

AND A CONTRACTOR OF A CONTRACTOR

, **'**

DOCUMENT PROCESSING SHFET

AD A11 3182

¥.,

FIELD SURVEYS, IOC VALLEYS BIOLOGICAL RESOURCES SURVEY DRY LAKE VALLEY, NEVADA

VOLUME II PART I

Prepared for:

U.S. Department of the Air Force Ballistic Missile Office (BMO) Norton Air Force Base, California 92409

Prepared by:

Ertec Northwest, Inc. 4526 11th Avenue N.E. Seattle, Washington 98105

In Support of:

Ertec Western Long Beach, California 90807

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) **READ INSTRUCTIONS** REPORT DO JMENTATION PAGE BEFORE COMPLETING FORM . REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER E-TR-48-I-I-4. TITLE (and Subtitie) 5. TYPE OF REPORT & PERIOD COVERED Field Surveys, Ioc Valleys Biological Resources Survey Final 6. PERFORMING ORG. REPORT NUMBER Dry Lake Valley E-TR-48-II-I CONTRACT OR GRANT NUMBER(#) ERTEC Northwest, Inc. F04704 - 80 - C - 0000 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 9. PERFORMING ORGANIZATION NAME AND ADDRESS Ertec Western Inc. Gormerly Furro National, P.O. BOX 7765 64312 F Long Beach Ca 90807 11. CONTROLLING OFFICE NAME AND ADDRESS U.S. DEPARTMENT & HIR. AIr Force Space and Missile Systems Urganization 12. REPORT DATE 8 (Ang 13. NUMBER OF PAGES NOTIONAFIS (292409 (SAMSO) 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 377 15. SECURITY CLASS. (of this report) Unclassified 154 DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Distribution Unlimited and the state of the second 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Distribution Unlimited 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Abiotic Environment, Biotic Environment, Hydrology, Biology Clamate, Vegetation, Plant species, Raptors, Wildlife Species Wildlife Habitats Land Use, Land Management, Birds, Reptiles, Mammals, Amphibians 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Koulter of the biorogical a Jaho Valley ; Nevada ran revenues two species that m the theastal list as Trayta and threating spines. The stude anca little miniam portion of the valley la deer range DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Phen Dere Entered)

FOREWORD

This report was prepared for the Department of the Air Force, Ballistic Missile Office (BMO), in compliance with Contract No. F04704-80-C-0006, Task 4.5. The report, in three volumes, describes and evaluates procedures for shelter layouts and field studies consisting of land and environmental surveys and geotechnical inspections of sites and some road corridors in the IOC valleys.

Volume I presents an overview of the program, evaluates the procedures and Summarizes the findings in Dry Lake Valley, Nevada, and Pine and Wah Wah valleys, Utah. Volume II describes the biological resources of the area and is divided into this volume, Part I-Dry Lake Valley, and Part II-Pine and Wah Wah valleys. Volume III describes the cultural resources and is similarly divided.

Changes to the baseline criteria and requirements made during the field surveys include:

- o Deletion of the Remote Surveillance Sites (RSSs) as of 12
 March 1981;
- Major rerouting of the Designated Transportation Network (DTN) in northern Wah Wah Valley; and
- o Modification of the road pattern from straight-line to direct-connect.

No shelter relocations or reorientations were made as a result of the baseline change from straight-line cluster roads to direct-connect roads. Recent layout studies indicate that shelter sites investigated for the study can be used for the direct connect concept, however, the orientation of some shelters could be improved if new direct connect layouts were performed. It is expected that most or all of the CMF sites will have to be relocated for the direct-connect concept.

Additional studies are planned as part of the IOC program. These include:

- Consultations with Utah and Nevada State Historic Preservation Offices (SHPO) to evaluate significance of sites in the IOC valleys and their potential for inclusion in the National Register of Historic Places;
- o determination of project effects on significant cultural resources;
- o development of possible cultural resource mitigation measures; and

i

🗧 Ertec

, •

o Native American consultations.

The results of these additional tasks will be incorporated in revisions of Volume III of this report and in a supplemental report which will be complete during FY 82.

π

•

ŧ

. •

TABLE OF CONTENTS

1.0	INTR	DUCTION	• • • • • • • •	••••	• • • • • •	• • • • • •	• • • • • • •		1
	1.1	Background				• • • • • •			1
	1.2	Objectives							3
	1.3	Report Org	anizatio	n		• • • • • •	• • • • • • •	• • • • •	7
2.0	BACK	GROUND RESE	ARCH						11
									• •
	2.1	Methodolog	y						11
	2.2	Abiotic En	vironmen	t: Revi	ew of	Existi	ng Data	a	12
			lley Des						12
			drology						13
		· · · · · · · · · · · · · · · · · · ·	ology						13
									16
			imate						
	2.3								20
			getation						20
		2.3.2 Th	reatened	, Endan	gered,	and S	ensitiv	ve 🛛	
			Plant Sp	ecies .					26
		2.3.3 Ra	re, Thre	atened,	and E	Indange	ered		
			Wildlife						29
		2.3.4 Se	ensitive						
			Habitats						29
	2.4	Land Use/L							54
	2.4	Land USe/L	anu mana	gement	Practi	.ces	• • • • • • •		34
3.0	FIEL	D SURVEY	• • • • • • • •						57
	3.1								
		Methodolog	v						57
	3.1	Methodolog	y						57 57
	3.1	3.1.1 Su	rvey Are	as	••••			• • • • •	57
	3.1	3.1.1 Su 3.1.2 Tr	rvey Are averses	as	• • • • • • •	· · · · · · ·		• • • • • • • • • • • •	57 63
	3.1	3.1.1 Su 3.1.2 Tr 3.1.3 Li	rvey Are averses ne-Inter	<i>as</i> cept Su		· · · · · · ·		• • • • • • • • • •	57 63 65
	3.1	3.1.1 Su 3.1.2 Tr 3.1.3 Li 3.1.4 Vo	rvey Are averses ne-Inter oucher Co	as cept Su llectio	irvey .	· · · · · · · ·		· · · · · ·	57 63 65 67
	3.1	3.1.1 Su 3.1.2 Tr 3.1.3 Li 3.1.4 Vo 3.1.5 Tr	averses ne-Inter oucher Co apping .	as cept Su llectio	rvey .			· · · · · ·	57 63 65
	3.1	3.1.1 Su 3.1.2 Tr 3.1.3 Li 3.1.4 Vo 3.1.5 Tr	averses ne-Inter oucher Co apping .	as cept Su llectio	rvey .			· · · · · ·	57 63 65 67
	3.1	3.1.1 Su 3.1.2 Tr 3.1.3 Li 3.1.4 Vo 3.1.5 Tr 3.1.6 Ve	averses ne-Inter oucher Co apping . getation	as cept Su llectio Mappin	rvey .				57 63 65 67 68
	3.1	3.1.1 Su 3.1.2 Tr 3.1.3 Li 3.1.4 Vo 3.1.5 Tr 3.1.6 Ve 3.1.7 Pr	averses ne-Inter oucher Co apping getation otograph	as cept Su llectio Mappin Y	rvey . m				57 63 65 67 68 69
	3.1	3.1.1 Su 3.1.2 Tr 3.1.3 Li 3.1.4 Vo 3.1.5 Tr 3.1.6 Ve 3.1.7 Pr 3.1.8 Fi	averses ne-Inter oucher Co apping getation otograph eld Jour	as cept Su llectio Mappin y nals	rvey				57 63 65 67 68 69 70
		3.1.1 Su 3.1.2 Tr 3.1.3 Li 3.1.4 Vo 3.1.5 Tr 3.1.6 Ve 3.1.7 Pr 3.1.8 Fi 3.1.9 Of	averses ne-Inter oucher Co apping . getation otograph eld Jour f-Road T	as cept Su llectio Mappin y nals ravel .	irvey				57 63 65 67 68 69 70 70
	3.1	3.1.1 Su 3.1.2 Tr 3.1.3 Li 3.1.4 Vo 3.1.5 Tr 3.1.6 Ve 3.1.7 Pr 3.1.8 Fi 3.1.9 Of Results ar	averses ne-Inter oucher Co apping . getation otograph eld Jour f-Road T ad Discus	as cept Su llectio Mappin y nals ravel . sion	irvey				57 63 65 67 68 69 70 70 70
		3.1.1 Su 3.1.2 Tr 3.1.3 Li 3.1.4 Vo 3.1.5 Tr 3.1.6 Ve 3.1.7 Pr 3.1.8 Fi 3.1.9 Of Results ar 3.2.1 Ov	averses ne-Inter oucher Co apping . getation otograph eld Jour f-Road T d Discus verview o	as cept Su llectio Mappin y nals ravel . sion f Plant	commu				57 63 65 67 68 69 70 70 70 70
		3.1.1 Su 3.1.2 Tr 3.1.3 Li 3.1.4 Vo 3.1.5 Tr 3.1.6 Ve 3.1.7 Pr 3.1.8 Fi 3.1.9 Of Results ar 3.2.1 Ov 3.2.2 Th	averses ne-Inter oucher Co apping . getation otograph eld Jour f-Road T d Discus verview o reatened	as cept Su llectio Mappin y nals ravel . sion f Plant and En	rvey	 inities	ant Spec	 	57 63 65 67 68 69 70 70 70 70 70
		3.1.1 Su 3.1.2 Tr 3.1.3 Li 3.1.4 Vo 3.1.5 Tr 3.1.6 Ve 3.1.7 Pr 3.1.8 Fi 3.1.9 Of Results ar 3.2.1 Ov 3.2.2 Th 3.2.3 Ov	averses ne-Inter oucher Co apping . getation otograph eld Jour f-Road T d Discus verview o reatened	as cept Su llectio Mappin y nals ravel . sion f Plant and En f Wildl	rvey n 	inities red Pla	int Spec	 	57 63 65 67 68 69 70 70 70 70 70 55
		3.1.1 Su 3.1.2 Tr 3.1.3 Li 3.1.4 Vo 3.1.5 Tr 3.1.6 Ve 3.1.7 Pr 3.1.8 Fi 3.1.9 Of Results ar 3.2.1 Ov 3.2.2 Th 3.2.3 Ov 3.2.4 Ov	averses ne-Inter oucher Co apping . getation otograph eld Jour f-Road T d Discus verview o reatened verview o	as cept Su llectio Mappin y nals ravel . sion f Plant and En f Wildl f Distu	rvey . 	inities Facto	int Spec		57 63 65 67 68 69 70 70 70 70 70 85 112
		3.1.1 Su 3.1.2 Tr 3.1.3 Li 3.1.4 Vo 3.1.5 Tr 3.1.6 Ve 3.1.7 Pr 3.1.8 Fi 3.1.9 Of Results ar 3.2.1 Ov 3.2.2 Tr 3.2.3 Ov 3.2.4 Ov 3.2.5 Re	averses ne-Inter oucher Co apping . getation otograph eld Jour f-Road T d Discus verview o reatened verview o sults of	as cept Su llectio Mappin y nals ravel . sion f Plant and En f Wildl f Distu Cluste	communications Commun	inities Factor Yeys	ant Spec		57 63 65 67 68 69 70 70 70 70 70 55
		3.1.1 Su 3.1.2 Tr 3.1.3 Li 3.1.4 Vo 3.1.5 Tr 3.1.6 Ve 3.1.7 Pr 3.1.8 Fi 3.1.9 Of Results ar 3.2.1 Ov 3.2.2 Tr 3.2.3 Ov 3.2.4 Ov 3.2.5 Re	averses ne-Inter oucher Co apping . getation otograph eld Jour f-Road T d Discus verview o reatened verview o	as cept Su llectio Mappin y nals ravel . sion f Plant and En f Wildl f Distu Cluste	communications Commun	inities Factor Yeys	ant Spec		57 63 65 67 68 69 70 70 70 70 70 85 112
		3.1.1 Su 3.1.2 Tr 3.1.3 Li 3.1.4 Vo 3.1.5 Tr 3.1.6 Ve 3.1.7 Pr 3.1.8 Fi 3.1.9 Of Results ar 3.2.1 Ov 3.2.2 Tr 3.2.3 Ov 3.2.4 Ov 3.2.5 Re	averses ne-Inter oucher Co apping . getation otograph eld Jour f-Road T d Discus verview o reatened verview o sults of	as cept Su llectio Mappin y nals ravel . sion f Plant and En f Wildl f Distu Cluste DTN an	Communication of the second se	inities Factor Yeys	ant Spec	cies.	57 63 65 67 68 69 70 70 70 70 70 85 112

Page

iii

🛎 Ertec

\$

1

1

•

TABLE OF CONTENTS (Cont.)

Л

		Page
4.0	IMPACTS AND MITIGATIONS	211
	<pre>4.1 Impacts 4.1.1 Hydrology 4.1.2 Grazing 4.1.3 Vegetation 4.1.4 Wildlife 4.1.5 Vehicle Use</pre>	211 212 213 214 218 220
	<pre>4.2 Mitigations 4.2.1 Abiotic 4.2.2 Grazing 4.2.3 Wildlife 4.2.4 Vegetation</pre>	222 223 223 225 226
5.0	CONCLUSIONS	229
	 5.1 Survey Results: Species and Areas of Biological Concern 5.2 Evaluation of Procedures 5.2.1 Evaluation of General Approach 5.2.2 Evaluation of Field Procedures 	229 232 232 234
6.0	BIBLIOGRAPHY	238
	LIST OF APPENDICES	
Α.	Federal Register Listing and Guidelines	
в.	Nevada Legislation, Northern Nevada Native Plant Society Listing and BLM Memorandum 80-722	
c.	Birds, Reptiles, Mammals, and Amphibians Expected in Dry Lake Valley	
D.	Biological Data Forms	
Ε.	Key to Figures 3-24 through 3-33 and Transect Results for Dry Lake Valley	
F.	Location Descriptions of Dry Lake Survey Sites	
G.	List of Contacts	

- H. List of Preparers
- I. Vegetative Map

iv

🛎 Ertec

TABLE OF CONTENTS (Cont.)

LIST OF TABLES

Table <u>Number</u>

Page

Τ

2.0 BACKGROUND RESEARCH

2-1	Dry Lake Valley Representative Soil Characteristics	17
2-2	Three-Year Average Temperature, Temperature Extremes, and Total Precipitation for	
	Caliente and Pioche, Nevada	18
2-3	Summary of Precipitation at Alamo, Caliente,	
	and Pioche, Nevada: 1931-1961	19
2-4	Plant zones and principal communities expected in the Dry Lake Study Area	22
2-5	Threatened and Endangered Wildlife Expected	
	in Nevada and Utah	30
2-6	Protected, Threatened, and Endangered Fauna	
	of Nevada	31
2-7	Raptor Use Comparison for the IOC Valleys	49

3.0 FIELD SURVEY

3-1	Type, Number, and Dimensions of Facilities	
	Surveyed in IOC Valleys	58
3-2	Traverse Procedures for MX Facilities	64
3-3	Average Percent Perennial Cover in Dry	
	Lake Shelter Sites	72
3-4	Range and Average Percent Perennial Cover	
•	by Cluster	73
3-5	Comparison of Plant Density and Cover	
	at Selected Survey Sites	75
3-6	Summary of Vegetation Zones and Dominant/	
	Sub-Dominant Associations Observed in	
	Dry Lake Valley	76
3-7	Plant Species Observed in Dry Lake Survey	
-	Areas	80
3-8	Summary of Wildlife Species and Sign Observed	
	in Dry Lake Valley Survey Areas	87
3-9	Species Obtained by Trapping	89
3-10	Raptors Observed During Field Surveys:	• -
• • •	September to December, 1980	106
3-11	Summary of Abiotic Factors in	
÷	Cluster 1 Sites	120

TABLE OF CONTENTS (Cont.)

LIST OF TABLES (Cont.)

Table Number		Page
3-12	Summary of Plant Species Observed in Cluster 1 Sites	122
3-13	Summary of Wildlife Observed in Cluster 1 Sites	127
3-14	Summary of Abiotic Factors in Cluster 2 Sites	129
3-15	Summary of Plant Species Observed in Cluster 2 Sites	132
3-16	Summary of Wildlife Observed in	-
3-17	Cluster 2 Sites Summary of Abiotic Factors in	137
3-18	Cluster 3 Sites Summary of Plant Species Observed	138
3-19	in Cluster 3 Sites Summary of Wildlife Observed in	141
3-20	Cluster 3 Sites Summary of Abiotic Factors in	145
3-21	Cluster 4 Sites Summary of Plant Species Observed	146
3-22	in Cluster 4 Sites Summary of Wildlife Observed in	149
3-23	Cluster 4 Sites Summary of Abiotic Factors in	153
3-24	Cluster 5 Sites	155
3-25	in Cluster 5 Sites Summary of Wildlife Observed in	157
3-26	Cluster 5 Sites Summary of Abiotic Factors in	162
3-27	Cluster 6 Sites Summary of Plant Species Observed	104
3-28	in Cluster 6 Sites Summary of Wildlife Observed in	166
3-29	Cluster 6 Sites Summary of Abiotic Factors in	171
	Cluster 7 Sites	173
3-30	Summary of Plant Species Observed in Cluster 7 Sites	175
3-31	Summary of Wildlife Observed in Cluster 7 Sites	179
3-32	Summary of Abiotic Factors in Cluster 8 Sites	181
3-33	Summary of Plant Species Observed in Cluster 8 Sites	183

Vİ

≓ Ertec

TABLE OF CONTENTS (Cont.)

LIST OF TABLES (Cont.)

Table <u>Number</u>		Page
3-34	Summary of Wildlife Observed in Cluster 8 Sites	188
3-35	Summary of Abiotic Factors in	100
	Cluster 9 Sites	190
3-36	Summary of Plant Species Observed	
	in Cluster 9 Sites	192
3-37	Summary of Wildlife Observed in	
	Cluster 9 Sites	196
3-38	Summary of Abiotic Factors in	
	Cluster 10 Sites	198
3-39	Summary of Plant Species Observed	
	in Cluster 10 Sites	200
3-40	Summary of Wildlife Observed in	
	Cluster 10 Sites	204
3-41	Facility Resitings in Dry Lake Valley	208

LIST OF FIGURES

.

Figure Number

1

ş

Page

1.0 INTRODUCTION

1-1	IOC Valleys	2
1-2	Initial Cluster Layouts Dry Lake Valley	4
1-3	Initial Cluster Layouts Pine Valley	5
1-4	Initial Cluster Layouts Wah Wan Valley	б
1-5	Schedule of Field Surveys	8
1-6	Study Area	10

2.0 BACKGROUND RESEARCH

2-1	Interbasin Groundwater System	14
2-2	Pronghorn Antelope Potential Use Areas	37
2-3	Bighorn Sheep Potential Use Areas	39
2-4	Key Areas of Mule Deer Use	41
2-5	Kit Fox Distribution in Southern Nevada	43
2-6	Gray Fox Distribution in Southern Nevada	44
2-7	Bobcat Distribution in Southern Nevada	45
2-8	Distribution and Number of Wild Horses	
	and Burros	47
2-9	Blue Grouse and Quail Distribution	52
2-10	Sage Grouse Use Areas	53

vii

Ξ Ertec

.

TABLE OF CONTENTS (Cont.)

.....

LIST OF FIGURES (Cont.)

Figure Number		Page
2-11	Dry Lake Valley BLM District Boundaries	55
	3.0 FIELD SURVEY	
3-1	MX Facility Layouts and Biological Survey Areas	60
3-2	Field Survey Results: Taxa Currently Under Review for Federal Register Listing	82
3-3	Field Survey Results: Grasshopper Mice and Kangaroo Rat Signs and Sightings	91
3-4	Field Survey Results: Ground Squirrel Signs and Sightings	92
3-5	Field Survey Results: Badger and Gopher Signs and Sightings	9 3 [°]
3-6	Field Survey Results: Bighorn Sheep, Mule Deer, Antelope, and Bobcat Signs and	
	Sightings	95
3-7	Field Survey Results: Horse Signs	97
3-8	Field Survey Results: Coyote Signs and	
• •	Sightings	98
3-9	Field Survey Results: Kit Fox Signs and	99
2.10	Sightings	
3-10	Field Survey Results: Game Bird Sightings	101
3-11	Field Survey Results: Shrike, Thrasner and Wren Sightings	103
3-12	Field Survey Results: Crow and Raven	
	Sightings	104
3-13	Field Survey Results: Sparrow and Meadowlark Sightings	105
3-14	Field Survey Results: Raptor Sightings	105
		100
3-15	Field Survey Results: Fence, Leopard,	1.0.0
	and Whiptail Lizard Sightings	109
3-16	Field Survey Results: Sagebrush Lizard	
	Sightings	110
3-17	Field Survey Results: Zebra-Tailed and	
	Horned Lizard Sightings	111
3-18	Field Survey Results: Snake Sightings	113
3-19	Desert Tortoise Range in Nevada	114
3-20	Field Survey Results: Distribution of	
	Halogeton glomeratus	116
3-21	Field Survey Results: Distibution of	
	Salsola iperica	117
3-22	Field Survey Results: Disturbance Related	
	to Grazing	118

viii

≡ Ertec

TABLE OF CONTENTS (Cont.)

1

LIST OF FIGURES (Cont.)

Figure Number		Page
3-23	Dominant/Subdominant Vegetative Associations in Cluster 1	126
3-24	Dominant/Subdominant Vegetative	
3-25	Associations in Cluster 2 Dominant/Subdominant Vegetative	136
	Associations in Cluster 3	144
3-26	Dominant/Subdominant Vegetative Associations in Cluster 4	152
3-27	Dominant/Subdominant Vegetative	
3-28	Associations in Cluster 5 Dominant/Subdominant Vegetative	161
2 20	Associations in Cluster 6	170
3-29	Dominant/Subdominant Vegetative Associations in Cluster 7	178
3-30	Dominant/Subdominant Vegetative Associations in Cluster 8	187
3-31	Dominant/Subdominant Vegetative Associations	107
3-32	in Cluster 9	195
J-J2	Dominant/Subdominant Vegetative Associations in Cluster 10	203
3-33	Transect Locations on the DTN	206

ix

≡ Ertec

A CONTRACTOR

and the second second

TABLE OF CONTENTS (Cont.)

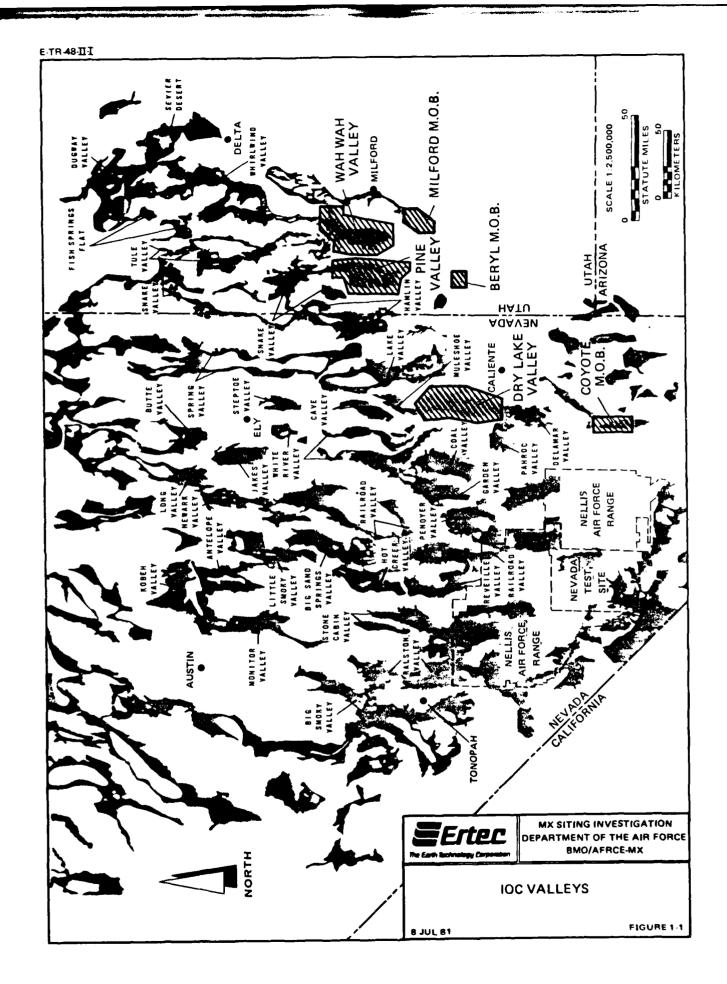
LIST OF EQUATIONS

Equation Number Page = Total plant cover (dm) x 100 3.1.3-1 Total 66 Distance of transect (dm) cover (%) _ Total cover of species A (dm) 3.1.3-2 Relative x 100 66 Total cover all species (dm) cover of species A (8) Density of = <u>Number of individuals of species A</u> 3.1.3-3 67 Distance of transect (dm) species A = Number of individuals of species A Number of individuals of all species 3.1.3-4 Relative 67 density of species A (8)

X

\Xi Ertec

1.0 INTRODUCTION


1.1 BACKGROUND

In April and May of 1980, the AFRCE proposed to initiate field studies in selected Nevada and Utah valleys for the purposes of testing cluster layout procedures and determining potential field problems in actual shelter siting. Dry Lake, Nevada, was selected because it was large enough to support 10 clusters and was relatively close to the proposed Operational Base (OB) site in Coyote Spring Valley. Pine and Wah Wah valleys, Utah, were selected because they were the closest valleys to proposed OB sites near the towns of Beryl and Milford and, together, could support 10 clusters (Figure 1-1).

According to present Air Force plans, there is to be an Initial Operational Capability (IOC) of 10 clusters by mid-1986. There is a high likelihood that shelter construction would start either in Dry Lake Valley, Nevada, or Pine and Wah Wah valleys, Utah, to meet the IOC schedule. For this reason, the present program is referred to as field surveys, IOC valleys.

The intent of the IOC field surveys program was to support the development of the siting methodology and the land withdrawal application being submitted to Congress by the U.S. Air Force. The land withdrawal package must include a legal description of federal lands to be withdrawn for MX. The field program for the IOC valleys was developed after consultations with AFRCE-MX and Utah and Nevada state offices of the Bureau of Land Management (BLM).

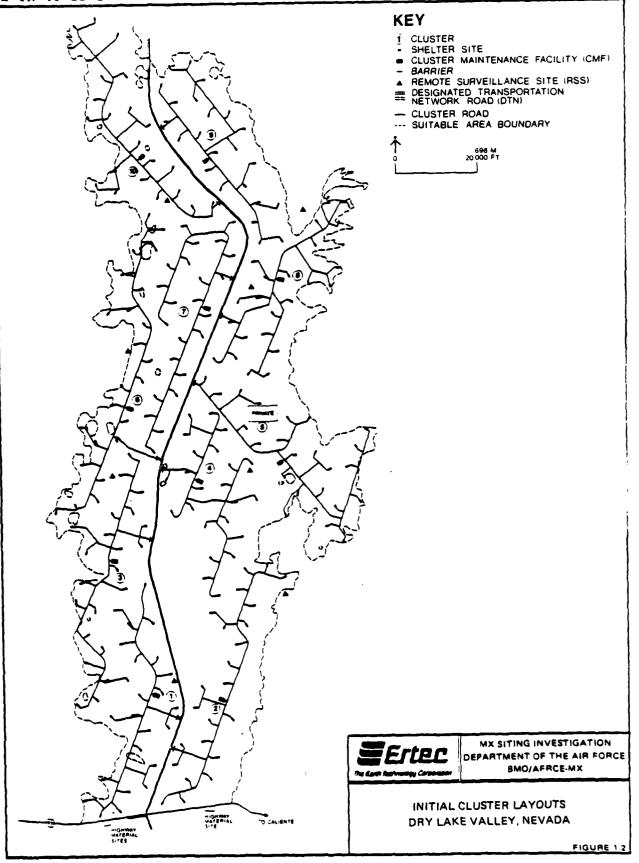
\Xi Ertec

. 1

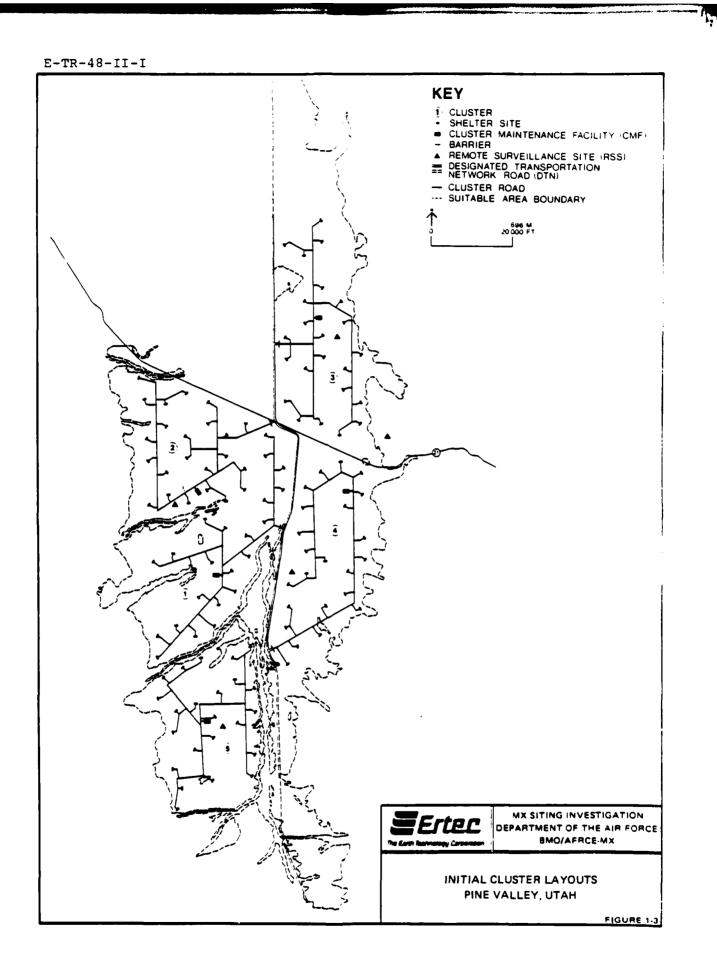
1.2 OBJECTIVES

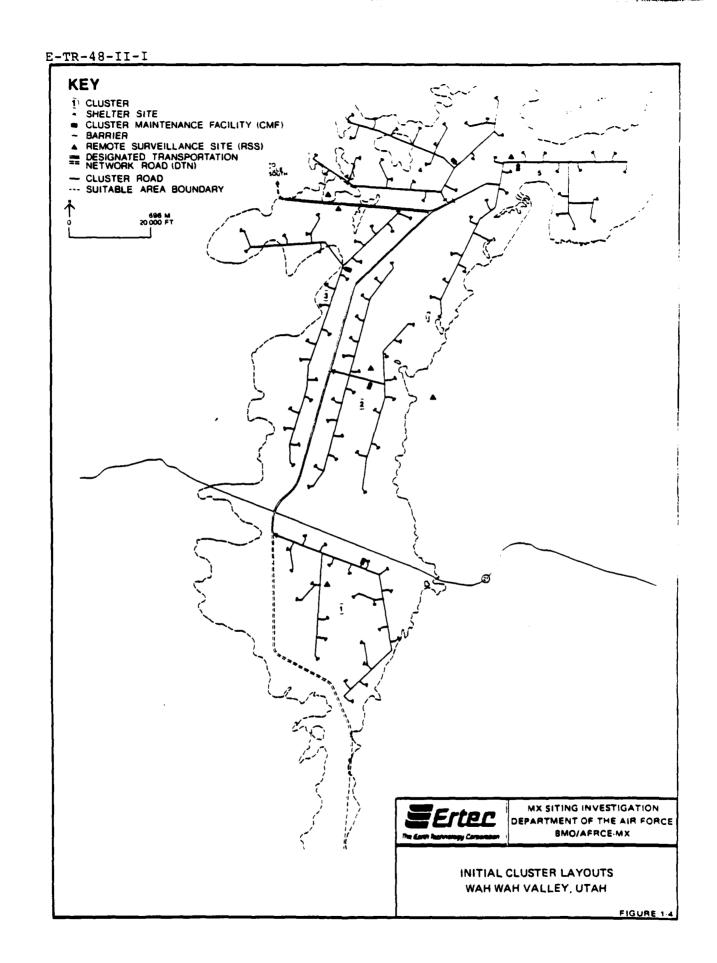
The primary objectives of the IOC field surveys were to:

 Identify problems associated with siting criteria or layout procedures by actually locating Horizontal Shelter Sites (HSSs), Cluster Maintenance Facilities (CMFs) and Remote Surveillance Sites (RSSs) in the field;


3

- Assess environmental and geotechnical conditions at the shelter, CMF, and RSS sites and along a few road corridors and determine what changes are needed to minimize impacts;
- o Develop a methodology for performing field surveys in the Designated Deployment Area (DDA); and
- o Provide legal descriptions of surveyed sites for the land withdrawal application.


The elements of the program are as follows:


- o Complete shelter layouts for Dry Lake, Pine, and Wah Wah valleys at a scale of 1:62,500 showing all shelter, CMF, and RSS sites (Figures 1-2, 1-3 and 1-4).
- o Submit layouts to BMO/AFRCE for review. Modify the layouts, if needed, in accordance with review comments.
- o Transfer the layout to 1:9600 scale topographic maps. Adjust site locations, if necessary, to avoid drainages and other features that can be identified on the drawings at this scale.
- o Determine the state plane coordinates and bearings of all structures. In Dry Lake Valley, determine the coordinates of points of intersection of the Designated Transportation Network (DTN) and Cluster 2 roads. Provide the land surveyors with these data.
- Perform field surveys to locate and monument each site and stake the centerline of the DTN and Cluster 2 roads in Dry Lake Valley.
- Perform geotechnical inspection of sites to determine if they are located in suitable area and to evaluate site-specific geotechnical and terrain conditions. Based on evaluations, recommend which sites should be relocated.
- Inventory cultural resources including prehistoric and historical artifacts and sites and determine which resources may be adversely affected by project construction. Based on consultation with Bureau of Land Management archeologists,

E Ertec

The second s

作

make recommendations to mitigate adverse effects on resources eligible for the National Register of Historic Places or considered significant for other reasons.

7

- Perform biological field surveys to determine the location of sensitive, threatened, and endangered plant and wildlife species that may be adversely affected by project construction. Recommend mitigative measures, when possible, based upon consultation with personnel from state and federal agencies.
- o Submit recommendations to BMO/AFRCE for field and office review. After final decisions have been made regarding the number of sites to be relocated, layouts are revised, new coordinates are generated, sites are resurveyed, and monumented, and environmental surveys are completed.
- o Prepare legal descriptions of the land at each site that will be withdrawn from public use.
- o Prepare an environmental report and general report of the program.

The layouts for Dry Lake, Pine, and Wah Wah valleys, at a scale of 1:9600, were completed 8 September 1980, 25 November 1980, and 8 January 1981, respectively. Locating existing survey controls and establishing a control grid over Dry Lake Valley began on 28 August 1980; surveying and monumenting shelter sites began shortly thereafter. The cultural resources and biological field surveys and geotechnical inspections began 29 September 1980 in Dry Lake Valley and were completed for all valleys on 15 March 1981. An effort was made to complete as much field work as possible by December 1980 knowing there would be delays in the winter months because of weather conditions. A completed schedule is shown in Figure 1-5.

1.3 REPORT ORGANIZATION

This report presents a description of the data and techniques used to derive shelter layouts. Valley specific information and results of the field surveys for the three IOC valleys are

🖻 Ertec

TASK DESCRIPTION														
		AUG			SEPT			ОСТ				N		
	11	18	25	8	15	22	29	6	13	20	27	3	10	1
DRY LAKE VALLEY														F
LAYOUT COMPLETED (1:9600 SCALE)		l					ĺ							
SURVEYING AND MONUMENTING	1													
ENVIRONMENTAL INSPECTIONS														ł
GEOTECHNICAL INSPECTIONS	ł					ł								
ENVIRONMENTAL FIELD SURVEYS-RESITINGS							1			l				
DETAIL OF CLUSTER 2 (SURVEYING)												-		
PINE VALLEY		l												
LAYOUT COMPLETED (1:9600 SCALE)		l												
SURVEYING AND MONUMENTING			1			}								ļ
ENVIRONMENTAL FIELD SURVEYS														ļ
GEOTECHNICAL INSPECTIONS			ł	1			1							
ENVIRONMENTAL FIELD SURVEYS-RESITINGS											,			
WAH WAH VALLEY							ļ							
LAYOUT COMPLETED (1:9600 SCALE)														
SURVEYING AND MONUMENTING	Į	ĺ		1		ĺ	1							
ENVIRONMENTAL FIELD SURVEYS							Į							
GEOTECHNICAL INSPECTIONS	1													
ENVIRONMENTAL FIELD SURVEYS-RESITINGS			1	}										ł
COMPLETE RESITINGS (CHANGES TO LAYOUT AFTER FIELD SURVEYS)	1													ĺ
RAFT REPORT TO U.S. AIR FORCE			ĺ											
INAL REPORT		ļ												l

/;~~

ОСТ									- T											_	_							_	_	_	_	_	_	
		N	ov				DEC				JA	AN			FI	B				MAF	1			A	PR	_		M	AY				JU	NE
13 20 27	' 3	10	17	24	1	8	15	22	29	5	12	19	26	2	9	16	23	2	9	16	23	30	6	13	20	27	4	11	18	25	1	8	15	22
																		NC	DTE:	FIG	URE	1.5 S	AME	S AS	: 1-2	N VO	L.I			!	SCH	IED	UL	E
		r	1													<u></u>													L		_		,	

TIME SCHEDULE

/:"•

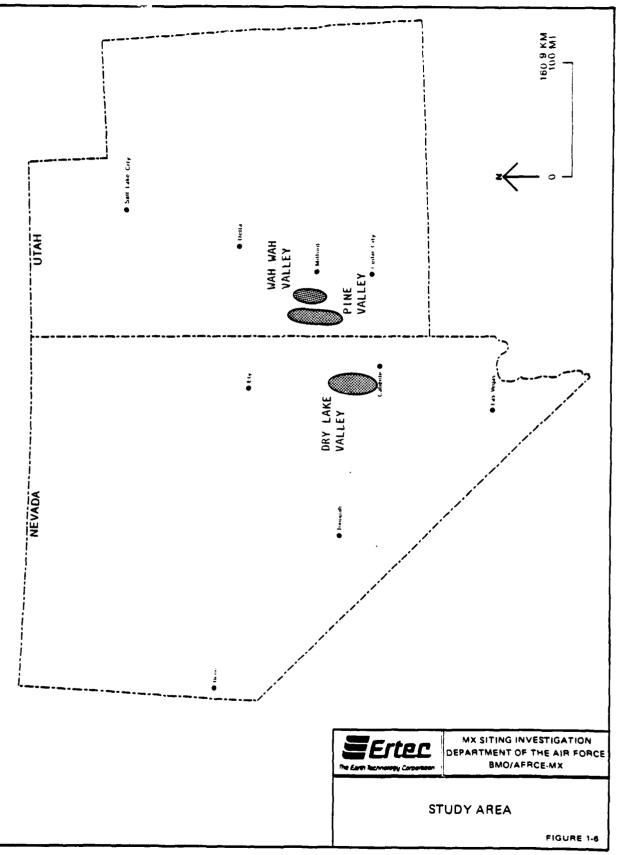
			A	PR		Γ	M	AY				JU	NE			JU	LY	
23	30	6	13	20	27	4	11	18	25	1	8	15	22	29	6	13	20	27
										Er			11	MX EPAF		ENT	0F 1	
										SCI	HED	OUL	ΕO	FF	IEL	.D S	SUR	VE
URE	1-5 \$	AME	S AS	5 1.2		DL.I		L	_									F

1.5

summarized. An evaluation of the methods and techniques forms the basis for recommended program and method changes.

9

The report consists of three volumes. Volumes II and III contain two parts which are bound separately. The contents of each volume are as follows:


Volume I - Program Overview and Methodology; Volume II, Part I - Biological Resources, Dry Lake Valley, Nevada; Volume II, Part II - Biological Resources, Pine and Wah Wah valleys, Utah; Volume III, Part I - Cultural Resources, Dry Lake Valley, Nevada; and Volume III, Part II - Cultural Resources, Pine and Wah Wah valleys, Utah.

This volume (Volume II, Part I) presents the methodology and results of biological resources surveys of 10 CMFs, 5 RSSs, 230 HSSs, and 24 resitings in the Dry Lake Valley Study Area (Figure 1-6). Background research and field survey methods are given in Section 2.0; a review of existing data and field survey results for the Dry Lake Valley are given in Section 3.0. Section 4.0 discusses impacts and mitigations, and Section 5.0 contains conclusions and an evaluation of procedures. Section 6.0 contains the bibliography. Appendices contain federal and state threatened and endangered species listings, listings of animals expected in the Dry Lake Valley, transect results for the valley, examples of biological forms, location descriptions of the survey area, BLM memorandum 80-722, a list of contacts, a list of preparers, and a vegetative map.

\Xi Ertec

, ·

17

2.0 BACKGROUND RESEARCH

2.1 METHODOLOGY

2

Existing information on biological resources in Dry Lake Valley was obtained from a review of the scientific literature and from communications with federal and state agencies, various state and local organizations, and private individuals. Contacts included the Ely and Las Vegas District offices of the Bureau of Land Management (BLM); the Nevada Division of Wildlife; the Nevada State Museum; the Northern Nevada Native Plant Society; the University of Nevada at Reno; the U.S. Fish and Wildlife Service; and individual professional researchers in the area. Locations of threatened, endangered, or sensitive plants and distributions and ranges of sensitive and protected wildlife species were researched and when found, mapped to provide background information for the field crew during data collection. This information was also used to compile a species list and simplify data recording and compilation during field sessions.

Lists of threatened, endangered, or sensitive species and habitats were requested from the BLM, U.S. Fish and Wildlife Service, and Nevada Department of Wildlife. Published lists of the species were also obtained from the Federal Register, Northern Nevada Native Plant Society, and other sources. There are significant differences among these lists in terms of format and content. Some lists are specific to protected game animals, others are limited to threatened or endangered species, and

\Xi Ertec

still others cite "sensitive" species, not legally protected but believed important for various reasons. Many species are present on several lists, whereas some species are found on only one.

Emphasis in this study was placed on plant and wildlife species protected as threatened or endangered under federal law and on wildlife protected as game species under state law. These lists and their application are discussed further in Section 2.3.

2.2 ABIOTIC ENVIRONMENT: REVIEW OF EXISTING DATA

The following discussion of abiotic factors is limited to features that are relevant to the plant and animal communities in the valley. These factors may be especially important in the case of threatened or endangered plants, which often occupy very narrow niches or have very specific habitat requirements.

2.2.1 Valley Description

Dry Lake Valley lies in east-central Lincoln County, Nevada, about 15 miles west of Pioche. The valley is bounded by the North Pahroc and Schell Creek ranges to the west and the Burnt Springs, Highland, Bristol, and Fairview ranges to the east. Muleshoe Valley borders Dry Lake Valley on the north, and Delamar Valley borders it on the south. Elevations in the valley range from approximately 4600 feet (1400 m) in the lower regions to approximately 5300 feet (1600 m) on upper bajadas. Dry Lake basin is approximately 61 miles (97.6 km) long and 20 miles (32 km) wide at its widest point.

₩ Ertec

2.2.2 Hydrology

Dry Lake Valley is bisected by Coyote Wash and has one spring, Coyote Spring. There are no perennial streams; surface runoff occurs only after high-intensity rains and snowmelt. Percolation and evaporation prevent most of this runoff from reaching the playas in the southern end of the valley.

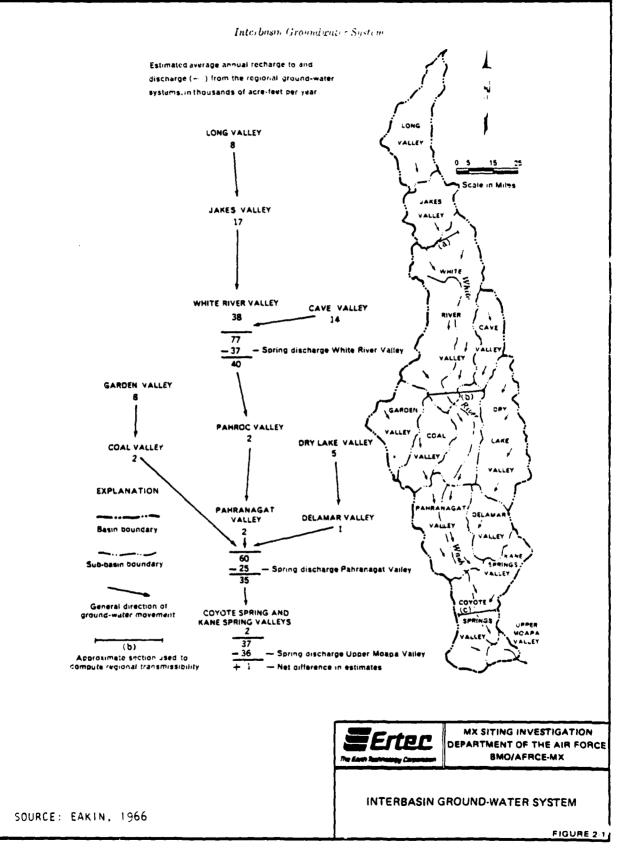
There are no shallow aquifers in the valley. The ground-water level in Dry Lake Valley generally lies at intermediate depths (Fugro National, no date). Small quantities of perched water are available in some mountain valleys, but depths to the groundwater in central Dry Lake Valley are generally over 400 feet (123 m).

Precipitation in the mountains along the northwestern and eastern flanks of the valley is the major source of the ground water which flows laterally and downward toward the central part of the valley. Ground water moves out of Dry Lake Valley through fractured bedrock into other areas of the White River system, eventually reaching Coyote Spring Valley.

Figure 2-1 illustrates the hydrologic relationships between Dry Lake Valley and surrounding areas.

The depth to ground water in the central valley has limited development in the valley, although existing wells in the area produce small quantities of water for livestock.

2.2.3 Geology


The mountain ranges along the eastern side of the valley are composed of Paleozoic limestones and dolomites, and those along

Ξ Ertec

• '

The second second second

1.25 80

A REAL PROPERTY OF A REAP

.

1.

the northern and western sides are composed primarily of Tertiary volcanics with small limestone and dolomitic outliers (Fugro National, no date).

15

Alluvial and lake deposits make up the majority of basin-fill units in the valley; playa deposits are located in the southcentral portion of the valley.

The Dry Lake fault scarp, which cuts alluvial fans along the eastern side of the valley, is a prominent feature of the study area. The scarp, which may result from a high magnitude fault displacement, extends nearly uninterrupted for approximately 218 miles (349 km). The Dry Lake scarp exhibits some characteristics of a shoreline but, unlike a shoreline, crosses elevation contours in an erratic manner. This could provide a number of unique microhabitats that possibly support vegetation not found in other areas.

Earth fissures occur in at least three areas west of the Ely Springs Range in Dry Lake Valley. The most prominent fissure is oriented east-west, and the other two are oriented north-south. These fissures may be the result of subsurface faulting (Fugro National, no date). Like the scarp, they may provide a number of unique microhabitats.

The soils in Dry Lake Valley vary from saline clay on and near the playas to dense gravel in a silty sand matrix on the high bajadas. The soils contain little organic material and seldom remain moist more than three consecutive months. In recent alluvial deposits and on actively eroding slopes, the soils

Ξ Ertec

are characterized by a dominance of mineral matter. Soil characteristics, locations, and suitability for supporting vegetation are summarized in Table 2-1. Soils are important because they are correlated to the type of vegetation which may be found in an area.

2.2.4 Climate

Dry Lake Valley is in a transitional region; its southern portion borders on the Mohave Desert, and its northern portion lies in the Great Basin Desert. The valley has a semiarid climate, characterized by generally low precipitation and humidity, and by high summer temperatures and evaporation rates. Climatological data are not available from the valley but can be extrapolated from records of Caliente and Pioche, both located approximately 30 miles (48 km) away.

Precipitation in this area varies widely from year to year as well as throughout the year. In 1975, precipitation in Pioche measured 1.22 inches (3.1 cm); it was eight times greater (9.38 inches [23.8 cm]) in 1977. The averages and ranges of precipitation and temperature from 1975 to 1979 are shown in Table 2-2. Annual precipitation data for the period 1931 to 1961 in Alamo, Caliente, and Pioche are shown in Table 2-3. These data indicate the variation over a 30-year period. Variation of precipitation is important because many plants will not germinate unless certain minimum precipitation levels are reached. Composition of desert vegetation may therefore vary from year to year, depending on rainfall.

16

\Xi Ertec

PHYSIO- JRAPHIC LOCATION	REPRE- SENTATIVE SOIL FAMILIES	SURFACE TEXTURE SUBSURFACE TEXTURE	Soil Depte i	DRAINAGE	AVAILABLE WATER CAPACITY	effective Rooting Depth	EROSION HAZARD	ALKALINITY	SPECIAL Characteristics
Playas and Adjoining Flood Plains	IGAT	Clay or Silty Clay Silty Clay	>60 in. (1.5 m)	Poorly Drained Very Slow	High	60 in. (1.5 m)	Wind erosion nazard severe on disturbed surfaces	>9.0	Strongly saline: high shring-swell potential: low bearing Capacity when wet
Valley Sottoms and Flood Plains	PENOYER	Silty Clay Loam Loamy Fine Sand and Sand	>60 in. (1.5 m)	Well Drained Moderately Slow	Righ	15-60 in. (38-150 cm)	Water erosion hazard slight wind erosion hazard moderate on disturbed sol:	: 8.0 to 8.8	Contains excess salts: subject to flood: suitable for crops if m ₂ 0 becomes available
	DELAMAR	Gravelly Sandy Loam Silica-Lime Cemented Hardpan	Shallow to Hardpan 24-40 in. (61-102 cm)	Hardpan	Moderately Low	24-30 in. (61-76 cm)	Slight	8.5	Suitable for crops if d ₂ J becomes available
Terrace and Aliuvial Fana	TYBO	Gravelly Sandy Loam Silica-Lime Cemented Hardpan	Shallow to Hardpan 10-20 in. (25-51 cm)	Hardpan	Low	10-20 in. (25~51 cm)	Slight	8.6 to 8.8	Not suitable for crops or pasture
	WOOLSEY	Gravelly Sandy Loam Very Gravelly Sandy Loam	>60 in. (1.5 m)	Well Drained Moderately Slow	Moderate	24-60 in. (61-150 cm)	Slight to Moderate	8.4 to 8.6	Suitable for crops if H ₂ 0 becomes available
Mountains and Jolands	3IMPSON	Stony Clay Loam Very Gravelly Clay Over Mard Bedrock	20-40 in. to Hard Bedrock (51-102 cm	Well Drained		20 in. 151 cm)	Slight to Severe	6.8	
	30CT	Stony Clay Loam or Bouldery Loam	Shallow	Hell n. Drained		20 in. 51 cm)	Slight to Severe		Rock Outcrops are scattered throughout the soil unit

Source: HDR 1980.

MX SITING INVESTIGATION EFTEC WX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE SMO/AFRCE-MX

DRY LAKE VALLEY REPRESENTATIVE SOIL CHARACTERISTICS

TABLE 2 1

. ·

1

rear		rage (a) rature Pio.	•	nest (a) rature Pio.	Lowe Temper Cal.	est rature Pio		tal Itation Pio.
							· · · · · · · · · · · · · · · · · · ·	
1975		48.9	105	96		4	3.33	1.22
1977	54.1		107	96	-13	-3	8.83	9.38
1979	52.1	50.3	105	96	4	7	9.31	11.02

MX SITING INVESTIGATION EFTEC BMO/AFRCE-MX

THREE-YEAR AVERAGE TEMPERATURE, TEMPERATURE EXTREMES, AND TOTAL PRECIPITATION FOR CALIENTE AND PIOCHE, NEVADA

.

TABLE 2-2

warde it

T.

E-TR-48-II-I

LOCATION	JAN.	FEB.	GE MON	APR.	MAY	JUNE	JULY	AUG.	SEPT.	VCHES CT.	1931- NOV.	DEC.	YEAR
ALamo	.70	.68	.68	.57	.45	.15	.73	.77	.32	.43	.43	.60	6.60
Caliente	.83	.79	.85	.70	.56	. 39	.76	.92	.49	.89	.75	.36	8.79
Pioche (a)	1.55	1.26	1.46	1.19	.83	.33	.87	1.12	.69	1.18	.96	1.36	12.80
						ATION,			(1931-				
YEAR	ALAMO		LIDNIE		IOCHE		YEA	<u>R</u>	ALAMO	<u>_</u> CA	IENTE	?	ICCHE
1931	9.60		9.4	9	-		194	7	-		7.47		10.70
1932	9.68		11.6	51	-		194	8	2.75	:	5.23		8.39
1933	7.29		8.1	6	-		194	9	6.09	10	0.03		15.36
1934	3.01		7.1	4	-		195	i0	5.32		2 .92		7.14
1935	5.58		9.4	3	-		195	51	4.89	10	0.15		13.98
1936	8.97		11.6	10	-		195	2	6.88	1	1.52		16.32
1937	6.30		6.8	14	-		195	53	1.98		4.66		7.26
1938	11.15				-		195	i4	5.96		9.31		13.28
1939	7.42		9.4	11	10.05	I	195	5	5.65		7.13		14.09
1940	6.16		7.4	19	13.48	,	195	6	1.23		4.78		3.81
1 941	14.91		18.7	3	22.38		195	17	7.43	10	3.88		17.14
1942	2.94		6.6	i3	7.18		195	8	6.47	1	3.13		15.51
1943	-		11.7	o	16.08		195	9	4.42		4.83		10.41
1944	-		7.9	6	11.59		196	i0	6.02	:	9.77		12.85
1945	10.65		11.6	10	20.60	r	196	51	3.63	i	3. ao		9.62

ar reast in uco U.S. Weather Bureau, in HDR, 1980.

(a) Average for 1939-60.

ANY NOTE

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SUMMARY OF PRECIPITATION AT ALMO, CALIENTE, AND PIOCHE, NEVADA 1931-1961

TABLE 2 3

. ----

2.3 BIOTIC ENVIROMENT: REVIEW OF EXISTING DATA

2.3.1 Vegetation Types

The area being considered for the MX system is almost entirely within the Intermountain Region of the United States, which has no water drainage to the sea. The Intermountain Region is divided into four major vegetation divisions: the Great Basin, the Wasatch Mountains, the Colorado Plateau, and the Uinta Mountains. The Great Basin, the largest division, is divided into nine sections. Dry Lake Valley lies mostly within the Tonopah Section of the Great Basin but extends northward into the Calcareous Mountain Section (Cronquist, 1972).

The Tonopah Section covers approximately 22,000 mi² (56,980 km²), much of which is volcanic in origin. It consists mainly of hot, dry, desert valleys with shadscale (<u>Atriplex confertifolia</u>) as the generally dominant shrub. Sagebrush (<u>Artemisia tridentata</u>) and pinyon pine (<u>Pinus monophylla</u>)/Utah juniper (<u>Juniperus osteosperma</u>) regions are found along the upper bajadas and lower mountain slopes in this area.

Endemic plants in the Tonopah Section include:

<u>Gilia nyensis</u>	Astragalus beatleyae
Lupinus holmgrenanus	Cymopterus ripleyi
<u>Miabilis pudica</u>	Eriogonum concinnum
Penstemon arenarius	Eriogonum umbellatum var vernum

The Calcareous Section, covering more than $16,000 \text{ mi}^2$ (41,440 km²), is typified by limestone mountains, by high valleys containing <u>Artemisia</u>, and by the lack of permanent lakes in the

Ertec

basins. The southern limits of this section run around the south end of the Highland, Schell Creek, and Egan ranges. This section has the most endemic plant species of any section within the Great Basin. Some of these species include (Cronguist, 1972):

Arenaria stenomeres Astragalus calycosus var. monophyllidius Astragalus chamaemeniscus Astragalus convallarius var. finitimus Astragalus lentiginosus var. latus Astragalus minthorniae var. gracilior Astragalus oophorus var. lonchocalyx Cymopterus basalticus Erigeron jonesii Eriogonum eremicum Eriogonum holmgrenii

Frasera gypsicola Lewisia maguirei Machaeranthera grindelioides var. depressa Penstemon concinnus Penstemon decurvus Penstemon francisci-pennellii Penstemon nanus Phlox griseola subsp. tumulosa Phlox kelseyi subsp. salina Primula nevadensis Scutellaria nana var. sapphirina

Plant communities within the Great Basin have been divided into vegetation types or zones defined as "large climax unit[s] whose boundaries are caused primarily by the effects of the climate and soil on the distribution of the dominant species of the zone" (Billings, 1951). Other studies of vegetation zones in the Great Basin have been conducted by Graham (1937) and Beatley (1976). Vegetation types are important because they provide information on possible wildlife habitats.

The four principal intermountain vegetation zones are Creosote Bush, Shadscale, Sagebrush, and Pinyon-Juniper. These zones and their principal plant communities are outlined in Table 2-4.

Creosote Bush Zone o Creosote bush (Larrea tridentata) community o Hopsage (Grayia spinosa) community o Joshua tree (Yucca baccata) community Shadscale Zone o Shadscale (Atriplex confertifolia) community o Winterfat (<u>Ceratoides lanata</u>) community
 o Disturbance (<u>Salsola iberica</u>, <u>Bromus tectorum</u>) community
 o Blackbush (<u>Coleogyne spinescens</u>) community
 o Greasewood (<u>Sarcobatus vermiculatus</u>) community o Saltgrass (Distichlis spp., Sporobolus airoides) community Sagebrush Zone o Big Sagebrush (Artemisia tridentata) community o Bunchgrass (Hilaria spp., Aristida spp.) community Pinyon-Juniper Woodland Zone o Open woodland community * Based on communities described by Cronquist, 1972. MX SITING VESTIGATION ETEC DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX PLANT ZONES AND PRINCIPAL COMMUNITIES EXPECTED IN THE DRY LAKE STUDY AREA TABLE 24

*/<u>`</u>

Creosote Bush Zone

Although most of this vegetation zone lies south of Dry Lake Valley and very little creosote bush is found in the valley, transitional associations such as hopsage and Joshua tree associations are present. Blackbrush, also found in Dry Lake Valley, is associated with both creosote bush and shadscale communities. Shrubs typical of the creosote bush zone include:

Acamptopappus shockleyi Ambrosia dumosa Atriplex confertifolia Dalea fremontii Ancelia farinosa Ceratoides lanata Grayia spinosa Krameria parvifolia Lycium andersonii Mendora spinescens Opuntia spp. Yucca schidigera

Shadscale Zone

This zone accounts for the majority of the vegetation in the valley. The Shadscale Zone, also called the Saltbush or Salt Desert Scrub Zone, is usually dominated by shadscale. Shadscale has a lower moisture requirement and a higher salt tolerance than sagebrush, and thus it is found in dry saline areas. It has been considered an edaphic climax on somewhat saline valley soils (Cronquist, 1972). It may occur on valley bottoms or rocky slopes and is common in western Nevada valleys having an annual precipitation ranging from 3.5 to 7.0 inches (8.9 - 17.8 cm). Within the shadscale zone there are several plant associations controlled by differences in soil salinity or aridity.

\Xi Ertec

The climax community is dominated by shadscale and galleta grass. Winterfat is often found in pure stands within the shadscale and sagebrush vegetation zones. This is a highly desirable browse species for many wild and domestic herbivores. There are considerable winterfat areas within Dry Lake Valley at present, but disturbance or overgrazing of winterfat areas has tended, over a period of time, to eliminate this species in favor of cheatgrass (<u>Bromus tectorum</u>), Russian thistle (<u>Salsola</u> <u>iberica</u>), or Halogeton (<u>Halogeton glomeratus</u>).

Halogeton, an annual weed introduced from Asia, spreads rapidly in disturbed areas, and no means of eradication have been found. It contains a large quantity of oxalic acid and is very toxic to grazing livestock (Cronquist, 1972).

Cheatgrass is an annual grass introduced from Eurasia. It spreads rapidly, crowding out native grasses in overgrazed areas. It finishes its growing cycle early in the year and becomes a fire hazard in the summer. Chukar partridge (<u>Alectoris chukar</u>) rely heavily on cheatgrass in the winter. The barbed seeds of the cheatgrass cling to the hair of animals and are spread to new areas during grazing (Hitchcock and others, 1964).

Russian thistle or tumbleweed is not a true thistle, but is a member of the family Chenopodiaceae. It rapidly invades disturbed or overgrazed ranges and is perhaps the most common weed of the semidesert areas of western North America. Domestic livestock which eat green Russian thistle are subject to scours (Hitchcock and others, 1964).

Ettec

Blackbrush and galleta grass form a community on non-saline, sandy soils in areas where rainfall is less than 6 inches (15 cm) (Cronquist, 1972).

<u>Artemisia spinescens</u>, often with greasewood (<u>Sarcobatus vermicu-talus</u>), is found on the more saline valley floors. Where the salt level gets very high, such plants as iodinebush (<u>Allenrol-fea</u> sp.) and dropseed (<u>Sporobolus airoides</u>) appear more frequently (Cronquist, 1972).

Sagebrush Zone

Areas with rainfall over 7 inches (17.8 cm) are similar to shadscale areas but have a sagebrush or a sagebrush-grass climax vegetation. Big sagebrush (<u>Artemisia tridentata</u>) is the most common species, but <u>A</u>. <u>arbuscula</u> and <u>A</u>. <u>nova</u> also cover considerable areas within this zone. Bitterbrush (<u>Purshia tridentata</u>) is palatable to many wild and domestic animals. It rapidly disappears in overgrazed areas, although it will slowly recover from its rootstocks if the roots are not damaged and if wildlife or livestock foraging is not too severe (Cronquist, 1972).

Various rabbitbrush communities (<u>Chrysothamnus</u> <u>viscidiflorus</u>, <u>C. greenei</u>, and <u>C. nauseous</u>) are found within the sagebrusn zone, and <u>C. viscidiflorus</u> is a very common subdominant plant in sagebrush areas.

Some important shrubs of the sagebrush zone include (Cronquist, 1972):

<u>Coleogyne ramosissima</u> <u>Ephedra torryana</u> 25

Ξ Ertec

Ephedra viridis Grayia spinosa Leptodactylon purgens Ribes velutinum Symphoricaysost sp. Tetradymia glabata

Pinyon-Juniper Zone

This is the major forest type of the Intermountain Region. Its range is usually from 5000 to 8000 feet (1538 to 2461 m) in elevation on the lower mountain slopes and upper bajadas in the valleys. Pinyon juniper woodland is found at the edges of Dry Lake Valley. The forest canopy in this community is not solid, and a significant number of shrubs are present including (Cronquist, 1972):

Artemisia spp. Chrysothamnus spp. Cowania mexicana Ephedra viridis Gutierrezia sarothrae Quercus gambelii Sambucus racemosa Symphoricarpos oreophilis Tetradymia canescens

2.3.2 Threatened, Endangered, and Sensitive Plant Species

The Endangered Species Act, P.L. 93-205, was enacted in December 1973 to provide a means for conserving threatened and endangered species and their ecosystems. The act includes the following definitions:

Endangered Species -- Those species of plants in danger of extinction throughout all or a significant portion of their range.

<u>Threatened Species</u> -- Those species of plants that are likely to become endangered within the foreseeable future throughout all or a significant portion of their range.

🗮 Ertec

Plant species whose existence is threatened or endangered are listed in the Federal Register (15 December 1980). The purpose of the list is to advise interested agencies and conservation groups of the species and associated habitats that are in need of special protection (Ayensu and Defilipps, 1978). Because of its length, the Federal Register lists and guidelines concerning these lists are included in Appendix A.

Two lists from the 15 December 1980 Federal Register were considered in this study: Taxa Currently Listed and Taxa Currently Under Review (or Candidate Species). The third list, Taxa Currently Proposed, includes no species within Nevada and, thus, is not addressed further here. Taxa Currently Under Review were considered because of the possibility that they may eventually become listed and because the Federal Register (15 December 1980) states that they should be considered in environmental planning. The U.S. Fish and Wildlife Service also recommends that an informal Section 7 (Endangered Species Act) consultation be initiated whenever a candidate species might be affected (Holm, 1981; and Gore, 1981).

BLM Memorandum No. 80-722 (see Appendix B) contains management guidelines that specify all candidate species for Federal threatened or endangered status should automatically be added to appropriate BLM state lists. These guidelines further state that:

Candidate species for Federal threatened and endangered status and sensitive species must be accorded full protection of the Endangered Species Act unless

🛢 Ertec

it is determined by the State Director on a case-bycase basis that information on the occurrence of a plant species is adequate to allow a specific action (U.S. Department of the Interior, 1980).

The State of Nevada has also enacted legislation for the protection and propagation of native flora (NRS 527.270). The relevant sections and the species considered as critically endangered under this legislation are shown in Appendix B. Nevada plants considered threatened and endangered by the Northern Nevada Native Plant Society (NNNPS) are also listed in Appendix B.

The Sikes Act of 1973 (16 U.S.C. 670h) mandates that, in addition to the Federal Register listing, the BLM also honor state laws and lists. The policy statement and management guidelines of BLM concerning threatened and endangered plants reflect this and are contained in Memorandum No. 80-722. It is BLM policy to "protect, conserve and manage federally and state-listed or candidate listings of sensitive, threatened or endangered plants [species]." The policy memo states:

The objective of all programs will include the means to conserve officially listed plants, to promote delisting, and/or to enhance or maintain the ecosystems occupied by plants on Federal or official State inventories. It is also policy to ensure that the habitats of sensitive plants will be managed and/or conserved to minimize or eliminate the need for Federal or State listing in the future.

Threatened and endangered plants usually occupy niches in locally unique, unusual, or isolated habitats that are ecologically and geographically restricted. These habitats include rocky ridges: rocky outcrops or breaks: high elevations: lowland

\Xi Ertec

valleys; limestone outcrops; and heavy, saline, and sandy soils (Welsh and others, 1975, and Harrison, 1980).

Prior to the field investigations conducted in 1980 (see Section 3.0), no threatened or endangered plant species were recorded from Dry Lake Valley (Pinzl, 1979; HDR, 1980a; and BLM, 1980b).

2.3.3 Rare, Threatened, and Endangered Wildlife Species

The federally listed threatened and endangered wildlife species that occur in Nevada and Utah are shown in Table 2-5. The rare, protected, and endangered species of wildlife on the Nevada state list are shown in Table 2-6. Species on both lists were of special concern during this study.

2.3.4 Sensitive Wildlife Species and Habitat

In addition to federal and state species listings, the Nevada Department of Wildlife has provided a list of species and habitats considered sensitive (Molini, 1980).

Sensitive habitats include:

- Riparian communities: including the desert riparian types often associated with washes having intermittent water, (this category includes springs, seeps, and live and/or intermittent streams or drainages);
- o Wetlands: all marshes or ponds or other wetlands that provide habitat for waterfowl and shore birds as well as aquatic furbearers:
- o Caliche washes: important habitat for desert tortoise;
- Ecotonal areas: especially pinyon/juniper and salt desert shrub or northern desert shrub types and important nesting areas for Ferruginous hawks;
- o Sage grouse strutting grounds;
- o Antelope kidding grounds, concentration areas, and migration routes:

29

🗏 Ertec

•

Species	State Expected	Status
rown or grizzly bear (<u>Ursus arctos</u> <u>horribilis</u>)	UT, NV	T
ltah prairie dog (<u>Cynomys parvidens</u>)	UT	E
Black footed ferret (<u>Mustela nigripes</u>)	UT	Е
ald eagle (Haliaeetus leucocephalus)	UT, NV	E
American peregrine falcon (<u>Falco</u> peregrinus <u>anatum</u>)	UT, NV	E
Arctic peregrine falcon (<u>Falco</u> peregrinus tundrius)	UT (migrant)	E
Pahranagat bonytail (<u>Gila robusta</u> jordani)	NV	E
Bonytail chub (<u>Gila elegans</u>)	UT, NV	E
lumpback chub (<u>Gila cypha</u>)	UT	Е
lui-ui (<u>Chasmistes</u> <u>cujus</u>)	NV	Е
loapa dace (<u>Moapa coriacea</u>)	NV	Е
Pahrump killifish (<u>Empetrichythys</u> <u>latos</u>)	NV	E
Devil's Hole pupfish (<u>Cyprinodon</u> <u>diabolis</u>)	NV	E
Narm Springs pupfish (<u>Cyprinodon</u> <u>nevadensis pectoralis</u>)	NV	E
Colorado River squawfish (<u>Ptychocheilus</u> <u>lucius</u>)	ut, nv	E
Lahontan cutthroat trout (<u>Salmo</u> <u>clarki henshawi</u>)	NV	т
Noundfin (<u>Plagopterus argentissimus</u>)	NV, UT	E
Source: Federal Register, May 20, 198	0.	
The Earth	CPERR .	SITING INVESTIGAT RTMENT OF THE AIR BMO/AFRCE-MX
	THREATENED AN WILDLIFE EXPEC	TED IN NEVADA

23412 00 32

E-TR-48-11-1

• •

Common Name	Scientific Name	State Status
Game Animals		
Pronghorn antelope	Antilocapra americana	A11
Bear	Ursus americanus	Protected(a)
Deer	Odocoileus spp.	
Mountain goat	Oreamnos americanus	
Mountain lion (cougar)	Felis concolor	
Moose	Alces americana	
Peccary	Pecari angulatus	
Audubon cottontail rabbit	Sylvilagus audubonii	
Nuttall cottontail rabbit	Sylvilagus nuttallii	
Pigmy rabbit	Sylvilagus idahoensis	
Snowshoe hare	Lepus americanus	
White-tailed jackrabbit	Lepus townsendii	
Bighorn sheep	Ovis canadensis canade	nsis
	Ovis canadensis nelson	i
	Ovis canadensis califo	rniana
Elk	Cervus canadensis	
Fur-Bearing Animals		
Beaver	Castor canadensis	A11 ()
Bobcat	Lynx rufus	Protected(a)
Gray fox	Urocyon cinereoargente	
Kit fox (swift fox)	Vulpes macrotis nevade	
	and Vulpes macrotis	arsipus
Red fox	<u>Vulpes fulva</u>	
Martin	<u>Martes caurina</u>	
Mink	Mustela vison	
Muskrat	Ondatra zibethica	
Nutria	Myocaster coypus	
River otter	Lutra canadensis	
Other Animals		
Mountain beaver	<u>Aplodontia rufa</u>	Protected
Pika	Ochotona princeps	Protected
Douglas squirrel	Tamiasciurus spp.	Protected
Flying squirrel	Glaucomys spp.	Protected
Gray squirrel	Sciurus spp.	Protected
Spotted bat	Euderma maculatum	Rare
		MX SITING INVESTIGATIO
	Sertec	EPARTMENT OF THE AIR FO BMO/AFRCE-MX
		THREATENED AND
		WILDLIFE ON THE
	NEVADA	A STATE LIST
	P & (GE 1 OF 4 TABL

E-TR-48-11-I

Common Name	Scientific Name	State Status
Southern bald eagle	Haliaeetus leucocephalus	
	leucocephalus	Endangered
Peregrine falcon	Falco peregrinus	Endangered
Golden eagle	Aquila chrysaetos	Protected
Merlin (pigeon hawk)	Falco columbarius	Protected
Prairie falcon	Falco mexicanus	Protected
American kestrel (sparrow hawk)	Falco sparverius	Protected
Cooper's hawk	<u>Accipiter cooperii</u>	Protected
Ferruginous hawk	Buteo regalis	Protected
Goshawk	Accipiter gentlia	Protected
Harris hawk	Parabuteo unicinctus	Protected
Northern harrier (marsh hawk)	Circus cyaneus	Protected
Red-tailed hawk	<u>Buteo jamaicensis</u>	Protected
Rough-legged hawk	Buteo lagpus	Protected
Sharp-shinned hawk	Accipiter striatus	Protected
Swainson's hawk	Buteo swainsoni	Protected
White-faced Glossy Ibis	Plegadis chihi	Protected
Belted kingfisher	Megaceryle alcyon	Protected
Nighthawk	Chordeiles spp.	Protected
Osprey	Pandion haliaetus	Protected
Barn owl	Tyto alba	Protected
Burrowing owl	Athene cunicularia	Protected
Great horned owl	Bubo virginianus	Protected
Long-eared owl	Asio otus	Protected
Short-eared owl	Asio flammeus	Protected
Brown pelican	Pelecanus occidentalis	Protected
White pelican	Pelecanus erythrorhynchos	Protected
Road runner	Geococcyx californianus	Protected
Turkey vulture	Cathartes aura	Protected

Protected and Endangered Birds

"Protected birds shall include those species of nongame birds protected by Federal law in accordance with the Migratory Bird Treaty Act of July 3, 1918 (40 Stat. 755; 16 U.s.C. 703-711), as amended, the Eagle Act of June 8 1940 (54 Stat. 150; 16 U.S.C. 668), as amended and Federal Regulations adopted pursuant thereto."

"Protected birds shall also mean and include all species of the Orders Falconiformes (vultures, hawks and falcons) and Strigiformes (owls) and of the Family Pelecanidae (pelicans). Species shall include, but are not limited to the "above:"

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

PROTECTED, THREATENED AND ENDANGERED WILDLIFE ON THE NEVADA STATE LIST PAGE 2 OF 4 TAK

TABLE 2-6

۰.,

nd include all Columbiformes (and include, bu agapus obscurus a umbellus	except the it are not	ose cla limite	assi-
Columbiformes (and include, bu agapus obscurus a umbellus	except the it are not	ose cla limite	assi-
and include, bu agapus obscurus a umbellus	it are not	limite	
agapus obscurus a umbellus			ed to
a umbellus	5	Broto	
a umbellus	5	Droto	
		FLOCE	cted
a a marine the second and a second		Protec	sted
ocercus urophas	sianus	Protec	
ecetes phasiane	llus	Protec	
x perdix		Protec	:ted
erdix griseoqul	aris	Protec	cted
gallus himalaye	ensis	Protec	sted
anus colchicus		Protec	ct ed
		Protec	cted
us virginianus		Protec	sted
	cus	Protec	sted
rtyx gambelii		Protec	:ted
gris gallopavo		Protec	:ted
	gallus himalaye anus colchicus anus colchicus us virginianus rtyx californic rtyx gambelii tyx pictus pepla squamata mia elegans	x perdix erdix griseoqularis gallus himalayensis anus colchicus us virginianus rtyx californicus rtyx gambelii tyx pictus pepla squamata mia elegans	x perdixProtecterdix griseoqularisProtectgallus himalayensisProtectanus colchicusProtectanus colchicusProtectus virginianusProtectrtyx californicusProtectrtyx gambeliiProtecttyx pictusProtectpepla squamataProtectmia elegansProtect

Protected, Rare and Endangered Fish

Big Spring spinedace	Lepidomeda mollispinis pratensis	Protecte	đ
Colorado bonytail	Gila elegans	Rare	
Desert dace	Eremichthys acros	Rare	
Moapa Dace	Moapa coriacea	Rare	
Relict (Steptoe) dace	Relictus solitarius	Rare	
Nevada pupfish	Cyprinodon nevaden. 15	Rare	
Virgin River spinedace	Lepidomeda mollispinis mollispinis	Rare •	
White River spinedace	Lepidomeda albivalis	Rare	
		MX SITING INVESTIGAT DEPARTMENT OF THE AIR BMO/AFRCE-MX	
		D, THREATENED AND	
	ENDANGER	RED WILDLIFE ON THE	
		ADA STATE LIST	
		PAGE 3 OF 4 TAR	LE 2-6

• -

Common Name	Scientific Name	State Status
Railroad Valley spring-	Crenichthys nevadae	Rare
White River springfish	C. baileyi	Rare
Humpback sucker	Xyrauchen texanus	Rare
White River sucker	Pantostens intermedius	Rare
Woundfin	Plagopterus argentissin	mus Rare
Pahranagat bonytail	Gila robusta jordani	Endangered
Pahrump killifish	Empetrichthys latos	Endangered
Cui-ui	Chasmistes cujus	Endangered
Devil's Hole pupfish	Cyprinodon diabolis	Endangered
Colorado squawfish	Ptychocheilus lucius	Endangered
Utah Cutthroat trout	Salmo clarki utah	Endangered
Game Fish		
All varieties of trout, Utah Cutthroat trout, wh		
All varieties of catfish	and bullheads.	
All varieties of perch, sunfish, walleye and pik		and other
Game Amphibian		
Bullfrog	<u>Rana</u> catesbeiana	Protected
Rare Reptiles		
Gila monster	Heloderma suspectum	Rare
Desert tortoise	Gopherus agasizzi	Rare
Commission Gene Date: March 6,	ct that these groups are	, Effective
	SErter	MX SITING INVESTIGATIO
	The East Reprinting Corporation	DEPARTMENT OF THE AIR FO BMO/AFRCE-MX
		D. THREATENED AND
		ED WILDLIFE ON THE

- Desert tortoise major or winter burrows that extend deep into the ground;
- Raptor nest sites, including cliffs, riparian aspen, pinyon, and juniper trees on the ecotone with valleys;
- Springs, lakes, ponds, and streams that support fish populations;
- o Kit and gray fox burrows or den sites; and
- o Mule deer winter and spring ranges.

Sensitive wildlife species include:

- o Ferruginous hawks; o Goshawks;
- o Cooper's hawks;
- o Sage grouse;
- o Antelope;
- o Desert tortoise; and
- o Gila monster (may not be found in Nevada MX area).

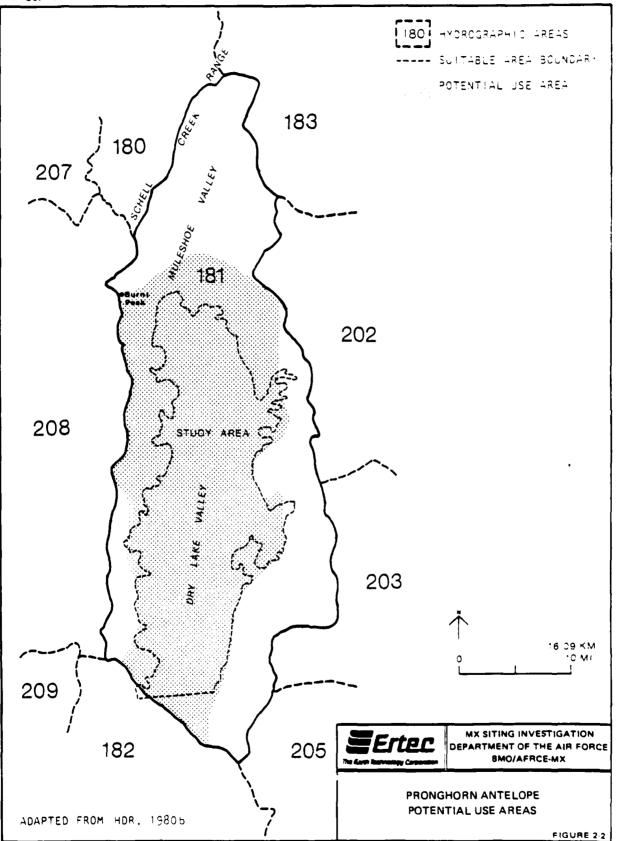
These species as well as others given in Table 2-6 are protected by state law as game animals, furbearers, or sensitive species. Game and furbearing animals are protected by restricting game season, number and area of harvest, or other factors. Species identified from background research as possibly occurring in Dry Lake Valley during all or part of their life cycle include:

Antelope;
Bighorn sheep;
Mule deer;
Kit fox;
Gray fox;
Bobcat;
Wild horses and burros;
Raptors (eagles, hawks, falcons); and
Game birds.

2.3.4.1 Antelope

Pronghorn antelope require large open spaces; fences and cultivated fields reduce its range, and domestic livestock grazing

Ξ Ertec


reduces its food supply (State of Nevada, 1973). Due to the heavy use of Dry Lake Valley by domestic livestock, antelope may use the valley only during migration. Pronghorn are generally not considered a migratory species but do move to locate adequate forage and water. Their optimum elevation ranges from 4000 to 6000 feet (1231 to 1846 m), and optimum precipitation levels range from 10 to 15 inches (25 to 38 cm) per year. Water must be available within 1 to 5 miles (2 to 8 km), and each animal requires 3 to 5 quarts (3 to 6 1) of water a day (Sundstrom, and others, 1973). The antelope's dependence on water can be reduced in hot areas by the ingestion of certain plants such as succulent forbs.

Antelope occur in areas of big sagebrush at the northern end of Dry Lake Valley. This is to be expected, since sagebrush is an important component in their diet. Optimum habitat is characterized by open cover of low vegetation. Plant species diversity, especially succulent forbs, is also important to antelope habitat. A mix of about 40 to 60 percent grasses, 10 to 30 percent forbs, and five to 20 percent browse is required (Yoakum, 1978). The areas in Dry Lake Valley potentially used by pronghorn antelope are illustrated in Figure 2-2. Distribution of antelope activity, as observed from the field survey in Dry Lake Valley, is discussed in Section 3.2.

2.3.4.2 Bighorn Sheep

Diet of the bighorn sheep includes bud sage, shadscale, desert mallow, and bunch grasses. Bighorn sheep compete with domestic

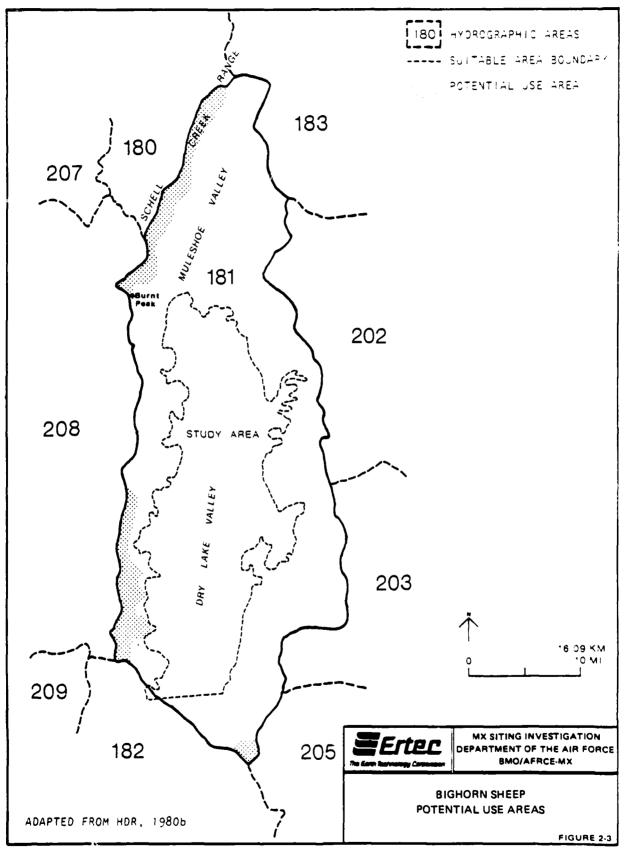
🗕 Ertec

stock for food and water (State of Nevada, 1973). This competition appears to be the most important factor in the extirpation of bighorns from northern, central, and parts of southern Nevada, although overhunting has also been a factor (McQuivey, 1978). The large population of domestic stock in Dry Lake Valley may prevent the extension of bighorn sheep into the valley area, although the southwestern border of the valley is thought to be used by bighorn at present (HDR, 1980b).

Water is the primary limiting factor in bighorn distribution, especially during summer when a water source must be within 2 miles (3 km) (McQuivey, 1976 and 1978). The requirement for accessible free water decreases during the other seasons and may be nonexistent in winter. Other habitat requirements include nearby escape cover and adequate forage.

Bighorns migrate seasonally to and from water sources. During winter, populations are dispersed to areas not containing permanent water sources. During summer, bighorn concentrate around permanent water sources and, as a result, occupy only 15 to 20 percent of the available habitat. Migrations to lower elevations in winter and to higher elevations in summer also occur. In addition, long-range migrations between mountain ranges occasionally occur, although distance traveled is generally less than 40 miles (64 km). Migrating sheep usually follow contour lines or take the shortest distance between rocky points (McQuivey, 1978).

Areas having potential use by bighorn sheep are shown in Figure 2-3; field survey results are discussed in Section 3.2.


🛎 Ertec

ş

4

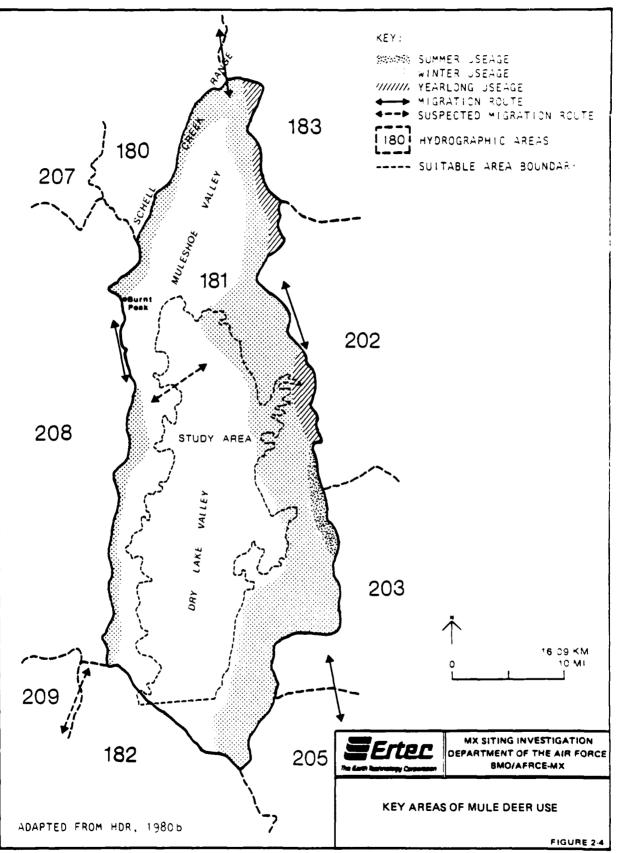
1

, ·

2.3.4.3 Mule Deer

Mule deer are browsers that feed on aspen, berry shrubs, sagebrush, cliff rose, bitterbrush, manzanita, grasses, and forbs.

Nearly all deer in Nevada migrate between summer and winter ranges, which are further divided into summer, winter, spring, and year-round-use areas (State of Nevada, 1973). Summer ranges occur at higher elevations where water and forage are available during the hot, dry months. In winter, deep snows force deer to lower elevations where they often concentrate in areas providing forage and cover. Such areas are critical for deer survival (Wallamo, 1978). Deer migrate between these seasonal ranges along fairly well established routes. Migration to other areas is also common.


Mule deer are found on the slopes and mountains surrounding Dry Lake Valley as shown in Figure 2-4. Winter habitat is found on the lower slopes, and a key winter area is found in the northeastern portion of the study area. A possible migration route crosses Dry Lake Valley in the vicinity of Coyote Wash near Coyote Springs.

2.3.4.4 Kit Fox

The kit fox is chiefly a desert animal found in the arid southwest (Murie, 1974). Common prey species include rabbits, small rodents, and small birds. The kit fox uses its den as a yearround refuge from the harsh environment, and it avoids the hot daytime temperatures by remaining in the den during the day and hunting at night (Egoscue, 1962). The den is often on the sandy

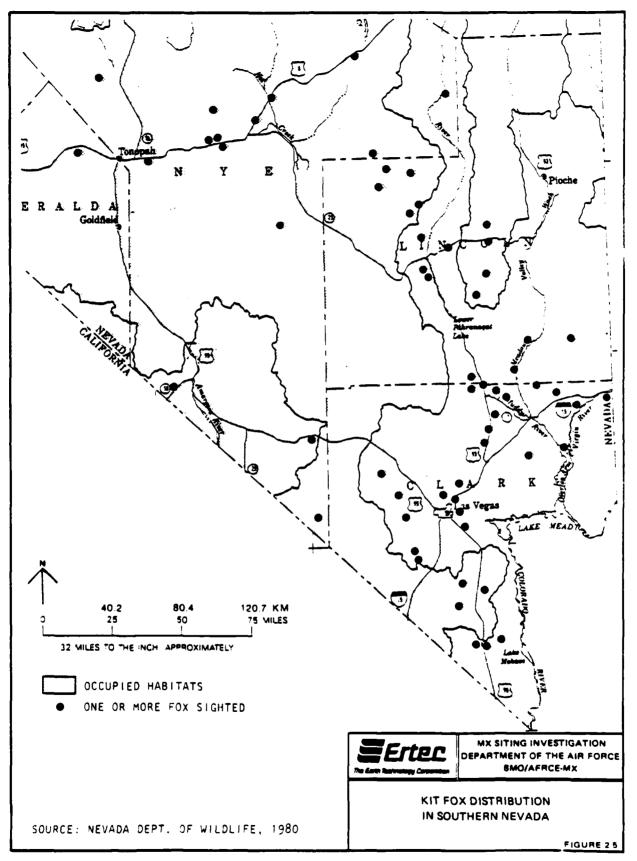
40

🛎 Ertec

 $\int \nabla \nabla \mathbf{r}$

plain and may have several entrances that measure 8 inches (20 cm) or more in diameter. Kit fox dens are considered keyuse areas by the Nevada Department of Wildlife (Molini, 1980). Distribution of kit fox in southern Nevada is shown in Figure 2-5. They are expected to occur in Dry Lake Valley.

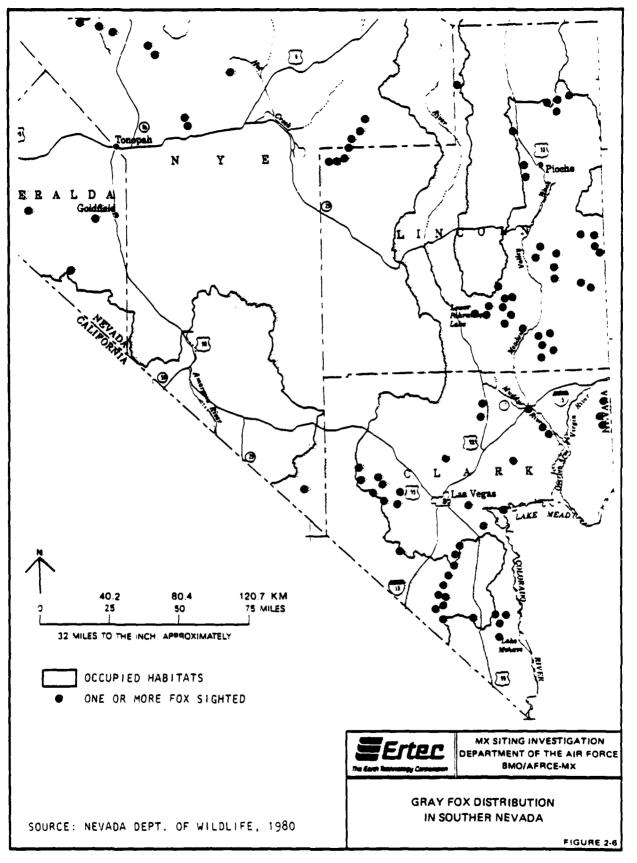
2.3.4.5 Gray Fox


Gray fox dens may occur in a variety of habitats, including below ground, among rocks, and even in hollow trees (Murie, 1974). The population of gray fox in southern Nevada has increased in recent years in response to increased precipitation (Lee, 1981). Common prey of the grey fox include small rodents and rabbits. The gray fox distribution in southern Nevada is shown in Figure 2-6. They may be expected to occur in the vicinity of Dry Lake Valley.

2.3.4.6 Bobcat

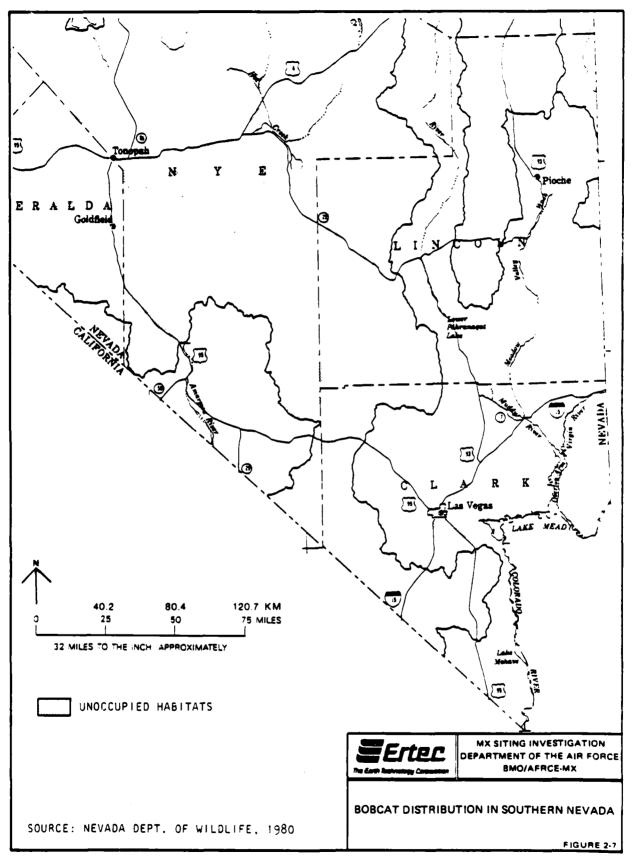
Rocky areas at canyon mouths are considered the optimum habitat for bobcat, but bobcats are also known to occur in desert valleys, especially in wash areas, although in lesser densities (Molini, 1981; and Lee, 1981). The primary prey of the bobcat are rabbits and small mammals. The bobcat distribution in southern Nevada is shown in Figure 2-7. Bobcat may be expected to occur in the vicinity of Dry Lake Valley.

2.3.4.7 Wild Horses and Burros


Wild horses and burros are known to exist in Dry Lake Valley. A 1975 survey indicated that the northeastern portion of Dry Lake

 \mathcal{M}

. '


1

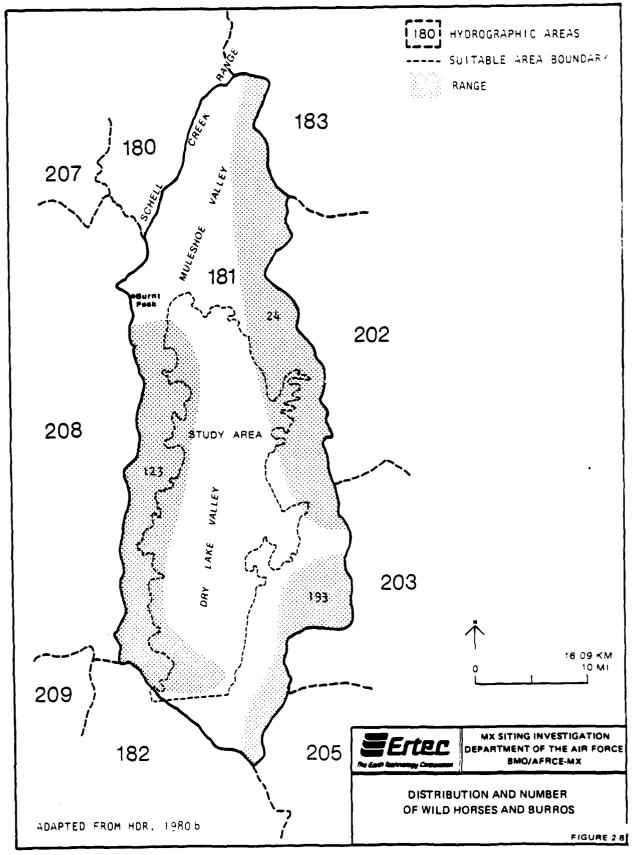
1

3

1

 \mathbb{N}

contained 24 animals, the western portion 123, and the southeastern portion 193. These herds roam mainly on the slopes and in the mountains. They do not usually use the valley bottoms, but portions of their range are located in eastern and western edges of the study area. Their expected distribution is shown in Figure 2-8.


2.3.4.8 Raptors

The bald eagle (<u>Haliaeetus leucocephalus</u>) and American peregrine falcon (<u>Falco peregrinus anatum</u>) are federally classified as endangered (U.S. Fish and Wildlife Service, 1980). Bald eagles are not normally found in Dry Lake Valley, but a wintering population is known in Pahranagat Valley to the south, and fall migration through Dry Lake Valley may occur.

Small numbers of peregrine falcons migrate through the study area in the fall and spring. The peregrine feeds on birds, especially waterfowl and shorebir s. Cliffs near permanent waterways are preferred nesting habitat. The decline in the peregrine population is attributed to pesticide poisoning of its food source and illegal capture by falconers (White, 1981). The status of the peregrine in Dry Lake Valley is not well known. It is documented in the area as a migrant, but no nesting has been reported in the surrounding mountain ranges (Herron, 1980).

The ferruginous hawk (<u>Buteo regalis</u>) is classified as a sensitive species by the Bureau of Land Managment and Nevada Department of Wildlife (Molini, 1980). The northern tip of Dry Lake

Ertec

Valley is the southernmost portion of the breeding range of the ferruginous hawk, but migrants may pass through the valley. Prey is similar to that of the red-tailed hawk and includes pocket gophers, ground squirrels, rabbits, and reptiles. Juniper trees that occur along the foothills of ranges are the preferred nesting sites. These hawks are sensitive to human disturbance, especially during the nesting season, and activities as far as 1300 feet (400 m) from the nest may cause stress (White, 1981).

The golden eagle (<u>Aquila chrysaetos</u>), a federally protected species, winters throughout Nevada, primarily in desert valleys. Their principal prey is the black-tailed jackrabbit.

The northern harrier (<u>Circus cyaneus</u>), a protected species, is common throughout the valley in winter and is especially abundant during fall migrations. These birds prey upon small mammals and reptiles.

Raptor nesting is known to occur along the rocky ledges in the mountain ranges bordering Dry Lake Valley. The valley floor and foothills are used for hunting and are a vital part of the bird's total habitat.

A raptor survey of Dry Lake Valley indicates general raptor use as being above average as compared to other valleys in the MX deployment area (Murphy and White, 1980). Table 2-7 gives a comparison of survey results for the three IOC valleys.

Ξ Ertec

.

Valley	State	% of Valley Surveyed	No. Species Nesting (No. nests observed)	Raptor Density(D)	Prey Base (Quantity)	Prey Base (Diversity)	Raptor Use Rating(c)
Dry Lake	NV	40	ō (5)	moderate	fair	good	4
Pine (north)	UT	30	4 (5)	sparse	average	average	ذ
Pine (south)	UT	80	2 (0)	low	low	poor	2
wah Wah	UT	80	6 (21)	moderate	average	average	4 – د

(a) Source: Murphy and White, 1980.

(b) As compared to other valleys in the MX-system.

(c) Based on scale of 1 to 5, where 1 is very poor and 5 is excellent.

The Earth Rectinging Carbonation

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

> RAPTOR USE COMPARISON FOR THE IOC VALLEYS

> > .

TABLE 2-7

The BLM has studied the eastern Nevada fall raptor migration. (Millsap, 1981). Preliminary results indicate that the valleys immediately adjacent to Pioche are used during migration by over 14 species of hawks and falcons, including the endangered bald eagle and the American peregrine falcon. Accipiters (sharp-shinned and cooper's hawks) are the most abundant group migrating through, comprising 60 percent of the total; buteos, especially the red-tailed hawk, are next in numbers. Although the birds are in migration, they depend on the valley floor for hunting.

Predator-prey relationships have been documented for many raptor species. Woffinden and Murphy (1977) observed declines in ferruginous hawk populations associated with declining blacktailed jackrabbit populations. Nesting success and Townsend ground squirrel availability have been correlated for the prairie falcon (Collopy, 1978), and a decline in golden eagle reproduction has been correlated to a decline in black-tailed jackrabbits, their major prey item (Murphy, 1975).

Thus, raptors are subject to indirect impacts because they are high in the food chain and tend to act as indicators of environmental conditions. Any significant impact on the prey base will be reflected by relatively rapid population decline (White, 1981). Although a diversity of prey is taken, some species are more desirable than others. Buteos, such as the red-tailed hawk, have a diverse diet, which allows them to thrive even when a major prey species becomes scarce, but more specialized hawks would be seriously affected. Eagles prefer larger prey such as

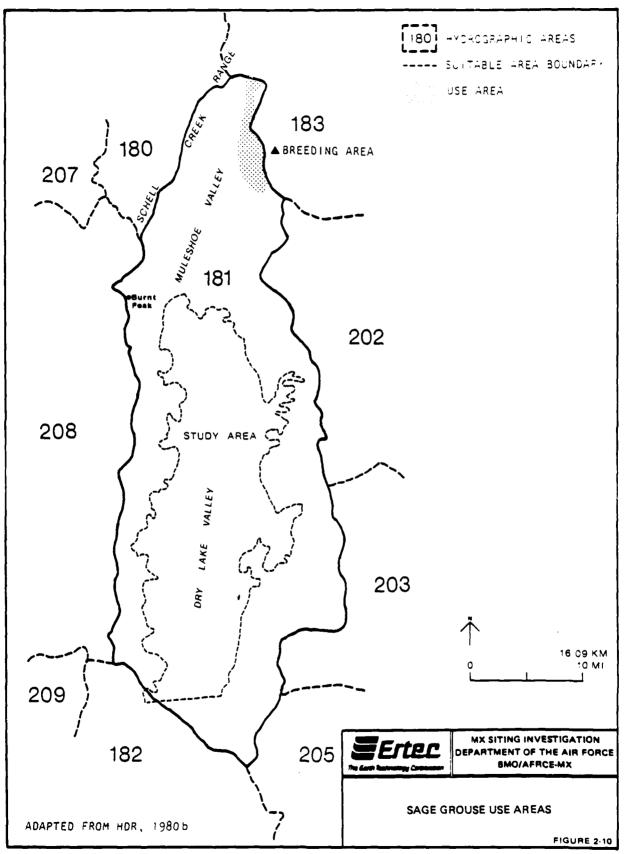
E Ertec

jackrabbits, cottontail rabbits, and waterfowl where available. Red-tailed hawks take jackrabbits and cottontails, as well as reptiles and an assortment of rodents and birds. The prairie falcon prefers ground squirrels but will take other small mammals and birds when necessary. A number of these prey species are abundant within Dry Lake Valley.

2.3.4.9 Game birds

Upland game birds in the study area include Gambel's quail (Lophortyx gambelii) and mourning dove (Zenaida macroura). Mourning doves are migratory, usually stopping only briefly in Dry Lake Valley during fall migrations. Gambel's quail are native to southern Nevada and occur sparsely in the desert scrub areas of Dry Lake Valley. Blue grouse are also present in various parts of southern Nevada. Distribution of blue grouse and quail are shown on Figure 2-9. The Seesee partridge was introduced northwest of Dry Lake Valley several years ago; the transplant was considered unsuccessful.

Sagebrush is the principal item in the diet of adult sage grouse (<u>Centrocercus urophasianus</u>), and sagebrush scrub is the preferred habitat of this species. In spring, male sage grouse perform courting rituals on established strutting grounds, which are usually open grassy areas. Nesting occurs on the ground under sagebrush, and brood-use areas are located where adequate cover and water are found (Braun and others, 1977). As shown in Figure 2-10, the distribution of sage grouse extends into the Dry Lake Valley watershed but not as far south as the study area.


• 3] 1 . C 10 Ł Tonopan N Y Ε G ERALDA G Goldfield G I Ĝ G 35 G G Q G 6 NEVADA 0 ⊡ G 3 G. R K G ्रि Las Vegas 1 G LAKE MEAD G 9 80.4 40.2 120.7 KM 25 50 75 MILES a 32 MILES TO THE INCH APPROXIMATELY BLUE GROUSE QUAIL G GAMBEL'S MX SITING INVESTIGATION M MOUNTAIN i Ertec DEPARTMENT OF THE AIR FORCE S SCALED SMO/AFRCE-MX in éach ba - 6 C CALIFORNIA BLUE GROUSE AND QUAIL DISTRIBUTION IN SOUTHERN NEVADA

SOURCE: NEVADA DEPT. OF WILDLIFE, 1980

E-TR-48-II-I

FIGURE 2-9

. '

2.3.4.10 Other Wildlife Expected

Dry Lake Valley provides habitat for a number of other wildlife species, including birds, reptiles, mammals, and amphibians. While these species are not classified as endangered or protected, they play vital roles in the ecosystem by serving as important food sources for larger predators such as foxes and raptors. Species expected to occur in the valley are shown in Appendix C.

2.4 LAND USE/LAND MANAGEMENT PRACTICES

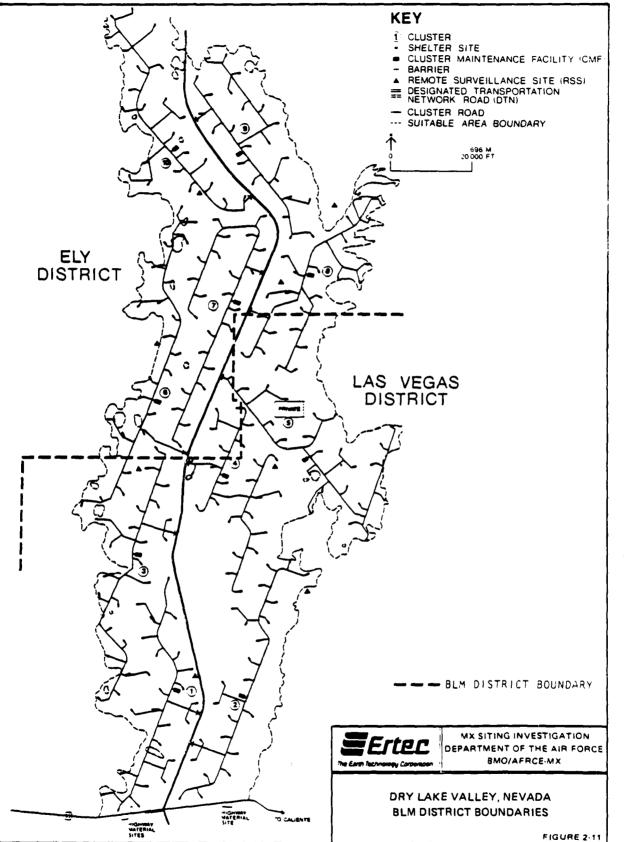
No state lands occur within Dry Lake Valley. All property is owned by the federal government or private interests.

The federal lands in Dry Lake Valley are managed by the Department of the Interior, Bureau of Land Management (BLM). The northern portion of the valley is managed by the Ely (BLM) District, the southern portion by the Las Vegas (BLM) District. The area boundary of the two districts is shown in Figure 2-11.

The largest parcel of privately owned land (600 acres) is located in eastern Dry Lake Valley just south of the Ely Springs Range. This area is used primarily for grazing and contains no permanent residents. The buildings on the property are used seasonally by ranch hands involved in grazing operations.

The second largest privately owned parcel is located in eastern Dry Lake Valley at Ely Springs. This parcel, which includes approximately 200 acres, is also used for grazing. No structures are present on the property (HDR, 1980a).

Ξ Ertec


1

\$

•

>

1

The only other private lands within the study area consist of one 80- and one 40-acre parcel, both located in the central portion of northern Dry Lake Valley. They are uninhabited and used solely for grazing (HDR, 1980a).

A mining district, Ely Springs, is located on the east side of Dry Lake Valley, but there is currently no mining activity in the valley.

Grazing is the predominant land use in the valley, and the evidence of grazing activity is pronounced. Water reservoirs and wells have been constructed to provide a water source for the cattle. Disturbance due to the livestock grazing is very high around these areas, and varies from low to moderate in other sections of the valley.

Many roads cross the valley, and off-road vehicle damage is considerable in some areas. Because of the slow vegetation growth in a desert environment, off-road driving often results in long-term damage.

In highly disturbed areas, the vegetation has been invaded by introduced weeds, <u>Halogeton glomeratus</u>, and Russian thistle, (<u>Salsola iberica</u>). The distribution of these species, as found during the field study, is discussed in Section 3.0. Native weedy species, including <u>Astragalus lentiginosus</u>, <u>Machaeranthera</u> <u>canescens</u>, <u>Eriogonum deflexum</u>, and <u>Bromus tectorum</u>, also occupy disturbed areas.

Extent of disturbance due to cattle, off-road vehicle use, and other factors is discussed in Section 3.2.4.

3.0 FIELD SURVEY

3.1 METHODOLOGY

3.1.1 Survey Areas

Three different kinds of construction sites were proposed in Dry Lake Valley: Horizontal Shelter Sites (HSSs), Remote Surveillance Site's (RSSs), and Cluster Maintenance Facilities (CMFs). Shelter sites are arranged in 10 clusters, each containing 23 shelters. Each of the clusters contains one cluster maintenance facility. The five remote surveillance sites are scattered over the valley.

Biological surveys of these sites were conducted from September through December, 1980. Surveys were also conducted during this period on approximately 20 miles (32 km) of Cluster 2 roads and along approximately 40 miles (64 km) of Designated Transport Network (DTN). Table 3-1 summarizes the type and number of facilities surveyed in the three IOC valleys, facility dimensions, and sizes of the biological survey areas.

The area biologically surveyed at each location was much larger than the area expected to be directly impacted by the facility itself. This approach allowed for evaluation of indirect disturbance that might affect adjacent areas during facility construction.

Field survey teams consisted of two biologists usually accompanied by two archeologists. The crews located the study sites by use of a 1:62,500 topographic base map illustrating the cluster layout for the entire valley, as shown in Figure 1-2.

🖀 Ertec

E-TR-48-11-1

, ·

•

Type Facility	Numbe Facili Surve		Facility Dimensions (feet)	Biological Survey Area (feet)	
Horizontal Shelter Sites (HSSs)	Dry Lake Pine Wah Wah	230 115 115	265 x 410	665 x 810	
Cluster Maintenance Facilities (CMFs)	Dry Lake Pine Wah Wah	10 5 5	250 x 700 and 250 x 740	750 x 1, 140	
Remote Surveillance Sites (RSSs)	Dry Lake Pine Wah Wah	5 4 4	100 x 100	300 x 300	
Designated Transport Network (DTN)	Dry Lake Pine Wah Wah	39 mile 0 0	s 75' Right- of-Way	75 feet on each side of centerline	
Cluster Roads	Dry Lake (Cluster Pine Wah Wah	26 mile 2) 0 0	s 75' Right- of-Way	75 feet on each side of centerline	

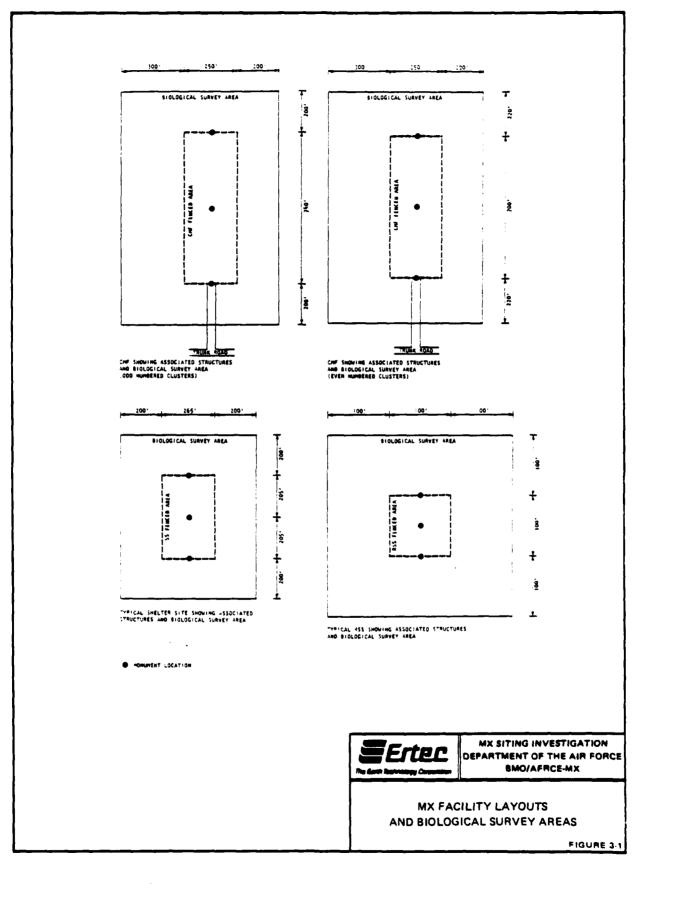
(a) See Volume II, Part II for report on Pine and Wah Wah valleys.(b) Does not include resitings.

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE 8MD/AFRCE-MX

TYPE, NUMBER, AND DIMENSIONS OF FACILITIES SURVEYED IN IOC VALLEYS (a)

TABLE DI

Once in the general area of the site, 1:9600 (1" = 800') topographic maps were used to determine precise site locations. The centerline of the environmental survey area was identified by cadastral survey. Because only the centerline was marked by the surveyors, the perimeters of the survey areas were identified by the field crew prior to conducting the survey. This procedure usually consisted of measuring the appropriate distances from the cadastral survey monuments to the survey perimeters and then establishing the corners with a right-angle prism. Measurements were made with metric-calibrated hip chains. Because the dimensions of HSS, CMF, and RSS units and the road networks vary, the procedures used to establish and transect sample survey areas are discussed separately for each below.


Shelter sites were identified on the ground by three capped rebar survey monuments and temporary survey stakes. The three survey monuments lie 205 feet (62 m) apart along the centerline of the long axis of each shelter site. The monument designating "the true point of beginning" (TPB), that is, the junction of the fence of the shelter and the branch access road, is stamped with an arrow pointing into the shelter. Monument locations are shown in Figure 3-1.

The biological survey area for each shelter site was 665 feet (203 m) by 810 feet (247 m), and encompassed 12.36 acres (5 ha). The corners of the survey area were flagged. First, a flag was placed along the centerline of the unit, 200 feet (61 m) from either the TPB or the end survey monument. Then a flag was placed at both corners 332.5 feet (101 m) out from and

🗏 Ertec

. •

at right angles to the centerline flag. The procedure was then repeated for the other end of the survey unit. The layout of the survey area is illustrated in Figure 3-1.

After the perimeters of the survey were located and flagged, the two biologists systematically examined the area for biological resources by walking at 81-foot (25-m) intervals along the long axis of the unit. Specific transect placement within shelter survey units was determined in advance so that data could be recorded on specially designed shelter sample unit map forms.

Remote surveillance site locations were identified by three capped rebar monuments and adjacent temporary survey stakes located 50 feet (15 m) apart. The survey area for each of the RSS sample units was 300 feet by 300 feet (91 m by 91 m), encompassing 2.06 acres (1 ha). The corners were marked by first placing a flag along the centerline 100 feet (30 m) out from the end monument. Corner flags were then placed 150 feet (46 m) out from and at right angles to the centerline flag. The layout of the RSS survey area is illustrated in Figure 3-1.

Cluster maintenance facility locations were identified by three capped rebar survey monuments and adjacent temporary survey stakes placed along the long axis of the CMF but offset from the survey area centerline. The survey area for each CMF was 750 feet by 1140 feet (229 m by 348 m), and encompassed 19.6 acres (8 ha). Although even-numbered and odd-numbered CMFs

🗮 Ertec

1

were different sizes, the same survey areas were inspected for both types. Monuments were located 370 feet (113 m) apart for the even-numbered CMFs and 350 feet (107 m) apart for the oddnumbered CMFs.

The corners of the even-numbered CMF survey areas were located by first placing a flag in line with the survey monuments 200 feet (61 m) out from TPB monument at the branch road end of the unit. Then, facing into the unit, the right hand corner was placed out 325 feet (99 m) and the left hand corner was placed out 425 feet (130 m), both at right angles to the monument line. The procedure was then repeated in mirror image for the other end of the CMF. The same basic procedure was followed for the odd-numbered CMFs except that the distance measured from the TPB monument to the flag was 220 feet (67 m) instead of 200 feet (61 m) to compensate for the shorter distance between survey monuments. The layouts of both types of CMFs are illustrated in Figure 3-1.

The DTN and Cluster 2 road locations were marked by temporary survey stakes spaced at approximately 0.25-mile (0.4 km) intervals. Changes in road location were indicated by larger, flagged stations called Points of Intersection (PIs). The widtn of the survey area along road right-of-way was 150 feet (46 m). Roads were inspected by two biologists walking approximately 81 feet (25 m) apart, each 40.6 feet (12 m) from the road centerline, along the entire length of the DTN and Cluster 2 roads.

Ertec

The archeologists' discovery of a large, prehistoric temporary campsite on the originally proposed DTN route required relocation of 5.5 miles (9 km) of the DTN. The road was subsequently moved to the west, marked with survey stakes, and surveyed.

Each facility site was numbered to eliminate confusion of the data. Site MX-181-SS 3/16, for example, indicates Shelter Site 16 in Cluster 3, Dry Lake Valley (nydrographic area 181).

3.1.2 Traverses

\$

After establishment of the survey area perimeter, a visual assessment of the biotic and abiotic conditions was conducted at each site. Crew members walked a series of parallel traverses at approximately 81-foot (25-m) intervals, the entire length of the survey area. The number and distance between traverses varied with the type of facility; these are summarized in Table 3-2.

While traversing the survey area, the field crew recorded significant abiotic factors such as slope, elevation, disturbance, and soil characteristics, as well as all identifiable vegetative and wildlife components on standardized data forms. Threatened and endangered plants and threatened and endangered wildlife signs and sightings were mapped on a metric grid sheet to document their locations within the shelter site so that they could be easily relocated in the future if necessary.

Relatively few animals were observed during the field survey; some use the area on only a seasonal basis, many are nocturnal,

= Estec

2

1

.

\$

. '

Facility Type	Number of Traverses	Approximate Distance betwee Traverses				
Shelter Site (HSS)	8	83 ft (25 m)				
Cluster Maintenance Facility (CMF)	10	72 ft (22 m)				
Remote Surveillance Site (RSS)	4	75 ft (23 m)				
Designated Transpor- tation Network (DTN and Cluster Roads	2	72 ft (22 m)				

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

TRAVERSE PROCEDURES FOR MX FACILITIES

TABLE 3-2

ſ

and most hide when humans approach. The field crew, therefore, identified a number of mammals from tracks, burrow construction, fur, scat, and other signs.

Special data forms were prepared to record additional information on important plant and wildlife species within or adjacent to a survey area. Any threatened and endangered species encountered were photographed (when possible), and data concerning their location, population, and habitat were recorded. Examples of all biological data forms used in the survey are given in Appendix D.

3.1.3 Line-Intercept Survey

The line-intercept method, used in the surveys, is a standard technique used in vegetation analysis (Canfield, 1941; and Van Dyne, 1960). A transect tape is placed over an area, and number and species of organisms intersecting the line are tabulated. The distance of line covered by each species is then calculated. This method was chosen because quantitative measurements can be obtained in a much shorter period of time than by the use of quadrants.

To obtain data on percent cover and density, two 163-foot (50-m), line-intercept transects were completed within each shelter site and cluster maintenance facility area. Transects were placed in the vicinity of the two end monuments, in areas considered to contain vegetation representative of the area. One transect was placed to the east and one to the west of the monuments. In study areas having two vegetation types, one transect was placed

🗧 Ertec

in each vegetation type regardless of monument locations. When this occurred, the transect locations were mapped on a metric grid in the record form.

Due to the smaller survey area, only one 163-foot (50-m) transect was laid in each RSS study area. This transect was always laid to the north or south of monument 1, the true point of beginning.

During the DTN and cluster road survey, transect data were collected at 5-mile (8-km) intervals on a line perpendicular to the proposed road Right-of-Way. In addition, a species list of flora and fauna was compiled for each 5-mile (8-km) segment of the DTN, and at three similarly spaced locations on the cluster roads.

The distance along the transect line intercepted by each individual plant was recorded to the nearest decimeter on the Sample Unit Vegetation Sheet. Due to the season of the survey, most annual plants were dead. To avoid inconsistent results, only perennial plants were included in the transect data. Percent total perennial cover, percent relative cover, density, and percent relative density were calculated. These parameters have been described by Smith (1974) and were calculated from the following equations:

$$total = \frac{total \ plant \ cover \ (dm)}{distance \ of \ transect \ (dm)} \times 100 \qquad (3.1.3-1)$$

total coverrelativeof species A (dm)x 100covertotal coverx 100of species A(%)of all species (dm)(3.1.3-2)

66

🚍 Ertec

Density may be calculated in several ways, and the problems associated with the definition of density have been outlined by Strickler and Sterns (1963). According to Smith (1974), density and relative density are defined as:

density of species A= <u>num</u>	ber of individuals of species A distance of transect (dm)	(3.1.3-3)
relative density = of species A(%)	number of individuals of species A number of individuals x 100 of all species	(3.1.3-4)

Data obtained at each study site were analyzed and correlated with information obtained from the literature and from state and federal agencies (see Section 2.0).

However, due to vegetative propagation, an individual plant is not always easily delineated. As defined by Strickler and Sterns (1963), an individual is the aerial parts of a single root system. Complications arise because what appears to be a multiple-stem shrub above ground, if excavated, may actually be discovered to be two or more plants with individual root systems. Due to this inherent difficulty with density, percent cover was used to define the dominant and subdominant plant species in each biological survey area.

3.1.4 Voucher Collection

1

Voucher specimens were collected from each vegetation association in the survey area and pressed in a standard plant press. The specimens were mounted on herbarium sheets and labelled with the collector's name, date of collection, habitat, and elevation.

🖀 Ertec

Species not identifiable in the field were collected for examination at the University of Nevada herbarium in Reno. In some cases, specimens were sent to an expert when taxonomic difficulties arose. However, due to the season of the survey, many plants did not have flowers or reproductive structures necessary for positive species identification.

Collections of sensitive, Currently Listed, or Currently Under Review plants were taken only from populations that exceeded 20 individuals, or in cases when field identification was uncertain.

Voucher specimens have been stored at Ertec Northwest in Seattle, and duplicate collections were submitted to the University of Nevada herbarium in Reno.

3.1.5 Trapping

(

(

£

Trapping was initiated to obtain additional information on the smaller mammals which serve as prey for raptors and other predators.

A permit to trap small rodents was obtained from the Nevada Department of Wildlife. Sherman live traps were baited with oatmeal and peanut butter, and cotton was placed inside to decrease rodent mortality rate during the cold nights. Trap lines were set at night in major vegetation associations. The following morning, the traps were examined, a species inventory compiled, and the animals released. Voucher specimens were not collected, and no mortality occurred during trapping.

🖀 Ertec

3.1.6 Vegetation Mapping

Since existing vegetation maps developed by the BLM sometimes lack detail or contain uncertainties, it was decided that additional maps based on quantifiable data were necessary. The vegetation associations in the valley were mapped by NRC, Inc. of Reno, Nevada, using aerial photography interpretation. The IOC valleys were photographed by Ertec Airborne Systems (formerly Fugro Geometrics) in 1978 and 1979 at a scale of 1:25,000. The dominant and subdominant vegetation species were determined from the field data, and the aerial photographs were interpreted and the field data extrapolated to obtain a vegetative map for the valley. BLM maps were used in some instances to supplement the field data and photo interpretation in questionable areas. Portions of the map showing individual clusters are found in Section 3.0, and a map showing the entire valley is given in Appendix I.

3.1.7 Photography

A 35-mm color slide was taken from the southwest corner of each survey area. The site number, date, photographer's initials, roll number, and frame were recorded on a photographic record form. This information was also displayed on a clipboard placed in one corner of each area photographed. Slides are filed at the Ertec Northwest office in Seattle.

Sensitive, threatened, or endangered plant and wildlife species were also photographed. A close-up photo of the species, as well as a photograph of the surrounding habitat, was taken where possible.

69

🛎 Ertec

3.1.8 Field Journals

A journal was maintained by each crew member and survey conditions, procedural deviations, unusual findings, and any other factors affecting the survey were documented. This information was used in subsequent analysis and interpretation of the information gathered in the field.

3.1.9 Off-Road Travel

Permission was obtained from the BLM for limited off-road driving as necessary, but due to the damage that can be inflicted and the slow growth and recovery rates of desert vegetation, travel by field crews was limited to existing trails when possible. When traveling off-road, field crews followed tracks made by the surveyors and created new tracks only when trails or previous tracks to the study area could not be located.

3.2 RESULTS AND DISCUSSION

3.2.1 Overview of Plant Communities

This section presents an overview of vegetation observed within the valley during the survey. A cluster-by-cluster discussion is provided in Section 3.2.5.

Xerophytic plant communities in desert regions are usually composed of three basic plant types: ephemerals (annuals); succulent perennials; and non-succulent perennials that have evolved drought-resistant adaptations (Daubenmire, 1974).

The vegetation of Dry Lake Valley is made up of xerophytic communities in which shrubs or shrubs and perennial grasses

70

🗄 Ertec

are the dominant plants. From the field data, species dominance was determined on the basis of percent cover of each species. Annuals may comprise a large portion of the Dry Lake communities in the spring and early summer months. Due to the time of the field investigation (September though December), the percent cover of annuals could not be determined. Despite the time of year, however, the presence of some annual species was noted, but complete identification and determination of range extension were not always possible.

In Dry Lake Valley, succulents were represented by six members of the cactaceae family: <u>Coryphantha vivipara</u>, <u>Echinocereus</u> <u>engelmannii</u>, <u>Sclerocactus pubispinus</u>, <u>Opuntia erinacea</u>, <u>Opuntia</u> <u>polycantha</u>, and <u>Opuntia echinocarpa</u>. These species were widely scattered and comprised less than one percent of the cover within the study areas.

The data obtained from approximately 500 transects on nearly 250 sites clearly indicate the dominance of perennial grasses and shrubs at the time of the study. The percent perennial cover averaged from both transects at each shelter site is shown by cluster in Table 3-3. The average cover ranged from a low of 3.5 percent at Site 5/13 to a high of 42.9 percent an Site 10/21. The average percent cover of perennial species on shelter sites in Dry Lake Valley was approximately 23 percent.

A comparison of the range and average cover in each cluster is shown in Table 3-4. Because facility locations were selected

🗕 Ertec

1

1

•

. ·

helte	r				-	uster	Perce			
Site	1	2	3	4	5	6	7	8	9	10
1	37.8	19.4	31.5	17.6	16.7	20.8	21.1	17.3	22.7	18.3
2	35.3	17.2	25.5	17.8	15.7	25.2	16.2	27.8	19.1	23.7
3	33.3	30.0	19.8	16.3	24.4	24.4	24.0	24.5	24.6	20.7
4	23.5	24.6	19.8	18.4	15.5	33.5	21.3	30.4	23.0	20.1
5	33.2	25.9	25.5	19.1	30.8	17.4	16.3	26.1	21.3	26.7
6	33.1	33.1	16.0	20.8	23.9	19.9	20.4	24.5	25.5	22.7
7	27.4	18.8	23.7	20.2	22.6	27.9	20.3	19.6	26.1	26.2
8	25.3	25.8	17.0	21.5	26.8	21.4	16.6	22.4	18.9	19.7
9	27.7	25.9	26.5	14.7	20.5	14.3	19.8	29.2	20.8	30.8
10	28.3	22.8	22.5	17.7	19.8	15.1	22.2	19.6	16.6	23.1
11	25.9	30.2	27.9	16.9	21.4	16.8	23.3	23.2	21.3	24.3
12	18.5	27.7	29.3	18.9	11.0	26.6	21.7	21.3	25.9	27.1
13	27.4	8.4	26.7	17.9	3.5	16.2	19.5	26.7	21.0	25.0
14	20.3	30.7	30.2	17.9	14.5	25.7	23.1	25.8	24.3	25.2
15	30.1	23.1	17.0	20.4	19.7	29.9	21.8	23.8	29.0	21.2
16	26.9	19.5	32.1	20.4	17.3	27.1	18.2	27.1	32.9	23.8
17	27.1	14.3	22.7	25.3	20.6	24.6	25.6	30.6	31.4	15.4
18	27.1	31.9	22.8	21.3	18.7	25.4	32.3	30.1	25.5	25.4
1 9	25.7	28.8	16.0	15.7	10.9	26.9	27.4	22.8	30.1	22.8
20	29.6	25.4	23.1	10.4	21.3	32.2	27.2	29.8	25.5	21.0
21	26.5	16.0	24.6	17.6	27.0	27.4	26.6	22.3	21.4	42.9
22	21.5	16.2	26.3	16.9	26.4	33.7	26.4	24.2	18.1	26.5
23	34.6	9.4	20.5	22.9	27.2	20.9	18.9	33.2	14.8	25.0
							Ertec	MX DEPAR		ESTIGATIO
									NT PEREN	

1

i.

	Cluster									
	1	2	3	4	5	6	7	8	9	10
HIGH	37.8	33.1	32.1	25.3	30.8	33.7	32.3	30.6	32.9	42.9
LOW	18.5	8.4	16.0	10.4	3.5	14.3	16.3	17.3	14.8	15.4
AVERAGE	28.6	22.9	23.8	18.7	20.0	24.0	21.8	25.8	23.3	24.2
							rtec		TING INVE	E AIR FOR
					· · · · · · · · · · · · · · · · · · ·		NGE AND			
						1				TABLE

-/~

for specific geologic and topographic conditions, the shelter and CMF sites cannot be considered a random sample of the valley. Thus, cover observed on the shelter and CMF sites may not be representative for the remainder of the valley. For example, the playa, which contained no biological survey areas, was devoid of vegetation.

All coverage and density data obtained from the transects are shown in Appendix E. Density and coverage data were not always closely correlated. Examples of this are evident from Cluster 3, Transect 1, Shelter Sites 21, 22 and 23, as shown in Table 3-5. At Shelter Site 23, the relative cover of winterfat (<u>Ceratoides lanata</u>) was 86.8 percent, while the relative density was 51.3 percent. At the same site, the relative cover of <u>Hilaria jamesii</u> was only 8.4 percent while the relative density was 39.1 percent. Thus, dominance in terms of aerial coverage may differ significantly from dominance determined by number of individuals (density).

Dominant plant species were determined from transect results. Four major vegetation zones are present in Dry Lake Valley: (1) sagebrush (<u>Artemisia</u>) communities; (2) sagebrush/shadscale (<u>Atriplex</u>) transitional communities; (3) shadscale communities; and (4) shadsale/southern desert transitional communities. Of these four groups, the shadscale is by far the most common, having 42 different dominant and subdominant associations that cover an estimated 128,879 acres (52,156 ha), approximately 61 percent of the study area. Dominant associations and their acreage within the study area are summarized in Table 3-6.

74

Ertec

.

. ·

				Transe	ect 1		
iological			Rel.	Total			Rel.
Survey	Plant	Cover	Cover	Cover	ŧ	Density	
Area	Species*	(dm)	(%)	(%)	Plants	(#/100 d	m) (%)
X SS 3/21	ATCA	27.8	20.4	5.6	6	1.2	9.5
	CELA	45.1	33.1	9.0	18	3.6	28.6
	CHGR	8.6	6.3	1.7	2	. 4	3.2
	GRSP	12.7	9.3	2.5	2	.4	3.2
	HIJA	42.2	30.9	8.4	35	7.0	55.6
		136.4	100.0	27.2	63	12.6	100.1
IX SS 3/22	CELA	67.5	46.4	13.5	37	7.4	57.8
	GRSP	62.5	43.0	12.5	11	2.2	17.2
	HIJA	10.7	7.4	2.1	11	2.2	17.2
	ORHY	1.9	1.3	.4	2	. 4	3.1
	SPAM	.6	.4	.1	1	.2	1.6
	SPCR	2.0	1.4	. 4	2	.4	3.1
		145.2	99.9	29.0	64	12.8	100.0
IX SS 3/23	CELA	78.9	86.8	15.8	59	11.8	51.3
IN 00 J/4J	HIJA	7.6	8.4	1.5	45	9.0	39.1
	ORHY	4.4	1.8	.9	11	2.2	9.6
		<u></u>	<u></u>		_		. <u></u>
		90.9	100.0	18.2	115	23.0	100.0
ATCA - Atri CELA - Cera CHGR - Chry GRSP - Gray HIJA - Hila ORHY - Oryz SPAM - Spha	toides lar sothamnus ia spinosa ria jamesi opsis hyme eralcea an	scens nata greene i i i i i i i i i i i i i i i i i i	<u>i</u>	18.2	115	23.0	100.0
PCR - Spor	obolus cry	ptandri	us				
					<u> </u>		
					rtec	DEPARTMENT	NVESTIGATIO OF THE AIR FO NFRCE-MX
				-		OF PLANT DE	

Г.

<u>E-TR-48-II-I</u>

)

.

9

ŧ

ŧ

1

\$

Ł

ŀШ·1		Dominant/	
Community	Type Number(a)	Subdominant Association(b) Acreage ^(C)
Sagebrush Communities	A1	Artr/Epne	17,479
	A2	Artr/Chvi	19,710
	A3	Artr/Hija	2,684
	A4	Artr/Cela	312
	A5	Arno/Tegl	5,564
	A6	Arno/Hija	395
	A7	Come/Arno	1,924
	A8	Gusa/Arno	1,037
	A9 A10	Arno/Epne Artr/Arno	220
	AIU	Artr/Arno	1,801
Total			51,126
Sagebrush/Shadscale	B1	Grsp/Artr	320
Transitional Communities	B2	Epne/Grsp	2,110
	ВЗ В4	Grsp/Chvi Chvi/Grsp	5,482 5,092
	B5	Grsp/Hija	1,673
	B6	Grsp/Epne	1,477
	B7	Epne/Chvi	457
	B8	Chvi/Hija	276
	в9	Epne/Hija	4,148
	B10	Chvi/Epne	292
Total			21,327
Shadscale Communities	C1	Cela/Chgr	17,435
	C2	Cela/Atca	8,542
	C3	Cela/Hija	6,150
	C4	Cela/Grsp	4,831
	C5 C6	Cela/Orhy Cela/Spcr	1,511 1,844
	C7	Cela/Arsp	4,246
	C8	Chgr/Cela	4,596
	C9	Atco/Cela	16,216
	C10	Hija/Cela	2,734
	C11	Atca/Cela	3,269
	C12	Atco/Grsp	107
	C13 C14	Atco/Arsp	5,488
	C14 C15	Atco/Koam Atco/Sihy	3,708 500
	C16	Chgr/Tegl	1,038
	C17	Chgr/Orhy	1,431
	C18	Chgr/Epne	3.480
	C19	Chgr/Atco	6,460
		SErtec	MX SITING INVESTIGATION DEPARTMENT OF THE AIR FOR BMO/AFRCE-MX
		The Earth Rechnology Companies	
		•••••••	VEGETATION ZONES AND
		-	TIONS OBSERVED IN
			E VALLEY, NEVADA
			PAGE 1 OF 3 TABLE 3

<u>E-TR-48-II-I</u>

.

1

. ·

	(free of the second sec	Dominant/ Subdominant	
Community	Type Number	(a) Association ^(b)	Acreage ^(c)
Shadscale Communities			
(Cont.)	C20	Tegl/Epne	753
	C21	Tegl/Hija	1,003
	C22 C23	Lyan/Hija Gumi/Chgr	818 964
	C24	Save/Atco	3,191
	C25	Hija/Chgr	1,341
	C26	Gumi/Epne	590
	C27	Hija/Spcr	335
	C28 C29	Epne/Tegl Gutr/Chgr	1,247 989
	C30	Hija/Cela	1,028
	C31	Tegl/Chgr	1,219
	C32	Chgr/Hija	675
	C33	Atco/Gusa	2,469
	C34 C35	Tegl/Cela Hija/Orhy	1,073
	C36	Gumi/Hija	1,495 505
	C37	Chgr/Atca	2,565
	C38	Atca/Orhy	781
	C39	Grsp/Cela	563
	C40	Cela/Atco	5,713
	C41 C42	Save/Atco/Koam Grsp/Chgr	2,265
		Grap/ chgr	
Tota	1		128,879
Shadscale/Southern	D1	Yubr/Grsp	2,189
Desert Transitional	D2	Yubr/Tegl/Hija	1,343
Communities	D3	Yubr/Artr/Chvi	172
Tota	1		3,704
Playa		No vegetation	4,944
Tota	l Acreage		209,980
(a) Types mapped in F	igures 3-2	A through 3-33	
(b) Determined by cov	erage data	from transects. F	Key on p. 3-21.
(c) Determined by pla	nimetry an	id aerial photo inte	erpretation.
			MX SITING IVESTIGATION DEPAPTMENT OF THE AIR FOR BMO/AFRCE-MX
			EGETATION ZONES AND
			T/SUB-DOMINANT
			ONS OBSERVED IN
			VALLEY, NEVADA
		PA	AGE 2 OF 3 TABLE

K

.

Symbol	Scientific Name	Common Name
Arno	Artemesia nova	black sagebrush
Artr	Artemesia tridentata	big sagebrush
Atca	Atriplex canescens	fourwing saltbush
Atco	Atriplex confertifolia	shadscale
Cela	<u>Ceratoides lanata</u>	whitesage (winterfat)
Chgr	Chrysothamnus greenei	Greene's rabbitbrush
Chvi	Chrysothamnus viscidiflorus	Douglas rabbitbrush
Come	<u>Cowania mexicana</u>	cliffrose
Epne	Ephedra nevadensis	Mormon tea
Grsp	Grayia spinosa	spiny hopsage
Gumi	<u>Gutierrezia</u> microcephala	threadleaf snakeweed
Gusa	<u>Gutierrezia</u> <u>sarothrae</u>	broom snakeweed
Hija	<u>Hilaria jamesii</u>	galleta grass
Koam	Kochia americana	green molley
Lyan	Lycium andersonii	Anderson wolfberry
Orhy	Oryzopsis hymenoides	Indian ricegrass
Save	Sarcobatus vermiculatus	greasewood
Sihy	Sitanion hystrix	squirreltail grass
Sper	Sporobolus cryptandrus	sand dropseed
Tegl	<u>Tetradymia</u> grabrata	littleleaf horsebrush
Yubr	Yucca brevifolia	Joshua tree

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SUMMARY OF VEGETATION ZONES AND DOMINANT/SUB-DOMINANT ASSOCIATIONS OBSERVED IN DRY LAKE VALLEY, NEVADA PAGE 3 OF 3 TABLE 3-6

The variety of dominant species in Dry Lake Valley demonstrates that distribution of vegetation is determined by microhabitats and microclimates. This observation is especially apparent when comparing the species occurring in the proposed shelter sites bordering the playa in Cluster 2 with those found in the northern end of Cluster 9. Pure stands of greasewood (<u>Sarcobatus vermiculatus</u>) found in Cluster 2 are characteristic of the shadscale vegetative zone. However, the species in Cluster 9 are characteristic of the sagebrush vegetation zone. These species include big sage (<u>Artemesia tridentata</u>), green rabbitbush (<u>Chrysothamnus greenei</u>), Douglas rabbitbush (<u>Chrysothamnus</u> <u>viscidiflorus</u>), and hop sage (<u>Grayia spinosa</u>).

Table 3-7 lists all plant species observed on Dry Lake Valley survey sites. Detailed species lists for vegetation and dominant and subdominant types are described by cluster in Section 3.2.5.

3.2.2 Threatened and Endangered Plant Species

The field investigations revealed the presence of <u>Sclerocactus</u> <u>pubispinus</u> and <u>Corypantha vivipara</u> in the study area. Distribution of these species within the study sites is shown in Figure 3-2.

Only one individual of <u>S</u>. <u>pubispinus</u>, the Great Basin fishhook cactus, was observed in the valley. A study of this species in Nevada indicates that it is decreasing in numbers and probably in range (Harrison, 1980). Threats to the existence of this

79

🛢 Ertec

È

Agavaceae Yucca baccata Yucca brevifolia Asteraceae (Compositae) Acamptopappus sp. Amorosia acanthicarpa Ambrosia eriocentra Artemisia nova Artemisia spinescens Artemisia tridentata Artemisia sp. Aster sp. Baileya pleniradiata Chaenactis sp. Chrysothamnus greenei Chrysothamnus nauseosus Chrysothamnus viscidiflorus Chrysothamnus sp. Erigeron sp. Gutierrezia microcephala Gutierrezia sarothrae* Gutierrezia sp.* Haplopappus sp.* Hymenoclea salsola Iva axillaris Machaeranthera canescens* Machaeranthera grindeloides var. depressa Machaeranthera sp. Pectis papposa Psathyrotes annua Senecio sp.* Stephanomeria sp. Tetradymia axillaris Tetradymia glabrata Tetradymia spinosa Viguiera multiflora

Boraginaceae

Symphoricarpos sp. Chenopodiaceae Atriplex canescens Atriplex confertifolia Ceratoides lanata Grayia spinosa dalogeton glomeratus Kochia americana Salsola iberica 5alsola sp. Sarcobatus vermiculatus Suaeda torreyana Cupressaceae Juniperus osteosperma Epnedraceae Ephedra nevadensis Cryptantna sp.* Lappula occidentalis Lappula sp.

Brassicaceae (Cruciferae) Caulantnus crassicaulis Caulantnus pilosus

Descurainia pinnata Descurainia sp.

Stanleya pinnata Streptanthus cordatus

Corypnantha vivipara* Echinocereus engelmannii* Opuntia echinocarpa

Opuntia erinacea Opuntia sp.* Sclerocactus puoispinus** Mammillaria sp.*

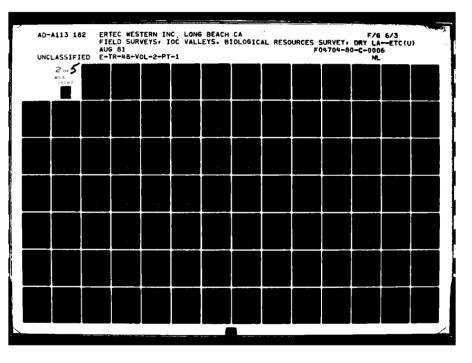
Lepidium montanum*

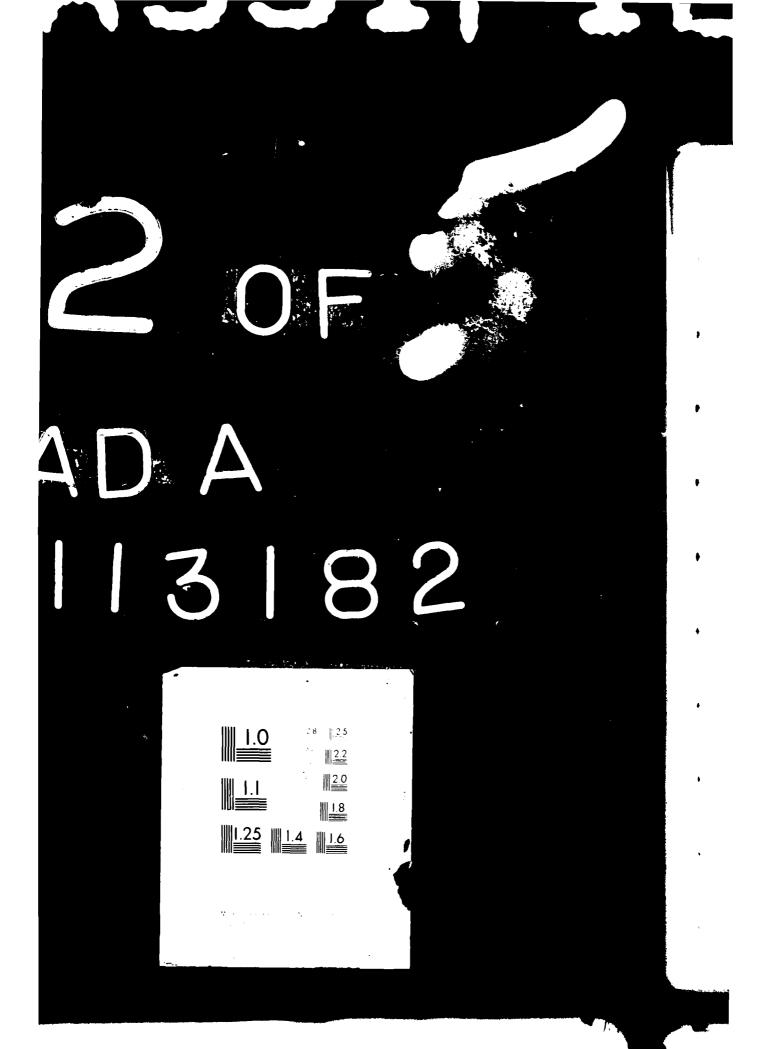
Lepidium sp.* Sisymprium sp.

Cactaceae

Caprife?iaceae

* Varieties or species of these genera are Currently Listed or Listed as Taxon Currently or Under Review in the Federal Register, but species or variety of the plants in Dry Lake could not be positively identified during season of survey. ** Designated as a Taxon Currently under Review in the Federal Register.




MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE 8MO/AFRCE-MX

PLANT SPECIES OBSERVED IN DRY LAKE SURVEY AREAS

PAGE 1 OF 2

TABLE 3-7

Euphorbiaceae Euphorbia sp.

Fapaceae (Leguminosae) <u>Astragalus lentiginosus</u>* <u>Astragalus</u> sp.* <u>Lupinus</u> sp.*

Hydrophyllaceae <u>Phacelia</u> sp.*

Lamiaceae

Salvia dorrii

Liliaceae <u>Calochortus</u> sp.

Linaceae Linum perenne Marrubium vulgare

Loasaceae <u>Mentzelia</u> sp.*

Malvaceae <u>Sphaeralcea</u> <u>ambiqua</u> <u>Sphaeralcea</u> <u>grossulariifolia</u> <u>Sphaeralcea</u> sp.*

Nyctaginaceae <u>Mirabilis</u> sp.

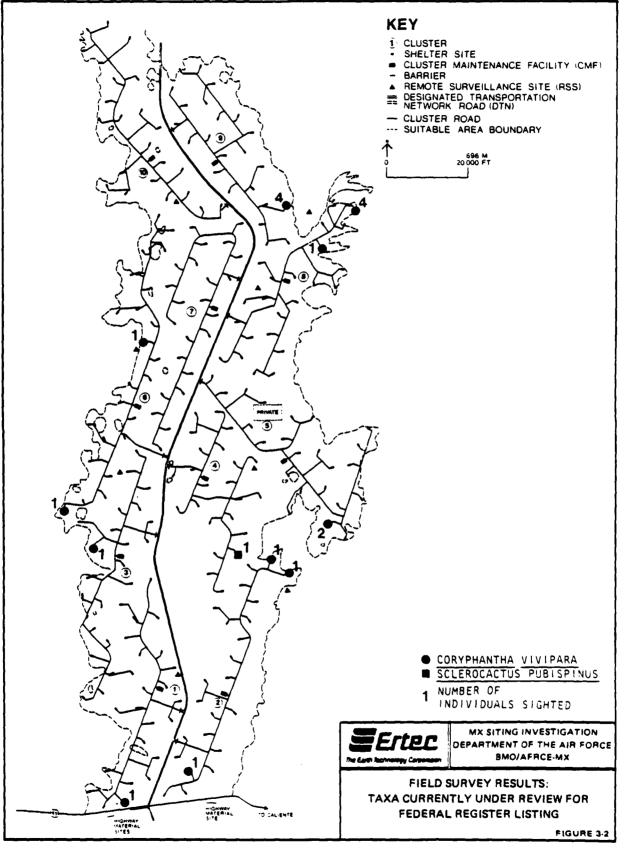
Onagraceae <u>Camissonia</u> sp.* <u>Oenothera</u> sp.*

Poaceae (Graminae) <u>Aristida purpurea</u> <u>Aristida</u> sp. <u>Bouteloua gracilis</u> <u>Bouteloua gracilis</u> <u>Bromus rubens</u> <u>Bromus tectorum</u> <u>Erioneuron pulchellum</u> <u>Erioneuron pilosum</u> <u>Hilaria jamesii</u> <u>Muhlenbergia porteri</u>

Poaceae (Continued) Oryzopsis hymenoides Oryzopsis nymenoides Sitanion nystrix Sitanion juoatum Sporobolus contractus Sporobolus airoides Sporobolus fiexuosus Sporobolus fiexuosus Sporobolus sp. Stipa comata Stipa sp. Vulpia octoflora Polemoniaceae Ipomopsis congesta Gilia sp.* Langoilia sp. Leptodactylon pungens Polygonaceae blygonaceae Eriogonum brachypodum Eriogonum cernuum Eriogonum deflexum Eriogonum inflatum Eriogonum microthecum* Eriogonum nidularium Eriogonum sp.* Oxytheca perfoliata Ranunculariaceae Delphinium sp. Rosaceae Cowania mexicana Fallugia paradoxa Prunus fasciculata Scrophulariaceae Castilleja sp.* Mimulus sp. Penstemon palmeri Penstemon sp.*

Solanaceae Lycium andersonii

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX


PLANT SPECIES OBSERVED IN DRY LAKE SURVEY AREAS

PAGE 2 OF 2

TABLE 3-7

E-TR-48-11-1

÷.

 \mathcal{M}

E-TR-48-11-1

cactus include poaching, trampling by livestock, insect infestations, and rodent foraging. This species is listed as threatened in Nevada on the NNNPS listing, and is a Taxa Currently Under Review in the Federal Register (December 15, 1980). It is considered a Category 1 species, which is defined as a species for which sufficient biological information is available to support the listing of the species as threatened or endangered but for which development of final rules will require several years. Plants in Category 1 are to be considered in environmental planning (Federal Register, 1980).

83

Populations of one to four individuals of Coryphantha vivipara, the pincushion cactus, were observed scattered throughout Dry Lake Valley. The variety of this species is thought to be rosea, although positive identification was not possible because the plants were not in flower. Threats to the pincushion cactus include grazing, trampling, poaching, biocide application, construction, and other factors. This species is listed as threatened in Nevada on the NNNPS listing and is a Taxa Currently Under Review in the Federal Register (15 December 1980). It is a Category 2 species, which is defined as a species for which a threatened or endangered status is probably appropriate but for which insufficient data are presently available. ... plants are also to be considered in environmental planning (Federal Register, 15 December 1980). Treatment of plant species listed as Currently Under Review is discussed at length in Section 2.3.2.

🖀 Ertec

Although other sensitive, threatened, or endangered plant species may exist in Dry Lake Valley, they may not have been identified because reproductive structures necessary for identification were not present during the season in which the study was conducted.

Individuals of Erigeron, Senecio, Gutierrezia, Haplopappus, Cryptantha, Lepidium, Opuntia, Lupinus, Astragalus, Mentzelia, Gilia, Castilleja, Penstemon, Oenothera, Eriogonum, Sphaeralcea, Phacelia, and a possible Mammillaria were observed within the valley, but species could not be identified. <u>Gutierrezia sarothrae</u>, Machaeranthera canescens, Astragalus lentiginosus, and Eriogonum microthecum were also observed, but the variety could not be determined. <u>Echinocereus engelmannii</u> was also observed, but it was not the endangered variety <u>purpureus</u>. With the exception of <u>Astragalus</u>, <u>Penstemon</u>, and <u>Eriogonum</u>, most of these species and varieties are not likely to be the individuals Currently Listed or Currently Under Review. Many of the listed species or varieties are generally known only from specific habitats, not found in the Dry Lake area, or are known only from

A rare species may also be overlooked if it flowers only briefly or at unusual times, if it germinates infrequently, or if it experiences long periods of dormancy. In addition, not all areas of the valley were studied, and some species may occur outside of the facilities sites. Selection of the sites for specific geologic and topographic characteristics may have

🗧 Ertec

E-TR-48-II-I

preselected for plant and wildlife species as well. For this reason, it is difficult to determine whether distribution, as evidenced from the study sites, is actually representative of the valley. Some areas, such as washes, were avoided in siting of facilities due to geological unsuitability. These areas may support species not found in the surveyed areas.

3.2.3 Overview of Wildlife

Wildlife species and signs were documented during the field survey. However, discontinuity of animal populations in both time and space has long been recognized as a natural phenomenon which often makes interpretation of survey results difficult (Elton, 1927). In arid and semiarid lands, events influencing population size and distribution are especially irregular in time and intensity (Low, 1979).

The abiotic desert environment has a strong influence on the developmental and reproductive processes of its animal inhabitants. Precipitation is the major factor controlling reproduction in desert habitats. Wildlife are strongly influenced by the annual precipitation rate, a factor which can fluctuate greatly from year to year (Riechert, 1979; Mayhew, 1966; and Beatley, 1969b). For example, studies have snown that the spadefoot toad, <u>Scaphiopus bombifrons</u>, will not breed unless at least .07 inch (2 mm) of rain has fallen (Woody and Thomas, 1968). A direct relationship has also been shown between the biomass of rodents in an area and the amount of rainfall (Harris, 1971).

Ertec

Some animals depend on precipitation indirectly for food (Van DeGraaff and Balda, 1973; Turner and others, 1973; and Chew and Chew, 1970). In arid regions, plant productivity is greatest in the spring when temperature and moisture are not limiting factors. Thus, wildlife activity monitored at the time of the field study probably underestimates average annual wildlife in the valley.

Animal activity also varies with temperature and light, both of which are functions of time. Species observed in early morning may have disappeared by noon. Because of the natural variations, season of the survey, and other factors discussed above, the species list compiled (Table 3-8) probably does not include every species using the survey sites in Dry Lake Valley.

The following sections present an overview of the major animal species observed within the valley during the field survey. A cluster-by-cluster discussion is provided in Section 3.2.5.

3.2.3.1 Small Mammals

Rodent activity was minimal, which was likely due to the time of year (Beatley, 1969b; and Van DeGaaff and Balda, 1973). A list of small mammal species expected to occur in the valley is provided in Appendix C. Few direct sightings of rodents were recorded, since rodents are primarily nocturnal. However, a grasshopper mouse was sighted at Shelter Site 9/16 and a Townsend ground squirrel at Shelter Site 4/20. Limited trapping was conducted to inventory nocturnal rodents in two types of vegetation. A summary of the trapping results is given in Table 3-9.

Common Name

MAMMALS

Blacktailed jackrabbit Desert cottontail rabbit Antelope ground squirrel Townsend ground squirrel Pocket gopher Great Basin Kangaroo rat Southern grasshopper mouse Deer mouse(a) Canyon mouse(a) Little pocket mouse(a) Coyote Kit fox Badger Bobcat Mule deer Antelope (pronghorn) Bighorn sheep

Scientific Name

Lepus californicus Sylvilagus audubonii Ammosphermophilus leucurus Citellus townsendii Thomomys sp. Dipodomys microps Onychomys torridus Peromyscus maniculatus Peromyscus crinitus Perognathus longimembris Canis latrans Vulpes macrotis Taxidia taxus Lynx rufus Odocoileus hemionus Antilocapra americana Ovis canadensis

BIRDS

Turkey vulture Cooper's hawk Red tailed hawk Ferruginous hawk Rough legged hawk Cathartes aura Accipiter cooperi Buteo jamaicansis Buteo regalis Buteo lagopus

(a) Trapped near shelter sites

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SUMMARY OF WILDLIFE SPECIES AND SIGN OBSERVED IN DRY LAKE VALLEY, NEVADA SURVEY AREAS

PAGE 1 OF 2

TABLE 3-8

1

3

1

1

8

Common Name	Scientific Name
BIRDS (Continued)	
Northern harrier	Circus cyaneus
Golden eagle	Aquila chrysaetos
Prairie falcon	Falco mexicanus
American kestrel	Falco sparverius
Burrowing owl	Spectyto cunicularia
Horned lark	Eremophila alpestris
Raven	Corvus corax
Crow	Corvus brachyrhynchos
Cactus wren	Campylorhynchus brunneicapillus
Sage thrasher	Oreoscoptes montanus
Loggerhead shrike	Lanius ludovicianus
Western meadowlark	Sturnella neglecta
Vesper sparrow	Pooecetes gramineus
Sage sparrow	Amphispiza belli
Gambel's quail	Lophortyx gambelii
Seesee partridge	Ammoperdix griseogularis

REPTILES Zebra-tailed lizard Long-nosed leopard lizard Great Basin fence lizard Sagebrush lizard Side-blotched lizard Desert horned lizard Great Basin whiptail lizard Striped whipsnake Gopher snake

Great Basin rattlesnake

Callisaurus draconoides Crotaphytus wislizenii Sceloporus occidentalis Sceloporus graciosus Uta stansburiana Phrynosoma platyrhinos Cnemidophorus tigris tigris Masticophis taeniatus Pituophis melanoleucus Crotalus viridis lutosus

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

SUMMARY OF WILDLIFE SPECIES AND SIGN OBSERVED IN DRY LAKE VALLEY, NEVADA SURVEY AREAS

PAGE 2 OF 2

TABLE 3-8

Same and a set of the set

•

•

١

1

., 1

Location and Date	Vegetation Type	Common Name	Scientific Name
1/4 mile east of Ely	Alkali sink scrub	Southern grass- hopper mouse	Onychomys torridus
Spring Marker 10/19/80 - 10/21/80		Dark kangaroo mouse	Microdipodops megacephalus
		Great Basin kanagaroo rat	Dipodomys microps
		Little pocket mouse	Perognathus longimembris
Panaca Road 10/30/80-	Great Basin Sagebrush	Southern grass- hopper mouse	Onychomys torridus
11/1/80		Great Basin kangaroo rat	Dipodomys microps
		Deer mouse	Peromyscus maniculatus
		Canyon mouse	Peromyscus crinitus

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

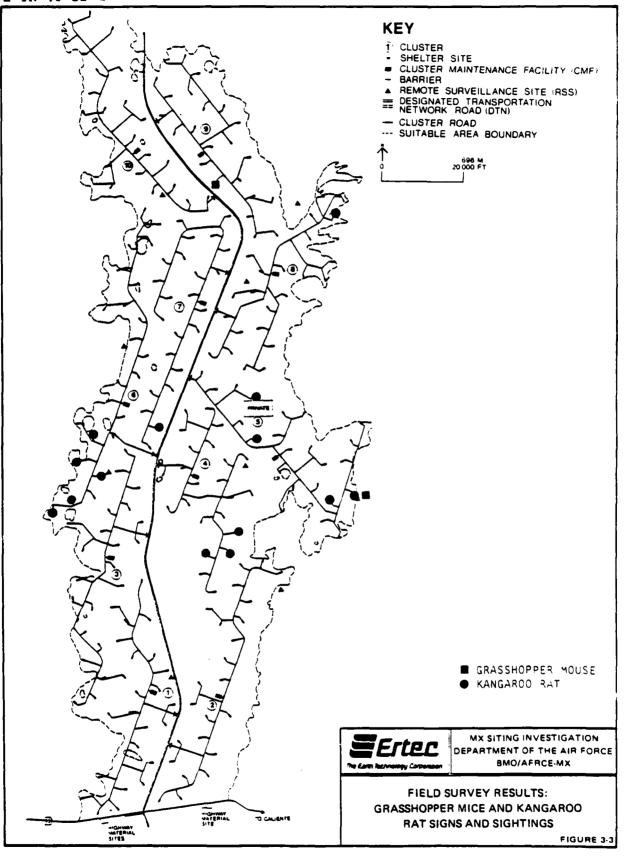
SPECIES OBTAINED BY TRAPPING

.

TABLE 3-9

\$

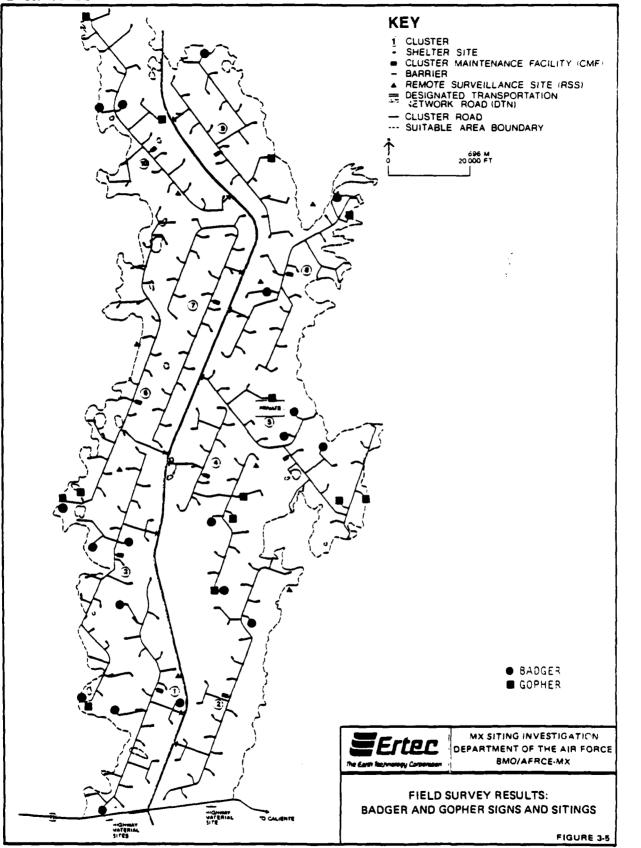
£


The distribution of many wildlife species in Dry Lake Valley was determined from signs such as bones, tracks, or scat. Active and inactive mammal and bird burrows were present throughout the valley, and in many cases it was also possible to identify below-ground innabitants by burrow design and construction.

The kangaroo rat constructs mounds of sand or fine soil which are a characteristic feature of desert areas (Murie, 1974). The mounds can be over 3 feet (1 m) high and greater than 12 feet (4 m) in diameter, with a number of entrances 4 to 5 incnes (10 to 13 cm) in diameter. Kangaroo rat burrow systems or tracks characteristic of the kangaroo rat were noted at 14 sites in the valley. With only one exception, kangaroo rat activity appeared limited to the central portion of the valley.

Antelope ground squirrels are colonial in nature (Robinson, 1980). Burrow systems are constructed under shrub clumps and may have many entrances. These networks were abundant in the valley. Antelope ground squirrels were identified at 10 shelter sites and Townsend ground squirrels at one site in the valley. An additional 24 sites contained ground squirrel burrow systems that could not be identified as to species.

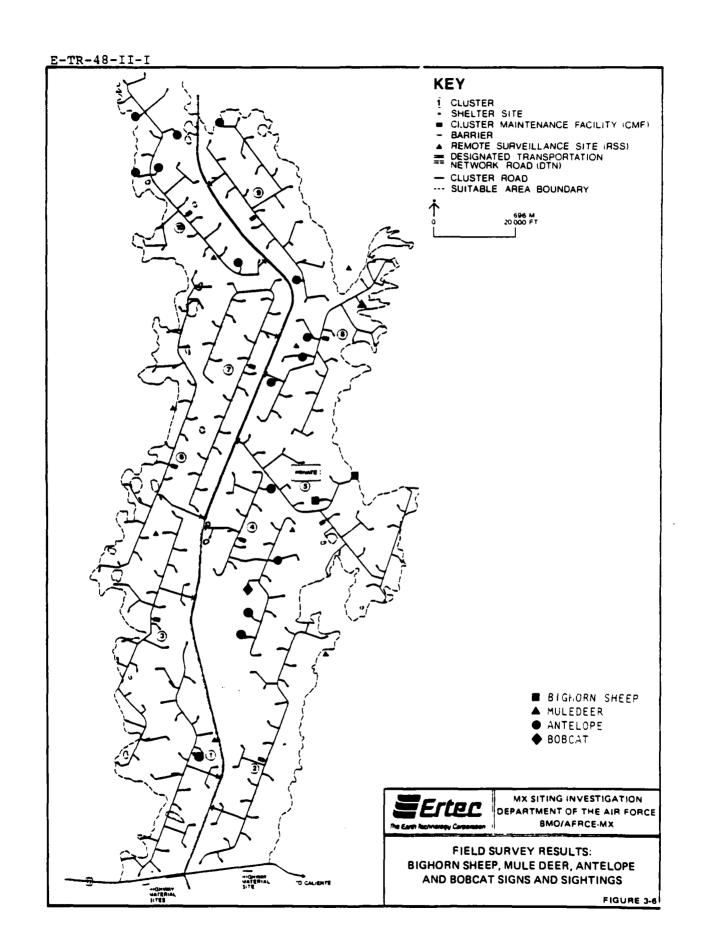
Earth cores and/or mound plugs, a sign of gopher activity, were also recorded from several scattered sites. Infrequently, badger diggings and grasshopper mice were noted. Distribution of small mammal sightings and signs observed during the field survey is shown in Figures 3-3 through 3-5.


🖉 Ertec

T

. '

3.2.3.2 Large Mammals


Signs of bobcat, mule deer, and bighorn sheep in Dry Lake Valley were rare and randomly distributed. Distribution of the sign of these species observed during the field survey is shown in Figure 3-6. Bobcats are reported to have a widespread distribution in the vicinity (State of Nevada, 1973); however, scat and signs of scratching were observed on only one shelter site, near the middle of the valley.

The northeastern portion of Dry Lake Valley is considered key winter area for mule deer, and a possible east-west migration route is thought to exist in the northern end of the study area as shown in Figure 2-4. Evidence of mule deer activity (scat) was observed in only three locations on the northeastern edge of the valley within the key range area. This was not surprising since the survey was made in the fall. A survey during the winter would probably indicate much greater usage of the area.

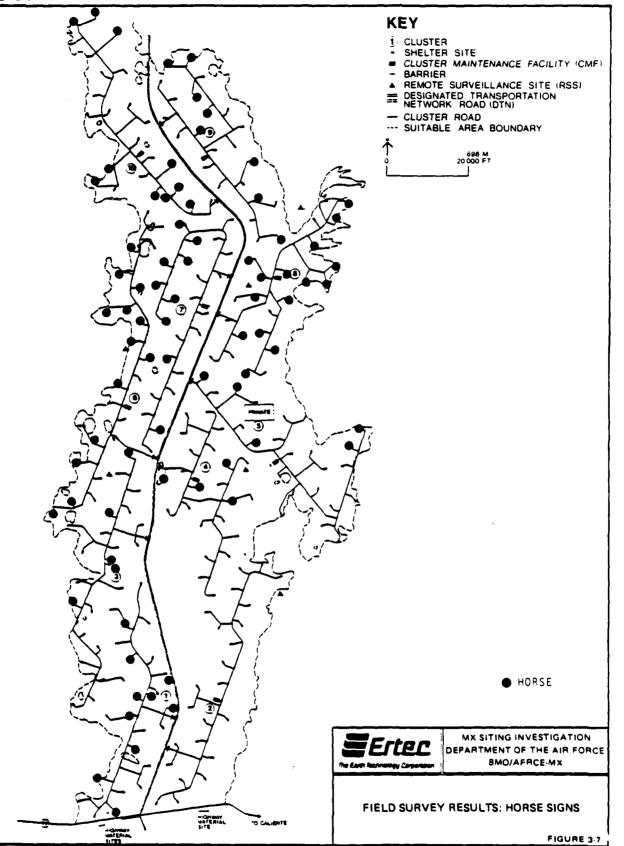
The southwestern border of the valley is reported to have potential use by bighorn sheep as shown in Figure 2-3. No evidence of bighorn activity was observed in this area, but a bighorn sheep curl was found on Shelter Site 5/9, midway down the valley on the eastern side of the study area. Presence of the horn does not necessarily indicate recent usage of the area, since it may be old or have been transported from elsewhere.

Wild horses are protected under federal law (16 USC 1331 et. seq.). Wild horse and burro herds have been recorded in

🛎 Ertec

Dry Lake Valley, and observation of horse manure at 79 shelter sites during the field studies confirms a widespread horse distribution in the study area. Distribution of horse sign observed during the field study is shown in Figure 3-7. Although scattered throughout the valley, usage appears to be heaviest in the northern portion. Location of observed sign does not appear to correlate well with the expected distribution as shown in Figure 2-8. Some manure may be produced by domestic horses, but there was no way to distinguish between wild and domestic animals. This may account for the apparent lack of correlation.

Coyote activity was also widespread; signs were observed at 130 shelter sites within the valley (Figure 3-8). Evidence that coyotes have been killed to obtain pelts was observed in several locations in the valley. Coyote sign noted included scat, bones, fur, tracks, and howling.


Evidence of antelope and kit fox activity was also abundant in the valley. Both species are classified as protected by the Nevada Department of Wildlife (1980); antelope are protected as game animals and kit fox as furbearers.

Evidence of kit fox activity was observed at 28 shelter sites scattered throughout the valley, but only five of these contained active dens. Distribution of kit fox as observed in the study areas is shown in Figure 3-9. Grey fox are known from areas adjacent to the valley, but no evidence of grey fox was observed in the study area.

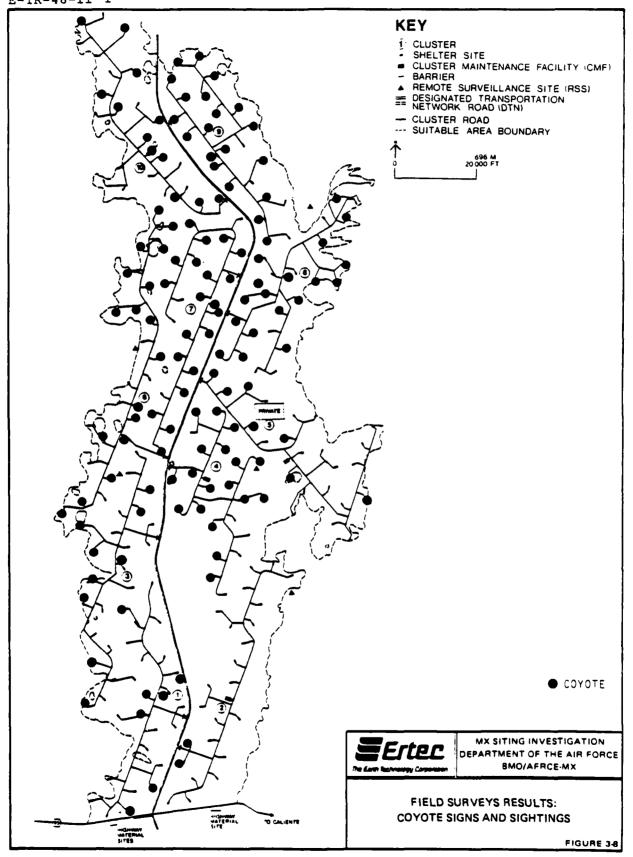
96

E Ertec

. ·

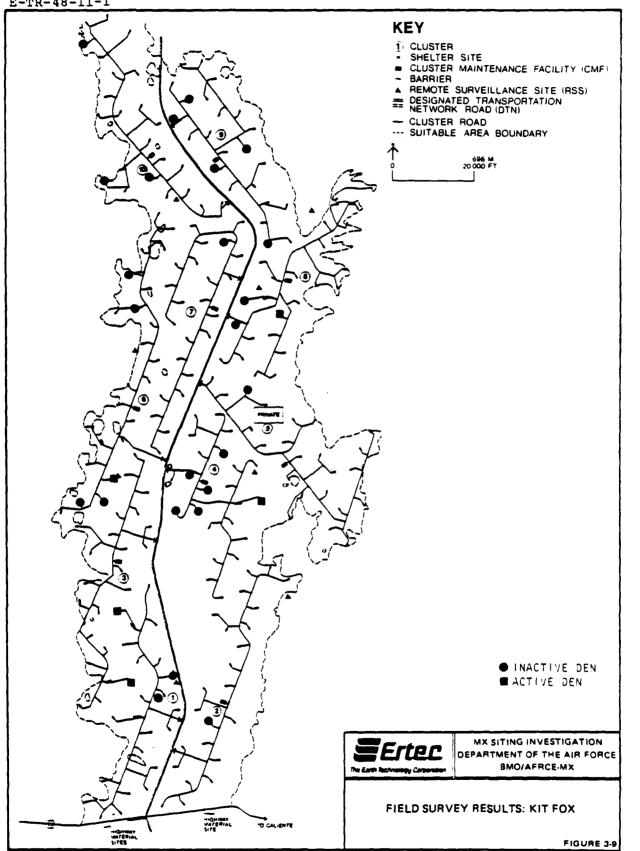
7:

Ì


1

2

1


1

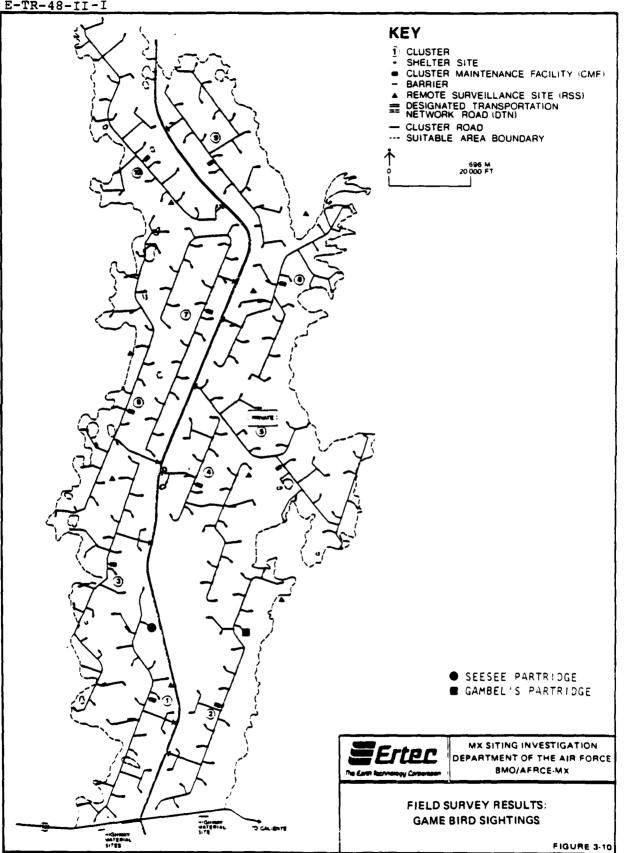
(

ALC: NO

, '

A CONTRACTOR OF THE

The majority of Dry Lake Valley is potential antelope habitat as shown in Figure 2-2. Antelope activity was determined primarily by presence of scat rather than actual sightings. The field investigations revealed antelope activity in 15 shelter sites, located in a somewhat linear pattern, from the northern to the southern end of the valley. Figure 3-6 illustrates areas where antelope sign were observed. The presence of a migration route through the valley has been postulated by the Nevada Department of Wildlife (1980), although signs of antelope activity were too few to substantiate this.

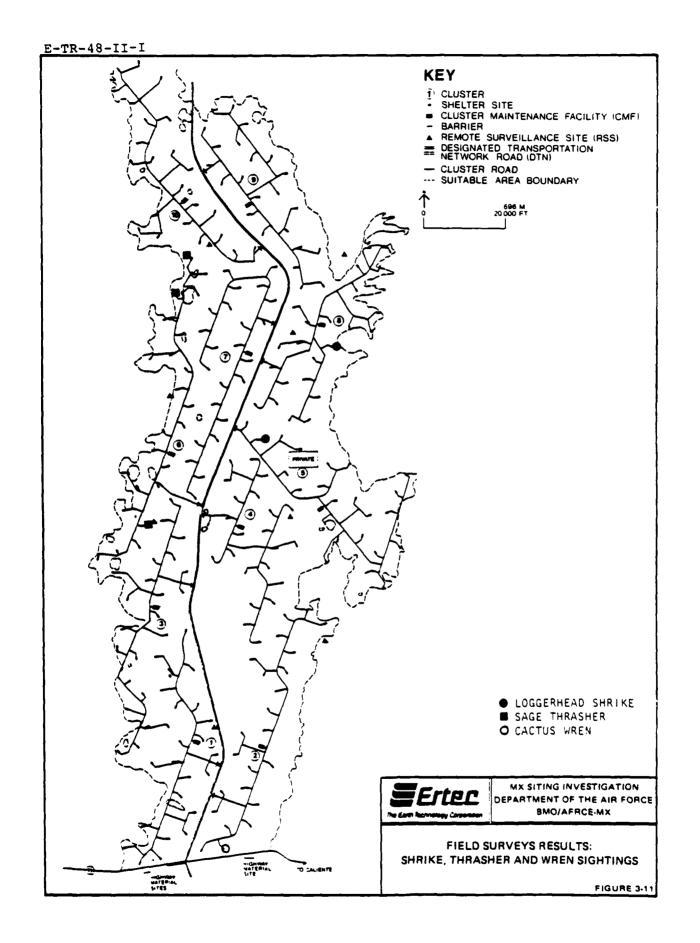

3.2.3.3 Birds

Quail have been reported in Dry Lake Valley (State of Nevada, 1973). Their distribution in southern Nevada is discussed in Section 2.3. Only one Gambels quail was observed during the field study. It was seen on Shelter Site 2/18 in the southeastern portion of the study area.

An exotic game bird, the Seesee partridge, was introduced by the Nevada Department of Fish and Game with hopes that it would adapt to various habitats in Nevada (State of Nevada, 1973). This partridge can tolerate river bottoms and canyon areas in the normal chukar partridge range but can also extend its range to areas too dry for the chukar. The transplant was not considered successful, but one bird was sighted in the southern portion of the valley at Shelter Site 1/21. Game bird sightings are shown in Figure 3-10.

Ertec

¥.,



Nongame birds are protected by state law and by federal law under the Migratory Bird Treaty (16 USC 703). Species present in Dry Lake Valley include horned larks, sage sparrows, meadowlarks, vesper sparrows, loggerhead shrikes, sage thrashers, ravens, cactus wren, and crows. Because the horned lark is ubiquitous in the valley, the sighting distribution was not mapped. Distributions of other nongame species are shown in Figures 3-11 through 3-13.

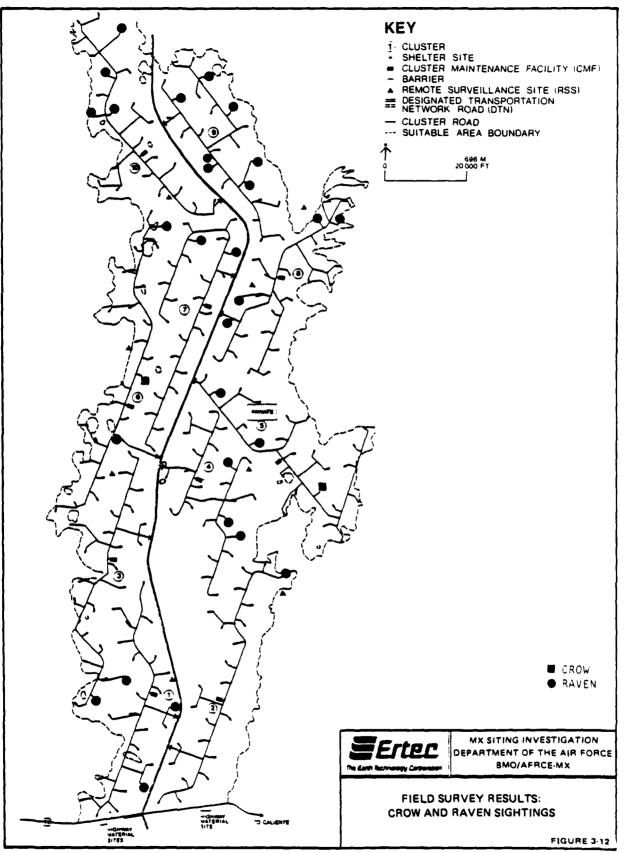
A number of raptors, also protected by state and federal law, were observed during the field work. These included a golden eagle, prairie falcon, turkey vulture, American kestrel, burrowing owl, and five species of hawks. The species and vegetation types in which they were observed are listed in Table 3-10. The occurrence of these species in the valley floor depends on the availability of prey (Udvardy, 1977; and Snyder and Snyder, 1975). Sightings tended to occur toward the edges of the study area. This is expected, since most raptors nest in areas surrounding the valley rather than on the valley floor.

The golden eagle was observed in greater numbers than any other raptor. This was probably because its large size made it more visible and more readily identifiable by the field crew. It is likely that a number of other species are present that were not observed. Compilation of plant species lists and observation of animal signs tended to focus attention of the field crew on the immediate vicinity rather than on adjacent areas where birds might be present. In addition, many species

🖀 Ertec

ł

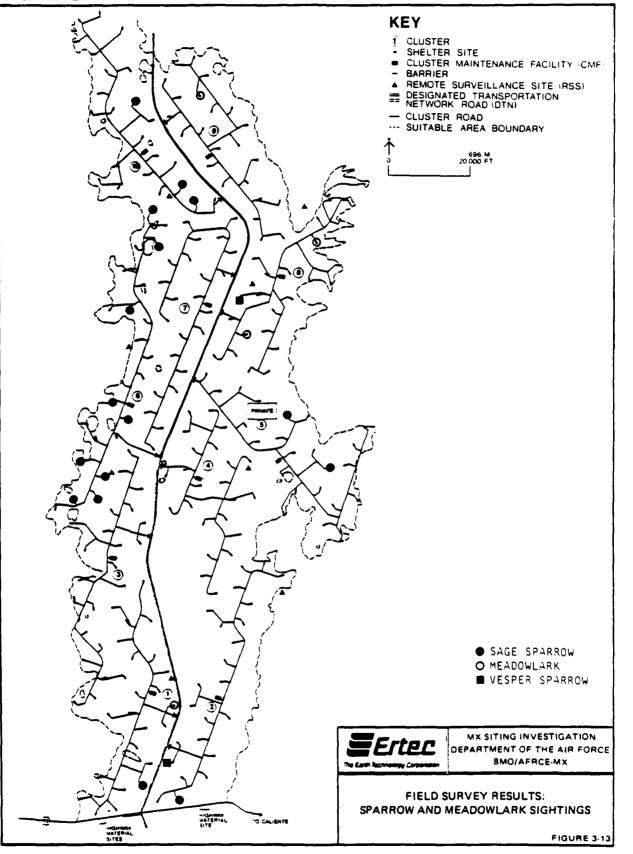
_


ł

ŧ

1

ţ


1

......

200 12

<u>/</u>~

ł

1

	╺╴┥╶╾╕┶╍╗┥┲╕╶╴╼╌╄┙╴╌╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╸╴╴╸	Vegetation
Species	Scientific Name	Туре
Prairie falcon	Falco mexicanus	Artemisia tridentata and mixed shrubs
Northern harrier	<u>Circus</u> cyaneus	Mixed shrub, <u>Ceratoides</u> <u>lanata/Chrysothamnus</u> greenei; <u>Ceratoides</u> <u>lanata/Chrysothamnus</u> <u>viscidiflorus</u>
Golden eagle	<u>Aquila</u> chrysaetos	Mixed shrub; Ceratoides lanata/Chrysothamnus greenei; Ceratoides lanata/Chrysothamnus viscidiflorus
American Kestrel	<u>Falco</u> sparverius	Mixed shrub
Red-tailed hawk	<u>Buteo jamaicansis</u>	Mixed shrub; cheatgrass/ dead trees; Grayia spinoza/Yucca brevifolia
Ferrugi- nous hawk	<u>Buteo</u> <u>regalis</u>	Mixed shrub
Rough- legged hawk	<u>Buteo</u> <u>lagopus</u>	Chrysothamnus viscidi- floris; Chrysothamnus viscidifloris/Ceratoide: lanata
Cooper's hawk	Accipiter cooperii	Artemisia tridentata
Burrowing owl	Spectyto cunicularia	Atriplex confertifolia/ Atriplex canescens; Kochia americana
Turkey vulture	Cathartes aura	Artemisia tridentata/ Chrysothamnus greenei
		MX SITING INVESTIGATION DEPARTMENT OF THE AIR FOR BMO/AFRCE-MX
	SU	RAPTORS OBSERVED DURING FIELD

۰

.

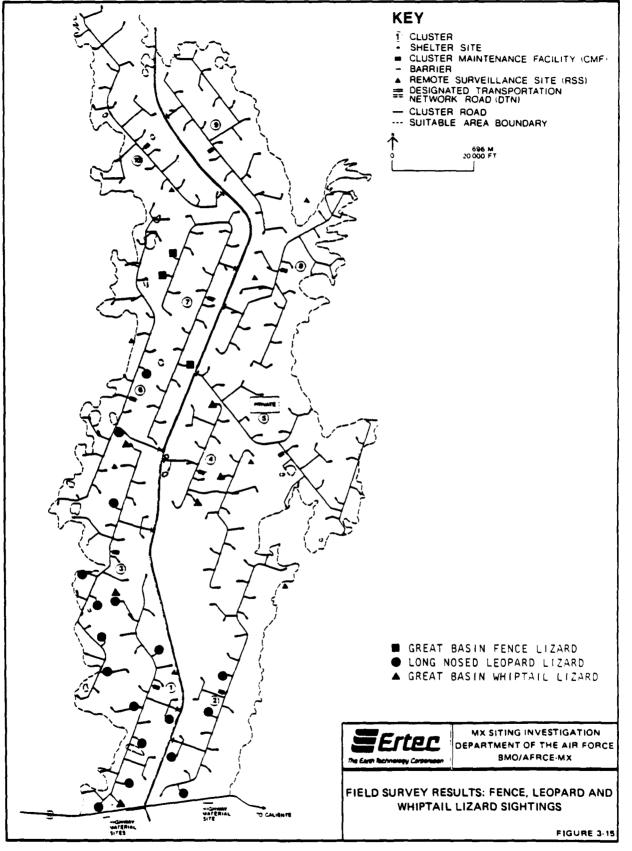
are seasonal residents. Other birds were observed from too great a distance to be positively identified.

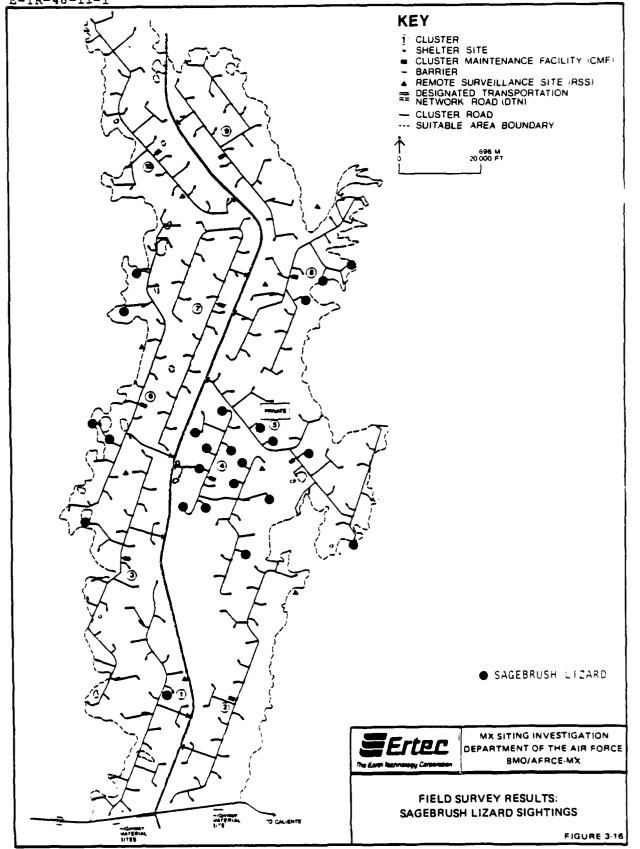
A bald eagle (<u>Haliaeetus leucocephalus</u>) and a swainson's hawk (<u>Buteo swainsoni</u>) have been previously observed in Dry Lake Valley (BLM, 1980); however, neither species was observed during the field investigations. Distribution of raptors observed during the survey are shown in Figure 3-14.

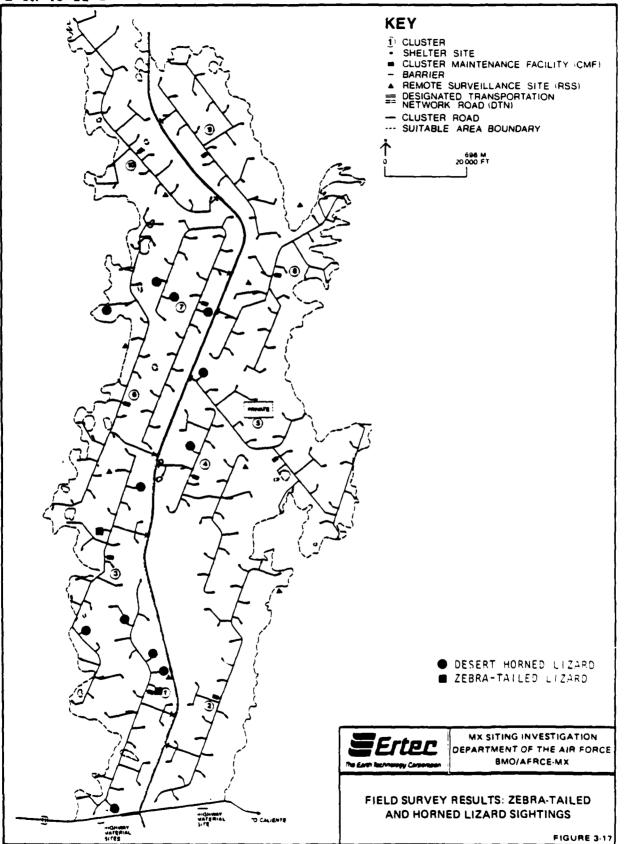
3.2.3.4 Reptiles

Reptiles identified in the study area include the side-blotched lizard, Great Basin fence lizard, sagebrush lizard, desert horned lizard, Great Basin whiptail, long-nosed leopard lizard, Great Basin gopher snake, and the Great Basin rattlesnake. All of the reptiles sighted have distributions that primarily encompass the Great Basin region (Stebbins, 1966).

The northern sagebrush lizard appeared to be concentrated in areas of alkali sink and shadscale scrub at the lower elevations in the middle of the study area. The long-nosed leopard lizard was frequently present in the southern end of Dry Lake Valley, but it was not sighted in the northern end. The Great Basin fence lizard was observed less frequently, but it occurred more often toward the northern end of the study area. The distribution of lizards is shown in Figures 3-15 through 3-17. Because the side-blotched lizard was ubiquitous thougnout the study area, its distribution was not mapped.


The Great Basin rattlesnake, striped whipsnake, and the Great Basin gopher snake were the only two species of snakes seen in


🛢 Ertec


E-TR-48-II-I KEY 1 CLUSTER • SHELTER SITE CLUSTER MA NTENANCE FACILITY (CMF) -- BARRIER REMOTE SURVEILLANCE SITE (RSS)
 DESIGNATED TRANSPORTATION
 NETWORK ROAD (DTN) - CLUSTER ROAD --- SUITABLE AREA BOUNDARY 696 M 20 000 FT P • NORTHERN HARRIER COOPER'S HAWK O TURKEY VULTURE AMERICAN KESTREL A BURROWING OWL $\boldsymbol{\Delta}$ roughlegged hawk ♦ FERRUGINOUS HAWK ♦ GOLDEN EAGLE
PRAIRIE FALCON MX SITING INVESTIGATION Ertec DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX The Earth Nach iyy Can FIELD SURVEY RESULTS: RAPTOR SIGHTINGS HIGHWAY WATERIAL TO CALIENTE FIGURE 3-14

-

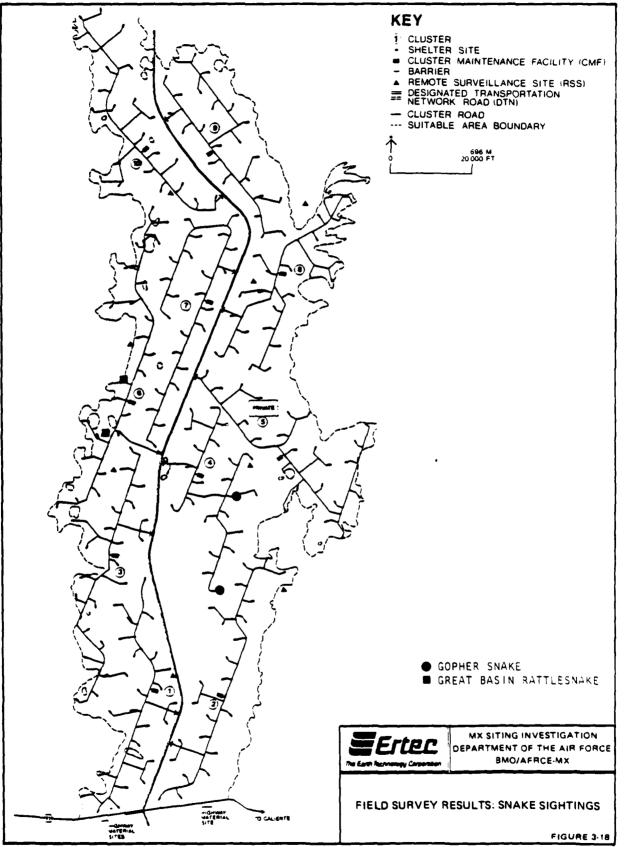
2.

E-TR-48-II-I

the survey areas. No snake activity was noted at the northern, cooler end of the study area, but sightings were too infrequent to draw any conclusions regarding distribution. Distribution of sightings is shown in Figure 3-18.

The distribution of the desert tortoise, a rare and protected species, is reported to extend northward to the southern end of Dry Lake Valley as shown in Figure 3-19. No evidence of the tortoise was noted during the field survey.

3.2.4 Overview of Disturbance Factors

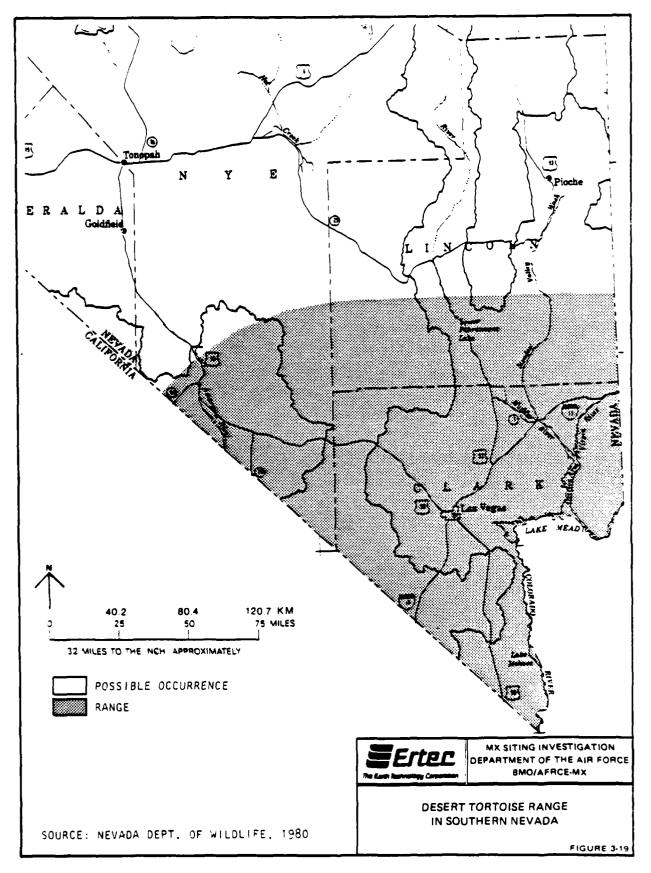

A large amount of man-induced disturbance is present in the valley. Disturbance observed during the field survey was both direct and indirect, or secondary, disturbance. Direct disturbance results from grazing, off-road driving, and mining or construction activities. The invasion of the disturbed area by undesirable weeds such as <u>Halogeton glomeratus</u> and <u>Salsola</u> <u>iberica</u> is a secondary, or indirect, effect. These plants invade areas where soil has been disturbed or native plant cover has been degraded; thus, they provide a measure of the state of the natural ecosystem within the valley. In areas where grazing occurs, they also present problems for stock.

<u>Halogeton</u> has gained a large foothold, especially in the southern and central portions of the valley. <u>Halogeton</u> is toxic, and a number of sheep deaths have been reported due to its consumption. Cattle apparently consume it only in small amounts. While sublethal effects may occur, no cattle deaths have been attributed to it (HDR, 1980).

Ertec

112

- MERT


.

1

\$

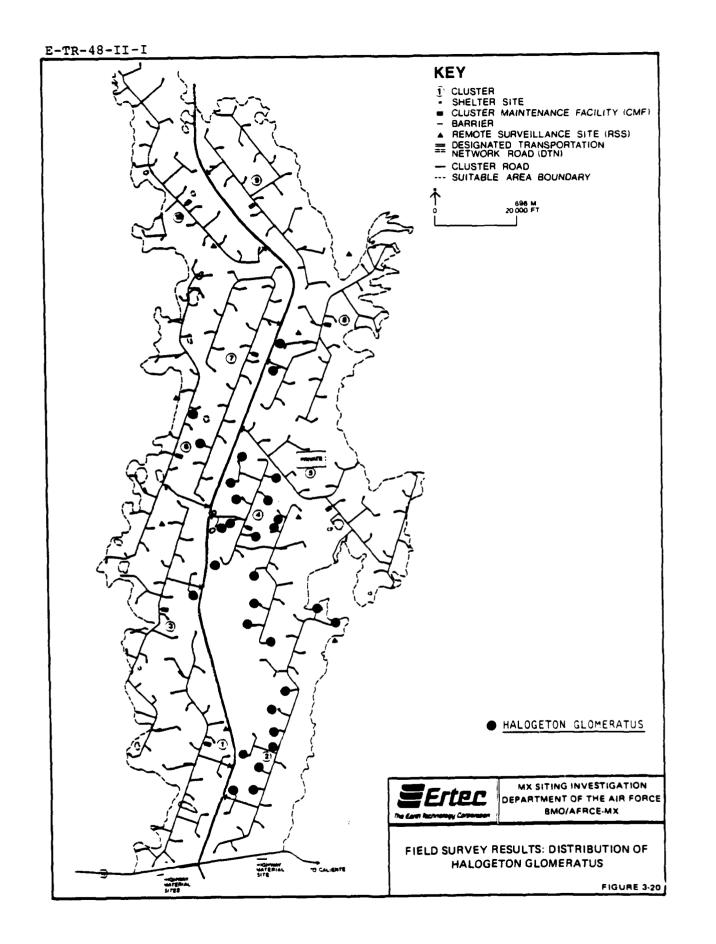
1

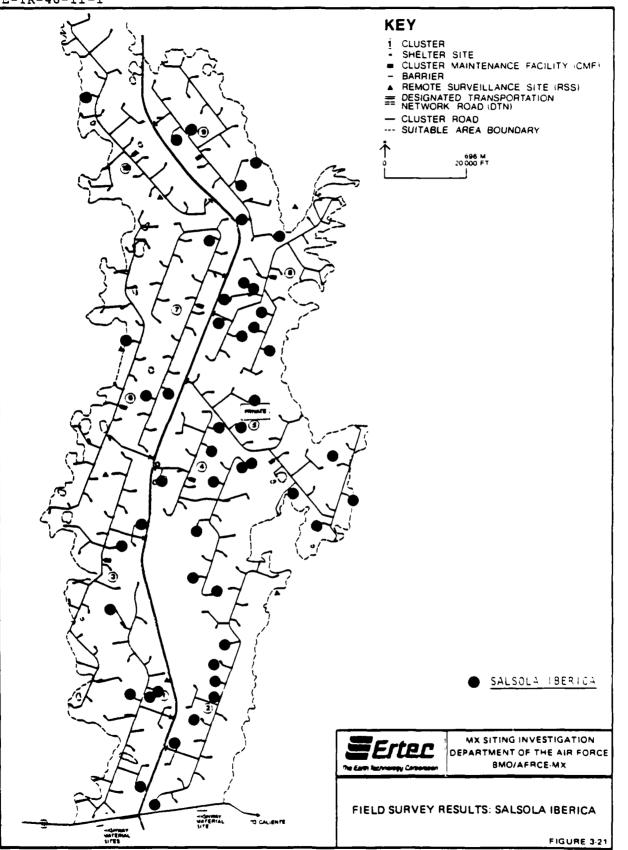
1

٠

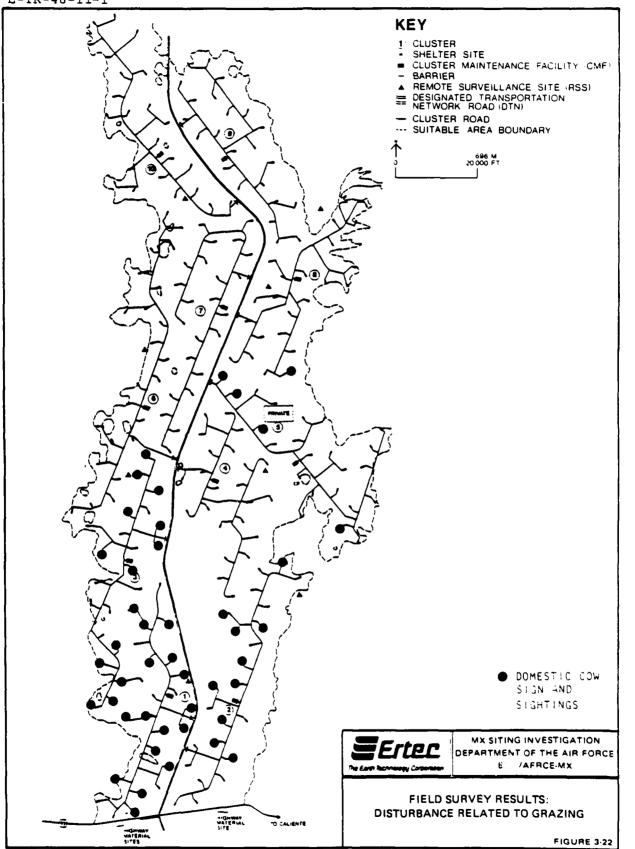
1.

1


Overgrazing contributes to the spread of <u>Halogeton</u>, which, in turn, decreases the value of the area for grazing. This is discussed further in Section 4.0.


<u>Salsola</u>, another introduced weed, is sometimes cut and cured as a very poor substitute for hay. When eaten in considerable quantity in the green condition, it tends to cause severe scour in weak or young animals (Hitchcock, 1964). <u>Salsola</u> was observed on numerous shelter sites. It was more widely distributed in the eastern half of the study area. Distribution of <u>Halogeton</u>, <u>Salsola</u>, and areas impacted by grazing are shown in Figures 3-20 through 3-22. Areas impacted by <u>Halogeton</u> and <u>Salsola</u> seem to be somewhat negatively correlated with areas impacted by grazing. It is not clear whether this is due to the fact that ranchers attempt to avoid the <u>Halogeton</u>, or due to the fact that <u>Halogeton</u> has invaded areas previously grazed.

Off-road driving also disturbs soils and vegetation, allowing colonization by undesirable plants. Off-road driving was one of the primary disturbance factors noted throughout the study area.


A great deal of the off-road vehicle disturbance recorded was probably caused by the surveyors who placed shelter monuments. In many cases, it was not possible to determine whether the damage was caused by the surveyors or whether it existed prior to the survey. Due to the likelihood of survey-related damage, the disturbance observed in the study areas is probably greater than would be expected in other locations in the valley.

🗧 Ertec

1

Л

3.2.5 Results of Cluster Surveys

3.2.5.1 Summary of Conditions in Cluster 1

a. <u>Abiotic Conditions</u>: The legal descriptions of Cluster 1 sites are given in Appendix F. Elevations range from 4230 to 4985 feet (1302 to 1534 m), and all sites are located on slopes of approximately 3 degrees. The soil is alluvial and dominated by silt intermixed with gravel and sand. Abiotic factors within the cluster are summarized in Table 3-11.

b. <u>Disturbance</u>: Low to moderate disturbance was observed on all shelter sites in Cluster 1, except for Shelter Sites 4, 6, and 9, which were highly disturbed. Off-road vehicle damage, the primary cause of disturbance, was noted on 18 survey sites, but grazing has also had a significant impact, and signs were evident on 16 of the 23 shelter sites. <u>Salsola iberica</u>, a species that invades disturbed areas, is present on five shelter sites. <u>Halogeton glomeratus</u>, also an invader in disturbed areas, was not noted in Cluster 1.

c. <u>Threatened or Endangered Plant Species</u>: One individual of <u>Coryphantha vivipara</u> was identified from Shelter Site 3. This species is listed as a Taxon Currently Under Review in the 1980 Federal Register. It is a Category 2 plant, which means it is probably appropriate to list it as threatened or endangered, but sufficient information is not presently available to biologically support a ruling, and further research is necessary to determine its status. Other possible threatened or endangered plants observed include <u>Cryptantha</u>, <u>Opuntia</u>, <u>Astragalus</u>, and

🗄 Ertec

1

1

1

Control 1 2 3 6 7 8 9 10 13 14 15 16 16 36 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	France 1 2 4 5 6 7 8 9 10 11 12 14 15 16 17 18 30 21 22 12 23 12 23 12 23 12 23 12 13 13 13 13 657 13 657 13 657 13 657 13 657 13 657 13 657 13 657 13 657 13 657 13 657 13 657 13 657 13 657 13 657 13 657 13 657 13 <th13< th=""> <th13< th=""> <th13< th=""></th13<></th13<></th13<>	kesitin 3(c)	14850	××	×	~-	T				
1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 19 20 21 22 410 800< 919< 910 915 970 971 979 657 470 650 610 630 471 775 652 410 8 X	1 2 3 4 5 6 7 8 90 11 12 13 14 15 16 19 20 21 22 12 900 993 915 915 075 657 470 650 660 650 610 7 <td>Feature 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 16 16 16 16 16 16 16 16 16 16 20 21 22 12 22 22 23 12 42<td>KS3</td><td>4600</td><td></td><td>××</td><td>~ -</td><td>Ξ</td><td></td><td></td><td></td><td></td></td>	Feature 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 16 16 16 16 16 16 16 16 16 16 20 21 22 12 22 22 23 12 42 <td>KS3</td> <td>4600</td> <td></td> <td>××</td> <td>~ -</td> <td>Ξ</td> <td></td> <td></td> <td></td> <td></td>	KS3	4600		××	~ -	Ξ				
1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 19 20 21 22 410 800< 919< 910 915 970 971 979 657 470 650 610 630 471 775 652 410 8 X	1 2 3 4 5 6 7 8 90 11 12 13 14 15 16 19 20 21 22 12 900 993 915 915 075 657 470 650 660 650 610 7 <td>Feature 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 16 16 16 16 16 16 16 16 16 16 20 21 22 12 22 22 23 12 42<td>Ĵ</td><td>46 70</td><td>××</td><td>×</td><td></td><td>Ľ</td><td></td><td></td><td></td><td></td></td>	Feature 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 16 16 16 16 16 16 16 16 16 16 20 21 22 12 22 22 23 12 42 <td>Ĵ</td> <td>46 70</td> <td>××</td> <td>×</td> <td></td> <td>Ľ</td> <td></td> <td></td> <td></td> <td></td>	Ĵ	46 70	××	×		Ľ				
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 600< 695 640 650 650 650 650 650 650 610 650 615 672 622 8 X <t< th=""><td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 600<</td> 695 640 650 650 650 650 650 650 610 650 615 672 622 8 X <t< td=""><td>Fractor 1 2 3 5 5 7 8 9 10 11 12 13 14 15 16 19 20 21 Sector 11 12 13 14 15 16 19 20 21 10 11 12 13 14 15 16 19 20 21 22 15 15 16 19 20 21 13 11 12 14 15 16 15 26 13 43 43 43 43 44 45 45 45 45 45 45 45 45 45 45 45 45 46 46 46 46 46 46 46 46 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 4</td><td>2</td><td>8045</td><td>××</td><td>×</td><td><u>a</u> –</td><td>x</td><td></td><td></td><td></td><td></td></t<></t<>	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 600<	Fractor 1 2 3 5 5 7 8 9 10 11 12 13 14 15 16 19 20 21 Sector 11 12 13 14 15 16 19 20 21 10 11 12 13 14 15 16 19 20 21 22 15 15 16 19 20 21 13 11 12 14 15 16 15 26 13 43 43 43 43 44 45 45 45 45 45 45 45 45 45 45 45 45 46 46 46 46 46 46 46 46 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 4	2	8045	××	×	<u>a</u> –	x				
1 2 3 5 7 8 9 10 11 12 13 14 15 15 175 97 26 23 662 6610 650 610 650 610 650 615 672 662 661 650 671 9 20 21 2 1<	1 2 3 5 7 8 9 10 11 12 13 14 15 15 175 97 20 21 600 695 640 690 715 730 655 610 650 610 650 615 715 725 622 X <	Feature 1 2 3 4 5 6 7 8 9 10 11 2 13 16 15 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 20 21 20 21 20 21	2	4810	××	×	2 -	x				
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 900 995 4945 490 476 474 420 490 451 470 4650 4650 4610 800 995 4945 416 476 474 420 490 4650 4650 4610 X	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 5 6 7 8 5 6 7 8 5 6 7 8 5 16 11 12 13 14 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 16 17 15 15 16 15 16 17 15 15 15 16 15 16 15 16 15 16 16 16 16 16 16 16 15 16 16 15 16 17 15 15 15 16<	Metric 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sulf Traine(4)	~	4622			7 -	د				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Freedor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Suil Pression (see:) 100 13 2 6 7 8 9 10 11 12 13 14 15 16 Suil Pression X	8	4725	××	×	<u>~</u> -	د	m pact			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 4000 4945 4440 4941 4760 4724 4210 4901 451 4700 450 <t< th=""><td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 900 995 445 430 451 430 451 430 451 450<td>Factor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sull Tratuce⁽⁴⁾ </td><td>5</td><td>STT</td><td></td><td></td><td></td><td></td><td>1/201</td><td></td><td></td><td></td></td></t<>	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 900 995 445 430 451 430 451 430 451 450 <td>Factor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sull Tratuce⁽⁴⁾ </td> <td>5</td> <td>STT</td> <td></td> <td></td> <td></td> <td></td> <td>1/201</td> <td></td> <td></td> <td></td>	Factor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sull Tratuce ⁽⁴⁾	5	STT					1/201			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 4000 4945 4440 4941 4760 4724 4210 4901 451 4700 450 <t< th=""><td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 900 995 445 430 451 430 451 430 451 450<td>Factor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sull Tratuce⁽⁴⁾ </td><td>9</td><td>4715</td><td></td><td></td><td>-</td><td></td><td>horta</td><td></td><td></td><td></td></td></t<>	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 900 995 445 430 451 430 451 430 451 450 <td>Factor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sull Tratuce⁽⁴⁾ </td> <td>9</td> <td>4715</td> <td></td> <td></td> <td>-</td> <td></td> <td>horta</td> <td></td> <td></td> <td></td>	Factor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sull Tratuce ⁽⁴⁾	9	4715			-		horta			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 900<	Factor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Suil Partner ^[4] - - - 0 0 11 12 13 14 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 16 16 16 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 <td< td=""><td>2</td><td>4630</td><td></td><td></td><td>~-</td><td>T</td><td>5 E</td><td></td><td></td><td></td></td<>	2	4630			~-	T	5 E			
s s Price 1 X X X Y Y	s s frei t t 2 X X 49	Factor 1 Elevation (teet) 49 Sull Texture (a) · Inne yrawel X · fine yrawel X · silt X · oft-road vehicles 2 · of - nu grand · oft-road vehicles 2 · of - nu grand · o	2	4610	××	×	~-	L	elati			
s s Price 1 X X X Y Y	s s frei t t 2 X X 49	Factor 1 Elevation (teet) 49 Sull Texture (a) · Inne yrawel X · fine yrawel X · silt X · oft-road vehicles 2 · of - nu grand · oft-road vehicles 2 · of - nu grand · o	2	1650	××	×	~-	L	U Se			
s s Price 1 X X X Y Y	s s frei t t 2 X X 49	Factor 1 Elevation (teet) 49 Sull Texture (a) · Inne yrawel X · fine yrawel X · silt X · oft-road vehicles 2 · of - nu grand · oft-road vehicles 2 · of - nu grand · o	Site	1630		×	~ -	1	- Je			
Ay X X X X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		Factor 1 Elevation (teet) 9 Suil Texture (a) - Ionse yravel X - fine yravel X - fine sand X - yra, J - yra, J - yra, J - yra, J - yra, J - hujjest relat X - Inducates Fre (b) H - Hijjest relat X - Inducates Fre (c) Surveyed lat not	alter 13	1740 4	××	××	- 5	T	χι]			
s s Process 2 x x 49	s s Price 2 X X 49	Factor 1 Elevation (teet) 9 Soil Texture (a) · Inne yrawel X · fine yrawel X · silt X · of trond vehicles 2 · of - ilighters (b) · of - ilighters (c) · of - ilighter celat (c) Surveyed but not	₩ 3 2	1657 4	××	×	~-		yerhut,			
s s Price 1 X X X Y Y	s s frei t t 2 X X 49	Factor 1 Elevation (teet) 49 Sull Texture (a) · Inne yrawel X · fine yrawel X · silt X · oft-road vehicles 2 · of - nu grand · oft-road vehicles 2 · of - nu grand · o		1 06(1		×	~-		ance/			
Ay X X X X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		Factor 1 Elevation (teet) 9 Suil Texture (a) - Ionse yravel X - fine yravel X - fine sand X - yra, J - yra, J - yra, J - yra, J - yra, J - hujjest relat X - Inducates Fre (b) H - Hijjest relat X - Inducates Fre (c) Surveyed lat not		• 5171	×				N LUCE			
s s Price 1 X X X Y Y	s s frei t t 2 X X 49	Factor 1 Elevation (teet) 49 Sull Texture (a) · Inne yrawel X · fine yrawel X · silt X · oft-road vehicles 2 · of - nu grand · oft-road vehicles 2 · of - nu grand · o					~-		i ve i			
s s Price 1 X X X Y Y	s s frei t t 2 X X 49	Factor 1 Elevation (teet) 49 Sull Texture (a) · Inne yrawel X · fine yrawel X · silt X · oft-road vehicles 2 · of - nu grand · oft-road vehicles 2 · of - nu grand · o	1	230 4					relat			
s s Price 1 X X X Y Y	s s frei t t 2 X X 49	Factor 1 Elevation (teet) 49 Sull Texture (a) · Inne yrawel X · fine yrawel X · silt X · oft-road vehicles 2 · of - nu grand · oft-road vehicles 2 · of - nu grand · o							33			
s s frei t t 2 x x 49 1		Factor 1 Elevation (teet) Suil Texture (a) - Inase yravel - fine yravel - fine sand - sit - yra, J - yra, J - yra, J - yra, J - injuest relat (a) 1 - Injuest relat (b) H - Hijjuest relat (c) Surveyed lat not (c) Surveyed lat not	1	760 4			×-		, te			
s s Price 1 X X X Y Y	s s frei t t 2 X X 49	Factor 1 Elevation (teet) 49 Sull Texture (a) · Inne yrawel X · fine yrawel X · silt X · of true saud ·	-	4 [96			~~		ct] 2			
A A A A A A A A A A A A A A A A A A A	A X X X X X X X X X X X X X X X X X X X	Factor 1 Elevation (teet) 43 Suil Texture (a) . Ionse yravel (a) . fine yravel (a) . fine said (b) . of t-road vehicles 2 . yt.a. j . or t-road vehicles 2 . yt.a. j . ver all intensity . Intensity . Intensity . Surveyed lat not (c) Surveyed lat not		4 0 FR								
A A A A A A A A A A A A A A A A A A A	A X X X X X X X X X X X X X X X X X X X	Factor 1 Elevation (teet) 43 Suil Texture (a) . Ionse yravel (a) . fine yravel (a) . fine said (b) . of t-road vehicles 2 . yt.a. j . or t-road vehicles 2 . yt.a. j . ver all intensity . Intensity . Intensity . Surveyed lat not (c) Surveyed lat not	1	845 4			~-		Lance Low			
t selet tr 2 x x 49 1	Selet L 2 X X 5	Factor 1 Elevation (teet) 49 Suil Texture (a) - Ionae yravel 4 - fine yravel 4 - tine sand 4 - ott-road vehicles 2 - yra, j - yra, j - yra, j - yra, j - yra, j - yra, j - injuest celat (c) Surveyed har nor (c) Surveyed har nor		985 4			-		et fr			
etor evotion (teet) • II Testure(a) locase yravel tine yravel coarse said fine said fine said fine said yra, j yra, j vrall Intensity Uisturbance(a) i - Highs M - Mxr Surveyed but not	Factor Elevation (teet) (Suil Texture (a) - Louse yravel - fine yravel - fine saul - of t-road vehicles - yc. J - yc. J - yc. J - yc. J - yc. J - injueze fea (a) 1 - injuest celal X - indicates fro (b) H - Hight, M - Mx (c) Surveyed but not		1	10 ON			~		tive servo ferati relox			
eval ton (teet) 11 Texture (a) 10.xec yr avel 10.xec yr avel 10.xec yr avel 10.xec yr avel 10.xec yr avel 11.ne yr au yr au yr au 1 - 11.ylwest X - 1.nducet 1 - 11.ylwest 1	Factor Factor Elevation (feet) Soil Texture (a) . Invase yravel . Eine yravel . Silt and . Silt and . Silt and . Ott-road vehic . yra, J . ott-road vehic . yra, J . Ott-road vehic . yrav J . ott-road vehic . yrav J . Silvest bat (c) Surveyed bat			÷	-		les		relation for the second			
evel ton losse yer losse yer contse san sitte san sitte san 1 Inn 1 Inn 1 Inn 1 Inn 1 Inn 1 Inn 1 Inn 1 Inn 1 Inn	Factor Elevation () . house yfr . house yfr . house yfr . house s . silt . yfa, J . yfa, J . yfa, J . yfa, J . yfa, J . hit . house yfr . house yfr			teet)		- 19	vehit	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	dicate dicate of but			
					באה את קרלני אה לוני		pero-	l fote	- III. Hite Kooye			
	win 2011 「「「」」「」「「」」」 5 51 × ご ご C ×		setor	levat		sil.		veral List	- × I Ý			
MX SITING INVESTIGATION DEPARTMENT OF THE AIR FOR BMO/AFRCE-MX	BMO/ACDCE MM											
THE EAST REATING CORPORED DEPARTMENT OF THE AIR FOR	The Earth Nachnesey Carponan BMO/AFRCE-MX											AD/
SUMMARY OF ABIOTIC FACTORS IN	SUMMARY OF ABIOTIC FACTORS IN	SUMMARY OF ABIOTIC FACTORS IN CLUSTER 1 SITES DRY LAKE VALLEY, NEVAD										LE 3-1

CRIME PAS

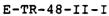
Tr.

Eriogonum, but the species were not identifiable during the season the survey was conducted. <u>Astragalus lentiginosus</u>, <u>Lepidum</u> <u>montanum</u>, and <u>Machaeranthera</u> <u>canescens</u> were also observed, although due to the season, the variety could not be determined.

d. <u>Vegetation</u>: The vegetative community in Cluster 1 is composed of shadscale/mixed shrub associations. Dominant shrubs throughout this area include rabbitbrush, winterfat, bud sage, shadscale, Mormon tea, hopsage, and four-wing saltbush. Other shrubs scattered throughout Cluster 1 include big sage, horsebrush, rubber rabbitbrush, <u>Lycium</u>, <u>Gutierrezia</u>, and <u>Ambrosia eriocentra</u>. Perennial grasses distributed throughout Cluster 1 include <u>Hilaria jamesii</u>, <u>Erioneuron pulchellum</u>, <u>Oryzopsis</u> <u>hymenoides</u>, <u>Sporobolus contractus</u>, and <u>Sporobolus cryptandrus</u>. Percent perennial cover in Cluster 1 ranged from 20 percent to 37 percent and averaged 29 percent.

The plant species observed in Cluster 1 are summarized in Table 3-12, and distribution of the dominant associations is mapped in Figure 3-23.

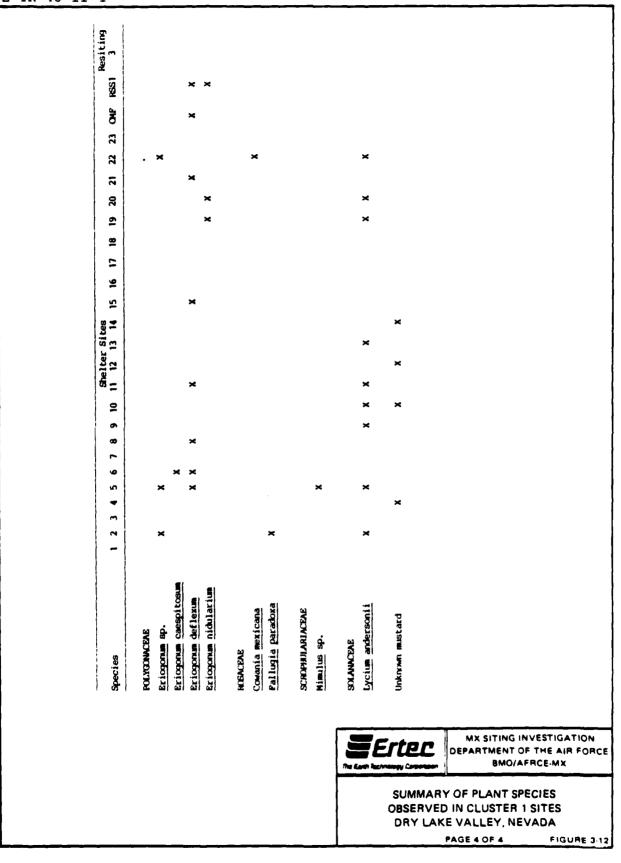
e. <u>Wildlife</u>: Wildlife observations in Cluster 1 are summarized in Table 3-13. Common wildlife throughout the cluster includes blacktailed jackrabbits, wild horses, leopard lizards, and side-blotched lizards. Cottontails are very common in areas bordering washes or arroyos. Species observed less frequently in Cluster 1 include the badger, coyote, kit fox, desert horned lizard, Great Basin whiptail, and sagebrush lizard. Scattered, unidentified burrows indicate the presence of additional burrowing species.

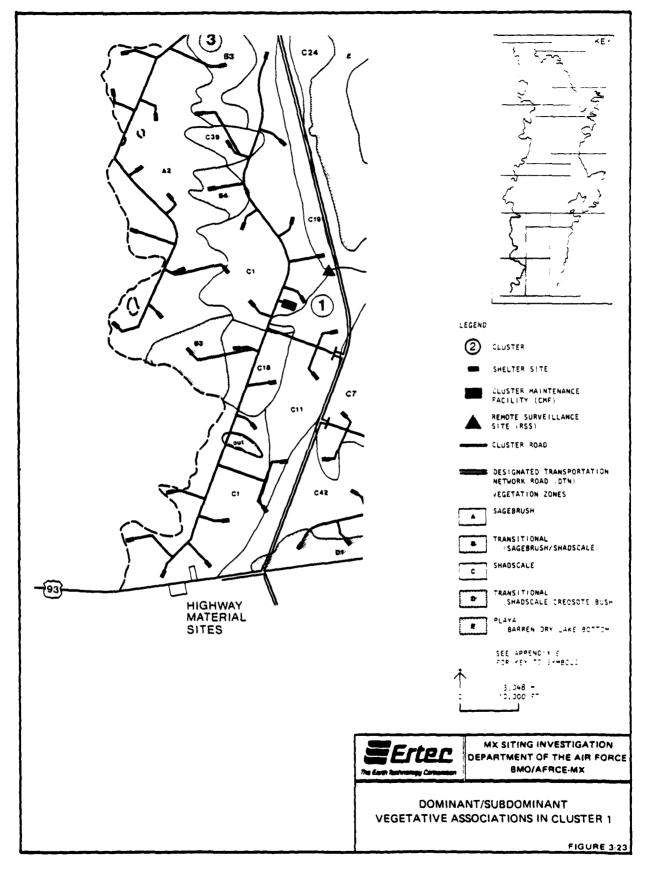

	Species	12345	67	8	2	Shelt(Shelter Site 11 12 13	2	15	91	17 18	61 8	50	51	ន	5	3	1SS1	Resiting 3(a)
	A STERACEAE																		
	Ambrosia eriocentra						×								×				
	Artemisia spinescens	X X X X	XX	××	×		×	×	×	×	×	×	×	×	×		×	×	×
	Artemisia tridentata		×	×		×	×	-							×				
	Chaenactis sp.	×		×		×	×						×						
	Chrysothawwws greenel	x x x x x	XX	×	×		××	×	×	×	×	×	×	×	×	×	×		
	Chrysothamus nauseosus	×																	
	Chrysothanus viscidiflorus	gi	×	×														×	×
	Gutterrezta microcephala	×	×	•															
	Tetradynia axillaris	××			×	×		×	×	×		×	×		×	×			
	Tetradymia ylabrata	x x x	×	×	×	×	×		×	×		×	×		×	×			
	Tetradyala surosa	×					×	×	×	×								×	
	Iva axillaris								×										
	Machaeranthera canescens	××××	×	×					×	×			×	×		×	×	×	
te	Stephanomeria sp.	×					×												
<u>.</u>	BURAGI NACEAE																		
	Cryptantha sp.			×															
	Lappula sp.			×		×													
ME																			
NT	(a) Surveyed, but site no	site not relocated.																	
OF																			
AIF																			
TIO FO																			

. '

Resiting 3			, # *
Resi	×	×	× ×
RSSI			* * * *
đ		×	` × ×
23 C	×		× ××
8	××		× × × ×
51		×	× × ×
ន	×	××	××
5	×	×	× ×
92		×	× × ×
=			××
2		×	* *
4 15	×	×	× × × × × × ×
3 IA		4	~ ~ ^ ~ × × ×
Shelter Site 11 12 13		×	× ××
Stel 1	×		
2	×	×	××
6	×	×	×
7 8	×	×	× × × ×
e		×	××
4		×	× × ×
-	××		×××
	××	×	× × `
	(a)		
	I LEGA	וס ע	<u>011a</u>
	CRUC P.	k vipa Kanp	
	BASSICACEAE (CNUCIFENAE) Descurainia sp. Lepidum montanum Lepidum sp. Streptanthus cordatus	CACTACEAE Corythantha vivipara Opuntia erinacea Opuntia echinocarpa Opuntia sp.	CHENORCOIACEA Arriplex canescens Arriplex confertitolia Ceratoides lanata Grayia spinosa Salsola iberica
ies	BRASSICACEAE Descurainia Lepidum mont Lepidum sp. Lepidium sp. Streptanthus	CACTACEAE Coryphantb Opuntia ei Opuntia ei	CHENORCOLACEA Atriplex cane Atriplex conf Ceratoides la Grayia spinos Salsola iberi
Species	BRAS Desc Itepic Stree	CACTACE ¹ Coryphar Opuntia Opuntia	CHEN ALTI CETEI Sale Sale Sale Sale Sale Sale Sale Sale
			MX SITING INVESTIGA DEPARTMENT OF THE AIR
			The East Technology Caronadon BMO/AFRCE-MX
			SUMMARY OF PLANT SPECIES
			OBSERVED IN CLUSTER 1 SITES
			DRY LAKE VALLEY, NEVADA

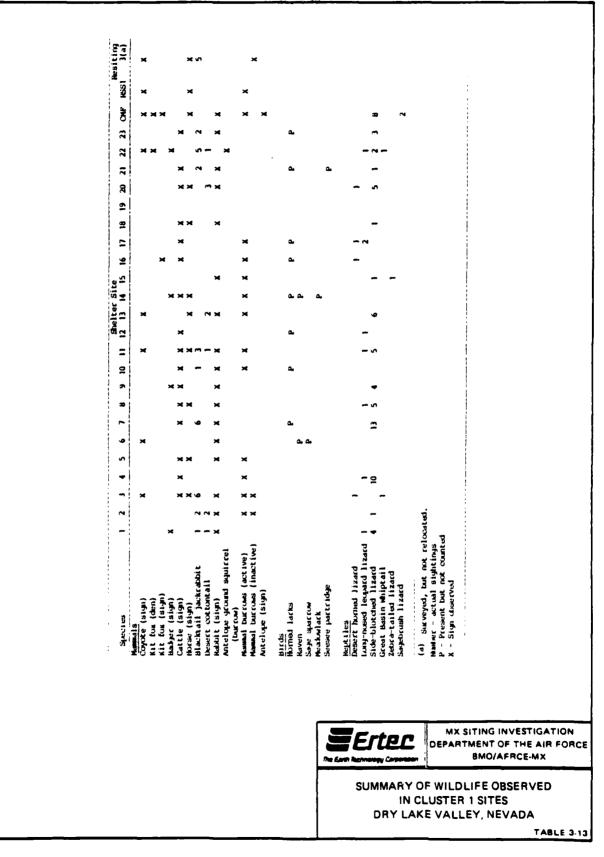
٩.


Resiting 3	×		×		×		×	×	×	
E.										
RSS I			×		×		×	×	×	
₹			×				×	×		
8					×		×			
ន	×		×		×	×	×	×		
5			×		×		×	×		
50			×			×			×	
61	×		×		×	×	×	×	×	
17 18			×				×	×		
16 1			×				×		× ×	
15 1			×		×		×	×		
			×				×	×		
Shelter Site 11 12 13 14		×	×		×	×	×		××	
alter 12		××	×				×	×	×	
50 =		×	×				×	×	×	
2	×	××	×				×	×		
6 8	×	×	××		×		××		×	
-	~	×	×		×		×	×	×	
9		×	×				×	×		
4 5		×	××	*	5	×	×	× : ×	×	
-		×		*			×	×	×	
	××	×	××		×		××	× : × :	×	
		lentiginosus sp.	-							
	Susis	tigi	ngidu		雪	chel	:⊒1	piou:	ntrac Iptan	
	EPHEDRACEAE Ephedra nevadensis	a ler	MLVACEAE Sphaeralcea ambigua		Bromus tectorum	Erioneuron pulchel	Hilaria jamesii	Oryzopsis hymenoides	Sitanion <u>hystrix</u> Sporokolus <u>contractus</u> Sporokolus <u>cryptandrus</u>	
es	EPHEDRACEAE Ephedra nev	fab.IACEAE Astragalus Astragalus	MALVACEAE Sphaeralo	POACEAE Bromis viitens	의 제 김 리	Jenro		psis		
Species	EPHB	FABI Astro Astro	MAL.V	POACEAE	Brom	Erio	Hila	žλu	Si ta	
								<u> </u>		
								_	Ertec	MX SITING INVESTIGATION DEPARTMENT OF THE AIR FOF BMO/AFRCE-MX
										Y OF PLANT SPECIES
										D IN CLUSTER 1 SITES <e nevada<="" td="" valley,=""></e>
										PAGE 3 OF 4 FIGURE 3


ļ

3

. '


 \mathcal{N}

٠

A REAL PROPERTY AND A REAL

E-TR-48-II-I

 Γ

No. . .

A REAL PROPERTY OF A REAL PROPER

\$

8

1

1

1

• '

An introduced game bird, the Seesee partridge, was observed on Shelter Site 14. Other avian species include horned larks, sage sparrows, meadowlarks, and ravens.

3.2.5.2 Summary of Conditions in Cluster 2

a. <u>Abiotic Conditions</u>: The legal descriptions for Cluster 2 are given in Appendix F. Elevations range from 4580 to 4905 feet (1409 to 1509 m), and all survey areas are located on slopes of approximately 3 degrees. The soil at all sites is alluvial, composed of fine sand and silt loam. The vegetation indicates that the soil is alkaline. Abiotic conditions within the cluster are summarized in Table 3-14.

b. <u>Disturbance</u>: The majority of the proposed shelter sites in Cluster 2 are moderately disturbed by grazing (noted at 10 sites) and vehicle tracks (noted at 22 sites). Shelter Sites 2, 3, 10, 13, 21, and 22 were considered highly disturbed. Low level disturbance was noted on Sites 8 and 11, and erosion is evident on Sites 8, 13, and 14. <u>Salsola</u> was present on eight sites and Halogeton on five sites.

c. <u>Threatened or Endangered Plant Species</u>: Individuals of <u>Coryphantha vivipara</u> are located on Shelter Sites 3, 22, and 23. This species is listed in the 1980 Federal Register as a Taxon Currently Under Review, Category 2 (see Section 3.2.2). Other possible threatened or endangered plants, including <u>Opuntia</u>, <u>Gilia, Astragalus, Eriogonum, Sphaeralcea, Machaeranthera</u>, <u>Camissonia, Oenothera, Erigeron</u>, and <u>Cryptantha</u>, were also

Ertec

E-TR-48-	II-I
----------	------

,

÷ . . .

53	4825		× ×	-	r	
1 22	4670 4660 4770 4825		×		¥	
Resitings 6(c) 9(c) 22	4660		×	- 5	T	
(4670		×× ×		×.	
30	S		×× ×	~-	Ĩ	
2	2 482		×	- '	z	Ĩ
2	171		×	- 5	=	
21	5 4661		×	~ -	Ξ	set .
8	9 464		××	- 2	ž	
2	14680		×	- 5	z	rtanci
8	4610		××	- 7	z	
=	4581		×	- 7	t	tive
2	4586		×		ž	rela
2	4600		×	- 7	x	owest
=	4580		××	-	z	- E
=	4605		×		Ŧ	act
2 ite	4595		×	-	T	/imp
Shelter Site 10 11 12	4715		××	-	J	tance
9 9 9	4603		×	~ -	Ŧ	in a contract of the contract
•	4660		×	~~~	τ	tive
50	4690		×	- 7 -	Ŀ	cela
~	0 4722 4860 4680 4800 4690 4660 4603 4715 4595 4605 4580 4600 4586 4581 4610 4680 4645 4668 4772 4825		×		x	Jassa
۰	4680		×		T	2 - 1
~	4860		×		I	act 1
-	1722		×		T	
-	-		××	~ ~	Ŧ	rtance/ d. Low.
~	4 30 5		×		Ŧ	impo Center Doater
-	4 855 4		××		T	- Illyliest relative importance/impact; 2 - lesser relative importance/impact; 3 - lowest relative importance/impact - Indicates Presence - Illyli; M - Modecate; L - Low. Kreyed but not relocated.
Ц.		_	_	cles	25	t res tes P
e Ne	fteet	<u>।</u> ह	crucse ycavel fine ycavel crucse sand fine sand silt	(a) wehicles	ens)	1 - Iliykest X - Indicate: H - Iliyh; M Surveyed but
	U	Patric	crucse ycav fine ycavel crucse sand fine sand silt	listurbance • of fruad • erusion • grazing	11 Internet	
Shelter Site Number	Elevation (feet)	Sull Texture (a)	Course Co	<u>Disturbance</u> (a) . uttruad veh . erusion . grazinj	Uverall Intensity of Disturbance(b)	3 20
	-				. .	-

Ľ

observed, but species could not be identified due to the season that the survey was conducted. Lepidum montanum, Astragalus lentiginosus, Gutierrezia sarothrae, and Machaeranthera canescens were also present, but due to the season, the variety could not be determined.

d. <u>Vegetation</u>: The plant communities in Cluster 2 are characteristic of the shadscale scrub and Alkali sink scrub vegetation zones. The greasewood (<u>Sarcobatus</u>) association has been noted as the most extensive salt-tolerant community in the Great Basin. It usually occurs in the bottoms of the valleys, in saline clay soils around the margin of playas (Cronquist and others, 1972). This community is dominant in Shelter Site 2/14.

Pure stands of winterfat (<u>Ceratoides lanata</u>) occur on Shelter Sites 6, 8, 9, and 15. Other dominant shrubs in this cluster include hop sage, rabbitbrush, four-wing saltbush, Mormon tea, rubber rabbitbrush, gray molly, bud sage, horsebrush, and <u>Lycium</u>. A perennial grass, galleta grass, is a dominant species at several sites, and other perennial grasses are scattered throughout cluster.

Perennial vegetative cover in Cluster 2 ranges from eight to 33 percent, and averages 23 percent.

The Joshua tree (<u>Yucca brevifolia</u>) is distributed in the southern portion of Cluster 2. Jaeger (1972) has stated that this species marks the limits of the Mojave desert better than any other plant. It is absent from northern and central Dry Lake

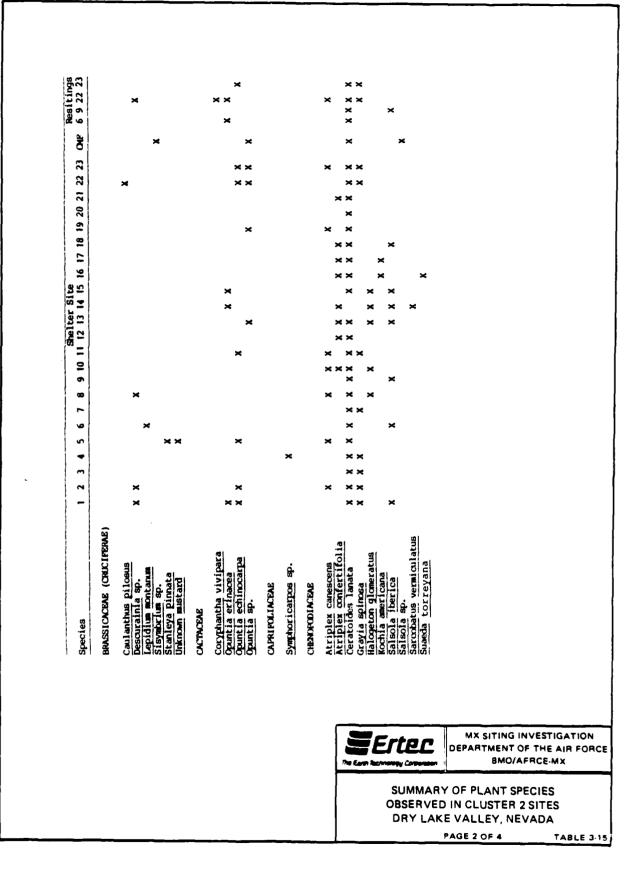
Valley, where vegetation is more characteristic of the Great Basin.

Plant species observed in Cluster 2 are summarized in Table 3-15, and distribution of the dominant associations is mapped in Figure 3-24.

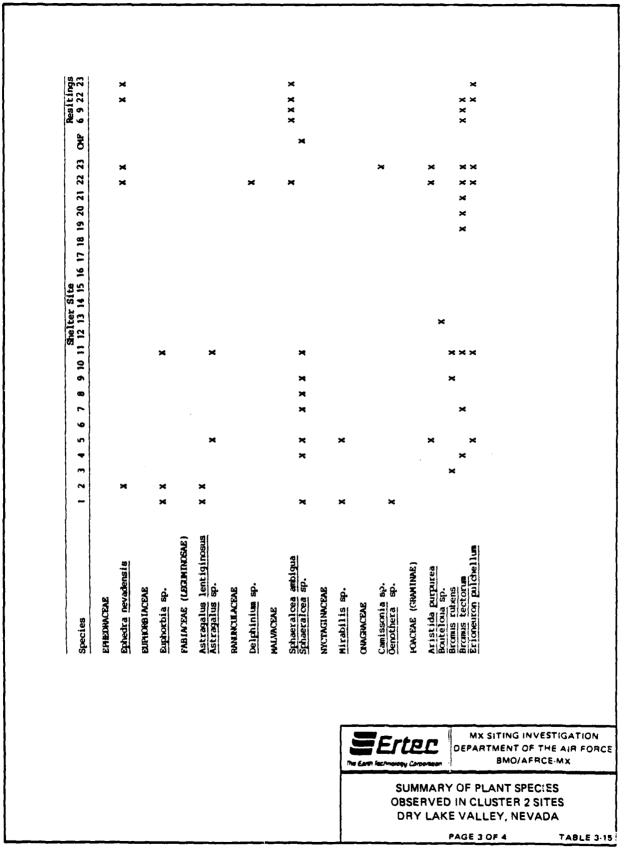
e. <u>Wildlife</u>: Wildlife observations in Cluster 2 are summarized in Table 3-16. The side-blotched lizard, horned lark, and blacktailed jackrabbit are ubiquitous species. Species less commonly sighted include the leopard lizard, cactus wren, Gambels quail, vesper sparrow, sage sparrow, raven, and desert cottontail.

Characteristic burrows indicate the presence of badgers, ground squirrels, and kit foxes. Scattered, less characteristic burrows indicate the presence of additional unidentified burrowing species.

3.2.5.3 Summary of Conditions in Cluster 3

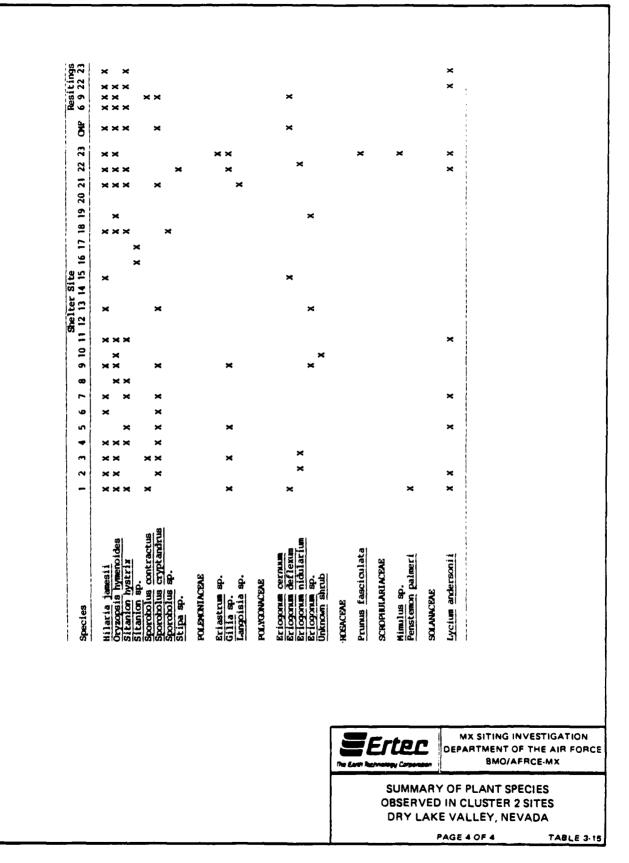

a. <u>Abiotic Conditions</u>: The legal descriptions for sites in Cluster 3 are given in Appendix F. Elevations range from 4610 to 5155 feet (1418 to 1586 m), and all survey areas are located on slopes of approximately 3 degrees. The soil is alluvial, predominantly silt and sand. Small gravel overlays the soil surface in most areas. Abiotic conditions within the cluster are summarized in Table 3-17.

b. <u>Disturbance</u>: Low to moderate disturbance is present at all Shelter Sites, except 5 and 23, where disturbance is considered

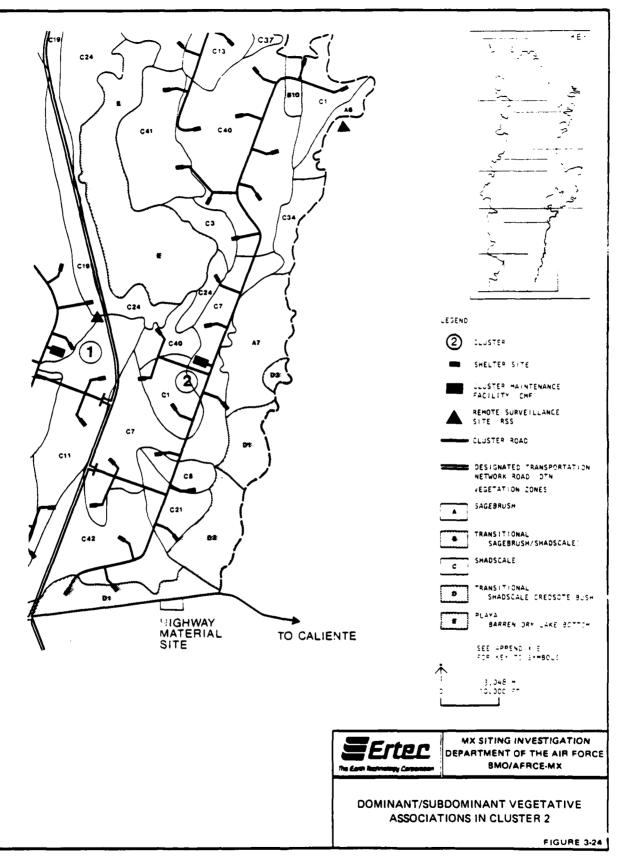

🛢 Ertec

× × × × × ×	× ×× × × × × ×	
× × × × ××	× × × ×	
× × × ××	× × ×	
× ××		
	× ×	
× × ×	×× × × ××	
××		×
× × × ×		
× ×		
* *	×	
× × ×	× ××	
× × ×	×	
× ×× × × ×	×	×
×		×
× ×× × ××	× ' × × ××	×
× × ×	×	×
× × × × ×	× × × ××	x x ed.
SI		LI X K nut celocated.
		ج ج
diacentra discentra	lora	
Procession of the section of the sec		HKKANITANCEAE Crythantha research Larguila research Larguila se (a) Surveyed hu
Site of the state	Ymia Mila Mila Mila Mila Mila Mila Mila Mi	(a) Survival
hickson treem	rent action of the sector of t	(a)
	101011212:2:0:01E1E12	
	X X X X X X X X X X X X X X X X X X X	La X X X X X X X X X X X X X X X X X X X

/.~**.**



L


 \mathcal{N}

, ·

.

in the second

Υ.

1

,

8 12 23			•	×	×× ××		×									~	
Resitings 6(a) 9(a) 22				~	~ ~		~										
Resi 9(~	×	×	,	×		×		۵.						
6 a		×		×		,	~	×			а,						
ð				×	×	;	×				4					J	
1 12			9 0				×	×								~	
2			~	×	×		×	Ŷ,	¢								
1 51			~														
20																_	
61 1						;	*				~					01	
18				×				>			2		2	1		~	
9								×			~						
125					×			*	•		1 4						
S[1	~	×	~			,	;								
13 E					×			,			9					— —	
Shelter Site 11 12 13 14 15 16 17				×	×			*	t								
=					×						7					-	
01 6			_	×	×		×		< ×		9						
5 8			-	~	×			, ,			5					9	
				×	×											5	
وب		×		×	×		×	×			19					-	
s			•	×	×						-					30	
-		×		×	×						-		-			m	
-				×							-					m	
~			- C	× -	•							2	•	-		- ~	÷
-			9 14	×												Ξ	cate 1.
			blacktail jackrabbit Desert cottontail	n) rrel	Ground squirrel (sign) Small manmal burrows		Durruws	_					30			Side-blotched lizard Luny nosed lequard lizard	 (a) Surveyed but not relocated Marker - Actual sightings. P - Present but not counted. X - Sign observed.
		(nți	Ĕġ	Ingi	uirr			(j.	den]		cks	3	arr	en en		d le	Action 1
: <u>%</u> :	s	Coyote (sig	tail co	t S		(active)	small mammal (inactive)	Horse (sign)	carrie (sign) Kit fox (den) Badyer (sign)		Horned larks	Kaven Saue suncrow	Vester sparrow Cambel's duall	Cactus wren	es	Side-blotci Lung nused	Surve reset
sa Ioarls	Manuals	, VCE	acki Serl	Rabbit (sign) Ground sunirre	Ground squir Small mannal		alla (inč	8	je i	Birds	ic nex	Kaven Saue	1	t u	kept i les	195	(a) Surveye Naidacr - Act P - Present X - Sign Ols
¥!	드로								a . ¥				=	1 ¥			1 11 12

 Γ

. '

					j The Ea			MX SITING INVESTIGATIO DEPARTMENT OF THE AIR FO BMO/AFRCE-MX
Factor	<u>Elevation</u> (feet)	Soil Texture (a) Rocks Coarse yr avel Fine gravel Clone sand Fine sand	silt Clay	<u>Uisturbance(a)</u> <u>Offroxid vehicles</u> Frogram	Grazing	<u>Overall Intensity</u> <u>of Disturbance(b)</u>	 (a) 1-Highest relative inputance/impact; 2-lesser relative X-Indicates presence (b) H-High; M-Muderate; L-Low (c) Surveyed but not relocated. 	
-	SPIS	× × ×	×	74 M		I	ative Impouta resence erate; L-Low not relocated	
• ~	5667	×××		2	· ·	Σ	tar X	
-	7687		×	7	-	r		
	0105 5117	× × × × × × ×		-	2	Ĩ	, imp	
9	492 0	× × × × × ×		7	_	T T	act j	
~	SEOS		×	~ ~	-	-	5-1	
60	52 6 7	×××	×	7	-	π	less	
5	5515	××	×		-	E		
° 2	5015	××	×		-	Ŀ	rela	
Shelter 11 12	0747	× ×	×	-	7	د	tive	
17 Fe	257A	× ×	×	-	7	د	Lange L	
Site 13	9905	×	×	-	7	د	Import ance/impact ;	
=	5205	×××	×	-	2	L	/apu	
5	10L¥	×	×	-	7	T	,imp:	
2	0099	×	×	3	-		sct	
=	0630	×	×	3	-	x		
8	5847	×	×	2	-	L	Sawo	
6	0199	×	×	-	~	I	t re	
ଷ	54 9 7	× ××	×	7	-	T	lati	
21	5597	× ××	×	7	-	I	e t	
2	SELP	× ××	×	3	~	I	login	
33	£07 4	××	×	2	~	Ŧ	rt an	
С. С	0274	××	×		-		œ∕in	
IF KSS	0087		×		-	¥ د	3-lowest relative importance/impact.	
1 1	0125	××	-	2	-	Σ		4 1
Resitings 1 5 14(c)	0205	×× -		~	-			
11	0.00				_	-		

7:

.

high. Grazing is the dominant cause of disturbance in 16 sites, and off-road vehicle damage is the major factor in the others. Erosion was observed on Sites 1, 2, and 7.

Halogeton glomeratus and Salsola iberica, invaders in disturbed areas, were found only on Sites 17, 13, and 14.

c. <u>Threatened or Endangered Plant Species</u>: Individuals of <u>Coryphantha vivipara</u> were sighted on Shelter Sites 1 and 14. This species is listed in the 1980 Federal Register as a Taxon Currently Under Review. It is a Category 2 plant as described previously. Unidentified individuals of <u>Eriogonum</u>, <u>Opuntia</u>, <u>Gilia, Camissonia, Happlopappus, Lepidum, Mentzelia, Astragalus</u>, and <u>Cryptantha</u> were also observed, but species could not be determined due to the season of the survey. <u>Gutierrezia sarothrae</u>, <u>Astragalus lentiginosus</u>, <u>Lepidium montanum</u>, and <u>Machaeranthera canescens</u> were also observed although due to the season, the variety could not be determined.

d. <u>Vegetation</u>: Cluster 3 is located at somewhat higher elevations and is characteristic of the Big Sagebrush zone. Big sagebrush dominates Shelter Sites 1 through 3, 5 through 9, 13, and 14. Other important shrub species include rabbitbrush, hop sage, bud sage, and horsebrush. At lower elevations in this cluster, shadscale associations are prevalent as in Shelter Sites 16, 18, and 21 through 23. Galleta grass is often a codominant in the shadscale zones. The perennial vegetative cover in the cluster ranges from 16 to 32 percent and averages 24 percent.

E Ertec

Plant species observed within Cluster 3 are presented in Table 3-18, and distribution of the dominant associations is mapped in Figure 3-25.

e. <u>Wildlife</u>: Wildlife observations in Cluster 3 are summarized in Table 3-19. Characteristic burrows indicate the presence of badgers, kit foxes, and coyotes. Less characteristic burrows indicate the presence of additional unidentified burrowing species throughout the cluster. Horse and cattle sign were fairly common, and rabbit activity was ubiquitous.

Avian species included the horned lark, raven, and sparrow as well as three raptor species, the northern harrier, praicie falcon, and turkey vulture. Reptiles were represented by six lizard species.

3.2.5.4 Summary of Conditions in Cluster 4

a. <u>Abiotic Conditions</u>: The legal descriptions for Cluster 4 are given in Appendix F. Elevations range from 4580 to 4680 feet (1409 to 1440 m), and all survey areas are located on slopes of approximately 3 degrees. The soil is alluvial, composed of silt, fine and coarse sand, and fine gravel. Abiotic conditions for each site within the cluster are summarized in Table 3-20.

b. <u>Disturbance</u>: Grazing is the major cause of disturbance on all shelter sites except Shelter Sites 7 and 11. Off-road vehicle damage has caused secondary disturbance on all shelter sites except 7 and 11, where it exceeds grazing as the primary

🛢 Ertec

.

Resitings 1514(a)			××	-	×	-											
1 1	××		×		××	×		×	×× ×		×					×	
KSS2					×												
ð			×		×				×								
22 23			× ×	×	×		×× ×	×	×								
5			~	×			~	~	^								
19 20			×	×× ××			×		×× ×				××		×		
2			×	~ ~	×	•	×	×	×				ж,		×		
16 17			× ×××	×			×								× × ×		
1 1			×××	×	×		×	×	×						:	4	
ter Si 13 14			××	×	~												
2 Stel			×	×	×		×								×		
10	×		×	×	*			×	×						×		
9	^		×		×	•		;	•						×		
P	×		××× × ×		**	<	-		××				×		×	×	
ø			×		×				×								
4			× ××	×	× ×			×	×							× ×	
~			××	×	××			××	×								ted.
	×		×	×	×				××						×	×	eloca
Speci es	ALAVACEAE Yurca liacceta	ASTERACEAE (CORFORTERE)	Ambrosia eriocentra Artemisia gpinescens Artemisia tridentata	Chaenactis sp. Chrysothamnus greenel	Chrysothammus nauseosus Chrysothammus viscidifiorus	Gutierrezia microconara Gutierrezia sarothrae Hanlmannis so.	Iva axillaris Machaeranthera canescens	Psathyrotes annua Tetradymia axillaris	Tetradymia glabrata Viguiera multiflora	BENBERLUNCEAE	Berberis fremontil	BORMGINACEAE	Cryptantha sp. Lappula occidentalis	BRASSICACEAE (CINCLFERAE)	Caulanthus pilosus Descuranti a sp. Leptolum montanum	Stanleya pinnata Unknown mustard	(a) Survived but site not relocated
											OB	JMN SEF	MARY	OF	MX SITIP PARTMEI BM PLANT CLUSTE	SPEC	THE A ICE-M

 $-\Lambda$

, '

Ε.

1 2 3 4 5 6 7 8 9 10 11 <th>2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 047 X</th> <th>Image: 100 month Image: 100 month Image: 100 month Image: 100 month X X X X X X X X X X X X X X X X X X X</th> <th>Resitings S2 1 5 14</th> <th></th> <th>× × ××</th> <th></th> <th>× × ×</th> <th></th> <th>×</th> <th>x x x</th> <th></th> <th>×</th> <th>×××</th> <th></th> <th></th>	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 047 X	Image: 100 month Image: 100 month Image: 100 month Image: 100 month X X X X X X X X X X X X X X X X X X X	Resitings S2 1 5 14		× × ××		× × ×		×	x x x		×	×××		
1 2 3 4 5 6 7 8 9 10 13 16 17 16 19 20 21 22 23 1 2 3 4 5 6 7 8 9 10 13 11 113 113 113 114 15 16 17 16 10 20 21 22 23 1 X <td>1 2 3 5 7 8 9 10 11 12 13 16 17 16 19 20 21 22 22 23 24<!--</td--><td>Species 1 2 3 4 5 6 7 8 1 <th1< th=""> 1 1 1 <th< td=""><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>×</td><td></td><td></td></th<></th1<></td></td>	1 2 3 5 7 8 9 10 11 12 13 16 17 16 19 20 21 22 22 23 24 </td <td>Species 1 2 3 4 5 6 7 8 1 <th1< th=""> 1 1 1 <th< td=""><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>×</td><td></td><td></td></th<></th1<></td>	Species 1 2 3 4 5 6 7 8 1 <th1< th=""> 1 1 1 <th< td=""><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>×</td><td></td><td></td></th<></th1<>	8										×		
1 2 3 4 5 6 7 8 9 10 13 14 15 16 13 10 20 21 22 22 22 22 22 22 22 22 22 22 22 22 22 22 23 4 5 6 7 8 9 10 11 12 13 14 15 16 10 20 21 23 23 23 23 23 23 23 23 23 24	1 2 3 5 6 7 8 9 10 11 12 13 15 15 15 15 15 15 15 15 15 15 12	Species 1 1 2 4 5 6 7 8 9 10 11 1	ð		××										
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 10 11 12 13 14 15 16 17 11 12 13 14 15 16 17 18 19 20 21 10 11 12 13 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 10 11 12 13 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18	Image: state	Sector 1234567900 1234567900 1211111111111111111111111111111111111			~										
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 19 1 X	1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 16 15 16 17 16 17 16 17 16 17 16 17 16 17 16 16 16 17 16 <td>Spectral 1 2 3 5 6 7 8 9 10 11 11 11 11 15 16 11 11 15 16 11 11 15 16 11 11 15 16 10 11 11 11 15 16 11 11 15 16 11 11 11 15 16 10 11 11 11 11 11 11 15 16 10 11 11 15 16 10 11 11 15 16 10 11 11 15 16 10 11 15 16 10 11 11 15 16 10 11 11 15 16 10 10 10 11 11 11 15 16 <td< td=""><td>2</td><td></td><td>~</td><td></td><td>× × ×</td><td></td><td></td><td></td><td></td><td></td><td>×</td><td></td><td>~</td></td<></td>	Spectral 1 2 3 5 6 7 8 9 10 11 11 11 11 15 16 11 11 15 16 11 11 15 16 11 11 15 16 10 11 11 11 15 16 11 11 15 16 11 11 11 15 16 10 11 11 11 11 11 11 15 16 10 11 11 15 16 10 11 11 15 16 10 11 11 15 16 10 11 15 16 10 11 11 15 16 10 11 11 15 16 10 10 10 11 11 11 15 16 <td< td=""><td>2</td><td></td><td>~</td><td></td><td>× × ×</td><td></td><td></td><td></td><td></td><td></td><td>×</td><td></td><td>~</td></td<>	2		~		× × ×						×		~
I 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 19 I I Zabel terr Site X <	Image: State of the state o	Species 1 2 3 6 7 8 10 11 <t< td=""><td></td><td></td><td></td><td></td><td>××××</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					××××								
$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 91011112113 1415 16 17 \\ x & x & x & x & x & x & x & x & x & x$	Image: State of the second	Species 1 2 3 5 6 7 8 9 10 11			×		××× ×						×		×
X XX X X X X X X X X X X X X X X X X X	1 2 3 4 5 6 7 8 9 10 Image: State st	Species 1 2 3 4 5 6 7 8 9 10 Currorsus Cu											×		
X XX X X X X X X X X X X X X X X X X X	1 2 3 4 5 6 7 8 9 10 Image: State st	Species 1 2 3 4 5 6 7 8 9 10 CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK Artibles contention Artibles contention	191		×					~				×	
X XX X X X X X X X X X X X X X X X X X	1 2 3 4 5 6 7 8 9 10 Image: State st	Species 1 2 3 4 5 6 7 8 9 10 Currorsus Cu	a≂							~					
X XX X X X X X X X X X X X X X X X X X	1 2 3 4 5 6 7 8 9 10 Image: State st	Species 1 2 3 4 5 6 7 8 9 10 CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK Artibles contention Artibles contention	r Si		×××					×		×	×		
X XX X X X X X X X X X X X X X X X X X	1 2 3 4 5 6 7 8 9 10 Image: State st	Species 1 2 3 4 5 6 7 8 9 10 CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK CVCNCNK Artibles contention Artibles contention	in te				×			×		×	×		×
X XX X X X X X X X X X X X X X X X X X	1 2 3 4 5 6 7 8 9 10 Miniti X <t< td=""><td>Species 1 2 3 4 5 6 7 8 9 10 CXTNCTAR CXTNCT</td><td><u>لي 8</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>	Species 1 2 3 4 5 6 7 8 9 10 CXTNCTAR CXTNCT	<u>لي 8</u>							-					
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	1 2 3 4 5 6 7 8 9 Miniti X <td< td=""><td>Species 1 2 3 5 6 7 8 9 CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE Mettiples CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CUMBERSACCAE Salsola Inertio CUCMCBE CWCMCBE CWCMCBE CUMBERSACCAE Juniperus X X X X CUMBERSACCAE Juniperus X X X X Salsola Inertio CUCMCBE Jetticg Salsola Inertio X X CUMBERSACCAE Juniperus X X X X X CUMCBE Salsola Inertio CWCMCBE Salsola Inertio X X X CUMCSACE Salsola Inertigin</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Species 1 2 3 5 6 7 8 9 CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE Mettiples CWCMCBE CWCMCBE CWCMCBE CWCMCBE CWCMCBE CUMBERSACCAE Salsola Inertio CUCMCBE CWCMCBE CWCMCBE CUMBERSACCAE Juniperus X X X X CUMBERSACCAE Juniperus X X X X Salsola Inertio CUCMCBE Jetticg Salsola Inertio X X CUMBERSACCAE Juniperus X X X X X CUMCBE Salsola Inertio CWCMCBE Salsola Inertio X X X CUMCSACE Salsola Inertigin													
X X X X X X X X X X X X X X X X X X X	I 2 3 4 5 6 7 Mainti X X X X X X X X X X X X X X X X X X X	Species 1 2 3 4 5 6 7 CXCNXDK CXCNXDK CXCNXDK CXCNXDK 1 2 3 4 5 6 7 CXCNXDK CXCNXDK CXCNXDK CXCNXDK CXCNXDK 1 2 3 4 5 6 7 CXCNXDK CXCNXDK CXCNXDK CXCNXDK X													~
9 X X X X X X M X X X M X X X M X X X M M M M M M M M M M M M M	I 2 3 4 5 6 Manual I Manual I Man	Species 1 2 3 4 5 6 Cucructur Corporativa viviparea Corporativa v													
	I 2 3 4 5 Manual i Manual i Name Na Name Name Name Na Name Name Name Name Name Name Name	Species 1 2 3 4 5 Cucructa Corporativa vivipara Corporativa br>Corporativa Corporat	ļ		××		×			×			×		
▼ × × × × × × × × × × × × × × × × × × ×	I 2 3 4	Species CVCYNCNE CVCYNCY					×			×			×		
N X X X N N N N N N N N N N N N N N N N	All a la	Species CATMORNE CATMORNE CATMORNE CATMORNE CATMORNE CATMORNE CATMORNE CONTRACTOR	f í		××							×			×
	eine alle alle alle alle alle alle alle al	Species CCTACENE COCTORE Corporation evidentia vivipate Echimocereus engelaannii pountia erinocereus engelaannii pountia erinocereus engelaannii pountia erinocereus pountia erinocereus pountia erinocereus ceratoldes lantia fictories engelaannii Attriplek canescens Attriplek canescens Attriplek canescens Attriplek canescens Attriplek confertifolie Ceratoldes lantia fiercica Inniperus osteosperma Salaola ibercica Curascoldes lantia fiercica Attriplek confertifolie Ceratoldes and fiercica Attriplek confertifolie Ceratoldes and fiercica Attriplek confertifolie Contentifolie Attriplek confertifolie Confertifolie Attriplek confertifolie Ceratoldes and fiercica Attriplek confertifolie Contentifolie Ceratoldes and fiercica Attriplek confertifolie Confertifolie Ceratoldes and fiercica Attriplek confertifolie Contentifolie Confertifolie Confertifolie Ceratoldes Attriplek confertifolie Attriplek co	-				×					×	×		
		Species CACTACEAE CACTACEAE CACTACEAE CACTACEAE CONTINUE CONCERNE CONTINUE Species Concernes Contribute and the concernes Contribute of the concernes Content of the concernes Con	!												
	Species CACTAACEAE CACTAACEAE Cocyphantha viviparra Echimocretus engelmannii Opuntia erinacea Opuntia epinocarpa Opuntia epinocarpa Opuntia epinocarpa Atriplex canescens Atriplex canescens Atriplex canescens Atriplex canescens Ecrita epinocarpa Certa offertifolia Certa epicea Burhoella epi Cumperus onteosperma Eleptorbia sp. Cumperus onteosperma Eleptorbia sp. Cumberus entiginosus Astragalus sp. CASACEAE MALVACEA	Sected MX SILING INVESTIC MARTING INVESTIC MA	-				×			×		×	×		
Species CACTACEAR CACTACEAR Coryphantha vivipara Echimocareus engelan Opuntia erinacea Opuntia echimocarpa Opuntia epinosa Atripiex carescens Atripiex carescens Atripiex carescens Atripiex carescens Atripiex confertifol Ceratoldes Janata Grantus Ceratoldes Janata Burhonen glomeratus Explore of confertifol Ceratoldes Janata Falso of confertifol Ceratoldes Janata Burhonen glomeratus Explored of the confertifol Ceratoldes Janata Falso of confertifol Ceratoldes Palso of confert			Species	CACTACEAE	Coryphantha vivipara Echimocreus engelaannii Opuntia erinacea Opuntia echimocarpa Opuntia echimocarpa	CHENDRODIACEAE	Atriplex canescens Atriplex confertifolia Ceratoides lanata Grayla spinosa Halogeton glomeratus Salsola iberica	CUPPESSACEAE	Juniperus osteosperma ErestearPar	Ephedra nevadensis	BUPHORBIACEAE	<u>Euphorbia</u> sp.	<u>Astragalus lentiginosus</u> <u>Astragalus</u> sp. LOASACEAE	-	 Spheeral cea ambigua

 Γ

6

r

.

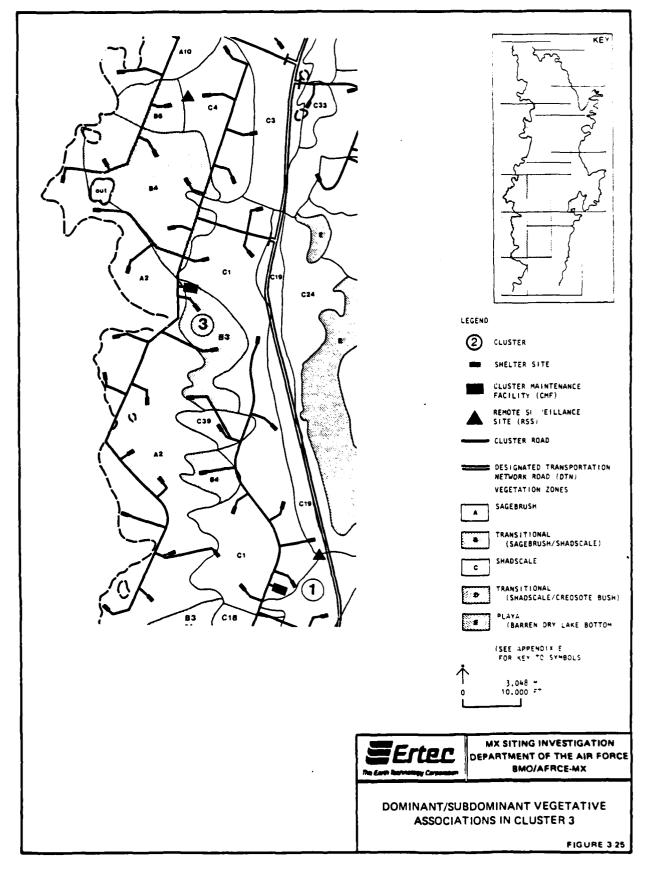
1

2

÷

á

ŧ


(

(

, '

Resitings 1 5 14 ×× × ×× × × Shelter Site 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 CMP RSS2 × ~ ~ ** × --× 24 × ~ ×× × × -× × ×× × ×× × × 80 -× × ~ × ø × ŝ × 4 × × m × × N × -× × Bromus rubens Bromus tectorum Erioneuron pulchell Erioneuron pulchell Hillaria jamesii Muhlenergia coperi Oryzosis hymenoide Sitanion hystrix Sitanion jubatum Sporobolus contract Sporobolus cryptand POACEAE (GRAMINAE) SCHROPHULARI ACEAE Lycium andersonii Cowania mexicana Eriogonum defle Eriogonum niðuld Eriogonum sp. Camissonia sp. POLEMONI ACEAE POLYGONACEAE Mimulus sp. ONAGRACEAE SOLANACEAE Gilia sp. ROGACEAE Species MX SITING INVESTIGATION Ertec DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX The Earth Techn ngy Comp SUMMARY OF PLANT SPECIES **OBSERVED IN CLUSTER 3 SITES** DRY LAKE VALLEY, NEVADA PAGE 3 OF 3 TABLE 3-18

 \mathbb{N}

ŧ

(

. '

19 20 21 22 23 CMP RSS2 1 5 14(a) ×× × × × × ×× × ~ × ۵ ۵. ~ 191 ~ c x × 2 ×× × -×× 8 m ×× ø × Shelter Site 10 11 12 13 14 15 16 17 18 'n ×× _ 1 7 61 ~ × 2 ×× (a) Surveyed but not relocated. Number = Actual sightings; P = Present but not counted; X = sign observed. ×× 80 × ××× 2 × ×× ~ σ × 9 ×× Q хx ×× × σ ×× ~ × 8 m ×× ~ ×× ø × ×× 5 2 ŝ × ×× 4 ×× m ×× ×× ~ ×× ص ×× Mammal burrows (active) Mammal burrows (inactive) Badyer (burrow) Lony-nosed leopard lizard Desert horned lizard Coyote (inactive den) Coyote (sign) Kit fox (active den) Kit fox (ative den) Blacktail jackcabbit Desert cotrontail Rabbit (sign) Cattle (sign) Side-blotched lizard Great Basin whiptail Sagebrush lizard Zebra-tailed lizard Coyute (active den) Sparcow Northern harrier Prairie Falcon Turkey Vulture Horse (sign) Horned lark 1 **Heptiles** Species Manmal S Birds Naven 1 MX SITING INVESTIGATION Ertec DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX The Earth Rach SUMMARY OF WILDLIFE OBSERVED IN CLUSTER 3 SITES DRY LAKE VALLEY, NEVADA

×

××

TABLE 3-19

times the second se	2 3 4 22	4625 4630 	+ + + + + + + + + + + + + + + + + + +	1 2 2 2 2 1 1 1	L H L L	
	CMP KSS3 1	4292 4632	× × ×	1	T T	
	i		×	- 5	Г	relative importance/impact.
	22 23	493 0 4930	×	- 7	T T	ortan
	~	6630	×	- 12	Σ	er e
	8	6630	××	45	ε	lativ
	6	0797	×××	- 10	د	19 19
	17 18	¢620	××	- 7	د.	6
	1 91	0297 5197	××× ××	- 10	נ נ	
	5	5199	×× ×××	-15	L Z	a l
	Ξ	0897	××	~-	L	ce/1
(+ F)	11 12 13	509 7	××	~- ~	د	orte de la constante de la constant
1	2	4 620	××	- 7	-1	
1		4602	××	- ~	2	ative
	2	0097	××		د -	2
	6 8	4600 4285	××× ××	-15	T T	3
	-	\$65	×××	- 7	د	2-le
	v	26SÞ	××	5	Ľ	
1	~	6630	×××	- 7	L	
	•	¢950	× × × ×	~~	T T	
1	~	4280 4282	~ ~ ××		Ĩ	e tano
	-	1097	××	20	Σ	ve importance/impact; ence ite; L-Low
		<u>Elevation</u> (feet)	Soil Texture(a) Coarse gravel Fine gravel Coarse sand Fine sand Silt	Disturbance(a) Offcoad vehicles Grazing	Overall Intensity of Disturbance(D)	eras
						MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX SUMMARY OF ABIOTIC FACTORS IN CLUSTER 4 DRY LAKE VALLEY, NEVADA TABLE 3-20

4

disturbance in the area. The intensity of disturbance is considered low to moderate on all sites.

Halogeton glomeratus and Salsola iberica are widespread in Cluster 4, being found in 14 and 7 sites, respectively.

c. <u>Threatened or Endangered Plant Species</u>: Individuals of <u>Sclerocactus pubispinus</u>, the Great Basin fishhook cactus, were observed on Site 4. This species is listed as a Taxon Currently Under Review in the 1980 Federal Register. It is a Category 1 plant, which indicates sufficient information is available to support its listing as a threatened or endangered species, although final publication of rules will require several years. Other possible threatened and endangered species included <u>Eriogonum, Phacelia, Sphaeralcea, Camissonia, Lepidium, Echinocereus, Penstemon, Astragalus, Opuntia, and Cryptantha</u>, but the species could not be identified due to the season of the survey. <u>Eriogonum microthecum, Machaeranthera canescens, Gutierrezia</u> <u>sarothrae</u>, and <u>Astragalus lentiginosus</u> were also present, although due to the season, the variety could not be determined.

d. <u>Vegetation</u>: The lower elevation of the cluster on the valley floor bordering the playas and the presence of saline, alkaline soils are both conditions that tend to support shadscale and alkali sink scrub vegetation associations. The dominant shrubs are bud sage, four-wing saltbush, gray molly, greasewood, saltbrush, rabbitbrush, and <u>Gutierrezia</u>; <u>Eriogonum microthecum</u> was dominant in many wash areas. Perennial codominant grasses

 Ξ Ertec

include Indian rice grass (<u>Oryzopsis hymenoides</u>), galleta grass (Hilaria jamesii), and squirrel grass (Sitanion hystrix).

The perennial vegetative cover in Cluster 4 ranges from 10 to 25 percent and averages 19 percent.

The plant species observed in Cluster 4 are summarized in Table 3-21, and distribution of dominant associations is mapped in Figure 3-26.

e. <u>Wildlife</u>: Wildlife observations in Cluster 4 are summarized in Table 3-22. Characteristic burrows identified the presence of badgers, kangaroo rats, gophers, and Townsend and antelope ground squirrels. Less characteristic mounds indicate the presence of additional, unidentified burrowing species throughout the cluster. Scat indicated the presence of antelope, rabbit, coyote, kit fox, and badger.

The sagebrush and side-blotched lizards were the most common reptiles; less common reptiles included the desert horned lizard, Great Basin whiptail lizard, sagebrush lizard, and gopher snake.

Although horned larks were ubiquitous, few other bird species were present. One burrowing owl was observed in its den on Site 21, and ravens were also observed.

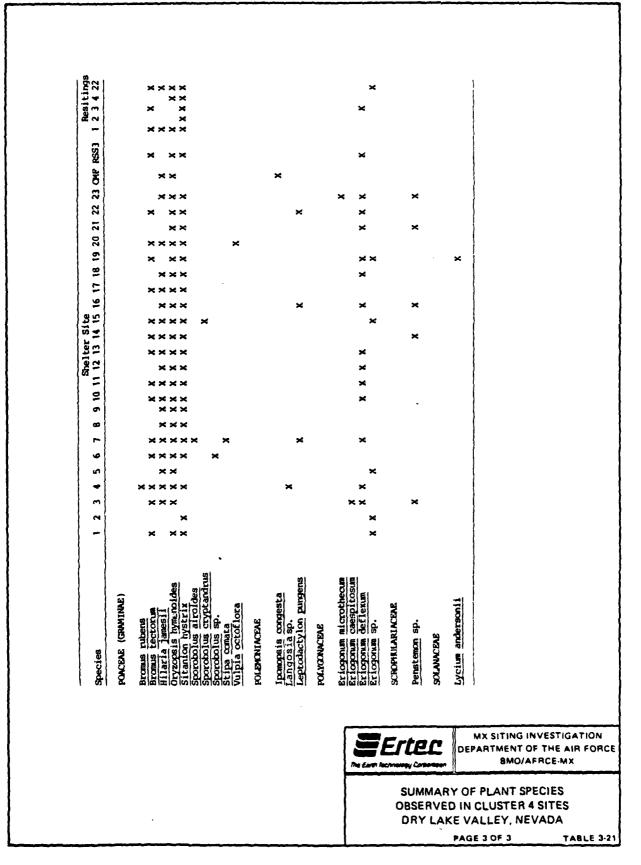
3.2.5.5 Summary of Conditions in Cluster 5

a. <u>Abiotic Conditions</u>: The legal descriptions for sites in Cluster 5 are given in Appendix F. Elevations range from 4640

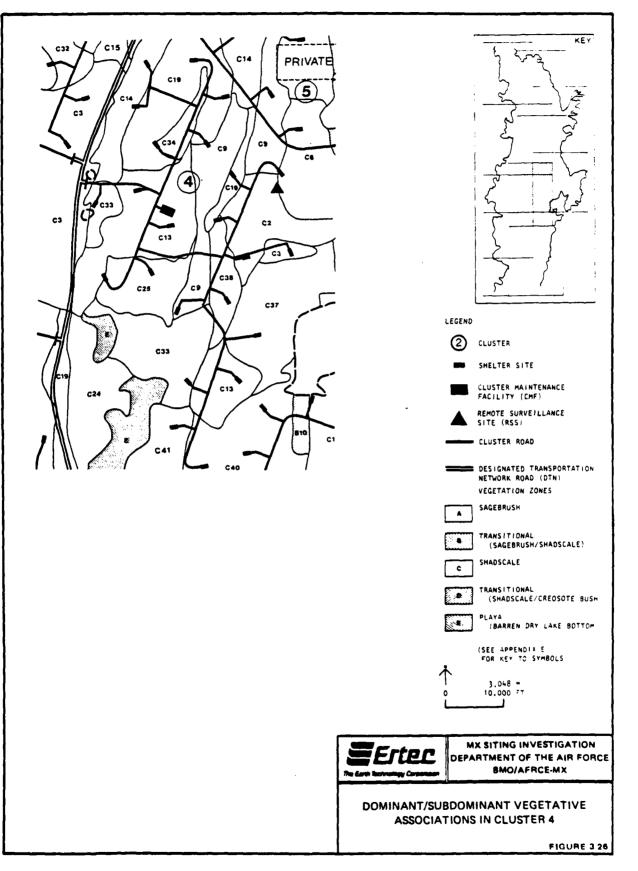
≡ Ertec

Resitings 2 3 4 22	××	××	×	хх	×				×	:			×	×			
RSS3 1	×	: :	×		××					,	` ×		×				
S TO	×			×													
22 23		×	××	× ×	× ××				× ×	>	×			×			
51		××	×	^	××				×					^			
19 20	×	××	×	××					×		×		×				
17 18	×	×	×	×	××× ×				× ×	×	× ×		×				
2	×			× ×	×				×		×			×			
er Sit	×	××	×	î	××		×		×				×	^			
Shelter Site 11 12 13 14 15	×	×××	×	×					×		×						
10	×	×		×					×		×		×				
6 8	×	××		×	××				×	×	×						
6 7	×	××		× ×	× ××				××		××		(dead) X X				
5	*		×	×××	× ×				×		×		÷ ×	×			
m	*	: ×	×		~ * * * *		×		×	×	~		~	~			
1 2	*			×	< ×						×		×				
Species	Astistacicale (CONFOSITAE) Ambrosia acanthicarpa Artemisia sninescene	Artemisia tridentata Chrysothamuus greenei	Chrysothamus viscidiflorus Gutierrezia sarothrae Gutierrezia microcephala	Gutierrezia sp. Machaeranthera canescens Archhereta	Tetradymia axillaris Tetradymia glabrata Tetradymia spinosa	BORAGINACEAE	<u>Cryptantha</u> sp.	BRASSICACEAE (CRUCIFERAE)	Lepidium montanum Lepidium so.	Stanleya pinnata	Descurainta prinaca	CACTACEAE	<u>Echinocereus</u> sp. <u>Oountia erin</u> acea	Opuntia sp. Sclerocactus pubispinus			
									The East	-	085	MM	ARY VED	OF P	T OF 1 D/AFR SPEC R 4 SI	THE AI	R FOR

1.1


11-1	[× × × × ×	× ×				×						×	×
Resitings 1 2 3 4 22		× × × × ×	× × × × × ×											
23 CMP RSS3		××	×											
5		×	×										×	
22 2		× × × × × ×	×× ×				×				×		×	
21		×××	×× ×								~		×	
50		××	×											
5		×	××××											
18		×××	×× ×										×	
1	ļ	××	××										×	
2	}	×××	××										×	
Shelter Site 11 12 13 14 15		××											×	
3 15		×××	×××										×	
2 1 2		***	××										×	
3 -	ļ	× × ××	××										×	
10		×××	××											
6		××			×				×					
6		×××	****											
-		××	×										×	
9	[×××	××										×	
•		× × ××:	~										×	
	[×	X		×								~	
~	{	×	×××××											
-		×××	×										×	
]	ia I	Grayla spinosa Halogeton glomeratus Kochla americana Salsola iberica Saroobatus vermiculatus Suaeda tor revana			AE)	Astragalus lentiginosus Astragalus sp.							
		ifolia a	atus cula	ł		INDEAE)	gino						end	
1	щ	Dat t	Var			M	ut i	æ						
ł	Q	a la	Perios	ENE	8	3		S.	ç.		L I		0000 0000 0000	201 101
	8	de le le		BIN	bia	EAE	alu	TV.	a	EAE	윙	EAE	CEM	oni
Species	CHENOPODIACEAE	Atriplex canesce Atriplex confect Ceratoides lanati		EUPHORBIACEAE	Euphorbia sp.	PABLACEAR (LEGUN)	trac	HYDROPHYLLACEAE	Phacelia sp	LAMIACEAE	<u>Salvia dorii</u>	MALVACEAE	Sphaeral cea ambigua Sphaeral cea sp. CRUKTRACEAE	Camissonia sp.
Ā	l S		S S S S S S S S S S S S S S S S S S S		3	PA	As As	Н	£	3	Sa	¥	ଅର୍ଷ ବ୍	C

A. 45. 15-2377 1000


. '

7: 1.

. •

 \mathcal{T}

•

. '

\$ \$ Resitings RSS3 1 2 3 4 22 4444 ŝ ××× × ××× ××× × × ×× * ×× ρ, ××× đ ð 2 3 ø ο. × ×× Number = Actual sightings; P = Present but not counted; X = Sign observed; T = Seen near site.ส ρ, ××× × 5 ۵. × ×× 20 × ۵. ×× × 19 ۵. 2 × ×× 8 ø ٥, 1 _ a -2 × × × 9 2 ۵ × ×× × Shelter Site 11 12 13 14 15 -مە ×× ××× m **8** 8 ρ. × 2 2 **e** × ×× ۵ ×× ×× 2 ρ. ×× ×× 20 × 24 32 A ĸ × × ¢, × ۵. 80 × × m × ×× = ρ. 5 ×× ~ ×× ە <u>a</u> ø ×× ×× × Ś 4 ×× 60 3 4 × × × × ۵., m ×× × ۵. × ××× N Δ, × × _ * Horse (sign) Antelope (sign) Coyote (sign) Badger (sign) Blacktail jackrabbit Blacktail jackrabbit Rabbit (sign) Mammal burrow (active) Kangarov cat burrow (inactive) Kangarov cat burrow (active) Mammal burrow (active) Mammal burrow (active) Connsend ground squirrel doctive burrow) Copher burrow (active) Horned lark (numerous) Side-blotched lizard Desert horned lizard Great Basin whiptail Sagebrush lizard Unidentified lizard Copher snake Raven Burrowing owl Golden eagles Reptiles Species Marmal S Birds MX SITING INVESTIGATION

SUMMARY OF WILDLIFE OBSERVED

IN CLUSTER 4 SITES DRY LAKE VALLEY, NEVADA

TABLE 3-22

E-TR-48-11-1

to 5785 feet (1428 to 1780 m), and most survey areas are located on slopes of approximately 3 degrees. The soil is alluvial, dominated by silt and fine sandy loams. Some coarse sand and fine gravel are also present. Abiotic conditions within the cluster are summarized in Table 3-23.

b. <u>Disturbance</u>: Grazing is the primary cause of disturbance, followed by off-road vehicle usage on Sites 2 through 8, 10 through 16, and 20 through 22. Off-road vehicle damage is the primary disturbance followed by grazing on Sites 1, 9, and 17 through 19. Disturbance is low to moderate on all sites except Site 4 which appears highly disturbed.

c. <u>Threatened or Endangered Plant Species</u>: Two individuals of <u>Coryphantha vivipara</u> were observed on Site 18. This species is listed in the 1980 Federal Register as a Taxon Currently Under Review. It is a Category 2 plant as described previously. Individuals <u>cf Astragalus</u>, <u>Lepidium</u>, <u>Opuntia</u>, <u>Senecio</u>, <u>Erigeron</u>, <u>Haplopappus</u>, <u>Cryptantha</u>, <u>Eriogonum</u>, <u>Gilia</u>, and <u>Castilleja</u> were observed. These may be threatened or endangered plants, but due to the season of the survey, the species could not be identified. <u>Astragalus lentiginosus</u>, <u>Lepidium montanum</u>, and <u>Machaeranthera canescens</u> were also present, but due to the season, the variety could not be determined.

d. <u>Vegetation</u>: The vegetation in Cluster 5 varies from shadscale scrub in the lower elevations to sagebrush scrub at the higher elevations. Dominant shrub species include winterfat,

Ξ Ertec

٩

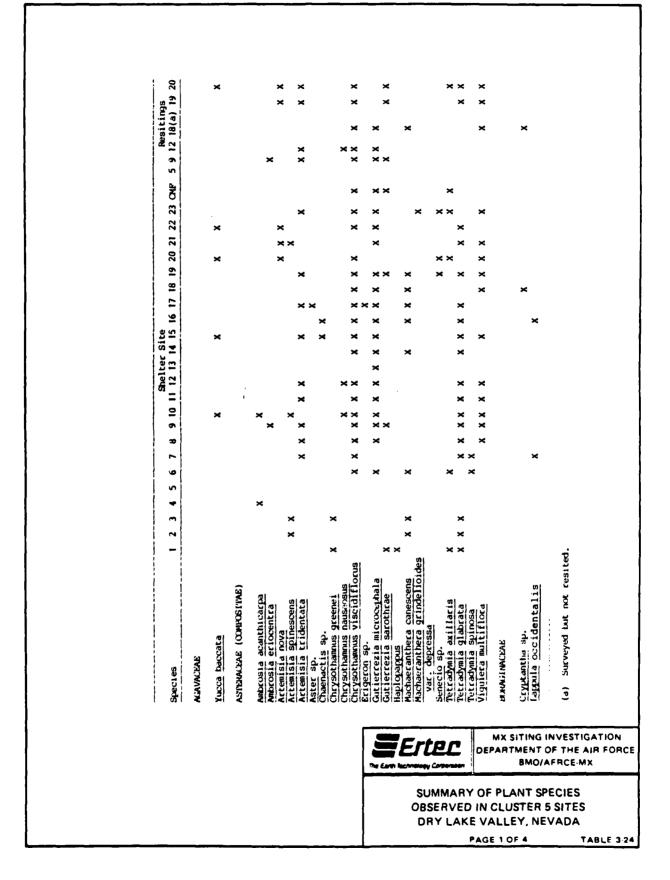
. '

	Elevation	<u>Suil Texture</u> (a) Coarse gravel Pine gravel Coarse sand Pine sand Sine sand	Clay Rucks	Disturbance (a) Official vehicles	GC42109 GC42109 Other (a			(a) 1-111gh x - 1ndi x - 1ndi	M	X SITIN	G IN VEST	IGATION
-	\$99 † (feet)	ure(a) Jravel X Sand X X		vehicles 1	2 animal	(Fance)	ance(b) L	 (a) T-flighest relative importance/impact; X-Indicates presence (b) II-flight, M-Anderate: L-Low (c) Surveyed but not relocated. 				
~	55 9 9	× -		7	-		L	ortar Dw ited.				
-	599 7 0997	××- × ×-		2 2	-		≖ د	i/e/i				
n	0999		•	2	-		Ξ	Mpac				
۰	0699	×-		N	-		-	t, 2				
2 8	088 1 0905	-		2 2	-		I I	-les				
3	1687	××-	_	-	7		ר -	3				
2	4850	***-		~	-		-1	rela				
Shelter 11 12	0015	× ×-	-	7	-		د	tive				
	0815	××-		~	-			2-lesser relative importance/impact;			•	
Site 13	0189	-		2	-		x	L L R				
	0487			2	-		x	ce/ii				
	0105	- -	-	7	_		× 	pact				
1 9	0189	-		-	_		×					
17 18	2020 2120	-	•	7	-		Ξ	3-lowest				
2	0215	-	•	-			T	e #				
8	0985	-	•	~	-		L	lati				
5	0965	-	•	7	-		x	relative importance/impact				
2	0055	-	•	7	-		x	t out				
8	\$8 / \$	× -	•	-	7		Ξ	ance				
S	5289	× ×-	×	2	-		x	qmil/				
2	0999	-	•	7	-		L	gt.				
- 6	0999	××-		-	~		-					
Resitings 12 18(c) 19	2050 2100	- ××-		~	_		۔ د					
(c)	0715	- -	. –	7	~ ~		L X					
- 2	2320	×	_	-	- ~		T,					

٠

<u>Gutierrezia</u>, Mormon tea, <u>Fallugia paradoxa</u>, little sage, horsebrush, <u>Prunus</u>, rabbitbrush, four-wing saltbush, saltbush, and gray molly. Galleta grass is widespread and a dominant spec. 3 in many areas. Other codominant perennial grass species in this cluster include Oryzopsis hymenoides and Sporobolus cryptandrus.

The perennial vegetative cover in Cluster 5 ranges from three to 30 percent and averages 20 percent.


Plant species observed in Cluster 5 are summarized in Table 3-24, and dominant associations are mapped in Figure 3-27.

e. <u>Wildlife</u>: Wildlife observations in Cluster 5 are summarized in Table 3-25. Characteristic burrows indicate the presence of gophers and kangaroo rats. Less characteristic mounds indicate the presence of additional unidentified burrowing species throughout the cluster. Mammal species, including domestic cattle, wild horses, coyotes, kit foxes, badgers, and rabbits, were identified by scat found on the sites. A bighorn sheep curl found in Shelter Site 9 may indicate occasional use of the valley by this species.

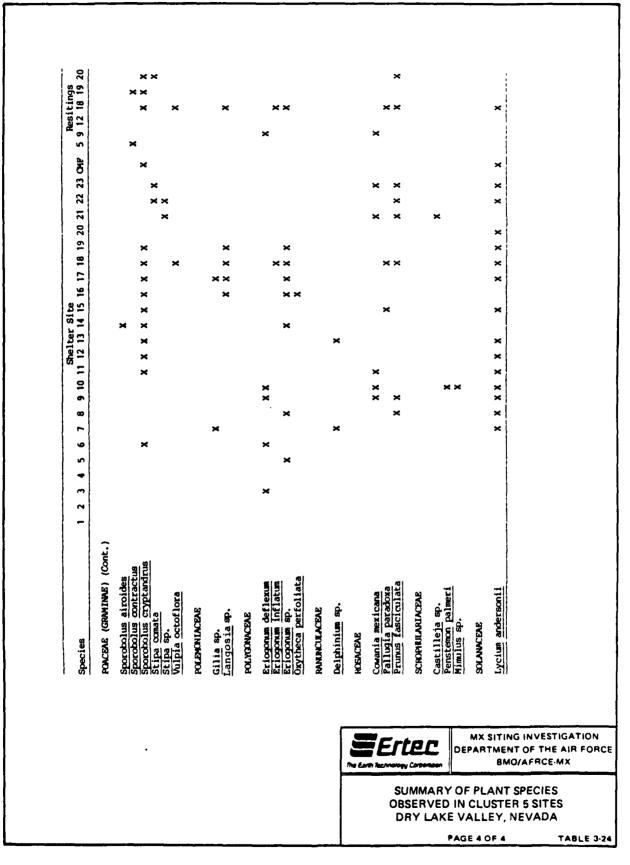
Other common wildlife observed in the cluster included the side-blotched lizard, blacktailed jackrabbit, and horned lark. Less common birds and reptiles included ravens, crows, sage sparrows, loggerhead shrikes, desert horned lizards, and sagebrush lizards.

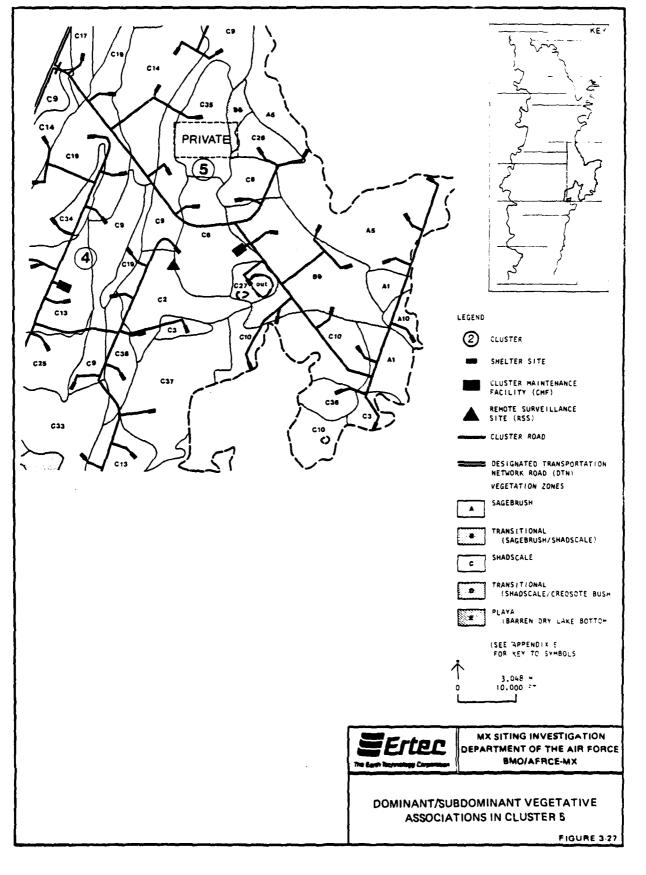
Ertec

., I

, ·

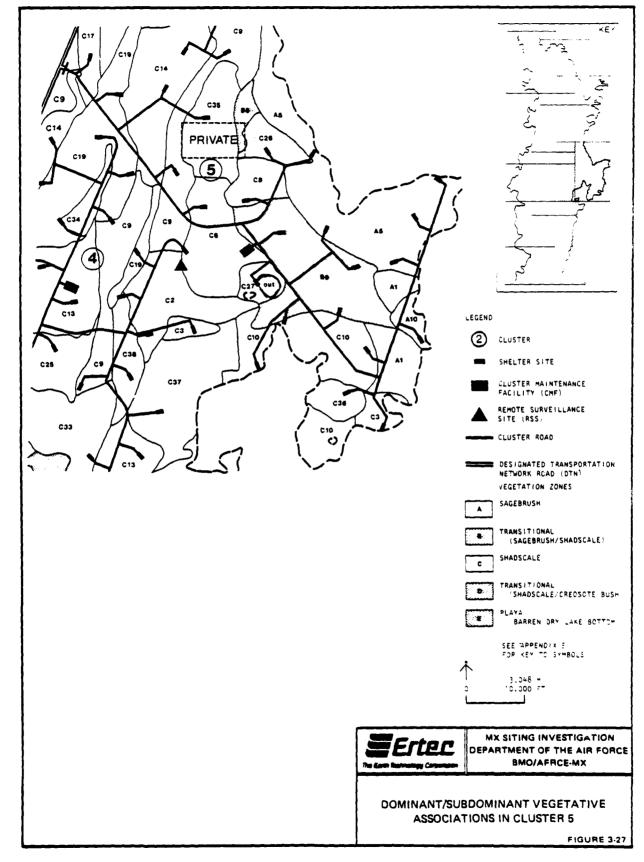
9 20		×						< × :	×				×
Resitings 9 12 18 19		×	×		××			< ×					×
2 1					× × ×		× >		×				×
		× ×			××		,	< <					× ×
2		×						<					
23 OIP		××			×××		,	4			×		×
5		×			Ŷ×		×				×		^
5		~	×		×		×>	< ;	×		×		×
50					××		,	<					×
6					××		× >	<					×
2					× × ×		× >	< :	×				×
1			×		××		,	<					×
26			×		×		× >	<					×
Site					××		×						×
Shelter Site 12 13 14 15					× ×		× > × >		×				×
12 I					~		× >						×
ज्व <u>=</u>		×			×		×	•					×
2		× ×			××		×>	<			×		×
٩		××			××		,						×
80							*						×
6		×	×		×× ×		×	×					*
5		×			~		**>		×				
-							,		×				
		×					×>	<	×				
~		×	×		×		× >	<	×				
-		×	×				××>	<					
	CACEAE (CRUCIFERAE)	8			Coryphantha vivipara Echinocereus engelmannii Opuntia echinocarpa Opuntia erinacea								
1	IFE	auli	tus				0114				E		
	SBC	Sic Sug					E Sera	2	g				sis
	0		Lepidium montanum Lepidium sp. Stanleya pinnata Streptanthus cordatus		2 2 2 2 2	an a	Atriplex canescens Atriplex confertifolia	립왕		61	Juniperus osteosperma		a nevadensis
	N	Sisie	<u> </u>	63	Ser Charles	N	88	ŝ		CEN	00] 00]	ENE	Jev.
es	5 IC	ra a the	lium leya otan	Se la constante de la constant		200		2 2		VSS	ES	- Sec	
Species	BRASSIC	aula	epid tran	CACTACEAE		CHENORODIACEALE				CUPRESSACEAE	Ţ	EPHEDRACEAE	दिग्
5	đ	000000	리니이이이	ð	01010101	Ö			ומומ	Ű	51	ជ	ωj
							Г	2	lc	-	~		MX SITING INVESTIGATIO
							7						DEPARTMENT OF THE AIR FO BMO/AFRCE-MX
										SU	MM/		Y OF PLANT SPECIES
													D IN CLUSTER 5 SITES
							1			DR	YL	AK	E VALLEY, NEVADA
													PAGE 2 OF 4 TABLE


 \mathcal{T}


15 19 20										× ×		× × × ×× × × × ××
Resitings 9 12 18 19		×		×						×		* * * * * *
Resi 12												× ×××
5 9												** *
and and a										×		××
53				×								× × ××
8												× × ××
20 21				×				×		×		× × × × × × × × ×
61				î						×		~ ~ ~ ~ ~ × × × × ××
18		×		×						×		× × × ××
5 17				×						×		* * * * *
5 16										××		×× × × × ××× ××
Shelter Site 11 12 13 14 15										^		× × × × ×
13 Liter										×		× × ××
12 She										×		× ××× ×
9												×× × × × × ×× ××
6										×		
7 8												* * **
6						×						× × ××× ××
s S												× × × ×
-												× ×
3 3										× ×		×× ×
-		×				×						****
										olia		
				80						life		e
				inos						nlar	.	
				bill.		<u>م</u> ا .				ross	INAE	
	CENE	sp.						enne			GRAM	
8	RBIA	rbia	CEAE	galu	CEAE	ମ ଅକ୍ଷା ଅ	ENE	Per	CEAE	ralo	с Я	Louis a contraction of the second sec
Species	EUPHORBIACEAE	Euphorbia	PABLACEAE	<u>Astragalus lentiginosus</u> <u>Astragalus</u> sp.	LAMIACEAE	Salvia carnosa Salvia dorrii	LINACEAE	Linum perenne	MALVACEAE	Sphaeralcea ambigua Sphaeralcea grossulariifolia	POACEAE (GRAMINAE)	Aristida purpurea Aristida sp. Bouteloua gracilis Bromus rubens Bromus rubens Bromus rubens Bromus rubens Frioneuron pulchellun Hilaria jamesii Wuhlenbergia cooperi Oryzosis hymenoides Sitanion hystrix
1 00 1	ω	6 1	62	< <	-1	ເທເທ	1	-11	Ξ	0101	а.	< < 0 0 12 2 0 0
												ETEC MX SITING INVESTIG
										~	Eart	BMO/AFRCE-MX
												SUMMARY OF PLANT SPECIES
												OBSERVED IN CLUSTER 5 SITES
												DRY LAKE VALLEY, NEVADA PAGE 3 OF 4 TA

24

Г


. '

STREET, MARSHOULD

1. 1

ŀ

.

, ,	Ma	EC.	120	Z Z	59 FI	A.	ž	75 Y (5 3 2		(Co				21			IX S	ME	ING	0	FTI		ON
Species	Maithals	Cattle (sign) Horse (sign)		wyote (sign) Kitfox (sign)				Unidentitied Large Durrow Kangaroo rat burrow (active) Astor hurrow (active)	Squirrel (sign) Mouse (sign)	Birds	thorned Park	Kaven	iarie sparrow	Loggerhead shrike Unidentified large nest	Reptiles	Side-blotched lizard	Sayebrush lizard	 number - actual sightings.	r - present out not counted X - sign observed.	-				
1 2		××	>	¢		× × × ×	×	~			а. -	-		-		2		-	:	ted.				
~		×		< ×		××	××	××	:		Ч.					14 2					-			
5		×	*	c		××					Δ.						-							
6 7		×		;	K m	× ××	×	×			Δ, ·					7	ŝ				ĺ			
8					<	××	:				4		-			-								
9 10			××		Ŧ	××	×				4					6					i			
1 1				,	••	××										65	-				!			
Shelter Sites						××							-											
13			×			×	×																	
14 15						××					d .	-				ŝ								
5 16					-	×	>	5			а а	0				•]			
2						×	>				0.						~				i			
8		×			7	×										-								
19 2						××	*	: × ×													1			
20 21			×			×	×	××			<u>a</u> .			~										
2		×				×										-					1			
2		×			:	×										4					Ì			
3				×	m :	××	×	×			<u>a</u> , a					Ś								
5			××			* * *	×				а,													
i i						< ×					<u>a</u>		~											
12 18(a)		×			2	×										-								
61					;	< ×		××	×															

V '

÷

3.2.5.6 Summary of Conditions in Cluster 6

a. <u>Abiotic Conditions</u>: The legal descriptions for Cluster 6 are given in Appendix F. Elevations range from 4705 to 5270 feet (1448 to 1622 m), and all sites are located on slopes of approximately 3 degrees. The soil is alluvial. Sites 1 through 10 are composed of gravel and fine and coarse sand. Silt intermixed with sand and gravel was the major substrate on Sites 11 through 23. Abiotic conditions within Cluster 6 are summarized in Table 3-26.

b. <u>Disturbance</u>: Disturbance was low to moderate at all sites. Grazing is the primary source of disturbance, and off-road vehicles a secondary source on all sites except Sites 8, 19, and 21. On these sites, off-road vehicle damage is greater than grazing damage. <u>Salsola iberica</u> and <u>Halogeton glomeratus</u> are present only on Sites 11 and 13, respectively.

c <u>Threatened or Endangered Plant Species</u>: Individuals of <u>Coryphantha vivipara</u> were observed on Sites 1 and 14. This species is listed as a Taxon Currently Under Review in the 1980 Federal Register. As described previously, it is a Category 2 plant. Individuals of <u>Lupinus</u>, <u>Castilleja</u>, <u>Mentzelia</u>, <u>Gilia</u>, <u>Camissonia</u>, <u>Haplopappus</u>, <u>Senecid</u>, <u>Eriogonum</u>, and <u>Astragalus</u> were also observed. These may be threatened or endangered plants, but due to the season of the survey, it was not possible to determine the species. <u>Machaeranthera canescens</u>, <u>Gutierrezia</u> <u>sarothrae</u>, <u>Lepidium montanum</u>, and <u>Astragalus lentiginosus</u> were also observed, but the variety could not be determined due to the season.

163

🚍 Ertec

\$

. .

									1
18	588 1		2	-					
st (c)	0974		2	-					1
Resitings 1 2 14 (c) (c)	0205	- × ×		- 2	X.	Ę.			
Res 1 1 (c) (c)	5915	- × ×		- 7	ĩ	ing		i	1
- 9	2200	× × × × - ×	1	1	-	é			
-	5815	××××-×	í	1		t an			- (
Ĵ	0 191	72 X	2	-	1	- least relative importance/impact;			ļ
3	0961	× -	2	-	T	ş			
52	0689	-	7	-	I	lati		- ↓ †	1
~	0581	-	-	3	T	E Ce			
8	0967	-	7	-	x	leas			
2	51 05	× ×-		7	-	1		1 1 2	
92	0061	××× -	~	-	د			1 3 1 1	
2		× ×-•	~	-	r	impac		}	
1 1	0969	× ×-	~	-	د	i/ace/i		å •	
Sites 15 16	0 98	× ×-	2	-	-1	orta		1	
Ociginal 13 14 1	0089		7	-	-1	- lesser relative importance/impact; 3			
0 Cig	50 / 7	× × -	7	-	-	tive			
2	0917	-	2	-	I	rela			
=	0487	×× -	7	-	د	Ser			1
2	0887	××~	7	-		les			
9	5 18 7	× × ~	~	-	L	5			1
30	5874	× × ~	-	7	2	μ,			1
~	0225	× × ~	~	-	د	Dedu		1 1	1
و	0269	××~	2		د	e/iu	ż		1
5	5005	× × ~	2			anc	Low.	•	(
-	4840	× -	2		-1 -	ν	Ľ.	1 1	1
-	0287 0505	××~ *	~		- -	Ĕ,	Xcat		1
7	2030 5615	***~	~		۲ 	a ne	erat	4 9 1	
-	2105	* * ~	5 7			elative importance/impact;	Noderate; L - not relocated		[
L + + +	(feet)	<u>1 Texture</u> (a) course yravel tine yravel tine sand fine sand silt clay	it <u>urbance</u> (a) official vehicles	mininy/const. erosion graziny other (rabbits)	Overal I Intensity of Disturbance(D)	highest r		•	
- <u>-</u>	51	sd yr	ound Prese	/ful nois fuis	L L	 	- 11	1 -	[
Factor	<u>Blevation</u> (feet)	Soil Texture(a) course yravel fine yravel coarse sand fine sand silt silt	<u>Disturbance</u> (a) of fired veh	mining/ erosion yrazing	Uveral of Dist	(a)	н ў (с) С		
				<u>ع</u>	Erte	<u> </u>	M) DEPAI	SITING INVESTIGA	TION
					mesegy Corpo			BMO/AFRCE-MX	
				S		CL	USTER	OTIC FACTORS IN 8 6 SITES	
				1	DRY	LAK	E VAL	LEY, NEVADA	
				1					LE 3-26

÷....

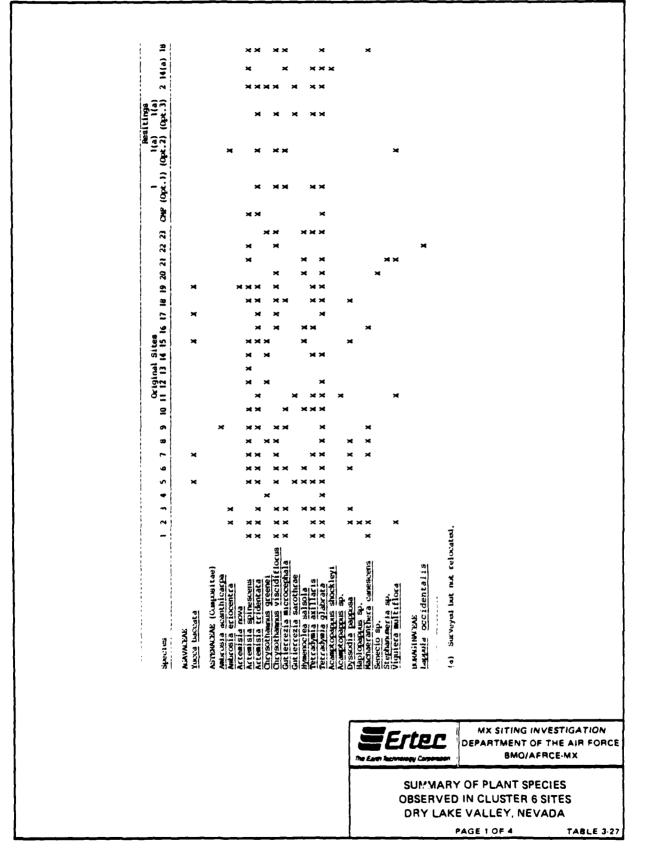
100

The second s

<u>_____</u>

d. <u>Vegetation</u>: The vegetative community is composed of mixed shrub associations characteristic of the shadscale and sagebrush zone. Dominant shrubs throughout this area include winterfat, hop sage, Mormon tea, big sagebrush, <u>Lycium</u>, horsebrush, rabbitbrush, <u>Guterrezia</u>, gray molly, four-wing saltbush, and <u>Acamptopappus shocklei</u>. <u>A. shocklei</u> has a wide distribution in the Mojave desert and often is a dominant species in the community. The presence of this species is unusual and supports the idea that Dry Lake Valley is a transitional area having both Great Basin and Mojave Desert characteristics. <u>Ambrosia eriocentra</u> is a dominant shrub in washes. Galleta grass is a dominant species on several study sites.

The perennial vegetative cover in Cluster 6 ranges from 14 to 34 percent and averages 24 percent. Plant species observed in Cluster 6 are summarized in Table 3-27, and distribution of dominant associations is mapped in Figure 3-28.


e. <u>Wildlife</u>: Wildlife observations in Cluster 6 are summarized in Table 3-28. Characteristic burrows indicate the presence of kit fox and antelope ground squirrel. Less characteristic mounds indicate the presence of additional unidentified burrowing species. The presence of cattle, horses, rabbits, and badgers was determined through scat identification. Common species observed in the cluster included the blacktail jackrabbit, desert cottontail, horned lark, and side-blotched lizard. Less common species observed included the golden eagle, kangaroo rat, raven, sage sparrow, sage trasher, crow, desert

Ξ Ertec

•

2

3

 \mathcal{M}

a legen an Eresta de Cons

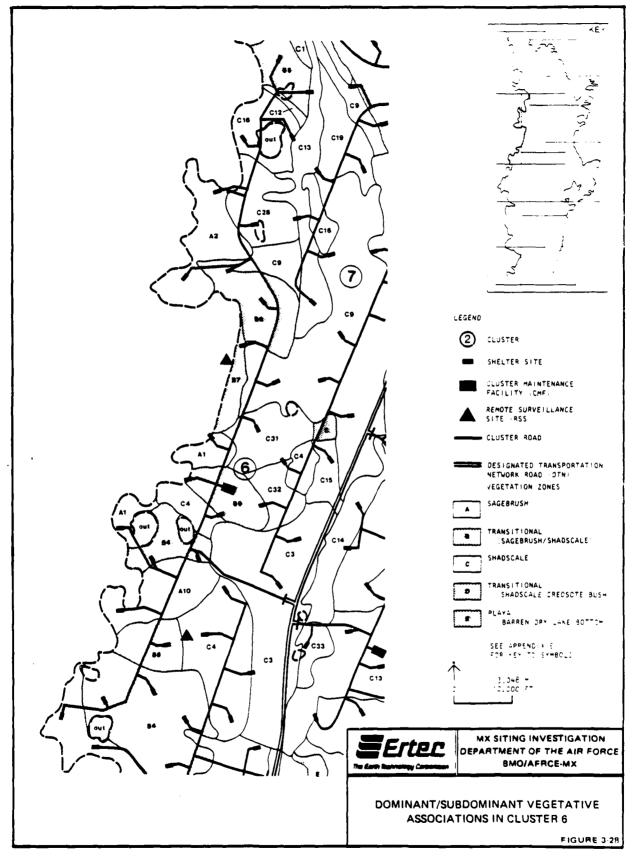
E-TR-48-II	- I
------------	------------

<u>E-TR-48-II -</u>	٠I						
8		××		× × ×	×	×	
-		××		× × × ×	×		×
~	×	××		××	×	×	
a (
bt - ling		××		×	×	×	
Resitings 1 2) (Opt.3							
- 2		×			×	×	
OWF (Opt.1) (Opt.2) (Opt.3)							
		×		××	×	×	
ġ							
3		××		×	×		
8	×			× × ×		×	
5	×	×		×××			
5	×	×		×× × × ×	×	×	
19 20		×		×	×	×	
81	×		×	××	×		
11	×	×		×	×	×	
Criginal Sites 11 12 13 14 15 16 17	**	**		x x	×	×	
ite 15	×	×× × ×		× × × ×× ×	××	×	
	××	×		× ××			
igin 121		×		× × ×	×		
	×	×		× ×	×		×
2		××		×	×		
5	×× ×	××		* **	×	×	
7 8	× ×	× ××		× ×× × ×	×	×	
0		×		×	×	××	
n l	×	××		× ××	×	××	
-				××			
m	×	×		* **	×	. .	
1 2	××	×	×	× ×× × ×	××	× × × ×××	
		- •					
	ae)	i.		a .		() SI	
	BRASSICACEAE (Cruciferae) Caulanthus pilosus Descuratinia sp. Tescuratinia pinnata Lepidium montanum Stanleya pinnata	CACTACEAE Curythantha vivipara Echinocereus engelmannii Opuntia echinocarpa Opuntia erinacea		CHEXORODIACEAE Attiplex canescens Attiplex confertifolia Geratoides Tanata Geratia spinosa Halogeton glomeratus Kochia americana Salsola iberica		ELHHORBLACEAE Eurhorbia sp. Enuhorbia sp. FABLACEAE (LEXUMIMSAE) Astragalus lentiginosus Astragalus sp. Lupinus sp.	
	Cruc Ssus	earp of the	ġ.	a ata	USIS	1611	
	Di lo Di lo Di lo Di lo	nace vi	NEA Pos	FAE Inferences	adel		
	Pinis in 1	eri eri	LIM		Dev	AE (dori
3	BRASSICACEAE (Cruci Caulanthus pilosus Descurainia sp. Tescurainia pinnata Lepidium montanum Stanleya pinnata	CACTACEAE Curythantha vivipara Echinocereus engelma Opuntia echinocarpa Opuntia erinacea	CAPRI POLIACAEA Symphor i carpos sp	CHENORVODIACEME Attiplex confertifol Geratorides Tanata Grayia spinosa Halogeton glomeratus Kochia americana Salsoja iberica	EMELRACEAE Ethedra nevadensis	EUMORBIACEAE Euphorbia sp. FABIACEAE (L& Astragalus le Astragalus sp Lupinus sp.	Salvia dorrii
Second Second	Star Desk	33338	CAPI S	Atr Atr Kod Kod		Euld FABI Astr Astr	Sal
						MX	SITING INVESTIGATION
							TMENT OF THE AIR FORCE BMO/AFRCE-MX
				me Earl	h lachnalogy		
						JMMARY OF PL	
							USTER 6 SITES
				1		RY LAKE VALL PAGE 2	
						FAGE 2	

<u>_</u>____

	-II ≌		×			× ×				
					×		×××			
	1		×		-	× ×				
	1 2		^			^ ^	~ ~ ~			
Resitings	048 (0pt.1) (0pt.2) (0pt.3)					××	××			
esit	0									
	- 5					××	×		×	
-	ē									
1										
	ğ									
	ਤੈ				×	×	××			
ĺ	8					×	××		×	
	22		××			××	× × × × × ×			
	0 21	×	~		××	××	~~ ~ × ×	××		
	19 20					×	×			
	8		×		×	×××	× × ×		××	
1	1					××	×			
	5 16					× × ×	×× ××		×	
	Sit.		×				***			
	la la		×			×	××		×	
	Original Sites 11 12 13 14 15 16		×			×	**			
1	10		×		×	×	××× × ×		× × ×	
ł	6		×		×	×××	××		×	
	8		×				< ×			
	~		×			× × × :	* × ×			
	9		×			×××:			* *	
	4		×		×	× ×	* * *		×	
	-					×	× × × ×		×	
	~		×			× × × :	* × × ×		××	
	-			×		×	××			
						S .			S	
	į ;		ambigua		ME)	hell	older tract		cAE deflexum enceliopsis inflatum nidularium sp. erfoliata	
	ł	ತೆ	틯	સં	(GRAMINAE) I purpurea I sp. ubens	pulo	Fiex ries	ae Ae	E lidul	
1		IDASACEAE Mentzelia sp.	MALVACEAE Sphaeral cea	ENE	HUNCTEAE (GROMINAE Aristida purpurea Aristida sp. Bromus rubens	Bromus tectorum Erioneuron pulc Hilaria jamesii	Autiencergia porteri Gryzopsis hymenoides Sprahon hystrix Sprobolus contractus Sprobolus cryptandrus Sprobolus flexuosus	POLEMONIACEAE Gilia sp.	NJIYOWACBAB Eriogonum deflexum Eriogonum inflätum Eriogonum inflätum Eriogonum sp. Oxytheca perfoliata	
1	Spectes	LOASACEAE Ment zel i a	MALVACEAE Sphaeralo	UNAGNACEAE Camissonia	HUACEAE Aristida Aristida Bromus r	RLIG MCI I		FOLEMONIA Gilia sp.	HULYDNMCE Er logonum Er logonum Er logonum Er logonum Er logonum	:
:	A Star	Ment	NUM	Com	Ar 1: Ar 1: Bron	Bro	Anitopala porteri Anitopala hyteria Sitanion hystrix Sporobolus contractus Sporobolus flexuosus Sporobolus flexuosus	FOIL GILL	Or in the last of	
				-	_				Ertec	MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORC 8MO/AFRCE-MX
								The East	Refinalogy Corportion	OWNER NEE WA
								1		OF PLANT SPECIES
								[IN CLUSTER 6 SITES E VALLEY, NEVADA
										AGE 3 OF 4 TABLE 3-2

₹/\


★ All the second se

1

<u>E-TR-48-II -I</u>					
	8			×	
	Ξ			×	
	~			×	
	sf (f.				
	Resitings 1 2) (Opt.3			j	
	Res 2)				
	- 10	×	×	×	
	=				
	Hesitings 1 1 1 OMP (Opt.1) (Opt.2) (Opt.3)	×		×	
	ž			×	
	0 8				
	2 2				
	21				
	20			×	
	8 19	×		××	
	1 - 1	××		×	
	16			×	
	Criginal Sites 11 12 13 14 15 16 17 18 19 20 21 22 23		×	××	
	3 lei 1 1		-		
	igir 12 1			×	
	a=	×		×	
	2			×	
	8			×	
	~			×	
	ف			×	
	4 5			X	
				×	
	~			×	
	-	×		×	
				,	
) 	
		ta.	ω	:=====================================	
		RCEACEAE Cowania mexicana Prunus fasciculai	SCROPHULARIACEAE Castilleja sp. Mimulus sp.	SULANACEAE Lyctum andersonii	
		mex 1 asc1	SCROPHULARIACE Castilleja sp. Mimulus sp.	AE	
	les	ROGACEAE Cowania P	Pilut 111e	SULANACEAE Lycrum and	
	Spectes	Prus A	SCHO Cast Mimu	SOLA Lycu	
					MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE
					SUMMARY OF PLANT SPECIES
					OBSERVED IN CLUSTER 6 SITES
					DRY LAKE VALLEY, NEVADA
					PAGE 4 OF 4 TABLE 3-27

 \mathbb{R}^{n}

1

1.

, •

9	× × × 9- ×		
(i f (a)	× × ° ××	5	-
Resitings Or Or 2(a) 3(a) 2 2(a) 3(a) 2	-× -××××××	-	;
esit Det O	~~ × ××		
3-	×		
8	×× • × ×	۵.	<u>م</u>
2	* * *	<u>م</u> _	\$
8	××	ů. —	2
7	× × -	2 .	ف
20	×× × 2 -	84 01 M	2
2	AX XX O	A.	-
2	XX X 40		2
=	** *		~~~
9	** ** -	-	
2	* <u>°</u> × ××	-	6
2	×× *	_	o
Shelter Sites 10 11 12 13	* *	-	s)
1 1 1			<u>م</u>
o shet	x om		-
		_ .	~
	× ×	N-	a)
-	* *		
e	×× ××-	:	x -
n (x xxoo		ف
•	XXX XX0-		2
-	× ×× ~ -	-	=
~	XX XXXQ~ X	A -	v ĝ
-	× × ×× × × × × × ×		nted 2
સંસ્થાલ્ક	Hammals thorse (sign) thorse (sign) that fou den (active) kit fou den (inactive) kanparos cat (sign) Blanchtail Jockrabbit Desert cutontail Antelope ground synirrel badyer (sign) Robent burrow (active) Guyles (sign) Mammal burrow (active)	Birds Horned lark Raven Gape sparrow Sape thrasher Crow	side -blutched lizard 2 5 Descri horned lizard 2 5 Septorush lizard Long-mased lexpard lizard Great Basin rattleenake Striped wipenake Striped wipenake P - present but not counted. A - sign doserved. (a) Surveyed but not relocated.
		IN	OF WILDLIFE OBSERVED
			AKE VALLEY, NEVADA
			TABLE 3-

horned lizard, sagebrush lizard, long-nosed leopard lizard, and Great Basin rattlesnake.

3.2.5.7 Summary of Conditions in Cluster 7

a. <u>Abiotic Conditions</u>: The legal descriptions for Cluster 7 are given in Appendix F. Elevations range from 4645 to 4880 feet (1405 to 1502 m), and survey areas are located on slopes of 3 degrees or less. The soil is alluvial, composed mainly of silt and fine and coarse sand intermixed with some fine and coarse gravel. Abiotic conditions within the cluster are summarized in Table 3-29.

b. <u>Disturbance</u>: Sites 1, 4, and 5 are highly disturbed and other sites range from low to moderately disturbed. Grazing is the primary source of disturbance, followed by off-road vehicle usage as a secondary source on all sites except Site 2. On this site, off-road vehicles caused greater impact than grazing. <u>Salsola iberica</u> was present on Sites 4, 5 and 15 and <u>Halogeton</u> <u>glomeratus</u> on Site 4.

c. <u>Threatened or Endangered Plants</u>: No threatened, endangered, or sensitive species of plants were observed within Cluster 7 during the field survey. Individuals of <u>Eriogonum</u>, <u>Astragalus</u>, and <u>Penstemon</u> were observed, but due to the season of the survey, the species could not be identified. <u>Astragalus lentiginosus</u>, <u>Gutierrezia sarothrae</u>, <u>Lepidium montanum</u>, and <u>Machaeranthera canescens</u> were also present, but due to the season, the variety could not be determined.

🛢 Ertec

E-TR-48-II-I	E-T	'R-	48	-IÌ	I٠	-I
--------------	-----	-----	----	-----	----	----

			-	-						0	1	Site Number	er	2	3	1	1	2	9	1	00	16	3	5	a t
		Elevation (feet)	- 5797	0997	5£13				4	3127	1	0229	• -		•820	2 0181			2 8787	4820	4852	0089	\$927	0574	5547
		Soil Texture(a)																							
		 course gravel fine gravel coarse sand fine sand silt 	-	××-		-	×-	×-	×-	×- ×-	-	×-	~	×× ×~	××~	× × ~	×~	× ~	× × ~	× × ~	×-	× × -	× ×-	-	×××
		Di st urbance (a)						•																	
		. of froad vehicles . mining/const. . erusion	7	-	7	7	7	5	7	7	N	8	8	~	8	8		~	~	8	7	7	8	7	7
		- graziny	-	7	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Overall Intensity of Disturbance(b)	I	x	£	Ŧ	Ŧ	L	<u>د</u>	I I	T	د	T	L	د	T	£	Г	د		د	T	د	د	L
MMAF	rte	(a) 1 - Highest rel X - Indicates p	relative importance/impact; spresence.	ing. Ice.	orta) aou	impac	ct; 2	۳ ۱	esser	rela	- lesser relative importance/impact;	import	tance,	'impac	it; 3	- le	−least relative inquortance/inquact	el at iv	e ing	ortar	ice/ in	pact		
		(b) H - High; M - N	- Moderate; L	ite;		- Iow.																			
F ABIOTIC FACTORS IN JSTER 7 SITES E VALLEY, NEVADA	MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORG BMO/AFRCE-MX			1		į																			

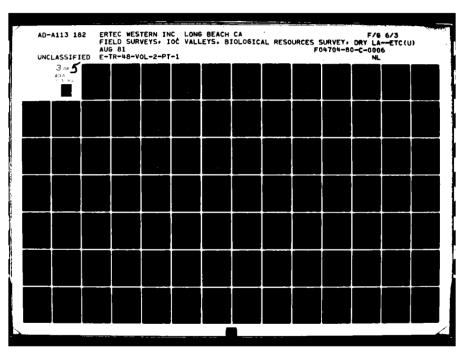
d. <u>Vegetation</u>: The vegetative community is a shadscale/mixed shrub association. Dominant shrubs throughout the cluster include fourwing saltbush, rabbitbrush, winterfat, hop sage, <u>Gutierrezia</u>, Mormon tea, horsebrush, gray molly, bud sage, <u>Lycium</u>, and shadscale. Galleta grass and <u>Sitanion hystrix</u> were codominants with the shrub species in several of the sites.

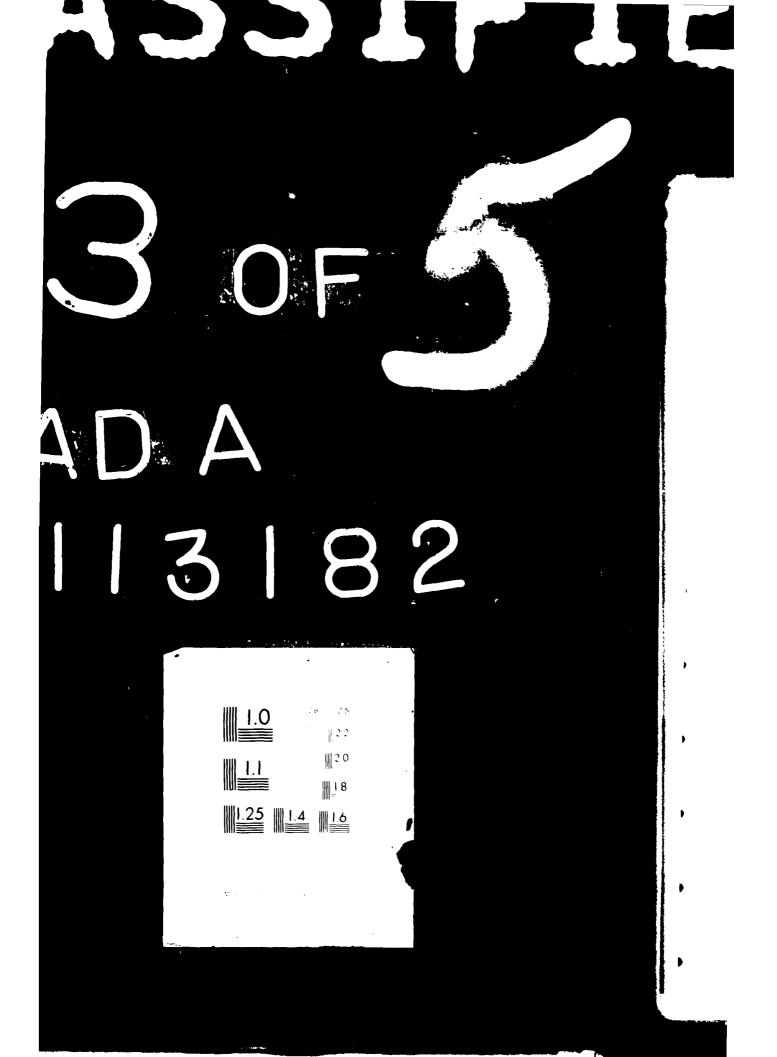
The perennial vegetative cover in Cluster 7 ranges from 10 to 32 percent and averages 22 percent. Plant species observed in Cluster 7 are summarized in Table 3-30, and distribution of dominant associations is mapped in Figure 3-29.

e. <u>Wildlife</u>: Wildlife observations in Cluster 7 are summarized in Table 3-31. Characteristic burrows indicate presence of kitfox and antelope ground squirrel. Less characteristic mounds indicate the presence of additional unidentified burrowing species throughout the cluster. The occasional presence of coyotes, horses, and rabbits was determined by identification of scat. Common wildlife sighted included the side-blotched lizard, horned lark, and blacktailed jackrabbit. Ravens, desert horned lizards, and Great Basin fence lizards were observed less frequently.

3.2.5.8 Summary of Conditions in Cluster 8

a. <u>Abiotic Conditions</u>: The legal descriptions for Cluster 8 are given in Appendix F. Elevations range from 4673 to 5850 feet (1437 to 1800 m), and all survey areas are located on slopes of approximately 3 degrees. The soil is alluvial, composed of silty clay or silty sand, and gravel is scattered on

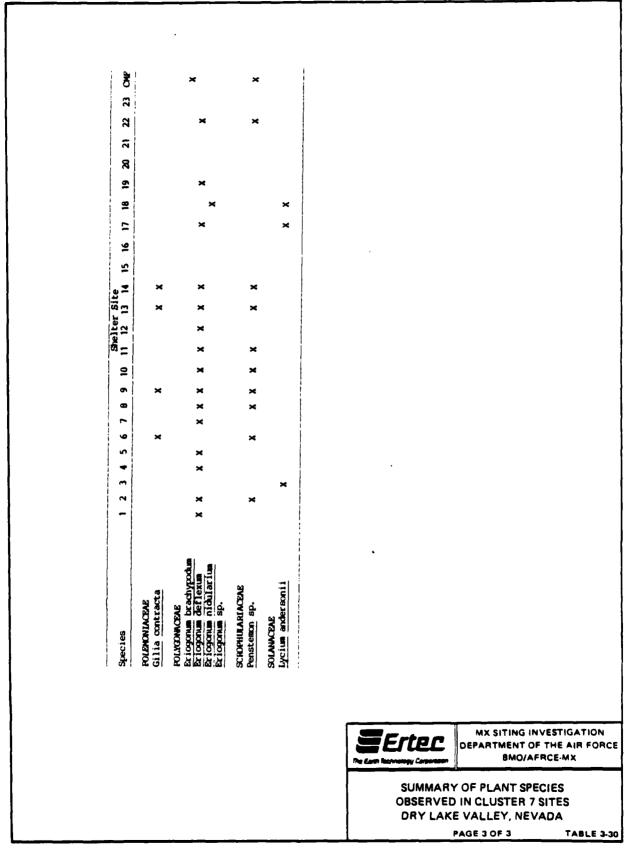

174


\Xi Ertec

Sec.

The second s

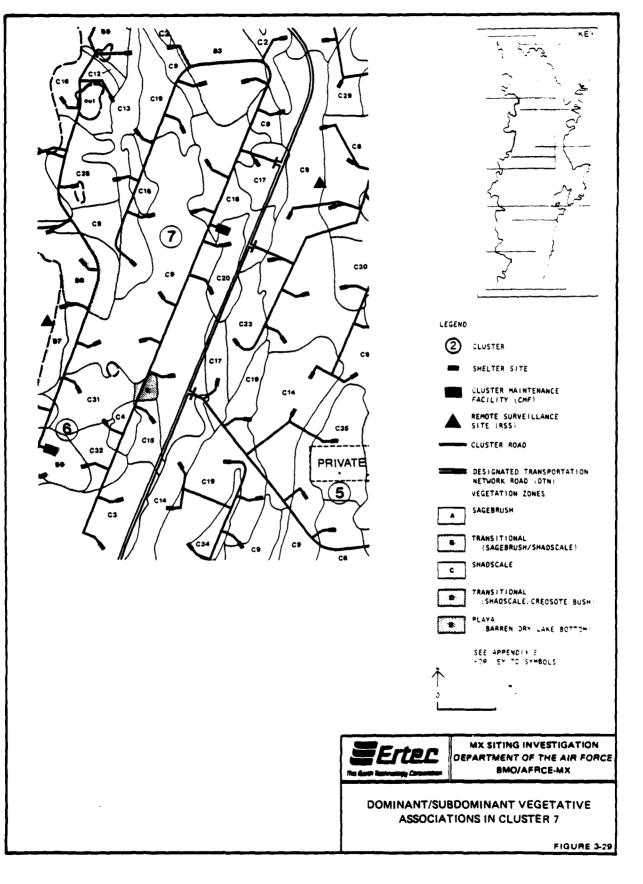
CMF		××	: ×× ×	×	××	×	
53	×					×	
8	×	×	*** *		××		
21	×	×			×	×	
8	×	××	× × × ×××		××	×	
18 19	×	×	× × ×		×	×	
1	××	××		×		×	
1 91							
15 1	×	×	× × ×		×	×	
		××	**				
		×	× × ×				
Site Numbers 12 13 14	×	×	× × × ×		×	×	
11 Si	××	×× ×	××××	×	××		
2		××	× × × ×		×		
6		×	× × ×		×		
7 8		× ×			×××		
9		× × × ×	× × × ×××		××× ××	×	
S							
•	×× ×	××	× ×			× ×	
~		×	* ****		××	~	
-	×	××	× × × ×		×××		
Species	ASTEVACEAE (Compositae) Ambrosia eriocentra Artemisia spinescens Artemisia tridentata	Chrysothamus nauseosus Chrysothamus viscidiflorus Chrysothamus greenii Gutierrezia sarothrae	Psathyrotes annua Tetradymia axillaris Tetradymia spinosa Tetradymia glabrata Acamptogapus sp. Machaeranthera canescens	Viguiera multiflora BORAGINACEAE Lappula <u>occidentalis</u>	BRASSICACEAE (Cruciferae) Descurainia sp. Lepidjum montanum Stanleya pinnata	CACTACEAE Opuntia etinacea Opuntia echiñocarpa	
					ž de		


, e

×××	×		×		×××	
× ×				×	* **	
****	×			×	××	
× × ×				×	×××	
×× ××				×	× × × ×	
****				×	****	
× × ×				×	× × × ×	
× × ×			×	×	×××××	
× ×× ×			×	×	× × ×	×
× × × ×		×			× × × × ×	
× ×	×			×	×××	×
× × ×	×			×	× × × ×	
***	×	×		×	×××	
***	×	×	×		××	
× × ×		×		×	××	
× × ×		×		×	×××	
*** *		~	×	×	×××	
× × × × × × × × × × × × × × × × × × ×		^	4		× × ×	
× ×× ××				×		×
****	×		×	××	×××× ×××	
×× ×	*	~	-		××××	×
61			ae)		" S	12
Line Loli			ginos	ang	e) acti	
E scen ana ana ca ca ca ca	Jens	ω.	P. It	i que	mina Siti atrib	
NOEA NOEA	Reve		2 <u>2 2 8</u>	a o		
Policie Solde	DRACI	orbid	NOE agal	ACEN	PAR PAR	
trrip trrip trrip also also also also		문문	Astr	고 문	No N	
				٢		MX SITING INVESTIGATI
				l		DEPARTMENT OF THE AIR F
				ſ	SUMI	MARY OF PLANT SPECIES
						RVED IN CLUSTER 7 SITES
				1	DRY	LAKE VALLEY, NEVADA
	X X	DIAC2ME Cartescens a confertifolia x x x x x x x x x x x x x x x x x x x	$\mathbf{x} \mathbf{x}$ \mathbf{x} $\mathbf{x} \mathbf{x}$ \mathbf{x} $\mathbf{x} \mathbf{x}$ \mathbf{x} $\mathbf{x} \mathbf{x}$ \mathbf{x} \mathbf{x} $\mathbf{x} \mathbf{x}$ \mathbf{x}	x x x x x x x x x x x x x x x x x x x	XXX X X X X X X X X X X X X X X X X X	

.

100



فالمراجع المتعفية والموسو مارات

.

.

. '

.

. '

														SI	IN C	DF WILDLIFE OBSERVED CLUSTER 7 SITES KE VALLEY, NEVADA
															intec	MX SITING INVESTIGAT DEPARTMENT OF THE AIR BMO/AFRCE-MX
	Species	Mama Is	Horse (sign)	Witfox den (inactive)	Blacktailed jackrabbit	Rabbit (Bign) Kannarno rat (Bjon)		(active) Ground squirrel burrow	(inactive)		Birds	Horned Tark Raven	Reptiles	Side-blotchwj lizard Desert hormed lizard Great Basin fence lizard	Munther - Actual sightings. P - Present but not counted. X - Sign observed.	
	-		,	<	-,	×			>			G .			ġ.	
	~		**	¢	;	××	:		>	¢		G .				
	-		,	<	,	×			>	•		م		7		
	-				~	<			*	6		0 4		16		
	5		>		, -	-6		×	*	•		۵.		- •		
			××			•	×		×			<u>0.</u>		e –		
	8		*	¢	- >	4			×	:		۵.		-		
	9		*	6	~ >	<			×	t		a ,		-		
	10 11		,	6	~ ~	<			×					<u>~</u> و	1	
			× ×	•	~ >	<		×	×	:		а.				
Itel	=		*		, ,				×	8		<u>م</u>		7		
Site Number	=		7		~ >		×	×	×			<u>م</u> م		-	: !	
2	15		×	: ×	~ >	<			×	:		<u>a</u>		6		
	191				- >	<		×	×	•		G .		7	L. I	
-	1		××	:	- `	<	×		×			۵.				
	18 19		~ ~		- >	-	×	×	×			م م		S		
1	8		×× ××		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		×	××	×			<u>م</u>			:	
- i	51		××		*		×		×			<u>~</u>			-	
	32		×		m 3	e	×	×	×	ł		<u>a</u> .		◀	n - - - - - 	
1	2		×		×	¢		×	×	:					;	
•	3		×	: '	ŝ	6	×	×	×	×		2		2		

.

E-TR-48-II-I

the ground surface throughout the cluster. Abiotic conditions within the cluster are summarized in Table 3-32.

b. <u>Disturbance</u>: Grazing is the primary source of disturbance and off-road vehicle usage a secondary source on the majority of sites. Off-road vehicles have caused the primary disturbance on Sites 1, 19, 20, and 22, and erosion is the primary disturbance on Site 9. Disturbance is considered low to moderate on all sites except Sites 8 and 15 where it is considered high. <u>Salsola iberica</u> is present on seven sites, and <u>Halogeton glomeratus</u> is present on two sites.

c. <u>Threatened or Endangered Plant Species</u>: Four individuals of <u>Coryphantha vivipara</u> were observed on Site 19 and one individual on Site 22. This species is listed in the 1980 Federal Register as a Taxon Currently Under Review. It is a Category 2 plant as discussed previously.

Individuals of <u>Astragalus</u>, <u>Senecio</u>, <u>Opuntia</u>, <u>Gilia</u>, <u>Mentzelia</u>, <u>Haplopappus</u>, <u>Cryptantha</u>, <u>Mammilaria</u>, <u>Gutierrezia</u>, <u>Eriogonum</u>, <u>Penstemon</u>, and <u>Sphaeralcea</u> are also present, but species could not be identified due to the season of the survey. <u>Lipidium</u> <u>montanum</u>, <u>Gutierrezia</u> <u>sarothrae</u>, and <u>Machaeranthera</u> <u>canescens</u> were also observed, but the variety could not be determined due to the season.

d. <u>Vegetation</u>: The vegetation varies from shadscale scrub at the lower elevations to sagebrush scrub at the higher elevations. Dominant shrub species include winterfat, shadscale,

🛢 Ertec

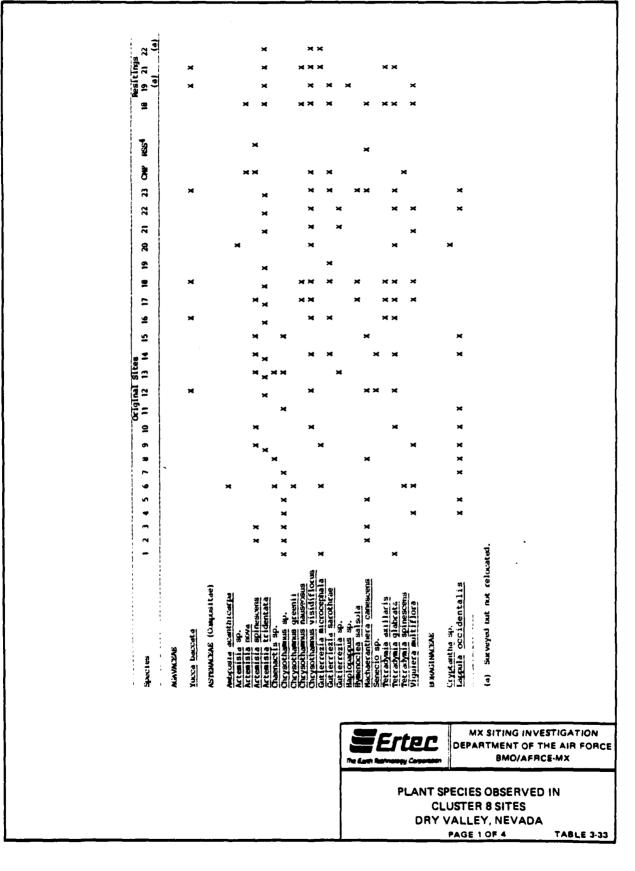
. '

)

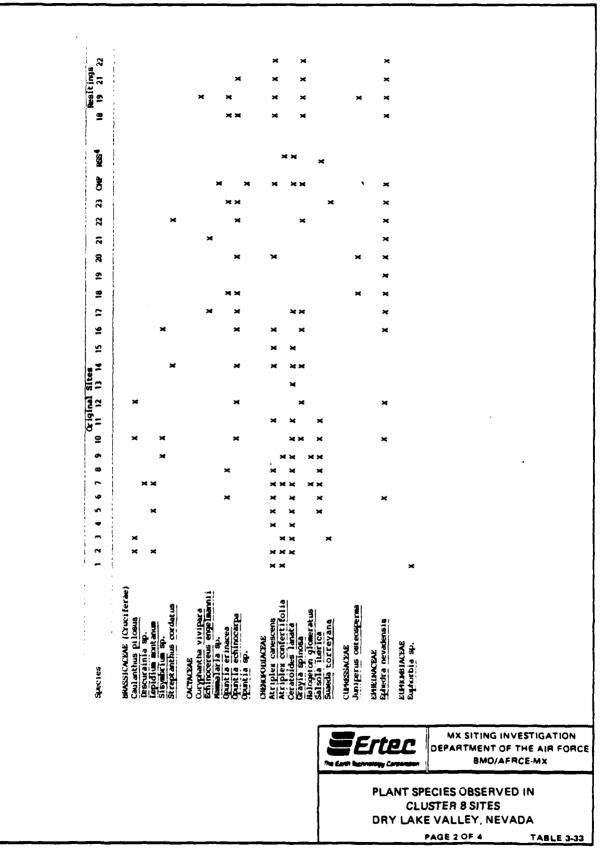
0425 L R 3 0615 Ľ 21 × ~ × 2 6 () 0585 د Resitings CNP 18 (c) (c) 0095 د. (a) 1 - Highest relative importance/impact; 2 - leaser relative importance/impact; 3 - least relative importance/impact.
 X - Indicates presence.
 (b) H - High, M - Moderate; L - Low.
 (c) Surveyed but not relocated. 5269 × -Ŧ ~ 2 SLL жx 륑 5569 τ 0955 × -2 ¥ -2 × -0815 د × 2 51 4 × ន 2820 6 × _ 2 د. 2 × _ 2 200 _ -1 11 × ~ 2330 Original Sites 13 14 15 16 . -3 2360 × 2 -0189 2 æ ~ -1 × × - × 0105 τ ~ × - 24 0589 -1 12 0105 × × ~ J Ξ × 0947 π 2 0987 × 2 6 L 0541 2 Ŧ 8 2 ----× _ د -۵ ø 0+1+ _ × -Ξ ŝ 014 ~ -0897 ~ x £ ~ 2 £49¥ ~ Σ ~ 0699 _ _ T 0897 . offroad vehicles . mining/const. . erusion . grazing Overall Intensity of Disturbance (b) . course yr avel . fine yr avel . coarse sand . fine sand silt . clay Elevation (feet) Soil Texture(a) Disturbance (a) Factor . . . İ MX SITING INVESTIGATION Ertec DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX The Earth Rechnelegy Corport SUMMARY OF ABIOTIC FACTORS IN **CLUSTER 8 SITES** DRY LAKE VALLEY, NEVADA TABLE 3-32

-76

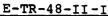
wing saltbush, rabbitbrush, <u>Gueterrezia</u>, <u>Lycium</u>, bud sage, Mormon tea, and big sage. Big sage is the dominant species at the higher elevations, including Sites 15, 17, and 20 through 23. Galleta grass is sometimes a dominant species at lower elevations, such as at Site 8. Other perennial grass species in this transitional association include Indian rice grass and squirreltail grass.

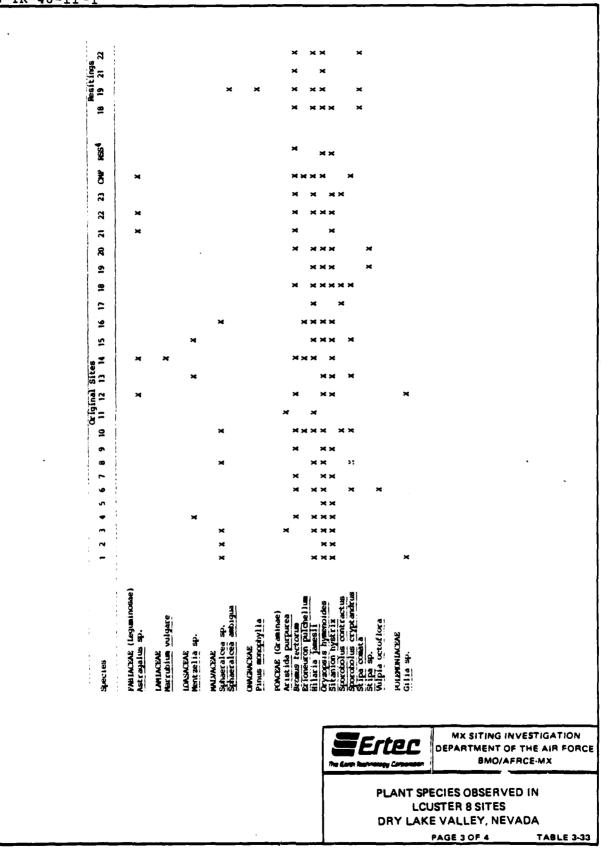

The perennial vegetative cover in Cluster 8 ranges from 17 to 35 percent and averages 26 percent. Plant species observed in Cluster 8 are summarized in Table 3-33, and distribution of the dominant associations is mapped in Figure 3-30.

e. Wildlife: Wildlife observations in Cluster 8 are summarized in Table 3-34. Characteristic burrows indicate the presence of the antelope ground squirrel and kit fox. Less characteristic mounds indicate the presence of additional, unidentified burrowing species throughout the cluster. The occasional presence of cattle, horses, coyote, antelope, rabbit, and gopher was determined by scat identification, and the presence of the kangaroo rat was determined from tracks. Other common wildlife within the cluster included rabbits, horned larks, and side-blotched lizards. More than one-half of the sites showed evidence of horses, and mule deer scat was also evident in three sites. Three mule deer (a doe and two fawns) were observed on Site 8/16. Less commonly observed species include the sagebrush lizard, raven, vesper sparrow, loggerhead shrike, and western Raptors observed within the cluster include the meadowlark. American Kestrel, northern harrier, and Cooper's hawk.


182

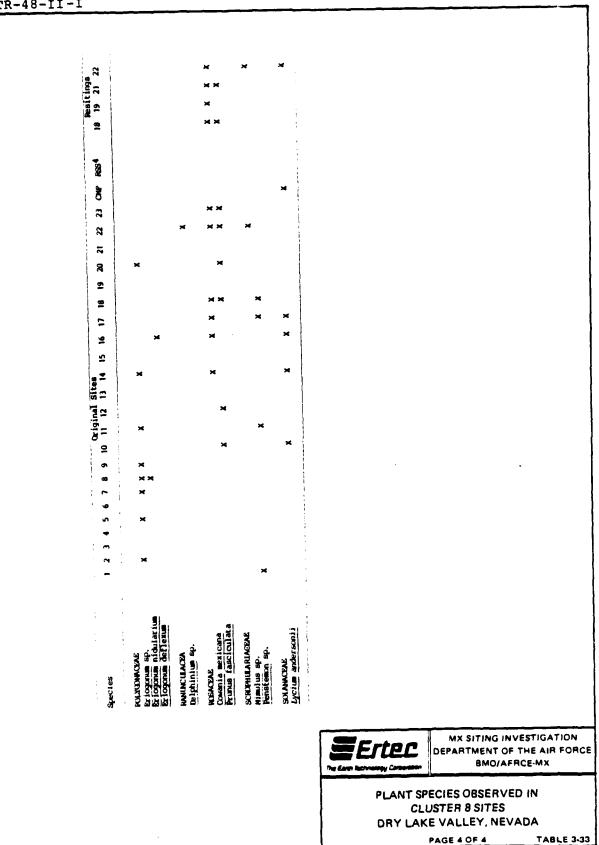
🖀 Ertec

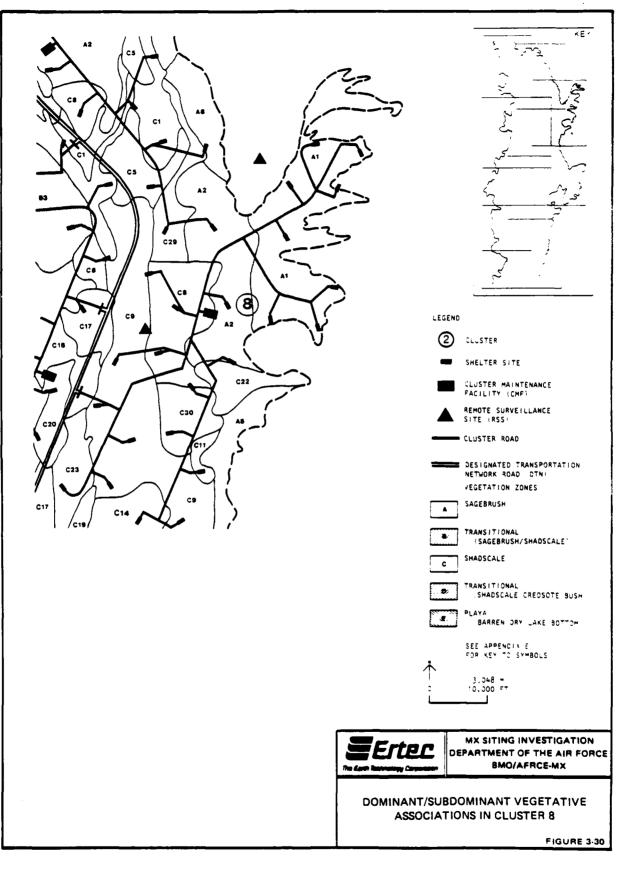

, ·


÷ 1

- TN

. '




,

.

.

. '

-//٦

E-TR-48-11-1

. '

Resitings 18 19 21 22 (a) (a) × × × ے RSS × × a 22 23 CMP 2 × ۵. -ع 13 9 2 × 2 ۵ × 21 × 20 **=** ~ 6 18 × ~ 1 ŝ × ----9 × ~ × (a) Surveyed but not relocated. Numer = Actual sightings; P = Present but not counted; X = Sign observed. Shelter Site 10 11 12 13 14 15 × ۵ 2 × ۵. × 15 × ٥. × × 39 -× × ۵. 3 × × ۵. \$ × ۵, × 1 15 33 × × × а, ~ × × ۵, _ و ۵. × × × ŝ × × × ۵. 2 ţ 15.3 -× ۵, ----m ۵. × × ŝ ~ × × ۵. × _ × ø × × ۵. Antelope ground squirrel Mannal burrows Kanyaroo rat (sign) Gouher (sign) Blacktailed jackrabbit Desert cottontail Rabbit (sign) Antelope (sign) Kit fox den (active) Kit fox den (inactive) Side-blotched lizard Sagebrush lizard Lrygerhead shrike Vesper sparrow Kestrel (off site) western nearbwlark ----Northern harrier Hbrse (sign) Muledeer (sign) Coyote (sign) Nudent burrows Couper's hawk Horned lark CON (sign) **Reptiles** sa toads Maunals birds Haven MX SITING INVESTIGATION Ertec DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX The Earth Rec w Ca SUMMARY OF WILDLIFE OBSERVED IN CLUSTER 8 SITES DRY LAKE VALLEY, NEVADA TABLE 3-34

 $- \mathcal{N}$

£

3.2.5.9 Summary of Conditions in Cluster 9

a. <u>Abiotic Conditions</u>: The legal descriptions for Cluster 9 are given in Appendix F. Elevations range from 4830 to 5300 feet (1486 to 1767 m), and survey areas are located on slopes of approximately 3 degrees. The soil at all sites is alluvial, composed mainly of fine sand and silt intermixed with clay, coarse and fine gravel, and coarse sand. Abiotic conditions within the cluster are summarized in Table 3-35.

b. <u>Disturbance</u>: Sites 20 and 23 are undisturbed. Disturbance is low to moderate on other sites except for 2 and 3, which are highly disturbed. Grazing is the primary source of disturbance and off-road vehicles a secondary source on Sites 2, 4, 13, and 16. Off-road vehicles are the primary source of disturbance on Sites 17, 18, and 19. Grazing is the only disturbance noted on Sites 1 and 3, and off-road vehicle activity is the only disturbance noted on Sites 14, 15, and 21.

c. <u>Threatened or Endangered Plant Species</u>: Two individuals of <u>Coryphantha vivipara</u> were observed on Site 23. An alternative site was surveyed for possible relocation; four individuals were present in this area. This species is listed in the 1980 Federal Register as a Taxon Currently Under Review. It is a Category 2 plant as discussed previously. Individuals of <u>Opuntia</u>, <u>Gilia</u>, <u>Oenothera</u>, <u>Astragalus</u>, <u>Mentzelia</u>, <u>Eriogonum</u>, <u>Sphaeralcea</u>, <u>Gutierrezia</u>, <u>Cryptantha</u>, and <u>Machaeranthera</u> were observed, but species could not be identified due to the season of the survey. <u>Gutierrezia sarothrae</u> and <u>Machaeranthera</u>

🗏 Ertec

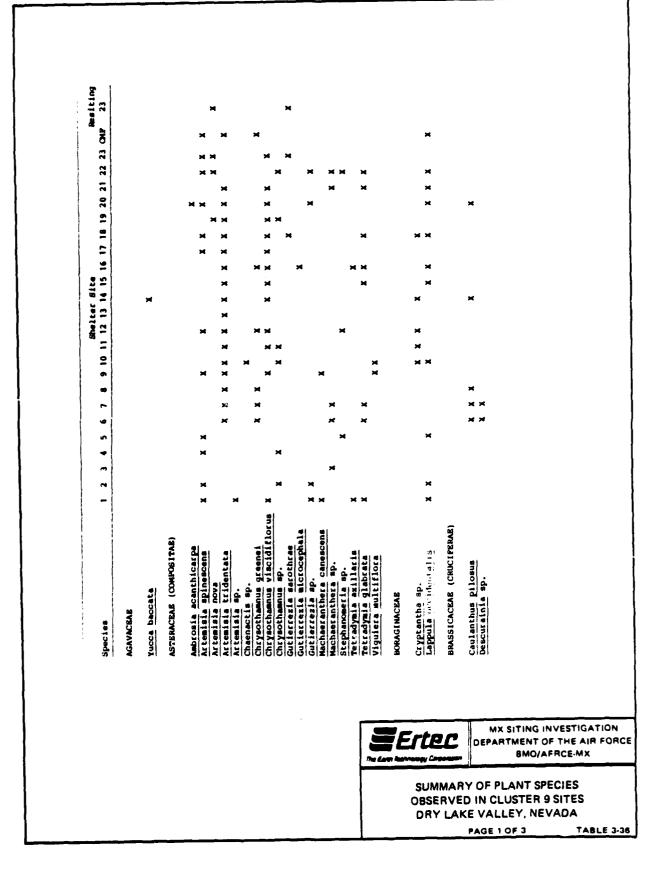
1

1

1

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 22 23 24 55 53 53 53 53 53 54 55 53 53 55 53 53 53 53 53 53 53 53 54 53 53 55 53 53 55 53 53 53 53 54 53 53 54 54 55 55 53 54 54 55	21 22 23 Off	096) 0E05 0605	-		, ~ ~	, E	importance/			
Hereation (feet) 0.056.6.7 ± 9 10 11 12 13 14 15 16 17 18 19 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 16 16 16 16 15 16 17 16 16 16 16 16 16 17 16 16 16 17 16 17 16 17 11 17 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11	1 i	SLIS					lative		1	
Image: Site Number of Site Number o	1		-				st rel		1	
1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 Soli Texture(a) 50560 5 7 8 9 10 11 12 13 14 15 16 Soli Texture(a) 50560 5 1 1 1			-				3-low			
I 2 3 5 7 8 9 10 11 12 13 14 17 Soil Texture(a) 005 66 5 6 7 8 9 10 11 12 13 14 17 Soil Texture(a) 05 56 7 8 9 10 11 12 13 14 17 Soil Texture(a) 5 6 7 8 9 10 11 12 13 14 17 Soil Texture(a) 5 6 7 8 9 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		****-*		- 7		pacts			
I 2 3 5 6 7 8 9 10 11 12 13 Selecter Site 5 6 7 8 9 10 11 12 13 Soil Texture(a) 5 6 7 8 9 10 11 12 13 Soil Texture(a) 5 6 7 8 9 10 11 12 13 Soil Texture(a) 5 6 7 8 9 10 11 12 13 Coactse gravel X <	Number 14 15				-		kce∕i∎			
I 2 3 5 6 7 8 9 10 11 11 Soil Texture(a) 50060 6000 6030 50045 5010 5100 Soil Texture(a) 5001 50045 50045 50045 50045 5010 11 11 Soil Texture(a) 50045 50045 50045 50045 5010 50100 5100 Soil Texture(a) 0 49566 69356 5030 5030 5030 5030 Soil Texture(a) x	Site 13		×××-××		- 7	T	portan			
Elevation (feet) Soil Texture(a) Soil Texture(a) Coarse gravel Fine gravel Fine gravel Coarse gravel Fine gravel Fine gravel Coarse sand Fine gravel Coarse sand X X X X X X X X X X X X X X X X X X X	helter 11 12						ive in			
1 2 3 4 5 6 7 8 9 Soil Texture(a) 5005 5 7 8 9 9505 5 7 8 9 Soil Texture(a) 5005 5 6 7 8 9 9 9505 5 7 8 9 Soil Texture(a) 5005 5 6 7 8 9 9 9956 7 8 9 9 9956 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0105					relati			
1 2 3 4 5 6 7 Soil Texture(a) 5660 0056 5 6 7 Soil Texture(a) 5660 0056 5 6 7 Soil Texture(a) 5066 5600 6 6 6 Soil Texture(a) 5 6 6 6 6 Coarse gravel X X X X X X Pine gravel X </td <td></td> <td>0E 0S</td> <td>~× ×-××××</td> <td></td> <td></td> <td></td> <td>esser</td> <td></td> <td></td> <td></td>		0E 0S	~× ×-××××				esser			
1 2 3 4 5 Soil Texture(a) 500560 66300 6966 6906 Soil Texture(a) 500560 66300 6906 6906 Soil Texture(a) Coarse gravel X 4910 6 Coarse gravel X X 4910 6	1						t, 2-l			
1 2 1 2 Soil Texture(a) 50560 Soil Texture(a) 50660 Coarse gravel X Pine gravel X Pine gravel X Coarse sand X Pine gravel X Coarse sand X Pine gravel X Pine sand X		016	×- -				o∕impac			
Elevation (feet) Soil Texture(a) Soil Texture(a) Coarse gravel Pine gravel Pine sand Pine sand P	~	0989	- ×-		- 7	I	ortance	-low.	xated.	
Elevation (feet) Soil Texture(a) Soil Texture(a) Coarse gravel Fine gravel Carse sand Fine sand Clay Of troad vehicles Mininy/const. Erosion Grazing Overall Intensity Overall Intensity Overall Intensity Overall Intensity (1) H-Highest relai X-Indicates poi (1) H-Highest relai (2) Surveyed but (2) Surveyed but (3)		2002	~ ~~~			Σ	tive imp sence.	rate; L-	not relo	
		31	Coarse gravel Pine gravel Coare sand Pine sand Silt Clay	Disturbance ^(a)	Utfrund vehicles Mining/canst. Exusion Gazing	Overall Intensity of Disturbance(b)	(a) 1-Highest rela X-Indicates pr	(b) H-High; M-M uder	÷	

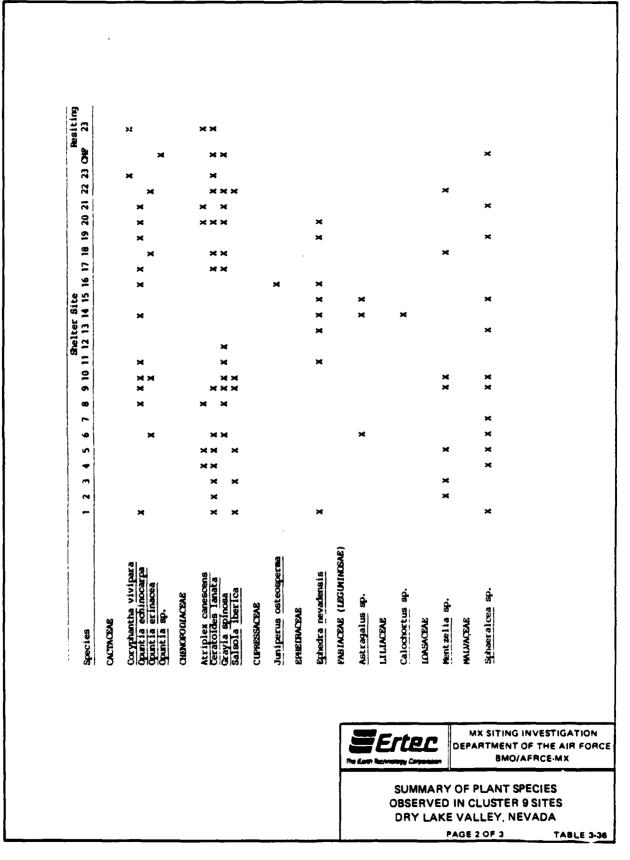
- 7.


<u>canescens</u> were also present, but due to the season, the variety could not be determined.

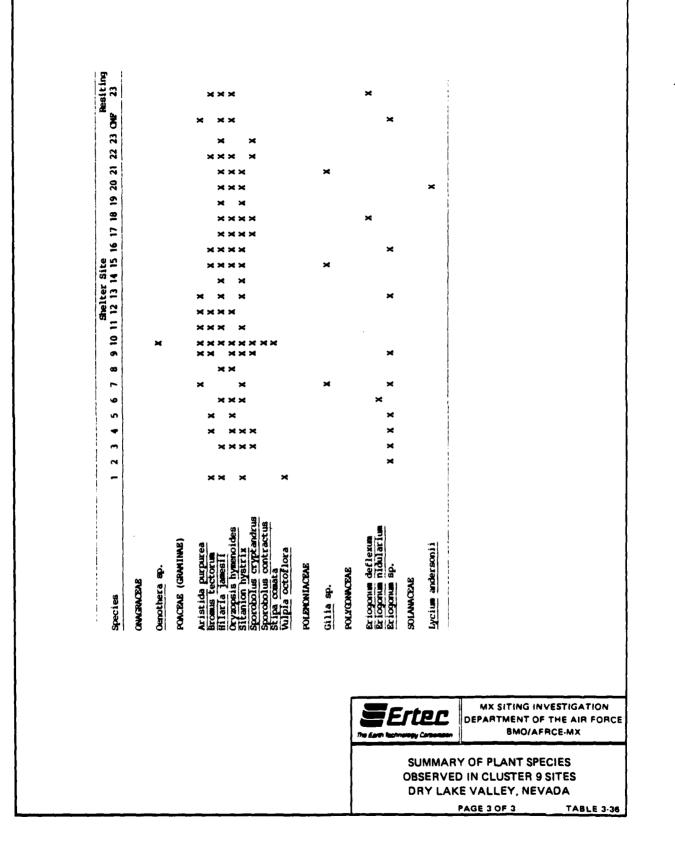
d. <u>Vegetation</u>: The vegetation type varies from shadscale scrub at the lower elevations to sagebrush scrub at the higher elevations. The lower elevations are dominated by winterfat (<u>Ceratoides lanata</u>). As the elevation increases, big sage becomes the dominant plant. Other dominant shrub species in the community include little sage, rabbitbrush, <u>Gutierrezia</u>, Mormon tea, and hop sage. Two perennials, Indian rice grass and galleta grass, are dominant in scattered areas of the community.

The perennial vegetative cover ranges from 15 to 33 percent and averages 23 percent. Plant species observed in Cluster 9 are summarized in Table 3-36, and distribution of the dominant associations is mapped in Figure 3-31.

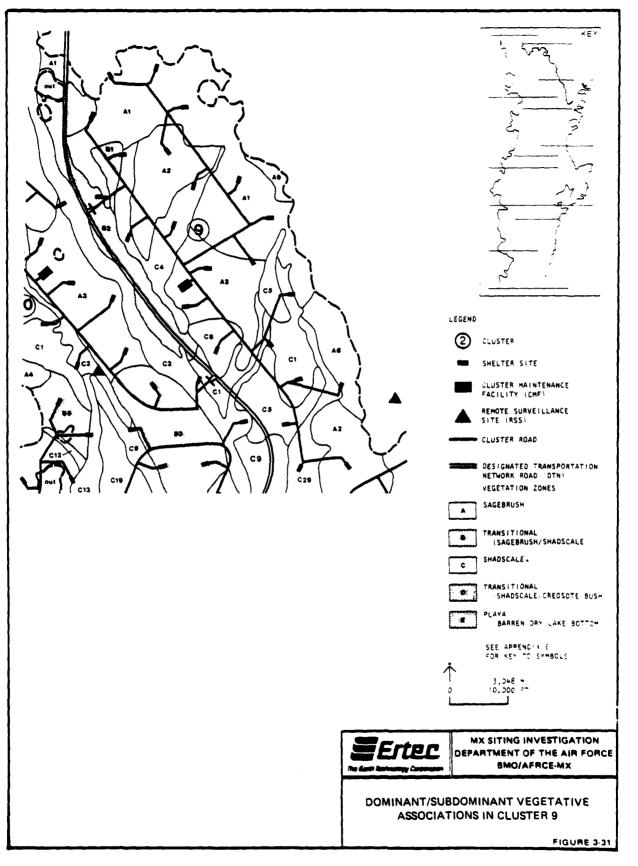
e. <u>Wildlife</u>: Wildlife observations in Cluster 9 are summarized in Table 3-37. Characteristic burrows indicate the presence of kit fox and gopher. Other, less characteristic mounds indicate the presence of additional, unidentified burrowing species throughout the cluster. The presence of the horse, antelope, coyote, kit fox, badger, and rabbit was determined from scat identification. Common wildlife observed included the blacktailed jackrabbit, side-blotched lizard, and horned lark. Less frequently observed species included the desert cottontail, grasshopper mouse, raven, meadowlark, and a raptor, the northern harrier.


🚍 Ertec

N7


5

. '



Ţ۲-

., '

. '

•

ŧ

, i

Resiting 23																	
8		3	×		ŝ	×	×		24	8							
3																	· · ·
21 22	,	< :	××			×	×× ×		۵. م					5 7			i (
20 2		;	×		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×	×										•
5		:	×			×	×			7							
18	,	K :	×			×			2					10 12			ł
6 17	3		×			×	×		۵.		7			7			1
15 16			× ×	×	- 5	×	× ×			~						Sed	
I Si		××	×		~ –	×	×		4	•						199Q	
Shelter Site 11 12 13 14 15		:	×		2	×	×		Δ.	•						0 6	
5			**		•	×	×		•	-						" S	
01			×× ×		-	×	×		4	•						×	
9	:		×			×	×		۵	ı				-		ĝ	
60			×			_	×		<u>م</u>					=		uno	
6 7			×××		2	×	×		6					19 4		ž	
s l							×		۵	5				6		ž	
-	;	×	×			×	×		۵	•				•		ם צ	
-		×	× ·	- 4	_	×	×		<u>م</u>					5 6		lese	
1 2		×	*	×	-	×	××		<u>م</u>					8		65 11	
																<u>а</u> ::	
			â		Ľ.											sightings; $P = Present but not counted; X = Sign observed.$	
			it İve		idde									zard	:	dbia	
		Ê	inac	÷.	jack: taj]					rier				i li	:	len	
		દ્રહીં	(un la	aign)	e e	light i	spun		ł	tari	*			chec		ber = Actual	9 1 1
8		ie g	o da D	- 10 - 10 - 10 - 10	taji 0	1 1 1 1 1			-		w]ar		les	Þľot	;	۳ بر	-
Species		orse	it fo	it fi aduei	lack	abbi	Gopher mounds Mannal burrows	irds		Raven Northern harrier	eado		Reptiles	iide-		Nuthe	
1 011	Z'	ΞZ	0×	×đ	a 2	a c	202	50)	1	- 2 2			99 <u>6</u>			4 4	
											,	_					
											7					<u>'</u>	MX SITING INVESTI DEPARTMENT OF THE BMO/AFRCE-A
														1 18.4			OF WILDLIFE OBSERV
											1		3		(VI /	IN	CLUSTER 9 SITES

3.2.5.10 Summary of Conditions in Cluster 10

a. <u>Abiotic Conditions</u>: The legal descriptions for Cluster 10 are given in Appendix F. Elevations range from 4880 to 5570 feet (1502 to 1714 m), and all survey areas are located on slopes of approximately 3 degrees. The soil at all sites is alluvial, composed of silts, clays, sands, and gravels. Abiotic conditions within the cluster are summarized in Table 3-38.

b. <u>Disturbance</u>: Grazing is the primary source of disturbance and off-road vehicles a secondary source on the majority of the sites (1 through 4, 6 through 13, 16 through 18, 20, and 23). Off-road vehicle disturbance was greater than grazing disturbance on Sites 1 and 15 and was the only disturbance on Sites 19, 21, and 22. Grazing is the only disturbance on Sites 1, 6, 7, and 9 through 12. On Site 5, activity from other animals is the primary source of disturbance and off-road vehicle damage a secondary source. The intensity of disturbance is considered low to moderate on all sites.

c. <u>Threatened or Endangered Plant Species</u>: One individual of <u>Coryphantha vivipara</u> was observed on Site 16. This species is listed in the 1980 Federal Register as a Taxon Currently Under Review. It is a Category 2 plant as discussed previously. Individuals of <u>Erigeron</u>, <u>Opuntia</u>, <u>Gilia</u>, <u>Eriogonum</u>, <u>Astragalus</u>, <u>Mentzelia</u>, <u>Cryptantha</u>, <u>Senecio</u>, and <u>Machaeranthera</u> were also observed, but due to the season of the survey, species could not be identified. <u>Gutierrezia sarothrae</u>, <u>Machaeranthera canescens</u>, and <u>Astragalus lentiginosus</u> were also observed, but the variety could not be determined due to the season.

Erter

\$

.

\$

3

1

.

. '

Resitings 12 16(c) 502S z 2 0505 ×× _1 **RSS5** SE6# (a) 1-Highest relative importance/impact; 2-lesser relative importance/impact; 3-howest relative importance/impact; X-Indicates presence. 2 æ ð 0005 -1 ~ 3 0455 د. *** × \sim 2 2520 × I. 21 5675 2 -20 0525 4 2 6 2322 ī 8 SHIS J, 2 1 0125 2 _ 4 9 0615 * ~ L, Number 14 15 0213 З ~ 0622 а 2 Site 13 0605 Ξ ~ ×× -Shelter : 11 12 0105 J. -2030 J. -2 0005 ц -L OZIS σ x 80 21.67 ~ -4 ~ 0009 L. ø 0115 × 4 ŝ 0815 2 £ 5767 2 --¥ - ¥ 2 --1 m £267 - × ×× Surveyed but not relocated. z (b) H-Iligh; M-Nuderate; L-IAM. ~ 2 0169 ×× r -0889 Oftroad vehicles Mining/const. Erusion Grazing Overall Intensity of Disturbance(b) Elevation (feet) Coarse yravel Pine yravel Coarse sand Pine sand Silt Clay Sull Texture(a) ----Disturbance (a) 3 MX SITING INVESTIGATION Ertec DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX nyy Carl the Earth Rech SUMMARY OF ABIOTIC FACTORS IN **CLUSTER 10** DRY LAKE VALLEY, NEVADA TABLE 3-38

d. <u>Vegetation</u>: The community is transitional, composed of species typical of the shadscale and sagebrush vegetation zones. Dominant shrub species in the area include hop sage, winterfat, Mormon tea, little sage, big sage, rabbitbrush, <u>Gutierrezia</u>, and saltbrush. Perennial grasses, <u>Sporobolus cryptandrus</u>, galleta grass, and Indian ricegrass, are dominant in various areas of the community.

The perennial vegetative cover in Cluster 10 ranges from 15 to 43 percent and averages 24 percent. Plant species observed in Cluster 10 are summarized in Table 3-39, and distribution of the dominant associations is mapped in Figure 3-32.

e. <u>Wildlife</u>: Wildlife activity observed in Cluster 10 is summarized in Table 3-40. Characteristic burrows indicate the presence of the antelope ground squirrel and gopher. Less characteristic mounds denote the presence of additional unidentified burrowing species throughout the cluster. The presence of horse, antelope, coyote, kit fox, badger, and rabbit was determined from scat identification. Common wildlife observed included the blacktailed jackrabbit, horned lark, and sideblotched lizard. Wildlife less frequently observed included the desert cottontail, raven, and sage sparrow.

3.2.6 Results of the DTN and Cluster 2 Roads Surveys

3.2.6.1 Abiotic Conditions

The Designated Transportation Network (DTN) runs approximately 40 miles (64 km) through the valley from north to south. The

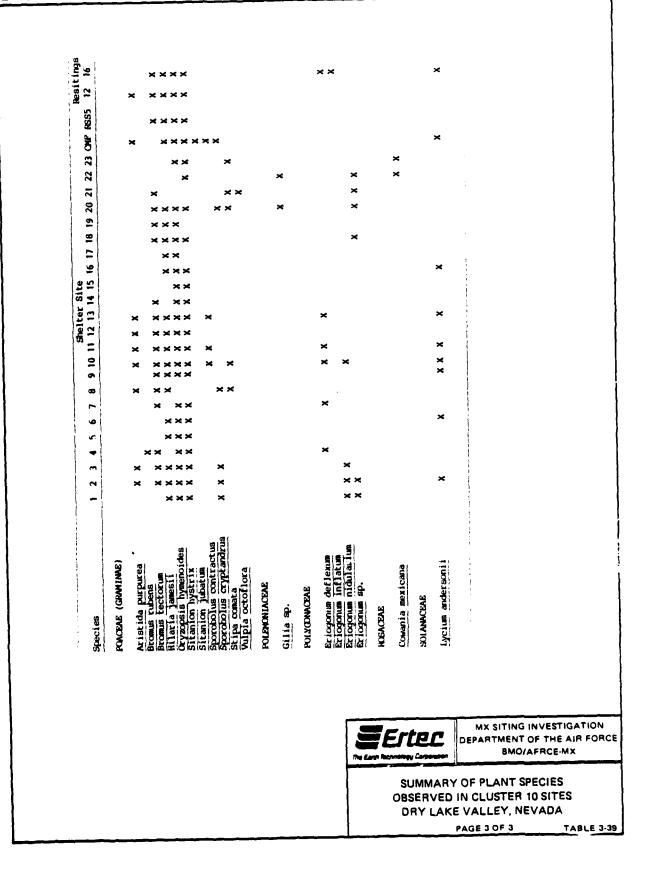
Acceles 1 2 3 5 7 8 9 10 11 13 14 16 10 20 21 <th< th=""><th>Resitinjs 12 16(a)</th><th></th><th></th><th>× × ××</th><th>×</th><th>× ×</th><th>* *</th><th></th><th></th></th<>	Resitinjs 12 16(a)			× × ××	×	× ×	* *		
1 2 3 5 6 7 8 9 10 12 13 16 16 16 16 10 12 13 16 17 16 19 20 21 22 23 24						× ×			
1 2 3 5 6 7 8 9 10 11 13 16 13 16 19 20 x <td< td=""><td>53</td><td></td><td></td><td></td><td></td><td></td><td></td><td>×</td><td></td></td<>	53							×	
1 2 3 5 6 1 8 9 10 11 13 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 17 11 12 13 16 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 18 18 17 18 18 18 18 11 12 13 16 18 18 17 18 18 17 18 18 17 18 18 17 18 18 17 18 18 17 18 18 11 18 18 18 18 18 18 18 18 18 18 18 18 18	50	×	I					×	×
1 2 3 5 6 7 8 9 10 11 13 14 15 16 15 16 15 16 15 16 15 16 10 11 12 13 14 15 16 11 11 13 16 15 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 16 15 16 17 15 17 15 16 17 17 13 16 17 12 13 16 17 17 17 13 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17	92			××	×	×			
x x x x x x x x x x x x x x x x x x x	2					×	×		
x x x x x x x x x x x x x x x x x x x	ter Sit 13 14 1				××	×	×		×
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x							× × ×	×	×
keter k k k k k k k k k k k k k k k k k k k	5			××			××	×	×
× × × × × × × × × × × × × × × × × × ×	~			××					
al state of the second sta				×	×				×
Auxicus (avacuate (avacuate screate screate screate screate (avacuate screate avacuate (avacuate avacuate (contraction screate (contraction screate) (contraction screate (contraction screate) (contraction screa	7			2	× ×		× ×	×	k kd.
Andread And			_		031			<u>.</u>	relocat
AVACDAE LAVA			OSITAE	carpa scens ntata	reenet scidif	othrae corection sp.	p. laris lora	entali MKLFEN	ut of
Heuries Kavarzak Kavarzak Kruca ber Kruca	, , , , , , , , , , , , , , , , , , ,	50	le (com	acanth acanth nova rrider	Manus 9	thera sar		IEAE Ma sp. Occide EAE (C	nia sp. nia sp. veyed t
	pectes	GAVACEA	ECANERS	mbrosia ntenisi	haenact hrysoth hrysoth	ut lerre ut lerre achaera	etradym etradym igulera	EYPtant EYPtant appula MASSICN	aulanth Xescurai (a) Sur
								DEPARTME	NT OF THE AIR FO
THE LATE REMOVES CONSTRUCT OF THE AIR FOR BMO/AFRCE-MX									
								E VALLEY,	NEVADA

····

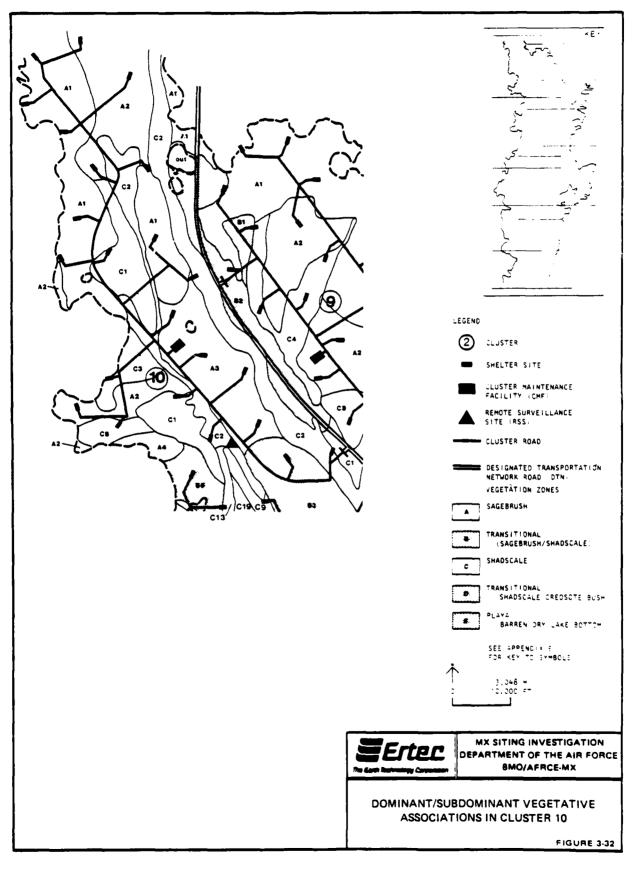
1993 - 1995 - 1905 - 19

ings 16		~ × ×		×							×
Resitings 12 16	×	×××		×		×					×
23 CHF RSS5	×	× × ×						×			×
Š	××	×××		×		×					×
22 23		×		×		×		×			×
21 2	×	× × ××	××	××			1	×			
50		×							×		×
8 19	×	×××		×		×					×
17 18		××× ×		×							×
2	××	~ ×× ×									×
l 15		×									×
ier £	×	×× ×××		×××							×
Shelter Site	×	×××		×		×					×
	×	×××		×		×					×
01 6	× × ×	× × × × ×		×		×					×
80	×	××		×							×
67	××	××× × ×		×		×					×
2	~~	××		×		~					
-		××××.									
2 3	×	×× ×		××		×					×
-	×	×××				×			×		×
					(3	9 1					
	CACTACEAR Coryphantha vivipara Opuntia ecfinacea Opuntia echinocarpa	0 31	CUPRESSACEAE Juniperus osteosperma	01	FABIACEAE (LEGUMINOSAE)	lent iginosus sp.					en
	ivip	E Scen	eos	ensi	GUMI	ntig.					sp.
	Pin al	CHENCPOLT VTBAE Atriplex carescens Atriplex carescens carioldes lanata Cariola spinosa Saisola iberica	ENE DE	EPHEIRACEAE Ephedra nevadensis	81)	2121 2121		Linum perenne LOASACEAE	3	~	89.99 199.199
8	CACITACEAR Corryphant Opuntia e Opuntia s		CUPRESSACEAE Juniperus os	EPHEIRACEAE Ephedra neve	CENE	Astragalus Astragalus	DEAE	Linum per LASACEAE	Mentzelia sł	MALVACEAE	Sphaeral Cea Sphaeral Cea
Species		CHEN Ceral Ceral	luni	Bhed	PABI	Astr	LINACEAE	Linu	Ment	MALVI	
					-					-	
											MX SITING INVESTIGA
						J				, c	BMO/AFRCE-MX
								SLIN			OF PLANT SPECIES

A sub- second distant and the second second


7

.....


)

1

ì

1.1

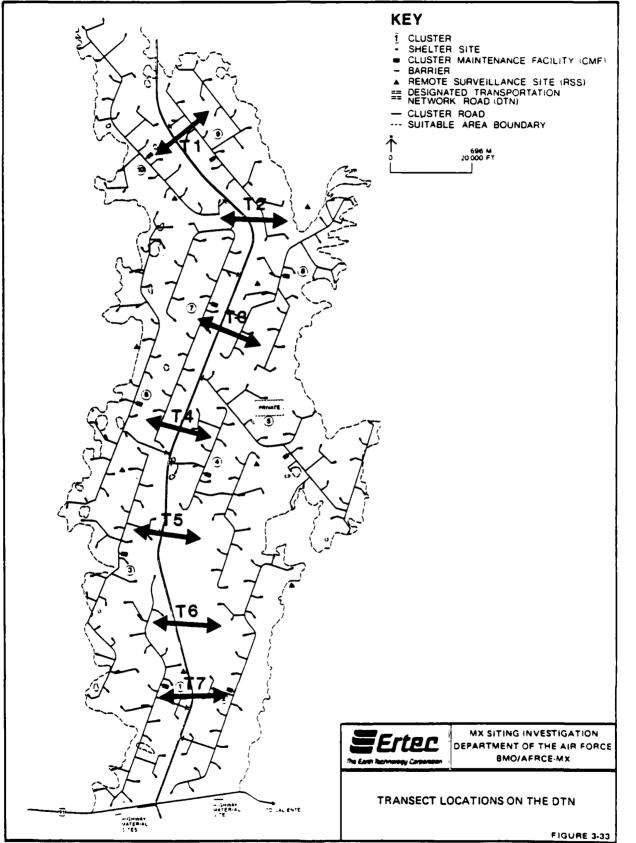
Shelter Site 11 12 13 14 15 16 17 18 19 20 21 22 23 OW MSSS Resittings 11 12 13 14 15 16 17 18 19 20 21 22 23 OW MSSS 12 16(3) 1 2 15 7 11 1 5 13 2 2 1 3 P 1 2 15 7 11 1 5 13 2 2 1 3 P 1 1 2 15 7 11 1 5 13 2 2 1 3 P 1 1 2 15 7 11 1 5 13 2 2 1 3 P 1 1 2 15 7 11 1 5 13 2 2 1 3 P P 1 2 15 7 11 1 5 13 2 2 1 3 P P 1 2 11 1 1 1 2 1 1 1 P P P P P P P P P P P 8 6 7 18 15 5 2 3 10 P = Sign observed. - 1 1 1 P P P
16 17 18 19 20 21 22 16 17 18 19 20 21 22 1 5 13 2 2 1 5 13 2 2 1 1 1 1 1 15 5 25 3 1 5 25 3 1 1 1 1
16 17 18 19 20 21 22 18 19 20 21 22 21 22 1 5 13 2 2 2 1 5 13 2 2 1 1 1 2 2 1 5 13 2 2 1 1 1 1 1 1 1 1 1 1 15 2 25 3
16 17 18 19 20 21 22 K X X X X X X X X X X X X X X X X X X X
16 17 18 19 20 21 1
16 17 16 17 16 17 10 1 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 12 1 1 1 1 1 13 1 1 1 1 1 15 2 2 2 2 2
90 21 22 23 24 25 25 20 25 20 25 20 20 20 20 20 20 20 20 20 20
Shelter Site 1 2 13 14 15 16 X X X X 2 15 7 1 1 1 2 15 7 1 1 X X X X X X X X X X X X X X X X X X
Shelter Site Shelter Site x
Shelter i Shelter i X
Sign Sign
(m_)
<u> </u>
v ∼ × × v
% ×
P = F = K = -
ics 1 2 3 4 5 6 7 9 9 alls ic (sign) x
Species Mammals Horse (sign) Antelore (sign) Antelore (sign) Mather (sign) Badyter (sign) Badyter (sign) Badyter (sign) Badyter (sign) Badyter (sign) Badyter (sign) Gerund syuir rel bur row (inact ive) Ground syuir rel bur row (inact ive) Ground syuir rel bur row (inact ive) Ground syuir rel bur row Mammal bur rows (inact ive Horned lack Horned lack Ho

10 10 10 10 10

elevation of the DTN and Cluster 2 roads varied with the terrain but was usually very close to 4600 feet (1415 m) and was generally located on slopes of 3 degrees or less. The soil was composed of alluvial material.

3.2.6.2 Disturbance

Disturbance caused by grazing and off-road vehicle usage was noted throughout the entire DTN and cluster road study area. Much of the off-road vehicle disturbance was probably the result of the surveyors rather than previous activity, although it was not usually possible to distinguish between the two.


3.2.6.3 Threatened and Endangered Plant Species

No threatened, endangered, or sensitive plant species were observed on the DTN or Cluster 2 roads during the survey.

3.2.6.4 Vegetation

A visual survey was conducted for the entire 40 miles (64 km) of DTN, as well as for the 20 miles (32 km) of roads in Cluster 2. Transects were made at 5-mile (8-km) intervals along the DTN and at three locations within Cluster 2 to obtain quantitative data on cover and density. Transect locations and dominant species are shown in Figure 3-33. Percent perennial cover on the DTN ranged from 15 to 29 percent and averaged 20 percent. Cover within the Cluster 2 roads ranged from 23 to 32 percent and averaged 27 percent. The dominant species is <u>Ceratoides lanata</u> in association with <u>Atriplex</u> and <u>Artemisia</u> species. Transect data are given in Appendix E.

🖀 Ertec

3.2.6.5 Wildlife

The wildlife observed along the DTN and Cluster 2 roads was similar to that of the surrounding clusters. The blacktailed jackrabbit, horned lark, and side-blotched lizard were ubiquitous. Antelope scat was observed in the area 15 to 20 miles (24 to 32 km) from the north end of the DTN, and many kit fox dens were observed also, but all were abandoned. No evidence of threatened or endangered wildlife was observed.

3.3 RESITINGS

Resitings were instituted by the Air Force to mitigate by avoidance when possible. The shelter spacing criteria were somewhat flexible; shelters located in highly sensitive areas could therefore sometimes be relocated to avoid significant cultural resources, biological features, or areas where geotechnical difficulties might affect construction. A number of resitings were made for cultural resources or geotechnical reasons, but none were made for biology. Resitings are listed in Table 3-41.

In general, it was possible to relocate a site within 400 feet (124 m) of the original location and avoid the problem on the original site. A relocated site was, in many cases, part of the original survey area, and data obtained from the relocated site are therefore often similar to data from the original site. The data from relocations have been incorporated into the appropriate cluster to help provide overall pictures of the clusters. Transect data are given at the end of Appendix E. In some cases, due to the proximity of the original and the relocated sites, additional transects were not necessary.

🛎 Ertec

. ·

SITE NUMBER	RESURVEY RATIONALE	SITE N	NUMBER	RESURVEY RATIONALE
Sites Reloca	ted			
HSS 2/6	survey adjustment	HSS 2	2/9	survey adjustment
HSS 2/22	geotechnical	HSS 2	2/23	geotechnical
HSS 3/1(a)	criteria	HSS 3	3/5	cultural findings
HSS 4/1	geotechnical	HSS 4	/2	cultural findings
HSS 4/3	cultural findings	HSS 4	/22	geotechnical
HSS 4/4	criteria	HSS 5	5/3	geotechnical
HSS 5/5	criteria	HSS 5	5/19	geotechnical
HSS 5/12	geotechnical	HSS 5	5/22	geotechnical
HSS 5/20	geotechnical	HSS 6	5/2	criteria
HSS 6/1	geotechnical	HSS 8	3/21	geotechnical
HSS 8/18	geotechnical	HSS 6	5/18	geotechnical
HSS 10/12	geotechnical	HSS 7	1/2	geotechnical

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

والمراجع فيوافق والارتبار المراجع والمراجع
П

FACILITY RESITINGS IN DRY LAKE VALLEY

.

TABLE 3-41

An additional 10 sites were considered for relocation due to biological reasons and were biologically resurveyed; however the sites were not relocated and are not listed in Table 3-41.

The first criterion in the determination of whether of not to resite for biological reasons in the IOC valleys was the presence of a threatened or endangered (T/E) species. The identification of even a single individual of a T/E species within the survey area is sufficient to consider relocation. Relocation was also considered for protected species such as game animals, but only if the species population was potentially affected by factors such as by blockage of a migration route, disturbance of key habitat, or other factors. Relocation was not considered for single individuals of protected species.

Species-specific characteristics were evaluated in relocation decisions. The federal and state status of the species, the number of individuals and populations within the valley and surrounding area, the amount of critical habitat and proportion of population affected, the species habitat requirements, adaptability, tolerance of human activity, critical seasons, and other factors were taken into account.

No federally listed species were expected to be directly impacted by the project in Dry Lake Valley. If such species had been identified, it would have been necessary for the Air Force to consult with the U.S. Fish and Wildlife Service following Section 7 procedures. Species listed in the Taxa Currently Under Review category in the Federal Register were treated as

差 Ertec

\$

.

candidate species for federal listing, and mitigation by avoidance would be instigated if the field survey encountered a group of individuals of a candidate species. However, only scattered individuals of such species were observed in Dry Lake Valley, and in many cases, these were located in the buffer zone rather than on the actual shelter site itself. When candidate species were found, a number of recognized plant authorities were consulted; it was decided that mitigation by relocation of facilities was unnecessary because of the small number of individuals affected.

For biology, mitigation by avoidance will often not be sufficient if relocation is confined to an area a few hundred feet from the original site, as larger, mobile animals may be sensitive to disturbance from a great distance. In other IOC valleys, for example, sage grouse are present. A 1.8-mile (3-km) buffer zone around strutting grounds is recommended for this species (Day, 1980; and Braun, 1977). In such situations, resiting in the immediate area is of little use. Thus, while the project will impact antelope and mule deer in the northern part of the study area, no mitigation through resiting was recommended for wildlife species.

≡ Ertec

4.0 SUMMARY OF IMPACTS AND MITIGATION MEASURES

4.1 POTENTIAL IMPACTS

At the request of the BLM, a summary of the potential impacts of construction and operation of the MX system in the IOC valleys has been included in this report. The summary is based on the Deployment Area Selection and Land Withdrawal/Acquisition DEIS (HDR, 1980) supplemented with additional material where appropriate. Measures designed to mitigate many of these impacts are described in the following section.

The Dry Lake study area encompasses approximately 210,000 acres (84,986 ha); construction will directly disturb approximately 4600 acres (1862 ha), or approximately two percent of the study area. However, the MX system must be viewed as a whole, rather than as numerous scattered facilities, because the DTN and cluster roads will result in increased accessibility and presence of the system will cause indirect biological impacts affecting the entire valley. Likewise, because MX deployment will affect many valleys in addition to Dry Lake, the whole system should be taken into acccount when evaluating effects. Destruction of a population in one valley may be of little consequence if many nearby valleys support additional populations; if populations in the other areas are also affected, however, the single valley population may then bedome of greater importance to the species.

Because shelter sites were selected for particular geologic and topographic characteristics, the species that require these

same characteristics for habitat will tend to be impacted at all sites within the valley. Effects on some species preferring this habitat, especially the larger, more mobile, and more visible organisms, such as game species or other animals that require a large range, may be considerable. The extent of the effects will be influenced by the construction approach and mitigation measures adopted by the Air Force.

Direct impacts to plants and wildlife will be caused mainly by destruction of a portion of the habitat due to construction or grading. Long-term indirect impacts are likely to be more damaging: however, they will also be more difficult to measure or observe. Indirect impacts include lowering of the water table due to increased water usage and increased access to the area through road construction. Possible effects of increased access would be numerous, including an increase in poaching, disturbance of nesting, breeding or feeding cycles, reduction of prey populations, and increased off-road vehicle usage. Increased traffic may affect animal movements and cause increased mortalities as well. Specific impacts are discussed below.

4.1.1 Hydrology

Effects on existing hydrologic pattern in Dry Lake Valley may include alteration of surface drainage patterns and percolation rates, effects on the existing water rights and water quality, drawdown of the water table and decrease in recharge and subseguent subsurface flow to down-gradient users. Construction

🛢 Ertec

of 240 miles (384 km) of roads and 230 shelters may result in water channelization and blockage of overland flow. Other effects of road construction include a possible increase in ponding, erosion, soil compaction, and flow concentration, all of which tend to alter surface water resources and decrease expected ground-water recharge and storage (HDR, 1980a).

Increased water usage or decreased recharge that result in a drawdown of the water table could severely inhibit biological processes in a region such as Dry Lake Valley where water is a limiting factor. Lowering the ground-water table may destroy or weaken "egetation communities in some areas and have potentially adverse effects on important wetland habitats hydrologically connected to Dry Lake Valley. Such important aquatic habitats are located in Pahranagat and White River valleys; many occur within federal or state wildlife refuges.

Drainage diversions may cause both short- and long-term changes in vegetation. Concentration of flow may cause increased erosion, resulting in loss of vegetation. Recolonization by other, less desirable species, or species better able to tolerate the new conditions, may occur. Increased soil moisture in ponding areas may eventually result in establishment of new species that require higher moisture levels (Wallace and Romney, 1972).

4.1.2 Grazing

The development of the MX system in Dry Lake Valley may impact grazing by altering or reducing existing grazing allotments,

≡ Ertec

and it may lead to overgrazing due to reduced habitat. Other potential impacts include increased animal rustling, vandalism of facilities, and general disturbance of livestock.

Water sources are especially critical to continued cattle grazing. Because cattle need to graze in reasonable proximity to drinking water sources, loss of one water source may prevent the use of up to 50 mi² (110 km²) of grazing land (HDR, 1980). The reduction of suitable grazing habitat may also result in overgrazing of other presently undisturbed areas.

4.1.3 Vegetation

Natural revegetation of disturbed desert lands is a very slow process (Wallace, and others, 1977). The National Academy of Sciences (1974) has estimated that the recovery of native vegetation in areas receiving less than 10 inches of annual precipitation will require decades to centuries.

The greatest impact to the flora in Dry Lake Valley will be habitat reduction through removal of vegetation and habitat degradation by invasion of introduced species in disturbed areas. Direct impacts will result from the construction of the shelter sites, remote surveillance sites, cluster maintenance facilities, designated transportation network, and cluster roads. It is anticipated that construction will disturb 7.5 acres (3 ha) at each shelter for a total of 1725 acres (697 ha), and a 100-foot (33-m) right-of-way for all roads disturbing 480 acres (194 ha) for the 40 miles (64 km) of DTN and 2400 acres (970 ha) for the 200 miles (320 km) of cluster roads (HDR, 1980).

= Ertec

An additional undetermined amount of ground will also be disturbed for borrow pits and material transport roads.

Habitat directly impacted by construction of permanent facilities would thus encompass approximately 4600 acres (1858 ha), or about two percent of the study area within the valley. Additional disturbance would be associated with temporary construction facilities. Indirect impacts, however, could affect a much greater area. Over 40 percent of the Dry Lake Valley hydrologic subunit (hydrographic area 181) is within one-half mile of a disturbed area. The potential impact to both vegetation and wildlife is high (HDR, 1980a).

Changes in grazing patterns will affect vegetation composition. The successional patterns in many Great Basin sagebrush and shadscale communities change significantly as a result of overgrazing (Holmgren and Hutchings, 1972; and Young and others, 1972). Many areas previously supporting distinctive plant associations now support similar, degraded vegetation as a result of grazing impacts. Grazing has often altered communities to the extent that the original composition is no longer discernable and the pattern of recovery is uncertain. This is apparently related to modified plant-soil relationships, but the mechanisms are not well understood (Holmgren and Hutchings, 1972).

Shadscale (salt desert shrub) vegetation is the most common community in Dry Lake Valley. It is highly variable and

Ξ Ertec

often unpredictable in terms of secondary succession patterns that follow disturbance.

In many sagebrush communities, grazing has reduced or eliminated the perennial grasses and changed the shrub composition. Shrubs least preferred for grazing have increased in dominance, while preferred forage species have become less common. Introduced annuals, including Russian thistle (<u>Salsola iberica</u>), tumble mustard (<u>Sisymbrium altissimum</u>), and cheatgrass (<u>Bromus tectorum</u>), are now very widespread; they form such a complete understory in some degraded communities that reestablishment of native perennial grasse; is often precluded and fire behavior and secondary succession are also altered (Young and others, 1972; and Young and Evans, 1973). Without additional disturbance, Russian thistle will be gradually replaced by sagebrush on many of the higher elevation sites (Holmgren and Hutchings, 1972).

The invasion of disturbed areas by <u>Halogeton glomeratus</u>, an introduced weed, may have a major impact on grazing in Dry Lake Valley. Halogeton is toxic to livestock (Cronquist and others, 1972), and it spreads rapidly in disturbed alkaline soil in low bajadas and lake plains. This species can become established in the alkali sink scrub on the periphery of the playa and in the shadscale scrub, which is by far the most common vegetation type throughout the valley.

The successional characteristics and recovery potential of the alkali sink scrub vegetation are unknown. In the shadscale

216

Ertec

scrub, halogeton is gradually replaced by rabbitbrush, winterfat, or shadscale if disturbance is light (HDR, 1980a). If disturbance is severe or repeated, halogeton can alter the soil chemistry and exclude native vegetation (Cook and Stoddart, 1953). It has been speculated that halogeton may prevent native species reestablishment for over 50 years (Eckert and Kinsinger, 1960). Studies have suggested that the only effective control method is competition with perennial species (Cleaves and Taylor, 1979).

Disturbed areas on the coarse substrates of the bajadas will probably be invaded by Russian thistle (<u>Salsola iberica</u>). Russian thistle will be succeeded by tumble mustard (<u>Sisymbrium altissimum</u>), followed by tansy mustard (<u>Descurainia</u> spp.) and eventually by cheatgrass (<u>Bromus tectorum</u>) if disturbance is minimal and infrequent (HDR, 1980a). If disturbance is repeated, the successional sequence will revert back to Russian thistle, which may remain for 15 years or more (Stewart and others, 1940).

Russian thistle tends to dominate cleared areas of Great Basin sagebrush when a seed source is available (Young and Evans, 1973). The successional pattern of a Great Basin sagebrush community involves an initial domination by either climax perennial grasses or root-sprouting shrubs and perennial grasses such as squirreltail (<u>Sitanion histrix</u>) and Sandberg bluegrass (<u>Poa sandbergii</u>). In communities with a climax of perennial grasses, sagebrush normally becomes the dominant species in the

🗃 Ertec

area; when a high density of alien annual grasses becomes established, however, recurring fires may limit reestablishment of sagebrush (Young and Evans, 1978).

4.1.4 Wildlife

Construction activities will result in both direct and indirect impacts on wildlife. Wildlife burrows, dens, and habitat will be destroyed on sites where facilities are constructed. Wildlife may be affected by the presence of lighting at night or by increased noise and human activity. If poaching or indiscriminate shooting increases, population of the larger or more visible species may be reduced in the valley.

The ability of an individual to relocate depends on its mobility, habitat availability, and the carrying capacity of the undisturbed habitat. Small animals such as rodents, lizards, and snakes may lose their entire home range within a single cleared area. These species are less able to relocate than more mobile species.

The removal of food sources and habitats used by rodents and small birds will reduce the density of these species. While these species are not considered threatened or endangered, population reductions may, in turn, lead to a decline in density of raptors and other species which rely on them as forage. Many predators live in the mountains adjacent to Dry Lake Valley and enter the valley to feed. Activity within the valley may therefore affect ecosystems outside of the valley itself.

In desert habitats, where resources are limited, wildlife populations are especially dependent on small populations of plants. Desert ecosystems are particularly fragile because they contain many highly specialized organisms that cannot easily adapt to changing conditions. Thus, the loss of habitat in Dry Lake Valley will result in a reduction of available food and protection for wildlife which is proportionately more significant in this environment than would be the case in other, less fragile, areas.

The successional pattern of wildlife in temporarily disturbed areas in Dry Lake Valley will generally follow plant succession. Animal species dependent upon specific narrow habitats, such as the desert night lizard (<u>Xantusia vigilis</u>) which is dependent on the Joshua tree (<u>Yucca brevifolia</u>) found in southern Dry Lake Valley, will be heavily impacted by even temporary disturbance of vegetation.

Construction activities may crush many reptiles and diurnal rodents as well as compact the soil, resulting in the death of nocturnal or hibernating animal species. The noise and activity from construction may interrupt movement, hibernation, nesting, breeding or other activities, thus adversely affecting wildlife populations in the area. For example, mule deer may avoid their key winter area in the northeast portion of the valley. Increased recreational use in mountain habitats surrounding Dry Lake Valley may prevent bighorn sheep from using waterholes or other water sources, and recreational use of riparian areas near the valley may prevent their use by bobcats.

Migration routes and movements may also be affected by the road and shelter locations.

The MX system may adversely impact antelope populations in the northern portion of the valley. Although antelope kidding grounds, usually located in the pinyon-juniper areas along the valley sides, will probably not be directly affected, antelope may be subject to increased poaching and habitat disturbance in other parts of their range.

Wildlife destruction resulting from poaching and recreational shooting could be especially critical during construction periods. Raptors, game birds, some animals, and small mammals are all vulnerable to these activities. Impacts will be less severe during operation of the system. However, the additional roads will lead to increased accessibility and a higher volume of traffic. An increased number of animals will be killed by traffic. This may be particularly true of small birds, rodents, and reptiles which are attracted to roadsides (Cornett, 1980). Kit foxes, a protected species, are known to sit on paved roads at night, presumably to absorb radiated warmth (Eqoscue, 1960). This behavior may lead to increased mortality after road construction in the valley. Roads will bring key-use areas of mule deer and antelope within easier reach.

4.1.5 Vehicle Use

Both compaction and soil erosion are likely to result in changes in vegetative cover, species composition, and plant productivity. In arid areas, the damage to vegetation by off-road

Ertec

vehicles can be clearly observed; the resulting disturbance to soil characteristics and animals is less obvious (Stebbins, 1954; Bussack and Bury, 1974; and Luckenbach, 1975). Due to the slow growth of desert vegetation, these effects may remain for years. If off-road use is sufficiently high, intense damage can be done to the desert in a matter of hours (Carter, 1974). Desert soils are highly vulnerable to disruption (Webb, 1976; and Eckert and others, 1976), and compaction of soil can result in decreased soil permeability and water holding capacity (Davidson and Fox, 1974; and Wilshire and Nakata, 1976). The full extent of damage may not be evident until years or even decades after the original disturbance (Wilshire and Nakata, 1976).

Construction equipment and off-road vehicles will compact the soil and change its structure, decreasing water infiltration and increasing runoff. Compaction also restricts root penetration and reduces soil aeration (Taylor and Ashcroft, 1972). Construction will reduce the vegetative cover and break desert pavement, allowing accelerated wind erosion. The results of erosion include loss of productive topsoil, exposure of root systems to desiccation and abrasion, and possible burial of downwind vegetation (Brady, 1974). Once begun, wind and water erosion will continue to impact the soils unless control measures are taken.

In dry areas, vehicle travel on unpaved roads and wind erosion in disturbed areas cause a significant amount of fugitive dust. Cement plants, aggregate quarries, and related activities will produce additional dust. The effect of dust on vegetation

221

Ξ Ertec

depends upon the plant species. Long-term exposure to dust may cause changes in species composition (Wood, 1976). Daubenmire (1974) has shown that deciduous plants are less affected by dust accumulation than evergreen species. Beatley (1965) has attributed the defoliation of creosote bushes (Larrea divaricata) to heavy dust covering. The amount of rainfall and the interval between rainfalls are also important factors. Vegetation in the vicinity of the dust sources is likely to be most heavily impacted.

The use of leaded fuel produces compounds which accumulate in roadside soils. The exhaust contains a highly soluble chromobromide that becomes incorporated into plants through foliar absorption (Hammond and Aronson, 1964). A study conducted on Highway 95 in southern Nevada showed lead content in plant foliage along the highway to be 10 times above normal (Romney, 1973). High concentrations of lead can impact plant growth in low phosphate soils and may possibly become concentrated in herbivores ingesting the plants. It is unknown whether these effects will be significant after construction of additional roads in Dry Lake Valley.

4.2 MITIGATIONS

A number of mitigation measures for biological resources have been proposed in the Deployment Area Selection and Land Withdrawal/Acquisition DEIS. It is the policy of the U.S. Air Force to mitigate by avoidance wherever possible. Since it is impossible to avoid all biological species and habitats, a number of

🗧 Ertec

other mitigation measures have been proposed by the U.S. Air Force Environmental Impact Statement that could reduce or eliminate many of the potential impacts described in the previous section. These measures are described below.

One of the most important mitigation measures may be the implementation of an education program for construction and operation workers to increase awareness of the fragility of the desert environment.

4.2.1 Abiotic Mitigations

The abiotic environment is directly related to all plant and animal life in Dry Lake Valley. Mitigation measures reducing the impact of the project on abiotic components will benefit both plant and wildlife species in the valley. Planned control of fugitive dust during all phases of the project will decrease soil loss and minimize the effect on adjacent vegetation. Oiling or paving roads, consolidation of material transport to reduce traffic, enforcement of low speed limits on unpaved roads, use of prefabricated buildings to decrease construction time, simultaneous installation of all structures within an area where possible, and prohibition of off-road driving are measures which will reduce generation of fugitive dust.

4.2.2 Grazing Mitigations

If grazing allotments are reduced by the proposed MX system in Dry Lake Valley, the number of cattle currently grazing there will have to be reduced, new range will need to be opened, or

E-TR-48-11-1

improvement in range management practices will be needed in order to make better use of existing rangelands.

Recommendations of range biologists concerning available forage on a given parcel determine the number of cattle allowed to graze. A range is rated in terms of Animal-Unit-Months (AUMs). An AUM is defined as the amount of forage necessary to sustain one cow or five sheep for one month (U.S. Department of the Interior, 1980c). Improved management practices may increase the number of AUMs in a given area.

Cattle allowed to graze without controls will tend to overgraze a convenient area instead of moving to new forage areas. Construction of trails through timber to new forage areas and the salting of new areas both encourage use of more range.

Water sources are critical since cattle will graze only a limited distance from water. On hilly land, water is even more important; cattle will graze .75 mile (1 km) upslope from water on a 10 percent slope, but only .1 mile (.16 km) from water on a 60 percent slope (U.S. Department of Agriculture, 1965). Developing new water sources would open up lands presently not usable as range.

A pilot experimental stewardship program providing incentives for ranchers to use innovative management practices is to be implemented in the Tonopah Resource Area in 1981 (U.S. Department of Agriculture, 1965). The results of this program will help determine the effectiveness of various management practices.

E Ertec

A common current practice for creating new rangelands is the planting of crested wheatgrass (<u>Agropyron desertorum</u>) in areas previously containing sagebrush or juniper. Areas are burned, seeded, and closed off to prevent grazing until the plants are established. This may be a possible method of replacing grazing land lost due to project construction. However, this practice replaces existing communities which are of value to raptors, antelope, and other wildlife. The intrinsic values of this land must be carefully evaluated in terms of the ecosystem ecology, total available habitat, carrying capacity, and value to livestock before this practice is implemented.

4.2.3 Wildlife Mitigations

Mitigation can minimize the destruction of wildlife species and their habitat if the project is carefully planned and construction activity regulated in conjunction with an environmental management plan. Such measures include avoiding activity within key winter range in the winter and avoiding activity near watering areas during the summer, when water is a critical factor. The purchase of grazing AUMs and retiring of grazing areas would also reduce competition for water and be beneficial to wildlife. Construction should be planned to reduce human activity, noise, and visibility of structures as much as possible.

Disturbance of existing water sources should be avoided and corridors allowing wildlife access should be retained where possible. Artificial water sources should be constructed to

225

= Ertec

replace any existing water sources that may be affected. Their design should incorporate other factors essential to wildlife survival, such as escape and access routes and protective cover. Nesting platforms should be designed in conjunction with water sources to protect avian species.

Where grazing habitat is reduced, precautions should be taken to prevent domestic herds from overgrazing the remaining habitat and to prevent further loss of natural habitat. Precautions should be employed to minimize soil compaction caused by trampling and to reduce the destruction of burrowing and sessile species and their habitats.

One of the most severe impacts on wildlife can result from increased human activity, especially by construction workers and other transient personnel. An information-education program for people involved in construction and operation of the system and the prohibition of firearms would reduce impacts on wildlife. A firearms restriction would reduce recreational shooting and poaching and, ideally, would eliminate random firearm use. This is perhaps the single most important mitigation for wildlife (HDR, 1980a). Funding of additional personnel to enforce game laws would also help reduce impacts (Ball, 1981).

4.2.4 Vegetation Mitigations

Perhaps the most basic mitigation in prevention of vegetation loss is the implementation of construction plans that will localize and minimize disturbance and that provide for revegetation of large heavily disturbed areas where possible.

Proposed mitigation is to limit construction equipment, and off-road parking and driving to the small areas designated for construction disturbance.

Artificial revegetation can be very complex, and limiting the extent of plant loss to reduce the need for revegetation is an important mitigation measure. Revegetation techniques differ for each vegetation type. Research has shown seeding and transplanting of shrubs have often failed due to poor germination, poor growing conditions, grazing by rodents, and inadequate soil preparation (Graves, 1976). Difficulties in restoration may also be encountered unless plant stock, seed, or transplant material come from a given site (Plummer and others 1955 and 1968).

Attempts at restoration must also consider abiotic factors. Disturbance that destroys the soil restricts restoration of vegetation since nutrient availability is a limiting factor in desert regions (James and Jurinak, 1978).

Factors such as soil salinity must be considered. Great Basin and Mohave perennial plant species have been tested for salt tolerance by growing seedlings and rooted cuttings on soils of increasing salinity (Romney and others, 1972). Results show that different species have different tolerances to salinity: <u>Atriplex canescens</u> and <u>Atriplex hymenelytra</u> can survive very high salinity conditions; <u>Ambrosia dumosa</u>, <u>Larrea divaricata</u>, and <u>Yucca schedigera</u> tolerate moderate salt levels; <u>Artemisia</u> <u>tridentata</u> and <u>Atremisia spinescens</u> are salt sensitive but not

Ertec

as highly sensitive as <u>Coleogyne ramosissima</u>, <u>Dalea fremontii</u>, <u>Ephedra viridis</u>, <u>Grayia spinosa</u>, and <u>Lycium andersonii</u>. Therefore, selection of appropriate native species for revegetation must consider the abiotic conditions of the area as well as the suitability of individual species.

Several pioneer species can grow in disturbed soil low in organic matter (El-Ghonemy and others, 1980). The use of such pioneer species as <u>Atriplex</u> <u>confertifolia</u> can provide a successional stage in the revegetation process.

Plans should also be implemented to prevent commercial exploitation or poaching of unique vegetation such as cacti and yucca.

5.0 CONCLUSIONS

5.1 SURVEY RESULTS: SPECIES AND AREAS OF BIOLOGICAL CONCERN

A review of existing information revealed that no threatened or endangered plant species were known from the Dry Lake Valley study area. However, at least two species of plants identified during the fall 1980 field survey are on the Northern Nevada Native Plant Society list as threatened species and on the Federal list as Taxa Currently Under Review. Scattered individuals of Coryphantha vivipara and Sclerocactus pubispinus were observed within the valley. Sclerocactus was observed as a single individual, although it is known to exist in other valleys in large populations. Coryphantha was observed in groups of one to four individuals. The variety of this species is thought to be rosea, but positive identification could not be determined due to the season of the survey. Because the species of several plants could not be identified, a spring survey was planned. The results of this spring 1981 field survey are covered in a supplement to this report.

A number of other plant genera were observed that may be species currently listed in the Federal Register or currently under review for possible listing, although positive species identification was impossible during the season of the survey due to the lack of flowers and reproductive structures. These genera include <u>Eriogonum</u>, <u>Castilleja</u>, <u>Gilia</u>, <u>Astragalus</u>, <u>Opuntia</u>, <u>Lepidium</u>, <u>Erigeron</u>, <u>Senecio</u>, <u>Cryptantha</u>, <u>Machaeranthera</u>, <u>Haplopappus</u>, <u>Camissonia</u>, <u>Sphaeralcea</u>, <u>Mentzelia</u>, <u>Oenothera</u>, and <u>Lupinus</u>.

🛱 Ertec

Gutierrezia sarothrae, Machaeranthera canescens, Astragalus lentiginosus, Lepidium montanum, and Eriogonum microthecum were also observed, but again, the variety could not be determined due to the season of the survey. Echinocereus engelmannii was also observed, but it was not the endangered variety purpureus. With the exception of Astragalus sp. , Eriogonum sp., and Penstemon sp., it is very unlikely that most of these are listed individuals, as many of those are generally known only from specific habitats not found in the Dry Lake area or are known only from distant or out of state areas. While this does not preclude their presence in Dry Lake, it seems unlikely that most of the Dry Lake plants are the same variety. The endangered variety of Macharanthera canescens, for example, is known only from western California; the endangered varieties of Lepidium montanum have been found only in Utah, one known only from a single mountain ridge, the other known only from shale outcrops in Kane County. The varieties of Eriogonum microthecum are known only from California and Gutierrezia sarothrae only from Utah.

Dry Lake Valley appears to have few key-use areas for particular wildlife species or special habitats for plants. The Nevada Department of Wildlife considers riparian and wetland areas, sage grouse strutting grounds, caliche washes providing tortoise habitat, antelope kidding areas, and spring and winter mule deer range as critical or sensitive habitat (Molini, 1980). The Dry Lake study area has no sage grouse or tortoise usage and little or no riparian or wetland area.

\Xi Ertec

The northeastern portion of the valley lies within winter mule deer range, an important forage area during this portion of the year. Shelters 12, 14, and 16 through 23 of Cluster 8, and the eastern half of Cluster 9, all lie within this range. The field survey showed evidence of mule deer at only three shelter sites. However, it is likely that a survey made in winter or early spring, rather than the fall, would indicate additional use of the area by mule deer. Presence of a possible migration route crossing the northern portion of the study area has been suspected. The field survey provided no additional evidence of this, but that may be due to the season the survey was conducted.

Nearly the entire study area has potential as antelope habitat, but, with one exception, antelope sign was confined to the northern half of the study area. Evidence of heavy cattle grazing was observed in the southern part of the valley, and this competition between species may account for the apparent lack of antelope use there.

A number of raptors and other federally protected birds, including the golden eagle, use the study area to forage. Although they nest in the mountains, any major impacts on the prey base will affect these raptor populations.

A large portion of raptor prey consists of small mammals. The number of small mammal populations is therefore one indication of whether or not an area provides suitable raptor habitat. Although some trapping was made to ascertain typical rodent

🛢 Ertec

species present, it was not within the scope of this project to evaluate the small mammal populations of the valley in this manner.

5.2 EVALUATION OF PROCEDURES

5.2.1 Evaluation of General Approach

The IOC valleys are considered as test valleys to develop biological survey procedures for use in other MX deployment areas. During the IOC survey, several factors have become apparent. First, and perhaps most important, is that a valley cannot be viewed as a series of discrete, noninteracting units for which mitigation can be accomplished on a site-by-site basis. Moving a shelter a few hundred feet may be sufficient to mitigate for a sessile organism, such as an endangered plant, but it is inadequate for the larger, motile members of the community whose critical habitat encompasses a large area. For example, there is a recommended 1.8-mile (3-km) buffer zone around sage grouse strutting grounds (Day, 1980; and Braun, 1977). Raptors may abandon their nests due to activity occurring as far as a quarter mile away (White, 1981). In cases such as these, minor rearrangement of shelter sites is of little value, and elimination of the shelter site may be the only effective mitigation.

One way to avoid this type of conflict is to consider species ranges, critical habitat, and other factors in developing site layouts. While it would not be feasible to collect sitespecific data for the shelter sites during layout, the IOC program has shown that it is possible to obtain data describing

🖀 Ertec

the entire valley ecosystem. Information from the IOC survey indicates that the literature and data search may be used as a predictive tool to provide general information on species ranges and populations within a valley. Sufficient background data were obtained from files of BLM and wildlife offices to pinpoint most major biological conflicts expected to occur. Therefore, these data can be used during the layout procedure to address potential biological conflicts and mitigate impacts on migration routes, critical habitats, breeding grounds, and other significant areas for which resiting of individual shelters is insufficient.

In addition to consideration of species and habitat on the valley floor in developing layouts, species in adjacent foothill and mountain areas also need to be considered. For example, raptors nesting in mountains surrounding Dry Lake Valley use the valley floor for hunting. Mule deer or sheep that normally are not found on valley floors may seasonally migrate through the area. Species other than those considered threatened, endangered, or protected should also be considered during the layout procedures. Without consideration of common species that have an important role in supporting the ecosystem, a valley ecosystem could become disrupted, adversly affecting many species including already threatened, endangered, or protected species, and may result in adding additional species to these categories.

Ideally, the entire MX system should be considered in any evaluation of biological impacts because the value of a particular

🖻 Ertec

* F.

resource is related to its abundance and distribution. One small population may have relatively little value if there are other large populations in the vicinity; it may assume greater importance as total numbers or range decrease. Various parts of the MX project have a cumulative and interactive effect; individual valleys should not be considered as separate projects merely because of their diverse locations.

Evaluating the MX system on a valley-by-valley basis cannot indicate the magnitude of total impact on most populations. Only when the effects on a species are known over its entire range can the true impact be evaluated. For this reason, it would be desirable to consider large areas, as opposed to single valleys, during layout evaluation.

At the beginning of the IOC biological survey program, it was believed that survey data from one valley might be used as a predictive model for other valleys. On a species-specific level, this has not proven to be true; biological resources vary too greatly from area to area. Two adjacent IOC valleys in Utah (discussed in Volume II, Part II) were shown to be quite different biologically, and they both differ substantially from Dry Lake Valley. In addition, a species of little consequence in one area may, under different conditions, be of greater importance elsewhere.

5.2.2 Evaluation of Field Procedures

Field surveys tended to corroborate the data obtained from the literature, as well as provide specific, on-site information.

🛎 Ertec

Many of the MX valleys have never been given serious scientific study, and the MX field data will provide a great deal of new biological information that will further understanding of valley ecosystems.

Procedures as described in Section 2.0 were found adequate, and no major changes are felt to be necessary. A few minor changes, however, will help to increase efficiency during the field sessions.

The biological survey should be conducted in spring and summer whenever possible because most annual plant species are not in flower and, therefore, are not identifiable during fall and winter. Since many threatened and endangered species are annual plants, surveys made during non-flowering months cannot be considered complete. Even a year-round invescigation might not be sufficient to inventory all plant species, because new individuals do not enter the system each year but are present only in years when rainfall is sufficient for germination and seedling survival (Wallace, et al., 1980; Beatley, 1974b). One study in Rock Valley, Nevada, showed that only two years between 1963 and 1969 were actually conducive to new seedling establishment. Other annuals restrict germination to years with minimum precipitation levels.

Likewise, an inventory of wildlife over a single season will not be complete because many animals migrate or hibernate during the fall and winter.

The survey itself produced some minimal, but for the most part unavoidable, damage to the valley. Field crews limited off-road travel as much as possible to avoid damage to existing vegetation, and they followed tracks of the surveyors to the sites whenever possible. It was necessary to drive into a new area in only a few instances when surveyors tracks could not be located.

The survey has pointed out the need to clarify the guidelines for site relocation for biological resources. Relocation for a listed threatened or endangered species may satisfy legal requirements, but relocation is not legally required for game species and other sensitive, but not federally listed, plants and animals. Two endangered species may vary in their degree of "endangeredness." Moving a shelter site for one or two individuals may be justified for one species but not for another, and the distance of relocation necessary may vary depending on the species.

For these reasons, rigid criteria should be avoided in relocation procedures. Project impacts on each species should be evaluated on a case-by-case basis. The role of the species in the ecosystem, the range and size of the population, its ability to adapt to change or move to other habitats, and its possible interactions with man should all be considered.

However, it would be desirable to establish a few basic resiting guidelines which are mutually agreeable to all agencies concerned. Biological concerns differ widely, depending upon

236

🗮 Ertec

the species affected. To provide guidelines for relocation, state agency experts familiar with the species in question should be consulted. These experts could provide input as to desirable avoidance distances and possible mitigation methods. If these biological impacts and concerns are then evaluated and incorporated early in the layout procedure, this will probably eliminate the need for most major biological relocations involving "gray areas" such as impacts on game species ranges, important migration routes, or breeding areas. Biological conflicts discovered during the field survey will likely be sufficiently minor that shelter relocation will provide adequate mitigation. With the exception of the layout evaluation, this is essentially the method used in the IOC valleys, as discussed in Section 3.3.

6.0 BIBLIOGRAPHY

- Ayensu, E. S., and DeFilipps, R. A., 1978, Endangered and threatened plants of the United States, The Smithsonian Institution and the World Wildlife Fund, Inc., Washington, D.C.
- Ball, T., 1981, Biologist, Cedar City BLM District Office, Personal communication, 5 and 23 February.
- Beale, D. M., and Smith, A. D., 1973, Mortality of pronghorn antelope fawns in Western Utah, Reprinted from The Journal of Wildlife Management, v. 37, no. 3, p. 343-352.
- Beatley, J. C., 1965, Effects of radioactive and non-radioactive dust upon <u>Larrea divaricata</u> cav., Nevada Test Site, Health Physics, v. II, p. 1621-1625.
- _____, 1967, Survival of winter annuals in the northern Mojave Desert, Ecology, v. 48, p. 745-750.
- ____, 1969a, Biomass of desert winter annual populations in southern Nevada, Oikos, v. 20, p. 261-273.
- _____, 1969b, Dependence of desert rodents on winter annuals and precipitation, Ecology, v. 50, p. 721-724.
- , 1974a, Effects of rainfall and temperature on the distribution and behavior of Larrea tridentata (creosote bush) in the Mojave Desert of Nevada, Ecology, v. 55, p. 245-261.
- ____, 1974b, Phenological events and their environmental triggers in Mojave Desert ecosystems, Ecology, v. 55, p. 856-863.
- _____, 1975, Climates and vegetation patterns across the Mojave/Great Basin desert transition of southern Nevada, American Midland Naturalist, v. 93, p. 53-70.
- _____, 1976, Vascular plants of the Nevada Test Site and central-southern Nevada ecological and geographic distributions, ERDA publication: TID-26881.
- Benedict, H. M., 1970, Economic impacts of air pollutants on plants, Stanford Research Institute, Irvine, California, and National Technical Information Service, U.S. Department of Commerce.
- Billings, W. D., 1949, The shadscale vegetation zone of Nevada and eastern California in relation to climate and soils, American Midland Naturalist, v. 42, p. 87-109.

î

- Billings, W. D., 1951, Vegetation zonation in the Great Basin of western North America, in Les bases ecologeques de la reg meration de la vegetation des zones arides, Internation Union of Biological Sciences, Series B, no. 9, p. 101-122.
- , 1954, Environmental studies in the cold deserts and semi-deserts of the western Great Basin of North America, Quartermaster Research and Development Command, United States Army, Report Contract DA 44-109-gm-1261.
- Brady, N. C., 1974, The nature and property of soils, New York: Macmillan Publishing Company.
- Braun, C. E., and others, 1977, The guidelines for maintenance of sage grouse habitats, The Wildlife Society Bulletin, v. 5, no. 3, p. 99-106.
- Bury, R. B., and others, 1977, Effects of off-road vehicles on vertebrates in the California desert, U.S. Fish and Wildlife Service, Wildlife Research Report 8.
- Bussack, S. D., and Bury, R. B., 1974, Some effects of off-road vehicles and sheep grazing on lizard populations in the Mojave Desert, Biological Conservation, v. 6, p. 179-183.
- Canfield, R. H., 1941, Application of the line intercept method in sampling range vegetation, Journal of Forestry, 7. 34, p. 388-394.
- Carter, L. J., 1974, Off road vehicles: a compromise plan for the California desert, Science, v. 183, p. 396-398.
- Charley, J. L., 1972, The role of shrubs in nutrient cycling, <u>in</u> McKell, C.M., and others, eds., Wildland shrubs -their biology and utilization, U.S. Forest Service Technical Report 1-N8-1.
- Charley, J. L., and West, N. E., 1975, Plant-induced soil chemical patterns in some shrub-dominated semi-desert ecosystems of Utah, Journal of Ecology, v. 63, p. 945-963.
- Chew, R. M., and Chew, A. E., 1969, Reproduction in the psammophilous lizard <u>Uma scoparia</u>, Copeia, v. 1966, p. 114-122.
- , 1970, Energy relationships of the mammals of a desert shrub (Larrea tridentata) community, Ecological Monograms, V. 40, p. 1-21.
- Cleaves, D. T., and Taylor, J., 1979, Competition as a control of <u>Halogeton glomeratus</u>, Journal of Colorado-Wyoming Academy of Sciences, v. 40, no. 1, p. 18.

🗕 Ertec

- Collopy, M. W., 1978, The bioenergetic requirements for growth and maintenance of raptors common to the Snake River birds of prey natural area, Bureau of Land Management, Idaho, Contract final report, USDI.
- Cook, C. W., and Stoddart, L. A., 1953, The halogeton problem in Utah, Agricultural Experiment Station, Utah State Agricultural College Bulletin, v. 364, p. 1-44.
- Cottam, W. P., 1961, Our renewable wild lands -- a challenge, Salt Lake City, Utah: University of Utah Press.
- Cronin, E. H., 1973, Pregermination treatment of black seed of halogeton, Weed Science, v. 21, no. 2, p. 125-127.
- Cronquist, A., and others, 1972, Intermountain flora-vascular plants of the intermountain west; Hafner Publishing Company, v. I.
- Daubenmire, R. F., 1974, Plants and environment a textbook of autecology, 3rd edition, New York: John Wiley and Sons.
- Davidson, E., and Fox, M., 1974, Effects of off-road motorcycle activity on Mojave Desert vegetation and soil, Madrono, v. 22, p. 381-390.
- Day, D., 1980, Director, Utah Division of Wildlife Resources, Personal communication, 15 December.
- Eakin, 1963, MX siting investigations geotechnical summary water resource program, FY 79, p. 38-42.
 - , 1964, Groundwater appraisal of the Coyote Spring and Kane Spring Valleys and Muddy River Springs Area, Lincoln and Clark Counties, Nevada, Groundwater Resources - Reconnaissance Series Report 25, State of Nevada Department of Conservation and Natural Resources.
- _____, 1966, A regional interbasin ground water system in the White River Area, southeastern Nevada, Water Resource Bulletin no. 33, Nevada Department of Conservation and Natural Resources.
- Eakin, Thomas E., and Moore, Donald O., 1964, Uniformity of discharge of Muddy River Springs, Southeastern Nevada, and relation to interbasin movement of ground water, Carson City, Nevada, U.S. Geological Survey Professional Paper 501-D, p. D171-D176.
- Eckert, R. F., Jr., and Kinsinger, F. E., 1960, Effects of Halogeton glomeratus leachate on chemical and physical characteristics of soils, Ecology, v. 41, no. 4, p. 764-772.

🗮 Ertec

- Eckert, R. F., and others, 1976, Properties, occurrence and management of soils with vesicular surface horizons, Progress report of Nevada Agricultural Experiment Station to BLM, 31 January, p. 40.
- Egoscue, Harold J., 1956, Preliminary studies of the kit fox in Utah, Journal of Mammalogy, v. 37, p. 351-357.

_____, 1962, Ecology and life history of the kit fox in Tooele County, Utah, Ecology, v. 43, p. 481-497.

- El-Ghonemy, A. A., and others, 1980a, Frequency distribution of numbers of perennial shrubs in the northern Mohave Desert, Great Basin Memoirs, v. 4, p. 34-38.
- , 1980b, Socioecological and soil-plant studies of the natural vegetation in the northern Mohave Desert-Great Basin interface, Great Basin Naturalist Memoirs, v. 4, p. 73-88.
- Elton, C. S., 1927, Animal ecology, London: Sidgwick and Jackson.
- Evans, R. A., and others, 1967, Wheatgrass establishment with paraquat and tillage on downy brome ranges, Weeds, v. 15, p. 50-55.
- Farrens, P. J., 1975, How recreation land developments affect local vegetation, a predictive model, M.S. Thesis, Reno, Nevada: University of Nevada.
- Federal Register, 1980, v. 45, no. 242, p. 82480-82569.
- Federal Register, 1980, v. 45, no. 99, p. 33768-33781.

Federal Register, 1979, v. 41, no. 110, p. 222915-222922.

- Foster, R. H., 1968, Distribution of the major plant communicies in Utah, Ph.D. Dissertation, Provo, Utah: Brigham Young University.
- Fugro National Inc., (no date), MX siting investigations geotechnical summary water resource program, FY 79.
- Garcia-Moya, E., and McKell, C. M., 1970, Contribution of shrubs to the nitrogen economy of a desert-wash plant community, Ecology, v. 51, p. 81-88.
- Gates, D. H., and others, 1956, Soil as a factor influencing plant distribution on salt-deserts of Utah, Ecological Monographs, v. 16, no. 2, p. 155-175.

Ertec

- Goodall, D. W., and Morgan, S. J., 1974, Seed reserves in desert soils, US/IBP Desert Biome Research Memorandum 74-16.
- Gore, J., 1981, U.S. Fish and Wildlife Service, Boise, Idaho, Personal communication.
- Graham, E. H., 1937, Botanical studies in the Uinta Basin of Utah and Colorado, Annals of the Carnegie Museum, v. 26, p. 1-432.
- Graves, W., 1976, Revegetation of disturbed sites with native shrub species in the western Mojave Desert, <u>in</u> Kay, B.L., ed., 1976, Test of seeds of Mohave Desert shrubs, Department of Agronomy and Range Science, University of California, Davis, California, Progress Report, BLM Contract No. 53500-(T4-21N).
- Hammond, P. B., and Aronson, A. L., 1964, Lead poisoning in cattle and horses in the vicinity of a smelter, Annals of the New York Academy of Sciences 111, p. 595-611.
- Harris, L. D., 1971, Small mammal studies and results in the grassland biome, in French, N. R., ed., Preliminary analysis of structure and function in grasslands, Colorado State University, Fort Collins, Range Science Department, Science Series no. 10, p. 213-240.
- Harrison, B. F., 1980, Botanical survey threatened, endangered and other rare plants of the Schell Resource area, Ely District, Nevada, BLM, Intermountain Research Corporation, Provo, Utah.
- HDR Sciences, 1979, An evaluation of environmental resources of Dry Lake Valley, Delamar Valley, Tikaboo Valley, and Penoyer Valley, Lincoln County, and Big Smoky Valley, Esmeralda County, Nevada, p. 5-21.
- _____, 1980a, Environmental impact analysis process, deployment area selection and land withdrawal/acquisition DEIS: Chapter 1 (Program Overview); Chapter 2 (Comparative Analysis of Alternatives): Chapter 3 (Affected Environments); Chapter 4 (Environmental consequences of the study regions and operating base vicinities); Chapter 5 (Appendices).

____, 1980b, Unpublished data.

- _____, (no date), Environmental characteristics of alternative designated deployment areas: protected species, Environmental Technical Report 17.
- Herron, G., 1980, Non-game biologist, Nevada Department of Wildlife, Personal communication.

Ξ Ertec

- Hinman, Robert A., 1958, Antelope populations in southwestern Utah with special reference to golden eagle predation, Completion report for Federal Aid Project W-65-R-6, Utah State Department of Fish and Game.
- Hitchcock, and others, 1964, Vascular plants of the Pacific Northwest: Seattle, Washington: University of Washington Press, v. 2.

, 1969, v. 1.

- Hodder, R. L., 1977, Dry land techniques in the semi-arid west in Thames, J.L., ed., Reclamation and use of disturbed land in the southwest, Tucson, Arizona: University of Arizona Press, p. 217-224.
- Hohn, J., 1981, U.S. Fish and Wildlife Service, Portland, Oregon, Personal communication, 26 February.
- Holland, J. S., and Schramm, D. R., 1977, Cacti of southern Nevada, Las Vegas, Nevada: University of Nevada.
- Holmgren, R. C., and Hutchings, S. S., 1972, Salt desert shrub response to grazing use, in McKell, C.M., and others, eds., Wildland shrubs -- their biology and utilization, U.S. Department of Agriculture, Forest Service, General Technical Report INT-1.
- Howard, G. S., and Samuel, M. J., 1979, The value of freshstriped topsoil as a source of useful plants for surface mine revegetation, Journal of Range Management, v. 32, no. 1, p. 76-77.
- Hunter, and others, 1975, Responses and interactions in desert plants as influenced by irrigation and nitrogen applications, US/IBP Desert Biome Research Memorandum RM 73-26.
- Irvine, J. R., and West, N. E., 1979, Riparian tree species distribution and succession along the lower Escalante River, Utah, The Southwestern Naturalist, v. 24, p. 331-346.
- Jaeger, E. C., 1972, Desert wild flowers, Standford, California: Stanford University Press.
- James, Lynn F., and Cronin, Eugene H., 1974, Management practices to minimize death losses of sheep grazing Halogetoninfested range, Journal of Wildlife Management, v. 27, no. 6, p. 424-426.
- James, D. W., and Jurinak, J. J., 1978, Nitrogen fertilization of dominant plants in the northeastern Great Basin Desert <u>in Nitrogen Desert Ecosystems, West, N. E. and Skufins, J.</u> eds., Dowden, Stroudsburg, Pennsylvania: Hutchinson and Ross, Inc.

Ertec

- Jarvis, Joseph M., 1969, Ecological effects of marsh manipulation by drawdown and mechanical removal of vegetation, M.S. Thesis, Irvine California: Humbolt State College.
- Jaynes, R. A., and Harper, K. T., 1978, Patterns of natural revegetation in arid southeastern Utah, Journal of Range Management, v. 31, p. 407-411.
- Johnson, H. B., and others, 1975, Productivity, diversity, and stability relationships in Mojave Desert roadside vegetation, Bulletin of the Torrey Botany Club, v. 102, p. 106-115.
- Kinsinger, Floyd E., and Eckert, Richard E., 1961, Emergence and growth of annual and perennial grasses and forbs in soils altered by Halogeton leachate, Journal of Range Management, v. 14, p. 194-197.
- Krueger, William C., and Sharp, Lee A., 1978, Management approaches to reduce livestock losses from poisonous plants on rangeland, Journal of Range Management, v. 31, no. 5, p. 347-350.
- Lee, Ronald, 1981, Game biologist, Nevada Department of Wildlife, Personal communication, 23 February.
- Low, W. A., 1979, Spatial and temporal distribution and behaviour, in Arid-land ecosystems, Goodall, D.W., and Perry, R.A., eds., Cambridge, Massachusetts: Cambridge University Press, v. I, p. 769-795.
- Luckenbach, Roger A., 1975, What the off-road vehicles are doing in the desert, Fremontia, v. 2, p. 3-11.
- McQuivey, Robert P., 1976, The status and trend of desert bighorn sheep, Federal aid in Wildlife Restoration, Project W-48-8, Study R-III, Job I, Reno, Nevada: Nevada Department of Fish and Game, Special Report 77-6.
- _____, 1978, The desert bighorn sheep of Nevada, Nevada Department of Wildlife, Final Report, Federal aid in Wildlife Restoration, Project W-48-R-8, Study R-III, Reno, Nevada. Biological Bulletin no. 6.
- Martin Marietta, 1980, Special interest flora and fauna of Nevada: assembly test and system support, MX program, Denver, Colorado, ST-0080/F04704-78-C-0016.
- Mayhew, W. W., 1966, Reproduction in the arenicolous lizard <u>Uta</u> <u>notata</u>, Ecology, v. 47, p. 9-18.
- Miller, Keith, 1956, Control of Halogeton in Nevada by range seeding and herbicides, Journal of Range Management, v. 9, p. 227-229.

≣ Ertec

- Millsap, B., 1981, Bureau of Land Management, Phoenix, Arizona, Personal communication, 30 January.
- Molini, William A., 1979, Nevada bobcat population status report, Nevada Department of Wildlife, submitted to ESSA.

____, 1980, Personal communication, 27 August.

____, 1981, Personal communication.

- Murie, O. J., 1974, A field guide to animal tracks, 2nd edition, Boston, Massachusetts: Houghton Mifflin Company.
- Murphy, J. A. and White, C. M., 1980, Raptor surveys in the intermontance valleys of western Utah and eastern Nevada, Final Report to HDR.
- Murphy, J. R., 1975, Status of golden eagle populations in Central Utah, <u>in</u> Murphy, J. R., and others, eds., Population status of raptors, Proceedings of conference on raptor consideration, Technical raptor research report no. 3.
- National Academy of Sciences, 1974, Rehabilitation potential of western coal lands, Cambridge Massachusetts: Bollinger Publishing Company.
- Nelson, J. F., and Chew, R. M., 1979, Factors affecting seed reserves in the soil of a Mojave Desert ecosystem, Rock Valley, Nye County, Nevada, American Midland Naturalist, v. 97, no. 2, p: 300-320.
- Nevada Revised Statutes, Protection of trees and flora, Statutes 527.260-527.300.

Nevada Department of Wildlife, 1980, maps.

Nevada State Engineers Office, 1971, Water for Nevada: Nevada's water resources, Report no. 3.

____, 1973, Water for Nevada: forecasts for the future - fish and wildlife, Report no. 6.

- Nielson, Darwin B., 1978, The economic impact of poisonous plants on the range livestock industry in the 17 western states, Journal of Range Management, v. 31, no. 5, p. 325-328.
- Paulsen, H. A., 1953, A comparison of surface soil properties under mesquite and perennial grass, Ecology, v. 34, p. 727-732.
- Piemeisel, R. L., 1932, Weedy abandoned lands and weed hosts of the beat leaf hopper, U.S. Department of Agriculture Circular 229.

Ertec

- Piemeisel, R. L., 1938, Changes in weedy plant cover on cleared sagebrush land and their probable causes, U.S. Department of Agriculture Technical Bulletin 654.
- Pinzl, Ann, 1979, Nevada's threatened and endangered plant map book, Nevada State Museum, Carson City, Nevada.

____, 1980, Nevada threatened and endangered plant map book, Nevada State Museum, Carson City, Nevada.

Plummer, and others, 1955, Seeding rangelands in Utah, Nevada, southern Idaho, and western Wyoming, U.S. Department of Agriculture Handbook 71.

_____, 1968, Restoring big game range in Utah, Utah Division of Fish and Game, Publication no. 68-3.

- Reinking, R. F., and others, 1975, Dust storms due to the dessication of Owen's Lake, Proceedings--International Conference on Environmental Sensing and Assessment, Las Vegas, Nevada, 14-19 September.
- Rickard, W. H., 1965, The influence of greasewood on soil moisture and soil chemistry, Northwest Science, v. 39, p. 36-42.
- Riechert, S. E., 1979, Development and reproduction in desert animals, in Arid-land ecosystems, Goodall, D. W., and Perry, R. A., eds., Cambridge, Massachusetts: Cambridge University Press, v. I, p. 797-822.
- Roberts, R. C., 1950, Chemical effects of salt-tolerant shrubs on soils, Proceedings of the Fourth International Congress of Soil Scientists, v. I, p. 404-406.
- Robertson, J. E., and others, 1966, Responses to grasses seeded in an Artemisia tridentata habitat in Nevada, Ecology, v. 47, p. 187-194.
- Robinson, Scott, 1980, District Biologist, Ely District Bureau of Land Management Office, Nevada, Personal communication.
- Romney, E. M., 1973, Some characteristics of soil and perennial vegetation in northern Mojave Desert areas of the Nevada test site, U.S. Atomic Energy Commission Report no. UCLA 12-916.
- Romney, E. M., and others, 1977a, Effects of shrubs on redistribution of minerals nutrients in zones near roots in the Mojave Desert, in Marshall, J. K., ed., 1977, Proceedings of below ground ecosystem symposium, Fort Collins, Colorado: a synthesis of plant-associated processes, Range Science Department, Science Series no. 26.

🖀 Ertec

- Romney, E. M., and others, 1977b, Plant response to nitrogen fertilization in the northern Mohave Desert and its relationship with water manipulation, in West, N. E., and Skufins, J., eds., 1977, Nitrogen processes in desert ecosystems, Stroudsburg, Pennsylvania: Dowden, Hutchinson and Ross.
- , (no date), The pulse hypothesis in the establishment of <u>Artemisia</u> seedlings at Pahute Mesa, Nevada, Great Basin Naturalist Memorandum, v. 4, p. 26-28.
- Romney, E. M., and Wallace, A., 1972, Radioecology and ecophysiology of desert plants at the Nevada test site, USAEC, TID-25954.
- Ryser, F., 1976, Check list of the birds of Nevada, University of Nevada, Reno.
- Sandoval, F. M., and Power, J. F., 1977, Laboratory methods recommended for chemical analysis of mined-land spoils and over-burden in western United States, U.S. Government Printing Office, Washington, D.C., U.S. Department of Agriculture Handbook 525.
- Shields, L. M., and Wells, P. V., 1963, Recovery of vegetation in the vicinity of atomic target areas at the Nevada test site in Proceedings of the first national symposium on radio-ecology, New York: Reinhold Publishing Corporation, p. 307-310.
- Shreve, F., 1917, The establishment of desert perennials, Journal of Ecology, v. 5, p. 210-216.
- Shreve, F., and Minckeley, A. L., 1937, Thirty years of change in desert vegetation, Ecology, v. 18, p. 463-478.
- Smith, R. L., 1974, Ecology and field biology, New York: Harper & Row Publishers.
- Snyder, N. F. R., and Snyder, H. A., 1975, Raptors in range habitat, in Proceedings of the symposium on management of forest and range habitats for non-game birds, Smith, D. R., Coordinator, U.S. Department of Agriculture, Forest Service, General Technical Report WO-1.
- _____, and Board of Fish and Game Commissioners, 1978, Commission General Regulations, no. 1, p. 8.
- Stebbins, R. C., 1954, Amphibians and reptiles of western North America, New York: McGraw-Hill Book Company.

_____, 1966, A field guide to western reptiles and amphibians, Boston, Massachusetts: Houghton Mifflin Company.

Ertec

- Stevens, R., and others, 1977, Winterfat (<u>Ceratoides lanata</u>), Utah Division of Wildlife Resources.
- Stewart, G., and others, 1940, Influence of unrestricted grazing on northern salt desert plant associations in western Utah, Journal of Agricultural Research, v. 60, p. 289-316.
- Strickler, G. S., and Sterns, F. W., 1963, The determination of plant density, U.S. Department of Agriculture, Miscellaneous Publication 940.30-39.
- Sundstrom, Charles, and others, 1973, Abundance, distribution and food habits of the pronghorn, a partial characterization of the optimum pronghorn habitat, Cheyenne, Wyoming, Wyoming Game and Fish Commission Bulletin no. 12.
- Taylor, S. A., and Ashcroft, G. L., 1972, Physical edaphology, San Francisco, California: W. H. Freeman and Company.
- Tiedemann, A. R., and Klemmedson, J. D., 1973, Effects of mesquite on physical and chemical properties of the soil, Journal of Range Management, v. 26, p. 27-29.
- Tschanz, C. M., and Pampeyan, 1970, Geology and mineral deposits of Lincoln County, Nevada, Nevada Bureau of Mines Bulletin 73.
- Tueller, P. T., 1979, Food habits and nutrition of mule deer on Nevada ranges, Final Report, Federal Aid in Wildlife Restoration, Nevada Department of Fish and Game, and Nevada Agricultural Experiment Station, Project W-48-5, study 1, job 2.
- Turner, and others, 1973, Reproduction and survivorship of the lizard <u>Uta stansburiana</u>, and the effects of winter rainfall, density and predation on these processes, U.S. International Biological Program, Desert Biome Research Memorandum RM-73-26.
- Udvardy, M. D., 1977, The Audubon Society field guide to North American birds, western region, New York: Alfred A. Knopf.
- Udy, J. R., 1953, Effects of predator control on antelope populations, Federal Aid Division, U.S. Department of Fish and Game, Printed by the Utah State Department of Fish and Game, Publication no. 5.
- (U.S.) Department of Agriculture, 1965, Improving cattle distribution on western mountain rangelands, Farmers Bulletin no. 2212, Washington, D.C.
- (U.S.) Department of Commerce, 1975, Climatological data annual summary, v. 90, no. 13.

Ertec

- U.S. Department of Commerce, 1977, Climatological data annual summary, v. 92, no. 13.
 - , 1979, v. 94, no. 13.
- (U.S.) Department of the Interior, 1979a, Final environmental impact statement on grazing management in the East Roswell ES Area, Bureau of Land Management, Washington, D.C.
- ____, 1979b, Ely District Office, Wildlife sighted or trapped in Dry Lake Valley.
- _____, 1980a, Bureau of Land Management, Washington, D.C., Instruction Memorandum no. 80-722.
- _____, 1980b, Caliente District Office, Caliente URA-threatened or endangered plant species.
- _____, 1980c, Nevada State Office, 1980 Nevada progress report, Reno, Nevada.
- (U.S.) Department of the Interior, Bureau of Land Management, and United States Department of Agriculture, Forest Service, 1980, Administration of the wild, free-roaming horse and burro act, United States Government Printing Office, Washington, D.C., Third report to congress: 1980 0-329-244.
- (U.S.) Environmental Protection Agency, 1973, Processes, procedures, and methods to control pollution resulting from all construction activity, Office of Air and Water Programs, Washington, D.C., EPA 430/9-73-007.
- (U.S.) Fish and Wildlife Service, 1980, Endangered and threatened wildlife and plants; review of plant taxa for listing as endangered or threatened species, Notice of review, 50CFR17, Federal Register, v. 45, no. 242.
- Van De Graaf, K. M., and Balda, R. P., 1973, Importance of green vegetation for reproduction in the kangaroo rat, <u>Dipodomys</u> <u>merriami merriami</u>, Journal of Mammology, v. 54, p. 509-512.
- Van Dyne, G. M., 1960, A procedure for rapid collection, processing, and analysis of line intercept data, Journal of Range Management, v. 13, p. 247-251.
- Wallace, A., and Romney, E. M., 1972, Some effects of an artificial stream on desert vegetation, in Radioecology and ecophysiology of desert plants at the Nevada test site, U.S. Atomic Energy Commission Office of Information Services, IID-25954.
- Wallace, A., and others, 1977, Nitrogen cycle in the northern Mojave Desert: implications and predictions, in US/IBP Synthesis Series 9, Stroudsburg, Pennsylvania: Dowden, Hutchinson, and Ross, Inc., p. 207-218.

🖀 Ertec

- Wallace, A., and others, 1980, The challenge of a desert: revegetation of disturbed desert land, Great Basin Naturalist Memorandum, v. 4, p. 214-225.
- Walstrom, Robert E., 1973, Water for Nevada, Forecasts for the future - fish and wildlife, Nevada State Engineer's Office, Report no. 6.
- Webb, R. H., and others, 1976, Environmental effects of soil property changes with off-road vehicle use, Environmental Management, v. 2, p. 219-223.
- Wells, P. V., 1961, Succession in desert vegetation on streets in Nevada ghost town, Science, v. 134, p. 670-671.
- Welsh, Stanley, L., and Neese, Elizabeth, 1980, Rare and endangered plant investigations in Nevada and Utah, Draft final report, Prepared for Henningson, Durham and Richardson (HDR).
- Welsh, Stanley L., and others, 1975, Endangered, threatened, extinct, endemic, and rare or restricted Utah vascular plants, Great Basin Naturalist, v. 35, p. 4.
- Wilshire, H. G. and Nakata, J. K., 1976, Offroad vehicle effects on California's Mojave Desert: California Geology, v. 29, p. 123-130.
- White, C. M., 1980, Personal communication, 27 August.
- _____, 1981, Second Klamath Bald Eagle Conference, 15-17 February.
- White, C. M., and others, 1979, Effects of controlled disturbances on ferruginous hawks as may occur during geothermal energy development, Geothermal Resources Council, Transactions, v. 3.
- Woffinden, N. D., and Murphy, J. R., 1977, Population dynamics of the ferruginous hawk during a prey decline, Great Basin Naturalist, v. 37, p. 411-425.
- Wood, K. M., and others, 1976, Spiny hopsage germination, Journal of Range Management, v. 27, no. 7, p. 53-56.
- Woody, J. R., and Thomas, B. O., 1968, Study of certain meteorological influences on the emergences and breeding of the plains spadefoot toad (<u>Scaphiopus bombifrons</u>), Journal of Colorado-Wyoming Academic Science, v. 6, no. 1, p. 11.
- Yoakum, J. D., 1968, Pronghorn in Schidt, J. L., and Gilbert, D. L., eds., Harrisburg, Pennsylvania: Stackpole Books.

Ertec

Young, J. A., and others, 1972, Alien plants in the Great Basin, Journal of Range Management, v. 25, p. 194-201.

Young, J. A., and Evans, R. A., 1973, Downybrome - intruder in plant succession of big sagebrush communities in the great basin, Journal of Range Management, v. 26, p. 410-415.

_____, 1974, Population dynamics of green rabbitbrush community ties, Journal of Range Management, v. 27, no. 2, p. 127-132.

APPENDIX A

FEDERAL REGISTER LISTING AND GUIDELINES

.

. '

82480 Federal Register / Vol. 45, No. 242 / Monday, December 15. 1980 / Proposed Rules

DEPARTMENT OF THE INTERIOR

50 CFR Part 17

Endangered and Threatened Wildlife and Plants; Review of Plant Taxa for Listing as Endangered or Threatened Species

AGENCY: Fish and Wildlife Service. Interior.

ACTION: Notice of review.

SUMMARY: The Service is issuing current lists of those plant taxa native to the U.S. being considered for listing as Endangered or Threatened under the Endangered Species Act of 1973, as amended (the Act). Such taxa should be considered in environmental planning. The present notice refines and updates three previous notices. A list is also provided of plant taxa which were previously under consideration for listing; but are presently presumed either extinct, not valid species. subspecies or varieties, or more abundant or widespread than previously believed and/or not subject to identifiable threats.

ADORESSES: Interested persons or organizations are requested to submit comments to: Director (OES), U.S. Fish and Wildlife Service, Department of the Interior, Washington, D.C. 20240. Comments and materials relating to this notice are available for public inspection by appointment during normal business hours at the Service's Office of Endangered Species, Suite 500, 1000 North Glebe Road, Arlington. Victinia.

Information relating to particular plant taxa may be obtained from appropriate Service Regional Offices listed below:

- Region 1—California, Hawaii, Idaho, Nevada, Oregon, Washington, and Pacific Trust Territories
 - Regional Director (ARD/FA), U.S. Fish and Wildlife Service. Suite 1692. Lloyd 500 Building. 500 NE. Multhomah Street. Portland. Oregon 97232, Telephone: 503/231-6131 (FTS: 8/429-6131)

Region 2—Arizona, New Mexico. Oklahoma, and Texas

- Regional Director (ARD/FA), U.S. Fish and Wildlife Service, P.O. Box 1306, Albuquerque, New Mexico 87103, Telephone: 505/766-3972 (FTS: 8/ 474-3972)
- Region 3—illínois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin
 - Regional Director (ARD/FA), U.S. Fish and Wildlife Service, Federal Building, Fort Sneiling, Twin Cities. Minnesota 55111. Telephone: 612/ 725-3596 (FTS: 8/725-3596)

- Region 4—Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Puerto Ríco, and the Virgin Islands
 - Regional Director (ARD/FA), U.S. Fish and Wildlife Service. The Richard B. Russell Federal Building, 75 Spring Street, SW., Atlanta, Georgia 30303, Telephone 404/221-3583 (FTS: 8/242-3583)
- Region 5—Connecticut, Delaware. Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, Virginia, and West Virginia
 - Regional Director (ARD/FA), U.S. Fish and Wildlife Service, Suite 700, One Gateway Center, Newton Corner, Massachusetts 02158, Telephone: 617/965-5100 ext. 316 (FTS: 8/829-9316, 7, 8)
- Region 6- Colorado, Kansas, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming (Iowa and Missouri under Region 3 after October 1, 1980)
 - Regional Director (ARD/FA), U.S. Fish and Wildlife Service, P.O. Box 25486, Denver Federal Center, Denver, Colorado 80225, Telephone: 303/234-2496 (FTS: 8/234-2496)
 - Alaska Area—Area Director, U.S. Fish and Wildlife Service, 1101 E. Tudor Road, Anchorage, Alaska 99503, Telephone: 907/276-3800, (FTS: Seattle Operator: 8/399-0150; 907/ 276-3800)

FOR FURTHER INFORMATION CONTACT: John L. Spinks, Jr., Chief, Office of Endangered Species, U.S. Fish and Wildlife Service, Washington, D.C. 20240 (703/235-2771), or the appropriate Regional Office.

SUPPLEMENTARY INFORMATION:

Background

Recognizing a special need to focus on the conservation of Endangered and Threatened plants. which were first accorded the means for Federal protection therein. the Endangered Species Act of 1973 directed the Secretary of the Smithsonian Institution to prepare a report on Endangered and Threatened plant species and recommend necessary conservation measures. The Smithsonian report. published as House Document No. 94-51, included a list of more than 3.000 native taxa thought to be extinct. Threatened, or Endangered. The Service published a notice on July 1, 1975 (40 FR 27823) in which it announced that the Smithsonian report had been accepted as a petition under the terms of the Act. and that the taxa named in the report

were being reviewed for possible inclusion in the list of Endangered and Threatened species. One previous notice of review, which named four plants, had been published in April 1975 (40 FR 17612) in response to a petition. Many c: these taxa were subsequently proposed for addition to the list on June 16, 1976 (41 FR 24523). Later, in 1977 (42 FR 40823) a third notice involving one plant was published. Because of the provisions of a 2-year limit for proposed rules in the Endangered Species Act Amendments of 1978 (Pub. L. 95-632). the 1976 proposal was mandatorily withdrawn in November 1979. Official notice of this withdrawal appeared on December 10, 1979 (44 FR 70796). That notice indicated that withdrawal was required because of the expiration of the deadline for making such rules final and was not related to the conservation status of the taxa proposed therein. The present notice is intended to reflect the Service's current judgment of the probable status of all plant taxa that were included either in previous notices or the 1976 proposal, as well as other taxa concerning which information has become available more recently. Taxa are grouped in several categories, as described below, in order to accurately reflect the Service's present evaluation of their status.

Category 1

Taxa for which the Service presently has sufficient information on hand to support the biological appropriateness of their being listed as Endangered or Threatened species. Because of the large number of such species, and because of the necessity of gathering data concerning the environmental and economic impacts of listings and designations of Critical Habitats, it is anticipated that the development and publication of proposed and final rules concerning such species will require several years. In some cases, although adequate data are now available to the Service to support re-proposal of species originally included in the withdrawn 1976 proposal, such species cannot be proposed for listing pending the receipt of sufficient new information warranting such action, as required by Section 4(f)(5) of the Act. The requirement that such re-proposals be based on new information has been interpreted to mean that such information must have been developed subsequent to the withdrawal of the original proposal on November 10, 1979. The Service requests that new information on the species named in this notice be submitted as soon as possible and on a continuing basis.

Ertec

Also included in this list are taxa whose status in the recent past is known. but which may have already become extinct. These retain a high priority for addition to the list, subject to confirmation of extant populations. Such possibly extinct species are indicated by an asterisk (*). Double asterisks (**) indicate taxa thought to be extinct in the wild, but known to be extant in cultivation.

Category 2

Taxa for which information now in the possession of the Service indicates the probable appropriateness of listing as Endangered or threatened, but for which sufficient information is not presently available to biologically support a proposed rule. Further biological research and field study will usually be necessary to determine the status of the taxa included in this category. It is hoped that this notice will encourage such research. Some taxa included in this category are of doubtful taxonomic validity and require further taxonomic research before their status can be clarified. The fact that many of these taxa have previously been proposed and withdrawn for procedural reasons largely reflects changes in informational standards applied to listing procedures in recent years. Additional information concerning these taxa, especially that resulting from recent investigations, is particularly sought by the Service.

Category 3

Taxa no longer being considered for listing as Endangered or Threatened. Such taxa are included in one of three sub-categories, depending on the reasons for removal from consideration.

3A. Taxa for which the Service has persuasive evidence of extinction. If rediscovered, however, such species might acquire high priority for listing. At this time, the best available information indicates that the taxa included in this category, or the habitats from which they were known, are in fact extinct or destroved, respectively.

3B. Names that on the basis of current taxonomic understanding, usually as represented in published revisions and monographs. do not represent taxa meeting the Act's definition of "species." Such supposed taxa could be reevaluated in the future on the basis of subsequent research.

3C. Taxa that have proven to be more abundant or widespread than was previously believed and/or those that are not subject to any identifiable threat. Should further research or changes in land use indicate significant decline in any of these taxa. they may be re-evaluated for possible inclusion in categories 1 or 2.

The plants listed in categories 1 and 2 may be considered candidates for addition to the list of Endangered and Threatened plants and, as such, consideration should be given them in environmental planning.

The Service hereby solicits information concerning the status of any of the species included in the present lists. Information is particularly sought:

1. indicating that a taxon would more properly be assigned to a category other than the one in which it appears:

2. providing new information regarding a plant previously proposed for listing and withdrawn because of the expiration of two years before a final listing action:

3. recommending an area as Critical Habitat for a candidate taxon or indicating why it would not be prudent to propose Critical Habitat for the taxon:

4. nominating for listing consideration a taxon not contained in the present lists:

5. documenting threats to any of the taxa listed:

6. indicating taxonomic revisions of any taxa included;

7. suggesting new or more appropriate common names for taxa;

8. noting errors in indicated distribution, etc.

The Service intends to consider all information received in response to this notice and to amend the contents of categories 1, 2, and 3 to reflect the current state of knowledge concerning affected plant taxa, and to indicate its intentions with regard to future listing actions. Such changes will be indicated by periodic notices in the Federal Register.

The following lists are arranged alphabetically by names of genera and species. Synonyms have been provided when necessary to avoid confusion. In some cases, taxa have been included which have not yet been formally described in the scientific literature. Such taxa are usually identified by a name followed by "sp. (ssp., var.) nov. ined." Known historical ranges are given by state for all included taxa.

Table 1 contains the name of all taxa presently on the list of Endangered plants. The left-hand column indicates status (E—Endangered, T—Threatened).

Table 2 contains the names of all taxa that have been proposed for listing under the Act. but for which final action has not yet been taken.

Table 3 lists all taxa in categories 1 and 2 (candidates), as explained above. The left-hand column indicates category. Table 4 lists all taxa in category 3. with the left-hand column indicating sub-categories.

A list of genera (Table 5) is also provided, arranged by families, for cross referencing.

This notice was principally prepared by the Botany staff of the Service's Endangered Species Program in the Washington Office of Endangered species and the Service's Regional and Area Offices. The Service gratefully acknowledges the assistance of Dr. John Nagy of Brookhaven National Laboratory. Upton. New York. for extensive technical assistance in compiling the lists of taxa.

Dated: September 25, 1980. Ronald E. Lamberton,

Acting Director. Fish and Wildlife Service.

82481

A - 2

TABLE A-1

Historic Taxon T or E Distribution Arctomecon humilis Е UT Astragalus perianus т υr Astragalus yoder-williamsii Е NV Echinocereus englemannii var. purpureus Ε UT Echinocereus triglochidiatus var. inermis Е UT Pediocactus sileri Έ UT Phacelia argillacea Ε UT Sclerocactus glaucus Т UT Sclerocactus wrightiae Е UT

TAXA CURRENTLY LISTED*

* As expected in Utah and Nevada.

1

A-3

.

. '

TABLE A-2

TAXA CURRENTLY PROPOSED AS EXPECTED IN UTAH AND NEVADA

-NONE-

A-4

1.

🛎 Ertec

T

TABLE A-3

TAXA CURRENTLY UNDER REVIEW*

Taxon	Category	Historic Distribution
Agave utahensis var. eborispina	2	NV
Agave utahensis var. nevadensis	2	NV
Allium passeyi	1	UT
Angelica scabrida	1	NV
Antennaria arcuata		NV
Aquilegia barnebyi	2	UT
Arabis sp./sp. Nov. Ined.	2	UT
Arabis sp./sp. Nov. Ined.	2 2 2 2 1	UT
Arctomecon californica	1	NV
Arctomecon merriamii	2	NV
Arenaria kingii var. rosea	1	NV
Arenaria stenomeres	1	NV
Asclepias cutleri	1	UT
Asclepias Eastwoodiana	2	NV
Asclepias Eastwoodiana Asclepias ruthiae	1	UT
Asclepias welshii	1	UT
Asplenium andrewsii		UT
Astragalus ackermannii	2	NV
Astragalus aequalis	2 2 1	NV
Astragalus ampullarius	2	UT
Astragalus barnebyi	1	UT
Astragalus beatleyae	1	NV
Astragalus callithrix	2	NV, UT
Astragalus calycosus var.		
monophyllidius	1	NV
Astragalus chloodes	1	UT
Astragalus cimae var. cimae	2	NV
Astragalus consobrinus	2	UT
Astragalus consobrinus Astragalus convallarius var. finitin	mus 2	UT
Astragalus cottamii	1	UT
Astragalus cronquistii	1	UT
Astragalus deservticus	1	UT
Astragalus funereus	1	NV
Astragalus geyeri var. triquetrus	1	NV
Astragalus hamiltonii	1	UT
Astragalus harrisonii	1	UT
Astragalus henrimontanensis	2	UT
Astragalus iselyi	1	UT
Astragalus lentiginosus var. latus	2	NV

* As expected in Utah and Nevada.

Ξ Ertec

ESC NEW COLOR

ł

.

.

.

.

TABLE A-3 (Cont.)

Taxon	Category	Historic Distribution
Astragalus lentiginosus var. m Astragalus lentiginosus var.	icans 1	NV
sesquimetralis	1	NV
		UT
Astragalus lentiginosus var. u Astragalus limnocharis	1	UT
Astragalus malacoides	2	UT
Astragalus mohavensis var. hem		NV
Astragalus montii	1	UT
Astragalus monumentalis	1	UT
Astragalus musimonum	2	NV
Astragalus oophorus var. cloke		NV
Astragalus oophorus var. lonch	· · · · · · · · · · · · · · · · · · ·	UT
Astragalus phoenix	1	NV
Astragalus porrectus	1	NV
Astragalus pseudiodanthus	2	NV
Astragalus pterocarpus	2	NV
Astragalus rafaelensis	ī	UT
Astragalus robbinsii var. occi	dentalis 1	NV
Astragalus sabulosus	2	UT
Astragalus saurinus	2	UT
		NV
Astragalus serenoi var. sordes Astragalus solitarius	2	NV
Astragalus sp.	2	UT
Astragalus sp./sp. Nov. Ined.	2	UT
Astragalus striatiflorus	1	UT
Astragalus tephrodes var. eury	lobus 2	NV
Astragalus toquimanus	1	NV
Astragalus uncialis	1	NV
Astragalus wetherillii	2	UT
Astragalus welshii	2	UT
Brickellia knappiana	2	NV
Camissonia megalantha	2 2 2 2 2 2 2 2	NV, UT
Camissionia nevadensis	2	NV
Carex curatorum	2	UT
Castilleja aquariensis	1	UT
Castilleja parvula	1	UT
Castilleja revealii	1	UT
Castilleja salsuginosa	1	NV
Centaurium namophilum var.		
namophilum/Ined.	1	NV

A-6

ŝ

8

ŧ

TABLE A-3 (Cont.)

Makes	Cabagows	Historic
Taxon	Category	Distribution
Cordylanthus tecopensis	2	NV
Coryphantha missouriensis var.	-	
marstonii	2	UT
Coryphantha vivipara var. rosea	2	NV, UT
Cryptantha barnebyi	1	UT
Cryptantha compacta	1	UT
Cryptantha elata	2	UT
Cryptantha hoffmannii	1	NV
Cryptantha insolita	1	NV
Cryptantha hoffmannii Cryptantha insolita Cryptantha johnstonii	1	UT
Cryptantha jonesiana	1	UT
Cryptantha jonesiana Cryptantha mensana	2	UT
Cryptantha ochroleuca	1	UT
Cryptantha semiglabra	2	UT
Cryptantha tumulosa	1	NV
Cuscuta warneri	1	UT
Cycladenia humilis var. jonesii	1	ŰT
Cymopterus basalticus	2	NV, UT
Cymopterus coulteri	1	UT
Cymopterus coulteri Cymopterus goodrichii	1	NV
Cymopterus higginsii	1	UT
Cymopterus minimus	1	UT
Cymopterus nivalis	2	NV
Cymopterus ripleyi var. saniculoides		NV
Dalea epica	2 2 2	UT
Draba arida	2	NV
Draba asprella var. zionensis	2	UT
Draba asterophora var. asterophora	2	NV
Draba crassifolia var. nevadensis	1	NV
Draba douglasii var. crockeri	2	NV
Draba jaegeri	1	NV
Draba maguirei var. burkei	2	UT
Draba maguirei var. maguirei	2	UT
Draba paucifructa	1	NV
Draba quadricostata	2	NV
Draba sobolifera	1	UT
Draba stenoloba var. ramosa	2	NV
Elodea nevadensis	1	NV
Enceliopsis nudicaulis var. corrugat		NV
Epilobium nevadense	= 1	NV, UT

≡ Ertec

A-7

7.

1

A-8

7:--

Taxon	Category	Historic Distribution
Erigeron cronquistii	1	UT
Erigeron kachinensis	2	UT
Erigeron latus	1	NV
Erigeron maguirei	1	UT
Erigeron mancus	1	UT
Erigeron ovinus	2	NV
Erigeron proselyticus	1	UT
Erigeron sionis	1	UT
Erigeron uncialis var. conjugans	2	NV
Eriogonum ammophilum	1	NV, UT
Eriogonum aretioides	1	UT
Eriogonum argophyllum	1	NV
Eriogonum bifurcatum	2	NV
Eriogonum clavellatum	2	UT
Eriogonum ocrymbosum var. davidsei	2	UT
Eriogonum corymbosum var. matthewsae	1	UT
Eriogonum cronquistii	2	UT
Eriogonum eremicum	2	UT
Eriogonum heermannii var.		
subracemosum	2	UT
Eriogonum holmgrenii	1	NV
Eriogonum humivagans Eriogonum jamesii var. rupicola	1	UT
Eriogonum jamesii var. rupicola	1	UT
Eriogonum Iancifolium	2	UT
Eriogonum lemmonii	1	NV
Eriogonum lemmonii Eriogonum lobbii var. robustum	1	NV
Eriogonum loganum	1	UT
Eriogonum microthecum var. johnstoni	i 1	CA*
Eriogonum microthecum var.	—	
panamintense	2	CA*
Eriogonum natum	1	UT
Eriogonum nummulare	2	UT
Eriogonum ostlundii Eriogonum ovalifolium var. Nov. Ined	2	UT
Eriogonum ovalifolium var. Nov. Ined	i . 1	NV
Eriogonum panguicense var. alpestre	— 1	UT
Eriogonum panguicense var. alpestre Eriogonum smithil	1	UT
Eriogonum tumulosum	2	UT
Eriogonum viscidulum	1	NV
Ferocactus acanthodes var. acanthode	s 2	NV
Festuca dasyclada	- 2	UT

TABLE A-3 (Cont.)

* Species also found in study area; varriety may or may not be the same.

≡ Ertec

And a state of the

A DESCRIPTION OF

Ķ

ķ

.

TABLE A-3 (Cont.)

Taxon	Category	Historic Distribution
Forsellesia pungens var. glabra	2	NV
Frasera gypsicola	1	NV
Frasera pahutensis	1	NV
Fraxinum cuspidata var. macropetala	a 2	NV
Gaillardia flava	- 1	UT
Galium hilendiae ssp. kingstonense	1	NV
Gilia caespitosa	1	UT
Gilia nyensis	2	ŇV
Glaucocarpum suffrutescens	1	UT
Grindelia fraxino-pratensis	1	NV
Gutierrezia sarothrae var.pomariens	-	UT
Hackelia ophiobia	1	NV
Hackella sp./sp. Nov. Ined.	1	UT
Haplopappus alpinus	2	NV
Hedysarum boreale var. gremiale	2	UT
Hedysarum occidentale var. canone	1	UT
Heterotheca jonesii	1	UT
Ivesia cryptocaulis	1	NV
Ivesia eremica	1	NV
Lathyrus hitchcockianus	1	NV
Lepidium barnebyanum	1	UT
Lepidium montanum var. neeseae	1	UT
Lepidium montanum var. stellae	1	UT
Lepidium nanum	י ז	NV
Lepidium ostleri	1	UT
Lesquerella garrettii	1	UT
Lesquerella hitchcockii	2	NV
	2	UT
Lesquerella rubicundula Lesquerella tumulosa	2	
		•-
Lewisia maguirei	1	NV
Lomatium latilobum	2	UT
Lomatium minimum	1	UT
Lupinus jonesii	2	UT
Lupinus malacophyllus	2	NV
Machaeranthera canescens var. zieg.		CA*
Ma haeranthera kingii	1	UT
Mentzelia argillosa	1	UT
Mentzelia leucophylla	1	NV
Mertensia toyabensis	2	NV
Musineon lineare	1	UT

* Species also found in study area; varriety may or may not be the same.

≡ Ertec

E-TR-48-11-1

.

4

TABLE A-3 (Cont.)

Taxon	Category	Historic Distribution
Najas caespitosa	2	UT
Oenothera sp./sp. Nov. Ined.	2	UT
Opuntia basilaris var. woodburyi	2	UT
Opuntia whipplei var. multigenicula	2 2 ata 2	NV, UT
Oryctes nevadensis	2	NV
Oxytheca watsonii	1	NV
Parrya rydbergii	1	UT
Pediocactus despainii	1	UT
Pediocactus winkleri	1	UT
Penstemon angustifolius var.	·	•-
vernalensis	2	UT
Penstemon arenarius	1	NV
Penstemon atwoodii	1	UT
Penstemon bicolor ssp. bicolor	1	NV
Penstemon bicolor ssp. roseus	1	NV
Penstemon bracteatus	1	UT
Penstemon compactus	2	UT
Penstemon concinnus	ī	UT
Penstemon francisci-pennellii	1	NV
Penstemon fruticiformis ssp.		
amargosae	1	NV
Penstemon garrettii		UT
Penstemon goodrichii	2	UT
Penstemon grahamii	2	UT
Penstemon humilis var. obtusifolius	2 2 2 2 2 2 2 2 2 2 2	UT
Penstemon keckii	2	NV
Penstemon moriahensis	2	NV
Penstemon nanus	2	UT
Penstemon pahutensis	1	NV
Penstemon parvus	1	UT
Penstemon patricus	2	ŰT
Penstemon procerus var. modestus	1	NV
Penstemon pudicus	1	NV
Penstemon rubicundus	2	ŰT
Penstemon sp./sp. Nov. Ined.	2	UT
Penstemon thompsoniae ssp. jaegeri	2	NV
Penstemon tidestromii	1	UT
Penstemon wardii	1	UT
Phacelia anelsonii	2	NV, UT
Phacelia beatleyae	1	NV, UI NV

Ξ Ertec

A-10

 T_{i}

ŧ

÷

Þ

.

m

TABLE A-3 (Cont.)

Faxon	Category	Historic Distribution
Phacelia cephalotes	2	UT
Phacelia glaberrima	1	NV
Phacelia howelliana Phacelia inconspicua Phacelia indecora	1	UT
Phacelia inconspicua	1	NV
Phacelia indecora	1	UT
Phacelia mammillarensis	2	UT
Phacelia nevadensis	2 2 2	NV
Phacelia parishii	2	NV
Phacelia utahensis	1	UT
Phaseolus supinus	1	UT
Phlox gladiformis	2	NV, UT
Polygala subspinosa var. heterorhync		NV
Polygonum utahense	<u> </u>	UT
Primula capillaris	1	NV
Primula maguirei	1	UT
Primula nevadensis	1	NV
Psoralea epipsila	2	UT
Psoralea pariensis	1	UT
Psorothamnus polyadenius var. jonesi		UT
Ranunculus acriformis var. aestivali		UT
Rorippa subumbellata	<u> </u>	NV
	1	NV, UT
Sclerocactus polyancistrus Sclerocactus pubispinus	1	NV, UT
Sclerocactus sp./sp. Nov. Ined.	2	
Sclerocaccus sp./sp. Nov. med.	2	
Selaginella utahensis	2	NV, UT
Senecio dimorphophyllus var.	2	7 771
intermedius	2	UT
Silene clokeyi	1	NV
Silene petersonii var. minor		UT
Silene petersonii var. petersonii	1	UT
phaeralcea caespitosa	1	NV, UT
phaeralcea psoraloides	2	UT
phaeromeria compacta	1	NV
phaeromeria ruthiae	1	UT
streptanthus oliganthus	1	NV
Synthyris ranunculina	1	NV
falinum validulum	2	UT
Thelypodiopsis argillacea	1	UT
Thelypodium sagittatum var.		
ovalifolium	2	NV, UT

-

ş 🖡

1

TABLE A-3 (Cont.)

Taxon	Category	Historic Distribution
Townsendia alipgena var. minima	2	UT
Townsendia aprica	1	UT
Townsendia jonesii var. tumulosa	1	NV
Townsendia sp./sp. Nov. Ined.	2	NV
Trifolium andersonii ssp. beatleyae	2	NV
Trifolium andersonii var. friscanum	1	UT
Trifolium lemmonii	1	NV
Viguiera soliceps	2	UT
Viola purpurea var. charlestonensis	2	NV, UT
Xylorhiza confertifolia	1	ŰT
Zigadenus vaginatus	2	NV, UT

A-12

 \mathcal{N}

APPENDIX B

π

. بنانی

9

NEVADA LEGISLATION, NORTHERN NEVADA NATIVE PLANT SOCIETY LISTING AND BLM MEMORANDUM 80-722

.

.

.

1

. '

APPENDIX B-1

120.00

 \mathcal{T}

NEVADA VEGETATION

.

PROTECTION OF TREES AND FLORA 527.290

PROTECTION AND PROPAGATION OF SELECTED SPECIES OF NATIVE FLORA

527.200 Legislative finding.

1. The legislature finds that:

(a) The economic growth of the State of Nevada has been attended with some serious and unfortunate consequences. Nevada has experienced the extermination or extirpation of some of her native species of flora. Serious losses have occurred and are occurring in other species of flora with important economic, educational, historical, political, recreational, scientific and aesthetic values.

(b) The people of the State of Nevada have an obligation to conserve and protect the various species of flora which are threatened with extinction.

2. The purpose of NRS, \$27.260 to \$27.300, inclusive, is to provide a program for the conservation, protection, restoration and propagation of selected species of flora and for the perpetuation of the habitats of such species.

(Added to NRS by 1969, 775)

527.270 Species declared to be threatened with extinction; list of protected species; special permits for removal, destruction. A species or subspecies of native flora shall be regarded as threatened with extinction when the state forester firewarden, after consultation with competent authorities, determines that its existence is endangered and its survival requires assistance because of overexploitation, disease or other factors or because its habitat is threatened with destruction, drastic modification or severe curtailment. Any species declared to be threatened with extinction shall be placed on the list of fully protected species, and no member of its kind may be removed or destruyed at any time by any means except under special permit issued by the state forester firewarden.

(Added to NRS by 1969, 775)

527.280 Destruction, removal by state forester firewarden of dangerous species. Where any species of flora which is declared to be in danger of extinction pursuant to NRS 527.270 is found to be dangerous to domestic animals or fowl or a menace to health, the state forester firewarden may provide for its destruction or its removal, alive, for translocating.

(Added to NRS by 1969, 775)

527.290 Duties of governor. The governor shall review the programs which he administers and, to the extent practicable, utilize such programs in furtherance of the purpose of NRS 527.260 to 527.300, inclusive, and shall encourage other state and federal agencies to use their authorities in such a manner.

(Added to NRS by 1969, 775)

527.300 PROTECTION OF TREES AND FLORA

527.300 Powers, duties of state forester firewarden. In carrying out the program authorized by NRS 527.260 to 527.300, inclusive, the state forester firewarden, subject to the approval of the director of the state department of conservation and natural resources, shall cooperate, to the maximum extent practicable, with other states and with the counties in the State of Nevada, and may enter into agreements with such other states and counties and with other legal entities for the administration and management of any area established pursuant to NRS 527.260 to 527.300, inclusive, for the conservation, protection, restoration and propagation of species of native flora which are threatened with extinction.

(Add.d to NRS by 1969, 775; A 1977, 1168)

🗕 Ertec

/: ``

PROTECTION AND PROPAGATION OF SELECTED SPECIES OF FLORA

Critically Endangered Species List

Pursuant to the authority granted in NRS 527.270, the state forester firewarden hereby declares the following plants to be threatened with extinction and to be placed on the list of fully protected species:

- Arctonecon californica Torr. & Frem. 1.
- 2. Arenaria stencmeres Eastw.
- Astragalus beatleyae Barneby 3.
- 4.
- Astragalus geyeri Gray var. triquetris (Gray) Jones Astragalus lentiginosus Doug. var. sesquimetralis (Rydb.) Barneby 5.
- 6. Astragalus nyensis Barneby
- Astragalus phoenix Barneby 7.
- 8. Castilleja salsuginosa N. Holmgren
- Cryptantha insolita (MacBr.) Payson Eriogonum arcophyllum Reveal Eriogonum lemonii S. Wats. Eriogonum viscidulum J.T. Howell 9.
- 10.
- 11.
- 12.
- 13.
- Frasera gypsicola (Barneby) D.M. Post
- Lathvrus hitchcockianus Barneby & Reveal 14.
- 15. Mentzelia leucophylla Bdg.
- 16. Pensteron thurberi Torr. var. anestius Reveal & Beatley
- + 17. Phacelia inconspicua Greene
 - 18. Primula capillaris N. Holmgren & A. Holmgren

Notes: Penstemon thurberi var. anestiu is an invalid taxon and therefore vil Gloweri V. Smith be deleted.

State Forester-Firewarden Species which will be added as a Division of Forestry result of the Northern Nevada Department of Conservation Native Plant Sociaties Plant and Natural Resources Workshop (1980) are: 201 South Fall Street Astragalus voder-williamsii Astragalus mohavensis var. hemigyrus Capitol Complex Opuntia Thipplei var. aultigeniculataCarson City, Nevada 89710 Eackelia ophiobia Eriogonum ovalifolium (currently the variety is in the process of being described. This species is known only from Steamboat Springs).

Ξ Ertec

.

•

.

.

.

8

. '

APPENDIX B~2

Ľ

NNNPS LISTINGS

Northern Nevada Native Plant Society Listings

(February 1980)

List 1 -- ENDANGERED (** indicates plants directly affected by the MX, * indicates plants indirectly affected by the MX)

Astragalus beatleyae

- * A. lentiginosus var. sesquimetralis
- * A. phoeniz
- A. solitarius
- ** A. tephrodes var. eurylobus
- ** A. uncialis
- ** Astragalus unnamed species
- * Calochortus unnamed species
- ** Castilleja salsuginosa
- * Centaurium namophilum
- * Cryptantha insolita (possibly extinct) Elodea nevadensis Eriogonum argophyllum E. ovalifolium unnamed variety
- List 2 -- THREATENED
 - * Angelica scabrida
 - Antennaria arcuata
 - * A. soliceps
 - * Arctomecon californica
 - * Arenaria kingii ssp. rosea
- * A. stenomeres
- Artemisia papposa
- ** Asclepias eastwoodiana
- * Astragalus aequalis
- ** A. callithriz
- ** A. calycosus var. monophillidius
- ** A. funereus
- ** 4. geyeri var. triquetrus
- ** A. Lentiginosus var. micans
- ** A. mohavensis var. hemigyrus
- * A. oophorus var. clokeyonus
- ** A. porrectus
- ** A. pseudiodanthus
- * A. robbinsii var. occidentalis
- ** A. serenoi var. sordescens
- ** A. toquimanus Brickellia knappiana
- * Calochortus striatus
- * Cordylanthus tecopensis
- ** Coryphantha vivipara var. rosea
- ** Cryptantha hoffmannii * Cryptantha tumulosa Cymopterus nivalis Cymopterus unnamed species Draba asterophora var. asterophora D. crassifolia var. nevadensis
- * D. jaegeri
- * D. paucifructa

ê

- D. stenoloba var. ramosa
- * Enceliopsis nucicaulis var, corrugata
- * Epilopium nevaciense Erigeron latus

- ** Eriogonum visciculum
- ** Frasera gypsicola
 - Galium hilendice ssp. kingstonense Hackelia ophiobia
- * Ivesia eremica
- ** Lathyrus hitchcockianus
- * Levisia maguirei
- * Mentzelia leucophylla
- ** Penstemon thurberi var. anestius Phacelia inconspicua P. nevadensis Primula capillaris Rorippa subumbellata
- * Synthyris ranunculina
 - ** Eriogonum bifurcatum
 - E. holmorenii
 - E. Lemmonii
 - E. lobbii var. robustum
 - ** Frasera pahutensis
 - ** Frazinus cuspidata var. macropetala
 - * Grindelia frazino-pratensis
 - * Ivesia cryptocaulis
 - * Opuntia whipplei var. multigeniculata
 - ** Ozytheca vatsonii
 - ** Penstemon arenarius
 - * P. bicolor ssp. bicolor * P. bicolor ssp. roseus

 - * P. francisci-pennellii ** P. fruticiformis ssp. amargosae
 - * P. moriahensis
 - P. pahutansis
 - P. procerus ssp. modestus

 - ** P. pudicus * P. thompsoniae 550. jaegeri
 - ** Phacelia anelsonii
 - P. beatleyae
 - ** P. glaberrina
 - ** Phlox gladiformis Primula nevadensis
 - ** Selerocactus polyancistrus
 - ** S. puirispinus
 - Selaginella utanensis
 - * Silene clokeyi
 - ** Sphaeralcea caespitosa
 - * Sphaeromeria compacta Streptanthus oliganthus
 - ** Thelypodium saggitatum var. ovalifolium * Townsendia jonesii var. tumulosa Trifolium lemmonii

E Estec^{*} Viola purpurea var. charlestonensis

- List 3 -- WATCH LIST
- ** Agave utahensis var. eborispina d. utahensis var. nevadensis
- Arabis dispar ** A. snockleyi
- ** Arctomecon merrianti
- Astragalus alvordensis
- ** A. convallarius var. finitimus
- ** A. lentiginous var.latus
- A. musimorum
- ** A. nyensis
- ** A. oophorus var. lonchocalyz
- 😳 🦾 pterocarpus

Camissonia megalantha C. nevadensis

- * Cirsium clokeyi
- ** Cryptantha interrupta
- ** Cymopterus basalticus
- ** C. corrugatus
- ** C. ripleyi var. saniculoides Draba arida
- **'D. douglasii
- D. sphaeroides var. cusickii ** Ephedra funerea
- Erigeron ovinus
- * Erigeron uncialis var. conjugans Eriogonum anemophilum
- ** E. concinnum
- ** E. darrovii

.

ŧ

•

•

- E. ovalifolium var. caelestinum
- ** E. ribricaile
- ** Ferocactus acanthodes Forsellesia pungens Geranium toquimense

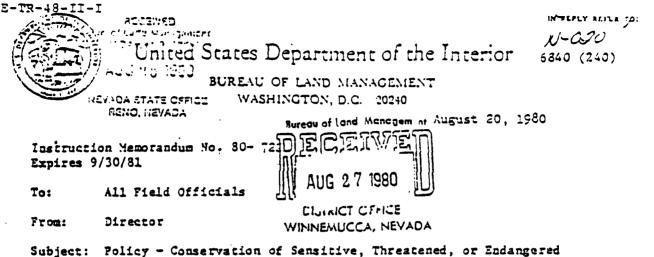
- ** Gilia nyensis
- ** 3. ripleyi
- Haplopappus eximius
- * H. vatsonii
- ** Hazardia (Haplopappus) brickellioides
- ** Hulsea vestita ssp. invoensis
- ** Lepidium nanum
 - * Lesquerella hitchcockii
- ** Linanthus arenicola
- * Lomatium ravenii
- ** Lupinus holmgrenanus L. malacophyllus
 - Lupinus montigenus
- ** Machaeranthera grindelioides var. depr. a
- ** M. leucanthemifolia Mertensia toyabensis Mimulus washoensis
- ** Mirabilis pudica
- ** Opuntia pulchella
- ** Oryctes nevadensis
- * Penstamon keckii
 - P. rubicundus
- ** Perityle megalocephala var. intricata
- ** Peteria thompsoniae
- ** Phacelia mustelina
- ** P. parishii
- ** Polygala subspinosa var. heterorhynca
- ** Psorothamnus kingii
- ** Salvia funerea
- ** Silene scaposa var. lobata Smelowskia holmgrenii
- ** Thelypodium laziflorum
- ** Trifolium andersonii ssp. beatleyae

List 4 -- DELETED from consideration in Nevada

Abronia orbiculata -- a synonym of widely distributed A. turbinata Carez whitneyi -- not known from Nevada Castilleja linoides -- a high elevation form of widely distributed C. Mava Croton wigginsii -- not known from Nevada Cryptantha compacta -- not known from Nevada Ditaris civersiflora -- a synonym of widely distributed Argythammia cyanophylla Draba lemmonii var. incrassata -- nat known from Nevada Eriogonum eremicum -- not known from Nevada Haplopappus aberrans -- not known from Nevada Hazardia (Haplopappus) cana -- not known from Nevada Isoetes bolanderi var. pygmaea -- not believed to occur in Nevada Machaeranthera ammophila -- a synonym of widely distributed Psilactis coulteri Nitrophila mohavensis -- not known from Nevada Fenstemon decurrus -- a synonym of widely distributed P. humilis Penstemon nanus -- not known from Nevada P. nyeensis -- a synonym of widely distributed P. kingii Polemonium nevadensis -- a synonym of widely distributed P. pulcherrimum Senecio lynceus var. leucoreus -- a synonym of widely distributed S. multilobatus

🗐 Ertec

AUG 81		LEYS. BI	OLOGICA	L RESO	URCES S	URVEY; 4704-80	DRY LA	`
	E-TR-46-V							


No.

· •

APPENDIX B-3

J.

BLM MEMORANDUM 722

Plants, Endangered Species Act (ESA) of 1973, as Amended

A. BACKRGOUND

The ESA of 1973, as amended, requires that threatened or endangered (T/E) plant species be identified and conserved (see Enclosure 1 for definitions). Under Section 7 of the Act, the Bureau is required to actively manage species in danger of extinction, to ensure their conservation, and to consult with Fish and Wildlife Service (FWS) on any action that results in a may affect decision to ensure that any action authorized, funded, or carried out by the Bureau does not jeopardize the continued existence of a federally listed species and/or its Critical Habitat. The 1979 amendments to Section 7 now require us to confer with FWS on actions which might affect proposed species.

The Act provides civil and criminal penalties for violations of its provisions and permits citizens to sue to require compliance with the Act, making it one of the most stringent statut is affecting the Bureau of Land Management (BLM). The official Federal listing of a plant species (as T/E) creates a nondiscretionary, legally binding obligation on the part of BLM to use all its authorities to prevent the extinction of the plants as well as to avoid any action which would jeopardize the species' "existence."

BLM/State cooperation in matters concerning official State-listed species is mandated by Title II, Section 202(c)(3) of the Sikes Act (16 U.S.C. 670h), as amended, which states, in part, that cooperative agreements under this Act must "... provide adequate protection for fish and wildlife officially classified as threatened or endangered pursuant to Section 4 of the ESA of 1973 (16 U.S.C. 1533) or considered to be threatened, rare, or endangered by the State agency. ... "Although plants are not specifically mentioned in the Sikes Act, the ESA of 1973 requires their consideration. Thus, plants should be included in Federal/State cooperative programs.

B. POLICY STATEMENT

It is Bureau policy to protect, conserve, and manage federally and Statelisted or candidate listings of sensitive, threatened, or endangered plants and to use its authorities in furtherance of the purposes of the ESA and similar State laws. The Bureau, through its actions and/or

🚍 Ertec

decisions in all planning and management activities, will ensure that actions authorized, funded, or carried out will not jeopardize the continued existence of such species or result in the destruction or modification of their Critical Habitats.

All candidate species for federally T/E status and sensitive species must be accorded the full protection of the ESA, unless it is determined by the State Director on a case-by-case basis that information on the occurrence of a plant species is adequate to allow a specific action.

The objectives of all programs will include the means to conserve officially listed plants, to promote delisting, and/or to enhance or maintain the ecosystems occupied by plants on Federal or official State inventories. It is also policy to ensure that the habitats of sensitive plants will be managed and/or conserved to minimize or eliminate the need for Federal or State listing in the future.

C. MANAGEMENT GUIDELINES

Management of federally or State-listed species must be implemented with the objective being the eventual delisting of such species. Sensitive species management should be carried out to secure thes, species' continued survival and ensure that future listing of such species is not necessary.

1. Federally T/E and Sensitive Species Lists

In order to implement BLM policy, it is imperative that each District develop and maintain an up-to-date list of all federally T/E, State-Listed, and sensitive plant species which are known or suspected to occur on BLMadministered lands within that District or on adjacent lands which may reasonably be expected to be influenced by Bureau actions. Extreme care should be taken to include on each District list only plant species for which there is reasonable evidence for concern. Those species included in the Federal Register, July 1, 1975 (40 F.R. 27824-27924), and June 17, 1976 (41 F.R. 24524-24572), may serve as a basis for the District lists, but each species should be included only after close scrut' Indiscriminste inclusion of species on these lists will be counter-; ve. Suggestions should be solicited on an ongoing basis from all Bull ou field personnel, as well as appropriate persons in other agencies, universities, and local plant taxonomists, and where present from native plant societies and heritage programs. Through consolidation of the District Lists, a current BLM State list should be developed and maintained and made available to all field offices.

The Office of Endangered Species of the FWS expects to have published in the <u>Federal Register</u> by early fall (1980) a listing of plant species under formal Notice of Review. Once available this list should be considered in revising the BLM State lists. All species in this Review which are candidates for T/E status should automatically be added to appropriate BLM State lists.

2. Inventory and Species Status Reports

It is the responsibility of the BLM under the ESA to conduct and maintain on a continuing basis an inventory of the occurrence, populations, and distributions of threatened and endangered plant species. The BLM State lists will afford field personnel with target species on which information can be gathered on an ongoing basis.

On a priority basis, each species should be studied to compile information on which intelligent management decisions for the species can be made. Coordination of such studies may be necessary at the State level in instances where a species is present in two or more Districts or States. The "Guidelines for the Preparation of Status Reports on Rare or Endangered Plant Species" (Enclosure 2) provides a concise format for the compilation of individual species status reports. These guidelines should be useful whether the information on a species is gathered by BLM personnel or by persons outside the Bureau on contract. The status reports for each species should never be considered a final product, but should be constantly upgraded and revised as new information becomes available.

3. Planning

2 Enclosures:

As stated in Section 3(3) of the ESA, as amended, "The terms 'conserve', 'conserving', and 'conservation' mean to use and the use of all methods and procedures which are necessary to bring any endangered species or threatened species to the point at which the measures provided pursuant to this Act are no longer necessary." All land-use plans and activity plans should take into consideration the management of T/E and sensitive plant species to ensure their conservation. In some cases, it will be necessary for the conservation of species with restricted distributions to develop habitat management plans (HPS). These HPS should be done on a priority basis and should follow the format presented in BLM Manual Section 6620. Existing HMPs should be modified to include such species if they occur within the wildlife habitat area. In circumstances where threatened, endangered, and/or sensitive species occur in a narrowly defined area, this area should be examined to see if it meets the criteria for designation as an area of critical environmental concern (ACEC). The most recent BLM policy on ACECs is available in Organic Act Directive No. 77-77, Change 2. For species with disjunct occurrences or species which are videly dispersed RPS may not be appropriate. In such cases, appropriate management plans should be developed following a format similar to that of HMPs.

Jong D. Lea

Deputy Mector for Lands & Resources

Encl. 1 - Definitions Encl. 2 - Guidelines for the Preparation of Status Reports on Rare or Endangered Plant Species

= Ertec

3

Definitions

-C-

candidate species: See sensitive species

- conservation: The use of all methods and procedures which are necessary to bring any endangered or threatened species to the point at which the measures provided pursuant to the ESA or similar State laws are no longer necessary.
- <u>Critical Eabitat</u>: Any air, land, or water area (exclusive of those existing manmade structures or settlements which are not necessary to the survival and recovery of a listed species) and constituent elements thereof, the loss of which would appreciably decrease the likelihood of the survival and recovery of a listed species or a distinct segment of its population. The constituent elements of Critical Habitat include, but are not limited to: physical structures and topography, biota, climate, human activity, and the quality and chemical content of land, water, and air. Critical Habitat may represent any portion of the present habitat of a listed species and may include additional areas for reasonable population expansion.

-Z-

endangered species: Any species of plant or animal which is in danger of extinction throughout all or a significant portion of its range.

-7-

federally listed species: Those species of plants classified by the Secretary of the Interior or the Secretary of Commerce as threatened or endangered pursuant to Section 4 of the ESA.

-J-

jeopardize the continued existence of: Any action which would result in the reduction of the numbers of a sensitive or officially listed species to such an extent that the loss would pose a threat to its continued survival or recovery in the wild.

-0-

officially listed species: Includes both federally and State-listed species of plants.

-?-

plant: Any member of the plant kingdom, including seeds, roots, and other parts thereof.

Encl. 1-1

1

-5-

sensitive species: (candidate) Species not yet officially listed but which are undergoing a status review or are proposed for listing according to <u>Federal Register</u> notices published by the Secretary of the Interior or the Secretary of Commerce, or according to comparable State documents published by State officials.

Species whose populations are consistently small and widely dispersed, or whose ranges are restricted to a few localities, such that any appreciable reduction in numbers, habitat availability, or habitat condition might lead toward extinction.

Species whose numbers are declining so rapidly that official listing may become necessary as a conservation measure. Declines may be the result of one or more of several factors including: destruction, modification, or curtailment of the species or habitat; overuse for commercial, scientific, or educational purposes; disease; the inadequacy of existing regulatory mechanisms; and/or other natural or menmade factors adversely affecting the species' continued existence.

- species: Plant taxa at the rank of species, subspecies, variety, or significant occurrences of any such taxa.
- <u>State-listed species</u>: A species of plants or animals classified by a <u>State government</u>, pursuant to State laws and/or regulations, in categories implying potential extinction throughout all or a significant portion of its range, especially extirpation within the respective State.

-T-

threatened species: Any plant species which is likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range.

2

Encl. 1-2

🗲 Ertec

E-TR-48-II-I EPLY REFER TO Bureau of Land Managaman United States Department of the Interior 5840 (240) HLING MANAGESERT 7 1980 WASHINGTON, D.C. 2 20240 SEP 15 (SEE LISTRICT CFILLE WINNEMUC Stote 262 8, 1990

Instruction Memorandum. No. 80-722, Change 1 Expires 9/30/81

To: All Field Officials

From: Director

Subject: Policy - Conservation of Sensitive, Threatened, or Endangered (T/E) Plants, Endangered Species Act (ESA) of 1973, as Amended

To clarify the process of developing sensitive species lists, the following underlined sentences and word changes are being added to Cl of Instruction Memorandum No. 80-722.

C. MANAGEMENT GUIDELINES

Management of federally or State-listed species must be implemented with the objective being the eventual delisting of such species. Sensitive species management should be carried out to secure these species' continued survival and ensure that future listing of such species is not necessary.

1. Federally T/E, State-Listed T/E, and Sensitive Species Lists

In order to implement the Bureau of Land Management (BLM) policy, it is imperative that each District develop and maintain an up-to-date list of all federally T/E, State-listed, and sensitive plant species which are ~ known or suspected to occur of 3LM-administered lands within that District or on adjacent lands which may reasonably be expected to be influenced by Bureau actions. Three lists should be developed. One will include all federally listed T/E species; the second, all State-Listed T/E species; and the third, all sensitive species (see definition on Enclosure 1-2). Extreme care should be taken to include on each District sensitive species list only plant species for which there is reasonable evidence for concern. Those species included in the Federal Register, July 1, 1975 (40 F.R. 27824-27924), and June 17, 1976 (41 F.R. 24524-24572), may serve as a basis for the District lists, but each species should be included only after close scrutiny. Indiscriminate inclusion of species on these lists will be counter-productive. Suggestions should be solicited on an ongoing basis from all Bureau field personnel, as well as appropriate persons in other agencies, universities, and local plant taxonomists, and where present from native plant societies and heritage programs. Through comsolidation of the District lists, a current 3LM State list should be developed and maintained. Those species which are rare or infrequent in one District but are common or secure elsewnere in the State should not generally be included on the State sensitive species list. The State seasitive species list will serve as the official sensitive plant species document, and a copy of this list should be sent to all Field Offices.

🗮 Ertec

The Office of Endangered Species of the Fish and Wildlife Service expects to have published in the Federal Register by early fall (1980) a listing of plant species under formal Notice of Review. Once available this list should be considered in revising the BLM State lists. All species in this Review which are candidates for T/E status should automatically be added to appropriate BLM State sensitive species lists.

Substitute the following definition under "sensitive species" on Enclosure 1-2 of Instruction Memorandum No. 80-722:

-5-

sensitive species: A species included on a sensitive species list developed by the State Office pursuant to section CL of this Instruction Memorandum and approved by the State Director. These lists will generally include any species in the State which meet any of the following criteria:

a. Candidate species, i.e., any species not yet officially listed but which are undergoing a status review or are proposed for listing according to <u>Federal Register</u> notices published by the Secretary of the Interior or the Secretary of Commerce.

b. Rare or infrequent species whose populations are consistently small and widely dispersed, or whose ranges are restricted to a few localities, such that any appreciable reduction in numbers, habitat, or habitat condition might lead toward extinction.

c. Other species whose numbers are declining so rapidly that official listing may become necessary as a conservation measure. Declines may be the result of one or more of several factors including: Overuse for commercial, scientific, or educational purposes; disease, predation, or grazing; the inadequacy of existing regulatory mechanisms; and/or other natural or human factors adversely affecting the species continued existence.

Deputy Director for Lands and Resources

2

APPENDIX C

17

1

>

1

. '

BIRDS, REPTILES, MAMMALS, AND AMPHIBIANS EXPECTED IN DRY LAKE VALLEY

)

APPENDIX C

TABLE C-1

TYPICAL WILDLIFE EXPECTED IN DRY LAKE VALLEY: BIRDS

Species	Big Sage Habitat	Shadscale and Greasewood Habitat	Pinyon- Juniper Habitat
Vultures (Cathartidae)	<u> </u>	·	
Turkey Vulture (<u>Cathartes</u> <u>aura</u>)	S	S	S
Hawks (Accipitridae)			
Cooper's Hawk (<u>Accipiter cooperii</u>) Red-tailed Hawk (<u>Buteo jamaicensis</u> Rough-legged Hawk (<u>Buteo lagopus</u>)		M,S W	M,S
Ferruginous Hawk (Buteo regalis)	П	M,S	
Golden Eagle (Aquila chrysaetos) Northern Harrier (Circus cyaneus)	R R	R R	
Falcons (Falconidae)			
Prairie Falcon (<u>Falco</u> <u>mexicanus</u>) American Kestrel (<u>Falco</u> <u>sparvarius</u> Quail (Phasianidae)	R) R R	R R R	
Gambel's quail (Lophortyx gambelii) R	R	
Doves (Columbidae)			
Mourning Dove (Zenaida macroura)	M,S	M,S	M,S
<u>Owls</u> (Strigidae)			
Great Horned Owl (<u>Bubo virginianus</u> Burrowing Owl (<u>Athene cunicularia</u>))	R	R
Nightjars (Caprimulgidae)			
Poorwill (Phalaenoptilus nuttalli) Common Nighthawk (<u>Chordeiles minor</u>) M,S	S	
R = Resident; M = Migrant; S = Sum W = Winter resident.	mer reside	nt;	
Source: Ryser, 1976.			

🗏 Ertec

C-1

1

1

TABLE C-1 (Cont.)

	Big Sage	Shadscale and Greasewood	Pinyon- Juniper
Species	Habitat	Habitat	Habitat
Woodpeckers (Picidae)			
Common Flicker (Colaptes auratus)	R		R
Flycatchers (Tyrannidae)			
Western Kingbird (<u>Tyrannus</u> verticalis)		M,S	M,S
Gray Flycatcher (Empidonax oberholseri)	M,S		M,S
Larks (Alaudidae)			
Horned Lark (Eremophila alpestris)		R	
Swallows (Hirundinidae)			
Violet-green Swallow (<u>Tachycineta</u> <u>thalassina</u>) Barn Swallow (<u>Hirundo</u> <u>rustica</u>)	M,S M,S	M,S M,S	
<u>Crows</u> (Corvidae)			
Common Raven (Corvus corax) Common Crow (Coruus brachyrhnchos) Scrub Jay (Aphelocoma coerulescens Pinyon Jay (Gymnorhinus	R R)	R R	R
cyanocephalus) Black-billed Magpie (<u>Pica pica</u>)	R R		R R
<u>Bushtits</u> (Paridae)			
Plain titmouse (<u>Parus</u> <u>inornatus</u>)			R
Wrens (Troglodytidae)			
Rock Wren (<u>Salpinctes</u> obsoletus) Cactus Wren (Campylorhynchus		R	
brunneicapillum)		R	
<u>Thrashers</u> (Mimidae)			
Sage Thrasher (<u>Oreoscoptes</u> montanu	<u>s</u>) M,S		

C-2

T

🗧 Ertec

۹.

)

.

.

Ş

2

4

1

1

TABLE C-1 (Cont.)

		-1 1 1	
		Shadscale	Dinunn
Ĥ	Big Sage	and Greasewood	Pinyon- Juniper
Species	Habitat	Habitat	Habitat
Kinglets (Muscicapidae)			
Blue-Gray Gnatcatcher (Polioptila caerulea) Ruby-crowned Kinglet (Regulus	S		S
calendula)			M,S
Shrikes (Laniidae)			
Loggerhead Shrike (Lanius			
ludovicianus)	R	R	
Northern Shrike (Lanius excubitor)	W	W	
Blackbirds (Icteridae)			
Northern Oriole (Icterus galbula)	S		
Brewer's Blackbird (Euphagus	R		
cyanocephalus)			
Brown-headed Cowbird (Molothrus ater)	M,S	M,S	
Western Meadowlark (Sturnella	MyO	1170	
neglecta)	M,R	M,R	
Sparrows and Finches (Fringillidae)			
Black-headed Grosbeak (Pheucticus			
melanocephalus)			M,S
House Finch (Carpodacus mexicanus)	R		R
American Goldfinch (Spinus tristis)	M,S		
Green-tailed Towhee (Chlorura	Cm		
chlorura) Vesper Sparrow (Pooecetes gramineus)	ST	M,S	
Lark Sparrow (Chondestes grammacus)	M,S	M,S	
Black-throated Sparrow (Amphispiza	1170		
hilineata)	S	S	
Sage Sparrow (Amphispiza belli)	S	S	
Dark-eyed Junco (Junco hyemalis)	M,W		
Brewer's Sparrow (Spizella breweri)	M,S		
White-crowned Sparrow (<u>Zonotrichia</u>	м	N#	
leucophrys)	М	М	

7

3. T

Construction of the second

TABLE C-2

.....

TYPICAL WILDLIFE EXPECTED IN DRY LAKE VALLEY: AMPHIBIANS, REPTILES, AND MAMMALS

		Shadscale	
Species	Big Sage Habitat	and Greasewood Habitat	Pinyon- Juniper Habitat
AMPHIBIANS			
Frogs and Toads			
Great Basin Spadefoot (<u>Scaphiopus</u> intermontanus)	x		
REPTILES			
Lizards			
Zebra-tailed Lizard (<u>Callisaurus</u> draconoides) Long Nosed Leopard Lizard (Gambelia	a	x	
wislizenii) Collared Lizard (Crotaphytus	= x	x	
collaris) Side-blotched Lizard (Uta		X	
stansburiana) Desert Horned Lizard (Phrynosoma	x	x	x
platyrhinos) Great Basin Whiptail (Cnemidophorus	5	Х	
tigris tigris) Great Basin Fence Lizard (Sceloport		X	x
occidentalis biseriatus) Desert Spiny Lizard (S. magistar)	- x	X	
Sagebrush Lizard (<u>S. graciosus</u>) Western Skink (<u>Eumeces skilton</u> ianus	X 5) X	Х	x
Snakes			
Coachwhip (Masticophis flagellum) Striped Whipsnake (M. taeniatus) Western patch-nosed Snake (Salvado)	X	x x	
hexalepis) Great Basin Gopher Snake (Pituophis		X	
melanoleucus deserticola) Long-nosed Snake (Rhinocheilus	<u>x</u>	x	х
lecontei) Western Groundsnake (Sonora		X	
semiannulata)	x		

≡ Ertec

٠

C-4

E

1

TABLE C-2 (Cont.)

		Shadscale and	Pinyon-
	Big Sage	Greasewood	Juniper
Species	Habitat	Habitat	Habitat
Snakes (Cont.)			
Spotted Nightsnake (Hypsiglena			
torquata)	Х		
Great Basin Rattlesnake (Crotalus			.,
viridis lutosus)	X	X	X
MAMMALS			
Bats			
Merriam Shrew (Sorex merriami)	х		
Small-footed Myotis (Myotis			
subulatus)	X		X
California Myotis (<u>M. californicus</u>) Little Brown Myotis (<u>M. lucifugus</u>))	X	X X
Western Pipistrelle (Pipistrellus			Λ
hesperus)		х	х
Big Brown Bat (Eptesicus fuscus)	х	Х	х
Pallid Bat (Antrozous pallidus)	X	х	v
Big-eared Bat (<u>Plecotus townsendi</u>) Big Freetail Bat (Tadarida macrotis	X s)		X X
big recease bac (<u>radarida</u> <u>macrocit</u>			
Rabbits			
Dlack hailed tackwakkik (Ianua			
Black-tailed Jackrabbit (<u>Lepus</u> californicus)	x	x	x
Desert Cottontail (Sylvilagus	А	Λ	Λ
auduboni)	х	х	x
Podonts			
Rodents			
Rock Squirrel (Spermophilus			
variegatus)	х	X	Х
Whitetail Antelope Ground Squirrel (Ammospermophilus leucurus)		х	х
Valley Pocket Gopher (Thomomys		~	л
bottae)	х	x	Х
Little Pocket Mouse (Perognathus	v	.,	••
longimembris)	х	х	х

₩ Ertec

۰

C-5

2

1

•

TABLE C-2 (Cont.)

		Shadscale	
		and	Pinyon-
	Big Sage	Greasewood	
Species	Habitat	Habitat	Habitat
	·		
Rodents (Cont.)			
Great Basin Pocket Mouse (P. parvus	s) X	х	Х
Ord's Kangaroo Rat (Dipodomys ordi	ī) X	Х	
Great Basin Kangaroo Rat (D. micro)	ps)X	Х	
Desert Kangaroo Rat (D. deserti)		Х	
Merriam Kangaroo Rat (D. merriami)		X	
Western Harvest Mouse (Reithrodont)	omys		
megalotis)	x	Х	
Deer Mouse (Peromyscus maniculatus) X	Х	х
Cactus Mouse (P. eremicus)			Х
Pinyon Mouse (P. truei)			х
Canyon Mouse (P. crinitus)		Х	
Southern Grasshopper Mouse (Onychor	mys		
torridus)	x	Х	
Sagebrush Vole (Lagurus curtatus)	Х		
Desert Woodrat (Neotoma lepida)		Х	
Porcupine (Erethizon dorsatus)	x		Х
Carnivores			
Badger (Taxidea taxus)	x	x	
Spotted Skunk (Spilogale gracilis)			Х
Striped Skunk (Mephitis mephitis)	х	х	х
Coyote (Canis latrans)	х	Х	х
Gray Fox (Urocyon cinereoargentus)	х		х
Kit Fox (Vulpes macrotis)	X	Х	x
Bobcat (Lynx rufus)	х	Х	х
Mountain Lion (Felis concolor)			Х
Sources: U.S. Air Force 1980; Cox	1980.		

Ξ Ertec

۰

C-6

7.

APPENDIX D

1

. ·

 \mathcal{M}

BIOLOGICAL DATA FORMS

1

1

Į

SAMPLE UNIT RECORD FORM

Contractor and the second second

7

1.	Sample Unit Number:	2. Photo Number(s)	
3.	Map:	7. Location of Unit	Within Section
4.	Township	N	
5.	Range		
6.	Section		
8.	Compass coordinate from the true po	oint of beginning	
9.	Elevation		
10.	Date (MM/DD/YY)		
11.	Crew Leader/Recorder (Name)		
12.	Other Crew Members		
13.	General Survey Conditions (Circle o	one only): Good Av	erage Poor
14.	Describe General Survey Conditions:		
	Describe Method and Accuracy of Loc	ating Sampling Unit:	
10.	Drainage (rank at least one)		., .
	Converging Diverging	Braided Other (des	cribe)
17.	Distance to Nearest Permanent Water	m	
	Type (Circle one only): Spring	-	
19.	Slope (rank at least one)	20. Aspect (rank at	least one)
	Level (0-3 degrees)	North	South
	Gentle (3-8 degrees)	Northeast	Southwest
	Moderate (8-16 degrees)	East	West
	Steep (16-26 degrees)	Southeast	Northwest
	<pre> Very Steep/Prec. (>26 degrees)</pre>		None

\Xi Ertec

and generalizing research and the second second

21. Disturbance (rank at least one) 22.

____Off-Road Vehicles

____ Mining

___Other Construction

Erosion

____Grazing

____Other Animal Disturbances

____Cultivated Agriculture

___Other

.

23. Describe Disturbance

24. Percent perennial vegetation cover: % Cover Vegetation dm Association Density Line 1 Line 2 25 Parental Soil Material 26. Soil Texture (rank the composition of the particles composing the soil) (circle one only) Residual Course gravel 7.500 mm ____Fine gravel 2.000 mm Colluvial Alluvial Course sand 2.000 mm Fine sand .074 mm Glacial

_____Silt .074-.005 mm

____Clay .005-.001 mm

Eolian

27 Describe General Observations:

22. Intensity of Disturbance (Circle one)

High Moderate Low

差 Ertec

28. Vegetation (Major Plant Associations)

29. Wildlife - (Species list and numbers seen, animal sign, etc.)

30. DESCRIBE - Sensitive habitats for flora or fauna:

31. DESCRIBE - Sensitive, threatened, or endangered flora species:

32. DESCRIBE - Sensitive, threatened, or endangered fauna species:

🖀 Ertec

SAMPLE UNIT RECORD FORM

VEGETATION	N TYPE_				SAMPLE UNIT #			
TRANSECT_					CRE	W LEADER		
PGOF					DAI	re		
Species	Cover	(dm)	Total dm	Cover (%)	Relative Cover (%)	Number of Individuals	Density (%)	Relative Density(%)
						 		
<u> </u>								
		TOI	ALS	<u> </u>				

OTHER SPECIES ON SITE:

. '

Ξ Ertec

3

2

APPENDIX E

 \mathbb{R}^{n}

APPENDIX E

KEY TO FIGURES 3-24 through 3-33

🖻 Ertec

Symbols, and Scientific and Common Names for Plant Species in Dry Lake Valley, Nevada

Symbol	Scientific Name	Common Name
Arno	Artemisia nova	black sagebrush
Artr	Artemisia tridentata	big sagebrush
Atca	Atriplex canescens	fourwing saltbush
Atco	Atriplex confertifolia	shadscale
Cela	Ceratoides lanata	whitesage (winte:fat)
Chgr	Chrysothamnus greenei	Greene's rabbitbrush
Chvi	Chrysothamnus viscidiflorus	green rabbitbrush
Come	Cowania mexicana	cliffrose
Epne	Ephedra nevadensis	Mormon tea
Grsp	Grayia spinosa	spiny hopsage
Gumi	Gutierrezia microcephala	threadleaf snakeweed
Gusa	Gutierrezia sarothrae	broom snakeweed
Gu	<u>Gutierrezia</u> sp.	snakeweed
Hija	<u>Hilaria jamesii</u>	galleta
Koam	Kochia americana	green molley
Lyan	Lycium andersonii	Anderson wolfberry
Orhy	Oryzopsis hymenoides	Indian ricegrass
Save	Sarcobatus vermiculatus	greasewood
Sihy	Sitanion hysterix	squirreltail grass
Sper	Sporobolus cryptandrus	sand dropseed
Tegl	Tetradympia glabrata	littleleaf horsebrush
Yubr	Yucca brevifolia	Joshua tree

🗃 Ertec

APPENDIX E

•

.

.

.

• '

KEY TO FIGURES 3-24 THROUGH 3-33 AND TRANSECT RESULTS FOR DRY LAKE VALLEY

🛢 Ertec

APPENDIX E

Species Key for Transect Data

The following tables contain data compiled from the transects made during the field survey. Shelter sites which were resited are placed at the end of the tables in a separate section, rather than being included with the original cluster data. These tables give total perennial cover, percent relative cover, density, and percent relative density for all perennial species that intercepted the transect line. Dominant and subdominant species are indicated by a (d) and (s) respectively, placed next to the species abbreviation.

Definitions of cover and density are as follows:

total cover (%) =	=	total plant cover (dm) x 100 distance of transect (dm)
relative cover (%) =	=	total cover of species A x 100 total plant cover (dm)
density =	=	number of plants of species A distance of transect (dm)
relative density (%) =	=	number of plants of species A $x = 1$ number of plants of all species

Species names are abbreviated, and indicated by the first two letters of the genus and species. The key to the abbreviations is as follows:

🗮 Ertec

E-1

00

E-TR-48-11-1

and fillentified a prove - No.

•

APPENDIX E

Species Key 1	Eor	Transect	Data
---------------	-----	----------	------

5	pecies key for framsect baca
AMER	Ambrosia eriocentra
AM	Ambrosia sp.
ARPU	Aristida purpurea
	Artemisia spinescens
ARSP ARTR	Artemisia spinescens Artemisia tridentata
ATCA	Atriplex canescens
ATCO	Atriplex confertifolia
ATSP	Atriplex spinifera
BRTE	Bromus tectorum
CELA	Ceratoides lanata
CHGR	Chrysothamnus greenei
CHNA	
CHVI	Chrysothamnus nauseosus Chrysothamnus viscidiflorus
CH	Chrysothamnus sp.
COME	Cowania mexicana
EPNE	Ephedra nevadensis
ERCA	Eriogonum caespitosum
EPDE	Eriogonum caespitosum Eriogonum deflexum Eriogonum microthecum
ERMI	Eriogonum migrothegum
ERPU	Erioneuron puchellum
EU	Funhorbia sp
FAPA	Euphorbia sp. Fallugia paradoxa Gravia spinosa
GRSP	Grayia spinosa
GUMI	Gutierrezia microcephala
GUSA	Gutierrezia sarothrae
GU	Gutierrezia sp.
HAGL	Halogeton glomeratus
HIJA	Hilaria jamesii
	Halogeton glomeratus Hilaria jamesii Kochia americana
LYAN	Lycium andersonii
MACA	Machaeranthera canescens
MA	Machaeranthera sp.
OPEC	Opuntia echinocarpa
OPER	Opuntia erinacea
OPPU	Opuntia pulchella
OP	Opuntia sp.
ORHY	
PEPA	Oryzopsis hymenoides Penstemon palmeri
PRFA	Prunus fasciculata
SAIB	
SAVE	Sarcobatus vermiculatus
SIHY	Sitanion hysterix
SPAM	Sphaeralcea ambigua
SPGR	Sphaeralcea grossulariifolia
SPCR	Sporobolus cryptandrus
SP	Sporobolus sp.
SUFR	Suaeda fruticosa
SUTO	Suaeda torreyana
SY	Symphoricarpos sp.
TEAX	Tetradymia axillaris
TEGL	Tetradymia glabrata Tetradymia spinosa
TESP	Tetradymia spinosa
VIMU	Viguiera multiflora
YUBR	Yucca brevifolia

🚍 Ertec

E-2

7

E-TR-48-11-1

2

8

4

.

ŧ

•

TABLE E-1 TRANSECT RESULTS DRY LARE SHELTER SITES CLUSTER 1

				Tr	ansect	1	Transect 2							
Sample Unit #	Plant Species		Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 dm)	Rel. Den. (%)
MX 181 SS 1/1	CELA CHGR EPNE TEGL ATSP HLJA		45.6 65.4 15.0	9.1 13.1 3.0	25.0 36.0 8.5	22 16 2	4.4 3.2 0.4	50.0 36.0 5.0	19.4 97.7 13.9 6.2 1.5 1.5	8.9 19.5 2.8 1.2 0.3 0.3	11.4 57.3 8.2 3.6 0.9 0.9	11 25 2 2 1 2	2.2 5.0 0.4 0.4 0.2 0.4	20.7 47.2 3.8 3.8 1.9 3.8
	orhy Spam Grsp Sihy		55.0 1.0 182.0	11.0 0.2 36.4	30.0 0.5 100.0	3 1 44	0.6 0.2 8.8	7.0 2.0 100.0	6.0 2.0 1.0 21.3 170.5	1.2 0.4 0.2 4.3 39.1	3.5 1.2 0.5 12.5 100.0	2 1 1 6 53	0.4 0.2 0.2 1.2	3.8 3.8 1.9 1.9 1.2 100.0
MX 181 SS 1/2	ATSP CELA CHGR CHGR		38.2 136.1 1.0 175.3	7.6 27.2 0.2 35.0	21.8 77.6 0.6 100.0	20 28 1 49	4.0 5.6 0.2 9.8	40.9 57.1 2.0 100.0	5.0 170.0 2.0 1.1 178.1	1.0 34.0 0.4 0.2 35.6	2.8 95.5 1.1 0.6 100.0	2 77 1 2 32	0.4 15.4 0.2 -0.4 16.4	2.4 94.0 1.2 2.4 *00.0
MOX 181 SS 1/3	ATSP CELA CEGR GRSP TEGL ORHY		35.9 176.4 16.4	7.2 35.3 3.3	15.7 77.1 7.2	15 27 3	3.0 5.4 0.6	33.3 60.0 6.7	0.5 21.5 79.5 0.5 2.2	0.1 4.1 15.3 0.1 0.4	0.4 20.7 76.5 0.4 2.0	1 5 31 1	0.2 1.6 6.2 0.2 0.8	2.2 17.8 68.5 2.2 8.9
MX 181 SS 1/4	ATSP CELA CHGR ELJA		4.0 60.1 16.0 3.0	45.8 0.8 12.0 3.2 0.6	4.0 60.5 16.0 3.0	45 3 34 3 2	0.6 6.8 0.6 0.4	4.5 51.5 4.5 3.0	7.0 103.5 10.0	1.4 20.7 2.0	¹ 00.0 5.3 78.2 7.6	- <u>45</u> 2 46 6	3.0 0.4 9 2 1.2	3.1 72.0 9.3
	orhy Spam		2.5 13.9 99.5	0.5 2.8 19.9	2.5 14.0 100.0	3 21 66	0.6 4.2 13.2	4.5 32.0 100.0	11.8 222.3	2.3 26.4	8.9 100.0	10 54	2.0 12.8	15.6 100.0

(d) dominant species

(s) subdominant species

🗲 Ertec

E-3

The second second second second second second second second second second second second second second second se

đ.

E-TR-48-11-1

				Tr	ansect	1		Transect 2						
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	\$ of Plants	Densit (#/100 dm)	y Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	t of Plants	Density (#/100 dm)	Rel. Den. (%)	
MX 181 SS 1/5	ARSP CELA (S)	1.0	0.2	0.6	1	0.2	2.2 39.1	8.5	1.7	5.4	1	0.2	3.0	
	CHGR (d) GRSP TRGL	90.3 26.5 9.0	16.1 5.3 1.8	46.1 15.3 5.2	15 3 1	3.0 0.6 0.2	32.6 6.5 2.2	136.0 1.5	27.2 0.3	86.2 0.9	28 1	5.6 0.2	35.0 3.0	
	HLJA OREY SPAM GUMI	5.5 1.0 7.5	1.1 0.2 1.5	3.2 0.6 4.4	4 1 3	0.8 0.2 0.6	8.7 2.2 6.5	1.0 1.0 10.0	0.2 0.2 2.0	0.6 0.6 6.3	1 1 1	0.2 0.2 0.2	3.0 3.0 3.0	
		173.3	34.7	99.8	46	9.2	100.0	158.0	31.6	100.0	33		100.0	
MCK 181 SS 1/6	ARSP (s) CELA CHGR (d) GUMI	27.0	11.0 5.4 17.1	29.7 14.6 46.3	19 12 22	3.8 2.4 4.4	26.0 16.4 30.2	16.0 19.0 105.0 2.0	3.2 3.8 21.0 0.4	10.9 13.0 71.8 1.5	9 14 35 1	1.8 2.8 7.0 0.2	13.7 21.3 53.0 1.5	
	orhy Spam	1.0 16.5 185.2	0.2 3.3 37.0	0.5 8.9 100.0	1 19 73	0.2 3.8 14.6	1.4 26.0 100.0	0.5 3.7 146.2	0.1 0.7 29.2	0.3 2.5 100.0	1 6 66	0.2 1.2 13.2	1.5 9.0 100.0	
MOX 181 SS 1/7	ATSP CELA (S) CHGR (d) ATCA	37.2	1.4 11.9 7.4	5.3 45.2 28.4	3 31 18	0.6 6.2 3.6	3.7 36.4 21.2	29.2 12.5 76.5 8.4	5.8 2.5 15.3 1.7	20.4 8.7 53.4 5.9	13 9 23 4	2.6 1.8 4.6 0.8	17.6 12.2 31.1 5.4	
	GRSP HLJA ORHY SPAM	9.0 6.5 1.5 10.6 131.1	1.8 1.3 0.3 2.1 26.2	7.0 5.0 1.1 8.0 100.0	2 16 1 14 	0.4 3.2 0.2 2.8 17.0	2.4 18.7 1.2 16.4 100.0	3.5 1.7 11.4 143.2	0.7 0.3 2.3 28.6	2.4 1.2 3.0 100.0	10 2 13 74	2.0 0.4 2.6 14.8	13.5 2.6 17.6 100.3	
MX 181 SS 1/8	ATSP CELA (s) CHGR (d) GRSP		1.0 10.8 7.3 3.8 22.9	4.4 47.2 31.8 16.6 100.0	2 28 11 3 44	0.4 5.6 2.2 0.6 8.8	4.6 63.6 25.0 6.8 100.0	3.0 21.2 100.5 14.0 138.7	0.6 4.2 20.1 2.8 27.7	2.2 15.3 72.5 10.0 100.0	11 33 3 48	0.2 2.2 6.6 0.6 9.6	2.0 22.9 68.8 6.3	

TABLE E-1 (Cont.)

E-4

j

•

ŝ

٠

.

,

Ð

8

1

8

15.5

				Tr	ansect	1				Tr	ansect 3	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	♦ of Plants	Density (#/100 dm)	Rel. Den. (%)
MX 181 SS 1/9	ATSP CHVI (s)	1.0	0.2	0.8	1	0.2	3.2 38.8	12.0	2.4	7.9	3	0.6	1.1
	CHGR	4.0	0.8	3.1	1	0.2	3.2	44.0	8.8	29.2	9	1.8	33.3
	EPNE	34.0	6.8	26.7	8	1.6	25.9	13.0	2.6	8.7	3	0.6	11.1
	GRSP (d	27.0	5.4	21.3	4	0.8	12.9	29.5	5.9	19.5	5	1.0	18.6
	LYAN	3.0	0.6	2.4	1	0.2	3.2						
	TEGL HIJA	4.0	0.8	3.1	1 3	0.2	3.2	52.5	10.5	34.8	7	1.4	25.9
		127.2		100.0	<u> </u>	6.2	100.0	151.0	30.2	100.1	-27	5.4	100.0
•0X 181	CELA (S		8.6	34.5	19	3.8	38.8	21.6	4.3	13.7	16	3.2	23.8
S 1/10			11.4	45.5	22	4.4	44.9	109.0	21.8	69.3	38	7.6	56.7
	GRSP	19.5	3.9	15.6	3	0.6	6.1	10.6	2.1	6.7	3	0.6	4.5
	HIJA							4.0	0.8	2.6	6	1.2	9.0
	LYAN							11.0	2.2	7.0	1	0.2	1.5
	ORELY							0.1	0.2	0.1	1	0.2	1.5
	SPAM	5.5	1.1	4.4	5	1.0	10.2	1.0	0.2	0.6	2	0.4	3.0
_		125.3	25.0	100.0	49	9.8	100.0	157.3	31.6	100.0	67	13.4	100.0
OX 181	ŒLA	4.5	0.9	3.2	4	0.8	13.3	4.5	0.9	3.7	3	0.6	10.4
SS 1/11	CHGR (d		9.6	34.7	13	2.6	43.3	87.5	17.4	72.3	19	3.8	65.5
	EPNE (S) 29.0	5.8	20.9	5	1.0	16.8	10.0	2.0	8.3	2	0.4	6.8
	GRSP							9.0	1.8	7.4	3	0.6	10.4
	LYAN	30.0	6.0	21.7	4	0.8	13.3						
	TEAX	11.0	2.2	7.9	1	0.2	3.3						
	TEGL	16.0	3.2	11.6	3	0.6	10.0	9.5	1.9	7.9	T	0.2	3.4
	HIJA							0.5	0.1	0.4	1	0.2	3.4
		138.5	27.7	100.0	-30	6.0	100.0	121.0	24.1	100.0	29	5.8	<u>99.9</u>
NX 181	ATSP (S		2.1	14.9	6	1.2	16.7	35.1	7.0	30.9	19	3.8	29.2
5S 1/12			4.7	32.8	13	2.6	36.1	41.0	8.2	36.2	24	4.8	36.9
	CHGR	0.8	0.2	1.2	1	0.2	2.8	32.4	6.5	28.6	17	3.4	26.2
	GRSP	18.0	3.6	25.4	6	1.2	16.7						
	TEGL	1.7	0.3	2.4	1	0.2	2.8						
	TESP	5.0	1.0	7.0	1	0.2	2.3						
	HIJA	5.0	1.0	7.0	3	0.6	8.3						
	SIHY	0.6	0.1	0.8	2	0.4	5.6	0.4	0.1	0.4	1	0.2	1.5
	SPAM	6.0	1.2	8.5	3	0.6	8.3	4.5	0.9	4.0	4	J.8	6.2
		71.0	14.2	100 0	-36	7.2	100.1	113.4	22.7	100.1	65	13.0	100.0

TABLE E-1 (Cont.)

🛢 Ertec

۰

E+5

MOK 181 SS 1/13 MOK 181	Plant Species ATSP CELA (S) CEGR (d) GRSP TEGL HLJA CREY SPAM ATSP ATSP ATSP ATSP (CELA (S)	Total Cover (dm) 18.0) 61.6) 50.0 <u>1.0</u> <u>130.6</u> 12.5	Total Cover (%) 3.6 12.3 10.0 0.2 26.1	Rel. Cover (%) 13.8 47.2 38.3 0.8 100.1	# of Plants 10 30 21	Density (#/100 cm) 2.0 6.0 4.2	(%) Rel. Den. (%) 16.1 48.4 33.9	Total Cover (dm) 10.0 56.6 21.0	Total Cover (%) 2.0 11.3 4.2	Rel. Cover (%) 7.0 39.4 14.6	\$ of Plants 5 15 4	chm) 1.0 3.0	Rel. Den. (%)
SS 1/13	CELA (S CHGR (d GRSP TEGL HLJA ORHY SPAM ATSP ATSP ATCA (d)) 61.6) 50.0 <u>1.0</u> <u>130.6</u>	12.3 10.0	47.2 38.3 0.8	30 21	6.0	48.4	56.6 21.0	11.3	39.4	15	3.0	
	CHER (d GRSP 1DGL HLJA ORHY SPAM ATSP ATSP ATCA (d)) 50.0 1.0 130.6	0.2	38.3 0.8	21			56.6 21.0	11.3	39.4	15	3.0	
	GRSP TDGL HLJA ORHY SPAM ATSP ATSP ATCA (d)	1.0 130.6	0.2	0.8		4.2	33.9	21.0					44.1
	TEGL HIJA ORHY SPAM ATSP ATSP	130.6	-		1				4.2	14 6			
	HLJA ORHY SPAM ATSP ATCA (d)	130.6	-		1						-	0.8	11.8
	ATSP ATCA (d)	130.6	-		1			54.0	10.8	37.6	6	1.2	:7.6
	SPAM ATSP ATCA (d)	130.6	-		1			1.7	0.3	1.2	3	0.6	8.8
	ATSP ATCA (d)	130.6	-				1 6	0.5	0.1	0.3	1	0.2	2.9
	ATCA (d)		26.1	100.1		0.2	1.6						
	ATCA (d)	12.5			62	12.4	100.0	143.8	28.7	100.1	- 34	6.8	99.9
is 1/14			2.5	11.3	10	2.0	16.1	13.2	2.6	15.1	18	3.6	23.6
	CELA /e	18.8	3.8	17.0	11	2.2	17.7	50.5	10.1	57.8	30	6.0	39.4
			7.0	31.8	17	3.4	27.4	21.3	4.3	24.4	18	3.6	23.6
	CHGR	39.7	7.9	35.9	17	3.4	27.4						
	ORHY	0.8	0.2	0.7	1	0.2	1.6	2.3	0.5	2.6	2	0.4	2.6
	SPAM	3.6	1.7	3.3	6	1.2	9.7				8	1.6	10.8
		110.5	23.1	100.0	62	12.4	99.9	87.3	17.5	99.9	76	15.2	100.0
OX 181	ATSP	20.6	4.1	14.4	7	1.4	9.9	18.6	3.7	11.8	8	1.6	12.7
S 1/15	CELA (d)		17.3	60.4	43	8.6	60.6	116.2	23.3	73.6	44	8.8	69.8
•	CHGR (S		7.2	25.2	21	4.2	29.6	23.0	4.6	14.6	11	2.2	17.5
		143.1	28.6	100.0	71	14.2	100.1	157.8	31.6	100.0	63	12.6	100.0
5X 181	ATSP	10.5	2.1	7.0	4	0.8	4.6	11.3	2, 3	9.4	6	1.2	8.7
S 1/16	ATCO (S		6.5	22.0	16	3.2	18.4	50.5	10.1	41.9	22	4.4	31.9
	CELA	10.5	2.1	7.0	3	0.6	3.4	7.7	1.5	6.4	5	1.0	7.2
	CHER (d		14.4	48.4	21	4.2	24.1	34.4	6.9	28.5	15	3.0	21.7
	HIJA	13.2	2.6	8.8	35	7.0	40.2	7,1	1.4	5.9	15	3.0	21.7
	ORHY	6.0	1.2	4.0	4	0.8	4.6	9.1	1.8	7.4	5	1.0	7.2
	SPAM	4.0	0.8	2.7	4	0.8	4.6	0.5	0.1	0.4	1	0.2	1.5
		149.3	29.7	99.9	87	17.4	99. 9	120.6	24.1	<u>99.9</u>	69	13.8	99.9
DX 181	ATSP	11.5	2.3	7.7	10	2.0	12.5	18.9	3.8	15.4	11	2.2	15.1
S 1/17	ATCO	13.7	2.7	9.2	6	1.2	7.5	15.5	3.1	12.6	7	1.4	9.6
····	CELA (S		10.2	34.4	31	6.2	38.8	46.8	9.4	38.2	26	5.2	35.6
) 69.9	14.0	47.1	32	6.4	40.0	31.2	6.2	25.4	11	2.2	15.1
	HIJA			••••				8.7	1.7	7.1	16	3.2	21.9
	ORHY	2.2	0.4	1.5	1	0.2	1.3	0.5	0.1	0.4	1	0.2	1.4
	SPAM			-				1.0	0.2	0.8	1	0.2	1.4
		148.4	29.5	99.9	- 30	15.0	100.1	122.5	24.5	99.9			100.1

TABLE E-1 (Cont.)

٩.

E-6

State Street as a

A NUMBER OF A NUMBER OF A DESCRIPTIONO OF A DESCRIPTION O

a second s

				Tr	ansect	!	<u> </u>			Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (‡/100 dm)	Rel. Dan. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	t of Plants	Density (#/100 dm)	Rel. Den. (%)
MX 181	ATSP	9.0	1.8	8.0	4	0.8	10.0	11.0	2.2	7.3	5	1.0	8.5
SS 1/18	ATCA		3.8	16.0	9	1.8	22.5	7.0 69.4	1.4	4.6 45.8	2 32	0.4 6.4	3.4 54.2
	CELA (S CEGR (d		15.4	64.7	22	4.4	55.0	28.3	5.7	18.7	11	2.2	.9.6
	GRSP	13.0	2.6	10.9	3	0.6	7.5	33.0	6.6	21.8	6	1.2	10.2
	OREY				•			0.8	0.2	0.5	Ť	0.2	1.7
	SPAM	1.0	0.2	0.8	2	0.4	5.0	2.0	0.4	1.3	2	0.4	3.4
		119.0	23.8	100.4	40	8.0	100.0	151.5	30.4	100.0	- 59	11.8	100.0
MOK 181	CELA	7.6	1.5	4.5	6	1.2	12.5	2.0	0.4	2.7	1	0.2	4.5
55 1/19			18.3	54.8	29	5.8	60.4	38.0	7.6	51.4	13	2.6	59. 1
,	EPNE							8.0	1.6	10.8	2	0.4	9.1
	GRSP (s		7.8	23.3	7	1.4	14.6	7.0	1.4	9.5	2	0.4	9.1
	LYAN	2.0	0.4	1.2	1	0.2	2.1	9.0	1.8	12.2	3	0.6	13.6
	TEAX	27.0	5.4	16.1	5	1.0	10.4	10.0	2.0	13.5	1	0.4	4.5
		167.3	36.4	99.9	48	9.6	100.0	74.0	14.8	100.1	22	4.6	99.9
MX 181 SS 1/20	ARSP CELA (S	26.7	5.3	18.4	12 31	2.4	14.8	1.7	0.3	1.1	1	0.2	1.4
	CHER	20.2	4.0	13.9	15	3,0	18.5	49.5	9.9	32.7	27	5.4	38.6
	GRSP (d) 56.6	11.3	39.1	8	1.6	9.9	45.4	9.1	30.0	27	5.4	38.6
	ERPU	2.7	0.5	1.9	6	1.2	7.4	52.5	10.5	34.7	8	1.6	11.4
	HIJA	5.2	1.0	3.6	8	1.6	9.9	0.8	0.2	0.5	2	0.4	2.9
	ORHY	3.5	0.7	2.4	1	0.2	1.2	1.6	0.3	1.1	5	1.0	7.1
		145.3	28.9	100.2	ভা	15.2	100.0	151.5	30.3	100.1	70	14.0	100.0
MX 181	ATCA	4.5	0.9	3.2	2	0.4	3.4	12.0	2.4	10.2	4	0.8	8.0
SS 1/21			8.7	31.1	22	4.4	37.3	51.5	10.3	43.9	26	5.2	52.0
	CENCR (d		11.6	41.5	23	4.6	39.0	48.7	9.7	41.5	18	3.6	36.0
	GRSP	29.5	5.9	21.0	5 5	1.0 1.0	8.5 8.5	5.2	1.0	4.4	2	0.4	4.0
	hija Spam	3.6 0.9	0.7 1.8	2.6 0.6	2	0.4	3.4						
	JE MI	140.4	29.6	100.0	- 59	11.8	100.1	117.4	23.4	100.0	50	10.0	100.0
MX 181	ARSP	1.0	0.2	1.9	1	0.2	2.9	21.4	4.3	13.3	13	2.6	28.3
SS 1/22		1.0	0.4		•	U. #		6.8	1.4	4.2	4	0.8	8.7
	CHGR (s) 7.5	1.5	14.2	20	4.0	58.8	28.3	5.7	17.6	13	2.6	28.3
	EPNE (S		1.8	17.0		0.2	2.9	24.5	4.9	15.2	3	0.6	6.5
	GRSP (d) 32.0	6.4	60.4	9	1.8	26.5	74.0	14.8	46.0	12	2.4	26.0
	LYAN		0.4		2		5.9	6.0	1.2	3.7	1	0.2	2.2
	orhy Am	2.0 1.5	0.4 0.3	3.8 2.8	1	0.4 0.2	2.9						
	AM	53.0	10.6		34	6.8	99.9	161.0	32.3	100.0	46	9.2	100.0
		55.0	10.0	100.1	54	0.0	77.7	101.0	34.3	.00.0	40	7.4	

TABLE E-1 (Cont.)

Ľ

E−7

. -

				Ĩr	ansect	1				Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)		‡ of Plants			Total Cover (dm)		Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 dm)	Rel. Den. (%)
MX 181 SS 1/23	ATCA (S CELA CHGR(d) GRSP HLJA	9.8	3.0 2.0 25.3 2.7 0.6	8.9 5.8 75.4 8.1 1.8	5 7 47 3 5	1.0 1.4 9.4 0.6 1.0	7.5 10.5 70.2 4.5 7.5	32.5 9.0 133.3	6.5 1.8 26.7	18.3 5.1 75.0	8 8 47	1.6 1.6 9.4	12.5 12.5 73.4
	ORHY	167.8	33.6	100.0	- 57	13.4	100.2	3.0 177.8	0.6 35.6	1.7 100.1	1 - 54	0.2 12.8	1.6 100.0

TABLE E-1 (Cont.)

🗃 Ertec

R

E--8

ş

ý

\$

TABLE E-2 TRANSET RESULTS DRY LARE SHELTER SITES CLUSTER 2

				Tr	insect	1				Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	\$ of Plants	Density (#/100 cm)	Rel. Dens. (%)
MX 181	CELA	9.0	2.0	10.3	4	0.8	5.3	3.5	0.7	3.3	3	0.6	3.6
SS 2/1	CHGR	11.5	2.3	13.2	5	1.0	6.7	4.9	1.0	4.6	3	0.6	8.6
	GRSP(d)	37.5	7.5	43.1	6	1.2	8.0	53.8	10.8	51.0	8	1.6	22.9
	LYAN(S)	10.0	2.0	11.5	2	0.4	2.7	28.0	5.6	26.5	3	0.6	8.6
	HIJA	16.1	3.2	18.5	51	10.2	68.0	9.3	1.9	8.8	12	2.4	34.3
	ORHY	2.5	0.5	2.9	2	0.4	2.7	3.0	0.6	2.8	4	0.8	11.4
	SPAM	0.5	0.1	0.6	5	1.0	6.7	3.0	0.6	2.8	2	0.4	5.7
		87.1	17.6	100.T	75	15.0	100.1	105.5	21.2	99.8	35		100.1
MX: 181	ATCA	·					-	6.0	1.2	7.7		0.2	3.6
55 2/2	CHGR(s)	11.0	2.2	12.0	3	0.6	6.8	28.0	5.6	35.8	7	1.4	25.0
	EPNE	8.0	2.0	8.7	2	0.4	4.6	6.0	1.2	7.7	1	0.2	3.6
	GRSP(d)	50.3	10.1	54.7	9	1.8	20.5	18.0	3.6	23.0	3	0.6	10.7
	LYAN	8.0	1.6	8.7	1	0.2	2.3		••••		•	•••	•••
	YLBR	•••		•••	•	•••		13.0	2.6	16.6	1	0.2	3.4
	HILJA	11.2	2.2	12.2	26	5.2	59.1	6.2	1.2	7.9	14	2.8	50.0
	ORELY	3.5	0.7	3.8	3	0.6	6.8	1.0	0.2	1.3	1	0.2	3.6
		92.0	18.8	100.1	44	8.8	100.1	78.2	15.6	100.0	28	5.6	99.9
MX 181	CELA	57.8	11.6	40.3	31	6.2	44.9	3.5	7.0	2.8	1	0.2	2.9
SS 2/3	CHGR(s)	19.5	3.9	13.6	7	1.4	10.1	50.4	10.1	40.3	11	2.2	32.4
	GRSP(d)	54.0	10.8	37.7	6	1.2	8.7	61.0	12.2	48.8		1.8	26.5
	HIJA	12.1	2.4	8.4	25	5.0	36.2	4.5	0.9	3.6	8	1.6	23.5
	CRIEV					3.0	JV. 2	2.7	0.5	2.2	3	0.6	8.8
	SPCR							3.0	0.6	2.4	2	0.4	5.9
		143.4	28.7	100.0	69	13.8	99.9	125.1	31.3	100.1	34		100.0
MX 181	ARSP (d)	40.0	8.0	32.6	15	3.0	28.3	22.5	4.5	21.4	8	1.6	13.8
SS 2/4	ŒIA	30.5	6.1	24.8	18	3.6	34.0	9.5	1.9	9.0	7	1.4	12.1
33 4/4	CHGR(s)	36.0	7.2	29.3	10	2.0	18.9	9.0	1.8	3.6	2	0.4	3.5
	GRSP	6.0	1.2	4.9	1	0.2	1.9	43.0	8.6	40.9	7	1.4	12.1
	SY	0.0	•••	7.3	'	V•4		7.0	1.4	6.7	í	0.2	1.7
	HIJA	0.8	0.2	0.7	2	0.4	3.8	13.2	2.6	12.6	31	6.2	53.5
	ORHY	2.0	4.0	1.6	ĩ	0.2	1.9	1.2.2	4.0		.	¥* 4	2.2
	SIHY	1.0	0.2	0.8	i	0.2	1.9						
	SPAM	3.5	0.7	2.7	4	0.8	7.6	1.0	0.2	1.0	2	0.4	3. S
	SPCR	3.0	0.6	2.4	1	0.2.	1.9				-		
		122.8	28.2	99.8	53	10.6	100.2	105.2	21.0	100.2	58	11.6	100.2
			6U · 4	77.0	55	10.0		103.2	61.0	.00.4	50		

E-9

₩ Ertec

٠

44

E-1R-48-11-1

)

4

.

1

Plant Species CELA CEGR LYAN TEGL(d) HLJA(s) ORHY CELA(d) ATSP(s) ELJA	Total Cover (dm) 3.5 12.0 24.5 60.0 25.8 2.0 127.8 170.5 1.7 172.2	Total Cover (%) 0.7 2.4 4.9 12.0 5.2 0.4 25.6 34.1 0.3	Rel.	ansect # of Plants 3 4 2 8 40 1 58	Density	Rel. Dan. (%) 5.2 6.9 3.5 13.8 69.0 1.7 100.1	Total Cover (dm) 31.5 12.5 51.5 35.6	Total Cover (1) 6.3 2.5 10.3 7.1 26.2	Rel. Caver (%) 24.0 9.5 39.3 27.2	t of Plants 14 6 8 63	Density	Rel. Dens. (%) '5.4 5.6 3.8 59.2
CELA CHGR LYAN TEQL(d) HLJA(s) ORHY CELA(d) ATSP(s)	Cover (dm) 3.5 12.0 24.5 60.0 25.8 2.0 127.8 170.5 1.7	Cover (%) 0.7 2.4 4.9 12.0 5.2 0.4 25.6 34.1	Cover (%) 2.7 9.4 19.2 47.0 20.2 1.6 100.1	3 4 2 8 40 1 58	(≢/100 dan) 0.6 0.8 0.4 1.6 8.0 0.2	Den. (%) 5.2 6.9 3.5 13.8 69.0 1.7	Cover (dm) 31.5 12.5 51.5 35.6	Cover (%) 6.3 2.5 10.3 7.1	Caver (%) 24.0 9.5 39.3 27.2	Plants 14 6 8	(#/100 dm) 2.8 1.2 1.6	Dens. (%) '5.4 5.6 3.8
CEGR IMAN TECL(d) HLJA(s) OREY CELA(d) ATSP(s)	12.0 24.5 60.0 25.8 2.0 127.8 170.5 1.7	2.4 4.9 12.0 5.2 0.4 25.6 34.1	9.4 19.2 47.0 20.2 1.6 100.1	4 2 8 40 1 58	0.8 0.4 1.6 8.0 0.2	6.9 3.5 13.8 69.0 1.7	12.5 51.5 35.6	2.5 10.3 7.1	9.5 39.3 27.2	6 8	1.2 1.6	5.6 3.8
ELJA(S) OREY CELA(d) ATSP(S)	25.8 2.0 127.8 170.5 1.7	5.2 0.4 25.6 34.1	20.2 1.6 100.1	40 1 58	8.0 0.2	69.0 1.7	35.6	7.1	27.2			
ATSP(s)	170.5	34.1				100.1			100.0	বা		100.0
	172.2		1.0	70 3	1.4 0.6	95.9 4.1	153.4 3.0 0.5	30.7 0.6 0.1	97.8 1.9 0.3	44 1 2	8.8 0.2 0.4	93.6 2.1 4.3
ATSP CELA(s)	7.4	34.4 1.5 6.9	7.7 36.0	73 6 14	1.2	100.0 10.7 25.0	0.5	31.4 0.1 4.0	0.6	47 1 _16	9.4 0.2 3.2	1.7 27.6
CHGR(d) GRSP LYAN TEGL	23.0 4.0 14.0	4.6 0.8 2.8	23.9 4.2 14.5	6 2 1	1.2 0.4 0.2	10.7 3.6 1.8	36.1 0.2 6.0 14.0	7.2 0.0 1.2 2.8	39.5 0.2 6.6 15.3	17 1 1 2	3.4 0.2 0.2 0.4	29.3 1.7 1.7 3.5
OPPU HLJA ORHY	13.3	2.7	13.8	27	5.4	48.2	1.0 7.7 5.8	0.2 1.5 1.2	1.1 8.4 6.4	1 13 6	0.2 2.6 1.2	1.7 22.4 10.3 99.9
ARSP(s) ATCA	96.4 70.5	14.1	49.1	29	5.8	43.3	91.3 0.5 11.0	0.1	0.4		0.2	2.2
CELA(d) CHGR	73.0 143.5	14.6 28.7	50.9 100.0	38 67	7.6 13.4	56.7 100.0	37.8 65.0 114.3	7.6 13.0 22.9	33.1 56.9 100.0	14 27 46	2.8 5.4 9.2	30.4 58.7 100.0
ŒLA(d)	108.0 7.0	21.6	93.9 6.1	47	9.4	78.3 21.7	135.6 7.5 1.2	27.1 1.5 0.2	94.0 5.2 0.8	57 2 4	11.4 0.4 0.8	90.5 3.2 6.3
	ARSP(s) ATCA ELA(d) HGR	96.4 ARSP(s) 70.5 VICA ELA(d) 73.0 ERR 143.5 ELA(d) 108.0 ERR(s)	36.4 19.3 ARSP(s) 70.5 14.1 MCCA ZELA(d) 73.0 14.6 EHGR 143.5 28.7 EELA(d) 108.0 21.6 EHGR(s) FCR 7.0 1.4	96.4 19.3 100.1 MRSP(s) 70.5 14.1 49.1 MICA 2ELA(d) 73.0 14.6 50.9 EHGR 143.5 28.7 100.0 EELA(d) 108.0 21.6 93.9 EHGR(s) 50.7 1.4 6.1	36.4 19.3 100.1 56 ARSP(s) 70.5 14.1 49.1 29 MICA ZELA(d) 73.0 14.6 50.9 38 EHGR 143.5 28.7 100.0 67 ZELA(d) 108.0 21.6 93.9 47 HGR(s) SPCR 7.0 1.4 6.1 13	36.4 19.3 100.1 56 11.2 ARSP(s) 70.5 14.1 49.1 29 5.8 MICA ZELA(d) 73.0 14.6 50.9 38 7.6 EHA(d) 108.0 21.6 93.9 47 9.4 EHAR(s) 50.7 7.0 1.4 6.1 13 2.6	36.4 19.3 100.1 56 11.2 100.0 ARSP(s) 70.5 14.1 49.1 29 5.8 43.3 MCCA ZELA(d) 73.0 14.6 50.9 38 7.6 56.7 EHAR 143.5 28.7 100.0 67 13.4 100.0 EELA(d) 108.0 21.6 93.9 47 9.4 78.3 HGR(s) SPCR 7.0 1.4 6.1 13 2.6 21.7	36.4 19.3 100.1 56 11.2 100.0 91.3 ARSP(s) 70.5 14.1 49.1 29 5.8 43.3 0.5 MCCA 11.0 11.0 11.0 11.0 11.0 ZELA(d) 73.0 14.6 50.9 38 7.6 56.7 37.8 SEGR 143.5 28.7 100.0 67 13.4 100.0 114.3 ZELA(d) 108.0 21.6 93.9 47 9.4 78.3 135.6 HGR(s) 7.0 1.4 6.1 13 2.6 21.7 1.2	96.4 19.3 100.1 56 11.2 100.0 91.3 18.2 ARSP(s) 70.5 14.1 49.1 29 5.8 43.3 0.5 0.1 MICA 11.0 2.2 11.0 11.0 2.2 11.0 2.2 ELA(d) 73.0 14.6 50.9 38 7.6 56.7 37.8 7.6 EHAR 65.0 13.0 14.3 22.9 13.4 100.0 114.3 22.9 ELA(d) 108.0 21.6 93.9 47 9.4 78.3 135.6 27.1 HGR(s) 7.0 1.4 6.1 13 2.6 21.7 1.2 0.2	36.4 19.3 100.1 56 11.2 100.0 91.3 18.2 100.0 NRSP(s) 70.5 14.1 49.1 29 5.8 43.3 0.5 0.1 0.4 MCCA 11.0 2.2 9.6 ELA(d) 73.0 14.6 50.9 38 7.6 56.7 37.8 7.6 33.1 SHGR 143.5 28.7 100.0 67 13.4 100.0 114.3 22.9 100.0 ELA(d) 108.0 21.6 93.9 47 9.4 78.3 135.6 27.1 94.0 ELA(d) 108.0 21.6 93.9 47 9.4 78.3 135.6 27.1 94.0 SPCR 7.0 1.4 6.1 13 2.6 2 ¹ .7 1.2 0.2 0.8	36.4 19.3 100.1 56 11.2 100.0 91.3 18.2 100.0 58 NRSP(s) 70.5 14.1 49.1 29 5.8 43.3 0.5 0.1 0.4 1 MCCA 11.0 2.2 9.6 4 ELA(d) 73.0 14.6 50.9 38 7.6 56.7 37.8 7.6 33.1 14 EHA(d) 73.0 14.6 50.9 38 7.6 56.7 37.8 7.6 33.1 14 EHA(d) 73.0 14.6 50.9 38 7.6 56.7 37.8 7.6 33.1 14 EHA(d) 108.0 21.6 93.9 47 9.4 78.3 135.6 27.1 94.0 57 EHA(s) 7.0 1.4 6.1 13 2.6 21.7 1.2 0.2 0.8 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE E-2 (Cont.)

SAL ANTI DESCURA

,

E-10

E-TR-48-11-1

1

				Tr	ansect	1				Tr	ansect 2	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	# of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (cm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 cbm)	Rel. Dens. (%)
	ARSP							2.5	0.5	2.4	1	0.2	1.8
SS 2/10	ATCA							3.3	0.7	3.2	3	0.6	5.3
	ATCO(S)	19.6	3.9	15.6	16	12.6	19.8	13.3	2.7	12.9	9	1.8	15.8
	CELA(d)	103.9	20.8	82.8	63	3.2	77.8	81.8	16.4	79.5	41	8.2	71.9
	OREY	2.0	0.4	1.6	2	0.4	2.5	2.0	0.4	1.9	3	0.6	5.3
		125.5	25.1	100.0	81	16.2	100.1	102.9	20.7	99.9	57	11.4	100.1
MOX 181	ARSP(s)	14.8	3.0	11.1	7	1.4	8.4	40.4	8.1	23.8	20	4.0	20.2
SS 2/11	CELA(d)	43.1	8.6	32.3	24	4.8	28.9	103.2	20.6	60.7	57	11.4	57.6
	GRSP	7.5	0.3	5.6	1	0.2	1.2	10.0	2.0	5.9	2	0.4	2.0
	TIDGL	11.0	2.2	8.2	2	0.4	2.4	3.0	0.6	1.8	1	0.2	1.0
	CEGR	15.9	3.2	11.9	9	1.8	10.8						
	LYAN	3.5	0.7	2.6	1	0.2	1.2						
	TEAX	12.0	2.4	9.0	1	0.2	1.2						
	ERMI	1.5	0.3	1.1	1	0.2	1.2						
	HIJA	22.1	4.4	16.5	34	6.8	41.0	8.9	1.8	5.2	13	2.6	13.1
	EU	2.0	0.4	1.5	2	0.4	2.4						
	5660	0.2	0.0	0.1	1	0.2	1.2						
	MA							0.5	0.1	0.3	1	0.2	1.0
	OREY							4.0	0.8	2.4	5	1.0	5.1
		133.6	25.5	99.9	83	16.6	99.9	170.0	34.0	100.1	- 39	19.8	100.0
MX 181	ATCO(d)	50.2	10.0	37.1	25	5.0	37.9	74.4	14.9	52.5	30	6.0	54.6
SS 2/12		85.2	17.0	62.9	41	8.2	62.1	67.3	13.5	47.5	25	5.0	45.5
		135.4	27.1	100.0	66	13.2	100.0	141.7	28.4	100.0	55	11.0	100.1
MX 181	ATSP(s)	20.0	4.0	30.2	9	1.8	22.0	1.0	0.2	5.6	- <u></u>	0.2	9.1
SS 2/13		28.7	5.7	43.3	16	3.2	39.0	9.4	1.9	52.2	3	0.6	27.3
	CELA(S)	13.5	2.7	20.4	9	1.8	22.0	7.0	1.4	38.9	4	0.9	36.4
	SPCR	4.1	0.8	6.2	7	1.4	17.1	0.6	0.1	3.3	3	0.6	27.3
		66.3	13.2	T00. T	- वर्ग	8.2	100.T	18.0	3.5	100.0	77	2.2	100.1

TABLE E-2 (Cont.)

ARC COM

÷

E-TR-48-11-1

				Tr	ansect	1				Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 dma)	Rel. Density	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	# of Plants	Density (#/100 chm)	Rel. Dens. (%)
MX 181	ATCO(S)	10.8	2.2	4.7	4	0.8	9.5	10.0	2.0	12.8	4	0.8	18.2
SS 2/14	SAVE(d)	217.7	43.5 45.7	95.3 100.0	38 42	7.6	90.5 100.0	68.0 78.0	13.6 15.6	87.2 100.0	18 22	3.6	31.8 100.0
MX 181	CELA(d)		21.2	88.3	47	9.4	64.4	99.9	20.0	90.0	37	7.4	ó 0. 7
SS 2/15	hlja(s) Sp	12.0	2.4 0.4	10.0 1.7	23 3	4.6 0.6	31.5 4.1	11.1	2.2	10.0	24	4.8	39.3
		120.0	24.0	100.0	73	14.5	100.0	T11.0	22.2	100.0	টা	12.2	100.0
MX 181	ATCO(d)	59.2	11.8	69.9	18	3.6	51.4	41.6	8.3	37.9	13	2.6	22.4
SS 2/16		7.3	1.5	8.6	4	0.8	11.4	47.8	9.6	43.5	26	5.2	44.8
	KOAM SIHY	12.7	2.5 1.1	15.0 6.5	10	2.0	28.6	19.4	3.9	17.7	18	3.6	31.0
	2141	84.7	16.9	100.0	3 35	0.6	8.6	1.0 109.8	0.2	0.9	1 58	0.2	1.7
MX 181	ATCO(d)	69.3	13.9	87.1	24	4.8	77.4	42.0	8.4	67.4	21	4.2	67.7
SS 2/17		• •						5.0	1.0	8.0	2	0.4	6.5
	KDAM (S)	9.0	1.8	11.3	6	1.2	19.4	15.3	3.1	24.6	8	1.6	25.8
	SIRY	1.3	0.3	1.6	-	0.2	3.2						
		79.6	16.0	100.0	31	6.2	100.0	62.3	12.5	100.0	31	6.2	00.0
MX 181	ATSP	22.3	4.5	15.6	11	2.2	11.7						
SS 2/18		95.4	19.1	66.6	53	10.6	56.4	117.6	23.5	67.2	47	9.4	66.2
	CHGR	2.5	0.5	1.8	2	0.4	2.1						
	ATCO(S)				_			51.8	10.4	2 9 .6	19	3.8	26.8
	HLJA MACA	2.3 15.1	0.5 3.0	1.6 10.5	7 15	1.4 3.0	7.5 16.0						
	ORHY	2.5	0.5	1.8	2	0.4	2.1	3.8	0.8	2.2	3	0.6	4.2
	SIHY	~. J	0.0		•	V. T	4. ·	1.3	0.3	0.7	5 1	0.2	1.4
	SP	3.1	0.6	2.2	4	0.8	4.3	0.5	0.1	0.3	1	0.2	1.4
		143.2	28.7	100.1	94	18.8	100.1	175.0	35.1	100.0	71	14.2	100.0

TABLE E-2 (Cont.)

Ξ Ertec

.

٩,

.....

						TABL	<u>E E-2</u> (Co	ont.)					
				Tr	ansect	1				Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	t of Plants	Density (#/100 dm)	(%) Rel. Dens.	Total Cover (dm)	Total Cover (%)		‡ of Plants	Density (#/100 dm)	Rel. Dens. (%)
MOK 181 SS 2/1	ARSP CELA(d) CHGR(s)	8.2 136.6 144.8	1.6 27.3 28.9	5.7 94.3	3 63 66	0.6 12.6 13.2	4.5 95.5	53.1 90.3 143.4	10.6 18.1 28.7	37.0 63.0 100.0	21 23 44	4.2 4.6 8.8	47.7 52.3 100.0
MX 181 SS 2/2	ARSP(S) CELA(d) CHGR	16.1	3.2 22.8 26.0	12.4 87.6		1.4 11.8 13.2	10.6 89.4 100.0	119.0 5.3 124.3	23.8 1.1 24.9	95.7 4.3 100.0	51 2 53	10.2 0.4 10.6	96.2 3.8 100.0
MX 181 SS 2/2	ATCO(d) I CELA(s) HLJA(s) ORHY SPCR ARSP	30.3 25.2 19.7 1.0 1.7 77.9	6.1 5.0 3.9 0.2 0.3 15.5	38,9 32,4 25,3 1,3 2,2 100,1	19 18 29 2 2 2 70	3.8 3.6 5.8 0.4 0.4 14.0	27.1 25.7 41.4 2.9 2.9 100.0	30.1 26.0 20.8 0.9 3.2 81.0	6.0 5.2 4.2 0.2 0.6	37.2 32.1 25.7 1.1 4.0	15 15 36 2 4 72	3.0 3.0 7.2 0.4 0.8	20.8 20.8 50.0 2.8 5.6
MX 181 SS 2/2	LYAN 2 ARSP CELA CHVI (d) ERNE (s) GRSP HILJA	1.4 6.8 40.4 15.4 8.0 3.2 75.2	0.3 1.4 8.1 3.1 1.6 0.6 15.1	1.9 9.0 53.7 20.5 10.6 4.3 100.0	1 7 15 4 2 7 36	0.2 1.4 3.0 0.8 0.4 1.4 7.2	2.8 19.4 41.7 11.1 5.6 19.5 100.1	4.1 2.3 68.6 1.8 2.0 7.8 86.6	0.8 0.5 13.7 0.4 0.4 1.6 17.4	4.7 2.7 79.2 2.1 2.3 9.0 100.0	1 2 24 2 1 10 40	0.2 5.0 4.8 0.4 0.2 2.0 12.6	2.5 5.0 60.0 5.0 2.5 25.0 99.0
MX 181 SS 2/2	ATCA 3 AMER CENA(s) CELA(d) CEGR EPNE HIJA	36.7 2.0 3.5 10.2 52.4	7.3 0.4 0.7 2.0	70.0 3.8 6.7 19.5 100.0	28 1 19 45	5.6 0.2 0.2 3.8 9.8	57.1 2.0 2.0 38.8 99.9	1.0 10.9 30.0 41.9	0.2 2.2 6.0	2.4 26.0 71.6	1 4 7 T2	0.2 0.8 1.4	8.3 33.3 58.3

,

TABLE E-2 (Cont.)

.

.

.

1

ŧ

1

TABLE E-3 TRANSELT RESULTS DRY LAKE SHELTER SITES CLUSTER 3

				Tr	ansect	1				Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	# of Plants	Density (#/100 dm)	Rel. Dens. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	\$ of Plants	Density (#/100 dm)	Rel. Dens. (%)
MOX 181 SS 3/1	ARTR (di Cevi (s EPNE Cegr		23.0 8.7	72.9 27.4	22 15	4.4 3.0	59.5 40.5	113.8 30.3 2.5 9.0	22.8 6.1 0.5 1.8	73.1 19.4 1.6 5.8	24 11 1 2	4.8 2.2 0.2 0.4	63.2 29.0 2.6 5.3
		158.3	31.7	100.3	37	7.4	100.0	155.6	31.2	99. 9	38	7.6	100.1
MOK 181 SS 3/2	ARTR (d CHGR (s) EPNE TEGL	46.4 6.0 3.5	9.5 9.3 1.2 0.7	46.0 44.8 5.8 3.4	11 12 2 1	2.2 2.4 0.4 0.2	42.3 46.2 7.7 3.9	80.5 29.7 40.9	16.1 5.9 8.2	53.3 19.7 27.1	19 7 6	3.8 1.4 1.2	59.3 21.8 18.7
		103.5	20.7	100.0	26	5.2	100.1	151.1	30.2	100.1	32	6.4	99.8
MCX 181 SS 3/3	ARTR (d) CHVI CHNA (s)	6.0	1 9. 7 1.2	90.8 5.5	13 1	2.6 0.2	86.7 6.7	42.3 6.0 34.0	8.5 1.2 6.8	47.4 6.7 38.1	8 2 5	1.6 0.4 1.0	47.0 11.8 29.4
	CHGR EPNE	4.0 108.6	0.8 21.7	3.7 100.0	1 15	0.2 3.0	6.7 100.1	7.0 89.3	1.4 17.9	7.8	2 17	$\frac{0.4}{3.4}$	11.8 100.0
MX 181 SS 3/4	CELA CHGR (d GRSP LYAN) 43.3	8.7	52.9	19	3.8	37.3	6.9 78.5 19.0 3.0	1.4 15.7 3.8 0.6	6.1 69.7 16.9 2.7	4 37 5 1	0.8 7.4 1.0	7.8 72.5 9.8 2.0
	TEGL (S HLJA) 33.6 4.9 81.8	6.7 1.6 17.0	41.1 6.0 100.0	5 27 51	1.0 5.4 10.2	9.8 52.9 100.0	4.5 0.8 112.7	0.9 0.2 22.6	4.0 0.7 100.1	1 3 51	0.2 0.2 0.6 10.2	2.0 2.0 5.9 100.0
.40X 181 3S 3/5	ARTR (d CHVI (s EPNE GRSP		27.1 1.1	91.7 3.7	25 2	5.0 0.4	89.3 7.1	82.6 17.5 3.0 4.0	16.5 3.5 0.6 0.8	77.1 16.3 2.8 3.7	18 6 1	3.6 1.2 0.2 0.2	69.2 23.1 3.9 3.9
	TEGL	6.9 147.9	1.4 29.6	4.7 100.1	1 28	0.2 5.6	3.6 100.0	107.1	21.4	39.9	26		100.1
40X 181 3S 3/6	ARTR (d CHVI (s LYAN		15.6 2.8	79.6 14.3	19 5	3.8	73.1 19.2	32.5 18.1 11.0	6.5 3.6 2.2	52.8 29.4 17.9	23 10 1	4.6 2.0 0.2	67.6 29.4 2.9
	TEGL ORHY	5.0 1.0	1.0 0.2 19.6	5.1 1.0 100.0	1 1 26	0.2 0.2 5.2	3.9 3.9 100.1	61.6	12.3	100.1	34	5.3	<u>-99.9</u>

E-14

🗏 Ertec

-

÷

è

.

E-15

					n	ansect	1				Tra	ansect	2	
	ple t∮	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 chm)	Rel. Dens. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 dm)	Rel. Dens. (%)
×x	181	ARCER (d) 57.5	11.5	51.0	16	3.2	47.1	92.1	18.4	74.3	21	4.2	72.4
SS	3/7) 53.4	10.7	47.4	17	3.4	50.0	16.5	3.3	13.3	4	0.8	13.8
		EFNE	1.8	0.4	1.6	1	0.2	2.9	15.3	3.1	12.3	4	0.8	13.8
			112.7	22.6	100.0	34	6.8	100.0	123.9	24.8	<u>99.9</u>	29	5.8	100.0
мx	181	ARTR (d) 50.0	10.0	78.7	20	4.0	80.0	26.0	5.2	24.6	5	1.0	18.5
SS	3/8	CHVI (S) 8.0	1.6	12.6	3	0.6	12.0	41.0	8.2	38.7	11	2.2	40.7
		EPNE							6.0	1.2	5.7	1	0.2	3.7
		GRSP	0.5	0.1	0.8	1	0.2	4.0	22.4	4.5	21.2	7	1.4	25.9
		LYAN							1.0	0.2	0.9	1	0.2	3.7
		OPER	5.0	1.0	7.9	1	0.2	4.0	9.5	1.9	9.0	_2	0.4	7.4
			63.5	12.7	100.0	25	5.0	100.0	105.9	21.2	100.1	27	5.4	99.9
	181	ARTR (d		17.8	63.6	17	3.4	58.6	119.7	23.9	95.9	27	5.4	90.0
SS	3/9	CHVI (S		5.9	21.1	6	1.2	20.7	2.5	0.5	2.0	2	0.4	6.6
		EPNE	5.0	1.0	3.6	1	0.2	3.5	2.6	0.5	2.1	1	0.2	3.3
		GRSP	15.0	3.0	10.7	4	0.8	13.9						
		LYAN	1.5	0.3	1.1	1	0.2	3.5						
			140.2	28.0	100.1	29	5.8	100.1	124.8	24.9	100.0	30	6.0	100.0
	181	ARTR (d) 69.0	13.8	73.2	14	2.8	58.3	84.3	16.9	64.9	19	3.8	59.4
SS	3/10			3.3	17.3	8	1.6	33.3	31.0	6.2	23.9	8	1.6	25.0
		EFNE	2.5	0.5	2.7	1	0.2	4.2	13.8	2.8	10.6	4	0.8	12.5
		GRSP	6.5	1.3	6.9	1	0.2	4.2	0.8	0.2	0.6	1	0.2	3.1
			94.3	18.9	100.1	24	4.8	100.0	129.9	26.1	100.0	32	6.4	100.0
мх	181	CHGR (d) 64.4	12.9	47.1	17	3.4	56.7	46.5	9.3	32.8	12	2.4	37.5
SS	3/11	EPNE	24.2	4.8	17.7	5	1.0	16.7	10.5	2.1	7.4	2	0.4	6.3
		GRSP (s		2.2	8.2	3	0.6	10.0	67.1	13.4	47.3	10	2.3	31.3
		LYAN	7.8	1.6	5.7	2	0.4	6.7	5.5	1.1	3.9	3	0.6	9.4
		TEGL	29.0	5.8	21.2	3	0.6	10.0	11.4	2.3	8.0	3	3.6	9.4
		HIJA				_			0.9	0.2	0.6	2	0.4	6.3
			136.6	27.3	99.9	30	6.0	100.1	141.9	28.4	100.0	32	6.4	100.2
	181	ŒIA	15.5	3.1	12.5	11	2.2	26.8	30.4	6.1	18.1	23	4.6	39.7
SS	3/12			9.3	37.3	16	3.2	39.0	31.8	6.4	18.9	13	2.6	22.4
		GRSP (d		11.9	47.8	13	2.6	31.7	105.8			22		
		OPER	3.0	0.6	2.4	1	0.2	2.4		21.2	63.0	_	4.4	37.9
			124.T	24.9	100.0	- 11	3.2	99.9	168.0	33.7	100.0	58	11.6	100.0

TABLE E-3 (Cont.)

71.x

Ξ Ertec

Ĩ

				Tr	ansect	1				Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	∳ of Plants	Density (#/100 chm)	Rel. Dens. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Dens. (%)
MX 181 SS 3/13			18.7 3.1 3.1 0.1 0.2 25.2	74.4 12.2 12.2 0.5 0.8 100.1	20 4 4 1 1 30	4.0 0.8 0.2 0.2 6.0	66.7 13.3 13.3 3.3 3.3 99.9	80.9 27.0 21.4 0.4 10.5 140.2	16.2 5.4 4.3 0.1 2.1 28.1	57.7 19.3 15.3 0.3 7.5 100.1	20 7 1 3 38	4.0 1.4 1.4 0.2 0.6 7.6	52.6 18.4 18.4 2.6 7.9 99.9
MX 181 SS 3/14	ARSP ARTR (d CHGR (s EPNE GRSP LLZAN TPGL ORBY SIHY		0.4 18.8 4.9 0.4 1.5 1.9 1.2 0.3 29.4	1.4 64.1 16.6 1.4 5.0 6.5 4.0 1.0 100.0	2 19 6 1 5 3 1 1 37	0.2 3.8 1.2 0.2 1.0 0.6 0.2 0.2 7.4	2.7 51.4 16.4 2.7 13.5 8.1 2.7 2.7 100.2	119.0 21.1 9.6 5.0 1.8 756.5	23.8 4.2 1.9 1.0	76.9 13.7 6.2 3.2 1.2 101.2	20 7 1 2 1 3 7	4.0 1.4 0.2 0.4 0.2 <u>0.2</u>	64.5 22.6 3.2 5.5 3.2 5.5
MX 181 SS 3/15	CELA (d ARSP CHGR (s HLJA (s CRHY SPAM) 16.4	13.0 3.3 2.0 0.0 18.3	70.8 17.8 11.1 0.2 99.9	70 10 13 1 94	14.0 2.0 2.6 0.2 18.8	74.5 10.6 13.8 1.1 100.0	62.8 0.8 7.9 2.0 0.4 0.1 74.0	12.6 0.2 1.6 0.4 0.1 0.0 14.9	84.9 1.1 10.7 2.7 0.5 0.1 100.0	70 2 6 3 1 1 1 83	14.0 0.4 1.2 0.6 0.2 0.2 16.6	84.4 2.4 7.2 3.6 1.2 1.2 100.0
MX 181 SS 3/16		15.0)104.2) 51.1 5.8 1.3 2.0 179.4	3.0 20.8 10.2 1.2 0.3 0.4 35.9	8.4 58.1 28.5 3.2 0.7 1.1 100.0	2 23 11 2 2 4 34	0.4 4.6 2.2 0.4 0.4 0.8 8.8	4.6 52.3 25.0 4.6 9.1 100.2	99.8 36.9 3.1 0.1 1.0 140.9	20.0 7.4 0.6 0.0 0.2 28.2	70.8 26.2 2.2 0.1 0.7 100.0	25 7 1 1 1 35	5.0 1.4 0.2 0.2 0.2 7.0	71.4 20.0 2.9 2.9 2.9 2.9

TABLE E-3 (Cont.)

2.2.2

10.36

c.

٠

-

• :_

E-16

Γ.

1.1.4.4.1.1

E-17

							<u>; =-3</u> (Co						
Sample Unit #	Plant Species	Total Cover (dm)	Totai Cover (%)	Rel.	ansect f of Plants	Density	Rel. Dens. (%)	Total Cover (dm)	Total Cover (%)	Rel.	t of Plants	Density	Rel. Dens. (%)
MOK 181 3/17	ATCO (S CELA CHIGR (d	30.3	11.2 6.1 6.7 24.0	46.8 25.3 27.9 100.0	24 19 13 56	4.8 3.8 2.6 11.2	42.9 33.9 23.2 100.0	37.8 3.0 65.3 106.1	7.6 0.6 13.1 21.3	35.6 2.8 61.6 100.0	12 2 16 30	2.4 0.4 3.2 6.0	40.0 6.6 53.3 99.9
MCK 181 3/18	ARSP CELA (S CEVI GRSP (d LLAN TEAX TEL ERPU HILA (S CRHY SIBY SIBY	4.0) 16.0 5.0 23.0	1.0 4.5 0.8 3.2 1.0 4.6 6.5 1.2 0.1 22.9	4.2 19.7 3.5 14.0 4.4 20.1 28.6 5.1 0.5	3 14 1 3 1 3 61 4 2 92	0.6 2.8 0.2 0.6 0.2 0.6 12.2 0.8 0.4	3.3 15.2 1.1 3.3 1.1 3.3 66.3 4.3 2.2	18.0 25.9 35.0 9.7 8.4 3.0 0.5 9.0 2.7 1.5 0.3 114.0	3.6 5.2 7.0 1.9 1.7 0.6 0.1 1.8 0.5 0.3 0.1 22.7	15.8 22.7 30.7 8.5 7.4 2.6 0.4 7.9 2.4 1.3 0.3 100.0	16 7 6 3 1 1 31 2 1 1 70	3.2 1.4 1.2 0.6 0.2 0.2 6.2 0.4 0.2 0.4 0.2 14.0	22.8 10.0 8.5 4.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
MOK 181 3/19	ATCO CELA (d CHGR (s TEGL HLJA CRHY SPAM		2.3 9.2 5.4 0.3 0.5 0.8 0.3 18.8	12.2 48.7 28.7 1.6 2.9 4.5 1.4 100.0	5 25 13 1 6 3 1 54	1.0 5.0 2.6 0.2 1.2 0.6 0.2 10.8	9.3 46.3 24.1 1.9 11.1 5.6 1.9 100.2	48.7 17.6 66.3	9.7 3.5 13.2	73.5 26.6 100.1	31 21 52	6.2 4.2	59.6 40.4
MX 181 3/20	ATCA (d CELA CH GRSP (s HLJA ORHY	15.4 4.0	7.7 3.1 0.8 7.1 5.8 0.3 24.8	31.2 12.4 3.2 28.6 23.4 1.1 99.9	11 11 2 7 27 1 59	2.2 2.2 0.4 1.4 5.4 0.2	18.6 18.6 3.4 11.9 45.8 1.7 100.0	46.6 21.5 13.0 17.3 8.2 0.5	9.3 4.3 2.6 3.5 1.6 0.1 <u>21.4</u>	43.5 20.1 12.1 16.2 7.7 0.5	15 10 5 4 13 1 48	3.0 2.0 1.0 0.8 2.6 0.2 <u>9.6</u>	31.3 20.8 10.4 8.3 27.1 2.1

TABLE E-3 (Cont.)

∃ Ertec

\$

				Ľ	ansect	1				Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Dens. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	∳ or Plancs	Density (#/100 dm)	Rel. Dens. (%)
MX 181 SS 3/21	ATCA CELA (d CH GRSP HLJA (s	8.6 12.7	5.6 9.0 1.7 2.5 8.4 27.2	20.4 33.1 6.3 9.3 30.9 100.0	6 18 2 2 35 63	1.2 3.6 0.4 0.4 7.0 12.6	9.5 28.6 3.2 3.2 55.6 100.1	27.5 27.5 2.0 29.0 24.1 110.1	5.5 5.5 0.4 5.8 4.8 22.0	25.0 25.0 1.8 26.3 21.9 100.0	11 12 1 4 19 47	2.2 2.4 0.2 0.8 3.8 9.4	23.4 25.5 2.1 8.5 40.4 99.9
MX 181 SS 3/22	CELA (d GRSP (s HLJA ORHY SPAM SPCR CHGR ARSP		13.5 12.5 2.1 0.4 0.1 0.4 29.0	45.4 43.0 7.4 1.3 0.4 1.4	37 11 11 2 1 2	7.4 2.2 2.2 0.4 0.2 0.4	57.8 17.2 17.2 3.1 1.6 3.1	55.1 30.3 14.3 6.0 10.5 1.4 117.6	11.0 6.1 2.9 1.2 2.1 0.3 <u>23.6</u>	46.9 25.8 12.2 5.1 8.9 1.2 100.1	22 5 23 3 1 57	4.4 1.0 4.6 0.6 0.6 0.2 11.4	38.6 8.8 40.4 5.3 5.3 1.6
MX 181 SS 3/23	CELA (d HLJA (s Orey		15.8 1.5 0.9 18.2	86.8 8.4 4.8 100.0	59 45 11 115	11.8 9.0 2.2 23.0	51.3 39.1 9.6 100.0	94.4 13.6 108.0	18.9 2.7 21.6	87.4 12.6 100.0	53 26 79	10.6 5.2 15.8	67.1 32.9 100.0

TABLE	E-3	(Cont.)

AN

1000 I.S. 10 I.S.

÷

٠

.

Í

TABLE E-4 TRANSECT RESULTS DRY LARE SHELTER SITES CLUSTER 4

				Tr.	ansect	1				îr	ansect	2	
Sample Uhit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Dens. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 chm)	Rel. Dens. (%)
MC 181	ARSP	0.1	0.0	0.1	1	0.2	1.7						
SS 4/1	ATCO(S)	31.4	6.3	34.4	23	4.6	39.0						
	CELA(d)	60.0	12.0	65.7	35	7.0	59.3	83.3	16.7	99.4	42	8.4	97.7
	CRHY							0.5	0.1	0.6	1	0.2	2.3
		91.5	18.3	100.2	59	11.8	100.0	83.8	16.8	100.0	43	8.6	100.0
MX 181	SUFR							6.0	1.2	8.4	1	0.2	4.3
SS 4/2	ARSP	5.4	1.1	5.1	5	1.0	10.4	•••		•••			
•	ATCO(S)	27.1	5.4	25.5	15	3.0	31.3	11.4	2.3	16.0	4	0.8	17.4
	ROAM (d)	42.2	8.4	39.8	17	3.4	35.4						
	SAVE(s)	29.4	5.9	27.7	9	1.8	18.8	15.1	3.0	21.2	5	1.0	21.7
	SIHY	2.0	0.4	1.9	2	0.4	4.2	1.5	0.3	2.1	1	0.2	4.3
	SUPO							37.3	7.5	52.3	12	2.4	52.2
		106.1	21.2	100.0	48	9.6	100.1	71.3	14.3	100.0	23	4.6	99.9
MX 181	CHIGR	6.2	1.2	7.2	4	0.8	5.3				,		
SS 4/3	ATCO(s)	8.1	1.6	9.4	6	1.2	8.0	74.8	15.0	97.5	27	5.4	87.1
	GUSA(d)	60.9	12.2	70.7	46	9.2	61.3	1.6	0.3	2.1	3	0.6	9.7
	HIJA	3.2	0.6	3.7	10	2.0	13.3						
	LEMO	0.3	0.1	0.4	1	0.2	1.3						
	ORHY	1.8	0.4	2.1	4	0.8	5.3						
	ERCA	5.5	1.1	6.4	3	0.6	4.0						
	ROAM	0.2	0.0	0.2	1	0.2	1.3	0.3	0.1	0.4	1	0.2	3.2
		86.2	17.2	100.1	75	15.0	99.8	76.7	15.4	100.0	31	6.2	100.0
1X 181	CELA	6.8	1.4	8.2	8	1.6	11.8	4.1	0.8	4.1	5	1.0	7.1
5S 4/4	ARSP(s)	23.9	4.8	28.8	24	4.8	35.3	27.0	5.4	26.9	19	3.8	27.1
	ATCO(d)	35.7	7.2	43.1	21	4.2	30.9	59.9	12.0	59.7	37	7.4	52.9
	SIHY	0.3	0.1	0.4	1	0.2	1.5						
	CHGR	7.2	1.4	8.7	3	0.6	4.4	6.2	1.2	6.2	4	0.8	5.7
	ORHY	4.1	0.8	4.9	5	1.0	7.4						
	GU	3.0	0.6	3.6	2	0.4	2.9	1.5	0.3	1.5	1	0.2	1.4
	HIJA	1.5	0.3	1.8	2	0.4	2.9	0.8	0.2	0.8	2	0.4	2.9
	SPAM	0.4	0.1	0.5	2	0.4	2.9	0.9	0.2	0.9	2	3.4	2.9
		82.9	16.7	100.0	68	13.6	100.0	100.4	20.1	100.1	70	14.0	100.0

E-19

AA

ł

•

_				Tra	ansect	1			_	Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Dens. (%)	Tot <u>al</u> Cover (dm)	Total Cover (%)	Rel. Cover (%)	† of Plants	Density (\$/100 dm)	Rel. Dens. (%)
MC 181	ATCA(S)	2.0	0.4	2.0	1	0.2	2.1	15.0	3.0	16.8	6	1.2	:3.6
SS 4/5	CELA(S)	2.5	0.5	2.5	3	0.6	6.4	7.8	1.6	8.7	9	1.8	20.5
	CHGR(d)	88.0	17.6	86.6	35	7.0	74.5	65.2	13.0	72.9	25	5.0	56.8
	ORHY	6.1	1.2	6.0	7	1.4	14.8						
	TECL	3.0	0.6	3.0	1	0.2	2.1						• •
	HLJA							1.4	0.3	1.6	_4	0.8	9.1
		101.6	20.3	100.1	47	9.4	99.9	89.4	17.9	100.0	44	8.8	100.0
X 181	ARSP(s)	42.9	8.6	39.9	23	4.6	31.9	26.2	5.2	26.0	20	4.0	34.5
SS 4/6	ATCO(d) HIJA	35.1 8.4	7.0 1.7	32.7 7.8	17 16	3.4 3.2	23.6 22.2	35.8	7.2	35.6	19	3.8	32.8
	CREY	17.2	3.4	16.0	8	1.6	11.1	2.2	0.4	2.2	2	0.4	3.5
	SPAM	3.8	0.8	3.5	8	1.6	11.1				-		5.5
	CERR				•			22.4	4.5	22.2	10	2.0	17.2
	CELA							2.7	0.5	2.7	2	0.4	3.5
	TEL							4.0	0.8	4.0	1	0.2	1.7
	KOAM							7.4	1.5	7.4	4	0.8	6.9
		107.4	21.5	99.9	72	14.4	99.9	100.7	20.1	100.1	58	11.6	100.1
MC 181	AICO	28.0	5.6	26.1	16	3.2	17.0	10.3	2.1	10.9	5	1.0	2.7
SS 4/7	ARSP	14.4	2.9	13.4	7	1.4	7.5	3.8	0.8	4.0	3	0.6	1.6
	CELA	9.5	1.9	8.9	5	1.0	5.3						
	CHGR(s)	25.9	5.2	24.1	18	3.6	19.2	15.5	3.1	16.4	17	3.4	9.2
	HIJA(d)	13.4	2.7	12.5	34	6.8	36.2	57.4	11.5	60.8	153	30.6	83.2
	ORHY	15.6	3.1	14.5	12	2.4	12.2	7.4	1.5	7.8	6	1.2	3.3
	SIHY	0.1	0.0	0.1	1	0.2	1.1						
	SPAM	0.4	0.1	0.4	1	0.2	1.1						
		107.3	21.5	100.0	74	18.9	99.6	94.4	19.0	<u>99.9</u>	184	36.3	10010
40X 181 3S 4/8	ARTR	4.0	0.8	4.1	1	0.2	3.7	5.2	1.0	4.5	6	1.2	10.7
	ATCO(d) CELA(s)	93.1	18.6	94.4	25	5.0	92.6	100.8	20.2	86.4 9.2	44	8.8	78.6
	SIHY	1.5	0.3	1.8	1	0.2	3.7	ι υ. '	2.1	9.2	6	1.2	10.7
		98.6	19.7	100.3	27	5.4	100.0	116.7	23.3	100.1	56	11.2	100.0

TABLE E-4 (Cont.)

E-20

۰

E-1R-48-II - I

£	2	1

 \mathcal{T}

TABLE	E-4	(Cont.)

				Tr	ansect	1							
Sample Uhit ‡	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Dens. (%)	Cover	Cover	Cover		(#/100	Dens.
MX 181	ATCA(d)	29.0	5.8	39.8	9	1.8	19.6						
SS 4/9	CELA	22.5	4.5	30.9	15	3.0 0.2	32.6	4.8	1.0	6.5	6	1.2	7.1
	GU Orbey (S)	6.7 7.5	1.3	9.2 10.3	1 10	2.0	21.7	41.8	8.4	56.8	60	12.0	71.4
	SIHY	7.2	1.4	9.9	11	2.2	23.9		0.2				
	HIJA							1.4	0.3	1.9	7	1.4	8.3
		72.9	14.5	100.1	46	9.2	100.0	73.6	14.8	100.0		16.8	99.9
MX 181	ATCO(d)	43.2	8.6	52.9	17	3.4	23.9					4.8	
SS 4/10		14.6	2.9	17.9	10	2.0	14.1	26.6	5.3	27.8	23	4.6	35.9
	HLJA(S) ORHY	0.2	0.0	0.2	1	0.2 0.2	1.4 1.4						
	SIHY	23.2	4.6	28.4	42	8.4	59.1	13.8	2.8	14.4	17	3.4	26.6
		81.7	16.2	100.0	71	14.2	99.9				64		
MX 181	ARSP(3)	31.7	6.3	34.2	34	6.8	49.3	3.6	0.7	4.8	2	0.4	2.5
SS 4/11		21.5	4.4	23.2	13	2.6	18.8						
	ROAM(d)	37.2	7.4	40.1	19	3.8	27.5						
	ORHY SIHY	1.1	0.2	1.2	2	0.4 0.2	2.9 1.5	2.3	0.5	3.1	0	1.4	1.0
		92.8	18.6	100.1	69		100.0	75.3	15.T	100.0	79	15.8	100.0
MX 181	ATCA(s)	18.3	3.6	21.5	5	1.0	4.3	28.7	5.7	27.7	14	2.8	15.1
SS 4/12	CELA(d)	41.0	8.2	48.1	22	4.4	18.8						
	HLJA	17.6	3.5	20.6	77	15.4	65.8						
	orhy Sihy	8.4	1.6	9.9	13	2.6	11.1						
	GUSA										_		
	CER							1.0	0.2	1.0	t	0.2	1.1
		85.3	16.9	100.1	117	23.4	100.0	113.7	20.8	100.0	93	18.6	100.2
MX 181	ARTR	1.6	0.3	1.9	2	0.4	4.0						
SS 4/13		72.7	14.5	88.2	35	7.0	70.0						
	KOAM	6.1	1.2	7.4	5	1.0	10.0				-		
	SIHY CHGR(d)	2.0	0.4	2.4	8	1.6	16.0	1.2 87.7	0.2	1.2 90.0	3 44	0.6 3.8	4.5
	HIJA							6.7	1.3	6.9	17	3.4	25.3
	ORHY							1.8	0.4	1.9	2	5.4	3.0
		82.4	16.4	99.9	50	10.0	100.0	97.4	19.4	100.0	<u> 56</u>	13.2	100.0

1

١

				Ĩr	ansect	1				Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	≇ of Plants	Density (#/100 dm)	Rel. Dens. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 chm)	Rel. Dens. (%)
MX 181 SS 4/14	SIEV	1.2	0.2	1.2	3	0.6	4.5	72.7 1.6 2.0 6.1	14.5 0.3 0.4 1.2	88.2 1.9 2.4 7.4	35 2 8 5	7.0 0.4 1.6 1.0	70.0 4.0 16.0 10.0
	orhy Chigr Hlja	1.8 87.7 6.7 97.4	0.4 17.5 1.3 19.4	1.8 90.0 6.9 99.9	2 44 17 66	0.4 8.8 3.4 13.2	3.0 66.7 25.8 100.0	82.4	16.4	99.9	50	10.0	100.0
MDK 181 SS 4/15	HIJA(S)	0.5 72.7 29.9	0.1 14.4 6.0	0.4 64.8 26.9	1 46 72	0.2 9.2 14.4	0.7 34.1 53.3	88.2	17.6	94.7	51	10.2	86.4
	orey Spcr	0.2 8.6 111.9	0.0 1.7 22.2	0.2 7.1 99.4	1 15 135	0.2 3.0 27.0	0.7 11.1 99.9	4.9 93.1	1.0 18.6	5.3 100.0	8 59	1.6 11.8	13.6
MX 181 SS 4/16	ATCA ATCO(S)	11.5 0.5	2.3	10.2	5	1.0	8.9 1.8	74.0	14.8	81.8	33	6.6	80.5
	CELA CHGR(d) HIJA ORHY	7.7 83.8 1.9 6.9	1.5 16.8 0.4 1.4	6.9 74.6 1.7 6.1	4 27 6 13	0.8 5.4 1.2 2.6	7.1 48.2 10.7 23.2	2.3	0.5	2.5	4	0.8	9.8
	KOAM ARSP	112.3	22.5	100.0	56	11.2	99.9	12.2 2.0 90.5	2.4 0.4 18.1	13.5 2.2 100.0	3 1 दौ	0.6 0.2 8.2	7.3 2.4 100.0
MX 181 SS 4/17	ARSP ATCO(d) KDAM(s) SIHY	1.7 110.9 14.9	0.3 22.2 3.0	1.3 87.0 11.7	2 39 12	0.4 7.8 2.4	3.8 73.6 22.6	116.5 7.9 0.3	23.3 1.6 0.1	93.4 6.3 0.2	44 4	8.8 0.8 0.2	89.8 8.2 2.0
		127.5	25.5	100.0	53	10.6	100.0	124.7	25.0	99.9	49		100.0
MX 181 SS 4/18	ATCO(d) KOAM SIHY(s)	19.1 0.2 1.9 21.2	3.8 0.0 0.4 4.2	90.1 0.9 9.0 100.0	23 1 12 36	4.6 0.2 2.4 7.2	63.9 2.8 33.3 100.0	59.8 10.1 36.9 106.8	12.9 2.0 7.4 21.4	56.0 9.5 34.6 100.1	26 13 20 59	5.2 2.6 4.0 11.8	44.1 22.0 33.9

,

TABLE E-4 (Cont.)

٩,

E-TR-48-11-1

1

.

.

1

				Tra	nsect	I				Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	t of Plants	Density (#/100 dm)	Rel. Dens. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 dm)	Rel. Dens. (%)
MOX 181 SS 4/19	ARSP ATCO(d) RCAM(s) LYAN SAVE SIEY	0.5 24.1 35.9 5.8 16.9 5.3	0.1 4.8 7.2 1.2 3.4 1.1	0.6 27.2 40.6 6.6 19.1 6.0	1 8 21 1 3 5	0.2 1.6 4.2 0.2 0.6 1.0	2.6 20.5 53.9 2.6 7.7 12.8	0.3 44.3 23.0	0.1 8.9 4.6	0.4 65.5 34.0	1 13 3	0.2 2.6 0.6	5.9 76.5 17.6
		88.5	17.8	100.1	39	7.8	100.1	67.6	13.6	99.9	77	3.4	100.0
MOK 181 SS 4/20	OPER	91.5 1.9	18.3 0.4	98.0 2.0	68 3	13.6 0.6	95.8 4.2	4.0	0.8	38.1	1	0.2	25.0
	GUSA(S)	93.4	18.7	100.0	71	14.2	100.0	6.5 10.5	1.3	61.9 100.0	3	0.6	75.0 100.0
MX 181 SS 4/21	ATCA(d) ATCO(s) CELA	28.5 32.3 2.0	5.7 6.5 0.4	32.8 37.1 2.3	5 9	1.0 1.8 0.2	16.1 29.0 3.2	53.5	10.7	60.9	20	4.0	37.0
	ROAM(S) GUMI SIHY	15.4 4.8 4.0 87.0	3.1 1.0 0.8 17.5	17.7 5.5 4.6 100.0	10 2 4 37	2.0 0.4 0.8 6.2	32.3 6.5 12.9 100.0	14.3 5.4 14.6 <i>97.9</i>	2.9 1.1 2.9 17.6	16.3 6.2 16.6 700.0	13 2 19 54	2.6 0.4 3.8 10.8	24.1 3.7 35.2 100.0
MX 181 SS 4/22	ATCO(S)	50.6	10.1	87.4	20	1.0	74.1	22.0 5.7	4.4 1.1	1 9. 7 5.1	10 3	2.0 0.6	22.7 6.8
U	ROAM SIHY CHGR(d) TEGL hignown \$2 TEAX CRHY	1.5 5.8	0.3 1.2	2.6 10.0	1 6	0.2 1.2	3.7 22.2	70.7 7.6 3.2 1.5 1.0	14.1 1.5 0.6 0.3 0.2	63.3 6.8 2.9 1.3 0.9	21 6 1 2	4.2 1.2 0.2 0.4 0.2	47.7 13.6 2.3 4.6 2.3
		57.9	11.6	100.0	27	5.4	100.0	111.7	22.2	100.0	44		100.0

TABLE E-4 (Cont.)

₩ Ertec

STUDIES MANAGER

E-23

t

				Tr	ansect	1				Tr.	ansect 2	2	
Sample Chit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	t of Plants	Density (#/100 dm)	Rel. Dens. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 cmm)	Rel. Dens. (%)
OX 181	ATCO	1.0	0.2	0.9	1	0.2	1.7						
SS 4/23	GUSA(d)	42.4	8.5	38.4	19	3.8	31.7						
•	TEGL	12.2	2.4	11.1	3	0.6	5.0						
	HLJA	2.1	0.4	1.9	4	0.8	6.7	4.6	0.9	3.9	9	1.8	12.2
	ORELY	9.8	2.0	8.9	8	1.6	13.3	11.1	2.2	9.5	11	2.2	14.9
	SIHY	1.0	0.2	0.9	1	0.2	1.7						
	ERMI(S)	23.9	4.8	21.7	11	2.2	18.3	33.2	6.6	28.3	16	3.2	21.6
	(4/22)	17.9	3.6	16.2	13	2.6	21.7						
	GUMI							34.9	7.1	29.7	18	3.6	24.3
	TEGL							14.3	3.9	12.2	4	0.8	5.4
	ERMI							19.3	4.9	16.4	16	3.2	21.6
		110.3	22.1	100.0	60	12.0	100.1	117.4	25.6	100.0	74		100.0

TABLE E-4 (Cont.)

Ξ Ertec

ŧ

TABLE E-5 TRANSECT RESULTS DRY LARE SHELTER SITES CLUSTER 5

				Tra	insect i					Tr	ansect 2	2	
Sample Uhit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 cm)	Rel. Dens. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Dens. (%)
MX 181	ORELY (S)	19.5	3.9	21.3	15	3.0	41.7	21.0	4.2	27.8	14	2.8	45.1
SS 5/1	CHGR(d)	50.8	10.2	55.5	14	4.7	38.9	46.0	9.2	60.9	12	2.4	38.7
	ATCA	7.5	1.5	8.2	3	0.6	8.3	2.0	~ .				
	GUEA	8.2 5.5	1.6	9.0	2	0.4	5.5	2.0 2.5	0.4 0.5	2.7	1 3	0.2 0.6	3.2
	SACA TEGL	5.5	1.1	6.0	2	0.4	5.5	4.0	0.8	3.3 5.3	1	0.2	9.7 3.3
	TEASL	91.5	18.3	100.0	36	9.1	99.9	75.5	15.1	100.0	31		100.0
MX 181 SS 5/2	ATCA(d)	40.7 5.5	8.1	40.6 5.5	13	2.6 0.6	30.2 7.0	44.1	8.8	77.9	12	2.4	57.1
33 3/4	CELA ARSP	0.2	1.1	0.2	3 1	0.2	2.3						
	RDAM(S)	53.8	10.8	53.7	26	5.2	60.5	8.9	1.8	15.7	7	1.4	33.3
	SIHY	33.0		2007	20			2.0	0.4	3.5	1	0.2	4.7
	TEL							1.6	0.3	2.8	i	0.2	4.8
		100.2	20.0	100.0	43	8.6	100.0	56.6	11.3	99.9	21	4.2	99.9
MX 181	KDAM(S)	36.9	7.4	30.4	15	3.0	26.8	57.0	11.4	46.6	28	5.6	42.4
SS 5/3	ATCO(d)	78.9	15.8	65.0	37	7.4	66.1	51.7	10.3	42.3	24	4.8	36.4
/ -	ORHY	5.6	1.1	4.6	4	0.8	7.1	5.7	1.1	4.7	8	1.6	12.1
	ARSP							3.5	0.7	2.9	2	0.4	3.0
	SIHY							4.3	0.9	3.5	4	0.8	6.1
		121.4	24.3	100.0	56	11.2	100.0	122.2	24.4	100.0	56	13.2	100.0
MX 181	HLJA(d)	62.5	12.5	85.6	129	25.8	92.1	73.2	14.6	89.5	138	27.6	92.6
SS 5/4	CRHY(S)	10.5	2.1	14.3	11	2.2	7.9	6.1	1.2	7.5	10	2.0	6.3
, -								2.5	0.5	3.0	1	0.2	0.7
		73.0	14.6	99. 9	140	28.0	100.0	81.8	16.3	100.0	149	29.8	99.6
MX 181	CELA(d)	168.2	33.6	97.3	101	20.2	96.2	130.9	26.2	96.7	90	18.0	94.7
SS 5/5	ATCA(s)	2.7	0.5	1.6	2	0.4	1.9	4.5	0.9	3.3	5	1.0	5.3
	ORHY	1.8	0.4	1.0	2	0.4	1.9						
		172.7	34.5	99.9	105	21.0	100.0	175.4	27.1	100.0	95	19.0	100.0
MX 181	SPCR(s)	4.2	0.8	26.3	8	1.6	11.6	8.1	1.6	7.0	9	1.8	10.5
SS 5/6	CELA(d)		22.0	68.8	55	11.0 '		67.4	13.5	58.1	44	8.8	51.2
	GUMI	6.8	1.4	4.2	3	0.6	4.4	د 24.	4.9	21.1	10	2.0	11.6
	ORHY	0.3	0.1	0.1	1	0.2	1.5	10.0	2.0	8.6	9	1.8	10.5
	HIJA	0.7	0.1	0.4	2	0.4	2.9	2.8	0.6	2.4	10	2.0	11.6
	CHVI							3.3	0.7	2.8	-+	0.8	4.7
		121.8	24.4	99.8	69	13.8	100.1	116.1	23.3	100.0	- 36	17.2	·00.1

E-25

∃ Ertec

0.1.171-1.1

E-26

	· · ·			Tr	ansect	1				Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Dens. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 chm)	Rel. Dens. (%)
MX 181 SS 5/7	TEGL(d) CHVI	86.5	17.3	66.4 5.4	16 2	3.2	57.1	1.8	0.4	1.9	1	0.2	3.6
יוכני	EPNE LYAN GRSP	8.8 6.5 21.5	1.8 1.3 4.3	6.8 5.0	3 2 5	0.6 0.4 1.0	10.7 7.1 17.9	15.4	3.1	16.2	4	0.8	14.3
	ARIR(S) GUMI			16.5	-			67.7 10.0	13.5	71.4	18 5	3.6 1.0	64.3 17.9
	<u>_</u>	130.3	26.1	100.1	- 28	5.6	100.0	-94.9	19.0	100.0	28	5.6	100.T
MX 181 SS 5/8	GUMI(d) EPNE(s) HLJA TEGL SIHY	89.9 40.6 1.7 5.0 2.0	18.0 8.1 0.3 1.0 0.4	60.9 27.5 1.2 3.4 1.4	36 4 3 2 1	7.2 0.8 0.6 0.4 0.2	72.0 8.0 6.0 4.0 2.0	61.3 18.0 3.3 29.0	12.3 3.6 0.7 5.8	51.3 15.1 2.8 24.3	22 1 9 4	4.4 0.2 1.8 0.8	57.8 2.6 23.7 10.5
	CHVI	0.5 8.0 147.7	0.1 1.6 29.5	0.3 5.4 100.1	1 3 	0.2 0.6 10.0	2.0 6.0 100.0	8.0 119.6	1.6 24.0	6.7	2	0.4	5.3 99.9
MX 181 SS 5/9	CHVI(d) CELA(s) HLJA GUMI EPNE SIHY ORHY TELL ARTR	67.3 12.4 8.5 2.5 7.3	13.5 2.5 1.7 0.5 1.5	68.7 12.7 8.7 2.6 7.5	20 10 11 1	4.0 2.0 2.2 0.2 0.2	46.5 23.3 25.6 2.3 2.3	11.1 23.7 20.2 11.9 6.4 1.3 3.2 22.5 6.3	2.2 4.7 4.0 2.4 1.3 0.3 0.6 4.5 1.3	10.4 22.2 19.0 11.2 6.0 1.2 3.0 21.1 5.9	10 22 41 7 2 1 3 2 1	2.0 4.4 8.2 1.4 0.4 0.2 0.6 0.4 0.2	11.2 24.7 46.0 7.9 2.3 1.1 3.4 2.2 1.1
		98.0	19.7	100.2	43	8.6	100.0	106.6	21.3	100.0	89	17.8	99.9
MX 181 SS 5/10	HIJA EPNE CHVI GUMI TEGL(d) CELA CHNA PEPA ATCA(s) VIMU CDME LYAN	11.1 19.6 24.5 6.4 51.5 0.4	2.2 3.9 4.9 1.3 10.3 0.1	9.7 17.3 21.6 5.6 45.4 0.4	19 7 6 4 3 1	3.8 1.4 1.2 0.8 1.6 0.2 9.0	42.2 15.6 13.3 3.9 17.8 2.2	20.6 6.3 3.5 2.0 28.8 2.4 10.0 9.3 33.4	4. 1 1.3 0.7 0.4 5.8 0.5 2.0 2.0 2.0	24.7 7.6 4.2 2.4 34.5 2.9 12.0 11.8 100.1	9 2 1 4 2 1	1.8 0.4 0.2 0.2 0.8 0.4 0.2 0.2 0.2 4.2	42.9 9.5 4.3 19.0 9.5 4.3 4.3

TABLE E-5 (Cont.)

🖀 Ertec

ç

TABLE	E~5	(Cont.)

				Tr	ansect	1				Tr	ansect	2	
Sample Uhit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dma)	Rel. Dens. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	\$ of Plants	Density (#/100 dm)	Rel Dens (%)
	SPCR	1.3	0.3	1.1	1	0.2	2.6						
SS 5/11		12.5	2.5	10.9	22	4.4	56.4	6.9	1.4	7.0	14	2.8	37.8
	EPNE(S)	21.8	4.4	19.0	2	0.4	5.1	1.5	0.3	1.5	1	0.2	2.7
	LYAN	19.0	3.8	16.6	3	0.6	7.7						
	TEGL	22.5	4.5	19.6	4	0.8	10.3						
	GUMI	6.0	1.2	5.2	1	0.2	2.6						
	CHVI	1.5	0.3	1.3	1	0.2	2.6						
	ARTR(d)	30.0	6.0	26.2	5	1.0	12.8	64.2	12.8	65.1	15	3.0	40.5
	VIMU							6.6	1.3	6.7	4	0.8	10.8
	COME							18.0	3.6	18.2	2	0.4	5.4
	OPEC							1.5	0.3	1.5	1	0.2	2.7
		114.6	23.0	99.9	39	7.8	100.1	98.7	19.7	100.0	37	7.4	99.9
MX 181	HIJA(d)	15.4	3.1	24.8	70	14.0	84.3	26.1	5.2	55.7	71	14.2	33.5
SS 5/12	EPNE (S)	13.6	2.7	21.6	3	0.6	3.6	11.5	2.3	24.5	1	0.2	1.2
	ORHY	2.5	0.5	4.0	1	0.2	1.2						
	SPCR	9.1	1.8	14.4	4	0.8	4.8	6.3	1.3	13.4	11	2.2	12.9
	ARIR	18.3	3.7	29.6	2	0.4	2.4						
	GUMI	3.5	0.7	5.6	1	0.2	1.2						
	VIMU	0.2	0.0	0.0	1	0.2	1.2	•					
	LYAN	0.2	0.0	0.0	1	0.2	1.2	2.8	0.6	6.0	1	0.2	1.2
	ARPU							0.2	0.0	0.4	1	0.2	1.2
		62.8	12.5	100.0	83	16.6	99.9	46.9	9.4	100.0	85	17.0	100.3
MX 181	HIJA(d)	20.3	4.1	69.5	47	9.4	83.9						
SS 5/13	SPCR(S)	3.4	0.7	11.9	2	0.4	3.6	4.9	1.0	100.0	6	1.2	100.0
	ORHY	4.8	1.0	16.9	5	1.0	8.9						
	CELA	0.4	0.1	1.7	2	0.4	3.6						
		28.9	5.9	100.0	56	11.2	100.0	4.9	1.0	100.0	3	1.2	100.0
MQC 181	EPNE (S)	22.5	4.5	25.6	2	0.4	3.3						
SS 5/14		44.1	8.8	50.0	47	9.4	77.1	26.8	6.5	57.5	41	3.2	74.5
	ORHY	10.9	2.2	12.5	5	1.0	8.2				-		
	SIHY	3.2	0.6	3.4	2	0.4	3.3						
	CHVI	4.3	0.9	5.1	2	0.4	3.3						
	CELA	J.8	0.2	1.1	1	0.2	1.6	1.0	0.2	1.9	1	0.2	1.8
	SPCR	1.9	0.4	2.3	2	0.4	3.3	11.1	2.2	19.5	8	1.6	14.5
	GUMI							12.1	2.4	21.2	5	1.0	9.1
		87.7	17.6	100.0	61	12.2	100.1	51.0	11.3	100.0	55	1.3	39.3

E-27

Ξ Ertec

TABLE	E-5	(Cont.)

			Transect 1 Total Total Rel. # of Density							îr	ansect 2	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)		‡ of Plants		Rel. Dens. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 dm)	Rel. Dens. (%)
MX 181	HIJA	40.4	8.1	42.5	43	8.6	58.9						•
SS 5/15		31.1	6.2	32.7	25	5.0	34.3						
	OPEC	1.5	0.3	1.6	1	0.2	1.4				-		
	EPNE(d)	22.0	4.4	23.2	4	0.8	5.5	48.0	9.6	47.3	5	1.0	33.3
	FAPA(s)							47.0	9.4	46.3	8	1.6	53.3
	GUMI							6.5	1.3	6.4	2	0.4	13.3
		95.0	19.0	100.0	73	14.6	100.1	101.5	20.3	100.0	15	3.0	99.9
MX 181	CELA(S)	13.4	2.7	12.8	14	2.8	15.2	52.7	10.5	77.5	44	8.8	73.3
SS 5/16		80.5	16.1	76.7	73	14.6	79.4	8.0	1.6	11.8	12	2.4	20.0
	CHVI	10.0	2.0	9.5	4	0.8	4.4						
	CREY	1.1	0.2	1.1	1	0.2	1.1	7.3	1.5	10.7	4	0.8	6.7
		105.0	21.0	100.1	92	18.4	100.1	68.0	13.6	100.0	-60	12.0	100.0
MX 181	HLJA	6.3	1.3	5.5	9	1.8	23.7	6.1	1.2	6.7	8	1.6	10.5
SS 5/17	ARTR(d)	75.1	15.0	65.0	17	3.4	44.7						
	CHVI	1.7	0.3	1.5	2	0.4	5.3	3.0	0.6	3.3	1	0.2	1.3
	TEGL	12.3	2.5	10.6	3	0.6	7.9						
	GUMI	2.0	0.4	1.7	1	0.2	2.6	5.9	1.2	6.7	3	0.6	4.0
	EPNE	15.1	3.0	13.1	4	0.8	10.5					• •	• •
	ORHY ARPU	1.2	0.2	1.0	1	0.2	2.6	1.7	0.3	1.7	2	0.4	2.6
	CELA(S)	1.9	0.4	1.6	1	0.2	2.6			70.0			
	SPOR							71.1	14.2	78.9	57	11.4	75.0
	LYAN							1.2	0.2	1.1	3	0.6	4.0 1.3
	SIHY							0.6	0.1	0.6	1	0.2	1.3
	,	115.6	23.1	100.0	38	7.6	.99.9	90.6	18.0	100.1	76		100.0
MX 181 SS 5/18	SPCR HLJA(s)	15.2 25.8	3.0 5.2	23.9	21	4.2	25.0	2.8	0.6	2.3	8	1.6	9.9
33 3/18	CELA	17.1	5.2	40.6	41 17	8.2	48.8	11.0	2.2	9.0	21	4.2	25.9
	ORHY	5.1		26.9		3.4	20.2	10.6	2.1	8.7	10	2.0	12.3
	SPGR	0.4	1.0 0.1	8.0 J.6	4	0.8	4.9	1.8	0.4	1.5	3	0.6 0.2	3.7
	GUMI(d)	0.4	0.1	0.0	1	0.∡	1.4	0.5 82.8	16.6	0.4 67.6	33	0.2 6.6	40.7
	ARPU							82.8 5.5	1.1	4.5	33	0.3	40.7
	CHVI							5.5	1.3	4.5	2	0.3	2.5
	SIHY							1.0	0.2	0.8	2	0.4	1.2
		63.6	17 7	100.0	- 34	16.8	100.0	122.5	24.6	100.1	- 31	16.1	
		07.0	14.1	100.0	04	10.0	100.0	142.5	24.0	100.1	31	10.1	99.9

₩ Ertec

27.0

11986 A - 114

E-29

					ansect						ansect	,	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel.	# of Plants	Density	Rel. Dens. (%)	Total Cover (dm)	Total Cover (%)	Rel.	# of Plants	Density	Rel. Dens. (%)
	HLJA(d) SPCR CELA(s) EPNE SUBY ARPU CEVI SPAM GUMI VIMU ORBY	37.8 7.1 26.3 14.8 4.4 3.0 3.6 1.6	7.6 1.4 5.3 3.0 0.9 0.6 0.7 0.3	38.3 7.2 26.7 15.0 4.5 3.0 3.7 1.6	51 14 19 3 2 2 2 2	10.2 2.8 3.8 0.6 0.6 0.4 0.4 0.4	53.1 14.6 19.8 3.1 3.1 2.1 2.1 2.1	2.6 4.9 2.6	0.5 1.0 0.5	25.7 48.5 25.7	2 4 1	0.4 0.6 0.2	33.3 50.0 16.6
	CINEI	98.6	19.8	100.0	- 36	19.2	100.0	10.1	2.0	99.9		1.2	99.9
MX 181 SS 5/20	HIJA ORHY TREL	84.9 27.8 0.3 1.5 10.1	17.0 5.6 0.1 0.3 2.0	64.4 21.2 0.4 1.1 7.6	22 7 1 1 2	4.4 1.4 0.2 0.2 0.4	62.9 20.0 2.9 2.9 5.7	¢ 5.0 2.4 2.0	1.0 0.5 0.4	6.2 3.0 2.5	1 4 1	0.2 0.8 0.2	3.3 13.3 3.3
	Cevi Arno(s) Arpu Lizan	6.9 131.5	1.4 25.4	5.3 100.0	2	0.4 -7.0	5.7 100.1	14.8 52.0 0.5 3.5 80.2	3.0 10.4 0.1 0.7 16.1	18.5 64.8 0.6 4.4 100.0	6 15 2 1 30	1.2 3.0 0.4 0.2 6.0	20.0 50.0 6.7 3.3 99.9
MOX 181 SS 5/21	ARPU	7.5 0.5	21.8 1.5 0.1	91.2 6.3 0.4	28 10 1	5.6 2.0 0.2	70.0 25.0 2.5	123.5 0.8	24.7 0.2	82.2 0.5	27 2	5.4 0.4	77.1 5.7
	orhy Sihy Tegl(s) Epne	2.5	0.5 23.9	2.1	1	0.2	2.5	.1.5 1.5 17.0 6.0 150.3	0.3 0.3 3.4 1.2 30.1	1.0 1.0 11.3 4.0 100.0	1 3 1 	0.2 0.2 0.6 0.2 7.0	2.9 2.9 8.6 2.9
	ARNO(d) EPNE		22.8	91.9	27 2	5.4 0.4	84.4 6.3	30.5	6.1	21.9	6	1.2	21.4
	sihy Hija Gumi	0.6 0.9	0.1 0.2	0.5	1 2	0.2 0.4	3.1 6.3	0.5 30.6	0.1 6.1	0.4 21.9	1 11	0.2 2.2	3.6 39.3
	lyan Tegl PRFA(s) Atca						ı	7.3 8.2 59.4 3.0	1.5 1.6 11.9 0.6	5.2 5.9 42.6 2.2	1 1 7 1	0.2 0.2 1.4 0.2	3.6 3.6 25.0 3.6
		123.9	24.8	100.0	32	6.4	100.1	139.5	27.9	100.1	-28	5.6	100.1

TABLE E-5 (Cont.)

Ξ Ertec

\$

ŧ

				Ĩr	ansect	1		Transect 2						
	ple t i	Plant Species ,	Total Cover (dm)	Total Cover (%)		‡ of Plants	Density (#/100 dm)	Rel. Dens. (%)	Total Cover (dm)	Total Cover (%)		‡ of Plants	Density (#/100 cm)	Rel. Dens. (%)
MX	181	ARTR(d)	126.7	25.3	88.5	35	7.0	81.4	119.7	23.9	92.6	28	5.6	84.9
SS	5/23	CHVI(s)	9.5	1.9	6.6	4	0.8	9.3	1.2	0.2	0.8	1	0.2	3.0
		ORHY	0.1	0.0	0.1	1	0.2	2.3	1.3	0.3	1.2	1	0.2	3.0
		SIHY	1.0	0.2	0.7	1	0.2	2.3	3.1	0.6	2.3	2	0.4	ő. 1
		EFNE	5.0	1.0	3.5	1	0.2	2.3	4.0	0.8	3.1	1	0.2	3.0
		ARPU	0.8	0.2	0.8	1	0.2	2.3						
			143.1	28.6	100.2	43	8.6	99.9	129.3	25.8	100.0	33	6.6	100.0

TABLE E-5 (Cont.)

Ξ Ertec

1:

ļ

1

.

+ - -

م ال الله العد (غام معالم

.

TABLE E-6 TRANSPOT RESULTS DRY LARE SHELTER SITES CLUSTER 6

				Tr	ansect	1				îr	ansect	2	
Sample Unit #	Plant Species	Total Cover (cm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (\$/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	\$ of Plants	Density (#/100 chm)	Rel. Den. (%)
MX 181	AMER (d)							87.4	17.5	63.2	14	2.8	48.3
SS 6/1	ARER	5.0	1.0	7.3	1	0.2	4.4	24.7	4.9	17.9	8	1.6	27.6
	CHVI (s		6.7	48.8	11	2.2	47.8				-		
	EPNE	2.5	0.5	3.6	2	0.4	8.7	6.4	1.3	4.6	1	0.2	3.5
	CRSP	6.0	1.2	8.7	2	0.4	8.7						
	GUMI	1.0	0.2	1.5	1	0.2	4.4	14.1	2.8	10.2	5	1.0	17.2
	LYAN	0.3	0.1	0.4	1	0.2	4.4	5.8	1.2	4.2	1	0.2	3.5
	TEG.	19.5	3.9	28.3	4	0.8	17.4						
	SIHY	1.0	0.2	1.5	1	0.2	4.4						
		68.9	13.8	100.1	23	4.6	100.2	138.4	27.7	100.1	-29	5.8	100.1
MX 181	ARSP	14.8	3.0	14.7	5	1.0	12.5						
SS 6/2	CELA	1.8	0.4	1.8	ĩ	0.2	2.5						
, -	CHVI	22.5	4.5	22.3	8	1.6	20.0	7.0	1.4	4.7	1	0.2	2.6
	EPNV	3.0	0.6	3.0	ĩ	0.2	2.5	17.2	3.4	11.5	ŝ	0.6	7.9
	GRSP (S)		5.9	29.1	6	1.2	15.0	26.3	5.3	17.5	6	1.2	15.8
	GUMI	6.0	1.2	5.9	4	0.8	10.0	12.7	2.5	8.5	5	1.0	13.2
	LYAN	6.8	1.4	6.7	2	0.4	5.0	1.0	0.2	0.7	1	0.2	2.6
	TEGL (d) 10.6	2.1	10.5	2	0.4	5.0	58.4	11.7	38.9	10	2.0	26.3
	HIJA	5.7	1.1	5.6	10	2.0	25.0	2.0	0.4	1.3	5	1.0	13.2
	AMER	0.4	0.1	0.4	1	0.2	2.5						
	TEAX							19.0	3.8	12.7	3	0.6	7.9
	MUPO							5.3	1.1	3.5	3	0.6	7.9
	SIHY							1.3	0.3	0.9	t	0.2	2.6
		101.0	20.3	100.0	40	8.0	100.0	150.2	30.1	100.2	- 38	7.6	100.0
MX 181	ARER							7.0	1.4	5.6	1	0.2	4.2
SS 6/3	ATCA							6.3	1.3	5.0	1	0.2	4.2
	ŒLA	0.5	0.1	0.4	1	0.2	2.9	3.9	0.7	3.1	2	0.4	8.3
	CHVI (d		15.9	67.3	25	5.0	73.5	20.6	4.1	16.4	6	1.2	25.0
	EPNV	5.0	1.0	4.2	1	0.2	2.9	19.3	3.9	15.3	2	0.4	8.3
	GRSP (s		0.6	2.7	1	0.2	2.9	24.5	4.9	19.5	4	0.8	16.7
	LYAN	1.0	0.2	0.9	1	0.2	2.9	18.2	3.6	14.5	3	J.6	12.5
	TEGL	29.0	5.8	24.5	5	1.0	14.7						
	GUMI							21.1	4.2	16.8	3	0.6	12.5
	SPCO							2.3	0.5	1.8	1	0.2	4.2
	AMER							2.7	0.5	2.1	1	3.2	4.2
		118.3	23.6	100.0	-34	6.8	99.8	125.9	25.1	100.1	24	5.0	100.1

E-31

<u>م</u>

ſ

Ξ Ertec

E-TR-48-11-1

1997 - 1998 - 19

		·		n.	ansect					Ir	ansect	2	
Sample Chit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	t of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	t of Plants	Density (#/100 dm)	Rel. Den. (%)
MX 181 SS 6/4	CELA (S) CHGR	17.3	3.5	10.8	8 10	1.6	17.8	32.5	6.5	18.6	13	2.6	15.5
55 0/4		56.5	11.3	35.4	11	2.0	24.4	41.7	8.3	23.8	8	1.6	ə.5
	LYAN	20.3	4.1	12.7	5	1.0	11.1	18.5	3.7	10.6	5	1.0	6.0
	TEGL	25.5	5.1	16.0	4	0.8	8.9	21.5	4.3	12.3	2	0.4	2.4
	HLJA (d)		0.8	2.6	7	1.4	15.6	60.3	12.1	34.7	56	11.2	ó6.7
		159.8	32.0	100.0	45	9.0	100.0	174.5	34.9	100.0	34	16.3	.00.1
MOK 181	ARSP	8.0	1.6	11.2	4	0.8	11.8	6.9	1.4	6.8	4	0.8	5.6
55 6/5	CHVI	2.5	0.5	3.5	1	0.2	2.9	4.7	0.9	4.6	2	0.4	2.8
		16.0	3.2	22.5	4	0.8	11.8	18.7	3.7	18.3	4	0.8	5.6
		21.0	4.2	29.5	5	1.0	14.7	36.5	7.3	35.8	7	1.4	9.7
	LYAN	4.0	0.8	5.6	1	0.2	2.9	5.0	1.0	4.9	1	0.2	1.4
	TEGL	13.9	2.8	19.5	4	0.8	11.8				•		
	HIJA	4.8	1.0	6.7	14	2.8	41.2	26.1	5.2	25.6	51	10.2	-0.8
	ORHY ASIE	1.0	0.2	1.4	1	0.2	2.9	2.4 1.8	0.5 0.4	2.4).8	1 2	0.2 0.4	1.4
	AGIL:	-71.2	14.3	99.9	-34	6.8	100.0	102.1	20.4	100.2	-12		100.1
MX 181	ARTR	7.0	1.4	9.6	2	0.4	8.7						
SS 6/6	CHVI (S)		5.8	39.9	8	1.6	34.8	2.1	0.4	1.7	1	0.2	2.7
	EPNE (S	14.3	2.9	19.7	3	0.6	13.0	16.8	3.4	13.4	5	1.0	13.5
	LYAN	3.0	0.6	4.1	3	0.6	13.0	14.5	2,9	11.5	3	0.6	8.1
	GRSP (d)		1.3	8.8	2	0.4	8.7	82.6	16.5	65.7	16	3.2	43.2
	HYSA	11.9	2.4	16.4	4	0.8	17.4						
	ORHY	10.0	0.2	1.4	1	0.2	4.4	1.0	0.2	0.8	1	0.2	2.7
	SIHY							0.6	0.1	0.5	1	0.2	2.7
	ASLE HIJA							0.2	0.0	0.2	17	0.2	2.7
	TEGL							5.5	1.1	4.4	1	0.2	2.7
	ERPU							0.2	0.0	0.2	į	0.2	2.7
		-1.6	14.6	99.9	23	4.6	100.0	125.8	25.1	100.2	37	7.1	39.9
			14.0	22.2	-	4.0	100.0	ه.د.	ا و لينه	100.2	37	1.4	33.3

TABLE E-6 (Cont.)

357 M.S.

3343

 \mathcal{T}

Z-32

Control of the second se

E-33

7:5

1

				Tr	ansect	i				Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	∳ of Plants	Density (#/100 dm)	Rel. Den. (%)
MX 181	ARCR (S)	7.0	1.4	6.1	1	0.2	4.0	64.2	12.8	39.2	7	1.4	20.0
SS 6/7	ATCA	2.0	0.4	1.7	1	0.2	4.0	0.7	0.1	0.4	1	0.2	2.9
	CHVI	17.5	3.5	15.2	4	0.8	16.0	34.9	7.0	21.3	10	2.0	28.6
	EPNE (d)		11.8	51.0	9	1.8	36.0	22.1	4.4	13.5	6	1.2	17.2
	GRSP	13.0	2.6	11.3	4	0.8	16.0	7.7	1.5	4.0	2	0.4	5.7
	LYAN	4.0	0.8	3.5	2	0.4	8.0	17.6	3.5	10.7	5	1.0	14.3
	TEGL	10.0	2.0	8.7	3	0.6	12.0	11.7	2.3	7.1	2	0.4	5.7
	MUPO	3.0	0.6	2.6	1	0.2	4.0						
	ARSP							0.9	0.2	0.6	1	0.2	2.9
	YUBA							4.0	0.8	2.4	1	0.2	2.9
		115.3	23.1	100.1	25	5.0	100.0	163.8	32.6	99.8	- 35	7.0	100.2
MOK 181	ARSP							0.8	0.2	0.7	1	0.2	1.8
SS 6/8	ATCA	4.5	0.9	4.6	4	0.8	10.3						
	CELA	9.9	2.0	10.0	6	1.2	15.4	11.5	2.3	10.0	10	2.0	17.9
	CBGR (d		11.9	60.1	22	4.4	56.4	77.8	15.6	67.8	21	4.2	37.5
	GRSP (S)		4.9	24.8	6	1.2	15.4	9.1	1.8	7.9	3	0.6	5.4
	CREY	0.5	0.1	0.5	1	0.2	2.6	1.7	0.3	1.5	1	0.2	1.8
	HLJA							10.0	2.0	8.7	. 18	3.6	32.1
	TECL							3.9	0.8	3.4	2	0.4	3.6
		98.8	19.8	100.0	39	7.8	100.1	114.8	23.0	100.0	- 56	11.2	100.1
MX 181	ARSP	3.0	0.6	3.5	2	0.4	3.5	1.1	0.2	1.9	1	0.2	1.5
SS 6/9	ATCA							3.5	0.7	6.1	1	0.2	1.5
	CIVI	3.0	0.6	3.5	1	0.2	1.8	3.4	0.7	5.9	3	0.6	4.4
	EPNE (d)		7.0	40.5	7	1.4	12.3	14.0	2.8	24.3	6	1.2	8.7
) 12.5	2.5	14.5	2	0.4	3.5	5.2	1.0	9.0	1	0.2	1.5
	LYAN	4.0	0.8	4.7	1	0.2	1.8						
	HIJA (d		5.6	32.8	43	8.6	75.4	19.2	3.8	33.3	53	10.6	76.8
	ORHY	0.5	0.1	0.6	1	0.2	1.8	2.6	0.5	4.5	2	0.4	2.9
	SIHY							0.7	0.1	1.2	1	0.2	1.5
	TEGL							8.0	1.6	13.9	1	3.2	1.5
		86.0	17.2	100.1	57	11.4	100.1	57.7	11.4	100.1	69	13.8	100.3

TABLE E-6 (Cont.)

Contraction of the local division of the loc

¥

à

1

S hears

;

				Tr	nsect	1				Tr.	ansect 3	2	
Sample Uhit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dan)	Rel. Den. (%)
MOK 181	ARSP	5.3	1.1	9.0	2	0.4	4.1	2.1	0.4	2.3	2	0.4	4.2
SS 6/10	EPNE	5.3	1.1	9.0	2	0.4	4.1	8.3	1.7	9.1	2	0.4	4.2
	GRSP	7.0	1.4	11.8	2	0.4	4.1	5.2	1.0	5.7	1	0.2	2.1
	LYAN (S)		3.0	25.3	3	0.6	6.1	16.6	3.3	18.2	4	0.8	8.3
	TEAX	4.0	0.8	6.8	1	0.2	2.0						
	1995L (d)		1.7	14.4	1	0.2	2.0	40.8	8.2	44.7	6	1.2	12.5
	HLJA	13.6	2.7	23.0	37	7.4	75.5	14.8	3.0	16.2	32	6.4	66.6
	SIHY	0.5	0.1	0.8	1	0.2	2.0	3.5	0.7	3.8	1	0.2	2.1
		59.2	11.9	100.1	49	9.8	99.9	91.3	18.3	100.0	-18	9.6	100.0
IX 181		16.4	3.3	18.5	11	2.2	13.8	1 9. 7	3.9	24.9	18	3.6	24.0
SS 6/11	ATCA	2.3	0.5	2.6	1	0.2	1.3						
	CELA	10.7	2.1	12.1	19	3.8	23.8	8.3	1.7	10.5	9	1.8	12.0
	EPNE	0.3	0.1	0.3	2	0.4	2.5	22.6	4.5	28.6	8	1.6	10.7
	GUSA (d)		9.7	54.9	20	4.0	25.0	9.8	2.0	12.4	2	0.4	2.7
	HLJA	10.2	2.0	11.5	27	5.4	33.8	17.9	3.6	22.6	36	7.2	48.0
								0.8	0.2	1.0	2	0.4	2.7
		88.5	17.7	99.9	80	16.0	100.2	79.1	15.9	100.0	75	15.0	100.1
MX 181	ARSP	3.2	0.6	2.2	3	0.6	5.2	0.5	0.1	0.4	t	0.2	2.7
SS 6/12	ATCA	3.2	0.6	2.2	2	0.4	3.5	1.5	0.3	1.2	1	0.2	2.7
	CELA	4.7	0.9	3.2	3	0.6	5.2	1.5	0.3	1.2	1	0.2	2.7
	CHGR (S)		9.5	32.5	15	3.0	25.9	28.5	5.7	23.4	8	1.6	21.6
	epne Grsp	21.7 36.9	4.3	14.9 25.3	6	1.2	10.3	32.2	6.4	26.5	8	1.6	21.6
	LYAN	4.1	7.4 0.8	2.8	8 1	1.6	13.8 1.7	2.4 0.4	0.5 0.1	2.0 0.3	1	0.2	2.7
	TEGL (d)		3.1	10.7	3	0.2	5.2	48.8	9.8	40.1	9	0.2	24.3
	HIJA	3.7	0.7	2.5	13	2.6	22.4	*0.0	0.7	3.0	5	1.0	13.5
	ORHY	2.5	0.5	1.7	1	0.2	1.7	2.2	0.4	1.8	2	0.4	5.4
	SIHY	2.7	0.5	1.9	ż	0.6	5.2	2.2	0.4	1.0	4	0.4	3.4
		145.7	28.9	- 99.9	- 58	11.6	100.1	171.6	24.3	- 99.9	37	7.4	39.9
	ATCO (d)	47 5	9.5	63.1	33	6.6	54.1	62.5	12.5	72.2	33	6.6	62.2
SS 6/13	KOAMI(S)		5.3	34.9	26	5.2	42.6	20.7	4.1	23.9	17	3.4	32.0
	ORHY	1.5	0.3	2.0	20	0.4	3.3	1.2	0.2	1.4	2	0.4	32.0
	ARSP		0.0	2.0	4	V. T	ل ه ت	2.2	0.4	2.5	1	0.2	1.8
		75.3	15.1	100.0	- 61	12.2	100.0	36.6	17.2	100.0	- 53	10.6	- 39 -
		13.3	(3. (100.0	91	14.4		00.0	11.4	100.0	23	·U. D	79 .

TABLE E-6 (Cont.)

🗄 Ertec

TANK AND DESCRIPTION

7.4

TABLE	E6	(Cont.)	

				îr	ansect	1		Transect 2						
Sample Uhit #		Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 chm)	Rel. Den. (%)	
MX 181	ARSP							2.3	0.5	1.9	1	0.2	2.5	
SS 6/14	ATCA							1.0	0.2	0.8	1	0.2	2.5	
	CHER (S)	38.5	7.7	28.8	9	1.8	17.0	15.1	3.0	12.3	6	1.2	15.0	
	EPNE (d)	47.1	9.4	35.2	9	1.8	17.0	49.8	10.0	40.7	11	2.2	27.5	
	GRSP	6.9	1.4	5.2	3	0.6	5.7	14.5	2.9	11.8	6	1.2	15.0	
	LYAN	11.2	2.2	8.4	4	0.8	7.5	27.	5.6	22.7	6	1.2	15.0	
	TEAX							2.0	0.4	1.6	1	0.2	2.5	
	HLJA	19.2	3.8	14.4	24	4.8	45.3	5.5	1.1	4.5	6	1.2	15.0	
	OREY	4.9	1.0	3.7	2	0.4	3.8	4.4	0.9	3.6	2	0.4	5.0	
	TECL	6.0	1.2	4.5	2	0.4	3.8				-			
		133.8	26.7	100.2	- 53	10.6	100.1	122.5	24.6	99.9	40	8.0	100.0	
·								<u> </u>			······	· · · · ·		
MX 181	ARSP	5.2	1.0	3.1	4	0.8	6.3	2.8	0.6	2.1	1	0.2	1.8	
SS 6/15	ATCA	0.5	0.1	0.3	1	0.2	1.6							
	CHGR	8.3	1.7	5.0	2	0.4	3.1							
	EPNE (d)		18.9	57.1	9	1.8	14.1	32.4	6.5	24.3	8	1.6	14.3	
	GRSP (S)	16.7	3.3	10.1	5	1.0	7.8	51.6	10.3	38.7	12	2.4	21.4	
	LYAN	3.5	0.7	2.1	1	0.2	1.6	17.8	3.5	13.3	6	1.2	10.7	
	HIJA	34.5	6.9	20.8	40	8.0	62.5	25.5	5.1	19.1	27	5.4	48.2	
	SIHY	2.4	0.4	1.5	2	0.4	3.1							
	CHOLLA							3.4	0.7	2.6	2	0.4	3.6	
		165.7	33.0	100.0	64	12.8	100.1	133.5	26.7	100.1	56	11.2	100.0	
MX 181	CHVI	6.7	1.3	4.2	2	0.4	6.3	4.0	0.8	3.5	1	0.2	3.4	
55 6/16			10.0	31.7	6	1.2	18.8	7.6	1.5	6.7	2	0.4	6.9	
	GRSP (d)		6.7	21.3	10	2.0	31.3	70.3	14.1	61.8	14	2.8	48.3	
	BYSA	25.6	5.1	16.2	9	1.8	28.1	21.9	4.4	19.3	6	1.2	20.7	
	LYAN	39.6	7.9	25.1	4	0.8	12.5	41.3	4.4	13.3	0	1.4	20.1	
	ORHY	2.3	0.4	1.5	1	0.2	3.1	2.1	0.4	1.9	1	0.2	3.4	
	ATCA	2.3	0.4			V. 4	3.1	2.0	0.4	1.8	í	0.2	3.4	
	SIHY							2.5	0.5	2.2	i	0.2	3.4	
	ARSP							3.3	0.7	2.2	3	0.2	10.3	
	MOF	125 -		100 0			100 1			-	-		-	
		158.0	31.4	100.0	32	6.4	100.1	113.7	22.8	100.1		5.8	99.8	
MX 181	ARTR (d)	122.7	24.5	82.4	21	4.2	80.8	26.7	5.3	27.6	5	1.0	20.0	
SS 6/17			0.4	1.3	1	0.2	3.9	44.5	8.9	46.0	15	3.0	60.0	
	EPNE	24.3	4.9	16.3	4	0.8	15.4	18.6	3.7	19.2	4	0.8	16.0	
	GRSP			, .	-			7.0	1.4	7.2	i	0.2	4.0	
		148.9	29.8	100.0	-26	5.2	100.1	96.8	19.3	100.0	-25	3.0	100.0	
		. 40. 3	63.0		40	3.4		50.0	1213		<u>.</u>	2.0		

₩ Ertec

E-36

		<u> </u>		- <u> </u>	».	Tra	ansect	1				Tra	ansect	2	
	ple .t #	Plant Species		Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	7 Rel. Den. (%)	Total Cover (cm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Den. (%)
MX.	181	ARSP		2.2	0.4	1.6	1	0.2	2.3	6.7	1.3	5.6	3	0.6	7.1
	6/18	ATCA		1.5	0.3	1.1	Ť	0.2	2.3	7.3	1.5	6.2	2	0.4	4.8
	•, ••	TABD		15.6	3.1	11.5	Ś	1.0	11.6	31.0	6.2	26.1	8	1.6	19.1
		EFNE	(đ)	46.6	9.3	34.4	π	2.2	25.6	26.9	5.4	22.7	Ğ	1.2	14.2
		GRSP	(-,	10.2	2.0	7.5	2	0.4	4.7	7.5	1.5	6.3	3	0.6	7.1
			(g)	48.9	9.8	36.1	9	1.8	20.9	12.4	2.5	10.5	4	0.8	9.5
		LYAN	(,	.		30.1			20.7	11.2	2.2	9.4	4	0.8	9.5
		HIJA		6.3	1.3	4.6	11	2.2	25.6	9.3	1.9	7.8	8	1	19.1
		OREY		3.0	0.6	2.2	2	0.4	4.7	9.3	1.3	/	0		12.1
		SIHY		1.3	0.3	1.0	1	0.2	2.3	6.4	1.3	5.4	4	0.8	9.5
		2101						-				-			
				135.6	27.1	100.0	43	8.6	100.0	118.7	23.7	100.0	-12	8.4	99.9
MX	181	ARSP		5.5	1.1	3.9	2	0.4	3.0						
SS	6/19	ARTR		60.6	12.1	42.7	9	1.8	36.0	97.1	19.4	76.3	14	2.8	70.0
		EPNE		16.5	3.3	11.6	5	1.0	20.0	٤.7	4.5	17.8	4	0.8	20.0
		CHVI		32.1	6.4	22.6	5	1.0	20.0						
		GRSP		7.4	1.5	5.2	ī	0.2	4.0	7.5	1.5	5.9	2	0.4	10.0
		LYAN		8.9	1.8	6.3	2	0.4	8.0				_		
		TEGL		10.9	2.2	7.7	ī	0.2	4.0						
				141.9	28.4	100.0	25	5.0	100.0	127.3	25.4	100.0	20	4.0	100.0
								-							
	181	SIHY				. .				3.6	0.7	1.9	3	0.6	5.2
SS	6/20			3.0	0.6	2.4	1	0.2	2.3	1.5	0.3	0.8	1	0.2	1.7
			(d)	36.0	7.2	28.3	8	1.6	18.6	125.9	25.2	65.0	17	3.4	29.3
		EPNE		32.8	6.6	25.8	4	0.8	9.3	0.4	0.1	0.2	1	0.2	1.7
		GRSP		9.5	1.9	7.5	3	0.6	7.0	31.5	6.3	16.3	8	1.6	13.8
		LYAN		9.2	1.8	7.2	2	0.4	4.7	0.5	0.1	0.3	1	0.2	1.7
			(S)	22.8	4.6	17.9	5	1.0	11.6	20.8	4.2	10.7	5	1.0	8.6
		HIJA		13.9	2.8	10.9	20	4.0	46.5	9.5	1.9	4.9	22	4.4	37.9
				127.2	25.5	100.0	43	8.6	100.0	193.7	38.8	100.1	-58	11.6	99.9
-	<u> </u>				•										
MX	181	ARSP		4.5	0.9	3.5	6	1.2	7.8	20.7	4.1	14.2	11	2.2	16.7
SS	6/21	ATCO	(d)							96.2	19.2	66.2	40	8.0	60.6
	-, -	ATCA	、 - <i>i</i>	27.5	5.5	21.3	12	2.4	15.6						
		SU		0.3	0.1	0.2	1	0.5	1.3	13.1	2.6	9.0	8	1.6	12.1
		GRSP	(s)		10.9	42.3	- 11	2.2	14.3	5.2	1.0	3.6	1	0.2	1.5
		ORHY	(2)	8.3	1.7	6.4	3	0.6	3.9	3.4		2.5			
		CELA		8.4	1.7	6.5	4	0.8	5.2	3.9	0.8	2.7	3	0.6	4.5
		SIHY		6.3	1.3	4.9	3	0.6	3.9	1.2	0.2	0.8	1	0.2	1.5
		SPCR		1.0	0.2	0.8	,	0.5	1.3	1.4	0.4	0.0	'		
		HLJA		18.2	3.6	14.1	36	7.2	46.8	5.0	1.0	3.4	2	0.4	3.0
				129.1	25.9	100.0	77	16.0	100.1	145.3	28.9	99.9	66	13.2	99.9

TABLE E-6 (Cont.)

Ξ Ertec

• '

A COLORADOR

				îr	ansect	1	Transect 2						
ample hit #	Plant Species		Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Pel. Den. (%)	Total Cover (dm)	Total Cover (%)		<pre># of Plants</pre>	Density (#/100 dma)	Rel. Den. (%)
X 181	ARSP (S) 15.3	3.1	9.0	9	1.8	13.2	30.7	6.1	18.4	12	2.4	19.7
S 6/22	ATCO (d)139.6	27.9	82.3	49	9.8	72.1	135.1	27.0	81.4	48	9.6	78.7
	CEIA	13.4	2.7	7.9	8	1.6	11.8	1.4	0.3	0.2	1	0.2	1.6
	ORHY	1.4	0.3	0.8	2	0.4	2.9						
		1 69.7	34.0	100.0	68	13.6	100.0	167.2	33.4	100.0	61	12.2	100.0
x 181	ATCA	18.3	3.7	14.6	3	0.6	5.9						
S 6/23	CELA	12.3	2.5	9.8	8	1.6	15.7	9.7	1.9	11.8	5	1.0	4.5
	CHVI	17.5	3.5	13.9	6	1.2	11.8	4.0	0.8	4.8	2	0.4	1.8
	GRSP (d) 56.5	11.3	45.0	11	2.2	21.6	14.0	2.8	17.0	2	0.4	1.8
	TEGL	3.0	0.6	2.4	1	0.2	2.0						
	HIJA (S) 11.5	2.3	9.2	19	3.8	37.3	52.3	10.5	63.4	100	20.0	89.3
	ARSP							0.8	0.2	1.0	2	0.4	1.8
	SIHY							1.7	0.3	2.1	1	0.2	0.9
	ORHY	6.5	1.3	5.2	3	0.6	5.9						
		125.6	25.2	100.1	- 51	10.2	100.2	82.5	16.5	100.1	112	22.4	100.1

TABLE E-6 (Cont.)

E-37

 \mathbf{A}

E-TR-48-11-1

¥

1

.

.

•

i ,

TABLE E-7 TRANSETT RESULTS DRY LARE SHELTER SITES CLUSTER 7

				Ťr.	ansect	1		Transect 2						
Sample Unit \$	Plant Species		Total Cover (%)		<pre># of Plants</pre>	Density (#/100 chm)		Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	\$ of Plants	Density (#/100 dm)	Rel. Densit (%)	
MX 181	CELA (S		2.8	14.0	6	1.2	14.0	32.0	6.4	28.9	16	3.2	25.8	
SS 7/1	P) IVED		12.2	61.0	13	2.6	30.2	40.6	8.1	36.6	11	2.2	17.7	
	ATCA	1.2	0.2	1.2	1	0.2	2.3	8.1	1.6	7.3	5	1.0	8.1	
	ORELY	6.7	1.3	6.7	4	0.8	9.3	13.4	2.7	12.1	10	2.0	16.1	
	KOAM	7.3	1.5	7.3	7	1.4	16.3	2.1	0.4	1.9	1	0.2	1.6	
	ATCO HIJA	4.6	0.9	4.6 5.3	6	1.2	14.0 14.0		2.4		15	3.0	24.2	
	SP	5.3	1.1	2.3	6	1.44	14+1	12.2	0.5	11.0 2.2	4	0.8	2 4. 2 6.5	
	34													
		100.2	20.0	100.1	-43	8.6	100.1	110.8	22.1	100.0	62	12.4	100.0	
MX 181	CHVI (d) 13.9	2.8	31, 2	5	1.0	18.5	90.1	18.0	77.1	28	5.6	66.7	
SS 7/2	ATCO (s	17.9	3.6	40.2	7	1.4	25.9	8.3	1.7	7.1	2	0.4	4.3	
	STPI	2.6	0.5	5.8	2	0.4	7.4	0.6	0.1	0.5	1	0.2	2.4	
	hija	3.1	0.6	7.0	6	1.2	22.2	0.6	0.1	0.5	2	0.4	4.8	
	ORELY	7.0	1.4	15.7	7	1.4	25.9	6.0	1.2	5.1	5	1.0	11.9	
	ATCA					_		11.3	2.3	9.7	4	0.8	9.5	
		44.5	8.9	99.9	-27	5.4	99.9	116.9	23.4	100.0	-42	8.4	100.1	
MOX 181	DIVIE)	39.7	7.9	30.3	11	2.2	15.3	33.2	6.6	31.0	8	1.6	14.0	
SS 7/3	HIJA (S	25.4	5.1	19.4	47	9.4	65.3	30.6	6.1	28.5	35	7.0	61.4	
	TEGL	34.6	6.9	26.4	5	1.	6.9	16.0	3.2	14.9	2	0.4	3.5	
	SPAC	22.7	4.5	17.3	4	0.8	5.6	14.5	2.9	13.5	5	1.0	8.8	
	ORHY	1.9	0.8	1.5	3	0.6	4.2							
	LYAN	6.7	1.3	5.1	2	0.4	2.8						• •	
	ARSP							6.0	1.2	5.6	4	0.8	7.0	
	ATCA							0.9	0.2	0.8	1 2	0.2	1.8	
	GROW	131.0	26.5	100.0	72	14.4	100.1	6.0 107.2	$\frac{1.2}{21.4}$	5.6 99.9	- 57	0.4	3.5 100.0	
									<u> </u>		·			
XX 181	CELA (d		13.8	80.3	36	7.2	80.0	24.6	4.9	19.3	11	2.2	26.2	
SS 7/4	HIJA	2.5	0.5	2.9	6	1.2	13.3	0.2	0.0	0.3	1	0.2	2.4	
	GRSP (S		2.6	15.4	2	0.4	4.4	24.2	4.8	18.9	4	0.8	9.5	
	ATCA	1.2	0.2	1.4	1	0.2	2.2	34.6	6.9	27.1	13	2.6	31.0	
	CHVI							43.5	8.7	34.0	12	2.4	28.6	
	ARSP			100-0		·		0.7	0.1	0.6	1	0.2	2.4	
		85.9	17.1	100.0	45	9.0	99.9	127.8	25.4	100.2	42	3.4	100.1	

E-38

Ŧ/

Ξ Ertec

0.05

TABLE E	-7 (Cont	•])

				Tr	ansect	1		Transect 2						
Sample Chit #	Plant	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	# of Plants	Density (#/100 chm)	Rel. Density (%)	Total Cover (dm)	Total Cover (%)		≠ of Plants	Density (#/100 dm)	Rel. Densit (%)	
MX 181	SIHY (S)	10.4	2.1	16.8	8	1.6	18.2	4.0	0.8	4.0	3	0.6	6.0	
SS 7/5	ATCO (d)		7.9	63.4	24	4.8	54.6	81.0	16.2	80.7	36	7.2	72.0	
	ROAM	4.7	0.9	7.6	5	1.0	11.4	6.8	1.4	6.8	5	1.0	10.0	
	ATCA	0.6	0.1	1.0	1	0.2	2.3							
	CELA	7.0	1.4	11.3	6	1.2	13.6	8.6	1.7	8.6	6	1.2	12.0	
		62.0	12.4	100.1	- 44	8.8	100.1	100.4	20.1	100.1	-50	10.0	100.0	
MX 181	GUSA (d)	31.9	6.4	34.5	10	2.0	16.4	42.4	8.5	38.7	16	3.2	30.8	
SS 7/6	ATCA							1.8	0.4	1.6	1	0.2	1.9	
	hlja	9.9	2.0	10.7	31	6.2	50.8	3.5	0.7	3.2	12	2.4	23.1	
	CHVI (s)		4.5	24.2	8	1.6	13.1	36.3	7.3	33.1	13	2.6	25.0	
	TEGL	22.8	4.6	24.6	6	1.2	9.8	23.9	4.8	21.8	9	1.8	17.3	
	ŒLA							1.8	0.4	1.6	1	0.2	1.9	
	ORHY	4.9	1.0	5.3	5	1.0	8.2							
	STPI	0.6	0.1	0.7	1	0.2	1.6							
		92.5	18.6	100.0	61	12.2	99.9	109.7	22.1	100.0	-52	10.4	10010	
MX 181	ATCO (d)	50.7	10.1	52.3	25	5.0	42.4	14.0	2.8	13.2	8	1.6	22.2	
SS 7/7	CELA	7.2	1.4	7.4	3	0.6	5.1	23.1	4.6	21.8	10	2.0	27.8	
	SIHY	20.3	4.1	20.9	14	2.8	23.7							
	KOAM	18.8	3.8	19.4	17	3.4	28.8							
	SUNO							1.9	0.4	1.8	2	0.4	5.6	
	GLEA							9.7	1.9	9.2	2	0.4	5.6	
	TESP							5.1	1.0	4.8	2	0.4	5.6	
	CHVI (s)	l						42.4	8.5	40.1	9	1.8	25.0	
	ATCA							1.3	0.3	1.2	1	0.2	2.8	
	OREY							1.0	0.2	1.0	1	0.2	2.8	
	TEGL						_	7.3	1.5	6.9	1	0.2	2.8	
		97.0	19.4	100.1	- 59	11.8	100.1	105.8	21.2	100.0	36	7.2	100.2	
MC 181	CHVI (d)		9.8	76.0	24	4.8	66.7	26.6	5.3	26.3	12	2.4	30.5	
SS 7/8	TEGL	3.6	0.7	5.6	1	0.2	2.8	18.6	3.7	18.4	6	1.2	15.4	
	GUSA (S		1.4	11.0	4	J.8	11.1	51.4	10.3	50.7	18	3.6	46.2	
	OREY	1.5	0.3	2.3	1	0.2	2.8	4.5	0.9	4.4	2	0.4	5.1	
	AICA		•					0.2	0.0	0.2	1	0.2	2.6	
	ŒIA	0.5	0.1	0.8	1	0.2	2.8							
	ATCO	0.9	0.2	1.4	2	0.4	5.6							
	HIJA	1.9	0.4	3.0	3	0.6	8.3							
		64.7	12.9	100.1	- 36	7.2	100.1	101.3	20.2	100.0	- 39		100.T	

•

•

.

.

•

.

.

					Tr	ansect	1		Transect 2						
Sample Unit #		Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	#/100 Density	Total Cover (dm)	Total Cover (%)		t of Plants	Density (#/100 dm)	Rel. Densit (%)	
MX 181 SS 7/9	CELA HIJA (S CHVI (d ATCA TEGL) 61.2 22.6 9.2	1.9 0.9 12.2 4.5 1.8	8.8 3.9 55.3 20.4 8.3	8 18 18 9 3	1.6 3.6 3.6 1.8 0.6	13.8 31.0 31.0 15.5 5.2	1.1 35.5 38.2 0.7	0.2 7.1 7.6 0.1	1.3 40.4 43.5 0.8	1 55 15 1	0.2 11.0 3.0 0.2	1.2 64.7 17.7 1.2		
		orey Sihy	3.7 110.7	0.7 22.0	3.3 100.0	2 	0.4 11.6	3.5 100.0	11.4 1.0 87.9	2.3 0.2 17.5	13.0 1.1 100.1	11 2 85	2.2 0.4 17.0	12.9 2.4 100.1	
	181 7/10	HLJA TEGL (d EPNE (s CHVI CREY CELA ATCA GUEA	7.5) 39.9) 29.8 29.9 8.1 0.6 0.8 3.6 120.2	1.5 8.0 6.0 1.6 0.1 0.2 0.7 24.1	6.2 33.2 24.8 24.9 6.7 0.5 0.7 3.0 100.0	17 9 9 8 1 1 1 55	3.4 1.8 1.8 1.6 0.2 0.2 0.2 11.0	30.9 16.4 16.4 16.4 14.6 1.8 1.8 1.8 1.8 100.1	4.7 28.6 31.7 30.9 4.0 0.5 1.7 102.1	0.9 5.7 6.3 6.2 0.8 0.1 0.3 20.3	4.6 28.0 31.1 30.3 3.9 0.5 1.7	17 8 11 8 8 1 1 54	3.4 1.6 2.2 .6 1.6 0.2 0.2 0.2	31.5 14.8 20.4 14.8 14.8 1.9 1.9	
	MX 181 SS 7/11	CHNA CHVI (d GUSA ARTR ATCA CELA CRHY SIHY	35.2) 27.4 12.9 4.0 2.9 3.1 6.4 0.3	7.0 5.5 2.6 0.8 0.6 0.6 1.3 0.2	23.7 18.4 8.7 2.7 2.0 2.1 4.3 0.5	5 7 5 1 1 3 5 1	1.0 1.4 1.0 0.2 0.2 0.6 1.0 0.2	12.8 18.0 12.8 2.6 2.6 7.7 12.8	56.1	11.2	49.0	18	3.6	45.0	
	EINE (S ATCO TECL BILJA SUTO		9.1 2.1	30.6 7.1	5 6 	1.0 1.2	2.6 12.8 15.4	23.2 2.5 31.1 0.5 1.1 114.5	4.6 0.5 6.2 0.1 0.2 22.8	20.3 2.2 27.2 0.4 1.0	7 10 2 2 40	1.4 0.2 2.0 0.4 0.4 8.0	17.5 2.5 25.0 5.0 5.0 5.0		

TABLE E-7 (Cont.)

ţ

1

1

				Tr	ansect	1				Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	\$ of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (cm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 dm)	Rel. Den. (%)
MOX 181 SS 7/12	TEGL	6.7 1.0 33.8	1.3 0.2 6.8	5.5 0.8 27.8	5 3 8	1.0 0.6 1.6	12.8 7.7 20.5	15.6	3.1	16.4	13	2.6	25.0
	CHVI (S) EPNE SIHY CELA ATCO (d)	31.7 0.3 1.9	9.2 6.3 0.1 0.4	37.9 26.1 0.3 1.6	14 6 1 2	2.8 1.2 0.2 0.4	35.9 15.4 2.6 5.1	0.5 8.8 58.7	0.1 1.8 11.7	0.5 9.3 61.7	1 5 26	0.2 1.0 5.2	1.9 9.6 50.0
	ATCA ARSP	121.4	24.3	100.0	- 39	7.8	100.0	5.0 6.5 95.1	1.0 1.3 19.0	5.3 6.8 100.0	3 4 52	0.6	5.8 7.8 100.1
MX 181 SS 7/13		15.1	15.4 3.0	76.8 15.1	28 12	5.6 2.4	49. 1 21. 1	79.4 5.9	15.9	84.4 6.3	37 6	7.4	78.7 12.8
	cela Hija Atea	1.1 2.1 4.9	0.2 0.4 1.0	1.1 2.1 4.9	3 11 3	0.6 2.2 0.6	5.3 19.3 5.3	4.0	0.8	4.3	1	0.2	2.1
	29NE	100.0	20.0	100.0	57	11.4	100.1	4.8 94.1	1.0 18.9	5.1 100.1		0.6 9.4	6.4 100.0
MX 181 SS 7/14	atca Blja Orhy Gusa	17.5 17.8 36.7 22.8	3.5 3.6 7.3 4.6	15.4 15.6 32.2 20.0	3 36 30 4	0.6 7.2 6.0 0.8	3.8 45.0 37.5 5.0						
	SIHY CELA (S CHVI	2.9	0.6	2.6 3.1 11.2	2 2 3	0.4 0.4 0.6	2.5 2.5 3.8	0.7 47.4	0.1 9.5	0.6 41.5	2 27	0.4 5.4	3.1 41.5
	atco (d. Koam) 113.9	22.8	100.1	- 30	16.0	100.1	68.2 1.1 117.4	13.6 0.2 23.4	58.1 0.9 101.1	34 2 65	6.8 0.4 13.0	52.3 3.0 99.9
MOX 181 SS 7/15	CHVI (d) 91.9 2.0	18.4	79.9 1.7	28	5.6 0.2	57.1 2.0	37.6 18.1	7.5	36.5 17.6	12	2.4	25.5 14.9
	CELA (S HIJA ORHY		2.4 0.4 0.1	10.4 1.8 0.4	9 9 1	1.8 1.8 0.2	18.4 18.4 2.0	33.8 0.8	6.8 0.2	32.9 0.8	21 1	4.2	44.7
	(RSP ARSP	6.5 115.0	1.3 23.0	5.7 <u>99.9</u>	1 - 19	0.2 9.8	2.0 99.9	12.6	2.5 20.6	12.2	- 6 - 1 7	1.2).4	12.8

TABLE E-7 (Cont.)

21111B86

E-TR-48-11-1

•

.

.

				Tr	insect	1				r	ansect	2	
Sample Unit 4	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 dm)	Rel. Den. (%)
181		d) 76.8	15.4	85.5	49	9.8 2.2	70.0	84.9	17.0	93.0 3.6	44 6	8.8	84.6 1.6
S 7/16		2.9 (s) 10.1	0.6 2.0	3.2 11.3	11 10	2.0	15.7 14.3	3.3 2.5 0.6	0.7 0.5 0.1	2.7 0.7	1	0.2	1.9
		89.8	18.0	100-0	70	14.0	100.0	91.3	18.3	100.0	52	10.4	100.0
MX 181		d) 41.2	8.2	41.6	7	1.4	15.9	41.5	8.3	26.5	7	1.4	20.0
SS 7/17		28.1	5.6	28.4	16	3.2	36.4	7.5 45.8	1.5 9.2	4.8 29.3	5 10	1.0	14.3
	CEIVI	0.2	0.0	0.2	1	0.2	2.3	1.2	0.2	0.8	1	0.2	20.0
	LYAN (•			55.6	11.1	35.5	ė	1.8	25.7
	CELA	0.3	0.1	0.3	1	0.2	2.3	5.0	1.0	3.2	3	0.6	8.6
	SIHY	8.1	1.6	8.2	9	1.8	20.5						
	GUSA	12.9	2.6	13.0	4	0.8	9.1						
	ARSP	8.3	1.7	8.4	6	1.2	13.6	777-7					
		99.1	19.8	100.1	- 44	8.8	100.1	156.6	31.3	100.1	- 35	7.0	100.1
AX 181	HIJA	33.5	6.7	23.2	34	6.8	47.9	6.5	1.3	3.7	13	2.6	25.0
5S 7/18	ORHY CHVI (1.9 (s) 18.4	0.4 3.7	1.3 12.8	4	0.2	1.4 5.6	43.3	8.7	24.3	13	2.6	25.0
		a) 53.2	10.6	36.9	9	1.8	12.7	65.4	13.1	36.7	15	3.0	28.9
	GELA	11.9	2.4	8.3	á	1.6	11.3	7.0	1.4	3.9	5	1.0	9.6
	ARSP	23.2	4.6	16.1	11	2.2	15.5						
	SIHY	2.1	0.4	1.5	4	0.8	5.6						
	LYAN				_	_		55.8	11.2	31.4	6	1.2	11.5
		144.2	28.8	100.1		14.2	100.0	178.0	35.7	100.0	- 52	10.4	100.0
MX 181	ATCO	18.8	3.8	16.8	11	2.2	22.0	13.3	2.7	8.3	8	1.6	13.8
SS 7/19		3.0	0.6	2.7	1	0.2	2.0	4.0	0.8	2.5	9	1.8	15.5
	ORHY	4.0	0.8	3.6	3	0.6	6.0	1.9	0.4	1.2	2	0.4	3.5
		(d) 19.3	3.9	17.2	5	1.0	10.0	106.1	21.2	65.8	30	6.0	51.7
	CELA	19.3 (s) 17.2	3.9 3.4	17.2 15.3	14 2	2.8 0.4	28.0 4.0	4.4 28.5	0.9 5.7	2.7 17.7	2 5	0.4 1.0	3.5 8.6
	ATCA	4.9	1.0	4.4	1	0.2	2.0	1.5	0.3	0.9	1	0.2	1.7
	GRSP	7.4	1.5	6.6	2	0.4	4.0		·· .			~	•• /
	ARSP	18.3	3.7	16.3	11	2.2	22.0						
		112.2	22.4	100.0	50	10.0	100.0	161.2	32.3	100.0	58	11.6	100.0

,

TABLE E-7 (Cont.)

E-42

/ 1

Ż

.

E-43

				Tra	insect	1				Tr.	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 cm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)		∳ of Plants	Density (#/100 chm)	Rel. Den. (%)
MX 181	HLJA	12.6	2.5	7.2	25	5.0	38.5		•	-			
SS 7/20	ARSP CHVI (d	3.5	0.7	2.0 61.9	3 23	0.6	4.6 35.4	13.0	2.6	13.5	11	2.2	16.4
	ROAM	3.7 31.1	0.7	2.1 17.6	25	0.4	3.1 7.7	31.6	6.3	32.9	27	5.4	40.3
	ATCO (d)		0.4	1.2	1	0.2	1.5	51.6	10.3	53.6	29	5.8	43.3
	ORELY	2.0	0.4	1.1	1	0.2	1.5						
		176.3	35.1	100.0	65	13.0	100.0	96.2	19.2	100.0	67	13.4	100.0
MX 181 SS 7/21	ATCO (d) 41.8 9.2	8.4 1.8	37.0 8.1	20 5	4.0 1.0	31.8 7.9	76.4	15.3 2.2	50.0 7.3	28 6	5.6	40.1 3.6
33 7/21	ARSP (s		8.6	37.9	24	4.8	38.1	60.2	12.0	39.4	30	6.0	42.9
	RCAM SIHY	19.2	3.8	17.0	14	2.8	22.2	4.3 0.8	0.9	2.8 0.5	5	1.0 0.2	7.1
		113.0	22.6	100.0	-63	12.6	100.0	152.8	30.6	100.0	70	14.0	100.1
MX 181	TEGL (S		0.3	1.6	1	0.2	1.6	69.2	13.8	41.5	17	3.4	34.0
SS 7/22	CHVI (d ATCA) 5.9	1.2	6.1	4	0.8	6.4	85.7 3.3	17.1	51.4	30	6.0	60.0
	EPNE							8.4	0.7	2.0 5.0	2	0.4	4.0 2.0
	ATCO	25.6	5.1	26.4	15	3.0	23.8	••••		214	•		
	ORHY	11.4	2.3	11.8	9	1.8	14.3						
	CELA	31.4	6.3	32.4	24	4.8	38.1						
	ARSP	21.2	4.2	21.9	10	2.0	15.9						
		97.0	19.4	100.2	63	12.6	100.1	166.6	33.3	99.9	50	10.0	100.5
MX 181	ARSP	9.5	1.9	9.2	4	0.8	5.7	4.4	0.9	5.1	2	0.4	3.6
SS 7/23	ATCO (d		10.9	52.9	32	6.4	45.7	52.8	10.6	61.3	28	5.6	50.9
	KOAM (S) 39.2	7.8	38.0	34	6.8	48.6	27.7	5.5	32.2	24	4.8	43.7
	SIHY	103.3	20.6	100.1	70	14.0	100.0	1.2	0.2	1.4 100.0	1	0.2	1.8

TABLE E-7 (Cont.)

Ξ Ertec

 ٠

)

.

E S

8

TABLE E-8 TRANSECT RESULTS DRY LAKE SHELTER SITES CLUSTER 8

				Tra	nsect	1				Tr	ansect	2	
Sample Uhit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Den. (%)
MX 181	ATCO							7.1	1.4	9.0	3	0.6	7.7
SS 8/1	CBGR (S		6.9	36.7	9	1.8	22.0	27.1	5.4	34.2	14	2.8	35.9
	GUMI (d		8.2	43.5	13	2.6	31.7	17.3	3.5	21.8	8	1.6	20.5
	TEGL	_ 3.5	0.7	3.7	1	0.2	2.4	16.4	3.3	20.7	4	0.8	10.3
Un	known COM		• •			• •		3.2	0.6	4.0	1	0.2	2.6
	HIJA ORHY	7.0 4.0	1.4	7.4 4.2	13 2	2.6 0.4	31.7 4.9	1.5	0.3	1.9	2	0.4	5.1
	SIHY	4.2	0.8	4.2	3	0.6	7.3	6.6	1.3	8.3	7	1.4	18.0
	STUT	-											
		94.3	18.8	100.0	41	8.2	100.0	79.2	15.8	99.9	39	7.8	100.1
MX 181	ATCO (d) 71.5	14.3	54.0	31	6.2	56.4	113.1	22.6	78.1	49	9.8	77.7
SS 8/2	CELA (S) 60.9	12.2	46.0	24	4.8	43.6	31.8	6.4	22.0	14	2.8	22.2
		132.4	26.5	100.0	55	11.0	100.0	144.9	29.0	100.0	63	12.6	99.9
MX 181	ARSP (s) 0.2	0.0	0.2	1	0.2	1.6	50.7	10.1	44.6	28	5.6	50.0
SS 8/3	b) ODTA) 1.2	0.2	0.9	1	0.2	1.6	28.7	5.7	25.2	14	2.8	25.0
	CELA	2.5	0.5	1.9	3	0.6	4.9	34.4	6.9	30.2	14	2.8	25.0
	CHGR	117.6	23.5	89.3	30	6.0	49.2						
	HIJA	7.7	1.5	5.9	22	4.4	36.1						
	ORHY	2.5	.5	1.9	4	0.8	6.6						
		131.7	26.2	100.T	<u></u>	12.2	100.0	113.8	22.7	100.0	56	11.2	100.0
MX 181	CEI (S							54.4	10.9	34.3	15	3.0	14.3
SS 8/4	CELA (d)143.3	28.7	98.8	67	13.4	95.7	78.6	15.7	49.5	41	8.2	39.1
	ATGA				-			3.7	0.7	2.3	3	0.6	2.9
	ORHY	0.3	0.1	0.2	1	0.2	1.4	7.0	1.4	4.4	10	2.0	9.5
	HIJA				•		• •	15.1	3.0	9.5	36	7.2	34.3
	SIHY	1.4	0.3	1.0	2	0.4	2.9					<u> </u>	
		145.0	29.1	100.0	70	14.0	100.0	158.8	31.7	100.0	105	21.0	100.1
Y0X 181	ATCA	23.5	4.7	17.9	7	1.4	13.2						
35 8/5	CELA (d		6.9	26.3	22	4.4	41.5	69.3	13.9	53.7	33	6.6	47.8
, -		59.5	11.9	45.3	12	2.4	22.6						
	ORHY	12.3	2.5	9.4	11	2.2	20.8						
	SIHY	1.5	0.3	1.1	1	0.2	1.9	0.3	0.1	0.2	1	0.2	1.5
	ATCO						,	58.9	11.8	45.7	32	6.4	46.4
	ARSP							0.5	0.1	0.4	3	0.6	4.4
		131.3	26.3	100.0	- 53	10.6	100.0	129.0	25.9	100.0	- 69	13.8	100.1

≡ Ertec

•

E-44

ſ.

Į

TABLE	E-3	(Cont.)

				Tr	ansect	!				Tr	ansect	2	_
Sample Chit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Den. (%)
12X 181	CELA (S) 26.8	5.4	26.0	19	3.8	14.7	29.7	5.9	21.0	20	4.0	23.8
SS 8/6	HIJA	43.7	8.7	42.3	79	15.8	61.2	11.3	2.3	8.0	23	4.6	27.4
	OREY	29.4	5.9	28.5	28	5.6	21.7	14.3	2.9	10.1	13	2.6	15.5
	SPCR	3.3	0.7	3.2	3	0.6	2.3	14.6	2.9	10.3	12	2.4	14.3
	ATCA (d)						68.2	13.6	48.2	15	3.0	.7.9
	GUMI							3.5	0.7	2.5	1	0.2	1.2
		103.2	20.7	100.0	129	25.8	99.9	141.6	28.3	100.1	- 34	16.8	100.1
OK 181	ATCO (d	-) 97.0	19.4	84.7	45	9.0	83.3	47.3	9.5	58.7	21	4.2	48.8
S 8/7	CELA (S) 14.5	2.9	12.7	6	1.2	11.1	27.0	5.4	33.5	16	3.2	37.2
	Œ							3.3	0.7	4.1	2	0.4	4.7
	ORHY	2.0	0.4	1.8	2	0.4	3.7	1.7	0.3	2.1	2	0.4	4.7
	SIHY	1.0	0.2	0.9	1	0.2	1.9	1.3	0.3	1.6	2	0.4	4.7
_		114.5	22.9	100.1	- 54	10.8	100.0	30.6	16.2	100.0	43	8.6	100.1
x 181	ELJA (d		23.1	95.5	168	33.6	95.5	51.4	10.3	50.3	107	21.4	69.0
S 8/8	ORHY	1.5	0.3	1.2	2	0.4	1.1	17.0	3.4	16.6	21	4.2	13.6
	CELA (S) 1.9	0.4	1.6	2	0.4	1.1	29.3	5.9	28.7	26	5.2	16.8
	ATCA							4.5	0.9	4.4	1	0.2	0.7
	SPCR	2.1	0.4	1.7	4	0.8	2.3						
		121.0	24.2	100.0	176	35.2	100.0	102.2	20.5	100.0	155	31.0	100.1
X 181	CELA	45.8	9.2	37.5	23	4.6	39.0	7.9	1.6	4.7	7	1.4	14.6
S 8/9	ATCO (s		14.8	60.4	28	5.6	47.5	1.5	0.3	0.9	1	0.2	2.1
	ORHY	2.3	0.5	1.9	7	1.4	11.9						
	SIHY	0.3	0.1	0.3	1	0.2	1.7	1.6	0.3	1.0	4	0.8	8.3
	ARTR (d)						104.7	20.9	62.1	24 12	4.8	50.0
	ATCA							52.9	10.6	31.4	-	2.4	25.0
	_	122.2	24.6	100.1	- 59	11.8	100.1	168.6	33.7	100.1	48	9.6	100.0
IX 181	HIJA (d		12.4	56.0	85	17.0	69.1	4.4	0.9	5.1	4	0.8	13.8
;s 8/10		24.4	4.9	22.1	22	4.4	17.9	5.1	1.0	6.0	4	0.8	13.8
	ARSP	23.5	4.7	21.3	15	3.0	12.2				•	• •	
	GRSP	0.6	0.1	0.5	1	0.2	0.8	4.0	0.8	4.7	2	0.4	6.9
	ARTR Lyan (s	,						3.7	0.7 6.1	4.3 35.7	6	0.2	3.5 20.7
	ATCA (S	1						30.6 24.2	4.8	28.2	7	1.4	20.7
	SIHY							24.2	0.5	2.9	í	3.2	3.5
	GUSA						,	11.2	2.2	13.1	à	0.2	13.8
		110.3	22.1	99.9	123	24.6	100.0	85.7	17.0	100.0	-29		100.1
		ک دلانا ا	44 . I	33 .3	123	29.0	100.0	85./	17.0	100.0	23	2.0	00.1

Ξ Ertec

E-TR-48-11-1

						<u> </u>	<u> </u>						
				Tr	ansect	1				Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Den. (%)
MCK 181 SS 8/11	Chi (d) Cela (s) Orby) 68.3) 1.0 1.5 70.8	13.7 0.2 0.3 14.2	96.5 1.4 2.1 100.0	33 1 3 37	6.6 0.2 0.6 7.4	89.2 2.7 8.1 100.0	137.9 22.3 1.4 161.6	27.6 4.5 0.3 32.4	85.3 13.8 0.9 100.0	47 12 3 62	9.4 2.4 0.6 12.4	75.8 19.4 4.8 100.0
MX 181 SS 8/12	Chivi (S Sinny Creny) 8.1	12.6	67.7 8.7	17 6	3.4	58.6 20.7	88.8 14.3 10.0 4.6 0.1	17.8 2.9 2.0 0.9 0.0	74.4 12.0 8.4 3.9 0.1	22 3 6 6 1	4.4 0.6 1.2 1.2 0.2	55.0 7.5 15.0 15.0 2.5
	TEGL EPNE	8.0 14.1 93.4	1.6 2.8 18.6	8.6 15.1 100.1	2 4 	0.4 0.8 5.8	6.9 13.8 100.0	1.5 119.3	0.3 23.9	1.3 100.1	2 	0.4 8.0	5.0 100.0
MOK 181 SS 8/13		() 61.6 () 52.4 1.8 2.6	12.3 10.5 0.4 0.5 23.7	52.0 44.3 1.5 2.2	22 34 3 3	4.4 6.8 0.6 0.6 12.4	35.5 54.8 4.8 4.8 99.9	88.7 52.9 5.4 1.6 148.6	17.7 10.6 1.1 0.3 29.7	59.7 35.6 3.6 1.1 100.0	21 31 8 7 67	4.2 6.2 1.6 1.4 13.4	31.3 46.3 11.9 10.5
90X 181 SS 8/14	CHVI (S ARTR (d CELA SIHY TEGL GRSP LZAN CRHY		6.0 11.6 1.7 2.3 0.2	23.2 44.7 6.5 9.0 0.8	9 15 3 3	1.8 3.0 0.6 0.2	26.5 44.1 8.8 8.8 2.9	56.4 42.8 1.1 1.5 5.5 3.3 17.6	11.3 8.6 J.2 0.3 1.1 0.7 3.5	44.0 33.4 0.9 1.2 4.3 2.6 13.7	16 7 1 1 1 1 2 2	3.2 1.4 0.2 0.2 0.2 0.4 0.4	53.3 23.3 3.3 3.3 3.3 6.7 6.7
	epne Gusa	14.4 6.0 129.2	2.9 1.2 25.9	11.2 4.6 100.0	2 1 34	0.4 0.2	5.9 2.9 99.3	128.2	25.7	100.1	30	6.0	-99.9

TABLE E-8 (Cont.)

E-TR-48-11 - I

κ.

ł.

				Tra	nsect	1				Tr	ansect 2	2	
Sample Chit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	t of Plants	Density (#/100 dm)	(%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	t of Plants	Density (#/100 dm)	Rel. Den. (%)
MX 181 SS 8/15	CREY CELA (d CE (s ATCA		3.5 12.6 2.4 1.1	17.8 64.4 12.2 5.6	18 30 6 2	3.6 6.0 1.2 0.4	32.1 53.6 10.7 3.6	16.1 70.0 40.7 9.0	3.2 14.0 8.1 1.8 0.2	11.5 49.8 29.0 6.4 0.8	16 33 15 2 2	3.2 6.6 3.0 0.4 0.4	20.0 41.3 18.8 2.5 2.5
	SIHY HIJA	99.0	19.6	100.0	- 56	11.2	100.0	3.7 140.6	0.2 0.7 28.0	2.6 100.1	12	2.4	15.0
MOX 181 SS 8/16	ARTR (d GRSP ERNE (s TEAX SIBY	3.4	25.5 0.7 3.5 1.6	81.3 2.2 11.3 5.2	29 2 3 1	5.8 0.4 0.6 0.2	82.9 5.7 8.6 2.9	111.8 1.0 0.1 1.1 174.0	22.4 0.2 0.0 0.2 22.8	98.1 0.9 0.1 1.0 100.1	31 1 1 2 35	6.2 0.2 0.2 0.4	88.6 2.9 2.9 5.7
MX 181 SS 8/17	ARTR (d GRSP CELA LYAN EPNE TEGL HYSA) 144.4 4.9 1.8 8.7 2.6 4.2	28.9 1.0 0.4 1.7 0.5 0.8	86.7 2.9 1.1 5.2 1.5 2.5	30 2 1 2 2 1	6.0 0.4 0.2 0.4 0.4 0.2	79.0 5.3 2.6 5.3 5.3 2.6	111.3	22.3 0.3	80.4 1.1	21 1	4.2 0.2 0.4	65.6 3.1 6.3
	gusa Aica (S Hija Vimu) 166.6	33.3	99.9	38	7.6	100.1	9.8 11.5 0.8 1.2 138.4	2.0 2.3 0.2 0.2 27.8	7.1 8.3 0.6 0.9 100.1	4 2 1 1 32	0.8 0.4 0.2 0.2 6.4	12.5 6.3 3.1 3.1 100.0
.181 SS 8/18	CHVI STCO GUEA ORHY ARER (d PRPA COME	8.1 0.5 2.1 4.7) 70.7 26.4 12.8	1.6 0.1 0.4 0.9 14.1 5.3 2.6	5.7 0.4 1.5 3.3 50.0 18.7 9.1	4 1 4 16 3 3	0.8 0.2 0.2 0.8 3.2 0.6 0.6	10.3 2.6 2.6 10.3 41.0 7.7 7.7	9.2 128.2	1.8 25.6	5.8 80.3	7 27	1.4 5.4	17.1 65.9
	SIHY EPNE (S HYSA VIMU	4.2	0.8 2.1 0.3	3.0 7.3 1.1	3 4 1	0.8 0.4 0.2	10.3 5.1 2.6	2.3 18.3	0.5 3.7 0.3	1.4 11.5	2 3 2	0.4 0.6 0.4	4.9 7.3 4.9
		141.3	28.2	100.1	39	7.8	100.2	159.7	31.9	100.1	ना	8.2	100.1

TABLE E-8 (Cont.)

......

Ξ Ertec

.

ST 13 CENT

٠

Sector of Contract of Contract

E-TR-48-11-1

				Tr	maect	1				Tr	ansect	2	
Sample Chit #		Total Cover (dm)	Total Cover (%)	Rel. Cover	<pre># of Plants</pre>	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre>\$ of Plants</pre>	Density (#/100 dm)	Rel. Den. (%)
MX 181 SS 8/19	GUSA Stipa sp	1.3	0.3	2.5	2	0.4	3.1	7.9	1.6	4.5	4	0.8	6.4 12.7
	ARTR (d) EPNE (s)		9.1 0.2	86.8 1.5	3 8 1	7.6 0.2	58.5 1.5	142.4 12.0	28.5 2.4	81.4 6.9	40 3	8.0 0.6	63.5 4.8
	ORHY SIHY	1.1	0.2	2.1	5	1.0	7.7	1.0 5.5	0.2 1.1	0.6 3.1	1 5	0.2 1.0	1.6 7.9
	elija GRSP CD	3.0 0.6 0.1	0.6 0.1 0.0	5.7 1.1 0.2	17 1 1	3.4 0.2 0.2	26.2 1.5 1.5	0.7	0.1	0.4	2	0.4	3.2
		52.2	10.5	<u>99.9</u>	65	13.0	100.0	175.0	35.0	100.0	ស	12.6	100.T
MCK 181 SS 8 /20			22.1	90.8 4.4 1.5	31 2 1	6.2 0.4 0.2	83.8 5.4 2.7	126.7 35.2 5.3	25.3 7.0 1.1	71.1 19.7 3.0	28 9	5.6 1.8 0.2	65.1 20.9 2.3
	TEGL CHVI CRHY SIHY	3.8 0.3	0.4 0.8 0.1	3.1 0.3	2 1	0.2	5.4 2.7	5.5 5.6 1.5 4.0	1.1 0.3 0.8	3.1 0.8 2.2	, 1 1 3	0.2 0.2 0.6	2.3 2.3 2.3 7.0
	3444	121.9	24.5	100.1	37	7.4	100.0	178.3	35.6	99.9	43	8.6	<u>99.9</u>
MOK 181 SS 8/21	ARTR (d)		4.4	25.5 56.0	6 15	1.2 3.0	19.4 48.4	34.2 80.5	6.8 16.1	25.1 59.1	6 22	1.2	17.1
	CHVI SIHY GUMI	15.4 0.6	3.1 0.1	17.8 0.7	9 1	1.8 0.2	29.0 3.2	14.3 1.1 0.1	2.9 0.2 0.0	10.5 0.8 0.0	4	0.8 0.2 0.2	11.4 2.9 2.9
	GRSP	86.3	17.3	100.0	-31	6.2	100.0	6.1 136.3	1.2 27.2	4.5 100.0	- 35	0.2	2.9 100.1

TABLE E-8 (Cont.)

				Ĩr	ansect	t				Tr	ansect	2	
Sample Uhit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100. dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Den. (%)
IS 8/22	ARTR (d) EPNE	15.5	15.1 3.1	73.4 15.1	24 3	4.8	63.2 7.9	107.7	21.5	77.1	15	3.0	71.4
	SIHY CHVI ORHY HLJA	1.1 6.5 3.1 1.2	0.2 1.3 0.6 0.2	1.1 6.3 3.0 1.2	2 3 3 3	0.4 0.6 0.6 0.6	5.3 7.9 7.9 7.9	1.8	0.4	1.3	1	0.2	4.8
	atca (s Grsp Prpa		20.5	100.1	38		100.1	19.7 4.0 6.5 139.7	3.9 0.8 1.3 27.9	14.1 2.9 4.7 100.1	2 2 1 	0.4 0.4 0.2	9.5 9.5 4.8
0X 181 IS 8/23	ARTR (d Gusa Siby Epne (s Bysa Chvi Op Hlja	7.6 3.4	17.4 1.5 0.7 3.6 1.6 7.4 0.2 0.3	65.3 5.7 2.6 13.4 6.0 5.2 0.7 1.2	20 4 3 5 4 3 1 3	4.0 0.8 0.6 1.0 0.8 0.6 0.2 0.6	46.5 9.3 7.0 11.6 9.3 7.0 2.3 7.0	122.3 12.4 0.6 25.4 2.1 35.0	24.5 2.5 0.1 5.1 0.4 7.0	61.8 6.3 0.3 12.8 1.1 77.7	21 7 1 6 1 7	4.2 1.4 0.2 1.2 0.2 7.4	48.8 16.3 2.3 14.0 2.3 16.3
	пыA	133.3	25.7	100.1	43	8.6	100.0	197.8	39.6	100.0	43	8.6	100.0

TABLE E-6 (Cont.)

A DESCRIPTION AS A DESC

۰

A POINT OF A POINT OF A POINT OF A POINT OF A POINT OF A POINT OF A POINT OF A POINT OF A POINT OF A POINT OF A

TABLE E-9 TRANSELT RESULTS DRY LAKE SHELTER SITES CLUSTER 9

anger av e

.

				Ť	msect					Ťr	ansect 2	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	∳ of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>		Rel. Den. (१)
AX 181	CEVI (d)	65.4	13.1	77.3	29	5.8	44.6						
SS 9/1	CELA	7.4	1.5	8.8	8	1.6	12.3	1.5	0.3	1.1	2	0.4	5.0
	SIHY	2.0	0.4	2.4	2	0.4	3.1						
	HLJA	8.0	1.6	9.5	25	5.0	38.5	2.9	0.6	2.0	5	1.0	12.5
	ARSP	1.8	0.4	2.1	1	0.2	1.5						
	ARCR (S)							127.0	25.4	89.5	29	5.8	72.5
	GUTR							4.0 6.5	0.8 1.3	2.8	3	0.6	7.5
	epne		-							4.6	_1	0.2	2.5
		64.6	17.0	100.1	- 65	13.0	100.0	141.9	28.4	100.0	40	8.0	100.0
CX 191	GUTR (d)	114.5	22.9	69.5	26	5.2	56.5						
SS 9/2	CHER (S)	48.7	9.7	29.6	19	3.8	41.3						
	CELA	1.5	0.3	0.9	1	0.2	2.2	25.7	5.1	95.5	21	4.2	95.5
	ARSP							1.2	0.2	4.5	1	0.2	4.6
		164.7	32.9	100.0	-46	9.2	100.0	26.9	5.3	100.0	-22	4.4	100.1
9X 181	CELA (d)	114.8	23.0	91.3	.	13.4	89.3	109.5	21.9	91.1	73	14.6	83.9
SS 9/3	ORELY (S)		1.6	6.3	7	1.4	9.3	10.7	2.1	8.9	14	2.8	16.1
	ATCA	3.0	0.6	2.4	1	0.2	1.3						
_		23.7	25.2	100.0	75	15.0	99.9	120.2	24.0	100.0	87	17.4	100.0
•0X 181	CELA (d)	137.4	27.5	98.0	76	15.2	93.8	33.7	6.7	37.8	31	6.2	42.5
SS 9/4	ORHY	2.8	0.6	2.0	5	1.0	6.2	17.1	3.4	19.2	25	5.0	34.3
	CH (S				-			30.9	6.2	34.6	13	2.6	17.8
	SIHY							0.1	0.0	0.1	1	0.2	1.4
	ATCA							2.5	0.5	2.8	2	0.4	2.7
	ARSP							4.9	1.0	5.5	1	0.2	1.4
		140.2	28.1	100.0	ন্থা	16.2	100.0	89.2	17.8	100.0	73	14.6	100.1
MX 181	CH (S)	46.3	9.3	43.7	15	3.0	31.9						
SS 9/5	ORHY	0.1	0.0	0.1	1	0.2	2.1	0.3	0.1	0.3	1	0.2	1.4
	CELA (d		8.5	40.1	28	5.6	59.6	106.1	21.2	99.7	70	14.0	98.6
	ATCA	17.1	3.4	16.1	3	0.6	6.4						
		106.0	21.2	100.0	47	9.4	100.0	106.4	21.3	100.0	71	14.2	100.0

E-50

1

₹ Ertec

197.7

۵

E-51

TABLE	E-9	(Cont.)

				Ťr	ansect					Îr	ansect 2	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	t of Plants	Density (#/100 dm)	(%) Rel. Den. (%)	Total Cover (dm)	Total Cover (%)		† of Plants	Density (#/100 dm)	Rel. Den. (%)
	ARTR	12.6	2.5	9.9	3	0.6	5.9	33.9	6.8	26.5	6	1.2	14.3
SS 9/6	CELA (S)	57.2	11.5	45.3	35	7.0	68.6	16.6	3.3	13.0	13	2.6	31.0
	CEIGR (d)		7.9	30.9	10	2.0	19.6	59.9	12.0	46.8	17	3.4	40.5
	GRSP	5.2	1.0	4.1	2	0.4	3.9	6.0	1.2	4.7	1	0.2	2.4
	TEGL	12.6	2.5	9.9	1	0.2	2.0	8.0	1.6	6.3	3	0.6	7.1
	ORHY							3.5	0.7	2.7	2	0.4	4.8
		126.9	25.4	100.1	চা	10.2	100.0	127.9	25.6	100.0	42	8.4	99.7
MOX 181	ARCR (d))116.5	23.3	78.4	20	4.0	71.4	93.6	18.7	83.3	21	4.2	39.6
SS 9/7	CHER (S	24.6	4.9	16.6	7	1.4	25.0	9.4	1.9	8.4	7	1.4	13.2
	TEGL	7.5	1.5	5.1	1	0.2	3.6						
	HIJA							9.3	1.9	8.3	25	5.0	47.2
		148.6	29.7	100.1	28	5.6	100.0	112.3	22.5	100.0	53	10.6	100.0
MX 181	ARER (d)	59.6	11.9	23.0	13	2.6	59.1	59.6	11.9	55.6	16	3.2	53.3
SS 9/8	CHGR (S	19.0	3.8	23.3	5	1.0	22.7	41.1	8.2	38.4	10	2.0	33.3
	HIJA	3.1	0.6	3.8	4	0.8	18.2	0.1	0.0	0.0	1	0.2	3.3
	GRSP							6.3	1.3	5.9	3	0.6	10.0
		81.7	16.3	100.T	-22	4.4	100.0	107.1	21.4	99.9	-30	6.0	99.9
MX 181	CELA (d) 85.4	17.1	88.2	63	12.6	84.0	86.2	17.2	77.7	77	15.4	53.9
SS 9/9	ORHY	8.9	1.8	9.2	9	1.8	12.0	5.5	1.1	5.0	5	1.0	3.5
	SPCR	1.2	0.2	1.2	2	0.4	2.7	0.7	0.1	0.6	2	0.4	1.4
	ARSP	1.3	0.3	1.3	1	0.2	1.3						
	HIJA (S)						18.5	3.7	16.7	5 9	11.8	41.3
		96.8	19.4	99. 9	75	15.0	100.0	110.9	22.1	100.0	143	28.6	100.1
MX 181	HIJA (d) 44.2	9.8	64.2	- 79	15.8	85.9	21.3	4.3	22.2	45	9.0	59.2
SS 9/10	GRSP	4.4	0.9	6.4	1	0.2	1.1	15.5	3.1	16.1	3	0.6	4.0
-	ARTR	5.3	1.1	7.7	t	0.2	1.1						
) 14.9	3.0	21.7	11	2.2	12.0	41.9	8.4	43.6	18	3.6	23.7
	SIHY							2.2	0.4	2.3	1	0.2	1.3
	ARSP							11.8	2.4	12.3	6	1.2	7.9
	ATCA							3.4	0.7	3.5	3	0.6	4.0
		68.8	13.8	100.0	92	18.4	100.1	96.1	19.3	39.7	- 6	15.2	100.1

🛢 Ertec

				Tr	ansect	1				Tr	ansect	2	
Sample Uhit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	# of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)		# of Plants	Density (#/100 dm)	Rel. Den. (%)
MX 181	ARTR (d) 79.7	15.9	81.2	27	5,4	54.0	79.0	15.8	69.1	13	2.6	24.1
SS 9/11	HIJA (S CHVI) 10.3 8.1	2.1 1.6	10.5 8.3	19 4	3.8 0.8	38.0 8.0	12.5	2.5	10.9	35	7.0	64.8
	GRSP							13.9	2.8	12.2	2	0.4	3.7
	ARPU							5.5	1.1	4.8	3	0.6	5.6
	Œ							3.5	0.7	3.1	1	0.2	1.9
		98.1	19.6	100.0	50	10.0	100.0	114.4	22.9	100.1	54	10.8	100.1
MX 181	HIJA (S		2.1	9.6	15	3.0	40.5	58.6	11.7	39.4	78	15.6	83.9
SS 9/12			9.0	40.7	7	1.4	18.9	38.0	7.6	25.6	5	1.0	5.4
	CHGR	35.0	7.0	31.6	11	2.2	29.7						
	ARTR (S) 20.2	4.0	18.2	4	0.8	10.8	50.1	10.0	33.7	8	1.6	8.6
	OREY							1.8 0.1	0.4	1.2	1	0.2 0.2	1.1
		TTN	-	TRA- T		_							1.1
		110.9	22.1	100.1	- 37	7.4	<u>99.9</u>	148.6	29.7	99.9	- 93	18.6	100.1
MDK 181	ARTR (d		18.7	93.5	26	5.2	8 9. 7	86.1	17.2	78.3	20	4.0	60.6
SS 9/13			0.8	4.0	1	0.2	3.5	20.9	4.2	19.0	7	1.4	21.2
	HLJA	1.0	0.2	1.0	1	0.2	3.5	3.0	0.6	2.7	6	1.2	18.2
	SIHY	1.5	0.3	1.5		0.2	3.5						
		99.9	20.0	100.0	29	5.8	100.2	110.0	22.0	100.0	-33	6.6	100.0
MX 181	ARTR (d		19.6	93.3	20	4.0	83.3	125.3	25.1	91.0	18	3.6	78.3
SS 9/14		0.2	0.0	0.2	1	0.2	4.2						
	HIJA	0.6	0.1	0.6	2	0.4	8.3						
	EPNE (S CHVI (S		1.3	6.0	I	0.2	4.2	2.5 8.7	0.5 1.7	0.9 6.3	1	0.2 0.6	4.4
		,						1.3	0.3	0.9	1	0.2	13.0
		105.2	21.0	100.1	-24	4.8	100.0	137.8	27.5	100.0	23	4.6	100.1
	ARTR (d	1120 4	24.1	92.4	34	6.8	75.6	147.9	29.6	92.8	43	8.6	
SS 9/15		2.6	0.5	2.0	9	1.8	20.0	14/.9	23.0	74.0	43	0.0	86.0
	EPNE	7.3	1.5	5.6	2	0.4	4.4	11.2	2.2	7.0	6	1.2	12.0
	SIHY				-			0.3	0.1	0.2	1	0.2	2.0
		130.3	26.T	100.0	45	9.0	100.0	159.4	31.9	100.0	50	10.0	100.0
MOX 181	ARER (d	1139.8	28.0	92.6	37	7.4	74.0	114.9	23.0	64.7	24	4.8	42.1
SS 9/16		5.6	1.1	3.7	10	2.0	20.0	16.6	3.3	9.4	24	4.8	42.1
	SIHY	2.5	0.5	1.7	1	0.2	2.0						44.6 1
	EPNE (S		0.6	2.0	2	0.4	4.0	35.4	7.1	19.9	6	1.2	10.5
											-		
	CHAI							10.6	2.1	6.0	3	0.6	5.3

TABLE E-9 (Cont.)

)

.

•

											ansect :	,	
			Total	Rel.	ansect '	Density	Rel.	Total	Total	Rel.	s of	 Density	Rel.
Sample Unit #	Plant Species	Cover (dm)	Cover (%)		Plants		Den. (%)	Cover (dm)	Cover (%)		Plants		Den. (%)
 MX 181	HIJA	67.8	13.6	39.7	110	22.0	80.3	8.4	1.7	5.9	12	2.4	30.0
SS 9/17		31.5	6.3	18.5	5	1.0	3.7	11.1	2.2	7.8	3	0.6	7.5
	CELA	3.9	0.8	2.3	3	0.6	2.2						
	ARSP	3.5	0.7	2.1	1 _	0.2	0.7						
	CHVI (s		12.5	36.6	17	3.4	12.4	23.1	4.6	16.1	3	0.6	7.5
	SIHY	1.5	0.3	0.9	1	0.2	0.7			<i>.</i>			
	ARTR (d	1)						97.9	19.6	68.4	20	4.0 0.4	50.0 5.0
	SP							2.6	0.5	1.8	2		
		170.6	34.2	100.1	137	27.4	100.0	143.1	28.6	100.0	-40	8.0	100.0
MX 181	ARTR (d	58.8	11.8	46.2	12	2.4	38.7	113.4	22.7	89.5	21	4.2	80.8
55 9/18			10.7	42.1	13	2.6	41.9	9.3	1.9	7.3	3	0.6	11.5
	OREY	2.5	0.5	2.0	2	0.4	6.5						
	GRSP	12.3	2.5	9.7	4	0.8	12.9	4.0	0.8	3.2	2	0.4	7.7
		127.2	25.5	100.0	31	6.2	100.0	126.7	25.4	100.0	26	5.2	100.0
MX 181	ARER (C	1) 125. 5	25.1	97.1	31	6.2	73.8	128.1	25.6	74.3	26	5.2	44.8
SS 9/19			0.5	2.0	10	2.0	23.8	12.6	2.5	7.3	21	4.2	36.2
	DENE	1.2	0.2	0.9	1	0.2	2.4	31.0	6.2	18.0	10	2.0	17.2
	SIHY							0.7	0.1	0.4	1	0.2	1.7
		129.3	25.8	100.0	42	8.4	100.0	172.4	34.4	100.0	- 58	11.6	99.9
MX 181	ARER (C	1) 93.6	18.7	80.6	19	3.8	76.0	98.5	19.7	70.8	21	4.2	53.9
SS 9/20			1.7	7.4	2	0.4	8.0	19.6	3.9	14.1	10	2.0	25.6
	GRSP	8.0	1.6	6.9	2	0.4	8.0	6.0	1.2	4.3	2	0.4	5.1
	DIFINE	6.0	1.2	5.2	2	0.4	8.0	15.0	3.0	10.7	6	1.2	15.3
		116.2	23.2	100.1	- 25	5.0	100.0	139.1	27.8	99.9	- 39	7.8	99.9
MX 181	ARCER (C	1) 56.8	11.4	55.7	15	3.0	60.0	83.4	16.7	74.9	18	3.6	51.4
55 9/2		6.5	1.3	6.4	2	0.4	8.0	4.0	0.8	3.6	1	0.2	2.9
	TEGL	22.5	4.5	22.1	3	0.6	12.0						
	CHVI (s	s) 16.2	3.2	15.9	5	1.0	20.0	15.9	3.2	14.3	4	0.8	11.4
	ORHY							2.2	0.4	2.0	1	0.2	2.9
	HIJA							5.3	1.1	4.8	10	2.0	28.5
	SIHY							0.5	0.1	0.5	1	0.2	2.9
		102.0	20.4	100.1	-25	5.0	100.0	111.3	22.3	100.1	- 35	7.0	100.0

TABLE E-9 (Cont.)

The Article States and the Article States

٠

E-53

E-54

TABLE	E-9	(Cont.)	

				Tr	ansect	1				Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	∳ of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	* of Plants	Density (#/100 dm)	Rel. Den. (%)
MX 181 SS 9/22) 82.6 6.5 1.5) 4.1 3.0	16.5 1.3 0.3 0.8 0.6	84.5 6.7 1.5 4.2 3.1	29 15 3 2 1	5.8 3.0 0.6 0.4 0.2	58.0 30.0 6.0 4.0 2.0	4.6 71.8 1.6 4.0 1.0 83.0	0.9 14.4 0.3 0.8 0.2 16.6	5.5 86.5 1.9 4.8 1.2 99.9	4 32 3 1 1 41	0.8 6.4 0.6 0.2 0.2 8.2	9.8 78.1 7.3 2.4 2.4 100.0
 MX 181 SS 9/23	GUSA (d CELA SPCR ARSP HLJA ARNO (s CHVI) 38.3 3.1 9.5 3.5 0.4	7.7 0.6 1.9 0.7 0.1 2.9 0.9 14.8	52.0 4.2 12.9 4.8 0.5 19.5 6.1 100.0	18 3 11 4 2 5 2 45	3.6 0.6 2.2 0.8 0.4 0.4 0.4 8.4	42.9 7.1 26.2 9.5 4.8 4.8 4.8 100.1						

差 Ertec

1.

÷,

•

F

TABLE E-10 TRANSECT RESULTS DRY LARE SHELTER SITES CLUSTER 10

				Tra	ansect					Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	\$ of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	\$ of Plants	Density (#/100 dm)	Rel. Den. (%)
MX 181	ARSP	5.8	1.2	6.0	2	0.4	4.0	6.2	1.2	7.2	3	0.6	3.8
SS 10/1	ATCA (S)		3.5	18.3	7	1.4	14.0	27.1	5.4	31.3	26	5.2	32.9
	CELA	41.2	8.2	42.7	25	5.0	50.0	47.1	9.4	54.5	39	7.8	49.4
		20.8	4.2	21.5	-9	1.8	18.0				••		
	GRSP	7.3	1.5	7.6	ŝ	0.6	6.0						
	OREY	ó.3	0.1	0.3	1	0.2	2.0	4.6	0.9	5.4	7	1.4	8.9
	SPCR	3.5	0.7	3.6	3	0.6	6.0	4.0	0.3	2.4	,	147	0.3
	SILLY	2.2	0.7	3.0	2	0.0	0.0	1.0	0.2	1.2	2	0.4	2.5
	HIJA							0.5	0.1	0.6	2	0.4	2.5
	LUA					-							
		96.6	19.4	100.0	- 50	10.0	100.0	86.5	17.2	100.2	79	15.8	100.0
MX 181	CELA	21.0	4.2	16.9	15	3.0	17.1	9.6	1.9	8.6	9	1.8	11.0
SS 10/2		6.0	1.2	4.8	2	0.4	2.3	26.3	5.3	23.6	12	2.4	14.6
	GRSP (d)		8.6	34.4	9	1.8	10.2	24.6	4.9	22.1	5	1.0	6.1
	HIJA	9.8	2.0	7.9	20	4.0	22.7	16.6	3.3	14.9	40	8.0	48.8
	ORELY	2.3	0.5	1.9	1	0.2	1.1	3.0	0.6	2.7	1	0.2	1.2
	SPCR (s)		8.5	34.1	41	8.2	46.6	10.4	2.1	9.3	8	1.6	9.8
	SIHY	14.1	0.2	349.1		0.2	10.0	2.8	0.6	2.5	2	0.4	2.4
	EPNE							18.0	3.6	16.2	ŝ	1.0	6.1
	LIPING	124.3	25.0	100.0	88	17.6	100.0	111.3	22.3	99.9	- 82		100.0
MX 181	CELA	1.0	0.2	0.9	1	0.2	1.3	3.2	0.6	3.2	2	0.4	2.4
SS 10/3		25.4	5.1	23.7	7	1.4	9.3	4.7	0.9	4.7	3	0.6	3.5
	EPNE (d		3.3	15.5	3	0.6	4.0	33.3	6.7	33.4	10	2.0	11.8
	GRSP	12.5	2.5	11.6	4	0.8	5.3	23.9	4.8	24.0	5	1.0	5.9
	HIJA	15.0	3.0	14.0	22	4.4	29.3	24.4	4.9	24.5	54	10.8	63.5
	ORHY	2.0	0.4	1.9	1	0.2	1.3						
	SIHY	1.3	0.3	1.2	2	0.4	2.7	1.3	0.3	1.3	1	0.2	1.2
	SPCR (s)) 33.6	6.7	31.3	35	7.0	46.7	8.1	1.6	8.1	9	1.8	10.6
	ARSP							0.9	0.2	0.9	1	0.2	1.2
		107.4	21.5	100.1	75	15.0	99.9)). 8	20.0	100.0	00.1	17.0	100.1
MX 181	ATCA (s) 42 4	8.5	62.5	11	2.2	39.3						
55 10/4			4.6	33.8	15	3.0	53.6	131.3	26.3	98.9	9 9	19.8	98.0
	SIHY	0.5	0.1	0.7	1	0.2	3.6	1.5	0.3	1.1	2	0.4	2.3
	ORHY	1.8	0.4	2.9	1	0.2	3.6		0.0	1+1	-	v. •	2.0
	CRADI								****		187	** *	144 -
		67.5	13.6	99.9	28	5.6	100.1	132.8	26.6	100.0	101	20.2	100.0

E-55

Ξ Ertec

,

				Tr	ansect	1				Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 chm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	† of Plants	Density (#/100 dm)	Rel. Den. (%)
MX 181	CELA (S) 53.6	10.7	37.5	31	6.2	51.7	55.3	11.1	44.6	35	7.0	50.3
SS 10/5	ARTR (d	77.7	15.5	54.4	21	4.2	35.0	50.9	10.2	41.0	16	3.2	27.6
	SIHY	6.9	1.4	4.9	4	0.8	6.7	4.4	0.9	3.6	5	1.0	8.6
	ORHY	0.9	0.2	0.7	2	0.4	3.3						
	EPNE	1.5	0.3	1.1	1	0.2	1.7						
	TAFD	1.8	0.4	1.4	1	0.2	1.7						
	GRSP							13.6	2.7	10.8	2	0.4	3.5
		142.4	28.5	100.0	60	12.0	100.1	124.2	24.9	100.0	58	11.6	100.0
MX 181	ARCER (d	1 52.1	10.4	59. 1	13	2.6	65.0	111.9	22.4	80.9	21	4.2	77.8
SS 10/6		1.2	0.2	1.1	1	0.2	5.0	17.6	3.5	12.6	3	0.6	11.1
) 33.6	6.7	38.1	5	1.0	25.0	2.2	0.4	1.4	Ť	0.2	3.7
		1.4	0.3	1.7	1	0.2	5.0				•		
	GRSP		•••					7.0	1.4	5.1	2	0.4	7.4
		88.3	17.6	100.0	20	4.0	100.0	138.7	27.7	100.0	27	5.4	100.0
MX 181	CELA (d) 125. 1	25.0	92.9	81	16.2	94.2	25.7	5.1	20.0	13	2.6	24.1
SS 10/7		3.6	0.7	2.6	3	0.6	3.5	2.2	0.4	1.6	3	0.6	5.6
	CHVI (s		1.2	4.5	2	0.4	2.3	90.0	18.0	70.9	32	6.4	59.3
	SIHY	,			-	••••		0.5	0.1	0.4	1	0.2	1.9
	HIJA							1.5	0.3	1.2	3	0.6	5.6
	ARTR							7.7	1.5	5.9	2	0.4	3.7
		134.8	26.9	100.0	- 86	17.2	100.0	127.6	25.4	100.0	-54	10.8	100.2
MC 181	HIJA (s	28.1	5.6	33.3	45	9.0	61.6	22.4	4.5	19.9	46	9.2	48.4
SS 10/8			3.6	21.6	6	1.2	8.2	37.4	7.5	33.2	13	2.6	13.7
	CHER	16.8	3.4	19.9	12	2.4	16.4	13.4	2.7	11.9	8	1.6	8.4
	SPCR	7.4	1.5	8.8	6	1.2	8.2	19.4	3.9	17.2	21	4.2	22.1
	GRSP	13.7	2.7	16.2	3	0.6	4.1	14.4	2.9	12.8	2	0.4	2.1
	CELA	0.2	0.0	0.2	ī	0.2	1.4	1.5	0.3	1.3	ī	0.2	1.1
	ARPU							4.1	0.8	3.6	4	0.8	4.2
		84.4	16.8	100.0	73	14.6	99.9	112.6	22.6	39.3	- 95	19.3	100.0

TABLE E-10 (Cont.)

E+56

.

Sample Plant Unit # Species (a) Cover (a) Cover Plants (#/100 Dan. (a) Cover Cover Plants (#/100 Dan. (a) MX 181 ARTR(d) 70.5 14.1 49.4 16 3.2 22.2 95.0 19.0 57.4 25 5.0 29.4 55.0 29.0 18.0 35.3 20.0 0.6 1.8 4 0.8 4.7 55.0 1.0 2.2 7.7 2 0.4 2.8 3.0 0.6 1.8 4 0.8 4.7 55.0 1.0 2.2 7.7 2 0.4 2.8 510/10 21.2 1.7 0.3 1.0 1 0.2 1.2 1.2 120 120 11.0 21.2 1.7 0.3 1.0 1 0.2 1.2 1.2 120 120 11.0 21.2 1.7 0.3 1.0 1 0.2 1.2 1.2 120 120 11.0 11.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		· · · _			Tra	ansect	1				Tra	insect	2	
SS 10/9 TPSEL 1.6 0.3 1.1 1 0.2 1.4 CELA(s) 41.8 8.4 29.3 29 5.8 40.3 38.5 7.7 23.3 30 6.0 35.3 HLJA 7.7 1.5 5.4 18 36.6 22.8 4.6 13.8 24 4.8 28.2 CBEY 2.7 0.5 1.9 2 0.4 2.8 3.0 0.6 1.8 4 0.8 4.7 SIBY 1.9 0.4 1.3 1 0.2 1.4 1.2 1.7 0.3 1.0 1 0.2 1.2 CRSP 1.0 2.2 7.7 2 0.4 2.8 4.5 0.9 2.7 1 0.2 1.2 TAN 5.5 1.1 3.9 3 0.6 4.2 8.4 4.5 0.9 18.0 35.7 SS 10/10 CRSP 9.2 1.8 61.4 94 18.8 86.2 47.3 9.5 46.2 90 18.0 35.7			Cover	Cover	Cover		(#/100	Den.	Cover	Cover	Cover		(#/100	Den.
CELA(s) 41.8 8.4 29.3 29 5.8 40.3 38.5 7.7 23.3 30 6.0 35.3 HLJA 7.7 1.5 5.4 18 3.6 25.0 22.8 4.6 13.8 24 4.8 28.2 CRENY 2.7 0.4 2.8 3.0 0.6 1.8 4 0.8 4.7 CRENY 1.9 0.4 1.3 1 0.2 1.4 2.8 4.5 0.9 2.7 1 0.2 1.2 CRENY 1.0 2.2 7.7 2 0.4 2.8 4.5 0.9 2.7 1 0.2 1.2 CREVT 1.0 2.2 7.7 2 0.4 2.8 4.5 0.9 2.7 1 0.2 1.2 CREVT 1.3 0.6 1.4 100.7 165.5 33.7 100.0 35.7 100.0 35.7 1.2 0.4 1.8 0									95.0	19.0	57.4	25	5.0	29.4
HLDA 7.7 1.5 5.4 18 3.6 25.0 22.8 4.6 13.8 24 4.8 28.2 GREY 2.7 0.5 1.9 2 0.4 2.8 3.0 0.6 1.8 4 0.8 4.7 SIBY 1.9 0.4 1.3 1 0.2 1.4 0 1.2 1.2 LXAN 5.5 1.1 3.9 3 0.6 4.2 8 4.5 0.9 2.7 1 0.2 1.2 LXAN 5.5 1.1 3.9 3 0.6 4.2 8 4.5 0.9 2.7 1 0.2 1.2 LXAN 5.5 1.0 2.0 4 1.8 6.8 1.4 6.6 2 0.4 1.9 SS 10/10 GRSP 9.2 1.8 1.1 0.2 0.9 1.4 0.3 1.4 1 0.2 1.0 1.0 1.0	SS 10/9													
CREPY 2.7 0.5 1.9 2 0.4 2.8 3.0 0.6 1.8 4 0.8 4.7 STEY 1.9 0.4 1.3 1 0.2 1.4 1.4 1.6 1.7 1.0 2.7 1 0.2 1.2 LYAN 5.5 1.1 3.9 3 0.6 4.2.8 4.5 0.9 2.7 1 0.2 1.2 LYAN 5.5 1.1 3.9 3 0.6 4.2.8 4.5 0.9 2.7 1 0.2 1.2 LYAN 5.5 1.1 3.9 3 0.6 4.2.8 4.5 0.9 2.7 1 0.2 1.2 CBVT 1.2 2.5.7 100.0 72 14.4 100.1 15.5 33.7 100.0 35 17.0 100.0 SS 10/10 GRSP 9.2 1.8 7.1 2.0 9 1.4 0.3 1.4														
STRY 1.9 0.4 1.3 1 0.2 1.4 GRSP 11.0 2.2 7.7 2 0.4 2.8 4.5 0.9 2.7 1 0.2 1.2 LYAN 5.5 1.1 3.9 3 0.6 4.2 4.5 0.9 2.7 1 0.2 1.2 LYAN 5.5 1.1 3.9 3 0.6 4.2 4.5 0.9 2.7 1 0.2 1.2 T4Z.7 28.5 100.0 72 T4.4 100.1 165.5 33.1 100.0 85 17.0 100.0 SS 10/10 GRSP 9.2 1.8 7.1 2 0.4 1.8 6.8 1.4 6.6 2 0.4 1.9 GRSP 9.2 1.8 7.1 2 0.4 1.8 6.8 1.4 6.6 2 0.4 1.9 GRSP 2.0.7 1 0.2 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
GRSP IX2NN 11.0 2.2 7.7 2 0.4 2.8 4.5 0.9 2.7 1 0.2 1.2 IX2NN 5.5 1.1 3.9 3 0.6 4.2 1.7 0.3 1.0 1 0.2 1.2 IX2NN 5.5 1.1 3.9 3 0.6 4.2 1.7 0.3 1.0 1 0.2 1.2 IX2.7 28.5 100.0 72 14.4 100.1 165.5 33.1 100.0 35 17.0 100.0 MX 181 HLJA (d)79.2 15.8 61.4 94 18.8 86.2 47.3 9.5 46.2 90 18.0 85.7 SS 10/10 GRSP 9.2 1.8 7.1 0.2 0.9 1.4 6.8 1.4 6.6 2 0.4 1.9 CEEX 1.2 0.2 0.9 1.4 0.3 1.4 1 0.2 1.0 CEMY <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.0</td> <td>0.6</td> <td>1.8</td> <td>4</td> <td>0.8</td> <td>4.7</td>									3.0	0.6	1.8	4	0.8	4.7
LYAN 5.5 1.1 3.9 3 0.6 4.2 142.7 28.5 100.0 72 14.4 100.1 165.5 33.1 100.0 35 17.0 100.0 MX 181 HLJA (d) 79.2 15.8 61.4 94 18.8 86.2 47.3 9.5 46.2 90 18.0 85.7 SS 10/10 GRSP 9.2 1.8 7.1 2 0.4 1.8 6.8 1.4 6.6 2 0.4 1.9 GPEC 0.7 0.1 0.5 1 0.2 0.9 1.4 6.6 1.4 1.4 6.7 LYAN 4.0 0.8 3.1 1 0.2 0.9 1.4 0.3 1.4 1 0.2 1.0 GRHY 2.6 0.5 2.0 3 0.6 2.8 3.2 0.6 3.1 3 0.6 2.9 MX 181 LYAN 4.5 0.9 4.7														
1.7 0.3 1.0 1 0.2 1.2 142.7 28.5 100.0 72 14.4 100.1 165.5 33.7 100.0 85 17.0 100.0 MX 181 HLJA (d)79.2 15.8 61.4 94 18.8 86.2 47.3 9.5 46.2 90 18.0 35.7 SS 10/10 GRSP 9.2 1.8 7.1 2 0.4 1.8 6.8 1.4 6.6 2 0.4 1.9 CPEC 0.7 0.1 0.5 1 0.2 0.9 1.4 6.8 1.4 6.6 2 0.4 1.9 CELA 1.2 0.2 0.9 1.4 0.3 1.4 1 0.2 1.0 CELA 1.2 0.2 0.9 1.4 0.3 1.4 1 0.2 1.0 CELA 1.2 0.2 0.3 0.6									4.5	0.9	2.7	1	0.2	1.2
142.7 28.5 100.0 72 14.4 100.1 165.5 33.1 100.0 35 17.0 100.0 MX 181 HLJA (d) 79.2 15.8 61.4 94 18.8 86.2 47.3 9.5 46.2 90 18.0 85.7 SS 10/10 GRSP 9.2 1.8 7.1 2 0.4 1.8 6.8 1.4 6.6 2 0.4 1.9 GRESP 9.2 1.8 7.1 2 0.4 1.8 6.8 1.4 6.6 2 0.4 1.9 GRESP 9.2 0.7 0.1 0.5 1 0.2 0.9 1.4 0.3 1.4 1 0.2 1.0 CELA 1.2 0.2 0.9 1 0.2 0.9 1.4 0.3 1.4 1 0.2 1.0 CHY 1.3 2.3 8.8 2 0.4 1.8 0.6 3.1 </td <td></td> <td></td> <td>5.5</td> <td>1.1</td> <td>3.9</td> <td>3</td> <td>0.6</td> <td>4.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			5.5	1.1	3.9	3	0.6	4.2						
MX 181 HLJA (d) 79.2 15.8 61.4 94 18.8 86.2 47.3 9.5 46.2 90 18.0 35.7 SS 10/10 GRSP 9.2 1.8 7.1 2 0.4 1.8 6.8 1.4 6.6 2 0.4 1.9 QPBC 0.7 0.1 0.5 1 0.2 0.9 2 1.4 6.6 2 0.4 1.9 EFNE (s)20.7 4.1 16.1 5 1.0 4.6 42.3 8.5 41.3 7 1.4 6.7 LIZAN 4.0 0.8 3.1 1 0.2 0.9 1.4 0.3 1.4 1 0.2 1.0 CERT 1.2 0.2 0.9 1.4 0.3 1.4 1 0.2 1.0 SENT 1.3 2.6 0.5 2.0 3 0.6 2.8 3.2 0.6 3.1 3 0.6 2.9 <tr< td=""><td></td><td>CHVI</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>		CHVI												
SS 10/10 GRSP 9.2 1.8 7.1 2 0.4 1.8 6.8 1.4 6.6 2 0.4 1.9 GPEC 0.7 0.1 0.5 1 0.2 0.9 42.3 8.5 41.3 7 1.4 6.7 LYAN 4.0 0.8 3.1 1 0.2 0.9 1.4 0.3 1.4 1 0.2 1.0 CELA 1.2 0.2 0.9 1.4 0.3 1.4 1 0.2 1.0 CELY 11.3 2.3 8.8 2 0.4 1.8 0.5 0.1 0.5 1 0.2 1.0 CREY 2.6 0.5 2.0 3 0.6 2.8 3.2 0.6 3.1 3 0.6 2.9 ARPU 5 10.9 4.7 1 0.2 2.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			142.7	28.5	100.0	72	14.4	100.1	165.5	33.1	100.0	- 35	17.0	100.0
SS 10/10 GRSP 9.2 1.8 7.1 2 0.4 1.8 6.8 1.4 6.6 2 0.4 1.9 GPEC 0.7 0.1 0.5 1 0.2 0.9 1.0 1.1 0.2 0.9 EPNE (s)20.7 4.1 16.1 5 1.0 4.6 42.3 9.5 41.3 7 1.4 6.7 LIXAN 4.0 0.8 3.1 1 0.2 0.9 1.4 0.3 1.4 1 0.2 1.0 CELA 1.2 0.2 0.9 1 0.2 0.9 1.4 0.3 1.4 1 0.2 1.0 CELY 11.3 2.3 8.8 2 0.4 1.8 0.6 3.1 3 0.6 2.9 ARPU 5 0.5 2.0 3 0.6 2.8 3.2 0.6 3.1 3 0.6 2.9 SIBY 128.9 25.6 99.9 109 21.8 99.9 102.5 20.6 100.0	MX 181	HIJA (d)79.2	15.8	61.4	94	18.8	86.2	47.3	9.5	46.2	90	18.0	85.7
OPEC 0.7 0.1 0.5 1 0.2 0.9 EPNE (s) 20.7 4.1 16.1 5 1.0 4.6 42.3 8.5 41.3 7 1.4 6.7 LYAN 4.0 0.8 3.1 1 0.2 0.9 1.4 0.3 1.4 1 0.2 1.0 CELA 1.2 0.2 0.9 1.0 2.0.9 1.4 0.3 1.4 1 0.2 1.0 CELVT 11.3 2.3 8.8 2 0.4 1.8 0.5 0.1 0.5 1 0.2 1.0 ARPU 1.0 0.2 1.0 1 0.2 1.0 SIHY 1.09 21.8 99.9 102.5 20.6 100.0 105 21.0 100.2 MX 181 LXAN 4.5 0.9 4.7 1 0.2 2.3 5 5.3 18.1						2	0.4						0.4	1.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,		0.7	0.1	0.5	1	0.2	0.9						
CEEA 1.2 0.2 0.9 1 0.2 0.9 1.4 0.3 1.4 1 0.2 1.0 CHVT 11.3 2.3 8.8 2 0.4 1.8 3.2 0.6 3.1 3 0.6 2.9 ARPU 3.2 0.6 3.1 3 0.6 2.9 3.2 0.6 3.1 3 0.6 2.9 3.2 0.6 3.1 3 0.6 2.9 3.2 0.6 3.1 3 0.6 2.9 3.2 0.6 3.1 3 0.6 2.9 3.2 0.6 3.1 3 0.6 2.9 3.2 0.6 3.1 3 0.6 2.9 1.0 1.0 2.1 1.0		EPNE (s)20.7	4.1	16.1	5	1.0	4.6	42.3	8.5	41.3	7	1.4	6.7
CEVT 11.3 2.3 8.8 2 0.4 1.8 CREY 2.6 0.5 2.0 3 0.6 2.8 3.2 0.6 3.1 3 0.6 2.9 ARPU SIBY 2.6 0.5 2.0 3 0.6 2.8 3.2 0.6 3.1 3 0.6 2.9 SIBY 128.9 25.6 99.9 109 21.8 99.9 100.2 1.0 1 0.2 1.0 10 0.2 1.0 105 21.0 100.2 1.0 100.2 1.0 55 10/11 CHVI (d)35.0 7.0 38.6 9 1.8 20.9 73.5 14.7 50.1 24 4.8 32.4 GRSP (s)36.3 7.3 35.0 11 2.2 25.6 12.3 2.5 8.4 3 0.6 4.1 HLJA 12.0 2.4 12.6 16 3.2 37.2 26.5		LYAN	4.0	0.8	3.1	1	0.2	0.9						
ORHY 2.6 0.5 2.0 3 0.6 2.8 3.2 0.6 3.1 3 0.6 2.9 ARPU STHY 25.6 99.9 109 21.8 99.9 100 0.2 1.0 0.5 1 0.2 1.0 MX 181 LX2AN 4.5 0.9 4.7 1 0.2 2.3 MX 181 LXAN 4.5 0.9 4.7 1 0.2 2.3 MX 181 LXAN 4.5 0.9 4.7 1 0.2 2.3 SS 10/11 CHVI (d)35.0 7.0 38.6 9 1.8 20.9 73.5 14.7 50.1 24 4.8 32.4 GRSP (s)36.3 7.3 35.0 11 2.2 25.6 12.3 2.5 8.4 3 0.6 4.1 HLJA 12.0 2.4 12.6 16 3.2 37.2 26.5 5.3 18.1		CELA	1.2	0.2	0.9		0.2	0.9	1.4	σ.3	1.4	1	0.2	1.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CHVI	11.3	2.3	8.8		0.4	1.8						
STHY 1.0 0.2 1.0 1.0 0.2 1.0 1.0 0.2 1.0 1.0 0.2 1.0 1.0 0.2 1.0 1.0 0.2 1.0 1.0 0.2 1.0 1.0 0.2 1.0 1.0 0.2 1.0 1.0 0.2 1.0 1.0 0.2 1.0 1.0 0.2 1.0 1.0 0.2 1.0 1.0 0.2 1.0 1.0 0.2 1.0 1.0 0.2 1.0 <td></td> <td></td> <td>2.6</td> <td>0.5</td> <td>2.0</td> <td>3</td> <td>0.6</td> <td>2.8</td> <td></td> <td>0.6</td> <td></td> <td>3</td> <td></td> <td></td>			2.6	0.5	2.0	3	0.6	2.8		0.6		3		
T28.9 25.6 99.9 109 21.8 99.9 102.5 20.6 100.0 105 21.0 100.2 MX 181 LXAN 4.5 0.9 4.7 1 0.2 2.3 SS 10/11 CHVI (d)35.0 7.0 38.6 9 1.8 20.9 73.5 14.7 50.1 24 4.8 32.4 GRSP (s)36.3 7.3 35.0 11 2.2 25.6 12.3 2.5 8.4 3 0.6 4.1 HLJA 12.0 2.4 12.6 16 3.2 37.2 26.5 5.3 18.1 38 7.6 51.4 STEY 1.0 0.2 1.1 1 0.2 2.3 0.4 4.7 3.1 0.6 2.1 1 0.2 1.4 GRSP 5.1 1.0 5.3 3 0.6 7.0 1.0 0.2 1.4 CELA 5.1		ARPU							0.5		0.5	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		SIHY							1.0	0.2	1.0	1	0.2	1.0
SS 10/11 CHVT (d)35.0 7.0 38.6 9 1.8 20.9 73.5 14.7 50.1 24 4.8 32.4 GRSP (s)36.3 7.3 35.0 11 2.2 25.6 12.3 2.5 8.4 3 0.6 4.1 HLJA 12.0 2.4 12.6 16 3.2 37.2 26.5 5.3 18.1 38 7.6 51.4 STHY 1.0 0.2 1.1 1 0.2 2.3 0.4 4.7 3.1 0.6 2.1 1 0.2 1.4 CELA 5.1 1.0 5.3 3 0.6 7.0 1.0 0.2 0.7 1 0.2 1.4 SPCO 1.5 0.3 1.0 1 0.2 1.4 ATCA 12.3 2.5 8.4 3 0.6 4.1 EPNE 15.4 3.1 10.5 2 0.4 4.7 ISL 3.1 10.5 2 0.4 2.7 15.4 3.1 10.5 2			128.9	25.6	99.9	109	21.8	99.9	102.5	20.6	100.0	105	21.0	100.2
SS 10/11 CHVT (d)35.0 7.0 38.6 9 1.8 20.9 73.5 14.7 50.1 24 4.8 32.4 GRSP (s)36.3 7.3 35.0 11 2.2 25.6 12.3 2.5 8.4 3 0.6 4.1 HLJA 12.0 2.4 12.6 16 3.2 37.2 26.5 5.3 18.1 38 7.6 51.4 STHY 1.0 0.2 1.1 1 0.2 2.3 0.4 4.7 3.1 0.6 2.1 1 0.2 1.4 CELA 5.1 1.0 5.3 3 0.6 7.0 1.0 0.2 0.7 1 0.2 1.4 SPCO 1.5 0.3 1.0 1 0.2 1.4 ATCA 12.3 2.5 8.4 3 0.6 4.1 EPNE 15.4 3.1 10.5 2 0.4 4.7 ISL 3.1 10.5 2 0.4 2.7 15.4 3.1 10.5 2	MX 181	LYAN	4.5	0.9	4.7	1	0, 2	2.3						
GRSP (s)36.3 7.3 35.0 11 2.2 25.6 12.3 2.5 8.4 3 0.6 4.1 HLJA 12.0 2.4 12.6 16 3.2 37.2 26.5 5.3 18.1 38 7.6 51.4 STEY 1.0 0.2 1.1 1 0.2 2.3 0.6 2.1 1 0.2 1.4 CREX 5.1 1.0 5.3 3 0.6 7.0 1.0 0.2 0.7 1 0.2 1.4 SPCO 1.5 0.3 1.0 1 0.2 1.4 ACCA 12.3 2.5 8.4 3 0.6 4.1 EPNE 15.4 3.1 10.5 2 0.4 4.7 OPEC 1.1 0.2 0.4 4.7 1.0 0.2 1.4 SPCO 1.5.4 3.1 10.5 2 0.4 4.7 IDENE 15.4 3.1 10.5 2 0.4 2.7 OPEC 1.1 0.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>73.5</td> <td>14.7</td> <td>50.1</td> <td>24</td> <td>4.8</td> <td>32.4</td>									73.5	14.7	50.1	24	4.8	32.4
HLTA 12.0 2.4 12.6 16 3.2 37.2 26.5 5.3 18.1 38 7.6 51.4 STERY 1.0 0.2 1.1 1 0.2 2.3 0 0 0 0 1.4 CRHY 1.7 0.3 1.8 2 0.4 4.7 3.1 0.6 2.1 1 0.2 1.4 CELA 5.1 1.0 5.3 3 0.6 7.0 1.0 0.2 0.7 1 0.2 1.4 SPCO 1.5 0.3 1.0 1 0.2 1.4 ATCA 12.3 2.5 8.4 3 0.6 4.1 EPNE 15.4 3.1 10.5 2 0.4 2.7 OPEC 1.1 0.2 0.8 1 0.2 1.4	00 .0,													
STHY 1.0 0.2 1.1 1 0.2 2.3 ORHY 1.7 0.3 1.8 2 0.4 4.7 3.1 0.6 2.1 1 0.2 1.4 CELA 5.1 1.0 5.3 3 0.6 7.0 1.0 0.2 0.7 1 0.2 1.4 SPCO 1.5 0.3 1.0 1 0.2 1.4 ATCA 12.3 2.5 8.4 3 0.6 1.4 EPNE 15.4 3.1 10.5 2 0.4 2.7 OPEC 1.1 0.2 0.8 1 0.2 1.4														51.4
ORHY 1.7 0.3 1.8 2 0.4 4.7 3.1 0.6 2.1 1 0.2 1.4 CELA 5.1 1.0 5.3 3 0.6 7.0 1.0 0.2 0.7 1 0.2 1.4 SPCO 1.5 0.3 1.0 1 0.2 1.4 ATCA 12.3 2.5 8.4 3 0.6 4.1 EPNE 15.4 3.1 10.5 2 0.4 2.7 OPEC 1.1 0.2 0.8 1 0.2 1.4						1								
SPCO 1.5 0.3 1.0 1 0.2 1.4 ADCA 12.3 2.5 8.4 3 0.6 4.1 EPNE 15.4 3.1 10.5 2 0.4 2.7 OPEC 1.1 0.2 0.8 1 0.2 1.4						2			3.1	0.6	2.1	1	0.2	1.4
SPCO 1.5 0.3 1.0 1 0.2 1.4 ATCA 12.3 2.5 8.4 3 0.6 4.1 EPNE 15.4 3.1 10.5 2 0.4 2.7 OPEC 1.1 0.2 0.8 1 0.2 1.4		CELA	5.1	1.0	5.3	3	0.6	7.0	1.0	0.2	0.7	1	0.2	1.4
EPNE 15.4 3.1 10.5 2 0.4 2.7 OPEC 1.1 0.2 0.8 1 0.2 1.4									1.5	0.3	1.0	1	0.2	1.4
OPEC 1.1 0.2 0.8 1 0.2 1.4									12.3		8.4			
									15.4			2		
95.6 19.1 99.1 43 8.5 100.0 145.7 29.4 100.1 74 14.8 100.3		OPEC							1.1	0.2	0.8	1	0.2	1.4
			95.6	19.1	99.1	-13	8.5	100.0	145.7	29.4	100.1	-74	14.8	100.3

TABLE E-10 (Cont.)

.

-

E-58

7

				Tr	ansect	1				Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	\$ of Plants	Density (#/100 cm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 cm)	Rel. Den. (%)
MX 181	HIJA	11.0	2.2	7.9	22	4.4	37.3	9.6	1.9	7.3	17	3.4	38.6
SS 10/1	2 GRSP EPNE ARSP	19.5 19.0 5.5	3.9 3.8 1.1	13.9 13.5 3.9	2 5 2	0.4 1.0 0.4	3.4 8.5 3.4	5.5	1.1	4.2	3	0.6	6.8
	CHVI	(s)55.5 (d) 8.2	11.1	39.5 5.8	14 1	2.8	23.7	114.5	22.9	87.3	23	4.6	5 2.3
	CELA SIHY	13.2	2.6 1.1	9.4 3.8	9	1.8	15.3 3.4	1.5	0.3	1,1	1	0.2	2.3
	ORHY	3.2 140.5	0.6 28.0	2.3 100.0	2 - 59	0.4	3.4 100.1	131.1	26.2	<u>99.9</u>	-14	3.8	100.0
MX 181 SS 10/1		(d)40.5 (s)41.3	8.1 8.3	33.4 34.1	65 9	13.0 1.8	75.6 10.5	41.7 38.0	8.3 7.6	32.5 29.6	45 9	9.0 1.8	67.2 13.4
,	ATCO CHVI	1.8	0.4 3.6	1.5 15.0	2	0.4	2.3	24.3	4.9	18.9	5	1.0	7.5
	SPAM GRSP CELA	0.8 14.1 4.5	0.2 2.8 0.9	0.7 11.6 3.7	1 2 1	0.2 0.4 0.2	1.2 2.3 1.2	15.5	3.1	12.1	3	0.6	4.5
	ATCA ARSP							3.8 1.5	0.8 0.3	3.0	2 1	0.4	3.0 1.5
	ORHY	121.2	24.3	100.0	86	17.2	100.1	$\frac{3.5}{128.3}$	$\frac{0.7}{25.7}$	2.7 100.0	2 57	0.4	3.0 100.1
MX 181 SS 10/1		(s)29.1 19.6	5.8 3.9	20.1	10 6	2.0	13.7	22.3 30.1	4.5	20.9	11	2.2	16.7 21.2
30 107 1	gusa Cela	2.0 (d)83.2	0.4	1.4 57.4	1 52	0.2 10.4	1.4 71.2	49.1	9.8	46.0	39	7.3	59.1
	ATCA EPNE ORHY	9.0 2.0	1.8 0.4	6.2	3	0.6 0.2	4.1 1.4	3.6	0.7	3.3	1	0.2	1.5
	SIHY	144.9	29.0	100.0	73		100.0	1.7 106.8	$\frac{0.3}{21.3}$	1.6 100.0	1 66	0.2	1.5 100.0
	<u>стял</u> ((s) 45.4	- <u></u> 9.1	43.3		3.4	25.4	28.2	5.6	26.4	 	1.8	14.3
SS 10/1	5 CELA	d) 51.1 5.7	10.2	48.7 5.4	40 6	8.0 1.2	59.7 Э.О	71.3	14.3	66.6 1.1	43 4	8.6 0.8	68.3 6.4
	MACA ATCA SIHY	0.7 0.5	0.1 0.1	0.7 0.5	2	0.4 0.2	3.0 1.5	1.0 1.5	0.2 0.3	0.9 1.4	1	0.2 0.6	1.6
	ORHY	1.5 104.9	0.3	1.4 100.0	1	0.2	1.5	3.8 107.0	0.8	3.6 100.0	3	J.6	4.3

TABLE E-10 (Cont.)

≡ Ertec

\$

TABLE	E-10	(Cont.)	

				Tra	nsect	1				Tra	ansect	2	
Sample Unit # S	Plant	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	t of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 dm)	Rel. Den. (%)
MX 181	GUMI (s	s) 33.5	6.7	28.1	20	4.0	30.8						
SS 10/16	CELA (c		16.4	69.0	37	7.4	56.9						
	HIJA	2.0	0.4	1.7	6	1.2	9.2						
	ORHY	1.4	0.3	1.2	_2	0.4	3. 1						
		119.1	23.8	100.0	65	13.0	100.0						
MX 181	HLJA	9.6	1.9	16.0	51	10.2	58.0	18.0	3.6	19.3	24	4.8	38.1
SS 10/17	CELA (c		7.2	59.6	31	6.2	35.2	49.8	1 0.0	53.4	27	5.4	42.9
	GUMI	0.3	0.1	0.5	1	0.2	1.1				-		
	ARSP	3) 11.4 3.0	2.3 0.6	19.0 5.0	4	0.8 0.2	4.6 1.1	21.9 3.6	4.4 0.7	23.5 3.9	8 4	1.6	12.7
	ACCE	60.1	12.1	100.1	- 88	17.6	100.0		18.7	100.1	- 63	$\frac{0.8}{12.6}$	
			14.1	100.1		1/.6	100.0	93.3	18.7	100.1		12.5	100.1
MX 181	CELA (s	39.2	7.8	34.2	16	3.2	29.6	25.9	5.2	18.7	15	3.0	20.8
SS 10/18	ARSP	1.5	0.3	1.3	1	0.2	1.9	0.8	0.2	0.6	3	0.6	4.2
	CEVI (45.3	9.1	39.6	13	2.6	24.1	43.9	8.8	31.6	6	1.2	8.3
	GRSP (C	3) 8.8 10.0	1.8 2.0	7.7 8.7	2 1	0.4	3.7 1.9	48.3	9.7	34.8	11	2.2	15.3
	HIJA	8.9	1.8	7.8	20	4.0	37.0	18.2	3.6	13.1	34	6.8	47.2
	SIHY	0.8	0.2	0.7	1	0.2	1.9		2.0				
	ORHY							1.7	0.3	1.2	3	0.6	4.2
		114.5	23.0	100.0	- 54	10.8	100.1	138.8	27.8	100.0	72	14.4	100.0
MX 181	ARTR (3)107.3	21.5	100.0	21	4.2	100.0	115.8	23.2	96.4	28	5.6	90.3
SS 10/19					-			3.8	0.8	3.2	2	0.4	6.5
	GRSP							0.5	0.1	0.4	1	0.2	3.2
		107.3	21.5	100.0	21	4.2	100.0	120.1	24.1	100.0	-31	5.2	100.0
MX 181	CELA (d	1) 96.9	19.4	75.6	35	7.0	68.6	21.9	4.4	27.2	18	3.6	34.0
SS 10/20	SIHY	2.8	0.6	2.2	2	0.4	3.9	3.0	0.6	3.7	3	0.6	5.7
		s) 14.9	3.0	11.6	4	0.8	7.8	28.0	5.6	34.7	10	2.0	18.9
	CRHY	2.1	0.4	1.6	3	0.6	5 1	5.8	1.2	7.2	6	1.2	11.3
	SPCR GUMI	3.3 3.7	0.7 0.7	2.6	3	0.6	5.9	6.0	1.2	7.4	4	0.8	7.6
	CHVI	4.4	0.9	2.9	2	0.4	3.9 3.9	8.5	1.7	10.6	4	0.8	7.6 7.6
	HIJA	717	0.9	3.4	4	V• *	5.9	4.4	0.9	5.5	7	1.4	13.2
	ATCA							3.0	0.6	3.7	i	0.2	1.9
	ALCA .							3.0	0.0			0.2	

E-59

 \int

≣ Ertec

state of the second second second second second second second second second second second second second second

ż

				Tra	ansect	1				Tr	ansect	2	
Sample Chit # :	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	t of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	† of Plants	Density (#/100 dm)	Rel. Den. (%)
MX 181 SS 10/21		(d)196.8 12.0 (s) 47.8 1.5	39.4 2.4 9.6 0.3	75.1 4.6 18.2 0.6	35 6 24	7.0 1.2 4.8 0.2	52.2 9.0 35.8 1.5	98.1	19.6	59.0	36	7.2	45.5
	EPNE ORHY GUMI HLJA	4.0	0.8	1.5	1	0.2	1.5	11.0 6.9 35.1 15.3	2.2 1.4 7.0 3.1	6.6 4.2 21.1 9.2	2 4 18 19	0.4 0.8 3.6 3.8	2.5 5.1 22.8 24.1
		262.1	52.5	100.0	67	13.4	100.0	166.4	33.3	100.1	79	15.8	100.0
MX 181 SS 10/22		4.2 (d)103.8 (s) 28.4	0.8 20.8 5.7	3.1 76.1 20.8	4 22 3	0.8 4.4 0.6	13.8 75.9 10.3	1.5 113.2 12.5 1.2	0.3 22.6 2.5 0.2	1.2 88.2 9.7 0.9	1 30 2 1	0.2 6.0 0.4 0.2	2.9 88.2 5.9 2.9
		136.4	27.3	100.0	29	5.8	100.0	128.4	25.6	100.0	34	-6.8	99.9
MX 181 SS 10/2		(d) 77.9 (s) 12.0 10.5	15.6 2.4 2.1	77.6 12.0 10.5	24 7 3	4.8 1.4 0.6	70.6 20.6 8.8	104.6 12.5 6.2 11.8 5.1 9.9	20.9 2.5 1.2 2.4 1.0 2.0	69.7 8.3 4.1 7.9 3.4 6.6	26 4 2 4 5 2	5.2 0.8 0.4 0.8 1.0 0.4	60.5 9.3 4.7 9.3 11.6 4.7
		100.4	20.1	100.1	-34	6.8	100.0	150.1	<u>30.0</u>	100.0	-43	8.6	100.0

TABLE E-10 (Cont.)

E--60

and a strategy of the state of

È,

and the second

ş

E-61

TABLE E-11

TRANSECT RESULTS DRY LARE VALLEY DTN AND CLUSTER ROAD SURVEY

Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Total Densit (#/100	
DTN 1	CHVI EPNE GRSP OPEC ARPU HIJA SPCO	2.4 82.2 16.9 14.4 1.4 27.6 1.7 146.6	0.5 16.4 3.4 2.9 0.3 5.5 0.3 29.3	1.6 56.1 11.5 9.8 1.0 18.8 1.2 100.0	1 9 4 3 1 25 1 44	0.2 1.8 0.8 0.6 0.2 5.0 0.2 8.8	2.3 20.5 9.1 6.8 2.3 56.8 2.3 100.1
DTN2	ATCA CELA ORHY	9.3 80.1 5.6 95.0	1.9 16.0 1.1 19.0	9.8 84.3 5.9 100.0	4 66 8 78	0.8 13.2 1.6 15.6	5.1 84.6 10.3 100.0
dtn 3	ATCA CELA CHGR EPNE TEGI HIJA ORHY	1.5 4.5 65.6 8.4 9.6 5.1 7.0 101.7	0.3 0.9 13.1 1.7 1.9 1.0 1.4 20.3	1.5 4.4 64.5 8.3 9.4 5.0 6.9 100.0	1 2 19 1 3 12 5 43	0.2 0.4 3.8 0.2 0.6 2.4 1.0 8.6	2.3 4.7 44.2 2.3 7.0 27.9 11.6 100.0
dtn4	ATCA ATCO CELA ORHY	0.8 58.0 13.6 2.6 75.0	0.2 11.6 2.7 0.5 15.0	1.1 77.3 18.1 3.5 100.0	1 15 6 2 24	0.2 3.0 1.2 0.4 4.8	4.2 62.5 25.0 8.3
DTN5	ATCA ATCO CELA	9.8 42.1 45.7 97.6	2.0 3.4 9.1 19.5	10.0 43.1 46.8 99.9	5 16 23 44	1.0 3.2 4.6 8.8	11.4 36.4 52.3 100.1

r.

۰

.-.**.**

Ξ Ertec

 $\mathcal{F}_{\mathcal{A}}$

E-TR-48-11-1

ľ

é

			TABLE	<u>E-11</u> (Co	nt.)		
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Total Densit (#/100	
DING .	ATCA ATCO CELA ORHY	11.1 32.1 42.7 1.6 87.5	2.2 6.4 8.5 0.4 17.5	12.7 36.7 48.8 1.8 100.0	5 11 18 3 37	1.0 2.2 3.6 0.6 7.4	13.5 29.7 48.7 8.1 100.0
DEN7	ARSP ATCA CELA CHGR	23.7 8.1 61.8 10.9 104.5	4.7 1.6 12.4 2.2 20.9	22.7 7.8 59.1 10.4 100.0	17 6 20 4 4 7	3.4 1.2 4.0 0.8 9.4	36.2 12.8 42.6 8.5 100.1
Cluster Road 1	CELA CHGR GRSP HIJA ORHY	1.8 34.3 68.1 2.2 9.4 115.8	0.4 6.9 13.6 0.4 1.9 23.2	1.6 29.6 58.8 1.9 8.1 100.0	2 13 14 6 10 45	0.4 2.6 2.8 1.2 2.0 9.0	4.4 28.9 31.1 13.3 22.2 99.9
Cluster Road 2	ARSP ATCO CELA SIHY	7.6 50.4 74.0 1.1 133.1	1.5 10.1 14.8 0.2 25.6	5.7 37.9 55.6 0.8 T00.0	3 18 30 2 53	0.6 3.6 6.0 0.4 10.6	5.7 34.0 56.6 3.8 100.1
Cluster Road 3	CELA ARSP CHVI GRSP HIJA ORHY SIHY	58.6 44.3 17.6 20.4 11.8 5.5 2.7 160.9	17.7 8.9 3.5 4.1 2.4 1.1 0.5 <u>32.2</u>	36.4 27.5 10.9 12.7 7.3 3.4 1.7 99.9	39 22 12 4 28 6 2 713	7.8 4.4 2.4 0.8 5.6 1.2 0.4 22.6	34.5 19.5 10.6 3.5 24.8 5.3 1.8 100.0

TABLE E-11 (Cont.)

🖀 Ertec

E-TR-48-11-1

E-63

TABLE E-12

TRANSECT RESULTS DY LARE VALLEY CLUSTER MAINTENANCE FACILITIES

			Transect 1							ľ	ansect	2	
Sample Uhit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	† of Plants	Density (#/100 chm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	# of Plants	Density (#/100 dmm)	Rel. Den. (%)
MX 181	CELA (S)		9.0	50.1	30	6.0	61.2	47.6	9.5	38.6	19	3.8	35.1
CMP-1	CHGR (d)		4.9	24.5	11	2.2	22.5	74.3	14.9	60.2	34	6.8	63.0
	ARSP	22.8	4.6	25.5	8	1.6	16.3	1.5	0.3	1.2	1	0.2	1.9
	CINCL	89.5	17.9	100.1	-49	9.8	100.0	123.4	24.7	100.0	- 54		100.0
		03.3			43	3.8		(23.4	29.7	100.0		.0.8	
MX 181 CMP-2	CELA (d) ORHY	64 5 0.5	12.9 0.1	76.2 0.6	37 1	7.4 0.2	77.1	40. 1	8.0	53.2	28	5.6	34.1
	ARSP (S)		3.9	23.2	10	2.0	20.8	25.4	5.1	33.7	23	4.6	28.0
	HIJA							8.0	1.6	10.6	27	5.4	32.9
	SPCR		,					0.7	0.1	0.9	2	0.4	2.4
	MAA STP							0.3 0.9	0.1	0.4	1	0.2	1.2
	<u></u>	84.6	16.9	100.0	48	9.6	100.0	75.4	15.1	100.0	च्च	16.4	99.8
MX 181 CMP-3	GRSP (d) CHVI (s) ATCA	88.5	11.5 18.6 0.2	38.8 59.9 0.5	23 38 1	4.6 7.6 0.2	32.9 54.3 1.4	133.5 32.5	26.7 6.5	80.4 19.6	33 26	6.6 5.2	55.9 44.1
	HIJA	1.2 147.8	0.2 30.5	0.8 100.0		1.6	11.4	166.0	33.2	100.0	-59	11.3	100.0
MX 181	ATCO (d)		17.2	71.3	41	8.2	62.1	41.7	8.3	53.8	27	5.4	34.6
CMP-4	ORHY	15.6	3.1	12.9	9	1.8	13.6	0.6	0.1	0.8	1	0.2	1.3
	ARSP SP	16.8 2.2	3.4 0.4	13.9 1.8	13 3	2.6 0.6	19.7 4.6	5.3	1.1	6.8	5	1.0	6.4
	KOAM (S				2	0.0		29.9	6.0	38.6	45	9.0	57.7
		120.7	24.1	99.9	66	13.2	100.0	77.5	15.5	100.0	78	15.6	100.0
MX 181	SPCO	6.3	1.3	6.8	11	2.2	13.9						
CMP-5	ŒLA	0.1	0.0	0.1	1	0.2	1.3	2.0	0.4	2.0	2	0.4	1.4
	GUMI (d		16.1	87.0	36	7.2	45.6						
	HIJA (S	5.7	1.1	6.1	31	6.2	39.2	62.6	12.5	61.8	113	22.6	30.1
	guea SPCR							32.2 3.1	6.4 0.6	31.8 3.1	22 3	4.4 0.6	15.6
	SIHY							1.4	0.8	1.4	1	0.2	0.7
	V2000	92.8	18.5	100.0	-79	15.8	100.0	101.3	20.2	100.1	141	28.2	.

212.1

•				Ť	ansect	1				Tr	ansect	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 dm)	Rel. Den. (%)
MX 181	HIJA (d		6.1	28.0	39	7.8	67.2	21.7	4.3	25.2	51	10.2	76.1
CMF-6	EPNE	27.3	5.5	24.9	5	1.0	8.6	35.8	7.2	41.6	7	1.4	10.5
	SIHY	0.3	0.1	0.3	2	0.4	3.5	1.3	0.3	1.5	1	0.2	1.5
	GRSP (s		4.5	20.7	5 1	1.0	8.6	18.5	3.7	21.5	3	0.6	4.5
	opec Lyan	2.0 7.8	0.4 1.6	7.1	2	0.2 0.4	1.7 3.5	1.5	0.3	1.7	1	0.2	1.5
	TEGL	18.9	3.8	17.2	4	0.4	5.5 6.9	1.5	0.5	1. /	ſ	0.2	1.2
	ARSP	10.7	7.0	1/•4	•	0.0	0.3	4.3	0.9	5.0	2	0.4	3.0
	ORHY							3.0	0.6	3.5	2	0.4	3.0
		109.7	22.0	100.0	-58	11.6	100.0	85.1	17.3	100.0	-60		100.3
MX 181	EPNE (S) 12.8	2.6	14.8	5	1.0	11.1	26.4	5.3	35.7	5	1.0	20.8
CMP-7	CHVI (d		7.6	43.9	12	2.4	26.7	2.4	0.5	3.3	1	0.2	4.2
- ·	ORHY	11.2	2.2	12.9	14	2.8	31.1	7.0	1.4	9.5	3	0.6	12.5
	CELA	7.8	1.6	9.0	6	1.2	13.3	6.1	1.2	8.3	4	0.8	16.7
	TEGL	16.0	3.2	18.4	4	0.8	8.9	28.1	5.6	38.0	7	1.4	29.2
	HIJA	0.3	0.1	0.4	3	0.6	6.7						
	SIHY	0.6	0.1	0.7	1	0.2	2.2	2.9	0.6	3.9	3	0.6	12.5
	ATCA							1.0	0.2	1.4	1	0.2	4.2
		86.8	17.4	100.1	-45	9.0	100.0	73.9	14.8	100.1	-24	4.8	100.1
MX 181	HIJA (d		9.3	37.7	99	19.8	58.2	29.1	5.8	28.3	67	13.4	59.8
CMF-8	CELA (S		8.0	32.2	37	7.4	21.8	15.2	3.0	14.8	13	2.6	11.6
	ARSP	20.7	4.1	16.7	19	3.8	11.2	9.1	1.8	8.9	8	1.6	7.1
	CHVI SPCR	14.1	2.8 0.1	11.4	13 1	2.6 0.2	7.7 0.6	17.4	3.5 0.3	16.9 1.5	17 1	3.4 0.2	15.2
	ARNO	1.8	0.4	1.5	1	0.2	0.6	22.6	4.5	22.0	5	1.0	4.5
	LYAN					0.2	0.0	7.9	1.6	7.7	1	0.2	0.9
		123.8	24.8	100.1	170	34.0	100.0	102.8	20.5	100.1	TTZ	22.4	100.0
 MOX 181	CHGR (S) 64.5	12.9	40.6	14	2.8	46.7	16.7	3.3	10.2	3	J.6	7.1
CMF-9	ARTR (d		18.7	58.7	15	3.0	50.0	139.8	28.0	85.4	30	6.0	71.4
	ORHY	1.1	0.2	0.7	1	0.2	3.3	0.8	0.2	0.5	1	0.2	2.4
	HIJA		-					1.4	0.3	0.9	6	1.2	14.3
	GRSP							5.1	1.0	3.1	2	0.4	4.3
		159.0	31.8	100.0	- 30	6.0	100.0	163.8	32.3	100.1	-12	3.4	100.0

TABLE E-12 (Cont.)

\Xi Ertec

E-TR-48-11-1

z

ß

þ

1

)

. '

TABLE	E-12	(Cont.)

				Tra	ansect	1				Tra	insect :	2	
Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	# of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	# of Plants	Density (#/100 chm)	Rel. Den. (%)
MX 181	EPNE	17.1	3.4	12.1	4	0.8	12.1	7.5	1.5	5.5	2	0.4	3.6
CMF-10	CHVI (s		3.6	12.7	3	0.6	9.1	16.9	3.4	12.4	6	1.2	10.9
	CELA	5.8	1.2	4.1	4	0.8	12.1	4.1	0.8	3.0	9	1.8	16.4
	GRSP (d	94.3	18.9	66.8	16	3.2	48.5	45.5	9.1	33.5	11	2.2	20.0
	ARSP	3.3	0.7	2.3	4	0.8	12.1						
	ASLE	0.2	0.0	0.1	1	0.2	3.0						
	TEGL	2.5	0.5	1.8	1	0.2	3.0	19.5	3.9	14.3	4	0.8	7.3
	HIJA							3.4	0.7	2.5	14	2.8	25.5
	ATCA							26.3	5.3	19.4	6	1.2	10.9
	STHY							0.1	0.0	0.1	1	0.2	1.8
	LYAN							12.6	2.5	9.3	2	0.4	3.6
		141.1	28.3	99.9	33	6.6	99.9	135.9	27.2	100.0	55		100.0

≡ Ertec

.L ..

TABLE E-13

TRANSECT RESULTS DRY LAKE VALLEY FEMOTE SURVEILLANCE SITES

Sample Unit #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (\$/100 dm)	Rel. Den. (%)
MX 181 RSS-1	CELA (d) ARSP (s) CHVI ATCA ORHY	37.7 36.7 9.3 13.2 1.4 98.3	7.5 7.3 1.9 2.6 0.3 19.7	38.4 37.3 9.5 13.4 1.4 100.0	15 8 3 5 2 33	3.0 1.6 0.6 1.0 0.4 5.6	45.5 24.2 9.1 15.2 6.1 T00.1
MX 181 RSS-2	CHVI (S) CELA HIJA GRSP (d) LYAN	39.3 10.2 2.9 61.8 4.3 TT8.5	7.9 2.0 0.6 12.4 0.9 23.8	33.2 8.6 2.5 52.2 3.6	19 6 9 12 1 47	3.8 1.2 1.8 2.4 0.2 9.4	40.4 12.8 19.2 25.5 2.1 100.0
MX 181 RSS-3	CELA (d) ATCA (s) ORHY	68.3 3.0 0.8 72.1	13.7 0.6 0.2 14.5	94.7 4.2 1.1 100.0	53 2 1 56	10.6 0.4 0.2 11.2	94.6 3.6 1.8 100.0
MX 181 RSS-4	ATCO (d) ORHY CELA ARSP (s) SIHY	77.9 10.1 1.5 11.1 0.6 101.2	15.6 2.0 0.3 2.2 0.1 20.2	77.0 10.0 1.5 11.0 0.6 100.1	37 11 3 15 2 68	7.4 2.2 0.6 3.0 0.4 13.6	54.4 16.2 4.4 22.1 2.9 100.0
MX 181 RSS-5	CELA ARSP GUSA ATCA (s) GRSP (d) CHVI ORHY	20.9 16.6 1.2 34.9 48.4 7.5 1.0 T30.5	4.2 3.3 0.2 7.0 9.7 1.5 0.2 26.1	16.0 12.7 0.9 26.7 37.1 5.7 0.8 99.9	16 10 1 3 8 2 1 51	3.2 2.0 0.2 2.6 1.6 0.4 0.2 10.2	31.4 19.6 2.0 25.5 15.7 3.9 2.0

E-66

≡ Ertec

\$

ţ

1

.

4

.

ő.

E-67

TABLE E-14

TRANSECT RESULTS DRY LARE SHELTER SITES RESITINGS

_	_			Ť	insect	1				Tr	ansect :	2	
Sample Unit #	Plant Species	• Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 cm)	Rel Den. (%)
MX 181	CHVI	118.0	23.6	73.6	41	8.2	63.1	116.4	23.3	77.1	49	9.8	62.0
SS-1/3	GRSP	21.2	4.2	13.2	5	1.0	7.7	15.8	3.2	10.5	4	0.8	5.1
•	CELA	12.7	2.5	7.9	10	2.0	15.4	14.7	2.9	9.7	14	2.8	17.7
	HIJA	1.8	0.4	1.1	4	0.8	6.2	2.0	0.4	1.3	9	1.8	11.4
	OPER	1.8	0.4	1.1	1	0.2	1.5						
	ARSP	3.2	0.6	2.0	2	0.4	3.1						
	ORHY	1.6	0.3	1.0	2	0.4	3.1	2.0	0.4	1.3	3	0.6	3.8
		160.3	32.0	99.9	65	13.0	100.T	T50.9	30.2	99.9	79	15.8	100.0
MX 181	CELA	160.5	32.1	97.8	73	14.6	90.1	172.8	34.6	98.8	74	14.8	91.4
SS-2/6	ARSP	1.1	0.2	0.7	1	0.2	1.2			. .			
	HIJA	2.5	0.5	1.5	7	1.4	8.6	0.7	0.1	0.4	4	0.8	4.9
	OREY							1.4	0.3	0.8	3	0.6	3.7
		164.1	32.8	100.0	<u>डा</u>	16.2	99.9	174.9	35.0	100.0	डा	16.2	100.0
MK 181	CELA	89.9	18.0	80.6	43	8.6	51.2	102.7	20.5	88.2	57	11.4	73.1
3S-2/9	HIJA	7.3	1.3	6.5	25	5.0	29.8	5.4	0.2	4.6.	16 -	3.2	20.5
	SPCO	3.4	0.7	3.1	11	2.2	13.1						
	ARSP	7.1	1.4	6.4	4	0.8	4.8	6.6	1.3	5.7	2	0.4	2.6
	CHVI	3.9	0.8	3.5	t	0.2	1.2	1.1	0.2	0.9	1	0.2	1.3
	ORHY							0.7	0.1	0.6	2	0.4	2.6
		111.6	22.2	100.1	54	16.8	100.1	116.5	22.3	100.0	78	15.6	100.1
MX 181	HIJA	4.4	0.9	3.8	12	2.4	23.1	7.3	1.5	6.0	9	1.8	21.4
SS-2/22	CHVI	53.9	10.8	46.0	17	3.4	32.7	78.8	15.8	65.0	23	4.6	54.8
,	GRSP	23.0	4.6	19.6	7	1.4	13.5	8.9	1.8	7.3	3	0.6	7.1
	SIHY	1.0	0.2	0.9	1	0.2	1.9			-			
	CELA	16.0	3.2	13.7	12	2.4	23.1	3.9	0.8	3.2	3	0.6	7.1
	TECL,	15.7	3.1	13.4	2	0.4	3.8						
	EPNE	3.1	0.6	2.6	1	0.2	1.9	6.0	1.2	5.0	1	0.2	2.4
	LYAN							16.3	3.3	13.5	3	0.6	7.1
		117.1	23.4	100.0	- 52	10.4	100.0	121.2	24.4	100.0	∓2	3.4	39.3

Ξ Ertec

-

				Tra	insect	!				Tra	ansect 3	2	
Sample Init #	Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	# of Plants	Density (#/100 chm)	Rel Den (%)
	HIJA	11.1	2.2	10.7	29	5.8	37.7	8.0	1.6	8.4	19	3.8	33.9
ss 2/23	CHVI LYAN	10.3	2.1	10.0	7	1.4	9.1	8.4 19.5	1.7 3.9	8.9 20.6	6 4	1.2 0.8	10.7
	GRSP	40.1	8.0	38.8	11	2.2	14.3	34.6	6.9	36.5	5	1.0	8.9
	CELA	32.1	6.4	31.0	25	5.0	32.5	13.2	2.6	13.9	15	3.0	26.8
	ARSP	6.8	1.0	6.6	4	0.8	5.2	3.9	0.8	4.1	3	0.6	5.4
	SIHY							0.5	0.1	0.5	1	0.2	1.8
	EPNE	3.0	0.6	2.9	_1	0.2	1.3	6.8	1.4	7.2	3	0.6	5.4
		103.4	20.3	100.0	77	15.4	100.1	94.9	19.0	100.1	56	11.2	100.0
MC 181	CHVI	48.5	9.7	32.7	13	2.6	37.1	43.2	8.6	39.9	17	3.4	46.0
5S 3/1A		66.6	13.3	44.9	16	3.2	45.7	26.9	5.4	24.9	8	1.6	21.6
	EFNE	17.8	3.5	11.8	5	1.0	14.3	26.7	5.3	24.7	7	1.4	18.9
	TEGL							5.6	1.1	5.2	2	0.4	5.4
	YUBA CRSP							5.3 0.5	1.1	4.9 0.5	2	0.4	5.4 2.7
	SIHY	15.7	3.2	10.6	1	0.2	2.9	0.5	Q . 1	0.5	1	0.4	2.1
	5141	148.6	29.7	100.0	35		100.0	108.2	21.6	100.1	37	7.4	100.0
Max 181 55 3/5A	CHVI GRSP	35.6 47.0	7.0 9.4	23.9 32.1	8 8	1.6 1.6	23.5 23.5	33.5	6.7	19.6	11	2.2	31.4
15 J/ JA	HIJA	0.5	0.1	0.3	1	0.2	2.9						
	ARTR	59.4	11.9	40.6	15	3.0	44.1	133.6	26.7	78.3	23	4.6	65.7
	EPNE	3.8	0.8	2.6	1	0.2	2.9				-		
	SIHY	0.8	0.2	0.5	1	0.2	2.9						
	TEGL							3.5	0.7	2.1	1	0.2	2.9
		146.5	29.4	100.0	- 34	6.8	99.8	170.6	34.T	100.0	35	7.0	100.0
MX 181	ARTR	129.3	25.9	83.2	42	8.4	80.8	82.3	16.5	59.3	18	3.6	54.5
55 3/14		15.5	3.1	10.0	4	0.8	7.7	25.4	5.1	18.3	5	1.0	15.2
	CHVI	4.5	0.9	2.9	3	0.6	5.8	26.5	5.3	19.1	6	1.2	18.2
	ARSP	0.5	0.1	0.3	1	0.2	1.9						
	GRSP	5.6	1.1	3.6	2	0.4	3.9	1.5	0.3	1.1	1	0.2	3.0
	SIHY		,					3.2	0.6	2.3	3	0.6	9.1
		155.4	31.1	100.0	52	10.4	100.1	138.9	27.8	100.1	33	6.6	100.0

TABLE E-14 (Cont.)

1.00

E-68

T.

Ļ

,

è

E-69

-					Ťr	ansect	1				Tra	ansect	2	
Sam Uhi		Plant Species	Total Cover (dm)	Total Cover (३)		‡ of Plants	Density (#/100 chm)	(%) Rel. Den. (%)	Total Cover (dm)	Total Cover (%)		<pre># of Plants</pre>	Density (#/100 dm)	Rel. Den. (%)
MX		ATCO	51.1	10.2	66.9	33	6.6	64.7	30.7	6.1	82.1	21	4.2	63.6
SS	4/1	ROAM	11.2	2.2	14.7	7	1.4	13.7				-		
		CELA	10.6	2.1	13.9	8	1.6	15.7	3.1	0.6	8.3	3	0.6	9.1
		ARSP	3.0 0.4	0.6 0.1	3.9 0.5	2	0.4	3.9	2.6	0.5	7.0	3	0.6	9.1
		ATCA	0.4	0.1	0.5	I	0.2	2.0	8.3	0.2	2.7	6	1.2	18.2
		ALCA					****				-			
			76.3	15.2	99. 9	51	10.2	100.0	44.7	7.4	100.T	33	6.6	100.0
MX.		ATCA	11.6	2.3	11.3	3	0.6	9.1	12.0	2.4	31.0	2	0.4	11.8
SS	4/2	ROAM	76.9	15.4	74.9	27	5.4	81.8	22.4	4.5	57.9	6	1.2	35.3
		ATCO	14.1	2.8	13.7	3	0.6	9.1	4.3	0.9	11.1	9	1.8	52.9
			102.6	20.5	99.9	33	6.6	100.0	38.7	7.8	100.0	17	3.4	100.0
MX	181	ATCO	54.3	10.8	99.5	34	6.8	97.1	56.5	17.3	100.0	31	6.2	100.0
SS	4/3	KDAM	0.3	0.1	0.6	1	0.2	2.9						
			54.6	10.9	100.1	35	7.0	100.0	56.5	11.3	100.0	31	6.2	100.0
MOK	181	ARSP	30.4	6.1	21.9	30	6.0	40.0	23.2	4.6	22.6	21	4.2	29.2
SS	4/9	CELA	15.2	3.0	10.9	10	2.0	13.3	14.5	2.9	14.1	11	2.2	15.3
		ATCO	92.5	18.5	66.5	34	6.8	45.3	65.1	13.0	63.3	40	8.0	55.6
		ORHY	1.0	0.2	0.7	1	0.2	1.3						
			139.1	27.8	T00.0	75	15.0	99.9	102.8	20.5	100.0	72	14.4	100.1
MX SS	181 4/22	CHGR TESP	55.2 2.0	11.0	48.8	20 3	4.0	29.0	59.0	11.8	64.8	23	4.6	42.6
	-,	ŒLA	7.3	1.5	6.4	3	0.6	4.3	7.5	1.5	8.2	8	1.6	14.8
		ORHY	1.8	0.4	1.6	3	0.6	4.3			•••	•		
		ATCA	7.1	1.4	6.3	2	0.4	2.9	3.7	0.7	4.1	1	0.2	1.9
		ATCO	22.5	4.5	19.9	8	1.6	11.6	8.8	1.8	9.7	5	1.0	9.3
		HIJA	16.2	3.2	14.3	29	5.8	42.0						
		ARSP	1.1	0.2	1.0	1	0.2	1.5	5.7	1.1	6.3	5	1.0	9.3
		ROAM							2.5	0.5	2.7	6	1.2	11.1
		SIHY							1.8	0.4	2.0	4	0.8	7.4
		ARTR				_	-		2.1	0.4	2.3	2	0.4	3.7
			113.2	22.6	100.1	69	13.8	99.9	91.1	18.2	100.1	54	10.8	100.1

TABLE E-14 (Cont.)

Ξ Ertec

)

E-70

					Tr	ansect	1				Tr	ansect	2	
	ple t #	Plant Species	Total Cover (dm)	Total Cover (%)		‡ of Plants	Density (#/100 dm)	7 Rel. Den. (%)	Total Cover (dm)	Total Cover (%)		<pre># of Plants</pre>	Density (#/100 dm)	y Rel. Den. (%)
MX SS	181 5/5	CELA ATCA	101.5	20.3	100.0	99	19.8	100.0	107.8 0.4	21.6	99.6 0.4	110	22.0 0.2	99.1 0.9
			101.5	20.3	100.0	99	19.8	100.0	108.2	21.7	100.0	111	22.2	100.0
SS	5/9			SA	ME AS O	RIGINAL				SAM	e as or	IGINAL		
ss	5/12			SA	ME AS O	RIGINAL				SAM	e as or	IGINAL		
ss	5/18			SA	ME AS O	RIGINAL				SAM	e as or	IGINAL		
MX SS	181 5/19	ARNO EPNE CELA ORBY	91.2 16.5 3.5 1.5	18.1 3.3 0.7 0.3	61.6 11.1 2.4 1.0	23 5 4	4.6 1.0 0.8 0.2	34.8 7.6 6.1	19.8 8.3	4.0 1.7	15.4 6.4	4	0.8 2.6	4.2
		HLJA TEGL GUSA	22.4 9.9 3.0	4.5 2.0 0.6	15.1 6.7 2.0	29 2 2	5.8 0.4 0.4	1.5 43.9 3.0 3.0	35.9 17.3	7.2 3.5	28.0 13.4	65 2	13.0 0.4	68.4 2.1
		artr SPAM CHVI SPCR							1.3 1.3 2.5 12.2	6.3 0.3 0.5 2.4	24.5 1.0 2.0 9.3	1 2 2 6	0.2 0.4 0.4 1.2	1.1 2.1 2.1 6.3
			148.0	29.5	99.9	66	13.2	99.9	98.6	25.9	100.0	95	19.0	100.0
NX SS		ARIR TEAX CHVI	35.8 4.7 43.1	7.2 0.9 8.6	24.5 3.2 29.5	8 1 16	1.6 0.2 3.2	21.6 2.7 43.2	81.4	16.3	73.5	17	3.4	77.3
	east)		38.5	7.7	26.4 10.0	7	1.4	18.9 10.8	8.5	1.7	7.7	1	0.2	4.6
		EPNE	9.3 146.0	1.9 29.2	6.4 100.0	1 37	0.2	2.7 99.9	20.9 110.8	4.2 22.2	18.9 100.1	4 22	$\frac{0.8}{4.4}$	18.2 100.1
MX SS		LYAN GUMI	4.1	0.8	5.7 27.4	1 7	0.2	5.9 41.2						
0pt 2 (ion west)	AMER	26.1 5.8 16.6	5.2 1.2 3.3	36.1 8.0 22.9	4 1 4	0.8 0.2 0.8	23.5 5.9 23.5	16.8	3.4	18.3	6	1.2	15.8
		chvi Hlja GRSP							64.4 3.9 6.5	12.9 0.8 1.3	70.3 4.3 7.1	20 10 2	4.0 2.0 0.4	52.7 26.3 5.3
			72.4	14.5	100.1	17	3.4	100.0	91.6	18.4	100.0	38	7.6	100.1

TABLE E-14 (Cont.)

Ξ Ertec

E-71

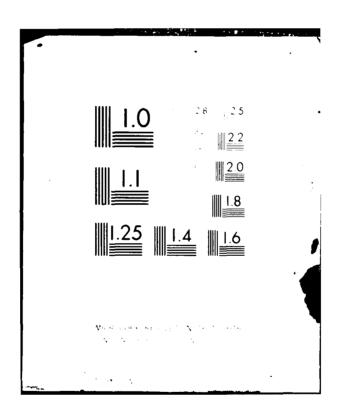
/ 7

TABLE	E-14	(Cont.)

			Tr	ansect	1	Transect 2							
Sample Uhit #	Plant Species	Total Cover (chn)	Total Cover (%)	Rel. Cover (%)	† of Plants	Density (#/100 dm)	Rel. Den. (%)	Total Cover (dm)	Total Cover (%)		<pre># of Plants</pre>	Density (#/100 chm)	Rel. Den. (%)
MX 181	GRSP	27.4	5.5	22.4	5	1.0	15.2						
SS 6/1	HIJA	3.1	0.6	2.5	5	1.0	15.2						
(3rd	ARTR	2.2	0.5	1.8	1	0.2	3.0	92.7	18.5	63.1	18	3.6	50.0
Option)	EPNE	18.0	3.6	14.7	4	0.8	12.1	2.0	0.4	1.4	1	0.2	3.3
	CHVI	47.8	9.6	39.0	14	2.8	42.4	33.5	6.7	22.8	8	1.6	26.7
	TEGL	23.9	4.8	19.5	4	0.8	12.1	18.8	3.8	12.8	3	0.6	10.0
		122.4	24.5	99.9	33	6.6	100.0	147.0	30.1	100.1	30	6.0	100.0
MX 181	TEGL	58.7	11.7	37.8	13	2.6	22.8	54.9	11.0	34.1	8	1.6	22.9
SS 6/2	EPNE	28.5	5.7	18.3	7	1.4	12.3	29.2	5.8	18.1	5	1.0	14.3
	CHAI	14.7	3.0	9.5	4	0.8	7.0	10.9	2.2	6.8	2	0.4	5.7
	GRSP	8.4	1.7	5.4	3	0.6	5.3	33.3	6.7	20.7	9	1.8	25.7
	ARTR	11.4	2.3	7.4	2	0.4	3.5	24.1	4.8	15.0	3	0.6	8.6
	SIHY	8.4	1.7	5.4	8	1.6	14.0	1.5	0.3	0.9	1	0.2	2.9
	HIJA	20.1	4.0	12.9	19	3.8	33.3	7,1	1.4	4.4	7	1.4	20.0
	LYAN	5.1	1.0	3.3	1	0.2	1.8						
		155.3	31.1	100.0	57	11.4	100.0	161.0	32.2	100.0	35	7.3	100.1
MX 181	CHGR	34.4	6.9	20,0	9	1.8	34.0	6.4	1.3	6.0	2	0.4	5.1
SS 6/14		8.5	1.7	8.9	4	0.8	8.4	. 3.9	0.8	3.7	1	0.2	2.6
	TEG.	1.2	0.2	2.2	1	0.2	1.2						
	ORHY	3.9	0.8	8.9	4	0.8	3.9						
	GRSP	13.0	2.6	11.1	5	1.0	12.9	31.0	6.2	29.1	10	2.0	25.6
	LYAN	5.2	1.0	6.7	3	0.6	5.1	27.4	5.5	25.7	5	1.0	12.8
	ARSP	2.5	0.5	2.2	1	0.2	2.5	1.8	0.4	1.7	1	0.2	2.6
	STHY	0.3	0.1	4.4	2	0.4	0.3					• •	
	EPNE	25.4	5.1	8.9	4	0.8	25.1	33.6	6.7	31.5	10	2.0	25.6
	HLJA	6.7	1.3	26.7	12	2.4	6.6	2.5	0.5	2.3	10	2.0	25.6
		101.1	20.2	100.0	45	9.0	100.0	105.5	21.4	100.0		7.8	99.9
MX 181	EPNE	41.6	8.3	36.9	6	1.2	12.2	42.5	8.5	17.7	6	1.2	45.8
SS 6/18		14.7	2.9	13.0	S	1.0	10.2	14.1	2.8	14.7	5	1.0	15.2
	TEGL	23.4	4.7	20.7	4	0.8	8.2	30.4	6.1	26.5	9	1.8	32.8
	HIJA	23.9	4.8	21.2	28	5.6	57.1	1.4	0.3	20.6	7	1.4	1.5
	SIHY	3.1	0.6	2.8	3	0.6	ő. I	0.3	0.1	3.8	3	0.6	0.3
	lyan	1.4	0.3	1.2	1	0.2	2.0	2.0	0.4	5.9	2	3.4	2.2
	GRSP	4.8	1.0	4.3	2	0.4	4.1	0.6	0.1	2.9	1	3.2	J.7
	ARSP			_				1.5	0.3	2.9	1	0.2	1.6
		112.9	22.6	100.1	ৰন্থ	9.8	99.9	92.8	18.0	100.0	34	5.3	100.1

3.4

1.11


- Seine

E-72

TABLE	E-14	(Cont.)

Sample Plant Cover Cover Cover Cover Cover Cover Cover Cover Plants (*) (a) (a) (b) (c) (c)<					Tr	ansect	1	Transect 2						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		Cover	Cover	Cover		(#/100	Den.	Cover	Cover	Cover		(#/100	Rel. Den. (%)
EPNE 20.3 4.1 16.0 3 0.6 4.6 SIEY 1.3 0.3 1.0 5 1.0 7.7 CRU2 8.1 1.6 6.4 9 1.7 13.8 CEVT 21.6 4.3 17.0 8 1.6 12.3 ARCR 4.3 0.9 3.4 2 0.4 3.1 24.4 4.9 19.8 12 2.4 44 CENT 1.0.8 3.2 1 0.2 1.5 7.6 1.5 6.2 1 0.2 3 CENE 7.6 1.5 6.2 1 0.2 3 PRVI 7.6 1.5.4 62.8 9 1.8 3 CENE 14.1 2.8 10.0 5 10.6 65 13.0 99.8 122.9 24.5 99.9 27 5.4 99 MX 181 ARCR 76.8 15.4 54.3 2	MX 181	GUSA	65.8	13.2	51.8	35	7.0	53.0						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SS 8/18	HIJA	0.5	0.1	0.4	1	0.2	1.5						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			20.3	4.1	16.0		0.6	4.6						
CRVT 21.6 4.3 17.0 8 1.6 12.3 STCD 1.0 0.2 0.8 1 0.2 1.5 ARTR 4.1 0.8 3.2 1 0.2 1.5 CHMR 7.6 1.5 6.2 1 0.2 3.3 PRVI 9.4 1.9 7.6 3 0.6 1.1 VIMU 127.0 25.5 100.0 65 13.0 99.8 172.9 24.6 99.9 27 5.4 99 MX 181 ARTR 76.8 15.4 54.3 24 4.8 33.3 178.3 35.7 86.7 38 7.6 58 SS 8/19 CREME														
STCD 1.0 0.2 0.8 1 0.2 1.5 ARTR 4.3 0.9 3.4 2 0.4 3.1 24.4 4.9 19.8 12 2.4 44 CENA 7.6 1.5 6.2 1 0.2 3.7 24.4 4.9 19.8 12 2.4 44 CENA 7.6 1.5 6.2 1 0.2 3.3 CENA 7.6 1.5 6.2 1 0.2 3.3 PRVI 7.6 1.5 6.2 1 0.2 3.3 VIMU 127.0 25.5 100.0 65 13.0 99.8 122.9 24.5 99.9 27 5.4 99.9 MX 181 ARTR 76.8 15.4 54.3 24 4.8 33.3 178.3 35.7 86.7 38 7.6 58. SS 8/19 ORENY 11.8 2.4 8.3 10 2.0 11.0 2.2 5 1.0 7.1 1.9 2.4 5.8 17 3							-							
ARCR TSGL CCM8 CCM8 CCM8 CCM8 CCM8 CCM8 FRVT 4.1 0.3 3.4 2 0.4 3.1 24.4 4.9 19.8 12 2.4 44 CCM8 CCM8 FRVT 0.8 3.2 1 0.2 1.5 7.6 1.5 6.2 1 0.2 3.3 CCM8 FRVT 77.2 15.4 62.8 9 1.8 33 VIMO 94.1 9 7.6 3.0 0.6 11 VIMO 127.0 25.5 100.0 65 13.0 99.8 122.9 24.5 99.9 27 5.4 99.9 MX 181 ARTR 76.8 15.4 54.3 24 4.8 33.3 178.3 35.7 86.7 38 7.6 58. SS 8/19 OREY 11.8 2.4 6.1 1.0 6.9 3.1 0.6 1.5 1 0.2 1 0.2 1.0 7.6 58. SS 8/19 OREY 10.2 7.6<														
TEGL CENN 4.1 0.8 3.2 1 0.2 1.5 7.6 1.5 6.2 1 0.2 3.3 CENN 7.6 1.5 6.2 1 0.2 3.3 CENN 7.2 15.4 62.8 9 1.8 3.3 0.6 11 VINO 4.3 0.9 3.5 2 0.4 7.72 15.4 62.8 9 9 7.72 15.4 62.8 9 9 7.72 15.4 62.8 9 9 7.72 15.4 62.8 9 9 7.72 15.4 62.8 9 9 7.72 15.4 62.8 9 9 7.72 15.4 62.8 9 9 7.72 15.4 62.8 9 9 7.72 15.4 62.8 9 9 7.75 13.8 7.6 58.8 7 7.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0														
CENA COME 7.6 1.5 6.2 1 0.2 3.3 WIT 77.2 15.4 62.8 9 1.8 33.3 VIMU 94.4 1.9 7.6 3.0.9 3.5 2 0.4 7 127.0 25.5 100.0 65 13.0 99.8 122.9 24.6 99.9 27 5.4 99 MX 181 ARDR 76.8 15.4 54.3 24 4.8 33.3 178.3 35.7 36.7 38 7.6 58 SS 8/19 ORBY 11.8 2.4 8.3 10 2.0 13.9 4.5 0.9 2.2 5 1.0 7.6 1.8 1.0 7.6 1.9 2.1 1.0.6 1.5 1 0.2 1.1 SS 8/19 OREY 10.8 2.2 7.6 3 0.6 4.2 11.9 2.4 5.8 17 3.4 26. 11.0 2.2 0.4									24.4	4.9	19.8	12	2.4	44.4
COME PRVI VINU 77.2 15.4 62.8 9 1.8 33. VINU 4.3 0.9 3.5 2 0.4 1.9 7.6 3 0.6 11 VINU 4.3 0.9 3.5 2 0.4 7 127.0 25.5 100.0 65 13.0 99.3 122.9 24.6 99.9 27 5.4 99.9 MX 181 ARCB 76.8 15.4 54.3 24 4.8 33.3 178.3 35.7 86.7 38 7.6 58. SS 8/19 ORHY 11.8 2.4 8.3 10 2.0 13.9 4.5 0.9 2.2 5 1.0 2.1 1.2 1.0 1.1 0.2 1.0 2.1 1.0 1.1 1.0.2 1.0 2.1 1.0 1.1 1.0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 </td <td></td> <td></td> <td>4.1</td> <td>0.8</td> <td>3.2</td> <td>1</td> <td>0.2</td> <td>1.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			4.1	0.8	3.2	1	0.2	1.5						
PRVT VIMO 9.4 1.9 7.6 3 0.6 11 127.0 25.5 100.0 65 13.0 99.8 122.9 24.5 99.9 27 5.4 99 MX 181 ARDR 76.8 15.4 54.3 24 4.8 33.3 178.3 35.7 86.7 38 7.6 58 SS 8/19 ORRY 11.8 2.4 8.3 10 2.0 13.9 4.5 0.9 2.2 5 1.0 7.6 38 7.6 58 SS 8/19 ORRY 11.8 2.4 8.3 10 2.0 13.9 4.5 0.9 2.2 5 1.0 7. SS 8/19 ORRY 10.8 2.2 7.6 3 0.6 4.2 4.8 1.0 1.4 2.0 1.0 1.5 1 0.2 1. CEVT 10.8 2.0 16.0 7 1.4 99.9 205.6 41.2														3.7
VINC 4.3 0.9 3.5 2 0.4 7 127.0 25.5 100.0 65 13.0 99.8 122.9 24.6 99.9 27 5.4 99 MX 181 AEDR 76.8 15.4 54.3 24 4.8 33.3 178.3 35.7 86.7 38 7.6 58 SS 8/19 ORRHY 11.8 2.4 8.3 10 2.0 13.9 4.5 0.9 2.2 5 1.0 7.6 58 SS 8/19 CRHY 11.8 2.4 6.1 6.4 31.9 4.5 0.9 2.2 5 1.0 7.6 58 STHY 23.2 4.6 16.4 23 4.6 31.9 4.5 0.9 2.1 0.2 1.0 2 1.0 2 1.0 2 1.0 2 1.0 2 1.0 2 3.5 1.1 1.0 2.1 0.2 1.0 1.0<												-		33.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														11.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		VIMU											0.4	7.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			127.0	25.5	100.0	65	13.0	99.8	122.9	24.6	99.9	27	5.4	99.9
EPNE 14.1 2.8 10.0 5 1.0 6.9 3.1 0.6 1.5 1 0.2 1. SIERY 23.2 4.6 16.4 23 4.6 31.9 0.6 1.5 1 0.2 1. GUSA GUSA 3.4 7 1.4 9.7 11.9 2.4 5.8 17 3.4 26. GUSA 5.1 1.0 2.5 2 0.4 3. 0.2 1 0.2 1 GUSA 2.3 0.5 1.1 1.0 2.5 2 0.4 3. GUSA 2.3 0.5 1.1 10.2 1 0.2 1 GUSA 2.3 0.5 1.1 1.0.2 1 0.2 1 0.2 1 GUSA 2.3 0.5 1.1 1.0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1	MOX 181	ARTR	76.8	15.4	54.3	24	4.8	33.3	178.3	35.7	86.7	38	7.6	58.5
EPNE 14.1 2.8 10.0 5 1.0 6.9 3.1 0.6 1.5 1 0.2 1. SIENY 23.2 4.6 16.4 23 4.6 31.9 0.6 1.5 1 0.2 1. GEVT 10.8 2.2 7.6 3 0.6 4.2 11.9 2.4 5.8 17 3.4 26. HLJA 4.8 1.0 3.4 7 1.4 9.7 11.9 2.4 5.8 17 3.4 26. GUSA 5.1 1.0 2.5 2 0.4 3. 3.1 0.2 1	SS 8/19	ORHY	11.8	2.4	8.3	10	2.0	13.9	4.5	0.9	2.2	5	1.0	7.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		EPNE	14.1	2.8	10.0	5	1.0	6.9						1.5
HLJA 4.8 1.0 3.4 7 1.4 9.7 11.9 2.4 5.8 17 3.4 26. GUSA GRSP COVI 2.3 0.5 1.1 0.2 3.1 <th< td=""><td></td><td>SIHY</td><td>23.2</td><td>4.6</td><td>16.4</td><td>23</td><td>4.6</td><td>31.9</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		SIHY	23.2	4.6	16.4	23	4.6	31.9						
GUSA GRSP CCVT 5.1 1.0 2.5 2 0.4 3. 141.5 28.4 100.0 72 14.4 99.9 205.6 41.2 100.0 65 13.0 100.2 1 141.5 28.4 100.0 72 14.4 99.9 205.6 41.2 100.0 65 13.0 100.2 1 MX 181 ARCTR 88.3 17.7 71.4 18 3.6 62.1 5.8 100.0 65 13.0 100.0 SS 8/21 ERVE 12.5 2.5 10.1 3 0.6 10.3 100.0 11.4 24.1 11.2 11.2 11.2 11.2 11.2 11.2 11.4 24.1 11.2 11.1 11.2 11.4 24.1 11.1 11.1 11.2 11.4 24.1 11.1 11.2 11.4 24.1 11.1 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2		CHVI	10.8	2.2	7.6	3	0.6	4.2						
CRSP COVI 2.3 0.5 1.1 1 0.2 1 141.5 28.4 100.0 72 14.4 99.9 205.6 41.2 100.0 65 13.0 100.0 MX 181 ARCR 88.3 17.7 71.4 18 3.6 62.1 5 5 13.0 100.0 MX 181 ARCR 88.3 17.7 71.4 18 3.6 62.1 5 5 13.0 100.0 CHVT 19.8 4.0 16.0 7 1.4 24.1 24.1 24.1 24.1 25.5 10.2 3.5 100.0 7 1.4 24.1 24.1 24.1 24.1 25.5 100.0 29 5.5 100.0 7 1.4 24.1 24.1 24.1 25.3 23.7 71.4 19 3.8 70.2 3.5 3.5 100.0 3.5 3.5 100.0 3.5 100.0 3.5 100.2 3.5 100.2 3.4 3.2 3.4 7. SS 8/212 CRSP 11.1			4.8	1.0	3.4	7	1.4	9.7	11.9	2.4	5.8	17	3.4	26.2
$\begin{array}{c} \textbf{COVT} & \textbf{0.4} & \textbf{0.1} & \textbf{0.2} & \textbf{1} & \textbf{0.2} & \textbf{1} \\ \hline \textbf{141.5} & \textbf{28.4} & \textbf{100.0} & \textbf{72} & \textbf{14.4} & \textbf{99.9} & \textbf{205.6} & \textbf{41.2} & \textbf{100.0} & \textbf{65} & \textbf{13.0} & \textbf{100.0} \\ \hline \textbf{MX} & \textbf{181} & \textbf{ARCR} & \textbf{88.3} & \textbf{17.7} & \textbf{71.4} & \textbf{18} & \textbf{3.6} & \textbf{62.1} \\ \textbf{SS 8/21} & \textbf{EPNE} & \textbf{12.5} & \textbf{2.5} & \textbf{10.1} & \textbf{3} & \textbf{0.6} & \textbf{10.3} \\ \textbf{CHVT} & \textbf{19.8} & \textbf{4.0} & \textbf{16.0} & \textbf{7} & \textbf{1.4} & \textbf{24.1} \\ \textbf{LZAN} & \textbf{3.1} & \textbf{0.6} & \textbf{2.5} & \textbf{1} & \textbf{0.2} & \textbf{3.5} \\ \hline \textbf{123.7} & \textbf{24.8} & \textbf{100.0} & \textbf{29} & \textbf{5.8} & \textbf{100.0} \\ \textbf{MX} & \textbf{181} & \textbf{ARCR} & \textbf{134.8} & \textbf{27.0} & \textbf{78.6} & \textbf{33} & \textbf{6.6} & \textbf{73.3} & \textbf{118.7} & \textbf{23.7} & \textbf{71.4} & \textbf{19} & \textbf{3.8} & \textbf{70.} \\ \textbf{SS 8/21} & \textbf{EPNE} & \textbf{134.8} & \textbf{27.0} & \textbf{78.6} & \textbf{33} & \textbf{6.6} & \textbf{73.3} & \textbf{118.7} & \textbf{23.7} & \textbf{71.4} & \textbf{19} & \textbf{3.8} & \textbf{70.} \\ \textbf{SS 8/22} & \textbf{CRSP} & \textbf{11.1} & \textbf{2.2} & \textbf{6.5} & \textbf{4} & \textbf{0.8} & \textbf{3.9} & \textbf{4.6} & \textbf{0.9} & \textbf{2.8} & \textbf{1} & \textbf{3.2} & \textbf{3.} \\ \textbf{CRMY} & \textbf{0.8} & \textbf{0.2} & \textbf{0.5} & \textbf{2} & \textbf{0.4} & \textbf{4.4} \\ \textbf{LZAN} & \textbf{3.6} & \textbf{0.7} & \textbf{2.1} & \textbf{2} & \textbf{0.4} & \textbf{4.4} \\ \textbf{ATCA} & \textbf{ATCA} & \textbf{134.6} & \textbf{0.7} & \textbf{2.1} & \textbf{2} & \textbf{0.4} & \textbf{4.4} \\ \textbf{ATCA} & \textbf{137A} & \textbf{3.6} & \textbf{0.7} & \textbf{2.1} & \textbf{2} & \textbf{0.4} & \textbf{4.4} \\ \textbf{CHVT} & \textbf{3.6} & \textbf{0.7} & \textbf{2.1} & \textbf{2} & \textbf{0.4} & \textbf{4.4} \\ \textbf{CHVT} & \textbf{3.6} & \textbf{0.7} & \textbf{2.1} & \textbf{2} & \textbf{0.4} & \textbf{4.4} \\ \textbf{CHVT} & \textbf{3.6} & \textbf{0.7} & \textbf{2.1} & \textbf{2} & \textbf{0.4} & \textbf{4.4} \\ \textbf{20.9} & \textbf{4.2} & \textbf{12.6} & \textbf{1} & \textbf{0.2} & \textbf{1} & \textbf{0.2} & \textbf{3} \\ \textbf{3.4} & \textbf{3.6} & \textbf{0.7} & \textbf{3.6} & \textbf{0.7} & \textbf{3} & \textbf{3} & \textbf{3} & \textbf{0.6} & \textbf{11} \\ \textbf{3.4} & \textbf{3.3} & \textbf{3.6} & \textbf{0.7} & \textbf{3} & \textbf{3} & \textbf{3} & \textbf{3} \\ \textbf{11.1} & \textbf{2.2} & \textbf{1.5} & \textbf{2.5} & \textbf{3} & \textbf{3} & \textbf{3} \\ \textbf{20.9} & \textbf{4.2} & \textbf{12.6} & \textbf{1} & \textbf{0.2} & \textbf{1} & \textbf{3.2} & \textbf{3} \\ \textbf{11.1} & \textbf{10.2} & \textbf{1} & \textbf{3.2} & \textbf{3} & \textbf{3} & \textbf{3} & \textbf{3} \\ \textbf{1.1} & \textbf{10.2} & \textbf{1} & \textbf{0.2} & \textbf{1} & \textbf{0.2} & \textbf{1} & \textbf{3} & \textbf{3} \\ \textbf{1.1} & \textbf{10.2} & \textbf{1} & \textbf{10.2} & \textbf{1} & \textbf{3} & \textbf{3} & \textbf{3} & \textbf{6} & \textbf{1} \\ \textbf{11.1} & \textbf{10.2} & \textbf{1} & \textbf{10.2} & \textbf{1} & \textbf{10.2} & \textbf{1} & \textbf{3} & \textbf{3} & \textbf{3} & 1$		GUSA							5.1	1.0	2.5	2	0.4	3.1
141.5 28.4 100.0 72 14.4 99.9 205.6 41.2 100.0 65 13.0 100.0 MX 181 ARCTR 88.3 17.7 71.4 18 3.6 62.1 SS 8/21 ELNE 12.5 2.5 10.1 3 0.6 10.3 CHVT 19.8 4.0 16.0 7 1.4 24.1 LIZAN 3.1 0.6 2.5 1 0.2 3.5 123.7 24.8 100.0 29 5.8 100.0 SS 3/22 GRSP 11.1 2.2 6.5 4 0.8 8.9 4.6 0.9 2.8 1 3.2 3.8 EPNE 21.2 4.2 12.4 4 0.3 8.9 14.6 2.9 3.8 2 3.4 7. CRHY 0.8 0.2 0.5 2 0.4 4.4 4.4 4.4 4.4									2.3	0.5	1.1	•	0.2	1.5
MX 181 ARCTR 88.3 17.7 71.4 18 3.6 62.1 SS 8/21 EENE 12.5 2.5 10.1 3 0.6 10.3 CHVT 19.8 4.0 16.0 7 1.4 24.1 LYAN 3.1 0.6 2.5 1 0.2 3.5 123.7 24.8 100.0 29 5.8 100.0 MX 181 ARCTR 134.8 27.0 78.6 33 6.6 73.3 118.7 23.7 71.4 19 3.8 70. SS 8/22 GRSP 11.1 2.2 6.5 4 0.8 8.9 4.6 0.9 2.8 1 3.2 3.3 EPNE 21.2 4.2 12.4 4 0.3 8.9 14.6 2.9 3.8 2 3.4 7. CRHY 0.8 0.2 0.5 2 0.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.3 3 3.6 1 3.2 3.4 1		ΩVI							0.4	0.1	0.2	1	0.2	1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			141.5	28.4	100.0	72	14.4	99.9	205.6	41.2	100.0	65	13.0	100.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MX 181	ARTR	88.3	17.7	71.4	18	3.6	62.1						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SS 8/21		12.5	2.5		3		10.3						
I23.7 I00.0 I00.0 I00.0 I00.0 MX 181 ARTR 134.8 27.0 78.6 33 6.6 73.3 118.7 23.7 71.4 19 3.8 70.3 SS 3/22 GRSP 11.1 2.2 6.5 4 0.8 8.9 4.6 0.9 2.8 1 3.2 3. EPNE 21.2 4.2 12.4 4 0.3 8.9 14.6 2.9 3.8 2 3.4 7. ORHY 0.8 0.2 0.5 2 0.4 4.3 3				4.0	16.0	7	1.4	24.1						
MX 181 ARCR 134.8 27.0 78.6 33 6.6 73.3 118.7 23.7 71.4 19 3.8 70. SS 3/22 GRSP 11.1 2.2 6.5 4 0.8 8.9 4.6 0.9 2.8 1 3.2 3. EPNE 21.2 4.2 12.4 4 0.3 8.9 14.6 2.9 3.8 2 3.4 7. CRMY 0.8 0.2 0.5 2 0.4 4.4 4.4 4.4 LYAN 3.6 0.7 2.1 2 0.4 4.4 4.3 3 0.6 11.2 CHVI 7.1 1.4 4.3 3 3.6 11.2		LYAN	3.1	0.6	2.5	1	0.2	3.5						
SS 3/22 GRSP 11.1 2.2 6.5 4 0.8 3.9 4.6 0.9 2.8 1 0.2 3. EPNE 21.2 4.2 12.4 4 0.3 8.9 14.6 2.9 3.8 2 0.4 7. CREMY 0.8 0.2 0.5 2 0.4 4.4 LYAN 3.6 0.7 2.1 2 0.4 4.4 ATCA 0.4 0.1 0.2 1 0.2 3. CHVI 7.1 1.4 4.3 3 0.6 11.			123.7	24.8	100.0	29	5.8	100.0						
SS 3/22 GRSP 11.1 2.2 6.5 4 0.8 8.9 4.6 0.9 2.8 1 0.2 3. EPNE 21.2 4.2 12.4 4 0.3 8.9 14.6 2.9 3.8 2 0.4 7. ORHY 0.8 0.2 0.5 2 0.4 4.4 LYAN 3.6 0.7 2.1 2 0.4 4.4 ATCA 0.4 0.1 0.2 1 0.2 3. CHVI 7.1 1.4 4.3 3 0.6 11.	MX 181	ARTR	134.8	27.0	78.6	33	6.6	73.3	:18.7	23.7	71.4	19	3.8	70.4
EPNE 21.2 4.2 12.4 4 0.3 8.9 14.6 2.9 3.8 2 0.4 7. CRHY 0.8 0.2 0.5 2 0.4 4.4														3.7
ORHY 0.8 0.2 0.5 2 0.4 4.4 LXNN 3.6 0.7 2.1 2 0.4 4.4 ATCA 20.9 4.2 12.6 1 0.2 3. HIJA 0.4 0.1 0.2 1 0.2 3. CHVI 7.1 1.4 4.3 3 0.6 11.			21.2											7.4
LYAN 3.6 0.7 2.1 2 0.4 4.4 ATCA 20.9 4.2 12.6 1 0.2 3. HIJA 0.4 0.1 0.2 1 0.2 3. CHVI 7.1 1.4 4.3 3 0.6 11.		ORHY	0.8	0.2					• • • •			-		
ATCA 20.9 4.2 12.6 1 0.2 3. HIJA 0.4 0.1 0.2 1 0.2 3. CHVI 7.1 1.4 4.3 3 0.6 11.														
HIJA 0.4 0.1 0.2 1 0.2 3. CHVI 7.1 1.4 4.3 3 0.6 11.									20.9	4.2	12.6	1	0.2	3.7
CHVI 7.1 1.4 4.3 3 0.6 11.		HIJA							0.4			t		3.7
		CHVI										3		11.1
171.5 34.3 100.1 45 9.0 99.9 166.3 33.2 100 1 27 5 4 200			171.5	34.3	100.1	45	9.0	99.9	166.3	33.2	100.1	27	5.4	00.0

AD-A113 182 UNCLASSIFIED	ERTEC WESTERN INC FIELD SURVEYS, IOC AUG 81 E-TR-48-VOL-2-PT-1	VALLEYS. BIOLOGICAL	RESOURCES SURVEY, D F04704-80-	F/6 6/3 Nry LAEtc(U) C-0006 NL
5 or 5 Alta A H2				
	END Date Finite 105-82 DTic			
4				

A line at the second

•

			Transect 1							Transect 2							
Sample Shit #		Plant Species	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	‡ of Plants	Density (#/100 dm)	y Rel. Den. (%)	Total Cover (dm)	Total Cover (%)	Rel. Cover (%)	<pre># of Plants</pre>	Density (#/100 dma)	r Rel Den (%)			
SS 9	9/23			SA	ME AS O	RIGINAL				s	ame as	ORIGINA	L				
ss	10/12	2			ME AS O	RIGINAL			۰.	s	NME AS	ORIGINA	 L				
	181 10/16	CELA GREY ELJA GUEA GUEA ATCA ARSP EPNE GRSP SIEY	119.2 3.1 3.3 10.3 1.0	23.8 0.6 0.7 2.1 0.2	87.1 2.3 2.4 7.5 0.7	66 4 9 6 1	13.2 0.8 1.8 1.2 0.2	76.7 4.7 10.5 7.0 1.2	12.5 77.4 21.9 29.5 0.1 1.7 6.3 1.1	2.5 15.5 4.4 5.9 0.0 0.3 1.3 0.2	8.3 51.4 14.6 19.6 0.1 1.1 4.2 0.7	8 40 10 3 1 1 1 2	1.6 8.0 2.0 0.6 0.2 0.2 0.2 0.2 0.4	12.1 60.6 15.2 4.6 1.5 1.5 1.5 3.0			
_			136.9	27.4	100.0	86	17.2	100.1	150.5	30.1	100.0	55	13.2	100.0			
MX SS :	181 5/20	CHVI HLJA ARTR ARPU SIHY SPCR TEXI ARNO ATCA ORMY ERNE	2.8 141.7 3.6 6.1	0.6 28.4 0.7 1.2	1.8 88.9 2.2 3.8	1 32 1 3	0.2 6.4 0.2 0.6 0.2	2.6 84.2 2.6 7.9 2.6	21.1 3.1 14.5 5.3 3.3 0.8 1.3 48.5	4.2 0.6 2.9 1.1 0.7 0.2 0.3 5.4	27.7 4.0 19.0 7.0 4.3 1.0 1.6 35.3	15 11 3 4 1 1 13	3.0 2.2 0.6 0.8 0.8 0.2 0.2 2.6	28.9 21.2 5.8 7.7 7.7 1.9 1.9 25.0			
			5.3 159.4	1.1 32.0	3.3 100.0	1 38	7.6	<u>99.9</u>	97.9	15.4	99.9	52	10.4	100.1			

TABLE E-14 (Cont.)

E-73

APPENDIX F

LOCATION DESCRIPTIONS OF DRY LAKE SURVEY SITES

TABLE F-1

Shelter Summary Table

Cluster 1					
	Date		Map References		
Sample Unit No.	Surveyed	Legal Description	1:9600 U.S.G.S.		
MX-181-1/1	9/30/80	T4S, R63E, NW 1/4 Sec 12	#33 Pahroc Summit Pass		
MX-181-1/2	9/30/80	T4S, R63E, NE $1/4$ and			
		NW 1/4 Sec. 2	#33 Pahroc Spring		
MX-181-1/3	9/30/80	T4S, R64E, NW 1/4 Sec. 7	#34 Pahroc Spring SE		
MX-181-1/3A*	11/20/80	T4S, R64E, NW 1/4 Sec. 7	#34 Pahroc Spring SE		
MX-181-1/4	9/30/80	T4S, R64E, NW 1/4 Sec. 6	#34 Pahroc Spring NE		
MX-181-1/5	9/30/80	T3S, R63E, SW 1/4 Sec. 36	#33 Pahroc Spring NE		
MX-181-1/6	9/30/80	T4S, R64E, NW 1/4 Sec. 5	#34 Pahroc Spring NE		
MX-181-1/7	10/03/80	T3S, R64E, NE 1/4 Sec. 32	#34 Pahroc Spring NE		
MX-181-1/8	9/30/80	T3S, R64E, NW 1/4 Sec. 29	#34 Pahroc Spring NE		
MX-181-1/9	10/03/80	T3S, R63E, SE 1/4 Sec. 13	#30 Pahroc Spring NE		
MX-181-1/10	10/01/80	T3S, $R64E$, $NE 1/4$ and	#31 Pahroc Spring NE		
		SE 1/4 Sec. 20			
MX-181-1/11	10/01/80	T3S, R64E, SE 1/4 Sec. 18	#31 Pahroc Spring NE		
		SW 1/4 Sec. 17			
MX-181-1/12	10/01/80	T3S, R64E, NE $1/4$ and	#31 Pahroc Spring NE		
		NW 1/4 Sec. 21			
MX-181-1/13	10/01/80	T3S, R64E, SW 1/4 Sec. 8	#31 Pahroc Spring NE		
MX-181-1/14	10/02/80	T3S, $R64E$, $NE 1/4$ and	#31 Pahroc Spring NE		
		SE 1/4 Sec. 16			
MX-181-1/15	10/02/80	T3S, R64E, SW 1/4 Sec. 9	#31 Pahroc Spring NE		
MX-181-1/16	10/02/80	T3S, R64E, SE 1/4 Sec. 4	#31 Pahroc Spring NE		
	10 (01 (00				
MX-181-1/17	10/01/80	T3S, R64E, NW 1/4 Sec. 4	#31 Pahroc Spring NE		
Mar 101 1/10	10/00/00		& #28		
MX-181-1/18	10/02/80	T3S, R64E, NW 1/4 Sec. 5	#31 Pahroc Spring NE		
MX-181-1/19	10/02/80	T2S, R64E, NE 1/4 and	#28 Pahroc Spring NE		
		NW 1/4 Sec. 31			
MX-181-1/20	10/03/80	T2S, R64E, NE 1/4 Sec. 30	328 Pahroc Spring NE		
		NW 1/4 Sec. 29			
MX-181-1/21	10/03/80	T2S, R64E, NE 1/4 Sec. 29	Deadman Spring SE		
		NW 1/4 Sec. 28	_		
MX-181-1/22	10/03/80	T2S, R64E, SW 1/4 Sec. 19	#28 Deadman Spring SE		
MX-181-1/23	10/03/80	T2S, R64E, SE 1/4 Sec. 17	#28 Deadman Spring SE		

* Resiting

. ·

1

Ξ Ertec

•

•

, ·

TABLE F-2

Shelter Summary Table

DRY LAKE VALLEY

	Date	Cluster 2	Map References
Sample Unit No.	Surveyed	Legal Description	1:9600 U.S.G.S.
MX-181-2/1	10/01/80	T4S, R64E, SE 1/4 Sec 5	#34 Pahroc Spring SE
		SW 1/4 Sec. 4, NW 1/4	Jerri I. I. I. I. Jerri
		Sec. 8, NW 1/4 Sec. 9	
MX-181-2/2	10/01/80	T4S, R64E, SW 1/4 Sec. 3, SE 1/4 Sec. 4	#34 Pahroc Spring SE and NE
MX-181-2/3	10/01/80	T3S, R64E, SW 1/4 Sec. 34	#34 Pahroc Spring NE
MX-181-2/4	10/01/80	T3S, R64E, NW 1/4 Sec. 33	#34 Pahroc Spring NE
MX-181-2/5	10/02/80	T3S, R64E, SW 1/4 Sec. 35	#35 Pahroc Spring NE
MX-181-2/6	10/01/80	T3S, R64E, NW 1/4 Sec. 27	#34 Pahroc Spring NE
MX-181-2/6A*	11/20/80	T3S, R64E, NW 1/4 Sec. 27	#34 Pahroc Spring NE
MX-181-2/7	10/02/80	T3S, R64E, SW 1/4 Sec. 26	#35 Pahroc Spring NE
MX-181-2/8	10/03/80	T3S, R64E, NW 1/4 Sec. 26	#35 Pahroc Spring NE
MX-181-2/9	10/02/80	T3S, R64E, NW 1/4 and NE 1/4 Sec. 23	#32 Pahroc Spring NE
MX-181-2/9A*	11/20/80	T3S, R64E, NW 1/4 and	#32 Pahroc Spring NE
	,,	NE 1/4 Sec. 23	
MX-181-2/10	10/14/80	T3S, R64E, NE 1/4 Sec. 15	#31 Pahroc Spring NE
MX-181-2/11	10/03/80	T3S, R64E, NW 1/4 Sec. 24	#32 Pahroc Spring NE
	,,	SW 1/4 Sec. 13	
MX-181-2/12	10/03/80	T3S, R64E, NW 1/4 and	#32 Pahroc Spring NE
,	· · ·	SW 1/4 Sec. 11	
MX-181-2/13	10/02/80	T3S, R64E, NW 1/4 Sec. 12	#32 Pahroc Spring NE
MX-181-2/14	10/03/80	T3S, R64E, NW 1/4 Sec. 1	#32 Pahroc Spring NE
MX-181-2/15	10/04/80	T2S, R64E, SE 1/4 Sec. 36	#29 Pahroc Spring NE
MX-181-2/16	10/14/80	T2S, R64E, SW 1/4 Sec. 25	#29 Pahroc Spring NE
MX-181-2/17	10/14/80	T2S, R64E, NE 1/4 Sec. 26,	#29 Deadman Spring SE
		SE 1/4 Sec. 23	
MX-181-2/18	10/14/80	T2S, R65E, SW 1/4 Sec. 30	#29 Caliente NW
MX-181-2/19	10/14/80	T2S, R65E, SE 1/4 Sec. 19	#29 The Bluffs
MX-181-2/20	10/14/80	T2S, R64E, SE 1/4 Sec. 13,	#29 Dead Man Spring S
		NE 1/4 Sec. 24,	and The Bluffs
		T2S, R65E, NW 1/4 Sec. 19,	
		SW 1/4 Sec. 18	
MX-181-2/21	10/14/80	T2S, R65E, NW 1/4 Sec. 18	#29 The Bluffs
MX-181-2/22	10/15/80	T2S, R65E, NW 1/4 Sec. 17,	#29 The Bluffs
			& #25
MX-181-2/22A*	11/19/80	T2S, $R65E$, SW 1/4 and	
		SE 1/4 Sec. 8	#25 The Bluffs
MX-181-2/23	10/15/80	T2S, $R65E$, NW 1/4 and	#39 The Bluffs
		SW 1/4 Sec. 16	
MX-181-2/23A*	11/19/80	T2S, R65E, NW 1/4 Sec. 16	#39 The Bluffs

Ξ Ertec

F-2

ず下

. '

TABLE F-3

Shelter Summary Table

DRY LAKE VALLEY

		Cluster 3	
	Date		Map References
Sample Unit No.	Surveyed	Legal Description	1:9600 U.S.G.S.
MX-181-3/1		T3S, R63E, SW 1/4 Sec.14	#30 Pahroc Spring
MX-181-3/1A*	12/11/80	T3S, R63E, NE 1/4 Sec. 15,	#30 Pahroc Spring
		NW 1/4 Sec. 14	
MX-181-3/2	10/04/80	T3S, R63E, SW 1/4 Sec. 12	#30 Pahroc Spring NE
MX-181-3/3	10/04/80	T3S, R63E, NE 1/4 Sec. 12,	#30 Pahroc Spring NE
MX-181-3/4	10/06/80	SE 1/4 Sec. 1 T3S, R64E, SE 1/4 Sec. 6,	#31 Pahroc Spring NE
	,,	NE 1/4 Sec. 7	
MX-181-3/5	10/04/80	T3S, R63E, NE 1/4 Sec. 2	#30 Pahroc Spring
MX-181-3/5A*	12/11/80	T3S, R63E, NE 1/4 Sec. 14,	#30 Pahroc Spring
		SW 1/4 Sec. 13,	
MX-181-3/6	10/05/80	T2S, R63E, NE $1/4$ and SE $1/4$ Sec. 26	#27 Pahroc Spring NE
MX-181-3/7	10/05/80	SE 1/4 Sec. 36 T2S, R63E, SE 1/4 Sec. 26,	#27 Pahroc Spring
ma-101-3/1	10/05/00	SW 1/4 Sec. 25	#27 Palloc Spring
MX-181-3/8		T2S, R63E, SW 1/4 Sec. 24	#27 Wheatgrass Sprin
MX-181-3/9	10/07/80	T2S, R63E, NW 1/4 and	#27 Wheatgrass Sprin
•		NE 1/4 Sec. 23	<u> </u>
MX-181-3/10	10/07/80	T2S, R63E, NE 1/4 Sec. 14	#27 Wheatgrass Sprin
MX-181-3/11	10/06/80	T2S, R64E, SE 1/4 Sec. 18	#28 Deadman Spring S
MX-181-3/12	10/06/80	T2S, R64E, SW 1/4 Sec. 7	#24 Deadman Spring S
MX-181-3/13	10/03/80	T1S, R63E, SW 1/4 Sec. 35	#23 Wheatgrass Sprin
MX-181-3/14	10/06/80	T2S, R63E, NE 1/4 Sec. 11,	#23 Wheatgrass Sprin
		SE 1/4 Sec. 2	
MX-181-3/14A*	11/17/80	T2S, R63E, NE 1/4 Sec. 11	#23 Wheatgrass Sprin
MX-181-3/15	10/07/80	T2S, R64E, SE 1/4 Sec. 6	#24 Deadman Spring S
MX-181-3/16	10/07/80	T2S, R63E, NE 1/4 Sec. 1	#23 Deadman Spring S
		,	s #24
MX-181-3/17	10/07/80	T2S, R64E, SE 1/4 Sec. 5	#24 Wheatgrass Sprin
MX-181-3/18	10/07/80	T1S, R64E, NW 1/4 Sec. 31	#24 Deadman Spring S
MX-181-3/19	10/07/80	T1S, R64E, SE 1/4 Sec. 32,	#24 Deadman Spring S
MX-181-3/20	10/07/80	SW 1/4 Sec. 33 T1S, R64E, NW 1/4 Sec. 32	#24 Deadman Spring S
MX-181-3/21	10/07/80	T1S, R64E, NE $1/4$ Sec. 29	#24 Deadman Spring S
MX-181-3/22	10/13/80	T1S, R64E, NE $1/4$ Sec. 19	#19 Deadman Spring S
MX-181-3/23	10/07/80	T1S, $R64E$, NW 1/4 and	#19 Deadman Spring S
125 101-3/23	10/07/00	SW 1/4 Sec. 17	The second spring s
		Sm 1/4 SeC. 1/	

Ξ Ertec

F-3

7N

. '

TABLE F-4

Shelter Summary Table

DRY LAKE VALLEY

		Cluster 4		····
	Date		Мар	References
Sample Unit No.	Surveyed	Legal Description	1:9600	U.S.G.S.
MX-181-4/1	10/14/80	T2S, R64E, NW 1/4 Sec. 24	#2 9	Deadman Spring SE
	10/14/00	NE $1/4$ Sec. 23	π ζ <i>j</i>	Deddinan Spring St
MX-181-4/1A*	11/17/80	T2S, R64E, NE $1/4$ Sec. 23	#2 9	Deadman Spring SE
MX-181-4/2	10/14/80	T2S, R64E, NW 1/4 Sec. 14		Deadman Spring SE
	,			beaman opening of
MX-181-4/2A	11/17/80	T2S, R64E, NW 1/4 Sec. 14	#29	Deadman Spring SE
MX-181-4/3	10/14/80	T2S, R64E, NE & SE 1/4	#25	Deadman Spring SE
		Sec. 11		
MX-181-4/3A	11/17/80	T2S, R64E, NE 1/4 Sec. 11	#25	Deadman Spring SE
MX-181-4/4	10/14/80	T2S, R64E, NE 1/2 Sec. 12	#25	Deadman Spring SE
MX-181-4/4A	11/20/80	T2S, R64E, NE 1/4 Sec. 12		Deadman Spring SE
MX-181-4/5	10/15/80	T2S, R65E, NW 1/4 Sec. 6	#25	The Bluffs
MX-181-4/6	10/17/80	T1S, R64E, NW 1/4 Sec. 34,	#24	Deadman Spring SE
		NE 1/4 Sec. 33		
MX-181-4/7	10/17/80	T1S, R64E, NE 1/4 Sec. 34,		Deadman Spring SE
		SE 1/4 Sec. 27,	& #25	
NOV 101 A /0	10 /1 4 /90	NW 1/4 Sec. 35	#0E	Dealman Coming CE
MX-181-4/8	10/14/80	T1S, R64E, SE 1/4 Sec. 35	#25	Deadman Spring SE
MX-181-4/9	10/15/80	T1S, R64E, SW and SE $1/4$	#25	Deadman Spring SE
		Sec. 36		
MX-181-4/10	10/17/80	T1S, $R64E$, $NE 1/4$ and	#20	Deadman Spring SE
		SE 1/4 Sec. 21		
MX-181-4/11	10/17/80	T1S, R64E, NW 1/4 Sec. 26		Deadman Spring SE
MX-181-4/12	10/15/80	T1S, R64E, SE 1/4 Sec. 25	#25	Deadman Spring SE
	10 /10 / 100	T1S, R65E, SW 1/4 Sec. 30		
MX-181-4/13	10/16/80	T1S, R64E, NE 1/4 Sec. 22	#20 #20	Deadman Spring SE
MX-181-4/14	10/16/80	T1S, R64E, NW 1/4 Sec. 25,		Deadman Spring SE
MX-181-4/15	10/15/80	SW 1/4 Sec. 24 T1S, R65E, SE 1/4 Sec. 30	& #25 #25	Deadman Spring SE
MX-181-4/16	10/16/80	T1S, $R64E$, $NW 1/4$ Sec. 30	#25 #20	Deadman Spring SE
MX-181-4/17	10/16/80	T1S, R64E, NE $1/4$ Sec. 14	#20	Deadman Spring SE
MX-181-4/18	10/17/80	T1S, R64E, SE $1/4$ Sec. 16	#20 #20	Deadman Spring SE
MX-181-4/19	10/16/80	T1S, R64E, NW $1/4$ Sec. 13	#20	Deadman Spring SE
MX-181-4/20	10/16/80	T1S, R65E, SE 1/4 Sec. 18,	#21	The Bluffs
		NE $1/4$ Sec. 19		
MX-181-4/21	10/18/80	T1S, R64E, SE 1/4 Sec. 3,	#20	Deadman Spring NE
	., .,	SW 1/4 Sec. 2	. – -	······································
MX-181-4/22	10/18/80	T1S, R64E, NE 1/4 Sec. 12	#20	Deadman Spring NE
MX-181-4/22A	11/18/80	T1S, R64E, NE 1/4 Sec. 12	#20	Deadman Spring NE
MX-181-4/23		T1S, R64E, SE 1/4 Sec. 2,	#20	Deadman Spring NE

Ertec

F-4

TABLE F-5

Shelter Summary Table

DRY LAKE VALLEY

		<u>Cluster 5</u>		
	Date		Map References	
Sample Unit No.	Surveyed	Legal Description	1:9600 U.S.G.S.	
181- 5/1	10/19/80	T1N, R64E, SW 1/4 Sec. 26	#17 Deadman Spring NE	
X-181-5/2	10/19/80	T1N, R64E, NE $1/4$ and	#17 Deadman Spring NE	
	,,	SE 1/4 Sec. 35		
1X-181-5/3	10/19/80	T1N, R64E, NE 1/4 Sec. 36	#17 Ely Spring	
X-181-5/4	10/18/80	T1N, R65E, SW $1/4$ and	#18 Ely Spring	
		SE 1/4 Sec. 31		
1X-181-5/5	10/19/80	T1S, $R65E$, $NE 1/4$ and	#21 Ely Spring	
,,,,,,,,,,,,,,,,,	• • • • •	NW 1/4 Sec. 7		
M X-181-5/5A*	11/18/80	T1S, R65E, NE 1/4 Sec. 7	#21 Ely Spring	
x-181-5/6	10/18/80	T1S, R65E, NW 1/4 Sec. 17	#21 The Bluffs	
181- 5/7	10/17/80	T1S, R65E, SW 1/4 Sec. 3	#21 Ely Spring	
x-181-5/8	10/17/80	T1S, R65E, SE 1/4 and	#21 Ely Spring	
		SW 1/4 Sec. 4		
		SW 1/4 Sec. 9		
x-181-5/9	10/18/80	T1S, R65E, SE 1/4 Sec. 9,	#21 The Bluffs	
•		SW 1/4 Sec. 8	-	
1X-181-5/9A*	12/12/80	T1S, R65E, SW 1/4 Sec. 9,	#21 The Bluffs	
•		SE 1/4 Sec. 8	-	
181- 5/10	10/18/80	T1S, R65E, SE 1/4 Sec. 16	#21 The Bluffs	
181-5 /11	10/16/80	T1S, R65E, SE 1/4 Sec. 15	#21 The Bluffs	
X-181-5/12	10/18/80	T1S, R65E, NW 1/4 Sec. 23	#22 The Bluffs	
X-181-5/12A*	12/12/80	T1S, R65E, NW 1/4 Sec. 23	#22 The Bluffs	
MX-181-5/13	10/18/80	T1S, R65E, SW 1/4 Sec. 21	#21 The Bluffs	
X-181-5/14	10/16/80	T1S, R65E, NE 1/4 and	" – · – – – – – – – – –	
	,,	SE 1/4 Sec. 28	#26 The Bluffs	
1X-181-5/15	10/16/80	T1S, R65E, NE 1/4 Sec. 27	#26 The Bluffs	
	,,	NW 1/4 Sec. 26		
1X-181-5/16	10/16/80	T1S, R65E, NW 1/4 and	#26 The Bluffs	
	,,	SW 1/4 Sec. 33		
181-5/17	10/15/80	T2S, R65E, SE 1/4 Sec. 2	#26 The Bluffs	
1X -181-5/18	10/15/80	T2S, R65E, NW $1/4$ Sec. 2	#26 The Bluffs	
,	,,	T1S, R65E, SW $1/4$ Sec. 35	" TIA REAFFA	
X-181-5/18A*	11/20/80	T2S, R65E, NW $1/4$ Sec. 2	#26 The Bluffs	
	, _0, 00	T1S, R65E, SW $1/4$ Sec. 35		
181-5/19	10/15/80	T1S, R65E, NE $1/4$ and	#26 The Bluffs	
		$\frac{1}{2}$ NW 1/4 Sec. 35		
MX-181-5/19A*	12/12/80	T1S, R65E, NE $1/4$ Sec. 35	#26 The Bluffs	
MX-181-5/20	10/16/80	T1S, R65E, SE $1/4$ Sec. 25	#26 The Bluffs	
X-181-5/20A*	12/12/80	T1S, R65E, SE $1/4$ Sec. 25	#26 The Bluffs	
181-5/21	10/17/80	T1S, R65E, NW 1/4 Sec. 24	#20 The Bluffs	
181-5/22	10/17/80	T1S, R65E, NE 1/4 Sec. 13	#22 The Bluffs	
MX-181-5/22A	12/13/80	T1S, R65E, NE $1/4$ Sec. 13	#22 The Bluffs	
MX-181-5/23	10/17/80	T1S, R66E, NW 1/4 Sec. 7	#22 Ely Springs	

F-5

π

....

TABLE F-6

Shelter Summary Table

DRY LAKE VALLEY

Cluster 6					
Sample Uhit No.	Date Surveyed	[ega]	Description	мар 1:9600	References U.S.G.S.
Dampie dile no.	Durveyeu	Legut		1. 5000	0.0.0.0.0
MX-181-6/1	10/20/80	T1S, R63E,	NE 1/4 Sec. 34	#23	Wheatgrass Spring
MX-181-6/1A*	11/17/80	T1S, R63E,	NE 1/4 Sec. 34	#23	Wheatgrass Spring
X-181-6/1B*	11/17/80	T1S, R63E,	NE 1/4 Sec. 34,	#23	Wheatgrass Spring
	• •		SE 1/4 Sec. 27		
1X-181-6/1C*	12/12/80	T1S. R63E.	NE 1/4 Sec. 34,	#23	Wheatgrass Spring
	,,	,	SE 1/4 Sec. 27	"	
MX-181-6/2	10/20/80	T1S. R63E.	SE 1/4 Sec. 26	# 23	Wheatgrass Spring
X-181-6/2A*	12/12/80		SE 1/4 and	#23	Wheatgrass Spring
			NE 1/4 Sec. 26		
MX-181-6/3	10/20/80	T15, R63E,	NE $1/4$ and	#23	Deadman Spring SE
	,,	1.2, 1.004,	SE 1/4 Sec. 25		
MX-181-6/4	10/20/80	T1S, R63E,	NE 1/4 Sec. 24	#19	Deadman Spring SE
MX-181-6/5	10/19/80		SW 1/4 Sec. 13	#19	Deadman Spring SE
MX-181-6/6	10/19/80		SE 1/4 Sec. 12	#19	Deadman Spring SE
MX-181-6/7	10/19/80		NE 1/4 Sec. 11	#19	Deadman Spring NE
MX-181-6/8	10/19/80		SE 1/4 Sec. 7	#19	Deadman Spring SE &
MX-181-6/9	10/20/80		SW 1/4 Sec. 5,	#19	Deadman Spring NE
	10/20/00	100 1040	SE 1/4 Sec. 6	πισ	be desident ope may ne
MX-181-6/10	10/20/80	T1N. 8638.	SE 1/4 Sec. 36	#16	Deadman Spring NE
MX-181-6/11	10/20/80		SW 1/4 Sec. 30	#16	Deadman Spring NE
MX - 181 - 6/12	10/20/80		SW 1/4 Sec. 29	#16	Deadman Spring NE
MX-181-6/13	10/20/80		SE 1/4 Sec. 20	#16	Deadman Spring NE
MX-181-6/14	10/20/80		NE 1/4 Sec. 19,	#16 #16	Deadman Spring NE
MA-101-0/14	10/20/00	IIN, ROAD,	NW $1/4$ Sec. 20	#10	bedoman Spring NE
MX-181-6/14A*	11/17/80	TIN D64F	NE 1/4 Sec. 19,	#16	Deadman Spring NE
MA-101-0/144	11/1//00	11N, 1046,	NW 1/4 Sec. 20	#10	beautian spring ne
MX-181-6/15	10/20/80	TIN DEAR	NW 1/4 Sec. 17	#16	Deadman Spring NE
MX-181-6/16	10/21/80		NE $1/4$ Sec. 7	#12	Deadman Spring NE
MX-181-6/17			SE 1/4 Sec. 12		Deadman Spring NE
MX-181-6/18	10/21/80 10/21/80		NW 1/4 and	#12 #12	Deadman Spring NE
-101-0/10	10/21/00	IN, ROLL,	SW 1/4 Sec. 5	#14	beautian spling No
MX-181-6/18A*	-11/17/80		NW $1/4$ and	#12	Doodmon Coming ND
MA-101-0/10A*	11/1//00	11N, R04E,	SW $1/4$ Sec. 5	#12	Deadman Spring NE
			NE $1/4$ and		
			SE $1/4$ Sec. 6		
MX-181-6/19	11/1/80	TTON DEAD	SE 1/4 Sec. 6 SW 1/4 and	#12	Daadman Cristian MT
- 101-0/13	171/00	12N, RU4C,	SE $1/4$ Sec. 31	#14	Deadman Spring NE
W-191_6 /20	10/21/80	TON DEAD		#10	Countra Spring
MX-181-6/20 MX-181-6/21	10/21/80		SE 1/4 Sec. 30	#12 #10	Coyote Spring
	10/21/80		SE 1/4 Sec. 29	#12	Coyote Spring
MX-181-6/22			SW 1/4 Sec. 21	#9 #0	Coyote Spring
MX-181-6/23	10/21/80	12N, R04E,	NE 1/4 Sec. 20	# 8	Coyote Spring
			SE 1/4 Sec. 17		

F-6

Л

≡ Ertec

. .

Sec. S.

TABLE F-7

Shelter Summary Table

DRY LAKE VALLEY

		Cluster 7	
a 1 a 1, 1, 1, 1	Date		Map References
Sample Unit No.	Surveyed	Legal Description	1:9600 U.S.G.S.
MX-181-7/1	10/29/80	T1S, R64E, NW 1/4 Sec.	16 #20 Deadman Spring SE
MX-181-7/2	10/29/80	T1S, R64E, NE 1/4 Sec.	9 #20 Deadman Spring NE
MX-181-7/3	10/29/80	T1S, R64E, SW 1/4 Sec. SE 1/4 Sec.	4, #19 Deadman Spring NE
MX-181-7/4	10/29/80	T1N, R64E, NE $1/4$ and SE $1/4$ Sec.	#16 Deadman Spring NE
MX-181-7/5	10/29/80	T1N, R64E, NE 1/4 Sec.	
MX-181-7/6	10/31/80	T1N, R64E, NW 1/4 and	#17 Deadman Spring NE
MX-181-7/7	10/31/80	SW 1/4 Sec.	
MA-101-1/1	10/31/00	T1N, R64E, SW $1/4$ and SE $1/4$ Sec.	#17 Deadman Spring NE 21
MX-181-7/8	10/31/80	T1N, R64E, SE 1/4 Sec.	
MX-181-7/9	10/31/80	T1N, R64E, SE 1/4 Sec.	
MX-181-7/10	10/30/80	T1N, R64E, SW 1/4 Sec.	
MX-181-7/11	10/30/80	T1N, R64E, NE 1/4 Sec. SE 1/4 Sec.	10, #13 Deadman Spring NE
MX-181-7/12	10/30/80	T1N, R64E, NW 1/4 Sec. NE 1/4 Sec.	2, #13 Deadman Spring NE
MX-181-7/13	11/02/80	T1N, R64E, NE 1/4 Sec. NW 1/4 Sec.	2, #13 Deadman Spring NE
		T2N, R64E, SE 1/4 Sec.	35,
MX-181-7/14	11/02/80	SW 1/4 Sec. 1 T2N, R64E, NW 1/4 Sec. 1	
MX-181-7/15	11/02/80	T2N, R64E, NE 1/4 Sec. 7	
MX-181-7/16	11/12/80	T2N, R64E, NW 1/4 Sec. 7 T2N, R64E, NW 1/4 Sec. 7	
MX-181-7/17	11/01/80	T2N, R64E, SW 1/4 Sec. 1 T2N, R64E, SW 1/4 Sec. 1	
MX-181-7/18	11/01/80	T2N, R64E, SW $1/4$ Sec. T2N, R64E, NE R64E, NE R	
4X-181-7/19	11/01/80	T2N, $R64E$, NE 1/4 Sec. T2N, $R64E$, NE and	
	11/01/00	NW 1/4 Sec.	#13 Deadman Spring NE
1X-181-7/20	10/31/80	T2N, R64E, NW 1/4 Sec.	
X-181-7/21	10/31/80	T1N, R64E, NW 1/4 Sec. 4	
X-181-7/22	10/31/80	T1N, R64E, NE 1/4 Sec. 9	
X-181-7/23	10/31/80	T1N, R64E, NW 1/4 Sec.	

Ξ Ertec

٠

M

4

. .

TABLE F-8

Shelter Summary Table

DRY LAKE VALLEY

	- /	Cluster 8		
Date				eferences
Sample Unit No.	Surveyed	Legal Description	1:9600	U.S.G.S.
MX-181-8/1	10/28/80	T1N, R64E, SE 1/4 and SW 1/4 Sec. 23	#17	Deadman Spring NE
MX- 181-8/2	10/28/80	T1N, R64E, SE 1/4 and SW 1/4 Sec. 24	#17	Ely Spring
MX-181-8/3	10/28/80	T1N, R65E, SW 1/4 and NW 1/4 Sec. 30	#18	Ely Spring
MX-181-8/4	10/29/80	T1N, R64E, SE 1/4 Sec. 25 T1N, R65E, SW 1/4 Sec. 29	& #17 #18	Ely Spring
- 101 0/7	10/00/00	SE 1/4 Sec. 30		
MX-181-8/5 MX-181-8/6	10/28/80 10/28/80	T1N, R64E, SE 1/4 Sec. 13 T1N, R65E, SW 1/4 Sec. 20	#17 #18	Ely Spring Ely Spring
MX-181-8/7	10/29/80	T1N, R64E, NW $1/4$ Sec. 13	#17	Deadman Spring NE
MX-181-8/8	10/28/80	T1N, R65E, SE 1/4 Sec. 18	#18	Ely Spring
MX-181-8/9	10 /29/80	T1N, R64E, NE 1/4 Sec. 12	#13	Ely Spring
MX-181-8/10	10/29/80	T1N, R65E, SW 1/4 Sec. 8	#14	Ely Spring
MX-181-8/11	10/29/80	T1N, R65E, SE 1/4 Sec. 6 NE 1/4 Sec. 7	#14	Ely Spring
MX-181-8/12	10/29/80	T1N, R65E, NE 1/4 Sec. 8, NW 1/4 Sec. 9	#14	Ely Spring
MX-181-8/13	10/31/80	T1N, R65E, NE 1/4 Sec. 6	#14	Ely Spring
MX-181-8/14	10/30/80	T1N, R65E, NE 1/4 Sec. 5 T2N, R65E, SE 1/4 Sec. 32	#14	Ely Spring
MX-181-8/15	10/30/80	T2N, R65E, NW 1/4 Sec. 31	#14	Ely Spring
MX-181-8/16	11/04/80	T2N, R65E, SW 1/4 Sec. 27	#14	Bristol Well
MX-181-8/17	11/04/80	T2N, R65E, SW 1/4 Sec. 22	#10	Bristol Well
MX-181-8/18	11/04/80	T2N, R65E, SW 1/4 Sec. 23	#11	Bristol Well
MX-181-8/18A*	12/13/80	T2N, R65E, SW 1/4 Sec. 23	#11	Bristol Well
MX-181-8/19	11/04/80	T2N, R65E, SE 1/4 Sec. 14	#11	Bristol Well
MX-181-8/19A*	11/20/80	T2N, R65E, SE 1/4 Sec. 14	#11	Bristol Well
MX-181-8/20	10/30/80	T2N, R65E, SW 1/4 Sec. 35	#15	Ely Spring
MX-181-8/21	10/30/80	T1N, R65E, NE 1/4 Sec. 4	#14	Ely Spring
MX-181-8/21A*	11/18/80	T1N, R65E, NE $1/4$ Sec. 4	#14	Ely Spring
MX-181-8/22	10/30/80	T1N, R65E, NE $1/4$ Sec. 3	#14	Ely Spring
MX-181-8/22a MX-181-8/23	11/18/80 11/04/80	T1N, R65E, NE 1/4 & T2N, R65E, NE 1/4 Sec. 15	#10	Bristol Well

F-8

F

ALL PARTY AND

1714-14

1

1

ł

$-\mathbf{T}$	BLE	F-9	

Shelter Summary Table

DRY	LAKE	VALLEY

		Cluster 9
	Date	Map References
Sample Unit No.	Surveyed	Legal Description 1:9600 U.S.G.S.
x-181-9 /1	10/31/80	T2N, R65E, NE 1/4 Sec. 29 #14 Bristol Well
MX-181-9/2	10/30/80	T2N, R65E, NE $1/4$ Sec. 30 #14 Bristol Well
MX-181-9/3	10/30/80	T2N, R65E, NW $1/4$ Sec. 19 #10 Bristol Well
xx-181-9/4	10/31/80	T2N, R65E, NE $1/4$ Sec. 18 #10 Bristol Well
MX-181-9/5	10/31/80	T2N, R65E, SW $1/4$ Sec. 7 #9 Bristol Well
	,,	T2N, R64E, SE $1/4$ Sec. 12 & #10
1X-181-9/6	11/01/80	T2N, R64E, SE 1/4 Sec. 11, #9 Coyote Spring
	,,	SW 1/4 Sec. 12
1X-1 81-9/7	11/01/80	T2N, R64E, SW 1/4 Sec. 2 #9 Coyote Spring
MX-181-9/8	11/01/80	T2N, R64E, NE 1/4 Sec. 2 #9 Coyote Spring
MX-181-9/9	11/11/80	T3N, R64E, NW 1/4 Sec. 35 #5 Coyote Spring
1X-181-9/10	11/11/80	T3N, R64E, NW 1/4 Sec. 34 #5 Coyote Spring
1X-181-9/11	11/11/80	T3N, R64E, SE 1/4 and #5 Coyote Spring
		SW 1/4 Sec. 28
X-181-9/12	11/11/80	T3N, R64E, SE 1/4 Sec. 21 #5 Coyote Spring
X-181-9/13	11/11/80	T3N, R64E, SW 1/4 Sec. 16 #5 Coyote Spring
X-181-9/14	11/11/80	T3N, R64E, NE 1/4 Sec. 16 #2 Bailey Wash
		SE 1/4 Sec. 9 & #5
x-181-9/15	11/11/80	T3N, R64E, SE 1/4 Sec. 10 #2 Bailey Wash
181-9/16	11/12/80	T3N, R64E, SW 1/4 Sec. 14 #5 Coyote Spring
MX-181-9/17	11/03/80	T3N, R64E, SE 1/4 Sec. 22 #5 Coyote Spring
MX-181-9/18	11/03/80	T3N, R64E, NE 1/4 and #5 Coyote Spring
		NW 1/4 Sec. 26
MX-181-9/19	11/12/80	T3N, R64E, NE 1/4 and #5 Bristol Well
		NW 1/4 Sec. 25
x-1 81-9/20	11/01/80	T3N, R65E, SW 1/4 Sec. 30 #6 Bristol Well
x-181-9/21	11/01/80	T3N, R64E, SE 1/4 Sec. 36 #5 Bristol Well
X-181-9/22	10/31/80	T2N, R65E, SW 1/4 Sec. 6 #10 Bristol Well
x-181-9/23	10/31/80	T2N, R65E, SW 1/4 and #10 Bristol Well
		SE 1/4 Sec. 17
MX-181-9/23A*	11/21/80	T2N, R65E SE 1/4 Sec. 17 #10 Bristol Well

F-9

 \mathbf{T}

Ξ Ertec

E-TR-48-11-1

C. 1990

TABLE F-10

Shelter Summary Table

DRY LAKE VALLEY

	Data	Cluster 10	Non Deferences
Sample Unit No.	Date Surveyed	Legal Description	Map References 1:9600 U.S.G.S.
Salipie onic no.	Julveyed	Begai Description	1.5000 0.5.6.5.
MX-181-10/1	11/01/80	T2N, R64E, SE 1/4 Sec. 14	#9 Coyote Spring
MX-181-10/2	11/01/80	T2N, R64E, SE 1/4 Sec. 15	#9 Coyote Spring
MX-181-10/3	11/01/80	T2N, R64E, SE 1/4 Sec. 9, SW 1/4 Sec. 10	#9 Coyote Spring
MX-181-10/4	11/12/80	T2N, R64E, NW 1/4 Sec. 16	#8 Coyote Spring
	11/12/00	NE 1/4 Sec. 17	
MX-181-10/5	11/12/80	T2N, R63E, SW 1/4 Sec. 12	#8 Coyote Spring
MX-181-10/6	11/12/80	T2N, R64E, SW 1/4 Sec. 7	#8 Coyote Spring
MX-181-10/7	11/13/80	T2N, R64E, NW 1/4 Sec. 8	#8 Coyote Spring
MX-181-10/8	11/03/80	T2N, R64E, SE 1/4 Sec. 4	#9 Coyote Spring
MX-181-10/9	11/12/80	T2N, R63E, SE 1/4 Sec. 1	#8 Coyote Spring
MX-181-10/10	11/13/80	T2N, R64E, NE 1/4 Sec. 5	#8 Coyote Spring
MX-181-10/11	11/13/80	T3N, R64E, SW 1/4 Sec. 32	#4 Coyote Spring
MX-181-10/12	11/13/80	T3N, R64E, SE 1/4 and SW 1/4 Sec. 29	#4 Coyote Spring
MX-181-10/12A*	12/13/80	T3N, R64E, SE 1/4 and SW 1/4 Sec. 29	#4 Coyote Spring
MX-181-10/13	11/13/80	T3N, R64E, SE 1/4 Sec. 19 NE 1/4 Sec. 30	#4 Coyote Spring
MX-181-10/14	11/03/80	T3N, R63E, NE $1/4$ Sec. 26	#4 Coyote Spring
MX-181-10/15	11/03/80	T3N, R63E, NE 1/4 Sec. 25	#4 Coyote Spring
MX-181-10/16	11/03/80	T3N, R63E, NW $1/4$ Sec. 24	#4 Coyote Spring
MX-181-10/16A*	11/21/80	T3N, R63E, NW 1/4 Sec. 24	#4 Coyote Spring
MX-181-10/17	11/03/80	T3N, R63E, SE 1/4 and	#4 Coyote Spring
MX-181-10/18	11/13/80	NE 1/4 Sec. 13 T3N, R64E, NE 1/4 and NW 1/4 Sec. 18	#4 Coyote Spring
MX-181-10/19	11/13/80	T3N, R63E, SE $1/4$ Sec. 11	#1 Bailey Wash
MX-181-10/20	11/13/80	T3N, R64E, NW 1/4 and	#1 Bailey Wash
MX-181-10/21	11/13/80	SW 1/4 Sec. 6 T4N, R63E, SW 1/4 Sec. 36	#1 Bailey Wash
MX-181-10/22	11/13/80	T3N, R63E, NW 1/4 Sec. 11	#1 Silver King Mtr
MX-181-10/23	11/13/80	T3N, R63E, NW $1/4$ Sec. 2	#1 Silver King Mtr

₩ Ertec

TABLE F-11

Shelter Summary Table

```
DRY LAKE VALLEY
```

		Date		Map References			
RSS	No.	Surveyed	Legal Description	1:9600 U.S.G.S.			
MX-18	31-RSS/1	11/11/80	T3S, R64E, NE 1/4 Sec. 9	#31 Pahroc Spring NE			
	31-RSS/2	11/11/80	T1S, R64E, NW 1/4 Sec. 19	#19 Deadman Spring SE			
	31-RSS/3	11/11/80	T1S, R65E, NW 1/4 Sec. 19	#21 The Bluffs			
	31-RSS/4	11/11/80	T1N, R65E, NW 1/4 and	#14 Ely Springs			
		· • • • • • •	SW 1/4 Sec. 6				
MX-18	31-RSS/5	11/11/80	T2N, R64E, NW 1/4 Sec. 16	#9 Coyote Spring			
CMF	No.						
MX-18	31-CMF/1	10/19/80	T3S, R64E, SE 1/4 Sec. 8, SW 1/4 Sec. 9	#31 Pahroc Spring NE			
MX-18	31-CMF/2	11/04/80	T3S, R64E, NW 1/4 Sec. 13, NE 1/4 Sec. 14	#32 Pahroc Spring NE			
MX-18	31-CMF/3	11/13/80	T2S, R64E, NW 1/4 and SW 1/4 Sec. 7	#24 Deadman Spring SE			
MX-18	31-CMF/4	11/04/80	T1S, R64E, SW 1/4 Sec. 23	#20 Deadman Spring SE			
MX-18	31-CMF/5	11/03/80	T1S, R65E, SW 1/4 Sec. 16,	#21 The Bluffs			
			NW 1/4 Sec. 21				
MX-18	31-CMF/6	11/03/80	T1N, R63E, SW 1/4 Sec. 31	#16 Deadman Spring NE			
MX-18	31-CMF/7	11/13/80	T1N, R64E, NW 1/4 Sec. 11	#13 Deadman Spring NE			
MX-18	31-CMF/8	11/04/80	T1N, R65E, NE $1/4$ and	#14 Ely Spring			
	,		NW 1/4 Sec. 5				
MX-18	31-CMF/8A	11/20/80	T1N, $R65E$, $NE 1/4$ and	#14 Ely Spring			
			NW 1/4 Sec. 5				
MX-18	31-CMF/9	11/12/80	T2N, R64E, NW $1/4$ and	#9 Coyote Spring			
			SE 1/4 Sec. 2				
MX-18	31-CMF/10	11/04/80	T2N, R64E, NW 1/4 Sec. 5	#8 Coyote Spring			

F-11

≡ Ertec

APPENDIX G

LIST OF CONTACTS

1

.

.

APPENDIX G

CONTACTS

Federal and State Agencies

Glenn Amy Physical Scientist U.S. Army Corps of Engineers Long Beach, CA

Tom Ball Biologist Cedar City BLM District Cedar City, UT

Mark Barber District Biologist Ely BLM District Ely, NV

Rob Bounimici Biologist Nevada Division of Wildlife Panaca, NV

Osborne Casey State Fishery & Forestry Biologist Nevada State BLM Reno, NV

Pam Cosby Nevada MX Field Project Office Carsor City, NV

Michael Coffeen Resource Analyst Utah State Div. of Wildlife Resources Cedar City, UT

Charles Crunden District Biologist Nevada Division of Wildlife Las Vegas, NV

Douglas Day Director Utah Div. of Wildlife Resources Salt Lake City, UT

Dick Fisher U.S. Fish and Wildlife Service Boise, ID

🖻 Ertec

G-1

E-TR-48-II-I

Joyce Gebhardt Biologist Cedar City BLM Cedar City, UT

Dave Goicoechea State Wildlife Biologist Nevada State BLM Reno, NV

Janet Holm U.S. Fish and Wildlife Service Portland, OR

Steve Hedges Biologist Cedar City BLM Cedar City, UT

Tom Herr Biologist Cedar City BLM Cedar City, UT

Gary Herron Non-game Biologist Nevada Department of Wildlife Reno, NV

Richard Howard U.S. Fish and Wildlife Service Boise, ID

Grant Jense Utah Division of Wildlife Resources Salt Lake City, UT

Arlen Jensen District Manager Cedar City BLM District Cedar City, UT

Þ

١

\$

Ronald Lee District Biologist Nevada Department of Wildlife Las Vegas, NV

Mark Maley Wildlife Biologist Las Vegas BLM Las Vegas, NV G-2

 Γ

Ξ Ertec

Dorothy Mason Wildlife Biologist Tonopah BLM Office Tonopah, NV

Bill McMahan Wildlife Biologist Utah State BLM Office Salt Lake City, UT

William Molini Chief of Habitat Resources Nevada Department of Wildlife Reno, NV

Dick Morrison Nevada BLM MX Coordinator Reno, NV

Darrel Nish Utah State Division of Wildlife Resources Salt Lake City, UT

Ken Olson Utah State MX Coordinator Salt Lake City, UT

Rick Orr Caliente BLM Office Caliente, NV

Dick Page Biologist State BLM Office Salt Lake City, UT

Don Pendleton District Manager Richfield BLM District Richfield, UT

Dave Pulliam District Biologist Las Vegas BLM District Las Vegas, NV

Wayne Richards Utah BLM MX Coordinator Salt Lake City, UT

Scott Robinson Biologist Ely BLM District Ely, NV

, ·

E Ertec

E-TR-48-II-I

Dale Roth Cedar City BLM District Cedar City, UT

Robert Shields Area Manager U.S. Fish and Wildlife Service Salt Lake City, UT

Homer Stapely Utah State Division of Wildlife Resources Salt Lake City, UT

Vaughn Swain District Chief of Resources Cedar City BLM District Cedar City, UT

Bob Taylor Las Vegas BLM District Las Vegas, NV

Cliff Yardley Chief of Division of Resources Salt Lake City BLM District Salt Lake City, UT

Mike Yoder-Williams Winnemucka BLM District Winnemucka, NV

Public and Private Sector

Dr. Loran Anderson Florida State University Talahassee, FL

Garwin Lorain NRC Consultants Reno, NV

Dr. Hugh Mozingo Univ. of Nevada Reno, NV

Ann Pinzel Director of Natural History Nevada State Museum Carson City, NV G-4

E-TR-48-II-I

Den al

1

Đ

Jerry Tiehm Botanist Reno, Nevada

Paul Tueller NRC Consultants Reno, NV

Dr. Stanley Welch Brigham Young University Provo, UT

Dr. Clayton White Brigham Young University Provo, UT

Margaret Williams President, N. Nevada Native Plant Society Reno, NV

G~5

Æ

APPENDIX H

 \mathbb{T}

LIST OF PREPARERS

~ _____

APPENDIX H

LIST OF PREPARERS

Project Management

Ivan L. Starke, Ph.D. Ertec Northwest, Inc. Project Director

Gail Thompson, Ph.D. Ertec Northwest, Inc. Project Manager

Biological Resources

James Rybock, Ph.D. Ertec Northwest, Inc. Biological Advisor

.

Joan Cabreza, M.S. Ertec Northwest, Inc. Biological Coordinator

Janice Freeman, M.S. Ertec Northwest, Inc. Field Supervisor

Jane Erickson, M.S. Ertec Northwest, Inc. Staff Biologist

Julie Fuller, B.S. Ertec Northwest, Inc. Asst. Biologist

Field Personnel

Phyllis Bummer, B.S. Asst. Biologist

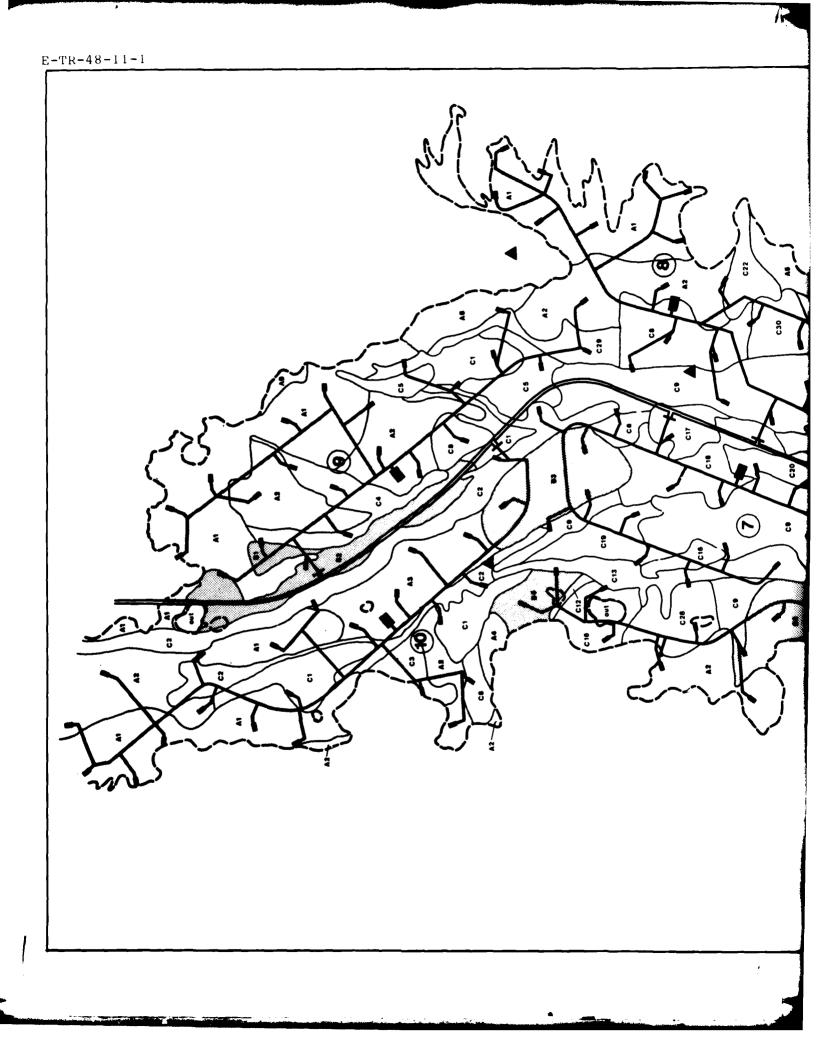
Steve Cox, M.S. Asst. Biologist

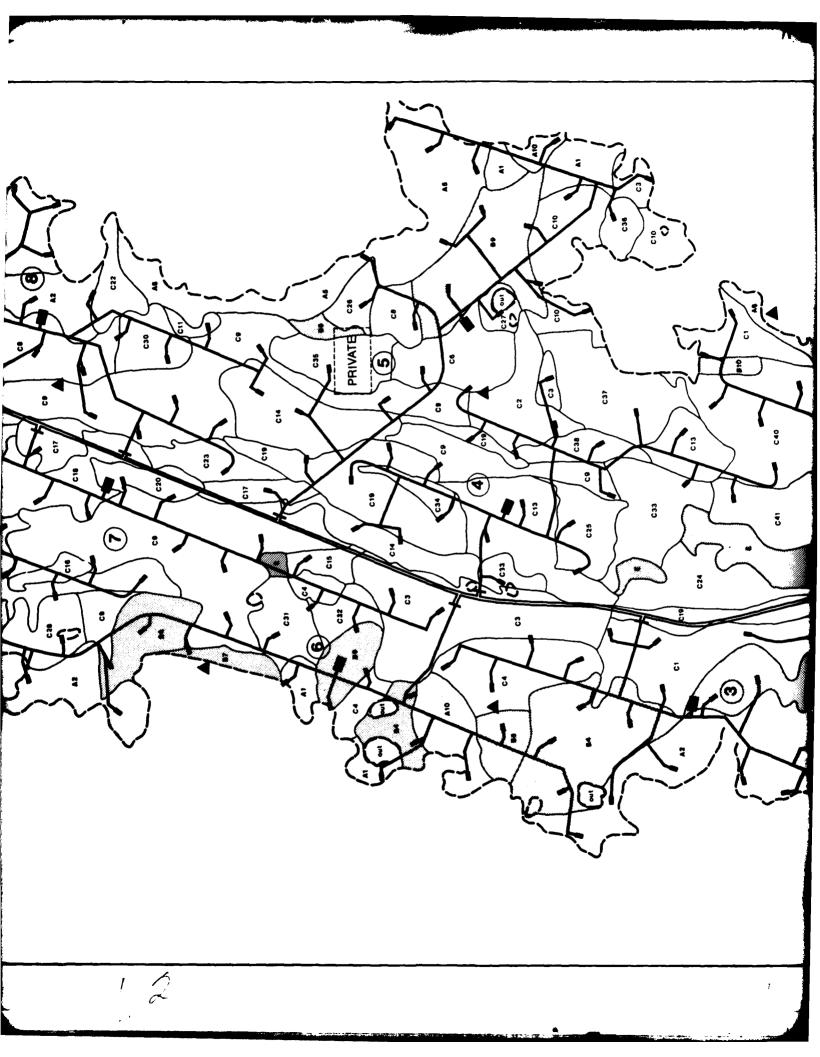
Leigh Luce, B.A. Asst. Biologist

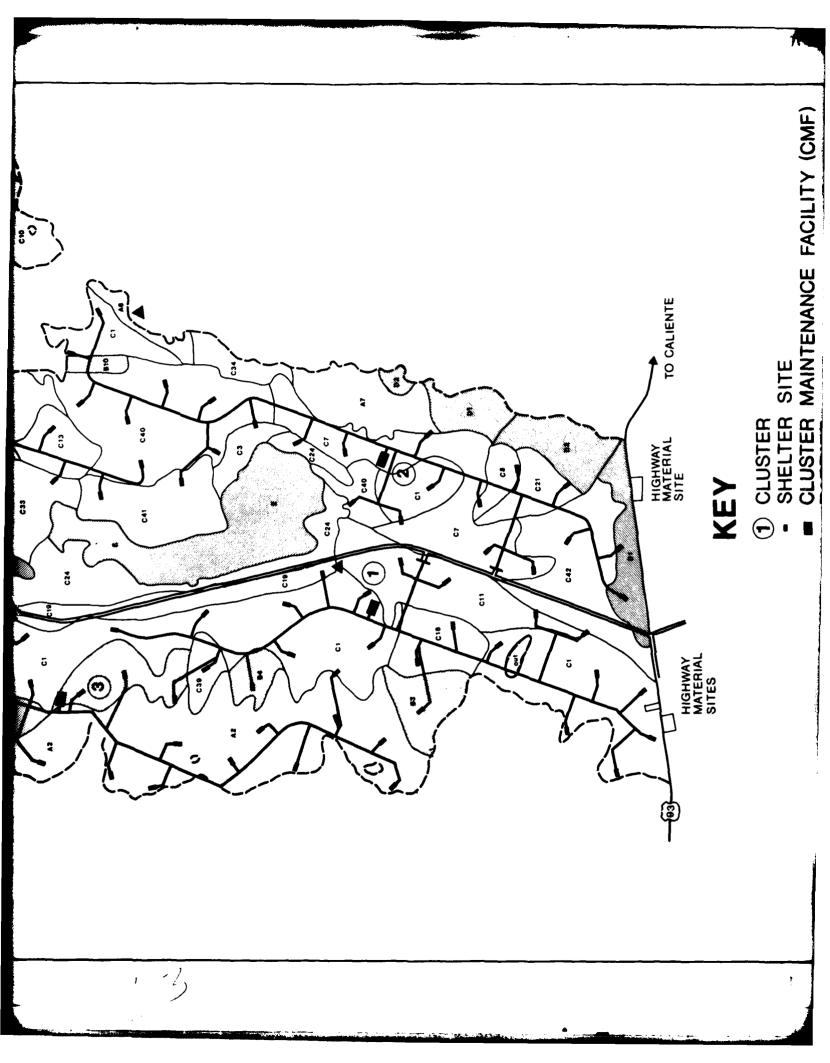
Frank Smith, B.S. Asst. Biologist

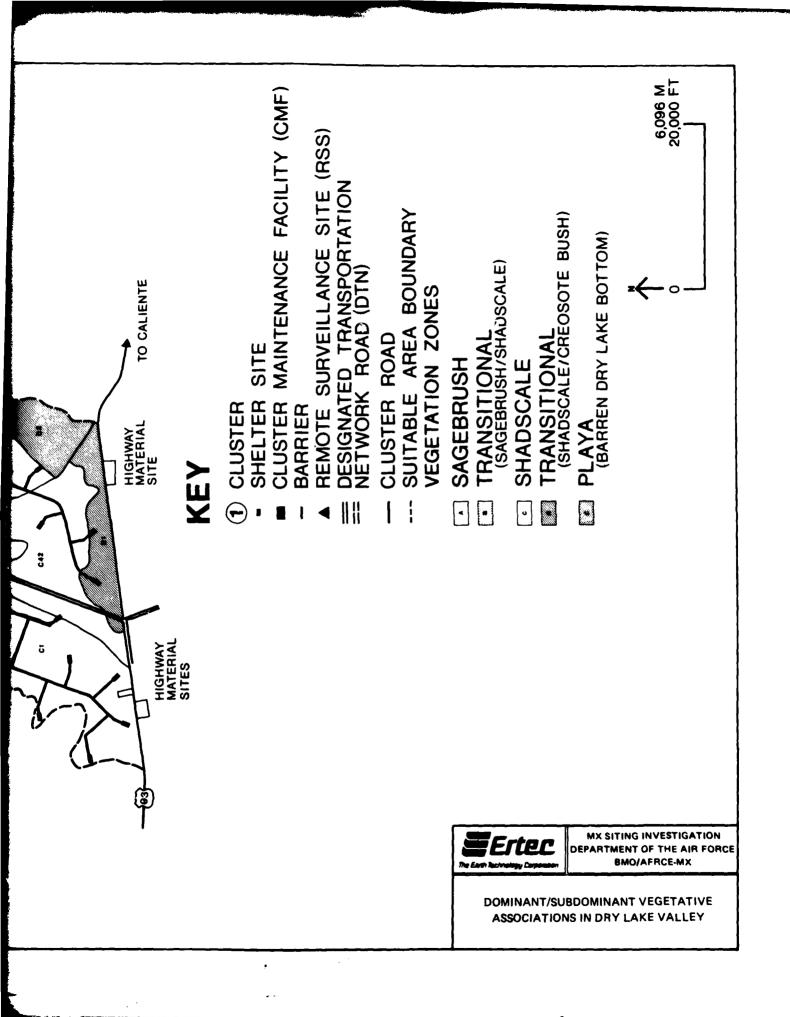
., I

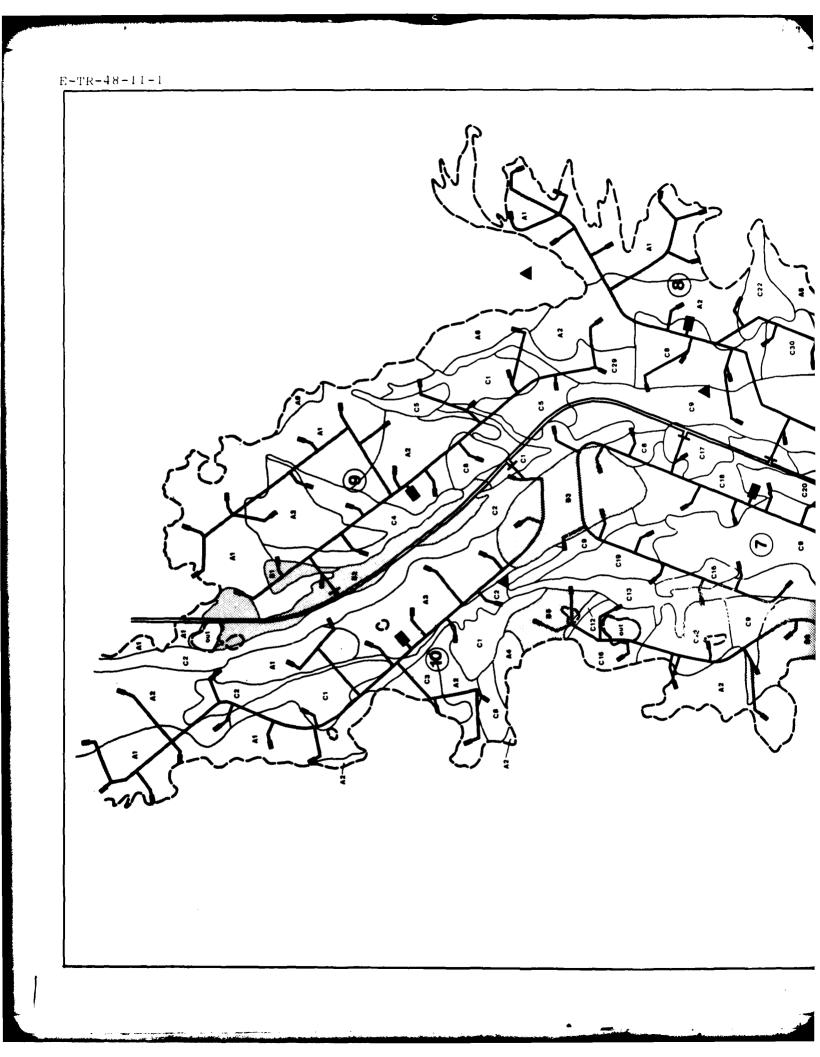
H-1

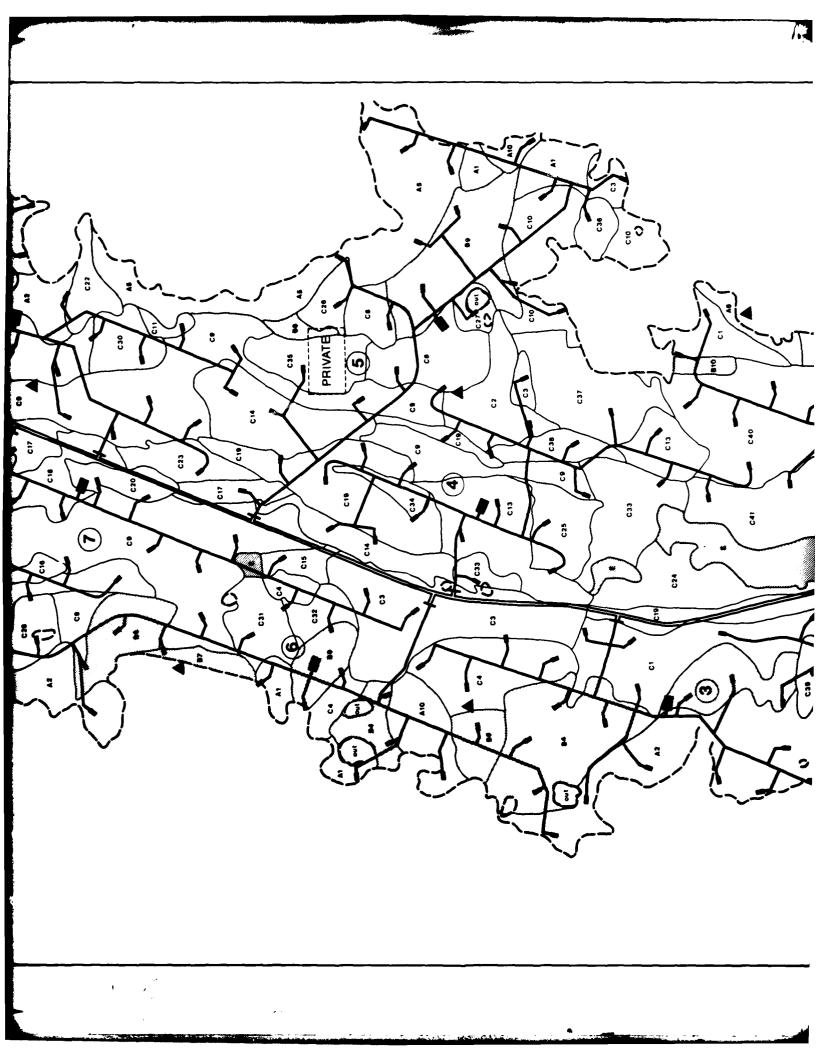

Л

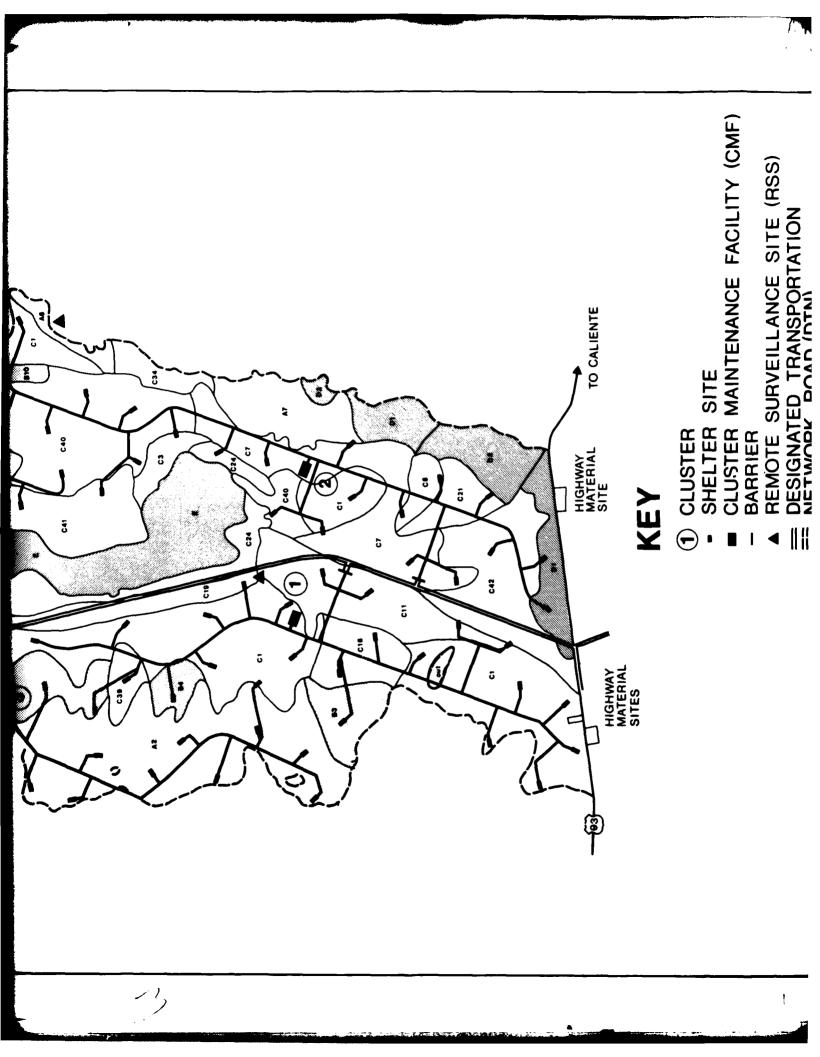

APPENDIX I


Т


VEGETATIVE MAP


, I





HIGHWAY HIGHWAY BITE SITE SITES KEY KEY	 CLUSTER SHELTER SITE SHELTER SITE CLUSTER MAINTENANCE FACILITY (CMF) BARRIER 	REMOTE SURVEILLANCE SITE (RSS) DESIGNATED TRANSPORTATION DESIGNATED TRANSPORTATION RETWORK ROAD (DTN)	CLUSTER ROAD SUITABLE AREA BOUNDARY VEGETATION ZONES			(BARREN DRY LAKE BOTTOM)	
					NT/SUBD	OMINA!	ING INVESTIGATION INT OF THE AIR FORCE MO/AFRCE-MX NT VEGETATIVE LAKE VALLEY
		1	11	_ L		<u> </u>	

-1000-

