83734.604

192.695 -26447648 •

FOR JOINT MO. 2 DIFFEGENCE IN DEFLECTION BETWEEN THO SLAB\$,SMEAR EEFORMATION OF GOWELIAMD ELASTIC DEFORMATION of the concrete at the modes are 0 1 -0,525E-01 -0,3108-02 -0;247E-b1 4 =0,107E-01 -0,6345-03 -0:905E-02 7 9.106E402 0,628E-04 4

7 0.1066402 0.6286-04 0.5046-03

154,156 -21417894 FOR JOINT NO. 2 SHEAR AND MOHENT IN ONE DOHEL BAR AT THE NODES ARE 1 -7609.178 -112550.873 4 -1596.043 -33493.841

-2734191.125 FOR JOINT NO. 2 BEARIAG STRESS OF CONGRETE AND SHEAR AND RENDING STRESSES OF DOMELS AF JME ROPES ARE 1 -537058.220 +36953-147 = 941841797000 4 -79491.164 -798275903 7 550,769 -789.127 -1740327172

199.0-•• FOR JOINT NO. 3 SHEAR AND MOMENT AT THE NODES AREM 1 0.377 200985.942 2 11.415 238231.541

76667160

3 -8.4746404 -0.1856-87 -0.2886-06 FOR JOINT NO. 3 DIFFESENCE IN DEFLECTION BETHEEN TKO SLABS,SHEAB CEFORMATION OF DOWELTAND ELABTIC DEFORMATION of the concrete at the modes are t 1 0,210E-06 0,103E-07 0,996E-07 2 00,493E-06 -0,1724-07 -0,197E-06 3 -0.878E406 10,1958-07 40

-0.182 20801480 FOR JOINT NO. 3 SMEAR AND MDMENT IN ONE DAMEL WAN AT THE MODES AMER 1 0.101 55942,989 2 2 50,389 14429,589

106059.266 FOR JOINT NO, 3 BEARING SURESS OF CONGRETE AND SHEAR AND BENDING STRESSES OF DOWELS AT THE ROPES ARE 1 0.119 0.119 0.129 0.128 5.128 742547375 2 207267240 2 -0.230 7.0200 0.2240 3 -0.270 -0.231 207247244

21 FOR JOINT NO. 4 SWEAR AND MOMENT AT THE NODES ARE# 19 -0.049 -2305.900 20 0.751 29091.855

713837282 ċ

FOR JOINT NC. 4 DIFFERENCE IN DEFLECTION BETWEEN TWO SLABS,SMEAR EEFORMATION OF COMELIAND ELASTIC DEFORMATION of the concrete at the noder are 0 19 -0.270e-07 -0.122e-08 -0.128e-07 20 0.280E-06 0.1024-07 0.991E-07 21 0.

.

FOR JOINT NO. A SWEAR AND MORENT IN OME DUNE: BAR AT THE MODES ARES 19 -0.013 -642,497 20 0.100 3978;914 21

190457529 ċ

FOR JOINT NO, 4 BEARING SFRESS OF CONGRETE AND SHEAR AND RENDING STRESSES OF DONELS AT THE NOPES ARE 19 -0.019 -0.019 -0.019 -0.019 -0.019 -0.028 21 0, 0

39580.755 5064E-03 -0. 1/20E-03 -0. ROTAT.X 0.50646 DEFLEC. 4516-01 0,7681E-02 -0,1914E-02 0.245 10 N N 0 RCTAT.1 0.37636-01 -0.63706-03 ROTAT.8 DEFLEC.

0.1001E=01 0.2023E+04 0.2150E-03 0.2004E=01 0.2341E+03 0.5929E=07 0- 20-574655 XY #4,08 0.9821936 01 +8.1598096 03 0 0.02428-02 0.020465-02 -0.20445-03 0.3 0.0204565-02 -0.10995-03 -0.5 0.0195265-03 -0.140456-03 0.2 0.0195465-03 -0.140456-03 0.2 2 0.220456-02 -0.14055-03 0.2 2 0.280456-02 -0.14055-03 0.2 2 0.280456-03 0.2 2 0.280456-02 -0.14055-03 0.2 2 0.280456-03 0.2 2 0.280456-03 0.2 2 0.280456-03 0.2 2 0.280456-03 0.2 2 0.280456-03 0.2 2 0.280456-03 0.2 2 0.280456-03 0.2 2 0.280456-03 0.2 0 0.200456 0 0,101/6-04 0,1 0.101/6-04 0,2 0.20696-03 0,2 0.20696-03 0,1 0.20896-03 0,1 0.20896-03 0,2 0.40896-03 0,2 0.40896-03 0,2 0.40806-05 0,2 0.200 0,200 0,2 0.200 0,2 0.200 0,2 0.200 0,2 0.200 0,2 0.200 0,2 0.200 0,2 0.200 0,2 0.200 0,2 0000 0,2 0000 0,200 0,200 0,200 0,200 0,200 0,200 0,200 0,200 0,2 -0,19158-02 0,90828-02 0,84518-02 HANNNNNN
 0
 0.81446701
 0.2343670
 0.376567

 4
 0.2775567
 0.2262670
 0.437966403

 10
 -0.19756402
 0.2262670
 0.437966403

 110
 -0.19756402
 0.2343796403
 0.427796403

 120
 -0.19756401
 0.2345676
 0.477766403

 130
 0.81446401
 0.2345640
 0.477766403

 140
 -0.11006403
 0.2345640
 0.425476403

 12
 -0.110066103
 0.1226670
 0.22647640

 22
 -0.830765403
 0.1226670
 0.22647640

 23
 -0.830756403
 0.1226670
 0.22647640

 23
 -0.110066702
 0.22647670
 0.22647640

 23
 -0.112066702
 0.22647670
 0.22647640

 24
 -0.112066702
 0.22647670
 0.22647670

 23
 -0.112066702
 0.22647670
 0.22647670

 24
 -0.112066702
 0.22647670
 0.22647670

 24
 -0.122667670
 0.22647670
 0.22647670

 25
 -0.1206727

(Sheet 7 of 18)

REACTION 67245144E 01

SHEAR 0.128002E 0**8**

MINDR 0.961946E 02

LAYER STRESS X STRESS Y 1 0.9587635 02 40.1594966 02

NODE

(Continued)

Entry 12

NODE

9 2 045a	WES/1	R/GL-8	1-6-2				NL \	
				410				
					END DATE TILMED (1.8!	 		
					 1 5116			

2,

wei in the second se

.....

000000000000000000000000000000000000000	2000
""""""""""""""""""""""""""""""""""""""	****
	5866
10 0 1 A A A A A A A A A A A A A A A A A	
	5 0 0 0 0
마르트 전 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문	
00000000000000000	<i>.</i>
	800 000
	20 N
	110

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~
	200
53 6 54 6 54 6 54 6 54 6 54 6 54 6 54 6 54	5 N G
	•
N	202
	NNN 8874
000000000000000000000000000000000000000	1 1
	2000
	22.22
0 0 00 00 00 00 00 00 00 00 00 00 00 00	1100 1100 1100 1100 1100
	0.46 P
11 11 11	

(Sheet 8 of 18)

1

(Continued)

5

Item	4 8LADS		4		\$			Q	• •		c	•		9	.00000 .00000 11				15	36		21 21 22
	SFEK								2000							•••	1	ñ				
	NY.								0						000				i.			
	1								2						200			6				
	i i i								-									-	•			
	ê								2						552	50	33		2			
	ú								÷						***		000				2530	
	P.								No.						222		-	; ;			Q	
	7																				Ī	Ĕ
	1						N							Ξ	235		000		•		180	
	-						•	ŝ	22					9			~	ġ.	:			
	R.							-	100					Re		-		5	•		3	E
	2	2					•	• •	1.					20	888	38	80	÷.	2		EN1	
	5.	-							50					2				58			.28	
	-	20	PN	-1			• •		°°.	000	200	000	200	580		2		i a i	:	44 A * * *		
	3			~					NB	Š.	55	55	56	27 27			_	Ľ.		ZZ		
	1	P		-				•			22		-	10	000	8	00	2		224		
	~		n e			<u>.</u>	•		. 5	00		00		<u>چ</u>		ö	Ň	2.	-		٩	
		2							A D D	000	000	000	000	200			97	.	10	₹₹₽		51
1	201	-	•	•]		n n 00	0 9	~ ~ ~	202			0.0	00	-14 00			8		เย่	50 S		4
				-						0 Q	00	00	00	ź		ŝ		Ż		ŻŻŻ	:žž >∩∩	2
	3.	e 19 (2 22	n		200	-14							ST.				Ξ.	30		A A	840
	QNO		• -	_	në i	<u>.</u>			. e ž	<u>.</u>	_		_	8¥	000			¥.		žžj	E¥¥	¥8
	50		- 1 - 12	"			~ •		, e , e		00		00	Ľ,	.4 (4 (- 14 6	4 - 4	, Ť.	5			4.0
	-													-				-		~~ C		

(Sheet 9 of 18)

(Continued)

ŝ,

2.5

Ģ

ł

Ì

																0.1005-01 0.20000					
										7				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		PRSO					
										21				CU:ECU TS, il		ERARCE DOVEL					1
	130									* *				DAL P		0 PF					
	egge									N1 14				AN NO NO	on 4 g 0	5080 3 8A11					
	-									02 30				L NGY.		SBON 2					
	102	¢	0	•	-1					\$1a55				101 101	NE O C	87 1. 201					
	NHPD		_	_	-					11 DE				ū	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	FAC JOR					
	00	~	-	0	J					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	_	_	100	***** *****	TION I					
	- -	0	n	•	•	e	_	-		1 1 LAN	ہ در	0		5, LND.		RELAXA Doe Di					
9 • •	101					,5000(,5000(. 5000(12000	AL NO		-	-	IAT I CN		- ñ,					
STAST R	300	••	•	•	•	0	0	•	ø	vr voj	•	41		05 EQU	22522	L YHSE					
ALEN	-gng-					•	00	00	00	T EIN	-	•	•	2 2							
A 5 4 6 4	ĩ	9V0=	\$V 0*)k D 4	=0V0	1.000	1,080	1.080	1,000	VD LAS	~	-1	•	TOVA		VENPT-			80008		
NOON A	1084	ÿ	3	ĭ	ž					NN) AI	-	•7		AND G		Ŭ	100.	100	100		
	- QBON	•	••	n	17	\$.4.43	143	EF.	er re	1 1 1 1				100 CES C			00000	0000	0000		
ZERC		e A N	NYE	BAN	H Å N	BNCY I	ENCY 1	ENCY	ENCY	DAL N	1 1	AE 0	1 1 1 1	HATAL B	_	000	50		 		
	•	-	•	•	-	151 4 4 3	19194	121 73	131333	on the	× 181	1	ANR A	L, LCLD		991091					
	-41100	= XN	NX.	= XN	= X K	OINT I	I ANIO	OINT I	OINT I	START 16	65 Or 8	5	10 20 10	STAF			**	**	**	**	
	z	N -1	•	14 197	•	4	ר א	7 17	7 4	TTAL 30	NALU	AALU	אארח	OF AT	2	R SUBY	•	8 N	•	•	
TO 00	•	B NO.	20	B NO.	B NO.	NT ND.	NT NO.	NT ND.	NT ND.	0. 1N	0. AND	NN SO	O. ANI	D 014	40040	00 ULUI	8 KG.		B NO.	8 NO.	
	196.48-	R SLA	IN SLA	IR SLAT	R BLAL		IOC N	IOL M	IOT NO	N THI	N LNB	N THIC	S TN S	SAPUTE DAP. DI	A VER NDP= NDP= NDP= NDP= NDP= NDP= NDP= NDP=	N N N N	DR SLA	OR BLA	01 3 1 4	OR BLA	
ECOND	z	5	2	5	2	ĩ	2	2	2	4"	ų "	57	57	22	Ŧ	5	č	Ζ	ĭ	ŝ.	

(Sheet 10 of 18)

(Continued)

\$ 1

1

the second second second

1

12 12

.

5

	000	000	000							0	Ę		
500.	500	585	585							800	ans.		
	-	여연여									5		
81 C		5. S.C.											
		0 2 4 4 0 2 4 1 0 2 4 1								i	آھ ب		
	. N .		A LA				0000		8	5	Leen.		
									ĩ		ž		
	4 36						407		103	RAN	ŝ		
20	5 <u>8</u>	20	5 <u></u>			ARE				-			
Ē.	<u>.</u>	÷.			•2	T.				Ĩ	2		
Ξ `			=	2		876			3	ĝ	ė		
000	6 01	100	000	No.	-	3			2	5	z		
5 X	2.2				5				3	ii C	1		
5		11 11 11	11 H	- 		Š.		::	OAD.	CIE			
				×		THE STREET			د ب		-		
113	112	113	1.2		5			2	101	Ē	Ē		•
670	010	810	0.10	Ê		2		5	-	ž	ÿ		
			7 ,78	-	~	ă,	400	1		10			
530	- ×0	5 20	- 30 8 8	¥ eo		2.				7.4	SE N		
										9 X 2	Ē		ů.
					23	<u>n</u>				1	-		
% D	6	na		ð	2	AST	n 19 11 19			5	2		
				58	~	254		2		3	Ĩ		
					30	Ē.		i j		**	1		
•	•	•	•			ΞŇ		N V N					NC III
600 20		een 		877		NO T		1					
			100	I I	5	ж н	10 4 N 0 4 4 N 0 4	MEN		.	Š		NVE ES
*	20	- F - F		1		5"	2	£		. 10		111111 11111 11111 11111 11111 11111 1111	8
242	145	145				÷	1 H6	5	2	TON.		0000000	ž z
		1.08			1.	1		NCV		190	-	~~~~~	ž F
		0.05				N.	• • • • • • • • • • • • • • • • • • •	ClE	1	9.	6		5
F a a	1 0 L C	E SE			W.	Ē.	27 79 88	2	Â		M		10 L
ξĘ.	Ţ.			3		Ĩ	7	*	No.	i i i i i i i i i i i i i i i i i i i		5	u X
PRA!	A N	A N	A M	100	88		Ň,	ž	-		ŝ	Ū NA	Y N
2 G	4 4	8 L	× A	No X	24	Q		Ĩ.	Ī		F Z	I 00000000	I ON
SHE SHE	S E	÷,	10 10 10 10 10 10 10 10 10 10 10 10 10 1	8	1CH	Ž+	7	۲. ۲	×.		ų,		SE SE
n n	0 LU. 2	r .	1 1 1	1	3.	111	E THNP	. NG	۲, v	N D T	BE T	A 200 200	1
804	Q Q	Q Q	ON ON	-	۲,	2. o	2	ž	LOR	.110 FOR	5		۳ <u>ج</u>
¥.	INT	INT	'INT AL	3 H K	ŇŐ,		5	5	IN	. O	ie nc		. i
N 1.	5 N	2 10	25	8	34	2 -1 8	200000	DW	۲,		13.	••• ₩	* 5
	0	101	101	2	lon	1.2	N. C.	THE	101	00 C 93	DIF	39999999999 9 2	1 Q
										0 E	J.		

(Sheet 11 of 18)

(Continued)

5

16 -9,545E401 40.322E-02 -0.254E-01 FOR JOINT NO. 1 DIFFE**rence** in deflection between the **b**labs.Sheab deformation of doweltand elastic deformation of the concrete at the mo**der** are + 10 0.897e-03 0.5308-04 \$:4226-03 13 +0.8966+02 -0.8956-03 +0.4666=02 16 +**9.**845E#01 40.322E+02 -0 -9669.921 -703927580 **9** 10 - US\$7.998 44 4496 11969 -1325.371 162.460

-7895.937 -1125647128 POR JOINT ND. 1 SHEAR AND WOMENT IN OME DDHEL 6AR AT THE MODES ARE 10 129-968 -2120-629 13 -1445-191 4354725936 16

-2732484, 532 FOR JOINT NO. 1 BEARING STRESS OF CONGRETE AND SKEAB AND RENDING STRESSIS OF DOURLS AT THE MODES ARE 10 632.970 641.990 -17912?330 13 16 -38454.794 *40213.597 4918081375

101.656 -13827484 FOR JOINT ND, 2 SWEAR AND MOMBHT AT THE HIDES AREA 1 -9047.279 -70331.694 4 -3593.639 941647.302

7 9.4926403 0.5276-04 0.4206-03 FOR JOINT MO. 2 DIFFERENCE IN DEFLECTION BETWEEN THD SLABB,SMEAB DEFORMATION OF GOWELIAND ELABTIC DEFORMATION Of the concrete at the worder are = 1 =0.544E=01 =0.3216=02 =0;256E=01 = 4 =0.594E=02 =0;564R=01 =0;465E=02 7 0.482E=03 0.527E=04 6

120.325 -21817894 FOR JOINT ND, 2 SHEAR AND MONENT IN ONE DDHEL BAR AT THE NODES ARE 1 -7677.823 -112590.693 4 -1445.495 433.495 533495.941

=2736191.125 FOR JOINT NO. 2 BEARING STRESS OF CONGRETE AND SMEAR AND BENDING STRESGE OF DOWELS AT IME ROBES ARE 1 - 13306.3756 - 40121.430 - 40146.1701000 - 4 - 4500.5344 7 - 429.949 - 478.646 - 1700321772 458.646 629, 839

FOR JOINT NO. 3 SHEAR AND NOMENT AR THE NODES ARE# 1 66.416 104947.971 2 2 29.350 69.11.7780

36887040 -0.722 •

97

3 -8.689E404 -0.196E-87 -9.484E-04 FOR JOINT NO. 3 DIFFERENCE (Å DEFLEGTJON BETWEEN TKO BLAB\$,SHEAB DEFORMATION OF DÖMELTAND ELABTIC DEFORMATION Of the concrete at the nodee are " 1 0.325e-d4 0.144**6-d5 9.154**e-d4 z 0.1796e-d5 0.3796-05 0.3756-05 3 **-0.869E4**06 40.196E-g7 -6

-0.193 20407946 FOR JOINT NO. 3 SHEAR AND MGMENT IN ONE DOWEL BAR AT THE MODES ARES 1 16.112 55992.929 2 3.943 14429.666

188089.246 FOR JOINT MO, 3 BEARING STRESS OF COMBRETE AND SWRAR AND RENDIME STRESSES OF DOWELS AT THE MORES ARE 1 23:155 20-514 57224755 2 3 -0.277 -0.277 -0.295 2872444

FOR JOINT ND, 4 SHEAR AND NOMENT AT THE NODES ARE# 19 0.707 -1147.990 20 22.596 14545"927

35691;616 ÷ 31

.

FOR JOINT ND. 4 SHEAR AND MDHENT IN ONE DUNEL BAR AT THE WODES AKER 19 0.148 -642.987 20 20.346 3028.94 31

FOR JOINT NO. 4 BEARING STORES OF CONGRETE AND SHEAR AND BENDING STRESSES OF DOWELS AF IME NOBES ARE 0.271 0.271 0.241 0

(Sheet 12 of 18)

-0.0510E-05 0.1504E-04

0.1915E-03 0.1354E-03

0.84896+05 0.14896+03 0.59406+03

0.259356-02 0.99456-02 1.0.1946-02 1.0.59326-02 0.25098-01

** 333

0.55826-05

1 0-8696-01 4 0-19976-01 7 -0.19996-02 10 -0.19996-02 13 0.19996-02 14 0.8905-01 DEFLEC. 0.8896-01

10DE

いきしき いまくいき デロ

0,25496501

(Continued)

39500,795

190457529

ċ

0.1775E-03 0.1293E-04

FOR JOINT NO. 4 DIFFEGENCE IN DEFLECTION BETWEEN THO BLABS,SMEAR DEFORMATION OF DOWELTAND ELASTIC DEFORMATION Of the concrete at the worder are 9 19 0.300e-06 0.1924-07 5.181E-96 20 00.490E-06 -0.3934-07 -0.532E-06 21 9.

14 -9.941E401 40.319E-02 -0.254E-01 FOR JOINT NO. 1 DIFFERENCE IN DEFLECTION BETWEEN THE BLADS.SHEAB DEFORMATION OF DEWELEAMD ELAMTIC DEFORMATION of the concrete at the mo**dee** are = 10 0.0466-03 0.5108-04 9:4136-08 = 13 00,9006-02 -0;5026-03 =0.4446-02 = 14 -0.9441001 00.196-02 =0

16 -9791.775 -703927988

FOR JOINT NO. 1 SHEAR AND MOMENT AT THE NODES AREA 10 199.019 -1025.391 15 -3351.096 641641:149

NO. OF ITERATION CYCLE FOR CHECKING CONVERGENCE.

2

5

** 3

••••

0-7956 81 0-3426 81 0-1946 81

~~~

**NUMEN** ÷

SHEAR 0.1545 02 0.1545 02 0.1545 02 0.555 61

BOON ----

0.10046401 -0.59926404 0.34946401 -0.15856404

0.59408-82 -0.24028-03 -0.44428-04 -0.122428-13 -0.32954-04 -0.1228-04 -0.122428-13 -0.32996-09 -0.14228-04 -0.12246-03 -0.30998-05 0.14248-04

•••

----

29 -9.16515-02 0.589345-09 0.334955-01 29 -0.688954-03 0.53655-09 0.3147550 29 -0.68895403 0.53655-09 0.3147550 31 -0.10195-03 0.534754-09 0.134755-09 31 -0.10195-03 0.54755-09 70.439575-08 31 -0.10195-02 0.54775-09 70.439575-08

Table 9 (Continued)

THE DIFFERGNCES BETWEEN THO IFGEATIONS ARE TABULATED BELOW, THE LAST INTEGER BEING THE ITERATION NO. IS

FOR JOINT NO. 1 SWEAR AND MDHENT IN ONE DDMEL BAR AT THE HODGS AME# 10 127:214 -2140.439 13 -1420.494 534472:936 14 -933.420 -312944728

-2732484.53 FOR JOINT MD. 1 BEARING STRESS OF CONGRETE AND SWEAR AND BENDING STRESSES OF DONELS AF THE MODES ARE 10 619.945 647.992 -1731127230 13 14 -30150.329 -39899.282 09100001375 14

98

158,931 -13827484 • 70% UOINT NO. 2 SMEAR AND MEMENT AT THE NDDES AREA 1 -4780.347 -70331.684 4 - 15720.952 842847;302

7 9.877E+63 0.518E-04 0.413E-05 FOR JOINT MO, 2 DIFFERENCE IN DEFLECTION BETWBEN THO BLABS,SMEAB DEFORMATION OF DOWELZAMD ELASTIC DEFORMATION of the concrete at th<mark>e modes are 0</mark> 1 -0.540E-b1 -0.3196-d2 -61294E-01 4 40,904E-02 -0.9022E-02 7 0.6756-03 0.518E-04 0 4 80,9848.92 -0,5822-03 -0,4446-02

FOR UOINT NO. 2 SHEAR AND MDAGNT IN ONE DOWEL BAR AT THE MODES ANES 1 -7831.479 -112380.693 4 -1428.283 -33495.843

127.145 -21817894

-2739191.125 FOR JOINT MO. 2 BEARIAG STARSS OF COMBARIA AND BEADIAG STAESES OF DOWELS AF THE NODES ARE 1 - -38140.002 - -39965.317 - -9966.797000 - -0955.402 -9273.035 7 657.220 - 647.941 --1740323.172

140.0-7

FOR JOINT MO. 3 DIFFERENCE IN DEFLECTION DETWEEN THO SLADS,SHEAR GEFORMATION OF DOWELIAND ELARTIC DEFORMATION Of the concrets at THG Mo**des are .** 2 d.114e-09 d.5776-07 9:543e-06 2 d.0055e-06 0.4476-07 0.4426e-06 3 -0.228e407 00.1406E-09 -0

FOR JOINT NO. 3 BEANING STORS OF CONGRETS AND SMBAR AND BENDING STRESSES OF DOWELS AT THE NOPES ARE 1 0.613 2 0.023 0.623 0.623 272443244 9 0.023 0.023 0.023

207247244

120.01

FOR UDINT NO. 3 SWEAR AND MORENT IN ONE DOWEL BAR AT THE NODES ARES 1 0.547 55942.929 2 0.434 53942.928

of 18)

(Sheet 13

356911616

ċ

33

FOR JOINT MO. 4 SHEAR AND MOMENT AT THE MODES ARE 19 0.309 -1147.999 20 11.108 14545.927

(Continued)

288039.266

3 -9.226E407 -0.106E-98 -0.256E-07

39697090

-0.016 2030:976

FOR JOINT NO. 3 SHEAR AND MBMENT AT TAR NODES AREA 1 2-126 104947-991 2 3-289 6911790

ļ 1

 

| 1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.     1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.                |                                   | 39540,755                                    | R01A1.X<br>R01A1.X<br>R01A1.X<br>R01A1.X<br>R01A1.X<br>R01A2.2<br>R01A2466.4<br>R01A2466.4<br>R01A2466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A3466.4<br>R01A346 | 95         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 19. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .0                |                                   | 6 NOPES ARE<br>+0:166                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| 19. 1.1466-01     0.1406-07     20     0.1206-07     0.1406-07     0.1406-07     0.1406-07     0.1406-07       19. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21 9.             | 198457                            | IDHELS AF TH<br>0.212                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 -11256471 |
| 10       0.1466-06       0.1206-06       0.1206-06       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206       0.1206 </td <th>1-07 -0.1426-06</th> <td>: ARE#<br/>25 6.</td> <td>NG STHESSES OF 5</td> <td>ANTE - 02 - 02 - 02 - 02 - 02 - 02 - 02 - 0</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-07 -0.1426-06   | : ARE#<br>25 6.                   | NG STHESSES OF 5                             | ANTE - 02 - 02 - 02 - 02 - 02 - 02 - 02 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A0.2986-86 -0.191 | . BAN AT THE WODE!<br>46 JA787914 | D 54648 4ND 86401<br>-63947142<br>1942407088 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STRES BY<br>0.4425936 02<br>0.4425936 02<br>0.4425936 02<br>0.442593136 02<br>0.442593136 02<br>0.2219595 02<br>0.2219505 02<br>00                                                                                                                                                                                                                                                                                                                                    |              |
| 1     0.147     MO.     4     MAA     AND     M       1     0.082     0.082     0.082     0.082     0.082     0.082       1     0.082     0.082     0.092     0.092     0.092     0.092       1     0.082     0.092     0.092     0.092     0.092     0.092       1     0.082     0.092     0.092     0.092     0.092       1     0.092     0.092     0.092     0.092       1     0.092     0.092     0.092     0.092       1     0.092     0.092     0.092     0.092       1     0.1062     0.092     0.092     0.002       1     0.1062     0.1062     0.002     0.002       1     0.1062     0.1062     0.002     0.002       1     0.1062     0.1062     0.002     0.002       1     0.1062     0.002     0.002     0.002       1     0.1062     0.002     0.002     0.002       1     0.002     0.002     0.002     0.002       1     0.002     0.002     0.002     0.002       1     0.002     0.002     0.002     0.002       1     0.002     0.002     0.002 <th>6.789E-07 20</th> <td>DHENT IN ONE DOWEL</td> <td>255 05 CONSACTE A)<br/>0-189<br/>0-</td> <td></td> <td>STRESS<br/>STRESS<br/>STRESS<br/>C. 222605<br/>C. 22</td> <td></td> | 6.789E-07 20      | DHENT IN ONE DOWEL                | 255 05 CONSACTE A)<br>0-189<br>0-            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STRESS<br>STRESS<br>STRESS<br>C. 222605<br>C. 22 |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8466-66         | 4 SHEAR AND M<br>12 -682.987      | 4 8648780 5586<br>0.118<br>0.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STRESS X<br>STRESS X<br>CO.1105976 02<br>CO.1105976 02<br>CO.1105976 02<br>CO.1105976 02<br>CO.1105976 02<br>CO.1205976 02<br>CO.1205976 02<br>CO.1205976 02<br>CO.1205976 02<br>CO.1205976 02<br>CO.1205976 02<br>CO.1205976 02<br>CO.1205976 02<br>CO.1205976 02<br>CO.12176                                                                                                                | 1 -2180.639  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 0.166E-0       | FOR JOINT ND.<br>19 0.01          | FOR JOINT NO.<br>19<br>21                    | N006<br>1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NODE         Main           NODE         Main           Main         Main           Main <td>10 1011 NG.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 1011 NG.  |

99

(Sheet 14 of 18)

-2732484.531

1000

(Continued)

FOR JOINT NO. 1 BEARING SFORSS OF COMEPETE AND SWEAR AND RENDING 374E59ES OF DOWELS AT THE MODES ARE 10 610-909 445-216 -1731127230 13 -6954,946 -7273,044

a528888887375 186-62862--38135.748

2

+#+L88C1-196.811 • FOR JOINT NO. 2 SHEAP AND MBMBNT AT THE NOBES AREA 1 -9986.928 -70581.694 4 -13986.697 8426677362

FOR JOINT NO. 2 DIFFERENCE IN BEFLEFTION BETMEEN THO BLADE.SMEAE DEFORMATIOM OF GOMELEARD ELABTIC DEFORMATION of the concrete at the modee are + 1 -0.540E-01 -0.3198-02 =0;294E-03 = 4 +02405E-02 +0;444E+02 7 9,677E40E 0:310E+04 4

7 8.4776488 8.5186-84 8.4136-03

127,049 -218194 PDR JOINT NO, 2 SWEAR AND MARINT IN ONE DOWEL BAR AT THE MODES AREA 1 -7020:542 -112990:673 4 -1427.959 4334942.

-2734191.185 

34617040 -1.025 \* POR JOINT ND. 3 SHEAR AND ROMANT AT THE MEDES AREA 1 0.014 104947.411 2 1.467 49127.790

3 -9.2348497 40.4846-89 48.6446-08 TOR JOINT NO. 3 DIFFERENCE IN DEFLECTION BETWEER THE ULAB, SHEAB BEFORMATION OF DOWELTAND ELAPTIC DEFORMATION of the concress at the nodes are o 1 0.1726-04 0.0606-08 9.0106-67 2 0.4326-64 0.2165-07 0.2095-04 3 -0.23468-07 to.0046-69 40

-0.007 20807996 FOR JOINT NO. 2 SHEAR AND MEMENT IN ONE DEMEL BAR AT THE MODES AND 1 0.055 53942.939 2 0.314 19420.949 2 14049.246

FOR JOINT MG. X BEARIAG STABSS OF CONSARTE AND SMBAB AND BENDING STAESSUS OF DOUBLS AN MOJES AND 1 9:422 0:540 532343379 2 0:450 5323333 5 -0.540 -6:059 207243244

FOR LOLN' NO. 4 SHEAR AND **MORE**N' AT TR**e Modes Arga** 10 0-100 -1197**-99** 20 00-40-422 14951927

354912985 ÷ 1

rok joint mo, a difference in deflection getmeen the blade.shead deformation of dowelland elartic deformation of the concerts at the moders are a so defeast giagegere fiator-of 20 delarte-de -d.aa46-of -d.a465-of 21 0.

196538941 ÷ FOR LOINT NO. 4 BUEAR AND NGRENT IN OUR DENEL BAR AT THE WODES AND 10 0.044 -682.927 20 10.045 3026304 21

39590.735 POR JOINT MD. 4 BEARIA**G SPORGS** OF COMERGIA AND SMEAR AND RENDINA ATAESGES OF DOMBLE AT THE ROPES ARE 10 0.050 0.050 0.050 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0 21 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.050 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.0

-0.233684 ..... -62 -0.00045-04 -----

BOOM

-----

0.22436-03 0.19966-93

2 7 2 8646710N 072403306 01 016414036-01 016414036-01 015480326 00

0.1853166 08 0.1854356-03 0.4894876 02

NINGH 08 1.29330FE 01

0.483308E 02

•6.3698286 92

(Continued)

(Sheet 16 of 18)

(Continued)

FOR JOINT ND. 2 BEARING STABSS OF CONEMETE AND SHEAR AND RENDING STRESSES OF DOMELS AT THE RODES AND

ō

õ

16 -8.\$\$46401 40.3288-82 40.2416-81 FOR JOINT NO. 1 DIFFEBENCE in DEFLEETION BETWEEN THO BLADS.SMEAR DEFORMATION OF DOWELLAND ELASTIC DEFORMATION of the concarte at twe nodes are = 10 0.661e-03 0.4000-04 0.3856-03 13 44,0976-02 -0,5296-03 0.44226-02 16 -0.5946401 40,3286-02 40 FOR JOINT NO. 1 SHEAR AND MOMENT IN ORE DOMEL BAR AT THE NODES ARG 10 100.178 0. 13 -1299.269 0. 14 -06<sup>5</sup>2.007

Moment equal = zero because of zero percent moment transfer

10 -100<sup>66,009</sup>

•

2

5

NO. OF ITERATION CYCLE FOR CHECKING CONVERGENCE JOINT NO. 1 SHEAR AND MOMGNT AT THE NODES ARGA 125.223 0. 13 -3240.220

53

0.1996 82 0.2926 82 0.1596 82 0.1596 82 0.5926 81 0.5926 81 0.1996 81

101

Zero percent moment transfer

HULTIPLYING FACTOR FOR EFFICIENCE OF MOMENT TRANSFERICH=

THE DIFFERENCES BERREEN THO IFERATIONS ARE TABULATED BELOW, THE LASI INTEGER BEING THE ITERATION NO. IS

HOMENT

SHEAR

NODE

2 (Second

CASE NO. FOR NOMENT TRASFERAKMT=

8848

596995

0.1040100

-0-4210715 02 -0+076455 02 -0+1103295 03

•0.2566700 02 •2566400 02 •0.1147160 03

\*\*\*

0.240904E

20

40.983282E

532706

138458E 01

Â

A LAND AND A

Table 9 (Continued)

0.4951376 0.1049096 0.1049096

.476895E

-0-921151E 02 -94607969E 02

+0.2194446 02 +0.1847746 02

6. 0.2526738 03 0.247188 03 0.2569798 02 0.2549228 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02 0.1199268 02

#0.1048896 08

12625494 13045

40.4434056 02 40.2845296 02

FOR JOINT NO. 1 BEARIAG STGESS OF CONBRETE AND SHEAR AND BENDING ATRESSES OF DOHELS AT THE ROPES ARE 10 447.447 14 -391.471 441612.934 01 14 -391.4.741 441612.934 01

.

708 LOLMT NO. 2 SHEAR AND MEMENT AT THE NDDES ARES 1 -10065.668 0. 4 -5249.679

125.135 • **`** 

ő

100.108 POR JOINT NO. 2 SWEAR AND MOMENT IN ONE DOWEL BAR AT THE MODES BREA 1 -6050.934 0. 4 -1299.090 0.

7 9.6918-03 0.4086-04 0.3286-03 *for joint no. 2 diffebence in deflection between the slabs,*sheab deformation of domeliand elastic deformation of the concrete at th**e nodes** are -1 -0,536e-01 -0.32**69**-02 -0:241<u>6-01</u> 4 -0.**8066-**02 -0:3295-03 -0:4226-02 7 9.6918-03 0.400**6-0**4 0

MODE 50.10016-04 50.179026-05 50.179026-05 50.179026-05 50.179026-05 50.179026-05 50.179026-05 50.179026-05 50.179026-05 50.179026-05 50.179026-05 50.179026-05 50.179026-05 50.12026-05 50.52396-04 50.12726-05 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 50.52396-04 -019469986-01 014830986-01 01028366-01 01028366-01 -019295676-01 -019075976-01 58858 -07160063E 3 -0.267E007 +0.1358-08 -0.127E+07 • . • ċ FOR JOINT NO. 3 DIFFERENCE IN DEFLECTION BETWEEN THO BLADS,SHEAB DEFORMATION OF DOWELIAMD ELASTIC DEFORMATION of the concrete at the wo**dee** are 4 1 0.1236**-95** 0.6198-07 0.5628-06 2 0.8346-36 0.4318-07 0.4065-06 3 -9.2676-07 40.1358-08 40 FOR JOINT MO. 4 DIFFERENCE IN DEFLECTION RETWEEN THO SLABSISHEAB DEFORMATION OF DOWELIAMD ELASTIC DEFORMATION of the concrete at the wo**des** are • 39 0.170**6-04 0.9408-03 9.8098-**07 20 40.3256-04 -8.1048-07 -0.1346-04 21 9. 0. SHEAR 0.183674E 03 419754E 02 4448846 3 2010 0.2294516 0.1520765 0.4197635 .239429E 36475436 17027 FOR JOINT MO. 8 BEARING SPAGES OF CONGRETE AND SHEAR AND BENDING STRESGES OF DOWELS AV THE MODES AND 1 0:073 0:1733 0:1723 0:1723 0: 2 -0:019 0:004 0:017 0: JOINT MO, 4 **gearing stress** of con**erets** and smear and gending stresses of dowels at the Ropes are 0.121 0.121 0.128 0.188 0.1 0: 0: -86161095 0.3075546 02 0.4408776 01 0.223749E 02 -0.218944E 02 20 -0.219034E 01 50 5 6 6 0.142998E 5 HENON H MODE DEFLEC. MD147.X M0141.Y 2 0,225598-01 0.44124-03 -0.2896-03 4 0,22128-02 0.13245-09 -0.9156-09 14 0.22128-02 0.13245-09 -0.9156-09 14 0.22128-02 0.12245-09 0.9156-09 27 0,225958-03 0.12456-09 0.129686-01 28 0,44968-03 -0.2496-04 -0.129686-04 29 0,44928-05 -0.29918-09 0.129686-04 29 0,44928-05 -0.29918-09 0.129686-04 29 0,44928-05 -0.29918-09 0.129686-04 29 0,44928-05 -0.29918-09 0.129686-04 29 0,44928-05 -0.29918-09 0.129686-04 29 0,44928-05 -0.29918-09 0.129686-04 29 0,44928-05 -0.29918-04 0.129686-04 29 0,44928-05 -0.29918-04 0.129686-04 29 0,44928-05 -0.29918-04 0.129586-04 29 0,44928-05 -0.29918-04 0.129586-04 29 0,44928-05 -0.29918-04 0.129586-04 29 0,44928-05 -0.29918-04 0.129586-04 29 0,44928-05 -0.29918-04 0.129586-04 29 0,44928-05 -0.29918-04 0.129586-04 29 0,44928-05 -0.29918-04 0.129586-04 29 0,44928-04 0.129586-04 29 0,44928-04 0.129586-04 20 0,44928-04 0.129586-04 20 0,44928-04 0.129586-04 20 0,44928-04 0.129586-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,44928-04 20 0,4498-04 20 0,4498-04 20 0,4498-04 20 0,4498-04 20 0,4498-04 20 0,4498-04 20 0,4498-04 20 0,4498-04 20 0,4498-04 20 0,4498-04 20 0,4498-04 20 -6326.730 -0.013 -0.090 ċ ò HAJOR -0:176995E 03 51 173 FOR JOINT NO. 3 SWEAR AND MOMENT IN OME DOMEL BAR AT THE NODES ARE 1 0.667 0. 2 0.423 0. 3 JOINT ND. 4 SMEAR AND MAMENT IN OME DOMEL BAR AT THE NODES AMEN 9.044 D. 20 20.141 D. 20 20.241 D. 21 • 40.73696AE 02 40.381828E 02 57RES\$ \$Y 0,736945E 02 0.412037E 02 0.474579E 02 0.412842E 02 0.182766E 02 0.364109E 02 • 6 66 JOINT NO. 4 SWEAR AND MOMBNT AT THE NODES AREA 0.317 0. 31 0. FOR JOINT NO. 3 SMEAR AND MOMENT AT THE NDDES AREA 1 2.297 0. 2 3.294 40.145441E 01 40.999318E 02 1.458858E 01 -0.345749E 02 +0.299538E 02 STREGS Y -0.145842E DE -0.345778E 02 33  $\begin{array}{c} \text{NODE} & \text{DEFLEC}, \\ \text{DEPLEC}, \\ \text{AD}, 19226-01 \\ \text{AD}, 19226-01 \\ \text{AD}, 19226-01 \\ \text{AD}, 19226-01 \\ \text{AD}, 19226-02 \\ \text{AD}, 19226-03 \\ \text{AD}, 19266-03 \\ \text{AD}$ -0.206555E +41002-989 509-847 -0.181036 00 -0.5175646 02 -0.6081526 01 8 N N -0.5740596 F8.107796 STREAS X -39209.641 LAYER NODE 0646404610008446 5 **-**1 Ë, 532 10DE

(Sheet 17 of 18)

(Continued)
Table 9 (Concluded)

A DESCRIPTION OF A DESC

1

ć

7

-07946768E-01 07483020E-01 07182814E 01 07399099E 00 0.2465146 00 0.1477956 02 0.4473396 02 0.5835476 02 0.1427776 01 0.1432926 02 0.14404646 01 -0.9730326 00 -0.3813136 02 -0.9413676 02 -0.9413676 02 -0.9413676 02 0. 1.182713E 02 0.363991E 02 0.381736E 02 •0.254271E 02 •0.398941E 02 -0.7730386 08 -6.1077686 08 -0.6480768 03 -0.6480768 03 0. ---------

(Sheet 18 of 18)

ğ

1

1

exists at the junction of four slabs. In Figure 9, both nodes 16 and 21 impose a deflection to node 36. A question then immediately arises as to which node, 16 or 21, should be used. To facilitate the analysis, it is assumed that the node having a smaller nodal number should be used. In this case, only node 16 can impose a deflection on node 36, while node 21 is not connected to node 36. This is shown in Figure 9 where slabs 3 and 4 are not connected at the junction. The omission of shear transfer between nodes 21 and 36 yields greater stresses and displacements in the pavement and is therefore on the safe side.

68. Another problem exists at node 16 because a deflection is imposed from node 1 and at the same time a reactive force from node 36 (due to the deflection of slab 4). Because the deflection is fixed at node 16, the imposed reactive force actually has no effect on the solution. Since node 16 and node 1 are connected by a dowel bar, the reactive force at node 36 is not imposed to node 16 but is transferred to node 1, or the first node on joint 3.

69. The output information in Entry 3 explains how the shear forces are transferred across the joints. Before going into detail, the definitions of IST, NJT, and NKT are explained as follows:



Figure 9. Shear transfer at the junction of four slabs

- <u>a</u>. IST is an identification for shear transfer at corners of the slabs. It is two-dimensional in the program as IST(NJOINT,i), where i = 1 and 2. The left or bottom node on the given joint is indicated by setting i = 1 and the right or top node by setting i = 2. An IST of 0 indicates that there is no shear transfer at the node across the joint; 1 indicates that there is a regular shear transfer, and 2 indicates that the shear force at node NKT of joint NJT must be transferred here.
- b. NJT is the joint number from which shear is transferred. NJT is also two-dimensional in the program as NJT(NJOINT,i), where i = 1,2. The meaning of the indexes is the same as in IST. The program will print 0 if IST(NJOINT,i) = 0 or 1.
- <u>c</u>. NKT is the nodal number of joint NJT from which shear is transferred. It should be noted that the nodal number here is defined differently from those shown in Figure 1. Node 1 is the node either at far left or at the very bottom, then counting from left to right or from bottom to top. NKT is also two-dimensional in the program similar to NJT(NJOINT,i) . Also, the program will print 0 if IST(JOINT,i) = 0 or 1.

70. In Entry 3, two values of IST, NJT, and NKT are printed for each joint. The first number refers to the node either at the left or at the bottom of the joint; the second number refers to the node either at the right or at the top of the joint.

71. Referring to Figure 2, the shear transfer at two end nodes of joint 1 is regular, so the values of IST are both printed as 1 and consequently the values of NJT and NKT are all zeros. The shear transfer at the bottom node of joint 3 is more complicated. At node 16, it is not necessary to impose a reactive force from node 36 because a deflection is imposed from node 1 so that the force at node 36 of joint 1 is directly transferred to node 1. Note that node 36 is the third node (counting from the left) at joint 1; the values of IST , NJT , and NKT at the lower end of joint 3 are thus 2, 1, and 3, respectively. This means that the shear force at node 36 of joint 1 is transferred to the node at the lower end of joint 3.

72. The information printed out in Entry 3 is quite involved and is difficult to understand. Fortunately, complete appreciation of

į

Stand of the stand

Entry 3 by the user is not required because such an understanding is not a prerequisite to the use of other output data. Entry  $\frac{1}{4}$ 

73. Entry 4 prints out the computed dimensions of matrices and other information. Note that the computed values are less than those declared.

# Entry 5

74. Initial curlings and gaps are deformations due to temperature and gaps. Initial curlings are computed solely based on the temperature differential, and the concrete weight and subgrade reactive forces are not considered. Since temperature and gaps are not considered in the example problem, the values printed out in Entry 5 are all zeros. Note that when temperature is considered, the initial curling of the slabs should be symmetrical, provided that the thicknesses of the slabs are uniform and the finite element grid patterns are not far off from being symmetrical. When the user is skeptical about the computed stresses and deflections, the output shown in Entry 5 should first be checked.

#### Entry 6

75. Because of the method used in specifying the uniformly applied load, a small difference may exist between the actual load and the input (or calculated) load. The printout in Entry 6 is presented for visual inspection. In the program, the operation will be terminated for the particular run when the difference between the actual and the calculated load exceeds 3 percent.

#### Entry 7

76. The variable ICC in the program refers to the number of iteration cycle for checking the subgrade contact. In this example computer output NCYCLE = 1, so ICC is limited to 1. Entry 8

77. The differences between the two iterations are generally decreasing, indicating the solution is converging. The iteration continues until the ratio of the difference in values becomes smaller than the specified DEL or DELF.

#### Entry 9

78. The variable 10 in the program refers to the number of iteration cycles for checking the convergence of shear forces for a given subgrade contact condition.

# Entry 10

79. The values printed out in Entry 10 are self-explanatory. Negative shear force indicates that the force is acting upward. The sign convention for moment is shown in Figure 1 of Report 1 of this series. The definition of difference in deflection  $\Lambda$  is expressed in Equation 17 of Report 1 of this series. It is seen that the magnitude of elastic deformation of the concrete is much greater than that of the shear deformation of the dowel bar.

# Entry 11

80. The displacements and stresses are printed when the convergence requirements are met. Positive stress indicates that the slab has compression at the top and tension at the bottom and negative stress indicates the opposite. The symbols of stress XY, major, minor, shear, and reaction stand for shear stress, major principal stress, minor principal stress, maximum shear stress, and subgrade reactive stress, respectively. The subgrade reactive stress is computed as the product of modulus of subgrade reaction k (pci) and slab deflection (in.), so it has a unit of psi. To obtain the total reactive force acting at the node, the subgrade reactive stress should be multiplied by the affected area.

# Entry 1.

81. The stresses and displacements are computed for one more iteration for inspection of convergence by the user. When the solution correctly converges, the differences in the computed results between two iterations should be insignificant. Otherwise, the solution is not convergent.

# Computer Output 2

82. Table 10 shows the Computer Output 2 printout for an example

Table 10. Computer Output 2 Printout

SNUM4 = R0752, ACTIVITY # = 02, REPCRT COVE = 04, RECORD COUNT = 930260

3 0.50000 \$ 7 22 -0141 618,- 166960ļ 1 - 1.0000 1.0060 - 1.0040 20.0000 1 - 1.0000 1.0060 - 1.0040 1.0060 20.0000 BLANK GAR 90 0f NU SURGHARE COLIFICIANT 9 87 28 1 8 15 22 29 36 43 1 7 9 87 28 0 1 1.000 2 0.000 0.000 0.000 0.000 2 1.00000 2 0.40000 2 0.40000 0 0.40000 0 0.40000 0 0.4000 0 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.400 2 1 BLANK CARD NREAD NOT 3 BLANK NEWE NO -1

(Continued)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LDa 136<br>IT ARE                            |                               | A A A A A A A A A A A A A A A A A A A | OF NODAL PTS LWP 4 | MAND'S MA | See Thurstands Pele A.1              | 43 2107 J MA                          |                                  |                         | lini Jafe                  | <b>1000-10</b> 11 1000-10                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------|---------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|----------------------------------|-------------------------|----------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2 208                                      |                               |                                       | COPP. BINEN.       | NETONE .<br>NLOND .<br>NBCK .<br>NAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tek RF10 1.2                         | 56.9668                               | ytu) AS SHOWNS                   |                         | ENT NUMBERILAS             | 0440 <b>66 - 5</b> 7                       | 13500 7<br>2110 15<br>01119 15<br>01419 25<br>01408 25<br>14194 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .48   1   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44   14.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 WW                                         |                               |                                       | 147                | 8 8 8 8 8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATTON FAC                            | 20.00000<br>20.00000                  | 1 INTENSI                        |                         | 7<br>LAST ELEM             | 5.<br>5.                                   | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AB GAP LUD THANGTAURE CANSIDERES OF CACARTE PAVENENTS<br>AB 1 JULINIE ELETENT JANLUSSIS OF CACARTE LAST FINAL NODAL<br>11 NO. AND VALUES OF NUT AT<br>NT NO. AND VALUES OF NUT AT<br>NO 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LCLD# 50<br>0<br>No. (Lfh                    |                               |                                       | 10NS,LN05          | NCYCL<br>NCYCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NTUN<br>RELAX<br>6.3005 0            | 0.00000 1<br>90.00000 1<br>90.10000 1 | - YLA) ANS<br>1.0000             | 4 <sup>1</sup> 4        | 5 .6<br>INP., AND          | 1005.J                                     | 4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4050<br>4000<br>4000<br>4000<br>4000<br>4000<br>4000<br>4000<br>4000<br>4000<br>4000<br>4000 |
| ALE GAP AND TENTURE CONSIDEREC OF CARCARTE PAR<br>FINITE ELEMENT ANLESTS OF CONCORP. 2000 - 4000<br>SLAB NO. 1 NITA - 1 - 10000 - 4000<br>NT NO. AND VALUES OF NUT ARE<br>NT NO. AND VALUES OF NUT ARE<br>NOT NOT NATIONAL AND VALUES OF NUT ARE<br>NOT NOT NATIONAL AND VALUES OF NUT ARE<br>NOT NOT AND VALUES OF NUT ARE<br>NOT NOT AND VALUES OF NUT ARE<br>NOT NOT NATIONAL AND VALUES OF NUT ARE<br>NOT NOT AND VALUES OF NUT ARE<br>NOT NUT ARE AND VALUES ARE TREULARE A COLOOD<br>NOT AND VALUES AND VALUES ARE TREULARE A COLOOD<br>NOT AND NOT ANTITAL AND VALUES AND VALUES A COLOOD<br>NOT AND VALUES AND VALUES ARE TREULARE A COLOOD<br>NOT AND VALUES AND VALUES AND VALUES A COLOOD<br>NOT AND VALUES AND VALUES A COLOOD VALUES A COLOOD<br>NOT AND VALUES AND VALUES A COLOOD V                                                         | FEMENTS<br>28 503<br>8<br>FINAL NODAL        |                               | i                                     | 3969<br>NO OF EQUA | NGAP<br>16X4<br>16X4<br>16X0<br>1<br>1<br>6<br>0<br>1<br>1<br>6<br>1<br>1<br>7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 11 PR+ 0<br>45,00000<br>00461 7456 | 40.60030 4<br>40.60030                | P0155504 9<br>144765(XDA<br>0000 | 25 53<br>11 22 23       |                            |                                            | 03375 5<br>07608 15<br>14344 21<br>24469 27<br>24469 27<br>24469 27<br>24469 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ACRETE PAV<br>DB                             |                               |                                       | C. LNCBT           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 5-130H                            | 38,0000                               | -0-090<br>MITH CCORD<br>-1.0     |                         | 457 666AL                  | ATEC AS FC                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AUN GAP AND TENTURE COASTO<br>SLAB NO. 1 HITE ELEVENT ANE<br>SLAB NO. 1 HITE ELEVENT ANE<br>NT NO. AND VALUES OF NJT AF<br>NT NO. AND VALUES OF NJT AF<br>NJ NJ NJ NJ VALUES OF NJT AF<br>NJ NJ N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LAGEGC OF CI                                 |                               |                                       | HICES C AN         | NOTCON"<br>ATEMPE<br>NGXe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1001                                 | 10.00000<br>1 <b>0.00000</b>          | 1 NC . (NL)                      | PRINT60                 | , A OC SYS                 | ARE TAEUL                                  | 0.105469<br>0.05469<br>0.03469<br>0.105499<br>0.10699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AUS GAP 411 TENTEE A<br>AUST 1 111 TENTEE A<br>SLAB MG. 1 0 NXB<br>SLAB MG. 1 0 NXB<br>NT MG. AND VALUES O<br>NT MG. AND VALUES O<br>NT NO. AND VALUES O<br>NUMBER O<br>NUMBER O<br>AUTED DIATN. UF STRIK<br>AUTED DIATNO. STARFILLE<br>AUTED DIATNO. STAR | TURE CUNSIC<br>LEMENT ANAL                   | 167 446                       | F NUT ARE                             | FINESS HATE        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100,0000                             | • •                                   | THICKAL                          | 79 29 26<br>29 26<br>29 | 21 X-X 15                  | TITAL GAFS                                 | 801 140 ANE<br>80194 3<br>42958 11<br>84228 19<br>1998 19<br>21098 19<br>21098 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AUN GAP 5'<br>AUN GAP 5'<br>SLAB 40'<br>SLAB 40'<br>NT 40' AN'<br>O' 1''<br>NT 40' AN'<br>A' 1''<br>A' 1''<br>A' 1'''<br>A' 1'''<br>A' 1''''<br>A' 1''''<br>A' 1''''''''''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 TEM ERA<br>FINITE EL<br>NJGJHT<br>1 8 NX8 | ALUES OF                      | NALUES OF                             | DE HATRIX          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sugnative                            | н Х.<br>К.                            | 0, 1<br>PPLIED 01-<br>-1.0       | T 441CH S1              | staneteleal<br>staneteleal | 9 56 10<br>6 56 10<br>683 4ND 12<br>80 128 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 488 648 51<br>                             | HT NO. 141<br>0<br>NT NO. AND | INT NO. AN                            | NPUTED DIM         | AYERE 1<br>INDEE 1<br>UMTE 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NGCK= 0<br>NG [20 BODUL"             | DH SLAB NO.                           | ON LAYER N                       | 2<br>1084L NG. A        | 10041 NO. 5                | SLAR NG                                    | 100111 05<br>2400111 05<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.931800<br>0.9318000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

49 0.42184

4

THE AULTIPLYING FACTOR FOR EFFICIENCY OF MOMENT TRANSFER. CM . IS

20805.40

There & Total Unirgealy APPLIED LOAD INPLTE

20000.

TOTAL LOAD GALONLATOP.

| NODE<br>A     |                        |            | +                                                                                           |              | ;     |            |        |             |          |                                         |          |           |          |          |                |
|---------------|------------------------|------------|---------------------------------------------------------------------------------------------|--------------|-------|------------|--------|-------------|----------|-----------------------------------------|----------|-----------|----------|----------|----------------|
| NODE          | NO. FOR H              | ONENT TRAS | FER. #1                                                                                     | N1• 5        |       |            | ź      | LVING P     | ACTOR FL | N EFFIC                                 |          |           |          |          | -              |
| ,             | DEFLES.                | ROIAL      |                                                                                             | - 401AT-Y -  | MORE. | BEFLEC     |        | RDTAT.X     | . Roll   | 1                                       |          | Deltas    |          | 111.1    | L. D. L. L. L. |
| •             | 0.22326 70             | 0.1495E=   |                                                                                             | 17676-14     |       | 0.2218E 6  | ġ      | 2050E-03    | -0.44145 | •                                       |          | .21296 0  | 0.97     | - 28-326 | 4.4565E-14     |
| 4 ~ 4         | 0.1947E 10             | 0.5219E-   | 2- 20                                                                                       | .17965-14    |       | C. 1848E C |        | 1396E-03    | 0.75716  |                                         |          | .1459E 0  | 0 -0.252 | 276-03   | 0.19906-14     |
| ~             | 0.1918E 00             | -9-5596-   |                                                                                             |              |       |            |        | 37946-14    | -0.44376 | 1                                       |          | - Seet    |          |          |                |
| 10            | 0.2110E 70             | 0.5533E-   | 2.0                                                                                         | 20106-03     | 1     | 0.1944E D  | 0      | 5028E-03    | -0.69735 | -0-                                     | 12       |           |          |          |                |
| 13            | 0.10566 96             | -0.1594E-  | 03 0.                                                                                       | · 6 85 0E-04 | 2     | 0.1923E 0  | 9      | 23146-03    | 34294.0  | -03                                     | -        | I BEZER.  |          | 536-14 · |                |
| 9             | 0.21056 10             | 9-1505E-0  | i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i | .41135-63    | Ċ,    | 6,2048E G  | •      | 39246-03    | -0.44156 | 1                                       |          |           |          |          |                |
| 19            | 3.1857E ^0             | 0.44996+   | •                                                                                           | . 67625-04   | 20    | 0.1886E 0  |        | 2047E-03    | 0.20536  | -03                                     | 21 0     | . 19648 0 | 142-0-01 | 206-03   | 20-32562.0     |
| 22            | 3.1927E 10             | 0-1123F-   | 2                                                                                           | 52C4E-03     | 201   | U-1924E U  | ė<br>p | 48756-04    | -0.50456 | 5-03                                    | 2        |           |          | 416-03 - |                |
| 2             | 0.1075 30              | 8.45.96    |                                                                                             | 19-36-94     |       | 0.2006E    | Ť      | 57424-03    | - 2054   |                                         | 2        |           | JIII     |          |                |
| 2             | 0.20V2E 00             | -0,3072E-  |                                                                                             | 10-30C+c'    |       | 9-7828E 0  | ē      | 1044E-14    | 19623.0- |                                         |          |           |          |          |                |
| 11            | 0.1041E 30             | -0-17436-  |                                                                                             | 49485-94     |       | 8-1999E 0  | ē<br>9 | 2343E-03    | D-1967   |                                         | 2        |           | Ĩ        |          |                |
| \$2           | 0. 32235 0             | -912224    | 2                                                                                           |              | 53    |            |        |             | 1/949-0  |                                         |          |           |          |          |                |
| 4             | D.2118E 10             | -0.57805-  |                                                                                             | -453F-03     | 5     | 0.2304E 0  |        | 64596-03    | 19609-0  |                                         |          | 21001     |          | 526-03   | A.73396-03     |
| 7             | 0.19965 10             | -9-13106-  | ļ                                                                                           | r22306-03-   | +     | 6.10046 B  | 1      | 40746-03    | - 3294E  |                                         |          |           |          |          |                |
| 46            | 0.2077E 00             | -9.55686-  |                                                                                             | , 38036-93   | 2     | 1.2272E 0  | 7      | 71536-03    | 9.51925  |                                         | <b>1</b> | I Heater  |          |          |                |
| 4             | 0.27175 70             |            |                                                                                             | , 72066-43   | •     |            |        |             |          | i                                       | ļ        |           |          |          |                |
| ž.            | GAP OR PAE             | COMPRESSIC | 20 A                                                                                        | THE NODES    | S     |            | 4      |             | •        |                                         | •        |           |          |          |                |
| - <b>1</b> 0- | 1.96156                | 0 0.2779   |                                                                                             | 1 -0.1997    | -     | 10.10800   | 1      |             | 2        | 0.0097                                  | 3        |           |          | 4.2011   |                |
| 51            | 1-21206 1              | 6 ×0.1497  |                                                                                             | 9-0-10101    | 8     | 10-04919   | 2      | 0.02302     | 2        | 14991.0                                 | 2        | 461-0a    | 2        |          |                |
| 77<br>05      | 1.12025 2<br>1.04653 3 | 0- 001 - + |                                                                                             | 50,0567      |       | - 010000   | t G    | -0.15.040.0 |          | 10001-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 | \$\$     | 027       |          |          |                |
|               | 1.03961 4              | 2 0.0959   |                                                                                             | 3 0.0211     | •     | 0.02152    | \$     | 6.02484     |          | 0.03694                                 | \$       | 9659 . 0  | -        | 0.0964   |                |

Tay an 5 TRANSFER, CH NONENT 5 HULTIPLYING FACTOR FOR EFFICIENCE 222 111 1124 BALLY T NU; OF ITERATION CYCLE FOR CHEORING CONTARTICS ..... 22.2222 RCTAT. CASE NO. FOR MOMENT TRASFER. +M1+ 0 7 4 6 N S 8 7 4 L 0 ĕ

Biti 8

(Sheet 3 of 5)

(Continued)

í

| 22E  | 50 -C.35926-<br>76 -6.33786-<br>36 -0.42856- | 15 C.3967E-03<br>03 C.4064E-03<br>03 C.4204E-03 | 44                       | .1547E 00<br>1.1769E 00 | -0.6666-0    | . 0.3972<br>3 0.4102 | E-03         |       | 1573E 08<br>1894E 06 | -0.1947E-03<br>-0.424 <b>8</b> E-03                                                                             | 0.40636-03<br>0.41706-03 |
|------|----------------------------------------------|-------------------------------------------------|--------------------------|-------------------------|--------------|----------------------|--------------|-------|----------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|
| 80   | RECOMPRESSIO                                 | N OF THE NCDES 18                               |                          | :                       |              |                      | ,<br>,       | ļ     |                      |                                                                                                                 | 1                        |
| ÷.   | 2 0.4737                                     | 2 3 0,39294                                     | <b>4</b> 1<br><b>€</b> [ | 616616                  | 5 -0.055     | •                    | -0.00786     | -     | 0.05900              | 1 0.672                                                                                                         | 2                        |
| 20   |                                              |                                                 |                          | ZERCHT                  | 10-002       |                      |              | ļ     |                      |                                                                                                                 |                          |
| 5    |                                              | 14461                                           | 2                        | 0.00225                 | 21 0.061     | 22                   | -0.09125     |       | *0.04048             | 24 -0.084                                                                                                       | 2.5                      |
| 2    |                                              |                                                 |                          | 0.0/000                 | 27 -0.075.   |                      | -0-100 -0-   | 10    | 24450 · D.           |                                                                                                                 |                          |
| 16.5 | 1993                                         | 19960 IO                                        |                          | 0245010                 | 45 0.06      | 17 ·                 | 0.0720       | 2     | 9.1106               |                                                                                                                 |                          |
| ATIC | I' CYCLF FOR                                 | CHECKING CONTACT.                               | 1Ce .                    | n                       |              |                      |              |       | •                    |                                                                                                                 |                          |
| ő    | HOMENT TRAS                                  | FER.KH1= 1                                      | 1                        | • • •                   | NULTIPLYING  | FACTOR P             | TOR EFFICI   | NON O | F RONGHT             | TRABBPER, CHE                                                                                                   |                          |
| EFLE | C. ROTAT                                     | X . Betat.Y                                     |                          | - DERLEC.               | ROTAT        |                      | 1010 X X 101 |       | <b>AARTAGA</b>       | ALCAR.                                                                                                          | and a second second      |
| 76E  | -0 0.5514C-                                  | 15 -C. 6026E-15                                 | ~                        | 1.1271E 00              | 0.07956-0    | 4 -0.1375            | 1-14         |       | 12466 00             | 0.13196-03                                                                                                      | -0.9166E-15              |
| 1224 | 10 0.6456<br>00 -0.5456                      | 07 C.1943E-15                                   | () 4                     | 1247E 00                | -0.129/E-0.  |                      | JE-17        |       | 13745 00             | -0.2337E-03                                                                                                     | 0.8420E-15               |
|      |                                              | 13 -11 -12 -12 - 14<br>13 -17 -4291F-14         |                          | 1.1229E 00              | D. LZOFFAL   | 4476                 |              |       | 19496                |                                                                                                                 |                          |
| 510E | ng -0.2340E-                                 | 03 0.2086-04                                    | 1                        | 1361E 00                | -0.2346E-0.  | 9 0.3142             | 10-94        | 5     | 12436 60             | 1.11026-15                                                                                                      |                          |
| 314  | P.0 A.3254E-                                 | 84 -8.1348E-83                                  | 1                        | 1.42346 00              | 1 0.5494E-A4 | 1 -0.2903            |              |       |                      | and the first of the second |                          |

| 9076E-04             |                    | 232516-05<br>225916-05<br>225916-05          |                |              |          |         |          |                                         | •           | NOTAL V   |
|----------------------|--------------------|----------------------------------------------|----------------|--------------|----------|---------|----------|-----------------------------------------|-------------|-----------|
| 13526-03 0           |                    | 1486E-03<br>1480E-03<br>1480E-03<br>1487E-03 |                |              |          | 0.06942 | 20147-0  |                                         | (SrER, CHP  | ADTAT.X   |
|                      | ę.                 |                                              |                |              |          |         |          |                                         | T TRAN      |           |
| 12216 0              |                    | 13566<br>13566<br>13566<br>13566             | in Ancer.      | 1981         | 1. 100 H | 1220.0  |          |                                         | OF MOMEN'   | Berteci   |
| 111                  |                    | 9 0 0 0<br>9 0 0<br>9                        |                | •            | 32       | 5       | ;        |                                         | ENCA        | 8         |
| 26-09                | 10,0               |                                              | -0-11          | . 1001 .     | 012/3    | E9150-0 | 402017.0 |                                         | FOR LFFICI  | DA V. TAT |
|                      |                    |                                              | 242.0          | •            | 122      | -       | -        | •                                       | CTOR 1      | C L       |
| 2367E-03             | 0434E-19           | 9414E-04<br>9414E-04<br>2472E-05             | 27/2E-03       |              | 0.00492  | 0.00560 |          |                                         | LIPLYING FA | ROTAT.X   |
|                      |                    |                                              |                |              | 52       | 151     |          | ł                                       | <b>1</b> 21 | .:        |
| 0.1322E              | 1.12416            | C-1316E 0<br>0-1484E 0                       |                |              | 10104791 | 100482  |          | •                                       |             | DEFLEC    |
| 001                  |                    | -<br>R73:                                    | •              |              | 10       | 22      | ;        | + ===================================== |             | ODE       |
| 75946-04<br>85176-04 | 1036-83<br>1735-83 | 23025-03<br>23025-03<br>22655-03             | 2J34E-53       | THE NEDES IS | -0.06742 | 0.13795 |          | INS CONTAGE                             | it= 1       | RCTAT.Y N |
|                      |                    |                                              | 50             | 5            |          |         | ļ        | HEGH                                    | EA,K        | ×         |
| -1.751-0             |                    |                                              | -9.2437E-0     | NUTSE ISTUN  | 0,34495  | 1.1632  |          | 15LE FOR- C                             | ISUT TRASF  | HOTAT.    |
|                      | 22                 | 2572                                         | 8              | 5355         | 133      |         | 2        | 5 70                                    | 0<br>7      | ЕÇ.       |
| 0.1256E              | 0.14326            | 1.1335<br>1.1335<br>1.14155<br>1.14155       | 1.1420E        | SAP JR       | 0.29370  | 1.01731 | 1.25932  | i terat i                               | t 110. FO   | DEFL      |
| - N K                | 12.21              | 50 - P                                       | • <del>•</del> | 1HE          | 40 h     |         | 10       | NO. OF                                  | CAS         | NODE      |
|                      |                    |                                              |                |              |          |         |          |                                         |             |           |

111

1.12466 30 -1.12 1.12166 31 9.39 3.12086 31 73.45 3.11826 03 49.15

57956

Batry IIa

(Continued)

Ŧ

(Sheet 4 of 5)

30,0 eer

Ĵ

구구 구 날북 명

Table 10 (Concluded)

A THE REAL

♥.

2

Ţ

ģ

| 2222 <b>222</b>                                            |                                         |                                                                                                                                                                             | ******                                               |
|------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| *******                                                    |                                         |                                                                                                                                                                             |                                                      |
|                                                            |                                         |                                                                                                                                                                             |                                                      |
| •••• <b>•</b> •                                            |                                         | 646748                                                                                                                                                                      |                                                      |
| 22212222                                                   |                                         |                                                                                                                                                                             |                                                      |
|                                                            |                                         |                                                                                                                                                                             |                                                      |
|                                                            |                                         |                                                                                                                                                                             |                                                      |
|                                                            | -32835                                  | *****                                                                                                                                                                       |                                                      |
|                                                            |                                         |                                                                                                                                                                             |                                                      |
| 2222 <b>222</b>                                            |                                         |                                                                                                                                                                             |                                                      |
|                                                            |                                         | 848841                                                                                                                                                                      |                                                      |
| ~~~~~                                                      | -                                       |                                                                                                                                                                             |                                                      |
|                                                            |                                         |                                                                                                                                                                             | I adapte dependent                                   |
| hered and                                                  |                                         |                                                                                                                                                                             |                                                      |
|                                                            | -+=+N                                   |                                                                                                                                                                             | 201004 644006                                        |
|                                                            |                                         | 0.440 H N                                                                                                                                                                   |                                                      |
| 00000000                                                   |                                         |                                                                                                                                                                             |                                                      |
|                                                            |                                         |                                                                                                                                                                             |                                                      |
| 104 C C 0 C 0                                              |                                         |                                                                                                                                                                             |                                                      |
|                                                            |                                         |                                                                                                                                                                             | 00000000000000                                       |
|                                                            | *** N N M 7                             | 0.000.002                                                                                                                                                                   |                                                      |
| 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                    | 4 4 6 7 10 6                            | 1 487 VO                                                                                                                                                                    | 100000 4404 4440<br>400 10 10 10 14 004              |
| 「キャロシンのある」                                                 |                                         | 000000                                                                                                                                                                      |                                                      |
|                                                            | 1 1                                     |                                                                                                                                                                             |                                                      |
|                                                            | 844078<br>844076                        | 11 40 h 41 41                                                                                                                                                               |                                                      |
|                                                            |                                         |                                                                                                                                                                             |                                                      |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                    | 118 22                                  | 040 L M 0                                                                                                                                                                   | XX<br>366<br>366<br>366<br>366                       |
|                                                            | 84 1118                                 | 844448                                                                                                                                                                      | 00574 SS                                             |
|                                                            |                                         |                                                                                                                                                                             | 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0              |
| , , ,                                                      |                                         | 2                                                                                                                                                                           |                                                      |
| 00000000000000000000000000000000000000                     | 400044                                  | N 4 6 6 6 4                                                                                                                                                                 | •                                                    |
|                                                            |                                         | 0                                                                                                                                                                           | , NWN NNNNNN 1404.                                   |
| ******                                                     | N4404N                                  | 0000000<br>000000                                                                                                                                                           |                                                      |
|                                                            |                                         | - N00040                                                                                                                                                                    | 19 4年 19 49 19 19 19 19 19 19 19 19 19 19 19 19 19   |
| 14 9 9 9 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9                   | 2000000                                 |                                                                                                                                                                             | 2 046 4 30 0 00 0 35 0<br>E 6 4 4 4 4 4 4 6 NA 4 4 6 |
|                                                            |                                         |                                                                                                                                                                             |                                                      |
| 0000000000                                                 | . h.                                    | 19 4 4 6 6 F 7                                                                                                                                                              |                                                      |
| ********                                                   | 2                                       | - 08 0 0 00                                                                                                                                                                 | 000000 000000                                        |
|                                                            | 22.5.40                                 | 2 4 4 5 4 5 0<br>0 4 6 5 6 5 1<br>0 4 6 5 6 5 1<br>0 4 6 5 6 5 1<br>0 4 6 5 1<br>0 4 6 5 1<br>0 4 6 5 1<br>0 |                                                      |
|                                                            |                                         |                                                                                                                                                                             |                                                      |
| COCCORDOL                                                  |                                         | 44 5                                                                                                                                                                        |                                                      |
|                                                            | บ็พธุรรุฐพ                              | 1 N 9 8 9 7 N                                                                                                                                                               | " •••••••••••••••                                    |
| er e contra de la c                                        | ăr<br>C                                 | 1                                                                                                                                                                           | Ω.                                                   |
| 54 C D D D D D C D<br>54 J D 50 C D D<br>T D D D D D D D D | 8 9 9 9 9 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 | 2409444                                                                                                                                                                     |                                                      |
|                                                            | 41.000.001                              | 0 4 1 0 1 4 H H H                                                                                                                                                           |                                                      |
|                                                            |                                         |                                                                                                                                                                             |                                                      |
| 0.0.770.00.40                                              | ¥ '                                     |                                                                                                                                                                             | ż                                                    |
|                                                            | 40 75 844                               | 10 L 0 0 0 4 4                                                                                                                                                              |                                                      |
|                                                            | m                                       | ส                                                                                                                                                                           |                                                      |
|                                                            | 5                                       | <u>ي</u> .                                                                                                                                                                  |                                                      |
|                                                            | 2                                       | à l                                                                                                                                                                         |                                                      |

(Sheet 5 of 5)

5

100

problem, which is to compute stresses and deflections for a symmetrically loaded square slab subjected to both temperature warping and applied load. Gaps with a maximum magnitude of 1 in. exist in the subgrade near the load. Because of symmetry, only one quarter of the slab is computed. The 80,000-1b load (p = 200 psi) is applied at the center of the slab and the temperature differential is  $3.75^{\circ}F$  per inch of the slab, causing the slab to curl upward. Figure 10 shows the finite element grid pattern of the slab. The purpose of this example printout is to show the differences among the initial gap, deflection, and final gap. Similar to the previous example output, entry numbers are used in places where explanations are needed. In places where similar explanations are given in the previous example output, they are not repeated.

#### Entry 1

83. Because the uniformly applied load is applied at the center of the slab, the case is symmetrical with respect to both the X- and Y-axis. It is thus necessary to consider only one quarter of the slab in the computation. According to Figure 10, the nodal numbers that are symmetrical along the X-axis are 1, 8, 15, 22, 29, 36, and 43, and the nodal numbers that are symmetrical along the Y-axis are 1, 2, 3, 4, 5, 6, and 7. The computation is made on the quarter slab with  $\sigma_{\rm X} = 0$ and  $\sigma_{\rm Y} = 0$  at each nodal point along the X- and Y-axis, respectively. Entry 2

84. The initial gaps at each nodal point are printed as was input.

# Entry 3

85. The initial curlings are computed based on the input temperature differential. The slabs are assumed to be weightless, and the subgrade reactive forces are not considered. The magnitude of the curling is measured from the initial subgrade surface to the warped bottom surface of the slab. Positive curling (or gap) indicates that the warped slab at the particular node is above the initial subgrade surface; i.e., the slab is warped upward. Negative curling indicates that



Figure 10. Finite element layout for Computer Output 2 the warped slab is below the initial subgrade surface; i.e., the slab at the particular node is sinking into the ground.

86. It should be noted that when gaps exist under the slab, the initial curlings are combined with the gaps. For instance, at node 1 the initial curling is zero because node 1 is located at the center of the slab. But because a 1-in. gap exists beneath node 1 and because curling is defined to be the distance from the initial subgrade surface to the warped slab, the initial curling at node 1 becomes 1 in., as shown in Entry 3. Similarly, the actual curling at node 2 is 0.00094 in.

curling upward and since the initial gap at node 2 is 0.8 in., the initial curling at node 2 becomes 0.80094, as shown in Entry 3. Entry  $\frac{1}{4}$ 

87. The total load applied on the 300- by 300-in. slab is 8,000 lb. Because only one quarter of the slab is used in the computation, both the input load and calculated load are 20,000 lb in magnitude. Entry 5

88. Displacements are induced by the load and the subgrade reactive forces and are measured from the initial warped surface to the new surface. Note that the applied load generally makes the slab move downward and the subgrade reactive forces push the slab upward. Positive deflection indicates downward movement, and negative deflection indicates upward movement. Entry 5 shows that all the deflections are positive, indicating the deflections are a downward movement from the warped up.

# <u>Entry 6</u>

89. The gap or precompression is computed as the difference between the initial curling and the deflection. Sign convention used in the initial curling (Entry 3) is used in Entry 6. At node 1, the gap is 0.77679 in., which is computed as the difference between the upward initial curling of 1 in. (Entry 3) and the downward deflection of 0.2232 in. (Entry 5); a positive gap indicates that node 1 is 0.77679 in. above the initial subgrade surface. At node 5, the initial curling is 0.07594 in. (above the initial subgrade surface) and the deflection is 0.1848 in. (downward movement under the load and the subgrade reactive forces), so the precompression becomes -0.10885 in. sinking into the ground.

#### Entry 7

**Þ.** 

No. of Street, or other

90. During the first cycle of iteration, a full subgrade contact condition is assumed, except at nodes where gaps are specified. The gaps shown in Entry 6 indicate that many nodal points have lost the subgrade support, i.e., the subgrade contact condition has changed. Therefore, computations start again based on the new subgrade contact

condition shown in Entry 6 and the deflected surface shown in Entry 3 (initial curling).

# Entry 8

91. The deflections are measured from the initial curling (or precompression) shown in Entry 3.

# Entry 9

92. The gaps or precompressions are the differences between the initial curlings (Entry 3) and the deflections (Entry 8). The sign at each node is compared with those shown in Entry 6, and since the signs at some nodes have changed, the computation starts again with the new subgrade contact condition shown in Entry 9. The iteration repeats until the sign of either the gap or the precompression at each node no longer changes.

#### Entry 10

93. Entry 10 shows the gaps and precompressions at the end of iteration cycle 3.

# Entry 11

94. Entry llb shows the gaps and precompressions at the end of iteration cycle 4. Since the signs at each node shown in Entry 11 do not change from those shown in Entry 10, the criterion for checking subgrade contact is satisfied and the computed deflections shown in Entry lla and gaps and precompressions shown in Entry llb are the final values. Note that the deflections in Entry lla are measured from the initial warped surface in Entry 3.

# Entry 12

A LANDER

95. The values shown in Entry 12 are the same as shown in Entry 11<u>b</u> computed during the last iteration cycle, but are different from those shown in Entries 6, 9, and 10 computed during the earlier cycles.

#### Sign notation used\*

96. To clarify the sign notation used in this report, the values of initial curling, deflection, gap, and precompression computed after

Readers should consult the sign conventions defined in paragraph 46 of Report 1 of this series.

the last iteration at nodes 1, 3, and 5 (Figure 10) are plotted in Figure 11. The initial curlings were computed based on the temperature differential and the assumptions that the slab is weightless and the subgrade reactive forces are inactive. <u>The force-induced deflections</u> <u>computed during each iteration were always measured from the initial</u> <u>curling</u>, not from the initial bottom surface of the slab. It should be noted that stresses in the slab are also computed based on the deflections measured from the initial curled surface, not from the initial surface of the slab. When temperature is not considered and the initial curling does not exist, the deflections are measured from the initial bottom surface of the slab.

97. At node 1, the sum of the deflection  $(0.125^4 \text{ in. at Entry} 11\underline{a})$  and the final gap  $(0.87456 \text{ in. at Entry 11}\underline{b})$  is equal to the input initial gap (1 in.). At node 3, the sum of the final gap (0.38626 in.) and the deflection (0.1222 in.) less the input initial gap (0.5 in.) is equal to the difference between the computed initial curling (0.50844 in.) and the input initial gap (0.5 in.). Note a 0.00002-in. computer round-off error is involved.

# Computer Output 3

98. Table 11 shows the Computer Output 3 printout for Example Problem 2, which is to compute stresses and deflections for a single slab due to the applied load alone. Two runs were conducted consecutively. The first run is made considering only the temperature, slab weight, and gaps, and the second run is made considering the temperature, slab weight, gaps, and the applied load all together. The differences in the computed results of the first and second runs are those due to the applied load alone. This option in the program is activated (in the second run) by setting the variable NSTORE = 2 (Item 6 of Table 2). The reason for the need to compute stresses due to the applied load alone is explained in the footnote of the variable NSTORE . Entry 1

99. NGAP = 0 because no gap under the slab is assumed. NWT

117

-



Ś



Table 11. Computer Output 3 Printout for Example Problem 2

A ......

100,0000 35,0000 0,25000 0,1006-01 0,5065-02 83306 04 0,28000 BLANK EARD NG ADDIT, SUBG. MDDU TO BE READ IN 9. 48,0000 94,0000 144,99000 145,0900 **285,0000 240,0000 272,0000** 245,0000 274,0000 940,0000 144,0000 1**30,0000 230,0000 240,00000** 274,00000 : SNUMB + 80817. ACTIVITY # # 01. REPORT COVE # 04. RECORD COUNT # 000875 2 3 6 5 8 BLÁK CÁRD NO TYTHETRY ON X-AZIS Blank Cárd No Tythetry ON Y-AZIS Blank Cárd No Tythetry ON Y-AZIS Blank Card No Gap to Be Neau In Blank Card No Gap to Be Neau In Blank Card No Gap to Be Neau In 2 100000 U: 290,0990 D.2000 D.60gL U7 2.7,0990 D.2000 D.60gL U7 Beank Tard dddi.thComes to be Neje in Beank Card NG dddi.thComes Blank Card NG D1 Lgadew Blank Card NG, of NG SUUGRADE COTTACT,AGTCOM Blank Card NG, of NG SUUGRADE COTTACT,AGTCOM • "1 49 149 INPUT DATA Temperature and BLANK WENG NO . · •

(Continued)

<u>1680's 45,40819</u> BELAXATON FACTON MFIS 9:29000 TOLERANCE BELS 8.4000-05 NCBL; of DOVEL VINDA 8,3006 04 PO1530N 3 RAXIO OF DONEL PTRDS 9:20000 40.0808 Pt.09808 144.08008 340.60008 216.04008 244.90008 252.00008 244.00008 276.0000 10000 COMP', DIMEN, OF MATRIX CUALCUDA TOTAL No. OF NODAL PTS.,LMPA MEAD MCC MCC 48,98080 24,98888 144,88888 186,89688 214,89688 254,60088 274.08889 289,89884 MODULUS TH+ 8,688E 67 ~ = = NELDA 130 222 2 SLAB AG. INITIAL NODAL NUMBERTIATMET, LAST BOBAL NUMBERTLASTNOTZ AND LAST ELEMENT NUMBERTLASTENT AREA 1 5 99 49 JOINT NO, INITIAL STARTING MCD4L MC. (15M4) AND LAST FINAL NOBAL MO, (LFNM) ON BOFS STORE OF JOINT ARE 1 6 0 0 0'. 5:02709 6:22464 NOUAL ND, AT BHICH STREASES ARE PRINTED 40 41 42 44 44 49 74 71 72 78 79 40 81 67 88 84 96 44 77 94 99 16611:0 0.22461 . 210 NPD- 209 THICKAESS To 22.90000 ROISSSON & RATIO PA- 0.26830 • COMPUTED DINEW. OF STIFHESS MATAICES & AND 51 LNGD= 9883 Souff.binew. Of Matrix Clilcle= 3 70741 No Of Genarion9,1400- 297 MEVLES 1CX8 UNCX8 WPUNCX8 1010+ 500 TEMPERATURE AND SLAB WT FIMITE ELEMENT ANALYSIS OF GBAERSTE PAVEMENTS LNGBB- 9491 LCUD- 568 \*\*\*\*\*\*\*\* • HGAP-ICX+ ICX+ Ienos+ ILPX+ NODAL WUNNDERS AND INITIAL GAFS ARE TABULATED AS FOLLOWS... 0 8. -9487 Icifra 200 NOBEE 22 No Long 0.17200 ну. • 649 JOINT ND. AND VALUES OF 1ST ARE SUME, MODULUS SUBMODE 149,00000 FIRAL TOLER, DEL'= 0.1005-02 æ JOSHT ND. AND VALUES OF NUT ARE JOLNT ND. AND VALUES OF NKT ANE -- 21 ANE FOR SLAP HD. 2 # HX+ 21 -tutorn 48000= 894145 8475 166 166 FOR BLAD ND. 1 P Xº 0, ۲**۳** ۵, BALLY 2. ANDUNY OF LNITIAL CURLING FOU LAVER NO. 1 N 2 2 8 N%LA8- 1 NLAYER INDFe INDFe NATE NATE 280,00990 -4 -1 Betry 1. ----- (Sheet 2 of 16)

1643

(Continued)

1.26134

وفرحافه مافتان فحماد محمومات والمعارية

ł

Ľ

 V7 0,24400 90 0.28640 59 0,31104

THE MULTIPLYING FACTOR FUR EFFICIENCY OF NUMERT TRANSFER, CM , IS

5

NU. OF ITERATIO" CYCLE FOR CHECHING CONTACTAICE .

-

(Sheet 3 of 16)

(Continued)

N

NO. DE TERRATIO STOLE FOR CHECHING CONTACTALLE :

- 4- 5

<

K

1

|      |           |                |                                          |                |           | •       |          |        | x        | ULT2PL   | SHSY.       | LCT OF | 1 104 1   | 12133    | ENCT       | эс<br>Ф     | IENT T | RANSFE          |                | , ,    |         |      |
|------|-----------|----------------|------------------------------------------|----------------|-----------|---------|----------|--------|----------|----------|-------------|--------|-----------|----------|------------|-------------|--------|-----------------|----------------|--------|---------|------|
| CAN  | No. TDI   | NON R          | ENT TRA                                  | N3 (c)         | • • • •   | 4       |          | 2      |          |          | TAT.X       | -      | TATO      | g v      | ور         | 130         | 5      | R01.<br>0.2226  | AT.X<br>E-03   | 105,0  | 20-30   |      |
|      |           | į              | ACT.                                     | 11.X           | PC1       | 7.74    | 3274     |        |          | 01 4     | 515-83      | -0,2   | 943E v D. | •        | р ч<br>м   |             |        | 0.1668          | E-03           | 0.265  | 0E.03   |      |
| HODE |           |                | A ST |                | - E. 2944 | 6-03    | 2        | 0.14   |          |          | 6.E-04      | -0.2   | \$7E+0    | -        | 0 1        |             |        | 1.2244          | E-03           | -0.239 | 66-03   |      |
| -    | 10.53.0   |                |                                          |                | C. 3001   | 16-93   | •        | 1      |          |          | 776-03      | -0-2   | 427E+0    | ~        | <b>P</b> 1 | 224         |        | 0.2329          | 20-3           | -0.31( | 46-03   |      |
| •    | 6, 1997E  | P              |                                          |                |           | 16-03   |          | 11.9   |          |          | 726-83      | +0.2   | 927500    | 7        |            |             |        | 2005.0          | E-03           | -0.26) | 01-02   |      |
| ~    | 0,11245   |                |                                          |                |           | 6-03    | 1        |        |          |          | 126         | -0.2   | \$24E=0   | -,       | 5          |             |        |                 | 5-03           | -0.21  | 56-03   |      |
| 10   | 9,12166   |                |                                          |                |           | 26-03   | 4        |        |          |          |             | -0.2   | 2005-0    | <b>,</b> | 8          |             |        |                 | 5-03           | -0.21  | 36-03   |      |
| 2    | 9, 65795  | 5              |                                          |                |           | 3E - 03 | 2        | 0.10   | 01 10    |          |             | 2.1.1  | 0996-0    | -7       | 22         | 20.         |        |                 | 10-3           | -0.17  | 46-03   |      |
| 2    | 0,19040   | 8              |                                          |                |           | ne - 03 | 30       |        | 10-325   |          |             |        | 668E+0    | ~        | *          |             |        |                 |                | -0.12  | 176-03  |      |
| °,   | 0,11015   | 20             |                                          |                |           | 36-03   | 2        |        | 10+265   |          |             |        | 3036.00   | -        | 5          |             | 3      |                 | 1 - 0 3        | -0.42  | 36-06   |      |
| 22   | 11024 10  | -01            |                                          |                |           | 16-91   | 2        | 6° 6   | 10-39/   |          | 0.15.0      | -      | 401E=1    |          | 202        |             |        |                 | 25-03          | 0.17   | 10-30G  |      |
| 2    | 0.91221   | 13-5           | 70 N 100                                 |                |           | 4E-04   | 2        |        | 20-224   |          |             |        | 51 PE-0   | •        | 5          | 1. 276.     |        |                 | 20-31          | 0.27   | 236-04  |      |
| 1    | 0,10401   | 80             |                                          |                |           | 26-35   | 22       |        | 10-398   |          |             |        | 1415-1    |          | 8          | 1.767       |        |                 | 10-01          |        | 14E+03  | _    |
| i    | G . 67421 | 1041           | 9,22,0                                   |                |           |         | 5        |        | 10-3+01  |          |             |        | 4865-     | 2        | 2          | . 771       | E-01   |                 |                |        | 116-03  |      |
|      | 0,89031   | 5 e 0 2        | -0.24/9-                                 |                |           |         |          |        | 1076-01  |          |             |        |           |          | 4          | 1101        | E+07   | Lov D.          |                |        | 20-03   |      |
| 1    | 0.40474   | 50             | 0.3182                                   | 2.4            |           |         |          |        | 1485-01  | -        |             |        |           |          | 5          | 7.101       | 60 34  | C / Z * O *     |                |        | 126-03  |      |
| -    | 7100      |                | 0.170                                    | -0-31          |           |         |          | 0.0    | 8246-03  | D        | 0-3/00      | 5      |           |          | Ş          | 1.151       | 36-01  | 462.0           | 200 U 10       |        | 20-202  |      |
| 24   |           | 10-3           | -0.2924                                  |                |           |         | 5        |        | 1346-01  |          | 902E-1      | -      |           |          |            | 6.69.9      | 10491  | 40°239          | 20431          |        |         |      |
| 2    |           |                | 0.300                                    | 26-92          | 22.0      | 70-30   |          |        | 0.355-03 | -0.2     | 3725-9      | 5      | 14042     | 1        |            | 1.1.3       | 5E 01  | -0.264          | 4E-03          |        |         |      |
|      |           |                |                                          | 16-04          | 07.0      | 04-00   |          |        |          |          | 4856-0      | ā      | 2340E4    | 2        |            |             | 16-01  | 0.194           | 46-03          |        |         |      |
| 5    |           |                |                                          | 10-16          | 6.24      | 126-93  | 7        |        |          |          | #22E-9      | 3 0,   | 2854E#    |          | 2          |             | 10-11  | -0.220          | 45-03          | 2.0    | 246-93  |      |
|      |           |                |                                          |                | 9         | 11E-03  |          |        |          |          | 2926-0      | 3 0.   | 3271E+    | ŝ        | 0          |             |        | - 0 - 2 - 5 - 7 | 50-38          | 2.0    | 1156-04 |      |
| 55   | 0.1190    |                |                                          | ALLAN          | Ĩ         | 20-303  | 5        | 9.9    |          |          | 1075-0      | 10     | 2051E-    | 20       | 9          |             | 10131  |                 | 46-03          | 0      | 1476-0  | wt e |
| 5    | 0.4787    |                |                                          |                |           | 106-03  |          | 1      |          |          | 1445-0      |        | 201460    | 20       | -          |             |        |                 | 56-03          | 0.3    | 1616-0  | 'n   |
| 4    | 120210    | 8<br>3         |                                          |                |           | 28-364  |          |        |          |          | 0.75        |        | 329260    | 20       | 60         |             |        |                 | 0-30           | 5.2    | 136-0   | •1   |
|      | 0 3222    | 8              |                                          |                |           | 24-34   | 1        | 5      |          |          |             |        | 3743E-    | 10       | 12         | 1110        |        |                 |                |        | 2106-0  | •    |
| 3    | 6,9191    | 1E-01          | 01.0                                     |                |           |         | -        | 1      | 1156 0   |          |             | 27     | 20455     | 20       | ň          | 0, 107      | 36 01  |                 |                |        | 657E-0  | •    |
| 1    | 0110      | 10<br>10<br>10 | 0.220                                    |                |           |         |          | 10     | 1216 0   |          |             | 2      | 19495     | 10       | 78         | 0.10        | 76 00  |                 |                |        | 778E-0  | n    |
|      | 0.1255    | 5E 0.0         | 0.203                                    |                |           | 20-301  |          |        | 7746-0   |          | 1000        |        | 2804F     | 20       | 91         | 0.12        |        |                 |                |        | 146.0   | 2    |
| 1.4  | 959.0     | 50-34          | 0,10                                     |                |           |         | ā        |        | 1795 0   |          | -3676       | 21     | 2849E     | , a      | 1          | 0.10        |        |                 |                |        | 0.316-0 | 2    |
|      | 0.111     | 96 D0          |                                          |                |           | 365-03  | -        |        | 11545 0  |          |             | 2      | 34746     | 2        | 2          | 0,10        |        |                 | 9-39-          | -      | 0-2914  | -    |
|      | 0.120     | 50 <u>56</u>   | 0.20                                     |                |           | 456-03  | ā        |        | 3910     |          |             |        | 2832E     | 50.      | 2          | 0.12        |        |                 | AF-D.          |        | 0-3030  | ņ    |
| 8    |           | 16-01          |                                          |                | 2.4       | 1935-03 | •        | 2      | 12145    |          |             |        | 20336     | 20       | M 4        | 0.10        |        |                 | 0-391          | 0      | 9926-0  | 2    |
| đ,   | 01819     |                |                                          | 20-372         |           | 1426-03 | •        |        | 32721    |          | 1 1 5 0 F - | 070    | 31006     | -07      | 4 (<br>6   |             | 80 346 |                 | 04E-0          |        | 9275-0  | 2    |
| é    | 222 0 1   | 5              |                                          |                |           | 496-03  | •        |        |          |          | 481E-       | 0 120  | 265VE     | 2        |            | 0.42        |        |                 |                |        |         |      |
| Ģ. G |           |                | 2.5                                      | 19-39/         |           | 1046-93 | •        | •      | 37.75    |          |             |        |           |          |            |             |        |                 |                |        |         |      |
|      | Att d     |                |                                          | •              |           |         |          |        |          |          |             |        |           |          |            |             |        | •               |                |        |         |      |
|      |           |                | į                                        |                | 12 20     | E MCDES | 154      |        |          | •        |             | 1.1    | •         | 980.0    |            | 7           | 1105   |                 |                | 1001   |         |      |
| •    | THE BAP C | R. H           | ECONTRE                                  | E2100          | 5         |         |          | 4      | 69460.   | • :      |             |        | -         | 0.406    |            | •           | 12610. |                 |                | 4450   |         |      |
| ¥    | 8.1752    |                | i.                                       | 1101           | ?;        |         | 22       |        | 11900    | 33       |             |        |           | 0. 355   |            | 6-<br>2     |        |                 |                | 4014   |         |      |
| 19   | 9.190     | 4              | é .                                      | 10101          | 40        |         | N        | ;<br>e | , 00752  |          |             |        |           | 0.090    | 5          | 1           |        |                 |                | 4128   |         |      |
| 2    | 560 · 0   | 1              |                                          | 19612          |           | 0.07    |          | 2      | 02014    |          | 5           |        |           | 0. 412   | 5          |             |        |                 |                | 8580   |         |      |
| 3    | ***       | 2              | 5 -<br>8 -                               |                |           | 0.0     | -        |        | 1 0571   |          |             |        | -         | D. 001   | 5          | 2           | - 480  |                 |                | 1313   |         |      |
| 2    |           | 5              |                                          | 10080<br>06080 | 1         | 0.001   | 2        | -      |          | 1        |             | 129    | 2         | 0, 485   | 5          | -           | 02011  |                 |                | 2001   |         |      |
| -    |           | <b>z</b> .     |                                          | 111            | -         | .0.0.   | 22       | 29     | 64/26 (  | 1        |             | 5153   | 62        | 0, 088   | 0          | 2           |        | 22              |                | 2940   |         |      |
| Ŧ    |           |                |                                          | 1175           |           | .0.01   | 2        | 0      |          | 13       |             | 2637   | 82        | 6° ° ° 9 | 2          |             |        |                 | 5              | 12081  |         |      |
| 2    | 600 ° 04  |                |                                          | 00770          | 5         | -0,00   | ÷        |        |          | F        |             | 1994   | 2         | 80.9     |            |             |        | 2               | 5              | 10282  |         |      |
| 5.   |           | 2              | 44                                       | 10490          | *         | 10.     | 2        |        | 0112     | -        |             | 5677   | 2         |          |            |             | 9460   | 2               | 0              | 08347  |         |      |
| ~    |           | 40             | 2                                        | 1974           | 3         |         |          |        |          |          |             | 8559   |           | 20.0     |            |             |        | ,               |                |        |         |      |
|      |           |                |                                          | 111            | 5         | 11.0    | ~        | 24     |          |          |             |        |           |          |            |             |        |                 |                |        |         |      |
|      |           |                | 4 96                                     | , 1615.        | 5.5       | 0,1     |          |        |          |          |             |        |           |          |            |             |        |                 |                |        |         |      |
|      |           |                |                                          |                |           |         |          |        |          |          |             |        |           |          |            |             |        |                 |                |        |         |      |
| 9    |           | 0              | י כגנרב                                  | 4 CR           | CHECK ]   | NG CCNT | ACT . 19 | •      | ~        |          |             |        |           | -        |            | 10 40       | NONE   | IANT TA         | <b>VSFER</b> , | e H S  | •       |      |
| 2    | 11.1 30   |                |                                          |                |           | ,       |          |        |          | <b>N</b> | YJALY.      | ING 71 | CTOR 1    | 12 10    | 21714      |             | -      |                 |                |        |         | ;    |
|      | CANE NO.  | 50g            | NONENY                                   | YRAS           | FER. N    | *       |          |        |          |          |             | ;      |           |          | NCD        |             | DEFLE  | 3               | ROTAT          |        | 11 1 H  | 50   |
|      |           |                |                                          |                | ,         | ar 11.  | N A      | 300    | DEFL     |          |             |        | 282.0-    | 16-01    |            | 0           | 18126- |                 | 19161          |        | .2540E  | 20-  |
| ž    | IDE III   | DEFLE<br>1976  | د<br>و<br>و                              | 1474E          | ج         | 2420E-  | 20       | 2      | 99496    | 57       | 1001.0      |        | 0 200     | 50-30    |            | -<br>-<br>- | -32/6/ | · · · ·         |                | ;      |         |      |
|      |           | 476-           | CT 0-5                                   | - 35452        |           |         | 2        |        |          |          |             | -      |           |          |            |             |        |                 |                | ,      | بر      | 4    |

(Sheet 4 of 16)

(Continued)

16) f Ś (Sheet

(Continued)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 0 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANSFER, CH<br>Rotat, X<br>Rotat, X<br>14926-03<br>14946-03<br>14946-03<br>14946-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12047-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>12046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>10046-03<br>1 |
| 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | СЧ 01 01 11 11<br>01 01 01 01 01<br>01 01 01 01<br>01 01<br>0                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R FOR EFLICIER<br>10747,7 HODE<br>1096601 3<br>1096601 3<br>14466691 3<br>1926601 15<br>1926601 15<br>1926601 25<br>19276601 25<br>19276601 25<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 404<br>404<br>404<br>404<br>404<br>404<br>404<br>404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4<br>4 4 4 4 6 6 7 7 7 6 6 6 7 7 7<br>4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7     7     7     8       1     7     7     8     1       1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ECH ING CCM1 A01<br>4,111 1 CCM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CCOMPRESSIUN<br>CCOMPRESSIUN<br>CCOMPRESSIUN<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CONTRACTION<br>CON | CYCLE FOR CH<br>HUMENT TAASH ER<br>+077451,5<br>00,22246-03<br>00,22246-03<br>00,22366-03<br>10,23966-03<br>100,23966-03<br>100,23966-03<br>100,23976-03<br>100,23976-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10-1 6 0 10 1 6 0 10 10 1<br>10-1 6 0 10 10 1 6 0 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

.9719E0

(Continued)

しょくしゅうこり くかて ひろごう ウラにつ くかて ひらご らう たり くよし ひゅうき くんしん 学校 手手手 しょくようれ れちぐら ちらち ドドル たちち だだえてす

CA ->

1. S.

H Table

123

(Cont.inned) Tahla

A CARLES AND

ł

ť

Ĩ,

| 2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

g 9 (Sheet

16)

(Continued)

3. A. M.

23

í

۲

----

A  $\sim$ 

|   | 100000000000000000000000000000000000000                                   |   |                                          |                                                                                           |                                                           | v<br>v     |
|---|---------------------------------------------------------------------------|---|------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------|
|   |                                                                           |   |                                          |                                                                                           | 88888888888888888888888888888888888888                    |            |
|   | 10000000000000000000000000000000000000                                    |   |                                          |                                                                                           | ***********                                               | 5          |
|   |                                                                           |   |                                          |                                                                                           | L 4 L M L G G G G G N F                                   | ~          |
|   |                                                                           |   |                                          |                                                                                           |                                                           |            |
|   |                                                                           |   |                                          | 100000000000000                                                                           |                                                           | 5          |
|   |                                                                           |   |                                          |                                                                                           |                                                           | 2          |
|   |                                                                           |   |                                          |                                                                                           | ~~~~~                                                     | Ŭ.         |
|   |                                                                           |   | 4466476466                               | 44004440000<br>44000                                                                      |                                                           |            |
|   |                                                                           |   |                                          |                                                                                           | 40.6446.04004                                             |            |
|   | 414144 11 94 11                                                           |   |                                          | 50000400000000<br>N 000400000000                                                          | 004400000N                                                |            |
|   | ちょうかん おうちょう うちょう しょう しょうしょう しょうしょう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅ |   | 100000141000                             | <b>1000000000000000000000000000000000000</b>                                              | N 4 N 4 N 4 A 4 N 4                                       |            |
|   | 0 1 + 0 / 1 0 0 0 0 0 1 1 0 0 7 / 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1   |   |                                          |                                                                                           |                                                           |            |
|   |                                                                           |   |                                          |                                                                                           |                                                           |            |
|   |                                                                           |   | HNBBEACKEE                               |                                                                                           | 003 685 68                                                |            |
|   | **********************                                                    |   |                                          | ~~~~~~~~                                                                                  | 2142 655 F3<br>0858 448 F6<br>8808 948 F6                 |            |
|   |                                                                           |   |                                          | \$17 H H 4 7 6 8 6 6 1 H                                                                  |                                                           |            |
|   | *******************                                                       |   | 5 2 5 3 5 3 H 7 5 5 7                    | 253202243222                                                                              |                                                           |            |
|   |                                                                           |   | 0 A D D D D D D D D D D D D D D D D D D  |                                                                                           |                                                           |            |
|   | 00 010 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                   |   | ***********                              |                                                                                           |                                                           |            |
|   | <i></i>                                                                   |   | ***********                              | 101077 T.B. 477 D. 00                                                                     | 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                   |            |
|   |                                                                           |   |                                          | N N / S S N N S S S S S S S S S S S S S                                                   | 8477 9488 945<br>84 m m m m m m m m m m m m m m m m m m m |            |
|   |                                                                           |   |                                          | 0-10-16-1-<br>0-10-16-1                                                                   | 14N/N640466                                               |            |
|   |                                                                           |   |                                          |                                                                                           | 2 4 9 6 9 6 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6                 | ਦਿ         |
|   |                                                                           |   |                                          |                                                                                           |                                                           | ě          |
|   | 79999999999999999999999999999999999999                                    |   |                                          | 50 40 - 50 440 - 50<br>4000 - 50 440 - 50                                                 |                                                           | ធ          |
| • |                                                                           |   |                                          |                                                                                           | 00 000 000<br>00 000                                      | <u>t</u> : |
|   |                                                                           |   | 800 80 7 77 70 08<br>800 80 8 70 9 70 80 | ほうかいのう オンサント なの                                                                           | ×804 840 P3                                               | 5          |
|   |                                                                           |   | 0000-400-0 40-40<br>0000-400-0 40-40     |                                                                                           | 8609 6N7 6N                                               | Ŭ          |
|   |                                                                           |   |                                          | 000000000000                                                                              |                                                           | Ť          |
|   | 0 4 8 8 D 0 9 8 8 9 9 9 8 0 9 0 9 0 9 0 9 0 9 0 9                         |   | •                                        |                                                                                           |                                                           |            |
|   | 479999994447774444444444                                                  |   | ジャクロクご ナクロウご サ                           |                                                                                           |                                                           |            |
|   |                                                                           |   | 7                                        | 0                                                                                         | 004 N04 00                                                |            |
|   |                                                                           |   |                                          |                                                                                           |                                                           |            |
|   |                                                                           |   | UL4NOV 4000000000                        | 1000000000000000                                                                          |                                                           |            |
|   |                                                                           |   | 200000000000000000000000000000000000000  |                                                                                           | Reno 1949 44                                              |            |
|   |                                                                           | ' | <b></b>                                  | 4                                                                                         | Nuueneeeeee                                               |            |
|   |                                                                           |   |                                          | $\alpha$ |                                                           |            |
|   |                                                                           |   | C                                        |                                                                                           | 0000000000                                                |            |
|   |                                                                           |   | 38A + AN34 3334 6A                       | 3A4 AN34333386A                                                                           | ×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                    |            |
|   |                                                                           |   | 24444000000000000000000000000000000000   |                                                                                           | 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2                   |            |
|   |                                                                           |   | 6 000030600000<br>11                     |                                                                                           | Wertherner N                                              |            |
|   |                                                                           |   |                                          |                                                                                           | aaccoscoo                                                 |            |
|   |                                                                           |   | 8<br>8<br>19 440124084240440             | A 440万米555474444                                                                          |                                                           |            |
|   |                                                                           |   |                                          |                                                                                           |                                                           |            |
|   | て ゆ かにて どくご らてい くりかににつ こと トー・ク くて ゆんえをきて                                  |   | 1 4 4 4 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7  |                                                                                           | -                                                         |            |
|   |                                                                           |   |                                          |                                                                                           |                                                           |            |
|   | 740.008.440.8745.088445                                                   |   | 3 <b>191</b>                             | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                     |                                                           |            |
|   | イイム おちりらら キャック アロネタマ マ                                                    | á | **************************************   |                                                                                           | Ň                                                         |            |
|   |                                                                           | 5 |                                          |                                                                                           | E.                                                        |            |
|   |                                                                           | ä | 1                                        |                                                                                           | Ă                                                         |            |
|   |                                                                           |   |                                          |                                                                                           |                                                           |            |

(Sheet 7 of 16)

NK. 35. 41

5

| 9 3424001'0<br>9 3424001'0<br>9 3424001'0<br>9 342456<br>9 344566<br>9 344566<br>9 344566<br>9 344566<br>9 344566<br>9 344566<br>9 34566<br>9 345666<br>9 3456666<br>9 345666<br>9 345666<br>9 345666<br>9 345666<br>9 345666<br>9 345666<br>9 345666<br>9 3456666<br>9 3456666<br>9 3456666<br>9 3456666<br>9 3456666<br>9 3456666<br>9 3456666<br>9 34566666<br>9 34566666<br>9 3456666<br>9 3456666<br>9 34566666<br>9 34566666<br>9 34566666<br>9 3456666<br>9 34566666<br>9 34566666<br>9 34566666<br>9 34566666<br>9 34566666<br>9 34566666<br>9 345666666<br>9 345666666<br>9 345666666<br>9 34566666666<br>9 345666666666666666666666666666666666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4,007322E 01<br>6,00722E 01<br>6,00722E 92<br>9,259922E 02<br>0,27922E 01<br>0,474522E 02<br>0,474522E 02<br>0,474522E 02<br>0,474522E 02<br>0,474522E 02<br>0,474522E 02<br>0,474522E 02<br>0,474522E 02<br>0,474522E 02<br>0,474552E 02<br>0,4745552E 02<br>0,4745552E 02<br>0,475552E 02<br>0,4755552E 02<br>0,47555552E 02<br>0,4755552E 02<br>0,47555555555555555555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 441<br>441<br>441<br>441<br>441<br>441<br>441<br>441<br>441<br>441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 190001<br>190001<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>19000<br>190000<br>19000<br>19000<br>190000<br>19000<br>19000<br>19000<br>190000<br>100000000 |
| 10,4444426 82<br>10,5944426 82<br>10,5944446 84<br>10,4946 84<br>10,4946 84<br>10,198448 84<br>10,19848 84<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ana a a a a a a a a a a a a a a a a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

-----

126

(Sheet 8 of 16)

(Continued)

THEY PARA THEY PARA LAAD THEY PARA LAAT THE PARA LAAT THEY PARA LAAT THE PARA LAAT THEY (Sheet 9 of 16)

(Continued)

- Alternation

ES.

<u>IEPP: 43.80800</u> BELAXATION FAUTOM AFIF 9.25900 TOLERANCE DEL 0.4005-05 McCU: CP DOWEL VW89= 0.300E 04 PO1850M 3 RAXIO OF DOWEL PRDs 0.20009 44.09696 ¥4.99004 144.09889 186.89889 214,86886 244,96889 292.58089 244.68888 276.48888 10000 COMP. DIMEN. OF MATRIX CULCUDE TOTAL NO. OF MODAL PTS.,LMPE MEAD: MCF: MCK: MARAJ: 48.00000 YA.98268 144,00000 188,00000 216;00000 252,00090 276.00000 288,0000 THICKAESS 79 12.40000 POISSSON & RATIO R. 0.20040 MODULUS YN 9.0006 67 -2242422 NELDA 130 JOINT NO, INITIAL SIATING NEDAL NE, IJSMNI AND LAST FIMAL N**obal no. (lfan) on bite Sidef of Joint Are** 1 0 0 0 0 0 0 222450 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25270 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 25770 257700 257700 257700 257700 257700 257700 257700 257700 257700 257700 2 \$ 1 LOADS AKE APPLIFD ON THE ELEPENT NC.(AL) MITH COORDINATEBIXDA + YDA) AND INTENSITIU) AS SHOMNA 80 -1.00000 1.00000 -1.00000 -1.000000 -1.000000 1.000000 -100.00000 NCOMP= 44 PA B4 -----WRUe 200 • ÷. 20 COMPUTED DINEM. OF STIFINESS MATRICES & AND G. LNCB. 9481 Comp. DIMEM. Of Matrix GL,LGLE. 1 10741 MO OF SQUATIONS, LNO. 297 NGYLE\* 2 ICX\* JACX\* MUNTA\* : 1010- 200 - 7.0 5 5 7 6 6 NOUAL NO, AT WHICH STRESSES ARE PRIMTED 98 41 42 42 63 69 78 71 72 78 79 80 81 87 88 • (Continued) ar; 4235 LOAD,TEMM.SLAL UT. FINITE ELEMENT AMALYSIS OF CONGRETE PAVEMENTS LNG80= 9281 LCUD= 500 • NGAP. ICX. NSY. IGNOR NOVAL MUMBERS AND INITIAL GAFS ARE TABULATED AS FCLLONS... 0 0. -593r ACTCOME D ATENDE D ASX ICLF 199 JFPRE D RUDES ANULWT DF [NITIAL CUALING ANE GAF AT THE NUT 1 U:31104 U 0:22404 3 0:1720 2 0:31204 10 0:22404 11 0:1720 2 0:2104 10 0:22404 11 0:1720 2 0:1720 2 0:12706 2 0:1720 2 0:1720 2 0:12709 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 2 0:1720 0:1720 2 0:1720 2 0:17 4 ÷.N JOINT ND, ANJ VALUES OF IST ARE SUNG. MODULUS SUBMON 140,00000 FINGL TOLER. DELT 0,100E-02 JOINT ND, ANT VALUES OF NJT ARE U JOIMT MD, ANN VALUES OF MKT AME 1 0 5 **~%~**\$ FOR SLAW ND. 1 P NXP 11 FON BLAD ND. 2 # X" 4 41:0ND= NPH [ HT= NHT= ICL= I.AT2= • n c • \*141058 FOU LAVER NO. 1 NaLAge 1 -1 NLAYER 284,00999 Btty 6. うちいちょうかいが

(Sheet 10 of 16)

5.57 M'SSS

ć

ŀ

And A State of the State of the

-

· ▶ 5 + 5

See 1

| 7 0.11772 78 0.14648 79 0.19548 80<br>0.135868 89 0.148940 87 0.149548 89<br>3 0.135889 94 0.19592 99 0.14528 96                  | H e IS C.                                  | TOTAL LOAD FALCULATED* 1440                         |  |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------|--|
| 0,10800 77<br>0,14796 85<br>0,22464 93                                                                                            | TRANSFER, CI                               |                                                     |  |
| 2435 74 1.1712 75 0.12528 74<br>24352 82 0.28620 83 0.19980 84<br>8436 90 0.28620 51 0.33184 92<br>14400 94 0.28627 59 8.33184 92 | ULTIPLYING FACTOR FOR LEFICIEACY OF MOMENT | UNIFOR <sup>4</sup> LY APPLIFD LOAD TAPLT= 12440,89 |  |
|                                                                                                                                   | THE T                                      | TOTAL                                               |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F DR F DR F DR F DR   F DR F DR F DR F DR F DR   F DR F DR F DR F DR F DR   F DR F DR F DR F DR F DR   F DR F DR F DR F DR F DR   F DR F DR F DR F DR F DR   F DR F DR F DR F DR F DR   F DR F DR F DR F DR F DR   F DR F DR F DR F DR F DR   F DR F DR F DR F DR F DR   F DR F DR F DR F DR F DR   F DR F DR F DR F DR F DR   F DR F DR F DR F DR F DR   F DR F DR F DR F DR F DR   F DR F DR F DR F DR F DR   F DR F DR F DR F DR F DR   F DR F DR F DR F DR F DR   F DR F DR F DR F DR F DR   F DR F DR F DR F DR F DR   F DR F DR F DR <t< th=""></t<>                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HULTTPLYING ACTOR <th>MULTIFLYING FACTOR FOR FACTOR FOR</th> <th>1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1</th> <th>MUL 7 TAJ, ER, MT MUL 7 FLUT MUL 7</th> <th>F/F MULT MULT</th> | MULTIFLYING FACTOR FOR | 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 | MUL 7 TAJ, ER, MT MUL 7 FLUT MUL 7                                                                                                                                                                                                                      | F/F MULT                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 | Mill                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F DR   MULTIANS   MULTIANS   MULTIANS     F C MULTIANS   MULTIANS   MULTIANS   MULTIANS     F MULTIA |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mr.M. TRAD. ER. HM A   Mr.M. TRAD. ER. HM A   Mr.M. TRAD. ER. HM A   Mr.M. State C   Mr.M. State C </td <td>F0R   NOHLNT   TAAN   F.M.   A     F1   F.C.   V.V.V.F.U.   F.M.   A     F1   F1   F.   V.V.   A   A     F1   F1   F1   F1   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y</td> | F0R   NOHLNT   TAAN   F.M.   A     F1   F.C.   V.V.V.F.U.   F.M.   A     F1   F1   F.   V.V.   A   A     F1   F1   F1   F1   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mit TAA K   Mit TAA K   Mit TAA K   Mit TAA K   Mit Taa L   Mit Taa Taa   Mit Taa    Mit Taa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F DR   MINT   TAAN   FA     T C   + V   + V   + V     T C   + V   + V   + V     T C   + V   + V   + V     T C   + V   + V   + V     T C   + V   + V   + V     T C   + V   + V   + V     T C   + V   + V   + V     T C   + V   + V   + V     T C   + V   + V   + V     T C   + V   + V   + V     T C   + V   + V   + V     T C   + V   + V   + V     T C   + V   + V   + V     T C   + V   + V   + V     T C   + V   + V   + V     T C   + V   + V   + V     T C   + V   + V   + V     T C   + V   + V   + V     T C   + V   + V   + V     T C   + V   + V   + V     T C <td< td=""></td<>                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mr. TRAD. ER. M. 1   0.73.995-013 0.73.995-013   0.73.995-013 0.73335-013   0.73.915 0.73335-013   0.73.915 0.73355-013   0.73.915 0.73355-013   0.73.915 0.73245-013   0.73.915 0.73245-013   0.73.915 0.73245-013   0.73.915 0.73245-013   0.73.915 0.73245-013   0.73.915 0.73245-013   0.73.915 0.73245-013   0.73.915 0.73245-013   0.73.915 0.73245-013   0.74045 0.73245-013   0.74045 0.73245-013   0.74045 0.74446-013   0.74045 0.74446-013   0.74045 0.74446-013   0.74045 0.74446-013   0.74045 0.74446-013   0.74045 0.74446-013   0.74045 0.74446-013   0.74045 0.74446-013   0.74045 0.74446-013   0.74045 0.74446-013   0.74045 0.74446-013   0.74045 0.74446-013   0.74045 0.74446-013   0.74045 0.74446-013   0.74045 0.74446-013   0.74045 0.74446-013                                                                                                                                                                                                                                                                                                                                                                                                                     | FDR HOMENT TRANE 1   FL HULT HANNENT 1   FL D0 D1 1 1   D0 D1 1 1 1   D1 D1 1 1   D1 D1 1 1 1   D1 D1 1 1 1   D1 D1 D1 1 1   D1 D1 D1 1 1   D1 D1 D1 1 1   D1 D1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

of 16) H (Sheet

250 YES

(Continued)

ŝ,

......

1.10

ą

-574, T.L.

1

4.1. 1. 14 ME. TO

**6**, 9 1.0

ł

1

Mark Constant

| 80 0.03965<br>88 0.03028<br>98 0.02749                                               | RANSFER, CM. C.    | R01A1.X<br>R01A1.X<br>R01A1.X<br>R01A1.X<br>R01A1.X<br>R01A1.X<br>R01A146-03<br>R0129396-03<br>R0129396-03<br>R0129396-03<br>R0129396-03<br>R012946-03<br>R012946-03<br>R012946-03<br>R012966-04<br>R01296-03<br>R012966-04<br>R01296-03<br>R012966-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01296-04<br>R01 | nitoZatavia chaatZavia |
|--------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 79 0.01761<br>87 0.01447<br>95 0.02065                                               | 467 OF HOMENT 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - An 30,0910           |
| 78 60.20240<br>66 0.20242<br>74 0.202472<br>72069                                    | ACTOR FOR GFFICTEN |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| 77 -0,01486<br>69 0,00442<br>94 0,00442                                              | HULTIPLYING F.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| te =0.01165<br>10.05745<br>12 0.05745<br>12 0.05745                                  | •                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| 75 -0.00197 1<br>24 0.00197 1<br>51 0.11025 1<br>59 0.07692 1<br>24 1AG CCMTAGT,100  | HHT 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| 4 74 3.424/4<br>9 82 0.09341<br>7 94 0.005545<br>1 98 0.06547<br>101 CYCLE F AK CHEC | FOR NUMENT TRASFER |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| /3 0.0779.<br>41 0.05371<br>49 0.0544<br>190544<br>910544<br>910,01 17644            | CA86 NO. 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |

|                | 0,16979   | 0,05496      | -0,02758    | -0.06291   | -0,06306    | -0,02802    | 0,03970     | 0,13274     | 0,06375     | 0.05847    | 0,04714    | 0,04136    |            |
|----------------|-----------|--------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|------------|------------|------------|------------|
|                | •         | 10           | 24          | 32         | ÷           | Ŧ           | \$          | 3           | 78          |            | 8          | 96         |            |
|                | 1.14327   | 0.01664      | 40.0470X    | 26990.0-   | +0:04720    | 0.01625     | 0.11756     | 0.05468     | 0.04728     | 0.03285    | 02379      | 0.04328    |            |
|                | •         | 1            | R           | 1          | ;           | 47          | 5           | 29          | 11          | •          | 5          | 5          |            |
|                | 8,49341   | •0° 00556    | +0*:19547   | -0° u5347  | *0, 40248   | 0.49289     | 0,04167     | 0.43774     | P. U2004    | 0, 10843   | 0.01474    | 0, 13726   |            |
|                | •         | 1            | 33          | 20         | 5           | ŧ           | 2           | 89          | 20          |            | 2          | 4          |            |
|                | 0,06935   | -0,01286     | +0,04075    | •0,01296   | 0,06919     | 0,03373     | 0,02404     | 0,01040     | -0,00478    | -0,00152   | 0.81792    | 0,06134    |            |
|                | ŝ         | 77           | 21          | 20         | 5           | \$          | 55          | 61          | 69          | 11         | 5          | 59         |            |
|                | 0,00010   | •0.0016Q     | +0;00162    | 0.06023    | 0,03792     | 0,01516     | -0.00463    | •0,01596    | •0,01558    | 0.00086    | 0,04108    | 0,11072    |            |
| -              | ۳         | 12           | 30          | 9          | 36          | ł           | 52          | 2           | 8           | 2          | ž          | ¢          |            |
| NCDES 184      | 0.07001   | 0,03722      | 0.07000     | 0,04232    | 0,01853     | -0.01525    | -0.03289    | -0,02725    | -9,01395    | 0,02305    | 0,06978    | 0.19037    | 0,10325    |
| 116            | ••        | 11           | 5           | 57         | ж<br>г,     | 10 <b>4</b> | 15          | ۵.<br>۴     | 67          | 5          | 53         | 15         | 45         |
| D NOISS-MANDER | 2 0.11012 | 10 11-11-012 | 14 7.111100 | 20 0.04166 | 44 -0.01347 | 42 -0.04557 | 5u -0.04576 | 55 -0.026/2 | 60 n. 00722 | 74 0.0714U | 82 a.149uv | 91 C.UM788 | 90 6.46702 |
| HE GAP OR      | 0.18246   | 0-19117      | 74070.0     | 8.00788    | -0.04596    | -0-04044    | -0.04631    | -0.00440    | 0.6440.0    | 0,14989    | 0.07477    | 0.07216    | 0.06398    |

Ŧ

------

The Sugar

z

(Sheet 12 of 16)

(Continued)

n

ð

A STATE AND A STATE AN

NU, OL ITEMATIO" UYGLE POM GMEGMIPG CONTAGTAIUC 9 Gabe no, fur mument traspiramte - 1

HULTTPLYING FACTOR FOR REGIGIENCY OF HOMENT TRANSFER, CM

(Sheet 13 of 16)

(Continued)

16) (Sheet 14 of

(Continued)

|                |               | RC1A1,Y<br>C1,13876-03<br>C1,13876-03<br>C1,14186-03<br>C1,14406-03<br>C1,14406-03<br>C1,26196-04<br>C1,26196-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|----------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                | TRANSFER, CH  | R0141.X<br>0.45256-04<br>0.249356-04<br>10.249356-04<br>0.56126-04<br>0.368126-04<br>0.38816-04<br>0.38816-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|                | Y OF "IDMENT  | DEFLEC:<br>0,74254=01<br>0,87796=01<br>0,14956=01<br>0,47365=01<br>0,47365=01<br>0,47365=01<br>0,47365=01<br>0,47365=01<br>0,40416<br>0,45596=01<br>0,45596=01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 |
|                | ICTENC        | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|                | ACTOR FOR LEE | R0141,<br>-0,13146.05<br>-0,12346.05<br>-0,12146.05<br>-0,12116.05<br>-0,12146.05<br>-0,12146.05<br>-0,12056.05<br>-0,13056.05<br>-0,13056.05<br>-0,19054.05<br>-0,19054.05<br>-0,19054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,10054.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,100555.05<br>-0,1005555.05<br>-0,1005555.05<br>-0,1005555.05<br>-0,1005555.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|                | יחרגוררזאכ נ  | R0TAT,X<br>9,41336-03<br>-0,47966-03<br>-0,42706-03<br>-0,42706-03<br>-0,42086-03<br>-0,47026-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • |
| ŝ              | -             | DEFLEC.<br>0,78296601<br>0,79496601<br>0,72086601<br>0,72086601<br>0,72086601<br>0,72086601<br>0,72086601<br>0,7208601<br>0,7208601<br>0,72086001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,70366001<br>0,700000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| - 101 -        |               | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| ECHING CCHTAGT | 1, # M1= 1    | RC1474<br>RC1474<br>RC1476<br>0.22476<br>0.22496<br>0.20496<br>0.20746<br>0.20746<br>0.20746<br>0.20746<br>0.20746<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.2014<br>0.20140000000000000000000000000000000000 |   |
| CLE FOR CH     | MENT TRASPER  | HUTA! 7<br>HUTA! 7<br>HUTA! 7<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUTA<br>HUT                                                                                                                                                                               |   |
| ITENATION (    | IE NO. FOR HC | PEFLEC.<br>94295-01<br>93378-01<br>93378-01<br>039338-01<br>039378-01<br>0394805-01<br>0394805-01<br>0394805-01<br>0394805-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| NU. OF         | CAN           | N00<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , |

17. j

×.

|                                                                                                                           | 74406644444<br>647007476844<br>647007476847                                   |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                                                                                                           |                                                                               |
|                                                                                                                           |                                                                               |
|                                                                                                                           |                                                                               |
| 00000000000000000000000000000000000000                                                                                    |                                                                               |
| 1000 100 100 100 100 100 100 100 100 10                                                                                   |                                                                               |
|                                                                                                                           | 000000000000<br>11.k                                                          |
|                                                                                                                           | てきままできてきないでしょうできょう                                                            |
|                                                                                                                           | 01000000000000                                                                |
|                                                                                                                           | 9 9 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                       |
|                                                                                                                           |                                                                               |
| 887 - 100 8 8 7 7 7 8 8 7 7 7 8 7 7 7 7 7 7 7 7                                                                           | 470004700047                                                                  |
|                                                                                                                           | えごう ご チ ご キフ ア ゆり                                                             |
|                                                                                                                           | 1161 7 Q                                                                      |
|                                                                                                                           |                                                                               |
| $ \begin{array}{c} \wedge & \wedge & \wedge \\ \wedge & \wedge & \wedge \\ \wedge & \wedge & \wedge \\ \wedge & \wedge &$ |                                                                               |
|                                                                                                                           | 48 49 49 49 49 49 40<br>48 49 4 4 4 4 4 4                                     |
|                                                                                                                           |                                                                               |
| 00 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                    |                                                                               |
|                                                                                                                           |                                                                               |
|                                                                                                                           | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                       |
|                                                                                                                           |                                                                               |
| 04004444400000000000000000000000000000                                                                                    | 40191990004419930<br>3 0313 7 03 7 0 0 7 7 7 8<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|                                                                                                                           | 200000000000000                                                               |
| 2010 4 10 0 10 10 10 10 10 10 10 10 10 10 10 1                                                                            |                                                                               |
|                                                                                                                           | 6                                                                             |
| , , , , , , , , , , , , , , , , , , ,                                                                                     | - 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                       |
| **************************************                                                                                    | 2                                                                             |
|                                                                                                                           |                                                                               |
| 144444444464488488488888888888888888888                                                                                   | К<br>Ш 440040040000<br>Сираекисаекиса                                         |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                     |                                                                               |
|                                                                                                                           |                                                                               |
| <pre>d d d d d d d d d d d d d d d d d d d</pre>                                                                          |                                                                               |

Table 11 (Continued)

Contraction of the second second

ć

1

0

132

Ŧ

ć

₹

;

٩

Table 11 (Continued)

......

12 -35

|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | 5 6 (                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|
| 11110000000000000000000000000000000000                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | 101 g26                                                              |
|                                                                                                                                                                                                                                                                                    | 0 0 0 0 0 1 4 4 6 5 5 6 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    | 271<br>271                                                           |
| ри в ри с и ра в ра в ра в ра с в                                                                                                                                                                     | 6 10 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 7 7 6 6 7 6 7 7 1 7 4 6                          | 27 7                                                                 |
|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 000000000000                                       |                                                                      |
| N - 4 4 0 0 0 4 0 4 0 0 4 0 0 4 0 4 0 4 0                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | N8N 8                                                                |
| 748446666666666666666666666666666666666                                                                                                                                                                                                                                            | 90044000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                                                                      |
|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | 8 9 9 F                                                              |
|                                                                                                                                                                                                                                                                                    | 4 10 14 00 14 00<br>64 10 14 00 14 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0            | 225 S                                                                |
| いかしょうのないかった。ちょうかんなキャンシングルイン・シークシューシン・シーン・シーン・シーン・シーン・シーン・シーン・シーン・シーン・シーン・                                                                                                                                                                                                          | 400000400000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |                                                                      |
|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                                                      |
| 000000000000000000000000000000000000000                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~~~~                                               | * 20                                                                 |
| 4 n 0 m 4 0 m 1 m 4 m 0 m 4 0 n 1 m 4 n 0 m 4 0 0 m 4 0 0 m 4 0 0 m 4 0 0 m 4 0 0 m 4 0 0 m 4 0 0 m 4 0 0 m 4 0                                                                                                                                                                    | くいね く くうせん やか ひまだま                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | えい どうす ウタット おう                                     | <u>_</u>                                                             |
|                                                                                                                                                                                                                                                                                    | NL & P NE L J & L D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00000000000000000000000000000000000000             | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                               |
|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 004400MM101M                                       | N A A A                                                              |
|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                                                      |
|                                                                                                                                                                                                                                                                                    | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • •                                                | • • •                                                                |
|                                                                                                                                                                                                                                                                                    | ゆう ここう ひつき ひこう かうしょう しゅく くり ちょく ひょう ちょうき                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40004400844<br>400045400844                        | <b>5</b> 50                                                          |
|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                |
|                                                                                                                                                                                                                                                                                    | 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82078887989<br>8207887987<br>8207887987            |                                                                      |
|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | INTE                                                                 |
|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                                                      |
|                                                                                                                                                                                                                                                                                    | 88 48 5 6 7 48 5 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***                                                | • • ¥                                                                |
|                                                                                                                                                                                                                                                                                    | <i><b>ПОВИЙ КОВО</b>ВО</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~             | in 222                                                               |
|                                                                                                                                                                                                                                                                                    | 6 4 h 8 4 6 7 8 6 h 6 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    | t mymus                                                              |
| よれうようの? ひろう ひろの アデキタウ よらんのうち ろうろころ おうかんえ うろう ゆゆゆぶ ひょうかうゆう ちょうかの なかり しゅうしゅう ひゅうう ほう しょうかん しょうしょう しょう | 00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000<br>00.000000 | 8 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1            |                                                                      |
|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | () 051                                                               |
|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | 50 C                                                                 |
| ええごちちさ はみかううちゅう こうのう つうらり えうのう つうらう こうのう こうのう こう うっしょう こう しょう しょう しょう しょう しょう しょう しょう しょう しょう しょ                                                                                                                                                                                   | N * # # 0 N * # # 0 N *<br>4 # / * * 0 * * 10 M / *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                                      |
|                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4<br>0                                             | r S S                                                                |
| **********************                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | <u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>                         |
|                                                                                                                                                                                                                                                                                    | 866666666666666666666666666666666666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16666666666666666666666666666666666666             | 24 A 8                                                               |
| くりゃく りこちゅう かの ひちき うつき くじつ ごく クラム 白 ひかのいの よう おこり ひがん かる ひこう ひがん かる つう ひのん なん オービー ひかる ひょう かん ちょう ちゅう ちょう ちゅう ちょう ちゅう ちょう ちゅう ちょう ちゅう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょ                                                                                                         | 2000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                                                                      |
| ~ # W = 11 = 12 = 12 = 12 = 12 = 12 = 12 =                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *****                                              | °                                                                    |
| ,<br>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G                                                  | _                                                                    |
|                                                                                                                                                                                                                                                                                    | 5004040050050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>AV/9245445/074</b>                              | 5°5°                                                                 |
|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 73777407631767<br>944674696078600<br>7444447777767 | ᅕᆑᄚᅭ                                                                 |
|                                                                                                                                                                                                                                                                                    | X 444800000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    | 5555<br>5555<br>5555<br>5555<br>5555<br>5555<br>5555<br>5555<br>5555 |
|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                  |                                                                      |
|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 00 9 0 8 0 8 0 9 0 8 0 8 0 8 0 8 0 8 0           |                                                                      |
|                                                                                                                                                                                                                                                                                    | ά<br>Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                  | , E                                                                  |
|                                                                                                                                                                                                                                                                                    | E00 10000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | र्षेत्र न<br>जन्म                                                    |
|                                                                                                                                                                                                                                                                                    | 4 NN 88000004000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                                                                      |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | 43                                                                   |
| NNNNNN 4 4 4 4 8 8 8 4 4 9 7 7 7 7 8 8 8 9 4 4 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | z .                                                                  |
|                                                                                                                                                                                                                                                                                    | 4 6 6 A 6 A 9 9 9 9 0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 6 6 6 6 6 9 9 9 0 0 F                            | ļ;                                                                   |
|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | Ă                                                                    |

(Sheet 15 of 16)

والمتعاولة المراجع والمعالم المعالم والمعالم والمعالم والمعالم والمعالم والمعالم والمعالم والمعالم والمعالم وال

~~~~

(Sheet 16 of 16)

,

The Chiers

200

1.1

	7.	1,709081L P2	-0.4773356 02	0.104777E 03	-0,130452E 03	0.119104E 92	0,711314E 02	-Stresses due	to load alone
1	•	113174E U3	-0,152727E V2	0;973956E 02	e0.173228E 03	0,447419E 82	1,109005E 03	0,107592E	02 - Otreses due
		1171276 03	40,1141/95 94 0.	U.JUGSTUR US	-0,1014946 UJ	0.477441E VZ	0,0020076 02 J.5656346 02	0.1740046	to lond, ter
	1	77/4956 02		; -	-0.7774956 02		0,3887486 02		T and high K.
8 9 1	- i - i	7421/96 02	-C.185068E US	0,777590E 02	e0,225134E 03	=0.441327E B2	1, 954904E 02	0,134746	02
20	Ĩ	724984E u2	-0.114095 U2	1.944273E 82	-0.142220£ 03 -0.166663F C3	0.2217235 02	0.9442/4E 02	0.1593146	62
	. 7	1 48/V45E 02	-0.478905E 02	0.108948E 03	-0.128294E 03	0-3140486 02	0,7990536 02		
71 1		752457E u2	-C.115641E U2	0:102009E 03	e0.151249E 03	20 3067070 0	9.207844E 03	0.1748456	Q2
		7700195 02	-0,/222045 01	V.112JATE UJ	-0,122196E 04 -6.776619E 02	0.02VIV4E P2	0,9380756 02 1.3853006 02	0.189452	5 U
•	1	5026791 02			-0,5056796 02		0,2520406 02		77
2	ş	414340E 42	-C.18299CE U3	0;829471E 02 1 0001485 03	0.222112E CJ		3.200006 03	D.142432E	02
•2	•	3074246 82	-C.7380306 42	0;100512E 03	-0.196302E 03	0.4579456 82	1.102824E 03	0.1480155	62
. 1	1	1.263370E 02	-0.450887E 04	0.112235E 03	*0.120501E 03	0.514795E 02	0,887663E 02		
-	•	51742E U2	-C,2527875 01	01103050E 03	#0.122907E 63	0.671411E 82 A.6824375 47	9.104443E 03	0,1863296	02
	-	271026E u2		0	W.291026E 02		0.1455136 02	0.1955436	62
	1	1133043E 02	•		*0,133043E 02	ė	0.6622176 01		
17	Ē	1273453E 02	-C.1851876 03	0;080984E 02	et.222691E 03	0.206410E 02	0.121176E 03	0.1501376	02
5		147444E 02	-0,11/1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	8.102115E 83	-0.152931E 03	0.2140405 02 0.707130£ 02	1.1066226 03	0.1767976	82
•	7	122.0407E C2	-0.520522E 02	0.1111246 05	-0.124176E 03	0,417992E 02	0,929867E 02		
-	5	158566E 82	C.160545K µ2	6:942939E 02	00.783364E 02	0.1102526 03	1.942940E 02	0.1959126	0 2
4		547743E 22	U.C.T.1445 UM	U.VTUBELE UE Gi		0.987748E 82	6.293876E 02	0.2059646	02
	2	.65-37er 02	.0		0,756355E 01	0.50/740E 02	0,254052E 02		
:	5		-C.19C551E U3	:•	-0.190551E 03		0.952757E 02	0,1577826	92
47 A	.		-U.1240676 U2 •G.829529E Q2	• ;-	.0.12001/E 03		0.414265E 62	0.1855826	82
			•0.563173E 02		-0.563173E 82		0,2815A6E 02		
•	,		0.967793E 42			0.2677936.02	4, 203494E 02	0,2054866	92
:		•	0.0449/0E 02 f	•	0,7677785 01	0.50//735 02	0,24250/E 02	0 312316 D	
								38/0673.0	70
	•	•	;	:			5		
EFLECTION	3.0	O LOAD ALONE	NC TEPP. AND SLI	B VEIGHT EFFECT					
	•	-1.306E+01	3 -0.250E-01	4 -0.198E-01	5 -0,160E-01	6 -0,110E=01	7 -0,709Es02	8 -0.364	-12
•9;;476•;	23 N:0		11 -C.246E-01	12 -0.188E-01	14 -0,132E+01	14 -0,980E-02	15 -0;435Ek02	10 0.101	-02
		0-1476-02	27 0.4716-01	20 -0.100E-01	41 -0.1465-01 89 -0 1345-01		2) -0,4205802 21 -0,4416-61		280
1129E-0	1	0.2141-01	39 0.277E-01	24 D.309E-01	27 =0.1436=01	38 -0.937F-62	31 -0;0416903 39 -022606403		
0.128E-0	42	0.217E-01	44 0.3366-01	44 0.419E-01	45 0.451E-01	46 -0.125E-01	47 40200Es02	40 0.271	-62
31220E-0	17 50 50	2.2140-01	51 C.334E-01	52 0.4776-01	\$3 0.579E-01	54 0.630E-01	55 -0,958En02	54 -0.171	- 02
		0.1766-01	54 0.245E-01	60 0.425E-01	\$1 0.591E-01	62 0,709E+01	63 02767Ee01	64 -0 002	-02
		0.1854-02	75 0.4526-01	88 0.020E+U1 76 0.036E-01		70 0,691E-91	71 02/7/E+01	72 0.46	
		-0.481E-02	83 0.369E+02	24 0.135E+01	45 0.2675-01				
0-307610	8	0.9891-01	91 -C. 316E-02	92 0.553E-02	94 0.158E-01	94 0 297Ee01	e5 0:440E401	94 6.422	
0-3458-0	1 98	n,988t-01	95 C.106E OU				• -		

Table 11 (Concluded)

SEAMOR W. DY

NK5

Ċ

Ľ

1

6

and NTEMP are both equal to 1 because both the temperature and weight of the concrete slab are considered. The total temperature differential between the top and the bottom of the slab is 45° F. NSTORE = 0 because it is the first run, and NLOAD = 0 because the load is not considered in the first run.

Entry 2

100. The meaning and sign convention of the initial curling and gap can be found in Entry 3 of Computer Output 2. Entry 3

101. The expressions in Entry 3 are the same as those shown in Entries 5, 6, and 7 of Computer Output 2. Entry 4

102. The expressions in Entry 4 are the same as those in Entries 11 and 12 of Computer Output 2.

Entry 5

103. The computed stresses and deflections are stored to be used in the next run.

Entry 6

104. NSTORE = 2 indicates that the stresses and deflections computed in this run will be subtracted from those computed in the preceding run.

Entry 7

105. The applied load is considered in the second run. Entry $\underline{8}$

106. Two sets of stresses are computed and printed. The stresses due to the applied load, temperature, and slab weight are printed in the line where the number of the nodal point is printed. The stresses due to the applied load alone are printed in the line immediately below the printed stresses due to the load, temperature, and slab weight and are printed one space to the right. For instance, at nodal point 71, stress σ_{χ} due to the load, temperature, and slab weight is -75.2457 psi and that due to the load alone is only -49.8533 psi.

Entry 9

107. The deflections are those due to the applied load alone,

which are the differences of the computed deflections due to the applied load, slab weight, temperature, and gaps and those due to the slab weight, temperature, and gaps. In this example problem, gaps are not assumed. If they are assumed, the magnitude of the gaps should be those without temperature influence.

ъ.

and the second second

C.

PART VI: CONCLUSIONS AND RECOMMENDATION

108. The computer program WESLIQID has the capacity of obtaining solutions for rigid pavements with discontinuities. The program is versatile because of its various options dealing with problems of different natures. The program is economical to operate and requires only a reasonable amount of core space. It is recommended that the program be used for routine pavement design, analysis, and research purposes.

APPENDIX A: ANALYSIS OF TWO-LAYER SLABS

1. The program can be applied to two-layer slabs, either bonded or unbonded. Layer 1 has a thickness t_1 , a modulus of elasticity E_1 , and a Poisson's ratio v_1 . Layer 2 has a thickness t_2 , a modulus of elasticity E_2 , and a Poisson's ratio v_2 .

2. In the case of unbonded layers, the displacements of both layers are assumed the same, the modulus of rigidity R of the two-layer slab is simply the summation of that of each layer, or

$$R = \frac{E_1 t_1^3}{12(1 - v_1^2)} + \frac{E_2 t_2^3}{12(1 - v_2^2)}$$
(A1)

After the displacements are determined, the stresses in each layer are computed, based on the stress matrix of each.

3. In the case of bonded layers, a composite thickness is used. The composite thickness t can be determined by

$$t = t_1 + t_2 E_2 / E_1$$
 (A2)

Taking the moment at the surface, the distance of neutral axis from the surface d_n can be determined by

$$d_{n} = \frac{0.5t_{1}^{2} + t_{2}(t_{1} + 0.5t_{2})E_{2}/E_{1}}{t_{1} + t_{2}E_{2}/E_{1}}$$
(A3)

The composite moment of inertia I is

$$I_{\text{comp}} = \frac{1}{12} t_1^3 + t_1 \left(d_n - \frac{t_1}{2} \right)^2 + \frac{1}{12} \left(t_2^3 \cdot \frac{E_2}{E_1} + t_2 \cdot \frac{E_2}{E_1} \left(t_1 + \frac{t_2}{2} - d_n \right)^2 (A4)$$

The composite Poisson's ratio v is

A

$$v_{\rm comp} = \frac{v_1 t_1 + v_2 t_2 E_2 / E_1}{t_1 + t_2 E_2 / E_1}$$
(A5)
The modulus of rigidity of the composite slab is

$$R = \frac{E_1 I_{comp}}{1 - v_{comp}^2}$$
(A6)

After the displacements and moments are determined, the maximum stress in layer 1 σ_1 can be obtained by

$$\sigma_{1} = \frac{Md_{n}}{I_{comp}}$$
(A7)

in which M is the moment in the direction corresponding to the component of stress. The maximum stress in layer 2 σ_2 is

$$\sigma_2 = \frac{M(t_1 + t_2 - d_n)E_2/E_1}{I_{comp}}$$
(A8)

ŧ.

In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

Chou, Yu T. Structural analysis computer programs for rigid multicomponent pavement structures with discontinuities --WESLIQID and WESLAYER : Report 2 : Manual for the WESLIQID Finite Element Program / by Yu T. Chou (Geotechnical Laboratory, U.S. Army Engineer Waterways Experiment Station). -- Vicksburg, Miss. : The Station ; Springfield, Va. : available from NTIS, [1981]. 137, 2 p. : ill. ; 27 cm. -- (Technical report / U.S. Army Engineer Waterways Experiment Station ; GL-81-6, Report 2) Cover title. "May 1981." "Prepared for Office, Chief of Engineers, U.S. Army under Project No. 4A762719AT40, Work Units 001 and 003." 1. Computer programs. 2. Finite element method. 3. Materials--Dynamic testing. 4. Pavements. 5. WESLIQID (Computer programs). I. United States.

5. WESLIGID (Computer programs). I. United States. Army. Corps of Engineers. Office of the Chief of Engineers. II. U.S. Army Engineer Waterways

TA7.W34 no.GL-81-6 Report 2

A STATE OF A

188 A 190 A 11 A

S. S. S.

Chou, Yu T. Structural analysis computer programs for rigid : ... 1981. (Card 2) Experiment Station. Geotechnical Laboratory. III. Title IV. Series: Technical report (U.S. Army Engineer Waterways Experiment Station) ; GL-81-6, Report 2.