AD=A110 899 LOGISTICS MANAGEMENT INST WASHINGTON DC F/6 15/5
THE SORTIE-GENERATION MODEL SYSTEM. VOLUME 1V. SORTIE=G6ENERATIO==ETC{U)
SEP 81 M J KONVALINKA» J B ABELL MDA903-81=C~0166
UNCLASSIFIED LMI-ML102-VOL=4%

ADA110899

*PEeoPY

e

THE SORTIE~GENERATION MODEL SYSTEM
VOLUME IV
SORTIE-GENERATION MODEL
PROGRAMMER 'S MANUAL

September 1981

Michael J. Konvalinka <§g;}

John B. Abell

,' "(I —; // . Y .

l\/

i K
2 A / / -

Prepared pursuant to Department of Defense Contract
MDA903-81-C-0166 (ML102). Views or conclusions coa~
tained in this document should not be interpreted as
representing the official opinion or policy of the
Department of Defense. Except for use for Government
purposes, permission to quote from or reproduce por-
tions of this document must be obtained from the
Logistics Management Institute.

LOGISTICS MANAGEMENT INSTITUTE ’
4701 SANGAMORE ROAD
WASHINGTON, D.C. 20016

8202 11 0170

PREFACE

This volume is the fourth of six volumes that describe the LMI Sortie-
Generation Model System. Volume I, Executive Summary, discusses the problem
the system is designed to address and provides an overview of the principal
parts of the system. Volume II, Sortie-Generation Model User's Guide, pro-
vides sufficient information to allow a user to run the Sortie-Generation
Model (SGM). Volume III, Sortie-Generation Model Analyst's Manual, describes
the mathematical structures, derivations, assumptions, limitations, and data
sources of the SGM at a very detailed level. VoI;;;:EéE Sortie-Generation
Modegiﬁgggrammer's Manual, specifies the details of the computer programs,
file structures, job control language, and operating environment of the SGM. __
Volume V describes the maintenance subsystem and explains the construction of
the maintenance input file to the SGM. Volume VI describes the spares sub-
system and shows a user how to build the spares file that is used by the SGM.

Potential users are cautioned that no volume is intended to provide, by
itself, all of the information needed for a comprehensive understanding of the

operation of the SGM.

Accession For
NTTS t%C Y

DIIC T o
Unveam o 4 ’
T
. Jun]
R — PR
By..]
- - 3 . iat 4
.) - Diat:
Ve ~
] Avat) S es
Cooy ti/or]
NSETCTID .
! ' Diat i

2

ii

ACKNOWLEDGMENTS

We are indebted to Professor Edward J. Ignall of Columbia University for
his many imaginative contributions to the formulation of the Sortie-Generation
Model; to Professor Louis W. Miller of the Wharton School, University of
Pennsylvania, who first suggested the basic structure of the multiple-server
queueing system incorporated in the model; to Professor John A. Muckstadt of
Cornell University for his helpful suggestions early in the model's develop-
ment; and to our colleague at LMI, Mr. David L. Goodwin, who contributed
greatly to the software development, and to Ms. Susan F. Flynn, for her con-
tributions to the material in Chapters 4 and 6 and her significant improve-

ments in the SGM software design.

iii

TABLE OF CONTENTS

PREFACE o i o ot i et e e e e e e e e e e e e e e ii
ACKNOWLEDGMENTS+ v v v 0 e e v e e e e e e e e e e iii
LIST OF FIGURES ¢ v i v v v vt e e e o e e e e e e v
1. MODEL DESCRIPTION
Introduction L .00 L0 0L 0 e e 1-
States and Processes L. ... 1-

Events L 0L L s e s e e e e 1-
Repair Process « . . . o0t e e e e e 1-

O W s =

2. COMPUTER IMPLEMENTATION

Introduction o e e L e e e e e e 2-1
Model Structure o e e e e e e e e e 2- 2
Computer Enviromment o 2- 9
SGM Routineso e e e e e e e e e 2-10
System Routines 00000 e e e 2-12

3. COMMONS

Introduction oL L 0000 3-
Programming Conventions 3-
Parameters 0000 0w e e e e e 3-
Common Descriptions « « « 4 4 e e e o 3-

U e e

4. DATA FILES

Introduction L i . e e e e e e e e e e e 4= 1
Data Flows « « i v e e e e e e e e e e e 4- 1
File Descriptions 0 v 4- 3

5. ERROR MESSAGES

Introduction 0 00 e 00 e e e e e e 5=
Standard Format v i e i e e e e e 5~
Message Descriptions o000 ., 5-

(VoI SR

6. RUN JOB CONTROL LANGUAGE (JCL)

Introduction 0 0 e e e e e e e 6- 1
Time-Sharing « o« ¢ 0 0 e e e e e e e 6- 1
Batch L e e e e e e e e e e e e e e e e e 6- 3

APPENDIX A. RELATED DOCUMENTS

f APPENDIX B. SAMPLE MODEL RUN

APPENDIX C. PROGRAM LISTINGS

APPENDIX D. FEDERAL INFORMATION PROCESSING STANDARD SOFTWARE
SUMMARY (SF 185)

iv

1-1

1-2

1-3

2-1

LIST OF FIGURES

States and Processes

A Typical Five-Period Flying Day
SGM Flying Cycle

SGM Block Diagram .

SGM Initialization
Simulation Structure

SGM Routines

System Utility Routines .
SGM Commons .

SGM Common References .
SGM Parameters

SCM Data Files

Series 6000 FORTRAN Media Codes .

SGM Error Messages

Standard Error Message Format .
Scenario Set-Parameters Run .
SGM Time-Sharing Run

SGM Batch Run .

-t

gt

VOLUME IV

SORTIE-GENERATION MODEL PROGRAMMER'S MANUAL

1. MODEL DESCRIPTION

INTRODUCTION

The purpose of this chapter is to describe the basic logical structure of
the Sortie-Generation Model (SGM). This description provides a useful frame-
work for understanding the details of the computer implementation which are
provided in the later chapters of this volume. For the reader's convenience,
the remainder of this chapter is included here and may also be found in Volume
11, Sortie-Generation Model User's Guide.

STATES AND PROCESSES

The SGM is a hybrid analytic/simulation model that estimates the expected
maximal number of sorties that can be flown by a specified aircraft type in a
wartime scenario. This estimate is based on aircraft characteristics, mainte~
nance manpower and recoverable spares levels, and user inputs that describe
the scenario of interest.

The SGM consists of a collection of aircraft states, processes that cause

transitions between states, and logic that governs those processes. The SGM
simulates the transition of aircraft between these states throughout a daily
flying schedule that is specified by the user. The definitions of the states,
the logic of the state transitions, and the interaction of these transitions
with the flying schedule determine the basic structure of the SGM.

Aircraft States

There are five aircraft states in the SGM:
1) Mission-capable
?) Maintenance
3) Not mission-capable, supply (NMCS)
4) Combat loss

5) Reserve

1-1

These states are mutually exclusive and collectively exhaustive; i.e., every
aircraf* is in one and only one state. The states are described below.

Mission Capable. An aircraft is considered mission-capable if it is
capable of flying a combat mission. It is not mission-capable if it is under-
going essential corrective maintenance, or is missing a mission-essential
part. There is no explicit representation in the SGM of aircraft that are
partially mission-capable.

~ Maintenance. An aircraft is in maintenance status if it requires
unscheduled, on-aircraft repair that is essential to the performance of its
mission. This repair may or may not be due to failure of a part; however, in
this model, an aircraft is not allowed to enter maintenance until all needed
parts have been obtained from supply or repair.

NMCS. An aircraft is not mission-capable, supply if the aircraft is
missing an essential part. In the SGM, only mission-essential Line Replace-
able Units (LRUs) can cause an aircraft to become NMCS.

Combat Loss. An aircraft is counted as a combat loss if it does not
return from a sortie. Once an ajircraft has been lost it can never be re-
covered. Battle-damaged aircraft that return from a sortie are not considered
in this model.

Reserve. Reserve aircraft consist of mission-capable aircraft that
are used to replace combat losses. The user specifies an initial number of
aircraft that are held in reserve at the beginning of the scenario; these
reserve aircraft replace combat losses at the end of each day, until all
reserves have been exhausted. Aircraft are allowed to leave this reserve

state, but no aircraft can enter it.

1-2

Processes - Transitions Between States

There are eight processes in the SGM which cause tramsitions between
aircraft states:

1) Ground aborts

2) Breaks)

3) Aircraft repairs

4) Parts demands

5) Parts repair

6) Cannibalization

7) Attrition

8) Commitment of reserves

Figure 1-1 depicts the relationships among the various states and processes.

EVENTS

The events that occur in the SGM are related to a flying schedule with
user-specified characteristics. The flying schedule consists of a number of
periods or cycles each of which is divided into three segments of lengths TL’
TF’ and Tw, respectively. During the last period, the Tw segment is replaced
by an overnight recovery period. The user specifies the first and last take-
off times of the day; the time, TL’ which is the average minimal length of
time required to launch a sortie given a mission-capable aircraft; the sortie

length, TF; and the number of periods per day. The time, T, is then computed

W
by the SGM program. The flying schedule is the same each day except for the
number of aircraft to be flown each period, which the user camn vary. A
typical flying schedule is portrayed in Figure 1-2.

Figure 1-3 portrays two segments of a flying day; the flying period on

the left is intended to be typical and the one on the right to be the last

period of the day. The events that occur in the SGM are denoted by circled

1-3

S3SS3J04d ANV S3LVIS
[-T 914

SANVNW3a
Slyvd

NOILI¥LLY

$S01
lVanod

NOILVZITTVBINNYD
‘¥ivd3Iy Sslyvd

376vdV)
NOISSIN

,51408v aNNOY9
Siviye

Sdlvd3d
13ivyduiv

S3AH3S3Y
1INNOD

s

1-4

ey e Loty

qoly3d
A43IA003Y

1

AYT ONIATS (01¥3d-3AI4 TWIIdAL Y

¢-T J{N9l4

HION3IY 3|LHOS

(u._. az<._._. ‘SINIL J403NVL LSV OGNV 1SHI4
'§00143d 40 HIGNNN A8 Q3XI4) AWIL ONILIVM

13VHOUIV 318VdVD - NOISSIW vV N3AID

1

HONAVY 01 3WIL TVWININ

Wl

-

1H9INY3IAO

Ald

Ald

Ad

Ald

Ald

1-5

J10AT ONIATS WIS
¢-T /N9

1» aNV 'L SINIL 4403AVL 1SV ONV 1SHId
‘s001¥3d 40 HIBWNN A8 a3XI4) ANIL ONILIVM:= |

HLON31 31L¥0S=71

14VHOV¥IVv 379vdVI - NOISSIN v N3AI9 1
HONNVT 01 3NWIL TVYWINIWN= |

@)
@ ® ®
® ® ® ® i
® ® ® O @@ ® @ @O sz
01434
- b>==%_vw_uuu>¢c 1 ! _3 1 !
A4 A4

AVQ 3H1 40 aold3d 9NIAS LSV l=——370A0 9NIAd —|

numbers placed under the figures at the appropriate positions on the time
line. Each of those events is described here.
Event 1
All mission-capable aircraft are prepared for launch. Any aircraft

that is not mission-capable at this time (i.e., T, before takeoff) cannot be

L

flown during this cycle because, by definition, TL is the minimal time re-
quired to launch an aircraft that is mission-capable.
Event 2

Aircraft that are repaired during the period of length TL leave
maintenance and become mission-capable but are not available for flight during
this cycle.

Event 3

All aircraft that were prepared for takeoff are subjected to the
probability of ground abort. A ground abort is defined as an unsuccessful
attempt by an aircrew to fly an aircraft. The aborted aircraft enter mainte-
nance. No parts demands are generated by ground aborts.

Event 4
The remaining aircraft that were prepared for takeoff fly sorties.
Event 5 :

Each aircraft that flies is subjected to £he probability of attri-
tion and, for each combat loss, an aircraft is deducted from the current
strength of the organization.

Event 6
Aircraft that are repaired during the period of length T. leave

F

maintenance and become mission=-capable.

1-7

Event 7

Each aircraft returning from flight is subjected to the probability
of break, i.e., the probability of requiring essential corrective maintenance
prior to flying another combat mission. At the same time, parts demands are
generated. Demands that can be filled from stock on-hand result in issues of
that stock. Demands that cannot be filled from stock and cannot be satisfied
by cannibalization from aircraft that are NMCS result in additional aircraft
becoming NMCS.

Event 8

Aircraft that are repaired during the period of length Tw leave

maintenance and become mission-capable.
Event 9

This event occurs only after the last flight of the day. It ac-
counts for the parts repair process by subjecting each part in repair to the
probability that the repair was completed during the preceding 24 hours.
Remaining parts shortages are consolidated on as few aircraft as possible. If
the consolidation results in fewer NMCS aircraft than before, the aircraft
leaving NMCS status enter maintenance at this time.

Event 10

This event also occurs only after the last flight of the day.
Combat losses may be replaced by available reserve aircraft, if the user so
specifies. Any remaining reserve aircraft after losses have been replaced are
committed according to user specification in the scenario input parameter. If
reserves are to be used only as attrition fillers, then any remaining reserve
aircraft are left in the reserve pool; thus, the UE for the scenario will

never increase. If the user has selected the reserve augmentation mode, then

1-8

W e e e e i e — s

all reserve aircraft will be committed when they become available; hence, the
UE for the scenario may actually increase.

REPAIR PROCESS

The entry of an aircraft into maintenance results from a ground abort or
a "break" during a sortie. In either case, following the ground abort or
sortie, the aircraft is subjected to a sequence of random draws that deter-
mines the subset of work centers that will be involved in the maintenance on
that aircraft. A work center is a set of maintenance personnel with a par-
ticular skill. Examples of work centers are the structural repair shop, the
hydraulic shop, and the automatic flight control system shop.

In the construction of the maintenance data base that supports the SGM,
the aircraft repair times for all work centers involved in the repair of the
aircraft are measured from the time of the ground abort or landing of the
aircraft. For each work center involved in the repair, a random draw is made
from an exponential distribution of repair time for that work center. The
mean of that distribution is the reciprocal of the service rate contained in
the maintenance data base for the work center in question. All work centers
involved in the repair are assumed to work on the aircraft simultaneously;
thus, the recovery time of the aircraft is simply the longest of the repair
times for all the work centers involved in the recovery of that particular
aircraft.

In the SGM. once the aircraft leaves maintenance and becomes mission-
capable again, it »Jses its identity and is counted simply as another aircraft

in the mission-capable pool.

2. COMPUTER IMPLEMENTATION

INTRODUCTION

This chapter describes the computer program implementation of the logical
structure discussed in Chapter 1. The purposes of this description are to
provide a macro-level view of the model implementation, identify its current
computer environment, and discuss the software design goals used in the devel-
opment of the SGM routines. The micro-level information such as detailed
routine descriptions, common definitions, error-message descriptions, etc., is
presented in later chapters and appendices.

The first portion of the chapter provides a general overview of the model
architecture. The processing flow and major components are identified and
discussed. This overview should help a programmer understand how everything
is tied together in the model and provide a starting point for detailed main-
tenance or modification of the model.

The next portion of the chapter provides a short description of the
computer environment in which the SGM was developed and is currently operat-
ing. References to the appropriate computer manuals are provided in Appendix
A.

The remainder of the chapter explains the design goals used in the devel-
opment of the SGM routines. Appendix C contains detailed documentation of the
individual routines as part of the program listings. Included with the dis-
cussioi of the SGM routines is a description of the system utilities used in
the SGM. The use of such utilities has been minimized to allow the SGM to be
more easily moved to different computer environments. The description pro-
vides sufficient detail to enable a programmer to develop similar routianes if

they are unavailable on another system.

2-1

MODEL STRUCTURE

Figure 2-1 shows the basic structure of the SGM. This block diagram
describes the processing flow between the major routines comprising the SGM.
The SGM is a three-phase process: the initialization phase in which the
scenario parameters, aircraft maintenance work centers, and spares data are
initialized; the performance of the actual simulation; and finally the print~
ing of the sortie results collected during the simulation. Descriptions of
these phases follow.

Initialization

The INIT routine performs the initialization steps necessary to
prepare the various variables, arrays, and tables needed for the simulation.
As shown in Figure 2-2, initialization is a three-step process. First, the
scenario input parameters are loaded and initialized by the INITSCN routine.
This routine reads the scenario input file (file-01) created by the Set-
Parameter Program, creates the temporary scratch file containing the param-
eters which are allowed to vary on a daily basis, and prints a scenario sum-
mary listing the parameters for this SGM run.

The second step initializes the information describing aircraft
maintenance in the work centers. The INITWC routine loads the work-center
input data (file-02), computes the break-rate probabilities needed for
sampling work-center loading, and prints a summary of the work-center
parameters for this SGM run.

Finally, the spare-parts variables are initialized by the INITPRT
routine. The spares inputs are loaded (file-04)}, and statistics and prob-
abilities needes for parts sampling are computed. Due to the large number of
part types used with each SGM run, a listing of the spares inputs is not

provided as part of the SGM output results.

2-2

INIT
lnitialize
Simulation

INITSCN
Initialize
Scenario

INITPRT
Initiglize
Parts

INITWC
Initialize
Work Centers

SIMULA
Perform
Simuiation

1

INITREP
lnitiglize
Replication

FLYCYC
Simuiate
Flying Cycle

PRINTO
Print
Rasuits

REPAIR
Perform
Aircraft
Repairs

GABORT
Simulate
Ground Aborts

ATTRIT

Simylate
Attrition

BREAK
Determine AC
Breaks and
Sart Demands

CRESERY
Commit
Rasarvaes

PRTREP
Perform
Parts Repair

FIGURE 2-1. SGM BLOCK DIAGRAM

2-3

INIT
- INITSCN: Initialize Scenario parameters.
-~ INITWC: Initialize Work Center Data.

- INITPRT: Initialize Spares Data.

FIGURE 2-2. SGM INITIALIZATION

This initialization process is entirely distinct from the remainder
of the SGM. Once the initialization process has been completed, INIT and its
corresponding subroutines are no longer needed for any other phase of the
simulation. Thus, these routines could be overlaid with the remainder of the
model routines to conserve memory requirements. Since our typical flying
scenarios run adequately within our computer memory restrictions, we do not
currently use overlay techniques.

Simulation

The SIMULA routine performs the simulation phase of the SGM. This
routine consists of repeated execution of the FLYCYC routine which represents
the flying cycle described in Chapter 1. Figure 2-3 provides an outline of
the basic structure of these routines. For each replication of the simula-
tion, the specified anumber of flying days is simulated; a flying day coasists
of a sequence of identical flving cycles followed by an overnight period
before the start of the next day (see Figure 1-1).

The flying cycle simulated in FLYCYC is the basic logical unit of
the SGM. As shown in Figure 2-3, the snhroutines comprising FLYCYC represent

the various processes which cause transitions between aircraft states, e.g.,

2-4

SIMULATION REPLICATION LOOP

S

DAY LOOP

FLYING CYCLE LOOP

MINIMAL
RECOVERY
PERIOD

SORTIE
PER!OD

WAIT
PERIOD

REPAIR: REPAIR AIRCRAFT
GABORT:DETERMINE GROUND - ABORTS

rd

[UPDATE SORTIE snnsﬂcs]
ATTRIT: DETERMINE COMBAT LOSSES
< REPAIR: REPAIR AIRCRAFT
PRTREP: REPAIR PARTS

BREAK: DETERMINE AIRCRAFT BREAKS

~
~
JL REPAIR: REPAIR AIRCRAFT

OVERNIGHT
PERIOD

{ CRESERV: COMMIT RESERVE AIRCRAFT

FIGURE 2-3. SIMULATION STRUCTURE

2-5

attrition, ground aborts, aircraft repair, etc. This implementation follows
very closely the event description of a flying cycle shown in Figure 1-3.

Each flying cycle consists of three periods: a minimal recovery
period, sortie period, and wait or overnight period. The results of the
various aircraft processes are computed at the start or end of each period,
and the number of aircraft in each of the states is updated accordingly. For
example, aircraft repair (REPAIR routine) is performed at the end of every
period to determine the number of aircraft repairs which have been made during
that period. Any repairs would result in transfer of aircraft from the main-
tenance state to the mission-capable state.

Thus, the SGM is a time-stepped simulation. At the end of each

period (periods may be of different lengths), the effects of processes on air-
craft states are updated. The implementation of each aircraft process is
represented by a major module of the SGM (except the BREAK routine which
includes aircraft breaks, part demands and cannibalization). A detailed
F discussion of the implementation of each process is provided in the docu-

mentation for the corresponding module. This documentation is included in the

program listings in Appendix C. The following paragraphs describe the inter-
action of these processes during each of the periods comprising a flying
cycle.

Minimal Recovery Period. At the start of this period, the number of

flyable aircraft is determined from the number of aircraft in the mission-

capable state. The actual number which begin either a preflight or thruflight

-1 inspection to prepare for the next sortie is computed as the minimum of fly-
able aircraft and scheduled sorties.

At the end of the period, the number of aircraft repairs and ground

aborts are determined by the REPAIR and GABORT routines respectively. REPAIR

2-6

-A - - ulle r . AJ

computes the number of aircraft repairs which have occurred during this .=riod
causing transfer of aircraft from the maintenance state to the mission-capable
state. GABORT computes the number of ground aborts among the aircraft prepar-
ing for flight, causing the transfer of aircraft from mission-capable to main-
tenance. Although these routines represent simultaneous points in simulated
time, the actual order of execution is important. Aircraft repairs are com-
puted first to ensure that new ground aborts have no chance to be repaired in
this period.

Sortie Period. All aircraft scheduled for the flying period, which

did not ground-abort, are counted as having flown a sortie, and the various
statistics for sortie results are updated. The ATTRIT routine is called next
to determine the number of aircraft transferred from the mission-capable state
to the combat-losses state. These attritted aircraft are still counted as
having flown a sortie.

At the end of this period, the REPAIR, PRTREP, and BREAK routines
cause transfer of aircraft between the maintenance, NORS, and mission-capable
states. The order of execution here is very important. First, REPAIR com-
putes aircraft repairs during the sortie period. These repaired aircraft are
transferred from maintenance to mission-capable. Next PRTREP determines, for
each part type, the number of parts resupplied since the last parts-repair
calculation. In addition, as the number of backorders for each type is up-
dated, a new number of NORS aircraft is computed assuming maximum cannibaliza-
tion. Any decrease from the old NORS number is transferred from the NORS
state to the mission-capable state. PRTREP is executed after REPAIR to ensure
that these new aircraft enteri:y maintenance do not have a chance to be

repaired during the sortie period. PRTREP is actually executed only once each

day on the last flying cycle of the day. Parts repair is an extremely time-
consuming process because of the large number of part types modeled; hence, we
approximate the parts repair process by only updating the parts resupplied
once every 24 hours.

BREAK computes the number of aircraft breaks at the end of the
sortie and determines the part demands resulting from these breaks. Any
demands which cannot be filled, either from the on-hand stock or by maximum
cannibalization, result in NORS aircraft. The remaining broken aircraft are
transferred directly to the maintenance state. Since BREAK may cause new
aircraft in maintenance and new parts in resupply, it must be called after
REPAIR and PRTREP to ensure that these parts or aircraft are not allowed to be
repaired instantaneously by these routines.

Wait Period. Aircraft repairs are determined by the REPAIR routine
at the end of this period. These repaired aircraft are transferred to the
mission-capable state and are immediately available to fly.

Overnight Period. The last flying cycle of the day has an overnight

period instead of a wait period. Again, aircraft repairs are determined at
the end of the period by the REPAIR routine. Also, the available reserve
aircraft are committed at this point of the flying day by the CRESERV routine.
Since the reserves arrive in a fully mission-capable state, the REPAIR compu-
tations are unaffected by CRESERV; hence, the order of execution here is
unimportant.

Print Results

The final step of each SGM simulation run is performed by the PRINTO
routine. It computes the sortie statistics, prepares data for sortie plots,
and prints the results of the SGM run. Descriptions and samples of these

results and plots are provided in Volume II, SGM User's Guide.

4

The sortie statistics printed by this routine consist of the average
numbers of aircraft in each possible aircraft state. These data are collected
at the beginning of each sortie period during each flying cycle throughout the
simulation; PRINTO computes the averages and various cumulative totals and
prints a sortie profile describing the simulation results for each flying
cycle of each flying day.

This routine also creates a temporary data file (file-07) to pass
sortie results to the Plot Program. This file contains, for each flying day,
the total number of sorties flown and the average number of sorties flown per
aircraft. These results are graphed by the Plot Program as part of the SGM
output.

As with the initialization routines, the PRINTO routine is entirely
distinct from the initialization and simulation portions of the SGM. Once the
simulation has been completed those routines could be overlaid with the PRINTO
é routine.

COMPUTER ENVIRONMENT

The SGM has been developed on System C, an unclassified computer system

E located at the Pentagon and supported by the Air Force Data Services Center

i (AFDSC). This system operates on a Honeywell G-635 computer under the series

i 600/6000 GCOS Time-Sharing System. Access to the system is possible on remote
i terminals by a dial-up procedure.

The SGM has been written in the Honeywell 600/6000 FORTRAN programming

language, the only version of FORTRAN available on the system. The run pro-

cess has been designed so that the model may be run in either the remote-batch

ures. If System C is carrying a light load {(i.e., only a few users are signed

|
|
' or time-sharing modes. There are advantages and disadvantages to both proced- F
]
l
j
i on), then a time sharing run is significantly faster; however, throughout the

2-9

simulation the terminal cannot be used for any other purpose and it is not
possible to direct the output elsewhere. Once a job has been submitted inter-
actively to be run as a batch job, the user is free to make other runs, use
the terminal for some other purpose, or even to log-off the computer.

For a detailed description of System C, the Time-Sharing System, and
FORTRAN 600/6000, the user is referred to the Honeywell and AFDSC manuals
referenced in Appendix A.

SGM ROUTINES

The SGM currently comnsists of a main program and 39 subroutines, func-
tions, and block data subprograms. Figure 2-4 provides a list and short
description of each of these FORTRAN routines. Complete program listings of
all routines can be found in Appendix C of this volume.

These routines have been designed to be self-documenting. Extensive
comments have been included with each routine to describe the purpose of the
routine and define each of its input and output arguments. Definitiocns are
also provided for all common variables referenced or modified by the routine.

All routines are written using Program Design Language (PDL), a software
development technique for designing and documenting routines. With PDL,
logical steps in the routine are expressed in "structured" English statements.
The actual FORTRAN programming language statements are inserted immediately
following the corresponding PDL statement. The use of PDL eliminates the need
for flow charts; PDL designs are easier to produce, easier to change, and
easier to read than flow chart forms. More detailed descriptions of PDL are

provided in "PDL - A Tool For Software Design' and Software Documentation and

Develojpwent Conventions, which are referenced in Appendix A of this volume.

Routines have also been designed using a top down, structured programming
approach. Each routine is modular; most are less than one page and none are

more than three pages in length.

RCOUTINE

MAIN
ALIAS
ATTRIT
RUIDCH
BREAK
CRESERY
FLYCYC
GABORT
INIT
INITBO
INITFRT
INITREP
INITECN
INITWEC
TP ZE0N
LEBITS
MAEEFD
MNIZ
MUFDATE
NIBIT=Z
NIVECT
NEIN(M
NDMNE
NCRZAL
NORSRE
NREF:
FRINTOQ
FRTREF
FoTAT
REFAIR
SIMULA
SORTD=
TRITEL
TERIT:ER
LIEUIFLAT
WCDI=T
WCFROR
WLREAD
XNIIRM
IRITEL

ODATA

DESCRIFPTION

MAIN FROGRAM FOR LMI SORTIE-GENERATION MODEL (ZGM).
INITIALIZE TARLEZ NEEDED FOR "ALIAZ" SAMPLING METHOD.
SIMULATE ATTRITION FPROCE=SS DURING A SORTIE PERIGH.

FOR BIT MANIPULATIONE.
AFTER A SORTIE.

INITIALIZES COMMON TAEBLES
SIMULATE AIRCRAFT BREAE:
COMMIT RESERVE AIRCRAFT.
SIMULATE AIRCRAFT FLYING CYCLE.
SIMULATE AIRCRAFT GROUNO-ABORT FROCEZE,

INITIALIZE =GM SIMULATION.

INITIALIZE FARTS IN RESLUPPLY AT START OF =IMULATION,
LOAD AND INITIALLIZE SFARE-PARTS DATA.

INITIALIZE VARIARBLES FOR A SIMULATION REPLICATION.
REAL AND INITIALIZES ZCENARIQ INFUTZ,

LOADN AND INITIALIZE MAINTENANCE WORE CENTER DATA.
GENERATE RANDIM SAMPLE FROM A FOISSON DISTRIBUTION.
MASE~JFF LEFTMOST 1-RITS IN A COMPUTER WORL.
CONVERTS PARTS DEMANDT ARRAY INTO A FLDF.

GENERATE MULTINOMIAL SAMFLE FOR FART DEMAND TYFE.

UFDATE MAINTENAMNCE AIRCRAFT-STATE BIT-VECTOR.
COUNT NUMBER OF 1-BRITS IN A COMPUTER WORD.

COUNT NUMEBER OF 1-RITS IN A BIT-VECTOR.

GENERATE RANLDIOM SAMFLE FROM BINCOMIAL DIISTRIBUTICN.
GENERATE SAMFLE OF TOTAL ZORTIE FART DEMANDES,
CALCLULATE INITIAL NUMBER OF NORT AIRCRAFT.
DETERMINES NORS AIRCRAFT FROM A =0ORTIE.
RANDICM SAMFLE OF AIRCRAFT REFAIRS IN A WORK
FRINT-OUT RESULTS OF THE SIMULATION RUN.
SIMULATES FROCETS OF REFAIRING PARTS.
CALCULATES ZTATISTICS FOR TOTAL FART LDEMANDS.
SIMULATES PROCESS OF WORE CENTER AIRCRAFT REFAIR.
FERFZOREM SIMULATION REPLICATIONE.

DESCENDING SORT OF A REAL ARRAY.

TRANZFER 1-BIT= FROM LEFT OF A BIT-VECTOR.
TRANSFER 1-BITS FRIM RIGHT OF A BRIT-VEITOR.
WFDATE UE-STRENGTH FOR SCENARIC.

DETERMINE BREAK DNISTRIBUTION INTO WORE CENTERS.
INITIALIZE WORK-CENTER SEGUENTIAL BREAK FROBARILITIES.
READ AND INITIALIZE WORE CENTER DATA.

DRAW RANDOM SAMFLE FROM A NORMAL DISTRIBOTION.
ZERD-OUT 1-BITZ IN LEFTMOST FORTION OF A WIRL.

CENTEKR.

FIGURE 2-4,.

SGM ROUTINES

SYSTEM ROUTINES

The SGM uses a number of system-supplied utility routines. A list of all
such routines is shown in Figure 2-5, and the remainder of this section pro-

vides a description of each routine.

BT INE DESCRIFTION

CONCAT - MOVE CHARALCTER STRING.

FCOLOSE ~ CLOSE-OUT A FILE.

MEMZIZ - DETERMINE ALLIZATED HEMORY SIZE.
FTIME - DETERMINE CPU FROCESSING TIME.

SFRAY = INITIALIYE AN ARRAY WITH A TONSTAMT.
LINTFML -~ GEMERATE RANDIOM NUMBER.

ZERL = ZJERO &N ARFAY.,

FIGURE 2-5. SYSTEM UTILITY ROUTINES

CONCAT - Call CONCAT (A, N, B, M, L)

CONCAT is used to move a character substring of arbitrary length and
position within a string. A is the string to be replaced and N is the initial
character of A; characters are numbered, left to right, 1, 2, ...; B is the
replacement string and M is the initial character of B; L is the number of
characters to be replaced. This call causes the Nth through (N + L - 1)th
character of A to be replaced with the Mth through (M + L - 1)th character of

B.

FCLOSE - Call FCLOSE(U)

FCLOSE closes a file and releases the buffer assigned to that file.

U is the logical file number of the file to be closed.

SRR AT oy SN A SR I L \ 4

MEMSIZ - Call MEMSIZ(J)

This routine provides the capability of obtaining allocated memory.
J, the return value of this call, is the number of 1024-word blocks currently
allocated to this job.

.

PTIME - Call PTIME(A)

This routine provides the means of obtaining processor time. A, a
real variable, is the processor time in hours.

SPRAY - Call SPRAY (Z, Al, N1, ... An, Nn)

SPRAY will place the value Z (real or integer constant or variable)
into each of N1 consecutive locations starting at the first location in array
Al. Argument pairs are limited to the maximum number of continuation cards.
"Al" may be a real or integer array, but N1 must be an integer constant or
variable.

UNIFM1 - R=UNIFM1(SEED)

UNIFM1 is a FORTRAN-compatible, assembly-language routine for calcu-
lating random numbers having a uniform (rectangular) distribution on the unit
interval. The starting number SEED is used to initialize the calculations of
the random number. Subsequent calls use the previously calculated raadom
number in place of SEED.

ZERO - Call ZERO(Al, N1, ..., An, Nn)

ZERO will place a zero in each of N1 consecutive locations starting
at the first location in array Al. Argument pairs are limited only by the
maximum number of continuation cards permitted by the FORTRAN IV compiler.
"Al1" may be a real or integer array, but N1 must be an integer constant or

variable.

3. COMMONS

INTRODUCTION

The SGM uses FORTRAN common blocks to pass values between subroutines.
All key model information is stored in these commons and most of the memory
requirements for an SGM run are determined by the size of the common arrays.
As shown in Figure 3-1, the associated common variables and arrays are grouped
logically into twelve labeled common blocks. The purposes of this chapter are
to describe the various programming conventions followed in the use of these
commons, to describe the parameter values which set the size of the common
arrays, and finally to define each common variable and array.

PROGRAMMING CONVENTIONS

The following paragraphs describe the various programming conventions
followed in the use of labeled commons for the SGM.

All common arrays are dimensioned using FORTRAN parameter values to
provide flexibility in configuring the model for different scenarios. These
parameters are described in detail in the next subsection.

Storage for all arrays used in the SGM is maintained in labeled common
blocks; this allows the user to determine major core requirements bv examining
the dimensions of the arrays in these twelve common blocks.

A variable or array name is always the same in each occurrence of a
common block. A common block appears in an SGM subroutine only if some vari-
able or array in that block is referenced or modified by that subroutine.
Figure 3-2 indicates the location of the common blocks throughout the SGM.
For each common block it provides a list of those SGM routines which either
reference or modify a variable in that common block. A routine is considered

to reference a variable if it uses that variable but does not change its value

/ACETATE/
COMMON /ACSTATE/ LENGTH,

/ALTASC/
COMMON

/BITS/
ZOMMON

/DEMAND/
COMMON

/ INPUUT /
IZOMMON

/PARTS/
COMMON

/RTEED/
COMMION

/ETATZ/
COMMON

/TIME/
ZMMION

/WCBRE /
COMMON

/WCINPUT /
COMMON /WCINFLT/ NWC,

/WCMAINT/

- AIRCRAFT BIT-VECTORS.

NACZVC (MAXVEL) »
MORSVC (MAXVEL) »

IFLYVC(MAXVEL) »

MAINVZ (MAXVEC), LOSTVC(MAXVEL)

- TABLES FOR PART-TYFE SAMPL.ING.
/ALIASC/ FRACT(MAXPRT)., IALIAS(MAXFRT). FPARTS
- BIT MANIPULATION TABLES.
/BITS/ MASKQ. MASK (25), MLEFTO,MEKLFT (2&),
TZCOUT, ICOUNT (&£3)
- MEAN AND VARIANCE FIR TOTAL FART DEMANDS.
/DEMANLD/ ACMEAN, ACVAR, NFERAC
- FLYING =SCENARIO PARAMETERT.
/ INFUT/ INITUE, NAZ, PATTRIT, IRES, RNMCM, INFPART,
MAXFLY (MAXLCYC), INFMAN. ISCALE,. TAUGHNT
- PART CHARACTERISTICS.
/PARTS/ NFARTS, IQFPA(MAXPRT). NEACKO(MAXPRT).,
ERFRATE(MAXFRT), DRPRATE(MAXPRT), INITSJU(MAXPRT),
RESUPF (MAXPRT)» BNRTS(MAXFRT), NBAZE(MAXPRT).
NOEFPOT (MAXPRT)
- SEED FOR RANDIOM NUMEBER GENERATOR.
/RIEED/ SEED
- CUMULATIVE STATISTICE FOR SIMULATION RESULTES.
/2TATS/ EXFECT(MAXSTAT : MAXCYZ, MAXDAY) 5
NREZSRV, I1ZDAY, ITOTRES(MAXDAY)., LOSSTOT
- FLYING CYCZLE TIMES AND SIMULATION PARAMETERS.
/TIME/ PREFLITE, SORTLGTH.,. WAITCYC,. TYMNITE.
NSIM, ISIM, NUMDAY, IDAY, NCYCLES. ICYCLE
- WORE CENTER BREAK. RATES.
/WCEBRE / FACEBRE , FACGABRT. FBREWC (MAXWLD), PWCPROD,
FBRESER(Z,MAXWC) » INDXWC(MAXWC)
- WIRK CENTER INPLTS=.,

- AIRCRAFT WORE
COMMON /WCMAINT/ CISTRP(MXINWC, MAXWEC) »

NCREWS (MAXWE) » SRATE(MAXWLC)

CENTER LISTS.

INREPR (MAXWC)

FIGURE 3-1. SGM COMMONS

ahiasushinn - "y

COMMON
BLOCK

/ACSTATE/

/ALIASC/

/BITS/

/DEMAND/

/INPUT/

/PARTS/

/RSEED/

/STATS/

FIGURE 3-2.

MODIFYING—-(M) AND
REFERENCING-(R) ROUTINES

FLYCYC (M)
INITREP (M)
N1VECT (R)
TBITSL (R)
TBITSR (R)
UEUPDAT (M)
ZBITSL (R)
INITPRT M)
MNOM (R)
BLOCK DATA (M)
LBITS (R)
MUPDATE (R)
N1BITS (R)
N1VECT (R)
UEUPDAT (R)
INITPRT M)
NDMNDS (R)
INIT M)
INITREP M)
INITSCN (M)
PRINTO (R)
SIMULA (M)
INITBQ (M)
INITPRT M)
INITREP (M)
NORSBK (M)
PRTREP (M)
INITBO (M)
INITSCN (M) !
NBINOM (M)
NDMNDS (M)
NREPS (M)
WCDIST (M)
FLYCYC (M)
INIT M)
INITREF (M)
PRINTO (R)
SIMULA (M)

SGM _COMMON REFERENCES

/TIME/ FLYCYC (R)

INIT (R)
INITSCN (M)
PRINTO (R)
SIMULA (M)
/WCERK / FLYCYC (R)
INIT (R)
INITREP (R)
INITSCN (M)
INITPRT (M)
SIMULA (R)
/WCINPUT/ FLYCYC (R)
INITREFP (R)
INITWC (M)
PRINTQ (R)
WCDIST (R)
/WCMAINT / INITREP (M)
MUPDATE (R)
REPAIR (M)
WEDIST (M)

(F) - A ROUTINE 13 CONSIDERED TO REFERENCE A COMMON BLOCKE IF IT
LISES A VARIABELE IN THAT BLOCK, BUT DIES NOT CHANGE ITS VALUE.

(M) - A ROUTINE IS CONSIDERED TO MODIFY A COMMON EBLOCE IF IT
CHANGE= THE VALUE IF A VARIABLE IN THAT BLOCK.

FIGURE 3-2. SGM COMMON REFERENCES (CONT'D)

and is considered to modify a common block if it changes the value of a vari-
able in the block.

All common variables are of type integer or real except for INFPART and
INFMAN which are logical variables. The tvpe of these other common variables
is determined implicitly by the name, following standard FORTRAN conventions.
1f the first character of a variable name begins with any of the characters
between | and N, it is an integer variable. If the first character is any

other alphabetic character, it is a real variable.

3-4

A nonstandard FORTRAN technique for referencing the Oth word of an array
is used in several common arrays. An extra word is placed beiore the be-

ginning of the array. The use of ARRAY(0) actually references this extra word

before ARRAY(1). Thus, the array is, in effect, indexed 0, 1, 2, . . . in-
stead of 1, 2, . . . This technique may not work with other FORTRAN
compilers.
PARAMETERS

The dimensions of all SGM common arrays are controlled with FORTRAN
parameter values. Figure 3-3 provides a list and description of all SGM
parameter values. These parameter values allow maximum flexibility in con-
figuring the SGM to handle different flying scenarios. For example, if the
user desires to increase the number of work center types the SGM can handle,
the MAXWC parameter must be increased in all routines containing this param-
eter. This change can be made using a single command with the system text
editor. If 30 work centers were needed rather than the current maximum of 23,
the user would just change all occurrences of the character string "MAXWC=25"
to "MAXWC=30" throughout the SGM source code, recompile the program, and run
it. These parameters also allow the user to minimize the core requirements
for any particular flying scenario.

The only limitation on increasing these various parameter values is that
the overall system core limitations on programs must not be exceeded. The SGM
as currently configured requires approximately 20K words of core. This con-
figuration allows a maximum of 108 aircraft (MAXAC=108), 25 work centers
(MAXWC=25), 304 LRU types (MAXPRT=304), and 30 flying days (MAXDAY=30).

The values of these particuvlar pzrameters, MAXWC, MAXPRT, and MAXDAY,

determine the major computer memory requirements of the model.

3-5

TR

MAXALC

MAXWC

MAXBIT

MAXPRT

MAXVELD

MAXLDAY

MAXCYC

MAX=TAT

LFLD

NPERWRL

MXINWLC

IFZCEN

IFWC

IFFRT

MAXIMUM ALLOWABLE UE-STRENGTH (# AIRCRAFT)
MAXIMUM ALLOWABLE NUMBER OF WOREK CENTERS

NUMBER OF BRITS IN A COMPUTER WORLD ON THIZ <SYSTEM
MAXIMUM ALLOWABLE NUMBER OF PART-TYPES

MAXIMUM ALLOWAEBLE LENGTH (IN COMPUTER WORDS) OF
AIRCRAFT BIT-VECTORS A BIT-VECTOR MUST BRE AT
LEAST “MAXAC" BITS LONG. PLUS AN EXTRA WORD

TO STORE THE AIRCRAFT COUNT FOR THAT VECTOR
HENCE, MAXVEC IS A FUNCTION OF MAXACZ AND MAXEIT

MAXIMUM ALLOWARLE NUMBER OF FLYING DAYS
MAXIMUM ALLOWABLE NUMBER OF FLYING CYCLES PER DAY

CURRENT NUMBER OF STATISTICS COLLECTED FER
FLYING CYCLE PER DAY

LENGTH OF RIT-FIELD UUSED IN THE WORK-CENTER
REFPAIR LISTS THIS BIT-FIELD MUST BE LARGE ENCIWGH
T HILD (MAXAC-1), THE TAIL NUMBER 0OF THE

LAST AIRCRAFT THUS, (2sxLFLD) MUST BE GREATER
THAN OR EGUAL TG MAXALC

NUMBER OF RBIT~-FIELDNS PER COMPUTER WORD FOR THESE
WORK-CENTER LISTESTHUS NPERWRD IS A FUNCTION
OF LFLD AND MAXEIT

LENGTH (IN COMPUTER WORDS) COF THE WIRK-CENTER LISTS

MXINWC I3 COMFLUTED =20 THAT THE MAXIMUM ALLOWABLE
NUMBER OF EBRIT FIELDS IN A WORK-CENTER LIST IZ
EQUAL TO MAXAC, THE MAXIMUM NUMBER OF AIRCRAFT
FILE NUMBER OF ZSCENARIO INPUT FILE

FILE NUMBER OF WOREK CENTER INPUT FILE

FILE NUMERER OF SPARES INFUT FILE

FIGURE 3-3. SGM PARAMETERS

3-6

COMMON DESCRIPTIONS

This section provides a description of each labeled common block used to
pass values in the Sortie-Generation Model. Each subsection describes the
purpose of the block followed by a definition of each associated variable or
array. The commons are presented in alphabetical order by name.

/ACSTATE/ - Aircraft Bit-Vectors

This block contains the various aircraft-status bit-vectors. These
vectors describe the state of the simulation at any point in time. Each bit
in these vectors represents a unique aircraft, and an aircraft is marked as
being in a particular state by setting the corresponding bit in that bit-

vector to 1.

- LENGTH: length, in computer words, of the various aircraft-
status bit-vectors. LENGTH is equal to the number of computer
words necessary to hold a number of bits equal to NAC, the cur-
rent UE-strength (or number of aircraft).

- NACVC(I): I=1, 2, . . ., LENGTH. This is a bit-vector with the
first NAC bits set to 1, where NAC is the current number of
aircraft. This vector represents the set of all possible air-

craft and is used to initialize the mission-capable bit-vector,
IFLYVC.

- IFLYVC(I): 1I=1, 2, . . ., LENGTH. Aircraft-status bit-vector
indicating aircraft currently in the mission-capable state. A
1-bit indicates the corresponding aircraft is mission-capable and
a 0-bit indicates not-mission-capable.

- MAINVC(I): 1I=1, 2, . . ., LENGTH. Aircraft-status bit-vector
indicating aircraft currently undergoing maintenance in at least
one work center. A 1-bit indicates the corresponding aircraft is
in maintenance.

- NORSVC(I): I=1, 2, . . ., LENGTH. Aircraft-status bit-vector
indicating aircraft currently NORS, i.e., waiting for some part.
A 1-bit indicates the corresponding aircraft is NORS.

- LOSTVC(I): I=1, 2, . . ., LENGTH. Aircraft-status bit-vector

indicating aircraft lost due to attrition. A 1-bit indicates
that the corresponding aircraft is a combat loss.

3-7

/ALIASC/ - Tables For Part-Type Sampling

This block contains the tables needed for the Alias method of
sampling from a discrete probability distribution. This method is used to
determine the type of a given broken part. These tables are initialized by
the ALIAS subroutine and remain fixed throughout the simulation.

- FRACT(I): 1I=1, 2, . . ., MAXPRT. This array is used initially
to load the demands-per-flying-hour of the Ith part type in the
INITPRT subroutine. These values are then modified by the MAKEPD
subroutine to convert the demand values to a discrete probability
distribution. Finally, the ALIAS subroutine converts these prob-
abilities to fractional cutoff values for the Alias sampling

method. The values remain fixed for the remainder of the
simulation.

- TIALIAS(I): 1I=1, 2, . . ., MAXPRT. Table of aliases needed for
the Alias sampling method. This array is initialized in the

ALIAS subroutine and remains fixed thereafter.

- FPARTS: floating-point value of the number of part-types being
modeled, i.e., FPARTS=FLOAT(NPARTS). This variable is used to
speed-up the sampling procedure: Rather than converting NPARTS
to a real number each time the MNOM subroutine is called, the
converted number is stored in this block once and used from then
on.

/BITS/ - Bit Manipulation Tables

This block contains three sets of tables used for accessing bits and
bit fields within a computer word. Note that the following programming tech-
nique is used in each of these tables: An extra word is placed before the
beginning of each table. This extra word represents the Oth indexed word in
the table. Thus, the table is actually indexed 0, 1, 2, ... This technique
of referencing the Oth word of an array is not standard FORTRAN and may not
work with other FORTRAN compilers. These tables remain fixed throughout the
simulation.

- MASK(I): 1I=0, 1, ...,35. MASK is ihe bit accessing table used

in the SGM. The bits in the computer word are numbered, left to
right, 0, 1, 2, ...,35, and MASK(I) has a 1-bit in the Ith posi-

tion and zeroes elsewhere. This table is used to mask-off the
Ith bit in a computer word.

3-8

- MASKLFT(I): I=0, 1, ...,36. MSKLFT is used to mask-off the
leftmost bits in a computer word. The first (leftmost) I bits of
MSKLFT(I) are 1-bits and the remaining bits are zero. Thus, for
example, MSKLFT(0) would be all Os and MSKLFT(36) would be all

1s.

- ICOUNT(I): I=0, 1, ...,63. This is a table which is used to
count the number of 1-bits in any given 6-bit field. Im a 6-bit
field, there are 2~ = 64 possible bit patterns -- the binary
representations of the integers 0, 1, 2, ...,63. ICOUNT(I)

contains the number of 1-bits in the binary representation of I,
e.g., ICOUNT(3)=2. This table is used in counting the number of
1-bits representing aircraft in the various aircraft-status
bit-vectors. This technique is much faster than a bit-by-bit
count.

/DEMAND/ - Mean And Variance For Total Part Demands

This common block contains the various statistics describing the
random variable representing the number of part demands per aircraft, given
that the aircraft has broken upon returning from a sortie. These variables
are used by the NDMNDS function to generate a random sample of the total
number of part demands during a sortie. They are initialized in the PSTAT
subroutine and remain fixed throughout the simulation.

- ACMEAN: expected value of the random variable described above.

- ACVAR: wvariance of total part demands per broken aircraft.

~ NPERAC: Total number of installed parts per aircraft. This

variable is used to ensure that a legitimate sample is generated
for the total number of part demands during a sortie period.
NPERAC is equal to the sum of the QPAs (quantity-per-aircraft) of

all part types modeled in this simulation run.

/INPUT/ - Flying Scenario Parameters

This block contains the various user-specified parameters describing

the flying scenario to be simulated. The parameters are initially set in the

- INITSCN subroutine; however, some of these values are reset at the start of
each flying day of the simulation.

- INITUE: Initial UE-strength at the start of the simulation.

- NAC: Current UE-strength. If reserves are used only as attri-

tion fillers, then NAC is alwavs equal to INITUE; however, if

3-9

reserves are assigned as they become available, then NAC may be
greater than INITUE.

PATTRIT: Probability that an aircraft does not return from a
sortie due to combat attrition. This rate may be different for
each day of the scenario.

IRES: The number of aircraft in reserve that are available to
augment the current UE of the scenario. As described previously,
the user may specify whether these reserves are committed on the
day they become available or are to be used only as attrition
fillers to replace combat losses. The number of reserve aircraft
arriving on the scene may be specified for each day of the
scenario.

RNMCM: Proportion of the possessed aircraft that are not-
mission-capable-maintenance at the start of the flying scenario.
For example, if the user specifies an initial NMCM rate of 0.3
with a UE of 72, the SGM will begin each simulation experiment
with 22 aircraft undergoing maintenance. The remaining 50 air-
craft will initially be either mission-capable or waiting for a
recoverable spare part.

INFPART: Logical variable indicating whether the infinite part
assumption holds. If INFPART is true then there is never any
shortage of parts; hence, no NORS aircraft.

MAXFLY(I): I=1, 2,..., NCYCLES. Maximum number of aircraft to
be scheduled on the Ith wave of this flying day. These values
may also be different for each day of the scenario.

INFMAN: Logical variable indicating whether infinite manpower is
assumed for all work centers. If INFMAN is TRUE then the number
of crews or servers for each work center is set equal to the
maximum allowable number of zircraft.

ISCALE: Parameter to set the maximum vertical scale on the
sorties-per-day plot of the SGM results. For example, if the
user wanted plots of a series of SGM runs, he would use this
parameter to ensure that all the plots are on the same scale. If
0 is input, the scale is determined from the maximum sorties per
day that occur in the SGM results.

TAUGMNT: A variable, 0 or 1, indicating how reserve aircraft are
to be committed. If TAUGMNT=1, all reserve aircraft are com-
mitted on the day they become available; if IAUGMNT=0, the re-
serves are used only as attrition fillers to replace combat
losses.

/PARTS/ - Part Characteristics

This block contains the characteristics of the various part types

being modeled.

NPARTS: number of part types being modeled.

IQPA(I): I=1, 2, ..., NPARTS. QPA (Quantity-Per-Aircraft) of Ith
type.
NBACKO(I): I=1, 2, ..., NPARTS. Number of backorders of Ith

type. NBACKO(I) is defined as the number of parts in resupply
minus the initial stock level. Thus, NBACKO(I) may be negative.

BRPRATE(I): 1I=1, 2, ..., NPARTS. Base repair rate (in parts per
day) for the Ith type. The base repair rate is defined as the
inverse of the average base repair time.

DRPRATE(I): 1I=1, 2, ..., NPARTS. Depot resupply rate (in parts
per day) for the Ith type. The depot resupply rate is defined as
the inverse of the average depot resupply time.

INITSJ(I): I=1, 2,..., NPARTS. Initial stock level for Ith
type.

RESUPP(I): I=1, 2,...,NPARTS. Expected number of type-I parts
in resupply at the start of the scenario. It is used as the mean
of a Poisson distribution in generating a starting number in
resupply for each simulation replication.

BNRTS(I): I=1, 2, ...,NPARTS. Percentage of type-I demands
which are not base repairable. A demand which is not base re-
pairable may be condemned or repaired at the depot but in either
case an order will be placed for depot resupply.

NBASE(I): 1I=1, 2, ...,NPARTS. Number of type-I parts currently
in base repair.

NDEPOT(I): I=1, 2, ...,NPARTS. Number of type-I parts currently
on-order from the depot.

/RSEED/ - Seed For Random Number Generator

This block contains the current seed for the random number generator

used by this simulation. The seed is updated each time a random draw is made

throughout this simulation. The seed is initialized in the INITSCN subroutine

with an initial user-specified seed.

/STATS/ -~ Cumulative Statistics For Simulation Results

This block contains the various statistics produced by the simula-
tion. These statistics consist of the average number of aircraft in the
various states at the start of each sortie period for each flying day.

- EXPECT(I,J,K): Cumulative statistics array.

- NRESRV: Current number of aircraft in the reserve pool.

- IZDAY: Defined as ITOTRES(0); see below.

- ITOTRES(I): 1=0,...,NUMDAY. C(Cumulative number of available re-
serve aircraft up to and including the Ith day. The Oth day
represents the initial number of reserve aircraft. This array is
used in computing on-the-scene aircraft for sorties/aircraft/day

in the PRINTO routine.

/TIME/ - Flying Cycle Times and Simulation Parameters

This block contains the various times describing a flying cycle and

also the dimensions of the simulations.

- PREFLITE: The minimal required time (in hours) between the
landing of the aircraft and takeoff for the next sortie, provided
that no corrective maintenance is required. It includes only the
time required to taxi, park, chock, shut down, refuel, rearm,
inspect, and launch.

- SORTLGTH: Fixed length of each sortie, in hours.

- WAITCYC: Number of hours between end of a sortie period during
the day and the start of the minimal recovery period for the next
sortie.

- TYMNITE: Number of hours between end of the last sortie period
of the day and the start of the minimal recovery period for the
first sortie of the next day.

- NSIM: Number of simulation replications to be performed.

- ISIM: Number designating current simulation replication. ISIM=1,
2, ..., NSIM.

- NUMDAY: Number of flying days to be simulated.

- IDAY: Number designating current day of the simulation. IDAY=1,
2,..., NUMDAY.

- NCYCLES: Number of flying cycles for the current flying day of
the simulation.

emelutess, e . NIRRT . -~ sk

- ICYCLE: Number designating the current flying cycle. ICYCLE=1,
2,..., NCYCLES.

/WCINPUT/ - Work Center Inputs

This common block contains the essential information from the main-
tenance manpower input file. The information is initialized in the INITWC
subroutine and is never modified for the remainder cf the program. It pro-
vides the basic information needed to simulate aircraft repair in the various
work centers.

- NWC: Number of work centers being modeled. The work centers are
numbered 1, 2,..., NWC.

- NCREWS(I): 1I=1,..., NWC. The number of servess or crews in the
Ith work center. If infinite manpower is assumed, then NCREWS(I)
is initialized to MAXAC, the maximum possible number of aircraft.

- SRATE(I): 1I=1,..., NWC. The service rate (in aircraft per hour)
for the crews in the Ith work center.

/WCMAINT/ - Aircraft Work Center Lists

This block contains the list of aircraft currently undergoing main-
tenance in each work center. These lists are zeroed-out at the beginning of
each simulation replication and aircraft are added and deleted fiom the lists
as they break and are repaired. The length of these arrays is set as a func-
tion of the parameter values for LFLD, MAXAC, MAXBIT, MAXWC, NPERWRD, and
MXINWC. This function is described in the definition of LISTRP below.

- INREPR(J): J=1,..., NWC. Number of aircraft currently under-
going maintenance in the Jth work center. Also indicates the
number of aircraft tail numbers contained in the work center
list, LISTRP(.,J).

- LISTRP(I,J): LISTRP(.,J) is a list of aircraft numbers indicat-
ing those aircraft requiring maintenance in the Jth work center
(J=1, 2,..., NWC). This list contains exactly INREPR(J) aircraft
numbers. To save space, these lists have been packed into bit-
fields "LFLD" bits wide; hence, if "MAXBIT" is the iength of a
computer word on this system, then there are (MAXBIT/LFLD) bit-
fields stored per word. The aircraft numbers stored in these
bit-fields indicate a unique bit position in the various

aircraft-status bit-vectors. The aircraft are numbered, left-
to-right, 0, 1, 2,..., (MAXAC-1), where MAXAC is the maximum
3-13

possible number of aircraft. To get the Ith aircraft number in a
work center list, the corresponding bit position and word index
must be computed.

/WCBRK/ - Work Center Break Rates

This block contains the various break probabilities associated with

maintenance and work center repair. These probabilities are initialized and

remain fixed throughout the simulation.

PACBRK: Probability that an aircraft returning from a sortie
requires unscheduled maintenance in one or more work centers
prior to further flight.

PACGABT: Probability that an aircraft undergoes some failure
immediately before takeoff, requiring unscheduled maintenance
which renders it not-mission-capable. This rate may be different
for each day of the scenario.

PBRKWC(I}: I=1,..., NWC. Probability that an aircraft returning
from a sortie breaks into work center 1. This array is a direct
input from the maintenance manpower input file.

PWCPROD: Product-formula overall work center break rate. This
probability is computed from the individual work center break
rates.

PBRKSEQ(1,J); Probability that an aircraft breaks into the work
center indicated by "INDXWC(J)" and does not break into any of

the work centers -- INDXWC(J+1), INDXWC(J+2),..., INDXWC(NWC),
given that the aircraft has broken into at least one of the work
centers -- INDXWC(J), INDXWC(J+1l),..., INDXWC(NWC). This implies

that PBRKSEQ(1,NWC) must always equal 1.0.

PBRKSEQ(2,J): Probability that an aircraft has broken into the
work center indicated by 'INDXWC(J)', given that the aircraft has
broken into at least one of the work centers indicated by --
INDXWC(J), INDXWC(J+1), ..., INDXWC(NWC).

INDXWC(J): Indicates the index of the work center with the Jth
largest break probability. Thus, INDXWC(1) indicates the work
center with the largest break probability, and INDXWC(NWC) indi-
cates the one with the smallest.

3-14

4. DATA FILES
INTRODUCTION

The Sortie-Generation Model (SGM) uses a variety of mass storage files
for input data, temporary parameter storage, and output results. This chapter
provides a general overview of the data flows in the SGM, followed by a brief
description of each file used or generated by the SGM.

DATA FLOWS

The mass storage files used by the SGM are divided into three categories:
input files, temporary scratch files, and output files. A flow chart of the
various data files within the SGM is provided in Figure 4-1,

The SGM input files are produced by three different programs. The
scenario input parameters are produced by the Set-Parameter Program in which
the user interactively specifies the desired values for the simulation. The
definitions of these scenario parameters are described in Volume II, SGb
User's Guide. The work center and spares inputs are produced by the SGM
Maintenance and Spares Subsystems, with detailed descriptions of these inputs
provided in Volumes V and VI, respectively.

The SGM also uses two temporary files to conserve memory and provide
sortie results to the Plot Program. The Varying Scenario Parameters File
(File-=03) is used to store the scenario parameters that are allowed to vary
for each day of the flying scenario (e.g., attrition rate, available
reserves). This filg is initialized by the SGM at the start of the simula-
tion, and the entire file is read for each replication of the simulation.

The Plot Data Fiie (File-07) is the other temporary file produced by the
SGM; sortie results are written to this file to be used as input to the Plot

Program.

FILE 08
DEFAULT
SCENARIO
ARAMETERS

SET-PARAMETER SN seu
MANUAL - -)
USER INPUT PROGRAN MAINTENANCE SPARES
SUBSYSTEM SUBSYSTEM
\ \
FILE 0I FILE 02 FILE 04
SCENARIO WORK CENTER SPARES
PARAMETERS DATA DATA
\
FILE 03 SORTIE-
VARYING
SCENARIO GENERATION
PARAMETERS MODEL
A
FILE 07
SORTIE PLOT
DATA
Y
PLOT
PROGRAM
\]
FILE 08 FILE 06
SORTIE SORTIE
PLOTS

FIGURE 4-1. SGM DATA

FILES

4-2

All output results are writtem to the File-06, the standard output print

file for this computer system. The SGM prints a scenario summary and sortie

profile, and the Plot Program prints two graphs of sortie results. Descrip-

tions of these outputs are provided in Volume II, SGM User's Guide.

FILE DESCRIPTIONS

This section provides a brief description of each data file used or

created by the SGM. Each file description includes the following information:

Purpose of the fiie

File format (e.g., sequential or random, permanent or temporary, media
type, and approximate length). On this computer system, files are
classified according to media type as shown in Figure 4-2. Also,
files are measured in units of llinks, where 1 llink is approximately
320 computer words in length.

Source of data file (i.e., routine or program which created this file)

File destination (i.e., routine or program which reads information
from this file)

Updating instructions for file maintenance as appropriate

Media
Code File Type

0 - Print-line image with no slew (BCD)

1 - Binary record (e.g., FORTRAN binary record, COMDK etc.)
2 - Hollerith card image (BCD)

3 - Print-line image (BCD)

5 - TSS ASCII file format

6 -~ ASCII Standard System Format

FIGURE 4-2. SERIES 6000 FORTRAN MEDIA CODES

4-3

The SGM currently uses seven data files and the descriptions are listed

according to the file unit number (note that unit -05 is not assigned to any

file).

Scenario Parameters (FILE-01)

Purpose: Contains the user-specified scenario parameters (e.g.,
attrition rates, sortie length) for an SGM run. Media code 0 was
chosen for this file to allow the file to be read by a program
operatiag in either Vatch or time-sharing mode. When the SGM is
run in batch mode, a SELECTD control card must be used to request
this file. This ensures that subsequent Set-Parameter runs do
not alter this particular file before it is actually used in this
SGM run.

Format: Sequential linked permanent file, media 0, 1 llink in
length.

Source: An output file of the interactive Set-Parameter Program.
Destination: Read by the SGM routine INITSCN.

Updating: New scenario file is usually created for each SGM run.

Work Center Data (FILE-02)

Varying

Purpose: Contains the work center data describing the mwainte-
nance at some specified base. Detailed information concerning
the derivation and updating of this file is contained in Volume
V, Maintenance Subsystem.

Format: Sequential linked permanent file, media 3, 1 llink in
length.

Source: Produced by SGM Maintenance Subsystem.

Destination: Read by the SGM routine WCREAD.

Updating: Maintenance manpower files are generated for each base
to be modeled. The files must be updated as new maintenance

information is received from the appropriate base.

Scenario Parameters (FILE-03)

Purpose: Temporary file created to store the scenario parameters
that are allowed to vary on a daily basis in the simulation. All
of these data are also contained in the Scenario Parameter File
(File-01); however, the information has been converted to binary
format on the scratch file to save processing time in loading the
scenario parameter values at the start of each simulation day.
This approach eliminates the need for any arrays to store the
parameter values for each day.

4-4

Spares

Format: Linked temporary file, media 1, 2 1llinks in length.
Source: Initialized by the SGM routine INITSCN.
Destination: Read by the SGM routine SIMULA.

Updating: New scratch file automatically created and released
with each SGM run.

Data (FILE-04)

Purpose: Contains the spare parts data for a specified base,
aircraft type, and availability level. For detailed information
on spares data, see Volume VI, Spares Subsystem.

Format: Sequential linked permanent file, media 1, about 10
1llinks in length (varies by base).

Source: Produced by the SGM Spares Subsystem.
Destination: Read by the SGM routine INITPRT.

Updating: Must be updated periodically to reflect changes in the
spares data.

Standard System Output File (FILE-06)

Sortie

Purpose: Standard system output file to which all SGM results,
graphs, and error messages are written.

Format: That for the standard system output.

Source: The SGM PRINTO routine and the Plot Program generate the
sortie results and graphs which are sent to this file. Many
other SGM routines will send error messages to this file if an
error is detected.

Destination: Output is sent to a user-specified printer which
may be either a time sharing terminal or a batch output device.

Plot Data (FILE-07)

Purpose: Contains the sorties per aircraft and sorties per day
results of an SGM run.

Format: Linked temporary file, media 1, approximately 1 llink in
length.

Source: An output of the SGM Routine PRINTO.
Destination: Provides the inputs for the Plot Program.

Updating: A temporary file which is automatically created and
released for each SGM run.

4-5

Default Scenario Parameters (FILE-08)

- Purpose: Contains default scenario parameter values for a speci-
fied aircraft type. These values are used to initialize the
scenario for a Set-Parameter run. This default file allows the
user to generate new scenarios from the base scenario with very
little work.

- Format: Sequential linked permanent file, media 5, 1 llink in

length.

- Source: Created manually by the user using the system text
editor.

- Destination: Input to the interactive Set-Parameter Program.

- Updating: The user may update this file as often as desired to
reflect new base scenarios.

-~ - .- o —— -

5. ERROR MESSAGES

INTRODUCTION

In addition to the various computer system error checks, numerous error
checks have been programmed into the Sortie-Generation Model (SGM). This
chapter provides an explanation of the error messages that may result from
these SGM checks. The extensive error detection capabilities of the Honeywell
Series 6000 FORTRAN and resulting error messages are described in the
Honeywell FORTRAN manuals referenced in Appendix A of this manual.

Figure 5-1 provides a list of all possible SGM error messages. The error

checks resulting in these messages have been designed to detect many of the

$6$$5¥$$ INITBO ERRCOR TOO MANY PARTS IN RESUPPLY

3554535388 INITPRT ERROR INVALID PART CHARACTERISTIC

$5$3583$3% INITPRT ERROR TOO MANY LRU TYPES

$335568% INITWC ERROR - LFLD PARAMETER TOO SMALL

$36$8$3E [POUISSON ERROR NEGATIVE MEAN

336338638 LERITS ERROR TOO FEW 1-BITS TO MASK

$$$8$$3$ TBITSL ERROR TOO FEW 1-BITS TO TRANSFER

$33$33%% TBITSR ERROR TOQ FEW 1-BITS TO TRANSFER

$3$$38%3% LUEUPDAT ERROR UE OVERFLOW

$335$63$ WCDIST ERROR - SERQUENTIAL SAMPLING ERROR
48833333 WCDRIST ERRCOR = INCONSISTENT BRUOKEN AIRCRAFT
23353838 WCREAD ERRUR = TOQ MANY WORK-CENTERS
$8$8558$%3 WCREAD ERRCR = INVALID WORK CENTER DATA

$3883$3%3 XNORM ERRCR NEGATIVE STANDARD DEVIATION

35333838 ZBITSL ERRCR NOT ENQUGH 18 TO ZERO

FIGURE 5-1. SGM ERROR MESSAGES

typical errors resulting from improperly formatted input files, incomnsistent
flying scenarios, or newly introduced routines which may not be completely
bug-free. In many instances a tradeoff has been made in increasing the reli-
ability of the SGM at the expense of computational speed; however, these
checks have proved invaluable in detecting subtle logical design errors in the
development of the model.

These SGM error checks have been designed to allow continued execution.
An error message is printed, a reasonable patch is made, and control is re-
turned to the calling routine. The purpose of this design decision to con-
tinue execution of the model, even though the results may no longer be valid,
was to provide as much debug information as possible from each SGM run. Thus,
this was with the hope that any additional independent errors might also be
detected in the same SGM run. However, some errors may propagate further
errors, leading to numerous error messages and even fatal system errors. This
design decision also requires the user to check each SGM run carefully to
ensure that no error messages have been printed, even though the run may have
terminated successfully with rcasonable results. All SGM error messages begin
with the characters "$5$553$8", and the messages will always appear before the
SGM sortie profile. Hence, this area should be carefully scanned after each
run.

STANDARD FORMAT

All SGM error messages follow the standard format shown in Figure 5-2.
The beginning of each message is double-spaced from the line preceding it, and
lines containing any error message always begin with the characters
"$5558588". The first words in each message Jentify the model routine which
detected the error and generated the message. For example, in Figure 5-2, the

sample message indicates that an error was detected in the WCREAD routine.

5-2

The remainder of the first line provides a short description of the particular
error detected. Again, in our example, the description, "TOO MANY WORK-
CENTERS IN THE INPUT FILE", indicates that the work center input file contains

too many work center types for the current SGM configuration.

STANDARD SGM ERROR FORMAT

SERERREH) "Routine name'" ERROR - "error description”

5558585S "additional variable values"

EXAMPLE

$85558888 WCREAD ERROR - TOO MANY WORK-CENTERS IN THE INPUT FILE
855888 ONLY THE FIRST 25 WORK-CENTERS WERE USED
SEERERRE INCREASE -MAXWC- PARAMETER IF YOU WANT MORE WC-S

FIGURE 5-2. STANDARD ERROR MESSAGE FORMAT

The remaining lines of the error message provide values of various sub-
routine variables related to the source of the error. The error messages have
been designed to print the values of all variables which may aid in determin-
ing either the exact cause of the error or the needed fix. The Figure 5-2
example provides the current value of the MAXWC parameter which sets the size
of the various work center arrays. This parameter must be increased to handle
additional work centers.

MESSAGE DESCRIPTIONS

This section provides a detailed description of each SGM error message.
Each subsection provides a description of the error which caused the message,
the possible causes of the error, suggested actions to correct the problem,

and an explanation of the variable values printed with the message to aid in

the debugging process.

INITBO Error - Too Many Parts in Resupply

This message indicates that a recoverable part type has more back-
orders (NBACKO(K)) at the beginning of a simulation replication than there are
aircraft on-the-scene (NAC). The maximum number of allowable backorders is
equal to the UE-aircraft strength times the QPA (quantity-per-aircraft) for
that part-type. The characteristics of this part type are printed with the
error message; the number of backorders is truncated at the maximum allowable,
and execution of the simulations continues. The results are no longer valid,
but continued execution may provide more debug information.

This error is extremely unlikely, but might occur if the spares file
is incorrect, and an impossible value has been loaded for this part's initial
resupply (RESUPP(K)). Another possibility is that an extremely low value for
the number of aircraft (NAC) is being used. The user should examine the
spares file carefully to ensure that it has no impossible values and also
check to ensure that the flying scenario being used is consistent with this
particular spares file.

INITPRT - Invalid Part Characteristic

This message indicates that some part in the spares input file has
one or more invalid characteristics (e.g., a negative demand rate or initial
stock level). This problem could be caused by a bug in the SPARES subsystem
or by a spares-input file with an improper format. The NSN of this part along
with its characteristics is printed with the error message to aid in the debug
process.

This error is not fatal; execution of the simulation will continue.
However, the part with the invalid characteristics will not be included ia the

simulation run.

5-4

INITPRT Error - Too Many LRU Types

This message indicates that the spares input file contains too many
part types; the current size of the parameter, MAXPRT, which sets the size of
the various part arrays, is too small. However, the model will load the first
MAXPRT part types and perform the simulation run with just these types. This
may still give valid results since the parts file is sorted in order of parts
most likely to cause NORS aircraft. Hence, if only the last few part types
were not loaded, the SGM's estimate of sortie-generation capability would
probably not be affected.

To obtain a run with all the parts in the input file, the user
should determine the number currently in the file, and reset the MAXPRT param-
eter accordingly. The current value of MAXPRT is printed with this error
message.

INITWC - LFLD Parameter Too Small

This message indicates that the "LFLD" parameter has been set too
small. This parameter defines the width of the bit-field used for storing
aircraft tail numbers. Lists of aircraft tail numbers are used to indicate
those aircraft which have broken into the various work centers. Thus, the
length of the bit-field must be able to store the largest possible aircraft
tail number. The aircraft are numbered 0, 1, 2,..., MAXAC-1 where MAXAC is
the parameter indicating the maximum possible number of aircraft. LFLD and
MAXAC must be consistent, and the formula to ensure this consistency is given
by MAXAC < 2LFLD. The current values of LFLD and MAXAC are printed with the

message. The simulation does not terminate; however, the results are

unreliable.

5-5

IPOISSON Error - Negative Mean

This message indicates that a negative mean has been passed to the
IPOISSON routine. The value of the mean for a Poisson random variable must be
a non-negative number. The value of this input mean, RMEAN, is also printed
with the error message. The return value is set to zero and execution of the
simulation continues; this is not a fatal error.

LBITS Error - Too Few 1-Bits to Mask

This message indicates that the specified number of 1l-bits to mask
(NBITS) is more than the number (IFOUND) actually contained in the given input
word; thus, exactly NEXTRA 1-bits were not masked as requested. This indi-
cates that some subroutine assumes there are more 1-bits in the input word
than there actually are. The values of all three pertinent variables, NBITS,
IFOUND, and NEXTRA are printed with the error message to aid in the debugging
process. This error is not fatal; the subroutine will mask all the 1-bits it
found; thus the output word will just be a copy of the input word. However,
the results of the simulation are no longer reliable.

TBITSL Error - Too Few 1-Bits to Transfer

This message indicates that the specified number of 1-bits to trans-
fer (NONES) is more than actually contained in the bit-vector from which the
transfer is to be made (IFROM(1)); thus, exactlv NLEFT 1-bits have not been
transferred as requested. This message indicates that some subroutine assumes
there are more l-bits in the bit-vector than there actually are. The values of
all three pertinent variables, NONES, IFROM(1), and NLEFT are printed with
this error message to aid in the debugging process. This error is not
fatal -- the subroutine will transfer all the 1's that are there, zero-out the
[FROM vector, and continue execution. The results of the simulation are no
longer reliable; however, continued execution may provide additional debug
information.

5-6

TBITSR Error - Too Few 1-Bits to Transfer

This message indicates that the specified number of 1-bits to trans-
fer (NONES) is more than actually contained in the bit-vector from which the
transfer is to be made (IFROM(1)); thus, exactly NLEFT 1-bits have not been
transferred as requested. This indicates that some subroutine thinks there
are more l-bits in the bit-vector than there actually are. The values of all
three pertinent variables, NONES, IFROM(1), and NLEFT are printed with this
error message to aid in the debugging process. This error is not fatal; the
subroutine will transfer all the 1's that are there, zero-out the IFROM
vector, and continue execution. The results of the simulation are no longer
reliable; however, continued execution may provide additional debug
information.

UEUPDAT Error - UE Overflow

This message indicates that the desired UE strength (NAC) is larger
than the maximum permissible number of aircraft (MAXAC). The current values
of these two parameters are printed with the error message and also a note
explaining that the subroutine will truncate NAC to the current allowable
maximum, MAXAC, and execution of the simulation continues. The results are no
longer valid, but more debug information may be provided by further execution
of the program.

This error typically occurs in one of the following ways. Either
the initial UE strength is too large or enough reserve aircraft are augmented
during the scenario to cause the UE to increase beyond‘MAXAC. In both cases,
the user should increase the MAXAC parameter in all routines using that param-

eter to a value large enough to handle the desired UE.

WCDIST Error - Sequential Sampling Error

This message indicates that the sequential sampling process for
determining the work centers an aircraft has broken into did not terminate
properly. One possible cause of this error is that the last entry in the
sequential sampling array is less than 1.0; hence, either a bug has been
introduced into the initializing routine for this array (WCPROB) or the entry
has been written over during the simulation. Another possibility is that the
random number generator has given a number greater thanm 1.0. The value of
this last sequential sampling entry, PBRKSEQ(1,NWC) and also the value of the
random draw, RDRAW, is printed with this message to aid in determining the
cause of the error. The simulation results are no longer valid; however,
execution of the program will continue.

WCDIST - Inconsistent Broken Aircraft

This message indicates that the specified number of aircraft to
break into work centers exceeds the actual number of aircraft contained in the
specified input bit-vector; i.e., either the variable NBRKAC >IACVC(1), or the
value of IACVC(1l) is no longer consistent with the number of 1-bits contained
in the bit-vector IACVC. The values of NBRKAC, IACVC(1), and the number of
aircraft actually broken into work centers, NSELEC, are printed with this
error message. Execution of the simulation continues; however, the results
should no longer be considered valid.

WCREAD Error - Too Many Work Centers

This message indicates that the maintenance manpower input file
contains too many work centers; the current size of the work center arrays,
MAYWC | is too small. However, the model will load the first MAXWC work

centers in the file and perform a simulation run with just these work centers.

To obtain a run with all the work centers in the input file, the user should

determine the number of work centers currently in the file, and reset the

MAXWC parameter in all routines to this value.

WCREAD Error - Invalid Work Center Data

This message indicates that a work center in the maintenance input
file has one or more invalid characteristics, e.g., a negative service rate or
break rate greater than 1.0. This problem could be caused by a bug in the
Maintenance Manpower Subsystem or an input file with improper format. The
AFSC of this problem work center along with its characteristics is printed
with the error message to aid in the debugging process. This error is not
fatal; execution of the simulation will continue. However, this problem work
center will be eliminated from the simulation run.

XNORM Error - Negative Standard Deviation

This message indicates that a negative standard deviation has been
passed to the XNORM routine. The value of the standard deviation must always
be non-negative. The value of this input standard deviation, STDEV, is also
printed with this error message. The return value is set to zerc and execu-
tion of the simulation continues. The simulation results are no longer reli-
able; however, continued execution may provide additional debug information.

ZBITSL Error - Not Enough 1's to Zero

Indicates that the specified number of 1-bits to zero-out (NONES) is
greater than the number of 1-bits indicated by the first word (IARRAY(1)) of
the input bit-vector; thus, exactly NLEFT 1-bits have not been zeroed out as
requested. This message indicates that some subroutine thinks there are more
1-bits in the bit-vector than there actually are. The values of all three of
the pertinent variables, NONES, IARRAY(1), and NLEFT are printed. This sub-
routine will zero-out all the 1-bits in the vector and return control to the
calling subroutine; this error does not terminate the simulation, but the
results are no longer valid.

5-9

6. RUN JOB CONTROL LANGUAGE (JCL)

INTRODUCTION

The JCL files for the SGM are of two types, an input deck of control card
images, or a series of system level commands. These correspond to either
submitting a batch job, or executing a time-sharing run, respectively. In
both cases, the JCL files must be run via the LMI STARS SUBMIT Subsystem, an
interactive program for submitting batch or time-sharing runs on System C, the
current computer environment for the SGM. This SUBMIT Subsystem is described
in the LMI STARS User's Guide referenced in Appendix A of this manual.
TIME-SHARING

Two time-sharing JCL files are used with the SGM: a command file for
running the Set-Parameter Program to specify the scenario parameters for a
simulation run and another command file for submitting an interactive SGM run.
Figures 6-1 and 6-2 provide listings of these run command files. Line-by-line
explanations are provided below. Detailed information about time-sharing
commands is provided in the Honeywell time-sharing manuals referenced in
Appendix A.

Set-Parameters JCL File

This section provides a brief explanation of each line of the JCL
file to set the scenario parameters for an SGM run. The numbers correspond to

those shown in Figure 6-1.

D REMOI CLERARFILES

@ TEMF 01

@ GET OLI¥/NIIZD/SGM/ZIDLLAC-TYFE. "O3" -
4) RLINY ! : 3

8 FERM 1 05 DTN B ARAME

®) REMI FaRafMS:HIDATATOS

FIGURE 6-1. SCENARIO SET-PARAMETERS RUN

6-1

Explanation

1 - Remove all files from user's available file table (AFT).

2 - Create a temporary file-0l1 in which scenario parameters will be
written.

3 - Attach default scenario parameters for the specified aircraft
type as file-08.

4 - Execute the previously compiled and loaded FORTRAN program which
allows the user to specify interactively the scenario param-
eters.

5 - Copy the temporary file-01 containing the new scenario param-
eters to the permanent file, PARAMS.

6 - Remove all accessed files from the user's AFT.

SGM Time-Sharing Run

This section provides a brief description of each line of the JCL
file for performing an SGM time-sharing run. The numbers correspond to the

line numbers in Figure 6-2.

@® REMO CLEARFILES
GET QS27/N2EZ0/SGM/PARAMS 01" R
% GET Q32%/N2410/CDEP/SGMINFTZ/ @MANFIWERBASE. "02" . R
@ GET LA41A/SLAY/DATA/UAC-TYFE. /%SPARESFILE. "04", R
(3 TEMF 07303 '
(© RUNY D29 /NZI20/S6M/C36M, R
@ RUNY 0329/NEZZD/SGM/CPLOT.R
REMO CSGM:O75 025 CPLOTI 01302504

FIGURE 6-2. SGM TIME-SHARING RUN

Explanation
1 - Remove all files from user's available file table (AFT).
2 - Attach permanent file containing scenario parameters as file-01.
3 - Attach specified msintenance wanpower input data as file-02.
4 - Attach specified spares input data as file-04.
5 - Create a temporary file-07 for sortie plot results, and a temp-

orary file-03 for daily scenario parameters.

6-2

6 - Execute the previously compiled SGM FORTRAN program.
7 - Execute the previously compiled Plot Program.
8 - Remove all accessed files from user's AFT.
BATCH
The interactive parameter-setting program can only be run in the time-
sharing mode; however, the SGM run process has been designed so that the model
may be run in either the remote-batch or time-sharing mode. The control cards
for a batch SGM run are listed in Figure 6-3. Detailed information is
provided in the Honeywell Control Cards Reference Manual listed in Appendix A
of this manual.
SGM Batch Run
This section provides a brief description of each line of the
control cards to perform an SGM batch run. The line numbers of the explana-

tion correspond to those in Figure 6-3.

100#BS, ROXL) 2,3,16,53

11O NOTE 2 ## MIKE #+# QSZ2/N2220/STGM/RSGMEBTCOH

120 IDENT:OSZOLINZALID Q3220500 0WIN

130$:OFPTION: FORTRAN, NOMAP

1408 SELECT: Q29 /NZZ2D/ 2GM/ C25M

1S0$:EXECUTE

140 LIMITS 14,27k, 5 1k

1706:DATAL 01, NCESLIM, COPY

1308 SELECTD:: DS29/NZ2Z2D/ 26GM/ PARANE

1208 ENDCGRY

ZO0SIPRMFL2OZ. R, S, OS2 /N24LID/CDERP/SGMINFTZ /¥ MANFOWERBASE.
Z10%:PRMFL20O4. RS, LAAIA/SLAY/DATA/XAC-TYFPE. A4 SFARESFILE.
ZZO0SFILE: OZ,AZR

Z220%:FILE:O7,A1%

2408 OPTION: FORTRAN : NOMAF
ZR0SISELECT I O329/N2Z2D/SGM/CRLOT

2HO$EXECUTE

2708 LIMITS:1,13K, ., 2K

2208 FILET O7,ALR

270% ENLDLICH

FIGURE 6-3. SGM BATCH RUN

6-3

I

Explanation
100

110

120

130

140-160

170-190

210

220

230

240

250-~270

280

290

Set card format, disposition, tab character and settings.
Comment card identifying user and program to be run.
User and account number.

Set standard options for loading FORTRAN program; however,
do not provide a memory map listing.

Execute previously compiled SGM FORTRAN program with a CPU
time limit of 0.14 hours, a core limit of 27K words, and an
output limit of 1024 lines.

Attach permanent file containing scenario parameters as
file~-01. The SELECTD card is used because it copies the
file at the time the job is submitted, freeing the param-
eters file for subsequent updating.

Attach specified maintenance manpower input data as
file-02.

Attach specified spares input data as file-04.

Create temporary scratch file-03 for daily scenario param-
eters.

Create temporary file for SGM sortie results to be used as
input for the Plot Program.

Set standard options for loading FORTRAN Plot Program; no
memory map is to be listed.

Execute previously compiled FORTRAN Plot Program with
specified CPU-time, core-size, and output limits.

Access file-07 containing plot data from SGM run; release
file after run.

Marks end of control cards.

6-4

APPENDIX A

RELATED DOCUMENTS

This appendix lists documents which provide useful information in pro-
gramming and maintaining the Sortie-Generation Model on System C. This list

is organized into the following general categories:

- Honeywell manuals describing the GCOS Series 600/6000 computer
system, languages, etc.

- Air Force Data Services Center (AFDSC) manuals describing System C
operating procedures,

- LMI reports and manuals describing previously developed software used
in conjunction with the SGM.

- Technical 1literature describing software development techniques,

software standards, and computer algorithms used in the development of
the Sortie-Generation Model.

HONEYWELL MANUALS

Language Processors

COBOL Reference Manual, BS08, August 1972.
COBOL User's Guide, BS09, June 1971.
FORTRAN, BJ67, March 1973.

Operating System

Control Cards Reference Manual, BS19, February 1973.

General Comprehensive Operating Supervisor (GCOS), BR43, October
1973.

GCOS Control Cards and Abort Codes Pocket Guide, BJ69, January 1973.
GCOS Time-Sharing System Pocket Guide, BS12, October 1974.

Service and Utility Routines, Including Generators

Bulk Media Conversion, BP30, August 1973.

A-1

General Loader, BN90, March 1972.

FORTRAN Subroutine Libraries Reference Manual, BR95, May 1973.
Service Routines, DA97, June 1973.

Sort/Merge Program (Generator), BN87, March 1972.

Trace and Debug Routines, DB20, September 1972.

Time Sharing Systems

GCOS Time-Sharing System General Information, BSOl, July 1973.

GCOS Time-Sharing System Programmer's Reference Manual, BR39,
November 1971.

Time-Sharing Applications Library, DA44, December 1976.

Time-Sharing FORTRAN, BR70, February 1973.

Time-Sharing Text Editor, BR40, June 1973.

Time-Sharing Terminal/Batch Interface Facility, BR99, January 1972.

AFDSC MANUALS

Air Force Data Services Center

Users Handbook, General Information and Procedures, Volume I,
October 1679.

Users Handbook, AFDSC Project Management and Standards, Volume II,
March 1979.

Users Handbook, GCOS Computer System, Volume III, November 1976.
Users Handbook, GCOS Remote Terminals, Volume IV, December 1975.

LMI REPORTS

Logistics Management Institute

LMI Availability System Levels of Indenture Model, (Task AF-605)
November 1979.

LMI Availability System Overview, (Task AF605), August 1978.
Test of the Availability Model, (Task AF-605), August 1978.

The System That Automatically Runs Systems (STARS) Overview,
(Task AF-605), August 1978.

A-2

Ax

STARS (The System That Automatically Runs Systems) System Guide,
(Task AF-605), August 1978.

STARS User's Guide, (Task AF-60>}, August 1978.
STARS Analyst's Guide, (Task AF-605), August 1978.

An Efficient Optimization Procedure for Levels-of-Indenture
Inventory Model, (Task AF-605 Working Note), February 1978.

A Method of Treating Common Recoverable Components in the LMI
Essentiality Model, (Task 76-5 Working Note), March 1976.

A Model to Allocate Repair Dollars and Facilities Optimally,
(Task 74-9), August 1974. ﬁ

Test of a System Which Considers the Priority Allocation of
Spare Recoverable Components, (Task 73-7), August 1973.

Measurements of Military Essentiality, (Task 72-3), August 1972.

TECHNICAL LITERATURE

Caine, Stephen H. and E. Kent Gordon, "PDL - A tool for software design"
in Tutorial on Software Design Techniques, California: Institute of
Electrical and Electronics Engineers Inc., pp 168-173, 1977.

Feller, William, An Introduction to Probability Theory and Its Applica-
tions, Volume I, New York: John Wiley and Sons, 1968.

Fishman, George S., Principles of Discrete Event Simulation, New York:
John Wiley and Sons, 1978.

Gass, Saul I., Computer Science and Technology: Computer Model Document-
ation: A Review and an Approach, Washington, D.C.: National Bureau
of Standards, February 1979.

Graves, Joseph S., "On the Storage and Handling of Binary Data using
FORTRAN with Applications to Integer Programming" in Operations
Research, Vol. 27 No. 3, pp. 534-547, May-June 1979.

Krecker, Dr. D. K. et al., Software Documentation and Development
Conventions, (BDM/W-7-9-556-TR), The BDM Corporation, September
1979.

Kronmal, Richard A. and Arthur V. Peterson Jr., "On the Alias Method
for Generating Random Variables from a Discrete Distribution" in The
American Statistician, Vol. 33 No. 4, pp. 214-218, November 1979.

Naylor, Thomas H. et al., Computer Simulation Techniques, New York:
John Wiley and Sons, 1966.

National Bureau of Standards, Computer Science and Technology, Computer
Model Documentation Guide, (NBS Special Publication 500-73), January
1981.

A-4

APPENDIX B

SAMPLE MODEL RUN

This appendix provides a sample SGM run along with complete listings of
all inputs used to produce these results. This run represents a typical F-4E
maximal-effort flying scenario. The SGM inputs consist of a flying scenario
description, a recoverable-spares file, and an aircraft maintenance file.
Listings of the scenario parameters and the spares file are provided im-
mediately after the SGM run results. The aircraft maintenance description is
always provided as part of the actual SGM results. The aircraft maintenance
file was produced by the SGM Maintenance Subsystem based on maintenance data
collected from Seymour Johnson AFB. The spares file was produced by the SGM

Spares Subsystem for a 72-UE wing located at Seymour Johnson AFB.

SGM RUN RESULTS

1

llmmm FAGE m.“or nu"‘m

-

. S

=RUNC 0SZR/NXIZ20/36GM/REGMTSS
ENTER MANPOWERBASE™?

=SJIWC

ENTER AC-TYPE ?
=F4

ENTER SPARESFILE 7
=SEYMORNF

PRECEDING FaGE BLANK=iOT FI1

3t 26 38 36 38 30 38 36 38 36 3F S0 26 36 36 35 36 36 36 35 36 36 45 36 46 3 S 3 36 36 36 56 30 36 3 3 36 30 36 30 30 36 36 35 S0 46 38 S 30 008 3 S S0 3 SEH I

36 34 36 3 36 96 F 35 3 S 3 3 3 36 36 96 6 36 6 36 35 36 3 3 6 3 3 SGM RN 3634 36 36 36 36 3 3F 3 3 36 2F 36 3 3F 46 36 36 38 3 35 3 3F 36 3 4t 3t 3
35 35 36 36 36 3 36 45 35 45 35 36 3 36 3 36 3 56 30 36 36 3 35 36 36 36 36 36 36 36 36 3 36 3045 36 3 3 36 T3 345 36 3 6 46 46 3 5 236 3 336 3 3 46 36 36 3 34 303

SIMULATION - REPLICATIONS = 40 RANDM NUMBER SEED = 12,72

AIRCRAFT - UE = 72 RESERVES = 24 MAXIMUM LAUNCH-SIZE = 72

FLYING =CHEDULE -

WAVES TAKEOFF TIMEZ MINIMAL SORTIE WAIT OVERNIGHT

0AYS PER DAY FIRST LAST TURNARCOUND LENGTH TIME RECOVERY
20 = QAQ0 12324 1.40 1.70 Q.00 2.50
RATES -

INITIAL AIRCRAFT

NMCM RATE ATTRITION BREAK. RATE GROUND-ABORT

0.150 0.01 0. 2000 Q. 0400

LRU TYPES - 242

B-6

36 3446 3 36 36 36 3 36 98 36 36 46 36 35 3 36 3 3¢ 3 3 36 36 3 3 36 36 36 3 38 36 36 36 3 36 36 3% 3 S S 0
3636 36 3 36 36 36 30 3% AIRCRAFT MAINTENANCE 36 36 36 46 3¢ 36 4 3 36 3¢
T3 34 B 36 FF 3 3 3 A 56 36 30 3 3 FE B B3 I I B

BREAK TOTAL ZERVICE RATE

WG # AFS RATE SERVERS (ACFT/HOUR)
1 321X2 0.2272 27.77 0.1417
2 IESX0 0.1515 15,06 Q.13&4
] I28RE G. 1042 21,07 0.1273
4 22EX0 Q. 2010 12.32¢ 0.17&9
S 2322X4 Q. 1306 .57 0.2807
& 404X1 Q. 0225 12.00 0.1510
7 423EZ 0, 1699 ?.95 0.0632
2 42Z3EZ 0.0608 2.31 ©0.1043
@ 423X0Q 0. 1182 12.28 0.1327

10 423X1 Q,079% &.57 0.1571
11 423X4 0. 082& 11.71 0.1265
12 426X2 0. 0508 10,21 00,1585
13 427R0O 0.0327% 4.%4 Q. 39355
14 427 X5 Q. 1433 14.29 0.2524
15 431E1 0. 0335 10,73 0.0257
16 4321X1 0.0527 131.4% 0.35354
17 44&2X0Q O, 1441 7.27 Q.54324
B-7

SORTIES/ SORTIES/ SORTIES/ cimM, RES.
DAY PER PERIOD DAY AC NMCM NMC3 LOSsSE LEFT

1 1 85.4 10,0 4.4 0. 24.0
2 45,2 19,0 5.7 0.4
2 28. 6 23,9 7.1 Q.2
4 24,9 2&.0 2.3 1.3
5 3.2 207.2 2.%1 2&6.9 2.4 1.6
207.2
2 1 47.% 14,2 2.4 1.7 22.3
2 30,0 12.5 ?.7 2.4
K] 35,9 23.2 10.7 2.8
4 2.3 24.6 12.1 |
5 20.7 1846.5 2,63 29,3 12.0 2.6
393.7
2 1 46.7 11.7 11.4 4.0 20,0
2 27.9 1z.2 12.9 4.6
2 22.5 22.9 14.2 S.2
4 =0, 3 24,0 15.2 5.5
S Ze,. 2 17%.4 Z2.45 z24.4 14.2 5.8
56703
4 1 42,1 7 14,2 &1 17.8
2 2601 J) 1S.4 bols
] 21.5 @ 1.7 6.9
4 2.2 b i7.7 7.1
S 2202 142,0 2. 325 2 12.7 7.4
737.32
bal i 41.73 2.1 1&6.6 7.5 14.2
2 24,9 17.7 17.2 2.1
i 20,1 21.2 12,9 2.9
4 27.3 22,3 20,0 .2
S 29. 3 159.1 2.2% 2%.4 20,32 F.l
=l
& 1 S 11.7 12.3 7. 4 14.6
2 ALY 146.7 19.% .32
2 2.9 21.0 20,6 10.1
4 27 .3 21.2 21.4 10,32
be' 25.8 1546.2 2.19 21.3 Z2.9 10.5
1052.6
7 1) 12,0 20,1 10,2 12,2
2 4 14, G 21.7 11.1
3 22, D 12,5 22.7 i1.4
4 24,1 21.% 23. 46 11.9
s S 22,2 147.0 Z.06 21.8 24,3 12,2
1199.6
= 1 27.1 12.7 20,9 12.4 11.6
2 31,4 164.7 21.9 12.9
2 27.1 20,0 22.9 12.1
. 4 24,73 21.4 .2 12.9
S 23.4 14=.5 2.02 21.3 Z4.7 13.3

11

—
(XY

14

17

Ah WK —= DWWk -

AP Wk

[BE-SA N N

L A AN R R

I =S R N

F SN N

DY SR Ko Nt 3
SR ¢ Ol o)

Ll O NPT

[N SO AT Y

WANS O
(4 B T W

25,9

ot I
30.S
26.4
- -
&t 2

-y

ot s

)
n
9

[SO NN S SR
&

N oW

Q0
-
o~

2E.

25.5

23.%

1342.1

142.0
1423.%

142,
1770.

oo

141.
1911.%

-~
J
\' L

140.4

OYET
20T, &

128,58
2191.0

141.2

2232.3

127.7
24469,

2.00

1.97

[
i
o

10.¢&
15.4
12.0
19.7

20.2

10. &
15.0
17.6&
12.4

BN e
QO w (A

.
ROV PO)

[N N SN]
o ARA R W

H

-
R]

24.9
25.7

26.5

12.5
1S.7
15.9
146.1
164.2

146.4&
17.0
17.3
17.5
17.7

17.8
13.2
12.5
12.7

13.&

&

0 Q0
DOOE; I N

3
b

Il Y

P
- =
"
.
-
.

(]
[

B WL Ww
LU N AN e]

SRS

.
-~
'

10.0

o

w

W
R

et
.

-
=

-~
< e

‘
v

hJ
LX)

P}

24

e

al

)

DU R S U SV 4 - PO [R R IVIN NIl Jd Wby AW N - L B - VYR SV

0w e

U H0g b

NN

b
-
~N

AT RN
OO oD

AENENESEA)

]
-

IARGRT O

S
S,
~
24,
e
22

21,

J)

f*

33.
27.4
24.5
23.0

-
21.3

> B

J B NR
[BRN N N

b

"’

NI Y

P~

)
'
PR

O = 3N
AV S N

= b3 R P)

9

N R ol W

J)

=
repm)

[l N 3
0 = 0}

24,5
21.8
20.5

18,

28. 64
24.1
20.95
.7
12.1

—

27.0
24.0
20.7

124.5
2604.4

132.2
2736.7

129.7
2366.4

129,
2994,

o0

[

-

[N R
[SIS

W
> 0

[
[] -
W

D

115.0
2475.4

112.0

3587.3

1.90

—
]
')

19.1

11.1
14.7
17.5
18.4
18.7

10.7
14.5
14.9
17.9
138.5

Y&
14.4
164.5
17.3
18.0

.5
i3.0
15.5
16£.5
17.4
10.&
14.0
15.9
17.0
17.2

13,2
14.9
15.6

17.0

et e et b s
DL N VR DU I IR
SN QD py -

27.3 25.5

23.7 5.8 0.7

24,3 26.0 1

25.6 26.3]

26.5 26.4 I

27.3 26.6 |

22.8 268 0.5

24,3 27.1

25.3 27.3 [

26.5 27.5 |

27.0 27.3 i.

3.3 28.0 0.2

24.4 28.4 !

5.1 28.7 |

26.5 29.1 |

3.5 9.3 0.1

24.7 29. &

25, & 29,8

26.5 30,1

27.2 30. 3

23k 0.5 0.0 |

24.7 0. € 1

25.3 0.9 !

26,0 3.1

6.7 1.3 |
i

23.6 31,5 o. ?

24,2 21.7 g

2%5.4 32.0 ;

26.0 2.2 ‘

2l b 22,6 g
]

2.5 32,8 Q.

24,3 33.1

25,0 33.3

5.8 32.4

265 3.7

0O 33
23.8 24,0
25.0 4.2
25.8 24.4
265 4.7
22,0 24,9 Q.
24,2 35.1
2%9.1 35. 3

S

4 12.6 15.3

S 17.4 109.9 1.81 15.7
23697.2

=27 1 27.9 8.4

2 23.0 12.4

] 20.5 14.1

4 18.2 15,2

S 17.3 104.9 1.79 1S5.¢&
33804.1

28 1 27.3 e.2

2 232.9 10.2

3 20.2 13.7

4 18. 4 14,2

5 17.4 107.9 1.32 15.3
3712.0

=9 1 27.1 2.2

2 23.2 11.3

3 20.4 12.%9

4 18.6 12,2

b 17.5 1046.8 1.86 14,0
4012.3

=0 1 26.5 7.7

2 22,0 10.8

3 20,0 12.5

4 12.1 13.¢4

5 17.2 102.7 1.24 12.7

4122.5

TOTAL SORTIES FLOWN = 4122.5

w

CFPU TIME USEDR

?.54 MIN

MEMORY USED

20 K WORDS

[AT N

NS dON

| 3 N
< a

NS W

NAR

B H Uk -
AEARNEANN
RN

[N AT S N

a
.
Lt

H AT bW

D09
RO D R

REARARARA

B WWR -
9 0

L0 I U N N

NG90 o0

[N W R)
RO SR Y

2.48
2.02
1.97
1.91
1.84
1.83

2.23
2.00
1.99
1.93
1.81
1.284

PYtaE-oan 3

SORTIES
PER AC

4
* (]
vy 1
* |
|
*]
i
* |
i
* |
|
* |
!
* |
|
* |
I
¥ |
1
*)
i
* o]
[} 4
% |
|
% |
| Q
x | -~
| x
* 2
[3a)
% | w
| [] I
% | W M
|
% | w
! i
% {
| >
*] q
| =
& [}
-
% |
!
* 1
|
% |
|
% !
I
¥ |
{
* |
)
* 1
i
* |
]
* |
O vt bt bt bt U5 bt e b =t D bt et et = T e bt D et = et Ut s bt S e bt et DY et Ot e b D) bt bt et et O
. L] L] . . . L . . L]
n < < m o) 4 - - o

207 184 174 168 159
15& 147 144 143 143
142 141 140Q 13% 141
133 135 132 130 1320
126 120 118 115 112
110 107 108 107 104

SORTIES
PER DAY

*

O bt bt et g [T e et et

N ™
™ ™~

O =t -t
D)

~

U Y =t ot = D

~

4

"

*

#* # #* #

e B R T I e I R e I T I e e e e R TR N]

#* 0 # F 3 3

]
-

10

s

SCENAKIQ

DAY OF

B-15

JRS- COS S,

SCENARIO INPUT PARAMETERS

Tre——

THE CURRENT VALLIES OF THE SCENARIDO INPUTS ARE @

INPUT
CODE

O NGO b

10

THE FOLLOWING

15
14
17
ia

19

SCENARICQ ITEM

SIMULATIONS
RANDCOM NUMBER SEED
UE

AIRCRAFT BREAK RATE
INITIAL NMCM RATE

DAYS

FIRST TAKEOFF TIME
LAST TAKEDFF TIME
SORTIE LENGTH (HRS)

MINIMAL RECOVERY TIME (HRS)
INFINITE MANFPOWER (YES/NO)

INFINITE SPARE PARTS (YES/NQ)

AUGMENT RESERVE AC

MAX SORTIES/DAY FOR PLOT(OR ©)

ATTRITION RATE
GROUND AEORT RATE

MASS LAUNCHES PER
RESERVE AIRCRAFT
MAXIMLIM { AUNCH-SIZE

(YES/NOQ)

{m
(I
oAy (m
o
(/D)

I T O | (I (T Y (O O O

LI

CURRENT
VALUE

40
12.3
72
« 20
1S
30
0600
1324
1.7
1.4
NO
NO
N
Q

ITEMS MAY VARY RY DAY(D) OR CYCLE/DAY(C/LH

.01
.04
5
24
72

RECOVERABLE SPARES FILE

NON

14300104546998F
1430010387038BF
2620000884523

38650019942 10EW
1430010399244BF
6610004629837BF
1430010610350BF
1630004463778

1270010588980

3826010395000

3826010401785

1430010387055BF
3826010183511

1430002356325BF
2840008717414PL
5865000233292¢H
386500371 I34EW
1270000641997

6115008681999EW
5865000999343
46100081441 1 7BF
1660000714255

5845000894 745EW
156000788394 1 BF
5863001627964EW
5865007598099%EW
1270005562269

611501026727 1EW
3821010668605

3865010481589EW
98450018879 18EN
38650040951 52EW
3826010395013

6610009988758BF
3865004376027EW
4310010183040BF
16800045005735F
586500476444 2EW
5826010403093

3865001559266EW
6605005940194

58650013501 1 7EW
2620010579673

5865003294045EW
SB6TLCUT6945EW
14300106821 50BF
1430010384963BF
38650013501 16EW
38650000756749EW
5865000094 282EW

00137
00151
.00104

GO e O e R BRI R O e O e) rm e e ba R e O e e b dm) e e ma e U] U] e B e B) e RO et b b b R e e g R e e

. = .

—_0 O WD DO WO O OO WEaDOUTDOOONODOOOVOOWWOOODOWO VOO

—_—O D OO e D e ra e e D e e e e D KD b e b b e e ha D bt ek e b D e e KD D e b e e O e D e e
N e e e .) . . .
o~

—
.- 0w
(=]

1.0
0.8
1.0
1.0

INITIAL
INITIAL NO. IN
FAP STOCK RESUPPLY

8.15
7.211
28.649
1.405
1.744
3.09
2.226
9.226
0.937
1.373
1.650
1.742
3.878
2,282
2.43
0.005
0.723
1,345
0.092
0.548
0.726
4.565
0.005
0.664
0.542
0.410
1.519
0,041
0.803
0,463
0.005
0.008
0.853
1.503
0.011
1.182
0.712
0.402
0.515
0.525
2.667
0.012
6.176
0.023
0.252
0.059
1.320
0.012
0.240
0.257

&wo——-—-—gam

_—

ON W WUNEWUNR - O RNPMNO AW ONRN =W N 0 WN =M™

—

N
E

PO PO PO NDO

2%

T B8ER BRI3LBSS

ee
8

RESUPPLY TIMES
(DAYS)
BASE DEPOT

6.0 26.2
6.0 27.4
0. 18.0
6,0 3.0
6.0 27.7
5.0 14,7
60 0.

5.0 140
6.0 1L5
9.0 22.1
8.0 2.0
60 0.

4.0 346
3.0 17,1
6.0 28.6
0. 6.8
3.0 13.3
4,0 10.9
2.0 78.%
2.0 12,3
0. 12.7
2.0 3.0
0. 14.6
6.0 23.1
5.0 185
4,0 15.4
4.0 16.9
3.0 16.0
3.0 163
4.0 6.3
6.0 14,3
14.0
16.7
14.1
16.0
15.1
14.0
1.5
17.3
11.5
14.0
6.6
21.0
15.0
1.8
14.0
16.3
8.0
10.5
12.2

® o
[~ W g

\I.OLH
< <

-

:—-a-mnp_&——p?mwmpo
[~ = e B =

PRECEDING tack BLANK =1 OT FILiEd

INITIAL RESUPPLY TIMES
REMOVAL INITIAL NO. IN BASE {DAYS)
NSN RATE QPA FAP STOCK RESUPPLY NRTS BASE DEPOT
5826010424054 . 00388 0.3 0.696 0.88 6.0 10.7
58650085851 77EW . 00081 0.6 0.027 0.86 1.0 14.0
14300049%02978BF . 00379 Lo 1 4.636 0.94 4.0 20.9
5865008685230EN . 00077 0.8 0.012 0.13 3.0 13.2

0.013 0.2 4.0 7.7
0.378 0.04 3.0 20.5
2,204 0.82 6.0 14,0
5.387 {.00 0. 20.2
0.750 0.12 5.0 16.8
0.006 1.00 0. 13.0
3.083 0.57 50 14,0
0.858 0.87 60 117
2,313 0.24 6.0 12,6
0.319 0.77 6.0 189
0.713 1.00 0. 12.0
0.611 0.91 4.0 18.0
0.484 0.%0 4.0 14,0
0.333 0.52 8.0 16.4
0.025 0.07 5.0 27.0
0.280 0.85 2.0 3.2
1.954 1.00 0. 22.0
0.238 0.7 7.0 83
0.272 0.86 3.0 15.4
0.497 0.49 5.0 33.3
0.274 0.83 3.0 159
0.286 0.10 6.0 20,5
1.027 0.08 3.0 15.0
0.236 0.93 3.0 155
0.018 0.86 6.0 10.5
0.441 1.00 0. 120
6.3 0.70 4.0 4.8
0.262 0.43 8.0 17.7
1.767 0.94 4.0 3.7
0,236 0.84 9.0 15.4
0.54 0.77 3.0 16.2
0.017 0.52 3.0 9.0
0,486 0. &0 0.

0.461 0.88 6.0 15.3
0.194 0.79 6.0 19.3
1.826 0.85 17.0 14,0
0.206 0.64 6.0 15.6
0,006 0.06 2.0 13.0
0,444 0.93 3.0 15.9

f=]
.
o

5855001681504EW . 00097
66150107092438F 00399
2995006911224 00179
S865010976255EW . 00069
S845010211657EH . 00132
5845010149262E0 . 00050
1650010841569 00408
15600086705618F 00073
SRA5004263104EW 00100
5826010395015 00113
16500014855068F 00120
143000132667TBF . 00067
16500092430058F . 00075
5926010419255 00252
5845008685231EW 00139
1270010423881 00071
66150105460758F . 00167
15600079068738F . 00059
1270003528728 00100
5826010397621 00051
1270003495219 00099
1430010597789BF . 00064
14300007808638F 00422
1270003495873 00090
1430001790011BF 00053
56150042008068F . 00051
66100001093565F 00121
5826010819398 00122
14300018443365F 00137
1270005429209 00083
46100040012015F . 00064
. S855000139369EW . 00125
A 1430010533212BF 00135

6610004335280 00459
1270003482091 00064
6610001812539 00120
5826010419380 00096
5865000139369EW 00081
1270005518449 00140

—_—
- .
< W

—
<
—
TR Bt = O e DO = == GO " PR RN e O P 3O v ot be P e O PR PO e O WO = WA D OO 0N

SO O e e O e e e e s e
s = & -
WO OO WO OO O OO

< -

D

—_ e PO s e B e e R e B e e e P e bt b e e) B e e b b Bt bom b bt e) e R = R b B PO R e RO R N e) B e R e
—
-
<

NN e N N e T i i N T
CODOCO O WL UNWO PO UD G AW O O

5826010419281 .00104 . 0.181 0.33 6.0 17,6
5895009190413 . 00062 1.325 0.80 4.0 3.4
6610009250935 00139 . 0. 165 0.8 5.0 15.8
14300019464678F 00084 0.459 0.%0 5.0 9.0
2840008846275PL . 00053 . 0.959 0.96 11.0 14,0
6610001337848 . 00070 0.372 0.92 3.0 10.7
15600014309328F . 00227 1.243 0.09 9.0 7.6

NSN

5865010805675EMW
2840010269435PL
143000507 26558F
6610009250934
16800105208160L.5
1270003493215
14300004351928F
1430001 117990BF
15600008291 18BF
1660001 359966
1270010298391
1270003939141
6610010451020
2840010272393PL
14300014443336F
2840006865740PL
1680007335768L5
5826010408428
5610001811750
6605009458148
5826010329930
14300014442848F
14300050726448F
1630002769849
5895003977851
143000144431 98F
156000954775 26F
2995006141130F1
66150105204 238F
1660004463627
2915001338007PL
4320000585925HS
6113009031 256BF
14300035920308F
1270005518452
291501088707 7PL
5826009941578
1650009243006 BF
1270005518451
3826000897912
6605010787915
5826010329923
15600014309 308F
14300053151638F
5895003977832
6610004001 202BF
14300029897 238F
5826004449847
16500099954 948F
1270001487613

. 00086
00233
. 00769
. 00056
.00108
.00324
.00147
00096
00160
. 00092
. 00085
00453

— e e R} et b pem b e e e B e R e e R B P ke e RO B b e R e bt e b s e g P e B e e b bt b e b b) b e RO e

FAP

—
a = s & « = =

- . -

-

O O e e D e O e e D D e e et e e e D e e e e D e D e e O e OO e e OO D
< . . . e e . . . o
W N DO OQODWO OO Qe OO0 O O0ODOOOWODOOCONO WO O OO0 000 OO0

2.2
-0

INITIAL
INITIAL NO. IN
STOCK RESUPPLY

2,664
1.475
0,606
0.897
{.153
0.125
0.125
0.951
0.101
1.420
0.098
0,088
0.817
1.320
0.084
0.868
0.515
0.083
0,294
2,595
1.033
2,610
1.530
1,325
0.311
0.615
1.023
0.945
0.519
0.272
1.195
3.142
1.869
0.026
0.729
0.794
0,217
0.4156
0.224
1154
0.505
0.208
1.319
0.674
0.4%0
0.829
0.435
0.133
0.360
0.371

—

—

—
WWR WO WO B ENPPDTRNALL - OQWO-NWATWR OO B WK =) O et N s fn e e O WO

BASE
NRTS

0.08

coropoRP
VLIS

eop
2

°Q
b 4

0.14
0.91
0.79
0.89
0.15
0.18
0.10
0.05
0.09
0.92
0.89
0.85
0.39
0.13

RESUPPLY TIMES
(DAYS)
BASE DEPOT

4.0 20.0
5.0 14.0
4.0 17,3
10.0 15.5
5.0 (1.0
4.0 19.6
.0 145
4.0 15.3
3.0 21.4
6.0 16.0
3.0 10.3
5.0 23.8
7.0 14.1
8.0 14,0
4.0 2%5.7
8.0 12.0
4.0 12,0
60 4,7
7.0 10.9
4,0 14,0
6.0 14,2
6.0 5.4
3.0 1441
7.0 10.0
8.0 54
1.0 18.8
4.0 21.0
10.0 11.0
0. 15.2
60 9.5
4.0 15.0
5.0 12.0
3.0 10.0
60 9.4
4.0 15.4
11.0 12,1
6.0 22.3
6.0 11,0
4.0 15.5
0 12.0
.0 9.0
0 14,1
0 18.2
3.0 14.2
4,0 18.2
15.0 1.0
5.0 1s.8
2.0 15.0
6.0 13.0
3.0 2.9

NSN

14300050726565F
59900024457 1NT
1620009891992
6645008722128
6615006000969BF
1630010264543
1270001185901
2995001598730
1430001 8340835F
143000144431 5BF
6610000657276BF
1095004538407
1430000600341 BF
1270001095653
143000111 79938F
5630008300844BF
1270004752473
5750004051090
2935007892422
1430003934 750BF
6615007202931
6610000863840
1430005957721 BF
1270009160176
66150105204 228F
6505008365333
14300052035065F
1270009755895
66100098676 288F
586501038461 4EW
14300019400728F
6605009497835
1270004767945
6485001 159606BF
166000495901 28F
61050026204328F
1270000238962
14300014442925F
6620005538627
5615008699834
5340001 1659638F
1270000041879
6610004809435BF
14300039803845F
1660000893553
1270000238954
143000145891 0BF
4810000893550TP
1270000238963
14300093285536F

REMOVAL
RATE @PA

00993

00107

00130

00113

. 00189
00096
00072
00137
. 00421
. 00069

.00128

« . . . - M . « o o
O NSO DOO PO OO OO OOOCONOOOO = YOO OO, OONOO O OO N =D OO OO-O

-

« « o«

Peh e pen i b bt bee bt ma BT et B bt e bt b bt pee e e B P B e b b et B e e B e e B) Pt e e bt RS e RN B e b b e et e e
b D b g pem et s bt D e e e et bt e et ba e (O e e e bt O O ke e D b e D b b (D) e bt D e b e O D e (O e e e e O et
- - s e . . .

INITIAL
INITIAL NO. IN

FAP STOCX RESUPPLY

3.482
0,943
0.352
0.3%9
0.606
0.623
0.119
1.836
0.279
0.409
0.641
0.361
0.630
0.063
0. 645
0,602
0.066
0.880
0.719
0.022
0.244
1.943
0.013
0.523
0.438
1,605
0.229
0.220
1.549
8.402
0.196
1.072
0.703
0.372
1.022
3.317
0.592
0,705
0. 204
0.306
1.069
0.095
0.998
0.967
0,260
0.283
0.780
0.269
0.264
1.439

—

—

—
N 8 PO W N BN &N & WO WHRem N wWwwWwUOU

— — e —

—
QR P O - NWO B VDA NN WO =W

5 2F

com~oooo
SI888R

cpopoP
83%83R

0.90
0.14
0.91
0.80
0.93
0.16
0.85
0.93
0.92
0.89
0.94
0.97
1.00
0.11
0.83
0.91
0.93
1.00
0.96
0.07
0.87
0.78
0.82
0.91
0.27
0.%0
0.94
0.30
0.79
0.10
0.63
0.95
0.74
0.35
0.05
0.64
0.10
0.96

RESUPPLY TIMES
(DAYS)
BASE DEPOT

0 140
0 1.9
00 9.2
0 12.2
0. 18.0
3.0 5.1
3.0 183
9.0 11.0
2.0 12,0
3.0 163
3.0 2.0
4.0 22.8
3.0 té.b
4.0 140
3.0 15.6
8.0 I2.

4.0 6.7
4.0 11,2
4.0 13.0
&0 12,0
%0 9.0
4.0 10.0
6.0 6.0
1.0 18.1
0. 8.0
40 2.0
3.0 8.0
3.0 8.0
5.0 12.0
0. 17.9
9.0 6.2
4.0 14,0
4.0 144
4.0 14,0
6.0 13.0
5.0 140
3.0 7.0
4.0 15.3
6.0 11.0
5.0 14,0
4.0 11.0
3.0 20.0
4.0 140
4.0 165
4.0 10.0
3.0 5.0
.0 490
4.0 10.0
4.0 15.0
.0 19.0

“V—-—--—-—u—-——--——————-‘

INITIAL RESUPPLY TIMES
REMOVAL INITIAL N0, IN BASE (DAYS)
NSN RATE GPA FAP STOCK RESUPPLY NRTS BASE DEPOT
14300014444078F 00102 1. 0.589 0.92 2.0 10,0
16500035009928F . 00118 . 0.744 0.88 4.0 13.0

14300017470458F ,01938
1430008339603BF . 00058
14300024715378F . 00075
6710002600300 00063
9865010418257EW . 00095
1270004767946 . 00207
6615003739254BF . 00080
6610007998315 001695
1660009091473 . 00065
4610001506785 00133

0.267 0.06 .0 21.0
0.5%1 0.99 8.0 16.7
0.574 0.88 3.0 140
0,262 0.35 3.0 17.0
1.099 0.44 60 9.0
0.469 0.19 3.0 9.0
0.416 1.00 0. 110
0.935 0.85 3.0 12.0
0.4 0.94 4.0 180
0.939 0.94 3.0 12.0

- O b
« o & @

e e e e
.

16500083697858F . 00057 . 0.215 0.19 5.0 14.0
1430002193773BF . 00059 0. 454 0.87 9.0 14,0
1430001747048BF . 01159 0.1596 0.08 3.0 15.0
1430010039780BF . 00246 . 0,682 0.08 40 14,0

6110001871018BF . 00059
66150059051728F 00148
6610010347616 00133
14300013301898F . 00057
16500079068558F . 00082
14300041008458F . 00116
5610009831034 00229
1280009338792NT 00156
1270000231042 . 00064
5605008345335 01136
6110005717654BF . 00200
1430010039782BF ., 00101
3865010169623EW 00072
1430010039781BF .00293
1660007935799 00228
1660010215625 . 00066
6610009539670 00114
6685006845176 00119
6605001113645 . 00064
6610009942170 .00107
6605009876166 . 00085
§280009338793NT .00123
6110000978394EF 00267

0.349 0.3 7.0 2.0
0.333 0.05 4.0 14.0
0,328 0.17 4.0 10.0
0.427 0.84 3.0 140
0.348 0.43 5.0 12.0
0.946 0.92 .0 140
1.739 0.94 3.0 110
0.497 0.23 3.0 10.0
0,259 0.85 4.0 8.0
2,494 0.46 3.0 1.0
1.173 0.89 4.0 12.0
0.23 0.04 4.0 14.0
0.213 0.17 5.0 9.0
0.508 0.09 4.0 14,0
1.352 0.97 4.0 12.0
0.406 0.91 5.0 14,0
0.766 0.93 4.0 12,0
1.732 0.94 5.0 11.0
0.407 0.%0 7.0 10.0
0,342 0.89 4.0 11.0
0.108 0.12 3.0 140
0,543 0.57 40 12,0
3.1% 0.91 5.0 12,0

. - . M - Pt -
NSO VO OOCOOOODOODONNODOOODOCOTrO VWO NOOOODO OO V"D OO0 O —OoO
—

-

—

o NSO JIN0O NN AN NN BN ENANNDNU O SN &0 N

—

B\J(JIOG

66100045466328F . 00666 . 12 1.845 0.05 4.0 14,0
SB4TNCISAGEAEN . 00496 12 1.598 0.17 4.0 16.0
5841000738241 . 00451 . 12 1.480 0.25 4.0 13.0
6615009825301 .00147 . 8 0.704 0.33 5.0 14,0
5895009190400 .00449 . 20 1.841 0.12 3.0 10.0
5895001688798 00377 . 15 1.781 0.04 4.0 12.0
3895005205891 .00824 14 1,890 0.0% 4,0 3.0
5831007825305 00179 15 0.780 0.02 0 140

~O

0.597 0.04 4.0 140
1.718 0.88 4.0 11.0
1,693 0.93 7.0 13.0

56150101595398F . 0039%
6610008451070 00334
2920010139867YP . 00090

—
o~

—ta e) e he R b be s e R e e bmt m B b A e s bt b bk et e bt Pt e B et e s b ban et bt bn et b bt e b R e St et s s S

O e O e b et e e b e b e (D KD e bt e et e D e S e D b e n ba b Bt b e e D (D e b e e
: - - . . . -

[«

B-25

INITIAL RESUPPLY TIMES
REMOVAL INITIAL N0, IN BASE (DAYS)

NSN RATE OQPA FAP STOCK RESUPPLY NRTS BASE DEPOT
5841000656743 00935 1 1.0 18 2,173 0.09 4.0 14,0
6615000228011 00271 1 Lo 1 0.946 0.25 4.0 11.0
4615000593851 00608 1 1.0 26 4.642 0.92 4.0 14,0
5895008100140 00909 1 L0 19 2.309 0.06 4.0 17.0
6720001034963 L0006 1 0.5 10 0.234 0.19 5.0 40.0
6680006518045 00332 1 L0 18 2.510 0.94 6.0 11.0
5895009190410 00163 2 0.1 2 0.069 0.11 2.0 2.0
5895007903764 00558 f L0 18 1,397 0.08 4.0 16,0
5895008100189 L00973 1 1.0 24 2.854 0.08 4.0 15.0
2010010092822YF .00164 1 0.5 1é 4,726 0.96 7.0 15.3
1630008521432 00068 2 L0 38 0.741 0.02 10.0 28.0
$6100094531128F .00352 1 1.0 42 20.708 0.95 3.0 13.0

APPENDIX C
PROGRAM LISTINGS

This appendix provides listings of the FORTRAN programs described below.

Sortie-Generation Model (SGM)

The SGM consists of a main program and 39 subroutines, functions,
and block data subprograms. The main program is listed first. The subpro-

grams, each beginning on a new page, are then listed in alphabetical order.

Scenario Input Program

This program provides an interactive interface to the SGM and is
used to prepare a scenario parameter input file for an SGM run. The main
program is listed first followed by the subprograms.

Plot Program
This program provides the graphs of SGM sortie results which appear

in every SGM run. It produces graphs of the average sorties per aircraft per

day and also total sorties flown per day.

SGM PROGRAM

PRECEDING PAGE BLANK=iOT FIL¥

c-3

Crexrsadirt 0529/N232D/SGH/NEWSOM

CHHHHHHHHHHHH R
Ced MAIN PROGRAM
CHHHHHHHHHHHHHHHE R R R S HH
C+ MAIN - MAIN PROGRAM FOR LMI SORTIE-GENERATION MODEL (SGM).
Caus THIS IS THE MAIN PROGRAM FOR THE LMI SORTIE GENERATION

Caxs MODEL (SOM), A LIST OF ALL COMMON BLOCKS AND PARAMETER STATEMENTS
Ca¢# USED IN THE MODEL IS PROVIDED AT THE BEGINNING OF THIS MAIN

CH+ PROGRAM., THE PROCESSING SEQUENCE IS AS FOLLOWS - FIRST,

Cred ALL INPUTS ARE LOADED AND NECESSARY INITIALIZATION PERFORMED.
Csed THEN, THE ACTUAL SIMULATION IS PERFORMED, AND FINALLY THE RUN
Cax+ RESIALTS ARE PRINTED TO THE STANDARD OUTPUT FILE,

Care

Che# INPUT FILES —

Cets Ol - SCENARIO INPUT PARWMETERS

Ceet 02 - WORK CENTER INPUT DATA

Che 03 - SCRATCH FILE USED FOR DAILY SCENARIO PARAMETERS

CHé 0h - SPARES INPUT DATA

Ca## OUTPUT FILES —

Coe 06 - STANDARD OUTPUT FILE (RUN RESULTS)

Cot# 07 - SORTIE RESULTS FOR PLOT PROGRAM

Coaé FARNETERS —

Coss WAXAC - MAXIMUM ALLOWABLE UE-STRENGTH (¥ AIRCRAFT)

Chet WA - MAXIMM ALLOWABLE MIMBER OF WORK CENTERS

Ceet WAXBIT - NUMBER OF BITS IN A COMPUTER WORD ON THIS SYSTEM
Cost MAIPRT - MAXIMM ALLOWABLE MMBER OF PART-TYPES. |
Che MAKVEC - MAYIMUM ALLOWIBLE LENGTH (IN COMPUTER WORDS) OF
Chee ATRCRAFT BIT-VECTORS. A BIT-VECTOR MUST BE AT
Cret LEAST "MAXAC® BITS LONG, PLUS AN EXTRA HORD

Cors T0 STORE THE AIRCRAFT COUNT FOR THAT VECTOR.

Cont HENCE, MAXVEC 1S A FUNCTION OF MAXAC AND MAXBIT.
Cist MAKDAY - MAXIMM ALLOWABLE NUMBER OF FLYING DAYS.

Co WAICYC - MAXIMUM ALLOWABLE MMBER OF FLYING CYCLES PER DAY
Cee# MAXSTAT - CURRENT MUMBER OF STATISTICS COLLECTED PER

Cont FLYING CYCLE PER DAY.

Cht LFLD - LENGTH OF BIT-FIELD USED IN THE WORK~CENTER

Cons REPAIR LISTS. THIS BIT-FIELD MIST BE LARGE ENGUGH
Cres T0 HOLD (MAXAC-1), THE TAIL NUMBER OF THE

Cont LAST AIRCRAFT. THUS, (2+#LFLD) MUST BE GREATER
Cone THAN OR EQUAL TO MAXAC.

Cott NPERWRD - NUMBER OF BIT-FIELDS PER COMPUTER WORD FOR THESE
Cont WORK—CENTER LISTS. THUS NPERWRD 15 A FUNCTION

Coer OF LFLD AND MAXBIT. ,
Cest NXIWC - LENGTH (IN COMPUTER WORDS) OF THE WORK-CENTER LISTS.
Coee MXINWC IS COMPUTED SO THAT THE MAXIMU ALLOWABLE
Cres MUMBER OF BIT FIELDS IN A WORK-CENTER LIST IS
Cone EQUAL TO MAXAC, THE MAXIMUM MMBER OF AIRCRAFT.
Gt IFSCEN - FILE NINBER OF SCENARIO INPUT FILE

Cots IFHC - FILE :MBER OF WORK CENTER INPUT FILE

Cos# IFPRT - FILE MMBER OF SPARES INPUT FILE

CHHHHHHHHHHH R HH R HO R
C_
PARAMETER MAXAC=108,MAXWC=25, MAXBIT=35, MAXPRT=304,

-5 PRECEDING PAGE BLANK=iwOT FI

’ - T ¥ Y PR ™2 T

& MAXVEC=2+(MAXAC-1) /MAXBIT
PARAMETER LFLD=7,NPERWRD=MAXBIT/LFLD, MXINNC=1+(MAXAC-1) /NPERWRD
PARAMETER MAXDAY=30,MAXCYC=10,MAXSTAT=5
PARAMETER IFSCEN=0Ll. IFWC=02, IFPRT=04
LOGICAL INFMAN, INFPART
C—
C-—/ACSTATE/ - RIKCRAFT BIT-VECTORS.
COMMON /ACSTATE/ LENGTH, NACVC(MAXVEC), IFLYVCIMAXVEC),
& MAINVC(MAXVEC), NORSVC(MAXVEC). LOSTVC(MAXVEC)
C—
C-—/ALIASC/ - TRBLES FOR PART-TYPE SAMPLING.
COMMON /ALIASC/ FRACT(MAXPRT), IALIAS{MAXPRT), FPARTS

C—
C—-/BITS/ - BIT MANIPULATION TABLES.

COMMON /BITS/ MASK0.MASK(35), MLEFTO,MSKLFT(36),
& 1ZCOUT, ICOUNT(63)
C—

C—/DEMAND/ - MEAN AND VARIANCE FOR TOTAL PART DEMANDS.
COMMON /DEMAND/ ACMEAN, ACVAR, NPERAC

C—
C—/INPUT/ - FLYING SCENARIO PARAMETERS.
COMMON /INPUT/ INITUE, NAC, PATTRIT, IRES, RNMCM, INFFART,
¥ MAXFLY(MAXCYC), INFMAN, ISCALE, IAUGMNT
{—
{-—/PARTS/ - PART CHARACTERISTICS.
COMMON /PARTS/ NPARTS, IQPA(MAXPRT), NBACKO(MAXPRT),
& BRPRATE(MAXPRT), DRPRATE(MAXPRT), INITS.KMAXPRT),
& RESUPP (MAXPRT), BNRTS(MAXPRT), NBASE(MAXPRT),
% NDEPQT (MAXPRT)
C—
C—/RSEELlY - SEED FOR RANDOM NUMBER GENERATOR.
COMMON /RSEED/ SEED
t—
C—/STATS/ - CUMLATIVE STATISTICS FOR SIMILATION RESILTS.
COMMON /STATS/ EXPECT(MAXSTAT,MAXCYC,MAXDAY),
% NRESRV, 1IDAY.ITOTRES(MAXDAY), LOSSTOT
C—
C—/TIME/ - FLYING CYCLE TIMES AND SIMULATION PARAMETERS,
COMMON /TIME/ PREFLITE, SORTLGTH, WRITCYC, TYMNITE,
& NSIM» ISIM, NUMDAY, IDAY, NCYCLES, ICYCLE
C—
C—/WCBRK/ - WORK CENTER BREAK RATES.
COMMON /WCBRK/ PACBRK, PACGABT. PERKWC(MAXWC). PWCPROD,
& PBRKSEQ(2, MAXWC) » INDXWC(MAXWC)
C——

C—/WCINPUT/ - WORK CENTER INPUTS.
COMMON /WCINPUT/ NWC, NCREWS(MAXWC), SRATE(MAXWC)
C-—
C—/WCMAINT/ - AIRCRAFT WORK CENTER LISTS,
COPMON /WCMAINT/ LISTRP{MXINWC, MAXHC), INREPR{MAXWC)
Comm
€~ #OLLECT STARTING CPU-TIME AND CORE-MEMORY REQUIREMENT
CALL PTIME(START)

CALL MEMSIZ(KSIIE)

C—

C—-~ #.0AD AND INITIALIZE SCENARIG, WORK CENTER AND PARTS DATA
CALL INIT(IFSCEN, IFWC, IFPRT)

C—
C-——~ #RUN THE RCTUAL SIMULATION
CALL SIMULA
C—
C— #PRINT-OUT THE RESULTS OF THE SIMMATION
CALL PRINTO
c—

C— #PRINT MEMORY AND CPU-TIME USED
CALL PTIME(FINISH)
WRITE (6, %001) (FINISH-START) #60. ,KSIZE

C—
sT0P

9001 FORMAT(//,"0CPY TIME USED =",Fb.2," MIN*./,

& “OMEMORY USED =",16," K WORDS")
END

1

CHHEHHHHHHHHHHHHHHHHHHHHHHHHHHHH R
SUBROUTINE ALIAS(N,FRACT.IALIAS)

CHHHHHHHHHHHHHHHHHH R R OO

C++ ALIRS - INITIALIZE TABLES NEEDED FOR "ALIAS" SAMPLING METHOD.

Caxs ALIAS IS A FORTRAN SUBROUTINE WHICH INITIALIZES THE

Cew# TABLES USED BY THE ALIAS METHOD FOR GENERATING RANDOM

Ch#t VARIABLES FROM A DISCRETE DISTRIBUTION. SEE - "ON THE

CHt ALIAS METHOD FOR GENERATING RANDOM VARIABLES FROM A DISCRETE

Ce## DISTRIBUTION® IN THE AMERICAN STATISTICIAN, NOV 1979, VOL 33,

Ce+# NO 4, PP 214-218, FOR A DESCRIPTION OF THIS METHOD AND THE

Cas+ ALGORITHM USED IN THIS ROUTINE TO CREATE THE NECESSARY TABLES.

C### TWO TABLES ARE NEEDED FOR THIS METHOR - A TABLE OF

Ca## FRACTIONAL CUTOFF VALUES AND ANOTHER FOR THE CORRESPONDING

Cet ALIASES. THE PROCEDURE USED TO GENERATE THESE TABLES IS A

C#+ SINGLE-PASS, LINKED-LIST PROCEDURE.

Caus

Cie INPUT -

Carx N - NUMBER OF MASS PDINTS OF THE DISCRETE DISTRIBUTION
C WHICH IS BEING SAMPLED.

Caes INPUT/QUTPUT -
C##% FRACT(I) - UPON INPUT, FRACT(I) IS THE PROBABILITY

Coan DISTRIBUTION OF A RANDCM VARIABLE. R.

(o FRACT(I)=PROBABILITY(R = 1), I=1,2:...4N .

Caws UPON QUTPUT FROM THIS SUBROUTINE, FRACT CONTAINS
Coes THE TABLE OF FRACTIONAL CUTOFF VALUES USED BY THE
Cans ALIAS METHOD.

Caer QUTPUT -

Ces¢ JALIAS(I) - TABLE OF ALIASES USED BY ALIAS METHOD. I=1.....N
CHHHHHEHHH

c.._
DIMENSION FRACT(N), IALIAS(N)
C——.
C— #INITIALIZE LIST HEADERS 77 NO ENTRIES
LHEAD = 0
MHEAD = 0
l:__..
C— #00 FOR(EACH POINT OF THE PROBABILITY DISTRISUTION)
FLOATN = FLOAT(N)
00 600 I=],N
C_-
— +INITIALIZE FRACTIONAL CUTOFF VALUE FOR THIS PCINT
FRACT(1) = FLOATN # FRACT(I)
C—
C— #]F(THIS INDEX BELONGS IN THE "LESS" LIST, I.E. THOSE
C— INDICES FOR WHICH FRACT{(I) IS LESS THAN 1.0)THEN
IF(FRACT{I}.GE.1.0) GO TO 100
- C.——
C— #ADD THIS INDEX TO HEAD (F "LESS® LIST
IALIAS(I) = LHEAD
LHEAD =1
C—
. C—- #ELSE (INDEX BELONGS IN "MORE" LIST)
60 T0 200

Cc-3

100 CONTINGE
C—
— +ADD INDEX TO HEAD OF "MORE" LIST
IALIAS(1) = MHEAD
MHEAD =1
C—
— #END IF (WHICH LIST TEST)
200 CONTINUE
C.._
C— #D0 WHILE(BOTH LISTS ARE NOT EMPTY)
300 CONTINUE
[F{MHEAD.EQ.Q) 6O TO SO0
IF(LHEADLEQ.0) GO TO G0
C_
— *REMOVE NEXT INDEX FROM “LESS® LIST
LNEXT = LHEAD
LHEAD = [ALIAS{LHEAD)
C_.
(—- #SET ALIAS FOR THIS INDEX TO NEXT ENTRY IN "MORE" LIST
TALIASCLNEXT) = MHEAD
C._
C—- #IPDATE CUTOFF VALUE FOR THIS °MORE™ ENTRY
FRACT(MHEAD) = FRACT(MHEAIN - (1, O0-FRACTILNEXT))
':—
C— +[F(THIS INDEX NO LONGER PELONGS IN "MORE™ LIST)THEN
IF (FRACT (MHEAD) . GE, 1.0) GO TO 400
l:‘—
C—- *REMOVE INDEX FROM "MORE"™ LIST AND ADD IT TQ °LESS®
LNEXT = MHEAD
MHEAD = TALIAS{MHEAD)
IALIAS{LNEXT) = LhEAD
LHEAD = LNEXT
C_
C— #END [F (SWITCH LISTS TEST)
L] CONTINUJE
C__
— #END DO (LISTS LOGP)
GO TG 200
200 CONTINUE
C_
C-— ¢END DO (INDEX LOOP)
&0 CONTINLE
-
C— #ADJUST FRACT(]) TO SAVE TIME IN MNOM SUBROUTINE,
DO 700 I=1,N
FRACT(I) = FRACT(I) + (I-1)
700 CONTINUE
C_...
RETURN
END

CHHHHHHHHHHH R
SUBROUTINE ATTRIT(PLCST,NTOFLY, IFLYVC, LOSTVC, NLOST)

G R R

C++ ATTRIT - SIMULATE ATTRITION PROCESS DURING A SORTIE PERIOD.

Cawes ATTRIT IS A FORTRAN SUBROUTINE WHICH SIMILATES THE

Cwu# EFFECTS OF ATTRITION DURING A SURTIE, ATTRIT RAWS A RANICM

Catt SAMPLE FROM A BINOMIAL DISTRIBUTION BASED ON THE NUMBER OF

C### AIRCRAFT FLYING THE SORTIE AND THE PROBABILITY OF ATTRITICN

C#x+ GIVEN AN AIRCRAFT FLIES A SORTIE. ATTRIT THEN SELECTS THE

Cast RIGHTMIST AIRCRAFT FROM THE CURRENT FLYABLE AIRCRAFT VECTOR AS

Cx## THE AIRCRAFT WHICH WERE ATTRITED. THE RIGHTMOST ONES ARE SELECTED

Ca#% TO SPEED UP COMPUTATION IN OTHER RUUTINES,

Cxs
Cxes INPUT -
Cxx PLOST - PROBABILITY THAT AN AIRCRAFT ATTRITS GIVEN THAT IT
Cors FLIES A SORTIE.
Caer INPLIT/QUTPUT -
Cewr NTOFLY - NO. OF A/C TO FLY THIS PERIOD.
Cesx JFLYVC - FLYABLE AIRCRAFT STATUS VECTOR. INDICATES THOSE
Caxt AIRCRAFT WHICH ARE STILL FLYABLE IWRING THE CURRENT
Corx FLYING CYCLE. I.E. THOSE AIRCRAFT WHICH WERE FLYRELE
Caes AT THE START (F PREFLIGHT AND HAVE NOT GROUND-ARORTED,
Chet ATTRITED, OR BROKEN THUS FAR IN THE CYCLE.
Crsx THE FIRST WORD, IFLYVC(1), CONTAING THE TOTAL
Cree NUMBER OF AIRCRAFT STILL FLYABLE THUS FAR IN
Cans THE CURRENT FLYING CYCLE. THE REMAINDER OF THE
Crxe ARRAY IS A BIT VECTOR WITH EACH BIT REPRESENTING
Ches AN AIRCRAFT, A 1-BIT INDICATES THE AIRCRAFT IS
CHer STILL FLYABLE. NOTE THAT IFLYVC(!) ALSO INDICATES
Crxe THE NUMBER OF 1-BITS IN THIS EIT VECTOR.
Ceee LOSTVC - ATTRITED AIRCRAFT VECTOR. INDICATES THOSE AIR-
Coas CRAFT WHICH HAVE ATTRITED THUS FAR IN THE SIMULATION
Coses AND NOT BEEN REPLACED BY RESERVES. THE FIRST WORD,
(B LOSTVE(1), CONTAINS THE TOTAL NUMBER OF AIRCRAFT
Cens WHICH HAVE BEEN LOST AND NOT REPLACER BY RESERVES.
Crs THE REMAINDER OF THE ARRAY 1S A BIT VECTOR WITH
Cowt EACH BIT REFRESENTING AN RIRCRAFT. A 1-BIT INDICATES
Cieses THE AIRCRAFT HAS BEEN ATTRITTED. NOTE THAT
Cns LOSTVC(1) ALSO INDICATES THE NUMBER CF {-BITS IN
(e THIS BIT VECTOR.
Cas QUTPUT -
(et NLOST - NUMBER OF AIRCRAFT LOST UN THIS SORTIE
CHHHFH R R R L 42
C.—-
C— #DETERMINE NUMBER OF ATTRITIONS BY SAMPLING FROM THE
C— APPROPRIATE BINOMIAL DISTRiBUTION

- NLOST = NBINOM{PLOST.NTOFLY)
C.—
C— #IF (ANY AIRCRAFT WERE ATTRITED)THEN

IFINLOST LEQ. 0) GO TG 1000

C——
C— #REDUCE NO. OF A/C CHPABLE OF FLYING THIS FERIOD

NTOFLY = NTOFLY - NLOST

l:_._.

C— #TRANSFER RIGHTMOST AIRCRAFT FROM FLYAELE AIRCRAFT

C— VECTOR TG THE ATTRITED RIRCRAFT VECTOR
CALL TBITSR(NLOST, IFLYVC,LOSTVC)

C_-

C— #END IF (ZERQ ATTRITIONS TEST)
1000 CONTINE
f-—

RETURN

END

AD=-A110 899 LOGISTICS MANAGEMENT INST WASHINGTON DC F/6 15/%
THE SORTIE-GENERATION MODEL SVSTE”- VOLUME IV, SORTIE=GENERATIO=eETC(U)
SEP 81 M J KONVALINKA» J B ABEL MDA903-81-C-0166
UNCLASSIFIED LMI-ML102-VOL=4

CHEHEHHHHHHHHHHHHHHHHHHHHHHHHHH
BLUCK DATA

CHHHHHHHHHHHHHHHHHHHHHHH R

C++ BLOCK DATA - INITIALIZES COMMON TABLES FOR BIT MANIPULATIONS.

Caen THIS SUBPROGRAM INITIALIZES THE TABLES CONTRINED IN

Ce## THE /BIT/ COMMON BLOCK. THIS INITIALIZATION IS DONE

Ce# DURING COMPILATION: THE SUBPROGRAM CONTAINS NO

Cea# EXECUTABLE STATEMENTS. THE /BIT/ COMMON BLOCK CONTAINS

Cex THREE SETS OF TABLES WHICH ARE USED FOR ACCESSING BITS AND

C#«+ BIT FIELDS WITHIN A COMPUTER WORD. NOTE THAT THE FOLLOWING

Caxs PROGRAMMING TECHNIQUE IS USED IN EACH OF THESE TABLES - AN

Ca## EXTRA WORD IS PLACED BEFORE THE BEGINNING OF EACH TABLE. THIS

Ca## EXTRA WORD REPRESENTS TABLE(0), 1.E.,» THE OTH INDEXED WORD IN

Ca#+ THE TABLE, THUS , THE TABLE IS ACTUALLY INDEXED 0.1,2,...

Cs## THIS TECHNIQUE OF REFERENCING THE OTH WORD OF AN ARRAY IS

Cae# NOT STANDARD FORTRAN AND MAY NOT WORK WITH OTHER FORTRAN COMPILERS.

Ca## THESE TABLES REMAIN FIXED THROUGHOUT THE SIMULATION.

Cap

Cas# COMMON TRBLES —

Cemt MASK(D) - I=0»1)...,35. MASK IS THE BIT ACCESSING TABLE

Card USED IN THE SGM. THE BITS IN THE COMPUTER WORD
Caxt ARE NUMBERED. LEFT TO RIGHT, 0.1:2;...:35

Cai AND MASK(I) HAS A 1-BIT IN THE ITH POSITION AND
Cae IEROES ELSEWHERE. THIS TARLE IS USED TO MASK-OFF
Cons THE ITH BIT IN A COMPUTER WORD.

Crex MSKLFT(I) - I=0v1,...,36 . MSKLFT IS USED TO MASK-OFF THE
Caxs LEFTMOST BITS IN A COMPUTER WORD, THE FIRST
Ceer (LEFTMOST) 1 BITS OF MSKLFT(1) ARE {-BITS

Crie AND THE REMAINING BITS ARE ZERO. THUS, FOR
Cetk EXAMPLE, MSKLFT(0) WOULD BE ALL 0S AND

Criz MSKLFT{36) WOULD BE ALL 1S,

(et ICOUNT(I) - I=0,1,...,63. THIS IS A TABLE WHICH IS USED TO
Caiee COUNT THE NUMBER OF {-BITS IN ANY GIVEN &-BIT
Criet FIELD. IN A 6-BIT FIELD, THERE ARE 2%%#6 = 64
Caxs POSSIBLE BIT PATTERNS -- THE BINARY

Crax REPRESENTATIONS OF THE INTEGERS 0,1,2,...63.
Caes ICOUNT(I) CONTAINS THE NUMBER OF 1-BITS IN THE
Crer BINARY REPRESENTATION OF I, E.G.,» ICOUNT(3)=2 .
Caue THIS TABLE IS USEFUL IN COUNTING THE NUMBER OF
Caee 1-BITS REPRESENTING AIRCRAFT IN THE VARIOUS
CHe AIRCRAFT-STATUS BIT-VECTORS, THIS TECHNIQUE
Cres IS MUCH FASTER THAN A BIT-BY-BIT COUNT.

CHHHHHHHHHH
C—
COMMON /BITS/ MASKO,MASK(35), MLEFTO.MSKLFT(35),
] 12C0UT, ICOUNT(43)
C—
DATA MASK0/0400000000000 /
DATA MASK/ 0200000000000, 0100000000000

_é
|
i

02000000 + 01000000
0200000 » 0100000
020000 » 010000
» 01000
0200 v 0100
020 » 010
02 » 01

a® 2* R® A a° 2* 2*
“- e e e e e o
Y v % e e -

T

DATA MLEFT0/0/
DATA MSKLFT/0400000000000, 0500000000000, 0700000000000,

0777777777780, QTTTTTITITIO0 QTTTTITITITIO,
O7T77TTTII7778, OTTTTTTTIITI6, OTTTTTITITTI /

C) A" A& &° R° A® A® &° 2* A* a° 2
g

DATA IZCOUT/0/

DATA ICOUNT/ L 1y 2206 20 20 3 6 20 2
2 X 4 L2232
3 h 23 b & 3NN

3 4 W6 A D 23D
4 3 4 4 5 3 4 &4 5 4
3 5 &6/

CI & &* A® K® R® *

Cc-13

CHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH O
SUBROUTINE BREAK(PBREAK.PBRKSEQ, INDXWC,NTOFLY, IFLYVC, NORSVC)
CHHHHHHHHHH R
C++ BREAK - SIMULATE AIRCRAFT BREAKS AFTER A SORTIE.
Ce## BREAK IS A FORTRAN SUBROUTINE WHICH SHMULATES THE PROCESS
Cexk OF AIRCRAFT BREAKING UPON RETURNING FROM A SORTIE. GIVEN A NUMBER
Cwax OF FLYABLE AIRCRAFT AND THE OVERALL BREAK RATE, THIS ROUTINE FIRST
Cexe DETERMINES THE NUMBER OF AIRCRAFT WHICH BROKE. IT THEN DETERMINES
Cai# THE NUMBER AND DISTRIBUTION OF PARTS DEMANDS RESULTING FROM THESE
Ce## BREAKS, THEN ASSUMING IMMEDIATE AND MAXIMUM CANNABILIZATION, THE
Caee NUMBER OF NORS AIRCRAFT AMONG THESE BROKEN AIRCRAFT IS DETERMINED.
Cea# THOSE AIRCRAFT WHICH ARE NOT NORS ARE PROBABILISTICALLY BROKEN
Ce## DIRECTLY INTO THE VARIOUS WORNCENTERS.

Case

Cexx INPUT -

3 PBREAK - PROBABILITY THAT A FLYABLE AIRCRAFT BREAKS

Caex INTO AT LEAST ONE WORKCENTER UPUN RETURNING

Ches FROM A SORTIE.

Ceeé PBRKSEQ - 2-DIMENSIONAL ARRAY USED TO DETERMINE THE

CHet DISTRIBUTION OF ABORTS INTO THE VARIOUS

Ces WORKCENTERS.

Cesz INDXWC - AN INDEX ARRAY USED TO DETERMINE THE DISTRIBUTION
Ces OF BREAKS INTO THE VARIOUS WORK CENTERS.

Ceex INPUT/QUTPUT -

Cyee NTOFLY - NQO. OF A/C TO FLY THIS PERICD.

s IFLVVC ~ FLYABLE AIRCRAFT STATUS VECTOR. INDICATES THOSE
Cans AIRCRAFT WHICH ARE STILL FLYABLE DURING THE CURRENT
Cute FLYING CYCLE. I.E. THOSE AIRCRAFT WHICH WERE FLYABLE
Caus AT THE START OF PREFLIGHT AND HAVE NOT GROUND-ABORTED,
Cree ATTRITED, OR BROKEN THUS FAR IN THE CYCLE.

CHe THE FIRST WORD, IFLYVC(1), CONTAINS THE TOTAL
Cres NUMBER OF AIRCRAFT STILL FLYABLE THUS FAR IN

Cans THE CURRENT FLYING CYCLE. THE REMAINDER OF THE
Cans ARRAY IS A BIT VECTOR WITH EACH BIT REPRESENTING
Cans AN AIRCRAFT. A 1-BIT INDICATES THE AIRCRAFT IS
Cans STILL FLYABLE. NOTE THAT IFLYVC(1) ALSO INDICATES
Caes THE NUMBER OF 1-BITS IN THIS BIT VECTOR.

Cete NORSVC - NORS AIRCRAFT STATUS VECTOR. INDICATES THOSE

Cren AIRCRAFT WHICH ARE NORS DUE TO UNAVAILABLE PARTS,
Caxs THE FIRST WORD, NORSVC(1). CONTAINS THE TOTAL
Cons NUMBER OF 1-BITS IN THE NORS STATUS VECTOR.

Cane THE REMAINDER OF THE ARRAY IS A BIT STRING WITH
Cons EACH BIT REPRESENTING AN AIRCRAFT. A | INDICATES
Cres THE AIRCRAFT IS NORS. NOTE THAT NORSVC(1) ALSO
Caes INDICATES THE NUMBER OF {-BITS IN THIS RIT STRING.

CHHAHHHHHHHH A
C-!-

DIMENSION NORSVC(1)

[

C—- #IF(THERE ARE STILL ANY FLYABLE AIRCRAFT)THEN
IF(NTOFLY.EQ.0} GO TO 4000

C—

C—- #DETERMINE NUMBER OF AIRCRAFT BREAKING INTO WORKCENTERS

C-14

C— BY SAMPLING FROM THE APPROPRIATE BINOMIAL DISTRIBUTION |

NTOTBK = NBINOM{PBREAK,NTOFLY)
c..._
c— #IF (THERE ARE ANY BROKEN AIRCRAFT)THEN
IF(NTOTBK.EQ.0) GO TO 3000
c--
C— #REDUCE NO. OF A/C CAPABLE OF FLYING THIS PERIOD
NTOFLY = NTOFLY - NTOTBK ‘
C—
C— #+DETERMINE NUMBER/DISTRIBUTION OF PARTS DEMANDS RESULTING 1'
— FROM THESE BROKEN AIRCRAFT AND DETERMINE NEW NUMBER OF
— NORS AIRCRAFT AFTER IMMEDIATE AND MAXIMAM CANNABILIZATION
NEWNOR = NORSBK(NTOTBK.NORSVC(1))
NORDIF = NEWNOR - NORSVC(1)
C—
C— #+]F(NOT ALL THE BROKEN AIRCRAFT ARE NORS)THEN
IF (NORDIF.GE,NTOTBK) 60 TO 1000
c_
t— #BREAK THE LEFTMOST FLYABLE AIRCRAFT INTO MAINTENANCE ;
CALL WCDIST(NTOTBK-NORDIF,PBRKSEQ, INDXWC, IFLYVC) :
c__.
t— #END IF (ALL NORS TEST)
1000 CONTINUE
C-...
t— #[F(SOME OF THE BRUKEN AIRCRAFT ARE NORS)THEN
IF{NORDIF.LE.0) GO TO 2000
c—_
C— #TRANSFER LEFTMOST AIRCRAFT FROM FLYABLE STATUS
C— VECTOR TO THE NORS STATUS VECTOR
CALL TBITSL{NORDIF, IFLYVC,NORSVC)
c__
t— #END IF (NONZERO NORS TEST)
2000 CONTINUE
C‘-"
t— *END IF (ZERO BREAKS TEST)
3000 CONTINLE
C—-
C— *END IF (ZERO FLYABLE AIRCRAFT TEST) :
4000 CONTINVE i
C— ‘
RETURN

ke |
|
|

c-15 i

CHHHHNHHHEHHHNHHHHEHHHHHHEHEHRHHHHHHHHHEHHHARAHHHHHHHHHH

SUBROUTINE CRESERV{ IAUGHNT, LOSTVC, NRESRV, NAC)
CHHHHHHHHHHHHHHHHHHHHHHH

C+ CRESERV - COMMIT RESERVE AIRCRAFT.

Cres CRESERV IS A FORTRAN SUBROUTINE WHICH WILL ALLOCATE

Ce#s RESERVE AIRCRAFT TO REPLACE THOSE AIRCRAFT WHICH HAVE BEEN
Cees LOST DUE TO ATTRITION. IF ENOUGH RESERVES ARE LEFT, AL LOSSES
Ces# ARE REPLACED: HENCE THE ATTRITION VECTOR IS ZEROED OUT. IF
Caes THERE ARE NOT ENOUGH RESERVES TO COVER ALL THE LOSSES, THEN
Cees THE ATTRITIONS ON THE LEFT OF THE ATTRITION VECTOR ARE

Cens REPLACED. THIS ARBITRARY SELECTION WILL HELP TO SPEED UP THE
Caee SELECTION ROUTINES. NOTE THAT ALL RESERVES ARE ASSUMED T0
Cees BE FULLY MISSION CAPABLE (I.E. FLYABLE) WHEN COMMITTED.

Ceas

Caes INPUT —

Cest IAUGINT - FLAG INDICATING WHETHER RESERVES ARE TO BE USED
Coee ONLY AS ATTRITION FILLERS OR TO AUGNENT THE
Cues CURRENT UE-STRENGTH. IF IAUGMNT=0, RESERVES
Caas ARE USED ONLY TO REPLACE COMBAT LOSSESS HENCE
Caee NOT ALL RESERVES MAY BE COMMITTED WHEN THEY
Cees BECOME AVAILABLE, IF TAUGMNT=1, ALL RESERVES
Coes ARE COMITTED IMMEDIATELY UPON BECOMING

Cone AVAILABLE. THIS FLAG IS A USER-SPECIFIED INPUT
Coes WHICH REMAINS FIXED THROUGHOUT THE SIMULATION.
Cees INPUT/QUTPUT —

» Cess LOSTC - ATTRITED AIRCRAFT VECTOR. INDICATES THOSE AIR-
Chus CRAFT WHICH HAVE ATTRITED THUS FAR IN THE SIMULATION
Cone AND NOT BEEN REPLACED BY RESERVES. THE FIRST WORD:
Caes LOSTVC(1), CONTAINS THE TOTAL NUMEER OF AIRCRAFT
Conn WHICH HAVE BEEN LOST AND NOT REPLACED BY RESERVES.
Cone THE REMAINDER OF THE ARRAY IS A BIT VECTOR WITH
Cons EACH BIT REPRESENTING AN AIRCRAFT. A 1-BIT INDICATES
Came THE ATRCRAFT HAS BEEN ATTRITTED. NOTE THAT
Cons LOSTVC(1) ALSO INDICATES THE MMBER OF 1-BITS IN
Cres THIS BIT VECTGR.

Cess NRESRV - NUNBER OF AIRCRAFT CURRENTLY IN RESERVE.
Caee NAC - CURRENT UE-STRENGTH, IF THE AUGHENT FLAG
Cant IS SET, THE RESERVES WHICH REMAIN AFTER
Caes REPLACING COMBAT LOSSES WILL BE USED T0
Caes AUGHENT THIS CURRENT UE-STRENGTH. IF THE
Cres FLAG 1S NOT SET OR THERE ARE NOT ENOUGH
Cons RESERVES T0 COVER ALL THE COMBAT LOSSES, THEN
Coer NAC WILL REMAIN UNCHANGED,
M CHEHHHEHHEEHHHH AR HHHE HHHH
c-_
DIMENSION LOSTVC(1)

.- C—

§—- #REPLACE AS NANY AIRCRAFT LOSSES AS POSSIBLE

NFILLS = MINO(LOSTVC(1),NRESRV)
CALL IBITSL(NFILLS,LOSTVC)
NRESRV = NRESRV - NFILLS

- L

C—- #IF(THERE ARE STILL REMAINING RESERVES AND EXCESS RESERVES

Cc-16

IF(NRESRV.LE.0)GO TO 100
IF(IAUGHNT.£,0)G0 TO 100

NAC = NAC + NRESRV

CALL UEUPDAT(NAC)

C_

C—- #SET REMAINING RESERVES TO NONE
MRESRV = 0

c_._

C— #END IF (AUGMENTATION TEST)

100 CONTINUE
c_..
RETURN

END

ARE TO BE AUGMENTED) THEN

#INCREASE UE BY AUGMENTING REMAINING RESERVES

CHHHHHHHHE R HHHHHHHHHHHHHHHHEHEHAHAHHHHRHHE
SUBROUTINE FLYCYC
CWMWWH“
C++ FLYCYC - SIMULATE AIRCRAFT FLYING CYCLE.
Cs#+ THIS ROUTINE IS THE BASIC LOGICAL STRUCTURE OF THE SGM
Cené SIMULATION. THE VARIOUS DISCRETE EVENTS WHICH CAN OCCLR,
C### GROUND-ABORTS, AIRCRAFT REPAIRS. BREAKS, ETC., ARE
Cax# STRUCTURED ACCORDING TO A USER-SPECIFIED FLYING CYCLE
Crex CONSISTING OF A MINIMAL-RECOVERY PERIOD, A SORTIE-PERIOD,
Ci#% AND EITHER A MAIT OR AN OVERNIGHT PERIOD. A SPECIFIED SEQUENCE
Cex# OF THESE FLYING CYCLES COMPRISE A FLYING DAY, AND THE
Crex SIMULATION CONSISTS OF A SEQUENCE OF FLYING DAYS.
Cs#¢ THE NUMEROUS INPUTS AND OUTPUTS (F THIS ROUTINE ARE
Crt+ ALL CONTAINED IN COMMON BLOCKS. DEFINITIONS ARE PROVIDED
Ce## IN THE VARIOUS ROUTINES CALLED BY FLYCYC AND WILL NOT
C#s# BE REPEATED HERE.
CRHEHHHHHHEHHEHEHHHHHHHE HE S HHHHHEHHHHHHHHHHEHHBHHHHHEHEHHHHHHHRH
c__
PRRAMETER MAXAC=108, MAXWC=25, MAXBIT=35,
3 MAXVEC=2+({MAXAC-1) /MAXBIT
PARAMETER MAXDAY=20,MAXCYC=10, MAXSTAT=S
LOGICAL INFMAN, INFPART
COMMON /ACSTATE/ LENGTH, NACVC(MAXVEC), IFLYVC(MAXVEC),

& MAINVC (MAXVEC), NORSVC(MAXVEC), LOSTVC(MAXVEC)
COMMON /INPUT/ INITUE, NAC, PATTRIT, IRES, RNMCM, INFPART,

% MAXFLY{MAXCYC), INFMAN, ISCALE, IAUGMNT
COMMON /STATS/ EXPECT (MAXSTAT,MAXCYC,MAXDAY),

& NRESRV, I1IDAY, ITOTRES(MAXDAY), LOSSTOT
COMMON /TIME/ PREFLITE, SORTLGTH, WAITCYC, TYMNITE,

& NSIM. ISIM, NUMDAY, IDAY, NCYCLES, ICYCLE
COMMON /WCBRK/ PACBRK, PACGABT, PBRKWC(MAXWC). PWCPRCD.

& PBRKSEQ(2, MAXWC) s INDXWC (MAXKWC)

COMMON /WCINPUT/ NMC, NCREWS(MAXWC), SRATE(MAXWC)

C—

C— #UPDATE OVERALL MAINTENANCE BIT-VECTOR FOR THIS FLYING CYCLE
CALL MUPDATE (NWC, MAINVC)

Lo
C— *COMPUTE NUMBER OF FULLY-MISSION-CAPABLE AIRCRAFT AND NUMBER
C-— OF AIRCRAFT TO SCHEDULE FOR NEXT SORTIE

C-— (A MISSION-CAPABLE AIRCRAFT IS DEFINED AS ONE NOT IN
C—— MAINTENANCE, NORS:; OR COMBAT LOSS STATES)
DO 100 L=2,LENGTH
IFLYVCIL) = XOR (NACVC(L),LOSTVC(L),MAINVCIL), NORSVCIL))
100 CONTINUE
IFLYVC(1) = NIVECT (IFLYVC)
NTOFLY = MINO (MAXFLY(ICYCLE), IFLYVC(1))

C—

C— #AIRCRAFT-REPAIR EVENT — DETERMINE AIRCRAFT REPAIRED IN

C-— EACH WORK-CENTER DURINCG MINIMAL-RECOVERY PERIOD
CALL REPAIR(PREFLITE,NWC,NCRENS, SRATE)

C—

C—— #GROUND-ABORT EVENT — DETERMINE NUMBER OF GROUND ABORTS
CALL GABORT{PACGABT, PBRKSEQ» INDXHC, NTOFLY, IFLYVC)

c-18

#STATISTICS EVENT — UPDATE CUMULATIVE STATISTICS

(STATISTICS ARE ALWAYS COLLECTED AT THE BEGINNING
OF THE SORTIE PERIOD. THE MAINTENANCE STAT
REFLECTS ONLY THOSE AIRCRAFT IN MAINTENANCE AT THE
START OF THE MINIMAL-RECOVERY PERIOD AND DOES
NOT ACCOUNT FOR GROUND-ABORTS OR REPAIRS DURING
THIS MINIMAL RECOVERY PERIOD)
EXPECT(1, ICYCLE, IDAY) = EXPECT(!, ICYCLE, IDAY) + NTOFLY
EXPECT{2, ICYCLE, IDAY) = EXPECT(2, ICYCLE, IDAY) + MAINVC(1)
EXPECT(3, ICYCLE, IDAY) = EXPECT(3, ICYCLE, IDAY) + NORSVC(1)
EXPECT(4, ICYCLE, IDAY) = EXPECT(4, ICYCLE, IDAY) + LOSSTOT
EXPECT(S, ICYCLE, IDAY) = EXPECT(S, ICYCLE, IDAY) + NRESRV

#IF(THIS IS NOT THE LAST CYCLE OF THE LAST DAY)THEN

(NONE OF THE FOLLOWING WORK WILL AFFECT
THE OUTPUT RESULTS IF THIS IS THE LAST SORTIE)
IF{(ICYCLE.GE.NCYCLES) . AND. { IDAY.GE.NUMDAY))GD TG 400

#ATTRITION EVENT — DETERMINE NUMBER OF ATTRITED AIRCRAFT
CALL ATTRIT(PATTRIT,NTOFLY, IFLYVC,LOSTVC,NLOST)
LOSSTOT = LOSSTOT + NLOST

SREPAIR EVENT — DETERMINE NUMBER OF AIRCRAFT REPAIRED IN EACH
WORK CENTER DURING THE SORTIE PERIOD
CALL REPAIR(¢SORTLGTH, NWC, NCREWS., SRATE)

#IF(IT IS NOT THE LAST SORTIE OF THE FLYING DAY)THEN
IFCICYCLE.EQ.NCYCLES) GO TO 200

$EREAK-EVENT — DETERMINE AIRCRAFT BREAKS AND PART DEMANDS
CALL BREAK (PACBRK,PBRKSER, INDXWC, NTOFLY, IFLYVC, NORSVC)

#AIRCRAFT-REPAIR EVENT —DETERMINE AIRCRAFT REPAIRED IN
EACH WORK-CENTER DUKING THE WAIT PERIOD
CALL REPAIR(WAITCYC, NWC,NCREWS, SRATE)

#ELSE (THIS IS THE UVERNIGHT PERIOD)
60 T0 300
CONTINVE

#PARTS-REPAIR EVENT — DETERMINE SPARE PARTS REPAIRED
IN THE LAST 24-HOUR PERIOD
CALL PRTREP(24, ,PBRKSEQ, INDXWC, NORSVC)

#BREAK-EVENT — DETERMINE AIRCRAFT BREAKS AND PART DEMANDS
CALL BREAK(PACBRK,PBRKSEQ, INDXWC, NTOFLY, IFLYVC, NORSVC)

*#AIRCRAFT-REPAIR EVENT - DETERMINE OVERNIGHT AIRCRAFT REPAIRS
CALL REPAIR(TYMNITE,NWC,NCRENS, SRATE)

*COMMIT-RESERVES EVENT — BRING-IN AVAILABLE FLLLY-MISSION-
CAPABLE RESERVE AIRCRAFT TO REPLACE ANY COMBAT LOSSES

CALL CRESERV(IAUGMNT,LOSTVC, NRESRV, NAC)

C—
C— #END IF (OVERNIGHT PERIOD TEST)
300 CONTINUE
C_.
C— #END IF(LAST-CYCLE-QOF-LAST-DAY TEST)
400 CONTIME
c._-
RETURN
END

c-20

CHEBHHHHHH I
SUBROUTINE GABURT (PABURT, PBRKSEG, INDXWC, NTOFLY, IFLYVC)

CHEHHHRHHHHHHH

C++ GABORT - SIMLATE AIRCRAFT GROUND-ABORT PROCESS.

Ce## GABORT IS A FORTRAN SUBROUTINE WHICH SIMMATES THE PROCESS

Cwiee OF AIRCRAFT GROUND-ABORTING INTO WORKCEMTERS AT THE END OF PREFLIGHT.

Cax+ GIVEN A MMBER OF FLYABLE AIRCRAFT AND THE OVERALL GROUND-ABORT

C#xt RATE, THIS ROUTINE CALCULATES THE TOTAL NUMBER OF GROUND-ABORTS,

Cex# OND THEN DETERMINES WHICH WORKCENTERS THESE AIRCRAFT BROKE INTO.
Ceer

Care INPUT -

C##x PARORT - PROBABILITY THAT A FLYABLE AIRCRAFT GROUNL-ABORTS
Conn INTO AT LEAST ONE WORKCENTER DURING PREFLIGHT.

Cext PBRKSER - 2-DIMENSIONAL ARRAY USED TO DETERMINE THE

Cuns DISTRIBUTION OF ABORTS INTD THE VARIOUS

Cons WORKCENTERS.

Cens INDXWC - AN INDEX ARRAY USED TO DETERMINE THE DISTRIBUTION
Causx OF BREAKS INTO THE VARIOUS WORK CENTERS,

Coxs INPUT/QUTPUT -

Cyee NTOFLY ~ NO. OF A/C TO FLY THIS PERIOD,

Cat IFLYVC - FLYABLE AIRCRAFT STATUS VECTOR. INDICATES THOSE
Caws AIRCRAFT WHICH ARE STILL FLYABLE DURING THE CURRENT
Crar FLYING CYCLE. I.E. THOSE AIRCRAFT WHICH WERE FLYABLE
Cred AT THE START OF PREFLIGHT AND HAVE NOT GROUND-ABORTED,
Cans ATTRITED, OR BRCKEN THUS FAR IN THE CYCLE,

Cee THE FIRST WORD, IFLYVC(1}, CONTAINS THE TOTAL

Caus NUMBER OF AIRCRAFT STILL FLYABLE THUS FAR IN

Cans THE CURRENT FLYING CYCLE. THE REMAINDER OF THE
Cans ARRAY IS A BIT VECTOR WITH EACH BIT REPRESENTING
Cass AN AIRCRAFT. A 1-BIT INDICATES THE AIRCRAFT IS
Coas STILL FLYABLE. NOTE THAT IFLYVC(1) ALSO INDICATES
Caus THE NUMBER OF 1-BITS IN THIS BIT VECTOR.

CHEHHHHHHRHHHHHHHHHEHH R
C—

C— #DETERMINE NUMBER OF AIRCRAFT GROUND-ABORTING INTO WORKCENTERS
C— BY SAMPLING FROM THE APFROPRIATE BINOMIAL DISTRIBUTION
NTOTBK = NBINOM{PABORT,NTOFLY)
[
C— #IF(THERE ARE ANY BROKEN AIRCRAFT)THEN
IF(NTOTBK.EQ.0) GO TO 1000
C_
C— +REDUCE NO, OF A/C CAPABLE OF FLYING TRIS PERIOD
NTOFLY = NTOFLY - NTOTBK
C—
£ #BREAK THE LEFTMOST FLYABLE AIRCRAFT INTO MAINTENANCE
CALL WCDIST(NTOTBK.PBRKSEQ, INDXWC, IFLYVC)
C-——
C— #END IF (IERO BREAXS TEST)
1000 CONTINUE
C-—
RETURN
END

c-21

CHEHHHHHHEHHHHHH O
SUBROUTINE INIT(IFSCEN, IFWC, IFPRT)

CHHHEHHHEHHHHHHHHHHEH B R

C+ INIT - INITIALIZE SGM SIMULATION.

Cee+ THIS ROUTINE READS AND INITIALIZES THE VARIABLES FOR AN

C#u# SGM RUN. [T PERFORMS THE FOLLOWING SERIES GF STEPS -

Cr## 1) LOAD AND SET THE VARIQUS PARAMETERS DESCRIBING THE RUN SCENARIO,

Cans 2) LOAD AIRCRAFT MAINTENANCE MANPOWER INPUTS, 3) LOAD

Co#s SPARE PARTS INFORMATION, AND 4) SET MISCELLANEOUS PARAMETERS

Ces+ FOR MODEL USE. EACH INPUT FILE IS CLOSED IMMEDIATELY AFTER

Coe ALL OF ITS INFORMATION HAS BEEN READ.

Cat

Ceex INPUTS —

Ce#x [FSCEN - INPUT FILE CONTAINING SCENARIO PARAMETERS

et JFWC - INPUT FILE CONTAINING MAINTENANCE MANPOWER INPUTS
Ca¥t IFPRT - INPUT FILE CONTAINING SPARE PARTS DATA

Cxt COMMON INPUTS —
Cs## INFPART - LOGICAL FLAG INDICATING WHETHER INFINITE PARTS

Case ASSUMPTION HOLDS,

Cet INFMAN - LOGICAL FLAG INUICATING WHETHER INFINITE MANPOWER
Caee ASSUMPTION IS BEING MADE.

Ce## SORTLGTH - LENGTH (IN HOURS) OF EACH SCRTIE.

C#et PACBRK - AIRCRAFT BREAK RATE.

Cesx NAC - CURRENT UE STRENGTH.

Caxs COMMON QUTRUT —
Cet EXPECT(I.JsK) - CUMULATIVE STATISTICS ARRAY.
CHHHHHHHHHHHRHHHEHHEHH
C—

PARAMETER MAXCYC=10, MAXSTAT=3, MAXDAY=30, MAXWC=25

COMMON /INPUT/ INITUE, NAC, PATTRIT, IRES. RNMCM. INFPART,

& MAXFLY (MAXCYC), INFMAN, ISCALE, IAUGMNT
COMMON /STATS/ EXPECT(MAXSTAT.MAXCYC,MAXDAY),

& NRESRV, IIDAY,ITOTRES(MAXDAY), LOSSTQT
COMMON /TIME/ PREFLITE, SORTLGTH,» WARITCYC, TYMNITE,

& NSIM, ISIM:» NUMDAY, IDAY, NCYCLES, ICYCLE
COMON /WCBRK/ PACBRK, PACGABT, PBRKNC(MAXWC), PWCPROD,

% PBRKSEQ(2, MAXWC)» INDXWC(MAXHC)

C.—

C-— #L0AD AND SET SCENARIO INPUT PARAMETERS
CALL INITSCN(IFSCEN)

C-— #LOAD AND INITIALIZE SPARE-PARTS DATA
CALL INITPRT(IFPRT. INFPART, SURTLGTH, PACBRK)

C— #READ AIRCRAFT MAINTENANCE MANPOWER INPUTS
CALL INITWC(IFWC, INFMAN,NAC)

C-— #IERC-QUT CUMILATIVE-STATISTICS ARRAY
(ALL ZERO(EXPECT, MAXSTAT#MAXCYC#MAXDAY)

RETURN
END

Cc-22

CHEHHHHHHHHHEHH R HHHHH
SUBROUTINE INITBO(NAC)

CHHHHHHHHHHHHHHHHHHHHHHHHHHHE

C++ INITBD - INITIALIZE PARTS IN RESUPPLY AT START OF SIMUALATION.

Caxs INITBO INITIALIZES THE NUMBER OF BACKORDERS

Cext FOR EACH PART TYPE AT THE START OF EACH SIMULATION

Cwe# REPLICATION. FOR ERCH PART TYPE, A RANDCWM SAMPLE IS DRAWN

Ceex FROM THE APPROPRIATE POISSON DISTRIBUTION 7O DETERMINE THE

C### NUMBER IN RESUPPLY AND THE MUMBER OF BACKORDERS IS COMPUTED

Cex USING THIS RESUPPLY NUMBER AND THE INITIAL SIGCK

Cerx LEVEL., THE MEAN OF THE POISSON FOR EACH PART IS THE

C##+ PIPELINE FOR EACH TYPE. "NAC" INDICATES NUMBER OF ON~HAND

Ceit AIRCRAFT AT THE START OF THE SIMULATION.

Cean

Cxex INPUTS —

Cx¢ NAC - CURRENT UE-STRENGTH.

Cair COMMON INPUTS —

CHe NPARTS - NUMBER OF PART-TYPES BEING MODELED.

C##% RESUPP(K) - (K=1,..,NPARTS) EXPECTED NUMBER OF TYPE-K PARTS
Casn IN RESUPPLY AT THE START OF THE SCENARIC. USED
Caxn AS THE MEAN OF A POISSON DISTRIBUTION TO GENERATE
Chie A SAMPLE OF TYPE-K PARTS INITIALLY IN RESUPPLY,

Cawt INITSUIK) - (K=l,...,NPARTS) INITIAL BASE STOCK LEVEL OF KTH
Crxes PART TYPE.

Cxet IQPACK) - (K=1»... NPARTS) QPA (F KTH PART TYPE.

Ceer BNRTS(K) - (K=1,...,NPARTS) BASE-NOT-REPAIRED-THIS-STATION
Crs RATE. INDICATES PRUPCRTICN OF TYPE-K FAILURES
Cuxs WHICH ARE REPAIRED AT THE BASE.

Caex COMMON OUTPUTS —
C### NBACKO(K) - (K=l»..,,NPARTS) NUMBER OF BACKORLERS FOR KTH
Cae PART-TYPE, BACKORDERS ARE DEFINED AS
Caie (# IN RESUPPLY)-(INITIAL STOCK LEVEL)
Cxs# NBASE(K) - (K=1.,...NPARTS) NUMBER OF TYPE-K PARTS IN BASE
Caet RESUPPLY.
Ca## NDEPOT(K) =~ (K=1,,..,NPARTS) NUMBER OF TYPE-K FART3 IN DEPOT
CHt RESUPPLY.
CHEEHHHHH S P
C_—

PARAMETER NAXPRT=304

COMMON/RSEED/ SEED

COMMON /PARTS/ NPARTS, IQPA(MAXPRT), NBACKO(MAXPRT) .

& BRPRATE (MAXPRT), CRPRATE (MAXPRT)» INI TSU(MAXPRT) , RESUPP (MAXFRT),
. BNRTS(MAXPRT) , NBASE (MAXPRT), NDEPOT (MAXPRT)
C-_
C— #D0 FOR(EACH PART TYPE)
DO 200 K=1,NPARTS
C__
C--- #DRAW SAMPLE FROM POISSON DISTRIBUTION FOR NUMBER OF
C-— PARTS IN RESUPPLY
MRESUPP=TPOISSON(RESUPP(K) , SEED)
C—
G- #COMPUTE INITIAL BACKORIERS

NBACKO(K)=NRESUPP - INITSHK)

C— *IF (IF BACKORDERS GREATER THAN PARTS ON-HAND)
IF (NBACKO(K) .LE. NAC#IQPA(K)) GOTU 100

C-—
C— #PRINT WARNING MESSAGE AND TRUNCATE NBACKO(K)
WRITE(6,9001)
& Ky NBACKO(K) » NAC, IGPA(K) » NRESUPP, INITSJ(K) , RESUFP(K)
NBACKQ(K)=NAC*IGPA(K)
NRESUPP=NBACKO(K) +INITSJ(K)
Cmm-
C-— #END IF{TRUNCATE BACKORDERS AT MAXIMUM AVAILABLE)
100 CONTINUE
Cmmm
C— #ALLOCATE THESE PARTS BETWEEN BASE AND DEPOT RESUPPLY
RBASE=0. 0
IF(BRPRATE(K).GT.0.0) RBASE=(1-BNRTS(K))/BRPRATE(K)
RDEPOT=0.0
IF (DRPRATE(K).GT.0.0) RDEPOT=BNRTS(K)/DRPRATE(K)
NDEP=NBINOM(RDEPOT/ (RBASE+RDEPOT) , NRESUPP)
NDEPQT (K)=NDEPOT {K) +NDEP
NBASE (K)=NBASE (K) +NRESUPP-NDEP
|:_
-— #END DO (PARTS LOOP)
0 CONTINUE
C__

RETURN
9001 FORMAT("0$3$$33$$ INITBO ERROR - TOO MANY PARTS IN RESUPPLY"./,
" oSessesss K=",13," NBACKO(K)=",IS5," NAC=".I3,* IGPA(K)=*,13,
& /4" 59688588 NRESUPP, INITSU(K), RESUPP(K) = *,215,F10.3)

END

CHEHEHHHHHHHAHHAHHHHHHHEHHHHHHHHHHHHHH A
SUBROUTINE INITPRT{IFILE, INFPART,SORTLGTH, PACBRK)

CHAE R HH R R H R R

C++ INITPRT -~ LOAD AND INITIALIZE SPARE-PARTS DATA.

Cse THIS ROUTINE LOADS THE SPARE-PARTS INPUT DATA AND

Cese INITIALIZES THE STATISTICS AND TABLES NEEDED FOR

Case SAMPLING TOTAL PART DEMANDS AND ALSO DETERMINING PART-TYPE

C##+ FOR A GIVEN BROKEN PART.

CRHEHHAHHH A

C—

PARAMETER MAXAC=108,MAXBIT=36, MAXVEC=2+(MAXAC-1) /MAXBIT

PARAMETER MAXPRT=304

LOGICAL INFPART

CHARACTER CNSN#18

COMMON /PARTS/ NPARTS, 1GPA(MAXPRT) . NBACKO(MAXPRT)»
& BRPRATE (MAXPRT) , BRPRATE{ MAXPRT) , INITSU{MAXPRT) , RESUPP (MAXPRT) »
& BNRTS{MAXPRT) , NBASE (MAXPRT } NDEPOT MAXFRT)

COMMON /ALIASC/ FRACT(MAXPRT), IALIAS(MAXPRT),FPARTS

I COMMON /DEMAND/ ACMEAN. ACVAR, NPERAC
C=—
C—— #IF{INFINITE PARTS ARE NOT ASSUMED. I.E. NORS AIRCRAFT ARE
C— TG BE MODELED)THEN
IF (INFPART)GO TO 900
—
C— #READ-IN PARTS DATA AND PERFORM ERROR CHECKS
NPARTS=1
100 CONTINUE
READ(IFILE,END=200) CNSN,FRACT (NPARTS), IGPA(NPARTS)FAP,
& INITSJ{NPARTS) ,RESUPP (NPARTS) , BNRTS (NPARTS) - BDAYS., DDAYS
IF((FRACT(NPARTS).GT.0.0). AND. (FRACT(NPARTS).LE.1.00)

& 50 T0 50

IF{IQPA(NPARTS).GT.0)G0 TO 50
IF{ (FAP.GT.0.0),AND. (FAP.LE.1,0))G0 TO S0
IF(INITSJ(NPARTS).GE.0)G0 TO 50
IF (RESUPP{NPARTS).GE.0.MGO TO S0
IF((BNRTS{NPARTS).GE. 0. 0). AND, {BNRTS(NPARTS).LE. 1.0))
& G0 10 50
IF (BDAYS, GE, 0.0)60 TO 50
IF (DDAYS,GE.0.0)60 T0 SO
WRITE(6,9003) CNSN,FRACT(NPARTS), IGFA(NPARTS) FAP,
& INITSJ(NPARTS), RESUPP (NPARTS) » BNRTS (NPARTS) , BDAYS, DDAYS
G0 70 100
30 CONTINGE
BRPRATE (NPARTS)=0.0
IF(BDAYS. GT,0,0) BRPRATE (NPARTS)=1.0/(24.0#BDAYS)
DRPRATE (NPARTS)=0.0
IF (DDAYS.GT.0,0) DRPRATE(NPARTS)=1,0/ (24, 0#DDAYS)
FRACT {NPARTS)=FRACT (NPARTS) #F AP+SORTLGTH
[F(FRACT(NPARTS),LE.0.0)G0 T0 100
NPARTS=NPARTS+1
IF(NPARTS.LE. MASPRTIGO TO 100
READ(IFILE, END=200)CNSN
WRITE (6, 9004) MAXPRT

Cc-25

200 CONTINUE
NPARTS=NPARTS-1
WRITE(4, 9005)NPARTS
C_
c— #CLOSE-QUT SPARES INPUT FILE
CALL FCLOSE{IFILE)
c_-
c— #COMPUTE MEAN AND VARIANCE OF RANDOM VARIABLE - TOTAL
c— -PART-DEMANDS PER BROKEN AIRCRAFT
CALL PSTAT{(PACBRK,NPARTS. 10PA. FRACT , ACMEAN, ACVAR, NPERAC)
C—
c— $CONVERT PART-DEMANDS-PER-FLYING-HOUR TO A PIF
CALL MAKEPD(NPARTS, [QPA,FRACT)
c_
c— #SET-UP TABLES NEEDED FOR ALIAS METHOD OF SAMPLING PART-DEMANDS
CALL ALIAS(NPARTS,FRACT, IALIAS)
FPARTS = FLOAT(NPARTS)
C-__
C— #ELSE (INFINITE PARTS ASSUMED)
60 TO 950
900 CONTINUE
c_
c— #PRINT MESSAGE INDICATING INFINITE SPARE PARTS ASSUMPTION
WRITE(4,9002)
E_.
C— #END IF (INFINITE SPARE-PARTS TEST)
950 CONTIME
C_._
RETURN
9002 FORMAT{1HO, 7X, "INFINITE SPARE PARTS ASSUMED FOR THIS SGM RUN» *,
& /+"1.E.» NO AIRCRAFT EVER WAITS FOR A SPARE PART.™)
9003 FORMAT(*0$$$$$$8% INITPRT ERROR - INVALID PART CHARACTERISTIC.
¥ I * $5458448 NPARTS, CNSN = *,13,1X,A18,
&/ 3455888 FRACT, IQPA, FAP = ",Fb.4,14,F5.2,
1 % /» 11311111 INITSJ, RESUPP, BNRTS = *,14,2F8.3,
¥ £ T 8958588 BDAYS, DDAYS = ",2F10.2)

7004 FORMAT("0$$$$$$$$ INITPRT ERROR - TOO MANY LRU TYPES®./,
L " ses88ess MAXPRT = *,I5)
9005 FORMAT(1H0,3X,"LRU TYPES - *,14)

END

C-26

CHEHHRHHHEHHHHHHHHHEHHHHHHHHHHHH
SUBROUTINE INITREP
CHHHEHHHHHHEHHHHHHHHHH
C++ INITREP - INITIALIZE VARIABLES FOR A SIMNLATION REPLICATION,
Canse THIS ROUTINE PERFORMS THE LENGTHY INITIALIZATION NEEDED
Cax# EACH SIMULATION REPLICATION OF THE SGM. THIS PROCESS
Cane IS ORGANIZED IN THE FOLLOWING MANNER, FIRST, MISCELLANEOUS
Caxt OPERATIONS ARE PERFORMED, THEN SPARES INITIALIZATION, AND
Cext FINALLY, WORK CENTER INITIALIZATION. THE NUMEROUS COMMON OUTPUTS
Caas OF THIS ROUTINE ARE NOT DEFINED HERE, BUT THE
Ce## OPERATIONS BEING PERFORMED SHOULD BE CLEAR FROM THE PROGRAM-
Can# DESIGN LANGUAGE (PDL) CORRESPONDING TO EACH OPERATION.
CHHHHHHHHHHHHHHHHHHHEHHHHHEHHHHHHHHHHHHHH
C—
PARAMETER MAXAC=108,MAXNC=25, MAXBIT=36, HAXPRT=304,
& MAXVEC=2+(MAXAC-1) /MAXBIT
PARAMETER LFLD=7,NPERWRD=MAXBIT/LFLD, MXINWC=1+(MAXAC-1) /NPERWRD
PARAMETER MAXDAY=30, MAXCYC=10,MAXSTAT=5
COMMON /ACSTATE/ LENGTH, NACVC{MAXVEC), IFLYVC(MAXVEC),

& MAINVCIMAXVEC)» NORSVC(MAXVEC), LOSTVC(MAXVEC)
COMMON /INPUT/ INITUE, NAC,» PATTRIT, IRES. RNMCM, INFPART,
& MAXFLY(MAXCYC), INFMAN, ISCALE, IAUGMNT

COMMON /PARTS/ NPARTS, IGPA(MAXPRT), NBACKO(HAXPRT),

& BRPRATE (MAXPRT), DRPRATE(MAXPRT), INITSJ(MAXPRT),
] RESUPP(MAXPRT), BNRTS(MAXPRT), NBASE{(MAXPRT),
& NDEPOT (MAXPRT)

COMMON /STATS/ EXPECT(MAXSTAT.MAXCYC,MAXDAY),
& NRESRV, IZDAY, ITOTRES(MAXDAY),LOSSTOT

COMMON /WCBRK/ PACBRK, PACGABT, PBRKWC(MAXWC), PWCPROD,
% PBRKSEQ{2,MAXWC), INDXWC (MAXWC)

COMMON /WCINPUT/ NWC, NCREWS(MAXWC)» SRATE(MAXWC)

COMMON /WCMAINT/ LISTRP{MXINWC,MAXWC), INREPR(MAXWC)

LOGICAL INFPART
C—

C-— +#INITIALIZE RESERVE AIRCRAFT COUNTS
CALL ZERO(ITGTRES,MAXDAY)

12DAY=0
NRESRYV=0
C__
C— #RESET INITIAL LE FOR THIS REPLICATION
NAC = INITUE
CALL UEUPDAT (NAC)
c__..
C— #INITIALIZE CUMILATIVE AIRCRAFT LOSSES TO NONE
LOSSTOT = 0
c—

C— +#CLEAR AIRCRAFT-STATUS BIT-VECTORS
CALL ZERO(LOSTVC, MAXVEC,

& NORSVC, MAXVEC,

& INREPR, MAXWC }

C—

C—- #SET FIRST NAC BITS OF THE FLYING BIT-VECTOR 70 FLYABLE

D0 100 I=1,LENGTH

c-27

————

100 IFLYVCIT)=NACVC(])

C-— +¢[F{INFINITE PARTS NOT ASSUMED) THEN

IF(INFPARTIGO TO 200
C-——
C— #CLEAR BASE AND DEPOT RESUPPLY COUNTS
CALL ZERO(NBASE: NAXPRT, NDEPOT, HAXPRT)
g-—
C—— +CALCULATE INITIAL BACKORDERS FOR EACH PART-TYPE
CALL INITBO(NAC)
C—
C— *INITIALIZE MMBER/DISTRIBUTION OF NORS AIRCRAFT
NORS = NORSAC(NPARTS, 1GPA NBACKO)
CALL TBITSLINORS, IFLYV, NORSVC)
C—
C— #END IF (INFINITE SPARES TEST)
200 CONTINUE |
c— |

C— #INITIALIZE NUMBER/DISTRIBUTION OF AIRCRAFT IN MAINTENANCE
NBRKAC = INT(RNMCMFLOAT(NAC))
CALL WCDIST(NBRKAC: PBRKSEQ, INDXWC, IFLYVC)
C—
RETURN .
00 ;

CHEHHHHHHHHHHHHHHHHHH R
SUBROUTINE INIT3CNCIFSCEN)

CHHHHHHHHHHHHHHHHHH
C++ INITSCN - READ AND INITIALIZES SCENARIO INPUTS,
Conr THIS ROUTINE LOADS THE SCENARIO PARAMETERS SPECIFIED
Cex# BY THE USER. IT ALSO PREPARES THE SCRATCH FILE (FILE 03)
C#x2 WHICH IS USED TO WRITE A COPY OF THOSE SCENARIO
Ca#¢ PARAMETERS WHICH ARE ALLOWED TO VARY ON A DAILY BASIS
Cexs THROUGHOUT THE SCENARIO. A LIST OF VALUES IS WRITTEN TO THIS
Ceas SCRATCH FILE FOR EACH SIMULATION DAY. THEN, WHEN EACH
C+## FLYING DAY BEGINS (FOR EACH SIMULATION REPLICATION), THE
Ceet PARAETER VALUES FOR THAT DAY ARE LOADED.
CHEHHHHHHHHHHHHHHHHHHHHHHHHH
C—

PARAMETER MAXWC=23, MAXVARY=3, MAXCYC=10

CHARACTER#4 FTOTYM,LTOTYM

CHARACTER#20 CHSEED

CHARACTER#80 NEXTLINE

LOGICAL VARY(MAXVARY),VARYSW, INFPART, INFMAN

COMMON /RSEED/ SEED

COMMON /TIME/ PREFLITE, SORTLGTH, WAITCYC,

& TYMNITE, NSIM, ISIM, MUMDAY > IDAY, NCYCLES. ICYCLE

COMMON /INPUT/ INITUE,NAC, PATTRIT, IRCS, RNMCM, INFPART,
& MAXFLY (MAXCYC) » INFMAN, ISCALE, TAUGHNT

COMMON /WCBRK/ PACBRK, PACGABT, PBRKWC{MAXWC). PWCPROD.
¥ PBRKSEQ{Z.MAXWC)» TNDXWC(MAXWC)
-
C-— #READ STORED INPUT
3 FORMAT(V)

READ(IFSCEN,S) tVARY(1),I=1,MAXVARY)
READ(IFSCEN,S) CHSEED,FTOTYM.LTOTYM, INFMAN, INFPART, NSIN, NAC
& +PACBRK, RNMCM, NUMDAY, PREFLITE, SORTLGTH
READ(IFSCEN,5) ISCALE
NEXTLINE=" “
INITUE=NAC
WRITE(06,9000) NSIM,CHSEED, NAC
VARYSH=.F.
READ{ IFSCEN,S) PATTRIT,PACGABT, NCYCLES, IRES, WAITCYC, TYMRITE
READ(IFSCEN,S) (HAXFLY{I), [=1,NCYCLES)
IF (VARY(4)) GOTO 100
WRITE(06,9008) IRES
GOTO 200
100 CONTINUE
WRITE (06, 9007)
CALL CONCAT(NEXTLINE,28, VARY BY DAY/s1,11)
VARYSH=. T,
200 CONTINUE
IF (VARY(S)) GOTO 300
WRITE(06,9010) MAXFLY(1)
GOTO 400
00 CONTINUE
WRITE (06, 9009)
VARYSk=, T,

Cc-29

CALL CONCAT(NEXTLINE,4S, 'VARIES BY CYCLE/DAY/»1,19)
400 CONTINUE
WRITE(04,9011) NEXTLINE
IF (VARY(3)) GOTO 500
WRITE(06,9012) NUMDAY,NCYCLES,FTOTYN,LTOTYM, PREFLITE, SORTLGTH,
& WAITCYC, TYMNITE
GOTO 600
500 CONTINUE
WRITE(06,9013) NUMDAY,FTOTYM,LTOTYM, PREFLITE, SORTLGTH
VARYSH=.T,
600 CONTINUE
WRITE(06,9014) RNMCM. PACBRK
NEXTLINE=" -
IF (VARY(1)) GOTG 700
WRITE{06,9013) PATTRIT
GOT0 800
700 CONTINUE
WRITE(04,9016)
VARYSH=. T,
CALL CONCAT(NEXTLINE.19,“BY DAY’.1,6)
800 CONTINUE
IF (VARY(2)) GOTO %00
WRITE(06.9017) PACGABT,NEXTLINE
GOTO 1000
900 CONTINVE
CALL CONCAT(NEXTLINE.45, BY DAY',1.8)
WRITE(06,9018) NEXTLINE
VARYSHe. T,
1000 CONTINUE
DO 1200 IDAY=1,NUMDAY
WRITE(03) PATTRIT,PACGABT,NCYCLES, IRES, WAITCYC, TYMNITE
WRITE{03) (MAXFLY(J),J=1,NCYCLES)
IF {.NOT.VARYSH) GOTO 1100
WRITE(J6,9001) ‘DAY =/, 1DAY
IF (VARY{1)) WRITE(06,9002) PATTRIT
IF {(VARY(2)) WRITE(06,9003) PACGABT
IF (VARY(3)) WRITE(06,9004) NCYCLES,WAITCYC,TYMNITE
IF (VARY(4)) WRITE(06,9005) IRES
IF (VARY(5)) WRITE(06,9006) ‘CYCLE’,(J»J=1,NCYCLES)
IF (VARY(S)) WRITE(06,2006) ‘MAX-FLY’,
& (MAXFLY{J},J=1,NCYCLES)
1100 CONTINUE
IF {1DAY.EQ.NUMDAY) GOTO 1200
READ(IFSCEN,S) PATTRIT,PACGABT,NCYCLES, IRES, WAITCYC, TYMNITE
READ(IFSCEN,S) (MAXFLY(J),J=1,NCYCLES)

1200 CONTINUE

- . Coem=

C—- SCONVERT USER SEED TO A REAL NUMBER
DECODE (CHSEED, 5)SEED
[
; C— CLOSE SCENWRIO INPUT FILE
- C— CALL FCLOSE(IFSCEN)

Com-

C-30

RETURN
9001 FORMAT(’0‘,A5,13)
9002 FORMAT(ATTRITION RATE =’,Fb.4)
9003 FORMAT(’ GROUND-ABORT RATE =,Fb6.4)
9004 FORMAT(‘ WAVES PER DAY =13/ WAIT TIME =/,F4.2,
& // OVERNITE RECOVERY =,F35.2)
9005 FORMAT(’ RESERVES =,13)
9006 FORMAT(’ “,A7,10(2X,13))

9000 FORMAT(/1////4X $HEHHHHHHEHHHEHHHHUH I,
L Y i Y
R SOM RUN SHHHHHEHEHHHHHHHHEHHEH R, [, 8)
£
SRR (1], 4

’GIMLLATION - REPLICATIONS =",14,3X,

‘RANDOM NUMBER SEED = *,A8//0/,3X.“AIRCRAFT -’,3X,

‘UE =, 13)

9007 FORMAT(”+7,28X, ‘RESERVES”)

9008 FORMAT(“+7+27X, “RESERVES =/,13)

9009 FORMAT(’+’, 44X, ‘MAXIMUM LAUNCH-SIZE’)

9010 FORMAT(’+7,44X, “MAXIMUM LAUNCH-SIZE =/,I3)

9011 FORMAT(’ /,A80//0,3X, FLYING SCHEDILE -///07,10X, "WAVES’,3X,
& TAKEOFF
& / TIMES,6X, "MINIMAL,3X, “SORTIE/,2), "WAIT/.2X, “OVERNIGHT/ /
%
&

2* R® O* &* R* X*° &*

4X, “DAYS/,2X, “PER DAY’,3X.» “FIRST,3X, ‘LAST’, 4),
“TURNAROUND ", 2X» “LENGTH”» 2X, “TIME”, 2X+ ‘RECOVERY)
9012 FORMAT(”07,3X,13,5X,12,6X,A4,4X,A4,56X:F3.2,5X:F5.2,3X,F4. 2,
% 3X,F3.2)
9013 FORMAT(/0,3X,13,4X, ‘VARY,5X, A4, 4X, A4, 6X:F3. 2,5X+F3, 2, 2Xs

& ‘VARIES'»2X, “VARIES’/* “,9X, ‘BY DAY, 39X, “BY DAY‘,2X, ‘BY DAY")
9014 FORMAT("0”,3X, “RATES ~“//0”,&X, “INITIAL”» 17X, ‘AIRCRAFT "/

¥ 6X» /NMCM RATE”,3X, “ATTRITION/,3X, ‘BREAK RATE’»3X,

¥ “GROUND-ABORT/70” 7X,F5. 3, 7X> 13%+F6. 4+)

9015 FORMAT(+/517X,F6.2)

9016 FORMAT{+’,18X, ‘VARIES)

9017 FORMAT(’+",43X,Fb.4/° *,AB0)

9018 FORMAT(/+",45X, “VARIES’// .A80)
END

HHHEHHHHHHHHHHHHHHHHHHHHHHHHHH
SUBROUTINE INITWC(IFILE. INFMAN,NAC)
CHHHHHHHHHHHH
C++ INITWC - LOAD AND INITIALIZE MAINTENANCE WORK CENTER DATA.
Caus THIS ROUTINE INITIALIZES THE INFORMATION NEEDED
C#xs FOR MODELING THE AIRCRAFT MAINTENANCE WORK-CENTERS.
Ces+ [T READS THE MAINTENANCE MANPOWER INPUT FILE. PRINTS
Cenx A LISTING OF THESE INPUTS, AND COMPUTES ADJUSTED BREAK-
Ce## RATE ARRAYS FOR WORK-CENTER BREAKS

Caxt

Cer# INPUTS —

Cass IFILE - UNIT NUMBER OF THE INPUT FILE FROM

Cass WHICH THE WORK-CENTER INPUTS ARE READ.

Cres THIS FILE IS CLOSED-OUT AFTER THE INPUTS
Cest ARE READ

Crer INFWAN - LOGICAL VARIABLE INDICATING WHETHER INFINITE
Cens MANPOWER IS ASSUMED FOR ALL WORK-CENTERS. IF
Ceus INFMAN=TRUE THEN NUMBER OF SERVERS FOR EACH WC
Cons IS SET EQUAL TO THE MAXIMUM ALLOWABLE NUMBER
Car OF AIRCRAFT,

Cans NAC - UE (UNIT EQUIPMENT); NUMBER OF AIRCRAFT
Cne POSSESSED BY THE BASE OF INTEREST.

Cesie COMMON INPUTS —
Conn PACBRK - USER-INPUT AIRCRAFT BREAK-RATE. PROBABILITY

Crux THAT AN AIRCRAFT RETURNING FROM A SORTIE REQUIRES
Cass UNSCHEDULED MAINTENANCE IN AT LEAST | WORK-CENTER.
Crix PACGABT - PROBABILITY THAT AN AIRCRAFT GROUNL-ABORTS DURING
CHee THE PRE-TAKEOFF PERIOD.

Cens COMMON QUTPUTS —

Crae NiC - NUMBER OF WORK-CENTERS TO BE MODELED

Cast NCREWS - NUMBER-OF-SERVERS ARRAY. NCREWS(I) IS THE

Cres NUMBER OF SERVERS IN THE ITH WORK-CENTER.

Cone SRATE - SERVICE-RATES ARRAY. SRATE(I) IS THE SERVICE-
Cret RATE (IN AIRCRAFT PER HOUR) OF THE SERVERS

Cans FOR THE ITH WORK-CENTER.

Cexe PBRKSE@ - WORK-CENTER BREAK ARRAYS FOR THE SEQUENTIAL

Canr SAMPLING PROCESS OF DETERMINING WHICH WORKCENTERS
Crnt AIRCRAFT BREAK INTO.

Caan INDYNC - SORTED ARRAY OF WORK-CENTER INDICES USED WITH
Cins SEQUENTIAL-SAMPLING PROCESS,

CHHHHHHH
[

PARAMETER MAXWC=25, MAXAC=108, LFLD=7

COMMON /WCINPUT/ NWC, NCREWS(MAXWC), SRATE(MAXWC)

COMMON /WCBRK/ PACBRK. PACGABT, PBRKWC(MAXWC). PWCPROD,
4 PBRKSEQG(2; MAXWC), INDXWC (MAXWC)

LOGICAL INFMAN

C-— #READ AND ECHO-PRINT MAINTENANCE MANPOMER INPUT FILE
CALL WCREAD(IFILE» MAXWC, NWC, FBRKNC, NCREWS, SRATE)

C— +#IF INFINITE MANPOWER ASSUMED — RESET NUMBER OF SERVERS
C— PER SHIFT TO MAX MRMBER OF AIRCRAFT: THUS NO AIRCRAFT

Cc-32

s i e

C— WILL EVER WAIT FOR A SERVER
IFCINFMAN) CALL SPRAY(MAXAC, NCREWS, NWC)
IF (INFMANIWRITE (6, 9001)
Cm—
C—- #INITIALIZE WORK-CENTER BREAK ARRAYS FOR GROUND-ABORTS AND
C-— BREAKS: NOTE THAT THE SAME ARRAYS ARE CURRENTLY USED FOR BUTH
CALL WCPROB(NWC, PBRKWC, PBRKSEQ, INDXWC, PWCPROD)
t—
C-— +#PERFORM ERROR CHECK TO ENSURE LFLD PARAMETER LARGE ENOUGH
C— S0 THAT THE BIT-FIELD CAN STORE THE MAX AC #
IF(MAXAC. GT. 2##LFLDIWRITE(6, 9002)LFLD, MAXAC
C—
RETURN
9001 FORMAT(1HO, 7X, "INFINITE MANPOWER ASSUMED FOR THIS SGM RUN -*,/,
& 7X,"L.E.. THERE ARE NEVER ANY AIRCRAFT QUEUES IN MAINTENANCE.®")
9002 FORMAT("0$$$$$$$$ INITWC ERROR - LFLD PARAMETER TOO SMALL™./»
& " $545548S LFLD, MAXAC = *,2I5)
END
E
3
C-33

CHHHEHHHHHHHHHHHHHHHHHHH
INTEGER FUNCTION IPUISSON(RMEAN,SEED)

CHE R

C++ IPOISSON - GENERATE RANDOM SAMPLE FROM A PGISSON DISTRIBUTION.

Crn THIS ROUTINE GENERATES A RANDOM SAMPLE FROM A

Cex+ POISSON DISTRIBUTION WITH A GIVEN HEAN. THE EXPONENTIAL-DRAW

Cees METHOD IS USED FOR DISTRIBUTIONS WITH SMALL MEANS, AND

Cene A NORMAL APPROXIMATION IS USED FOR LARGER MEANS (20),

Cas

Cae INPUT —

Casx RMEAN - MEAN OF POISSON DISTRIBUTION FROM WHICH SAMPLE
Caxs IS TO BE GENERATED.

Cexx INPUT/QUTPUT —

Cex# SEED - SEED OF RANPOM NUMBER GENERATOR.

CHHEHEHHHHHHHH

[

C-— *IF(INPUT PARAMETER IS A LEGITIMATE MEAN FOR A POISSON)
IF(RMEAN.LT.0.0)G0 TO 400

C—
— #IF(MEAN IS NOT TOO LARGE)
IF(RHEAN .GT. 20.0) GO TO 200
Lo
C-— #SE EXPONENTIAL DRAW METHOD FOR POISSON SAMPLE
IPOISSON=-1
PROD=1.0
TEST=EXP (-RMEAN)
100 CONTINUE
IPOISSON=1POISSON+
PROD=PROD*UNIFM] { SEED)
IF(PROD. GE. TEST)GO TO 100
c-—
— #ELSE (LARGE MEAN)
60 70 300
200 CONTINUE
C—
C- #UUSE NORMAL APPROXIMATION TO POISSON
IPOISSON=MAXO(0, INT(XNORM(RMEAN, SORT (RMEAN) » SEED)+.5))
C—
C— #END IF (SIZE OF MEAN TEST)
300 CONTINUE
C._
€-— #ELSE (MEAN IS LESS THAN ZERO)
GO 70 500
400 CONTINUE
C—
c-~- #SET RETURN VALUE TO ZERO AND PRINT ERROR MESSAGE
IPOISSON = ¢
WRITE {6, 9001 JRMEAN
C—
— #END IF (LEGITIMATE MEAN TEST)

500 CONTINE

&

9001 FORMAT(“0$$$$$4$% IPOISSON ERROR - NEGATIVE MEAN ./,
" §5855849 RMEAN = ",F10.5)
END

C-35

CHHEHHHHHHHHHHHHHHEH
INTEGER FUNCTION LBITS(IWORD,NBITS)

CHAHEHHHHH

C++ LBITS - MASK-OFF LEFTMOST 1-BITS IN A COMPUIER WORD.

Cree LBITS IS A FORTRAN FUNCTION WHICH WILL SELECT A GIVEN

Ce% NUMBER OF 1-BITS FROM THE LEFTMOST PORTION OF A GIVEN INPUT

Ca## WORD. LBITS RETURNS A WORD CONSISTING OF THESE SELECTED

Cex# |-BITS WITH 0°S EVERYWHERE ELSE. NOTE THAT THE INPUT

Ce## WORD SHOULD CONTAIN AT LEAST AS MANY |-BITS AS THE NUMBER TO EE

Cex# SELECTED, ‘NBITS”,

Crus THIS ROUTINE IS SPECIFIC TO A COMPUTER WITH 36~BIT WORDS

Cas# SINCE 1T WORKS BY EXTRACTING &-BIT FIELDS.

Cees

Cex% INPUTS —

C##x IWORD - WORD FROM WHICH THE 1-BITS ARE TO BE SELECTED.

Cris THIS WORD SHOULD CONTAIN AT LEAST AS MANY 1-BITS
Crus AS REQUESTED. IF MORE THAN THAT ARE REQUESTED,

(2 THIS ROUTINE WILL RETURN AN EXACT COPY (F THE INPUT,
Cre® NBITS - NUMBER OF {-BITS TQ BE SELECTED FROM - 1MORD/.

Cra OUTPUT —

Cess |BITS - A COPY OF THE PORTION OF THE INPUT WORD CONTAINING
Cuns THE SPECIFIED NUMBER OF LEFTMOST [-BITS.

Cax# COMMON TABLES USED -
Cewt [COUNT(I) - NUMBER OF 1-BITS IN THE BINARY REPRESENTATICN OF THE

Caex INDEX 1. I=01:2y.,.:63

C#st MSKLFT(I) - MASK FOR WHICH THE LEFTMOST I-BITS ARE 1-BITS,

Crits AND THE REMAINDER OF THE WORD IS ZERO. I=1,2:2....36
Cxed MASK(D) - CONTAINS A 1 IN THE ITH BIT (COUNTING FROM THE LEFT)
Crrs AND 0°S EVERYWHERE ELSE. !=01,2,,...35

CHEHHHHHHHHHH R
—

PARAMETER MAXBIT=36,LFIELD=6

COMMON /BITS/ MASK0,MASK(35), MLEFTO,MSKLFT(36),

& TICOUT, ICOUNT (63)
c._.
C— #[F (NG BITS ARE REQUESTED)THEN
IF(NBITS.GT.0) GO TO 1000
C—
(- #RETURN A VECTOR OF ALL ZEROES
LBIT5 = 0
C-=—
C— #ELSE (SELECT LEFTMOST BITS)
G0 70 S000
1000 CONTINUE
C—
C— +SEARCHING FROM LEFT TO RIGHT, FIND THE &-BIT FIELD
C-— CONTAINING THE LAST BIT TO BE SELECTED
C-_
C-— *INITIALIZE DO
IBIT =0
IFOUND = 0
C—
C— #00 UNTIL(APPROPRIATE 6-BIT FIELD IS FOUND)

2000 CONTINUE

C—
C-— #UPDATE NUMBER (F 1-BITS FOUND SO FAR
IFOUND = IFOUND + ICOUNT(FLD(IBIT,LFIELD, IWORD))
C-__
£— #UPDATE FIELD COUNTER
IBIT = IBIT + LFIELD
C-—
C— #END DO (FIELD LOOP)
IF{(IFOUND.LT.NBITS) .AND. (IBIT.LT.MAXBIT)) GU TO 2000
C___
C— *¥CUMPUTE NUMBER OF EXTRA 1-BITS INCLUDED
NEXTRA = [FOUND - NBITS
{—
C-— #PERFORM ERROR CHECK TO ENSURE PRGPER NUMBER OF 1S FOUND
IF(NEXTRA.LT.0)WRITE (6, 9001 INBITS, IFQUND. NEXTRA
C-—
c— #*D0 WHILE(THERE ARE EXTRA 1S TO ELIMINATE)
3000 CONTINUGE
IF(NEXTRA.LE.0) GO TO 4000
C—
C— *DECREMENT BIT COLNTER
IBIT = IBIT - 1
C—
C--—- #DECREMENT EXTRA-BIT COUNTER IF THIS BIT IS A
IF (AND{ IWORD, MASK(IBIT)).NE,0) NEXTRA=NEXTRA-!
C-..
c— *END DO (EXTRA 1S LOOP)
G0 TO 3000
4000 CONTINUE
[
— #RETURN PORTION OF INPUT UP 7O, BUT NOT INCLUDING
c— THIS LAST BIT
LBITS = AND(IWORD,MSKLFT(IBIT))
C-—
C-— $END IF (ZERO BITS REQUESTED TEST)
5000 CONTINUE
C._
RETURN
9001 FORMAT("0$$$$$$8$ LBITS ERRUR - TOO FEW {-BITS TO MASK"./»
% bE1iiiii1] NBITS, IFOUND, NEXTRA = *,3I3)
END

C-37

CHHHHHHHEHHHHHHHHHHHHHHHHHHHEHHHHHHH R
SUBROUTINE MAKEPD (N, IQPA, DEMAND)
CHHHHHHE R
C++ MAKEPD - CONVERTS PARTS DEMAND ARRAY INTO A PDF.
Cant THE ALIAS METHOD REQUIRES A LEGITIMATE PROBABILITY
Crxt DISTRIBUTION AS AN INPUT. THIS ROUTINE TAKES THE QPA
Crit AND PROBLDEMAND] FIGURES FOR EACH PART, AND FURMS A PDF
Crus FROM THEIR PRODUCTS. THERE ARE N PART TYPES.
SR
Comm
DIMENSION 1QPA(N),DEMAND(N)
C—
SuM = 0.0
DG 30 K=1,N
DEMAND(K) = DEMAND(K) # FLORT{IGPA(K))
SUM = SUM + DEMAND(K)
30 CONTINUE
RECIP = 1.0 / SUM
SuM = 0.0
DG 60 K=1,N-1
DEMAND(K) = DEMAND(K) # RECIP
SUM = SUM + DEMAND(K)
60 CONTINUE
DEMAND(N) = 1.0 - SUM

C-38

CHEHHHHHHH
INTEGER FUNCTION MNOM (DUMMY)

CHHEHHH

C++ MNON - GENERATE MILTINOMIAL SAMPLE FOR PART DEMAND TYPE.

Caxt THIS FUNCTION GENERATES A MULTINOMIAL SAMPLE INDICATING

Csx¢ WHICH PART TYPE HAS BROKEN. IT USES TWG TABLES CREATED

Ce#x PREVIOUSLY BY SUBROUTINE “ALIAS".

Cans

C#x COMMON INPUTS -

Cran FPARTS - FLOATING-POINT VALUE OF NUMBER OF PART TYPES, N.
Cuits FRACT(I) - TABLE OF FRACTIONAL CUTOFF VALUES USED BY THE
Caes ALIAS METHOD. I=1h2:....N

Crs IALIAS(I) - TABLE OF ALIASES USED BY ALIAS METHOD. I=1,....N
Cx## QUTPUT -

Cone MNOM - INDEX INDICATING TYPE OF PART WHICH HAS BROKEN.
Cant MNOR=1,2,,..:N (NUMBER OF PART TYPES)

SHEHEEHHHHHHHHHEHHEHHHHHHHHEHHHHEHHAEHHHHHEHEHHHHEH S HHHHEHH

PARAMETER MAXPRT=304
COMMON /RSEED/ SEED
COMMON /ALIASC/ FRACT(MAXPRT). IALIAS(MAXPRT),FPARTS

C— #MAKE “U” A UNIFORM (0.N) RANDOM REAL NUMBER
U = FPARTS # UNIFM1(SEED)

C—— #*

C-— S#MAKE “IU° A UNIFORM RANDOM INTEGER (1,N)
IU = JFIX(U) + |

C-— #IF NECESSARY, REPLACE “IU” BY ITS ALIAS
IF (U .GT. FRACT(IU)) U = IALIAS(IW)

€--~ RESWLT IS RETURNED AS ‘MNOM’
MNOM = U

RETURN
END

Cc-39

CHEHEHHHHHHHHHHHHHHHHHHHHHHH
SUBROUTINE MUPDATE (NWC, MRINVC)

CHHHHHHHHHHHHHHHHHHHHHHHHHHH

C++ MUPDATE - UPDATE MAINTENANCE AIRCRAFT-STATE BIT-VECTOR.

Ca#+ MUPDATE UPDATES THE OVERALL MAINTENANCE BIT-VECTOR. THIS

C### UPDATING PROCESS CONSISTS OF GOING THROUGH EACH WORK-CENTER

Ceu# LIST OF AIRCRAFT AND MARKING THE CORRESPONDING BIT-POSITION IN

Ceus THE MAINTENANCE BIT-VECTOR FOR ANY AIRCRAFT IN SUCH A LIST: THUS,

Cexe ANY AIRCRAFT IN AT LERST ONE WORK-CENTER LIST WILL BE MARKED AS

Cen# BEING IN MAINTENANCE STATUS.

Cse# THE MAINTENANCE BIT-VECTOR IS UPDATED AT THE BEGINNING OF

Cu## EACH FLYING CYCLE, 1T IS NOT MAINTAINED DURING THE FLYING CYCLE,

Ce## SINCE IT IS ONLY NEEDED AT THE START OF PREFLIGHT TO DETERMINE

C#w# THOSE AIRCRAFT WHICH ARE NOT MISSION-CAPABLE BECAUSE THEY ARE

Caus [N AT LEAST ONE WORK-CENTER. IT IS MUCH FASTER TO UPDATE

Cee# ONCE EACH FLYING CYCLE RATHER THAN UPDATING IT EACH TIME A

Ca#% NORK-CENTER BREAK OR REPAIR OCCURS.

Cass
Carx INPUTS -
Cree NWC - NUMBER OF WORK-CENTERS BEING SIMULATED

Caxx COMMON INPUTS -

Ce#t MASK(I) - CONTAINS A 1 IN THE ITH BIT {COUNTING FROM LEFT)
Cant AND ZEROES EVERYWHERE ELSE. [=01...,35

Cext LENGTH - LENGTH (IN WORDS) OF AIRCRAFY BIT-VECTORS

Csxt INREPR(J) -~ NUMBER OF AIRCRAFT IN WORKCENTER-J.

Caet LISTRP(I,J) - LISTRP(. ,J) 1S A LIST OF AIRCRAFT NUMBERS

Crue INDICATING THOSE AIRCRAFT REQUIRING MAINTENANCE IN
Cos THE JTH WORK-CENTER (J=1,2,...,NWC). THIS LIST

Crud CONTAINS EXACTLY INREPR(J) AIRCRAFT NUMBERS. TO SAVE
Caxt SPACE, THESE LISTS HAVE BEEN PACKED INTO BIT-FIELDS
Cries INSTEAD OF WORDS. EACH NUMBER IS STORED IN A BIT-FIELD
Caet *LFLD" BITS WIDE; HENCE, IF "MAXBIT" IS THE LENGTH
Crex OF A COMPUTER WORD ON THIS SYSTEM, THEN THERE ARE
Cans (MAXBIT/LFLD) BIT-FIELDS STORED PER WORD. THE AIRCRAFT
Cans NUMBERS STORED IN THESE BIT-FIELDS INDICATE A UNIQUE
Casn BIT-POSITION IN THE VARIOUS AIRCRAFT-STATUS BIT-

Cant VECTORS. THE AIRCRAFT ARE NUMBERED,LEFT-TO-RIGHT,

Cens 0:1121...1(MAXAC-1) . TO GET THE ITH AIRCRAFT NUMBER
Cans IN A WORK-CENTER LIST, THE CORRESPONDING

Cast BIT-POSITION AND WORD-INDEX MUST BE COMPUTED.

Caes QUTPUTS -

Cxxt MAINVC ~ MAINTENANCE AIRCRAFT-STATUS BIT-VECTOR. EACH BIT

Cuet REPRESENTS AN AIRCRAFT. A | INDICATES THE

Cris CORRESPONDING AIRCRAFT 1S BEING REPAIRED IN AT

Caae LEAST ONE WORK-CENTER. AND 0 INDICATES THE

Casr AIRCRAFT IS NOT CURRENTLY IN MAINTENANCE.

CHHHHHHHHHEHHH
C.—-
PARAMETER MAXWC=2%
PARAMETER MAXAC=108,MAXBIT=34,MAXVEC=2+(MAXAC-1) /MAXBIT
PARAMETER LFLD=7,NPERWRD=MAXBIT/LFLD, MXINWC=1+(MAXAC-1)/NPERWRD
COMMON /WCMAINT/ LISTRP(MXINWC,MAXWC), INREPR{MAXWC)
COMMON /BITS/ MASKO, MASK(35),MLEFTO, MSKLFT (36},

C-40

& 12COUT, [COUNT(63)
DIMENSION MAINVC (MAXVEC)
C—-
C—— +INITIALIZE MAINTENANCE BIT-VECTOR TO NO AIRCRAFT
CALL IERO(MAINVC,MAXVEC)
C—
C— #D0 FOR(EACH WORK-CENTER)
IF(NWC.EQ.0) GO 7O 400
DO 300 J=1:NWC
c_
C— +D0 WHILE(STILL AIRCRAFT IN THIS WORK-CENTER MAINTENANCE LIST)
NUM = INREPR(J)
IF(NUM.EQ.0) GO TO 200
DO 100 I=1,NUM
C-—
C— #GET NEXT AIRCRAFT NUMBER ON LIST FROM APPROPIATE BIT-FIELD
[IAC = FLD(MOD(I-1,NPERWRD) #.FLD, LFLD,
& LISTRP(1+(1~1)/NPERWRD, J})
C—
— #COMPUTE WORD AND BIT POSITIONS INDICATED BY THIS AC #
IWORD = 2 + IAC/MAXBIT
IBIT = MOD(IAC,MAXBIT)
C...-
C— #MARK CORRESPONDING POSITION IN AIRCRAFT MAINT BIT-VECTOR
MAINVC(IWORD) = OR(MAINVC{IWORD), MASK(IBIT))
C—
C— #END DO (WORK~CENTER LIST LOOP)
100 CONTINUE
200 CONTINUE
c_...
C— #END DO (WORK-CENTER LOOP)
300 CONTINUE
400 CONTINUE
C_.
C-— «COMPUTE TOTAL AIRCRAFT IN MAINTENANCE BY COUNTING 1-BITS IN
— AIRCRAFT MAINTENANCE VECTOR
MAINVC(1) = NIVECT(MAINVC)
Lo
RETURN
END

C-41

CHHHHHEHHHHH O
INTEGER FUNCTION N1BITS(IWORD)

CHEHHHHHHH

C++ NIBITS - COUNT NUMBER OF 1-BITS IN A COMPUTER WORD.

Cans NIBITS IS A FORTRAN SUBROUTINE WHICH WILL RETURN THE

Cae# NUMBER OF 1{-BITS IN A GIVEN WORD. THIS ROUTINE IS SPECIFIC

Cexs TO A COMPUTER WITH 36-BIT WORDS, SINCE IT WORKS BY EXTRACTING

C#ae 6-BIT FIELDS FROM THE WORD. IT USES EACH 4-BIT FIELD EXTRACTED

C#es AS AN INDEX INTO A TABLE, AND THE ENTRIES IN THE TABLE CONTAIN THE

Caw# CORRESPONDING NUMBER OF 1-BITS FOR THAT INDEX.

Ces

Cees INPUT —

Cx#+ TWORD - WORD FOR WHICH THE 1-BITS ARE TG BE COUNTED

Cens QUTPUT —

Ce# NIBITS - NUMBER OF 1-BITS IN THE GIVEN INPUT WORD. HENCE,
Cans N1BITS RETURNS AN INTEGER BETWEEN 0 AND 36.

Caxs TABLE USED -

C#e% ICOUNT(I) - NUMBER OF 1-BITS IN THE BINARY REPRESENTATION OF THE
Caus INEX I. I=1,...143

CHHHHHHEHHHHHHHHHHHHH
Lo

COMMON /BITS/ MASKO,MASK{(35), MLEFTO0, MSKLFT(36),
& [ZCOUT, ICOUNT(63)

N1BITS = ICOUNT(FLD(0,6, IWORD))
ICOUNT(FLD(646, IWORD})
ICOUNT(FLD{12,6, IWORD})
TCOUNT(FLD(18,6, IWORD))
)
)

e
+ +

ICOUNT(FLD(24, 6+ [WORD)
ICOUNT{ FLD(30,6, IWORD)

) &° 2* R* av
+ + +

C-42

CHHHHHHHHHHHHHHHHAHH
INTEGER FUNCTION NIVECT(IARRAY)

CHHHH

C++ NIVECT - COUNT NUMBER OF 1-BITS IN A BIT-VECT(R.

Caxs NIVECT IS A FORTRAN SUBROUTINE WHICH WILL RETURN THE

Caes NUMBER OF {-BITS IN THE WORDS COMPRISING A GIVEN INPUT ARRAY,

Cess NOT INCLUDING THE FIRST WORD. THIS ROUTINE IS USED TO COUNT

Ca## THE NUMBER OF 1-BITS IN THE VARIOUS AIRCRAFT-STATUS

Caws BIT-VECTORS.

Cren THIS ROUTINE IS SPECIFIC TO A 36-BIT-WORD COMPUTER. SINCE IT

Cee WORKS BY EXTRACTING 6-BIT FIELDS FROM THE ARRAY WORDS. IT USES

Cew+ EACH 6-BIT FIELD EXTRACTED AS AN INDEX INTO A TABLE, AND THE

Caxs ENTRIES IN THE TABLE CONTAIN THE CORRESPONDING NUMBER OF 1-BITS

Cree FOR THAT INDEX.

Crea

Caas INPUT -

Cete IARRAY - ARRAY FOR WHICH THE 1-BITS ARE TO BE COUNTED.

Ca+#+ COMMON TABLE USED -

Ca#¢ [COUNT(I) - NUMBER OF 1-BITS IN THE BINARY REPRESENTATION OF THE

Cree INDEX 1. I=11....63

Caas QUTPUT -

Cesn NIVECT - NUMBER OF 1-BITS IN THE GIVEN INPUT ARRAY,
Cans EXCLUDING THE FIRST WORD.

CHHHHHHHHHHHHH R
-

PARAMETER MAXAC=108,MAXBIT=36, MAXVEC=2+{MAXAC-1) /MAKBITY

COMMON /BITS/ MASKO,MASK(3S), MLEFTO,MSKLFT(36),

& I12C0UT, [COUNT (63)
COMMON /ACSTATE/ LENGTH,NACVC(MAXVEC), IFLYVC(MAXVEC),
& MAINVC (MAXVEC), NORSVC (MAXVEC) , LOSTVC(MAXVEC)
DIMENSION IARRAY(1)
c—
NIVECT = 0
DO 1000 [=2,LENGTH
IWORD = IARRAY(])
NIVECT = NIVECT + ICOUNT(FLDB(0,6, INORD))
& + JCOUNT(FLD(6,6, IWORD))
4 + ICOUNT(FLD(12,4, [WORD) }
¢ + ICOUNT(FLD(18,6+ IWORD))
& + [COUNT(FLD(24.6, IWORD))
¥ + [COUNT(FLD{¢30,6, [WORD))
1000 CONT INUE
C_.
RETURN
END

CHEHHHHHHHHHHHHHHHHHEHHHHHH
INTEGER FUNCTION NBINOM(PBINOM:NTRYS)

G

C++ NRINOW ~ GENERATE RANDOM SAMPLE FROM BINOMIAL DISTRIBUTION.

Cars NBINCM GENERATES A RANDOM SAMPLE FROM A BINOMIAL DISTRIBUTION

Ce## WITH THE GIVEN INPUT CHARACTERISTICS, THIS ROUTINE USES A

Ca#+ COMBINATION OF TWO METHODS TO GENERATE THIS SAMPLE. FOR

Casi# BINONIALS WITH RELATIVELY SMALL NUMBERS OF TRIALS, THE

Ce#+ STRAIGHTFORWARD BERNOULLI TRIALS METHOD IS USED. FOR LARGER

C### VALUES, THE INVERSE TRANSFORM METHOD IS USED.

Caee NOTE THAT THE NUMBER OF FAILURES IN A BINOMIAL SAMPLE IS

Cast THE COMPLEMENT OF THE NUMBER OF SUCCESSES IN THAT DRAW. HENCE

Cax+ THIS ROUTINE WILL SAMPLE FROM THE COMPLEMENTARY BINOMIAL

Cea# DISTRIBUTION OF FAILURES WHEN THE PROBABILITY OF SUCCESS IS

Ca#+ GREATER THAN .5 .

Cren

Ceex INPUTS —

Cs++ PBINOM - PROBABILITY CHARACTERISTIC (F THE BINOMIAL.

Cone PBINOM ALSO EQUALS THE PROBABILITY THAT THE

Cr BERNOULLI VARIABLE UNDERLYING THIS BINOMIAL EQUALS 1.
Ce#2 NTRYS - NUMBER OF BERNOULLI TRIALS CHARACTERIZING THIS

Cans BINOMIAL.,

CHEHEHHHHHHHHHHHH S HHHHH SRR R
C=—-

COMMON /RSEED/ SEED

C_

C-— +INITIALIZE SAMPLE TO NO SUCCESSES
NBINOM = 0

C—

C— #IF{THIS IS NOT A SPECIAL DISTRIBUTION TO BE HANDLED SEPERATELY)
IF ((PBINOM.LE.0.0) .OR. (PBINOM.GE. 1.0)

& .OR. (NTRYS.LE.4)) GO TO 3000

C—

— #DRAW RANDOM SAMPLE FROM UNIFORM (0.1} DISTRIBUTION
RORAW = INIFM1(SEED)

C_-

C— #DETERMINE WHETHER TO SAMPLE SUCCESSES (R FAILURES
PFAIL = AMAX1(PBINOM, 1.0-PBINOM)
PSUCC = 1.0 - PFAIL

[

C— #COMPUTE QUICK APPROXIMATION TO PROB(O SUCCESSES)
PROB = 1,0 - FLOAT(NTRYS)#PSUCC
IF(RDRAW.LE.PROB} GG TG 2000

C_.

C— #COMPUTE EXACT PROBABILITY UF NO SUCCESSES
PROB = PFAIL#NTRYS

C—

L—- #IF (RANDOM DRAW DOES NOT FALL WITHIM THIS PORTION OF THE CDF)
[F(RORAW, LE.PROB} GO TO 2000

C—-

C—- #INITIALIZE LOOP TO FIND APPROPRIATE PLACE IN THE CDF

RATIO = PSUCL/PFAIL
NPLUS] = NTRYS + |

C-44

CDF = PROB
C—
%D0 UNTIL (APPROPRIATE CDF INDEX IS FOUND)
1000 CONTINUE
C—
C— #PDATE SAMPLE COUNTER
NBINGM = NBINOM + |
C-—
C— #COMPUTE NEXT ENTRY IN CUMULATIVE DISTRIBUTION FUNCTION
PROB = (FLOAT(NPLUS]-NBINOM) /FLOAT (NBINOM)) #RATIO#PROB
CDF = CDF + PROB
C—
C— +END DO (CDF LOOP)
IF{{RDRAW.GT.CDF) .AND. (NBINOM.LT.NTRYS)) GO TG 1000
c_
C— #END IF (0 SUCCESSES TEST)
2000 CONTINUE
C—
C— +COMPLEMENT RESLLT IF FAILURES WERE SAMPLED
IF(PBINOM.GT. .5) NBINOM = NTRYS - NBINOM
C—
C— #£LSE (SPECIAL CASES)
GG T0 7000
3000 CONTINGE
C—-
C— #[F(THIS IS A DEGENRATIVE DISTRIBUTION)THEN
IF((PBINOM.GT.0).AND. (FBINOM.LT.1.0).AND. (NTRYS.GT.0))
& GO TO 4000
C—
C— #SAMPLE FROM DISTRIBUTION (IF PBINOM=0, OR NTRYS=0
C— THEN WE ARE DONE)
IF(PBINOM.GE.1.0) NBINOM = NTRYS
c—
C— #ELSE (USE BERNGULLI TRIAL METHOD)
GO TO 6000
4000 CONTINCE
C_..
C— +PERFORM APPROPRIATE NUMBER OF BERNOULLI TRIALS
DO 5000 1=1,NTRYS
IF{UNIFM1(SEED),LE.PBINOM) NBINOM = NBINOM + {
5000 CONTINUE
c.—.
C— #END IF (DEGENERATIVE DISTRIBUTION TEST)
6000 CONTINUE
C—
C—- #END IF {(SPECIAL CASES TEST)
7000 CONTINUE
C—
RETURN
END

C-45

CHEHHEHHHEHHHHHHHHHHHHHHH
INTEGER FUNCTION NDMNDS(NBRKAC)

CHEHHHHHHHHHEHHHHHHHHHHHHEHHHHHHHHHHHHHHHH

C++ NOMNDS - GENERATE SAMPLE OF TOTAL SORTIE PART DEMANDS,

Cre NDMNDS 1S A FORTRAN FUNCTION WHICH GENERATES A

Caus SAMPLE NUMBER OF PARTS DEMANDS ON A SORTIE, GIVEN THE TOTAL

Cwits NUMBER OF AIRCRAFT WHICH BROKE ON THAT SORTIE. THE

C#x# PROBABILITY DISTRIBUTION OF TOTAL PARTS DEMANDS IS APPROXIMATED

Cex# USING EITHER A NORMAL DISTRIBUTION (IF MEAN IS LARGE ENOUGH TO

Ca#s APPLY THE CENTRAL LIMIT THEOREM) OR A POISSON DISTRIBUTION,

Ces

Caee INPUTS —

Cat NBRKAC - NUMBER OF AIRCRAFT WHICH BROKE ON THE SORTIE

Cas CONMON INPUTS —

Crex ACMEAN - EXPECTED VALUE OF THE RANDOM VARIABLE REPRESENTING
Cree THE NUMBER OF PARTS DEMANDS PER AIRCRAFT, GIVEN
Cans THAT THE AIRCRAFT HAS BROKEN UPON RETURNING FROM
Chns A SORTIE.

Cett ACUAR - VARIANCE OF TOTAL PARTS DEMAND PER BROKEN AIRCRAFT
Cxax NPERAC - TOTAL NUMBER OF PARTS PER AIRCRAFT. THIS IS USED TO
Cans ENSURE THAT A LEGITIMATE SAMPLE IS GENERATED.

CHHHHHHHHHHHHEHHHHHHHHF O
L=

PARAMETER CUTOFF=0.0

COMMON /RSEED/ SEED

COMMON /DEMAND/ ACMEAN, ACVAR, NPERAC

C_
C— #INITIALIZE SAMPLE TO NO PARTS DEMANDS
NDHNDS = 0
C_.
C— #IF(THERE WERE ANY BROKEN AIRCRAFT)THEN
IF (NBRKAC.EQ.0) GO TO 300
C__
C— #COMPUTE MEAN OF DISTRIBUTION OF TOTAL DEMANDS
— CORRESPONDING TO NUMBER OF BROKEN AIRCRAFT
FLTAC = FLOAT(NERKAC)
BMEAN = FLTAC # ACMEAN
C__
C— +]F(EXPECTED TOTAL DEMANDS IS SMALL)THEN
IF (BMEAN. GT. CUTOFF) GO TO 100
c__
C— #USE POISSON APPROXIMATION
NDMNDS = IPOISSON(BMEAN, SEED)
c.._
C— #ELSE
60 70 200
100 CONTINUE
Co—-
C— #USE NORMAL APPROXIMATION
BSTDEV = SERT(FLTACHACVAR)
NDIWNDS = MAXC(0, INT(XNORM(BMEAN, BSTDEV, SEED)+.5))
g—
C— *END IF (APPROXIMATION TYPE TEST)

C-46

200 CONTINUE
C--
— #ENSURE THAT A FEASIBLE ANSWER HAS BEEN GENERATED
NDMNDS = MINO(NDMND'S, NPERAC#HBRKAC)
C_.
c— #END IF (ZERO BROKEN AC TEST)
300 CONTINUE
c_
RETURN
END

C-47

CHEHHHHHHHHHHHHHHHHHH
INTEGER FUNCTION NORSAC(NPARTS, 1uPA:NBACKO)

CHEHHEHEHHHHHHHHHHHHHHHHHH

C++ NORSAC - CALCULATE INITIAL NUMBER OF NORS AIRCRAFT.

Caen NORSAC IS A FORTRAN FUNCTION WHICH CALCILATES THE CURRENT

Cexd NUMBER OF NORS AIRCRAFT - ASSUMING PERFECT CANNIBALIZATION.

Cres

Caee INPUT -

C##e NPARTS - TOTAL MUMBER OF PART TYPES,

Cs#+ IOPA(K) - NUMBER OF TYPE-K PARTS INSTALLED ON EACH AIRCRAFT,

C##x NBACKO(K) - NUMBER OF BACKORDERS FOR PARTS OF TYPE-K,IF

Cax NBACKO(K) IS POSITIVE, THEN UNFULFILLED REQUESTS
Ces FOR PARTS OF THIS TYPE HAVE BEEN MADE. IF IT IS
Caes NEGATIVE, THEN NBACKO(K) INDICATES THE NUMBER OF
Cave OF PARTS ON-THE-SHELF.

Ceix QUTRUT -

C#xe NORSAC - CURRENT NUMBER OF NORS AIRCRAFT BASED ON THE GIVEN
Case BACKORDER AND GPA INFORMATION AND ASSUMING PERFECT
Cin CANNABILIZATION.

CHHHHHHHHHEHHHHHH A
Lo
DIMENSION NBACKO(NPARTS). IQPAC(NPARTS)

C—
C— +INITIALIZE NUMBER OF NORS AIRCRAFT TO NOME
NORSAC = 0
o
C— #D0 FOR(EACH PART TYPE)
DO 2000 K=1,NPARTS
C—
{— #+]F(THESE PARTS CAUSE THE MAX NUMBER OF NORS THUS FAR)
IF (NORSAC#IGPA(K) ,GE. NBACKO(K)) GO TO 1000

C——
— #UPDATE NUMBER OF NORS AIRCRAFT

NORSAC=INT{FLOAT (NBACKO(K)) /FLOAT{ IGPALK)) + ,999)
C—
C— #END IF (NEW HORS MAXIMUM TEST)
1000 CONTINUE
C—
C— #END DU (PARTS LOOP)
2000 CONTINUE
C—

RETURN

C-48

i

CHHHHHHHHHHHHHHHAHHHH
INTEGER FUNCTION NORSBK{NBRKAC, NOROLD)

CHHHHHHHHHHHHHHHHHHHHHHHHE

C++ NORSEK - DETERMINES NORS AIRCRAFT FROM A SORTIE,

Caud NORSBK IS A FORTRAN FUNCTION WHICH CALCULATES THE MUMBER

C#ed OF NORS AIRCRAFT RESULTING FROM A SORTIE WITH A SPECIFIED MUMBER

Cawt OF BROKEN AIRCRAFT -~ ASSUMING IMMEDIATE AND MAXIMUM

Ceue CANNABILIZATION OF PARTS. NORSBK DETERMINES THE TOTAL

Ciee NUMBER AND DISTRIBUTION OF THE PARTS DEMANDS RESULTING FROM THIS

Ceer SORTIE. IT UPDATES FOR EACH PART TYPE DEMANDED, THE

Cwire NUMBER OF PARTS ON-THE-SHELF, BACKORDERED, AND IN RESUPPLY,
C#é

CHeé INPUTS —

C#e¢ NBRKAC - NUMBER OF AIRCRAFT WHICH BROKE DURING THE SORTIE
C#xt NOROLD - NMUMBER OF NORS AIRCRAFT BEFORE THIS LATEST SORTIE,
Caait COMMON INPUTS —

Ces JQPA(K) - NUMBER OF TYPE-K PARTS INSTALLED ON EACH AIRCRAFT.
Cae# INFPART - LOGICAL FLAG INDICATING WHETHER THE INFINITE PARTS
Ches ASSUMPTION HOLDS. IF INFPART IS TRUE THEN THERE
Crs 1S NEVER ANY SHORTAGE (F PARTS; HENCE, NO NORS AC.
Cxe COMMON INPUTS/OUTPUTS -

Cat NBACKO(K) - NUMBER OF BACKORDERS FOR PARTS OF TYPE-K.IF

Cant NBACKO(K) 1S POSITIVE, THEN UNFLLFILLED REGUESTS
Caus FOR PARTS OF THIS TYPE HAVE BEEN MADE. IF IT IS
Caus NEGATIVE, THEN NBACKO(K) INDICATES THE NUMBER
Crus OF PARTS ON-THE-SHELF.

Caed QUTPUT -

Cers NORSBK - NUMBER OF NORS AIRCRAFT AT THE END OF THIS SORTIE
Cans ASSUMING MAXIMIM AND IMMEDIATE CANNABILIZATION.

CHEHHE A R
C—

PARAMETER MAXPRT=304, MAXCYC=10

COMMON /PARTS/ NPARTS, JQPACMAXPRT), NBACKO(MAXPRT) ,

& BRPRATE (MAXPRT) » DRPRATE (MAXPRT), INITSJ(MAXPRT), RESUPP (MAXPRT)
& BNRTS(MAXPRT) NBASE (MAXPRT) , NDEPOT (MAXPRT)
COMMON /INPUT/ INITUE. NAC: PATTRIT, IRES. FNMCM, INFPART,
Y MAXFLY(MAXCYC), INFMAN, ISCALE, TAUGHMNT
LOGICAL INFPART

C__.
C— *INITIALIZE NEW NORS TO OLD NUMBER OF NORS AIRCRAFT

NORSBK = NOROLD
Ce—-
C— #[F(THERE ARE ANY BROKEN AIRCRAFT AND
C— INFINITE PARTS NOT ASSUMED) THEN

IF (NBRKAC,EQ.0) GO TO 5000

IFC{INFPART) GO TO 5000
C—-
C— #DETERMINE TOTAL NUMBER OF PARTS DEMANDS FROM THESE BROKEN AC

NDEMS = NDMNDS{NBRKAC)
Comm
C-— +[F(ANY PARTS WERC DEMANDED)THEN
IF (NDEMS.EQ.0) GO TO 4000

C—

C-49

#D0 FOR(EACH PART DEMAND)
DO 3000 I=1,NDEMS

#DETERMINE PART-TYPE FOR THIS DEMAND BY SAMPLING

FROM A MULTNOMIAL DISTRIBUTION
KTYPE = MNOM()

#UPDATE BACKORIERS FOR THIS PART TYPE
NBACKO(KTYPE) = NBACKO(KTYPE) + |

+IF (AN UNFULFILLED DEMAND HAS OCCURRED) THEN
IF (NBACKO(KTYPE).LE.0) GO TO 2000

#IF(THIS DEMAND CAUSES A NEW NORS AC)THEN
IF {NORSBX*#I@PA{KTYPE) . GE. NBACKO(KTYPE))
GO TO 1000

*INCREMENT NUMBER OF NORS AIRCRAFT
NORSBK = NORSBK + 1
IF { (NORSBK-NOROLD) . GE. NBRKAC) GOTQ 5000

#END IF (NEW NORS AIRCRAFT TEST)
CONTINJE

#END IF (UNFULFILLED DEMAND TEST)
CONTINUE

*END DO (DEMAND LOOP)
CONTINUE

#END [F (ZERO DEMANDS TEST)
CONTINUE

#END IF (NO BROKEN AC OR INFINITE PARTS TEST)
CONTINUE

CHHHHHHHHHHHHHHEHHHHH R

INTEGER FUNCTION NREPS(TIMET.NREPJ, NCRWSJ, SRATEJ)
CHHHEHHHHHHHEHHHHHHHHEHHEHH
C+ NREPS - RANDOM SAMPLE OF AIRCRAFT REPAIRS IN A WORK CENTER.
Cass NREPS IS A FORTRAN FUNCTION WHICH RETURNS A SAHMPLE NUMBER
Cax# OF AIRCRAFT REPAIRED IN A WORKCENTER, BASED ON THE LENGTH OF THE
C### REPAIR PERIOD, NUMBER OF SERVERS. REPAIR RATE FOR EACH SERVER.
C#ed AND THE NUMBER OF AIRCRAFT IN THE WORKCENTER AT THE START OF
Ca## THE REPAIR PERIOD. IT IS ASSUMED THAT NO NEW AIRCRAFT ARRIVE
Cex2 DURING THE REPAIR PERICD, AND REPAIR TIMES ARE EXPONENTIALLY
Cwe# DISTRIBUTED, WITH THE SAME DISTRIBUTION APPYING TO EACH SERVER
Ciwt [NDEPENDENTLY.

224

Caxx INPUTS -

Caee TIMET - LENGTH (IN HOURS) OF THE REPAIR PERIGD.

Care¢ NREPJ - NUMBER OF AIRCRAFT IN THE WORKCENTER AT THE
Cri# START OF THE REPRIR PERIOD,

CHer NCRWSY - NUMBER OF REPAIR CREWS (SERVERS) FOR THIS
Cane WORKCENTER.

Ca#+# SRATEJ - REPAIR RATE (AIRCRAFT/HOUR) FOR EACH CREW IN
Cane THIS WORKCENTER.

Cae# COMMON INPUT/OUTPUT —

C###¢ SEED - SEED FOR RANDOM NUMBER GENERATOR.

Ce# QUTPUT -

Cixt NREPS - NUMBER OF AIRCRAFT REPAIRED IN THIS WORKCENTER
e DURING THE REPRIR PERIOD. NREPS=0:+1:2y...:NREPY

CHHHAH R R
C-—
COMMON /RSEED/SEED

C_
C— #IF(NUMBER OF AC I[N REPAIR IS LESS THAN THE NUMBER OF CREWS)
IF (NREP. GT.NCRWSJ) G0 TO 1000
C—
C— #DETERMINE MUMBER OF AIRCRAFT REPAIRED BY SAMPLING
C—- FROM THE APPROPRIATE BINOMIAL DISTRIBUTION
NREPS = NREPJ - NBINOM(EXP(-SRATEJ*TIMET) , NREPJ)
C_..
£— #E1 SE (MORE AIRCRAFT THAN CREWS)
(0 TO 4000
1000 CONTINLE
C_
L— +INITIALIZE VARIABLES
NREPS =0
P =1.0
MAXREP = NREPJ - NCRWSJ + |
CWRATE = FLOAT {NCRWS.)#SRATEJ
EXPTYM = EXP(-CHRATE#TIMET)
C-—
C—- D0 UNTIL{A SERVER BECOMES IDLE OR THE NEXT AIRCRAFT
C-— DEPARTURE TIME EXCEEDS LENGTH OF REPAIR PERICD)
2000 CONTINUE
C-_
C— #GENERATE AND ACCUMULATE NEXT AIRCRAFT DEPARTURE FROM

Cc-51

THIS WORKCENTER
CUMP = CUMP * UNIFM1(SEED)

#EXIT LOOP, IF REPAIR TIMES EXCEED TIME INTERVAL LENGTH
IF(CUMP .LT. EXPTYM) GO TO 3000

#INCREMENT NUMBER OF ARIRCRAFT REPAIRED
NREPS = NREPS + |

#END DO (REPAIRED AIRCRAFT LOCGP)
IF{NREPS.LT.MAXREP) GO TO 2000

##A SERVER HAS JUST BECOME IDLE. PERFORM A BINOMIAL DRAW
T0 DETERMINE HOW MANY MORE AC ARE REPAIRED

#COMPUTE TIME LEFT IN THE INTERVAL
(LENGTH OF REPAIR PERIOD) - (TIME OF LAST REPAIR)
TLEFT = TIMET + ALOG(CUMF)/CWRATE

#*COMPUTE PROBABILITY AN AIRCRAFT IS NOT REPAIRED
IN THE REMAINDER OF THE INTERVAL
PNOREP = EXP(-SRATETLEFT)

*GENERATE A BINOMIAL DRAW TO [ETERMINE MUMBER OF
REMAINING AIRCRAFT WHICH ARE NOT REPAIRED
NOTREP=NB INOM{ PNOREP) NCRWS.H11

#COMPUTE TOTAL AIRCRAFT REPAIRED [WM ING PERIOD
NREPS=NREPJ-NOTREP

#EXIT FROM DO LOOP
CONTINUE

#END IF (MORE AIRCRAFT THAN CREWS TEST)
CUNTINUE

CHHHHHHHHHHHHHH
SUBROUTINE PRINTO

CHE I HHHHHHH
C+ PRINTO - PRINT-QUT RESULTS OF THE SIMULATION RUN.
Crite THIS ROUTINE PRINTS THE RESULTS OF THE SGM SIMULATION.
Ceu+ THESE RESLLTS CONSIST OF THE AVERAGE NUMBERS (F AIRCRAFT IN
Caes# THE VARIOUS POSSIBLE AIRCRAFT STATES AT THE START OF EACH
Ce# SORTIE PERIOD FOR EACH FLYING DAY OF THE SCENARIO. THE AVERAGE
Ca# SORTIES PER AIRCRAFT PER DAY IS COMPUTED. AND ALSO PRINTED.
Ce+# THESE SORTIES PER AIRCRAFT PER DAY FIGURES AND THE TOTAL SORTIE
C#u+ PRODUCTION PER DAY ARE PRINTED TO A SCRATCH FILE {(FILE 07) TO RE
(4 USED AS INPUT FOR SORTIE PLOTS.
CHHHHHHHHHHHHHHEHH
C—

PARAMETER MAXAC=108,MAXWC=25, MAXBIT=36, MAXPRT=304,
¥ MAXVEC=2+{MAXAC-1) /MAXBIT

PARAMETER MAXDAY=30, MAXCYC=10,MAXSTAT=5

COMMON /STATS/ EXPECT(MAXSTAT,MAXCYC,MAXDAY),

¥ NRESRV, 1ZDAY,ITOTRES(MAXDAY), LOSSTOT
CUMMON /TIME/ PREFLITE,SORTLGTH, WAITCYC,
& TYMNITE,NSIM, ISIM: NUMDAY, IDAY, NCYCLES, ICYCLE
COMMON /INPUT/ INITUE, NAC,PATTRIT, IRES, RNMCM: INFPART,
& MAXFLY (MAXCYC) » INFMAN, 1SCALE, TAUGHNT

COMMON /WCINPUT/ NWC, NCREWS(MAXWC), SRATE (MAXWC)
c__
C—- #PRINT EXPECTED NUMBER OF AVAILABLE AIRCRAFT FOR EACH SORTIE PERIOD
WRITE (6,900)
TOTFLY = 0.0
WRITE (7) FLOAT(ISCALE).NUMDAY
FSIM = FLOAT(NSIM)
DO 6000 J=1, NUMDAY
SORTYDAY = EXPECT(1,1.J}
OFFSCENE = EXPECT(4, 1, J)+EXPECT(S, 1.J)
WRITE(6,9008) J,1, (EXPECT(M, 1,J)/FSIMM=1,3)
DO 5000 I=2,NCYCLES-1
WRITE (6,9006) I.(EXPECT(M,I,J)}/F5IM:M=1,4)
SORTYDAY = SORTYDAY + EXPECT{1,1.J)
OFFSCENE = OFFSCENE + EXPECT(4,1,J) + EXPECT(S,I,J)
5000 CONTINUE
I = NCYCLES
SORTYDAY = {SORTYDAY + EXPECT(1,1,d))/FSIN
OFFSCENE = (OFFSCENE + EXPECT(4,1.J) + EXPECT(S,1,J))/FSIN |
AONSCENE = NCYCLES#(INITUE+ITOTRES(J)) ~ OFFSCENE

SORTYAC=NCYCLES#SORTYDAY /AONSCENE
WRITE (6+9009) I.EXPECT(1,1,J)/FSIM, SORTYDAY, :
& SORTYAC, (EXPECT(M, 1, J}/FSIM,M=2,4) "
TOTFLY = TOTFLY + SORTYDAY
C_._
£— #WRITE THE MEAN SORTIES PER DAY (FOR EACH LAY) TO A FILE THAT
C—- COULD BE USED BY CALLPLT2” TO PRODUCE A PLOT,

WRITE (7) SORTYAC, SORTYDAY
WRITE(6,9003) TOTFLY
6000 CONTINUE

C-53

Lo

WRITE (6,9010) TOTFLY

RETURN

9002
9003
9003

L

]

&
9006
9008
9009
%010

END

FORMAT (V)
FORMAT (F26.1)
FORMAT (“1///10X,’SORTIES/ SORTIES/ SORTIES/’.21X,
‘ClM. RES.”/
* DAY PER PERIOD,SX, DAY’,8X, AC’,4X,
Y NMCM NMCS LOSSES LEFT//)
FORMAT ¢ 7, 2X,15,F9.1,F29.1.F9.1,F8.1)
FORMAT (° *412,15,F9.1,F29.1,F9.1,F8.1,F8.1)
FORMAT (“ *12X,19,F9.1,F9,1,F11,2,2F9.1,2F8.1)
FORMAT (// TOTAL SORTIES FLOWN =’,F11.1}

C-54

CHHHHHHHH
SUBROUTINE PRTREP (RTIME, PBRKSEQ, INDXWC , NORSVC)

T HH

C++ PRIREP - SIMULATES PROCESS OF REPRIRING PARTS.

Cene PRTREP IS A FORTRAN SUBROUTINE WHICH SIMILATES THE PROCESS

Caet OF REPAIRING PARTS. PARTS REPAIR IS ASSUMED TO BE

Caew EXPONENTIAL WITH AN INFINITE NUMBER OF SERVERS. [.E. NO PART

Cews EVER HAS TO WAIT TO BEGIN SERVICE. IN ADDITION TO REPAIRING

Cewt PARTS, THIS FUNLTION CALCULATES THE NEW NUMBER OF NURS AIRCRAFT

Ce#+ REMAINING AFTER REPAIR OF THESE PARTS. IF ANY PREVIOUSLY NORS

Cee AIRCRAFT ARE READY TO GO INTO MAINTENANCE., THIS ROUTINE

Cew¢ WILL DISTRIBUTE THEM PROBABILISTICALLY AMONG THE VARIOUS
C##4 WORKCENTERS.

X232

Cese [NPUT -

(+## RTIME - AVERAGE TIME (IN HOURS) THESE PARTS HAVE BEEN
ot IN REPAIR SINCE THE LAST TIME PARTS REPALR WAS
(e SIMRATED,

Cewt PRRKSEQ - 2-DIMENSIONAL ARRAY USED TO DETERMINE THE

Crue DISTRIBUTION OF ABORTS INTO THE VARIOUS

Caue WORKCENTERS.

Cess INPUT/OUTPUT -

Cex NORSVC - NORS AIRCRAFT STATUS VECTOR. INDICATES THOSE
Cane AIRCRAFT WHICH ARE NORS DUE TO UNAVAILABLE PARTS.
Cans THE FIRST WORD. NORSVC(1), CONTAINS THE TOTAL
Cens NUMBER OF {-BITS IN THE NORS STATUS VECTOR.

Caes ARRAY 1S A BIT VECTOR WITH EACH BIT REPRESENTING
Cns AN AIRCRAFT, A 1-BIT INDICATES THE AIRCRAFT IS
Caen STILL FLYABLE. NOTE THAT IFLYVC(}) ALSO INDICATES
CHer THE NUMBER OF 1-BITS IN THIS BIT VECTOR.

Caxs COMMON INPUT -

Cran INFPART - LOGICAL FLAG INDICATING WHETHER THE INFINITE PARTS
Cree ASSUMPTION HOLDS. IF INFPART |S TRUE THEN THERE
CH IS NEVER ANY SHORTAGE OF PARTS: HENCE, NO

Canse NORS AC.

Caee NPARTS - NUMBER OF PART TYPES BEING MODELED.

Cess JOPACK) - NUMBER OF TYPE-K PARTS INSTALLED ON EACH AIRCRAFT,
Cext HPRATE(K) - REPAIR RATE (PARTS/HOUR) FOR TYPE-K PARTS

Cess INITSHKY - INITIAL BASE STOCK LEVEL FOR TYPE-K PARTS.

Cens COMMON INPUT/QUTPUT -

C#e¢ NBACKO(K) - NUMBER (F BACKORDERS FOR PARTS OF TYPE-K.IF

Ceee NBACKO(K) IS POS'TIVE, THEN UNFULFILLED REWUESTS
Cone FOR PARTS OF THIS TYPE WAVE BEEN MRDE. IF IT IS
Caee NEGATIVE, THEN NBACKO(K) INDICATES THE NUMBER OF
Coaee OF PARTS ON-THE-SHELF.

CHHEHHHH I
c__
PARAMETER MAXPRT=304, MAXCYC=10
COMMON /PARTS/ NPARTS. [QPA(NAXPRT) . NBACKO (MAXPRT)
BRPRATE (MAXPRT) , DRPRATE (MAXPRT) . [INITSU{MAXPRT } , RESUPP (MAXPRT) ,

] BNRTS(MAXPRT) . NBASE (MAXPRT) NDEPOT (MAXPRT)
COMMON /INPUT/ INITUE, NAC. PATTRIT, [RES. RNMCM. INFPART,
¢ MAXFLY(MAXCYC), INFMAN. ISCALE. IAUGMNT

C-55

DIMENSION NORSVC(1)

LOGICAL INFPART

L=
C— «INITIALIZE NEW NUMBER OF NORS AIRCRAFT TO NONE

NEWNGR = 0
C—
C— #IF(INFINITE PARTS NOT ASSUMED)THEN

IF(INFPART) GO TO 5000
c_
C— #D0 FOR(EACH PART TYPE)

DO 3000 K=1,NPARTS

C—
C— +IF(THERE ARE ANY OF THIS PART IN REPAIR)THEN

INSHPK = NBACKO(K) + INITSU(K)
IF{INSHPK.LE.0) GO TO 2000
C— +DETERMINE NUMBER OF THESE WHICH ARE NEW DEMANDS
NEW = INSHPK - (NDEPOT(K) + NBASE(K))

L=
C— #PERFORM BINOMIAL DRAW TO DETERMINE BASE/DEPCT SPLIT
NENDEP=NBINOM(BNRTS(K) , NEW)
NDEPOT (K) =NDEPOT {K) +NEWDEP
NBASE (K) =NBASE (K) + {NEW-NEWDEP)
C—
C— #COMPUTE PROBABILITY OF REPAIR
PDEP = 1.0 - EXP{(-DRPRATE(K)*RTIME)
PBSE = 1.0 - EXP(~-BRPRATE(K)sRTIME)
c_
C— #DETERMINE NUMBER OF PARTS REPAIRED BY SAMPLING
C— FROM THE APPROPRIATE BINOMIAL DISTRIBUTION
NUMDEP = NBINOM(PDEP,NDEPOT(K)}
NUMBSE = NBINOM(PBSE,NBASE(K))
t—
— #UPDATE NUMBER IN-SHOP AND BACKORDERED
NBACKO(K) = NBACKO(K) - (NUMDEP + NUMBSE)
NDEPOT(K) = NDEPOT(K) - NUMDEP
NBASE(K) = NBASE(K) - NUMBSE
c_
€— #IF (THESE PARTS CAUSE THE MAX NUMBER OF NORS THUS FAR)
IF (NEWNOR#1QPA(K) .GE. NBACKO(K)) GO TO 1000
C—
C— #HJPDATE NUMBER OF NORS AIRCRAFT
NEWNOR=INT (FLOAT (NBACKO(K)) /FLOAT(1GPA(K)) + .999)
L=
C— #END IF (NEW NORS MAXIMUM TEST)
1000 CONTIME
C_
c — #END IF (NO PARTS IN REPAIR TEST)
2000 CONTINUE
C—-
C— #END DO (PARTS LOOP)
3000 CONTINUE
- C—_
C— #IF (ANY PREVIOUSLY NORS AIRCRAFT ARE READY FOR REPAIR)THEN

C-56

NORDIF = NORSVCi1) - NEWNOR
T°(NORDIF.LE.Q) GO TO 4000

c.—-
C— #SELECT LEFTMOST NORS AIRCRAFT TO ENTER MAINTENANCE
CALL WCDIST(NORDIF,PBRKSEQ, INDXWC, NORSVC)
C—
c— #END IF (NEW NONNORS AC TEST)
4000 CONTINE
o—
C— #ND IF (INFINITE PARTS TEST)
5000 CONTINUE
C—
RETURN
END

C-57

CHEHHHHH R

SUBRUUTINE PSTAT(PBREAK.NPARTS, IQPA, DEMAND,

& ACHEAN, ACVAR, NPERAC)
CHEEHHHHHHEH HH
C+ PSTAT - CALCULATES STATISTICS FOR TOTAL PART DEMANDS.

Crex PSTAT IS A FORTRAN ROUTINE WHICH CALCULATES THE MEAN
Cess AND VARIANCE OF THE RANDOM VARIABLE REPRESENTING THE TOTAL
Cax+ NUMBER OF PART DEMANDS FROM AN AIRCRAFT WHICH HAS BROKEN UFON
Caet RETURNING FROM A SORTIE.

Caxt

Caax INPUTS -

Cs#s PBREAK - PROBABILITY THAT AN AIRCRAFT BREAKS UPON RETURNING
CHx FROM A SORTIE.

C#xx NPARTS - NUMBER OF PART TYPES BEING MODELED FOR THIS TYPE
Caa OF AIRCRAFT.

Care IQPA(K) - GUANTITY PER AIRCRAFT FOR TYPE-K PARTS.
Ca## DEMAND(K) - PROBABILITY THAT A GIVEN TYPE-K PART WILL BE

Crss DEMANDED BY AN AIRCRAFT RETURNING FROM A SORTIE.
Cas QUTPUTS -

Cad ACMEAN - MEAN OF THE RANDOM VARIABLE REPRESENTING NUMBER
Cate OF PART DEMANDS PER BROKEN AIRCRAFT.

Cret ACVAR - VARIANCE OF TOTAL PART DEMANDS PER BROKEN AIRCRAFT,
CH+ NPERAC - TOTAL NUMBER OF PARTS PER AIRCRAFT, THIS IS USED
Cait TO ENSURE THAT A LEGITIMATE SAMPLE IS GENERATED.

CHEHHHHH
C—
DIMENSION IGPA(NPARTS), DEMAND(NPARTS)

C_

C— *INITIALIZE STATISTICS
ACMEAN = 0.0
ACVAR = 0.0
NPERAC = 0

C—

C— #D0 FOR(ERCH PART TYPE)
DO 1000 K=1,NPARTS
C—.
C— HACCUMALATE STATISTICS
PRTYPE = IQPA(K) # DEMAND(K)
ACMEAN = ACMEAN + PRTYPE
ACVAR = ACVAR + PRTYPE#(PBREAK-DEMAND(K))
NPERAC = NPERAC + IQPA(K)
L—
C—— #END DO (PART LOOP)
1000 CONTINUE
c.—
C-— *COMPLETE MEAN/VARIANCE COMPUTATIONS
ACMEAN = ACMEAN/PBREAK
ACVAR = ACVAR/ (PBREAKSPBREAK)
t—
RETURN
END

C-58

CHHHHHHHHHHHHHHHHHHHHHHHHHHH R
SUBROUTINE REPAIR(TIMET,NWC,NCREWS, SRATE)

CHEHHHHHEHHHHHHHE

C++ REPAIR - SIMRLATES PROCESS OF WORK CENTER AIRCRAFT REPAIR.

Crir REPAIR IS A FORTRAN ROUTINE WHICH SIMULATES THE

Ca# PROCESS OF REPAIRING AIRCRAFT IN ALL WORKCENTERS DURING A

Cew# SPECIFIED TIME PERIOD. A NUMBER OF REPAIRED AIRCRAFT IS GENERATED

C##+ FOR EACH WORKCENTER, BY SAMPLING FROM THE APPROPRIATE PROBABILITY

Ce# DISTRIBUTIONS. THIS ROUTINE SIMPLY UPDATES THE TOTAL NO. OF

Caus AIRCRAFT IN REPAIR IN EACH WORKCENTER: IT DOES NOT CONCERN

Caed ITSELF WITH WHICH PARTICULAR AIRCRAFT IN A W/C ARE

C#++ BEING REPAIRED, NOR THE TOTAL NO. OF AIRCRAFT IN MAINTENANCE.

Cxs# IMPLICITLY, IT IS ASSUMED THAT WE ARE REPAIRING THE RIGHTMOST

Cee# AIRCRAFT ON A LIST OF AIRCRAFT THAT NEED WORK IN A GIVEN W/C,

Caex AND THAT IF AIRCRAFT ARE PLACED ON THAT LIST (IN ROUTINE

Ca## ‘WCDIST’) IN A RANDOM ORDER. THEN THIS METHOD OF REPAIR IS

Cex ALSO RANDOM: I.E.. IT DOESN’T FAVOR LOW-MUMBERED A/C. OR

Cei# HIGH-NUMBERED A/C, OR RECENTLY-BROKEN A/C, ETC.

Caes

Caed INPUT —

Cein TIMET - LENGTH (IN HOURS) OF THE REPAIR PERIOD.
Catd NNC - TOTAL NUMBER OF WORKCENTERS.

C#xe NCREWS - NUMBER OF CREWS IN WORKCENTER-J.
Cret SRATE(J) - REPAIR RATE (AIRCRAFT/HOLR) FOR EACH CREW IN
Crs WORKCENTER-J.
Caxx COMMON INPUTS/OUTPUTS —
Ceer INREFR(J) - NO. OF A/C IN MAINTENANCE IN W/C J.
CHHHEHHHHHHHHHAHHHHHHHHHHHHHHH
C_..
PARAMETER MAXWC=25, MAXBIT=36,MAXAC=108, MAXVEC=2+(HAXAC-1) /MAXBIT
PARAMETER MAXDAY=30
PARAMETER LFLD=7,NPERWRD=MAXBIT/LFLD, MXINWC=1+(MAXAC-1)/NPERWRD
DIMENSION NCREWS(NWC). SRATE(NWC)
COMMON /WCMAINT/ LISTRP(MXINWC,MAXWC) » INKEPR(MAXWC)

c._
t— #D0 FOR(EACH WORKCENTER)
DO 400 J=1,NWC
c_..
C— #IF(THERE ARE ANY AIRCRAFT IN REPAIR IN THIS WORKCENTER)
NACINJ = INREPR(J)
IFINACINJ.EQ.0) GO TO 200
C_.
C— #GENERATE SAMPLE NUMBER (F AIRCRAFT REPAIRED
NFIXED = NREPS(TIMET,NACINJ, NCREWS(J), SRATE(J))
(o=
C— HIPDATE NO. OF A/C IN THIS W/C
INREPR(J) = NACING - NFIXED
C—
C— $ENU IF (ZERO AIRCRAFT IN REPAIR TEST)
200 CONTINUE
c_.
— #END DO (WORKCENTER LOOP)
400 CONTINUE

c-59

b coasili e

C-60

CHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH R
SUBROUTINE SIMALA

CHHHHHHHEHHHHHHHHHHHHHHHH G

C++ SIMLA - PERFCRM SIMRLATION REPLICATIONS.

Can THIS ROUTINE PROVIDES THE BASIC STRUCTURE OF THE SGM

Cex# SIMALATION. THE LOOPS WHICH CONTROL THE SIMILATION REPLICATIONS,

Ceet THE FLYING DAYS FOR EACH REPLICATION, AND THE FLYING CYCLES

Cex# FOR EACH FLYING DAY ARE CONTAINED IN THIS ROUTINE. THE

Ce## ROUTINE BASICALLY JUST EXECUTES A SPECIFIED NUMBER OF

Caxt FLYING CYCLES EACH FLYING DAY.

Ce#+ THE ROUTINE READS A SUBSET OF SCENARIO PARAMETERS FOR EACH

Ca#+ FLYING DAY OF THE SCENARIO FROM A SCRATCH FILE (03) WHICH

Cext WAS INITIALIZED IN THE INITSCN SUBROUTINE, THIS APPROACH ALLOWS

Cas# THESE PARAMETERS TO VARY ON A DAILY BASIS DURING THE

Caa# SIMULATION.

Caes

Caa COMMON INPUTS —

Cse% NSIN - MMBER OF SIMULATION REPLICATIONS TO BE PERFORMED
Cees NUMDAY - NUMBER OF FLYING DAYS TO SIMULATE

C##¢ NCYCLES - MUMBER OF FLYING CYCLES FOR EACH DAY. THIS PARAMETER
Caxs IS READ FROM THE SCRATCH FILE EACH SIMUMLATION DAY
Cat COMMON QUTPUTS —

Cx#s [SIM - (ISIM=1,...,NSIN) CURRENT REPLICATION NUMBER

Cet [DAY - {IDAY=1,,.,NUMDAY) CURRENT FLYING DAY

Ce#¢ ICYCLE - (ICYCLE=1,.,.,NCYCLES) CURRENT FLYING CYCLE
Cee¢ NRESRV - CLURRENT NUMBER OF AIRCRAFT IN THE RESERVE POOL
Cexx [TOTRES(I)- (I=0»...,NUMDAY) CUMULATIVE NUMBER OF AVAILABLE

Cons RESERVE AIRCRAFT UP TO AND INCLUDING THE ITH DAY.
Caesr THE OTH DAY REPRESENTS THE INITIAL NUMBER OF RESERVE
Cret AIRCRAFT. THIS ARRAY IS USED IN COMPUTING ON-THE-
Cer SCENE AIRCRAFT FOR SORTIES/AIRCRAFT/DAY IN THE
Caes PRINTO ROUTINE.

Cex# [RES - NUMBER OF RESERVE AIRCRAFT WHICH BECUME AVAILABLE
Chr ON THIS FLYING DAY.

Cext PATTRIT, PACGABT, WAITCYC, TYMNITE, MAXFLY(I)

Cars - SCENARIO PARAMETERS WHICH ARE ALLOWED TO VARY
Coe ON A DAILY BASIS. THEY ARE LOADEDR IN THIS

Coas ROUTINE AND SUPPLIED TO THE FLYCYC ROUTINE

CHHH
c_.._

PARAMETER MAXWC=25, MAXDAY=30, MAXCYC=10,» MAXSTAT=S5

COMMON /INPUT/ INITUE, NAC, PATTRIT, IRES, RNMCM, INFPART,

& MAXFLY(MAXCYC), INFMAN, ISCALE, IAUGMNT
COMMON /STATS/ EXPECT(MAXSTAT, MAXCYC, MAXDAY),

& NRESRV, [IDAY, ITOTRES(MAXDAY), LOSSTOT
COMMON /TIME/ PREFLITE, SORTLGTH, WAITCYC, TYMNITE,

& NSIM, ISIM, NUMDAY, IDAY, NCYCLES, ICYCLE
COMMON /WCBRK/ PACBRK, PACGABT, PBRKWC(MAXWC). PWCPROD,

¥ PBRKSEQ(2,MAXWC) » INDXWC (MAXWC)

C_.

C—— #DO FOR(EACH SIMILATION REALIZATION)
DO 300 ISIM=1,NSIN
C—

C-61

C— #INITIALIZE VARIABLES AT START OF EACH REPLICATION

CALL INITREP

C__.

C— #REWIND DAILY SCENARIO PARAMETERS FILE
REWIND 03

C—-

C— #D0 FOR(EACH FLYING DAY)
DO 200 IDAY=1,NUMDAY

C_

C— #READ DAILY SCENARIO PARAMETERS
READ(O3) PATTRIT,PACGABT, NCYCLES, IRES, WAITCYC, TYMNITE
READ(03) (MAXFLY(J),J=1,NCYCLES)

C—

C— #UPDATE RESERVE AC POOL WITH NEM AVAILABLE RESERVES
NRESRV = NRESRV + IRES
ITOTRES(IDAY) = ITOTRES(IDAY-1) + IRES

Co—-

C— #D0 FOR(ERCH FLYING CYCLE)

DO 100 ICYCLE=1,NCYCLES

C—-

C— #SIMULATE A FLYING CYCLE

CALL FLYCYC
c_.
C— #END DO (CYCLE LOOP)
100 CONTINUE
C_
¢— #END DO (DAY LOGP)
200 CONTINUE
C—
C—— #END DO (REPLICATION LOOP)
300 CONTINUE
o—
RETURN
END

C-62

CHHBHHHHHHHHHHHHHHH
SUBROUTINE SORTDS(NRECS.RKEYS, INDEX)

CHHHHE R O

C++ SORTDS - DESCENDING SORT OF A REAL ARRAY.

Cast THIS ROUTINE RETURNS A SORTED LIST OF INDICES ACCORDING

Ces# TO THE GIVEN ARRAY OF FLOATING-POINT KEYS. THIS IS A

C### DESCENDING SORT (I.E. LARGEST TO SMALLEST) USING THE

Caied SIMPLE EXCHANGE SORT TECHNIQUE.

Care

Cxee INPUTS —

Cae NRECS - NUMBER OF ENTRIES OR RECORDS IN THE INPUT AND
Caes OUTPUT ARRAYS.

Cree RKEYS - ARRAY OF FLOATING-POINT KEYS WHUSE CORRESPONDING
Caet INDICES ARE TO BE SORTED.

Caxt QUTPUTS -

Coa INDEX - ARRAY OF INDICES. 1,....NRECS , SORTED IN DESCENDING
Cres DRDER ACCORDING TO THE CORRESPONDING RKEY ENTRY.
Cres THUS, RKEY(INDEX(1)) IS THE LARGEST ENTRY, AND
Lo RKEY{(INDEX(NRECS)) 1S THE SMALLEST.

CRHHEHHEEHE R R
C.—.

DIMENSION RKEYS(NRECS), INDEX(NRECS)

C_-
C— #INITIALIZE INDEX ARRAY TO NATURAL ORLER
DG 100 I=1,NRECS
INDEX(I)=]
100 CONTIME
C.__

C-— +#IF(THERE IS MORE THAN | RECORD)THEN
IF (NRECS.LE. 1)50 TO 500

C—.
C— #00 UNTIL(NG INTERCHANGES OCCUR)
LIMIT=NRECS-1
200 CONTINE
C—.
C— #INITIALIZE INTERCHANGE FLAG TG NONE
LASTX=0
Co—
C— #D0 FOR(EACH CNSECUTIVE PAIR OF RECORDS)
DO 400 J=1,LINIT
C...—
C— *]F(INDICES OF THESE RECORDS SHOULD BE INTERCHANGED)
TFIRST = INDEX(J)
ISEC = INDEX(J+1)
IF{RKEYS(IFIRST).GE.RKEYS(ISEC)) GO TO 300
C_-
— #INTERCHANGE INDICES AND MARK LAST EXCHANGE LOCATION
INDEX(J) = ISEC
INDEX(J+1) = IFIRST
LASTX = J
C—
C—- #END IF (INTERCHANGE TEST)
300 CONT INUE

C-63

Ce—

C— #END DO (RECORD PAIR LOOP)
400 CONTINUE
[
C— #END DO (INTERCHANGE PASS LOCP)
LIMIT = LASTX

IF{LASTX.NE.0) GO TO 200
C_
C— #END IF (SINGLE RECORD TEST)
500 CONTINUE
C—-
RETURN
END

CHHHHHHHHHH
SUBROUTINE TRITSL (NONES, [FROH, ITO)

CHHHHHHHHHHHHHHHHHHHHHHHHHH R

C++ TBITSL - TRANSFER 1-BITS FROM LEFT OF A BIT-VECTOR.

Cans TBITSL 1S A FORTRAN SUBROUTINE WHICH WILL TRANSFER

C### A SPECIFIED NUMBER OF 1-BITS IN THE LEFTMOST PORTION OF

Caes A BIT-VECTOR, “[FROM’, TQ THE CORRESPONDING PGSITIONS

C### OF A BIT-VECTOR, “ITO’, THE TRANSFERRED BITS ARE THEN

Ce## JERGED OUT IN IFROM‘. THESE BIT-VECTORS ARE KEPT IN

Ce#¥t ARRAYS, ORGANIZED IN THE FOLLOWING MANNER - THE FIRST WORD

C+x# OF THE ARRAY CONTAINS THE CURRENT NUMBER OF 1-BITS IN THE

Cexs BIT-VECTOR, AND THE REMAINING WORDS OF THE ARRAY CONTAIN THE

Cae ACTUAL BIT-VECTOR,

Crex

Caes INPUT -

Cest NONES - NUMBER OF 1-BITS TO BE TRANSFERRED. NOTE THAT
Corse NONES MUST NOT BE GREATER THAN THE NUMBER OF
Cas 1S IN THE BIT STRING, *IFROM.

Crst INPUT/QUTPUT -

Cexx [FROM - ARRAY CONTAINING THE BIT-VECTOR FROM WHICH
Caas THE LEFTMOST 1-BIT POSITIONS ARE TO BE

Cans TRANSFERRED. NOTE THAT THESE LEFTMOST

Cre 1-BITS ARE IEROED OUT IN ‘IFROM’ UPON

Caut COMPLETION OF THIS ROUTINE. IFROM(1) IS

Cane A COUNTER WHICH INDICATES THE CURRENT

Coee NUMBER OF 1-BITS IN THE BIT-VECTOR. THE

Crws ACTUAL BIT-VECTOR IS THE CONSECUTIVE BITS
Chs CONTAINED IN THE WORDS IFRUM(2)-IFROM(LENGTH)
Cense ITO - ARRAY CONTAINING THE BIT-VECTOR TG WHICH
Cans THE LEFTMOST 1-BITS IN “IFROM’ ARE TO BE
Cane TRANSFERRED. THE RIGHTMOST POSITIONS IN IT0
Cane REMAIN AS BEFORE. ITO(1) IS A COUNTER WHICH
Canse INDICATES THE CURRENT NUMBER OF 1-BITS IN
Coae THE BIT-VECTOR. THE ACTUAL BIT VECTOR IS THE
Cens CONSECUTIVE BITS CONTAINED IN THE WORDS -
Cas ITG¢2) - ITO(LENGTH)

Caes COMMON INPUT -

Ca LENGTH ~ LENGTH (IN COMPUTER WORDS) OF THE ARRAYS
Cos CONTAINING THE VARIOUS BIT-VECTORS: IFLYVC, ETC

CHHEHHHHRH R
C—
PARAMETER MAXAC=108,MAXBIT=36, MAXVEC=2+(MAXAC-1) /MAXBIT
COMMON /ACSTATE/ LENGTH,NACVC (MAXVEC), IFLYVC(MAXVEC),
& MAINVC (MAXVEC) » NORSVC (MAXVEC)» LOSTVC(MAXVEC)
DIMENSION IFROM(1), ITO(1)

G
C-—- #INITIALIZE TRANSFER LOOP
NLEFT = NONES
INDEX =2
c__
C— #D0 WHILE(ALL APPROPRIATE WORDS HAVE NOT BEEN MODIFIED)
1000 CONTINUE

IF(MLEFT.LE.O) G0 TO 4000

IF (INDEX.GT.LENGTH) 60 TO 4000

C—
— #COUNT NUMBER OF 1S IN NEXT WORD
NXTIS = NIBITS(IFROM{INDEX))
C—
C— #IF(NOT ALL 1-BITS IN THIS WORD SHOULD BE TRANSFERRED)
IFINXTIS.LE.NLEFT) GO TG 2000
C—
C— #*TRANSFER THE PROPER NUMBER OF 1S
LTRANS = LBITS(IFROM(INDEX) NLEFT)
ITOCINDEX) = OR(ITOCINDEX),LTRANS}
IFROMCINDEX) = XOR(IFROM(INDEX) ;LTRANS)
C—
C— #ELSE (ALL 1-BITS IN THIS WORD ARE TO BE TRANSFERRED)
GO TO 3000
2000 CONTINUE
C—
— #TRANSFER THE ENTIRE WORD
ITOCINDEX) = OR{ITOCINDEX), IFROM(INDEX))
IFROMCINDEX) = 0
C—
C— #END IF (ALL 1S TEST)
3000 CONTINUGE
C—
t— *UPDATE NUMBER OF 1S LEFT TO TRANSFER
NLEFT = NLEFT - NXTIS
C_.-_
C— +INCREMENT INDEX FOR NEXT WORD OF RIT-VECTOR
INDEX = INDEX + |
C—
C— #END [0 (WORD LOOP)
G0 TO 1000
4000 CONTINUE
C—
C— #UPDATE 1S COUNTER FOR THESE BIT-VECTORS
ITO{1) = ITO(1) + NONES
IFROM(1) = IFROM{{) - NONES
-
C— #PERFORM ERROR CHECK TO ENSURE APPROPRIATE NUMBER
C— OF 1-BITS WAS TRANSFERRED
IFINLEFT.GT.0) WRITE(5,9001)NONES, IFROMC1), NLEFT
C—
RETURN
9001 FORMAT("0$$$$$$$$ TBITSL ERROR - TOO FEW I-BITS TO TRANSFER®,
¥/ " $5E5844S NONES, IFROM{{), NLEFT = *,3I9)

END

CHEBHHHHHH R HE
SUBROUTINE TBITSR{NONES, IFROM, ITO)

CHHHHHHHHHHHHHHHHHHH R

C++ TBITSR - TRANSFER 1-BITS FROM RIGHT OF A BIT-VECTGR,

Cans TBITSR IS A FORTRAN SUBROUTINE WHICH WILL TRANSFER

Ces¢ A SPECIFIED NUMBER OF {-BITS IN THE RIGHTMOST PORTION OF

Ce## A BIT-VECTOR, ‘IFRGM‘, TO THE CORRESPONDING POSITIONS

Cee# OF A BIT-VECTOR, “IT0’. THE TRANSFERRED BITS ARE THEN

Ce## JERCED OUT IN “IFROM’. THESE BIT-VECTORS ARE KEPT IN

C## ARRAYS, ORGANIZED IN THE FOLLOWING MANNER - THE FIRST WORD

C#%¢ OF THE ARRAY CONTAINS THE CURRENT MUMBER OF 1-BITS IN THE

C### BIT-VECTOR, AND THE REMAINING WORDS OF THE ARRAY CONTAIN THE

C+ ACTUAL BIT-VECTOR,

Cres

Caee [NPUT -

Cee¢ NONES - NUMBER OF 1-BITS TO BE TRANSFERRED. NOTE THAT
Cass NONES MUST NOT BE GREATER THAN THE NUMBER OF
Cans 1S IN THE BIT STRING, ‘IFROM.

Crex INPUT/QUTPUT -

C##+ [FROM - ARRAY CONTAINING THE BIT-VECTOR FROM WHICH
Crss THE RIGHTMOST 1-BIT POSITIONS ARE TO BE

Cant TRANSFERRED. NOTE THAT THESE RIGHTMOST

Crwr 1-BITS ARE ZERCED OUT IN “IFROM” UPON

Camt COMPLETION OF THIS ROUTINE. IFROM{1) IS

Caus A COUNTER WHICH INDICATES THE CURRENT

Chr NUMBER OF 1-BITS IN THE BIT-VECTOR. THE

Cest ACTUAL BIT-VECTOR IS THE CONSECUTIVE BITS
Care CONTAINED IN THE WORDS IFROM(2)-IFROM(LENGTH)
Ces 170 - ARRAY CONTAINING THE BIT-VECTOR TO WHICH
Caxt THE RIGHTMOST 1-BITS IN “IFROM’ ARE TO BE
Caus TRANSFERRED. THE -LEFTMOST POSTIONS IN ITO
Crns REMAIN AS BEFORE. ITO(1) IS A COUNTER WHICH
Chits INDICATES THE CURRENT NUMBER OF 1-BITS IN
Cexs THE BIT-VECTOR. THE ACTUAL BIT VECTOR IS THE
Crus CONSECUTIVE BITS CONTAINED IN THE WORDS

Caus IT0¢2) - ITO(LENGTH)

Cexx COMMON INPUT -

Cese LENGTH - LENGTH (IN COMPUTER WORDS) OF THE ARRAYS
Cret CONTRINING THE VARIOUS BIT-VECTORS: IFLYVC, ETC

CHEHH
C-_
PARAMETER MAXAC=108,MAXBIT=36, MAXVEC=2+(MAXAC-1) /MAXBIT
COMMON /ACSTATE/ LENGTH, NACVC{MAXVEC), IFLYVC(MAXVEC),
& MAINVC {MAXVEC) . NORSVC (MAXVEC), LOSTVC(MAXVEC)
DIMENSION IFROM(1), ITO(1)

C—
c— +INITIALIZE TRANSFER LOOP
NLEFT = NONES
INDEX = LENGTH
C—
t— #D0 WHILE(ALL APPROPRIATE WORDS HAVE NOT BEEN MODIFIED)
1000 CONT INUE

IF(NLEFT.LE.0) GO TO 4000

C-67

IF(INDEX .LE. 1) GO TO 4000

C_
C— #COUNT NUMBER OF 1°S IN NEXT WORD
NXTIS = NIBITS(IFROM(INDEX))
D__
C— #+IF(NOT ALL 1-BITS IN THIS WORD SHOULD BE TRANSFERRED)
IF{NXTIS.LE.NLEFT) GO TO 2000
C_
C— #TRANSFER THE PROPER NUMBER OF 1°S
NTRANS = LBITS(IFROM(INDEX) NXTIS-NLEFT)
ITOCINDEX) = UR(ITO(INDEX),XOR(IFROM(INDEX),NTRANS))
IFROM{INDEX) = NTRANS
C—-
C-— #ELSE (ALL 1-BITS IN THIS WORD ARE TO BE TRANSFERRED)
60 TO 2000
2 CONTINUE
C"‘
C-— #*TRANSFER THE ENTIRE WORD
ITOCINDEX) = OR (ITOCINDEX),IFROM(INDEX))
IFROM(INDEX) = O
C_..
C— #END IF (ALL 175 TEST)
3000 CONTINUE
c__
C— #UPDATE NUMBER OF {°S LEFT TO TRANSFER
MNLEFT = NLEFT - NXT1S
C__
Ct— +DECREMENT INDEX FOR NEXT WORD OF BIT-VECTOR
INDEX = INDEX - 1
C—
C— +END DO {(WORD LOGP)
GO 10 1000
4000 CONTINUE
C—
C— #PDATE 1°S COUNTER FOR THESE BIT-VECTORS
ITO(1) = ITO(1) + NONES
IFROM(1) = IFROM(1) - NONES
C--- ,
(— #PERFORM ERROR CHECK TO ENSURE APPROPRIATE NUMBER
-~ (F 1-BITS WAS TRANSFERRED
IF(NLEFT.GT.0) WRITE(6,9001)NONES, IFROM(1)},NLEFT
[—
RETURN
9001 FORMAT("0$4$$3$$$ TBITSR ERROR - TOO FEW 1-BITS TO TRANSFER",
U pRiiiiiill NONES, IFROM{(1), NLEFT = *,3I5)
END

e

CHHEHHHHHHHHHHHHHHHHHH
SUBROUTINE UEUPDAT (NAC)

CHHHHHHHEHHHHHHHHHHHHHHHHEH R

C++ UEUPDAT - UPDATE UE-STRENGTH FOR SCENARIO.

Cass THIS ROUTINE IS USED TO UPDATE THE UE-STRENGTH OF THE

Cau# SCENARIO. THE UE-STRENGTH IS INITIALIZED AT THE START OF

Caue THE FLYING SCENARIO AND NORMALLY DOES NOT CHANGE THROUGHOUT

Cawé THE SIMULATION. HOWEVER, [F THE USER HAS SELECTED THE

C#e# AUGMENTATION MODE FOR RESERVE AIRCRAFT, AND ENOUGH RESERVES

Ce## ARE AVAILABLE TO MORE THAN REPLACE COMBAT LOSSES. THEN THE

Cee EXCESS RESERVES ARE USED TO INCREASE THE CURRENT UE-STRENGTH.

Casn INCREASING THE UE-STRENGTH REQUIRES RECALCULATION

Ce## OF THE LENGTH OF THE AIRCRAFT-STATUS BIT-VECTORS, AND ALSD

Cew# REINITIALIZATION OF THE TOTAL-AIRCRAFT-POPULATION VECTOR.

Cres

Ceee INPUT —

Ceer NAC - NEW UPDATED UE-STRENGTH,

Cex MAXAC - PARAMETER INDICATING MAXIMUM ALLOWABLE

Crss AIRCRAFT IN THE CURRENT SGNM CONFIGURATION.
Cx MAXBIT - NUMBER OF BITS PER COMPUTER WORD.

C#ai¢ COMMON OUTPUT —

Ce## LENGTH - LENGTH (IN COMPUTER WORDS) OF THE AIRCRAFT
Cons BIT-VECTORS. LENGTH MUST BE LARGE ENOUGH SO THAT
Criet THE BIT-VECTORS ARE AT LEAST "NAC" BITS

Ces LONG AT "MAXBIT® BITS PER COMPUTER WORD.

Cxex NAC(D) - (I=1,2,...,LENGTH) BIT-VECTOR WITH FIRST "NAC*
Cas BITS SET TO 1. THIS BIT-VECTOR INDICATES THE
Chex TOTAL AIRCRAFT POPULATION FOR THE SCENARIU.

CHHHHHHHHHHHHHHHHHH R
C—
PARAMETER MAXBIT=36, MAXAC=108, MAXVEC=2+(MAXAC-1)/MAXBIT
COMMON /BITS/MASKO, MASK(35), MLEFTQ,MSKLFT(36), IZCOUT,

& ICOUNT(63)

COMMON /ACSTATE/ LENGTH, NACVC(MAXVEC), IFLYVC(MAXVEC),
4 MAINVC(MAXVEC), NORSVC (MAXVEC) » LOSTVC(MAXVEC)
Lo

C-— #PERFORM ERROR CHECK TO ENSURE NO UE-OVERFLOW
IF(NAC.LE.MAXAC)GO TO 100
WRITE (6,9001)NAC, MAXAC
NAC = MAXAC
100 CONTINUE
C_
C— *RECOMPUTE LENGTH OF AIRCRAFT-STATUS BIT-VECTORS
LENGTH = 2 + (NAC-1}/MAXBIT
c_
C— ¢INITIALIZE TOTAL-AIRCRAFT-POPULATION BIT-VECTOR
CALL SPRAY(MSKLFT(36),NACVC(2),LENGTH-1)
NACVC(LENGTH)=MSKLFT(MOD(NAC-1, NAXBIT))+1

NACVC(1)=NAC
¢
RETURN
9001 FORMAT(*0$$$$$$$$ UEUPDAT ERROR - UE OVERFLOW"./,
& " $4898848 NAC, MAXAC = *,215./,

C-69

" $5454488 NAC WILL BE TRUNCATED TO MAXAC")

CHEHEHHHHHHHHHHHHHHHHHHHHHEHH
SUBROUTINE WCDIST(NBRKAC,PBRKSEQ, INDXWC, IACVC)

CHHHMHHHH S

C++ WCDIST - DETERMINE BREAK DISTRIBUTION INTO WORK CENTERS.

Cras WCDIST IS A FORTRAN SUBROUTINE WHICH SIMULATES THE PROCESS

Cee# OF AIRCRAFT BREAKING INTO WORKCENTERS. GIVEN A NUMBER OF AIRCRAFY

Cans WHICH HAVE BROKEN INTO AT LEAST ONE WORKCENTER - 1:2,...,MC. THIS

Caes ROUTINE DETERMINES (BY SIMULATION) WHICH PARTICULAR WORKCENTERS

Ca## THE AIRCRAFT BROKE INTO.

Canx

CHes INPUTS —

Ces# [ACVC - BIT VECTOR INDICATING AIRCRAFT FROM WHICH BROKEN

Core AIRCRAFT ARE TO BE SELECTED. A 1-BIT

Ces INDICATES AN AIRCRAFT WHICH IS A CANDIDATE FOR

Cees ONE OF THE BROKEN AIRCRAFT. THIS ROUTINE ARBITRARILY {
Ceae SELECTS THE LEFTMOST 1-BITS AS THOSE AIRCRAFT WHICH

Cors WILL BREAK INTO MAINTENANCE. NORMALLY. IACVC

Caes IS “IFLYVC’ OR “NORSVC’.

Cees NERKAC - NUMBER OF BROKEN AIRCRAFT WHICH ARE TO BE BROKEN

Casse INTO THE DIFFERENT WORKCENTERS. THE LEFTMOST

Cons ‘NBRKAC’ 1-BITS IN ‘IACVC’ ARE SELECTED AS THE

Cons AIRCRAFT WHICH BROKE. ;
Coes COMON INPUTS — ;
Core NNC - TOTAL NUMBER (F WORKCENTERS i
Cets MASK(I) - CONTAINS A 1 IN THE ITH BIT (COUNTING FRON THE LEFT)
Cors AND TEROES EVERYWHERE ELSE. 1=0»...,35

C#x+ COMMON INPUTS/QUTPUTS —
Casx INREPR(J) - NUMBER OF AIRCRAFT IN WORKCENTER-J.
Ce## LISTRP(I,J) - LISTRP(, »J) IS A LIST OF AIRCRAFT NUMEERS

Cows INDICATING THOSE AIRCRAFT REQUIRING MAINTENANCE IN
(T THE JTH WORK—CENTER (J=1,2,...,NWC), THIS LIST
Cane CONTAINS EXACTLY INREPR(J) AIRCRAFT NUMBERS. TO SAVE
Coes SPACE, THESE LISTS HAVE BEEN PACKED INTO BIT-FIELDS
Crew INSTEAD OF WORDS. EACH NUMBER IS STORED IN A BIT-FIELD
Cows *LFLD® BITS WIDE: HENCE. IF "MAXBIT® IS THE LENGTH
(T OF A COMPUTER WORD ON THIS SYSTEM. THEN THERE ARE
Cren (MAXBIT/LFLD) BIT-FIELDS STORED PER WORD. THE AIRCRAFT
Caes NUMBERS STORED IN THESE BIT-FIELDS INDICATE A UNIQUE
Cone BIT-POSITION IN THE VARIOUS AIRCRAFT-STATUS BIT-
Cont VECTORS. THE AIRCRAFT ARE NUMBERED,LEFT-TO-RIGHT,
Cae 0:1:21..., (MAXAC-1) , TO GET THE ITH AIRCRAFT NUMBER
Cowe IN A WORK-CENTER LIST, THE CORRESPONDING
Coes BIT-POSITION AND WORD-INDEX MUST BE COMPUTED.
CHHH S R S A A
C—- .
PARAMETER MAXWC=25, MAXBIT=36, MAXAC=108, MAXVEC=2+(MAXAC-1) /MAXBIT
- PARAMETER LFLD=7, NPERWRD=MAXBI T/LFLD, MXINMC=1+(MAXAC-1) /NPERWRD
COMMON /RSEED/ SEED
COIMON /WCINPUT/ NMC, NCREWS(MAXMC), SRATE(MAXWC) '}

COMMON /NCMAINT/ LISTRP(HXINWC,MAXWC), INREPR{MAXWC)
} COMMON /BITS/ MASKO0,MASK(35), MLEFTO,MSKLFT(36),
. & [2C0UT, ICOUNT (63)
COMMON /ACSTATE/ LENGTH,NACVC(MAXVEC), IFLYVC(MAXVEC),

& MAINVC {MAXVEC), NORSVC(NAXVEC), LOSTVC(MAXVEC)
DIMENSION PBRKSEQ(2:MAXWC), INDXBC(1),» IACVC(1)

C—
C— #IF (THERE ARE ANY BROKEN AIRCRAFT)THEN
IF(NBRKAC.ER.0) 5O TO 700
C—
C— #INITIALIZE NUMBER OF SELECTED AIRCRAFT TO NONE
NSELEC = 0
Cm
C—- #D0 FOR(EACH WORD OF THE INPUT AIRCRAFT VECTOR)
DO 500 IWORD = 2,LENGTH
C—-
C— *INITIALIZE DO
IACBIT = TACVC(IWORD)
IBRKVC = 0
C—
t— #D0 FOR(EACH BIT OF THIS BIT-VECTOR WORD)
DO 400 IBIT = 1,MAXBIT
C—
G- #]F(THIS BIT INDICATES AN ELIGIBLE AIRCRAFT)THEN
MASKAC = MASK(IBIT-1)
IF{AND(IACBIT,MASKAC) .EQ. 0) GO TO 300
C=
(— #SELECT THIS AIRCRAFT AS BROKEN
IBRKVC = OR(IBRKVC,MASKAC)
NSELEC = NSELEC + 1
-
C~— #COMPUTE AIRCAFT
IAC = (INORD-2)#MAKBIT + (IBIT-1)
C—
C— #D0 FOR(EACH WORKCENTER)
D8 100 J=1,MC
Lo
C— *DRAW RANDOM SAMPLE FROM UNIFORM (0.1)
RDRAW = UNIFMt (SEED)
C—
C— *CONTINUE LOOP WITH NEXT WORKCENTER IF
c— DRAW INDICATES NO BREAK INTO THIS WC
IF(RDRAW .GT. PBRKSEQ(2,J)) GO TO 100
C—
C— #UPDATE NUMBER/DISTRIBUTION FOR THIS WC
JREAL = INDXWC(J)
NTOREP = INREPR(JREAL) + |
C—
C— #MOKE “IRAND” A RANDOM INTEGER BETWEEN 1 AND
C— THE NO. OF A/C THAT WILL BE IN THIS W/C
IRAND = INY(UNIFM{ (SEED) #FLOAT(NTOREP)) + |
C—
C— #MOVE THE A/C CURRENTLY AT SPOT “IRAND’ IN THE
C— LIST TO THE RIGHTMOST SPOT.
FLD(MOD(NTOREP-1, NPERWRD) #LFLD. LFLD,
L LISTRP({+{NTOREP-1) /NPERWRD, JREAL))
& = FLD(MOD(IRAND-1,NPERWRD) #LFLD, LFLD,
c-72

& LISTRP (1+(IRAND-1)/HPERWRD, JREAL))
c—-
C— #INSERT THE SELECTED A/C INTO SPOT ‘IRAND‘
FLD(MOL(IRAND~1, NPERWRD) #LFLD, LFLD
% LISTRP(1+(IRAND-1) /NPERWRD, JREAL))
& = IAC
c_
C— #+INCREMENT THE NO, OF A/C IN THIS W/C
INREPR(JREAL) = INREPR(JREAL) + 1
c_..
C— #EXIT WORKCENTER LOOP IF DRAW ALSO INDICATES
— NO BREAKS INTO REMAINING WORKCENTERS
IF(RDRAW .LE. PBRKSEQ(1,J)) GO TO 200
c__
G #ND DO (WORKCENTER LOOP)
100 CONTINE
c__
— +#4# ERROR ####% IF THIS STATEMENT IS REACHED.
C— THEN EITHER PBRKSEQ(1,NWC) DOES
C—- NOT EQUAL 1.0, OR THE
C— RANDOM DRAW IS GREATER THAN 1.0
WRITE(6,9001)PBRKSEQ(1,NWC), RORAW
c___
C—- #EXIT DO (WORKCENTER LOOP) - THIS IS THE
Cc—- NORMAL EXIT FROM THE WORKCENTER LDOP
200 CONTIMLE
C.—
c— #]F ALL THE BROKEN AIRCRAFT HAVE BEEN SELECTED
C— THEN ALL LOOPS ARE TERMINATED
IF(NSELEC .GE. NBRKAC) GO TC 400
c___
— #END IF (FLYABLE AIRCRAFT TEST)
300 CONTINUE
C—
— #END DO (BIT LOOP)
400 CONTINUE
C—_
C— #UPDATE INPUT BIT-VECTOR
IACVC{INORD} = XOR{IACVC(IWORD), IBRKVC)
C_
C— #END DO (WORD LOOP)
500 CONTINE
c_.
— #attk ERROR #+4# [F THIS STATEMENT IS REACHED,
C— THEN NOT ENOUGH BROKEN AC WERE FOUND
WRITE (6, 9002) NBRKAC» [ACVC (1), NSELEC
H C—
C— #EXIT - ALL BROKEN AC HAVE BEEN SELECTED
600 CONTINUE
C—.
C— #JPDATE LAST WORD OF INPUT VECTOR

- TACVC(IWORD) = XOR(IACVC(IMORD), IBRKVC)

C— #UPDATE NUMBER OF AIRCRAFT IN INPUT VECTOR
IACVC(1) = [ACVC(1) - NBRKAC

C—
— #END IF (ZERO BREAKS TEST)

700 CONTINUE
C—

RETURN
9001 FORMAT("0$$$$$$$$ WCDIST ERROR - SEQUENTIAL SAMPLING ERROR",/,
& © $S58584S PBRKSEQ(1,M4C)» RORAW = *,2F10.4)
9002 FORMAT("0$$$$$$$$ WCDIST ERROR - INCONSISTENT BROKEN AIRCRAFT®,
& " S555588S NBRKAC, IACVC(1), NSELEC = *,3I5)

END

oo e -

CHEHHHHHHHHHHHH
SUBROUTINE WCPRUB(NWC, PERKWC, PBRKSEQ, INDXWC, PWCPRUD)

CHHHHHHHEHHH R

C+ WCPROB - INITIALIZE WORK-CENTER SEQUENTIAL BREAK PROBABILITIES.

Caee THIS ROUTINE CALCULATES THE PROBABILITIES NECESSARY TO

Caxe SIMULATE THE DISTRIBUTION OF AIRCRAFT BREAKS INTO THE VARIOUS

C##+ WORKCENTERS.
Cans

Caux INPUTS -

Cane NWC

Cene PBRKWC(J)
Cans

Cans

Caes

Cene QUTPUTS -

CHee PBRKSEQ(1,J)- PROBABILITY THAT AN AIRCRAFT BREAKS INTO THE

Cas
CHes
Cas
Cane
Caus
Caew
Cae

Crese PBRKSEG(2,J)- PROBABILITY THAT AN AIRCRAFT HAS BROKEN INTO THE

Cans

Cude

Caus

Chit

Cass INDXWC(J)
Caes

Cans

Chits

Cas

Cie PWCPROD
Caeit

CHEH R I R R

C—

DIMENSION PBRKWC(NWC), PBRKSEQ(2,NWC), INDXWC(NWC)

Lo

C— +#COMPUTE SORTED ARRAY OF WORK-CENTER INDICES ACCORDING T0
C— LARGEST-TO-SMALLEST BREAK-RATE.
CALL SORTDS{NWC+0, PBRKWC, INDXWC)

NUMBER OF WORKCENTERS BEING MODELED.
PROBABILITY THAT AN AIRCRAFT WILL BREAK INTO
WORKCENTER-J. NOTE THAT THIS BREAK MAY BE DUE
T0 SORTIE BREAKS OR GROUND-ABORTS, DEPENDING
ON HOW THIS ROUTINE IS CALLED.

WORKCENTER INDICATED BY “INDXWC(J)‘, AND DOES
NOT BREAK INTO ANY OF THE WORKCENTERS -

INDXWC (J+1), INDXWC(J+2)s ...» INDXWC(NWC)
GIVEN THAT THE AIRCRAFT HAS BROKEN INTO AT LEAST
ONE OF THE WORKCENTERS -

INDXWC(J), INDXWC(J#f}s ..., INDXWC(NWC).
THUS, PBRKSEQ(L, {NWC) MUST EQUAL 1.0 .

WORKCENTER INDICATED BY INDXWC(J}‘, GIVEN THAT
THE AIRCRAFT HAS BROKEN INTO AT LEAST ONE OF THE
WORKCENTERS INDICATED BY -

INDXWC(J)s INDXWC(J#1)s ...» INDXWC(NWC).
INDICATES THE INDEX OF THE WORKCENTER WITH THE
JTH LARGEST BREAK PROBABILITY. THUS, INDXWC(1)
INDICATES THE WORKCENTER WITH THE LARGEST
BREAK PROBABILITY, INDXWC(NWC) INDICATES THE
ONE WITH THE SMALLEST, ETC. .

PRODUCT-FORMULA OVERALL WORK-CENTER BREAK-RATE.
COMPUTED FROM THE INDIVIDUAL WC BREAK-RATES.

C—
C— +*INITIALIZE END-POINT PROBABILITIES
PERKSEQ(1,MdC) = 1.0
PBRKSEQ(2,MWNC) = 1.0
C—
C-— #00 UNTIL(ALL PROBABILITIES HAVE BEEN CALCULATED)
J=NWC -1
POLD = 1,0 ~ PBRKWC(INDXWC(NWC))
100 CONTINE
C—
C—- #COMPUTE NEXT PROBABILITIES

T eT——

PROB = PBRKWC(INDXWC(J))

PNEW = POLD # (1.0 - PROB)
PBRKSEQ(2,d) = PROB/(1.0 - PNEW)
PBRKSEG(1,J) = PBRKSE@(2,J) # POLD

POLD = PNEW
C_
C— +END DO (WC LOOP)
J=dJd-1
IF{J.6T.0) GO TO 100
C_

C— #SAVE PRODUCT-FORMULA OVERALL WORK-CENTER BREAK-RATE
PWCPROD = 1.0 - POLD

RETURN

CEHHHEHHHAHHHHHHHHHHHHEHHHHHH S HHHHAHHEH
SUBROUTINE WCREAD(IFILE, MAXWC, NWC, PBRKWC , NCREWS, SRATE)

CHERHHEHHHHHHHEHHHHHHHHHHEHHE HEHHH HEHHHHEHHHHHHHHEHHHHEH

C+ WCREAD ~ READ AND INITIALIZE WORK CENTER DATA.

Caxr WCREAD READS WORK-CENTER DATA FROM THE MAINTENANCE

Caitd MANPOWER INPUT FILE. THIS DATA IS ASSUMED TO BE ON UNIT

C#xt “IFILE", ONE FREE-FORMAT RECORD PER WORK-CENTER.

Ca## THIS ROUTINE RETURNS THE NUMBER OF WORK-CENTERS LOADED, *NWC*3

Cexit THE BREAK-RATE ARRAY. “PBRKWC"3 THE SERVICE-RATE ARRAY, "SRATE":

Cax+ AND THE SERVERS ARRAY, *NCREWS®".

Cane THE SERVERS ARRAY, “NCREWS®. REPRESENTS THE NUMBER OF CREWS

Ce## AVAILABLE PER 12-HOUR SHIFT. THE INPUT FILE CONTAINS THE

Caxt TOTAL NUMBER OF CREWS AVAILABLE FOR THE PARTICULAR WORK-CENTER.

Ceet THE 12-HOUR SHIFT NUMBER IS COMPUTED BY DIVIDING THIS AVAILABLE-

C### SERVERS IN HALF AND ROUNDING TO THE NEAREST INTEGER NUMBER.

Cex# IN ADDITION, IT IS ASSUMED THERE IS ALWAYS AT LEAST ONE CREW

Cai+ PER SHIFT.

Cict THE AFSC DESCRIBING THE WORK-CENTER. AND THE TOTAL WUMBER OF

C¥ SERVERS ARE ECHO-PRINTED. BUT ARE NOT SAVED FOR FUTURE USE.

Crre THE MAXIMUM NUMBER (F WORK-CENTERS WHICH CAN BE LOADED IS

Cax# SPECIFIED BY THE "MAXWC® INPUT PARAMETER. IF MORE THAN

Ce# THIS NUMBER IS READ, AN ERROR MESSAGE IS PRINTED, AND THE SOM

Cxet RUN CONTINLES WITH ONLY THE FIRST "MAXWC" WORK-CENTERS,

Caes INPUTS —
Caas IFILE - INPUT FILE NUMBER FROM WHICH MAINTENANCE MANPOWER
CHes INPUT DATA IS TO BE READ

Caax MAXWC - MAXIMUM NUMBER OF WORK-CENTERS WHICH CAN HE LOADED
(et QUTRUTS ~—
Cri NWC - NUMBER OF WORK-CENTERS LOADED
Cons PERKWC - ARRAY OF WORK-CENTER BREAK RATES
Cont NCREWS - ARRAY OF WORK-CENTER CREW NUMBERS
Cras SRATE - ARRAY OF WORK-CENTER SERVICE RATES
CHEHHHHHHHEHHHHHHHHHHHHHHH R
C_

DIMENSION PBRKWC(MAXWC), NCREWS(MAXWC), SRATE(MAXWC)

CHARACTER CAFSC#S
C-_
{— #PRINT HERDER FOR ECHO-CHECK OF INPUT DATA
WRITE(6,5001)
C-_
C-— #INITIALIZE NMUMBER OF WORK CENTERS
NWC=1
C_
C-—- #DO UNTIL(NO MORE WORK CENTERS TO LOAD)
100 CINTINGE
C—.
C— +READ NEXT WORK-CENTER RECORD
READ(IFILE, 9000, END=200)
4 CAFSC, PERKWC (NWC) » SERVERS: SRATE (NWC }
C.—
C— #PERFORM ERROR CHECK ON INPUT DATA
IF{ (PBRKWC {NWC) .GT.0.0) . AND, (PBRKWC (NWC) ,LE, 1.0))
b G0 70 150

IF{SERVERS.GE.0.0160 T0 {150
IF(SRATE(NWC).GE.0.0)G0 TO 130
NRITE(6, 9004} CAFSC, PBRKWC (NWC) SERVERS » SRATE (NWC)

GO 10 100
150 CONTINUE
c.._-.
— #COMPUTE INTEGER-NUMBER OF CREWS PER 12-HOUR SHIFT
NCREWS {NWC) =HAKQ(1, INT(SERVERS#.,3 + .5})
C.—-—
C— #ECHO-PRINT WORK-CENTER INFORMATION
WRITE (6, 9002)NMWC, CAFSC, PBRKWC (NWC) » SERVERS, SRATE (NWC)
c._—
c— #INCREMENT WORK-CENTER INDEX
NWC=NWC+1
L

C—- #END DO (WORK-CENTER LOOP)
IF{NWC.LE. MAXKC)GO TO 100

C-— #PRINT ERROR MESSAGE IF STILL MORE DATA ON THE FILE
READ(IF ILE. 9000, END=200) PBRKWC {NWC) , SERVERS. SRATE (NWC)
WRITE(6,5003)MAXNC

200 CONTINGE
C—_
C— #ADJUST NUMBER OF WORK-CENTERS TO ACCOUNT FOR ECF READ
NWC=NWC-1
C—

C— #CLOSE-OUT MANPOMER INPUT FILE
CALL FCLOSE(IFILE}
c.__.
RETURN

9000 FORMAT(1X,AS5,1X,F9.4,1X,F9.2,1X,F%.4)

9001 FORMAT(*1™, 7/ 7)s "HEHEHHEHHHHHHHHT R, /,
4 » 7%, "#aanareird AJRCRAFT MAINTENANCE #¥s#ds#da3°,/,
% S 7Y M R R Y, /
& 21X,° BREAK®,1X," TOTAL",3X,"SERVICE RATE"./,

& 7X°WC #°,2X," AFSC",3X," RATE",2X." SERVERS®",2X." (ACFT/HAR)",//)

9002 FORMAT(7X,13,3X: A%, 3X:Fb.4,1X,F7.2,3X,F9.4)

9003 FORMAT("0$$$$$4$$ WCREAD ERROR - TOO MANY WORK-CENTERS *,

& "IN THE INPUT FLLE™./»

DI 1133313 ONLY THE FIRST *,13,° WORK-CENTERS WERE USED:;“./,
PR 13113111 INCREASE -MAXWC- PARAMETER IF YOU WANT MORE WC-S")

9004 FORMAT(“(1$$$$$$$$ WCREAD ERROR - INVALID WORK CENTER DATA"./.

4 k1 {11311] PBRKWC, SERVERS, SRATE = *,3f8.3)
END

S
REAL FUNCTION XNORM (XMEAN,STDEV,SEED)

CHEHHHHHHH R

C++ XNORM - DRAN RANDOM SAMPLE FROM A NORMAL DISTRIBUTION.

Ce## THIS IS A REAL-VALUED FORTRAN FUNCTION WHICH GENERATES

Critk A PANDOM SAMPLE ACCORDING TO A NORMAL PROBABILITY

Criet WITH THE GIVEN INPUT MEAN AND STANDARD DEVIATION.

Ca+ THE TECHNIQUE IS TO APPROXIMATE A NORMAL DISTRIBUTION USING

Cred THE CENTRAL LIMIT THEOREM. 12 INUEPENDENT SAMPLES ARE

Caed DRANN FROM A UNIFORM(0,1) DISTRIBUTION AND THEN ADDED.

Ca#x THE RESILT IS APPROXIMATELY NORMALLY DISTRIBUTED WITH MEAN &

Cxe# AND STANDARD DEVIATION 1. THE SAMPLE IS THEN TRANSLATED TO

Cexx OBTAIN A SAMPLE FROM A DISTRIBUTION WITH THE GIVEN

Ceite INPUT MEAN AND STANDARD DEVIATION.

Cans

Ceed INPUTS —

Cxts YMEAN - MEAN OF THE NORMAL DISTRIBUTION FROM WHICH
Caan THE SAMPLE IS TO BE GENERATED.

Ce## STDEV - STANDARD DEVIATION OF NORMAL DISTRIBUTION FROM
Crer WHICH SAMPLE IS TO BE GENERATED. IF THIS VALLE
Caee IS NEGATIVE, AN ERROR MESSAGE IS PRINTED.

Cee INPUT/OUTPUT —

Créx SEED - CURRENT SEED OF RANDOM NUMBER GENERATOR.

Cae QUTPUT —

Cexx XNORM - RANDOM SAMPLE FROM A NORMAL DISTRIBUTION WITH
Crit GIVEN MEAN AND STANDARD DEVIATION.

CHEHHHHHHHHHHEHHHHH HH
C_
C—— #IF(STANDARD DEVIATION IS LEGITIMATE)THEN

IF (STDEV.LT.0.0)G0 TO 100

C—-.
t—- #DRAW SAMPLES FROM 12 UNIFORM (0.1) DISTRIBUTIONS AND
C— ADJUST THE MEAN OF THIS RANDOM SAMPLE TO ZEKU
XNORM=UNIFM1 (SEED)+URTFM1 (SEED) +UNIFMI (SEED) +UNIFMI (SEED)
k +UNIFM1 (SEED) +UNIFMI (SEED)+UNIFM1 (SEED) +UNIFML{SEED)
& +UNIFM1 (SEED)+UNIFM1{ SEED)+UNIFM1 (SEED) +UNIFMI (SEED) -6.
C_
C— #CONVERT TO A SAMPLE FROM DISTRIBUTION WITH APPROPRIATE
C--- MEAN AND STANDARD [EVIATION.
XNORM = XMEAN + STDEV#XNORM
C..__
C— #ELSE (NEGATIVE STANDARD DEVIATION)
GO TO 200
100 CONTINUE
c_.
(— #3ET RETURN VALUE TO IERU AND PRINT ERROR MESSAGE
XNORM = 0.0
WRITE(5,7001)STDEV
C._

C--- #END IF (STD DEV TEST)
200 CONTINE
C__

9001 FORMAT{*0$$$$$$$$ XNORM ERROR - MEGATIVE STANDARD DEVIATION®,/,
¥ R 21211 STDEV = *,r10.3)
END

Cc-80

CHHHHHHHHHHHHHHHHH B
SUBROUTINE ZBITSL{NONES. IARRAY)

CHEHE

C++ IBITSL - IERO-QUT 1-BITS IN LEFTMOST PORTION OF A WORD.

Cases IBITSL IS A FORTRAN SUBROUTINE WHICH WILL ZERQ-OUT

Cae# A SPECIFIED NUMBER OF {-BITS IN THE LEFTMOST PORTION OF

C+#+ A BIT-VECTOR. THIS BIT-VECTOR IS KEPT IN AN ARRAY,

Cae# ORGANIZED IN THE FOLLOWING FASHION - THE FIRST WORD OF

Ca## THE ARRAY CONTAINS THE CURRENT NUMBER (F 1-BITS IN THE

C### BIT-VECTOR, AND THE REMAINING WORDS OF THE ARRAY CONTAIN

Caus THE ACTUAL BIT-VECTOR. THIS ROUTINE IEROES QUT THE PROPER

Cwt 1-BITS, AND UPDATES THE 1-BIT COUNTER IN THE FIRST WORD

Ceee OF THE ARRAY.

Chas

Caer INPUT -

Ce NONES - NUMBER OF 1-BITS TO BE IEROED-OUT. NOTE THAT
Cies NONES MUST BE .LE. NUMBER OF IS IN THE BIT-
Cans VECTOR,

Cx INPUT/OUTPUT -

Caet [ARRAY - ARRAY CONTAINING THE BIT-VECTOR TO BE

Cors MODIFIED. IARRAY{(1) IS A COUNTER WHICH INDICATES
Caxd THE CURRENT NUMBER OF 1-BITS IN THE BIT-VECTOR.
Cas THE ACTUAL BIT-VECTOR IS THE CONSECUTIVE BITS
Chus CONTAINED IN THE WORDS IARRAY(2)-IARRAY{LENGTH)
Cxs COMMON INPUT -

Chte | ENGTH - LENGTH (IN COMPUTER WORDS) OF THE ARRAYS

Caes CONTAINING THE VARIOUS BIT-VECTORS; IFLYVC, ETC

CH R R

Comm
PARAMETER MAXAC=108, MAXBIT=36, MAXVEC=2+(MAXAC-1)/MAXBIT
COMHON /ACSTATE/ LENGTH,NACVC(MAXVEC), IFLYVC(MAXVEC).

& MAINVC (MAXVEC) . NORSVC.(MAXVEC), LOSTVC(MAXVEC)
DIMENSION IARRAY(1)

C._
— #INITIALIZE DO

NLEFT = NONES

INDEX =2
C___
C— +D0 WHILE(ALL APPROPRIATE WORDS HAVE NOT BEEN MODIFIED)

1000 CONTINUE

IFINLEFT.LE.O) 50 TO 4000

IFCINDEX.GT.LENGTH) GO TO 4000
-
C-— #COUNT NUMBER OF 1S IN NEXT WORD

NXTIS = NIBITS(IARRAY{INDEX))
c_
C—- #[F(NOT ALL 1-BITS IN THIS WORD SHQULD BE IEROED)
IF(NXT{S.LE.NLEFT) GO T0 2000
C__
t— #ZERO-0UT THE APPRUPRIATE NUMBER OF 1S
TARRAY (INLEX) = XOR([ARRAY(INDEX) ,
% LBITS{IARRAY (INDEX) NLEFT))
C—.
C-81

C-— #ELSE (ALL 1-BITS IN THIS WORD ARE TO BE ZERCED)
GO T 3000
2000 CONTINLE
C_—
— #IERO-OUT THE ENTIRE WORD
IARRAY(INDEX) = 0
C__
C— #END IF (ALL 1S TEST)
3000 CONTINUE
C—
g— #JPDATE NUMBER OF 1S LEFT TO ZERO-OUT
NLEFT = NLEFT - NXTIS
L—-
— *[NCREMENT INDEX FOR NEXT WORD OF BIT-VECTOR
INDEX = INDEX + 1
C—
— #END DO (WORD LOCP)
GO TO 1000
4000 CONTINUE
C_
C— #IPDATE 1S COUNTER FOR THIS BIT VECTOR
TARRAY(1) = IARRAY(1) - NONES
C_
C— #PERFORM ERROR CHECK TO ENSURE APPRUPRIATE NUMBER
C— OF 1-BITS WAS IEROED-OUT

IF(NLEFT.GT.0) WRITE{6,9001)NONES, JARRAY (1), NLEFT

RETURN
9001 FORMAT("0$$$$$3%$ IBITSL ERROR - NOT ENOUGH 1S TO IERQ®./,
U (11131 NONES, IARRAY (1), NLEFT = ", 315}

END

Cc-82

SCENARIO INPUT PROGRAM

C 0529/N232D/SG/ IDATA
C THIS PROGRAM PROVIDES AN INTERACTIVE INTERFACE TO THE SORTIE
C GENERATION MODEL. BY ALLOWING THE USER TO MODIFY THE INPUT
C ITEMS IN THE NAMELIST IDATA.
PARAMETER MAXA=14, MAXCYC=10, MAXAVARY=4, MAXCVARY=1,
& MAXVARY=MAXAVARY+MAXCVARY: MAXPAR=HAXVARY+MAXA: MAXDAY=30
CHARACTER#25 RESPONCE
CHARACTER#2 DAY
CHARACTER#20 ITEM
CHARACTER#6 A(MAXPAR) » INFMAN, NONORS, NSIN, SEED, LE, MAXFLY, RES,
& ATTRIT, ANYBRK ., ANYGA, RNMCM, NUMDAY , NCYCLE , FTOTYM, LTOTYN,
& PREFLT, SRTLTH, SCALE, IAUGHT, AVARY (MAXDAY, MAXAVARY) »
& CVARY(MAXDAY,MAXCYC, MAXCVARY)
LOGICAL VARY(MAXVARY)
COMMON /EDATA/ DAY.RESPONCE
COMMON /VDATA/ ITEM
COMMON /VARYSH/ VARY
COMMON /GLOBAL/ICYC, IDAYS
COMMON/ INZDATA/ INFMAN, NONORS, NS I, SEED, UE, MAXFLY. RES ATTRIT,
& ANYBRK, ANYGA, RNMCM, NUMDAY , NCYCLE , FTOTYM. LTOTYM,
& PREFLT,SRTLTH, SCALE, [AUGHT
NAMELIST/ZDATR/ INFMAN, NONORS, NSIM, UE, MAXFLY, RES,ATTRIT,
& ANYBRK,ANYGA, RNMCH, NUMDAY , NCYCLE, FTOTYM, LTOTYM, PREFLT,
& SRTLTH,SCALE, IAUGHT
EQUIVALENCE (A(1), INFMAN)
DIMENSION LIST(MAXPAR),LISTOUT{MAXA),LISTVARY (MAXVARY)
C LIST IS USED AS AN INDEX IN THE ARRAYS WHICH CORRESPOND 70
C THE ZDATA ITEMS. IT DETERMINES THE CRDER IN WHICH THE
C PARAMETERS WILL BE LISTED. IT IS DEFINED AS FOLLOWSS
¢ LIST(I) = % WHICH INDICATES WHAT PARAMETER IS TO BE
ITH IN THE DATA-CODE ORDER.
THE NUMBERS ASSOCIATED WITH THE PARAMETERS ARE AS FOLLOWS:
£ ¢ INFMAN , 2 NONORS , 3 : NSIN » 4 ¢ SEED
S:UE, 62 MAXFLY » 7 ¢ RES» 8 & ATTRIT
9 ¢ ANYBRK » 10 : ANYGA , 11 ¢ RNMCH , 12 ¢ NUMDAY
13 : NCYCLE , 14 : FTOTYM , 1S : LTOTYM . 16 ¢ PREFLT
17 : SRTLTH , 18 ¢ SCALE » 19 ¢ IAUGHT
DATA VARY/.F.s.Fer.ForoFur Fu/
DATA LISTOUT/4:14+15,1:2,3,5,9:11,12,16+17,18,19/
DATA LISTVARY/1:2:3,4,3/
DATA LIST/3:4:5:9:11,12,14,15:17,16+1+:2,19,18:8, 10,13, 7,6/
READ(08, ZDATA)
CALL FCLOSE (8)
ENCODE(DAY> 1) MAXDAY
1 FORMAT(I2)
CALL SPRAY(ATTRIT,AVARY{1,1),MAXDAY)
CALL SPRAY(ANYGA, AVARY(1,2),MAXDAY)
CALL SPRAY(NCYCLE,AVARY(1,3),MAXDAY)
CALL SPRAY(MAXFLY,CVARY(1,1,1).MAXDAY#MAXCYC)
CALL SPRAY(’0 “vAVARY(1,4),MAXDAY)
CALL SPRAY(RES,AVARY(1,4),1)
DECODE(NCYCLE,3) ICYC
DECODE (NUMDAY,S) IDAYS

OO OOO0

C-85

100

50

700

900

CALL FPARAM(1,80)
NIVARY=0
PRINT .- ENTER RANDOM NUMBER SEED’
READ »A(4)
PRINT ,* /
PRINT ,* CODE - FUNCTION’
PRINT .’ 1 SET PARAMETERS FOR SGM RUN’
PRINT ,* 2 LIST CURRENT SCENARIQ”
PRINT »© 3 CHANGE SCENARIO’
CONTINUE
PRINT ,
PRINT .’ ENTER FUNCTION CODE (1-SET/2-LIST/3-CHANGE)’
CALL ANYERR(IERR)
CALL FXOPT(32.1,1,0)
CONTINUE
IERR=0
READ , ICODE
IF(1ERR.EQ.32) GOTO 250
IF ((ICODE ,GE. 1) .AND, (ICODE .LE. 3)) GO TO 300
CONTINUE
PRINT .~ FUNCTION CODE MUST BE IN RANGE 1-3, PLEASE REENTER’
G0 7O 200
CONTINUE
CALL FXOPT(32,0,0.0)
G0 TO (600,500.400) , ICODE
CONTINE
CALL CHANGE {CVARY, AVARY, L ISTVARY, NUMVARY, A, LIST)
GO TO 100
CONT INUE
CALL LISTA(CVARY,AVARY,LISTVARY,NUMVARY, A, LIST)
GO T0 100
CONTINUE
PRINT ,~
PRINT .’ TO BEGIN SIMULATION USE EITHER.’
PRINT .~ *
PRINT .© RUNC 0S529/N2320/SGM/RSGMTSS - FOR TIME SHARING RUN‘
PRINT .’ OR,’
PRINT »* RUN 0S29/N232D/SGM/RSGMBTCH - FOR BATCH RUN.’
IF ((A(1) .EQ. ‘Y’) .OR, (A(l) .EQ, "YES’)) GO TO 700
All)=F~
G0 T0 300
CONTINUE
Al1)=T"
CONTINUE
IF ((A{2) .EQ, “Y") .OR. (A(2) .EQ, "YES")) GO TO 900
A(2)=F*
60 TO 1000
CONT INUE
Al2)=1”

1000 CONTINUE

IF ({A(19).EQ.Y").0R. (A(19),EQ. YES’)) GOTO 1050
A(19)=70 !
G0TO 1075

C-86

1050 CONTINUE
A(19)=1 ‘
1075 CONTINUE
CALL FMEDIA(01,0)
WRITE(OL,5) (VARY(I), =1, MAXVARY)
WRITE(01,5) ((ACLISTOUT(I)), /), I=1,MAXA=2)
WRITE(01,5) A(LISTOUT(MAXA-1)),A(LISTOUT(MAXA))
5 FORMAT(V)
DECODE(FTOTYM, 5} IFTOTYN
DECODE(LTOTYN.S) ILTOTYM
DECODE (PREFLT,S) XPREFLT
DECODE{SRTLTH, 5) XSRTLTH
DO 1100 J=1, IDAYS
DECODE (AVARY(J,3),S) INCYCLE
CALL SETTIME(IFTOTYM, ILTOTYM, XPREFLT, XSRTLTH, WAITCYC, TYMNITE,
¥ INCYCLE)
WRITE(01,5) (AVARY(Js 1), I=1,MAXAVARY), WAITCYC, TYMNITE
WRITE(01,5) ((CVARY{J:K,I),K=1,INCYCLE), I=1,MAXCVARY)
1100 CONTINGE

STOP
END

CHHH
Cesess LISTA IS A FORTRAN SUBROUTINE WHICH LISTS THE CURRENT
Crasst VALUES OF THE PARAMETERS ALONG WITH THEIR CODES.
CHAHHHHHHHHEHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH Y
SUBROUTINE LISTA(CVARY.AVARY,LISTVARY, NUMVARY, A, LIST)
PARAMETER MAXA=14, MAXAVARY=4, MAXCVARY=1, MAXDAY=30,
& MAXCYC=10, MAXVARY=MAXAVARY+MAXCVARY, MAXPAR=MAXA+MAXVARY
CHARACTER#S A(MAXPAR), AVARY (MAXDAY, MAXAVARY),
& CVARY(MAXDAY, MAXCYC, MAXCVARY } , NUNDAY
CHARACTER#33 CNAME (MAXPAR)
INTEGER LIST(MAXPAR).LISTVARY(MAXVARY)
COMMON /GLOBAL/ ICYC, IDAYS
DATA CNAME/“ INFINITE MANPOMER (YES/NO) /

& »/ INFINITE SPARE PARTS (YES/NO)’

& +* § SIMULATIONS ’

& »* RANDOM NUMBER SEED ’

& o UE !

& »/ MAXIMUM LAUNCH-SIZE (C/D) /

& »* RESERVE AIRCRAFT 111}

& »/ ATTRITION RATE m

& +* AIRCRAFT BREAK RATE ’

& +7 GROUND ABORT RATE o -

] »/ INITIAL NMCM RATE !

& +' % DAYS ‘

& +/ & MASS LAUNCHES PER DAY (D) -

& »/ FIRST TAKEOFF TIME ‘

& »/ LAST TAKEOFF TIME !

& »/ MINIMAL RECOVERY TIME (HRS) ~

& »/ SORTIE LENGTH (HRS) !

¥ »/ MAX SORTIES/DAY FOR PLOT(OR Q) -

& »/ AUGMENT RESERVE AC {YES/NO) ‘/

PRINT ,~

PRINT , “THE CURRENT VALUES OF THE SCENARIO INPUTS ARE &’
PRINT . *

PRINT »* INPUT SCENARIO ITEM CURRENT/
PRINT ,” COBE VALUE”
PRINT ,*

PRINT10, ((I.CNAME(LIST(I)},A(LIST(D)})},1=1,MAXA}
10 FORMAT(3X,I2,A33," = 7,A7)
NOTVARY=MAXVARY-NUIMVARY
PRINT »*
PRINT ,’/THE FOLLOWING ITEMS MAY VARY BY DAY(D) OR CYCLE/DAY(C/D)‘
PRINT ,* ~
PRINT10, (MAXA+LISTVARY(I),CNAME(LIST (MAXA+LISTVARY(1))),
& A(LIST(MAXA+LISTVARY(I))), [=1,NOTVARY)
IF(NUMVARY.LE.O) GOTO 99
ENTRY LISTONE(CVARY, AVARY,LIST,LISTVARY,NOTVARY)
ITIMES=(IDAYS+9)/10
JMIN=1
DO 900 I=1,ITIMES
JHAX=MINO{JMIN¢9, 1DAYS)
PRINT20, (Js =JMIN, JSAX)
2 FORMAT(/0/, "DAY /,12,2X,917)

C-88

DO 700 K=NOTVARY+1,MAXVARY
GOTO (400,400, 400, 400, 500,500}, LISTVARY(K)
CONTINUE
PRINT30, MAXA+LISTVARY (K) » CNAME(LIST(LISTVARY{K)+MAXA)),
{AVARY (J, LISTVARY (K) }» J=MIN, JHAX)

30 FORMAT(70, 2X, 12,A33/6X, 10R7)
GOTC 700
500 CONTIME
PRINT40, MAXA+H.ISTVARY (K) , CNAME (LIST(LISTVARY (K) +MAXA))
DO 600 L=1,ICYC
PRINTS0,L., { (CVARY {J.L,LISTVARY (K)-MAXAVARY)),
4 J=JHIN, JHAX)
L] FORMAT (707, 2X, 12,A33//CYCLE")
30 FORMAT (2X, 122X, 10(1X,A6))
600 CONTINUE
700 CONTINUE
JHIN=MIN+10
900 CONTINLE
99 CONTINUE
RETURN

Cc~89

CHHH I HHH
Casass CHANGE IS A FORTRAN SUBROUTINE WHICH IS USED TO CHANGE
Ceaaes THE VALUES OF THE PARAMETERS. THE USER MAY CONTIME
Cewdse ENTERING PARAMETER CODES AND THEIR VALUES AS LONG AS IS
Caw2s DESIRED, EXITING FROM THE ROUTINE WHEN A PARAMETER CODE OF
Cewsst 0 IS ENTERED.

CHHHHHFHHHH
SUBROUTINE CHANGE { CVARY, AVARY,LISTVARY, NUNVARY. A, L IST)
PARAMETER MAXCYC=10, MAXDAY=30, MAXA= 14, MAXAVARY=4,

& MAXCVARY=1, MAXVARY=MAXAVARY+MAXCVARY , MAXPAR=MAXA+HNMAXVARY
CHARACTER#20 ITEM
CHARACTER#G CVARY(MAXDAY,MAXCYC, MAXCVARY), AIMAXPAR) »
& AVARY (MAXDAY, MAXAVARY) » NUNDAY, VALUE
LOGICAL VSWITCH, VARY(MAXVARY)
DIMENSION ONEVARY (MAXVARY),LIST(MAXPAR),LISTVARY(MAXVARY)
EXTERNAL VALUERR
COMMON /VDATA/ ITEH
COMMON /VARYSW/ VARY
COMMON /GLOBAL/ ICYC, IDAYS
PRINT ,* /
PRINT ,/ IF CHANGES ARE DESIRED ENTER THE INPUT CODE OF THE ITEM’
PRINT ,~ TO BE ALTERED, ELSE ENTER 0*
100 CONTINUE
CALL FIOPT(32,1,1,1)
CALL ANYERR(IERR)
CALL FXALT(VALUERR)
IERR=0
VSHITCH=.F.
READ , ITEM
5 FORMAT(V)
DECODE(ITEM,S) [CODE
CALL FXOPT(32,0,0,0)
IF(1ERR. NE. 32) GOTO 200
VSHITCH=,T.
DECODE{ ITEM,5) ICODE,VALLE
200 CONTINE
IF ((ICODE .GE. 0) .AND, (ICODE .LE. MAXPAR)) GO TO 300
PRINT10,” INPUT CODE MUST BE IN RN . ', MAXPAR,
¥ ‘s PLEASE REENTER’
10 FORMAT(A31, 12,A16)
G0 TO 100
300 CONTINUE
IF {ICODE .EQ. 0) GO TO 99
IF (ICODE.LE.MAXA) GOTO 700
[F ((ICODE-MAXA).LE.MAXAVARY) GOTG 500
ICVCODE=1CODE-MAXA-MAXAVARY
s IF {.NOT.VSWITCH) GOTO 400
A(LIST(ICODE) =VALUE
CALL CHECK(ICODE,A(LIST(ICODE)),LIST(I1CODE))
CALL SPRAY(A(LIST(ICODE)),CVARY(1, 1, ICVCODE),
& MAXDAYHNAXCYC)
. GOT0 350
400 CONTINUE

Cc-90

CALL READVARY{CVARYAVARY,LIST, ICODE-MAXA. NUMVARY, LISTVARY,
& A(LIST(ICODE)))
6070 850
500 CONTINUE
IF (.NOT.VSWITCH) GOTO 600
ASLIST(ICODE))=VALLE
CALL CHECK{ICODE,A(LIST(ICODE)) LIST{ICODE))
CALL SPRAY(A(LIST(ICODE)),AVARY(1,]CODE-MAXA), MAXDAY)
IF (ICODE-TAXA.EQ.4)
& CALL SPRAY(’0 “ AVARY(2,4) , MAXDAY-1)
GOT0 850
600 CONTINUE
CALL READVARY(CVARY,AVARY,LIST, ICODE-MAKA, NUMVARY.LISTVARY,
& A(LIST{ICODE}))
GOTO 850
700 CONTINUE
IF (VSWITCH) GOTO 800
PRINT .
PRINT .,/ ENTER NEW VALUE OF ITEM, OLD VALUE=',A(LIST{ICODE))
READ , VALUE
800 CONTINUE
A(LIST{ICODE))=VALUE
CALL CHECK(ICODE,A(LIST(ICODE)),LIST(ICODE))
850 CONTINE
PRINT ,/ ¢
PRINT ./ ENTER NEXT INPUT CODE OR O IF FINISHED’
GOTO (100 100,100, 100, 1005 100, 100, 100, 100, 100,
100,900, 1000, 100, 100, 100, 100, 100, 100) ,LIST(ICODE}
900 CONTINUE
DECODE(A(12),3) IDAYS
GOTO 100
1000 CONTINUE
DECODE(A(13),5) 1
IF (I.GT.ICYC) ICYC=I
G0 TO 100
99 CONTIME
RETURN
N

[

C-91

CHHEEHHHHHHHHH
Cerret CHECK IS A FORTRAN SUBROUTINE WHICH INSURES THAT THE
Crets+ NEW VALUE ENTERED FOR A PARAMETER IS LEGITAMATE.
CHHHHHHHAHHNHHHHHHHEHHHHHH
SUBROUTINE CHECK(ICODE, [TEM,LICODE)
PARAMETER MAXDAY=30, MAXCYC=10, MAXAC=108
PARAMETER MAXPAR=19
CHARACTER#20 ITEM
CHARACTER#25 MESSAGE (MAXPAR)
DIMENSION MAX(MAXPAR)
DATA MESSAGE/” INFINITE MANPOWER, INFINITE SPARES’,” /)" *»
7 UE > MAXAC’,’ MAXFLY > MAXAC's* 7,7 ATTRIT > {7,
‘ BREAK RATE > 1",/ GABORT RATE > 1/,
” INITIAL READINESS > 17,/ & DAYS > MAXDAY',
“ & LAUNCHES > MAXCYC'»
* FIRST T-0 TIME > 2400/, LAST T-0 TIME > 2400/,
‘ SORTIE LENGTH > 24.07,” PREFLIGHT TIME > 24.0%," /,
‘ AUGMENT RESERVE ‘/
DATA MAX/0,0,0, 0, MAXAC, MAXAC, 0, 1 1,1, 1, MAXDAY >, MAXCYC, 2400, 2400,
& 24,24,0,0/
G0 TO (100,100,995 995300, 300, 99, 300, 300, 300 300, 300
& 300,300, 200, 300, 300,99, 100) ,LICODE
100 CONTINUE
CALL YORN(MESSAGE (LICODE), ITEM, ICODE)
60 T0 99
300 CONTINUE
CALL ILTJ{MESSAGE{LICODE), ITEM, ICODE, HAX(LICODE))
99 CONTINUE
RETURN
END

R* 2* &* a* 2* A* X°

CHHHH R

Cinids

100

99

SUBROUTINE ILTJ(MESSAGE, ITEM, ICODE,MAX)
CHARACTER#20 ITEM
CHARACTER#25 MESSAGE
REAL NUN
CALL ANYERR(IERR)
CALL FXOPT(32,1,1,0)
CONTINUE
1ERR=0
DECODE(ITEM,20) NUM
IF (IERR.NE. 32) (OTO 130
PRINT ./ INPUT ITEM MUST BE NUMERIC‘
GOTO 300
CONTINUE
FORMAT (V)
IF (NM .GE, 0.0) GO TO 200
PRINT ,“ INPUT ITEM -, ICODE, " MUST BE > 0’
GO TO 300
CONTINUE
IF (NUM ,LE. MAX) GO TO 99
PRINT ,MESSAGE
PRINT , ITEM, "3/, MAK
CONTINUE
PRINT ,* PLEASE REENTER INPUT ITEM ‘,ICODE
RERD » ITEM
PRINT ,7 *
GO T0 100
CONTINUE
CALL FXOPT(32,0,0,0)
RETURN
END

C-93

ILTJ IS A FORTRAN SUBROUTINE WHICH ENSURES THAT A

Caarée PARAMETER VALUE IS WITHIN LEGAL BOUNDS, 0 => VALLE => MAX,
Caesas BY PROMPTING THE USER FOR A NEW VALUE IF IT IS QUT OF BOUNDS.
CHHHHHHHHHHHHHHHH N H

CHHEHHHHHHEHHHHEHHHHHEHHHHHHHHHHHHEHHHHHHHE

Cetexe YORN IS A FORTRAN SUBROUTINE WHICH ENSURES THAT ITEM IS
Coeage EITHER YES(/Y) OR NO(/N), BY PROMPTING THE USER FOR A NEW
Ceerss VALUE [F IT IS INCORRECT, UNTIL IT IS.
CHEHHHHHHHHHHH
SUBROUTINE YORN(MESSAGE, I TEM, ICODE)
CHARACTER¥6 TTEM
CHARACTER#25 MESSAGE
10 CONTINUE
IF C({ITEM .EQ. ‘Y’) .OR, (ITEM .ER. ‘N) .(R.
& (ITEM .EQ. ‘YES) .OR. (ITEM .EQ. ‘NO“)) GO 70 99
PRINT ,MESSAGE,” MUST BE YES OR NO, PLEASE REENTER’
READ » ITEM
G0 70 10
99 CONTINUE
RETURN
END

CHEHEHHHHEHHH
Crrtas SEGMENT (SETTIME - SET WAIT CYCLE & OVERNIGHT TIMES)
SUBROUTINE SETTIME(IFTOTYM. ILTOTYM, XPREFLT, XSRTLTH, WAITCYC,
& TYMNITE, INCYCLE)

Caawee SETTIME IS A FORTRAN ROUTINE USED TO CALCULATE THE
Crerdt WAIT CYCLE AND OVERNIGHT TIMES FOR SORTIES GIVEN THE
Caaasd INITIAL AND LAST TAKEOFF TIMES, THE PREFLIGHT TIME, THE
Coexss L ENGTH OF A SORTIE . AND THE NUMBER (¥ CYCLES PER DWY.
CHHHHHHHHHHHEHHHHHH

DECMIN = ABS(DECHR(ILTOTYM)-DECHR(IFTOTYM))

WAITCYC = DECMIN/FLOAT(INCYCLE-1)-(XPREFLT+XSRTLTH)

IF (WAITCYC.LT.0.0) STOP “WAITCYC ¢ 0”

TYMNITE = 24,0 - (XPREFLT+XSRTLTH+DECMIN)

RETURN

END

C-95

CHHHHHHHHHEHHHHH

Cakass FUNCTION (DECHR - DECIMAL HOUR EQUIV. OF MILITARY TIME)
Crert DECHR IS A FORTRAN REAL FUNCTION WHICH RETURNS THE DECIMAL
Cae#rt HOUR EQUIVALENT OF AN HOUR SPECIFIED IN MILITARY TERMS.
CHHHEHHHHHHHHHHHHHHHHHHH

REAL FUNCTION DECHR(MILTIME)

REAL XMIN

INTEGER IHR

IHR = INT(MILTIME/100)

XMIN = ((FLOAT(MILTIME}/100.0) - FLOAT(IHR))/.6

DECHR = FLOAT(IHR) + XMIN

RETURN

END

cmmmmﬂmﬂm
Ce#ses READVARY IS A FORTRAN SUBROUTINE WHICH IS USED TO READ
Caesrs THE VALUES OF A PARAMETER WHICH MAY VARY BY DAY (R
Cas+e+ CYCLE/DAY., THESE NEED TO BE HANDLED SEPARATELY WHETHER THE
Caewes USER WANTS TO VARY THEIR VALUES OR NOT AS AN ARRAY IS
4 Cewss USED AND MUST BE FILLED,
Cmmmmmm
SUBROUTINE READVARY(CVARY, AVARY: LIST, ICODE, NUMVARY, LISTVARY, ITEM)
PARAMETER MAXCYC=10, MAXDAY=30, MAXA=14, MAXAVARY=4, MAXCVARY=1,
& MAXVARY=MAXAVARYHMAXCVARY . MAXPAR=MAXA+MAXVARY
LOGICAL VARY (MAXVARY),EXIT,FORM
CHARACTER®6 CVARY (MAXDAY MAXCYC, MAXCVARY) , AVARY { MAXDAY , MAXAVARY)
& XVALUE(MAXCYC) ANSWER, I TEM
CHARACTER25 RESPONCE
CHARACTER#44 TEXT{30)
REAL X{(MAXCYC)
INTEGER ONEVARY(MAXVARY),LIST{MAXPAR),LISTVARY (MAXVARY)
& ILIST(MAXVARY)
EXTERNAL MULTIERR, DAYSERR
COMMON /VARYSW/ VARY
COMMON /GLOBAL/ ICYC,IDAYS
COMMON /EDATA/ DAY, RESPONCE
DATA ONEVARY/0,0+0+0,0/
DATA ILIST/1,2,3: 4,5/
DATA ONEVARY/0,0,0,0,0/
DATA TEXT/’ s SYNTAY RILES 847,77,
& ‘VALUES MAY BE ENTERED IN THE FOLLOWING WAYS:”,
%/ “,°1) STARTING AT DAY 1, ONE DAY AT A TIME.’,
EX. =.017,° =02+ ... NUMBER OF DAY TIMES,
2,027, 7,72) ONE VALUE FOR MULTIPLE DAYS.’,
EX. =.01#5 WILL ENTER .01 FOR THE NEXT 5 DAYS. ",
EX. =.01## WILL ENTER .01 FOR THE REST OF THE DAYS.’,
7 7,73) ONE VALUE FOR SPECIFIC DAYS,”,
/ EX. =.01(5-20) WILL ENTER THE VALUE .01 FOR DAYS 5 THRU 20.°,
s 7,*1F THE ITEM VARIES BY C/CLE PER DAY IT MAY BE ENTERED,
“AS ABOVE, OR BY WAVE WITH THE NUMBER OF CYCLES SPECIFIED.’»
¢/ EY. =5812312;1252430 WILL ENTER THE VALUE 12 FOK WAVES',
’ { THRU 3, 24 FOR WAVE 4, AND 0 FOR WAVE 5, FOR THE *»
CURRENT DAY.’,
/EX. =581231231252430(5-20) SAME AS ABOVE EXCEPT VALUES’,
’ ARE ENTERED FOR DAYS 5 THRU 20.," “»
/OPTIONS:”, “=S¥N - PRINT THE SYNTAX RULES.’,
2L IST - LIST THE CURRENT VALUES OF THE ITEM BEING ALTERED. .
/=DAY - PRINT THE CURRENT DAY A VALUE IS BEING ENTERED FOR.”.
/=STOP - ALLOWS USER TO STOP ENTERING VALUES. '/
ISTART=1
ILINA
PRINT10.” DO YOU WANT PARAMETER ‘,MAXA+ICODE,
& - TO VARY BY DAY ¥
10 FORMAT(” 7/7 ,A23,12,A18)
1 READ , ANSHER
. CALL YORN(” YOUR RESPONCE , ANSHER)
IF ((ANSMER.EQ. ’Y’).OR. (ANSWER.EQ. 'YES’)) GOTO 100

N NN

e A* R A® K* R® £* 2% A® A% 4* A A° QR A* A° A

75

PRINT »* *
PRINT .~ ENTER NEW VALUE OF ITEM, OLD VALUEs=’, ITEM
READ ,RESPONCE
LENGTH=MAXDAY
VARY(ICODE)=.F.
IF (ICODE.NE.4) GOTO 75
LENGTH={
EXIT=.T.
CALL SPRAY(‘0 “>AVARY(2,4), MAXDAY-1)
CONTINJE
GOTO 700

100 CONTINE

150

15

20
200

30

IF {VARY({ICODE}) GOTQ 150

VARY (1CODE)=.T.
NEXT=MAXVARY-NUMVARY
TEMP=LISTVARY (NEXT)
LISTVARY{NEXT)=1CODE
LISTVARY (ILIST{ICODE))=TEMP
TEMP=ILIST(ICODE)
ILIST(ICODE)=NEXT
ILIST(NEXT)=TEMP
NUNVARY=NUMVARY+1
CONTINUE
CALL ANYERR(IERR)
CALL FXOPT(32,1,1,1)
CALL FXOPT(87:1:1,1}
EXIT=.F.
FORMAT(V)
PRINT . ¢
PRINT ,/ WOULD YOU LIKE THE SYNTAX RULES EXPLAINED ?-
READ + ANSWER
CALL YORN(” YOUR RESPONCE”, ANSHER)
IF ((ANSWER.EQ.‘Y’).CR. (ANSWER.EQ. “YES”)) PRINTIS,

& (TEXT(I). 121,300

FORMAT(” 7,Ab3)
PRINT ,* *
PRINT20, - ENTER VALUES FOR ITEM ‘, ICODE+HWAXA
FORMAT (A25, I3)
CONTINUE
READ ,RESPONCE
IF (RESPONCE.EQ. 'STOP’) GOTO 900
IF (RESPONCE.NE.’SYN") GOTO 300
PRINT . TEXT
GOTO 200
CONTINUE
IF (RESPONCE,NE. "LIST") GOTO 400
ONEVARY (MAXVARY)=1CODE
CALL LISTONE(CVARY,AVARY,LIST,ONEVARY,MAXVARY-1)
GOTO 200
CONTINUE
IF (RESPONCE.NE.’DAY’) GOTO 450
PRINT30, ISTART
FORMAT(” DAY = 7,12}

Cc-98

GOTO 200
4350 CONTINUE
IERR=0
LENGTH=1
IF (ICODE.LE.MAXAVARY) GOTO 600
FORM=.F.
DO 500 J=2,4
INDEX=J
IF (KOMPCH(RESPONCE, INDEX, ‘#/,1).NE.0) GOTO 500
CALL CONCAT (RESPONCE., INDEX, “» 7+ 1)
DECODE (RESPONCE, 5) ILIM,RESPONCE
CALL REMOSEMI (RESPONCE, ILIM,FORN)
IF (ILIM.LE.MAXCYC) GOTO 500
PRINT40, ILIM, MAXCYC
80 FORMAT(/0’,” # CYCLES > MAXCYC'/14,” >/, 14/
& ‘PLEASE REENTER’)
GOTO 200

A

300 CONTINUE
IF (.NOT.FORN) GOTO 600
PRINT . FORMAT ERROR IN INPUT VALUES, PLEASE REENTER’
GOTO 200
600 CONTINE
CALL FXALT(MATIERR)
DECODE(RESPONCE,5) (X(I},I=1,ILIN)
IF ({IERR.NE.32).AND. (IERR.NE.67)) GOTO 700
CALL FXALT(DAYSERR)
IERR=0
DECODE (RESPONCE,3) (X(I),I=1,ILIM),LENGTH
IF ({IERR.NE.32).AND. (IERR.NE.67)) GOTO 700
IERR=0
DECODE {RESPONCE, S} (X{1),I=1,ILIM),JSTART,LENGTH
IF (IERR.NE.32) GOTO 5650
PRINT , ‘FORMAT ERROR IN INPUT VALUES, PLERSE REENTER’
GOTO 200
650 CONTINUE
IF((JSTART.GT.0) . AND. {JSTART,LE, LENGTH) . AND. (LENGTH.LE.MAXDAY))
& GOTO 675
PRINT ,“ILLEGAL DAYS SPECIFICATION, PLEASE REENTER’
GOTO 200
675 CONTINE
ISTART=JSTART
LENGTH=LENGTH-ISTART+4
EXIT=.T.
700 CONTINUE
IF (LENGTH.GT.0) GOTO 715
PRINT .“ILLEGAL LENGTH SPECIFICATION. PLEASE REENTER’
GOTO 200
715 CONTINUE
LENGTH=MINO(LENGTH, IDAYS-ISTART+1)
DECODE (RESPONCE, 5) (XVALUE(I),I=1,ILIM}
60TO (725,725,725,725,730) » ICODE
- 725 CONTINE
CALL CHECK(MAXA+ICODE, XVALUE(1),LIST(MAXA+ICODE))

Cc-99

785
800

900

CALL SPRAY(XVALUE(1)+AVARY(ISTART, ICODE) . LENGTH)
GOTO 200
CONTINUE
ICVCODE=1CODE-MAXAVARY
D0 775 I=1,ILIM
CALL CHECK(MAXA+ICODE, XVALUE(L) LIST(MAXA+ICODE))
CALL SPRAY(XVALUE(I),CVARY(ISTART, I, ICVCODE),LENGTH)
CONTINUE
DO 785 I=ILIM+1,MAXCYC
CALL SPRAY(XVALUE{ILIM),CVARY{ISTART, I, ICVCODE), LENGTH)
CONTINUE
CONT INE
ISTART=ISTART+LENGTH
IF (ISTART.GT.IDAYS) EXIT=.T.
ITEM=XVALLE(1)
IF (.NOT.EXIT) GOTO 200
CONTINUE
CALL FXOPT(67+0,0,0}
RETURN
END

C-100

CHHHHHHHHHHHH

Ces##% VALUERR IS A FORTRAN SUBROUTINE USED AS AN ALTERNATE
C###¢ ERROR PROCEDURE TO TEST IF A PARAMETER VALUE HAS BEEN ENTER
Canees ALONG WITH ITS CODE (I.E. 155.01). IF SO IT CORRECTS
Ceetss THE PROBLEM.
CHEHHH
SUBROUTINE VALUERR
COMMON /VDATA/ ITEM
D0 200 1=2,20
INDEX=1
IF (KOMPCH(ITEM, INDEX,/$7,1).NE.O) GOTO 100
CALL CONCAT(ITEM, INDEX,":"» 1)
GOTO 300
100 CONTINUE
200 CONTINVE
300 CONTINE
RETURN
END

C-101

CHHHHHHHHHHH
Cardse MULTIERR IS A FORTRAN SUBROUTINE USED AS AN ALTERNATE
Ceae#+ EROR PROCEDURE TO TEST IF THE VALUE OF A PARAMETER WHICH
Ceis## MAY VARY HAS BEEN SPECIFIED FOR MORE THAN ONE DAY
Caenes (I.E. .01%4), IF SO IT CORRECTS THE CHARCTER STRING.
CHHEHHHHHHHHHHHHHHHHH
SUBROUTINE MULTIERR
COMMON /EDATA/ DAY,RESPONCE
DO 200 1=2,25
INDEX=I
IF (KOMPCH(RESPONCE. INDEX, “#,1).NE.0) GOTO 100
CALL CONCAT (RESPONCE, INDEX: "+ *»1)
IF (KOMPCH(RESPONCE, INDEX+1, “#/,1).EQ.0)
& CALL CONCAT{(RESPONCE, INDEX+1,DAY,1,2)
GOTO 300
100 CONTINUE
200 CONTINUE
300 CONTINUE
RETURN
END

C-102

cmmmmmm
Cexsts DAYSERR IS A FORTRAN SUBROUTINE USED AS AN ALTERNATE
Ce#s4# ERROR PROCEDURE TO TEST IF THE VALUE OF A PARAMETER WHICH
Cresss MAY VARY HAS BEEN ENTERED FOR SPECIFIC DAYS (I.E. S(5-195)).
Caxs#s IF SO IT CORRECTS THE CHARACTER STRING.
ciMHmmmmm
SUBROUTINE DAYSERR :
CHARACTER#1 CHR(3) #
COMMON /EDATA/ DAY.RESPONCE
DATA CHR/“(”,7="47)"/
ICHR=1
D0 200 1=2,25
INDEX=]
IF (KOMPCH{RESPONCE, INDEX,CHR(ICHR)» 1).NE.O) GOTD 100
CALL CONCAT (RESPONCE, INDEX, /» /1)
ICHR=ICHR+1
100 CONTINUE
200 CONTINUE
RETURN
£ND

Cc-103

Lruas -..!.‘

CHEHHHHHHHHHHH
Ceaast REMOSEMI IS A FORTRAN SUBROUTINE WHICH REPLACES THE ‘5’S
Ctnsst [N RESPONCE 4ITH /,’S. ‘35S ARE PART OF THE PROPER FORMAT FOR
Causee ENTERING PARAMETER VALUES WHICH VARY BY CYCLE/DAY.
CHHHHHH
SUBROUTINE REMOSEMI (RESPONCE, ILIM, FORN)
CHARACTER#2S RESPONCE
LOGICAL FORM
NUM=0
D0 200 1=2,25
INDEX=]
IF (KOMPCH(RESPONCE , INDEX, “3 /1 1) ,NE. 0) GOTO 100
NUN=NURM+
CALL CONCAT{RESPONCE, INDEX,”»“»1)
100 CONTINE
200 CONTINUE
IF (NM.NE, ILIN-1) FORM=.T,
RETURN
END

C-104

PLOT PROGRAM

C-105

Ce# 0529/N232D/SGM/CALLPLOT
PARAMETER MAXDAY=30
DIMENSION ARR1(MAXDAY), ARR2(MAXDAY)
LOGICAL DEFALT/.T./
REWIND 7
READ(7) SCALE, NUMDAY
IF (NUMDAY ,LE. MAXDAY) 60 TO 10
WRITE(6,5) NUMDAY,MAXDAY
] FORMAT {///##++ERROR IN CALLPLOT NUMDAY > MAXDAY'/

& 7 NUMDAY = ‘IS5, MAXDAY = “,I3)
G0 T0 99
10 CONTINUE
IF (SCALE .EQ. 0.0) DEFAILT=.F.
DO 20 I=1,NUMDAY

READ (7) ARR2(I).ARRI{I)
IF (ARR2(I) .LE. 10.0) GO TO 12
WRITE(06,6) IFIX(ARRZ(I))» 10
12 CONTINKE
IF (ARRI(I) ,LE. SCALE) GO 10 20
IF (DEFALT) GO TO 15
SCALE=ARRI(I)
G010 20
15 CONTINUE
ARRL(1)=SCALE
WRITE(06,6) IFIX{ARRI(I)), IFIX{SCALE)
6 FORMAT(//###/,14,’ TOD LARGE TRUNCATED T0'.I4)
20 CONTINVE
SCALE=FLOAT(IFIX({SCALE+49)/50))
WRITE(6,35) (ARR2(I),I=1,NUMDAY)
35 FORMAT (®1*///(5F8,2)}
WRITE (6,49)

49 FORMAT (“17//// SORTIES’/” PER AC’//)
50 FORMAT (“1’////° SORTIES’/’ PER DAY‘//)
CALL PLOT (ARR2,NUMDAY,0.1,0,*(F5.1)")

WRITE (6,30) (IFIX{ARRL(I)+.5),I=1,NUMDAY)
30 FORMAT (“17///(518))

WRITE (6,50)

CALL PLOT (ARR1,NUMDAY,SCALE, !, "(15)*)
99 CONTINE

STOP

END

PRECEDING tsaGE BLANK=iOT FILikD

C-107

SUBROUTINE PLOT (ARR,NUMDAY, SCALE, ITYPE,FORM)
PARAMETER MAXDAY=30, MAXA=MAXDAY451

DIMENSION ARRINAXDAY) ;
CHARACTER®10 FORN |
CHARACTER A#1 (MAXDAY,51) :
CHARACTER YNUMES(51)

DATA A/MAXAR 7/

DATA YMM/S08" 17,7 ¢/

IF (ITYPE .EQ. 1) GO T0 10
D0 15 1=5,50,5
ENCODE(YNUM(1), FORM) 1#SCALE
15 CONTINE
60 70 30
10 CONTINUE
D0 35 125,50,5
ENCODE (YNUM(I).FORM) IFIX(SCALE*I)
35 CONTINUE
30 CONTINUE
#
D0 20 J=1, NUMDAY
K=IFTX{ARR(J) /SCALE*.5)
20 AlK) = ‘¥
#

45 CONTINE
DO &0 1=1,50
WRITE (4:70) YNUM(S1-I),{(A{J,S1-1)+J=1,NUMDAY)
70 FORMAT (3X,AS,30(1X.A1))
D0 30 J=1,NMDAY
Al 31-1)=" ¢
50 CONTINUE
60 CONTIMJE
WRITE (6.80)
80 FORMAT (7%, ‘0 10 207,
& e ———307/ / [
& 28X, ‘DAY OF SCENARIO’)
RETURN
END

Cc-108 2

APPENDIX D

FEDERAL INFORMATION PRQCESSING STANDARD SOFTWARE SUMMARY

Washington, D.C.

20016

Q1. Summarv wacef 92. Summary prepaceqa ov (Name and Phone) J3. fummarv action |

Y. | Mo. | Dav Michael J. Konvalinka (301) 229-1000 New Rectacement Ceietion
Q Q5. Nottvare title x< - -
(81 Qojo1 . . = — . =

T e The Sortie-Generation Model System Previous Incernai Soreware IO

T 1 Mo, | Dav Volume IV, Sortie-Generation Model

811 0921 Programmer's Manual 7. internai Sortware .U]
106. Shore ccle Jone I
J8. Sctrware :vpe 09. Processing [N Application area R

moae Gencral . Specitic

—— Auromacea Daca — __ Computer >vstems ___ Management i

é ivs:em — nteractive {~ " SupportUeilicy —_ Business 1 Logistics Capabilitv
= << omputer Program = ?a(ch ; Scienufic/Engineering __ Process Controli Aggessment

___ Suprtoutine Moduie |'Y Comoinacion T Bibiiograonic,/ Textuai % Other ;

11. 3uomitting organization 4ag address 12. Tecrnical contact's' ina pncne

Logistics Management Institute Mr. John B. Abell

4701 Sangamore Road Mr. Michael J. Konvalinka

P. 0. Box 9489 (301)229-1000 AV 287-2779

13. Narrat:ve

|
!
|
|

!

The Sortie—Ceneration Model System provides the capability for relating
aircrart spares and maintenance manpower levels to the maximal sortie-
generation capability of tactical air forces over time.

i 14, Kevworas

{Readiness;

Resource Allocation;

fCapability Assessment

Sortie Generation

Capabilitv; Logistics

B

{
|
l
i
§49k words
|

1 Disk

15. Jomputer manur'c and moaey |14, Jompucer operaning svsrem |17, SOZramming .ANQUIRELS) (18, Numoer >t source Trogram
Cobol 600 | siatements .

H v -635 S . f

Honevwell G-635 GCoS Fortran 600/GMAP 15000

19, Lomputer Temorv -equirenents | 20. . ape Irives 0. DISKX. Ufum 1nics 24, Terminass

36 bits each 4 2 million words » 1 time sharing
123, lrner jpecational cequirements
|
1
124, Soreware avasiaoaiey 25. Documencation avaniacii:o
i Avalizoie ~.miteq in=nouse oniv Avaiaoie lnaveauate -As10use ta
¢
|
|
t
!
116 FOR SUBMITTING ORGANIZATION LSE
|
1

STANDARO FIRM .39
LY 922

15 CEPT

=113

2u8. 0

ICMMEACE MBS

AD=A110 899 LOG!STICS MANAGEMENT INST WASHINGTON DC F/6 1
THE SORTIE-GENERATION MODEL SYSTEM. VOLUME IV, SORTIE-GENERAT!O-ETC(U)
SEP 81 M J KONVALINKA» J B ABELL MDA903-81~C=016
UNCLASSIFIED LMI-ML102-VOL=4 NL

END

A ‘m e
3 82

Tona_

d

SECURITY CLASSIFICATION OF THIS PAGE ("hen Dats Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

. REPORT” NUMBER

10%74

AD-A

2. GOVT ACCESSION NOJ;. RECIPIENT'S CATALOG NUMBER

. TITLE (and Subtitle)

The Sortie-Generation Model System
Volume 1V

S. TYPE OF REPORT & PERIOD COVERED

Sortie-Generation Model Programmer's Manual

€. PERFORMING ORG. REPORT NUMBER

. AUTHOR(s)

John B. Abell, Michael J. Konvalinka

LMI
8. CONTRACT OR GRANT NUMBER(s)

MDA903-81-C-0166

. PERFORMING CRGANIZATION NAME AND ADDRESS

___Hashin%fna,4D157 20016
11. CONTROLLING OFFICE NAME AND ADDRESS

Logistics Management Institute
4701 Sangamore Road

P.0. Box 9489
20016

10. PROGRAM ELEMENT, “ROJECT, TASK
AREA & WORK UNIT NUMBERS

Assistant Secretary of Defense

12. REPORT DATE

September 1981

(Manpower, Reserve Affairs, & Logistics)
The Pentagon, Washington, D.C.

13. NUMBER OF PAGES

14.

MONITORING AGENCY NAME & ADDRESS(If different {rom Controlling Office)

1S. SECURITY CLASS. (of thie report)

Unclassified

1Sa, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

. DISTRIBUTION STATEMENT (of thia Report)

"A" Approved for public release

Unlimited

. OISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different [rom Report)

. SUPPLEMENTARY NOTES

19.

KEY WORDS (Continue on reverse side if necessary and identify by block number)

Readiness; Resource Allocation; Sortie Generation
Logistics Capability Assessment

Capability;

20.

ABSTRACT (Continue an reverse side If necessary and identify by dlock number)

The Sortie-Generation Model System provides the capability for

relating aircraft spares and maintenance manpower

levels to the maximal

sortie-generation capability of tactical air forces over time.

DD ,%3n s 1473

EDITION OF T NOV 83 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

alas

