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L The model is soundly based in propagation theory and calibrated against the best
available scintillation data. It is limited, however, by both theoretical approxi-
mations and incemplete data. Inherent in the model are research choices of effec-
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result is that the phase scintillation indices calculated account only for the
effect of structure of sufficiently small scale (on the order of a kilometer) that
intensity scintillation at VHF can be produced. Larger-scale phase trends must be
accounted for separately, although a straightforward extrapolation is often ade-
quate. Furthermore, \the model describes only representative conditions for the set
of input parameters selected by the user, Night-to-night departures from the calcu-
lated "mean" scintillation levels for a given set of state parameters (including
sunspot number and Kp) e not accounted for and can be considerable.
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I INTRODUCTION

This document presents the final results of an effort to develop a
computer model of the transionospheric radio communication channel. It
contains an overview of the model, including the propagation theory em-
ployed, the ionospheric morphology incorporated, and the signal statistics
characterized., Its companion volume (Rino et al,, 1977)* will be a users'

guide to the computer codes developed in the program.

Initial work on the program extended a preexisting model of inten-
sity scintillation to provide a mathematical framework for characterizing
the full first-order statistics of a complex signal transmitted through
the ionosphere. 1In the first half of the present contract, the first-
order, signal-statistical model was tested against observations of inten-
sity and phase scintillation from the Navy Navigation (Transit) satellites
and ATS-6. The model was thereby improved substantially and extended to
the second-order, temporal-statistical domain to permit calculation of
the temporal autocorrelation functions of intensity and phase. 1In addi-
tion, conditions were removed that had restricted the model to weak,

single scatter.

One aspect of recent work on the program was to provide the capability
for calculating second-order signal statistics to other than the temporal
domain, In particular, one may now employ the computer code IONSCNT to
calculate the spatial autocorrelation functions of phase and intensity
and the intensity correlation coefficient for two frequencies transmitted
through the ionosphere. The final work was to perform iterative testing
of the model against definitive intensity and phase scintillation data
obtained by means of the DNA Wideband satellite, to improve quantitatively
both the signal-statistical and morphological aspects of the model.

*
References are listed at the end of this report,
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The signal-statistical postulates and the propagation theory employed
are described in Section II of this report. The average morphology of
the ionospheric structural parameters that control scintillation, as in-
corporated in the model, is described in Section II1I. The two computer
codes by means of which the model is implemented are outlined in Section
IV, and some sample calculations are presented; the codes will be de-
scribed fully in a companion volume (Rino et al., 1977). 1t is to be
noted that the morphology employed in the model is limited to "average"
conditions representative of the ionosphere for a set of state parameters
(location, time of day, day of the year, sunspot number, and planetary
magnetic index) to be specified by the user. Departures from the "mean'
behavior for a given set of state parameters are not accounted for. This
and other limitations of the model are described in Section V of this

volume, in which we present our conclusions from this work,




IT SIGNAL STATISTICS AND PROPAGATION THEORY

A, Heuristic Description

The transionospheric communication channel may be regarded as a
linear filter, the transfer function of which varies temporally and spa-
tially. Fundamentally, the ionosphere behaves as a dispersive, phase-
shifting network for all radio waves. The gross carrier phase shift,
group delay, and dispersion introduced all are proportional to the inte-
gral of electron density along the principal raypath of a communication
link. This integral, the "totaltelectron content" (TEC), displays irend-
like variations with location on the earth, time of day, season, and the
level of solar/geophysical activity. These trends take place on very
large spatial scales (hundreds and thousands of kilometers) and long time
scales (tens of minutes and hours), and the communication-channel effects
associated with TEC are best treated deterministically. Models of TEC
behavior and effects (e.g., Klobuchar, 1975) are available for applica-
tion to the design and operation of communication and navigation systems

and of radars,

The present work addresses effects of smaller-scale (tens of meters
to tens of kilometers) ionospheric structure on link performance over
shorter time scales (fractions of a second to minutes). Unlike the de-
terministic effects of TEC, the intensity and phase scintillations pro-
duced by the small-scale structure are best described in terms of signal
statistics, As described in interim reports on this contract (e.g.,
Fremouw and Rino, 1976), the signal-statistical model developed is com-
plementary to existing TEC models, in terms of time scale and spatial

gscale and in terms of link effects,

The large-scale structures identified as trends in TEC produce pure
phase trends in CW signals, whereas the unambiguous signature of smaller-

scale, scintillation-producing structure i{s well-developed intensity
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fluctuation, accompanied by phase variations. The slowest intensity
scintillations typically are observed to be relatively weak and to be

accompanied by relatively strong phase scintillationms,

An example of complex-signal scintillation is presented in Figure 1,
The data presented are from the DNA Wideband satellite (Fremouw et al..
1977). Phase (TEC) trends with Fourier periods greater than 10 s have
been removed, as have intensity trends (due to changing range to the
satellite, etc.), The complex-signal scintillation clearly is dominated
by phase variations, but intensity fluctuations also are present on all
Fourier frequencies greater than 0.1 Hz, as is demonstrated in Figures
2 and 3,

Figure 2 illustrates the scintillations contained in Figure 1 that
have Fourier periods between 2.5 and 10 s, isolated by means of filtering
intensity and phase. The weak intensity variations present are correlated
with the strong phase variations that dominate the complex-signal scintil-
lation in this period range. The correlation is evident in the complex-
plane scatter plot at the top of the figure; that is, there is a marked
tendency for a phase advance to be accompanied by a weak fade and for a
phase retardation to be accompanied by weak signal enhancement, This is
the behavior that would be expected in the geometric-optics (near) zone

of large, lenslike ionospheric irregularities.

The scintillations with Fourier periods shorter than 2.5 s are illus-
trated in Figure 3, which shows that most of the intensity scintillation
occurs in this period range, accompanied by relatively weak phase fluctu-
ations, The statistical behavior illustrated is consistent with diffrac-

tive scatter by smaller-scale irregularities,

The behavior typified by Figures 2 and 3 prompted us to postulate
that the complex envelope, E, of a scintillating signal may be character-
ized in terms of the following two-component, signal-statistical model
(Fremouw and Rino, 1976):

E=E E; = (xs +1y ) exp (X + 18)) (1)
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FIGURE 1
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THREE REPRESENTATIONS OF VHF (138 MHz) COMPLEX-SIGNAL
FLUCTUATIONS DURING 90 s OF A SATELLITE PASS OVER STANFORD,
CALIFORNIA. Top to bottom: Scatter plot on complex plane; real and
imaginary parts of complex signal; amplitude and phase of complex signal.
Intensity and phase scintillation indices are S4 = 0.28, ana o = 1.58 rad,
respectively.
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FIGURE 2 THE FOCUS COMPONENT (containing intensity and phase fluctuations with
Fourier periods shorter than 2.5 s) OF THE COMPLEX-SIGNAL SCINTILLATION
PRESENTED IN FIGURE 1
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FIGURE 3 THE SCATTER COMPONENT (containing intensity and phase fluctuations with
Fourier periods shorter than 2.6 s) OF THE COMPLEX-SIGNAL SCINTILLATION
PRESENTED IN FIGURE 1
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where X and y, are jointly Gaussian variates, as are Xf and ¢f. It is

supposed that ES and E_ are statistically independent. Thus, the first-

f
order statistics of E are totally specified by six (co)variances: oi,
2 2 2

g ,0O c,0.,0 .
y’ xy’ x’ ¢’ X¢
eters of the ionosphere by means of the propagation theory described in

The "six sigmas" are related to structural param-

Section II1-B; the resulting relationships are summarized in Section II1I-A,

There have long been two intuitive notions about the complex-signal
statistics to be expected for a scintillating signal. The first is based
on the conceptual model of summation of "randomly" phased contributions
from a large number of scattering centers (Ratcliffe, 1956). This notion
leads to the suggestion of Rice (1945) statistics or a generalization
thereof (Beckman and Spizzichino, 1963), in which the quadrature components
of the signal are possibly correlated Gaussian variates with possibly
different variances (Rino and Fremouw, 1973; Rino et al., 1976). The
second notion is of a radio wave propagating in essentially straight paths
along which the phase is randomly increased and decreased in such a way
that the output phase is a Gaussian variate (Bramley, 1955). A natural
extension of this view is to suppose that the real and imaginary parts

of the logarithm of the signal are normal variates,

The two-component model defined above is simply a unification of the
foregoing two notions in a way suggested by the first definitive complex-
signal scintillation data to become available. The two components are
multiplicative because they were isolated experimentally by a process
equivalent to a coherent AGC circuit. Heuristically, the components
might be expected to be multiplicative because they stem from additive
perturbations of the imaginary part of the complex logarithm (i.e.,
phase)., A partial formalizing of the two-component propagation theory
is described in Section II-B.

Our propagation calculations employ (1) the phase-screen approach
to describing the wave perturbation imposed by ionospheric structure,
subject to the Markov approximation, and (2) the parabolic-wave equation
for calculating diffraction effects, which is appropriate for all narrow-

angle scatter problems., The unique feature of the approach is partitioning
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of the ionospheric spatial spectrum into two scale-size regimes (of no
geophysical significance) to permit efficient computation and to incor-
porate the empirically derived two-component signal-statistical model.

In essence, the computations are divided into one that accounts fully for

diffractive scatter by relatively small-scale irregularities and one that
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employs the ray-optics approximation appropriate for efficient evaluation
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of focusing and defocusing by larger-scale irregularities.

A heuristic picture of the two-component model might be of a wave

e st am
. I
W

encountering a scattering layer, emerging with a scattered and a non-

scattered part, and then passing through a region of larger phase-perturbing

structure, The phase of both the scattered and nonscattered parts would
be spatially modulated by the second region. Statistically, at least,
the results would be the same if the positions of the two perturbation
processes occurred in the same region. In this heuristic view, one might
suppose that only the coherent (nonscattered) part of the scatter compo-
nent would produce focuses after propagating through the large-scale,
phase-perturbing screen., There is some evidence to support this suppo-
sition in data from the DNA Wideband satellite, and we have imposed a
focusing limit in the model,

B. Mathematical Development

To develop a mathematical formalism that will allow us to - .late the
parameters that characterize the first-order signal statistics to the
irregularities that ultimately cause the scintillation, we first consider

the parabolic-wave equation,

BES’-I.IZQ = - _L - - -
37 i 4Tt V% E(r,z) + ire A MN(r,z) E(r,z) . (2)

By making the partition
AN=ANS+ANf (3)

in Eq. (2), where ANS gives rise to the scatter component and ANf gives
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rise to the focus component, and substituting E = ESEf from Eq. (1) into
Eq. (2), we obtain the coupled differential equations,

oE vV E
s A A T f
Z=-14ﬂv§Es+1rexmsEs-12n(E )VTES (4a)
9 f
and
oE
£ A
i VE +ir A NE. . (4b)
X )
:5 The second equation is solved for the log amplitude, Xf, and phase,
¢f’ of Ef by using the ray optics approximations
L - .
f—re)\sec Bf ANf(ps+tan9akr z,z) dz (5)
(+]
and
oX
£ 1 v2
— = ¢ (6)
Y/ 2k T 'f
where
Pg = P - tan 0 akT z . N
The notation used here is defined in Rino and Fremouw (1977).
From Eqs. (5) and (6) it follows that
2R, 2R, 52R¢
Az sec O t £ £
X P -(——ﬁ.-—-) a — 4+ 2 a - + a —_— (8)
(%% 5 1 gt 12 S 3o, " 422 37
and that
10
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(xeXe) = Az gee 2 i : T * ey - (“312 + 23, 22) >

3bo_ dAp abp 3bp_cbp

a*r a*r
+ 4 ¢f + a2 ¢f 9
a —

12%22 aAp aAp 22 aApa

where R¢f is the phase autocorrelation function. The coefficients a,

are defined in the companion volume, as is the form of the phase auto-

correlation function.

The scatter component is more difficult because the near-zone approxi-

mation cannot be made. Moreover, we must also consider the coupling term
in Eq. (4a). We assume, however, that the partitioning in Eq. (3) is
such that the scale for changes in V, /Ef (i.e., Vp In E ) is much larger
than the scale for changes in vas' Then Eq. (4b) can be solved as if
the V’TEf/Ef term were constant. In this case, it can be shown that the
gradient term makes no contribution to the second-order moments of Es.
If we make the further assumption that E is Gaussian, the second-order
moments completely specify the statistics of E . If follows that the
ViEf/Ef term has no effect on the statistics of E_--that {s, E_ and E
are statistically independent.

By this argument, we can neglect the coupling term in Eq. (4a). To

then solve Eq. (4a), we use the phase-screen approximation so that

E, (3, z) jj%(p -0 ) exp | i ( ) lap’ (10)

where F(B - 3') is the free-space diffraction kernel for a wavefield
scattered through narrow angles. Because Es is Gaussian, its statistics
are completely specified by the second-order coherence functions
R, = (EE*) and B_ = (EE_),

When Rs is computed using Eq. (10), the diffraction kernel becomes

a delta function so that Rs does not vary with z, Thus, a simple analytic
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formula that is given in Section 2 of the Appendix of the companion volume
(Rino et al., 1977), can be used. For Bs a formula very similar to Eq.
(10) results, which must be evaluated numerically. The details are de-

scribed in the companion volume.

To summarize, as long as Es is Gaussian and the scale for changes
in VT In Ef is very large compared to the scale for changes in V& Es’ we
can relate the multiplicative scatter and focus components to disjoint
and therefore independent spectral scale size regimes of the contributing
irregularities. From these relations we can calculate the signal moments
that describe the field as a function of parameters that characterize the
spectrum of the ionospheric irregularities. This constitutes the formal

basis of all the mathematical computations used in the code.

12




SaURe J0dn See e e L aat s Siadh sk gt Sk e 3 S 2n B B Sue aui uad il it St el sl S
- AN . NGRS A DA A N . R

ITT SCINTILLATION MORPHOLOGY

A, Controlling Parameters

As will be outlined in Section IV, two computer codes have been de-
veloped under this contract. The primary scintillation calculations are
performed in the more elaborate of the two codes, IONSCNT. There are
two operational modes in IONSCNT, one to provide first-order signal-
statistical parameters and one to provide second-order quantities. The
ultimate outputs of the first-order mode are the six sigmas that charac-
terize the two-component scintillation model and the scintillation indices

for phase, ¢, and intensity, I, which are defined respectively as follows:

oy = [<¢2> - <<z>>2]1E (11)

£
2 2
s, = [(1 >(;)(1> ] _ (12)

According to the two-component model, the phase and intensity scintil-
lation indices for the composite signal are given in terms of those for

the scatter and focus components as:

2 2 2
Oy =g + 0y (13)
s £
and
2 2 2
S, = (S“s + 1) (Saf + 1) -1 . (14)

The component indices are obtained as follows. The most complicated
is the phase scintillation index for the scatter component. It is ob-

tained by performing the following two integrations:

13
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<¢s> .=j; ¢s I’h < ¢t Ix ° c’y » %% ys>d¢s (15)
and
2 _f 2 . o de
= do O (% oxs’ Ve cxsy5> ® (16)

over p, the Hatfield phase distribution for a signal with complex Gaussian
statistics. The Hatfield distribution (Hatfield and Rino, 1975) is
specified by

2 1

oy =3 [Ros - Re {Bos}] (17)
s

2 _1
cys =3 [Ros + Re {Bos}] (18)

2 1
oxsys = 3 Im {Bos} (19)

where
-OZL

R =1-¢ ® (20)

where oi is a scattering coefficient per unit depth in a layer of thick-
ness L [see Eq. (31)], and Bos is obtained from numerical gvaluation of
the diffraction integrals by a procedure described in the companion vol-
ume (Rino et al., 1977). The quantities above are also used to calculate
the intensity scintillation index for the scatter component, as follows:

2 2 2
sas = 4axx(l - Ros) + IBosl g (21)

The phase and intensity scintillation indices for the focus compo-

nent are calculated, respectively, as

2 2 2
=} = -
of af L (22)
14




and
S = e -1 (22)

where OiL is the variance of phase perturbation imposed by a layer of
thickness L [see Eq. (30)], and cif is obtained from numerical evaluation
of differential equations derived from the geometric-optics approximation
of the parabolic wave equation, as described in Section II-B; the same

approximation is used to calculate Oxg®s

The propagation equations that govern Bos’ cif, and Oxe@¢ depend upon
the observing geometry relative to a horizontally stratified ionospheric
layer and to a geomagnetic field model and upon several parameters that
characterize the size and shape of ionospheric irregularities. As de-
scribed in the companion volume, the three-dimensional spatial power spec-
trum employed to describe the irregularities has a power-law form with
a spectral index of minus four, corresponding to an in-situ (one dimen-
sional) spectrum of K-z. Provision is made for anisotropy in two di-
mensions, one along the magnetic field and one perpendicular to the field.
The spectrum over which the variance of ionospheric electron density,
((AN)Z), is modeled is limited by an outer-scale parameter, @, and the
spectrum is divided into two components by means of an inner-scale cutoff
for the focus component, Bf, and an outer-scale parameter for the scatter

component, as.

B. Behavior of Axial Ratios, Scale Sizes, and Height

The axial ratios, a (along the field) and b (perpendicular to the
geomagnetic meridian plane) were set to reproduce known geometrical char-
acteristics of scintillation. Interferometer observations have shown
that scintillation-producing irregularities are highly elongated along
the magnetic field near the geomagnetic equator (e.g., Koster et al.,
1966). Recent studies by Rino (1977) indicate that high-latitude irregu-
larities-are somewhat elongated perpendicular to the geomagnetic meridian
as well as along the magnetic field (i.e., that they are sheet-like along
L-shells rather than axially symmetric along the field),
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To include the foregoing experimental characteristics, the axial
ratios a and b have been modeled as functions of geomagnetic latitude,

\_, as follows:
m

A - 20°
a=30-10(1+erf o (24) ‘
and
Ay A
b=1+2.5 1+erfJ‘3°— (25)

where kb demarks the geomagnetic latitude of the scintillation boundary
between the midlatitude ionosphere and the subauroral ionosphere. Equa-
tion (24) provides an along-field axial ratio of 30 near the geomagnetic
equator, switching to 10 fairly abruptly at a geomagnetic latitude of
20°. Equation (25) describes axial symmetry at latitudes equatorward of
the scintillation boundary. Poleward of the boundary there is an addi-
tional elongation in the geomagnetic east-west direction, with a ratio

of 6:1 (b = 6) relative to the remaining cross-field dimension.

The three scale parameters o, Bf, and °§ were established by
iterative testing against signal-statistical samples obtained from passes
of the DNA Wideband satellite. The most satisfactory fits were found to
be different at different latitudes. (No data were available from the
polar caps.) Variation of the scale-size parameters with geomagnetic

latitude, Xm, has been modeled as follows:

A - 20°
@, = 900 + 850 |1 + erf “‘—3—> meters (26)
Bf = af/2.5 27)
and
a = af/a . (28)
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Equation (26) provides an outer scale (transverse to the magnetic
field) of just under 1 km (i.e., approximately equal to the Fresnel-zone
radius for VHF waves in the F layer) near the geomagnetic equator and of
about 2.6 km poleward of 20° geomagnetic latitude. It is to be noted
that the actual outer scale of ionospheric irregularities probably is
considerably greater than one or a few kilometers; the present model
accounts only for irregularities that produce scintillation, defined in
terms of intensity fluctuation. Equations (27) and (28) are used to
maintain effective continuity between the focus and scatter components
of the spatial spectrum employed, while also safeguarding validity of
the ray-optics approximation used for calculating propagation of the focus

component of the perturbed wave.

The reason for employing a smaller outer scale in the equatorial
region than elsewhere is that we have consistently observed with the DNA
Wideband satellite that the ratio of S[+ to c¢ is larger (unless, of course,
s4 is near its limiting value of approximately unity) in the equatorial
region than elsewhere, for data processed in an identical fashion. 1In
terms of the phase-screen model, this observed fact means that a given
level of phase perturbation (within the spatial spectrum admitted by
10-s detrending) results in stronger propagation effects (focusing and
diffraction) near the equator than at higher latitudes. Employing a
smaller outer scale for a given level of ((AN)Z) is one way of accounting
for such behavior, A systematic decrease in the spectral index with
decreasing latitude also could account for this effect. A variable spec-
tral index, however, greatly complicates the computer code. Thus, we

have not incorporated this option,

A greater propagation distance (i.e., employing a greater scattering-
layer height) also increases the level of intensity scintillation, There
is evidence from backscatter observations (Woodman and La Hoz, 1976), for
development of fine structure from the bottomside to the topside of the
equatorial ionosphere. We have incorporated a simple latitude dependence

of scattering-layer height in the model, as follows:
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A - 20°
H =500 - 75 1+erf—m——3°—km (29)
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,

which places the center of the layer at 350 km at geomagnetic latitudes

greater than about 20° and at 500 km near the magnetic equator.
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C. Behavior of Scattering Strength

Once geometric and signal-statistical behavior is modeled by choice

of axial ratios, scale sizes, and height, the worldwide morphological
behavior of scattering strength is the dominant consideration for scintil-
lation modeling. The total disturbance imposed on the wave consists of
the wavefront perturbation imparted by both the focus and scatter portions
of the spatial spectrum, whose integral is ((AN)Z), For the focus com-
ponent, the variance of the phase perturbation imposed by a layer of

thickness L is given by

;Sj The corresponding quantity for the scatter component is

oL = <2 22 abe (40 0)

L sec © (31)
S e G cos ©

3 where © is the incidence angle on the layer, G depends on details of the
scattering geometry through the anisotropy of the irregularities, T, is
the classical electron radius, A is the radio wavelength, and the K's

Zt% denote the modified Bessel function.

;j All the geophysical parameters in Eqs. (30) and (31) were discussed
in Section III-B, except L and ((AN)2> = ((AN)§> + ((AN)i). In conjunc-
tion with the latitudinal dependence of layer height, the layer thickness

o also was modeled as a simple function of geomagnetic latitude, as

- follows:

18
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X - 20°
L=200-50(1+erf—m3—°—)km . (32)

With dfand ds set, the relative amount of perturbation assigned to the
focus and scatter components is that required for their respective spectra

to be asymptotically continuous, The condition is

((m?) = Z—: (@m?) . (33)

Finally, observed morphological characteristics of intensity and
phase scintillation were invoked to write the following mean, morphological
description of ((AN)Z):

<(AN)§>% - Aum(xm,'r) + Auh(xm,r,xp) + ANa(,\m,T,KP)

+ ANe(km,Xg,T,D ,R) . (34)

The first two terms and the last term on the right of Eq. (34) account
for bebavior at, respectively, middle, high, and equatorial latitudes,
as functions of geomagnetic latitude, Xm, geographic latitude, Xg’ local
time of day in hours, T, day of the year, D, mean sunspot number, R, and
the planetary magnetic activity index, Kp. The third term in Eq. (34)

accounts for scintillation associated with the auroral oval.

The midlatitude term, centered at a geomagnetic latitude of 32,5°,

contains only a simple diurnal variation, as follows:

2
A - 32.5°
AN =1.3 X 109(1 + 0.33 cos ﬂ)exp ( o ) . (35)
m 12 on2
. (15°)
The high-latitude term,
9 Ay o A 3
AN, =3 X 10 (1+erf mTh)el/m, (36)
h

dominates poleward of the scintillation boundary, the geomagnetic latitude
and width of which vary with magnetic activity and time of day as follows:
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Ap = 68.5 - LB K - (5+0.5 Kp) cos %% deg (37)

kh =5+0,2 Xb deg . (38)

Superimposed on the high-latitude term is the following auroral-oval

term:

AN = 3.2 x 108 K_ exp |- (39)
a p

where

T
Xa =74 - 1.8 Kp cos T, deg . (40)

The most complicated term in the morphological model is the following

one describing behavior near the geomagnetic equator:

9 (A, - 10° 2 gxm + 10°)2
AN, = 2.3 X 10” (1 + 0.04R) {exp |- — + exp |-
L

(10°)° (10°)°
( x
11 - 0.4 [cos MD—g';—E)- + ng; cos %l]
.
Lexp|- SI—i;lééli + exp | - 12—5-254223 el/m3 (41)
L (6) TR

where

3 >
TR 6 if TZ 22.5

Equation (41) describes a region of disturbance that peaks some 10° on
each side of the geomagnetic equator. This somewhat speculative morpho-

logical behavior has been invoked to account for a very persistent feature
of scintillation observed at Ancon, Peru and Kwajalein, Marshall Islands

20




(both within a few degrees of the magnetic equator) on signals from the
DNA Wideband satellite, The persistent behavior is an increase in
scintillation near the ends of satellite passes that is stronger than we
have been able to account for on the basis of any purely geometrical

feature of the model,.

Equation (41) also includes a linear increase of scintillation activ-
ity with increasing sunspot number, and a diurnal peak somewhat before
local midnight, with activity increasing rather rapidly after F-layer
sunset and decaying more slowly after the peak. The seasonal variation
includes equinoctial peaking but with a '"filling in'" of activity in the
local summer season (i.e., centered on the December solstice in the geo-
graphic southern hemisphere and on the June solstice in the geographic
northern hemisphere). This somewhat complicated behavior is consistent
with differences in seasonal patterns observed at Kwajalein and at Ancon
and reproduces reasonably well the equinoctial peaking observed by Koster
(1966) and Koster et al. (1966) for observations at a station near the

geographic equator in Africa; it is untested at other locations, however,
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IV COMPUTER CODES

Two user codes have been developed under this contract: IONSCNT for
calculating first-order and second-order signal-statistical moments, in-

cluding scintillation indices for intensity and for phase and several

F;: correlation functions; and DIST for calculating first-order, probability-
;ﬁ: density functions (PDFS) for intensity and phase and the corresponding
: cumulative distribution functions (CDFS).

s

!! Figure 4 shows a simplified, overall flow diagram for IONSCNT. The
f user inputs a set of selected ionospheric state parameters plus a descrip-
tion of his intended operational geometry. The code then calculates the
= appropriate ionospheric structure parameters from the morphological model
g contained in subroutines RMSDN and MDLPRM., The quantities relevant to

~ﬂ: the scatter and focus components are passed to routines for calculating

diffraction and geometric-optics propagation effects, respectively.

The outputs from IONSCNT always include the intensity and phase

scintillation indices, S, and O¢, and the six sigmas that describe the

two-component, first-ordir, signal-statistical model. If the user has
selected operating Mode II, second-order statistical counterparts are

put out as well, including the temporal autocorrelation functions of
intensity and phase, analogous information on the spatial autocorrelation
function, and (if requested) the correlation coefficient for intensity

fluctuations on two user-selected frequencies,

The temporal autocorrelation functions are computed from the calcu-
lated spatial autocorrelation function, using a velocity that accounts
both for line-of-sight motion through the F layer and an assumed drift
of otherwise unchanging ionospheric structure. The drift velocity is
eastward at a speed given by the following geomagnetic-latitude-dependent

model:

23




-

LI

Fira et ug o)
B o

RS A s e el AR e — —y ———

A - 20° SN
V,=50-151 + erf =—r +40(1+K)1+“‘—°—
d 3 p 3

which yields 50 m/s in the equatorial zone, 20 m/s at middle latitudes,

(42)

and upwards of 100 m/s poleward of the subauroral scintillation boundaries:,

depending on the level of geomagnetic disturbance,

An example of the Mode-I output of IONSCNT is presented in Figure 5.

The increase in scintillation early in the second half of the pass arises

from a combination of (1) geometric enhancement by sheet-like irregularit:es

GLOBAL
GEOPHYSICAL ( A~2>"’
PARAMETERS MODEL
{a, b, §)
SCATTER COMPONENT FOCUS

2 SEPARATION 2
l a,. (ANS) o, B', (AN')

DIFFRACTION
CODE

DRIFT RATE
{Mode 11 onty)

GEOMETRY
GEOMAGNETIC FIELD
0.9, 24,
FAR-ZONE 0 2p. ¥ NEAR-ZONE

DIFFRACTION

CODE

{I) FIRST-ORDER MOMENTS
“SIX SIGMAS”
2 2 2 2
g .0, .,C .00 ,0, ,C
R, . B X Y5 XY X4 ¢( x1¢f g

sd 4 ¢rms

(I) SECOND-ORDER MOMENTS

® SPATIAL CORRELATION ELLIPSE
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R , B | ® INTENSITY CORRELATION
s ® APPROXIMATE PHASE CORRELATION
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R R R
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LA-4259-29

FIGURE 4 SIMPLIFIED FLOW DIAGRAM FOR THE MAIN

COMPUTER CODE, IONSCNT
24
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as the line of sight grazes the L-shell through the stalisr, and (2) .

contribution from the auroral term in Eq. (34).

Alaska under the specified conditions are shown in Figure 6 for

Graphs of S

for a representative pass of the Wideband satellite observed at Poker Flat,

4 and ¢r

ms

comparison,
5 r\ T T ] 25
POKER FLAT
A PASS 5-14 20
s 15
U(p s4
2 10
n
I
1\
1=\ _ 05
\\_ P \\’ -
S N .
1213 1215 1217 TIME, UT
50.2
A N T N N S I N I
74.1 706 613 51.4 514 54.7 548  BP ANGLE
N N NN NNV NN TN NS N I
80.8 75.0 70.6 66.9 634 594 54.3 DIP LATITUDE
LA-4259-39
FIGURE 6 STANDARD SUMMARY DISPLAY OF VHF (138 MHz) INTENSITY AND PHASE

SCINTILLATION INDICES (S4 and gy, respectively) OBSERVED IN ALASKA ON
A PARTICULAR SATELLITE PASS UNDER CONDITIONS APPROXIMATED BY
THE INPUT CONDITIONS FOR THE CALCULATION ILLUSTRATED IN

FIGURE 5

Note that the pass illustrated was one of those used in iterative testing

of the model; it was chosen as one representative of scintillation in

Alaska under the specified conditions (including moderate magnetic activ-

ity).

A range of scintillation behavior presumably would be observed for

the same set of specified state parameters, and the model does not account

for such variations,
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In addition to the scintillation indices, the output illustrated in
Figure 5 gives relatively subtle signal-statistical information, in the
form of the six sigmas (four variances and two covariances) that charac-
terize the two first-order, signal-statistical components. They appear
in the six columns following the transmitter latitude and longitude and
the angle (PSIBP) between the line of sight and the geomagnetic field.
Taking point 8 in Figure 5 as an example, we have Uis = 0.055, 038 = 0,271,

2 2
Oxgyg = -0.005, ok, = 0.000, 0g_ = 6.839, Oy . = -0.002.

s¥s
By comparison, the corresponding values for a 30-s data segment

(starting at 0217:35) recorded during a geometrically similar portion of

the satellite pass illustrated in Figure 6 are 0,06, 0.27, -0.02; 0.01,

4,40, and -0,07. Similarities between the calculated and observed values

suggest that the existing model would be
pdf of intensity and phase, if the joint
for, say, optimal system design., Such a
porated in the present computer programs

code,

The DIST code now available permits
for amplitude (square root of intensity)

are presented in Figure 7, using the six

useful for calculating the joint
statistics should be of interest
capability has not been incor-

but could be added to the DIST

calculation of distributions
and phase, separately. Examples

sigmas from point 8 of Figure

5 as inputs to DIST,
the codes (Rino et al., 1977), the method of using DIST is to input the
results of an IONSCNT calculation, !

As is described fully in the companion volume on

Figure 8 illustrates second-order outputs from IONSCNT, again using
point 8 from Figure 5; the format is fully described in the companion

X volume., The information provided can be used to characterize the spatial
o~ structure of the field as well as the temporal structure of intensity

&; and phase,

.

i; Figures 9 through 14 are included to provide further information on
;i the morphological behavior (and frequency dependence) of scintillation

- as characterized by IONSCNT. The reader will note that the code returns

values of S4 slightly larger than unity, which is the value corresponding

to Rayleigh statistics, under extreme conditions. The two-component,
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signal-statistical model does permit values greater than unity in the
presence of substantial focusing. The ray-optics approximation employed
for calculating propagation of the focus component is not always fully
satisfactory, and a limit on it has been incorporated in the code for
conditions of strong scatter. It is to be noted that S4 values up to
1.2 are observed occasionally, at least at VHF near the geomagnetic equa-

tor,
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V CONCLUSION

This report and its companion volume (Rino et al., 1977) describing
computer codes IONSCNT and DIST constitute the final reports on this
contract to develop a transionospheric channel model. The work began as
an attempt to collate previously existing and highly fragmented scintil-
lation data into a form useful for system application. During the course
of the work, however, both experimental and theoretical work on trans-
ionospheric radio propagation progressed considerably, The major experi-
mental development was the advent of complex-signal data from coherent
radio beacons on the Navy navigation (Transit) satellites ATS-6 and P76-5
(the DNA-002 wideband beacon)., The theory of propagation in a random
medium advanced both analytically and by application of numerical calcu-

lation to strong-scatter problems.

Availability of the coherent-beacon data has yielded much insight
into the complex-signal statistics of scintillation, and this insight
has been incorporated in our work to provide a signal-statistical model
that is complementary to deterministic models of TEC effects., Our
ability to incorporate the new experimental findings has been limited,
however, by the theoretical framework we have employed. Signal-
statistically, the most fundamental limitation of the present model is
its heavy reliance on choice of an outer scale to describe scintillation-
producing ionospheric structure, It is very likely that the outer scales
invoked in the model (900 m in the equatorial region and 2,6 km elsewhere)
have no geophysical significance; rather they represent the largest scales
that contribute to intensity scintillation on the paths employed in col-
lection of the data we used for quantitative calibration and iterative
testing of the model. The paths employed were mainly between satellites
in high-inclination, moderate-altitude (1000-km) orbits and the ground.

The main caution to be employed as a result of the outer-scale di-

lemma arises in application of the model to phase-sensitive systems where
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long-term stability is important, especially in the equatorial region.
The user must always keep in mind that the rms phase fluctuations de-
scribed by the code are those produced by ionospheric structures on the
order of a kilometer and smaller in east-west extent near the equator
(30 km and smaller in north-south extent). Phase trends due to larger-
scale structure must be accounted for separately, For geostationary

systems, this translates into time scales substantially longer than 20 s,

Morphologically, the most important limitation of the model is that
it does not account for night-to-night departures of scintillation con-
ditions on a given communication link during the same season, at the same
local time, and under the same solar and geomagnetic conditions, which
can be substantial. The model describes only the "expectation level'" of
scintillation for a specified set of observing conditions, Data now
being accumulated could be employed to include a description of departures
from mean scintillation conditions, but the present model stops short of
doing so. Mean morphological limitations of the model include some uncer-
tainty over long-term trends in activity during a solar cycle and virtual

absence of any data from the polar caps for use in establishing the model.

Despite the foregoing limitations, the model described in this re-
port is the most extensive computer-coded assimilation of scintillation
information presently available for systems planning. It will provide
systems-relevant characterization of scintillation for a wide range of
operating circumstances., Hopefully it also can serve as a baseline for
analysis of existing and forthcoming scintillation data, in attempts to

understand the nature and dynamics of ionospheric structure.
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