

MICROCOPY RESOLUTION TEST CHART
natonal burtau of standards 1963 a

UNCLASSIFIED

DEPARTMENT OF DEFENCE

 DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIESmelbourne, victoria

By stem Technical memorandum 67

EXTENSIONS AND MODIFICATIONS TO THE ABL POINTPERFORMANCE PROGRAM
V.A.E. BOUQUEIROL

Approved Rot Public Enlace

THE UNITED STATES NATIONAL
TECITHICAL INFORMATION SERVE
IS AUTHORISED TO
REFHOUUCE AND SELL THIS REPORT
COPY
(C) componeacisi of adoration 1983

DEPARTMENT OF DEFENCE DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAI RESEARCH LABORATORIES

EXTENSIONS AND MODIFICATIONS TO THE ARL POINTPERFORMANCE PROGRAM

by
V.A.E. ROUQUEIROL

SUMMARY

Several years of usage of the ARI point performance program described in ARL Technical Engineering Report 160 have indicated the desirability of certain improvements and extensions which have been incorporated. This document describes the purpose and nature of the various changes in sufficient detail to allow it to be used independently of the original report.

(C)

CORPONWEALTH OF AUSTRALIA
1983

PCSTA: ANDRESS: Dırector, Aeronautical Research Laboratories, P.O. Box 4331, Meibourne, Victoria. 3001, Australia.

NOTATION

LIST OF FIGURES

1. INTRODUCTION 1
2. OVERVIEW AND CAPABILITIES OF THE SUITE OF PROGRAMS 2
2.1 Program ACRAFT 2
2.2 Program P2V2 3
2.3 Program P4V2 3
3. ALTERATIONS TO EQUATIONS 6
4. PROGRAM ACRAFT USER'S GUIDE 9
5. PROGRAM P2V2 USER'S GUIDE 14
5.1 Option 4A 15
5.2 Option 4B 16
5.3 Option 4C 18
5.4 Option 4D 19
5.5 Option 4E 19
5.6 Option 4F
20
20
5.7 Option 4G 20
5.8 Option 42 21
6. PROGRAM P4V2 USER'S GUIDE 22
6.1 Option 4A 22
6.2 Option 4D 23
6.3 Option 4G 24
7. PROGRAM ACRAFT DESCRIPTION 25
7.1 Loading of Program on DEC System-10 25
7.2 File ACRAFT 25
7.3 File PlV2 28
7.4 Subroutine Library Pllib 31
7.5 Subroutine Library PAC2IN 31
8. PROGRAM P2V2 DESCRIPTION 42
8.1 Loading of Program on DEC System - 10 42
8.2 File P2V2
8.3 Subroutine Library P24LIB 42
9. PROGRAM P4V2 DESCRIPTION 46
9.1 Loading of Program on DEC System - 10 46
9.2 File P4V2 46
9.3 Subroutine Library P4LIB 48
9.4 Subroutine Library P24LIB 48
10. EXAMPLES 49
10.1 Option 4A 49
10.2 Option 4B 49
10.3 Option 4C 50
10.4 Option 4D 50
10.5 Option 4G 51
10.6 Option 42 51
11. ACKNOWLEDGMENT 78
REFERENCES
APPENDIX A
DISTRIBUTION
DOC. DATA SHEET

Symbols	Definition	Unit or Value
C_{D}	Drag coefficient	
$\Delta C_{D S}$	Store drag coefficient	-
C_{L}	Lift coefficient	-
$C_{\text {Lmax }}$	Maximum lift coefficient	-
$\mathrm{D}_{\text {TOT }}$	Total aerodynamic drag	N(1b)
E	Total energy	J (ft lb)
E_{S}	Energy state	m (ft)
$\mathrm{F}_{\text {EFFT }}$	Effective thrust vector	N(1b)
F_{N}	Engine net thrust	N(1b)
F_{G}	Engine gross thrust	N(1b)
g	Acceleration due to gravity	$9.80665 \mathrm{~m} / \mathrm{s}^{2}\left(32.17405 \mathrm{ft} / \mathrm{s}^{2}\right)$
h_{p}	Pressure altitude	$m(f t)$
$L_{\text {rot }}$	Total lift force	$N(1 b)$
AL	Jet induced lift loss	N(1b)
M	Mach number	-
n	Load factor normal to aircraft in plane of symmetry	-
P_{S}	Specific excess power, energy rate	$\mathrm{m} / \mathrm{s}(\mathrm{ft} / \mathrm{s})$
9	Dynamic pressure	$N / m^{2}\left(1 b / f t^{2}\right)$
R_{D}	Intake momentum drag	$N(f t)$
S	Aircraft reference area	$\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$

Symbols	Definition	Unit or Value
t	Time	s
V	Velocity	$\mathrm{m} / \mathrm{s}(\mathrm{ft} / \mathrm{s})$
W	Aircraft weight	$N(1 b)$
v_{f}	Fuel flowrate	$\mathrm{kg} / \mathrm{s}(1 \mathrm{l} / \mathrm{hr})$
$\begin{aligned} & \text { Greek } \\ & \text { Svmbols } \\ & \hline \end{aligned}$		
0	Body incidence to flight path	$\operatorname{rad}(\mathrm{deg})$
ζ	Load factor n or turn rate w according to selected grid variable	$\mathrm{rad}(\mathrm{deg})$
θ_{i}	Engine incidence angle	$\mathrm{rad}(\mathrm{deg})$
ϵ_{j}	Nozzle deflection angle	$\mathrm{rad}(\mathrm{deg})$
4	Energy rate function	-
τ	Energy state E_{s} or pressure altitude h_{p} according to selected grid variable	m (ft)
\cdots	Turn rate	deg/s

Note: In each chapter the relevant figures are grouped at the end of the chapter.
2.1 Information Flow between Programs
2.2 Overview of the Options Available
3.1 Aerodynamic and Propulsive Forces
4.1 Typical Example of a Store File
7.1 Example 1 of Subroutine THRUST
7.2 Example 2 of Subroutine THRUST
7.3 Example 3 of Subroutine THRUST
7.4 Example of Subroutine AEROMX
7.5 Example of Subroutine GETALF
7.6 Example of Subroutine AERO
7.7 Example 1 of Subroutine GETCD
7.8 Example 2 of Subroutine GETCD
7.9 Example of Subroutine GETCDA
7.10 Example 1 of Subroutine GETCDCL
7.11 Example 2 of Subroutine GETCDCL
7.12 Useful Functions used in ACRAFT
10.1 Sample Dialogue for Option 4A (load factor grid; P_{s} as energy parameter)
10.2 Sample Output listing of Program ACRAFT (load factor grid; Ps as energy parameter)
10.3 Sample SEP Contour Plots at a Constant Load Factor
10.4 Sample Dialogue for Option 4 A (turn rate grid; $\mathrm{P}_{\mathrm{s}} \mathrm{V} / \mathrm{wf}_{\mathrm{f}}$ as energy parameter)
10.5 Sample Output Listing of Program ACRAFT (turn rate grid; Ps/wfas energy parameter)
10.6 Sample $\mathrm{P}_{\mathrm{s}} \mathrm{V} / 1000 \mathrm{wf}_{\mathrm{f}}$ Contour Plots at a Constant Turn Rate
10.7 Sample Dialogue for Option 4B
10.8 Sample SEP versus Tum Rate Plot
10.9 Sample Dialogue for Option 4C (load factor grid)
10.10 Extract of a Sample MD Output with a Load Factor Grid
10.11 Sample Maximum Manoeuvre Diagram for Specified Load Factors
10.12 Sample Dialogue for Option 4C (turn rate grid)
10.13 Extract of a Sample MMD Output with a Turn Rate Grid
10.14 Sample Maximum Manoeuvre Diagram for Specified Turn Rates
10.15 Sample Dialogue for Option 4D
10.16 Sample $1 g$ Differential SEP Countour Plot
10.17 Sample Dialogue for Option $4 G$ (turn rate grid; P_{s} as energy parameter)
10.18 Sample Output Listing (turn rate grid; P_{s} as energy parameter)
10.19 Sample SEP Contour Plots on a Mach Number, Turn rate Grid for a SpecifiedAltitude
10.20 Sample SEP Contour Plots on a Mach Number, Load Factor Grid for a Specified Altitude
10.21 Sample Dialogue for Option 42
10.22 Sample SEP versus Mach Number Plot

1. INTRODUCTION

Reference l described a suite of FORTRAN programs developed for the computation and presentation of data used in evaluating combat aircraft performance.

The suite of programs produces tabulated and plotted data describing aircraft combat performance in energy manoeuvrability terms. For each aircraft to be evaluated the user must supply subroutines which evaluate propulsion and aerodynamic characteristics.

After using the programs for several years some improvements and extensions have appeared necessary and have now been incorporated in the suite of programs.

This present document describes the purpose and nature of the various changes in sufficient detail to allow it to be used independently of Reference 1.

Chapter 2 presents an overview of the suite of programs and a description of the available options and capabilities.

Chapter 3 describes the modifications to the mathematical equations.
Crapters 4,5 and 6 present a self contained and updated user's guide with instructions on how to operate the three modified programs.

Chapters 7, 8 and 9 describe the three modified programs; details of the modifications and the part of the programs they affect are contained in Appendix A.

Chapter 10 shows examples of the use of the various options.

2. OVERVIEW AND CAPABILITIES OF THE SUITE OF PROGRAMS

The object of the suite of programs is to produce tabular and plotted data for accurate assessment of the performance and manoeuvrability of any aircraft operating in a wide range of weapon/store configurations.

The suite consists of three main programs whose interrelations are shown in Figure 2.1.

ACRAFT is the generic name given to the family of programs which represents a particular aircraft; it includes user defined routines which calculate propulsion and aerodynamic parameters using engine and drag data files. The program uses input data describing the aircraft configuration to perform basic calculations and produces tabular output for line printer listing as well as a data file for input to program P2V2.

P2V2, the second program in the suite, processes the data provided by program ACRAFT. For some requirements, (options $4 B, 4 C, 4 Z$) plotter files (P2.PLT) are produced for plotting directly on the off line plotter; for other requirements, ($4 \mathrm{~A}, 4 \mathrm{D}, 4 \mathrm{G}$) program P 2 V 2 selects and rearranges the data arrays for further processing by P4V2.

Program P4V2 is a contour plotting program which processes the data provided by program P2V2 and produces plotter files (P4.PLT) for submission to the off line plotter queue.

An overview of all the options available is shown in Figure 2.2.

2.1 Program ACRAFT

Program ACRAFT produces two types of output:
(1) Unoptimised grid calculations:
x and ζ^{\prime} tabulated over an unoptimised grid of (τ, M, \quad)
(2) Optimised grid calculations:
${ }^{\star}$ opt and ζ^{\prime} opt tabulated over an optimised grid of ($\left.E_{s}, \zeta\right)$
where the symbols c an represent the following alternative parameters

```
T is energy state Es or pressure altitude hp
M is Mach number.
f is turn rate - or load factor n.
\zeta' is load factor if }\zeta\mathrm{ is tum rate.
    or turn rate if }\zeta\mathrm{ is load factor.
x is P}\mp@subsup{P}{s}{},\mp@subsup{P}{g}{\prime}/\mp@subsup{w}{f}{},\mp@subsup{P}{g}{}V/\mp@subsup{w}{f}{}\mathrm{ or }\mp@subsup{P}{s}{}/V
xopt is the maximum value of rover the permissable range of M.
E'opt is the ז' corresponding to xopt
```

The selection of the alternative options for x, and ζ is made through the conversational dialogue when running the program.

In addition $A C R A F T$ provides for each Mach number M and energy state t the values of the load factor and turn rate corresponding to the lift limit boundary.

2.2 Program P2V2

The input to the program P2V2 consist of data files prepared for particular aircraft by program ACRAFT. The user selects by terminal input the operations to be performed on the data. The user can choose the following options for presenting the data:
(1) Option 4A: Contours of x on (M, τ) grid for selected \vdots values.
(2) Option 4B: Plots of x versus for $l i n e s$ of constant M with selected values.
(3) Option 4C: Plots of xopt versus E_{s} for lines of constant ζ. For this option the second type of output produced by ACRAFT is necessa (see paragraph 2.1).
(4) Option 4D: Differential contours of (between two aircraft) on a (M, T) grid for selected ζ values.
(5) Option 4E: Differential 4 C plots. This option is not currently available.
(6) Option 4G: Contours of ; on a $(M, 5)$ grid for selected values of . .
(7) Option 42: Plots of versus M and ζ versus M for lines of constant z with selected τ values.
Note: Now that option 4 G has been added to the program, option 42 , (which was previously used to create manually the contours of 4 G), is not very meaningful.

When selecting option $4 B, 4 C$ or $4 Z$, the output from the program is a plotter file P2.PLT which can be submitted to the off line plotter. The outputs produced when selecting the other options need to be further processed by the contour plotting program P4V2.

2.3 Program P4V2

Program P4V2 processes files created by program P2V2 (with the extension . $C O N$) when selecting options $4 A, 4 D$ and $4 G$ and produces a ploter file P4.PLT to be submitted for off line plotting. The contour plots on file P4.PLT are of two types:
(1) Contours of energy rate (or other energy parameter) on a Mach number, altitude (or energy state) grid. (Option 4A and 4D)
(2) Contours of energy rate (or other energy parameter) on a Mach number, turn rate (or load factor) grid. (Option 4G)

A conversational dialogue allows the user to define the range of contours required and the scales to be used on the x and y axes.

FIG. 2.1 Information flow between the three programs

Note: \quad is energy state E_{s} or pressure altitude h_{p}
ζ is load factor n or turn rate α
x is energy parameter P_{s} or $\mathrm{F}_{\mathrm{s}} / \mathrm{w}_{\mathrm{f}}$ or $\mathrm{P}_{\mathrm{s}} \mathrm{V} / \mathrm{w}_{\mathrm{f}}$ or $\mathrm{P}_{\mathrm{s}} / \mathrm{V}$

FIG. 2.2: Overview of Options Available

3. ALTERATIONS TO EQUATIONS

The equations of motion contained in Chapter 2 of Reference 1 were approximate in that net thrust F_{N} was used instead of gross thrust F_{G} and a ram drag term was not included. In addition the effects of vectoring the thrust (as occurs in STOVL aircraft) had not been accounted for; this involves the inclusion of the nozzle deflection angle θ_{j} and a term ΔL to allow for jet induced lift loss.

The equations have now been modified; the aerodynamic and propulsive forces acting on the aircraft have been resolved into three vectors (see Figure 3.1):

- A total lift vector which is perpendicular to the flight path:

$$
I_{T O T}=G S S_{L}+\left(F_{N}+R_{D}\right) \sin \left(a+S_{i}+g_{j}\right)-\Delta L
$$

- An effective thrust vector which is the component of thrust acting along the flight path (including a propulsive drag term):

$$
F_{E F F T}=\left(F_{N}+R_{D}\right) \cos \left(\alpha+\hat{\vartheta}_{i}+\hat{\rho}_{j}\right)-R_{D}
$$

. A drag vector which lies along the flight path:

$$
D_{T O T}=q S C_{D}+q=\therefore C_{D S}
$$

```
where F F = Engine net propulsive force
    RD = Ram drag (Intake momentum drag)
    F
    a = Angle of attack (deg)
    \mp@subsup{j}{i}{} = Engine incidence angle (deg)
    ij = Nozzle deflection angle (deg)
    q = Dynamic pressure
    \thereforeL = Jet induced lift loss
    CL}=\mathrm{ Lift coefficient
    C = Drag coefficient
```

We can then write as with conventional aircraft (see Reference l)

$$
\begin{aligned}
& P_{S}=\frac{d E_{S}}{d t}=\left(F_{E F F T}-D_{T O T}\right) \frac{V}{W} \\
& n=\frac{L_{Y O T}}{W} \\
& \omega=\frac{g}{v} \sqrt{n^{2}-1}
\end{aligned}
$$

FIG. 3.1 Aerodynamic and propuisive forces

4. PROGRAM ACRAFT USER'S GUIDE

The conversational input to the program is best described with reference to a typical run. Examples of dialogue are shown in Chapter 10.

Care must be taken for the replies to questions on selecting grid variables to be compatible with the format of the plots required from the subsequent programs; the various options available are listed in Figure 2.2.

Although only some of the questions have been modified from the ones described in Reference 1 , for completeness all replies have been described in this updated user's guide.

Question 1 : IMPERIAL (0) or SI(1) UNITS
Replies of 0 or 1 indicate that output quantities from ACRAFT are to be in Imperial or SI units respectively. Any other reply results in an error message and the question is repeated.

Note: All internal calculations are in imperial units.

Question 2 : AIRCRAFT DATA FILENAME

Reply with the name (up to 10 characters) of the disk file containing the required data. A typical example of a store file is given in figure 4.1. The contents and format of the file are as follows.

Question 3 : PS, PS/WF, PS*V/WF OR PS/V (1,2,3 or 4)
Reply
Meaning
1 Calculate P_{s} as dependent variable, i.e. $\lambda=P_{s}$
2 Calculate P_{s} / w_{f} as dependent variable, i.e. $X=P_{s} / w_{f}$
3 Calculate $P_{s} V / 1000 w_{f}$ as dependent variable, i.e. $X=P_{s} V / w_{f}$
4 Calculate $1000 \mathrm{P}_{\mathbf{s}} / \mathrm{V}$ as dependent variable, i.e. $\mathrm{X}=\mathrm{p}_{\mathbf{s}} / \mathrm{V}$
Values of $1,2,3$ and 4 are valid as input. Any other value produces an error message and the question is repeated.

Question 4 : IS HP THE HEIGHT VARIABLE

A reply " Y " (yes) indicates that pressure altitude is to be used as the height grid variable (i.e. τ is pressure altitude h_{p}). Any other reply will result in energy state being used as the height variable (i.e. i is E_{s}).

If energy state is selected as the height variable (t is E_{s}) the following question is asked.

Question 4a : MAXIMUM MANOEUVRE?

A reply " Y " will cause X optimum to be calculated for a maximum manoeuvre diagram (MMD).

Any other reply causes the performance variable x to be calculated for an unoptimised grid.

Question 5 : PRESET GRID (Y, N or C / R)
A Carriage return (C / R) reply results in the preset grid values being typed on the user's terminal. The values for the preset grid are:
start value increment final value

T (Imperial)	0	4000	68000
(SI)	0	1000	20000
M (Military Power)	0	.05	1.5
M (After Burner)	0	0.05	2.0
ζ is load factor	1	2	9

A reply " Y " results in the preset grid values to be used in the run. The next question then being question 10.

Any other reply will result in the following questions

```
\begin{tabular}{rl} 
Question 6 \\
\hline
\end{tabular}\(\quad \begin{aligned} & \text { HP ,HP STEP, NO OF STEPS (if } \\
& \text { or } \\
& \text { ES }\end{aligned}\)
Reply with . an initial value for \(t\) (must be \(\geq 0\) )
    . an increment for \(T\) (must be \(>0\) )
    . number of points, including first and last. (must be \(>0\) and
    \(\leq 50\) )
```

These three parameters, defining the height grid, should be typed on one line separated by commas or blanks.

Question 7 : MACH, MACH STEP, NO OF STEPS
Reply in a similar way to question 6 so as to specify the Mach number grid.

If an optimized grid (MMD) has been requested in question 4 a, question 7 is not asked.

Question 8 : GRID FOR LOAD FACTOR (0) OR TURN RATE (1)

A reply of 0 , requests a constant increment grid of load factor (ζ is load factor)

A reply of 1 , indicates a request for a constant increment grid of turn rate (ζ is turn rate).

Reply in a similar fashion to question 6 so as to specify the : (turn rate or load factor) grid.

Note: Turnrate is expressed in deg/s and if ζ is load factor the initial value must be greater or equal to 1 .

Question 10 : POWER (MIL=100, MAX=200)
Military power is indicated by a value of 100 , and maximum augmented power by a value of 200. Tens and units digits indicate a percent of the maximum of that range. A valid reply is $0 \leq$ Power ≤ 200. Any other reply causes an error wessage to be typed on the terminal and the question is repeated.

Note: The power setting requested must be consistent with the propulsion characteristics specified in the user defined subroutine THRLST.

Question 11 : WING SWEEP (IF VARIABLE)

Supply wing sweep in degrees if aerodynamic data includes wing sweep effects. Otherwise reply with a carriage return.

A nominal valid reply is $0 \leq$ Wing sweep $\leq 80^{\circ}$. Any other reply causes an error message to be typed on the terminal and the question is repeated.

Question 12 : NOZZLE DEFLECTION (IF VARIABLE)

Supply the nozzle deflection in degrees if the aircraft is a vectored thrust aircraft; otherwise reply with a carriage return.

A nominal valid reply is $0 \leq n o z z l e$ angle $\leq 110^{\circ}$. Any other reply causes an error message to be typed on the terminal and the question is repeated.

Question 13 : ATMOSPHERE, DEVIATION
This input is provided if the user-defined subroutine THRUST (from ACRAFT) has been written to handle alternative atmospheres. Valid replies are:

$$
\left.\begin{array}{l}
\text { ICAO, } X \\
\text { ARDU }, X
\end{array}\right\} \text { FORMAT }(A 4, G)
$$

Where X is a deviation from the nominated at mosphere in degrees Celsius. It may be omitted if X is zero.

If an invalid reply is made a warning message is typed to the terminal and ICAO atmosphere is assumed.

Question 14 : OUTPUT ($1=$ TEXT, $2=$ NOS, $3=$ BOTH)
Reply Meaning
1 Formatted output with full ASCII text and headings is requested (on logical unit 6).
2 Numerical data output is required (on logical unit 8) for input to program P2V2. Both types of output are required.

Any other reply causes an error message to be typed and the question is repeated.

Question 15: $0 / \mathrm{P}$ FILE NAME FOR UNIT m
Supply a 10 -character filename for output as requested; $m=6$ is the logical unit number for full format output; $m=8$ is the logical unit number for numerical output.

Formatted output should be printed with /P/B switches to produce listings suitable for permanent retention.

Numerical output may be printed if required.

```
AIRCRAFT
230.,0,0
25000.,00.,7.0
AIR SUPERIORITY : 2 AIM9 + 50% FLEL
ENGINE.BIN
AERO.BIN
5
.6,.7,.8,.9,1.0
120,146,191,304,370
```

FIG. 4.1 Typical Example of a Store File

5. PROGRAM P2V2 USER'S GUIDE

The inputs to program P 2 V 2 consist of the data files created by the program ACRAFT.

The data is then manipulated by P2V2 according to comands supplied at the users terminal during the execution of the program.

Question 1 : OPTION OR (CR) FOR HELP:
Reply with the appropriate option code. A carriage return is interpreted as a request for help and a one line description of each option together with the name of the output file produced, is typed on the terminal.

Reply Option
4A $\quad x$ contours on $\mathbf{a}(M, \tau)$ grid for selected : values.
$48 \quad \lambda$ versus ζ for lines of constant M for selected τ values.
4C Xopt versus E_{s} for constant ζ values.
4D differential x contours on a (M, T) grid for selected ζ values.
4E differential $\chi_{\text {opt }}$ versus E_{s} for constant ζ values. Not implemented in this version.

4F Maximum Manoeuvre Persistence 1 ateractive aid. Not available in this version.

4G $\quad x$ contours on $a(M, 5)$ grid for selected i values.
42 versus M for lines of constant ζ as well as ${ }^{\prime}$ versus M for lines of constant ζ for selected t values.
any other reply will cause a help message to be typed to the terminal and question 1 to be repeated.

Where X is P_{s} or P_{s} / w_{f} or $P_{s} V / w f$ or P_{s} / V.
τ is E_{s} or pressure height h_{p}.
ζ is tum rate or load factor.
ζ^{\prime} is load factor if ζ is turn rate or vice versa.

The inputs to program P2V2 consist of the data files created by the program ACRAFT.

The data is then manipulated by P2V2 according to comoands supplied at the users terminal during the execution of the program.

Question 1 : OPTION OR (CR) FOR HELP:

Reply with the appropriate option code. A carriage return is interpreted as a request for help and a one line description of each option together with the name of the output file produced, is typed on the terminal.

Reply Option
$4 \mathrm{~A} \quad \times$ contours on $\mathbf{a}(M, \tau)$ grid for selected ; values.
4B $\quad \lambda$ versus ζ for 1 ines of constant M for selected τ values.
4C Yopt versus E_{s} for constant ζ values.
4D differential \times contours on (M, T) grid for selected $\mathfrak{V a l u e s . ~}$
4E differential Yopt versus E_{s} for constant salues. Not
implemented in this version.
4F Maximum Manoeuvre Persistence interactive aid. Not available in this version.

4G: contours on a ($M, 5$) grid for selected i values.
$42 \quad$ versus M for l ines of constant ζ as well as $弓^{\prime}$ versus M for
lines of constant : for selected τ values.
any other reply will cause a help message to be typed to the terminal and question 1 to be repeated.

```
Where ! is P}\mp@subsup{P}{s}{}\mathrm{ or }\mp@subsup{P}{S}{\prime}/\mp@subsup{w}{f}{}\mathrm{ or }\mp@subsup{P}{s}{}V/wf\mathrm{ or }\mp@subsup{P}{S}{}/V
    : is Es or pressure height hp.
    ; is tum rate or load factor.
    :' is load factor if ; is turn rate or vice versa.
```


5.1 Option 4A

This option produces x contour data on a Mach number (x axis), τ (y axis) grid, at selected values of $;$ (turn rate or load factor). The output is written on file P24Al. CON which will have to be processed by P4V2.

Examples of dialogues running this option are shown in Figures 10.1 and 10.4 .

Question A1 : DATA BASE FILENAME :

Reply with the name (up to 10 characters) of the appropriate numerical output (logical unit 8) file from PlV2. After reading the header on the file program P2v2 echoes on the user terminal.
*** DATA ARE IN U UNITS, ENERGY PARAMETER IS ${ }^{\text {a }}$ **
*** CONSTANT INC. OF τ ***
U is IMPERIAL or SI, x is PS, PS/WF, PS.V/WF or PS/V as appropriate and is TURNRATE or LOAD FACTOR as appropriate.

Question A2 : REPLY "YES", "NO", "ALL" OR "END"
OUTPUT DATA FOR $\zeta=\div i$?
Reply of 'Y', 'N', 'A' or 'E' indicates as follows:
Reply Meaning
$Y \quad$ Output data for contour plot at $5=5$ required.
$N \quad$ No output data required for $\zeta=\zeta_{j}$.
A Output data required for all ζ_{i}.
E Exit from output data loop and do not output data for $\zeta=\zeta_{i}$ or any following ζ_{i}.

- Any other reply is interpreted as a 'N'.

Question $A 2$ is repeated for all values of ζ selected unless the loop is exited.

Output is written onto file P24Al.CON, for input to program P4V2. File P24Al.CON may be renamed if desired before running P4V2. P24A1.CON is an ASCII file and may be printed, although it is not easy to read but is suitable for debugging purposes.

5.2 Option 4B

This option creates plots of iversus ζ^{\prime} for selected values of Mach number. One page of plots is produced for each requested altitude (or energy state). The output is written onto the plot file P2.PLT which can be submitted to the plotter queue.

An example of dialogue running this option is shown in Figure 10.7 .

Question BI : DATA BASE FILENAME:

Reply with the name (up to 10 characters) of t.e appropriate numerical output (logical unit $=8$) file from PlV2. Program P2V2 will echo on the termiral:
*** gata are in u linits, energy parameter is ; ***
*** CONSTANT INCREMENT OF $i \quad * * *$
where (as appropriate)
¿ is IMPERIAL or SI
is PS, PS/WF, PS.V!WF or PS/V
is TIRN RATE or LOAD FACTOR
Question B2 : SCALES IN UNITS/INCH OF PLOT
TURNRATE/LOAD FACTOR, ENERGY VARIABLE:
Reply with the amount of physical quantity which one inch of plot would represent on each axis where the x axis represents "' (turnrate or load factor) $^{\text {(}}$ (then and the y axis represents the energy variable x. (As a rough guide use 500 $\mathrm{ft} / \mathrm{s} /$ inch for P_{s} and $4 \mathrm{deg} / \mathrm{sec} /$ inch for the turn rate).

Question B3 : MAXIMUM FOR ENERGY AXIS:
Reply with the approximate maximum x value of interest on the y axis (in the order of $1000 \mathrm{ft} / \mathrm{s}$ for P_{s}).

Question B4 : ENERGY AXIS LENGTH:
Reply with the appropriate length in inches of the y axis (7 inches is representative for trimming to $A^{\prime}+$ size).

Question B5 : REPLY "YES", "NO", "ALL" OR "END":
HEIGHT $=\tau_{i}$?
One page of curves is ploted for each height selected.
Replies and significance of questions are listed below.
Y (Yes) Ploting is required for t_{i} value. Mach numbers to be plotted will now be listed.
N (No) Do not produce the plot for this value of τ_{i}.
A (All) Plot all the data given for ${ }_{i}$. Use this when the Mach number values are known and plots for all ${ }^{\top}$ are to be produced.

E (End) Exit from height ploting and hence from program.
Question B6 : MACH $=M_{j}$?
This question is asked only if the reply to Question $B 5$ was 'Y'.

Reply
Y (Yes) Plot a curve for this Mach number.
N (No) Skip this Mach number.
A (All) Plot curves for all remaining Mach numbers for current is.

E (End) Skip remaining Mach numbers and go to the nexi T_{i}.
The output file P2.PLT contains the requested flots and is suliritted to the off line plot queue.

5.3 Option 4C

This option produces flots of lopt versus energy state E_{s} for contant ζ values. The output is written onto the plot file P2.PLT which can be submitted to the plot queue.

Examples of dialogues running this option are shown in Figures 10.9 and 10.12 .

Question Cl : DATA BASE FILENAME:

Reply with the name (up to 10 characters) of the numerical output file from PlV2. Program P2V2 will echo the following message on the terminal:

```
*** DATA ARE IN U UNITS, ENERGY PARAMETERS IS * ***
```

*** CONSTANT INC. OF $\quad=t * * *$
where U is IMPERIAL or SI
x is PS or PS/WF or PS.V/WF or PS/V

- is TURN RATE or LOAD FACTOR

Question C2 : SCALE IN UNITAINCH OF PLOT
ES, PS :
Reply with the amount of physical quantity which one inch of plot would represent on each axis. E_{s} is plotted along the x axis and : is plotted along the y axis.

Question C3 : PS MIN VALle, pS AXIS LENGTH (INS) :
Repiy with the approximate minimum value of interest and the length of the y axis in inches).

Question C4 : REPLY "YES", "NO", "ALL" OR "END"

Where ζ is TURN RATE or LOAD FACTOR as appropriate.
Replies and mearings are indicated below.

Reply
Y (Yes) Plot a curve of (E_{s}, X) points for this z_{i}.
N(No) Do not plot a curve and try next ζ_{i}.
A (All) Plot curves for this and subsequent \therefore_{i}.
E (End) Skip the remaining ζ_{i} and hence exit from program.
The output file for option $4 C$ is P2.PLT, a plot file which must be submitted to the off-1ine plot queue.

5.4 Option 4D

This option praduces differential contour data on a Mach number, ${ }^{t}$ grid at selected values of : (turn rate or load factor). The versions of ACRAFT appropriate to the two different aircraft are run using their respective data files with identical altitude, Mach number and load factor (or turn rate) grids as in option 4 A , and then subtracting the data at the grid points when running P2V2. The output is written on three files P24A1.CON, P24A2.CON and P24DIF.CON which will have to be processed by P4V2.

An example of dialogue running this option is shown in Figure 10.15 .

Question D1 : DATA BASE FILENAME:

Reply with the name (up to 10 characters) of the appropriate numerical output file (logical unit 8) created by PlV2 for the first aircraft. After reading the header on the file program P2V2 echoes, as in option 4 A , details of the options selected when running PlV2.

Question D2 : Reply "YES", "NO", "ALL" or "END"
OUTPUT DATA FOR $\check{\zeta}=\tau_{i}$?
Reply to this question is the same as for option 4A. The load factor (or turn rate) selection applies both to the base file and to the comparison file considered. This question is repeated for all values of selected when the loop is exited.

Question 13 : COMPARISON FILENAME:

Reply with the name of the output file (logical unit 8) created by PlV2 for the second aircraft (comparison aircraft) to be compared with the first aircraft (base aircraft). Data files are considered to be valid for comparison if when running ACRAFT the grid points selected are identical, and the type of energy parameter and units chosen are the same; other parameters such as power setting, wing sweeps, nozzle deflection and atmosphere type are not checked.

Output for this option is in ASCII mode on three files P24Al.CON, P24A2.CON, P24DIF.CON which can be used as input for processing by P4V2. P24A1. CON is the same as would be produced by running option 4 A with the same replies using the base aircraft data file as input. P24A2.CON is the same as would be produced by running option 4 A using the comparison aircraft data file as input. P24DIF.CON is the file used when running P4V2 to generate the differential contour plots.

5.5 Option 4E

In Reference 1 this option produced differential MMD plots. This option was not implemented when the programs were restructured and extended as it was felt the amount of programing effort required was not in proportion to the usefulness of the plots presented. The code used in Reference 1 is still available and this option could be implemented if required at a later date.

5.6 Option 4F

In Reference i this option provided an interactive aid for maximum manoeuvre persistence where the user provided data obtained from the output file of option 4 C to calculate the number of turns an aircraft could make before running out of fuel. This option was removed because it was felt those calculations were better handled off line with a calculator.

5.7 Option 4G

This option creates a file $P 24$ G. $C O N$ which can then be processed by program P4V2 to produce contours of x on a Mach number ($x a x i s$), ζ (y axis) grid at selected values of T .

An example of dialogue running this option is shown in figure 10.17.

Question G1 : DATA BASE FILENAME :

Reply with the name (up to 10 characters) of the appropriate numerical output file from PIV2. After reading the header on the file, program P2V2 will echo the following:
*** Data are in u linits, energy parameter is λ ***
*** CONSTANT INC. OF $\div * * *$
where U is IMPERIAL or SI x is PS or PS/WF or PS.V/WF or PS/V
ζ is TURN RATE or LOAD FACTOR
Question G2 : REPLY "YES", "NO", "ALL" OR "END"
OUTPUT DATA FOR $\tau=\tau_{i}$?
Reply of 'Y', 'N', 'A', or 'E' indicates as follows

Reply	Meaning
Y (yes)	Output data for contour plot at $\tau^{\prime}=\tau_{j}$ is required.
N (no)	No output data required for $i=\tau_{i}$.
$A(a l l)$	Output data required for all τ_{i}.
E (end)	Exit from loop and program P2V2.
	Do not output data for or any subsequent T_{i}.

Question G2 is repeated for all values of : selected unless the loop is exited.

The output is written onto the file P24G.CON for input to program P4V2. P24G.CON is an ASCII file and maybe printed, although it is not easy to read but suitable for debugging purposes.

5.8 Option 42

This option creates a plot file P2. PLT for ploting the energy parame:tr x versus Mach number for lines of constant as well as ' versus Mach number for lines of constant : One page of plots is produced for each requested : .

An example of dialogue, running this option is shown in figure 10.21 .

Question 21 : DATA BASE FILENAME:

Reply with the name of the appropriate numerical output file from PIV2. Program P2V2 echoes the following message on the terminal:
*** DATA are in u linits, energy parameter is , ***
*** CONSTANT INC. OF : ***
where U, i and : are appropriately defined as for option 43 .
Question 22 : REPLY "YES", "NO", "ALL" OR "END" HEIGHT $=T_{i}$?

One page of curves is ploted for each height selected. Reply as for question $B 5$

Question $23: 5=5$?
This question is asked oniy if the answer to question 22 is yes.
Reply as for question $B 6$ with Mach number being appropriateiy replaced by: in the discussion.

The output file for option 42 is P2.PLT, a plot file which must be submitted to the off line plot queue. The scales for this option are fixed.

6. PROGRAM P4V2 USER'S GUIDE

The inputs to program P4V2 consist of data files created by program P2V2 when choosing options $4 \mathrm{~A}, 4 \mathrm{D}$ and 4 G .

A selection is made when running P 4 V 2 using terminal inputs of data to be plotted. Numerous examples are shown in Chapter 10.

The sole output of the program P4V2 is the plotter file P4.PLT.

6.1 Option 4A

Examples of dialogues running this option are shown in Figures 10.1 and 10.4 .

Question 1 : INPUT FILENAME
Reply with the name (up to 10 characters) of the appropriate file generated by option 4A in program P2V2. The file P24Al.CON created by P2V2 wav be renamed before running P4V2, (P4V2 will still know which option produced it) P4V2 will then echo on the users terminal the following options selected in PlV2:

```
*** DATA ARE IN U INITS, ENERGY PARAMETER IS \ ***
*** CONSTANT INC. FOR こ ***
```

Where (as appropriate)
U is IMPERIAL or SI
x is PS, PS/WF, PS.V/WF or PS/V
ζ is LOAD FACTOR or TURN RATE
Question 2 : SCALES IN UNITS/IN OF PLOT - MACH, ALT:
Reply with the amount of physical quantity which one inch of plot should represent on each axis, where the x axis represents Mach number and the y axis represents pressure altitude or energy state. (As a rough guide use . 2 to . 4 units/inch for the Mach number and $10000 \mathrm{ft} / \mathrm{inch}$ for the altitude).

Question 3 : SMOOTHED AND TEXTLRED CONTOURS:
Reply with "Y" for the contour points to be joined by a cubic spline, meaning contours will have continuous 1 st and $2 n d$ derivatives.

Reply with " N " for the contour points to be joined by straight lines.
If the grid size is small there is little or no difference between smoothing and non-swoothing (So it is better to select non-smoothing as this will speed up execution time).

Question 4 : PLOT ES CONTOURS?
Reply with " Y " (yes) or " N " (no) where yes signifies that dashed lines of constant energy state will be superimposed on the requested plots.

Question 5 : CONTOUR LEVELS - START, STEP, NO:
This question is only asked if energy state contours are required.
Reply with the minimum E_{s}, the increment in E_{s} between contours and the number of E_{s} contours required.

These values should be in the appropriate units (as a rough guide use 5000 ft for the start and step values and 20 for the number of steps).

Question $6:$ PLOT $\zeta=\zeta_{i}$
; is either LOAD FACTOR or TLRN RATE as appropriate.
Reply with "Y" (yes) or " N " (no) where yes signifies that a new page of plots be set up for the required ζ_{i}. If the reply is no, the question is repeated for the next ζ_{1}.

Question 7 : CONTOUR LEVELS - START, STEP, NO:
If the reply to question 6 was "yes" then this question is asked for the page of plot for each requested ζ_{i}.

Reply with the x value of the lowest valued contour to be plotted, the increment between contours (must be positive) and the number of contours (>0 and ≤ 50).

These values should be in the appropriate units depending upon both U and : As load factor increases, more negative contours shiuld be plotted.

After the last value of \dot{i} is processed, an informative message "END OF DATA ON LOG $5^{\prime \prime}$ is typed on the terminal, it does not indicate an error condition.

After question 7 is repeated for each ζ value for which data exists, $P 4 V 2$ ceases execution and the output plot file P4. PLT may be placed on the off line plotter queue.

6.2 Option 4D

An example of dialogue running this option is shown in Figure 10.15 .
Replies for this option are very similar to those of option 4A for one aircraft. The only difference is that requests for contour levels now refer w the difference between the two aircraft at each grid point. The aircraft referred to by program P2V2 as the DATA BASE will be indicated by positive contours and that referred to as the COMPARISON will be indicated by negative contours. Full identification headers are included on the plotted output on file P4. PLT.

6.3 Option 4G

An example of dialogue using this option is shown in Figure 10.17.

Question 1 : INPUT FILENAME

The name of the file created by program P2V2 when using option $4 G$ is P24G.CON but this file can be renamed before running P4V2. See Paragraph 6.1 for the meaning of the prompt message.

Question 2 : SCALES IN UNITS/IN OF PLOT - MACH, TR/LF:
Reply with the amount of physical quantity which one inch of plot should represent on each axis, where the x axis represents Mach number and the y axis represents either turn rate or load factor. (As a rough guide use 2 to . 4 unit/inch for the Mach number, and 4 deg/sec/inch for the turn rate)

Question 3 : SMOOTHED AND TEXTURED CONTOURS:
Reply with 'Y' or 'N' as for question 3 of option 4A.
Question 4 : PLOT LOAD FAC. /TURN RAD. GRID ?
This question is only asked if ζ is turnrate.
Reply with 'Y' (yes) if a background grid of constant load factor lines and constant turn radius lines is desired for each page of plot. The grid is appropriately modified to suit the unit system selected.

Any other reply will be interpreted as no.
Question 5 : PLOT $H=\tau_{i}$?
Reply with " Y " (yes) if a new page of contours is to be set up for the required height.

Any other reply is interpreted as no and the question is repeated for the next height value.

Question 6 : CONTOURS LEVELS - START, STEP, NO:

If the reply to question 5 was "yes" then this question is asked for the page of plot for each required height.

Reply as for question 7 of option 4 A .
After question 6 is repeated for each height value for which data exists, P4V2 ceases execution and the output plot file P4.PLT can be placed on the off line plot queue.

7. PROGRAM ACRAFT DESCRIPTION

7.1 Loading of Program on DEC System-10

The commands for loading program ACRAFT and saving a core image on disk on DEC system-10 are:

- LOAD ACRAFT, PIV2, PILIB/SEARCH, PAC2IN/SEARCH
- SAVE ACRAFT

The SAVE comand on the DEC system-10 creates an executable version of the program.

The file ACRAFT contains all the user defined routines which are different for each aircraft, whereas the service routines in PlV2 are general and applicable to all aircraft. Pllib includes routines for use with spline fitted data (Reference 3) whereas PAC2IN contains routines for use with the tabular format data of a PACAM2 aircraft data file (Reference 2).

The routines contained in each of these files are listed in the following table and described in this Chapter.

ACRAFT	MAIN GETCDCL	$\begin{aligned} & \text { BLOCK } \\ & L \quad X S P M \end{aligned}$	$\begin{aligned} & \text { THRUST } \\ & \text { IIN XSPM } \end{aligned}$	AEROMX MAX YSP	$\begin{aligned} & \text { GETALF } \\ & \text { PMIN YS } \end{aligned}$	$\begin{aligned} & \text { AERO } \\ & \mathrm{PMAX} \end{aligned}$	GETCD	GETCDA
PlV2	$\begin{aligned} & \text { P1IN } \\ & \text { P1OUT } \end{aligned}$	BADINP BININ	TABLE ALTIT	ATMOS PARAMS	INTRP MAXMAN	HEIGHT SEP	$\begin{aligned} & \text { HTRUE } \\ & \text { PI OUTA } \end{aligned}$	IDENT MONSEP
PlLIB	SURF	cubics	CHECKD	SPDER 3	ROMIN			
PAC2 IN	PAC2 IN	TABIN	PACINI	F FIND	DINTRP	PACDER		

7.2 File ACRAFT

7.2.1 ACRAFT MAIN Program

This is a small routine which calls PlIN for program input and TABLE to start calculation of aircraft performance parameters.

7.2.2 BLOCR DATA

Defines the data in the COMMON blocks. The data in COMMON C represents atmospheric profiles, text constants and other numeric constants; the data in COMON USER is defined by the user for use in the aircraft dependent routines. The contents of all the COMMON blocks are listed in Appendix 6 of Reference 1 .

7.2.3 THRUST Subroutine

THRUST is an aircraft dependent routine supplied by the user and is called by soubroutine TABLE or SEP (in PIV2).

In THRUST, values of gross thrust (and lift loss in the case of vectored thrust aircraft) are determined and transmitted through COMMON USER to the user defined subroutines $A E R O$ and $A E R O M X$.

Fuel flow and maximum Mach number are also calculated in THRUST and supplied to PlV2 through COMMON B. Since THRUST is user defined its form will depend on the nature of the data available. The following three examples demonstrate the flexibility of this approach.

In example 1 (Figure 7.l) spline coefficients have been derived from original data for net thrust, ram drag and fuel flow expressed as dimensional functions of herght and Mach number. The data was available for two power settings (intermediate and augmented) and an ICAO atmosphere. The spline coeffacients were derived using program SPLFIT.EXE (see Reference 3) and stored in the binary file ENGIN. BIN which is then accessed in THRUST by calls to SURF.

In example 2 (Figure 7.2) spline fitting techniques were applied to tables of gross thrust, net thrust and fuel flow data, available in normalised form as functions of height and Mach number; an additional parameter, lift loss coefficient, was expressed as a function of jet velocity ratio and nozzle deflection angle.

Example 3 (Figure 7.3) illustrates the case where the data is accessed from an ASCII file with tabular format. Using the routines from PAC2IN, gross thrust, ram drag and fuel flow are linearly interpolated for the desired altitude, Mach number and power setting.

7.2.4 AEROMX Subroutine

AEROMX is a user defined routine called by subroutine TABLE or SEP.
For a given Mach number, AEROMX returns, to PlV2, through COMMON B, the maximum usable lift coefficient together with the corresponding angle of at tack and total lift.

Other aerodynamic information dependent only on height and Mach number can also be determined in $A E R O M X$ (e.g. incremental store drag and other aerodynamic coefficients) and transmitted to the other user defined routines through COMMON USER. An example is shown in Figure 7.4.

7.2.5 GETALF Subroutine

GETALF is a user defined routine called by AEROMX.
For a given lift coefficient C_{L} passed through COMMON USER and a given Mach number M transwitted through COMMON B, subroutine GETALF will return the corresponding angle of attack x.

In the example of Figure 7.5 starting with an initial estimate of angle of attack a Newton Rahpson method is used to evaluate successive approximations of lift coefficient obtained from a call to SURF which returns $C_{\mathbb{L}}(\alpha, M)$.

7.2.6 AERO Subroutine

AERO is a user dependent routine called by TABLE or SEP that returrs through common B, values of total drag and effective thrust.

In the example given in Figure 7.6 an initial estimate of the angle of attack is made and a Newtonian iteration is used to caluculate, for a given Mach number, altitude and load factor, the trimed angle of attack and lift coefficient using the curve fitted data stored in array E. Effective thrust and total drag are then calculated.

7.2.7 GETCD Subroutine

GETCD is a routine called by $A E R O$ to determine the drag coefficient (including incremental store drag) for a given lift coefficient and Mach number. This can be done in various ways depending on the data available, as shown in Figures 7.7 and 7.8.

7.2.8 GETCDA Subroutine

The purpose of GETCDA is to return the drag coefficient and angle of attack, given Mach number and lift coefficient. This can simply be done by calling GETALF and GETCD as shown in Figure 7.9.

This routine is required if the user wishes to run program PC2P1 to use the spline fitted data created for PlV2 to make up an aircraft file for PACAMZ.

7.2.9 GETCDCL Subroutine

For a given Mach number (passed through COMON B) and a given angle of attack (passed through COMMON USER) GETCDCL determines the lift coefficient and then the drag coefficient.

In the example shown in Figure $7.10, C_{L}$ is determined by a call to SURF to access the first spline stored in array E representing $C_{L}(a, M) ; C_{D}$ is then evaluated by a call to GETCD. Another example as shown in Figure 7.ll.

7.2.10 XSPMIN and XSPMAX Functions

XSPMIN and XSPMAX are used in all the user defined functions; they respectively return the lower and upper bound of X, stored in the two dimensional spline. These functions are shown in Figure 7.12.

7.2.11 YSPMIN and YSPMAX Functions

Equivalent to 7.2.10 but for the Y variable.

7.3 File PlV2 (Pl Version 2)

7.3.1 PlIN Subroutine

Plin controls all input data. All aircraft-independent parameters defining the type of calculations required are accepted in conversational mode, with validity checks where possible. Aircraft-dependent data is read from disk via a call to IDENT.

This subroutine has been slightly modified to allow for the additional options: turn rate variable and fourth energy parameter. The modifications are labelled $\mathrm{K} 3, \mathrm{~K} 4, \mathrm{~K} 5$ in the program listing.

7.3.2 BADINP Subroutine

BADINP types out an error message on the user's terminal. It is used to check input validity during conversational input operations.

This subroutine has not been changed.

7.3.3 TABLE Subroutine

TABLE controls the calculation and output of the unoptimised manoeuvrability grid using the following grid variables:
. - being energy state or pressure altitude depending on the input request.

- Mach number.
- Z being load factor or turn rate depending on the input request.

The principal outputs are now:

- Energy parameter : P_{s} or P_{s} / w_{f} or $P_{S} V / w_{f}$ or P_{S} / V.
. Turn rate (if - is load factor) or load factor (if s is tum rate).
. The load factor and turn rate corresponding to the maximum lift boundary.

The subroutine has been modified in Version 2 to allow for the additional options (turn rate grid variable and fourth energy parameter) and to calculate specific excess power P_{s} asing gross thrust rather than net thrust (see Chapter 3 for more details). The modifications are labelled K2, K3, R4, K5 in the program listing.

7.3.4 ATMOS Subroutine

ATMOS calculates atmospheric parameters, giving temperature as anction of pressure height in either ICAO or ARDU Atmospheres.

This subroutine has not been changed.

7.3.5 INTRP Subroutine

INTRP is a linear interpolation, returning ordinate and gradient information.

This subroutine has not bee changed.

7.3.6 HEIGHT Subroutine

HEIGHT calculates the geopotential height corresponding to a given pressure height in the nominated atmosphere.

This subroutine has not been changed.

7.3.7 HTRLE Subroutine

HTRUE calculates the true height for given at mospheric parameters.
This subroutine has not been changed and is explained more fully in Reference 1.

7.3.8 IDENT Subroutine

IDENT is an input subroutine which reads the aircraft identification data file.

It has been modified to allow the option of either:

- calling BININ to read binary records from an engine data file into array
F and an aerodynamic data file into array E.
- calling PAC2IN to read a PACAM2 ASCII data file (engine and aerodynamic tables) into arrays E and F. (See Paragraphs 7.1 and 7.5 for more details)

7.3.9 PlOLT Subroutine

PIOUT provides output control for unoptimized performance calculations. A text-formatted output file is produced for printing and an alphanumeric output file is produced for input to program P2V2.

This subroutine has been modified to print the lift limit boundaries, and to allow for the extra option of the energy parameter P_{s} / V and the alternative option of a turn rate grid. The modifications are labelled K2, K3, K4, K5 in the program listing.

7.3.10 BININ Subroutine

BININ reads data into a nominated storage area from a specified disk file. This file must consist of a sequence of binary records, with the first word in each record being the number of data items in that record.

This subroutine has not been changed.

7.3.11 ALTIT Subroutine

ALTIT performs a Newton iteration to determine pressure height h_{p} and other atmospheric quantities, when the independent variables are energy state E_{5} and Mach number.

This subroutine has not been changed and is described in detall in Reference 1.

7.3.12 PARAMS Subroutine

PARAMS calculates airspeed and pressure parsmeters.
The initial angle of attack estimate for each aircraft trim calculatior has now been removed from this subroutine and added to the user defined subroutine AERO.

7.3.13 MAXMAN Subroutine

MAXMAN controls the calculation and output of the optimised manoeurrability grid, using energy height E_{s} and load factor or turn rate as grid variabies. Energy parameter ($P_{s}, P_{s} / w_{f}, P_{s} V / w_{f}$ or $\left.P_{s} / V\right)$ is optimised by varying Mach number, and a simfle Euler integration is performed at eacs energy siate to estimate a climb time history.

Thas subroutine tas been modified to allow for the additional option c f the entrgy parameter $P_{s} \prime$ and the option of a turn rate grid variable. The modifications are labelled $K 5$ and $K 8$ in the program listing.

7.3.14 SEP Subroutine

 for the oftimised grid.

This subroutine has been largely rewritien. The calculation of f_{s} has beer 1 meroved and the subroutine now allows for the additional options avalabie. The modifications are labelled $k 3, k 5, k 8$ in the listing.
-.3.15 piňut Surgouizne
PloLA frovides output control for optimized performance calculations, in a lake aranner to subroutine Plout.

This subroutine has also been modified to allow for the additional options avallable. The modifications are labelled K3, K5, K8 in the program listirg.

7.3.16 MnNSEP Subroutine

MONSEP is a routine called by ROMIN to monitor the convergence σ the energy parameter optimisation.

This routine has not been altered and is described in detail in Reference 1 .

7.4 Subroutine Library PlLIB

This subroutine library is exactly the same as described in Reference 1 . It contains routines for curve fitting and optimisation which are explained in detail within the program listing and are described very briefly here for completeness.

7.4.1 SURF Subroutine

SURF takes spline fit information representing a surface stored in vector form and provides at the grid point (x, y) the function $z=f(x, y)$ and, if requested, its lst and 2 nd order derivatives. The spline data represent knots and B-spline coefficents for least square curve fits of z against x for discrete values of y.

7.4.2 CUEICS Subroutine

CUEICS applies a least-squares cubic spline fit of B-spiines to weighted data points with selected knots. In the present task, CUBICS is only required to fit a simple cubic to four points; hence the fit is exact, all weights are unity, and no external knots are required.

7.4.3 CHECKD Subroutine

CHECKD checks the validity of data supplied to subroutine ClBICS for curve fittarg.

7.4.4 SPDER3 Subroutine

SPDER3 evaluates the cubic spline $f(x)$ and its first derivative df(x)/dx, based on normalised B-spline coefficients and assiciated knot positions.

3.4.5 ROMIN Sukroutime

ROMIN finds the local minimum of an unconstrained function of n variables.

7.5 Subroutine Library PACIIN

This subroutine library contains utility routines for use when the data files provided are in ASCII tabuiar format.

7.5.1 PAC2IN Subroutine

PAC2IN is a new routine which has been added to read the relevant information of a PACAM2 aircraft data file which consists basically of valucr of military and after-burner thrust, fuel flow and ram drag stored in array forn. with Mach number and altitude as arguments. Aerodynamic data in the form of drag coefficients and angle of at tack are also read in using Mach number and lift coefficient as arguments.

Hence PAC2IN first reads in the number of altitude, Mach number and lift coefficient arguments for which data will be read. The actual values of the altitudes, Mach number and lift coefficient arguments are then read followed by the maximum Mach number for each altitude argument and the maximum C_{L} for each Mach number argument. Tabulated values of military thrust, after-burner thrust, military fuel flow, after-burner fuel flow, and intake momentum drag are ther read for the values of the altitude and Mach number arguments listed and entered into array F via calls to TABIN.

Finally values of drag coefficient and angle of attack for the listed values of the M and C_{L} arguments are entered into array E via calls to TABIN.

7.5.2 TABIN Subroutine

TABIN transfers data into a nominated internal storage area from a specified disk file. A?though presently this file is in ASCII and has the format of a PACAM a:riraft data file (doubly dimensioned table), the adaptation to a different tabu:aied format could be easily accomplished.

7.5.3 PACINT Subroutine

PACINT is a double linear interpolation routine. Given a variable (e.g. thrust) that is tabulated as a funstion of two independent arguments (e.g. Mach number and altitude), a value for this variable at any set of entries is determined by double linear interpolation between adjacent tabulated points.

7.5.4 FIND Subroutire

FIND will re:urn the position, within a single dimensioned ordered array, of the tabular argurent above the input variable.

7.5.5 DINTRP Subrcuilne

Given $\begin{array}{ll}z_{1:}=f\left(x_{1}, y_{1}\right) & z_{12}=f\left(x_{1}, y_{2}\right)\end{array}$

$$
z_{23}=f\left(x_{2}, y_{1}\right) \quad z_{22}=f\left(x_{2}, y_{2}\right)
$$

DINTRP will perform a double linear interpolation and return $z=f(x, y)$.
7.5.6 PACDER Subrol:ine

For a variabie z that is tabulated as a function of two independent arguments x and $y, ~ P A C D E R$ determines a value $f o r z$ and its derivatives with respect to x and y an an of entries (x, y).

C WRITTEN BY VR ARL 1983.
C thrust returns for given hfight imach no. -
(1) WF -FUEL CONSUMP. (TO PI THRU COMMON 'B/)
(2) XMLIM-MAX. MACH ALL. (10 " 10 "

-GROSS THR
must be called before either aero or aeromx arf callfo

COMMON /B/ B(20n)						
COMPON /C: C(200)						
COmmon /fdata/ F(2000)						
COMPN /USER/ FN,FG,RD,CLT, CD, ALPHA,GDS						
(SREF,B(16)), (WF, B (42)) , DIM,R(40) \%						
3 (XMLIM, B (61)) , (TERR, 3 (75)						
EquTVALENCE (G.C(39))						

```
C ORDER OF SPLINES IN F IS ASSUNED IO BE -
(1) NET THRUST-INT- (MACH, HFIGGT) ILRF
(2) ENGINE RMM DRAG-I:TT- (MACH,HEIGHT) ILRF.
(3) FUEL CONS.-INT- (MACH, HFIICHT) 'LRM/HR ।
(心) NFTT THRUST-A/B- (MACH, heIGTT) :LBf!
(s) ENGINE RAM DRAG-A/B- (MACH, HEIGHT) :LAF
(6) ELEL CONS.-A/B- (MACH,HEICHT) |LRM/HR|
```

```
C CHECK IF A/B OR INTERMEDIATE POWER REOTEST -
```

C IF NOT STOP WITH APPROPRLATE MESSAGF
Nj $=2$
IF (ABS (PLA-200.).LE..On1) Goto : n
If(ABS(PLA-100.).LF...001) GTO $2 n$
TYPE is , FLA

STOP
C a/b power so read thru to start of a/b splines
10 DO 11 i=1.3
NJ $=N J+G(N J-1)+.001$
ii ConTinue
C if intermediate power reouest already at start of int splinfs
C SET ROMINAL MACH : O. LIMIT
$20 \quad$ XMLIM $=X \operatorname{SPMAX}(F(N J))$
C FIND NE: THRUST, FN.
CALL SURF(F(NJ), XM, HP,FN, D1, D2, D3, IERR)
iF(IERR.NT..0) COTO 900
fn - fn*nurieng

C FIND RAM DRAG,RD.
$\mathrm{NJ}=\mathrm{NJ}+\mathrm{F}(\mathrm{NJ}-1)+.001$
$\operatorname{CALL} \operatorname{SURF}(F(N J), M M, H P, R T, D 1, D 2, D 3, I F R R)$
IF (IERR.NE. O) COTO 900
$R D=R D * N U M F C$
$\mathrm{FG}=\mathrm{FN}+\mathrm{RD}$
C FIND FUEL CONSUMPTIOR: int.
$\mathrm{NJ}=\mathrm{NJ}+\mathrm{F}(\mathrm{NJ}-1)+.001$
$\operatorname{CALL} \operatorname{SURF}(F(N J), \mathrm{MM}, \mathrm{HP}, \mathrm{WF}, \mathrm{D} 1, \mathrm{D} 2, \mathrm{D} 3$, TERR $)$
IF (IERR.NE.0) COTO 900
WF - WF * NMGENG
900 CONTINLE
RETURN
END
subroutine thrust
C WRITTEN BY VR ARL MARCH 1983
C thrust returns for given hfight /mach no. -
(1) WF -FUEL CONSIMP. (TO PI THRU COMMON /R/)
(2) XMLIM-MAX. MACH ALL. (" " " ")
(3) FN -NET THRUST (ONLY TO AERO,AFROMX THRU COMMNN /HSPR/)
(4) FG -GROSS THRUST
(5) DELTL-LIFT LOSS
(6) RD -RAM DRAC.

$("$	$"$	$"$	$"$	$"$
$("$	$"$	$"$	$"$	$"$
$("$	$"$	$"$	$"$	

PARAMETER AJ =6.38 :NOZZLF. ARF.A (FT**2)

REAL JVR, LRR,K1,K2
COMON /B/ B(200)
COMPION /FDATA/ F(2000)
COMPON /USER/ FN, FC,RD,CLT,CD,ALPHA, DFLLTL, THETAE,
1 CLO, WULDA, K1, K2, CDO, CLCRIT, CDS
EOUIVALENCE ($\quad X M, B(3)),(\quad T, B(4)),(\quad H P, R(6))$,

(A(4))

OF SPLINES IN F IS ASSUMED TO $3 E$ -
(1) [NORYALIZED] GROSS THRUST-COMRAT- (MACH, HEITHT)
(2) [NORAALIZED] FLEL CONS. -COMBAT- (MACH, HEIGHT)
(3) [NORMALIZED] NET THRUST-COMRAT- (MACH, HFITAT)
(4) Liftloss/fg ratio (JVr,ang of Nozile df.f)

C power level for aircraft is assumed io always be combat.
C Calculate normalizing factors - pDPO = P/PO, TdTO= T/:0
$\mathrm{PDPD}=\mathrm{P} / 2116.22$
TDTO $=$: $/ 288.15$
C SET :OMTMNL MACH SO. LIMTT
WILIM $=$ KSPMAX($\bar{F}(2)$)
C FIND GROSS THRUST fG FROM SPLINE THE: Di-NORMALISF
$\mathrm{NJ}=$ =

ME(IERR.NE.O) GOTO 900
二C - FG*PDPO
C FIND FLEL CONSUPTIOR WF FROM SRLINE THEN UN-NORMALISF
$: N J=N J+F(: 3 J-1)+.001$
CALL SURF(F(NJ), XM, HF, WF, DI, J2, D3, IERR)
iF(IERR.NE.0) COTO 900
WF = WF*PDPO*SORT (TOTO)
C FIND set mirust from spline then un-Normalisef:i.
$\mathrm{NJ}=\mathrm{NJ}+\mathrm{F}(\mathrm{NJ}-1)+.001$
CALL $\operatorname{SURF}(F(N J), X M, H P, F N, D 1, D 2, D 3$, IERR $)$
IF (IERR.NE.0) GOTO 900
FN = FN*PDPO
C Calculate ram drag rd
$R D=F C-F N$
C FIND LIFT LOSS RATIO(LRK) \& CaLCllate Lift LOSS(DELTL)
DELTL $=0.0$
FF (XM.LT. IE-4) COTO 900
$\mathrm{NJ}=\mathrm{NJ}+\mathrm{F}(\mathrm{NJ}-1)+.001$
JVR $=\operatorname{SORT}\left(\left(F G^{*}\right.\right.$ SREF $\left.) /\left(2.0^{*} D I M^{*} A J\right)\right) \quad$ UJET VEL. RATIO
JVR $=$ AMINI (JVR, XSPMAX($\mathrm{F}(\mathrm{NJ} \mathrm{J})$))
A.N $1=A M T N I(A . N, Y S P M A X(F(N J)))$

CALL SURF(F(NJ), JVR,AJN1,LRR,D1, D2,D3, IERR)
IF (IERR.NE.0) COTO 900
DELTL - LRR * FG
CONTINUE
RETURN
END

SUBROUTINE THRUST


```
= asscufs a pacmiz a/c data file.
: ASSUMES F CONTAINS -
    (!) NA -NO. OF ALTITUDE ARGS
    (2) NM -NO. OF MACH ARGS
    (3) HARG -ARRAY OF ALIITLDE ARGS
    (4) VMARG -ARRAY OF MACH ARGS
    (5) VMTOP -ARRAY OF MAX MACH( ALT)
    (6) THRMP -TABLE OF MIL. THRCSTS(MACH,ALT:
    (:) HHRAB -TABLE OF A/B THRUST(MACH,ALT)
    (9) DTN:: -TABLE OF RAM DRAG(MACH,ALT)
    (9) FCMP -TABLE OF :M. FLED CONS.(MAC!1,ALT)
    (1!)FCAB -TABLE OF A/B FLEL CONS.(MACH,AE:)
C E:NO IX:, MP
    CALL EIND(MARG.NM,XM,IXO)
    CAL: EIND(HIRG,NH,HP, HHP)
E EIND MAR MACH NO. FOR THIS ALTITICDE
    MCIM = EINTRP(HP,HARG(EHP-I),NMTOP(IHP-I),HARGSIHP)
    I VITOP(IHP))
C FIND GROSS THRUST :FG
    N - }6
    :POINTFR TO CLRPFNT TABLE TV F
    FCMIL = PACINT (XM,HP, MMARG,HARG,F(NJ),IXM, THP,NM,NA )
    NJ - N.J + NA*NM
    IF(PLA.CT. 100.) GNTO 10
C INTERPOLATE FROM O TO MIL POWER RATING
    FG = FINTRP(PLA,0.,0.,100.,FGMIL)
    GOTO }2
C INIERPOLATE BETWEEN MIL POWER & A/B POWER
10 FCAB = PACINT (XM,HP, VMARG,HARG,F(NJ),IXM,IHP,NM, NA )
    FG FINTRP(PLA, 100.,FGMIL, 200.,FGAB)
C EIND RAM DRAG - ISTAKE MOMENTUM DRAG
20 W =NJ + NA*NM
    RD = PACINT (XM,HP, VMARG,HARG,F(NJ), IXM, IHP,NM,NA)
C CALCILATE NET THRUST :FN
    FN = FG - RD
C FIND FLEL CONSUMPTION :WF
    NJ - NJ + NA*NM
    WFMIL = PACINT(XM,HP,VMARG,HARG,F(NJ),IXM, IHP,NM,NA)
    IF(PLA. (T.100.) GOTO }5
C INTERPOLATE BETWEEN O & MIL POWER
        WF EINTRP(PLA,0.,0.,100.,WFMIL)
        GOTO 100
    C INTERPOLATE BETWEEN MIL POWER & A/B POWER
    50 NJ=NJ + NA*NM
        WFAB = PACINT (XM,HP, VMARG,HARG,F(NJ),IXM, IHP,NM,NA)
        WF = FINTRP(PLA, 100.,WFMIL, 200.,WFAB)
100 RETURN
    END
```

FIG. 7.3 Example 3 of Subroutine THRUST

SUBROUTINE AEROMX

```
AEROMX FINDS FOR A GIVEN hEIGHT & maCh NO.
    (1) CLMAX
    (2) alpmax - alpha corresponding to clmax
    (3) tlmax -tctal lift corresponding to clmax
    (4) CDS -STORE DRAG COEf.( PASSED thru /uSER/ TO afRD)
aeromx assumes a call has been made to thrust prior to its calling.
aEROMX MuST be called before aero is called for tiat particular hfight/
C mach No. COmbination.
C VR ARL APRIL 1983
C asSuMES ORDER OF SPLINE FITS IN E IS -
    (1) CL(ALPHA,MACH)
    (2) CLMS:(MACH)
    (3) CDL(CL,MACH)
    (4) CDO(MACH)
    COMMON /B/ B(2On)
    COMMON /C/ C(200)
    COMMON /EDATA/ E(2000)
    COMMON /USER/ FT,FG,RD,CLT,CD,ALPHA,CDO,CDS
    DIMENSION XMDCDS(20), DELCDS(20)
    EOUIVALENCE (RADLAN,C( 40))
    EQUIVALENCE ( GN,B( 2)),( XM,B( 3)),( THFTAI,R( 13)),
    l ( W,B( 17)),( EFFT,B(41)),
    2 (ALPMAX,B(45)),( TLMAX,R(48)),( DIM,B(49)),
    3( IERR,B(75)),(NDCDS,B( 80)),(XMDCDS,B( 81)),(DELCDS,B(101))
    FINTRP(X,X1,Y1,X2,Y2) = Y1 + (X-X1) * (Y2-Y1) / (X2-X1)
C FIND CLMAX FROM 2ND SPLINF. ETT IN E
    IERR = 0
    X = AMAXI(XM,XSPMIN(E(NJ)))
    X = A.
    CALL SURF(E(NJ),X,Y,CLMAX,DI,D2,D2, IERR) !GFT CLMAX FOP MACH X
    IF(IERR.NE.0) GOTO }3
C FIND CDO FROM 4TH SPLINF, IN E
    NJ=NJ+E(NJ-1)+.001
    NJ=NJ+E(NJ-1)+.001 INJ POINTS TO LTH SPLINF IN E
    X=AMAXI(XM, XSPMIN(E{NJ)))
    Y=0
    CALL SURF(E(NJ),X,Y,CDO,D1,D2,D3,IERR) !GET GDO FOR MACH Y
C FIND NLPHA CORRESPONDING :O CL: = CLMAX
    CLT = Clmax
    CALL GETALF
    ALPMAX = ALPHA
C calculate tlmax : lift corresponding to clmax
    TLMAX = FG*SIND(ALPMAX) + CLMA.**DIM
30
    c!nNTINGE
C FIND STORE DRAG
    CDS - 0.
    IF (NDCDS.EO.0) GOTO 900
    IF (XI.LE.XMDCDS(1)) CDS = DELCDS(1)
    IF (XM.GE. XMDCDS(NDCDS)) CDS - DELCDS(NDCDS)
    IF (XM.LE.XMDCDS(1) .OR. XM.GE.XMDCDS(NDCDS)) GOTO 54O
    DO 450 I=2,NDCDS
    450 IF (XA.LE.XMDCDS(I)) GOTO 500
    IERR = 104
    coto 900
    IM = I-I
    CDS = FINTRP (XM, XMDCDS(IM), DELCDS(IM), XMDCDS(I), DFLCDS(I))
    S40 CDS = CDS * 1.0E-04
    900 CONTINUE
    RETURN
    END
```

FIG. 7.4 Example of Subroutine AEROMX
subroutine getalf C FINDS ALPHA FOR GIVEN CLT IN /USER/ AND XM IN/B/

COMMON /EDATA/ E(2000)
COMMON /B/ B(200)
COMMON /USER/ FN, FG, RD, CLT , CD, ALPHA, CDO, CDS
EQUIVALENCE (XM .B(3)), (IERR,B (75))
C USE N/R TO FIHD FROM CL(ALPHA,MACH) -THE IST SPLINE FIT IN E C the alpha corresponding to cli.

$\begin{aligned} & A L P H A=\text { ILI } / .09 \\ & N J=2 \end{aligned}$	IDMP. DET BEST TST ESTIMATE inj points to ist spline in e
ASPMAX $=$ XSPMAX (E(NJ))	
YM = AMAXI(XM, YSPMIN(E(NJ)))	
DO $20 \quad i=1,20$	
IERR $=-1$	lderivatives reoulred
A = AMIN1(ASPMAX, ALPHA)	
CALL SURF(E(NJ), A, YM, CL, DCDA, D2, D3, IERR)	
IF(IERR.NE.0) GOTO 21	
$C L=C L+(A L P H A-A)-D C D A$! extrapolate outside range
$F A=C L-C L T$	
IF (ABS (FA).LT. 1E-4) COTO 25	O 25 IEXIT as CLOSE ENOUGH
continue	
IERR $=102$	Idid nct converge in 20 ITER.
RETURN	
END	

FIG. 7.5 Example of Subroutine GETALF

SUBROUTINE AERO
C aERO ROUTINE RETURNS for GIVEN load factor /heicht /mach no. -
C
(1) D - DRAG
(2) EFFT - EFFECTIVE ThRUST
a aero assumes aeromx has previously been calied to set up variables depending only on C GIVEN HEIGHT/MACH NO.
C SIMILAIRLY IT ASSUMES THRUST HAS SET UP PROPULSION ASSOCIATTED VAR FOR THE
C GIVEN REIGHT /MACH NO.
c assumes order of spline fits in e is -
(1) CL(ALPHA, MACH)

COMMON /B/ B(200)
COMMON /C/ C(200)
COMMON /Edata/ e(2000)
COMMON /USER/ FN,FG,RD,CLT,CD,ALPHA,CDO,CDS
DIMENSION XMDCDS(20), DELCDS(20)
Equivalence (radian, c(40))
equivalence ($\operatorname{CN}, \mathrm{B}(2)),(\quad \mathrm{Xm}, \mathrm{B}(3)),(\operatorname{ThETAL}, \mathrm{B}(13))$,
1 ($\quad 1$, $B(17)),(\operatorname{EFFT}, B(41))$,
(D,B(43)),(CLMAX,B(44)),
(TLMAX,B(48)),(DIM,B(49)),(IERR,B(75)),
($\operatorname{NDCDS}, B(80)),(X M D C D S, 3(81)),(\operatorname{DELCDS}, B(101))$
$\operatorname{FINTRP}\left(X, X 1, Y 1, X 2, Y_{2}\right)=Y 1+(X-X 1) \quad(Y 2-Y 1) /(X 2-X 1)$
C Find trimmed ancle of attack \& Cl for given hieght, mach \& load factor.
C FIND CL TRIM (CLT) ALPHA USING N/R , ITERATING ON ALPHA T1 = GN*W
! temp. var to save calc.
IF (XM.GE.0.0) GOTO 110
IERA $=103$
GOTO 900
$110 \quad \begin{array}{ll} \\ & \therefore L=2 \\ \text { DCLDA }=0.09\end{array}$
ALPHA $=\mathbf{T} 1$ ((FG/RADIAN + DIM•DCLDA)
!POINTS TO EST SPLINE

DO $120:=1,10$
IERR = - 1 !REQUIRE SPLINE DERIVS
$A=$ AMINI(ASPMAX,ALPHA)
CALL SURF(E(NJ),A,YM,CLT, DCLDA, D2,D3,IERR)
IF (IERR.NE.0) GOTO 900
CLT $=$ CLT $+(A L P H A-A)$-DCLDA
ilinear extrapolation
DFDA $=$ DIMADCLDA + FG*COSD(ALPHA)/RADIAN
$\bar{F}=F G^{\circ} S I N D(A L P H A)+C L T D^{\circ} D M-T 1$
JALF = F/DFDA
IF (ABS(DALF).LT. 0.001) GOTO 200 IEXIT AS CLOSE ENOUGH
ALPHA $=$ ALPHA - DALF
:20
CONTINUE
IERR $=102$ IMORE THAN 20 ITERATIONS
GOTO 900
C CALCulate grft - effective thrust
$200 \quad E F F T=F G C O S D(A L P H A)-R D$
C Calculate cd \& then 0
CALL GETCD
$900 \quad D=-D \cdot$ DIM
continue
RETURN 1 RETURN MORMALLY
END

FIG. 7.6 Example of Subroutine AERO.

SUBROUTINE GETCD
C routine to calculate cd given clt \& xm and a prior call to aeromx.
COMMON /USER/ FN,FG, RD,CLT, CD,ALPHA, DELTL, THETAE,
1 CLO,DCLDA,K1,K2,CDO,CLCRIT, CDS
REAL K1,K2
C calculate drac coeff
$\operatorname{IF}(\Omega-$. LE.CLCRIT $) \mathrm{CDL}=\left(C D 0+\mathrm{K} 1{ }^{\bullet} \mathrm{CLT}{ }^{\bullet} \mathrm{CLT}\right)$
IF (CLT.GL.CLCRIT) CDL $=(\mathcal{L D O +}(\mathrm{K} 1-\mathrm{R} 2)$-CLCRIT*CLCRIT
1 $+\mathrm{K}^{\bullet} \mathrm{CL}{ }^{-} \mathrm{CLT}$)

C calculate total drac
$C D=C D L+G D S$
CONTINUE
geturn
END

EIG. T. Example 1 OE Subroutine GEICD

SUbROLtine ge:こ:

\checkmark ASSUMES SOL CL, MAC'A, :C THE PRE JPLINE :N E
COMMON EDATA, EL2000
COMMCN B/ B12001

$\mathrm{NJ}=\mathrm{E}(1) \cdot 2.301$
$N J=N J \cdot E\left(N_{i}-1\right) * .001$
IPTS :O 3RD SPLINE IN E
XCLE = AMIN1(CET, XSPMAX (E/N:I)
YM $=$ AMAXI(XM,YSPMING E(NJ) ;
IERR = -1
loenivative required
CALL SURF(EINJ:, XCL:, M, CDL, DCDDCL, D2, D3, IERR)
IF(IERR.NE.O) GOTO 900
$C D L=C D L+(C . \Sigma-X C L T)$ DCDDCL LLINEAR EXTRAPOLATION
$C D=C D O+C D L+\operatorname{CDS}$
900 continue
heturn
END

EIG. 7.8 Example 2 of Subroutine GETCD

SUBROUTINE GETCDA

FIG. 7.9 Example of Subroutine GETCDA
subroutine getcdel
C RETURNS CD \& CL FOR GIVEN MACH \& ALPHA.
COMMON/EDATA/ E(2000)
COMMOH /B/ B(200)
COMMOH /USER/ EN,RG,RD,CET,CD,ALPHA.DELEL,THETAE,CDDIFF,CDS ecuivalence (Xm,b(3)),(IERR,B(75))
$\mathrm{NJ}=2$
YM = AMAXI(XM,YSPMIN(E(NJ)))
CALL SURF(E(NJ),ALPHA, YM, CL: , D1, D2, כ3, IERR) IF (IERR.NE.0) RETURN

CALL GETCD
RETURN
END

FIG. 7.10 Example 1 of Subroutine GETCDCL

SUBROUTINE GETCDCL
C RETURNS CLI \& CD FOR GIVEN VALUES OF MACH \& aLPHA. C ASSUMES PRIOR CALL TO AEROMX.

COMMON /USER/ FN,FG,RD,CLT,CD,ALPHA, DELTL, THETAE,
1 CLO, DCLDA,K1,K2,CDO,CLCRIT,CDS
REAL K1,K2
C Calculate trimmed cl
CLT $=$ OCLDR*ALPHA - CLO
C calculate cd
CALL GETCD
RETURN
END

FIG. 7.11 Example 2 of Subroutine GETCDCL

```
        FUNCTION XSPMIN(SPL)
C c
    DIMENSION SPL(1)
        NC = SPL(2) +.001
        XSPMIN = SPL(NC+3)
        RETURN
        END
        FUNCTION XSPMAX(SPL)
c
        DIMENSION SPL(1)
        NC=SPL(2) +.001
        XSPMAX = SPL (NC+4)
        RETURN
        END
        FUNCTION YSPMIN(SPL)
C meturns loner bound of Splime fit spl's Y range.
        DIMENSION SPL(1)
        YSPMIN = SPL(3)
        RETURN
        END
        FUNCTION YSPMAX(SPL)
C
C returas upper bound of spline fim sfL'S y range,
        DIMENSION SPL(1)
        NC = 3PL(2) + .001
        YSPMAX = SPL(NC+2)
        RETURIN
        END
```


8.1 Loading of Program on DEC System-10

The commands for loading program P2V2 and saving a core image on disk on DEC system-10 are:

- LOAD P2V2, P24LIB/SEARCH
- Save P2V2

The routines contained in each of these files are listed in the following table and described briefly in this chapter.

P2V2	MAIN RATEI	P2IN INMMD		PSCON	PDSIFF	
		SEPCON	RATE2	mMP	GRID	
P24LIB	INTRP	BADINP	INLAB	PLTL	AB UNITS	WRLAB

8.2 File P2V2 (P2 Version 2)

Most subroutines contained in this file have been extensively rewritten. Their purpose is described here and further details are available in the source program listing which is extensively documented.

8.2.1 P2 MAIN Program

P2V2 processes data files prepared for a particular aircraft by program ACRAFT and produces either flotter files ready for submission to the off line plot queue or output files to be further processed by the contour plotting program P4V2.

Plotter files (named P2.PLT) are produced by options $4 B, 4 C$ and 42. The output file P24Al.CON is produced by option 4 A and the output files P24A1.CON, P24A2.CON and P24DIF.CON are created by option 4 D . Option 4 G creates the file P24G.CON. All these output files (. $C O N$) are used as input files to the contour ploting program P4V2.

The main program has been modified mainly to cater for the additional option 4 G . The Modifications are labelled Kl and K 4 in the source program lısting.

8.2.2 P2IN Subroutine

P2IN is called by the main program to process the aircraft identificatio. header on the input file and requests an option code for the type of run. An error halt is forced if the 8000 words allocated for vector WORK are insufficient to accomodate the data required by the input grad. It is the user's responsibility to ensure that the option requested is consistent with the purpose for which program ACRAFT produced the data.

This subroutine has been modified to allow for the additional option $4 C$. which plots contours of the energy parameter on a Mach number, turn rate (or load factor) grid.

8.2.3 INMMD Subroutine

Subroutine INMMD is called by subroutine P2IN. It performs a conversational dialogue with the user to accept text, grid data and configuration parameters for on-line provision of maximum manoeuvre diagram data.

It is still in its original condition as described in Reference 1.

8.2.4 PSCON Subroutine

Subroutine PSCON is called from the main program when IOPT=1 (Option 4A). PSCON reads data f:les produced by program ACRAFT, expressed on a load factor (or turn rate), Mact. number grid for each pressure height requested, and prefares a disk file PABAl.con where the energy parameter is expressed on a (Mast number, altstude) grid for each of the requested load factor or turn rate grie foints. P2ifl.CON wlll then be used as the input file when runtarg pula to produce contaur plots.

In addition this subroutine now calculates the lift lialt boundary by working out for each Mach number the height at which the load factor for iurnrate) correspancing to the maximuc lift coefficient is equal to the requested load factor (or turn rate).

This subroutine has been largèy rewritten. The modifications are labelled $\mathrm{K} 2, \mathrm{~K} 4$ in the program listing.

8.2.5 PSDIFF Subroutine

Subroutine PSDIFF is called frox the main program when IOPT=4(Option 4D). PSDIFF performs the functions of PSCON with two separate files produced by ACRAFT. Subroutine PSDIFF produces three data files, P24A1.CON, P24A2.CON and P2LDIF.CON (one for each aircraft and the differential data) any of which can then be processed by program P4V2.

This subroutine has only been slightly changed and is deseribed in Reference 1. The modifications are labelled $K 2, K 4$ in the prograr listing.

8.2.6 RATE Subroutine

Subroutine RATEl is called from the main program when IOPT=2(option $4 B$). RATE reads data produced by program ACRAFT expressed as energy parameter versus turn rate (or load factor) for a range of altitudes (pressure heaght or enter height) and Mach numbers, and prepares a plotter file P2.PLT ready for floting. A separate plotter page is produced for each value of the altitude variakie.

This subroutine has been slightly changed to allow for the chicice of load factor as the x axis. The modifications are labelled $K 4$ in the prograt listing.

8.2.7 SEFCON Subroutine

Subrcutine SEPCON is called from the main program when $10 \mathrm{PT}=8$ (option 46). SEPCON reads data files produced by program ACRAFT, expressed on a turn rate (or load factor), Mach number grid for each pressure heights requested and prepares a file piar.con where the energy parameter is expressed on a Mach number, turr. rate for liad fastor grad for each of the recuested heights. P24C.Con will iter be mput to program PiV2 to produce contour plots.

In addition this subroutine also transmits to P24G.CON the lift iimit boundaries calculated in program ACRAFT.

Thas subroutine was entirely rewritten for version 2 .

8.2.8 RATE2 Sutroutine

Subroutine kATE2 is cajied frow the main prograx when Iopt=3(option 4 C).
RATE2 reads data produced by frogram AこRAFT representing the optimut energy parameter and corresponding turr. rate (or load factor) for a range of energy states and load factors (or turn rates). RATE2 then prepares the plotter file P2.PLT ready for ploting.

This subroutine has been entirely rewritten for Version 2. Previously (Version 1) it was necessary to run P 4 to obtain these plots. It is now possible (and more accurate) to create the plotter file directly from $P 2 V 2$ because of the alternative tum rate grid variable.

8.2.9 MMP Subroutine

Subroutine MMP is called by the main program when 1OPT=6 (Option 4F).
MMP is a conversational routine to assist in calculating data for the Maximum Manoeuvre Persistance Diagram. Fuel available for optimum manoeuvres at discrete range intervals, together with energy state, maximum sustained turn rate and fuel flow, are requested as terminal input, and the number of sustained turns at each range is proildee as terminai output.

Thas subroutine has not been madified in Version 2 and is described fully in Reference 1 .

8.2.In GRIn Subroutine

Subroutine GRID is called by the main program when IOPT $=7$ (option 2 (z).
GRID reads the data files produced by program ACRAFT, expressed on a Xa . numer, load factor (or turn rate) geid for each height requested and prepares a disk file P2.PLT for floting. Turi rate (or load factor) and energy parameter are plotted against Mach number for each loac factor (or turn rate) requested. A separate page of plots is produced for eact value of the height variable (energy height or pressure height).
These plots are intended as ar overvew of the data grid and are produced with a prede:ermined scale.

This sutruition has ber mod: sipd to allow for the additional optiof ef

8.3 Subroutine Library P24LIB

Paulif contains a number of smail utility subroutines. Most of thest subrouthes have been sinhtily modified in Version 2 mainly to cater for the extra :aformation being presented. The modifications are labelied k3 and ks $1 n$ the froeram listing.

8.3.1 INTRP and BADINP Subroutines

Routine INTRP (numerical interpolation) and routine BAnINP (input error text are ob:ained from the file PlWa and are described in Chapter 7.

8.3.2 INAE Cubroutine

IK゙AE is called from subroutine PSDIFF to read an a! parameric identisyan header from an input cisit file froduced by program ACRAFT.
8.3.3 Plilat Subroutine

PLIIAB outputs the identifying header reac by inlab to a ploter file.

8.3.4 UNITS Subroutine

UNITS is called by P2IN to allocate text strings to variables for use in terminal dialogue and plotier axis labelling, dependent on the unit system and the energy variable selected.

8.3.5 WRIAE Subroutine

WRLAB writes the descriptive header read by INLAB onto an output cisk file to be used as input program P 4 V 2 .
9.1 Loading ct fregram on DEC System-10

The comants for loding froctar yiva and saving a ore image or d. si or ver sustem-! are:

```
LOAD PAVI, PGIIF SEARCH, P2LLIB:SEARCH
SAVE PGVZ
```

The routine con:aned in these files are listed in the following table anc described in this chafter.

F-V	$\begin{aligned} & M S X \\ & O T X T \end{aligned}$	$\begin{gathered} \text { P-SS-A } \\ \text { PLOTD } \end{gathered}$	F-?Sロ 6 GRDC	$\begin{gathered} \text { PCON } \\ \text { Bovan } \end{gathered}$	$\begin{aligned} & \text { PES } \\ & \text { ETSEND } \end{aligned}$	
P-LIE	cont	DIAG S	Smouty	Primpt	REALIN	FASH
F24:18	INTRP	SADINP	P IN:AB	PLTIAB	LNITS	

9.2 File P4V?

Most rouijnes contained in this file tave been restracured and rewritten. Their purpose is described here and furiher detais art ava: :able in the source program listing which is exiensively duiumented.

0.2.1 P4 MaIN Program

 frodues cortcur plots for off line fioting. The coriour finis on file fo.pit are of two topes:
(1) Contours of enerey parameite on a Mact number, altutude (ar entey state gric for selected load factios opion LA and 4 D).
(a) Contors defergy parameter or a Mast numer, turnrat (or load factor) grid for seleted teiglts (Opt:=: L(:).

The bries mati program perferms priminary input operations and calls
 is seitected.

4.2 .2 preatservitine

suhroutint Pafinh is salled fror the main progiar when options $4 A$ or $4 D$

P4PSA controls the conversational dialogue which allows the user to vary several features of the plots: scale of plots, number and level of contours, selection of load factors (or turn rate), smoothness of plots, inclusion of energy state contours.

PLPSAA also controls the setting up and ploting of identifying text and axes, the reading of grid data and boundary points from file P24A.CON, the plotting of energy rate contours together with the lift limit boundary and the plotting of the superimposed energy state contours

9.2.3 P4PS4G Subroutine

Subroutine P4PS4G is called from the main program when option $4 G$ is chosen.

PifSíG controls the conversational dialogue which allows the user to vary several features of the plots: scale of plots, number and level of contours, stlection of heights (or energy states), smoothness of plots, inclusion of load factor and turn radius grid (if the grid selected is turn rate).

P4PS4G also controls the reading of grid data and boundary points from file P24G.CON, the plotting of energy rate contours together with the lift limit boundary, and the plotting of the superimposed constant load factor lines and structural load factor boundary when turn rate has been selected as a grid variable. Oniy the points within the lift limit boundary are plotted wereas contours outside the structural limit boundaries are drawn with a dashed line.

9.2.4 BOUND Subroutine

Subroutine BOUND is called by subroutine P4PS4A or P4PS4G to plot the lift limit boundary line and label the end of the line.

9.2.5 ETSBND Subroutine

Subroutine ETSBND is called by subroutine P4PS4G to plot and label the line corresponding to the structural load factor limit on a (Mach number, turn rate) grid.

9.2.6 GRIDC Subroutine

Subroutine GRIDC is called by subroutine P4PS4G. It controls the plotting of lines of constant load factor and lines of constant turn radius on a (Mach number, turn rate) grid.

9.2.7 PCON Subroutine

Subroutine PCON is called by subroutines P4PS4A or P4PS4G to control calls to the software routine PLOT. Plotting is achieved by calls to PLOTD (P4V2) for straight lines between points or calls to SMOOTH (P4LIB) for cubic arcs between points.

9.2.8 PES Subroutine

Subroutine PES is called by subroutine P4PS4A to control the plotting of E_{s} contours by calling either PLOTD or SMOOTH for straight line or smoothed plots, respectively.

9.2.9 PLOTD Subroutine

PLOTD is a interface routine for the CALCOMP software routine PLOT. This routine has been transfered from Version 1 .

9.2.10 OUTXT Suhroutine

Subroutine OUTXT is called by PCON at the start of a contour line to output the contour level on the plotter.

This subroutine was derived from Version 1.

Q. 3 Subroutine Library P4IIB

Most subroutines put together in P4LIB were taken from a set of general parpose labrary routines avalable to all ARL staff. These routanes are outlined briefiv below but mure details are availabie in Reference 1 .

9.3.1 CONT Sutroutine

Subroutine CONT is called by P4PS4A or P4PS4G to draw contour lines for a variable stored in a two dimensional array (i.e. $P_{s}(M, H)$).

9.3.2 DIAG Subroutine

DIAG is a routine called by CONT to interpolate along a mesh diagonal using a simple biquadratic representation of the mesh.

9.3.3 Smooth Subroutine

SMOOTH is a routine which smooths the contour plots by joining successive points on the contour with cubic arcs having tangential coincidence at their common points (knots). The tangential slope is set equal to the mean of the slopes of the straight lines that would otherwise join points on either side of the knot. Wher smoothing is selected, an additional call to SMOOTH is required to complete the current contour before proceeding to the next contour request.

9.3.4 PROMPT Subroutine

PROMPT is a routine called by SMOOTH and REALIN which writes a text on the user's terminal.

Q.3.5 REALIN Subroutine

REALIA is a routine called by SMOOTH to accept real numerical data from the user's terminal.
9.3.6 DASH Subroutine

DASH is a new subroctine called by subroutine PLOTD (P4V2) to plot a dashed line between two pointa.
9.4 Subroutite Library P24LIB

This library has been described in Paragraph 8.3.

The previous chapters have discussed the three programs in the suite. This chapter presents examples of the interactive dialogue used when running the programs, and of the tabular outputs and plots produced when using the programs $1 n$ a co-ordinated fashion. Any given aircraft is represented by files of propulsion, aerodynamic and configuration data, together with the source and core lmage of the FORTRAN programs. A suitable naming convention is required to provide efficient housekeeping of these files. These files can be stored on DEC tape, since changes to one or more files will be needed as data banks and programs are developed.

10.1 CPtion 4A

This option corresponds to the options $1,6,15$ and 20 in the overview or Figur: 2.2.

Figure 10.1 shows a sample dialogue when running the three programs ACRAFT, P2V2, P4V2 to produce a set of SEP (P_{s}) contours plots for specified load factors (option 1 in Figure 2.2). Program ACRAFT produces a file (EXAMPL.TXT) for printing and a file (EXAMPL.NUM) for input to program P2V2.

Figure 10.2 shows a portion of the file EXAMPL.TXT and illustrates the main features of the listed output. The header page identifies the run and echoes the configuration data supplied in the configuration file. In the subsequent pages energy rate and turn rate data are tabulated at each grid point. Also listed for each Mach number are the turn rate and load factor corresponding to the lift limit boundary. Energy rate values outside the lift lixited er. :elope are flagged with the values of -9999.99 .

The 18 load factor SEP contour plot produced using the dialogue in Figure 10.l is show in Figure 10.3. Contours are labelled with a number indicating the value of the parameter plotted, as shown on the right hand side of the plot. The zero SEP contour is emphasised by a dashed line. Superimposed on the plot are contours of constant energy state.

Figure 10.4 illustrates a similar dialogue to obtain contours of $P_{s} V_{f}$ for specified turn rates (option 6 in Figure 2.2) with an extract of the corresponding output shown in Figure 10.5 and a typical plot shown on Figure 10.6.

10.2 Sption 4R

Th1s option corresponds to the options $2,7,16,21$ in the overview of Figere 2.2 .

Figure 10.7 shows a typical dialogue for producing plots of SEP versus turn rate for lines of constant Mach number using the two programs ACRAFT and P2V2 (option 2 in figure 2.2). A load factor increment of 0.5 was chosen to provide a smooth curve when the values are plotted. The Mach number and al: atude selected for the plots are nominated when running P2V2.

Figure 10.8 shows an example of such a plot where each curve plotted is idontified with Mach number and energy state annotation.

10.3 Option 4 C

This option corresponds to the options 11 and 13 in the overview of Figure 2.2.

Figure 10.0 shows a typical dialogue when running the two programs $A C R A F T$ and P 2 V 2 for producing a maximum manoeuvre diagram where P_{s} is optimised with respect to Mach number and plotted against energy state E_{s} for selected values of load factor.

An extract of the output file produced is shown in Figure 10.10 and the corresponding plot in Figure 10.11. To understand the meaning of the data produced a summary of the theory used may be useful.

By definition $\quad E_{E}=\frac{d E_{S}}{C t}$
therefore the time to cimb from one energy state $E_{s l}$ to another E_{s} is:

$$
t=\int_{E_{s 1}}^{E_{s}} \frac{1}{F_{s}} d E_{s}
$$

If we look at a $\lg \mathrm{P}_{\mathrm{s}}$ contour plots (Figure 10.3) it can be shown theoretically (Reference 4) that the optimum climb for minimum time will be the locus of the points at wich the lines of constant E_{s} and the lines of constant P_{s} have cotmon tangents. On the output file shown in Figure 10.10 the lg load factor points provide the profile for a minimum time climb which could be drawn on Figure 10.3. The output file also provides for each energy state and load factor the fuel flow corresponding to the Mach number and altitude which optimises P_{s}. The right hand side load factor column provides optimum sustained turn conditions which are used in maximum manoeuvre persistence calculations. Also indicated at each energy state are the time to climb, fuel used in the climb and range obtained by integration from the initial energy state. (More details are available in Reference 1).

Figures $10.12,10.13$ and 10.14 show a similar run but with lines of constant turn raie. In a similar fashion the amount of fuel used to climb from energy state E_{s}, to another $E_{s,}$ is:

$$
v_{f} d t=\int \frac{k_{f}}{F_{s}} d E_{s}
$$

and eption 4 C can be run with $\mathrm{P}_{\mathrm{S}} / \mathrm{w}_{\mathrm{f}}$ as the energy parameter to provide the of:imar climh for minimam fuel used, which can then be used in carjunction with If contours of $\mathrm{F}_{\mathrm{s}} / \mathrm{w}_{\mathrm{f}}$ plotted using option 4 A .

Similarly opiion 4 C can be run with the two other energy parame:ers $\mathrm{P}_{\mathbf{s}} \mathrm{V}^{\prime} \mathrm{wf}$ and $\mathrm{P}_{\mathbf{s}} / \mathrm{V}$ to; rovide optimum climb for maximum range per unit mass of fuel and maximum range raspectively.
10.4 Cption 40

This option correspands to the options $3,8,17$ and 22 in the overview of Figure 2.2.

Figure 10.15 shows part of the dialogue used when running P2V2 and P4V2 for producing lg SEP differential contours. First the program ACRAFT written for the first aircraft was run using data from the store file ACl. STR generating ACl.NTM for input to P2V2. In a similar manner $A C 2$. NUM was created for the second aircraft. This part of the dialogue was omitted as it is the same as for option 4A.

Figure 10.16 shows the plot obtained using the dialogue above. On this plot the lift limit boundaries for both aircraft have been plotred by P4V2 together with the differential P_{s} contours.

10.5 Option 46

This option curresponds to the options $4,9,18,23$ in the overview of Figure 2.2.

Figure $1 \% .17$ shows a typical dialogue used when running the three programs ACRAFT, $12 V^{2}$ and P4V2 to produce a set of SEF contour plots at a constant altitude on a Mach number, turn rate grid.

Program ACRAFT produces a file EXAMPL.NUM for input to program P4V2 and a file EXAMPL.TXI ready for printing and shown in Figure 10.18 which is similar to the one described in Paragraph 10.2.

A plot produced using the dialogue above is shown in Figure 10.19. Contours are labelled at their start with a level number which is identified at the right hand side of the plot. Superimposed are the lines of constant load factor and turn radius. The lift limit and structural load factor boundaries are also generated by PLV2 with the contours outside the structural limit drawn with a dashed line and the points outside the lift limit boundary ignored.

Figure 10.20 shows SEP contour plots at a constant altitude but on a Mach number, load factor grid; the presentation is slightly different but the lift limit has again been generated by P4V2.
10.6 Option 4Z

This option corresponds to the options $5,10,19,24$ in the overview of Figute 2. 2.

Fig l0.2l shows a typical dialogue for producing a plot of SEP versus Mach number for several load factors at a given altitude using the two programs ACRAPT and P2V2; the plot generated is shown in Figure 10.22.

Plots on this format were previously used (Reference l) to obtain contours of P_{s} on a Mach number, turn rate grid at a specified height; this is now done using option $4 G$ and this format does not present much interest any more.

```
MGNEUUEFARILITY GRID CALCLLATION
IMP\subseteqR!AL (O) OR E.I. (I) UNITS O&
GIFCFAFT DATA FILENAME - EXAMFL.ETF
AIFCRAFT EXAMPLE DATE ミ:-JUN-ES TIME 13:5E ここ.7
    2 AIM-9 - GUNE - 5い% FUEL
```



```
15 HF THE HEIGHT UARIPELE |
P&EEET GRID (Y.N OR C/R) ?N
HOG , HP ETEC (FT), ND. QF ETEPS ? U.SOMO. 13
MACHC, MACH ETEF , NO. OF ETEFS O 亿..US, こ!
GRID FOF LOAD FACTOF (G:, GF TURNFATE (1) OG
G: , GETEF , NQ. DF ETEFS - :, こ.こ
FOLEN (MI_=&O), MAX==O0), 
WING #WEES (IF UAFIAELE) - a
```



```
JA FILENAME FOF UN:T E OXAMPI.TXT
C.FFILENAME FOF UNIT S OEXFMFI.NNUM
CALこULAT!DN:
    ZLTITUDE MF = M.O FT
    ALT:TUDE HF = Sい川.0 F-
    ALT:TUOE MF = lu\uH. U FT
    ALTITLDE HF = :SIOOQ.! F*
    ALTITUDE HF= EWmO.UFT
    ALTITUDE HF = E5,1%%.OFT
    ALT:TUDE HF = ZM以N.O =T
    ALT:TUDE HF = ESOOO.G FT
    FLTITUDE HF = AOOMOGET
    ALT:TUDE HF = 45\no0.G FT
    ALT:TUDE HF = SunGM.GFT
    ALT:TUCE HF = SE,MM.1) F-
    ALT:TUCE MF = E.MUO!.O FT
ZTOF
END OF EXEOUTICN
SFU TIME: 1`.\S ELAFEED TIME: こ, 人U.ご
```

FIG．10．1（a）Sample Dialogue for Option 4A （Load factor grid，P_{S} as energy parameter）

```
RUN =-゙こ
Oこッ!の- Fr=FORMGMNGE FFRCE=%ING
```



```
AA FE COMTOUR゙: ON: ALT WE MACHEN:D 1=こ:A:.CCHJ
JATA SA:E FILENAME : EXPA:F"=.NLM
```



```
*** CJNETANT INC. JF LSAD E二CTJR
```



```
OLFFJT OFTA FOF N = 1.O! - N心L
END CF EXEOUTIDN
```



```
Ex:
FUN =-U2
INF":T = ILENMME : FE.AF:. CO:
```



```
\becauseONTEUR F!OTT:INḰ
```



```
!ニ゙ミミこごこじ! - v
```



```
ジニご
```



```
E:JT G&=.いい - N
    ここ「
```



```
#\therefore:
```

aihchaft mareuvehahility table. for alrictaft example.
 WIE 10-Oct-83 TIME 11:49 35.6

ALEIIUDE AP = 0.0 FT

MAX MACH $=$	1.0
TABULATED VALUES : PS	
	TURNAATE
	$=\mathrm{FT} / \mathrm{S} / \mathrm{S} / \mathrm{S}$

FIG. 10.2(b) Sample Output Listing of Program ACRAFT: Extract (Load factor grid, P_{s} as energy parameter)
_OAE FANTR $=1.68$

FIG. 10.3 Sample SEF Contours plots at a Constant Load Factor

```
RUN RCRAFT
MANEUUERAEILITY GRID CRLCULAT:JN
IMPERIAL (0) OR S.:. (1) UNITE ? Q
AIRCFAFT DATA FILENAME ? EXAMPL.STR
AIFIRRAFT EXAMPLE DATE :1-DCE-8J TIME 15:27 08.4
    2AIM-9 + GUNS - 5C1% FUEL
OS. PS/WF. PS*U/WF QR PS/U (1. 2, 3 OR 4)? 3
IS HP THE HEIGHT UARIABLE ? Y
PRESET GRID (Y,N OR C/R) ON
HPO , HF STEF (FT). NO. QF STEFS ? 0.5000.13
MACHO. MACH STEP . NO. DF STEPE ? 0..0こ5.41
GR:D FOF LOAD FACTOR (O). OR TURNRATE (:) こ:
FO ,TR STEP . NO. OF ETEPS ? 0.4.3
FOWEF (MIL=1OO.MAX=2(OO)) F1010
WING SWEEP (IF UARIFBLE) ?0
NOZELE DEFLECT:ON (:F VAFIAELE) OG
ATMCSPHERE , DEUIATIDN ? ICFD,:
QUTFUT (1-TEXT,2-NDS..3-EDTH) * `
O/P FILENAME FOR UNIT E T EXAMPI.TXT
C/F EILENAME FDR UNIT O P EXAMFL.NUM
GALCULAT:ON:
    ALTITUDE HF = 0.0 =T
    ALTITUDE HP - SOUC.O FF
    QLTITUDE HFI = \OWO.O FT
    ALTITUDE HP - :50100.0 FT
    ALT:TUDE HF - EO(10Q1.O ET
    ALTITUDE HF = 25000.0 FT
    ALTITUDE HO - EOOOC.O ET
    ALT:TUDE HP = 35040.0 FT
    ALTITUDE HF = 4UCOOO.O FT
    ALTITUDE HP - 45000.0 FT
    ALTITUDE HF - 5CIOON.O FT
    ALT:TUDE HP - 55000.0 FT
    ALTITUDE HF E ECOOG.O FT
ETCP
END OF EXECUTION
CPU TIME, HU.:= E_ADEED FIME: 6:JT.Jミ
EX!T
```


．RUN PZUE

COME：AT PERFDRMANCS PROCESEING
OPTIGN OR（CR）FOR MELP i JA
AA PS CONTOURS ON RLT US MRCM GRID（POAR1．CON） DATA BRSE FILENAME EXAMF！．NUM
＊＊＊DATA RRE IN IMPERIAL UNITE．ENERGY FARAMETER IS PEU／LOUOWF＊＊＊
＊＊＊CONSTANT INC．DF TURN RATE
feply＂yEs＂，＂ND＂，＂all＂of＂END＂， OUTPUT DATA FOR TR－ $0.00 ?$ aLL

END OF EXECUTION
CPU TIME：： 2.75 ELAPSED TIME：3： 3.36
EX：T
RUN Fque
infut filename ：peafi．con
＊＊＊DATA ARE IN IMFEFIAL UNITE．ENEFGY PAFRMETER IE FEU／ 1000 WF ＊m＊
＊＊＊CONSTANT INC．FOR TURN RATE＊＊＊ CONTOUR PLOTTING

SCRLEE IN UNITEIIN OF FLOT－MACK，ALT $, ~ .2,: 0 G O O ~$
EMCOTHED AND TEXTURED SONTOUKS $\because N$
FUOT Es CONTCLIE＝？y
CONTOUR LEVELS－STRRT．STEP．NQ．：5000． 5000.15
FLOT TR＝0．00－N
PI＿OT TK－a．an n
SONTEUF LEVELS－3TAF－．STEF．NC．，－300．50．：3

OHOT TE－S．OO－N
Erof
END OF EKECUTION
CFU T：ME，：：．US ELAFFED T！ME：こ．4． 8
Eくな

AL:ITUUE HP $=10000.0 \mathrm{fT}$

MAX MACH $=$	1.0
TABULATED VALUES $: ~ P S * V / W F-F T * * 2 / L B . S / 1000$	
LCAD FACTR -	

I	MaCH	$\underset{K}{\text { TAS }}$	$\begin{aligned} & \text { ES } \\ & \text { FT } \end{aligned}$	$\underset{\mathrm{FT}}{\mathrm{H}}$	$\stackrel{W F}{L B / H R}$	trmax emax		0.00	4.00	8.00
	NO					DEC/S	c units			
4	. 075	47.9	10101.	10000.	5543.	0.00	0.21	-3.7	-4.0	-4.3
								1.00	1.02	4.06
5	. 100	63.8	10180.	10000.	5575.	0.00	0.30	-3.0	-3.4	-4. 5
								1.00	1.03	$\therefore .10$
6	. 125	79.8	10282.	10000.	5609.	0.00	0.41	-2.2	-2.8	-4.7
								1.00	:. 04	. 16
7	. 150	95.7	10406.	10000.	5643.	0.00	0.54	-0.3	-1.8	-4.7
								1.00	1.06	9.22
8	. 175	111.7	10552.	10000.	5679.	0.00	0.69	:. 1	-0.3	-4.4
								1.20	1.08	1.29
$?$. 200	127.7	10722.	10000.	5716.	0.00	0.37	3.5	$\because 7$	-3.9
								1.00	$\therefore 10$	1.37
10	. 225	143.6	10913.	10000.	5755.	2.98	1.07	6.5	4.1	-3.2
								1.00	1. 13.	1.45
11	. 250	159.0́	11127.	10000.	5795.	5.70	i. 30	10.0	5.9	-2.3
								1.00	1.16	$\therefore .54$
12	. 275	175.5	11364.	10000.	5836.	?. 39	1.55	13.9	10.2	-1.1
								1.00	1.10	1.63
13	. 300	191.5	11623.	10000.	5879.	3.72	: .33	18.0	13.3	0.2
								1.20	1.22	1.72
14	. 325	207.5	11905.	1000 C .	5923.	3.38	2.12	21.4	17.3	:.?
								$\therefore .00$	1.25	1.32
15	. 350	223.4	12210.	10000.	5969.	10.92	2.45	24.9	21.3	3.7
								: 00	1.29	$\bigcirc .32$
16	. 375	2:9.4	1253.	10000.	6017.	1:.91	2.79	28.5	24.3	5.9
								1.00	1.33	2.02
17	. 00	255.3	12886.	10000.	6060.	12.35	3.17	32.0	27.3	8.3
								1.00	1.37	2.12
18	. 425	271.3	13258.	:0000.	51:7.	13.75	3.56	35.5	20.3	$1: .1$
								1.00	1.41	2.22
19	. 450	287.2	13653.	10000.	6170.	14.64	3.98	29.0	33.2	14.2
								1.00	1.45	2.33
20	. 475	303.2	14070.	10000.	6224.	15.51	4.42	42.4	35.9	16.3
								1.00	1.49	2.44
21	. 500	319.2	14510.	10000.	6280.	16.37	4.30	45.5	98.4	16.0
								1.00	1.54	2.54
22	. 525	$3: 5.1$	14972.	10000.	6338.	17.21	2.38	48.5	40.7	17.2
								1.00	1.58	2.65
23	. 550	351.1	15457.	10000.	6398.	18.06	5.80	51.4	42.8	17.1
								1.00	1.53	2.76
24	. 575	367.3	15964.	10000.	6459.	18.80	6.43	53.3	44.5	16.7
								1.00	$\therefore 68$	2.87
25	. 600	383.0	16404.	10000.	5523.	17.73	5.09	56.0	46.0	15.9
								1.00	1.72	2.98
26	. 625	399.3	17046.	10000.	6588.	20.56	7.57	57.9	47.1	14.8
								1.00	1.75	3.09
27	. 650	414.3	17621.	10000.	5654.	21.38	3.18	59.0	47.4	12.5

turnrate
.00
. 3 4.06 -4.5
$\therefore .10$ -4.7
-.16 -4.7 1.

TJRA RATE $=4.88$


```
MANEUUERABILITY GRID CALCULATION
IMPERIAL (O) QR S.1. (1) UNITS }7
AIRCFAFT DATA FILENAME ? DUMMY.STR
AIRCRAFT EXAMPLE DATE 1L-OCt-03 TIME 16.05 56.9
AIR SUPERIORITY | 2 AIMG * SOE FUEL
PS. PS/WF, PS#U/WF OR PS/U (1. 2. 3 QR:4) ? 1
IS HP THE HEIGHT VAKIABLE 
PRESET GRID (Y, N QR C/R) ?N
HPO . MP STEP (FT). NC. OF STEPS ? 0.10000.2
MRCHO. MACH STEP . ND. OF STEPS ?.4..2.6
GRID FOK LQAD FACTOR IO:. OR TURNRATE (1) TO
GO . G STEP . NO. QF STEPS ? 1..5.15
FOWER IMIL=1OO.MAX-200\ ? 200
WING SWEEP (IF UARIABLE) ?O
NOZZLE DEFLECTION (IF UAFIRELE) ? O
ATMOSPHERE . DEUIAT:ON ? ICAO.O
QUTPUT (1-TEXT.Z-NCS.,3-BOTM) ? 3
OノFILENAME FOR UNIT G T EXAMPL.TXT
O/P FILENAME FQF UNIT S O EXAMPL.NUM
CALCULATION '
    ALTITUDE HP= O.O FT
sTOP
END OF EXECUTION
CPU TIME. 4.4J ELAFSED TIME. 3.T.56
EXIT
.RUN PEUZ
COMBAT PERFORMANCE PROCESSING
OPTION OR (CR) FOR HELP : 4B
4B PS US OMEGA/ETA FOR GIVEN HE:GHT. (PZ.PLT)
DATA BRSE FILENAME I EXAMPL.NUM
*m* DATA ARE IN IMFERIAL UNITS. ENERGY PARAMETEN IS FSS mm*
*mm CONSTANT INC. QF LOAD FACTOR
ECNLES IN UNITS/INCH OF PLDT
TURN RATE/LDAD FACTOR . ENERGY UGRIAELE , 4.2OO
MAXIMUM FOR ENERGY AXIS , 4UO
ENERGY AXIS LENGTH (IN) , 7
REFLY "YES". "NQ". "RLL" OR "END",
HEIGHT = 10000.0 FT ? Y
    MACH - .40O ? N
    MACH = .600 ? N
    MACH = . 800 ? Y
    MACH = 1.000 ? Y
    MRCH = 1.200 ? E
END OF EXECUTION
CPIJ TIME, 4.63 ELAPSED TIME, 2126.90
Ex:T
```


FIG. : . 8 Sample SEP Versus Turn fate flot


```
IMFGRIAL (!) OF: 5.I. (:) UNITE ? !
GIRCRAFT DATA FILENAME OEXAMFL.STR
A!RCRAFT EXAMFLE DATE IN-DEt-CJ TIME IOHJ. 41%.:
    2 AIM-3 - GUNG - 50% rUEL
```



```
IS HIP THE: HEIGHT VARIAELE IN N
MRXIMUM MIANEUUER 
ES\ . ES STEP (FT), NU. OF 'GTEFS ? SOMH, 50.u.l?
rNID FOF LOAD FACTOF: {0). GR TUKNHETE (1) O
GO ．GETEF
FOWES (MIL-100.MAX=こ(%J) i 11/1
WING E:WFEF I:T UARIIAT:E
NOZZLE JEFLECT[ON (IF UARIOELE) ? 人
ATMOEFHEFE . DEUIATIUN - ICRO.N
QUTFIFT (1-IEKT,Z-NOS..S-EOTH: -- J
C/F FILETHAME FOF UNITE * EXROFT. FXT
I/F F:LENAME FOR UNIT - S EXAOFT.NUM
calculation.
```


COMEAT PERFORMANCE FTGCCESSiNG
OFTION OR 'CRI FOR HELE I $4 C$
IC MAXIMUM TANEUUER D:AGFAM - MMD. (FE.FLT)
DATA EA:SE FILENAME I ExAUCT.NiJM

- DATA ARE in IMFEfial UNI .. ENERGT FARAMETEfi I'S Fis
COLE IN UN:T/INCH OF EF LOT

F.a) or ExECUTICN
(CP) tIME, T.TO ELAREED TIME: 1.13.1U
E《:

FIG．10．9 Sample Dialogue for Option tc （Load factor grid）

		***	ENERGY	state es =	5000.0	FT **		
G			1.00	2.00	3.00	4.00	5.00	4.11
PS	FT/S		199.54	163.60	103.70	19.85	-156.25	0.00
Omeca	DEG/S		0.000	5.629	9.192	12.587	15.921	12.963
MaCH			0.508	0.508	0.508	0.508	0.508	0.508
TAS	KT		336.044	336.060	336.064	336.069	336.070	336.069
HP	FT		1.	0.	0.	0.	0.	0.
			8059.	8059.	8059.	8059.	8059.	8059.
TIME	S		0.00					
rance	LB		0.					
	N.M.		0.000					
		**	ENERCY	State es =	10000.0	FT ***		
0		-	1.00	2.00	3.00	4.00	5.00	4.35
PS	FT/S		186.91	154.16	101.55	30.60	-57.48	0.00
OMEGA	DEG/S		0.000	4.654	7.373	9.794	12.046	10.577
MACH			0.608	0.520	0.638	0.657	0.574	0.653
TAS	K:		398.166	406.518	419.010	431.908	444.179	436.17
4 P	FT		2982.	2684.	2223.	1742.	1266.	1575.
WF	L3/HR		7779.	7854.	7966.	8081.	8189.	8119.
TIME	3		25.88					
FUE: rance	La		57.					
	S.M.		2.591					
		**	ENERGY	STATE ES =	15000.0	FT E**		
C			1.00	2.00	3.00	4.00	5.00	3.90
PS	FT/S		167.19	130.52	71.45	-8.17	-106.97	0.00
OMEGA	DES/S		0.000	4.507	7.097	9.463	11.578	9.220
MACH			0.633	0.651	0.674	0.691	0.712	0.689
TAS	KT		407.431	419.731	435.265	447.023	462.126	445.817
HP	ET		7651.	7201.	6613.	6153.		
WF	L3/HR		7030.	7:55.	7314.	7434.	$7589 .$	$7422 .$
TIME	S		54.12					
FUEL	LB		115.					
Range	N.M.		5.654					

Fic. 10.11 Sample Maximum Manonuve Diaquam for Specifind Inad Factors

```
MANEUVERARILITY GRID CALCULATION
IMPERIAL (O) OR S.I, (1) UNITS ?O
AIRCRRFT DATA FILENAME ? EXAMPL.STR
AIRCRAFT EXAMPLE DATE 1L-DCE-83 TIME 15.12 21.8
    2 AIM-9 - GUNS - SOZ FUEL
PS, PS/WF, PSWU/WF OR PS/U (1.2. 3 OR 4) ? 1
IS HP THE HEIGHT UARIAELE ?N
MAXIMUM MANEUUER }7
ESO . ES STEP (FT). NO. OF STEPS }70.10000,
GRID FOR LOAD FACTOR (U). OR TURNRATE (1) ?1
RO .TR STEP . NO. OF STEPS ? 0.4.4
POWER (MIL-100,MAX-200) ? 100
WING SWEEP (IF VARIRELE) 
NOZZLE DEFLECTION (IF UARIABLE) ?O
ATMOSPHERE D DEUIATIDN ? ICAD.U
OUTPUT (1-TEXT,2-NOS..J-8OTH) ? 3
O/P FILENAME FOR UNIT 6 ? EXAMPL.TXT
ONP FILENAME FOR UNIT 3 T EXAMPL.NUM
CAlCULATION !
ENERGY STATE ES - O.0 FT
ENERGY STATE ES - 10000.0 FT
ENERGY STATE ES - 20000.0 FT
ENEFGY STATE ES - zOOOO.0 FT
ENERGY STATE ES = 40000.0 FT
ENEFGY STATE ES - SOOGIG.O FT
ENERGY STATE ES - 60000.0 FT
ENERGY STATE ES - TOGOO.O FT
STOP
END OF EXECUTION
CPU TIME, 25.67 ELAPSED TIME: 3:3.72
EX:T
.RUN PZUZ
```

COMERT PERFORMANCE PROCESSING
OPTION OR (CR) FOR HELP • AC
4C MAXIMUM MANEUUER DIAGRRM - MMD. (PZ.PLT)
DATA BASE FILENAME , EXAMPL.NUM
WHW DATA ARE IN IMPERIAL UNITS. ENERGY PARAMETER IS PS
mm CONSTANT INC. OF TURN RATE mm
ECALE IN UNIT/INCH OF PLOT
ES.PS 10000.200
PS MIN UALUE, PS AXIS LENGTH(INS) , -800. 6
REPLY "YES". "NO". "ALL" aR "END".
TR $=0.00$ PRLL
END OF EXECUTION
CPU TIME, 5.05 ELAPSED TIME, $1.0 .80 \quad-1012$
EXIT

			Energy s	State es =	10000.0	FT ***	
OMEGA	DEG/S		0.000	4.000	8.000	12.000	19.468
PS	FT/S		186.91	163.44	94.94	-14.57	0.00
C			1.00	1.73	2.87	4.01	3.86
MaCH			0.608	0.591	0.563	0.543	0.545
TAS	KT		398.166	386.357	367.269	353.352	355.204
HP	FT		2982.	3392.	4029.	4473.	4413.
WF	LB/HR		7779.	7675.	7507.	7386.	7402.
TIME	s		2.00				
FUEL range	L8		0.				
	N.M.		0.000				
		$\cdots{ }^{\prime \prime}$	ENERGY S	STATE ES =	20000.0	FT	
OMEGA	DEG/S		0.000	4.000	8.000	12.000	2. 315
PS	FT/S		144.88	111.62	14.34	-167.73	0.00
3			1.00	1.81	3.05	4.71	3.20
MaCH			0.660°	0.654	0.624	0.689	0.629
TAS	KT		421.725	413.425	393.545	+37.415	306.000
4	7		12125.	12433.	13144.	11530.	12015.
WF	63/HR		6316.	6225.	00:1.	3491.	6049.
TIE	3		60.28				
FSEi	i3		118.				
amate	N.M.		6.693				
		**	energy sta	STATE ES =	30000.0	F\%	
OMEGA	DEG/S		0.200	4.000	3.000	12.000	5.356
PS	F./S		97.78	48.50	-94.59	-490.06	0.00
\bigcirc			i. 00	1.87	3.26	5.54	2.34
MaCis			0.748	0.705	0.696	0.805	0.02
tas	KT		458.125	430.260	424.104	406.000	428.204
HP	FT		20709.	21805.	22034.	10109.	21882.
WF	LB/HR		5080.	4767.	4702.	5541.	4745.
TIME	S		142.70				
FUEL	L3		248.				
rance	N.M.		16.659				

FIG. 10.14 Sample Maximum Manoeuvre Diagram for Specified Turn Rate

```
COME:AT fERFGRMANCE PROCESSING
OPTION OR (CR) FOR HELP , 4D
4D PS DIFFERENT. FLOT(FE4A1.CEN,P24AE.CON.P24DIF.CON)
DATA EASE FILENAME : ACi.NUM
*m* DATA ARE IN IMPERIAL UNITS. ENERGY PARRMETER IS PS
m** CONSTANT INC. OF LIAD FACTOR ***
REPLY "YES". "ND", "PLL" DR "END" ,
OUTPUT DATA FOR N = 1.00 ? Y
COMFRRISON FILENAME , ACE.NUM
END OF EXECUTION
CPU TIME, 13.19 ELAFSED TIME, 1:47.3:
EXIT
.RUN PQUE
InPut FILENAmE , p=adif.con
*** DATA RAE IN IMPERIGL UNITS, ENERGY PARAMETER IE PS
*** CONSTANT INC. FCF LOAD =ACTOR mmm
CONTCUR FLOTTING
ECRLEE IN UNITS./IN OF FLOT - MACH. ALT : . =,:OOOG
smgotmej and textures contouf: i v
FGOT ES CONTOURE ? N
FMGT G - :.00 ? Y
CONTCL'F LEULLE - START, STEP. NC. , -1CMO.25.9
3-0p
END CF EXEこUTION
GFU TIME, C.33 ELAP'SEJ TIME: ::55.80
ExIT
```

LOAD FACTR $=4.80$

FIG. 10.16 Sample ig Differential SEP Contour Plot
. Run acraft

```
mfnevuERARILITY GRID CRLCULATION
IMPERIAL (O) OR S.I. (1) UNITS ? (
AIRCRFFT DATA FILENAME ? EXAMPL.STR
AIRCRAFT EXAMPLE DATE :\-Dct-83 TIME 14,SE 09.1
    2 AIM-9 + GUNS - 50Z FUEL
PS. PS/LF, PS*V/WF OR PS/V (:, 2. 3 CQ 4) ᄀ1
IS HP THE HEIGHT UARIAELE ? Y
PRESET GRID (Y,N OR C/R) ?N
HPO , HF STEF (FT), ND. OF ETEDS ? (1.10OOO.2
MACHO. MACH STEP . NO. QF STEPS - 0,.025.41
GR:D FOR LORD FACTIEF (O), QN TURNRATE (:) :1
RO ,TR STEP , NO. SF STEPS , D..5.4.
FOWER (MIL=100.MAX=-0O) ;100
WING SWEEF (IF UARIAELE) , O
NOZZ:E DEFLECTIDN (If URFIAELE) ? a
ATMCGFHERE . DEUIATION A ISAO.O
QUTFUT 1!-TEXT.こ-NCS..B-ECTH: ~ 3
O,E FILENAME =OF UN:T G - EXAMPI..TXT
O/F F:LENAME FOR UNIT O EXAMPL.NUM
calculat:ON,
    mLTITUDE HF - 0.0 =T
    RLTTYNDE HF = IOMMO.S =-
ST0%
END OF EXECUTION
CFIJ TIME: 25.49 ELAF'SED TIME, 3IAT.1U
Ex:T
```

FIG. 10.17(a) Sample Dialogue for Option 4G
(Turn rate grid, P_{s} as energy parameter)

```
RUN PIVI
COME:AT PERFOFMANCE PRCCESSING
QPTION OR (CR) FOR HELP , AG
4G PS CONTDURS ON OMEGA/LF US MACH GRID (FIAG.CON)
DATA EASE FILENAME , EXAMP:.NUM
**m DATA ARE IN IMFERIAL UNITS. ENEFGY FRRRMETEF IE FS
*** CONSTANT INC. OF TURN RATE ***
FEFLY "YES"."NE"."ALL" OR "END':
UUTPUT ERTA FOR H = O.MALE
END DF EXECUTIDN
CPL TIME: 12.17 ELAPSED TIME: 1:0.2.4
Ex:Y
    RUN gave
INFUT FILENAME: Pこ4G.CON
*** DATA RRE IN IMFENIAL UNITE, ENEFGG FRF:RMETER :S FS
mwm CONSTANT INC. FOR TURN &ATE
CONTQUR FLOTTING
ミこ&LES IN 'NMIT:IN JFF'LOT - MACH,F゙ッ=, こ.4
EMCETLED AND TEXTURED CONTOLFG ON
```



```
OLOTH=0. ○ Y
CONTEUR LEVELE - STAKT. STEP. NC. : -2OO, ES.G
ッリゴー=100リ%% N
ETOr
ENO CF EXEこUT:こN
```



```
EX:-
```



```
MANEUUERAEILITY GFID CALCULATION
IMPERIAL (g) OR S.I. (1) UNITS ? \
AIFCFAFT DATA FILENAME FUMMY.STF
AIFCRAFT EXAMF:EE DATE 1:-0:t-UJ TIME iGiU|」 06.3
AIR SUPERIORITY, 2 AIMG * SOZ FUEL
PS. PG/LNF, PSWU/WF OR PE/V II, =, J OFK 4, ':
IS HF THE HEIGHT UARIAEILE ? Y
PRESET GRID (Y,N OR C/R) UN
HFO, HP ETEP (FT), NQ. DF STEFS ? U,:UUOG.Z
MACHO. MACH ETEF . ND. DF ETEFS ? U..DS.4O
GRID FOR LOAD FACTOF (心), UR TUFNFATE (1: FO
GU . G STEP . ND. DF STEFS , 1.2.4
FOWEF (MIL=100.MAX=ZOH)
WING 'SWEEP (IF UARIABLE) ? O
NOZZLE DEFLECTIUN (IF UAFIAELLE) - O
ATMQGPHERE • DEUIATIDN -- ICRU..1
UUTFUT (1-TEXT,:-NOG., B=EOTH) 
O/F FILENAME FOR UNIT E OEXHMF"L.TX:
UFFFILENAME FDK UNIT O
CALC:MATIDN !
    ALTITUNE HF = M., FT
STOF
END OF EXECUTION
CF!ノ TIME: T.UZ ELAPEED TIME: こ!34.3.2
Lx:%
RUN FこUこ
COMI:AT PERFDFMANCE FRDCESSING
OPTION OR (CR) FDR HELP , 4Z
12 OMEGA/ETA. FE US. MACH FDF GIUEN HEIGHT. (FE.FLT)
DATA BASE FILENAME I EXAMPL.NUM
** DATA AFE IN IMFEFIAL UNITE. ENENGY FARIAMETEF IS FS
mmm CONSTANT INC. OF LCAD FACTOF:
FEF'LY "YES", "NO", "ALL" GR "END" '
HEIGHT = U.UFT ?N
HEIGHT = IUCMO.OFT シALL
END OF EXECUTIUN
CPU TIME, 5.09 ELAPSED T:ME, 50.0A
EX!T
```


fie. le.z2 serye sit Versus Nach Number flet

11. ACKNOWLEDGEMENT

The author acknowledgec the help and co-operation provided by Mr. K. Marriott was employed at the time as a part-time terporary Computer Sience officer with the group.

REffRENCES

1.	G.W. Kipp:	Combat Performance Evaluation of Fighter Aircraft A Sulte of Fortran IV Programs based on Energy Manouvrability Theory. ARL/ME Report 160, March 1982.
2.	M.A. Dloogatch, D.H. Schiller	PACAM V User's Mancial. AFWAL-TR-81-3128, September 1981.
3.	V.A. Rouqueirol	Interactive Spline Fitting Package - ARL TM to be published.
4	E.S. Rutowski:	Energy apfrsact to the General Aircraft Performance Problem. \therefore Aero Scı. 21, 3, 187-185 March 1954.

APPENDIX A

SUMMARY OF MODIFICATIONS

The modifications incorporated are labelled Kl, K2,......K8 in the program listing and are as follows:

1. MODIFICATION KI

Addition of an option (4G) in program P2V2 to plot contours of the energy parameter \forall on a Mach number, turn rate (or load factor) grid; one page of plots being produced for each pressure height (or energy state).

This involved some modifications to the routines in P2:? and two new subroutines GRIDC and P4PS4G in P4V2.

2. MODIFICATION K2

Calculation and plotting of the boundaries corresponding to the lift limit and structural limit in the options 4 A and 4 G available in P 2 V 2 .

This involved some modifications in PlV2 to calculate and print the boundary foints, and in P2V2 to calculate the points on the boundary plat for option 4 A . In addition two new subroutines BOUND and ESTBOIND where provided in P4V2.

3. MODIFICATION K3

Restructuring of subprogram PlV2 and the user supplied routines : facilitate the frogramming of these user routines.

Also refers to modifications in PlV2 and P24LIB to allow for vectored thrust aircraft.

4. MODIFICATION K 4

Provision of a turn rate grid as an additional option (as an alternative to the load factor grid) when running ACRAFT and hence the option of ploting either load factor or turn rate when using various ploting ontions availahle in P2V2.

5. MODIFICATION K5

The additional option of a fourth type of energy parameter ${ }_{4}=F_{5} \because$ has involved modifications in PIV2 and in P24LIB.

6. MODIFICATION K6

Modifications to allow for a PACAM2 tabulated data file in ASCII to be used as input by the user defined routines THRL'ST and AERO as an alternative to the spline fitted information stored in binary.

7. MODIFICATION K7

Restructuring of P4V2 which was mostly rewritten. Subroutines PCON, PES GRIDC, P4PS4A, P $4 P S 4 G$ are new and other modifications were made in $\mathrm{P}_{4} \mathrm{~V} 2$ and P4LIB.
8. MODIFICATION K8

Following on from modification $K 4$, PlV2 was modified and RATE2 (in P2V2) was rewritten in order to improve the accuracy of the results in option $4 C$.

AUSTRALIA

Department of Defence

Central office

Chief Defence Scientist)
Deputy Chief Defence Scientist
Superintendent, Science and Technology Programmes) (1 copy) Controller, Projects and Analytical Studies , Defence Science Representative (U.K.) (Doc Data sheet only) Counsellor, Defence Science (U.S.A.) (Doc Data sheet only) Defence Central Library
Document Exchange Centre, D.I.S.B. (18 copies)
Joint Intelligence Organisation
Librarian H Rlock, Victoria Barracks, Melbourne
Director General - Army Development (NSO) (4 copies)

Aeronautisal Research Laboratories

Director

Librar:
Superirtendent - Systems
Dirisional File - Systems
Author: V.A.E. Rouqueirol
D.A.E. Bird

Materiais Research Laboratories
Director/Library
Defence Research Centre

Liたrary
RAN Research Laboratory
Library

Navy Cffice

Nary Scientific Adviser

Armio Office

Army Scientific Adviser
Engineering Development Estabiishment, Library

Air Force office

Air Force Scientific Adviser
Aircraft Research and Development Unit Scientific Elight Group Iibrary
Technical Division Library
HQ Support Command [SENGSO]
UNITED KINGDOM
Roval Aircraft Establishment
Bedford, LibraryFarnborough, LibraryFarnborough, Head SA2 Division
British Library, Lending Division
Aeroflane and Armament Experimental Establishment
Spares (10 conies)
TOMA: (5s conies)

```
Defirtment of Deserie
```

DOCUMENT CONTROL DATA

 what wili not be adoed to the DISTIS dirti beve urives epectionliy reausted.

