AD-A105 227		HOFF USER JUL HMC-	HOFFMAN MARITIME CONSULTANTS INC GLEN HEAD NY F/G 20/4 USER MANUAL FOR PROGRAM STATIC FIRST PART OF COAST GUARD SHI-ETC(U) JUL 79 T E ZIELINSKI DOT-CG-74080-B HMC-79141 USCG-M-6-79 NL								
	1 of 2 4p 4 105227	•									

NOTICE

4

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report do not necessarily reflect the official view or policy of the Coast Guard; and they do not constitute a standard, specification, or regulation.

This report, or portions thereof may not be used for advertising or sales promotion purposes. Citation of trade names and manufacturers does not constitute endorsement or approval of such products.

¢

C. S. Start Carpon . . .

Martin Server Law

Technical Report Documentation Page

R

1 Report No	2 Concernant Accounting No.	1. Recipient's Catalog No
CC N 6 70		
06-11-0-19	40-14/05 227	
4. Title and Subside	12 11 = = = +	5. Report Date
User Manual for Program ST	ATTC	, July 1979
First Port of U.S.C.G. Shi	6. Parlaming Organization Code	
inst ique of sibilities sin	p lotion logium	
	·····	8. Performing Organization Report No.
7. Author's)		701/1
Inomas E. Zielinski		/ / / /
9. Parlaming Digenization Name and Addre	**	10. Work Unit No (TRAIS)
Hoffman Maritime Consultan	ts Inc.	
9 Glen Head Road		CG = 74080 - B
Glen Head, New York 11545		
Commandant (G-MMT-4/13)		
U.S. Coast Guard		Final Manual
2100 2nd Street. S.W.		14. Sponsoring Agoncy Code
Washington, D.C. 20593		
15. Supplementary Notes		<u></u>
Program SCOMOT is pro	prietary software. It has	s been made available to the
U.S.C.G. and is intended	for their internal use.	
\		
16. Abtroci		
N		
A description of prog	ram STATIC, the first par	t of the revised and enhanced
SCORES program is presente	d with the theoretical bas	sis, organization and structure,
data input and output form	at described. A sample co	omputation using the SL-7
containership is included	to aid in the understanding	ng of the input and output
format. The program has	two major functions; calc	ulating the hydrostatic pro-
perties of a vessel and pr	eparing the two dimension	al hydrodynamic properties
for the ship motion progra	m SCOMOT. The curves of	form, shear force and bending
moment, grounding, intact	stability, balancing of bi	uoyancy and weight forces and
other calculations can be	performed for both still i	water and quasi-static con-
ditions. The two dimensio	nal added mass and damping	for neave, sway, roll and
roll-sway cross coupling a	re calculated for each se	ction using either a multi-
erricient conformal mappin	g Lechnique of the Frank	crose fit method.
		$i \uparrow$
		¥ 1
		1
17. Key Words Hudrostatics curves of fo	rm shear This des	Statement
force, hending moment gro	unding intact multa + h	ment is available to the U.S. rough the National Tachaical
etability balancino duae	i-static two i Informatio	n Corvice Corinefield Vireinic
dimensional added mase and	damping, con- 22161	on bervice, springitetu, virginta
formal manning. Frank Clos	e Fit. $SI-7$	
, 11011 0100		
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages 22. Price
Unclassified	Unclassified	SS Appondia
		IJJ ADDENGIXI

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

	ABSTRACT							
Ι.	INTRODUCTION	1						
II.	OUTLINE OF THEORY							
	A. Hydrostatic Calculations	3						
	B. Hydrodynamic Calculations	6						
I II.	DESCRIPTION OF INPUT SCHEME							
	A. Physical Description of Ship)						
	1. Geometry	23						
	2. Weight	27						
	B. Condition Information	31						
	C. Data Card or Data File Input Description	36						
	D. Sample Input	54						
	1. TERMINAL	56						
	2. UNITS	57						
	3. OFFSETS	59						
	4. DRAFT	60						
	5. GROUNDING	65						
	6. INTACT STABILITY	68						
	7. COEFFICIENT	71						
IV.	DESCRIPTION OF OUTPUT SCHEME	73						
v.	TIMING AND ERROR MESSAGES	77						
VI.	REFERENCES	80						
	APPENDIX A - Sample Output	A1 - A54						

APPENDIX B - Job Control Files

Page

...

B1

STATIC Program - User Manual Record of Changes

.

· · · · ·

, b

;

Date Module/	Page	Description
Subroutine		
	ł	
	l	
	Į	
	l	
	0	
]	
	1	

ABSTRACT

A description of program STATIC, the first part of the revised SCORES program, developed by Hoffman Maritime Consultants (HMC) for use by the U.S. Coast Guard, is presented. This program has two major functions; calculating hydrostatic properties of a vessel and preparing data for the ship motion computations. The curves of form, shear force and bending moment, grounding, intact stability, balancing of buoyancy and weight forces and other calculations can be performed for both static and quasi-static conditions. The two-dimensional added mass and damping for heave, sway and roll are calculated for each ship's section and stored as input for the ship motion program SCOMOT. Program theory, organization and structure, data input and output format are described. A sample computation is included to aid in the understanding of input and output formats.

I. INTRODUCTION

Program STATIC is a two part procedure that first calculates geometric quantities and then two-dimensional hydrodynamic data required for the new modified SCORES program (1)^{*}. The first part of this program has similar capabilities to the Ship Hull Characteristics Program (SHCP) (2) but can perform many other tasks of specialized nature. Hydrostatics, curves of form, shear force and bending moment, grounding, intact stability and balancing of the vessel are specific tasks that can be performed. The quasi-static case, that is the ship poised in an oblique sea of any amplitude, wave length and phase as well as still water case for these calculations can be handled. Preparation of geometric description files for the Springing (3) and Motion (1) programs is also done by the first part of Program STATIC.

The primary calculation of the second part of STATIC is of two-dimensional hydrodynamic properties using the conformal mapping approach (4)(5)(6) and the Frank close fit technique (7)(8). The two-dimensional added mass and damping for heave, sway, roll and sway-roll cross couplings are calculated for each section at twenty-five frequencies. This program thereby separates the lengthy calculations of twodimensional added mass and damping from the motion calculations by storing these results in a two-dimensional properties (TDP) file which is read by motions program SCOMOT.

Program STATIC is a separate program in the modified SCORES procedure, with a standalone capability. STATIC's greatest asset is that its operation is very simple. The command language used in its input scheme does not require strict formatting or remembering of lengthy input sequences and resembles a conversational type input.

STATIC is written in the FORTRAN IV language, checked out and run on the United Computing Services (UCS) CDC-6600 -1-

^{*}Numbers in parentheses refer to list of references at end of this report.

computer system.

The method of analysis is outlined below in Section II. The type of inputting scheme, which facilitates the running of the hydrostatic and two-dimensional hydrodynamic quantities will be described in Section III.

Typical runs showing input and output will be shown in Section IV. Section V will contain error messages and their meaning as well as typical running times for various tasks.

-2-

II. OUTLINE OF THEORY

The basic analysis used in STATIC can be divided into two topics:

- A) Hydrostatic properties and static shear force and bending moment
- B) Hydrodynamic calculations using either conformal mapping or Frank close fit techniques.

The two areas will be discussed in the next two sections.

A. Hydrostatic Calculations

Since the first topic is extensively covered in most naval architecture textbooks (9)(10) only a short summary and explanation of unique calculations will be given in this section.

Table 1.1 shows a typical hydrostatic output for a vessel at an even keel draft. Using several of these tables for various drafts enables the drawing of a curve of form, Figure 1.1

HYDROSTATICS

SEA-LAND 7 CONTAINERSHIP

-4-

STATION	MEAN DRAFT	BEAM	AREA	S.A. COEF.	VCB	HCB
FROM F.P.	(FEET)	(FEET)	(FEET ** 2))	(FEET)	(FEET)
0.0000	32.0000	0.0000	223.395	1.00000	10.2856	0.0000
11.0063	32.0000	2.0828	254.595	3.81988	11.5951	0.0000
22.0125	32.0000	2.9063	276.908	2.97745	12.1516	0.0000
44.0250	32.0000	5.8277	334.682	1.79468	13.2493	0.0000
66.0375	32.0000	9.6732	398.797	1.28835	14.3146	0.0000
88.0500	32.0000	15.4573	486.653	.98387	15.4437	0.0000
110.0625	32.0000	21.4845	584.891	.85074	10.4003	0.0000
132.0750	32.0000	20.4010	1012.120	71582	18 2078	0.0000
220 1250	32.0000	44.2020 50 0861	1280 000	- 1 2 0 3	18 1162	0.0000
264 1500	32.0000	74 5541	1803.131	.75580	18,1851	0.0000
308,1750	32.0000	87.0524	2237.807	.80333	17.8366	0.0000
352,2000	32.0000	96.7617	2638.511	.85213	17.4280	0.0000
396.2250	32.0000	103.0452	2949.063	.89435	17.0969	0.0000
440.2500	32.0000	105.4858	3149.362	.93299	16.8180	0.0000
484.2750	32.0000	105.5000	3194.614	.94627	16.7137	0.0000
528.3000	32.0000	105.5000	3152.395	.93377	16.8377	0.0000
572.3250	32.0000	105.5000	3049.651	.90333	17.1364	0.0000
616.3500	32.0000	105.3572	2857.579	.84759	17.6514	0.0000
660.3750	32.0000	102.8107	2537.426	.77127	18.4691	0.0000
704.4000	32.0000	94.8440	2101.474	.69241	19.3413	0.0000
748.4250	32.0000	82.5323	1576.490	.59692	20.3563	0.0000
770.4375	32.0000	74.1002	1301.971	.54908	20.8848	0.0000
792.4500	32.0000	60.6923 5h 2116	1024.554	.52754	21.3909	0.0000
814.4625	32.0000	54.3110	101.430	-4415/ E17EU	21.9455	0.0000
030.4730 858 1875	32.0000	42.1110	404.400	+21/24 JID068	24.3/91	0.0000
860 1078	32.0000	22 0115	125 020	58201	20.3954	0.0000
880 5000	32.0000	16 9388	60 208	61781	29 7100	0.0000
902.5125	32.0000	3.6812	2.739	.50000	31.5039	0.0000
	2	2			5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	
VOLUME	(MLD.)			1620237.	8 FEET **3	
DISPLAC	EMENT (MLD.	.)		46292.50	9 L.TONS	
BLOCK C	COEFFICIENT	(MLD.)		.54513	7	
HALF-AR	REA MIDSHIP	SECTION		1574.68	1 FEET **2	
MIDSHIF	P SECTION CO	DEFFICIENT		.93299	4	
PRISMAT	TIC COEFFICE	IENT (MLD.)	,	.58428	8	
TRIM				0.00	O FEET	
HEEL VOD (DD				17 78	O DEGREES	
				0 00	2 FEEI 0 FFFT	
	NOM E P)			477 50	Q FEET	
BM. TRAN	ISVERSE			27.35	1 FEET	
BM.LONG	GITUDINAL			1471.06	4 FEET	
MOMENT	TO ALTER TH	RIM 0.1 FE	ET	7734.15	8	
L.TONS	PER 0.1 FI	EET IMMERS	SION	181.42	2	
AREA OF	WATERPLANE	5		63497.56	0 FEET **2	
WATERPL	ANE COEFFIC	CIENT (MLD.)	.68365	0	
L.C.F.	FROM F.P.			499.79	8 FEET	
CHANGE	IN DISPL. P	FOR 1 FEET	TRIM AFT	-122.69	5 L.TONS	
WETTED	SURFACE (ML	_D.)		98304.57	7 FEET ** 2	

The cross curves of stability and bending moment and shear force calculations (9) are also performed.

One of the unique features of STATIC is the ability to analyze a ship in a quasi-static condition. A ship can be frozen in a wave, which is comprised of several sine waves of varying amplitude, wave length, phase and heading. This is extremely important in considering the fluctuations in bending moment due to the sea. It has also been shown by Paulling (11) that the ship's static stability is very sensitive to a seaway.

An additional calculation performed by program STATIC is grounding. When a vessel runs aground, the ocean floor exerts a force on the vessel which causes the vessel to rise and trim. The maximum bending moment is affected by the grounding force and is a subject of concern for the U.S.C.G.

One important point needs mentioning in the hydrostatic calculations; all integrations and interpolations are linear. Straight line interpolation and trapazoidal integrations are used.

The specific hydrostatic procedures and options of program STATIC are discussed in Chapter III.

-5-

B. Hydrodynamic Calculations

The choice of two methods of analysis in the hydrodynamic calculations was necessary to handle a wider variety of ship sections. Each method has its advantages as well as shortcomings. Therefore, a brief description of each shall be given.

The conformal mapping technique involves the representation of a ship's section by a Fourier-like series whose coefficients are called mapping coefficients. Once the mapping coefficients are known, it is relatively a straight-forward procedure to obtain the hydrodynamic quantities; therefore, the basic problem is the mapping of the ship's section. Most normal ship sections can be adequately described by mapping coefficients but certain sections such as completely submerged sections and bulbous bows cannot be mapped.

A ship's section can be handled by the close fit method which utilizes the Green function to represent pulsating sources below the free surface. Most sections can be handled using this analysis, but a very serious drawback does exist. It can be shown that a set of discrete "irregular" frequencies in the Green's function-integral equation failed to give a solution. In the area around each of these frequencies, the results are also unreliable but they are usually at a high frequency and out of the range of interest. As the beam to draft ratio becomes large, these "irregular" frequencies approach the operating frequencies and seriously effect the accuracy of the results.

The conformal mapping technique does not have this problem, so that it was chosen as the preferable method of analysis. If a section could not be represented by mapping coefficients, the close fit method was chosen. It was found that both methods required approximately the same computation time for comparable accuracy. -6-

The conformal mapping technique discussion is divided into two parts; the mapping of a section and the hydrodynamic properties once the mapping coefficients are known. The close fit method will also be discussed.

1. Conformal Mapping Technique

The one-to-one correspondence between the points on two distinct planes expressed by a single analytical function is the basis of conformal mapping. It finds application to ship problems when shapes whose equations and properties are unknown, can be mapped into shapes whose equations and properties are known in another plane. Most ship sections can be conformally mapped onto a circle of unit radius. The flow about an infinite cylinder of unit radius is known, therefore, the ship's section flow can be determined from the mapping transformation.

a) The Representation of Ship Sections by Conformal Mapping

The particular method discussed below was originally developed in (4) and has since been modified and updated in (5) and (12). The method described here is from (4). It is desired to represent a ship's section by the following equations:

$$\mathbf{x}(\theta) = \mathbf{a}_0 \sin \theta - \sum_{m=1}^{N} \mathbf{a}_{2m-1} \sin (2_{m-1}) \theta \qquad [1]$$

$$y(\theta) = a_0 \cos \theta + \sum_{m=1}^{N} a_{2m-1} \cos (2_{m-1}) \theta \qquad [2]$$

where a_0 , a_1 , a_3 ... a_{2n-1} are the mapping coefficients, θ is the angle in the plane of the circle (note it is not in the plane ship), and -7-

N is the number of mapping coefficients. Figure 1 shows a typical ship's section.

Figure 1.2

As can be seen from Equation 1 and 2, the unknowns are a_0 , a_1 : a_3 ... a_{2n-1} , and θ . It is not possible to obtain an analytic solution of N>2. Therefore, an iterative approach must be used. The values of x_i and y_i along the section contour are given to define the section.

The value of x and y for a specific value of θ and the mapping coefficients can be determined from the equation given above. However, x and y are the known quantities and the coefficients cannot be solved for directly, because the values of θ also depend on the coefficients. The first guess at the coefficients can be made rather arbitrarily, so long as the assumed curve does not deviate too far from the actual section shape. The better the guess, the fewer number of iterations to convergence. For this reason, a twoparameter mapping developed by Lewis (13) based

-8-

upon the beam, draft and section area in use. Once the mapping coefficients are known, it is necessary to find a θ_i that represents x_i and y_i . This is performed by assuming that the points $x(\theta_i)$ and $y(\theta_i)$ be on the same radial line as x_i and y_i (See Figure 2).

This can be re-stated as:

$$\frac{\mathbf{y}(\mathbf{\theta}_i)}{\mathbf{x}(\mathbf{\theta}_i)} = \frac{\mathbf{y}_i}{\mathbf{x}_i}$$
[3]

which can be re-written as:

$$y(\theta_i) x_i - x(\theta_i) y_i = 0.$$

This equation is solved using an iterative procedure based on a combination of the "secant" and "regular-falsi" methods. This procedure assumes the mapping coefficients $(a_i s)$ are known and solves for the angles $(\theta_i s)$.

Now a least squares technique is used to determine the mapping coefficients $(a_i 's)$ assuming that

-9-

the angles $(\theta_i's)$ are correct. First a set of linear equations in the coefficients a_n may be set up in the following manner. The squared distance between any two points on a radial line between the actual and calculated curve is as follows:

$$e_{i} = d_{i}^{2} = [x(\theta_{i}) - x_{i}]^{2} + [y(\theta_{i}) - y_{i}]^{2}$$
 [5]

or substituting equations [1] and [2] into [5]

$$e_{i} = \{a_{0} \sin \theta_{i} - \sum_{m=1}^{N} a_{2m-1} \sin (2m-1) \theta_{i} - x_{i}\}^{2}$$

... + $\{a_{0} \cos \theta_{i} + \sum_{m=1}^{N} a_{2m-1} \cos (2m-1) \theta_{i} - y_{i}\}^{2}$ [6]

Taking the sum of the above distances for each input point along the curve gives:

$$E = \sum_{i=1}^{P} e_i$$
 [7]

where there are P input points. Minimizing this sum with respect to each of the coefficients a_m gives what is called a least squares fit to the curve ($\theta = \theta_i$ is considered constant).

$$\frac{\partial E}{\partial a_{mi}} = 0$$
 m = 0, 1, 3, 5,...2N-1 [8]

This will yield N+1 linear equations in a_0, a_1, a_3, \ldots where N+1 is the number of coefficients.

The values of a_m can then be computed so as to provide a solution for each of the equations. A matrix solution was chosen to accomplish this. The matrix solution is of the form:

$$\mathbf{X} = [\mathbf{A}]^{-1} \mathbf{B}$$
 [9]

-10-

Each component is as follows:

$$X = \left\{ \begin{array}{c} a_{0} \\ a_{1} \\ a_{3} \\ a_{5} \\ a_{7} \\ \vdots \\ a_{2N-1} \end{array} \right\}$$

$$[10]$$

P Σcos2θ Σcos4θΣcos2Nθ **Ρ** Σcos2θΣcos2(N-1)θ Σcos2θ Σcos4θ Σcos2θ РΣcos2(N-2)θ • A = • • [11] . Σcos2Nθ Σcos2(N-1)θ . . . P

$$B = \begin{cases} \Sigma y \cos \theta + x \sin \theta \\ \Sigma y \cos \theta - x \sin \theta \\ \Sigma y \cos 3\theta - x \sin 3\theta \\ \vdots \\ \vdots \\ [\Sigma y \cos (2N-1)\theta - x \sin (2N-1)] \theta \end{cases}$$
[12]

١

where all the summations are from 1 to P for each point on the curve. -11-

b) Hydrodynamic Coefficients Using Conformal Mapping

The basic method used for the hydrodynamic portion was developed by Hoffman (4) for the case of vertical motions. It was later extended by van Hooff (6) based on the theory of Hoffman (4), Porter (14), and Ursell (15) for the case of lateral motions. HYDRO2D is based on the conformal mapping method (6) and the Frank close fit method (16).

Since a detailed development of the theory is given in (6), only a summary of the equations shall be given.

The section is defined by, as mentioned previously, the following equations:

$$\mathbf{x} = \mathbf{x}(\theta) = \mathbf{a}_0 \sin \theta - \sum_{m=1}^{N} \mathbf{a}_{2m-1} \sin (2m-1) \theta \qquad [10]$$

$$y = y(\theta) = a_0 \cos \theta + \sum_{m=1}^{N} a_{2m-1} \cos (2m-1) \theta \qquad [14]$$

whose derivatives are:

$$\frac{dx}{d\theta} = \frac{dx(\theta)}{d\theta} = a_0 \cos \theta - \sum_{m=1}^{N} (2m-1) a_{2m-1} \cos (2m-1) \theta \quad [10]$$

$$\frac{dy}{d\theta} = \frac{dy(\theta)}{d\theta} = a_0 \sin \theta - \sum_{m=1}^{N} (2m-1) a_{2m-1} \sin (2m-1) \theta \quad [10]$$

The hydrodynamic calculations are divided into vertical and lateral motions for a frequency, ω , or wave number, $k = \omega^2/g$.

Vertical Motion

The added mass, A'_{33} , and damping, N'_{z} , at a specific frequency are given as follows:

-

$$A_{33} = 2\rho \int_{0}^{\pi} P_{aH}(\theta) \frac{dx}{d\theta} d\theta \qquad [17]$$

$$\pi/2$$

$$N_{z} = 2\rho \omega_{0}^{\pi} \int_{VH}^{P}(\theta) \frac{dx}{d\theta} d\theta \qquad [18]$$

where ρ is the mass density of the medium and ω is the wave frequency, $P_{aH}(\theta)$ is the hydrodynamic pressure in phase with acceleration and $P_{vH}(\theta)$ is in phase with the velocity as shown below:

^{π/2}

$$P_{aH}(\theta) = b \frac{M_{H}(\theta) B_{H} + N_{H}(\theta) A_{H}}{A_{H}^{2} + B_{H}^{2}}$$
[19]

$$P_{vH}(\theta) = b \frac{M_{H}(\theta) A_{H} - N_{H}(\theta) B_{H}}{A_{H}^{2} + B_{H}^{2}}$$
[20]

where:

b = half beam of section $A_{\rm H}$ = stream function in phase with acceleration = $\psi_{c\rm H} \left(\frac{\pi}{2}\right) + \sum_{m=1}^{\infty} p_{2m\rm H} \psi_{2m\rm H} \left(\frac{\pi}{2}\right)$ [21]

 B_{H} = stream function in phase with velocity

$$= \psi_{sH} \left(\frac{\pi}{2}\right) + \sum_{m=1}^{\infty} q_{2mH} \psi_{2mH} \left(\frac{\pi}{2}\right)$$
 [22]

 $M_{H}(\theta)$ = sine component of the velocity potential at an arbitrary point on the contour

$$= \phi_{sH}(\theta) + \sum_{m=1}^{\infty} q_{2mH} \phi_{2mH}(\theta) \qquad [23]$$

 $N_{H}(\theta)$ = cosine component of the velocity potential at an arbitrary point on the contour

$$\phi_{cH}(\theta) + \sum_{m=1}^{n} p_{2mH} \phi_{2mH}(\theta)$$
 [24]

-13-

The cosine component of the multiple potential p_{2mH} and sine component q_{2mH} are found by a least squares involving the solution of the following matrix equations:

$$P_{2mH} = [X]^{-1} Y_1$$
 [25]

$$q_{2mH} = [x]^{-1} y_2$$
 [26]

where:

$$X = X_{ij} = \sum_{\theta} D_{iH}(\theta) D_{jH}(\theta)$$
 [27]

$$YI = YI_{j} = \sum_{\theta} D_{jH}(\theta) \left[\psi_{cH}(\theta) - (\frac{x}{b}) \psi_{cH}(\frac{\pi}{2}) \right]$$
 [23]

$$Y2 = Y2_{j} = \sum_{\theta} D_{jH}(\theta) \left[\psi_{sH}(\theta) - (\frac{x}{b}) \psi_{sH}(\frac{\pi}{2}) \right] \quad [23]$$

$$D_{iH}(\theta) = \left(\frac{x}{b}\right) \psi_{2iH} \left(\frac{\pi}{2}\right) - \psi_{2iH}(\theta)$$
 [30]

The remaining equations are as follows: Stream Functions:

$$\Psi_{cH}(\theta) = \pi e^{-ky} \sin(kx)$$
 [31]

$$\psi_{\text{SH}}(\theta) = \pi e^{ky} \cos(kx) + \int_{0}^{N} e^{-\beta x} \left[\frac{k \cos(\beta y) + \beta \sin(\beta y)}{\beta^{2} + k^{2}} \right] d\beta$$

$$\psi_{\text{2mH}}(\theta) = \cos(2\pi\theta) - \sum_{n=1}^{N} \frac{k(2n-3) a_{2n-3} \cos(2\pi\theta) - (32)}{2\pi + 2n - 3}$$
(30)

Velocity Potential Functions:

$$\begin{aligned} \phi_{cH}(\theta) &= \pi e^{-ky} \cos(kx) \\ \phi_{sH}(\theta) &= \pi e^{ky} \sin(kx) - \int_{0}^{\infty} e^{-\beta x} \left[\frac{\beta \cos(\beta y) - k \sin(\beta y)}{\beta^{2} + k^{2}} \right] d\beta \end{aligned}$$

$$\xi_{2mH}(\theta) = \sin(2m\theta) + \sum_{n=1}^{N} \frac{k(2n-3) a_{2n-3} \sin(2m+2n-3)\theta}{2m+2n-3}$$
 [36]

-14-

Lateral Motion

The lateral motion calculations consist of added mass and damping for sway, roll, sway-roll cross coupling and roll-sway cross coupling. The equations for these values are given as follows:

		τ/2.	
Sway Added Mass	=	$2\rho_0 \int P_{aS}(\theta) \frac{dy}{d\theta} d\theta$ [3]	7]
Sway Damping	-	$\frac{\pi/2}{2\rho\omega}\int_{\mathbf{V}_{\mathbf{V}}}^{\pi/2}\mathbf{E}_{\mathbf{V}\mathbf{S}}\left(\theta\right)\frac{d\mathbf{y}}{d\theta}d\theta\qquad[38]$]
Sway-Roll Added Mass	=	$\frac{\pi/2}{2\rho \int_{0}^{\pi} P_{aS}(\theta)} \left(x \frac{dx}{d\theta} + y \frac{dy}{d\theta}\right) d\theta$	[00]
Sway-Roll Damping	=	$2\rho\omega \int_{P_{VS}} P_{VS}(\theta) \left(x \frac{dx}{d\theta} + y \frac{dy}{d\theta}\right) d\theta$	[40]
Roll Added Moment of Inertia	=	$2\rho \int_{0}^{\pi/2} P_{aR}(\theta) \left(x \frac{dx}{d\theta} + y \frac{dy}{d\theta}\right) d\theta$	[41]]
Roll Damping	=	$2\rho\omega \int_{0}^{0} P_{vR}(\theta) \left(x \frac{dx}{d\theta} + y \frac{dy}{d\theta}\right) d\theta$	[42]
Roll-Sway Added Mass	=	$2p \int_{0}^{\pi/2} P_{aR}(\theta) \frac{dy}{d\theta} d\theta$	[43]
oll-Sway Damping	=	$\pi/2$ $2\rho\omega$ $=$ (θ) $\frac{dy}{d\theta}$ $d\theta$	[44]

Roll-Sway Damping =
$$2\rho\omega$$
 νR (θ) $\frac{dy}{d\theta}$ $d\theta$ [44]

where the pressures are defined as follows:

$$P_{aS}(\theta) = d \frac{M_{S}(\theta) B_{S} + N_{S}(\theta) A_{S}}{A_{S}^{2} + B_{S}^{2}}$$
[45]

$$P_{vS}(\theta) = d \frac{M_S(\theta) A_S - N_S(\theta) B_S}{A_S^2 + B_S^2}$$
[46]

-15-

$$P_{aR}(\theta) = \left(\frac{d^2 - b^2}{2}\right) \frac{M_R(\theta) B_R + N_R(\theta) A_R}{A_R^2 + B_R^2}$$
[47]

$$P_{vR}(\theta) = \left(\frac{d^2 - b^2}{2}\right) \frac{M_R(\theta) A_R - N_R(\theta) B_R}{A_R^2 + B_R^2} \qquad [48]$$

where d is the section draft and b the waterline half beam. For Sway:

 A_s = stream function in phase with acceleration

$$= \psi_{cS} \left(\frac{\pi}{2}\right) + \sum_{m=1}^{5} p_{2mS} \psi_{2mS} \left(\frac{\pi}{2}\right)$$
 [49]

 $B_s = stream$ function in phase with velocity

$$= \psi_{sS} \left(\frac{\pi}{2}\right) + \sum_{m=1}^{\infty} q_{2mS} \psi_{2mS} \left(\frac{\pi}{2}\right)$$
 [50]

 $M_{s}(\theta) = sine component of the velocity potential$ at an arbitrary point on the contour

$$= \phi_{sS}(\theta) + \sum_{m=1}^{\infty} q_{2mS} \phi_{2mS}(\theta) \qquad [51]$$

 $N_{s}(\theta) = cosine component of the velocity potential$ at an arbitrary point on the contour

$$= \phi_{cS}(\theta) + \sum_{m=1}^{N} p_{2mS} \phi_{2mS}(\theta)$$
 [52]

For Roll:

 A_{R} = stream function in phase with acceleration

$$= \psi_{cR} \left(\frac{\pi}{2}\right) + \sum_{m=1}^{\infty} p_{2mR} \psi_{2mR} \left(\frac{\pi}{2}\right)$$
 [53]

 B_R = stream function in phase with velocity

$$= \psi_{sR} \left(\frac{\pi}{2}\right) + \sum_{m=1}^{\infty} q_{2mR} \psi_{2mR} \left(\frac{\pi}{2}\right)$$
 [54]

-16-

 $M_{R}(\theta)$ = sine component of the velocity potential at an arbitrary point on the contour

$$= \phi_{sR}(\theta) + \sum_{m=1}^{n} q_{2mR} \phi_{2mR}(\theta)$$
 [55]

 $N_R(\theta)$ = cosine component of the velocity potential at an arbitrary point on the contour

$$= \phi_{cR}(\theta) + \sum_{m=1}^{\infty} P_{2mR} \phi_{2mR}(\theta)$$
 [56]

The cosine components of the multiple potential p_{2mS} and p_{2mR} and sine components q_{2mS} and q_{2mR} are found by a least squares fit involving the solution of the matrix equations:

$$p_{2mS} = [X_S]^{-1} Y_{1S}$$
 [57]

$$q_{2mS} = [x_S]^{-1} Y_{2S}$$
 [58]

$$\mathbf{p}_{2\mathbf{m}\mathbf{R}} = \begin{bmatrix} \mathbf{x}_{\mathbf{R}} \end{bmatrix}^{-1} \mathbf{Y}_{\mathbf{R}}$$
[59]

$$q_{2\mathfrak{w}R} = [X_R]^{-1} Y_2_R$$
[60]

where:

$$\mathbf{x}_{\mathbf{S}} = \mathbf{x}_{\mathbf{ij}} = \sum_{\boldsymbol{\theta}} D_{\mathbf{iS}}(\boldsymbol{\theta}) D_{\mathbf{jS}}(\boldsymbol{\theta})$$
 [61]

$$Y1_{S} = Y1_{j} = \sum_{\theta} D_{jS}(\theta) \{ \psi_{cS}(\theta) - \psi_{cS}(\frac{\pi}{2}) - (\frac{y}{d}) [\psi_{cS}(0) - \psi_{cS}(\frac{\pi}{2})] \}$$

$$(62)$$

$$Y_{2_{S}}^{2} = Y_{2_{j}}^{2} = \sum_{\theta}^{D} D_{jS}(\theta) \left\{ \psi_{sS}(\theta) - \psi_{sS}(\frac{\pi}{2}) - (\frac{y}{d}) \left[\psi_{sS}(0) - \psi_{sS}(\frac{\pi}{2}) \right] - \psi_{sS}(\frac{\pi}{2}) \right\}$$

$$= \left\{ 0.3 \right\}$$

$$= \left\{ 0.3 \right\}$$

$$D_{jS}(\theta) = (\frac{y}{d}) \left[\psi_{2jS}(0) - \psi_{2jS}(\frac{\pi}{2}) \right] + \psi_{2jS}(\frac{\pi}{2}) - \psi_{2jS}(\theta)$$
[64]

$$X_{R} = X_{ij} = \sum_{\theta} D_{iR} (\theta) D_{jR} (\theta) \qquad [65]$$

$$YI_{R} = YI_{j} = \sum_{\theta} D_{jR} \left\{ \left(\frac{d^{2} - b^{2}}{b^{2}} \right) \left[\psi_{cR} (\theta) - \psi_{cR} \left(\frac{\pi}{2} \right) \right] - \left(\frac{x^{2} + y^{2}}{b^{2}} - 1 \right) \left[\psi_{cR} (0) - \psi_{cR} \left(\frac{\pi}{2} \right) \right] \right\} \qquad [60]$$

$$Y_{2R} = Y_{2j} = \sum_{\theta} D_{jR} \left\{ \left(\frac{d^{2} - b^{2}}{b^{2}} \right) \left[\psi_{sR} (\theta) - \psi_{sR} \left(\frac{\pi}{2} \right) \right] - \left(\frac{x^{2} + y^{2}}{b^{2}} - 1 \right) \left[\psi_{sR} (0) - \psi_{sR} \left(\frac{\pi}{2} \right) \right] \right\} \qquad [67]$$

$$D_{jR} (\theta) = \left(\frac{x^{2} + y^{2}}{b^{2}} - 1 \right) \left[\psi_{2jR} (0) - \psi_{2jR} \left(\frac{\pi}{2} \right) \right] - \left(\frac{d^{2} - b^{2}}{b^{2}} \right) \left[\psi_{2jR} (\theta) - \psi_{2jR} \left(\frac{\pi}{2} \right) \right] = \left(\frac{d^{2} - b^{2}}{b^{2}} \right)$$

$$\left[\psi_{2jR} (\theta) - \psi_{2jR} \left(\frac{\pi}{2} \right) \right] = \left(\frac{d^{2} - b^{2}}{b^{2}} \right)$$

The remaining equations are as follows: Stream functions:

$$\psi_{cR}(\theta) = \psi_{cS}(\theta) = \pi e^{-ky} \cos(kx) \qquad [69]$$

$$\psi_{cR}(\theta) = \psi_{cS}(\theta) = \psi_{sR}(\theta) - \frac{y}{k(x^2 + y^2)}$$

$$= \pi e^{ky} \sin(kx) + \int_{0}^{\infty} e^{-5x} \left[-\frac{5\cos((ey) - k\sin((ey))}{6^2 + k^2} \right] dz$$

$$- \frac{y}{k(x^2 + y^2)} \qquad [71]$$

$$\psi_{2mR}(\theta) = \psi_{2mS}(\theta) = -\cos((2\pi + 1)) \theta + \sum_{n=1}^{N} \cdot$$

$$\frac{k(2n-3) \ a_{2n-3} \ \cos \ (2w+2n-2)\theta}{2m + 2n - 2}$$
[71]

1.2240

Velocity potential functions:

$$\phi_{cR}(\theta) = \phi_{cS}(\theta) = -\pi e^{-ky} \sin(kx)$$
 [72]

$$\psi_{SR}(\theta) = \phi_{SS}(\theta) = -\psi_{SH}(\theta) + \frac{x}{k(x^2 + y^2)}$$

$$= \pi e^{ky} \cos (kx) + \int_{0}^{\infty} e^{-\beta x} \left[\frac{k \cos (\beta y) + \beta \sin (\beta y)}{\beta^{2} + k^{2}} \right] d\beta + \frac{x}{k(x^{2} + y^{2})}$$

-18-

 $\phi_{2mR}(\theta) = \phi_{2mS}(\theta) = \sin(2m+1)\theta - \sum_{n=1}^{N}$

.:

$$\frac{k(2n-3) a_{2n-3} \sin (2m + 2n - 2)\theta}{2m + 2n - 2}$$
 [74]

L

The accuracy of the least square fit for the description of p_{2m} and q_{2m} is expressed by the following equations shown in (4):

CHECK_H =
$$\frac{\text{HEAVE DAMPING * (A_H^2 + B_H^2)}}{\frac{1}{2}b^2 \pi^2} - 1.0$$
 [75]

CHECK_S =
$$\frac{\text{SWAY DAMPING * } (A_{S}^{2} + B_{S}^{2})}{\frac{l_{2} d^{2} \pi^{2}}{\pi^{2}}} - 1.0$$
 [7C]

CHECK_R =
$$\frac{\text{ROLL DAMPING * } (A_R^2 + B_R^2)}{\frac{1}{2} \pi^2 (d^2 - b^2)} - 1.0$$
 [77]

The closer these values are to zero, the better the fit. If any of these accuracies are greater than 2%, the number of terms used to describe p_{2m} and q_{2m} is increased by four for the next frequency calculation. The original number of terms in the p_{2m} and q_{2m} series is 4 and the maximum dimension is 24. -19--

2. Close Fit Method

The close fit technique involves the determination of the two-dimensional hydrodynamic pressure on a section's contour using a method of distributing source singularities over the submerged portion of the hull. Each of the sources has a density which can be determined from the kinematic boundary condition. The hydrodynamic pressures are obtained by substituting the velocity potential, described by these piece-wise sources, into the linearized Bernoulli equation.

$$P^{(m)}(\mathbf{x}_{i}, \mathbf{y}_{i}, \boldsymbol{\omega}_{jt}) = -\rho\phi_{t}^{(m)}(\mathbf{x}_{i}, \mathbf{y}_{i}, \boldsymbol{\omega}_{jt})$$
[78]

 \mathbf{or}

$$P^{(m)}(x_i, y_i, \omega_{jt}) = P_a^{(m)}(x_i, y_i, \omega) \cos \omega t + P_v^{(m)}(x_i, y_i, \omega) \sin \omega t$$
[79]

Each ship's section is described by N+1 offset pairs (Ξ_i, η_i) whose midpoint (x_i, y_i) can be determined from plane geometry.

In order to determine the pressure, the velocity potential $\phi_{t}^{(m)}$ is defined:

$$\phi^{(m)}(x, y; t) = R_e \int_{C_0} Q(s) G(z, \zeta) e^{-i\omega t} ds \qquad [80]$$

or as shown in (7) for point i:

$$\phi_{i}^{(m)} = \left[\frac{1}{2\pi} \sum_{j=1}^{N} Q_{j} R_{e}^{-} \{G_{1ij}^{-}\} - \sum_{j=1}^{N} Q_{N+j} R_{e}^{-} \{G_{2ij}^{-}\}\right] \cos \omega t$$
$$+ \left[\frac{1}{2\pi} \sum_{j=1}^{N} Q_{N+j}^{-} R_{e}^{-} \{G_{1ij}^{-}\} + \sum_{j=1}^{N} Q_{j}^{-} R_{e}^{-} \{G_{2ij}^{-}\}\right] \sin \omega t$$
[81]

where Q_j is the density of the pulsating source at point j, G_{ij} is the point potential at i due to point j.

-20-

A detailed explanation of the point potential is given in the appendices of (7). The density of the source potential is determined by applying the kinematic boundary condition which can be summarized as follows:

$$\sum_{j=1}^{N} Q_{j}^{(m)} I_{ij}^{(m)} + \sum_{j=1}^{N} Q_{N+j}^{(m)} J_{ij}^{(m)} = 0$$

$$-\sum_{j=1}^{N} Q_{j}^{(m)} J_{ij}^{(m)} + \sum_{j=1}^{N} Q_{N+j}^{(m)} I_{ij}^{(m)} = \omega A^{(m)} \eta_{i}^{(m)}$$
[82]

where $I_{ij}^{(m)}$ is the influence coefficient in phase with displacement of the ith midpoint due to the jth segment in the mth mode of motion; $J_{ij}^{(m)}$ is the same as $I_{ij}^{(m)}$ but in phase with velocity, $M_i^{(m)}$ is the direction cosine of the normal velocity at ith midpoint for the mth mode of oscillation; $Q_{ij}^{(m)}$ is the source strength in phase with displacement along jth segment for the mth mode of oscillation; $Q_{j+N}^{(m)}$ is the same as $Q_j^{(m)}$ but in phase with velocity; and $A^{(m)}$ is the oscillation of amplitude in the mth mode.

The influence coefficients are defined in Appendix B of (7). Equation [82] can be solved for source density, Q_j , by solving the two simultaneous equations. The solution for the pressures and their added mass and damping is relatively straightforward. -21-

The ship is described in a cartesian coordinate system with the origin at the forward perpendicular at its intersection with the ship's centerline and baseline (see Figure 3.1). The x-axis is positive aft from this point, the yaxis positive to starboard and z-axis positive vertically. Planes parallel to the x-y plane at different heights on the z-axis are referred to as waterplanes, whether they are in the water or not, and are usually symmetric about the ship's centerline. These half-waterplanes are shown graphical in the half breadth plan (Figure 3.2a). Planes that are parallel to the y-z plane at various distances from the forward perpendicular are called transverse sections or stations, and like the waterplanes are symmetric port and starboard. The half stations are shown in the body plan (Figure 3.2b) with the forward half of the ship on the right side and aft half on the left side. The final view, obtained by passing planes parallel to the x-z plane at certain distances from the centerline, gives us a picture of the ship's buttock lines. The sheer plan (Figure 3.2c) illustrates these lines.

-22-

III. DESCRIPTION OF INPUT SCHEME

There are three separate data files used in running program STATIC:

1) an offset data file

2) a weight distribution data file and

3) a job control data file.

An offset data file describes the ship geometry by means of coordinate points on the surface of the ship's hull. The weight data, a description of the loading along the length of the ship, determines where the vessel will float (i.e., drafts forward and aft). The job control file directs the execution of the program.

A. Physical Description of the Ship

A.1 Ship Geometry Input

A ship, like any other body, can be shown graphically in three views, the top view, the side view and the end view; or in naval architectural terms, the half breadth plan, the sheer plan and the body plan, respectively.

-24-

7

Figure 3.2

Taken from (1)

The geometric description used in program STATIC is obtained from the ship's body plan. The input is given for each transverse section commencing with the forward perpendicular and proceeding aft. These sections are given numbers with the forward perpendicular (F.P.) as station 0.0 and aft perpendicular (A.P.) as station 20.0. A length scale of 20 is thus established and all sections are located according to the base dimension of 20. More or less than 21 stations may be used in defining the ship but the total number of stations cannot exceed 41. Stations forward of the F.P. and aft of the A.P. are allowed with stations forward of the F.P. being at a negative distance.

Any station spacing may be used in program STATIC. It is common to have more stations at the ends of the ship due to the rapid change of shape and various appendages. For the hydrodynamic computations there is a limit of 21 stations and it is preferable to have primarily equal station spacing. For this reason the program has a capability to generate a 21 station description at equal distances from any inputed station arrangement.

Each station represents a section (or cylinder) of uniform cross-section. The shape of a section is approximated by a polygon (see Figure 3.3) with corners at the offset points with up to 29 points for each station.

Selection of the offset points requires only one consideration; the points and the straight lines between them should provide a good geometric description of the station shape. Therefore, bow and stern sections typically use twice as many points as a midship section for the same accuracy.

The offsets begin at the intersection of the centerline with the section and proceed to the main deck as shown by points 1 to N in Figure 3.3.

The geometric properties of a station to a given waterline, such as area and centroids, are obtained using a

*Note: When digitizing care should be taken in following this procedure.

-25-

Figure 3.3

linear (i.e., straight line) integration of the offset points.

For the calculation of section added mass and damping for the hydrodynamic calculations, it is preferable to have equi-spaced offset points along the underwater contour. Again, rather than modifying the input offset description, program STATIC has the capability of inserting equi-spaced points (maximum of 21) along the underwater contour of a station. The offset geometry data format will be described in Section C.1. -26-

A.2 Weight Description

The ship will float in a position such that it is in equilibrium, that is, the upward force (buoyancy) is equal and opposite to the downward force (weight).

The buoyancy force is a force caused by the ship displacing fluid and is equal to the product of the underwater volume of the ship and the density of the fluid in which the vessel is floating. The location of this force is given in the ship's coordinate system and has three dimensions:

- 1) distance from the forward perpendicular called the longitudinal center of buoyancy (LCB or XCB)
- 2) the distance above the keel called the vertical center of buoyancy (KB or ZCB) and
- 3) the distance from the ship's centerline called the horizontal center of buoyancy (HCB or YCB).

The center of buoyancy is the centroid of the underwater portion of the ship and is determined by the position of the ship in the water. If we displace a ship downward its displacement will increase and the KB will also increase. If we trim the stern down the LCB will move further aft. Heeling the ship to starboard will cause the HCB to move in that direction.

The weight force and its location must be given so that the ship can adjust itself (sink, trim and heel) so that it is in equilibrium. The location of the weight force is similar to buoyancy force:

- longitudinal center of gravity (LCG or XCG), distance aft of forward perpendicular
- vertical center of gravity (KG or ZCG), distance above the keel and
- horizontal center of gravity (HCG or YCG), distance to the starboard of centerline.

In order to determine how the ship will float the weight, LCG, KG and HCG must be given. The following

-27-

describes how each of these may be specified:

(1) WEIGHT

The ship weight can be specified directly or in two alternate ways. The first is to specify the ship's drafts forward and aft which enables the program to calculate the ship's buoyancy and hence due to the principle of equilibrium, its weight. The second is to give a longitudinal weight curve which describes the ship loading with the area under this curve being the ship's weight. This concept will be described later.

(2) LCB

LCB can either be given directly or by two other means. Agaif, if the drafts forward and aft are given, the ship's longitudinal center of buoyancy (LCB) can be determined. Due to our principle of equilibrium we can determine our LCG from the LCB. The final method of finding the LCG is to determine the centroid of the longitudinal weight curve.

(3) KG must be given.

(4) HCG

HCG can either be given or by specifying the ship's heel. By knowing the ship's heel, the center of buoyancy can be found and therefore the HCG can be determined.

All the different methods of describing the weight and centroid other than the longitudinal weight curve are specified in the control data file which will be described in Section C.3. The weight curve, which is of the standard USCG type, will be described now and the data format in Section C.2.

The weight curve is a graphic representation of the

-28-

weight of the ship plotted as tons per foot (or any other desired units) on a vertical scale and the length of the ship on a horizontal scale (see Figure 3.4).

Figure 3.4

As mentioned above, the area under the curve represents the ship's weight and the longitudinal centroid is the LCG. The weight curve is usually calculated for both the light ship and full load conditions.

In order to calculate a weight curve, we generally take all the weights along a specified length of a vessel, usually a hold or station, and calculate the weight and centroid of this part of the ship. Knowing the weight, w. its location, lcg, and the limits of this weight, x_1 and x_2 , we can determine a trapazoidal weight block to represent this load (see Figure 3.5). -29-

From statics it can be seen that

 $b_1 = 2w (2L - 3Lcg) / L^2$ $b_2 = 2w (3Lcg - L) / L^2$

A given hold might have several of these blocks superimposed to give a final weight curve such as that shown in Figure 3.4. The ballast, lightship and cargo weights could be treated separately and the b_1 's and b_2 's added together for the final weight block. The input into program STATIC will be w, Lcg, x_1 and x_2 for various lengths of the ship and categories of load. These will be stored in a data file whose format will be described in Section C.2. -30-

B. Program Control

B.1 Introduction

Practically all programs require some input data. A typical small program may do a short preliminary calculation, read a programmed amount of data, perform some calculation with the data, and terminate with the output of some useful information. A slightly more sophisticated program may read some miscellaneous constants, numerical values describing the lengths of input data tables, flag values that may control the execution of the program or its input and output scheduling, as well as tables of data. Usually these various data items must be furnished by the program user according to some rigid format scheme. The miscellaneous data items such as constants, lengths and control flags are often intermixed with the tables of data. The input setups of many programs become very complicated when the lengths of data tables may be varied, or the order of processing may be changed by control flags in the input deck. Often used constants must be supplied by the user although the program should be able to assume some default value.

The "Program Input and Control SYstem (PICSY)" (17) described here is intended to allow a great deal of flexibility in the execution of a FORTRAN program, while simplifying the input setup.

B.2 Control of Program Execution

Program STATIC consists of eight subprograms, each dealing with a particular step in the overall procedure. Some examples of these steps are: the definition of units whether English or Metric; reading in offset information; hydrostatic calculations; output definition; and so forth. The order in which you call each of these subprograms is flexible to a certain degree. The <u>program control state-</u> ment^{*} is used to control the program execution.

*Underlining is used to indicated defined terms.

-31-

The program control statements form part or all of the input to a program using the PICSY. This control statement consists of a job name and an optional parameter list. The job name directs the main program to execute an associated subprogram. The parameter list is used to input data items and to control subprogram execution. The program control statements are lines (or cards) of Hollerith data (BCD characters) to be read by the program. The first line of data read by the program is usually a program control state-Other lines of information may be program statements, ment. other data, or a mixture of control statements and data depending on the nature of the program, the subprogram specified by the preceding program control statement and any parameters.

B.3 Syntax of Program Control Statement

The following definitions shall apply for the purpose of describing the structure of the <u>program control statement</u>: Program control statement: This is alphanumeric data read

- by the program to allow the user to logically control the program execution. The <u>program control statement</u> may take any of the following forms:
- The character (*) in column 1 of the first line of the statement; followed by a job name; and followed by a terminator.
- 2) The character (*) in column 1 of the first line of the statement; followed by a job name; followed by a <u>separator</u>; followed by a <u>parameter list</u>; followed by a <u>terminator</u>.
- <u>Job name</u>: This name requests the main program to call a subprogram for execution. The job name must be one of the job names defined for use by the main program. A list of STATIC job names may be found in Section C.3. Blanks or spaces are ignored.

- Parameter list: This is a list of one or more parameters. A parameter list may be a single parameter, or it may be several parameters separated by <u>separators</u>. The <u>parameter list</u> may not consist of more than 20 <u>para-</u> meters.
- <u>Parameter:</u> The <u>parameter</u> may take one of two forms: it may be a <u>parameter name</u>, or it may be a <u>parameter</u> <u>name</u> followed by the character (=) followed by a <u>parameter value</u>.
- <u>Parameter name</u>: This name is used to control the execution of the subprogram corresponding to the given job name. The parameter name must be one defined for use by the particular subprogram. The list of valid parameters accompanies the description of each subprogram in Section C.3. A parameter name may consist of 1 to 10 alphanumeric characters. Blanks or spaces are ignored.
- Parameter value: This value is a character string which may be associated with certain <u>parameter names</u>. The character string is used to input values into the program. Depending on the parameter name, the value may be of several types, viz. a <u>real value</u>, an <u>integer</u> <u>value</u> or <u>alphanumeric value</u> for identification or control purposes. The type of the value depends on the <u>parameter name</u> and job name. The subprogram descriptions specify the type of <u>parameter value</u> to be associated with each <u>parameter name</u>. A <u>parameter</u> <u>value</u> may consist of 1 to 20 alphanumeric characters. Blanks or spaces are being ignored.
- <u>Alphanumeric value</u>: This is a <u>parameter value</u> used by the program for identification purposes or a data file name. It may consist of 1 to 20 alphanumeric characters. Here "alphanumeric" characters refers to the BCD characters in use within the particular computer operating system. They are the alphabetic

-33-

characters A through Z, the numeric characters 0 and 1 through 9 and the set of punctuation and mathematical characters understood by the system.

- Real value: This is a parameter value to be converted by the program into a REAL number. It must follow the syntax for FORTRAN real constants or FORTRAN integer constants. It is represented by a string of digits (numeric characters), preceded optionally by a sign character (+ or -); it may contain a decimal point; and it may be followed by an "exponent representation" indicating a power of 10. The "exponent representation" consists of the character (E) followed optionally by a (+) or a (-) followed by digits indicating the power of 10. The <u>parameter</u> value syntax limits the number of non-blank characters to 20.
- Integer value: This is a parameter value to be converted by the program into an INTEGER number. The syntax is the same as for a real value.
- Separator: This is a character used to separate the job name from the parameter list and to separate parameters within the parameter list. A separator is either the character (,) or the character (().
- <u>Terminator</u>: This is a character used to indicate the logical end of a program control statement. The character (() will always terminate the statement. The character (.) will terminate the program control statement if it occurs following a job name, a parameter name or a separator. The character (.) is not a terminator if it occurs following a parameter value. (In the last case the (.) is considered part of the parameter value).

-34-

A few additional remarks regarding the physical structure of the program control statement are in order at this point. The program reads the program control statement components from column 1 through 80 of each line. The job name must be completed on the first line of the control statement. The parameter list may be continued on more than one line, but the terminator must appear on or before the fifth line of the statement. Any characters following the terminator, and on the same line as the terminator, will be ignored. Some examples of the program control statement follow.

Parameter List

*UNITS .

The complete lists of job names, parameter names and parameter values will be given in Section C.3.

-35-

C. Data Card or Data File Input Description

C.1 Offset Data File

The offset data file is a geometric description of the ship following the SHCP "cook book" format. This information will be loaded into the computer core and stored as a file with a seven letter descriptive name. The convention that has been established requires that the first three letters of the file name be "MMT" with the remaining four letters being the users choice. A description of the card (or line) format for this file is given below.

1) TITLE CARD

	Columns	Format	Entry
	1-40	Α	Any alphanumerica title in- formation used to label job output, such as ship name
2)	LENGTH CAR	D	
	Columns	Format	Entry
	1-10	Real	Station or frame spacing in length units (feet, inches, meters, etc.)
	11-20	Real	Vertical scale. If the off- sets are in the desired units, vertical scale should be set equal to 0.005. If offsets are lifted from a body plan via Telecorder, submit scale factors as the scale of the drawing in inches per foot, adjusted for distortion as required. For ex- ample, if scale of drawing is 1/4 inch per foot, submit 0.25 for vertical scale.
	21-30	Real	Horizontal scale. Same defini- tion as vertical scale but for horizontal direction.
	31-40	Real	Ship's length between perpendiculars.
	41-50	Real	Scale to be used in plotting of body plan (this is not used in program STATIC).

Columns	Format	Entry
1-6	Real	Station distance (or number) from the FP as described below. Stations should be carefully selected to give an accurate representation of the hull form. Neither evenly-spaced stations nor integer station numbers are required.
7-13	Real	Half beam measured from the ves- sel's centerline for a given offset point.
14-20	Real	Waterline height, measured from the vessel's baseline for a given offset point.
21-26	Integer	Control integer which signifies end of station or end of ship. If: +88888, this represents last point for station If: +99999,this represents last point of last station on ship (or end of data).

Card 3 is repeated for every offset point and every station.

The station spacing is multiplied by the station number on card 3 to obtain each station's distance from the FP. As long as this product gives the distance from the FP, the data may be any representation of the station's location. The following are valid combinations:

a. frame spacinga. frame numberb. 1.0b. distance from FP (feetc. LBP (feet)c. %LBPd. station spacingd. station number	Card 2, Cols. 1-10	Card 3, Cols. 1-6
	a. frame spacing b. 1.0 c. LBP (feet) d. station spacing	a. frame number b. distance from FP (feet) c. %LBP d. station number

The following rules apply to station selection, (Columns 1-6, Card 3):

- a. A minimum of three and a maximum of forty-one stations can be specified.
- b. Each station must have a non-zero sectional area when entirely immersed.

-37-

- c. The sequence of stations submitted must be from the bow aft. The tip of the bow and the stern should be included to define overall ship length (LOA). Since station distance from the FP is obtained by multiplying station number by station spacing, a station forward of the FP will have a negative number.
- d. The minimum station must have a half-breadth of at least .01 feet, and an incremental height of at least .01 feet.
- e. Regions of rapid change in station size or shape require many closely spaced stations (e.g., half and/or quarter stations should be submitted near the bow and stern).
- f. Longitudinal breakpoints (end of raised forecastle, end of skeg, etc.) are represented by closely spaced stations. <u>Do not confuse a station's po-</u> sition in the input sequence with its station <u>number</u>.
- g. Only two stations need be specified for the parallel midbody.

The following rules must be observed for points on each station (columns 7-13 and 14-20 on card 3):

- a) A minimum of two points and a maximum of twentynine points per station can be processed.
- b) The points on each station must be submitted in a specific order. The first offset point is at the intersection of the station and the centerline, and the last point is the deck and can be at either the side or centerline.
- c) The station is represented as a polygon. Therefore straight lines between two adjacent offset points should describe the section fairly accurately. There will be more points in areas of rapid curvature. Two points are required to describe a straight line, one at the beginning of the segment and one at the end.

An example of an offset file using the SL-7 follows.

PAGE	1	07/	05/7	79.	11.32	.14.	MMTSL7
SEA-LA	ND 7	co	NTA]		RSHIP	050	880 5000
0 44.0	0		0.00	0,0	0.1		000.9000
0.	3 03	240	82	202			
0.	4.48	301	1.64	404			
0.	6.06	599	3.28	808			
0.	6.64	179	4.92	213			
Ô.	7.02	237	6.50	517			
Ο.	7.08	315	8.20	021			
0.	6.73	347	9.81	425			
0.	6.2	1441	1.48	829			
Ο.	5.49	9181	3.12	234			
Ο.	3.8	1531	6.40	042			
0.	2.31	1121	9.68	850			
0.	1.15	5622	2.96	559			
0.	.28	3902	26.2	467			
0.	Ο.	2	29.5	276			
0.	0.		32.80	084			
0.	1.0	1163	39.3	701			
0.	2.5	1474	15.9.	310			
0.	4.2	1105	2.4	934			Offse
0.	0.2	1225	59.0	つつ! つれ77			to co
260	0.2	5110	0	< 7 (+00000		
.250	2 1'	705	8:	202			
250	<u>л</u> 6:	247	1 6	404			
250	6.2	144	3.2	808			
.250	6.9	948	4.9	213			
.250	7.2	260	6.5	617			
.250	7.2	260	8.2	021			
.250	6.9	948	9.8	425			
.250	6.5	9011	11.4	829			
.250	5.8	3861	13.1	234			
.250	4.2	7781	16.4	042			
.250	2.8	9041	19.6	850			
.250	1.7	9212	22.9	659			
.250	1.1	5622	26.2	467			
.250	.8	6712	29.5	276			
.250	1.0	9843	32.8	084			
. 250	2.0	233	39.5	701			
.250	3.0	1304	4 5 .9	310			
.250	5.0	300;		934 551			
.270	10.3	0223	57.U 55 D	コフト クトコ	-88888		
500	0.0	3000	0	202	+00000		
500	2.2	2110	<u>, в</u>	202			
.500	4.7	692	1.6	404			
.500	6.2	589	3.2	808			
.500	7.0	815	4.9	213			
.500	7.5	151	6.5	617			

Note:

0.2500

Offsets were updated September 1980 to correct data point.

-39-

1	.500 .500 .5000 .5000 .50000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .50000 .50000 .50000 .50000 .50000 .50000 .50000 .50000 .50000 .50000 .50000 .50000 .50000 .500000 .500000 .500000 .500000 .5000000 .5000000 .500000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7766432111247030	529363253589763	7237 37132 5243 1031 7177 53	980160497055487	1111222334556	8913692692952940		284146925839409	048208642073959	222345567801353	159420976418414	+ 8	38	88	8
1 1 1	.00 .00 .00	0	3 5 6	.7 .2 .8	57 02 79	5 7 2		1 3	•	8 6 2	2 4 8	0 0 0	2 4 8				
1 1 1	.00	0	7 8 8	.6 .1 .2	59 51 37	6 0 7		4 6 8	•	9 5 2	2 6 0	1 1 2	3 7 1				
1 1 1	.00	0	8 7 7	.0 .8 .2	93 04 26	1	1 1	9 1 3	•	8 4 1	4 8 2	2 2 3	5 9 4				
1 1 1	.00	0	543	.8 .3	38 35 79	6	1 1 2	6 9 2	•	4 6 9	0 8 6	455	2 0 9				
1	.00	0	22	.6 .5	01 43	4	222	6 9	•	2 5 5	4 2	670	7 6				
1 1 1	.00)0)0)0	3 5 7	.0 .0 .8	34 58 61	9 12 9	334	2 9 5	•	0 3 9	0 7 3	0 0 1	4 1 8				
1 1	.00	001	1	.2	72	26	55	29	•	40	95	35	4		0.0	0	
1 1 1	.00)01)0)0	8 0 4	.0 .1	07 91	' 3 1	D	4	•	9 8	٥ 2	0	о 2	+	00	00	00
1 1	.50	00	5 7	.5	78	95		1 3	•	62	4 8	0	48				
1 1 1 1	.50	00	888	.5 .6 0	26 71 02	07 12 25		468	•	9 5 2	2 6 0	1	37				
1	.50	00	8	.8	15	58	1	9 1	•	8	4	2	59				
1	.50	00	86	.0 .6	93 47 47	32	21)1	3 6 0	•	146	200	34	2				
1	.50	00	-4 -4 -1	• 3	9	34	2	2 2 96		92	6	5	9				

-40-

3 07/05/79. 11.32.14. MMTSL7 PAGE 1.500 4.335629.5276 1.500 5.000432.8084 1.500 7.601839.3701 1.50010.983645.9318 1.50011.908552.4934 1.50018.787759.0551 1.50022.545264.8950+88888 2.000 0. Ο. 2.000 4.6247 .8202 2.000 6.1277 1.6404 2.000 8.0353 3.2808 2.000 9.1626 4.9213 2.000 9.4805 6.5617 2.000 9.7696 8.2021 2.000 9.6829 9.8425 2.000 9.336011.4829 2.000 8.960313.1234 2.000 7.948616.4042 2.000 6.937019.6850 2.000 6.214422.9659 2.000 6.214426.2467 2.000 6.879229.5276 2.000 8.006432.8084 2.00010.925839.3701 2.00014.452145.9318 2.00018.267452.4934 2.00023.065559.0551 2.00027.112164.7966+88888 2.500 0. 0. 2.500 5.1449 .8202 2.500 6.8792 1.6404 2.500 8.4689 3.2808 2.500 9.3938 4.9213 2.500 9.8274 6.5617 2.50010.2610 8.2021 2.50010.4055 9.8425 2.50010.203211.4829 2.50010.058613.1234 2.500 9.393816.4042 2.500 8.757919.6850 2.500 8.613422.9659 2.500 9.018126.2467 2.500 9.827429.5276 2.50011.041432.8084 2.50014.452139.3701 2.50018.267445.9318 2.50022.545252.4934 2.50027.112159.0551 2.50031.303264.6982+88888 3.000 0. 0.

-41-

PAGE

4 07/05/79. 11.32.14. 3.000 2.8904 .0656 3.000 5.9253 .8202 3.000 7.2260 1.6404 3.000 8.9603 3.2808 3.00010.0586 4.9213 3.00010.6656 6.5617 3.00010.7523 8.2021 3.00011.2726 9.8425 3.00011.330411.4829 3.00011.272613.1234 3.00011.128116.4042 3.00011.041419.6850 3.00011.330422.9659 3.00012.139726.2467 3.00013.151429.5276 3.00014.596632.8084 3.00018.094039.3701 3.00022.111645.9318 3.00026.302752.4934 3.00030.927459:0551 3.00034.974064.6325+88888 4.000 0. ο. .1312 4.000 4.3356 4.000 6.9370 .8202 4.000 8.7579 1.6404 4.00010.6945 3.2808 4,00011.9085 4.9213 4.00012.8623 6.5617 4.00013.5849 8.2021 4.00014.3075 9.8425 4.00014.741111.4829 4.00015.319213.1234 4.00016.330816.4042 4.00017.342519.6850 4.00018.354122.9659 4.00019.741526.2467 4.00021.042229.5276 4.00022.487432.8084 4.00025.782539.3701 4.00029.482245.9318 4.00033.528852.4934 4.00037.864459.0551 4.00041.911064.5341+88888 5.000 0. 0. 5.000 4.3356 .1969 5.000 8.9603 .8202 5.00010.8390 1.6404 5.00013.2959 3.2808 5.00015.3192 4.9213

5.00016.9667 6.5617

-42-

MMTSL7

5.00018.1518 8.2021 5.00019.3658 9.8425 5.00020.232911.4829 5.00021.157813.1234 5.00023.036616.4042 5.00024.568519.6850 5.00026.013722.9659 5.00027.458926.2467 5.00028.904129.5276 5.00030.349332.8084 5.00033.297539.3701 5.00036.708245.9318 5.00040.118952.4934 5.00043.789759.0551 5.00046.969264.3701+88888 6.000 0. Ο. 6.000 7.2260 .2625 6.00012.2842 .8202 6.00014.7411 1.6404 6.00018.2096 3.2808 6.00020.6664 4.9213 6.00022.7764 6.5617 6.00024.2795 8.2021 6.00025.6668 9.8425 6.00026.736311.4829 6.00027.892513.1234 6.00030.002516.4042 6.00031.794519.6850 6.00033.297522.9659 6.00034.829526.2467 6.00036.187929.5276 6.00037.633232.8084 6.00040.176739.3701 6.00042.720345.9318 6.00045.379552.4934 6.00045.183259.0551 6.00050.351064.3373+88888 7.000 0. Ο. .3281 7.00011.5616 7.00017.1979 .8202 7.00020.2329 1.6404 7.00024.4240 3.2808 4.9213 7.00027.0253 7.00029.3377 6.5617 7.00031.2164 8.2021 7.00032.8062 9.8425 7.00034.106811.4829 7.00035.465313.1234 7.00037.488616.4042

7.00039.136219.6850

-43-

PAGE	6 (07/	0!	5/	79	•	1	1	٠	32	5	. 1	4	•
7.00040.	401	792	22	. 9	65	9								
7.00041.	621	192	26	. 2	46	7								
7.00042.	720) 3 4 3 7 3	29	ל . 8	27 18	о Ц								
7.00045.	691	743	39	.3	70	1								
7.00047.	60	511	45	.9	31	8								
7.00049.	22	375	52	.4	93	4								
7.00050.	02'	12: 74(59	ט. ג	つつ 04) 5	+8	8	8	8	8			
8.000 0.	•		0	• •	•			Ĩ						
8.00019.	36	58		. 3	93	17								
8.00023.	412	23 11 11	1	.8	20 11 0	S I								
8.00031.	50	55	3	.2	80	8								
8.00033.	96	23	ų	.9	21	3								
8.00036.	56	37	6	• 5	61	7								
8.00038.	.29	79	8	.2	02	! 1 . E								
8 00041.	00	1 1 3 8 -	9 11	. 0 . 4	42	: 7 9								
8.00042.	142	22	13	.1	23	4								
8.00043.	93	42	16	. 4	04	2								
8.00045.	234	49 66	19	.6	85	50 : 0								
8.00040.	17	152	26	. 2	46	57								
8.00047.	83	63	29	.5	27	6								
8.00048.	55	893	32	. 8	08	34								
8.00049.	71	51	39	• 3	70	1								
8.00050.	.040 56	100 ·	45 52	. 9	31	10 14								
8.00052.	25	869	59	.0	55	51								
8.00052	54	771	54	• 3	04	15	+8	8	8	8	8			
9.000 0.	-	~ 7	0	• _	~ ~	. 2								
9.00026.	. 307 061	27		ל. 8	90)0)2								
9.00033	.96	23	1	.6	40)4								
9.00038	. 29	79	3	.2	80)8								
9.00040	.61	03	4	.9	21	13								
9.00042 9.00042	-}{ 	01	0 8	• • •	001	1 (7 1								
9.00045	.52	40	9	.8	42	25								
9.00046	. 47	78	11	. 4	82	29								
9.00047	.34	49	13	. 1	23	34								
9.00048	.70	34	10	. 4	8	42 5 n								
9.00050	.35	10	22	. q	6	59								
9.00050	.92	90	26	.2	46	57								
9.00051	. 30	48	29	.5	21	16								
9.00051	.59	38 71	32	.8	08	54 \ 1								
9.00052	.37	42	37 45	.9	131	18								

MMTSL7

-44-

2

.

PAGE 7 07/05/79. 11.32.14. MMTSL7

9.00052.605552.4934 9.00052.750059.0551 9.00052.750064.3045+88888 10.000 0. Ο. 10.00032.6616 .6562 10.00034.6849 .8202 10.00039.3096 1.6404 10.00043.2116 3.2808 10.00045.3795 4.9213 10.00047.1137 6.5617 10.00048.5589 8.2021 10.00049.5705 9.8425 10.00050.293211.4829 10.00050.957913.1234 10.00051.911816.4042 10.00052.374219.6850 10.00052.605522.9659 10.00052.663326.2467 10.00052.721129.5276 10.00052.750032.8084 10.00052.750064.3045+88888 11.000 0. 0. .6562 11.00032.7514 .8202 11.00035.6497 11.00040.8668 1.6404 11.00044.6346 3.2808 11.00046 9533 4.9213 11.00048.6923 6.5617 11.00049.9096 8.2021 11.00050.7212 9.8425 11.00051.445711.4829 11.00052.025413.1234 11.00052.518116.4042 11.00052.750019.6850 11.00052.750022.9659 11.00052.750068.2415+88888 12.000 0. 0. 12.00032.7514 .6562 12.00033.9107 .8202 12.00038.5481 1.6404 12.00042.7507 3.2808 12.00045.3592 4.9213 12.00047.1852 6.5617 12.00048.6923 8.2021 12.00049.6488 9.8425 12.00050.489311.4829 12.00051.213913.1234 12.00052.083416.4042 12.00052.605119.6850 12.00052.750022.9659

-45-

PAGE

MMTSL7

12.00052.750068.2415+88888 13.000 0. 0. 13.00024.6360 .4921 13.00028.6937 .8202 13.00033.6209 1.6404 13.00038.5481 3.2808 13.00041.5044 4.9213 13.00043.9100 6.5617 13.00045.7940 8.2021 13.00047.2431 9.8425 13.00048.547411.4829 13.00049.561813.1234 13.00051.011016.4042 13.00051.880519.6850 13.00052.402222.9659 13.00052.692026.2467 13.00052.750029.5276 13.00052.750068.2415+88888 Ο. 14.000 0. .3281 14.00015.9409 .8202 14.00020.8681 14.00026.0852 1.6404 14.00031.5920 3.2808 14.00035.5048 4.9213 14.00038.5481 6.5617 14.00041.0696 8.2021 14.00042.9536 9.8425 14.00044.779511.4829 14.00046.141813.1234 14.00048.547416.4042 14.00050.141519.6850 14.00051.242922.9659 14.00051.938526.2467 14.00052.460229.5276 14.00052.750032.8084 14.00052.750068.2415+88888 15.000 0. ٥. 15.000 3.1882 0. .8202 15.00011.5934 15.00016.0279 1.6404 15.00022.3173 3.2808 15.00024.2012 4.9213 15.00031.3022 6.5617 15.00034.2295 8.2021 15.00036.8670 9.8425 15.00039.040811.4829 15.00040.924713.1234 15.00044.112916.4042 15.00046.634519.6850 15.00048.402522.9659

-46-

PAGE 9 07/05/79. 11.32.14. MMTSL7

15.00049.706726.2467 15.00050.750129.5276 15.00051.619632.8084 15.00052.199339.3701 15.00052.750045.9318 15.00052.750052.4934 15.00052.750068.2415+88888 16.000 0. Ο. 16.000 2.8114 0. .8202 16.000 4.8982 16.000 8.2023 1.6404 16.00013.1875 3.2808 16.00017.2452 4.9213 16.00021.3898 6.5617 16.00024.6940 8.2021 16.00028.0850 9.8425 16.00030.664611.4829 16.00033.215113.1234 16.00037.040916.4042 16.00040.229119.6850 16.00042.605822.9659 16.00044.663626.2467 16.00046.373629.5276 16.00047.764832.8084 16.00049.851639.3701 16.00051.387845.9318 16.00052.605152.4934 16.00052.750068.2415+88888 17.000 0. Ο. 17.000 2.4636 0. 17.000 3.2462 .8202 17.000 4.2896 1.6404 17.000 6.7242 3.2808 17.000 9.4196 4.9213 17.00012.3760 6.5617 17.00014.9845 8.2021 17.00017.9698 9.8425 17.00020.288511.4829 17.00022.781013.1234 17.00027.099616.4042 17.00030.925419.6850 17.00034.200522.9659 17.00037.098926.2467 17.00039.562529.5276 17.00041.823232.8084 17.00045.504139.3701 17.00048.692345.9318 17.00051.300852.4934 17.00052.025454.6260 17.00052.025468.2415+88888

-47-

PAGE 10 07/05/79. 11.32.14.

Ο. 17.500 0. 17.500 2.1738 0. .8202 17.500 2.6085 17.500 3.1882 1.6404 17.500 4.6374 3.2808 17.500 6.5213 4.9213 17.500 8.8400 6.5617 17.50010.8688 8.2021 17.50013.2745 9.8425 17.50015.245311.4829 17.50017.622013.1234 17.50021.766616.4042 17.50025.592419.6850 17.50028.983522.9659 17.50032.287626.2467 17.50035.128029.5276 17.50037.678632.8084 17.50042.171039.3701 17.50045.504145.9318 17.50048.692352.4934 17.50051.358854.6260 17.50052.083468.4055+88888 18.000 0. Ο. 18.000 2.0288 0. .8202 18.000 2.1738 18.000 2.5216 1.6404 18.000 3.3331 3.2808 18.000 4.3475 4.9213 18.000 5.7967 6.5617 18.000 7.2749 8.2021 18.000 9.0139 9.8425 18.00010.665911.4829 18.00012.549913.1234 18.00016.694516.4042 18.00019.824719.6850 18.00023.476622.9659 18.00026.809826.2467 18.00030.258829.5276 18.00030.374732.8084 18.00038.432139.3701 18.00042.924645.9318 18.00047.069252.4934 18.00048.344554.6260 18.00048.344568.4383+88888 ٥. 18.500 0. 18.500 1.5941 0. .8202 18.500 1.7390 18.500 1.9709 1.6404 18.500 2.5216 3.2808 18.500 3.1302 4.9213

MMTSL7

-48-

~

PAGE 11 07/05/79. 11.32.14. MMTSL7

18.500 3.9997 6.5617 18.500 4.7823 8.2021 18.500 5.8837 9.8425 18.500 6.956011.4829 18.500 8.289313.1234 18.50011.158716.4042 18.50014.317919.6850 18.50017.535022.9659 18.50021.013026.2467 18.50024.491129.5276 18.50028.027132.8084 18.50033.910739.3701 18.50039.272745.9318 18.50044.054952.4934 18.50045.301254.6260 18.50045.301268.5367+88888 11.0236 19.000 0. 19.000 3.072311.0236 19.000 3.622911.4829 19.000 4.492413.1234 19.000 6.376416.4042 19.000 8.840019.6850 19.00011.535422.9659 19.00014.955526.2467 19.00018.549529.5276 19.00022.317332.8084 19.00029.041539.3701 19.00034.780245.9318 19.00036.693152.4934 19.00041.475454.6260 19.00041.475468.6352+88888 19.500 0. 16.4042 19.500 2.753416.4042 19.500 3.738919.6850 19.500 5.506922.9659 19.500 8.463226.2467 19.50012.028229.5276 19.50016.172832.8084 19.50023.766539.3701 19.50029.997945.9318 19.50035.446852.4634 19.50037.098954.6260 19.50037.098968.8976+88888 19.750 0. 22.9659 19.750 2.753422.9659 19.750 5.506926.2467 19.750 8.897929.5276 19.75012.955632.8084 19.75020.607339.3701 19.75027.302545.9318

-4:--

19.75033.012252.4934 19.75034.780254.6260 19.75034.780268.8976+88888 20.000 0. 26.2467 20.000 2.057826.2467 20.000 5.651829.5276 20.000 9.390732.8084 20.00017.390139.3701 20.00024.346245.9318 20.00030.374752.4934 20.00032.084854.6260 20.00032.084868.8976+88888 20.500 0. 30.5118 20.500 2.840432.8084 20.50010.810939.3701 20.50018.114745.9318 20.50024.780952.4934 20.50026.664854.6260 20.50026.664868.8976+99999 -50-

C.2 Weight Data File

The weight data file is the input weight description of the vessel following a standard format used by the U.S.C.G. This information is loaded into the computer core and stored as a file with a seven letter descriptive name. The convention which has been established requires that the first two letters of the file name be "DW" with the remaining five letters being a description of the vessel and condition.

The weight curve may be described by an unlimited number (500) of weight "segments". These segments are defined by their associated weight, the fore and aft limits between which this weight acts (measured from the F.P.) and the center of gravity of the weight, also measured from the F.P. The position of the center of gravity of the segment (LCG) is constrained in that it must fall within the middle one-third of the segment (i.e., the weight distribution of each segment must be linear).

Segments may be submitted in any order. If desired, an integer code may be specified with each segment. The purpose of the code is to allow the submitted segments to be sorted on the basis of the code, followed by a computation of the total weight and associated LCG of all segments of the same code. Up to 10 different integer codes are permitted ("0" is not a possible I.D.) allowing the user to specify 10 separate weight classes for examination. A description of the card (or line) format for this file is given below.

1) WEIGHT CLASS CARD

Column	Format	Entry
5	Integer	Always a 2.
		Not used in
		present program.

-51-

2) LENGTH CARD

Columns	Format	Entry
1-10	Real	Ship's length between perpen- diculars in length units.
11–15	Integer	Number of weight blocks for output weight curve (21 is used for ship motion program)

The data from cards 1 and 2 are not used in program STATIC but are used in other U.S.C.G. programs but must be included so that data files between programs can be used interchangeably.

3)	WEIGHT CARDS	(refer to figure 3	8.5, page 30 for definition of symbols)
	Columns	Format	Entry
	1-10	Real	Forward end of weight segment measured from the forward perpendicular (F.P.) ₁ x.
	11-20	Real	The weight of this segment in force units (i.e., L. tons, pounds, etc.) ₁ w.
	21-30	Real	Aft end of weight segment measured from the F.P. ₁ x ₂ .
	31-40	Real	Center of gravity of the weight segment measured from the F.P., Lcg.
	41-43	Integer	Integer code to specify dif- ferent weight classes (i.e., lightship and deadweight could be two weight classes). These codes are used to subtotal weight classes.
	If the forwar	rd end of the weigh	nt segment (columns 1-10)

is greater than or equal to 999999. the reading of this file is terminated.

2

Examples of weight data files for the SL-7 full load, SL-7 light load and a 290 ft. by 52.5 ft. box barge are giver:

Data file "DW428FU" - weight curve for 290 ft. by 52.5 ft.barge

-				
290.	21			
.01	147.4	60.	30.	1
60.	55.9	82.75	71.4	1
82.75	132.56	136.75	109.75	1
136.75	127.04	188.5	162.6	1
188.5	127.04	240.25	214.4	1
240.25	122.6	290.00	265.13	1
8.0	622.5	68.	38.	2
68.	764.8	128.	98.	2
128.	758.8	188.	158.	2
188.	609.8	248.	218.	2
248.	295.8	282.	265.	2
9999999.	-			
-1				

-52-

-53-Data file "DWSL7FU" - Full load weight curve for SL-7 from (18)

2				
880.5000	22			
-20.0000	765.2000	42.0000	19.0000	1
42.0000	1847.7000	115.2500	84.3200	1
115.2500	1205.7000	167.7500	143.1800	1
167.7500	1613.4000	207.7500	185.5200	1
207.7500	1943.6000	247.7500	225.5000	1
247.7500	2379.2000	287.7500	265.5400	1
287.7500	2305.6000	327.7500	305.5300	1
327.7500	2610,8000	367.7500	345.5300	1
367.7500	3148,7000	407.7500	385.5200	1
407.7500	3343.7000	447.7500	425.5100	1
447.7500	3299.0000	492.7500	467.9900	1
492.7500	3179,2000	537.7500	512,9900	1
537.7500	3293,3000	562.7500	550.0000	1
562.7500	3039,8000	612.7500	587.5000	1
612.7500	2661.3000	652,7500	635.0000	1
652.7500	2898.7000	697.7500	674.3500	1
697.7500	2116.1000	737.7500	716,1000	1
737.7500	1678.3000	777.7500	756.4000	1
777.7500	1597.2000	817.7500	795.5500	1
817.7500	1244.5000	852,5000	835.5000	1
852,5000	897.7000	880,5000	869,5000	1
880.5000	691.3000	920.5000	900.5000	1
9999999		,,	,,	•

Data file "DWSL7BA" - Ballast weight curve for SL-7

2

	_				
	880.5000	22			
	-20.0000	777.4000	42.0000	19.0000	1
	42.0000	1859.9000	115.2500	84.3200	1
	115.2500	1217.9000	167.7500	143.1800	1
	167.750D	1151.8000	207.7500	185.5200	1
	207.7500	1379.2000	247.7500	225.5000	1
	247.7500	1844.3000	287.7500	265.5400	1
	287.7500	1990.6000	327.7500	305.5300	1
	327.7500	2429.0000	367.7500	345.5300	1
	367.7500	2547.5000	407.7500	385.5200	1
	407.7500	2707.6000	447.7500	425.5100	1
	447.7500	2714.9000	492.7500	467.9900	1
	492.7500	2697.9000	537.7500	512.9900	1
	537.7500	3284.9000	562.7500	550.0000	1
	562.7500	3031.4000	612.7500	587.5000	1
	612.7500	2726.3000	652.7500	635.0000	1
	652.7500	2757.4000	697.7500	674.3500	1
	697.7500	1631.3000	737.7500	716.1000	1
	737.7500	1217.7000	777.7500	756.4000	1
	777.7500	982.5000	817.7500	795.5500	1
	817.7500	901.2000	852.5000	835.5000	1
	852.5000	889.3000	880.5000	869.5000	1
	880.5000	682.9000	920.5000	900.5000	1
ļ	9999999.0				

C.3 Data Input

Program STATIC has eight operational jobs as follows:

_5.1.

Job Name and Subprogram Name	
*TERMINAL	TERMINAL sets the type of terminal used for output and the maximum line length for this output device.
*UNITS	UNITS sets the physical units of length, force, and time.The mass den- sity & viscosity of water and accel- eration of gravity may also be changed.
*OFFSETS	OFFSETS reads the ship's geometric description from a file that is described in Section C.1
*DRAFT	DRAFT is one of the main subprograms. It calculates the vessel's equilib- rium position and hydrostatic proper- ties associated with it. Bending moments and shear forces are also calculated. Data preparation for both the "Springing" and "Ship Motion" programs.
*GROUNDING	GROUNDING is a specialized subprogram that calculates the drafts and bend- ing moments and shear forces asso- ciated with a grounded vessel.
*INTACT STABILITY	INTACT STABILITY calculates the cross curves of stability for the vessel.
*COEFFICIENTS	This subprogram calculates the two- dimensional added mass and damping for vertical and lateral motions, using either the conformal mapping technique or Frank close fit method.
*FINISH	This command will STOP program execution.

The order of execution of these subprograms is logical. Generally, TERMINAL and UNITS are the first two called if there is to be a change in the assumed default values of these subprograms. Next OFFSETS must be called to obtain the geometric description of the vessel. Subprograms DRAFT, GROUNDING, and INTACT STABILITY may be called in any order and as many times as desired. COEFFICIENT must follow the call to DRAFT but can be called numerous times. The last job called is subprogram FINISH which terminates the program execution.

On the following pages will be a description of the parameter names and values which control the execution in each subprogram. The explanation of the terminology used is found in Section B.2.

C.3.a Subprogram TERMINAL

This subprogram specifies what type of terminal is being used for the output of results from the program. The output can be printed at a high speed terminal (usually at the data center) or a 30 character per second terminal. In addition many terminals have only 80 columns for printouts rather than 132. This subprogram will specify which of the above terminals is being used. If output is being sent to a high speed, 132 column printer, this subprogram need not be called, for these are the default output devices.

(1) Output Parameter

Definition

oucput rurumeter	
TERMINAL TYPE = n	This parameter specifies the type
$\frac{\text{Default:}}{\text{TERMINAL}} \text{ TYPE } = 0$	n = 0 High speed terminal n = 1 30 cps terminal
LINE LENGTH = n Default: LINE LENGTH = 132	This parameter specifies the number of output columns avail- able on a printer. Usually it will be either 80 or 132

(2) Examples of use of *TERMINAL

 (a) *TERMINAL (TERMINAL TYPE = 1, LINE LENGTH = 80)
 <u>Action:</u> The program will assume a terminal that works at a 30 cps rate without a form feed and has only 80 column width paper.

(b) *TERMINAL (LINE LENGTH = 80)

Action: The program will output to a high speed terminal only using 80 columns. -56-

C.3.b Subprogram UNITS

This subprogram presets the units to be used in all processing. It allows the user to use any combination of units within the allowable parameters. The values of the mass density of sea water and gravity are changed to match the units used. Gravity is initialized at 32.174 ft/sec², the mass density of sea water is 8.8880×10^{-4} ton sec²/ft⁴, and the kinematic viscosity of sea water is $1.1057 \times 10^{-5} \text{ ft}^2/\text{sec}$, since the initial units are: Length - feet

> Force - long tons Time - seconds

If these initial values are acceptable, subprogram UNITS need not be called.

- (1) Output Parameter LIST
 - Default: LIST OFF

If LIST is specified, a list of units, mass density, viscosity and acceleration of gravity will be printed.

The

(2) Processing Parameters LENGTH = nameInitial Value: LENGTH = FT

FORCE = name

Initial value: FORCE = LT

RHO = nInitial value: RHO = 8.8880E. 10^{-4} ton sec²/ ft⁴

Length units are specified. allowable length units are: FT feet IN inches M meters CM centimeters MM millimeters If the length unit is changed, the physical constants are reset to the correct numerical values by the program.

Force units are specified. The allowable force units are:

- LT long tons :
- ST short tons LB
 - pounds
- MT metric tons KG kilograms

Values are treated as forces, and the physical constants are adjusted accordingly.

The program's assumed value for mass density of water is overridden by the given value, n. "n" is given in force - \sec^2/length^4 units. It is also Y/G where Y is the density

-57-

of sea water in weight/volume. The initial value is for salt water at 70°F.

given in length/sec² units.

G = n

 $\frac{\text{Initial value:}}{G = 32.174 \text{ ft/sec}^2}$

VISCOSITY = n Initial value: VISCOSITY = 1.1057 x

 $10-5 \text{ ft}^2/\text{sec}$

The initial value of kinematic viscosity for salt water at 70°F is overridden by the given value n. "n" is given in length squared per time units.

The gravitational constant is overriden by the indicated n. "n" is

RESTORE

The length and force units will be restored to feet and long tons respectively. The value of gravity, viscosity and density will also be changed accordingly.

(3) Examples of use of UNITS

(a) *UNITS (FORCE = LB, LIST, RHO = 1.93945)

Action: The program will use pounds for the force unit. It will reset the value of the mass density of water to 1.93945 lbs-sec $2/ft^4$ which is the value for fresh water and then print a table of current units and constants.

(b) *UNITS (FORCE = MT, LENGTH = M)

Action:

The program will use metric tons as a force unit, meters as a length unit and reset the acceleration of gravity and mass density and viscosity of salt water to the appropriate units. -58

C.3.c Subprogram OFFSETS

This subprogram reads the ship geometry data from a data file which was explained in C.l. The ship hull is defined by offsets in a format compatible with the Navy's Ship Hull Characteristics Program.

(1) Input/Output Parameters

(a) FILE = MMTXXXX	Specifies the name of the offset data file describing the ship's geometry. The file name is "MMT" followed by four letters of the user's choice.
(b) LIST Default: LIST OFF	If LIST is specified then a list of the station offsets and the forward and aft profiles will be given.

(2) Example of use of OFFSETS

***OFFSET** (FILE = MMTSL7 LIST)

Action:

The program will read the offset information from data file MMTSL7 which is stored on the system. It will also list the offsets for each station.

C.3.d Subprogram DRAFT

This subprogram determines the equilibrium position of the ship so that various calculations and tasks may be performed. As mentioned in A.2, the ship's weight and center of gravity must be determined so that an equilibrium floating position may be found. Subprogram DRAFT can only be called after subprogram OFFSETS has been called since the geometric description of the vessel is needed to establish equilibrium. To determine where the vessel will float one of three options must be given:

- 1) Input a weight curve from a data file as explained in A.2 and C.2; or
- 2) Input weight and the centers of gravity; or
- 3) Input the drafts forward and aft

Once the ship's equilibrium condition is determined,

that is trim, heel and draft, various tasks can be performed:

- 1) Hydrostatics volumes, centroids, trim and stability data
- 2) Strength shear forces and bending moments at different longitudinal locations
- 3) Springing preparation of offset data files for USCG springing program (3)
- 4) Motions Preparation of ship motion data file for modified SCORES program (1)

In addition to the still water condition, the hydrostatics and strength calculations can be performed in waves.

The different control parameters for this subprogram are listed below:

(1) Input/Output Parameters

(a) NOLIST	If NOLIST is specified, the
<u>Default:</u>	hydrostatics and bending moment
NOLIST OFF	are suppressed.
(b) LIST	If LIST is specified, the table
Default:	of wetted offsets for each sta-
LIST OFF	tion is printed.

- (d) OUTPUT = DMXXXXX If OUTPUT is specified, a ship motion data file is prepared for the modified SCORES[,] program, written to a file and assigned the name "DMXXXXX". The file name is "DM" followed by five letters of the user's choice.
- (e) TITLE If TITLE is specified a new des-<u>Default:</u> TITLE off If TITLE is specified a new descriptive name of up to 40 letters will be read from the next line following the *DRAFT command.
- (f) WTDIST = DWXXXXX If WTDIST is specified a weight curve, as explained in 3.A.3 and 3.C.2, will be read from a file whose name is "DWXXXXX". The file name is "DW" followed by five letters of the user's choice.

(2) Processing Parameters

- (a) XF = n
 <u>Default:</u>
 XF = first station distance
 from the FP
- (b) XA = n
 <u>Default:</u>
 XA = last sta tion distance
 from the FP
- (c) TF = n
- (d) TA = n
- (e) DRAFT = n
- (f) WEIGHT = n or WT = n
- (g) LCG = n or XCG = n

 $\frac{\text{Default:}}{\text{LCG} = \text{Length}/2}$

"n" is the distance from the forward perpendicular along the x-axis to the forward draft marks of the vessel.

"n" is the distance from the forward perpendicular, along the x-axis, to the aft draft marks of this vessel

- "n" is the draft at the forward marks, which is at XF from the forward perpendicular
- "n" is the draft at the aft marks which is at XA from the forward perpendicular
- "n" is the even keel draft the vessel is floating. Same as saying TF = TA = DRAFT
- "n" is the ship's weight in force units

"n" is the distance from the forward perpendicular to the ship's longitudinal center of gravity (h) KG = n or VCG = n "n" is the distance from the baseor ZCG = n line to the ship's vertical center of gravity <u>KG = Ship's depth/2</u>
(i) HCG = n or "n" is the distance from the center-YCG = n line to the horizontal center of gravity (positive starboard)

 $\frac{\text{Default:}}{\text{HCG} = 0.0}$

(j) TRIM = n "n" is the ship's trim in length <u>Default:</u> TRIM = 0.0

(k) HEEL = n "n" is the ship's heel in degrees $\frac{\text{Default:}}{\text{HEEL} = 0.0}$ positive

(m) EQUAL STATIONS = n "n" is the number of equal stations that the wetted hull will be interpolated to for use in ship motion and/or springing program input data

(n) POINTS = n If EQUAL STATIONS is specified, "n" $\frac{\text{Default:}}{\text{POINTS} = 12}$ If EQUAL STATIONS is specified, "n" equally spaced points will describe each wetted contour

If WAVE is given, the ship will be analyzed for a quasistatic condition. A wave is described by giving the height location of the crest from the forward perpendicular, the wave length and the angle of the wave relative to the ship's centerline. 0° is stern seas, 180° head seas and 90° port beam seas.

The input of the wave data is on cards (or lines) following the *DRAFT job parameter list and the TITLE line (only TITLE is specified on DRAFT card). The format of these cards are as follows:

+1:00

Line 1 to number of waves

Variable	Columns	Definition
HEIGHT	1-10	Height of wave crest to trough
WAVLEN	11-20	Wave length
CREST	21-30	Location of CREST of wave measured from the forward perpendicular
HEAD	31-40	Heading of wave relative to centerline. O ^O following seas, 180 ^O head seas and 90 ^O port beam seas.

Line 1 is repeated for each sine wave if irregular wave input is (3) Examples of Use of DRAFT specified.

- (a) *DRAFT (XCG = 350., WEIGHT = 40000., KG = 15. LIST) <u>Action:</u> The program will set the ship's weight to 40000, longitudinal center of gravity 350. from the forward perpendicular and the vertical center of gravity 15 from the baseline. The ship will be balanced and the hydrostatic properties of the equilibrium conditions will be printed. Since LIST is specified, a list of the wetted offsets will be printed.
- (b) *DRAFT (WTDIST = DWMAR, ZCG = 29.0, NWAVE = 1, TITLE)
 MARINER FULL LOAD DEPARTURE IN WAVES

5,2000 520.000 260.0000 0.0000

Action:

The program will read the longitudinal weight curve from a file named "DWMAR" which was explained in Sections A.2 and C.2. The vertical center of gravity is 29.0 feet above the keel. The title that is printed on the top of each page of output will be "MARINER FULL LOAD DEPARTURE IN WAVES". The ship will be balanced in a sinusoidal wave of 5.2 feet length, crest at midships (260 ft. from FP) from the following seas. The hydrostatics and shear force and bending moment will be printed for this condition.

(c) *DRAFT (WTDIST = DWWOL2, ZCG = 20.0,

OUTPUT = DMWOL2, SPRING = SPGWOL2, EQUAL STATIONS = 21, POINTS = 18) Action:

The program will read the longitudinal weight curve from a file named "DWWOL2" and assigns the value of 20.0 to the ship's KG. The ship can now be balanced, that is, an equilibrium position can be found (i.e., drafts, trim and heel). Since equal stations was stipulated the wetted hull will be interpolated to 21 equally spaced stations with 18 points on each station. A ship motion data file, "DMWOL2", for the modified SCORES program and a springing offset data file, "SPGWOL2", are created. -U i-

C.3.e Subprogram GROUNDING

This subprogram determines the equilibrium position of a ship that has run aground. As explained in A.2, the ship's weight and LCG must be determined so that the equilibrium position can be found. As in subprogram DRAFT, subprogram GROUNDING can be executed only after OFFSETS has been called. The vessel's pre-grounding equilibrium condition is found using one of three options

- (1) Input a weight curve from a data file as explained in A.2 and C.2
- (2) Input ship's weight and centers of gravity
- (3) Input the drafts forward and aft.

Once this condition has been determined the grounding force acting on the vessel can be calculated. Three parameters describe grounding; the shoal water depth, the shoal length and the location of the grounding point on the ship. (See Figure 3.6)

Figure 3.6

The hydrostatic properties are printed for the grounded condition. If the weight curve was used as input, a bending moment and shear force are also outputed.

The different control parameters for this subprogram are listed below.

-65-
(1) Input/Output Parameters

	(a)	TITLE Default: TITLE off	If TITLE is specified a new descrip- tive name, up to 40 letters will be read immediately following the *GROUNDING parameter list.						
	(b)	WTDIST = DWXXXXX	If WTDIST is specified a weight curve, as explained in A.2 and C.2, it will be read from a file named DWXXXXX. The file name is "DW" followed by five letters of the user's choice.						
(2)	Proc	cessing Parameters							
	(a)	XF = n	Same as subprogram DRAFT						
	(b)	XA = n	Same as subprogram DRAFT						
	(c)	TF = n	Same as subprogram DRAFT						
	(d)	TA = n	Same as subprogram DRAFT						
	(e)	DRAFT = n	Same as subprogram DRAFT						
	(f)	WEIGHT = n	Same as subprogram DRAFT						
	(g)	LCG = n	Same as subprogram DRAFT						
	(h)	KG = n	Same as subprogram DRAFT						
	(i)	TRIM = n	Same as subprogram DRAFT						
	(j)	SHOAL DRAFT = n $\frac{\text{Default:}}{\text{SHOAL DRAFT}} = 0.0$	"n" is the depth of water at the point where the ship has run aground						
	(k)	SHOAL LOCATION = n <u>Default:</u> <u>SHOAL LOCATION =</u> 5% of ship's length	"n" is the point where the vessel has run aground measured from the F.P. in the ship's coordinate system						
	(1)	SHOAL LENGTH = n <u>Default:</u> SHOAL LENGTH = 1% of ship's length	"n" is the length of shoal which the ship's bottom is aground on. This is used for distributing the grounding load						
(3)	Exan	nples of use of GROUN	NDING						
	(a)	*GROUNDING (XCG = 3	350.0, WT = 40000., KG = 15.0,						
		SHOAL LOCATION = 30 .	.0)						
	SHOAL LOCATION = 30.0 <u>Action:</u> The program will set the ship's weight to $40,000$, the longitudinal center of gravity 350.0 from the forward perpendicular and the vertical center of gravity 15.0 from the baseline. The ship will be balanced to establish the equilibrium condition								

The ship runs aground 30.0 from the forward perpendicular on a shoal of 0.0 depth. The hydrostatic properties will be printed for the grounded condition.

(b) *GROUNDING (WTDIST = DWMAR, SHOAL DRAFT = 5.0,

ZCG = 29.0)

Action:

The program will read the longitudinal weight curve from a file named "DWMAR" and set the vertical center of gravity to 29.0 feet above the keel. The shoal depth is 5.0 feet, the shoal location 5% of the vessel's length aft of the F.P. and the length of the shoal touching the bottom will be assumed 1% of the vessel's length. First, the before grounding condition is found then the equilibrium condition for the grounded vessel is determined. Hydrostatic properties and shear forces and bending moments will be printed for the grounded vessel.

C.3.f Subprogram INTACT STABILITY

This subprogram calculates the cross curves of stability for a vessel. The cross curves of stability are a calculation of righting arm versus the angle of heel versus displacement. (See figure 3.7).

Figure 3.7 From (9)

The vessel's trim, vertical center of gravity and horizontal center of gravity are also needed.

The different control parameters for this subprogram are listed below:

(1) Input Parameter

(b) XF = n

TITLE <u>Default:</u> TITLE off

If TITLE is specified, a new descriptive name of up to 40 letters will be read from a line immediately following the *INTACT STABILITY control statement.

(2) Processing Parameters

(a) TRIM = n $\frac{\text{Default:}}{\text{TRIM} = 0.0}$

bow up. This is also defined as the difference between the aft and forward draft "n" is the distance to the forward

"n" is the ship's trim in length units with positive defined as

<u>Default:</u> XF = first station distance from the F.P. mark measured from the forward perpendicular in length units. Needed only if TRIM is not zero (c) XA = n $\frac{Default:}{XA = last sta-tion distance}$ from A.P. (d) KG = n or VCG = n or ZCG = n

Default: KG = ½ ship's depth

(e) HCG = n or YCG = n

$$\frac{\text{Default}}{\text{HCG}} = 0.0$$

(f) HEEL1 = n $\frac{\text{Default:}}{\text{HEEL1} = 10.0}$

(g) HEEL2 = n $\frac{\text{Default:}}{\text{HEEL2} = 80.0}$

(h) HEELINC = n $\frac{\text{Default:}}{\text{HEELINC}} = 10.0$

(i) DISP1 = n
 Default:
 DISP1 = 0.1 *
 L*B*Depth*Density

(j) DISP2 = n <u>Default:</u> <u>DISP2 = 10.0 *</u> Default DISP1

(k) DISPINC = n
 <u>Default:</u>
 DISPINC = Default
 DISP1

(1) WAVE = n

"n" is the distance to the aft mark measured from the forward perpendicular in length units. Needed only if TRIM is not zero.

"n" is the distance from the baseline to the ship's vertical center of gravity following the *INTACT STABILITY parameter list.

"n" is the distance from the centerline to the horizontal center of gravity (positive to starboard)

"n" is the initial heel angle in degrees for the cross curves of stability

"n" is the final angle in degrees for the cross curves of stability

"n" is the heel increment in degrees used to go from HEEL1 to HEEL2 in the cross curves of stability

"n" is the initial displacement in force units for the cross curves of stability

"n" is the final displacement, in force units, for the cross curves of stability

"n" is the increment of displacement used to go from DISP1 to 1t DISP2 in the cross curves of stability

Same description as in subprogram DRAFT so that cross curves of stability can be performed for quasi-static conditions (3) Examples of use of INTACT STABILITY

(a) *INTACT STABILITY (DISP1 = 2000., DISP2 = 30000., DISPINC = 2000., KG = 28.0, TITLE, WAVE = 1) MARINER - SINE WAVE - CREST MIDSHIPS 5.2000 520.0000 260.0000 0.0000

Action:

The program will calculate the cross curves of stability for a Mariner in a sinusoidal wave whose crest is at midships and amplitude of 5.2 feet. The KG is 28.0 feet, the displacements used will be 2000 to 30000 in steps of 2000 tons, and the heel angles will be 10 degrees to 80 degrees in steps of 10 degrees.

(b) *INTACT STABILITY.

Action:

The program will perform the calculations for 10° to 80° in steps of 10° with an assumed KG of half the ship's depth. The default values for the displacement range will also be used.

C.3.g Subprogram COEFFICIENTS

The subprogram generates the two-dimensional pressures and added mass and damping coefficients for 25 frequencies. The pressures for heave, sway and roll and the added mass and damping for heave, sway, roll, sway-roll, cross-coupling and roll-away-coupling are calculated. The pressures are calculated at the midpoints of line segments described by consecutive offset points.

These values are calculated using conformal mapping or close-fit techniques. The accuracy obtained using the conformal mapping technique improves as more coefficients are added. Likewise, with the close-fit method, the more offset pairs used, the greater the accuracy. Using Frank, the offset pairs should be evenly spaced for best results, therefore, a midship section might need extra points for the side and bottom. This is automatically done by the program by specifying the maximum distance between points so that extra offset pairs can be inserted.

Subprograms OFFSETS and DRAFT must be called before calling this subprogram.

(1) Output Parameters

(a) NOLIST Default: NOLIST off	If NOLIST is specified, the print- ing of the two-dimensional hy- drodynamic properties is suppressed
(Ե) LIST Default:	If LIST is specified, the mapping coefficients and the OFFSETS are listed
(c) OUTPUT = TDXXXXX	If OUTPUT is specified, two- dimensional hydrodynamic proper- ties written to TAPE 3 are saved under a file name TDXXXXX. The file name is "TD" followed by five letters of the user's choice.
(2) <u>Pr</u>	ocessing Parameters	

(a) DMAX = n

Maximum distance between adjacent offset points. If distance greater than n, then additional offset pairs are inserted by the program. -71-

(b) $YMAX \approx n$ Maximum horizontal distance between adjacent offset pairs, otherwise same as DMAX. (c) ZMAX = nMaximum vertical distance between adjacent offset pairs otherwise same as DMAX. (d) FIRST STATION = nSpecifies first station for which the two-dimensional hydrodynamic Default: coefficients will be calculated. **FIRST STATION = 1** (e) LAST STATION = nSpecifies last station for which two-dimensional hydrodynamic Default: coefficients will be calculated. $\overline{\text{LAST STATION}} =$ Maximum station (f) MAPPING ERROR = nSpecifies the mapping error tolerance percent for determining if Default: section is mapped accurately. MAPPING ERROR =2.0%(g) NUMBER COEFFICIENTS Specifies maximum number of mapping = n coefficients to be used. Maximum value is 9, If "n"is defined as 2 Default: or less, then a Lewis form is NUMBER COEFFIassumed. CIENTS = 9(h) MAXPOINTS = nSpecifies the maximum number of points to be used in Frank close Default: fit method. Maximum is 20 points. $\overline{\text{MAXPOINTS}} = 20$ (i) MAPPING If MAPPING is specified, all sections from FIRST STATION to LAST Default: STATION will attempt to be mapped MAPPING ON and two-dimensional coefficients. will be calculated. If a section cannot be mapped, FRANK will be used. (j) FRANK If FRANK is specified hydrodynamic, properties of all sections from Default: FIRST STATION to LAST STATION FRANK off will be performed using the FRANK

(3) Example of use of COEFFICIENTS

(a) *COEFFICIENTS (DMAX = 1.0, OUTPUT = TDWOL2)

Action:

The program will calculate added mass and damping for heave, sway, roll and sway-roll cross couplings. The maximum distance between adjacent offset points is 1.0 (but a maximum of 20 points). The hydrodynamic results will be written to a file called TDWOL2.

close fit method

-72

IV. DESCRIPTION OF OUTPUT SCHEME

A description of the output format will be given with a sample run shown in Appendix A, using the input file given below:

```
*TERMINAL(LINE LENGTH=80)
#UNITS(LIST)
#OFFSETS(FILE=MMTSL7,LIST)
#DRAFT(DRAFT=20.0)
*DRAFT(TF=25.0,TA=25.0)
*DRAFT(WT=47760.0000,LCG=478.8632,KG=42.31,TITLE)
SL-7 FULL LOAD EXAMPLE
*GROUNDING(WTDIST=DWSL7FU, SHOAL LENGTH=5.0, SHOAL LOCATION=50.0,
 SHOAL DRAFT=5.0, KG=42.31, TITLE)
SL-7 FULL LOAD GROUNDING EXAMPLE
*INTACTSTABILITY(DISP1=15000,DISP2=50000,DISPINC=5000,KG=30.,
TITLE)
SL-7 INTACT STABILITY EXAMPLE
*DRAFT(WTDIST=DWSL7BA,KG=40.26,WAVE=1,TITLE)
SL-7 BALLAST-L/20 WAVE TROUGH AMIDSHIPS
    1
   44.0250 880.5000
                        0.0000
                                   0.0000
*DRAFT(WTDIST=DWSL7FU,KG=42.31.TITLE,EQUALSTATION=21,
POINTS=19,LIST)
SL-7 - NORMAL FULL LOAD DEPARTURE
*COEFFICIENT(FIRSTSTATION=1,LASTSTATION=1)
#COEFFICIENT(FIRSTSTATION=11,LASTSTATION=11,LIST)
#COEFFICIENT(FIRSTSTATION=11,LASTSTATION=11,FRANK)
*FINISH.
```

The *TERMINAL commands sets the output format to 80 columns per line. *UNITS indicates that the default units for the program will be used and will be printed (page A-2). The *OFFSETS job name reads the ship geometric data from file MMTSL7 and then lists the offsets (pg A-4 to A-10).

The *DRAFT job name runs the hydrostatic properties of the SL-7 for a 20 ft. draft (pgs A-12 to A-13). The next line uses a slightly different input for the same type of results for a 25 ft. draft (pg A-15 to A-16). The third call to *DRAFT involves the balancing of the vessel. The weight properties of the SL-7 are given and the ship will adjust itself until it is in equilibrium (page A-17). For this equilibrium condition the hydrostatic properties are printed (page A-18 to A-19). A title is read in for these calculations and is printed at the top of each page (pg A-17 to A-19).

- r

The *GROUNDING job name indicates the ship has run aground on a shoal of 5.0 ft. in length and a water depth of 5.0 ft. at a point 50 ft. from the ship's forward perpendicular. Before the ship ran aground the weight conditions are found from data file DWSL7FU, which corresponds to a full load condition. This weight curve and weight summary (pg A-21) is used to determine the ship's drafts before running aground (pg. A-22). The shoal is an external force on the vessel which causes it to balance differently (pg A-23) and to have a considerable effect on shear force and bending moment (pg A-24). The hydrostatic properties are printed for this grounded condition (pg A-25 to A-26). Again a new title is read for the output and is printed at the top of each page (pg A-21 to A-26)

The *INTACT STABILITY command runs the calculation. The cross curves of stability are calculated for displacements of 15000 long tons to 50000 long tons in increments of 5000 long tons and angles of heel of 10 degrees to 80 degrees in steps of 10 degrees. The heel angles are program default values and were left unchanged. The cross curves of stability are righting arms and their tangents for various displacements and angles of heel (pg. A-28 to A-31). Again, a title is specified for the top of each page of output.

The next command, *DRAFT, reads the weight curve for a ballast condition of the SL-7 (pg A-33). The vessel will be balanced in a sinusoidal wave of amplitude 22 ft., wave length 380.5 ft. and trough amidships (pg A-34 to A-35). The shear force and bending moment for this condition (pg A-36) and hydrostatics (pg A-37 to A-38) are given. Again a new title is specififed for this job.

The final *DRAFT command is for a full load condition of the SL-7 whose weight curve is read from file DWSL7FU (pg A-40). The vessel is balanced for this condition and shear force and bending moments calculated (pg A-41 to A-42). The station arrangement for the vessel is changed to 21 equal stations with 19 points per station for subsequent calls of hydrodynamic calculations and for the hydrostatic properties (pg A-43 to A-47).

Rather than calculating the added mass and damping for all 21 stations, three stations were run. The first call to *COEFFICIENT calculates the added mass and damping for station 1 (pg A-49). Since it was a bulbous bow, the Frank close fit procedure was chosen. The nomenclature for the added mass and damping is given below:

Dimensions Frequency ω²D Non-Dimensional Parameter $F-\sec^2/L^2$ A'33 heave added mass $F-sec/L^2$ N'z heave damping $F-sec^2/L^2$ sway added mass M $F-sec/L^2$ sway damping N M_{s.r.} added mass for sway-roll cross $F-sec^2/L^2$ coupling ^Ns.r. damping for sway-roll cross F-sec/L² coupling F-sec² added moment of inertia in roll I_r roll damping Nr F-sec

where

- F is force units
- L is length units
- D is station draft
- ω is frequency (radians/second)
- g is acceleration of gravity

The second call to *COEFFICIENTS is for station 11 which is midships. Since the section can be handled by conformal mapping and LIST is specified, the mapping coefficients are calculated (pg A-51). The added mass and damping are then outputted (pg A-52). -75-

The final call to *COEFFICIENTS is again for station 11 but this time FRANK is specified. The Frank close fit method is used to calculate the added mass and damping (pg A-54) and corresponds fairly well to the conformal mapping technique.

The final call of this job is to *FINISH which terminates the execution of the program.

V. TIMING AND ERROR MESSAGES

The compilation time required for program STATIC is 6 CPU, with about 44K of core needed to load the program and 36K for execution. The job file needed for the compilation is shown in Table 1, Appendix B. The compiled (binary) version of STATIC is stored in a file called STATBIN and can be used for subsequent runs therefore saving the compilation costs. Table 2, Appendix B shows the job sequence needed for the execution of program STATIC using the compiled program.

The computation time for running STATIC varies tremendously and is a function of many variables. The number of stations and number of points per station effect the running time. Each subprogram requires various running times associated with it's task. The SL-7 is a representative ship whose computation times will be discussed. The example run shown in Chapter IV had running times as shown in the following Table.

LIST OF STATIME

.371 SEC. CPU LAST JOB = .371 SEC. TOTAL CPU = #TERMINAL(LINELENGTH=80,TERMINAL TYPE=-1) .382 SEC. CPU LAST JOB = .011 SEC. TOTAL CPU = #UNITS(LIST) CPU LAST JOB = .034 SEC. TOTAL CPU = .416 SEC. *OFFSETS(FILE=MMTSL7,LIST) CPU LAST JOB = .631 SEC. TOTAL CPU = 1.047 SEC. #DRAFT(DRAFT=20.0) .367 SEC. TOTAL CPU = 1.414 SEC. CPU LAST JOB = ***DRAFT(TF=25.0,TA=25.0)** 1.794 SEC. CPU LAST JOB = .380 SEC. TOTAL CPU = #DRAFT(WT=47760.0000.LCG=478.8632.KG=42.31.TITLE) CPU LAST JOB = 1.430 SEC. TOTAL CPU = 3.224 SEC. #GROUNDING(WTDIST=DWSL7FU,SHOAL LENGTH=5.0,SHOAL LOCATION=50.0, SHOAL DRAFT=5.0,KG=42.31,TITLE) CPU LAST JOB = 29.612 SEC. TOTAL CPU = 32.836 SEC. INTACTSTABILITY(DISP1=15000,DISP2=50000,DISPINC=5000,KG=30., TITLE) CPU LAST JOB = 40.375 SEC. TOTAL CPU = 73.211 SEC. #DRAFT(WTDIST=DWSL7BA,KG=40.26,WAVE=1,TITLE) CPU LAST JOB = 5.129 SEC. TOTAL CPU = 78.340 SEC. *DRAFT(WTDIST=DWSL7FU,KG=42.31,TITLE,EQUALSTATION=21, POINTS=19,LIST) CPU LAST JOB = 1.593 SEC. TOTAL CPU = 79.933 SEC. #COEFFICIENT(FIRSTSTATION=1,LASTSTATION=1) CPU LAST JOB = 13.042 SEC. TOTAL CPU = 92.975 SEC. #COEFFICIENT(FIRSTSTATION=11,LASTSTATION=11,LIST) CPU LAST JOB = 3.468 SEC. TOTAL CPU = 96.443 SEC. *COEFFICIENT(FIRSTSTATION=11,LASTSTATION=11,FRANK) CPU LAST JOB = 16.049 SEC. TOTAL CPU = 112.492 SEC. FINISH.

The total time for running *TERMINAL, *UNITS, and *OFFSETS is around one computational unit (CPU). This is fairly constant for all types of ships. The *DRAFT sub-program can have various tasks and the times are all relatively small. If the vessel's position is given, that is the drafts and/or heel, the hydrostatic calculations will require about 1/2 CPU. If balancing of the vessel is performed, the typical running time is from 1 to 2 CPU provided there is no heel. As the heel angle becomes larger the computation time will increase. The *DRAFT examples in Chapter 1V are for a zero heel condition.

-1.

The *GROUNDING routine requires substantial computations since it is an excessive trim condition. The running time can typically take from 20 to 40 CPU depending upon shoal location and shoal draft. The time in the above examples was 29.3 CPU.

The *INTACT STABILITY is a lengthy calculation because 64 points were computed for the Cross Curves of Stability (8 displacements with 8 heel angles) and required about 41 CPU. The small heel angles $(10^{\circ} \text{ to } 30^{\circ})$ require about half the CPU time as the larger heel angles $(60^{\circ} \text{ to } 80^{\circ})$. With this in mind, care should be exercised in choosing the range of heel angles which are necessary for a particular vessel.

The *COEFFICIENT sub-program is the most costly of all the subprograms in STATIC. This sub-program calculates the added mass and damping of each station at twenty-five specific frequencies. Hydrostatic conditions of the vessel should be checked thoroughly before executing this program, since it is expensive. The time of computation for one station is 10 to 20 CPU for the Frank close fit method. The conformal mapping approach can take from 3 to 30 CPU and is a function of the number of mapping coefficients needed to describe a station adequately. As seen in our example, Station 11 required 3.5 CPU using conformal mapping (3 mapping coefficients) but required 16 CPU using the close fit technique. The error messages are printed by the program at the time of error and are self-explanatory. The three types of errors that might be incurred while running STATIC are:

- 1) File
- 2) Variable name or value
- 3) Array exceedence

If a file is to be used by STATIC, it must be saved on your user number. An error message will tell you if the program cannot find a file. The most probable reason for this error is a misspelling of the file name. The second problem associated with file manipulation involves an output file. It is not possible to save a file, such as a SPRINGING or MOTION file, if one already exists on the system with the same name.

An error message will occur if a variable name does not match one specified by the program. For instance, *UNITS (LENGHT=M) would produce an error message indicating that LENGHT was not found as a permitted variable name. This is a logical conclusion since the spelling should be LENGTH. Likewise, if *UNITS (LENGTH=METERS) were given, an error message would also result. METER is not a permitted variable value, while M would be the desired value.

Array exceedance is caused by inputting more data than permitted. The following is a list of maximum numbers used by STATIC, and is repeated from Chapter III.

Stations 41							
Points per station	29						
Weight elements	200						
Number of mapping coefficients	9						
· .							

If any of these numbers are exceeded, an error message will be provided to indicate the problem area.

VI. REFERENCES

- 1. Hoffman, D. and Zielinski, T.E., "Integrated Seakeeping Analysis (ISA) Computer Program", Hoffman Maritime Consultant, Inc., HMC Report 7660H, Oct. 1976.
- 2. Aughey, M., "Ship Hull Characteristics Calculations", SNAME Local Section Paper at Hampton Roads, September 1968.
- Zielinski, T. E., "Further Developments in the Theory of Springing Applied to a Great Lakes Bulk Carrier", Appendices A-F, Webb Institute Report prepared for the U. S. Coast Guard February 1974.
- 4. Hoffman, D., "Distribution of Wave Cuased Hydrodynamic Pressures and Forces on a Ship Hull", NSMET, publication #92, Norwegian Ship Model Experimental Tank, 1966.
- 5. Hoffman, D., and Zielinski, T.E., "A New Approach to the Ship Hull Form Characteristics Problem", Metropolitan Section SNAME, January 1974.
- 6. Van Hooff, R., "Sectional Hydrodynamic Coefficients for Heave, Sway and Roll", Report to American Bureau of Shipping, New York, January 1975.
- 7. Frank, W., "Oscillation of Cylinders In or Below the Free Surface of Deep Fluids", Hydrodynamic Laboratory Research and Development Report 2375, October 1967.
- 8. Bedel, J.W. and Lee, C.M., "Numerical Calculation of the Added Mass and Damping Coefficients of Cylinders Oscillating in or Below a Free Surface", Ship Performance Department Research and Development Report 3551, March 1971.
- 9. Comstock, J.P., ed., <u>Principles of Naval Architecture</u>, SNAME, New York, 1967.
- 10. Rawson, K.J. and Tupper, E.C., "Basic Ship Theory", Vols. 1 and 2, Longman, New York, 1976.
- Paulling, J.R., "The Transverse Stability of a Ship in a Longitudinal Seaway", Journal of Ship Research, Vol. 4, No. 4, March 1961.
- 12. Zielinski, T.E., "The Use of Conformal Mapping in Ship Design", Senior Thesis, Webb Institute Report, June 1972.
- 13. Lewis, F.M., "The Inertia of Water Surrounding a Vibrating Ship", SNAME Transactions, 1929.

 $\mathcal{A} \rightarrow \mathcal{A}$

- 14. Porter, W.R., "Pressure Distribution, Added Mass and Damping Coefficients for Cylinders Oscillating in a Free Surface", University of California, I.E.R. Report Series 82, Issue 16, July 1960.
- 15. Ursell, F., "On the Bearing Motion of a Circular Cylinder on the Surface of a Fluid", Quarterly Journal of Mechanics and Applied Mathematics 2, 1949.
- 16. Zielinski, T.E., "Program HYDRO2D Two Dimensional Hydrodynamic Properties of Ship Sections", Webb Institute Report to the American Bureau of Shipping, November 1976.
- 17. Wood, P., "Program Input and Control System "PICSY", Internal report at University of California at Berkeley, 1971.
- 18. Kaplan P., Sargent, T.P., and Cilmi, J., "Theoretical Estimates of Wave Loads on the SL-7 Container Ship in Regular and Irregular Seas", Ship Structure Committee Report SSC-246, 1974. (used for weight description)

APPENDIX A

PROGRAM STATIC (05/79) DEVELOPED FOR U.S. COAST GUARD BY: H O F F M A N M A R I T I M E C O N S U L T A N T S GLEN HEAD (516)676-8499 NEW YORK 07/10/79 10.50.30

-LIST OF UNITS AND PHYSICAL CONSTANTS..

LENGTH UNIT FEET TIME UNIT SECOND FORCE UNIT L.TONS

-PHYSICAL CONSTANTS..

GRAVITATIONAL ACCELERATION,	, G	=	32.1740
VISCOSITY OF WATER,	NU	Ξ	.1106E-04
DENSITY OF WATER,	RHO	÷	.8880E-03

Note:

A mistake in the SL-7 offsets will result in slightly different values.

●OFFSETS(FILE=MMTSL7,LIST)

	PROGRAM	STATIC	(05	/79)	07/10/7	9	10.50.30	PAG
	ORIG.OF	FSETS TAE	BLE (FEET)	SEA-LAND	?	TAINERSHI	P
	LENGT	H = 880.5	00	BEAM	= 105.500		DEPTH =	64.305
	STATION 21 POIN X =	1 TS 0.000		STATION 21 POIN X = 1	2 TS 1.006		STATICN 21 POIN X = 23	3 TS 2.013
	HEIGHT 2	H-B Y		HEIGHT Z	К−В Ү		HEIGHT Z	H-B Y
123456789012345678001	0.000 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 26.247 29.528 32.966 26.247 29.528 32.808 39.370 45.932 52.493 59.055 65.125	0.000 3.035 4.480 6.070 6.648 7.022 6.735 6.214 5.492 3.815 2.341 1.156 .289 0.000 0.000 1.012 2.515 4.278 6.272 8.238	123456789011123456789011123456789011221	0.000 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 26.247 29.528 32.966 26.247 29.528 32.808 39.370 45.932 52.493 52.493 59.055 65.026	0.000 3.180 4.625 6.214 6.995 7.226 6.995 6.590 5.839 4.278 2.890 1.792 1.156 .867 1.098 2.023 3.613 5.839 8.382 10.897	12345678901123456789011123456789011221	0.000 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 22.966 26.247 29.528 32.808 39.370 45.932 59.055 64.993	0.000 3.324 4.769 6.359 7.082 7.515 7.573 7.284 6.937 6.301 4.654 3.324 2.283 1.532 1.532 1.503 2.862 4.971 7.717 10.608 13.354
	STATION 21 POIN X = 44	4 IS 4.025		STATION 21 POIN X = 60	5 IS 5.037		STATION 21 POINT X = 88	6 rs 3.050
	HEIGHT Z	Н~В Ү		HEIGHT Z	H-B Y		HEIGHT Z	H-B Y
12345678901234567893	0.000 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 22.966 26.247 29.528 32.808 39.370 45.932 52.493 59.055	0.000 3.757 5.203 6.879 7.660 8.151 8.238 8.093 7.804 7.226 5.839 4.336 3.180 2.601 2.544 3.035 5.058 7.862 11.273 14.886	1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 1 2 3 4 5 7 8 9 0 1 1 1 2 3 4 5 1 1 2 3 4 5 1 1 2 3 4 5 1 1 2 3 4 5 1 1 1 2 3 4 5 1 1 1 1 2 3 1 1 1 1 2 3 1 1 1 1 2 3 1 1 1 1	0.000 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 22.966 26.247 29.528 32.808 39.370 45.932 52.493 59.055	0.000 4.191 5.578 7.399 8.527 8.671 8.902 8.816 8.527 8.093 6.648 5.347 4.393 4.133 4.133 4.133 4.336 5.000 7.602 10.984 11.909 18.788	1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0	0.000 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 22.966 26.247 29.528 32.808 39.370 45.932 52.493 59.055	0.000 4.625 6.128 8.035 9.163 9.481 9.770 9.683 9.336 8.960 7.949 6.937 6.214 6.214 6.214 6.214 6.879 8.006 10.926 14.452 18.267 23.066

GE

4

,

ORIG.OFFSETS TABLE (FEET) SEA-LAND 7 CONTAINERSHIP

	LENGTH = 880.500 STATION 7 21 POINTS X = 110.062			BEAM = 105.500			DEPTH =	64.305
				STATION 22 POINT X = 132	STATION 8 22 POINTS X = 132.075			STATION 9 22 POINTS X = 176.100
	HEIGHT Z	H-B Y		HEIGHT Z	H-B Y		HEIGHT Z	Н-В Ү
1 3 4 5 6 7 8 9 10 11 12 13 14	0.000 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 22.966 26.247	0.000 5.145 6.879 8.469 9.394 9.827 10.261 10.203 10.203 10.059 9.394 8.758 8.613 9.018	1 2 3 4 5 6 7 8 9 10 11 2 13 14	0.000 .066 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 22.966	0.000 2.890 5.925 7.226 8.960 10.059 10.666 10.752 11.273 11.330 11.273 11.128 11.041 11.330	1 2 3 4 5 6 7 8 9 1 1 1 2 1 3 4 1 1 2 3 4 5 6 7 8 9 1 1 1 2 3 4 5 6 7 8 9 1 1 1 1 2 3 4 5 6 7 8 9 1 1 1 1 2 3 4 5 6 7 8 9 1 1 1 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1	0.000 .131 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 22.966	0.000 4.336 6.937 8.758 10.695 11.909 12.862 13.585 14.308 14.741 15.319 16.331 17.342 18.354
15 16 17 18 19 20 21	29.528 32.808 39.370 45.932 52.493 59.055 64.698	9.827 11.041 14.452 18.267 22.545 27.112 31.303	15 16 17 18 19 20 21 22	26.247 29.528 32.808 39.370 45.932 52.493 59.055 64.633	12.140 13.151 14.597 18.094 22.112 26.303 30.927 34.974	15 16 17 18 19 20 21 22	26.247 29.528 32.808 39.370 45.932 52.493 59.055 64.534	19.741 21.042 22.487 25.783 29.482 33.529 37.864 41.911

3 8 C 4 7

ORIG.OFFSETS TABLE (FEET) SEA-LAND 7 CONTAINERSHIP

	LENGTH = 880.500 STATION 10 22 POINTS Y = 220 125			BEAM = 105.500			DEPTH = 64.305		
				STATION 22 POIN X = 264	STATION 11 22 POINTS X = 264.150			STATION 12 22 POINTS X = 308.175	
	HEIGHT Z	Н-В Ү		HEIGHT Z	H-B Y		HEIGHT Z	H-B Y	
1	0.000	0.000	1	0.000	0.000	1	0.000	0.000	
2	.197	4.336	2	.262	7.226	2	.328	11.562	
3	.820	8.960	3	.820	12.284	3	.820	17.198	
4	1.640	10.839	- ų	1.640	14.741	ų,	1.640	20.233	
5	3.281	13.296	5	3.281	18.210	5	3.281	24.424	
6	4.921	15.319	6	4.921	20.666	6	4.921	27.025	
7	6.562	16.967	7	6.562	22.776	7	6.562	29.338	
8	8.202	18.152	8	8.202	24.279	8	8.202	31.216	
9	9.842	19.366	9	9.842	25.667	9	9.842	32.806	
10	11.483	20.233	10	11.483	26.736	10	11.483	34.107	
11	13.123	21.158	11	13.123	27.893	11	13.123	35.465	
12	16.404	23.037	12	16.404	30.003	12	16.404	37.489	
13	19.685	24.568	13	19.685	31.794	13	19.685	39.136	
14	22.966	26.014	14	22.966	33.297	14	22.966	40.408	
15	26.247	27.459	15	26.247	34.830	15	26.247	41.622	
16	29.528	28.904	16	29.528	36.188	16	29.528	42.720	
17	32.808	30.349	17	32.808	37.633	17	32.808	43.790	
18	39.370	33.297	18	39.370	40.177	18	39.370	45.697	
19	45.932	36.708	19	45.932	42.720	19	45.932	47.605	
20	52.493	40.119	20	52.493	45.380	20	52.493	49.224	
21	59.055	43.790	21	59.055	45.183	-21	59.055	50.871	
22	64.370	46.969	22	64.337	50.351	22	64.305	52.027	

17 68.242 52.750

ORIG.OFFSETS TABLE (FEET) SEA-LAND 7 CONTAINERSHIP

LENGTH = 880.500		BEAM = 105.500			DEPTH = 64.305		
13 IS 2.200		STATION 22 POINT X = 396	14 IS 5.225		STATION 18 POINT X = 440	15 [S].250	
Н–В Y		HEIGHT Z	H-B Y		HEIGHT Z	H–B Y	
0.000 19.366 23.412 27.314 31.505 33.962 36.564 38.298 39.888 41.044 42.142 43.934 45.235 46.247 47.171 47.836 48.559 50.640 51.565 52.259 52.548	1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 8 9 1 1 2 1 2 8 9 0 1 1 2 8 9 0 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1	0.000 .591 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 22.966 26.247 29.528 32.808 39.370 45.932 52.493 59.055 64.305	0.000 26.303 30.060 33.962 38.298 40.610 42.778 44.310 45.524 46.478 47.345 48.703 49.715 50.351 50.351 50.351 51.305 51.594 52.027 52.027 52.605 52.750 52.750	1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 	0.000 .656 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 22.966 26.247 29.528 32.808 64.305	0.000 32.662 34.685 39.310 43.212 45.380 47.114 48.559 49.571 50.293 50.958 51.912 52.374 52.605 52.663 52.750 52.750	
16 [S 4.275		STATION 15 POIN X = 528	17 rs 3.300		STATION 17 POIN X = 577	18 IS 2.325	
H-B Y		HEIGHT Z	Н-В Ү		HEIGHT Z	H-B Y	
0.000 32.751 35.650 40.867 44.635 46.953 48.692 49.910 50.721 51.446 52.025 52.518 52.750 52.750 52.750	1 2 3 4 5 6 7 8 9 0 112 13 14 15	0.000 .656 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 22.966 68.242	0.000 32.751 33.911 38.548 42.751 45.359 47.185 48.692 49.649 50.489 51.214 52.083 52.605 52.750 52.750	1 2 3 4 5 6 7 8 9 0 11 12 13 14 15	0.000 .492 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 22.966 26.247	0.000 24.636 28.694 33.621 38.548 41.504 43.910 45.794 47.243 48.547 49.562 51.011 51.880 52.402 52.692	
	H = 880.50 $H = 880.50$ $H = 8 Y$ 0.000 $H = 8 Y$ 0.000 19.366 23.412 27.314 31.505 33.962 36.564 38.298 39.888 41.044 42.142 43.934 45.235 46.247 47.171 47.836 49.934 45.235 46.247 47.171 47.836 48.559 52.259 52.548 16 S 49.715 50.640 51.565 52.259 52.548 16 S 40.867 46.953 48.692 49.910 50.721 51.446 52.025 52.750 40.867 44.635 46.953 48.692 49.910 50.721 51.446 52.025 52.750 52.750 52.750 52.750 52.750	H = 880.500 $H = 8 Y$ $0.000 1$ $19.366 2$ $23.412 3$ $27.314 4$ $31.505 5$ $3.962 6$ $36.564 7$ $38.298 8$ $39.888 9$ $41.044 10$ $42.142 11$ $43.934 12$ $45.235 13$ $46.247 14$ $47.171 15$ $47.836 16$ $48.559 17$ $49.715 18$ $50.640 19$ $51.565 20$ $52.259 21$ $52.548 22$ 16 S 4.275 $H = 8 Y$ $0.000 1$ $32.751 2$ $35.650 3$ $40.867 4$ $44.635 5$ $46.953 6$ $48.692 7$ $49.910 8$ $50.721 9$ $51.446 10$ $52.025 11$ $52.750 13$ $52.750 14$ $52.750 14$	A = 880.500 BEAM 13STATION 22 POINT 2.200 $K = 396$ $H-B$ Y $HEIGHT$ 2.200 $X = 396$ $H-B$ Y $HEIGHT$ 2.200 $X = 396$ $H-B$ Y $HEIGHT$ 2.200 10.000 19.366 $.591$ 23.412 $.820$ 27.314 4 1.640 31.505 5 3.281 33.962 6 4.921 36.564 7 6.562 38.298 8.202 39.889 9.842 41.044 10 41.483 42.142 11 13.934 12 16.404 45.235 13 19.685 46.247 14 22.966 47.171 15 26.247 47.836 16 27.59 21.565 20 52.493 52.259 21.565 20 52.493 52.259 21.565 20.512 20.000 10.000 32.751 2.656 32.81 46.953 4.921 48.692 7 6.562 49.910 8.202 50.721 9.842 51.446 $10.11.483$ <td< td=""><td>A = 880.500BEAM = 105.50013STATION 1422POINTS2.200X = 396.225H-B YHEIGHT ZH-B Y0.00010.00010.00010.00010.00010.00010.00010.00010.00010.00010.00010.00010.0000.00013.5053.28138.2988.20244.30938.2988.20244.30939.88899.84245.52441.04411.48346.47842.142113.12347.34543.9341216.40448.70345.2351319.68549.71546.2471422.96650.511732.80851.59449.7151839.37052.02750.6401945.93252.37451.565352.5482264.30552.75052.5482264.30552.75052.5482264.30552.75016STATION 171565632.8142.7514.69564.6353.2814.635532.8142.7514.69564.6956<t< td=""><td>A = 880.500BEAM = 105.50013STATION 14 22 POINTS 2.200$X = 396.225$H-B YHEIGHT ZH-B Y0.000 10.0000.000 1 19.366 2 2.3.412 3 3.962 6 4.31.505 5 3.962 6 4.921 40.610 6 36.564 7 38.298 8 8.202 44.310 8 39.888 9 9.842 45.524 9 41.044 10 42.142 11 43.934 12 45.235 13 14.42.142 11 42.142 11 43.123 47.345 11 43.934 12 46.404 48.703 12 45.235 13 19.685 49.715 13 46.247 14 42.966 50.351 14 47.171 15 26.247 50.929 15 47.836 16 29.528 51.305 16 48.559 17 32.808 51.594 17 49.715 18 39.370 52.027 18 50.640 19 45.932 52.374 51.565 20 52.493 52.605 52.259 21 59.055 52.750 52.548 22 64.305 52.75016STATION 17 15 POINTS X = 528.300H-B YHEIGHT ZH-B YHEIGHT ZH-B YHEIGHT ZH-B YHEIGHT ZH-B YHEIGHT ZH-B YHEIGHT Z16STATION 17 15 POINTS X = 528.300179.000 10.000 10.000 0.000 1 32.751 2 .656 32.751 2 35.650 3 .820 33.911 3 40.867 4 4.640 38.548 4 4.4635 5 4.921 45.359 6 4.8692 7 4.921 45.359 6 4.921 45.359 6 4.921</td><td>H = 880.500BEAM = 105.500DEPTH =13STATION 14STATION1422 POINTS18 POINTS2.200X = 396.225X = 440H-B YHEIGHT ZH-B YHEIGHT ZH-B YHEIGHT Z0.000 10.0000.000 119.3662.59127.31441.64031.50553.28138.29888.20244.310839.6264.92140.61031.505532.8138.29839.6264.92140.6104.92883.96264.92140.61013.505538.298820244.310820244.310820241.0441011.48342.1421113.12347.34542.1421113.12347.34542.1421113.12347.34542.1421114.22.96650.3511422.96652.2592159.05552.75052.2592159.05552.75052.5482264.30552.75052.5482264.30552.75052.5482264.30552.7507.65632.751.49235.650.82035.650<td< td=""></td<></td></t<></td></td<>	A = 880.500BEAM = 105.50013STATION 1422POINTS2.200X = 396.225H-B YHEIGHT ZH-B Y0.00010.00010.00010.00010.00010.00010.00010.00010.00010.00010.00010.00010.0000.00013.5053.28138.2988.20244.30938.2988.20244.30939.88899.84245.52441.04411.48346.47842.142113.12347.34543.9341216.40448.70345.2351319.68549.71546.2471422.96650.511732.80851.59449.7151839.37052.02750.6401945.93252.37451.565352.5482264.30552.75052.5482264.30552.75052.5482264.30552.75016STATION 171565632.8142.7514.69564.6353.2814.635532.8142.7514.69564.6956 <t< td=""><td>A = 880.500BEAM = 105.50013STATION 14 22 POINTS 2.200$X = 396.225$H-B YHEIGHT ZH-B Y0.000 10.0000.000 1 19.366 2 2.3.412 3 3.962 6 4.31.505 5 3.962 6 4.921 40.610 6 36.564 7 38.298 8 8.202 44.310 8 39.888 9 9.842 45.524 9 41.044 10 42.142 11 43.934 12 45.235 13 14.42.142 11 42.142 11 43.123 47.345 11 43.934 12 46.404 48.703 12 45.235 13 19.685 49.715 13 46.247 14 42.966 50.351 14 47.171 15 26.247 50.929 15 47.836 16 29.528 51.305 16 48.559 17 32.808 51.594 17 49.715 18 39.370 52.027 18 50.640 19 45.932 52.374 51.565 20 52.493 52.605 52.259 21 59.055 52.750 52.548 22 64.305 52.75016STATION 17 15 POINTS X = 528.300H-B YHEIGHT ZH-B YHEIGHT ZH-B YHEIGHT ZH-B YHEIGHT ZH-B YHEIGHT ZH-B YHEIGHT Z16STATION 17 15 POINTS X = 528.300179.000 10.000 10.000 0.000 1 32.751 2 .656 32.751 2 35.650 3 .820 33.911 3 40.867 4 4.640 38.548 4 4.4635 5 4.921 45.359 6 4.8692 7 4.921 45.359 6 4.921 45.359 6 4.921</td><td>H = 880.500BEAM = 105.500DEPTH =13STATION 14STATION1422 POINTS18 POINTS2.200X = 396.225X = 440H-B YHEIGHT ZH-B YHEIGHT ZH-B YHEIGHT Z0.000 10.0000.000 119.3662.59127.31441.64031.50553.28138.29888.20244.310839.6264.92140.61031.505532.8138.29839.6264.92140.6104.92883.96264.92140.61013.505538.298820244.310820244.310820241.0441011.48342.1421113.12347.34542.1421113.12347.34542.1421113.12347.34542.1421114.22.96650.3511422.96652.2592159.05552.75052.2592159.05552.75052.5482264.30552.75052.5482264.30552.75052.5482264.30552.7507.65632.751.49235.650.82035.650<td< td=""></td<></td></t<>	A = 880.500BEAM = 105.50013STATION 14 22 POINTS 2.200 $X = 396.225$ H-B YHEIGHT ZH-B Y0.000 10.0000.000 1 19.366 2 2.3.412 3 3.962 6 4.31.505 5 3.962 6 4.921 40.610 6 36.564 7 38.298 8 8.202 44.310 8 39.888 9 9.842 45.524 9 41.044 10 42.142 11 43.934 12 45.235 13 14.42.142 11 42.142 11 43.123 47.345 11 43.934 12 46.404 48.703 12 45.235 13 19.685 49.715 13 46.247 14 42.966 50.351 14 47.171 15 26.247 50.929 15 47.836 16 29.528 51.305 16 48.559 17 32.808 51.594 17 49.715 18 39.370 52.027 18 50.640 19 45.932 52.374 51.565 20 52.493 52.605 52.259 21 59.055 52.750 52.548 22 64.305 52.75016STATION 17 15 POINTS X = 528.300H-B YHEIGHT ZH-B YHEIGHT ZH-B YHEIGHT ZH-B YHEIGHT ZH-B YHEIGHT ZH-B YHEIGHT Z16STATION 17 15 POINTS X = 528.300179.000 10.000 10.000 0.000 1 32.751 2 .656 32.751 2 35.650 3 .820 33.911 3 40.867 4 4.640 38.548 4 4.4635 5 4.921 45.359 6 4.8692 7 4.921 45.359 6 4.921	H = 880.500BEAM = 105.500DEPTH =13STATION 14STATION1422 POINTS18 POINTS2.200X = 396.225X = 440H-B YHEIGHT ZH-B YHEIGHT ZH-B YHEIGHT Z0.000 10.0000.000 119.3662.59127.31441.64031.50553.28138.29888.20244.310839.6264.92140.61031.505532.8138.29839.6264.92140.6104.92883.96264.92140.61013.505538.298820244.310820244.310820241.0441011.48342.1421113.12347.34542.1421113.12347.34542.1421113.12347.34542.1421114.22.96650.3511422.96652.2592159.05552.75052.2592159.05552.75052.5482264.30552.75052.5482264.30552.75052.5482264.30552.7507.65632.751.49235.650.82035.650 <td< td=""></td<>	

	ORIG.OF	FSETS TAB	LE (FEET)	SEA-LAND	7 C C	ONTAINERSHI	P
	LENGTI	H = 880.5	00	BEAM :	= 105.500		DEPTH =	64.305
	STATION 18 POIN X = 610	19 TS 6.350		STATION 21 POIN X = 660	20 IS 0.375		STATION 21 POIN X = 70	21 TS 4.400
	HEIGHT Z	H-B Y		HEIGHT Z	H-B Y		HEIGHT Z	Н-В Ү
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\0\\1\\1\\2\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1$	0.000 .328 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 22.966 26.247 29.528 32.808 68.242	0.000 15.941 20.868 26.085 31.592 35.505 41.0754 42.974 44.780 46.142 48.547 50.141 51.243 51.938 52.750 52.750	1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 8 9 0 1 1 2 3 4 5 8 9 0 1 1 2 3 4 5 1 1 1 1 2 3 4 5 1 1 1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.000 0.000 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 22.966 26.247 29.528 32.808 39.370 45.932 52.493 68.242	0.000 3.188 11.593 16.028 22.317 24.201 31.302 34.229 36.867 39.041 40.925 44.113 46.634 48.402 49.707 50.750 51.620 52.750 52.750 52.750	1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 7 8 9 0 1 1 2 3 4 5 1 1 1 2 3 4 5 1 1 1 2 3 4 5 1 1 2 3 4 5 1 1 1 2 3 4 5 1 1 1 2 3 4 5 1 1 1 2 3 1 1 1 2 3 4 5 1 1 1 2 3 1 1 1 2 3 1 1 1 1 2 3 1 1 1 1	0.000 0.000 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 22.966 26.247 29.528 32.808 39.370 45.932 52.493 68.242	0.000 2.811 4.898 8.202 13.187 17.245 21.390 24.694 28.085 30.665 33.215 37.041 40.229 42.666 44.664 46.374 45.2605 51.388 52.605 52.750
	STATION 22 POINT X = 748	22 IS 8.425		STATION 22 POINT X = 770	23 [S].437		STATION 22 POIN X = 793	24 IS 2.450
	HEIGHT Z	H-B Y		HEIGHT Z	H-B Y		HEIGHT Z	Н-В Ү
1 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 1 2 3 4 5 6 7 8 9 0 1 1 1 2 3 4 5 6 7 8 9 0 1 1 1 2 3 4 5 6 7 8 9 0 1 1 1 2 3 4 5 6 7 8 9 0 1 1 1 2 3 4 5 6 7 8 9 0 1 1 1 2 3 4 5 6 7 8 9 0 1 1 1 2 3 4 5 5 6 7 8 9 0 1 1 1 2 3 4 5 5 8 9 0 1 1 1 2 3 4 5 1 1 1 1 2 3 1 1 1 2 3 1 1 1 1 2 3 1 1 1 1	0.000 0.000 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 22.9685 26.247 29.528 32.808 39.370 45.932 52.493 54.6262	0.000 2.464 3.246 4.290 6.724 9.420 12.376 14.985 17.970 20.288 22.781 27.100 30.925 34.200 37.099 39.562 41.823 45.504 48.692 51.301 52.025	1 2 3 4 5 6 7 8 90 1 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 90 1 2 2 2	0.000 0.000 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 22.966 26.247 29.528 32.808 39.370 45.932 52.493 54.625	0.000 2.174 2.609 3.188 4.637 6.521 8.869 10.869 13.274 15.245 17.622 21.767 25.592 28.984 32.288 35.129 42.171 45.504 8.692 51.359	1 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 8 9 0 1 1 2 3 4 5 8 9 0 1 1 2 3 4 5 1 2 3 4 5 1 1 2 3 1 1 2 3 4 5 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 2 1 2 2 1 2 1	0.000 0.000 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 22.966 26.247 29.528 32.808 39.370 45.932 52.493 54.626	0.000 2.029 2.174 2.522 3.333 4.347 7.275 9.014 10.666 12.550 16.694 19.827 26.810 30.375 38.432 42.925 47.069 48.344

AD-A105 227 UNCLASSIFIED	HOFFMAN MAR USER MANUAL JUL 79 T E HMC-79141	ITIME CONSUL FOR PROGRAM ZIELINSKI	TANTS IN STATIC	C GLEN FIRS USCG-	HEAD N ST PART	OF COA	ST GUAF -CG-740	F/G ND SHI- 180-B NL	20/4 -ETC(U)	
2 of 2 40 4 104227										
					END DATE HINED 10-81					
					·					

	ORIG.OFE	SETS TABI	νE (FEET)	SEA-LAND	7 CC	ONTAINERSHI	2
	LENGTH	i = 880.50	00	BEAM =	105.500		DEPTH =	64.305
	STATION 22 POINT X = 814	25 IS 1.463		STATION 15 POINT X = 836	26 S .475		STATION 12 POINT X = 858	27 IS 3.487
	HEIGHT Z	H-B Y		HEIGHT Z	Н-В Ү		HEIGHT Z	H-B Y
1234567890112345678901123456789012222	0.000 0.000 .820 1.640 3.281 4.921 6.562 8.202 9.842 11.483 13.123 16.404 19.685 22.966 26.247 29.528 32.808 39.370 45.932 52.493 54.626 68.537	0.000 1.594 1.739 1.971 2.522 3.130 4.000 4.782 5.884 6.956 8.289 11.159 14.318 17.535 21.013 24.491 28.027 33.911 39.273 44.055 45.301	1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 1 5	11.024 11.024 11.483 13.123 16.404 19.685 22.966 26.247 29.528 32.808 39.370 45.932 52.493 54.626 68.635	0.000 3.072 3.623 4.492 6.376 8.840 11.535 14.955 18.549 22.317 29.042 34.780 36.693 41.475 41.475	1 2 3 4 5 6 7 8 9 10 11 12	16.404 16.404 19.685 22.966 26.247 29.528 32.808 39.370 45.932 52.463 54.626 68.898	0.000 2.753 3.739 5.507 8.463 12.028 16.173 23.766 29.998 35.447 37.099 37.099
	STATION 10 POINT X = 860	28 [S		STATION 9 POINT X = 880	29 S		STATION 7 POINT X = 902	30 rs 2.513
	HEIGHT Z	H-B Y		HEIGHT Z	H-B Y		HEIGHT Z	H-B Y
1 2 3 4 5 6 7 8 9 10	22.966 22.966 26.247 29.528 32.808 39.370 45.932 52.493 54.626 68.898	0.000 2.753 5.507 8.898 12.956 20.607 27.303 33.012 34.780 34.780	1 2 3 4 5 6 7 8 9	26.247 26.247 29.528 32.808 39.370 45.932 52.493 54.626 68.898	0.000 2.058 5.652 9.391 17.390 24.346 30.375 32.085 32.085	1 2 3 4 5 6 7	30.512 32.808 39.370 45.932 52.493 54.626 68.898	0.000 2.840 10.811 18.115 24.781 26.665 26.665

PROGRAM STATIC	(05/79)	07/10/79	10.50.30	PAGE 10
ORIG.OFFSETS TABL	E (FEET)	SEA-LAND 7	CONTAINERSHIP	
LENGTH = 880.50	0 В	EAM = 105.500	DEPTH =	64.305

AFTER PROFILE

HEIGHT Z DIST X

FORWARD PROFILE

	HEIGHT Z	DIST X
1	0.000	0.000
2	68.898	0.000

1	0.000	814.463
2	11.024	836.475
3	16.404	858.487
4	22.966	869.494
5	26.247	880.500
6	30.512	902.513
7	68.898	902.513

PROGRAM STATIC (O)5/79) (07/10/79	10.50.30
-------------------	----------	----------	----------

日曜吉山口山

.

' i

PAGE 11

*DRAFT(DRAFT=20.0)

•

HYDROSTATICS

SEA-LAND 7 CONTAINERSHIP

STATION	MEAN DRAFT	BEAM	AREA	S.A. COEF.	VCB	HCB
FROM F.P.	(FEET)	(FEET)	(FEET **2))	(FEET)	(FEET)
0.0000	20.0000	4.4549	207.670	2.33082	9.3548	0.0000
11.0063	20.0000	5.5699	219.991	1.97482	9.5234	0.0000
22.0125	20.0000	6.4482	231.954	1.79860	9.6584	0.0000
44.0250	20.0000	8.4492	263.383	1.55863	9.9183	0.0000
66.0375	20.0000	10.5114	291.741	1.38773	10.0563	0.0000
88.0500	20.0000	13.7352	328.002	1.19402	10.2703	0.0000
110.0625	20.0000	17.4881	362.878	1.03750	10.5315	0.0000
132.0750	20.0000	22.1383	407.990	.92146	10.7333	0.0000
176.1000	20.0000	34.8792	542.206	.77726	11.2176	0.0000
220.1250	20.0000	49.4145	733.585	.74228	11.4575	0.0000
264.1500	20.0000	63.8776	971.500	.76044	11.3638	0.0000
308.1750	20.0000	78.5166	1242.447	.79120	11.2144	0.0000
352.2000	20.0000	90.6641	1510.813	.83319	10.9819	0.0000
396.2250	20.0000	99.5523	1730.167	.86897	10.8002	0.0000
440.2500	20.0000	104.7928	1886.066	.89990	10.6641	0.0000
484.2750	20.0000	105.5000	1928.614	.91404	10.6179	0.0000
528.3000	20.0000	105.2380	1886.784	.89644	10.6908	0.0000
572.3250	20.0000	103.8612	1788.635	.86107	10.8770	0.0000
616.3500	20.0000	100.4945	1615.585	.80382	11.1980	0.0000
660.3750	20.0000	93.6085	1351.018	.72163	11.7755	0.0000
704.4000	20.0000	80.9146	1038.220	.64155	12.3606	0.0000
748.4250	20.0000	62.4797	697.122	.55788	12.8934	0.0000
770.4375	20.0000	51.8360	538.484	.51941	13.1321	0.0000
792.4500	20.0000	40.3506	393.031	.48702	13.3202	0.0000
814.4625	20.0000	29.2535	268.595	.45908	13.2896	0.0000
836.4750	20.0000	18.1976	107.619	.65883	16.2240	0.0000
858.4875	20.0000	7.8173	23.709	.84345	18.3020	0.0000
869.4938	20.0000	0.0000	0.000	0.00000	20.0000	0.0000
880.5000	20.0000	0.0000	0.000	0.00000	20.0000	0.0000
902.5125	20.0000	0.0000	0.000	0.00000	20.0000	0.0000

R

•

•

HYDROSTATICS

SEA-LAND 7 CONTAINERSHIP

VOLUME (MLD.)	902813.2	FEET **3
DISPLACEMENT (MLD.)	25794.662	L.TONS
BLOCK COEFFICIENT (MLD.)	.489223	
HALF-AREA MIDSHIP SECTION	943.033	FEET ## 2
MIDSHIP SECTION COEFFICIENT	.899902	
PRISMATIC COEFFICIENT (MLD.),	.543640	
TRIM	0.000	FEET
HEEL	0.000	DEGREES
VCB (FROM B.L.)	11.154	FEET
HCB (FROM C.L.)	0.000	FEET
LCB (FROM F.P.)	464.483	FEET
BM, TRANSVERSE	40.351	FEET
BM,LONGITUDINAL	2037.155	FEET
MOMENT TO ALTER TRIM 0.1 FEET	5967.942	
L.TONS PER 0.1 FEET IMMERSION	160.571	
AREA OF WATERPLANE	56199.912	FEET **2
WATERPLANE COEFFICIENT (MLD.)	.609081	
L.C.F. FROM F.P.	485.146	FEET
CHANGE IN DISPL. FOR 1 FEET TRIM AFT	-81.874	L.TONS
WETTED SURFACE (MLD.)	74780.118	FEET ** 2

DRAFT(TF=25.0,TA=25.0)

HYDROSTATICS

Street.

.

1

SEA-LAND 7 CONTAINERSHIP

STATION	MEAN DRAFT	BEAM	AREA	S.A. COEF.	VCB	HCB
FROM F.P.	(FEET)	(FEET)	(FEET ** 2))	(FEET)	(FEET)
0.0000	25.0000	1.2371	221.315	7.15611	10.1345	0.0000
11.0063	25.0000	2.7957	240.054	3.43464	10.5834	0.0000
22.0125	25.0000	3.6349	256.630	2.82404	10.8701	0.0000
44.0250	25.0000	5.6422	297.549	2.10947	11.3428	0.0000
66.0375	25.0000	8.4643	337.905	1.59685	11.7431	0.0000
88.0500	25.0000	12.4288	392.083	1.26185	12.2616	0.0000
110.0625	25.0000	17.7286	449.910	1.01510	12.8474	0.0000
132.0750	25.0000	23.6643	521.539	.88156	13.3010	0.0000
176.1000	25.0000	38.4286	724.784	.75442	14.0698	0.0000
220.1250	25.0000	53.8195	991.670	.73703	14.3406	0.0000
264.1500	25.0000	68.4947	1302.378	.76057	14.2004	0.0000
308.1750	25.0000	82,3212	1644.647	.79914	13.9791	0.0000
352.2000	25.0000	93.6401	1971.733	.84226	13.6776	0.0000
396.2250	25.0000	101.4187	2232.701	.88059	13.4353	0.0000
440.2500	25.0000	105.2827	2411.574	.91623	13.2437 .	0.0000
484.2750	25.0000	105.5000	2456.114	.93123	13.1698	0.0000
528.3000	25.0000	105.5000	2413.895	.91522	13.2698	0.0000
572.3250	25.0000	105.1638	2311.623	.87925	13.5079	0.0000
616.3500	25.0000	103.3483	2125.938	.82282	13.9140	0.0000
660.3750	25.0000	98.4222	1831.947	.74453	14.5965	0.0000
704.4000	25.0000	87.7633	1460.500	.66565	15.3021	0.0000
748.4250	25.0000	71.9950	1034.001	.57448	16.0425	0.0000
770.4375	25.0000	62.0641	823.393	.53067	16.3995	0.0000
792.4500	25.0000	51.0864	622.209	.48718	16.7375	0.0000
814.4625	25.0000	39.3827	439.705	.44660	16.9216	0.0000
836.4750	25.0000	27.3117	220.060	.57650	19.5161	0.0000
858.4875	25.0000	14.6796	77.766	.61629	21.3996	0.0000
869.4938	25.0000	8.9211	14.674	.80864	24.0632	0.0000
880.5000	25.0000	0.0000	0.000	0.00000	25.0000	0.0000
902.5125	25.0000	0.0000	0.000	0.00000	25.0000	0.0000

HYDROSTATICS

SEA-LAND 7 CONTAINERSHIP

VOLUME (MLD.)	1191035.5	FEET ** 3
DISPLACEMENT (MLD.)	34029.585	L.TONS
BLOCK COEFFICIENT (MLD.)	.513923	
HALF-AREA MIDSHIP SECTION	1205.787	FEET ** 2
MIDSHIP SECTION COEFFICIENT	.916228	
PRISMATIC COEFFICIENT (MLD.),	.560912	
TRIM	0.000	FEET
HEEL	0.000	DEGREES
VCB (FROM B.L.)	13.905	FEET
HCB (FROM C.L.)	0.000	FEET
LCB (FROM F.P.)	470.498	FEET
BM, TRANSVERSE	33.545	FEET
BM,LONGITUDINAL	1685.981	FEET
MOMENT TO ALTER TRIM 0.1 FEET	6515.985	
L.TONS PER 0.1 FEET IMMERSION	168.859	
AREA OF WATERPLANE	59100.476	FEET ** 2
WATERPLANE COEFFICIENT (MLD.)	.637536	
L.C.F. FROM F.P.	492.738	FEET
CHANGE IN DISPL. FOR 1 FEET TRIM AFT	-100.658	L.TONS
WETTED SURFACE (MLD.)	84454.406	FEET ** 2

*DRAFT(WT=47760.0000,LCG=478.8632,KG=42.31,TITLE)

PROGRAM STATIC (05/79) 07/10/79 10.50.30 PAGE 17

BALANCING OF SHIP SL-7 FULL LOAD EXAMPLE

6 ITERATIONS TO BALANCE SHIP

TRIM (+ BOW UP)	=	.4170	FEET
HEEL (+ ST'BD.	DOWN)	=	0.0000	DEGREES
DRAFT FOWARD		=	32.5742	FEET
DRAFT AFT		=	32.9913	FEET
WEIGHT		=	47760.0000	L.TONS
BUOYANCY		=	47760.0009	L.TONS
LCG (FROM F.P.)		=	478.8632	FEET
LCB (FROM F.P.)		=	478.8743	FEET
VCG (FROM B.L.)		=	42.3100	FEET
VCB (FROM B.L.)		=	18.2314	FEET
HCG (FROM C.L.)		=	0.0000	FEET
HCB (FROM C.L.)		=	0.0000	FEET

HYDROSTATICS

SL-7 FULL LOAD EXAMPLE

STATION	MEAN DRAFT	BEAM	AREA	S.A. COEF.	VCB	HCB
FROM F.P.	(FEET)	(FEET)	(FEET **2)		(FEET)	(FEET)
0.0000	32.5742	0.0000	223.395	1.00000	10.2856	0.0000
11.0063	32.5793	2.1645	255.826	3.62781	11.6946	0.0000
22.0125	32.5844	2.9784	278.628	2.87101	12.2759	0.0000
44.0250	32.5946	6.0058	338.200	1.72767	13.4474	0.0000
66.0375	32.6048	9.9183	404.721	1.25152	14.5780	0.0000
88.0500	32.6149	15.8799	496.289	.95823	15.7712	0.0000
110.0625	32.6251	21.9472	598.465	.83581	16.8453	0.0000
132.0750	32.6353	29.0407	720.398	.76011	17.6204	0.0000
176.1000	32.6556	44.8402	1043.108	.71237	18.6032	0.0000
220.1250	32.6760	60.5819	1430.740	.72275	18.8128	0.0000
264.1500	32.6963	75.1676	1855.258	.75487	18.5830	0.0000
308.1750	32.7166	87.5196	2300.360	.80338	18.2315	0.0000
352.2000	32.7370	97.0863	2709.943	.85264	17.8218	0.0000
396.2250	32.7573	103.1786	3027.153	.89565	17.4911	0.0000
440.2500	32.7777	105.4995	3231.401	.93446	17.2134	0.0000
484.2750	32.7980	105.5000	3278.806	.94758	17.1165	0.0000
528.3000	32.8184	105.5000	3238.733	.93542	17.2528	0.0000
572.3250	32.8387	105.5000	3138.135	.90580	17.5673	0.0000
616.3500	32.8591	105.5000	2948.151	.85044	18.1054	0.0000
660.3750	32.8794	103.2517	2628.041	.77412	18.9508	0.0000
704.4000	32.8997	95.5877	2187.151	.69548	19.8548	0.0000
748.4250	32.9201	83.7717	1653.008	.59940	20.9166	0.0000
770.4375	32.9303	75.5241	1371.574	.55149	21.4725	0.0000
792.4500	32.9404	61.0736	1081.683	.53767	21.9837	0.0000
814.4625	32.9506	56.3092	820.037	.44197	22.6211	0.0000
836.4750	32.9608	44.9469	506.557	.51375	25.0536	0.0000
858.4875	32.9709	32.7218	262.508	.48425	27.1063	0.0000
869.4938	32.9760	26.3021	150.434	.57137	29.1270	0.0000
880.5000	32.9811	19.2025	77.926	.60259	30.3446	0.0000
902.5125	32.9913	6.1251	7.603	.50061	32.1647	0.0000
HYDROSTATICS

SL-7 FULL LOAD EXAMPLE

VOLUME (MLD.)	1671600.0	FEET ** 3
DISPLACEMENT (MLD.)	47760.001	L.TONS
BLOCK COEFFICIENT (MLD.)	.549003	
HALF-AREA MIDSHIP SECTION	1615.701	FEET **2
MIDSHIP SECTION COEFFICIENT	.934464	
PRISMATIC COEFFICIENT (MLD.),	.587506	
TRIM	.417	FEET
HEEL	0.000	DEGREES
VCB (FROM B.L.)	18.231	FEET
HCB (FROM C.L.)	0.000	FEET
LCB (FROM F.P.)	478.874	FEET
BM,TRANSVERSE	26.815	FEET
BM,LONGITUDINAL	1456.157	FEET
MOMENT TO ALTER TRIM 0.1 FEET	7898.471	
L.TONS PER 0.1 FEET IMMERSION	182.938	
AREA OF WATERPLANE	64028.258	FEET ** 2
WATERPLANE COEFFICIENT (MLD.)	.689274	
L.C.F. FROM F.P.	500.766	FEET
CHANGE IN DISPL. FOR 1 FEET TRIM AFT	-125.731	L.TONS
WETTED SURFACE (MLD.)	99885.068	FEET **2

PROGRAM STATIC (05/79)

*GROUNDING(WTDIST=DWSL7FU,SHOAL LENGTH=5.0,SHOAL LOCATION=50.0, SHOAL DRAFT=5.0,KG=42.31,TITLE)

ŧ

WEIGHT BLOCK DATA SL-7 FULL LOAD GROUNDING EXAMPLE

WEIGHT	BLOCK WEIGHT	BLOCK LCG	FWD END BLOCK	AFT END BLOCK
TYPE	(L.TONS)	(FEET)	(FEET)	(FEET)
1	765.20	19.00	-20.00	42.00
1	1847.70	84.32	42.00	115.25
1	1205.70	143.18	115.25	167.75
1	1613.40	185.52	167.75	207.75
1	1943.60	225.50	207.75	247.75
1	2379.20	265.54	247.75	287.75
1	2305.60	305.53	287.75	327.75
1	2610.80	345.53	327.75	367.75
1	3148.70	385.52	367.75	407.75
1	3343.70	425.51	407.75	447.75
1	3299.00	467.99	447.75	492.75
1	3179.20	512.99	492.75	537.75
1	3293.30	550.00	537.75	562.75
1	3039.80	587.50	562.75	612.75
1	2661.30	635.00	612.75	652.75
1	2898.70	674.35	652.75	697.75
1	2116.10	716.10	697.75	737.75
1	1678.30	756.40	737.75	777.75
1	1597.20	795.55	777.75	817.75
1	1244.50	835.50	817.75	852.50
1	897.70	869.50	852.50	880.50
1	691.30	900.50	880.50	920.50

BLOCK TYPE	SUMMARY WEIGHT (L.TONS)	SUMMARY LCG (FEET)
1	47760.00	478.86
TOTAL	47760.00	478.86

BALANCING OF SHIP SL-7 FULL LOAD GROUNDING EXAMPLE

6 ITERATIONS TO BALANCE SHIP

TRIM (+ BOW UP) =	.4170	FEET
HEEL $(+ ST'BD.$	DOWN) =	0.0000	DEGREES
DRAFT FOWARD	=	32.5742	FEET
DRAFT AFT	. =	32.9913	FEET
WEIGHT	=	47760.0000	L.TONS
BUOYANCY	=	47760.0009	L.TONS
LCG (FROM F.P.)	=	478.8632	FEET
LCB (FROM F.P.)	=	478.8743	FEET
VCG (FROM B.L.)	=	42.3100	FEET
VCB (FROM B.L.)	=	18.2314	FEET
HCG (FROM C.L.)	Ξ	0.0000	FEET
HCB (FROM C.L.)	=	0.0000	FEET

GROUNDING OF SHIP SL-7 FULL LOAD GROUNDING EXAMPLE

SHOAL LOCATION (FROM F.P.)	=	50.0000	FEET
SHOAL WATER DEPTH	=	5.0000	FEET
SHOAL LENGTH	=	5.0000	FEET
DRAFT FORWARD	=	2.4746	FEET
DRAFT AFT	=	48.1818	FEET
TRIM (+ BOW UP)	=	45.7072	FEET
HEEL (+ ST'BD. DOWN)	=	0.0000	DEGREES
EQUIVALENT SHOAL FORCE	=	7798.960	L.TONS
EQUIVALENT WEIGHT	=	39961.040	L.TONS
LCG (FROM F.P.)	=	562.5619	FEET
VCG (FROM B.L.)	=	50.5674	FEET
HCG (FROM C.L.)	=	0.0000	FEET
DISPLACEMENT	=	39961.065	L.TONS
LCB (FROM F.P.)	=	564.2012	FEET
VCB (FROM B.L.)	=	18.1991	FEET
HCB (FROM C.L.)	=	0.0000	FEET

SHEAR FORCE-BENDING MOMENT SL-7 FULL LOAD GROUNDING EXAMPLE

DISTANC	E WEIGHT	BUOYANCY	SHEAR	WEIGHT	BUOYANCY	BENDING
FROM FP	FORCE	FORCE	FORCE	MOMENT	MOMENT	MOMENT
(FEET)	(L.TONS)		(FEET -L.TO	NS)
-20.00	Ο.	0.	0.0	Ο.	0.	0.0
42.00	7.652E+02	4.043E+01	724.8	1.760E+04	7.280E+02	16871.6
47.50	8.441E+02	4.880E+01	795.3	2.202E+04	9.730E+02	21047.7
52.50	-6.875E+03	5.722E+01	-6932.0	6.941E+03	1.238E+03	5702.9
115.25	-5.186E+03	2.349E+02	-5420.9	-3.781E+05	9.664E+03	-387745.9
167.75	-3.980E+03	5.227E+02	-4503.1	-6.207E+05	2.882E+04	-649543.7
207.75	-2.367E+03	8.864E+02	-3253.3	-7.441E+05	5.642E+04	-800494.0
247.75	-4.234E+02	1.458E+03	-1881.1	-7.955E+05	1.024E+05	-897913.6
287.75	1.956E+03	2.334E+03	-378.4	-7.596E+05	1.770E+05	-936645.6
327.75	4.261E+03	3.606E+03	655.6	-6.301E+05	2.944E+05	-924547.2
367.75	6.872E+03	5.332E+03	1540.0	-4.017E+05	4.716E+05	-873296.6
407.75	1.002E+04	7.519E+03	2502.3	-5.678E+04	7.271E+05	-783925.4
447.75	1.336E+04	1.013E+04	3234.4	4.184E+05	1.079E+06	-660363.2
492.75	1.666E+04	1.346E+04	3208.3	1.102E+06	1.608E+06	-506622.2
537.75	1.984E+04	1.707E+04	2776.9	1.930E+06	2.294E+06	-363864.5
562.75	2.314E+04	1.916E+04	3976.5	2.468E+06	2.747E+06	-278511.5
612.75	2.618E+04	2.346E+04	2719.1	3.702E+06	3.812E+06	-110029.4
652.75	2.884E+04	2.688E+04	1954.7	4.796E+06	4.819E+06	-22860.5
697.75	3.174E+04	3.055E+04	1189.9	6.161E+06	6.112E+06	49330.0
737.75	3.385E+04	3.348E+04	375.4	7.477E+06	7.394E+06	82802.8
777.75	3.553E+04	3.597E+04	-442.9	8.867E+06	8.785E+06	82049.7
817.75	3.713E+04	3.792E+04	-792.9	1.032E+07	1.026E+07	59015.1
852.50	3.837E+04	3.910E+04	-724.3	1.163E+07	1.160E+07	30701.9
880.50	3.927E+04	3.969E+04	-418.4	1.272E+07	1.271E+07	11310.7
920.50	3.996E+04	4.007E+04	-104.5	1.430E+07	1.430E+07	-1292.4

PROGRAM STATIC (05/79)

07/10/79 10.50.30 PAGE 25

HYDROSTATICS

SL-7 FULL LOAD GROUNDING EXAMPLE

STATION	MEAN DRAFT	BEAM	AREA S	.A. COEF.	VCB	HCB
FROM F.P.	(FEET)	(FEET)	(FEET **2)		(FEET)	(FEET)
0.0000	2.4746	10.5772	16.802	.64193	1.5455	0.0000
11.0063	3.0320	11.9466	23.757	.65587	1.8670	0.0000
22.0125	3.5894	12.9897	31.586	.67744	2.1870	0.0000
44.0250	4.7042	15.1127	50.798	.71453	2.8087	0.0000
66.0375	5.8191	17.2116	74.247	.74132	3.4393	0.0000
88.0500	6.9339	19.0922	101.722	.76839	4.0388	0.0000
110.0625	8.0487	20.4409	129.904	.78958	4.5960	0.0000
132.0750	9.1635	22.1145	165.478	.81659	5.1256	0.0000
176.1000	11.3931	29.4347	264.977	.79014	6.4061	0.0000
220.1250	13.6227	42.8875	438.159	.74996	7.7974	0.0000
264.1500	15.8523	59.2952	715.762	.76148	9.0099	0.0000
308.1750	18.0820	76.6623	1093.569	.78889	10.1483	0.0000
352.2000	20.3116	90.8562	1539.092	.83400	11.1505	0.0000
396.2250	22.5412	100.5374	1984.400	.87564	12.1419	0.0000
440.2500	24.7708	105.2746	2387.445	.91552	13.1261	0.0000
484.2750	27.0004	105.5000	2667.159	.93632	14.1850	0.0000
528.3000	29.2300	105.5000	2860.165	.92749	15.4301	0.0000
572.3250	31.4597	105.5000	2992.646	.90167	16.8584	0.0000
616.3500	33.6893	105.5000	3035.741	.85412	18.5431	0.0000
660.3750	35.9189	103.7888	2942.692	.78935	20.6028	0.0000
704.4000	38.1485	98.9262	2697.632	.71481	22.8228	0.0000
748.4250	40.3781	91.9878	2308.908	.62163	25.4025	0.0000
770.4375	41.4929	86.4987	2067.665	.57610	26.8044	0.0000
792.4500	42.6078	81.2976	1781.167	.51421	28.2766	0.0000
814.4625	43.7226	74.9348	1529.136	.46672	30.0270	0.0000
836.4750	44.8374	67.6461	1180.431	.51606	33.1843	0.0000
858.4875	45.9522	60.0298	873.299	.49234	36.1865	0.0000
869.4938	46.5096	55.6105	712.498	.54419	30.1314	0.0000
880.5000	47.0670	50.7783	580.694	.54927	39.6283	0.0000
902.5125	48 1818	40 8011	372.560	.51676	42.2118	0.0000

HYDROSTATICS SL-7 FULL LOAD GROUNDING EXAMPLE

VOLUME (MLD.)	1398637.3	FEET ** 3
DISPLACEMENT (MLD.)	39961.065	L.TONS
BLOCK COEFFICIENT (MLD.)	.609133	
HALF-AREA MIDSHIP SECTION	1193.722	FEET **2
MIDSHIP SECTION COEFFICIENT	.915524	
PRISMATIC COEFFICIENT (MLD.),	.665338	
TRIM	45.707	FEET
HEEL	0.000	DEGREES
VCB (FROM B.L.)	18.199	FEET
HCB (FROM C.L.)	0.000	FEET
LCB (FROM F.P.)	564.201	FEET
BM, TRANSVERSE	32.087	FEET
BM,LONGITUDINAL	1951.388	FEET
MOMENT TO ALTER TRIM 0.1 FEET	8856.278	
L.TONS PER 0.1 FEET IMMERSION	186.313	
AREA OF WATERPLANE	65209.507	FEET **2
WATERPLANE COEFFICIENT (MLD.)	.703490	
L.C.F. FROM F.P.	527.047	FEET
CHANGE IN DISPL. FOR 1 FEET TRIM AFT	-183.662	L.TONS
WETTED SURFACE (MLD.)	87031.130	FEET ** 2

*INTACTSTABILITY(DISP1=15000,DISP2=50000,DISPINC=5000,KG=30., TITLE)

INTACT STABILITY SL-7 INTACT STABILITY EXAMPLE

HEEL = 10.00 DEGREES

CENTER OF GRAVITY FROM B.L.= 30.00 FEET ; FROM C.L.= 0.00 FEET

DISPLACEMENT (L.TONS)	CENTER OF FROM B.L. (FEET)	BUOYANCY FROM C.L. (FEET)	GZ RIGHTING ARM (FEET)	TANGENT TO CROSS CURVE (FEET /L.TONS)
15000.0	8.101	9.537	5.590	-2.7861E-04
20000.0	9.828	8.118	4.492	-1.7236E-04
25000.0	11.502	7.112	3.792	-1.1270E-04
30000.0	13.133	6.355	3.330	-7.4874E-05
35000.0	14.726	5.763	3.024	-4.9823E-05
40000.0	16.286	5.283	2.822	-3.1656E-05
45000.0	17.814	4.893	2.703	-1.6550E-05
50000.0	19.314	4.574	2.649	-5.4137E-06

HEEL = 20.00 DEGREES

CENTER OF GRAVITY FROM B.L.= 30.00 FEET ; FROM C.L.= 0.00 FEET

DISPLACEMENT (L.TONS)	CENTER OF FROM B.L. (FEET)	BUOYANCY FROM C.L. (FEET)	GZ RIGHTING ARM (FEET)	TANGENT TO CROSS CURVE (FEET /L.TONS)
15000.0	10.253	17.666	9.847	-3.6677E-04
20000.0	11.794	15.498	8.337	-2.4663E-04
25000.0	13.304	13.853	7.307	-1.6931E-04
30000.0	14.795	12.560	6.602	-1.1574E-04
35000.0	16.272	11.518	6,128	-7.5709E-05
40000.0	17.734	10.666	5.827	-4.6191E-05
45000.0	19.178	9.957	5.655	-2.3642E-05
50000.0	20.605	9.361	5.583	-5.8796E-06

INTACT STABILITY

SL-7 INTACT STABILITY EXAMPLE

HEEL = 30.00 DEGREES

CENTER OF GRAVITY FROM B.L.= 30.00 FEET ; FROM C.L.= 0.00 FEET

	CENTER OF	BUOYANCY	GZ	TANGENT TO
DISPLACEMENT	FROM B.L.	FROM C.L.	RIGHTING ARM	CROSS CURVE
(L.TONS)	(FEET)	(FEET)	(FEET)	(FEET /L.TONS)
15000.0	13.120	23.849	12.214	-3.1785E-04
20000.0	14.596	21.537	10.950	-2.0073E-04
25000.0	16.045	19.750	10.126	-1.3260E-04
30000.0	17.472	18.306	9.590	-8.5536E-05
35000.0	18.878	17.102	9.249	-5.2131E-05
40000.0	20.264	16.078	9.055	-2.6525E-05
45000.0	21.627	15.188	8.967	-9.5441E-06
50000.0	22.967	14.404	8.958	5.5012E-06

HEEL = 40.00 DEGREES

CENTER OF GRAVITY FROM B.L.= 30.00 FEET ; FROM C.L.= 0.00 FEET

	CENTER OF	BUOYANCY	GZ RICUTING ARM	TANGENT TO
(L.TONS)	(FEET)	(FEET)	(FEET)	(FEET /L.TONS)
15000.0	16.789	29.085	13.788	-2.3957E-04
20000.0	18.230	26.720	12.903	-1.2486E-04
25000.0	19.676	24.926	12.458	-5.8241E-05
30000.0	21.104	23.484	12.272	-1.9274E-05
35000.0	22.497	22.264	12.232	3.3706E-06
40000.0	23.844	21.188	12.274	1.0961E-05
45000.0	25.091	20.144	12.276	-1.3631E-05
50000.0	26.200	19.048	12.149	-3.6887E-05

INTACT STABILITY SL-7 INTACT STABILITY EXAMPLE

HEEL = 50.00 DEGREES

CENTER OF GRAVITY FROM B.L.= 30.00 FEET ; FROM C.L.= 0.00 FEET

DISPLACEMENT (L.TONS)	CENTER OF FROM B.L. (FEET)	BUOYANCY From C.L. (feet)	GZ RIGHTING ARM (FEET)	TANGENT TO CROSS CURVE (FEET /L.TONS)
15000.0	21.520	33.811	15.237	1.0154E-05
20000.0	23.216	31.683	15.169	-1.4586E-05
25000.0	24.635	29.869	15.089	-1.1028E-05
30000.0	25.821	28.205	14.929	-5.1676E-05
35000.0	26.783	26.577	14.619	-6.6011E-05
40000.0	27.617	24.995	14.241	-8.1972E-05
45000.0	28.365	23.450	13.821	-8.2776E-05
50000.0	29.071	21.949	13.397	-8.5519E-05

HEEL \approx 60.00 DEGREES

CENTER OF GRAVITY FROM B.L.= 30.00 FEET ; FROM C.L.= 0.00 FEET

	CENTER OF	BUOYANCY	GZ	TANGENT TO
DISPLACEMENT	FROM B.L.	FROM C.L.	RIGHTING ARM	CROSS CURVE
(L.TONS)	(FEET)	(FEET)	(FEET)	(FEET /L.TONS)
15000.0	27.080	37.701	16.322	1.9520E-04
20000.0	28.833	35.655	16.817	1.5126E-05
25000.0	29.764	33.498	16.544	-1.0495E-04
30000.0	30.284	31.354	15.923	-1.4521E-04
35000.0	30.626	29.289	15.187	-1.4519E-04
40000.0	30.944	27.341	14.488	-1.3586E-04
45000.0	31.251	25.484	13.825	-1.3010E-04
50000.0	31.561	23.705	13.204	-1.1881E-04

INTACT STABILITY SL-7 INTACT STABILITY EXAMPLE

HEEL = 70.00 DEGREES

CENTER OF GRAVITY FROM B.L.= 30.00 FEET ; FROM C.L.= 0.00 FEET

	CENTER OF	BUOYANCY	GZ	TANGENT TO
DISPLACEMENT	FROM B.L.	FROM C.L.	RIGHTING ARM	CROSS CURVE
(L.TONS)	(FEET)	(FEET)	(FEET)	(FEET /L.TONS)
15000.0	32.311	40.164	15.909	6.7890E-05
20000.0	33.213	37.718	15.920	-4.6611E-05
25000.0	33.707	35.362	15.578	-8.3496E-05
30000.0	33.950	33.085	15.027	-1.2669E-04
35000.0	34.002	30.878	14.321	-1.5189E-04
40000.0	33.949	28.751	13.544	-1.5551E-04
45000.0	33.889	26.722	12.794	-1.4297E-04
50000.0	33.867	24.786	12.111	-1.2897E-04

HEEL = 80.00 DEGREES

CENTER OF GRAVITY FROM B.L. = 30.00 FEET ; FROM C.L. = 0.00 FEET

DISPLACEMENT (L.TONS)	CENTER OF FROM B.L. (FEET)	BUOYANCY FROM C.L. (FEET)	GZ RIGHTING ARM (FEET)	TANGENT TO CROSS CURVE (FEET /L.TONS)
15000.0	36.780	41.374	13.862	-4.8910E-05
20000.0	36.919	38.722	13.537	-7.8287E-05
25000.0	36.930	36.234	13.117	-9.0242E-05
30000.0	36.875	33.878	12.654	-9.5399E-05
35000.0	36.759	31.628	12.149	-1.0204E-04
40000.0	36.578	29.465	11.595	-1.1953E-04
45000.0	36.323	27.380	10.981	-1.2294E-04
50000.0	36.066	25.378	10.381	-1.1532E-04

PROGRAM STATIC (05/79) 07/10/79 10.50.30 PAGE 32 *DRAFT(WTDIST=DWSL7BA,KG=40.26,WAVE=1,TITLE)

WEIGHT	BLOCK DATA	SL-7 BAL	LAST-L/20 WAVE T	ROUGH AMIDSHIPS
VELCHT	BLOCK WETCHT	BLOCK ICC	באס באס פוטכו	AFT END BLOCK
TYDE	(I TONE)		(FEFT)	(FEFT)
IIPE	(L.IUNS)	(FEEL)	(FEEI)	([[[]]
1	777.40	19.00	-20.00	42.00
1	1859.90	84.32	42.00	115.25
1	1217.90	143.18	115.25	167.75
1	1151.80	185.52	167.75	207.75
1	1379.20	225.50	207.75	247.75
1	1844.30	265.54	247.75	287.75
1	1990.60	305.53	287.75	327.75
1	2429.00	345.53	327.75	367.75
1	2547.50	385.52	367.75	407.75
1	2707.60	425.51	407.75	447.75
1	2714.90	467.99	447.75	492.75
1	2697.90	512.99	492.75	537.75
1	3284.90	550.00	537.75	562.75
1	3031.40	587.50	562.75	612.75
1	2726.30	635.00	612.75	652.75
1	2757.40	674.35	652.75	697.75
1	1631.30	716.10	697.75	737.75
1	1217.70	756.40	737.75	777.75
1	982.50	795.55	777.75	817.75
1	901.20	835.50	817.75	852.50
1	889.30	869.50	852.50	880.50
1	682.90	900.50	880.50	920.50
BLOCK	SUMMARY WETCHT	SUMMARY LCG		
	(2NOT 1)	(FFFT)		
1116	(6.1003)	(FEEL)		
1	41422.90	477.68		

ine-

TOTAL 41422.90 477.68

;

BALANCING OF SHIP SL-7 BALLAST-L/20 WAVE TROUGH AMIDSHIPS

WAVE CHARACTERISTICS

SINUSOIDAL WAVE

CREST (FROM F.P.)(FEET)	0.00
WAVE LENGTH (FEET)	880.50
HEIGHT (CREST TO TROUGH)	44.0250
WAVE HEADING (BOW=0 DEGREES) 0.00

6 ITERATIONS TO BALANCE SHIP

TRIM (+ BOW UP) =	-18.5919	FEET
HEEL (+ ST'BD.)	DOWN) =	0.0000	DEGREES
DRAFT FOWARD	=	44.1528	FEET
DRAFT AFT	=	25.5610	FEET
WEIGHT	=	41422.9000	L.TONS
BUOYANCY	=	41422.9002	L.TONS
LCG (FROM F.P.)	Ξ	477.6818	FEET
LCB (FROM F.P.)	=	477.2854	FEET
VCG (FROM B.L.)	=	40.2600	FEET
VCB (FROM B.L.)	=	21.0202	FEET
HCG (FROM C.L.)	=	0.0000	FEET
HCB (FROM C.L.)	=	0.0000	FEET

BALANCING OF SHL: SL-7 BALLAST-L/20 WAVE TROUGH AMIDSHIPS

STATION	MEAN	WAVE	DRAFT
FROM F.P.	WATERLINE	ELEVATION	FROM B.L.
			(()())
0.000	44.1528	22.0078	00.1007
11.006	43.9261	21.9344	05.0005
22.013	43.6994	21.7258	05.4251
44.025	43.2459	20.9093	64.1552
66.037	42.7925	19.5793	62.3/18
88.050	42.3390	17.7691	50.1081
110.062	41.8855	15.5237	57.4092
132.075	41.4321	12.8985	54.3305
176.100	40.5252	6.7743	47.2995
220.125	39.6182	0073	39.6109
264.150	38.7113	-6.7882	31.9231
308.175	37.8044	-12.9103	24.8941
352.200	36.8975	-17.7778	19.1197
396.225	35.9905	-20.9139	15.0767
440.250	35.0836	-22.0079	13.0758
484.275	34.1767	-20.9467	13.2300
528.300	33.2698	-17.8282	15.4415
572.325	32.3629	-12.9543	19.4086
616.350	31.4559	-6.8021	24.6538
660.375	30.5490	.0221	30.5711
704.400	29.6421	6.8441	36.4862
748.425	28.7352	12.9899	41.7251
770.437	28.2817	15.6156	43.8974
792.450	27.8283	17.8541	45.6823
814.463	27.3748	19.6502	47.0250
836.475	26.9213	20.9601	47.8815
858.487	26.4679	21.7522	48.2201
869.494	26.2411	21.9477	48.1889
880.500	26.0144	22.0077	48.0221
902.513	25.5610	21.7211	47.2820

SHEAR FORCE-BENDING MOMENT SL-7 BALLAST-L/20 WAVE TROUGH AMIDSHIPS

DISTANCE	WEIGHT	BUOYANCY	SHEAR	WEIGHT	BUOYANCY	BENDING
FROM FP	FORCE	FORCE	FORCE	MOMENT	MOMENT	MOMENT
(FEET)		(L.TONS)		(FEET -L.TO	NS)
-20.00	0.	0.	0.0	Ο.	Ο.	0.0
42.00	7.774E+02	8.191E+02	-41.7	1.788E+04	1.516E+04	2718.7
115.25	2.637E+03	3.372E+03	-735.1	1.324E+05	1.606E+05	-28228.4
167.75	3.855E+03	5.852E+03	-1996.8	3.007E+05	4.011E+05	-100357.7
207.75	5.007E+03	7.935E+03	-2928.0	4.805E+05	6.766E+05	-196015.9
247.75	6.386E+03	1.005E+04	-3667.3	7.115E+05	1.036E+06	-324959.7
287.75	8.230E+03	1.209E+04	-3857.1	1.008E+06	1.480E+06	-471810.3
327.75	1.022E+04	1.396E+04	-3736.9	1.381E+06	2.001E+06	-619896.7
367.75	1.265E+04	1.562E+04	-2974.0	1.844E+06	2.594E+06	-749407.2
407.75	1.520E+04	1.710E+04	-1901.1	2.407E+06	3.249E+06	-841798.0
447.75	1.791E+04	1.846E+04	-558.5	3.075E+06	3.960E+06	-885166.0
492.75	2.062E+04	2.001E+04	608.9	3.948E+06	4.826E+06	-877601.0
537.75	2.332E+04	2.175E+04	1568.1	4.943E+06	5.764E+06	-821514.3
562.75	2.660E+04	2.287E+04	3736.2	5.567E+06	6.322E+06	-754121.8
612.75	2.963E+04	2.551E+04	4123.0	6.974E+06	7.529E+06	-554452.4
652.75	3.236E+04	2.803E+04	4334.9	8.208E+06	8.598E+06	-390371.8
697.75	3.512E+04	3.116E+04	3957.3	9.729E+06	9.929E+06	-200535.8
737.75	3.675E+04	3.402E+04	2725.3	1.117E+07	1.123E+07	-64468.4
777.75	3.797E+04	3.673E+04	1239.3	1.266E+07	1.265E+07	15480.2
817.75	3.895E+04	3.899E+04	-44.4	1.421E+07	1.417E+07	39796.7
852.50	3.985E+04	4.041E+04	-560.7	1.557E+07	1.555E+07	27182.8
880.50	4.074E+04	4.111E+04	-372.1	1.670E+07	1.669E+07	10529.9
920.50	4.142E+04	4.151E+04	-84.4	1.834E+07	1.834E+07	-993.1

HYDROSTATICS

ţ

SL-7 BALLAST-L/20 WAVE TROUGH AMIDSHIPS

WAVE CHARACTERISTICS

SINUSOIDAL WAVE

CREST (FROM F.P.)(FEET)	0.00
WAVE LENGTH (FEET)	880.50
HEIGHT (CREST TO TROUGH)	44.0250
WAVE HEADING (BOW=0 DEGREES)	0.00

STATION	MEAN DRAFT	BEAM	AREA	S.A. COEF.	VCB	HCB
FROM F.P.	(FEET)	(FEET)	(FEET ##2)		(FEET)	(FEET)
0.0000	66.1607	0.0000	455.036	1.00000	33.1927	0.0000
11.0063	65.8605	0.0000	584.240	1.00000	35.5853	0.0000
22.0125	65.4251	0.0000	705.129	1.00000	37.4101	0.0000
44.0250	64.1552	35.1631	939.247	.41635	38.4499	0.0000
66.0375	62.3718	41.8434	1093.302	.41891	37.3076	0.0000
88.0500	60.1081	47.6153	1323.513	.46243	36.3746	0.0000
110.0625	57.4092	51.9332	1488.593	.49929	34.7062	0.0000
132.0750	54.3305	55.1950	1618.241	.53963	32.5902	0.0000
176.1000	47.2995	60.6513	1809.434	.63073	27.8044	0.0000
220.1250	39.6109	66.8454	1871.982	.70699	22.9102	0.0000
264.1500	31.9231	74.4864	1798.446	.75634	18.1492	0.0000
308.1750	24.8941	82.2428	16 <u>3</u> 8.261	.80018	13.9363	0.0000
352.2000	19.1197	90.0216	1434.038	.83317	10.5217	0.0000
396.2250	15.0767	96.3074	1249.403	.86047	8.1981	0.0000
440.2500	13.0758	101.8772	1169.043	.87758	7.0501	0.0000
484.2750	13.2300	104.0828	1216.928	.88374	7.1095	0.0000
528.3000	15.4415	103.6565	1408.098	.87972	8.3024	0.0000
572.3250	19.4086	103.6145	1725.649	.85810	10.5551	0.0000
616.3500	24.6538	103.2015	2090.196	.82152	13.7274	0.0000
660.3750	30.5711	102.0533	2393.314	.76712	17.6966	0.0000
704.4000	36.4862	97.8689	2538.161	.71080	21.9106	0.0000
748.4250	41.7251	93.2967	2438.483	.62641	26.2354	0.0000
770.4375	43.8974	88.9414	2283.067	.58476	28.3065	0.0000
792.4500	45.6823	85.5076	2041.489	.52263	30.3046	0.0000
814.4625	47.0250	80.1389	1788.365	.47455	32.2570	0.0000
836.4750	47.8815	70.6972	1394.009	.53497	35.2064	0.0000
858.4875	48.2201	63.8138	1014.420	.49964	37.7052	0.0000
869.4938	48.1889	58.5331	808.518	.54764	39.2271	0.0000
880.5000	48.0221	52.5334	629.781	.54473	40.2453	0.0000
902.5125	47.2820	38.9729	335.873	.39676	41.6095	0.0000

HYDROSTATICS

SL-7 BALLAST-L/20 WAVE TROUGH AMIDSHIPS

States & State States States

Sim the Construction of the

A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY AND A REAL PRO

VOLUME (MLD.)	1449801.5	FEET **3
DISPLACEMENT (MLD.)	41422.900	L.TONS
BLOCK COEFFICIENT (MLD.)	.460678	
HALF-AREA MIDSHIP SECTION	584.522	FEET **2
MIDSHIP SECTION COEFFICIENT	.327076	
PRISMATIC COEFFICIENT (MLD.),	1.408473	
TRIM	-18.592	FEET
HEEL	0.000	DEGREES
VCB (FROM B.L.)	21.020	FEET
HCB (FROM C.L.)	0.000	FEET
LCB (FROM F.P.)	477.285	FEET
BM, TRANSVERSE	32.536	FEET
BM,LONGITUDINAL	2442.681	FEET
MOMENT TO ALTER TRIM 0.1 FEET	11491.531	
L.TONS PER 0.1 FEET IMMERSION	203.421	
AREA OF WATERPLANE	71197.454	FEET ##2
WATERPLANE COEFFICIENT (MLD.)	.793703	
L.C.F. FROM F.P.	497,118	FEET
CHANGE IN DISPL. FOR 1 FEET TRIM AFT	-131.382	L.TONS
WETTED SURFACE (MLD.)	108160.717	FEET **2

*DRAFT(WTDIST=DWSL7FU,KG=42.31,TITLE,EQUALSTATION=21, POINTS=19,LIST)

TOTAL 47760.00

WEIGHT BLOCK DATA SL-7 - NORMAL FULL LOAD DEPARTURE

WEIGHT	BLOCK WEIGHT	BLOCK LCG	FWD END BLOCK	AFT END BLOCK
TYPE	(L.TONS)	(FEET)	(FEET)	(FEET)
1	765.20	19.00	-20.00	42.00
1	1847.70	84.32	42.00	115.25
1	1205.70	143.18	115.25	167.75
1	1613.40	185.52	167.75	207.75
1	1943.60	225.50	207.75	247.75
1	2379.20	265.54	247.75	287.75
j	2305.60	305.53	287.75	327.75
1	2610.80	345.53	327.75	367.75
1	3148.70	385.52	367.75	407.75
1	3343.70	425.51	407.75	447.75
1	3299.00	467.99	447.75	492.75
1	3179.20	512.99	492.75	537.75
1	3293.30	550.00	537.75	562.75
1	3039.80	587.50	562.75	612.75
1	2661.30	635.00	612.75	652.75
1	2898.70	674.35	652.75	697.75
1	2116.10	716.10	697.75	737.75
1	1678.30	756.40	737.75	777.75
1	1597.20	795.55	777.75	817.75
1	1244.50	835.50	817.75	852.50
1	897.70	869.50	852.50	880.50
1	691.30	900.50	880.50	920.50
BLOCK	SUMMARY WEIGHT	SUMMARY LCG		
TYPE	(L.TONS)	(FEET)		
1	47760.00	478.86		

478.86

:

BALANCING OF SHIP SL-7 - NORMAL FULL LOAD DEPARTURE

6 ITERATIONS TO BALANCE SHIP

TRIM (+ BOW UP) =	.4170	FEET
HEEL $(+ ST'BD.$	DOWN) =	0.0000	DEGREES
DRAFT FOWARD	=	32.5742	FEET
DRAFT AFT	=	32.9913	FEET
WEIGHT	=	47760.0000	L.TONS
BUOYANCY	=	47760.0009	L.TONS
LCG (FROM F.P.)	=	478.8632	FEET
LCB (FROM F.P.)	=	478.8743	FEET
VCG (FROM B.L.)	=	42.3100	FEET
VCB (FROM B.L.)	3	18.2314	FEET
HCG (FROM C.L.)	=	0.0000	FEET
HCB (FROM C.L.)	=	0.0000	FEET

SHEAR FORCE-BENDING MOMENT SL-7 - NORMAL FULL LOAD DEPARTURE

DISTANCE	WEIGHT	BUOYANCY	SHEAR	WEIGHT	BUOYANCY	BENDING
FROM FP	FORCE	FORCE	FORCE	MOMENT	MOMENT	MOMENT
(FEET)		(L.TONS)		(FEET -L.TON	IS)
~20.00	0.	0.	0.0	0.	0.	0.0
42.00	7.652E+02	3.340E+02	431.2	1.760E+04	6.573E+03	11026.7
115.25	2.613E+03	1.306E+03	1307.3	1.308E+05	6.285E+04	67950.8
167.75	3.819E+03	2.497E+03	1321.4	2.976E+05	1.603E+05	137305.2
207.75	5.432E+03	3.808E+03	1623.9	4.862E+05	2.851E+05	201125.6
247.75	7.376E+03	5.529E+03	1846.4	7.467E+05	4.704E+05	276344.3
287.75	9.755E+03	7.693E+03	2061.8	1.095E+06	7.333E+05	361279.6
327.75	1.206E+04	1.031E+04	1747.6	1.536E+06	1.092E+06	444065.9
367.75	1.467E+04	1.336E+04	1315.8	2.076E+06	1.564E+06	512438.9
407.75	1.782E+04	1.674E+04	1079.4	2.733E+06	2.165E+06	568383.4
447.75	2.116E+04	2.036E+04	799.2	3.520E+06	2.906E+06	614102.3
492.75	2.446E+04	2.456E+04	-96.0	4.555E+06	3.917E+06	637573.8
537.75	2.764E+04	2.874E+04	-1094.4	5.734E+06	5.116E+06	617744.9
562.75	3.094E+04	3.101E+04	-78.6	6.467E+06	5.863E+06	603821.2
612.75	3.397E+04	3.540E+04	-1424.0	8.091E+06	7.525E+06	565789.0
652.75	3.664E+04	3.863E+04	-1995.1	9.497E+06	9.006E+06	490320.0
697.75	3.9538+04	4.182E+04	-2281.4	1.121E+07	1.082E+07	394579.5
737-75	4.165E+04	4.413E+04	-2478.3	1.284E+07	1.254E+07	301052.0
777.75	4.333E∓04	4.588E+04	-2551.4	1.454E+07	1.434E+07	200788.0
817.75	4.493E+04	4.705E+04	-2121.8	1.631E+07	1.620E+07	108959.6
852.50	4.617E+04	4.758E+04	-1410.8	1.789E+07	1.785E+07	45830.1
880.50	4.707E+04	4.773E+04	-664.4	1.920E+07	1.918E+07	13610.5
920.50	4.776E+04	4.776E+04	-2.0	2.109E+07	2.109E+07	-24.4

6.0.6

HYDROSTATICS

SL-7 - NORMAL FULL LOAD DEPARTURE

STATION	MEAN DRAFT	BEAM	AREA	S.A. COEF.	VCB	HCB
FROM F.P.	(FEET)	(FEET)	(FEET ##2)	1	(FEET)	(FEET)
0.0000	32.5742	0.0000	222.324	1.00000	10.3399	0.0000
44.0250	32.5946	6.0058	337.029	1.72169	13.5029	0.0000
88.0500	32.6149	15.8799	495.892	.9574 7	15.7963	0.0000
132.0750	32.6353	29.0407	719.110	.75875	17.6561	0.0000
176.1000	32.6556	44.8402	1042.186	.71174	18.6209	0.0000
220.1250	32.6760	60.5819	1429.338	.72204	18.8262	0.0000
264.1500	32.6963	75.1676	1853.956	.75434	18.5905	0.0000
308.1750	32.7166	87.5196	2298.444	.80271	18.2403	0.0000
352.2000	32.1310	97.0003	2700.100	.07143 90117	17.0344	0.0000
390.2250	32.7513	103.1/00	3023.040	.09443	17.5044	0.0000
440.2500	32.1111	105.4995	3220.099	.93310	17 1244	0.0000
404.2700 528 2000	22.1900	105.5000	2225 228	02111	17 2624	0.0000
520.3000	22.0104	105.5000	2121 283	00460	17 5758	0.0000
616 3500	32.0307	105.5000	2011 310	84034	18,1117	0.0000
660 3750	32 8794	103 2517	2625 787	77346	18,9552	0.0000
704 4000	32 8007	95.5877	2185.048	.69481	19.8611	0.0000
748.4250	32,9201	83.7717	1651.807	.59896	20.9230	0.0000
792,4500	32,9404	61.0736	1080.407	.53704	21,9932	0.0000
836.4750	32,9608	44,9469	506.188	.51337	25.0663	0.0000
880.5000	32.9811	19.2025	77.919	.60254	30.3453	0.0000
VOLUME	(MLD.)			1670224.	O FEET **:	3
DISPLAC	CEMENT (MLD.	.)		47720.68	5 L.TONS	
BLOCK (COEFFICIENT	(MLD.)		.54855	1	
HALF-AF	REA MIDSHIP	SECTION		1613.44	9 FEET **	2
MIDSHIE	P SECTION CO	DEFFICIENT		.93316	2	
PRISMAT	CIC COEFFICE	EENT (MLD.)),	.58784	1	
TRIM				.41	7 FEET	
HEEL				0.00	O DEGREES	
VCB (FI	ROM B.L.)			10.24	O PEEL	
HCB (FI	COM C.L.)			U.UU 1179 37	0 FEE1 3 FFFT	
	(OM F.P.)			4/0.3/	j reei 9 peet	
DELLEAD	NOVERSE NTTUDINAL			1456 48	5 FEET	
MOMENT	TO ATTED TI		. F. T	7803 75	5	
TURENI L TURENI		1111 U.I EI 1117 TMMED4		180 26	8	
AREA OF	T WATERPLAND	sar runan. T	1.01	63828.92	5 FEET **2	2
WATERPI	ANE COEFFIC	TENT (MLD	.)	.68712	8	-
L.C.F	FROM F P.		• •	496.49	- 3 FEET	
CHANGE	IN DISPL. H	FOR 1 FEED	TRIM AFT	-116.49	O L.TONS	
WETTED	SURFACE (MI	.D.)		99185.36	0 FEET **2	2

- 1 4 .

1

PROGRAM	STATIC (05	(79)	07/10/79	10.50.30	PAGE	44
WET OFF	SETS TABLE (FEET)	SL-7 - NORMAL	FULL LOAD	DEPARTURE	
LENGTH	1 = 880.500	BEAM	= 105.500	DEPTH =	64.305	
STATION 19 POINT X = 0	1 IS 1.000	STATION 20 POIN X = 4	2 TS 4.025	STATION 20 POIN X = 88	3 rs 3.050	
HEIGHT Z	Н-В Ү	HEIGHT Z	H-B Y	HEIGHT Z	H-B Y	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000 1 .170 2 .435 3 .930 4 1.512 5 2.168 6 2.925 7 3.717 8 4.586 9 5.466 10 6.240 11 6.796 12 7.062 13 6.835 14 6.284 15 5.172 16 3.664 17 1.866 18 .000 19 20	0.000 -2.112 -4.237 -6.372 -8.475 -10.538 -12.552 -14.506 -16.451 -18.418 -20.407 -22.479 -24.604 -26.708 -28.692 -30.325 -31.565 -32.139 -32.595	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000 -2.069 -4.176 -6.319 -8.506 -10.669 -12.805 -14.898 -16.988 -19.079 -21.203 -23.355 -25.523 -27.673 -29.448 -30.875 -31.851 -32.233 -32.615	0.000 7.940 7.229 6.659 6.224 6.214 6.439 6.909 7.544 8.188 8.833 9.351 9.714 9.574 9.574 9.574 9.167 7.902 6.244 4.308 2.154 .000	
STATION 20 POINT X = 132	4 S 2.075	STATION 20 POIN X = 17	5 IS 5.100	STATION 20 POINT X = 220	6 IS 0.125	
HEIGHT Z	H-B Y	HEIGHT Z	H-B Y	HEIGHT Z	H-B Y	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000 1 14.520 2 13.616 3 12.830 4 12.169 5 11.626 6 11.242 7 11.045 8 11.100 9 11.179 10 11.277 11 11.305 12 10.872 13 10.594 14 9.669 15 8.256 16 6.527 17 4.439 18 2.243 19	0.000 -2.203 -4.426 -6.662 -8.879 -11.149 -13.450 -15.750 -18.051 -20.341 -22.647 -24.859 -27.009 -28.995 -30.625 -31.756 -32.402 -32.583	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000 -2.458 -4.915 -7.373 -9.831 -12.289 -14.729 -17.125 -19.455 -21.803 -24.055 -26.214 -28.071 -29.719 -31.161 -31.983 -32.341 -32.554	0.000 30.291 29.208 28.126 27.043 25.961 24.878 23.757 22.548 21.214 19.910 18.461 16.867 14.929 12.811 10.551 8.019 5.357 2.683	

	WET OFF	SETS TABL	.E (FEET)	SL-7 - NO	ORMAL	FULL LOAD	DEPARTURE
	LENGTH	4 ≈ 880.50	0	BEAM =	105.500		DEPTH =	64.305
	STATION	7		STATION	8		STATION	9
	20 POINT	rs		20 POINT	S		20 POINT	'S
	X = 261	4.150		X = 308	.175		X = 352	2.200
	HEIGHT Z	Н-В Ү		HEIGHT Z	H-B Y		HEIGHT Z	Н-В Ү
1	0.000	0.000	1	0.000	0.000	1	0.000	0.000
2	0.000	37.584	2	0.000	43.760	2	0.000	48.543
3	-2.776	36.361	3	-3.229	42.707	3	-3.656	47.746
ŭ	-5.574	35.192	4	-6.450	41.629	4	-7.308	46.941
5	-8.339	33.947	5	-9.636	40.450	5	-10.901	45.898
6	-11.092	32.674	6	-12,803	39.225	6	-14.438	44.685
7	-13.820	31.353	7	-15.848	37.722	7	-17.828	43.117
8	-16.474	29.885	8	-18.761	35.978	8	-21.032	41.192
9	-19.025	28.245	9	-21.460	33.927	9	-23.949	38.866
10	-21.527	26.532	10	-24.017	31.698	10	-26.462	36.108
11	-23.961	24.731	11	-26.277	29.166	11	-28.485	32.960
12	-26.202	22.690	12	-28.207	26.373	12	-30.182	29.650
13	-28.036	20.276	13	-29.834	23.406	13	-31.350	26.107
14	-29.650	17.714	14	-31.072	20.244	14	-32.020	22.430
15	-30.947	14.972	15	-31.917	16.958	15	-32.357	18.705
16	-31.897	12.098	16	-32.213	13.574	16	-32.433	14.964
17	-32.229	9.083	17	-32.428	10.186	17	-32.509	11.223
18	-32.476	6.062	18	-32.524	6.790	18	-32.585	7.482
19	-32.586	3.031	19	-32.620	3.395	19	-32.661	3.741
20	-32.696	.000	20	-32.717	.000	20	-32.(3)	.000
	STATION	10		STATION	11		STATION	12
	20 POIN	TS		20 POIN:	rs		20 PUIN	10
	X = 390	6.225		$\mathbf{X} = 44($	1.220		$\mathbf{X} = 40$	+.215
	HEIGHT Z	н-в ч		HEIGHT Z	H-B Y		HEIGHT Z	H-B Y
1	0.000	0.000	1	0.000	0.000	1	0.000	0.000
2	0.000	51.589	2	0.000	52.750	2	0.000	52.750
3	-4.010	51.215	3	-4.235	52.704	3	-4.300	52.750
4	-7.998	50.667	4	-8.470	52.629	4	-8.001	52.150
5	-11.957	49.931	5	-12.699	52.402	5	-12.901	52.150
6	-15.835	48.863	6	-16.880	51.705	0	-1/.105	52,399
7	-19.573	47.370	7	-20.902	50.452	6	-21.324	10 181
8	-23.082	45.400	Ö	-24.045	40.490	0	-27.117	16 171
9	-20.159	42.812	9	-27.000	45.550	3	-20.210	10.414
10	-20.505	39.503	10	-29.990	42.040	11	-31 505	38.656
11	-30.344	30.009	10	- 31 . 300	33 875	12	~ 32 040	34 394
12	- 31.490	36.127	12	- 32.023	20 612	12	-32,105	30.097
15	- 32.072	20.101	1) 1)	-32.267	25.400	14	-32.281	25.798
16	- 36 + 6 13	20 121	15	-32,352	21.174	15	~32.367	21,498
16	-32.305	16,105	16	-32,437	16.939	16	-32.453	17.198
17	-32,486	12,079	17	-32,522	12.704	17	-32.540	12.899
18	-32.577	8.053	18	-32.608	8.470	18	-32.626	8.599
19	- 32.667	4.026	19	-32.693	4.235	19	-32.712	4.300
20	-32.757	.000	20	-32.778	.000	20	-32.798	.000

			05/7	٥)	07/10/79		10.50.30	PAGE
	PROGRAM S	STATIC V	E (F	EET)	SL-7 - NOF	RMAL	FULL LOAD	DEPARTURE
	WEI OFF.		- · ·	BEAM =	105.500		DEPTH =	64.305
	LENGTH	= 880.500)		- h		STATION	15
	STATION	13		STATION	14		20 POINT	S
	20 POINT	ร		20 POINT	S		x - 616	3,350
	X = 528	.300		X = 572	.325			
	HEIGHT Z	Н-В Ү		HEIGHT Z	н-в ч		HEIGHT Z	H-B Y
			•	0 000	0.000	1	0.000	0.000
1	0.000	0.000	, ,	0 000	52.750	2	0.000	52.750
2	0.000	52.150	2	1 116	52.736	3	-3.919	52.367
3	-4.239	52.750	5	-4.110	52 548	ų.	-7.799	51.687
4	-8.478	52.750	4	-0.220	52.015	5	-11.598	50.670
5	-12.714	52.624	5	-12.305	52.015	6	-15.223	49.146
6	-16.895	51.956	6	-16.302	51.040	7	-18.527	47.028
7	-20.923	50.672	7	-20.049	49.300	á	-21.582	44.550
ģ	-24.650	48.661	8	-23.359	46.923	0	21. 104	41.601
0	-27 631	45.655	9	-26.220	43.975	.9	-24.134	38 348
, y	20 814	42.043	10	-28.460	40.527	10	-20.405	74 851
10	-29.014	38 068	11	-30.143	36.789	11	-20.212	21 203
11	-31.205	22 801	12	-31.326	32.855	12	-29.694	31.203
12	- 32.001	20.667	13	-32.002	28.794	13	-30.819	21.421
13	-32.224	29.001	1)1	-32.342	24.693	14	-31.613	23.511
14	-32.309	27.429	15	-32 428	20.577	15	-32.158	19.070
15	-32.394	21.191	46	- 32 510	16.462	16	-32.535	15.755
16	-32.479	10.952	10	- 32 592	12.346	17	-32.616	11.810
17	-32.564	12.714	11	- 32 . 574	8,231	18	-32.697	7.878
18	-32.649	8.476	10	- 32 . 01 -	4 115	19	-32.778	3.939
19	-32.733	4.238	19	- 32 . (2)	.000	20	-32.859	.000
20	-32.818	.000	20	- 52.057	••••		6 6 6 7 6	1 1 8
	STATION	16		STATION	1 17		STAILUI 20 POT	1 10 175
	20 POIN	TS		20 POIN	ITS		20 FOIL	18 425
	$\mathbf{X} = 66$	0.375		X = 70	94.400		$\mathbf{X} = \mathbf{U}$	+0. +25
	HEIGHT Z	H-B Y		HEIGHT Z	H-B Y		HEIGHT Z	н-в ч
			•	0 000	0.000	1	0.000	0.000
1	0.000	0.000	1	0.000	47.794	2	0.000	41.886
2	0.000	51.626	2	0.000	L6 L80	3	-2.495	40.181
3	-3.596	50.672	3	-3.122	HH 022	ม์	-4.938	38.402
4	-7.130	49.509	4	-0.130	112 173	5	-7.312	36.535
5	-10.553	48.058	5	-9.029	43-113	6	-9.577	34.534
6	-13.766	46.195	6	~11.813	41.240	7	-11 736	32.421
7	-16.694	43.900	7	-14.403	39.010	ģ	-13.824	30.239
à	-19.363	41.307	8	-16.801	30.004	ŏ	-15.791	27.944
9	-21.803	38.502	9	-19.007	34,112	10	-17.671	25.579
10	-23.921	35.446	10	-20.970	31.300	11	-19.499	23.173
11	-25.797	32.232	11	-22.791	20.503	12	-21 188	20.667
12	-26.915	28.715	12	-24.317	25.401	12	22 021	18,191
12	-27 753	25.089	13	-25.815	22.443	13	-22.761	15 559
1 h	-29.678	22.015	14	-27.152	19.333	14	-24.902 25 078	12 981
15	20 617	18.413	15	-28.407	16.186	15	-27.710	10 258
17	- 31 367	14 703	16	-29.667	13.041	16	-27.470	7 7 6 6
10	- 31.401	11 127	17	-30.726	9.823	17	-29.012	2111
17	- 52.105	7 100	18	-31.665	6.570	18	-30.654	7.210
18	- 52.400	7 710	10	-32.689	3.348	19	-32.516	2.049
19	-32.020	20102	20	-32.900	.000	20	-32.920	.000
20	-32.019		¢. V					

 PROGRAM STATIC
 (05/79)
 07/10/79
 10.50.30
 PAGE
 47

	WET OF	SETS TAB	LE (FEET)	SL-7 - N	ORMAL	. FULL LOAD	DEPARTURE
	LENGTI	H = 880.5	00	BEAM :	: 105.500		DEPTH =	64.305
	STATION 20 POIN X = 792	19 IS 2.450		STATION 20 POINT X = 830	20 IS 5.475		STATION 20 POINT X = 880	21 :S 0.500
	HEIGHT Z	H-B Y		HEIGHT Z	H-B Y		HEIGHT Z	Н-В Ү
1 2 3 4 5 6 7	0.000 0.000 -2.521 -4.589 -6.380 -8.198 -10.019	0.000 30.537 30.290 29.022 27.139 25.282 23.427	1 2 3 4 5 6 7	0.000 0.000 -1.198 -2.388 -3.581 -4.802 -6.023	0.000 22.473 21.116 19.750 18.388 17.050 15.713	1 2 3 4 5 6 7	0.000 0.000 439 885 -1.331 -1.777 -2.223	0.000 9.601 9.087 8.579 8.071 7.562 7.054
9 10 11 12 13 14 15 16 17	-11.756 -13.513 -15.393 -17.169 -18.782 -20.429 -22.185 -23.992 -25.862 -27.805	21.494 19.579 17.785 15.895 13.857 11.847 9.933 8.066 6.263 4.537	8 9 10 11 12 13 14 15 16 17	-7.256 -8.512 -9.765 -11.138 -12.537 -13.960 -15.408 -16.881 -18.452 -20.026	14.389 13.082 11.775 10.596 9.447 8.327 7.239 6.190 5.288 4.393	9 10 11 12 13 14 15 16 17	-2.009 -3.115 -3.563 -4.019 -4.475 -4.931 -5.387 -5.842 -6.298 -6.734	6.038 5.532 5.032 4.533 4.034 3.534 3.035 2.535 2.028
18 19 20	-30.004 -32.379 -32.940	3.163 2.128 .000	18 19 20	-21.585 -21.937 -21.937	3.494 1.811 .000	18 19 20	-6.734 -6.734 -6.734	1.352 .676 .000

-LONGITUDINAL LIMITS OF WETTED HULL.

WATERLINE	FWD =	32.574	WATERLINE -	- A	FΤ	=	32.991
WET HULL	FWD =	0.000	WET HULL -	- A	FT	=	902.513

PROGRAM STATIC (05/79) 07/10/79 10.50.30 PAGE 48 *COEFFICIENT(FIRSTSTATION=1,LASTSTATION=1)

PROGRAM	STATIC	(05/79)		07/10/79) 1	0.50.30	P	AGE 49
SL-7 - Frank (- NORMAL D CLOSE FIT	FULL LOAD -19 POINT	DEPARTU IS	RE		DRAFT	STA: = 32.574	FEET
ENDPOIN H-BRDTH	NTS OF SEG H HEIGHT	GMENTS Length	SEGMEN H-BR	T MIDPO: DTH HE:	LNTS LGHT	SINE	COSINE	MOMEN
.000 1.866 3.664 5.172 6.284 6.835 7.062 6.796 6.240 5.466 4.586 3.717 2.925 2.168 1.512 .930 .435 .170 0.000	-32.574 -32.070 -31.397 -30.220 -28.687 -26.837 -24.925 -23.022 -21.172 -19.401 -17.679 -15.952 -14.189 -12.411 -10.592 -8.751 -6.882 -4.973 -3.047	1.933 1.919 1.914 1.894 1.930 1.925 1.922 1.933 1.933 1.933 1.933 1.933 1.933 1.933 1.933 1.933 1.933 1.933 1.933 1.933	.93 2.76 4.41 5.72 6.55 6.94 6.55 5.85 5.02 4.15 3.32 2.54 1.84 1.22 .68 .30 .08	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	322 734 308 453 762 381 974 997 286 540 316 977 286 540 316 977 1 300 502 572 316 971 300	.2609 .3505 .6153 .8096 .9584 .9930 .9904 .9577 .9164 .8905 .8933 .9122 .9201 .9405 .9535 .9668 .9904 .9361	.9654 .9366 .7883 .5870 .2855 .1180 1384 2879 4003 4550 4495 4098 3916 3397 3014 2555 1379 0877	-7.532 -8.533 -15.474 -20.484 -24.733 -24.880 -24.702 -23.038 -20.933 -18.796 -16.837 -15.108 -15.108 -13.235 -11.443 -9.590 -7.731 -5.912 -4.002
FREQ. PARAM.	A' 33	N' Z	M S	N S	M S.R	N S.R	I R	N R
.00 IN .01 .03 .06 .10 .15 .21 .28 .36 .45 .55 .67 .82 1.01 1.25 1.95 2.45 3.80 4.70 5.80 7.10 8.70 10.70	IFINITY .134 .135 .135 .137 .138 .140 .141 .142 .143 .142 .143 .142 .140 .137 .132 .125 .118 .111 .107 .105 .106 .107 .110 .112 .113 .117	0.000 000 .000 .000 .001 .001 .003 .005 .008 .011 .021 .027 .032 .035 .034 .029 .022 .035 .034 .029 .022 .014 .008 .004 .002 .001 0.000	.730 .731 .738 .748 .762 .780 .820 .835 .842 .837 .843 .765 .842 .837 .843 .765 .693 .608 .527 .458 .392 .386 .392 .404 .418 .432	0.000 .000 .000 .001 .003 .007 .017 .034 .060 .098 .147 .208 .279 .349 .400 .422 .411 .373 .320 .259 .200 .148 .107 .073 .000	13.09 13.11 13.22 13.41 13.66 13.98 14.33 14.67 14.93 15.03 14.88 14.41 13.50 12.17 10.64 9.21 8.06 7.38 7.13 7.59 7.59 7.87 8.12 9.17	0.00 .00 .01 .05 .14 .32 .62 1.11 1.79 2.67 3.76 5.00 6.17 6.97 7.21 6.83 5.97 2.77 1.93 1.31 .85 0.00	249.2 249.2 251.3 254.6 259.2 264.9 271.1 282.2 264.9 277.0 282.5 269.8 252.6 269.8 252.6 269.8 252.6 156.5 146.2 145.5 155.7 165.3 181.6	0.0 .0 .3 1.0 2.6 5.9 11.6 20.5 33.0 48.8 68.2 89.8 109.5 121.8 123.3 113.7 96.2 75.9 55.5 38.4 25.1 16.0 9.9 0.0

40

PROGRAM STATIC(05/79)07/10/7910.50.30PAGE 50*COEFFICIENT(FIRSTSTATION=11,LASTSTATION=11,LIST)

MAPPING STATION 11 SL-7 - NORMAL FULL LOAD DEPARTURE

VALUES PRINTED ARE FOR 8 ITERATIONS 3 MAPPING COEFFICIENTS

A (0)	=	47.0731651
A (1)	=	-10.1726039
A (3)	=	-4.3511423

	ORIGINAL WETTED OFFSETS	MAPPED WETTED OFFSETS	MAPPED ANGLE
POINT	H-BRDTH HEIGHT	H-BRDTH HEIGHT	THETA
1	.0000 -32.7777	.0000 -32.5494	0.0000
2	2.1174 -32.7351	2.1060 -32.5504	.0300
3	4.2348 -32.6926	4.2200 -32.5533	.0601
4	6.3522 -32.6501	6.3346 -32.5578	.0904
5	8.4696 -32.6075	8.4602 -32.5632	.1211
6	10.5870 -32.5650	10.5908 -32.5686	. 1521
7	12.7043 -32.5224	12.7272 - 32.5727	.1836
8	14.8217 -32.4799	14.8649 -32.5740	.2155
9	16.9391 -32.4374	17.0087 -32.5701	.2482
10	19.0565 -32.3948	19.1540 -32.5585	.2815
11	21.1739 -32.3523	21.2953 -32.5358	.3155
12	23.2913 -32.3097	23.4282 -32.4978	.3504
13	25.4087 -32.2672	25.5459 -32.4397	.3861
14	27.5261 -32.2247	27.6394 -32.3556	. 4227
15	29.6435 -32.1821	29.6973 -32.2390	.4602
16	31.7590 -32.1026	31.7379 -32.0798	. 4991
17	33.8745 -32.0232	33.7156 -31.8715	.5387
18	35.9647 -31.6915	35.8296 -31.5712	.5837
19	38.0549 -31.3598	37.8442 -31.1850	.6297
20	39.0511 -31.0173	38.9342 -30.9234	.6501
21	40.0472 -30.6747	39.9865 -30.6272	.6829
22	41.0434 -30.3322	40.9941 -30.2955	.7098
23	42.0395 -29.9896	41.9529 -29.9276	.7367
24	43.7987 -28.8386	43.9607 -28.9429	.7986
25	45.5579 -27.6876	45.6902 -27.7663	.8596
26	47.0279 -26.1662	47.2571 -26.2925	.9241
27	48.4980 -24.6447	48.5217 -24.6566	.9857
28	49.4752 -22.7734	49.5694 -22.8155	1.0468
29	50.4523 -20.9021	50.3902 -20.8760	1.1045
30	51.1084 -18.8910	51.0322 -18.8633	1.1594
31	51.7646 -16.8799	51.5321 -16.8046	1.2116
32	52.0833 -14.7892	51.9161 -14.7429	1.2608
33	52.4020 -12.6986	52.2150 -12.6546	1.3084
34	52.5156 -10.5845	52.4430 -10.5710	1.3540
35	52.6291 -8.4703	52.6160 -8.4687	1.3987
36	52.6664 -6.3528	52.7421 -6.3623	1.4423
37	52.7037 -4.2354	52.8281 -4.2470	1.4855
38	52.7267 -2.1177	52.8782 -2.1241	1.5282
39	52.7497 0.0000	52.89460000	1.5708
	AVERAGE ERROR =	.41483 PERCENT OF DRAFT	
	STD. DEV. ERROR =	.22431 PERCENT OF DRAFT	

	PROGRAM	4 STATIC	(05/79)	07/10/79			10.50.30	PAGE 52	
SL-7 - NORMAL FU Conformal Mapping			FULL LOAD NG - 3 CO	DEPAR	CURE Ents		DRAFT =	STAT 32.778	ION 11 FEET
	ENDPOI H-BRDI	NTS OF SE H HEIGHT	GMENTS Length	SEGMI H-1	ENT MIDP BRDTH H	OINTS EIGHT	SINE	COSINE	MOMEN
	.000 4.235 8.470 12.704 16.939 21.174 25.409 29.643 33.875 38.0557 42.040 45.558 40.047 45.558 498 51.765 52.402 52.629 52.750	-32.778 -32.693 -32.608 -32.522 -32.437 -32.352 -32.267 -32.023 -31.360 -30.675 -29.990 -27.688 -24.645 -20.902 -16.880 -12.699 -8.470 -4.235 0.000	4.236 4.236 4.236 4.236 4.236 4.236 4.236 4.236 4.233 2.107 4.233 4.231 4.231 4.231 4.231 4.231 4.231 4.231 4.234 4.236	2. 6. 10. 14. 19. 27. 35. 39. 43. 49. 52. 52. 52. 52.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.735 .650 .565 .480 .395 .310 .225 .103 .691 .017 .332 .839 .166 .773 .891 .789 .584 .353 .118	.0201 .0201 .0201 .0201 .0201 .0201 .0201 .0201 .0201 .0375 .1567 .3252	.9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9993 .9876 .9457 .8368 .6949 .4629 .3102 .1507 .0536 .0176 .0109	1.459 5.695 9.931 14.166 18.402 22.638 26.873 30.5531 30.553 26.843 20.862 13.860 2.714 -2.107 -6.771 -7.752 -5.424 -1.545
	FREQ. Param.	A' . 33	N' Z	M S	N S	M S.R	N S.R	I R	N R
	.00 1 .01 .03 .06 .10 .15 .21 .28 .36 .45 .57 .82 1.01 1.25 1.95 2.45 3.80 4.70 5.80 4.70 8.70	INFINITY 11.980 8.4426 5.144 4.296 3.733 3.253 3.0226 3.079 3.537 3.0279 3.537 3.537 4.231 4.239 4.239 4.239 4.454 4.549 4.549	0.000 .893 1.362 1.670 1.850 1.927 1.922 1.849 1.726 1.565 1.383 1.176 .949 .717 .501 .324 .184 .096 .047 .021 .009 .004 .002 .001	1.978 2.1040 2.2222222222222222222222222222222222	0.000 .004 .022 .077 .207 .436 .744 1.051 1.405 1.445 1.445 1.445 1.445 1.445 1.340 1.222 .917 .755 .606 .474 .276 .209 .155 .115	-17.06 -17.40 -18.23 -19.51 -20.973 -21.392 -14.503 -14.258 -2.4888 -2.4888 -2.8481 -5.651 -7.622 -8.11 -8.34	$\begin{array}{c} 0.00 \\00 \\05 \\25 \\87 \\ -2.22 \\ -4.46 \\ -9.23 \\ -10.25 \\ -9.38 \\ -10.25 \\ -9.38 \\ -7.92 \\ -6.13 \\ -4.28 \\ -2.61 \\ -1.15 \\ .38 \\ .60 \\ .51 \\ .39 \\ .27 \\ .18 \end{array}$	829.2 832.7 841.0 853.3 865.7 870.3 857.7 824.9 743.3 703.4 709.1 729.6 759.4 755.6 757.4 755.6 758.1	0.0 .6 3.0 9.9 23.9 45.0 67.1 83.0 74.9 60.8 14.7 6.0 1.4 .2 .8 1.0 .2 .3

 PROGRAM STATIC
 (05/79)
 07/10/79
 10.50.30
 PAGE 53

 *COEFFICIENT(FIRSTSTATION=11,LASTSTATION=11,FRANK)

STATION 11 SL-7 - NORMAL FULL LOAD DEPARTURE FRANK CLOSE FIT -20 POINTS DRAFT = 32.778 FEET ENDPOINTS OF SEGMENTS SEGMENT MIDPOINTS H-BRDTH HEIGHT LENGTH H-BRDTH HEIGHT SINE COSINE MOMEN1 .9998 1.459 .000 -32.778 4.236 2.117 -32.735 .0201 5.695 4.235 -32.693 4.236 6.352 -32.650 .0201 .9998 4.236 -32.608 8.470 10.587 -32.565 .0201 .9998 9.931 .0201 .9998 12.704 14.166 -32.522 4.236 14.822 -32.480 .9998 18.402 16.939 -32.437 4.236 19.057 -32.395 .0201 .9998 22.638 21.174 -32.352 4.236 23.291 -32.310 .0201 .9998 26.873 25.409 -32.267 4.236 27.526 -32.225 .0201 31.759 .0375 .9993 30.531 29.643 -32.182 4.234 -32.103 -31.691 30.553 35.965 .1567 .9876 33.875 -32.023 4.233 -31.360 .9457 27.896 38.055 4.214 40.047 -30.675 .3252 20.862 42.040 4.205 43.799 -28.839 .5475 .8368 -29.990 .6949 13.860 47.028 45.558 -27.688 4.231 -26.166 .7192 .8864 .4629 2.714 48.498 -24.645 4.222 49.475 -22.773 . 51.108 50.452 -18.891 .9507 .3102 -2.107 -20.902 4.231 .9886 51.765 -16.880 4.230 52.083 -14.789 .1507 -6.771 4.234 .9986 .0536 ~7.752 52.402 -12.69952.516 -10.584 -8.470 4.236 52.666 -6.353 .9998 .0176 -5.424 52.629 .0109 52.704 -4.235 4.236 -2.118 .9999 -1.545 52.727 0.000 0.0000 -1.0000 -26.375 52.750 0.000 52.750 26.375 0.000 0.000 A' FREQ. Ν' N М I N Μ N R PARAM. 33 Ζ S S S.R S.R R 851.9 0.0 .00 INFINITY 0.000 2.034 0.000 -17.19 0.00 . 0 .878 -.00 846.1 .01 12.004 2.039 .000 -17.50 .5 .03 8.497 1.347 2.128 .004 -18.32 -.05 854.0 .06 6.487 1.655 2.270 .022 -19.57 -.25 865.5 2.9 .10 5.206 876.8 9.6 1.836 2.448 .078 -20.98 -.87 23.0 1.913 2.606 -21.87 -2.20 880.2 .15 4.357 .209 867.0 2.643 .439 -21.26 -4.37 43.0 .21 3.791 1.907 .28 3.426 1.834 2.470 .749 -18.55 -6.94 834.8 63.5 -14.34 793.3 76.0 .36 3.209 1.709 2.101 1.056 -9.02 .45 1.546 1.651 1.285 -10.03-9.99 757.1 76.5 3.103 67.8 .55 3.083 1.361 1.234 1.412 -6.63 -9.87 733.9 723.0 .67 1.151 .877 1.456 -4.27 -8.93 53.6 3.130 722.3 37.2 .82 3.241 .920 .594 1.431 -2.97 -7.39 728.9 1.01 3.406 .684 . 392 1.350 -2.63 -5.53 21.9 .264 1.25 3.606 .465 1.231 -3.02 -3.62 739.1 10.1 .286 1.55 .200 1.087 -3.87 -1.91749.4 3.0 3.815 .184 1.95 4.022 .147 .921 -4.98 -.47 758.3 . 1 . 4 2.45 4.228 .032 .205 .754 -6.06 .49 764.1 3.05 4.300 .040 .247 .602 -6.94 1.01 767.3 1.9 3.80 4.404 .012 .286 .438 -7.63 1.67 768.6 4.3 4.70 4.479 .003 .361 .367 -8.06 .92 770.2 3.0

07/10/79 10.50.30

PAGE

54

1

(05/79)

PROGRAM STATIC

4.523

4.564

4.590

4.714

5.80

8.70

10.70

-.002

-.000

-.004

0.000

.411

.503

. 398

.672

.276

-.091

.091

0.000

-8.35

-8.34

-8.90

-8.95

.83

-.16

0.00

.21

771.1

770.7

771.0

775.4

2.7

1.6

1.9

0.0
APPENDIX B

JOB CONTROL FILES

TABLE 1

File COMSTAT

00100 JOB, CM10000, L15, T30. 00110 ACCOUNT, U707008, TED. 00120 GET, STATIC. 00130 RFL, 100000. 00140 UNIFORE(-BATCH, LN=STATCOM, I=STATIC) 00150 PUT,LGO=STATBIN. 00160 LGO. 00170 PUT, OUTPUT=RESULTO. 00180 PUT, STATCOM. 00190 PUT, DAYO. 00200 DFD, DAYO, R. 00210 EXIT. 00215 NOEXIT. 00220 PUT, OUTPUT=RESULTO. 00230 PUT, DAYO. 00240 DFD, DAYO, R. 00250 EOR. 00260 \$D2SL7 00270 EOF.

TABLE 2

File RUNSTAT

00100	JOB, CM10000, L15, T400.
00110	ACCOUNT,U707008,TED.
00120	GET,LGO=STATBIN.
00130	RFL,100000.
00140	LGO.
00150	PUT, OUTPUT = RESULTO.
00160	PUT,DAYO.
00170	DFD, DAYO, R.
00180	EXIT.
00190	NOEXIT.
00200	PUT, OUTPUT = RESULTO.
00210	PUT,DAYO.
00220	DFD, DAYO, R.
00230	EOR.
00240	\$D2SL7
00250	EOF.

DATE ILME