

MICROCOPY RESOLUTION TEST CHART
NATIINAI RIIRFAII OF KTANOADETK jofen

85-03 22 073

REPORT DOCLIMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	$\therefore+3$
Criteria for the Classification of Hydrographic Positioning Data	
7. AUTMOR(s) \quad Nicholas E. Perugini	- Contracto on san nomberor
	10. RROGAM ELEMENT OROJEGT TASK
1 Controlling orfice name ano adoress Naval Postgraduate School Monterey, California 93943	12. REPORT OATE SEptember 1984 13. NUMEROFDAGES 95
	15. SECURITY CuA5S. (ot thio Coport) Unclassified
16. OISTRIBUTION STATEMENT OOt ihis Roport) Approved for public release; distribution unlimi	
	Repori)
18. Supplementary notes	
hydrography, hydrographic surveying, confidence repeatability, hydrographic positioning	ellipse, confidence circle
Two methods for evaluating the accuracy of hy are presented. One method consists of classifying based on the radius of the 90 percent-confidence c involves classification of positions based on the confidence ellipser Both methods are based on geo tionsh ps between intersecting lines of position.	drographic positioning data each position in a survey ircle. The second method parameters of the 90 percent netric and statistical rela-
$\text { DD , FORM, } 1473 \text { EOTTION OF N NOU SS IS OBSOLETE }$	Fication of this mage (men deic incored)

Range-range, azimuth-azimuth, and range-azimuth positioning data are classified using both criteria. For noncritical positions, tne confidence circle method is found to be preferaole due to its ease of interpretation. For positions of significant features, such as underwater hazards; tie confidence ellipse provides a more useful representation of the shape and orientation of the true error aistribution.

The concept of presurvey positioning design is also presented. With the aid of computer graphic displays, the nydrographer can predict the accuracy of offshore positioning data prior to data acquisition. By analyzing accuracy lobes generated about shore stations, a survey can be designed to meet given specifications.

5 N0102.LF. 014.6601

Affrcued for public release; distribution unlimited.

Criteria for the Classification of Hydrographic Positioning Data

by

Nicholas E. Perugini
 Lieutenant, National Cceanic and Atmospheric Administration B. S., Pennsylvania State University, 1976

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN HYDROGRAPHIC SCIENCES
from the
NAVAL POSTGRADUATE $\underset{194}{\text { September }} \underset{19}{\text { SCHOOL }}$

Author:
Nicholas E Peructm
Nicholas E. Pevugini

Approved by:

ABSTAACT

Iwc methods for evaluating the accuracy of hydrografhic positioning data are presented. One method consists of classifying each position in a survey based on the radius of the 90 percent confidence circle. The second method involves classificaticn of positions based on the farartters of the 90 fercent confidence ellipse. Both methods are based on gecmetric and statistical relationships $k \in t \in \in n$ intersecting lines of cosition.

Fange-range, azimuth-azimuth, and range-azimuth fcsitioning data are classified using both criteria. For noncritical positions, the confidence circle method is found to be freferable due to its ease of interpretation. For fositicns of significant features, such as underwater hazards, the confidence ellipse provides a more useful representation of the shape and orientation of the true єrIor distribution.

The concept of presurvey fositioning design is alsc fresented. With the aid of computer graphic displays, the hydrografher can predict the accuracy of offshore positioning data prior to data acquisition. By analyzing accuracy lobes generated about shore stations, a survey can $f \in$ designed to meet given specifications.

table of contents

I. INTECDUCTION 9
A. EACKGROUN L 9
B. ACCURACY SIANDARDS FON HYDROGRAPHIC POSITIONING 11
C. CBJECTIVES 12
II. NATURE OF THE EROBLEM 14
A. HYDROGRAPHIC POSITIONING GEOMETRIES 14

1. Range-Range 14
2. Hyperkolic-Hypercolic 17
3. Range-Azimuth 19
4. Azimuth-Azimuth 20
E. CLASSES OF ERRORS 21
5. Blunders 21
6. Systematic Errors 24
7. Random Errors 27
C. TREATMENT CF RANDCM ERRORS. 28
8. One-Dirensional Errors 28
9. Two-Dimensional Errors 30
10. Circular Precisicn Indexes 38
III. EXPERIMENT DESIGN AND IMPLEAENTATION 49
A. DATA ACQOISITION PRCCEDURES 49
IV. GESOLTS AND LATA ANALYSIS 52
A. LATA FROCESSING 52
E. ACCORACY ANALYSIS OF HYDROGRAPHIC POSITIONING DATA 53
C. ACCURACY EFEDICTIONS 59
V. CCNCIUSIONS ANL RECOMMENDATIONS 67
A. ACCDRACY SEECIFICATIONS 67
B. USES FOR ACCURACY FIGURES 71
APPENDIX A: SUBROJTINE FOR 90 PERCENT CONFIDENCE
CIRCLE fafametefs 74
APPENLIX E: ACCURACY CLASSIFICATION: 90 EERCENT CONFIDENCE CIRCLES 76
APPENCIX C: PROGRAM FCR 90 PERCENT CONFIDENCE ELIIPSE FARAMETEFS 85
APPENCIX L: ACCORACY CLASSIFICATION: 90 PERCENT CONFIDENCE ELIIESES 88
IIST CE FEFERENCES 91
INITIAI EISTRIBUTION IIST 93
I. Values of the Constant K 34
II. Probabilities Associated With irms 42
III. Protabilities, Given c and R 44
IV. Gadii of Circies Giver c and P 45
V. Ccordinates of Control Stations 53
VI. Linear Approximations for K as a function of c 55
VII. B Iimits for surveys 68
VIII. Accuracy Figures for $\sigma_{1}=\sigma_{2}=1.3 \mathrm{~m}, o_{12}=0$ 69
IX.
X.

IIST OF FIGORES

2. 1 Gecmetry of a Range-Ranye Position 17
2.2 Gecmetry of a Hypertolic-Hypertolic Positicr 19
3. 3 Gecmetry of an Azimuth-Azimuth Position 22
2.4 The Normal [istribution 29
2.5 Circular Noraal Distribution 32
2.6
Error Ellipse Formed ty Two Uncorrelated LCE's 33
2.7 Coordinate Iransformations for Correlated LOP's 36
2.8 Error Ellipses Around a Ranje-Range System 39
2.9 The drms Ericr Circle 41
3.1 Hydrographic Survey Area 50
4.1 Range-Range Accuracy Aralysis 56
4.2 Azimuth-Azimuth Accuracy Analysis 57
4.3 Construction of a Reliability Curve 61
4.4 Feliability Contours: Range-Range Geometry 63
4.5 Reliability Contours: Azimuth-Azimuth Gecmetry 64
4.6 Range-Range Foint Accuracy Prediction 65
4.7 Azimuth-aziguth Point Accuracy Prediction 66

I. INTEODOCIION

a. EACRGECDND

A hydrcgraphic record can ke viewed as the resultant cf two indefendent measurements made at a discrete point cuer a kody of water. These measurements involve the determination of a vessel's positicn at a given time as well as the depth of water at that position. Of interest to the hydrografher and tc the user of hydrographic data is the accuracy of the position determinaticrs. Fundamental to the determination cf Ecsitional accuracy is the identification of the scurces of errors in positicn measurements and the ultimate treatrent cf these errors.

A hydrcgraphic position can be determined by a numter of methods all involving geometric relationships betweer krown points and the vessel's unkncwn location. The known foints may befixed stations on shore, whose coordinates have $k \in \in$ deterained $E y$ geodetic survey methoss, or they may $b \in$ rapidly uoving sateliites whose coordinates in time and space can te defined very precisely. A hydrografhic pcsition is established $5 y$ the intersection of two or more lines of position (LOP's) which are generated by the geometric relaticnships between the fixed points and the vessel's unknown location. The resultant accuracy of the vessel's fosition is therefore, in part, a function of the errcrs associated with the irtersecting LOP's.

Several measures cf accuracy can be used to evaluate the quality of a hydrografhic position. Predictability, or absolute accuracy, is the measure of accuracy with which tre positioning system can define the location of the same foint in terms of geozraphic coordinates Repeatability, cr
reiative accuracy, is a measure with which a positionirg sister Eermits a user to return to a specific point on the earth's surface in terms of the LOP's generated ty tine system [Gef. 1, p. 14]. With the elimination of all systematic cr tias errors, the terms repeatability and predictarility tecome identical. Hydrcgraphic surveyors usually work toward this condition, although it is not always achievatle.

Heinzen [Ref. 2] and Burt [Ref. 3] have presented several techniques fcr quantifying the repeatable accuracy for offshore positions. These technijues have roots in the statistical treatment of randcmerror. Although the methcds have tefn well documented, no single criterion to classify the accuracy of a hydrographic position has been agreed upon ky the internaticnal hydrograpbic community.
freceding the development of automation in hydrograph data acquisition and frocessing, the task of calculatiry ! accuracy figure to attach to edch position in a kydrograp i survey was unthinkable. To ensure overall accuracy in a survey, certain generalizations were developed to act as yuidelines. For example, the U.S. Coast and seodetic Survey
 concerning the strength of a three-point fix:

The fix is strong when the sum of the two angles is egual to or yreater than 1800 and neither angle is less than $3 c^{\circ}$. The neartr the angles equal each other the strenger will be the fix.

Generalizations of this type frovided useful qualitative guidance for assuring a degree cf positional accuracy and many are still in existence today.

With the aid of computers, the hydrographer now has the capacity to evaluate the accuracy of positioning data far an entire survey. An accuracy figure can be computed for each gositicn in a survey and stored in a data base along with
ctner survey information. This figure may provide useful information for users of the ata, as well as a yardstick for the hydroyrapher to evaluate the guality of the work. Furthermere, a presurvey accuracy analysis enables a survey

E. ACCUFACY STANDARES FOR RYDGOGRAPHIC POSITIONING

In 1982, the International Hydrographic orjanizaticr (IHC) putlished new recommendations for error standards concernirg the accuracy of hydrographic positions. Ihese standards [Ref. 5] are:

The gosition of sourdings dangers and all other significant features should be determined with an accuracy such that any, frobable error, measured relative to shore contrcl shall seldcm exceed twice the minimum flottaile error at the scale cf the survey (normally 1.0 momon paper). It is most desireable that whenever positicrs are deternined by the intersection of lines of positicn, three such iines be used. The angle between any fair should nct be less than 300.

Mcst statisticiars define the term "crobable errcr" as that ericr occuring at the 50 percent frobacility $l \in v \in l$. However, the author cf the IHC standards, Commodore A. H. Cooper gan (Ret.) has stated that the term "probable error" was interded to nave no statistical significance. Munscn interfreted the words "shall seldom exceej" to mean 10 fercent of the time [fef. 6]. Using this interpretaticr, the first sentence of the specification might be writter:

The fosition of soundings dangers and all other significant features should te determined with an accuracy such that any error in position measured relative to shore control will fall withina circie withradius ci tif airimumgiottable error at the scale of the survey (ncradily 1.5 ma. on paper). with 90 percentccafidence.

The sfecification in this form could be evaluated quantitativeiy. The critericn for defining accuracy in terms of a fixed frobability is common in the field of surveying. For example, the standards of accuracy developed for geodetic

These errors are usually small in magnituae anc can ke eliminated $\dot{c} y$ froper adjustment of the instrument by either the щanufacturer or a qualified technician.

The field hydrographer has ultimate control over the gecmetric systematic errors associated with a theodclite. In range-azimuth positioning the theodolite and transaitter may cocupy the same horizontal control station. If the theodolite is rot set directly over the staticn a resultant systematic error will occur in all measurements. It $c a n$ be shown that these errors are non-linear kut do follow a mathematical relationship. Likewise, if the transritter is not located directly over the station, a similar type cf lias occurs. Depending on the eccentricity cf the theodclite, the vessel's range from the theodolite, and the scale of the survey--these errors can seriously affect the absolute accuracy of the offshcre positions.

In a similar fashion, it is also imerative to Fositicn the target directly over the horizontal control staticn used as an initial. Failure to do this wiil result in an error which will be propagated to offshore positicns.

Many situations arise in the field where it is advantageous to set a transmitter and theodolite over a single hcrizontal control station. Frequently it is feasible to construct a platforn to accominodate both instruments; in a case where it is not, the position of an $\in C \in f_{i}-$ tric hcrizontal contrcl station near the original staticn should Ee determined and that station used for the locaticn of one of the instruments. The theodolite and the transmitter then occupy the known stations and the yecmetric source of systematic error is eliminated.
E. Electronic Ranging Systems

The systeaatic ericrs associated with electronic positioning systems are complex in nature and surcticns of
2. Systematic Errors

Systematic errcrs occur with the same siyn, usually of siailar magnitude, and can re expressed in terms of a matheratical model. Systematic errors follow a defined pattern and occur in a number cf consecutive related ckservations. Repetition cf measurements does nothing tc mirimize their effect. Ir the case of hylrographic positioning, systematic errors are identificd and modeled by califraticn of the measuring instrument ayainst a known standard. The following is a brief discussicn concerning systematic errors and their treatment in relation to bydrographic positionirg єquifuert.
a. Theodolites

Frimarily for range-azimuth and azimuth-azimuth positicring. Systematic errors asscciated with the theodolite can be classified into two groups: those associated with tre physical design of the instrument and those involving the geometry of the positioning scheme. Some sources of systeratic errors [Ref. 8] associated with the physical characteristics cf a thecdclite are:
i. The horizontal circle may be eccentric.
ii. Graduations on the horizontal circie may rot te uniform.
iii. The horizontal axis of the telescope \{about which it rotates) may not be perpendicular to the vertical axis of the instrument.
iv. The longitudinal axis of the telescope may nct be normal to the horizontal axis.
v. The telescope axis and the axis of the leveling rutble may nct be parallel.
range-azimuth fix. A range and an azinuth are generatec from a kncwn control station to the vessel's position. A second control staticn is used to fix the initial azimuth; a third shore control station is located 10 meters frof the initial station and its coordinates are mistakealy used for the initial station in plotting. The resultant kydrograftic gosition is in error, but this error will not be easily distinguished.

Although most blunders have their origin ir human carelessness, some can be attributed to equipment malfurction. Fcr example, microwave systems which gemerate lof's are known to become unsteady under certain conditiors. Spuricus range readings resulting from signal reflections can $L \in$ recorded as true positioning data. In this case, the blunder may or may not be easily detected.

In automated data açuisition systems, software has Eeen developed tc detect the occurrence of anomalous range readincs. By inputting a course and speed of a vessel traveling along a line, the computer can deteraine if the recorded gosition is valid based on the principle of dead reckoning. If the recorded position is found to be invaiid the hydrographer will be immediately alerted to the situation and can take action to remedy the problem. In nonautomated systems the principle of dead reckoning is applied manually. Given the course and speed of the vessel, the validity of the position can be checked with spacing dividers. This involves checking the spacing between fixes recorded tefore and after the position in question. Eefore any tyfe of error analysis is to ke ferfcrred on the hydrographic fositioning data, it is essential that all bluncers be identified and properly treated. In general, careful plancing coupled with thorough checking will micimize the occurrence of blunders.

Figure 2.3 Georetry of an azimuth-Azimuth Position

Consider the following as an example of a blunder associated with rangerrange gecmetry. An offshore fcsiticn
 LOR's generated from transmitters located on known shore staticns. The vessel is working west of a shoreline that runs generally in a north-south direction. As the hydrcgrapher faces the stations frcm sea, the southerr shore station is mistakenly identified as left and the northern shore station as right. The resultant offshore positice will glot to the east of the base line. This blunder is readily detected and can be easily remedied.

Not all types of blunuers are so easily detected. Supfose an offshore pcsition is to be determined $k y$ a
occupy stations 1 and 2, and initial on stations 3 and 4, respectively, the observer at station 1 measures angley ard the cbserver at staticn 2 measures γ_{2} to the vessel. The angle of intersection, B, is then computed by first $d \in t \in r-$ mining the forward azimuths, measured clockwise from the south, frcm stations 1 to $2\left(\alpha_{12}\right)$, 1 to $3\left(\alpha_{13}\right), 2$ tc 1 $\left(a_{21}\right)$, and 2 to $4\left(\alpha_{24}\right)$. The interior angles, y_{1} and ξ_{2}, of triangle 12 p are

$$
\begin{equation*}
\theta_{1}=\left|\alpha_{13}+\gamma_{1}-\alpha_{12}\right| \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\vartheta_{2}=\left|\alpha_{24}+\gamma_{2}-\alpha_{21}\right| \tag{2.9}
\end{equation*}
$$

so the angle of intersection, B. at the vessel's location is

$$
\begin{equation*}
r=180^{\circ}-\left(\theta_{1}+\theta_{2}\right) \tag{2.10}
\end{equation*}
$$

E. CIASSES OF ERBORS

All hydrografhic positioning measurements are sukject to error. The following sections discuss categories of errors and \mathbb{m} thods used to treat these errors.

1. Elunders

Elunders are gross mistakes which are generally due to the carelessness of the observer. Blunders can vary in magnitude, ranging from large errors which are easily detected, to small eriors which may be barely distinguished. They can be detected by making repeated observatiors cr by carefully checking the data in the processing piase. Blunders occur in various forms and most can te avoided by carefully planning tre data acgaisition process.
in this arrangement tut systems employing a laser can alsc be used for short-range work. Another LOP is yenerated by fixing an azimuth frca a shore control station to the vessel. A second control station is used for an initial azimuth $k y$ the observer. Azimuth determinations can $b \in m a d e$ after cbserving directions with a theodolite as an observer tracks the moving vessel.

There are $t w c$ ways to determine a range-azimuth positicn. The most common way is to have the theodolite and the transmitter occupy the same shore control station. Hence, the angle of irtersection. B. of the LOP's is always 900. This arrangement is commonly used by the National Ccean Service (NOS) fcr large-scale nearshore surveys.

The other way is to have the theodolite and the transmitter occupy two different control points. Then the geometry is similar to that of the range-range position. The angle of intersection, B, is computed by trigoncmetric relaticnshifs among the azimuth of a line between the shore staticns, the observed direction to the vessel, and the measured range to the vessel.

4. Aziguth=Aziquth

Azimuth-azimuth positioning geometry is used for nearshore bigh-accuracy surveying. Theodolites are set over two contrcl stations cn shore. The vessel is sighted co simultaneously by the two theodolite observers, generating two visual Lop's whose intersection define the vessel's location. Initial azimuths are fixed by sighting cr control stations which are visible to the observers.

The angle of intersection for an azimuth-aziautt Fosition is dependent on the geometric relationshifs $k \in t w \in n$ the cocufied stations, the initial stations, and vessel's position (Fig. 2.3). Assuming that theodolite observers
where the term $1 / \sin (\alpha / 2)$ is called the lane expansion factor. The angle of intersection B, between the $t w c$ hyperbolas is then given by

$$
\begin{equation*}
B=\frac{a_{r}+a_{q}}{2} \tag{2.7}
\end{equation*}
$$

Figure 2.2 Geometry of a 日yferbolic-Hypertolic position

3. Range=Aziguth

This positioning geometry is used for nearshore, line-cf-sight surveys. One LOF is generated by an electtronic range originating from a transmitter located on a shore control station. A microwave system is commonly used

Hyperbolic location methods can be divided into two groufs based on the electronic frinciples used to define the distance differences [Ref. 7. f .87]. Loran is an example of a pulse system in which the differences in times cf arrival of fulses transmitted $k y$ the master-slave combinations are translated into distance differences. The resultant position has no lane ambiguity and is easily resolved. The seccrd method of hyperbolic positioning involves measuring a fhase differerce from two master-slave combinations at the vessel's position. The phase difference translates into a Eractional lane count which in itself provides an ambiguous fosition. This amoiguity is resolved ty using a whole-lane counter which is initialized at a known geografhical foint. In hyperbolic positioning, the ship is in a fassive mode and the system can be used by many vessels.

The angle of intersection between the two hyfertolas can $k \in c$ computed by first defining the following quantities:
S_{r} is the length of red base line.
S_{g} is the length of green tase line,
R_{m}^{8} is the distance $k \in t w e e n$ master and vessel's pcsiticn P^{\prime},
R_{r} is the distance from red slave to point P.
R_{g} is the distance from green slave to point P.
α_{r} is the angle between lines $P M$ and $P R$, and
α_{g} is the angle between lines $P M$ and $D G$.
The spacing $t \in t w e e n$ lanes increases with distance from the master-slave pair. The lane widths along the base line are

$$
\begin{equation*}
w_{r}^{\prime}=\frac{\lambda_{r}}{2} \quad \text { and } \quad w_{g}^{\prime}=\frac{\lambda_{g}}{2} \tag{2.5}
\end{equation*}
$$

Then the lane widths at any point p are

$$
\begin{equation*}
w_{r}=\frac{\lambda_{r}}{2}\left(\frac{1}{\sin \left(\alpha_{r} / 2\right)}\right) \quad \text { and } \quad w_{g}=\frac{\lambda_{g}}{2}\left(\frac{1}{\sin \left(\alpha_{g} / 2\right)}\right) \tag{2.6}
\end{equation*}
$$

Figure 2.1 Gecmetry of a Range-Range position

2. Hyperbolic= Hy Eerbolic

Hydrographic positioning by hyperbolic-hyperbolic geonetry utilizes the intersection of two hyperbolas each generated about a pair of shore control stations. A hyferbola is the locus of points in which the difference cf distance from two fixed points is aiways constant. A tbreestaticn hyperbolic net is the most commonly used hyperkciic mode for offshore survey (Fig. 2.2). One family of hyferLolas ($R \in \mathbb{d}$) are generated about a master station, K , and a slave, a ; while a seccnd family of hyperbolas (Green) are generated with respect to the master and a second slave, G. For the first family of hypertolas, the control foints M and R act as the foci, while points M and G act as the fcci for the seccod family.
froblem cf lane ambiguity must be addressed. nanges are expressed in full and partial lane counts where a lane width wis

$$
\begin{equation*}
w=\frac{\lambda}{2} \tag{2.2}
\end{equation*}
$$

where λ is the wavelength of the transmitting frequency, f, and given by

$$
\begin{equation*}
\lambda=\frac{c}{f} \tag{2.3}
\end{equation*}
$$

Medium-range systems commonly in use today are cubic Western's "ARGO," Hasting Raydist's "Raydist," and odom Cffshcre's "Hydrotrack."

The angle of intersection associated with a rangerange fosition is computed frca a simpie trigonometric relationsbip. The vessel's position P (Fig. 2.1) is determined Ey the intersection cf the ranges from the left and right shore stations, $R i$ and R2 respectively. B is the base line distance computed between the two known shore stations. Since the range circles from the shore stations intersect at two foints, it is necessary for the flotter to reccgnize which side of the base line the vessel is on in crder to eliminate the ambiguity. The angle of intersection cf the two IOR's (B) is given by the law of cosines

$$
\begin{equation*}
B=180^{\circ}-\operatorname{Arc} \cos \left(\frac{B^{2}-R 1^{2}-R 2^{2}}{2 R 1 R 2}\right) \tag{2.4}
\end{equation*}
$$

In qualitative terils, the $f i x$ is strongest when β approaches 900. Host hydrographic specifications limit the argle cf intersection fror a rinimum of 300 to a maximum of 1500 .

An electronic pcsitioning system may te active cr fassive. In an active system, a transmitter frou the survey launch keys the transmission of ranges from the shore staticn. In turn, the signals generated from the shcre staticns (slaves) are then received by the launch. An active system is limited to a finite number of users, usually not more than about four. The number of users cf a gassive system is unlimited as the survey launch requires only a receiver which is constantly listening for signals which are teing transiitted from shore.

Short-range, cr line-of-sight, positioning systems are used for nearshore hydrographic surveys. These systems cperate in the microwave region of the electromagnetic spectruil (3 to 10 GHz). A distance is determined by observing the time needed for a fulse to travel from a master transponder located aboard the survey vessel to a remote transponder $c n$ shore and back to the master transponder. Knowing the average velocity of the electromagnetic pulse, the distance D is then

$$
\begin{equation*}
0=\frac{c t}{2} \tag{2.1}
\end{equation*}
$$

where c is the group velocity of the wave packet and t is the two-way travel tire. Shcrt-range systems which are in wide use today are Racal Decca's "Trisponder" and Motorcla's "Mini-Fanger." These systems have direct range readout and are readily interfaced into a navigational computer and a data acquisition system. Both systems are active and user liwit $\in \mathbb{d}$.

M \in dium-range positioning systems oferate in the $1-$ to 5-HHz frequency range of the electromagnetic spectrur. A distarce is determined by measuring the phase relaticnship ketwefn transmitted and received waves. These systems are usually referred tc as continuous wave systems and the

II. NATORE OE THE PROBLEM

The development cf an accuracy figure for offshcre fositions is inherently tied to the geometry of the fositiorirg methcd and the errors which are associated with the fositionigg equipment that is used. This chapter will discuss the $g \in c \mathbb{m} \in \operatorname{lic}^{\prime}$ and statistical elements involved in deter«inirg an offshore position and presents several methods for guantifying refeatable accuracy.

A. EIDFCGRAPHIC POSITIONING GEOMETRIES

An offshore fix can be determined by the intersecticn $c f$ two or more iOP's. These LOP's may be generated by electronic or visual means. Norking toward the develofment of an accuracy index, it will be necessary to compute the angle of intersection of tre lop's associated with different fositioning geometries. The following sections discuss the geometry cf conventicral offshore positioning methods and ways to compute the argles of intersection. This thesis will not address the geometry involved in a three-point sextant fix.

1. Fange-Range

Establishing an offshore fix by range-range gecmetry involves measuring distances electronically from fixtd fositions on shore to the vessel's unknown location. Ranges can Le determined by measuring the elapsed time between transmission and receipt of a radio pulse or by comparing the Fhase of the transmitted wave with the phase of the received wave [Ref. 2]. In each case, transmitters are stt on staticns on shore whose coordinates are determined $k y$ precise land survey $I \in t h o d s$.
method of classification is a useful index for ruantifyirg the accuracy of fositions. The computed radii of the 90 percent confidence circles can serve as an accuracy figure that can be attached to each position in a survey and stored in a ciata tase.

The third objective of this thesis is to demonstrate that a presurvey analysis can be used in designing fositional accuracy to meft specifications. The existing general guidelines for planning can be tetter defined. For example, in planning a survey hydrographers usually lay out circles which delimit the 300 and 1500 koundaries that define the minimum and maximum allowable intersectior argles Letwefn two LOP's. $A \leq a$ means to meet accuracy requirements. it can be shown that these limits should vary kased on the scale of the survey and the precision of the fositioning equigment.
contrcl surveys have their origin in probability thecry. Procedures for obtaining first-crder geodetic positions require sixteen repeated theodolite observations of each direction. Lower order positions require fewer numbers of cbservations. Given the precision of one observation cf each direction, it can be demonstrated that increasing the number of observations coincides with increasing the frcbability cf the direction falling within specified limits.

Fegarding accuracy determinations, there are several froblems unique to hydrographic surveying. Whereas standards for other types of surveys rely on multiple observations of the same quantity, the accuracy of a hydrografhic position must be evaluated in terms of a single observation (which may be the intersection of two or more Lop's). Diverse methods for oktaining a hydrographic position exist and these methods must all be evaluated using the same criterion. Also, there is a broad spectrum of equifment used in hydrografhic fositioning and in many cases the precision of this equipment is not well defined.

C. CEJECTIVES

A $n \in \in d$ exists to give quantitative meaning to the accuracy specifications set forth by the iHO. One of the okjectives of this thesis is to demcnstrate that defining the specifications in terys of the fixed 90 percent confiderce levei is a valid interpretation. By defining what the specificatiors imply, procedures can be developed to meet the standards.

A second objective of this thesis is to apply the thecry of errcrs, associated with hydrcgraphic positioning, to a data set. This analysis involves classifying positicnirg data acquired in a survey based on the radii of circles of equivalent frobability. It will be demonstrated that this
many variables. Munscn [Ref. 9. p. 4] addresses several problems associated with short-ranye systems used ir hydrcgraphic surveys. The most comacr problems with short-rarge systems are variatior in range and calikration drift with time. Variations in internal equipment time delays in the transmitter, the transfonder, or the receiver can induce errors in measured rarges. For julse systems such variations can cocur due tc temperature lependence of components and fluctuations in signal strength at the transponder. Multipath effects are also a problem. Under some circumstances a reflected wave and the directly transaitted wave arrive with a phase difference of 1800. Cancellation cr fading of the directly transmitted signal can result.

NOS conducts base line calibrations of shortrange positioning systems periodically during the course of a survey to minimize cr eliminate systematic errcr. In this process, a transmitter and receiver are each placed over contrcl stations on shore and the measured range is compared to the true range. In this way the systematic error is eliminated by zetoing the instrument or by appiying a constant correction tc raw data. System checks are ferformed daily to assure there is no drift from the original calibration. A check can be accomplished by comparing a positicn defined by the ranging system to a known fixedFoint position, to a sextant fix position, or an intersection fosition.

Munson [BEf. 9. p. 5] also discusses scurces of systematic errors associated with medium-range systems. The most significant systematic errors occur as a function cf position due to varying propagation velocity. The mediumrange electronic signal propagation velocity depends on the surface conductivity and transmission path (over water, over land, or over different types of land). Because of this dependence, systematic errors as a function of position
cccur at different $\in f f e c t i v e ~ p h a s e ~ v e l o c i t i e s . ~ K n o w i n g ~ t h e ~$ fropagation velocity tc use, or the phase correction tc make as a fucction of range, is a problem. Sky wave and storm interference also pose problems. At extreme ranges of cperation, sky wave interference can affect the more predictable ground wave, especially during nighttime oferations. Iane ambiguities are also a problem. Most systems are inherently ambiguous and must be zero set and continually monitcred for lane jüfs or loss of signal which results in the loss cf lane count.

NOS uses several techniques to determine the systeratic error asscciated with medium-range positionirg systems. These techniques inyclve determining a whole and partial lane count for phase comparison systems. Two of the more widely used techniques are compariscn of three-foint sextant fix positions to positions determined by the electronic ranging system and calirration of the electronic system at a fixed fcint. In both techaiques the whole lace counts are fixed by the calibration; correctors to the partial lane count are determined and applied to the raw ranging data.
3. Eandom Errors

Fandon errors are chance errors, unpredictable in magnitude or sign, and are governed by the laws of frobability [Ref. 10, p. 1206]. They are errors which remain after blunders and systematic errors have been removed. Randca errors result from accidental and unknown ccmbinations of causes and are beyond the control of the observer. Greenwalt [Ref. 12, F. 2] states they are characterized by:
i. Variation in sign; positive errcrs occur with equal frequency as negative ones.
ii. Small errors cccur more frequently than large errors. iii. Extremely larçe errors rarely occur.

Fandom errors are unique to speciric types of fcsitioning equipment and vary in magnitude depending on the precisicn of the instruments that are used. The following secticn cutlines statistical methods for their treatafgt.

C. IREATBENT OF RANECB ERROBS.

1. Cne-Di mensional Errors

Certain basic statistical quantities must first $\dot{\text { ce }}$ defined in the analysis of random errors. Consider a \quad iessel moored securely to a fixed offshore platform. a number of ranges, $n, f r o m$ a miciowave transmitter located on a shore control station are recorded. The mean of these orservations is

$$
\begin{equation*}
\mu_{x}=\sum_{i=1}^{n} \frac{x_{i}}{n} \tag{2.11}
\end{equation*}
$$

where x_{1} represents an individual observation. The stardard error, s, of the observations is then

$$
\begin{equation*}
s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\mu_{x}\right)^{2}} \tag{2.12}
\end{equation*}
$$

where the quantity $\left(x_{1}-\mu_{x}\right)$ is referred to as the residual. cr true error, v_{i}, of a particular observation. As $n g \in t s$ very large, the factor $1 / n$ can be substituted for $1 /(n-1)$ in Equation 2.12. Iikewise, in treating the large sargle, σ can be substituted for s and μ for μ_{x}, where u and σ are the $\mathbb{m} \in \mathrm{an}$ and standard erior of the entire population.

It is of interest to determine the probability of cccurrence of a particular otservation. The normal cr Gaussian distribution equation relates the resicual of a farticuiar random variable witb the probability of its
cccurrence, and is yiven by

$$
P(v)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\left(\frac{v^{2}}{2 \sigma^{2}}\right)}
$$

The flot cf this equation $y i \in l d s$ the normal distriruticr curve (Fig. 2.4). The height of the curve atove the vertical axis is proportional to the probability of a particular error occurring.

The probability of a residual falling det $\quad \in e n$ ary two $r \in s i d u a l s v_{1}$ and v_{2} can be computed by integrating Equation 2.13 as

$$
\begin{equation*}
P(v)=\int_{v_{2}}^{v} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\left(\frac{v^{2}}{2 \sigma^{2}}\right)} d v \tag{2.14}
\end{equation*}
$$

Figure 2.4 The Normal Distribution

This integral is difficult to evaluate analyticaliy so tables have been compiled to aid in computations. Fcr $\mathbf{v}_{1}=+\sigma$ and $v_{2}=-\sigma$, it can be shown that $P(v)=0.6827$. In cther words, the protability that a particular observation will fall within ± 10 of the wean is 08.27 percent.

Feturning to the example of the vessel moored to the cffsicre flatform, the mean and the standarderrcr for tie observations are easily computed. With this informaticn and Equation 2.1ł, the frcbability of a range error falling within specified limits can te computed. Conversely, fy fixing a probatility, the associated limits of the range error can $k \in$ computed. In statistical terms, a particular observation will fall within sfecified limits with a certain confidence.

Actual values of one-dimensional standard errors for hydrografhic positioring equipment are a subject of debate ketwefr manufacturers and users. Some manufacturers of microwave fositioning equipment claim standard errors of ± 1 meter. Cn the other hand, Munson [Ref. 9, p. 6] states that microwave systems deronstrate accuracies of 3 meters at short ranges but show larger errors at ranges of 15 km and greater. NOS assumes a 3-meter standard error in all of its short-range accuracy computaticns. It is apparent that further study is needed to adequately define the nature of errors associated witb electronic positioning equifgent. waltz [Ref. 13] performed an extensive study to
 results showed that the pointing error associated with tins instrument under hydrcgraphic survey conditions was arout 1.3 meters and was independent of distance.
2. IHo-Diqensional E드읭

The intent of this paper is to apply statistical methcds developed by cthers to a hydrographic data set containing two-dimensional errcrs which are defined $k y$ two randca variables. Lengtily and complex derivations are not presented. Burt [Ref. 3] and Heinzen [Ref. 2] show adeguate derivaticns of formulas associated with two-dimensional errors ard can be referenced for full details.

The Eoilowirg assumptions are maje concerning twodimensicnal errors associated with intersecting LoP 's:
i. The random errcrs of each LOP are normally distributed.
ii. Systematic or tias errors have been removed from the observaticns.
iii. The intersecting LOP's dre coplanar.
iv. The error LOF's are parallel to the exact LOE's.
 deterrinations, the fcur assumgtions hold to a high degree for all hydrografhic fcsitioning geometries.

Consider again the vessel moored to a fixed cifshcre platform. Assume two ranges are measured from two different shore control stations at the same time and that the range readings are uncorrelated. The observation of this pair of ranges is repeated many times. after a large number of observations, the means and standard errors of the individual ranges are determined. Suppose the mean ranges, or the actual LOP's, intersect at an angle of 900 and that the computed standard errcrs are equal $\left(\sigma_{1}=\sigma_{2}\right)$. If each a ata pair (X_{1}, Y_{1}) is flotted, the spread of points about the mean coordinates results in a circular cluster (Fig. 2.5). A higher density of points occurs near the intersecticn of tie mean ranges and the density of points decreases outward fron the intersection of the mean ranges.

In this special case, which is called a circular
normal distribution, the probarility of a point falling withio a sfecified radius, R, from the intersection of the mean ranges is

$$
\begin{equation*}
P(R)=1-e^{-\left(\frac{R^{2}}{2 \sigma_{c}^{2}}\right)} \tag{2.15}
\end{equation*}
$$

where $\sigma_{1}=\sigma_{2}=\sigma_{c}$ and is defined as the circular standar error. 0 osing Equatici 2. 15, R can be computed ty fixing P(R), cr conversly, $F(R)$ can be computed by fixing R. Letting $F=\sigma_{1}=\sigma_{2}=\sigma_{c}$, then $P(R)=0.3935$. In other words, 39.35^{2} percent cf 2 all errors in a circular norial distribution are not expected to exceed the circular standard errcr [Ref. 12. Ep. 25-26].

Figure 2.5 Circular Normal Distribution

In the case where the tio uncorrelated LCP's intersect at ar angle other than 900 or $\sigma_{1} \neq \sigma_{2}$, the contcurs cf

Gqual density are ellipses centered about the poirt defin \mathcal{U}^{3} Ly the irtersecting ICP's (Fig. 2.6). The two-dimensional probatility density function tecomes [Ref. 1, p. 136]

$$
\begin{equation*}
P\left(v_{x}, v_{y}\right)=\frac{1}{2 \pi \sigma_{x} \sigma_{y}} e^{-\frac{k^{2}}{2}} \tag{2.16}
\end{equation*}
$$

Figure 2.6 Error Ellipse Formed by Two Oncorrelated LCP's where
∇_{x} is the residual in the direction of the semi-major axis of the error ellifse,
∇_{y} is the residual in the direction of the semi-airor axis,
σ_{x} is the standard error in the direction of the $s \in \mathbb{I} i-$ aajor axis,
σ_{y} is the standard error in the direction of the semi-
mincr axis.
and

$$
\begin{equation*}
k^{2}=\frac{v_{x}^{2}}{\sigma_{x}^{2}}+\frac{v_{y}^{2}}{\sigma_{y}^{2}} \tag{2.17}
\end{equation*}
$$

The scluticn of Equation 2.16 with values of k for different f's yields the results in Table I [Ref. 12, p. 23]. $\overline{\mathrm{F}} \mathrm{Cr}$ a 39.35 fercent probability, the axes of the ellipse are $1.0000 \sigma_{x}$ and $1.0000 \sigma_{y}$; for a 50 percent probability, the axes are $e^{x} 1.1774 \sigma_{x}$ and $1.1774 \sigma_{y}$.

TABIE 1
Values of the Constant K

PROEAEILITY 39.35%
5000%
63.21%
90.00%
99.00%
99.78%

K 1.0000
1.1774
1.4142
2.1460
3.0349
3.5300

The error ellifse can te used for accuracy computations $k y$ developing relationships for σ_{x} and σ_{y} in terms of the initial informaticn σ_{1}, σ_{2}, and B. Bowditch [Ref. 10, F. 1213] gives the folloying eguations for independent Iog's relating these quantities:

$$
\begin{equation*}
\sigma_{x}^{2}=\frac{1}{2 \sin ^{2} B}\left\{\sigma_{1}^{2}+\sigma_{2}^{2}+\sqrt{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{2}-4 \sin ^{2} B \sigma_{1}^{2} \sigma_{2}^{2}}\right\} \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{y}^{2}=\frac{1}{2 \sin ^{2} B}\left\{\sigma_{1}^{2}+\sigma_{2}^{2}-\sqrt{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{2}-4 \sin ^{2} 3 \sigma_{1}^{2} \sigma_{2}^{2}}\right\} \tag{2.19}
\end{equation*}
$$

In these equations. B is assumed to be tiae acute asgle between tte Lor's.

In certain sfecial cases, the above equations tak on more manageable forms. In range-range and azinuthazimuth positioning it is often assumed that $\sigma_{1}=\sigma_{2}=\sigma$. Equations 2.18 and 2.19 then reduce to

$$
\begin{equation*}
\sigma_{x}=\frac{\sqrt{2}}{2 \sin \left(\frac{1}{2} B\right)} \sigma \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{y}=\frac{\sqrt{2}}{2 \cos \left(\frac{1}{2} B\right)} \sigma \tag{2.21}
\end{equation*}
$$

In the concentric range-azimuth case, $\sigma_{1} \neq \sigma_{2}$, ard β equals 90°. Equations 2.18 and 2.19 then simplify ${ }^{2}$ to

$$
\begin{equation*}
\sigma_{x}=\sigma_{1} \tag{2.22}
\end{equation*}
$$

an 1

$$
\begin{equation*}
\sigma_{y}=\sigma_{z} \tag{2.23}
\end{equation*}
$$

where $\sigma_{1}>\sigma_{2}$ and $\sigma_{x}>\sigma_{y}$.
The case for correlated LOP's is more complez. The calculaticn of σ_{x} and σ_{y} involves a coordinate $\pm r a n s f o r m a-$ tion from a linear skewed coordinate system to an unccrrelated rectargalar cocrdinate system. The following discussicn is taken from heinzen [Ref. 2, pp. 49-53]. Assume a hydrographic position is established $x y$ the intersection of two correlated LOp's (Fig. 2.7a). LO? 1 an

F: ; .
$\because: \therefore 10 ;$:cradtions for Correlated IOP's

 Ihe stiruardereurs and correlation coefficient ira a corieldtad rectanguidr coorjinate systemyith axes A and B Dust ncw te jeterminej. A coordinate transformation frcm the skewed system to the correlated rectangular system aust te made yieldiny the standard errors aiong the new cocorinate axts (Fig. 2.7b)

$$
\begin{equation*}
\sigma_{a}^{2}=\frac{1}{\sin ^{2} \beta}\left(\sigma_{1}^{2}+2 \rho_{12} \sigma_{1} \sigma_{2} \cos \beta+\sigma_{2}^{2}\right)-\sigma_{2}^{2} \tag{2.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{b}=\sigma_{2} \tag{2.25}
\end{equation*}
$$

The correlation coefficient in the correlated rectangular syster is

$$
\begin{equation*}
\rho_{a b}=\left(\frac{\sigma_{2}}{\sigma_{1}} \cos B+\rho_{12}\right)\left\{1+\rho_{12}\left(\frac{\sigma^{2}}{\sigma_{1}}\right) \cos B+\left(\frac{\sigma_{2}}{\sigma_{1}}\right)^{2} \cos ^{2} B\right\}^{-\frac{1}{2}} \tag{2.20}
\end{equation*}
$$

To deteraine σ_{x} and σ_{y}, a second coordinate transformation rust be performed frcit the correlated rectangular system to an uncorrelated rectargular system with axes X and Y (Fig. 2.7c). The semi-majcr and semi-minor axes of the error ellifse are then

$$
\begin{equation*}
\sigma_{x}=\sqrt{\frac{\sigma_{a}^{2}+\sigma_{b}^{2}}{2}} \sqrt{1+\sqrt{1-\frac{4 \sigma_{a}^{2} \sigma_{b}^{2}\left(1-\rho_{a b}^{2}\right.}{\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)^{2}}}} \tag{2.27}
\end{equation*}
$$

an 1

$$
\begin{equation*}
\sigma_{y}=\sqrt{\sigma_{a}^{2}+\sigma_{b}^{2}-\sigma_{x}^{2}} \tag{2.28}
\end{equation*}
$$

When $0_{12}=0$, these equations recome identical to the simflified versions ir Bowditch [Ref. 10].

The orientaticn of the semi-major ard semi-mincr axes relative to the intersecting LOP's is the third faraxeter which fix \in the \in rror ellifse. The angle θ (Figs. 2.6 and 2.7) is measured counter-clockwise from lop 1 to the semi-rajcr axis of the error ellipse [Bef. 11] and is given ky

$$
\begin{equation*}
\theta=\frac{1}{2} \arctan \left\{\frac{\sigma_{1}^{2} \sin (2 B)+20_{12} \sigma_{1} \sigma_{2} \sin (B)}{\sigma_{1}^{2} \cos (2 B)+20_{12} \sigma_{1} \sigma_{2} \cos (B)+\sigma_{2}^{2}}\right\} \tag{2.29}
\end{equation*}
$$

For the special case cf $\sigma_{1}=\sigma_{2}$ and $\rho_{12}=0$,

$$
\begin{equation*}
\theta=\frac{\beta}{2} \tag{2.50}
\end{equation*}
$$

The orientation of the error ellifse in an orthogonal coordinate system can be refresented ky addiry or subtractiny 9 to the orientation of LCp 1. Care must le taken on determining the guadrant cf the outcome. As a general rule, the error ellifse alway lies within tae acute anyles fcrated ty the intersecting Lop's.

The orientaticn and dimensions of the error ellif se provide a useful index for evaluating the accuracy of a rydroyraphic position. Its greatest attrifute is that it accurately represents the error distribution about the intersection of two ICP's in terms of a fixed probatility. It is interesting to examine the variation in the relative dimensicns and orientations of error ellipses as they vary in a range-range configuration with $\sigma_{1}=\sigma_{2}=\sigma$ (rig. 2. \&). The dimersions of the ellipses are specified by Equaticns $2.2 J$ and 2.21 and σ_{x} and σ_{y} are functions of B only for fixed o. Therefore, the dimensions of the ellipses remain constant alorg a contour of constant β : only the orientation changes. A line cf constant B is a circle which includes staticns L and E. Note that the dimensicns of the ellifses for $B^{\prime} s$ of 300 and 1500 are identical. The Eliipses about the $9 C^{\circ}$ angle of intersection contour are circles and represent the strongest possible positicrs in this scheme. With varying $B^{\prime} s$, the directional nature $c f$ the distrifution can k noted.

3. Circular precision Indexes

Although the error ellipse gives a true representation cf the error distribution about a hydrograptic pcsition, its use has certain drawracks. The characteristics of the $\in l l i f s e ~ a u s t ~ b e ~ s e c i f i e d ~ k y ~ t h e ~ t h r e e ~ q u a n t i t i e s ~ u_{x}$, T_{y}, and θ. A single figure for evaluating the positionai accuracy cannot be used. Greenwalt [Ref. 12, p. 26] states that when σ_{x} and σ_{y} are not equal, a circular error

Pigure 2. Error Ellipses Around a Range-fange System

B. ACCOFACY ANALYSIS OF HYDROGRAPEIC POSITIONING DATA

The crjective of this section is to illustrate how the accuracy of hydrografhic positioning data can be classified using Eurt's method cf circles cf equivalent froiability. The radius of the 90 percent confidence circle was ccafuted for each fositicn; it frovides a quantitative measure cf repeatarle accuracy.

Fcr sutsequent accuracy computations, the follcwing assumpticns were male:
i. The standard error for the microwave ranging system used in the range-range and rangeazimuth computations is 3 meters.
ii. For azimuth-azimuth and range-azimuth positions, the pointing error of the theodolite is 1.3 reters at all ranges.
iii. The two LOP's involved in alitypes cf positioning are independent ($\rho_{12}=0$).
iv. The data are free of systematic errors.
gaw ranye and aziruth data were hand logyed intc a data file for frocessing. A modification of program UCOMES was

A. [ATA PROCESSING

Autcmated processing of the positional survey data ras done on the NPS IBM $\Xi 70 / 3033 A P$ computer system. Grafhic displays were constructed using the Display Intejrated Software System and plotting Language (DISSPLA) develofed by the Integrated Scftware Systems Corporation (ISSCO)
[Ref. 16:- All computer programs involved in data frocessing were written in the WATFIV programaing language.

Ccmputations were made in an $X-Y$ coordinate system rased cn a Modified Transverse Mercator (MTi) projection. A MTM Erojecticn is essentially the same as a Universal ransverse Mercator (UTM) projection, the only difference being that in a MTH Ercjection a central meridian is picked near the survey area instead cf being fixed at a particular meriaian [Ref. 17].

The central meridian, cortrolling latitude, and false easting values define the cocrdinate system used fcr computaticns. The central meridian for the projection was ciosen to $\mathrm{t} \in \mathrm{longitude} 1210 \mathrm{5} 2^{\circ} \mathrm{3} 0^{\prime \prime} \mathrm{W}$ which is approximately the mean lcngitude of the survey area. The controling latitude, tte distance ir meters from the equator to a reference latitude, was chosen to be $4,050,000$ meters. A faise easting cf 5,000 meters was chosen as the value of the X-coordinate at the central meridian.

Three shore contrcl stations were used in the acguisition of survey data. The geodetic positions of these staticns were converted to the $X-Y$ coordinate system (Table v) using program UCOMFS, which is a hydrographic utility package available to students at NPS.

Fange irformatior was recorled using a Racal Decca Irisfcrder syster, a aicrowave syistem commonly used for nearshore, line-of-sight survey work. Cn cctoker 28 arc Novemter 30, range-rarge lata were recorded ky settirg remote urits over stations BEaCH LAE and iUSSEL. EEfort and after the survey, the ranjing system was calibrated cver the fixed base line USE MCN to MOSSEL. Daily checks in the survey area were made to determine if the system was working properly. This was accomplisheu by maneuvering the survey vessel tc a point where two xncwn navigational ranges irtersected. One navigaticnal range was formed ry stations MONTEFEY AMERICAN CAN CCMPANY STACK and MGNTEFEY FADIO STATICN KMEY MAST. A second navigational range was formed Ey staticns MONTEREY FAREOR LIGHI 6 and MONTEREY BLUE IIGHIHCUSE.

Irack control for range-azimuth and range-range fcsitions was accomplished by steering the vessel alcrig range arcs. The spacing between range arcs for most lines was planned to be 40 meters. Distance between fositions alcng a sounding line averagea approximately 200 meters. The azimuth-azimuth lines were controlled by steering a magnetic compass teading.

The data acquired under training conditions contained several deficiencies that would normally not be tolerated. For example, the quality of the line steering was gererally foor: the vessel wandered off the arc more than 10 meters in several instances. The quality of the sounding lines run using azimuth-azimuth control was extremely deficient; the position flot of these lines show a jagged path fy the vessel. Under normal bydrografhic procedures, these fcsitions would be rejected. Since the intent of this study is to demenstrate accuracy analysis technicues, these deficiencies prove to be inccrsequential; the acyuired data are adequate to demonstrate the concerts.

Figure 3.1 Eydrographic Survey hrea
all stations are of third-order or better and are purlished in the National Geodetic Survey Data Base.

For azimuth-azimuth and range-azimuth fositioning, azimuths were measured with a ilid $T-2$ theodolite. Cn November 16, range-azimuth infcrmation was acquired ky locating the theodolite over station MUSSEL and initialing cn \quad OSE $y C N$. The initial direction was checked by sighting on KMEY MAST. Azimuth-azimuth fositions were acquired cn Noventer 23. A theodciite was set over USE MON and an initial direction was to MUSSEI. A second theodolite was set at MCSSEL using OSE MON for the initial direction.

IIT. EXPEEIGENT DESIGN AND IMPLEMENTATION

The coals of this chapter are to demonstrate that hydrographic fositioning accuracy can be classified based or the radii cf 90 percent confidence circles deternined by using Eurt's method ard to show that, based on the same cifteria, accuracy fredictions can te made for survey planning Furfcses.

A. [ATA ACQUISITIOA FROCEDUBES

The data used for analysis ard prediction consisted of range-range, azimuth-azimuth and range-azimuth survey inforسation. The data wert acquired by Naval postyraduate Sckcol (NPS) students in a Hydrographic Sciences ccurse. Although the course was structured as a training exercise, the data aciuisiticn procedures utilized were neariy icentical tc those which are fracticed by NOS.

A total of 453 hydrographic positions were recorded during the survey of a nearshore area in southern monterey Bay, Califcrnia. of the positions used for analysis, 292 were range-range, 81 were range-azimuth, and 80 were azimuth-azimuth. All survey information was recorded ty hand in scunding volumes. The vessel used was a 36-foot Uniflite with a fiterglass hull and twin engines. The survey was conducted on October 28, November 16, 23, and 30, 1983. Electronic control and calibraticn stations used for the survey included $[\leq E$ MON 1978, MUSSEL 1932, BEACH LAB 1982. MCATEFEY AMERICAN CAN CCMPANY STACK 1932. MCNTEREY RADIC STATION KMEY MAST 1962, MONTEREY HAEBOR LIGHT 61978 , and MCNTEFEY BLDE LIGETHOUSE (Fig. 3.1). with the exceftion of MCNTEFEY BLUE LIGHTHOUSE, which is a low-order fosition,

Given the frequency cf $1.6 \mathrm{MHz}, \lambda=187.37$ meters frca Equation 2.3. The lare width alcag the base line is $w_{g}^{\prime}=w_{r}^{\prime}$ $=93.68$ meters from Equation 2.5. Using the law of cosines from plare geometry, the subtended angles α_{g} and α_{r} are $\ddagger 2.470$ and 43.25°, respectively. The angle of intersecticn cf the tho hyperbolas at P is 37.860 from Equaticn 2.7. The lane widths at P are $W_{r}=254.19$ meters and $W_{g}=335.06$ weters from Eyuation 2.6. The standard errors of the green $\left(\sigma_{1}\right)$ and red $\left(\sigma_{2}\right)$ hyfertolds. respectively are $\sigma_{1}=w_{g} \sigma_{\text {base }}=$ 16.7 meters and $\sigma_{2}=\dot{i}_{r} \sigma_{b a s e}=12.7$ meters. These standard errors are in a linear skewed coordinate system and must he transfcrmed to an unccrielated rectangular system. Erct Equations 2.18 and 2.19 , the values of σ_{a} and σ_{b} are 36.9 meters and 12.7 meters, respectively. The correlaticn cosfficiert in the correlated rectangular system ($\rho_{a b}$) is then 0.737 frcm Equation 2.26. The semi-major and semi-minor axes in the uncorrelated rectangular system are 38.1 weters and 8.3 reters, respectively, from Equations 2.27 and 2.2ε. The eccentricity is

$$
c=\frac{\sigma_{y}}{\sigma_{x}}=0.218
$$

Table IV is entered with the values of $P=0.9$ and $c=$ 0.218. The value for K is found to be

$$
K=1.6602
$$

From Equation 2.37, the radius of the 90 percent protatility circle $i s$ found to $b \in$

$$
R=63.3 \text { meters }
$$

The probability that the vessel's position will be within a circle of 63.3-meter radius centered at the intersecticn of the $L C P^{\prime} \leq i s 90$ percert.

$$
\sigma_{2}=\sigma_{y}=1.3 \text { : peters }
$$

then

$$
c=\frac{\sigma^{x}}{\sigma_{x}}=0 .+33
$$

Table IV is entered with the values of ? $=0.0$ and $=$ 0.432. The value Eor 5 is found to be

$$
\therefore=1.7117
$$

Using Eguation 2.37, the radius of the 90 percent proratility circle is fourd to be

$$
P=5.14 \text { meters }
$$

Zi.e rrodalidity that the vessel's position will be within a circie of 5.14-meter radius centered at the intersectior of the ICP's is 90 percent.

ExabyEle \mathfrak{j}

A vessel is conducting a iydrographic survey usirg hygertolic-hyperbolic gecmetry. The hyperbolic ic? generated by the 1.6-maz electronic positionirg system has a standarlerror of 0.J5-lane on the base line. the correlation coefficient (ρ) betweer. the two LCP's is known to be 0.4. Compute the rarius of the on percert confidence circle at tre vessel's position.

The rectangular plane coordinates of the master (A), two slaves (G and F), and the vessel's position (D) are X COORDINAET
(m)
\underline{Y} COCPDINATE
(m)

p	$172,679.1$	$62,540.4$
G	$209,679.1$	$09,549.4$
M	$241,738.2$	$21,325.4$
P	$223,172.5$	169.264 .2

A vessel is conducting a hydrographic survey using range-range georetry. The two lop's generated ry microwave transmitters have standard errors of $\sigma_{1}=\sum$ meters and $\sigma_{2}=4$ meters. The anjle $c \dot{E}$ intersection 8 at the vessel is 30^{2}. Assume the Lof's are uncorrelated. Cc®pute the probability that the vessel's position will be within a circle of 10 -meter radius with the center at the intersection cf the LOP's.

Recalling Equations 2.18 and 2.19, the values of σ_{x} and σ_{y} are found tc be 9.79 meters and 6.14 meters, resfectively. From Equation 2.36

$$
c=\frac{\sigma_{y}}{\sigma_{x}}=0.633
$$

and from Equation 2.37, with $\mathrm{F}=10$ meters,

$$
K=1.032
$$

Entering Tatle III anc using interpolated values for c and K, the frotability that the vessel's position will $\mathrm{f} \in \mathrm{wit}$ win a circle of 10 -meter radius centered at the intersecticn of the ICP's is

$$
P=53.2 \%
$$

Example $\underline{\underline{2}}$

A vessel is conducting a hydroyraphic survey using range-azimuth cecmetry. The range Lop jenerated ly the micrcwave transmitter has a standard error of 3 meters. The azimuth Lop determined by theodolite observation has a standarderror of 1.3 meters at all ranges. Compute the radius of the 90 percent confiderce circle at the vessel's positior.

In the rarge-dzimuti case $\beta=900$ and the ICP's are unccriflated. Tterefore,

$$
\sigma_{1}=\sigma_{x}=3.0 \text { meters }
$$

and

TABLE IV

Radii cf Circles Given c and C

	00	0.1	0.2	03	3. 4	1) 5	0. n	0 :	0.9	$0 \pm$	1. 0
500%	0. 57449	088.199	5. 705R3	1) -2.443	8 113.35	1) 1042	1). 23319	(1) 941	105769	1. 11907	1. 10 ± 1
-ivi	115035	115473	1 linsis	1 $1: 12+5$	12110		: $351+3$	$1424: 1$	1. 50231	: 35271	1. 0.511
3ex)	1 [i448.	184791	155731	1 firs 3	1. 59415	-3504	1-31:2	1. 42253	1. 94761	2.042315	2. 14597
$35(0)$	1.45996	: 19 xe 3	137041	14.4820	200514	2.1355	2 fin 130	2 14.93	233029	$2331<0$	24575
, 3	$\therefore 211+0$		2 zas	$\therefore 2 \mathrm{~S}$	$\therefore 2003$	$\therefore \therefore 020$	2 ifsel	21035%	$243+3$	2. 3.5994	2.1020
40	2575 s 3	2 5:5:3	: 30.5:	2 -94.1	21,943	$2 \cdot, 220$	$2 \cdot 8.533$	2.1515	2. : 101069	2. 59743	3. 43455
"30	2-0703	2 - 6n-3	2 +142	$2-3249$	2-4.31)	$\therefore 5.5634$	2.4599	- $3334{ }^{\circ}$	3. 190431	3 :1073	3. 2.52 .5
A5	1. Jind	2 San	$\therefore 1806$	3 13049	3 - 3 ¢	3 13:44	3. 15 51	3. :? 3 and	3 $205 \sim 5$	3. 31093	3. 5116,4
(wy?	12503.1	- 16	$3 \therefore 3$	1 1-44y	3 3:7:5	3 \%pht	311949	33964	$34551{ }^{1 / 2}$	3.85939	371592

confidence elijrse is

$$
\begin{equation*}
A_{e}=K \sigma_{x} \sigma^{2}{ }^{\pi} \tag{2.38}
\end{equation*}
$$

Where K is the appropriate prctability conversion factor (Tabie I). The area of the so cercent confidence circle is

$$
\begin{equation*}
A_{C}=\pi R^{2} \tag{2.39}
\end{equation*}
$$

where f is giver by Eguation 2.37. For a condition wbere $\sigma_{1}=\sigma_{2}=3$ meters, and $B=300$, the area of the 90 percent conficence ellirse $i \leqslant 261$ square meters, while the area oí the confilence circle is 587 square meters. For both standarj \in ricers equaling 10 meters and $B=300$, the 90 percent confidence elifpse inas an area of 921 square meters and the confidence circle tas an area of 2894 square meters. From an oferaticnal ferspective, the difference in dreas ketween ellifses and circles have significant inplications which wiil $k \in$ discussed in Chapter ∇.

The following examples are presented to deacnstrate $m \in t h o d s$ for corfuting the paraneters of error ellipses ard confidence circies for several bydrografhic cositicning geometries.

TABLE III
Probatilities, Given c and a

b. Circles of Equivalent Probability

Burt [Ref. 3] presents a method for transiating eiligses cf equivalent probability into circles of equivalent frobability. Tc utilize this method, it is first necessary to compute the eccentricity of the error ellifse, c, by the equation

$$
\begin{equation*}
c=\frac{\sigma_{y}}{\sigma_{x}} \tag{2.36}
\end{equation*}
$$

wher $\epsilon \sigma_{x}>\sigma_{y}$.
Harter [REf. 15] compiled Tables III and IV which are taken from Bowditch [Ref. 10, p. 1215]- Harter's data are given in teris of the eccentricity, c, a farantier, R, and a probability, P. The parameter, R, when muitipied by σ_{x} gives the value of the radius, R, of the circle of the corresponding probability shown in Table III. That is,

$$
\begin{equation*}
R=K \sigma_{x} \tag{2.37}
\end{equation*}
$$

The probatility of a point falling inside a circle cf specified radius car be computed by entering zaile III with c and K as arguments. Given a fixed protability, K is determined by entering table $I V$ using c and P as arguments. The radius of the probability circle is then computed using Equaticn 2.37.

Osing confidence ellipses has certain advartases cver confidence circles of equal probability. First, the directicnal nature of the true error distribution is act represented in the ccrfidence circle method even though both methods give an accurate measure of confidence. Seccnd, the area of the confidence ellipse is always less than or equal to the area of the ccrfidence circle. The area of a
i. 0.5 mm at the scale of the survey for scales of 1:20,000 and smaller,
ii. 1.0 mm at $\mathrm{th} \in \mathrm{scale}$ of the survey for $1: 10,000$ scaie surveys, or
iii. 1.5 mmat the scale of the survey for scales of 1:5,000 and larger.

The major advantage of using $\tilde{c}_{\text {rms }}$ as a precision index is its ease of computaticn. Some hydrographers draw analcgy $k \in t w e e n$ the varying protability associated with ore $d_{\text {rms }}(63.2$ percent to 68.3 percent) and the fixed Erchability associated with a one-dimensional standardercr (68.3 percent). In fact, $d_{r m s}$ has very little statistical meaning. The obvious problem with using ${ }^{\text {a ms }}$ as a precision index is the varying frobability associated with the error circle. Fcr this reascn Greenwalt [Ref. 12, p. 31] reccamends against its use.

TABLE II
Probabilities Associated Dith d rms

			PROBEEBILITY	
σ^{\prime}	${ }^{\prime}$	LENGTH $\underset{1}{\mathrm{~d}} \underset{\mathrm{rms}}{ }$	1 dms	2 dms
0.0	1.0	1.000	0.683	0.9
0.1	1.0	1.005	0.682	0.955
0.2	1.0	1.020	0.682	0.957
0.3	1.0	1.042	0.670	0.961
0.4	1.0	1.077	0.671	0.966
0.5	1.0	1. 16	. 062	0.969
0.7	1.0	1. 220	0.641	0.977
0.8	1.0	1.280	0.635	0.980
0.9	1.0	1.345	0.632	0.981
1.0	1.0	1.414	0.632	0.982

An error circle with a rảius of one d ras $c a n$ be constructed about the intersecting Lop's (Fig. 2.9). I\% $d_{\text {rms }}$ is the radius of the error circle obtained using two times the values of σ_{x} and σ_{y} in Equation 2.31. Fcr an elliptical error distribution, the probability associated with a sfecific value of $d_{\text {rms }}$ varies as a functicn of the eccentricity of the error ellipse (Table II). The grotability associated with one drms varies from 63.2 percent to 68.3 fercent, while the probability associated with tac $d_{\text {rns }}$ variєs between 95.4 fercent and 98.2 percent.

Pigure 2.9 The $d_{\text {min }}$ Error Circle

NOS uses ${ }^{\text {grms }}$ as an accuracy specification.
Umbach [Ref. 14, p. 4-25] states that super high frequency direct distance measuring systems would be used only when the value cf drms is less than or equal to:
distributicn can be substituted for the elliptical distrizution. This substituticn can $k e$ satisfactory for ercr analysis within certain σ_{y} / σ_{x} ratios. However, when this Iatio is small the distcrtion introduced by the circular distrifuticn may beccre misleading.
a. Koot Mean Square Error

The terms radial error, root mean square error, and drms are identical in meaning when applied to twodimensicnal errors [REf. 10. p. 1229]. The term drms is defined as the square root of the sum of the squares cf the standard errors along the major and minor axes of the errcr ellipse. That is

$$
d_{\mathrm{rms}}=\sqrt{\sigma_{x}^{2}+\sigma_{y}^{2}}
$$

where σ_{x} and σ_{y} are given by Equations 2.18 and 2.19. A more airect form of 2.31 is given by [Ref. 2, p. 54]

$$
\begin{equation*}
d_{\mathrm{rms}}=\frac{1}{\sin B} \sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{2.32}
\end{equation*}
$$

for uncorrelated LOE's. For rangerrange and azimuth-azirutit cositioning, with $\sigma_{1}=\sigma_{2}=\sigma$, Equation 2.32 reduces tc

$$
\begin{equation*}
d_{r m s}=\frac{\sqrt{2}}{\sin \beta} \sigma \tag{2.33}
\end{equation*}
$$

For range-azimuth positioning, $\beta=900$ and Equation 2.32 Lecomes

$$
\begin{equation*}
d_{\mathrm{rms}}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{2.34}
\end{equation*}
$$

The mere general forf of Equation 2.32 for both correlated and uncorrelated LOP's [Ref. 2, p. 59] is

$$
\begin{equation*}
d_{\text {nims }}=\frac{1}{\sin B} \sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}+20_{12} \sigma_{12} \sigma_{2} \cos B} \tag{2.35}
\end{equation*}
$$

where D_{12} is the correlation coefficient.
used to compute $X-Y$ coordinates of all fositions. Baséc cn gecmetric relaticnshifs discussed earlier, angles of intersecticn cf the ICP's were then computed for range-range ard azimuth-azimuth points. The angles of intersection for all range-azimuth positicrs are 90°.

The range-range ard azimuth-azimuth data were then passed to WATFIV subroutine F fCB (Appendix A). As infut farameters, the subrcutine accefts two standard errors cf the LCP's and the corresponding angle of intersection. Tre output parameters include the semi-major and semi-minor ax cf the 90 percent corfidence ellipse, the radius of the 90 fercent confidence circle, and the areas covered by both figures.

Subrcutine PROB uses a linear approximation to deteraine the value of the function K for varying values of the eccentricity, c, in $B u t^{\prime} \leq m e t h o d . ~ A ~ l i n e a r ~ i n t e r p o l a t i o n ~ w a s ~$ performed by first taking the eleven discrete values of c and K for a probability of 90 fercent from Tabie iV and then constructing a series of relationshifs for K as a function cf c (TaEle VI).

Values of the radii of 90 fercent confidence circles for ranye-range data were plotted at their respective fositions (Fig. 4.1). The arcs of circles connecting the two control staticns EFACH LAB and MUSSEL represent innes of constant intersection angle (300). Of the ranye-range data set, positico 948 (Appendix B) --cocrdinates $X=4119.01$. $Y=$ 4735.c7--was found to have the smallest radius (strongest fosition) of 6.4 meters and an angle of intersectior cf 90.20. Fosition 137--coordinates $X=3345.86, Y=$ 3873. 34--represents the weakest position with radius value of 15.3 ueters and an anyle of intersection of 26.70 .

The fositional accuracy degrades rapidly as the intersecticr angle approaches 300 ; the 300 arc represents a line of constant 13.7 meter radius. Hithin 400 meters of the ≤ 00

TABLE VI

Linear Approximations for K as a Punction of c

Interval of c Lipear Interpolation
$0.0-0.1$
$0.1=0.2$
$0.2=0.3$
$0.3=0.4$
$0.4=0.5$
$0.5=0.6$
$0.6=0.7$
$0.7=0.8$
$0.8=0.9$
$0.9-1.0$

intersection arc, the radius varies between 8 and 15 meters. The radii values charge slowly in the vicinity of the minimur value of 6.4 meters which corresponds to an angle of intersecticn of 90°.

The radii of 90 fercent confidence circles asscciated with the azimuth-aziauth fositicns acquired using control staticns USE MON and vUSSEL were also plotted at their respective fositions (Fig. 4.2). The standarderrcrs cf the LOP's are assumed to te 1.3 meters; the resulting imfrcved accuracy is evident. The maximum value of the 90 fercent confidence circle radii is 8.7 meters at position 637--coordinates $X=4327.25, Y=2818.39--w h i c h$ corresfonds to an angle of intersection of 159.80 (or in terms of the supplement, 20.20). Fosition 682--coordinates $x=4611.20$. $Y=4421.29--r e p r e s e n t s$ the strongest position recorded during the survey with a 90 percent confidence circle radius of 2.8 meters and an angle of intersection of 91.00 .

Again, the rapid degradaticn of accuracy is noted approaching $B=1500$. The arc of the 1500 intersecticr angle refresents a corstant radius of 5.9 meters. Discrete

Figure 4.1 Range-Bange Accuracy Analysis

Figure 4.2 Azimuth-Azimuth Accuracy Analysis
values along the arc corfirm this qualitatively. A large area of strong positicnal accuracy surrounds the area were $B=90^{\circ}$. Numerous values of 2.8 meters are present near the tcf cf the plot.

Using the assumpticns stated at the beginning of this section, the values fcr all radii of 90 percent confidence circles for range-aziauth positions are 5.1 meters. This computation was carríd out in Example 2 of Chapter II. Since this case is trivial, the data are not displayed grafhically.

Fcsitioning data were also classified based on tie farameters of the 90 fercent confidence ellipse. Watyiv program fllip (Appendix C) was used to generate the farameters $c f$ the 90 percent confidence ellifse for rarge-ranje, azimuth-azimuth, and ranye-azimuth positioning data. The frogram was initialized by entering the coordinates of the control stations and standard errors of the LOP's. The fix number, hydrografhic position coorinates, and anqle of intersection were ther read in from d data file. Subroutine PROB was called to ccrpute values for $K \sigma_{x}$ and $K \sigma_{y}$.

The angle of orientation of the major axis of the ellifse, $\mathbb{m} \in a s u r e d ~ c l c c k w i s e ~ f r o m ~ n o r t h, ~ w a s ~ t h e n ~ c o m p u t e d . ~$ For range-range and azimuth-azimuth fositions, the ICF generated from the left control station was used as the base LOP. For range-azimuth fositicns, the lop formed by the theodolite was used as the base LOP. First, the orifntation of the base lop in tre coordinate system was determined. The orientation of $t \mathrm{t} \in \mathrm{major}$ axis of the error ellipse relative to the base LOP (θ) was then computed using Equaticn 2.29. By adding or subtracting θ to the orientaticn of the tase lOp, the orientation of the major axis of the error ellipse in the coordinate system was determined. This angle takes on values from 00 to 180°. Appendix D consists cf the confidence ellifse classification scheme for range-range,
azimutt-azimuth and range-azimuth data. Eorty pusitiors for each positioning yecmetry are listed for comparisor to tine classification scheme gresented in Appendix 3.

Afpendix B lists the data $k y$ position mumer, $X-Z$ cordinate, angle of intersecticn, and radius of the 90 fercent confidence circle. Appendix D lists the data by yositicn number, $X-Y$ coordinate, angle $c f i n t e r s e c t i o n, K \sigma_{x}, K \sigma_{y}$, and angle of orientation for the 90 percent confidence elligise. These affendices are similar to hydrographic survey data rases and demonstrate accuracy classification schemes rased on the two criteria.

C. ACCORACY PREIICTIC\&S

The cverall positional accuracy of a survey can $k \in$ contrciled by computing accuracy values before data acquisition is legun. For example, if the hydrographer is usiry radii cf 90 percent confidence circles as an accuracy critericn, the minimur allowable angle of intersecticn for two lCf's can be comfuted for meeting specifications. The nature of the survey area may allow the flexibility to change system gecmetry to maximize accuracy at a scecific location or to maximize the area covered with a jiver accuracy. By uaking acciracy computations before acquiring data, the hydrographer may also have the option of decidiay what tyfe cf positioring system is to be used to meet accuracy requirements.

The construction cf reliability contours is one methoz to $J i s p l a y$ the expected positional accuracy. Keliatility contours, lines cf constant refeatable accuracy which are functions of the system jeometry and standarderiors cf the positicrirg equipment, can be constructed about shore staticns usiny the radii of 90 fercent confidence circles critericn or the less desirable $d_{\text {rms }}$ value.

Consider the equations that have been deveiofed in Chapter II for the $3 \in t e r m i n a t i c n ~ o f ~ r a d i i ~ o f ~ 90 ~ p \in I C \in I t ~$ confidence circles using Burt's method. For uncorrelated IOP's in a range-rance or azimuti-aziauth system, the repeatable accuracy cf a bidrografaic pcsition is a function only cf the angle of intersection, assuming the standard errors of the LOP's are constant throighout the survey area. The lccus of points which define a constant angle of intersecticn for two LOP's in a range-range or azinuth-azimuti syster is a circle whici passes through both control staticns. Given the coordinates of the two contzol stations, the equations of these circles can be deternine ${ }^{\text {d. }}$

Construction of reliability contours involyes several simple trigonometric relationships (Fig. 4.3). Let IR $E \in$ the line connecting the two shore control stations \mathcal{Z} and E in a range-range system. The length of line L is is k. The circle through both stations defines a line of constant intersection angle for two Lop's. The radius of the circle is I. Ite distance ϵ is measured along the perpendicular Eisector of the line If to the center of the circle at foint $O(h, k)$ and $i \leq$ given $b y$

$$
\begin{equation*}
e=\frac{b}{2 \tan \beta} \tag{4.1}
\end{equation*}
$$

Knowing \in and the radius r, the coordinates of point 0 can Le ccrauted. The eguation of the circle is then

$$
\begin{equation*}
r^{2}=(x-h)^{2}+(y-k)^{2} \tag{4.2}
\end{equation*}
$$

These two equaticns were used to generate reliability contcurs for display on a computer graphics terminal. Using Eurt's method, the angles of intersection of tyo iof's were computed for discrete values of radii of 90 percert confidence circles. Reliability contours about stations EEACH

Figure 4.3 Corstruction of a Reliability Curve

IAB and MOSSEL for a range-range system $\left(\sigma_{1}=\sigma_{2}=3\right.$ meters) were constructed (Fig. 4.4). Osing Equation t. 2 , X-Y ccordinates were generated for points laying on different reliability circles. A curve-fitting subroutine in the IISSPIA library was used to generate the circles through the computed pcints. The 13 -meter accuracy contour corresponds to an angle of intersection of 31.60 , while the 7 -meter accuracy contour corresfonds to an angle of intersection of 67.90. The best achievable accuracy of the system is 6.4 meters at 90°.

Fcr comparison furfoses, reliability contours were constructed about $B E A C H$ LAB and MUSSEL for azimuth-aziauth geometry $\left(\sigma_{1}=\sigma_{2}=1 . \Xi\right.$ meters $)$. The increased accuracy of this configuration is evident (Fig. 4.5). The $3-\mathbb{m} \in \in E$
contour corresfonds tc an angle of intersection of 69.4c while the 6 -meter contour corresponds to an angle cif intersection of 29.60. The best achievable accuracy at an intersecticn angle of 900 is 2.8 meters.

A secord scheme was used tc display accuracy precicticns for the twc positionirg methods. Given the coordinates cf EEACH LAE and MUSSEL, a series of discrete points sfaced 800 meters apart, were generated throughout the survey area. The values for the radii of 90 percent confidence circles were then computed at each point with the use of sutroutine EROB. Figures 4.6 and 4.7 illustrate this predicticn scheme. These figures present the same informatior as Figures 4.4 and 4.5 in a different manner. The 300 angle of intersection contour is shown on both figures.

Figure 4.4 Beliability Contours: Range-Range Geometry

GENERATED RELIABILITY CONTOURS

AZIMUTH-AZIMUTH: BEACH LAB-MUSSEL

Figure 4.5 Reliability Contours: Azimuth-azimuth Geometry

Figure 4.6 Bange-Bange Foint Accuracy Prediction

Pigure 4.7 azimuth-Azinuth Point Accuracy Predicticn

V. CONCIOSIONS AND RECOMMENDATIONS

A. ACCUFACY SPECIFICATIONS

Interfretation $o f$ the 1982 IHC positioning stardards in terms cf 90 percent confidence circles yields some interesting results with respect to present day survey fractices. For example, for a 1:10,000-scale hyjrografhic survey, NOS usually uses microwave positicning systems in a range-range mode, and assumes a standard error of 3 atters for cach icp. Surveys are frequentiy conducted between the 300 tc 1500 angle of intersectior limits. Jsing the 90 fercent confdence circle critericr, the radius of the cirole should act exceed 10 meters. However, the radius value for $\beta=300$ and 1500 is 13.7 meters. The values of $K \sigma_{x}$ and $k \sigma_{y}$ for the 30 percent confidence ellipse are 17.6 and 4.7 meters, respectively. To meet the 50 percent critericn for a $1: 10,0 J 0-$ scale survey, the B limits should be 420 to 1380 .

Azimuth-azimuth fcsitioning is accurate enough for 1:5.00C-scale surveys, using B limits of 350 to 1450 , assuming a standard error of 1.3 meters for each LCP. aith the standard error assumptions used for range-azimuth, the 90 fercent radius is s. 1 meters for all positions. Giver the uncertainties of the standard error figures, it is rationai to assume that range-azimuth positiors can $\mathbb{m e f t}$ tne s-meter accuracy standard for $1: 5,000-s c a l e ~ s u r v e y s . ~ I n ~$ fact, range-azimuth fcsitional accuracy can exceed aziauttazimuth accuracy wher the later's β is less tnar 350. For a 3-meter σ ranye-range configuration, it is impossible tc meet $1: 5,000$ specifications with any B.
$A s$ a general guideline, the 300 to 1500 andle of intersecticr limit is a yocd rule to use for uncorrelated LCE's.

Contrcl stations: USE MON 1978 anヨ MUSSEL 1932
Stancard Error Used ir Computations: 1.3 meters

$\begin{aligned} & \text { Fix } \\ & \text { No. } \end{aligned}$	coordinate	ccordinate	Angle of Int \in Esection	Radius of
615	4449.26	2711.40	9	7.6
620	4437.86	2807.29	153.0	$6 \cdot 5$
621	4427.41	2897.17	149.6	5.9
622	4419.65	2989.36	146.2	5.3
623	4410.42	3072.20	143.4	4.9
624	4390.60	3154.04	141.3	4.7
625	4376.52	3234.24	138.9	4.4
626	4364.31	3319.82	136.2	4.2
627	4348.71	3411.24	133.5	4.0
628	4334.31	3502.51	130.7	3.8
631	4338.97	3381.55	$135 \cdot 1$	4.1
632	4337.95	3290.68	138.7	4.4
633	4327.70	3199.92	142.8	4.8
634	4322.53	3107.83	146.9	5.4
635	4323.18	3012.49	151.0	6.1
636	4324.42	2916.00	155.3	7.1
637	4327.25	2818.39	159.8	8.7
638	4394.77	2806.86	156.0	7.3
639	4386.58	2903.09	152.0	6.3
640	4377.29	2998.63	148.4	5.6
641	4367.00	3090.26	145.1	5.1
642	4355.55	3187.06	141.9	4.7
643	4345.97	3285.88	138.5	4.4
644	4256.90	3516.02	133.6	4.0
645	4260.68	3416.65	137.4	4.3
646	4264.77	3321.01	141.1	4.7
647	4283.59 4293.24	3208.82	144.8	$5 \cdot 1$
649	4300.30	3024.70	151.8	6.3
650	4345.53	3145.58	144.1	5.1
651	4370.38	3236.09	139.1	4.5
652	$4358-77$	3327.77	134.2	4.0
653	4411.48	3421.46	130.2	3.8
654	4438.30	3506.23	125.9	3.5
655	4470.97	3591.21	121.0	3.3
656	4502.73	3677.50	117.4	3.2
657	4514.38	3767.26 3860.13	114.0	3.1
658 659	4512.00 4520.10	3860.13 3948.53	111.1 107.9	3.0 2.9
660	4494.79	3049.75	139.2	4.5
661	4487.96	3144.60	136.2	4.2
66	4477.62	3243.86	133.2	4.0
663	4462.90	3372.74	129.4	3.7
664	4453.74	3469.99	126.5	3.5
665	4440.56	3564.89	123.8	3.4
666	4465-02	3652.95	119.7	3-3
667	4507.24	3743.29	115.0	3.1
668		3595.27	116.9	
699	4569.50	3681.02	114.6	3.1
677	4563.68 4564.53	3872.77	111.9	3.0 3.0
672	4563.90	3965.68	106.0	2.9
673	4560.41	4057-10	103.2	2.9
674	4553-49	4147.06	100.6	2.8
675	4556.71	4239.64	97.7	$2 \cdot 8$
677	4571.60	4416.22	92.0	2.8
678 679	4576.20 4582.23	4504.92 4597.03	89.3	2.8 2.8
690	4604.35	$4631: 33$	85.1	
681	4613.39	4527.17	87.9	2.8

RANGE-RANGE ACCJRACZES (CONTINJED)

X
Ccordinate
3630.54
3877.77
3907.61
3932.77
3948.19
3956.79
3953.81
3938.32
3909.94
3864.71
3816.98
3711.62
3788.16
3851.30
3901.13
3961.73
3977.10
3993.32
3996.85
3981.72
3956.88
3916.26
3826.04
3961.88
3907.91
3841.30
3789.42
3772.12
3843.76
3906.65
3959.36
4002.25
4057.98
3992.26
3954.08
3905.75
3
Y
Coorginat
4843.53
4734.18
4618.18
4495.95
4376.06
4251.77
4125.89
3995.79
3869.78
3744.84
3619.07
5131.00
5014.61
4889.79
4761.08
4590.52
4485.23
4118.31
4193.81
4048.49
3905.60
3758.91
3553.55
4091.61
4827.37
4953.23
5085.46
5177.05
5069.86
4961.46
4844.18
4720.39
4659.81
4828.76
4915.16
5046.63
5167.39
5129.36
5033.27
4919.44
4797.13
4597.99
4735.07
4872.84
4990.89
5118.03
5139.94
5026.15
4874.08
4779.44
4617.75

Angle of
Intersection Radius of
gotin ciscle

RANGE-RANGE ACCUEACIES (CONTINJED)

coordinate

Angle of
Intersection

RANGE-RANGE ACCURACIES (CONTINUED)

KANGE-RANGE ACCURACIES (CONTINUED)

APPENDIX B
 aCCORACY CLASSIfICATION: 90 pERCENT CONFIDENCE CIRCLES

CLASSIFIED FANGE-RANGE POSITIONS
Contrcl Stations: BEACH LAB 1982 and MUSSEL 1932
Stardard Error Used in Computations: 3 meters

$\begin{aligned} & \text { Fix } \\ & \text { No. } \end{aligned}$	$\stackrel{X}{\mathrm{C}} \underset{\underline{\text { conate }}}{ }$	$\text { Ccord } \stackrel{Y}{\text { inate }}$	Angle of Intersection	Radius of 90\% Circle
1	2668.05	4942.07	127.0	8.2
2	2852.01	5076.69	121.6	7.7
3	3041.58	5194.85	118.6	7.4
4	3040.27	5148.74	117.0	$7 \cdot 3$
5	2838.26	5021.35	120.2	7.6
6	2640.06	4877.13	126.9	$8 \cdot 2$
7	2553.46	4752.36	130.4	8.7
8	2724.10	4885.47	121.3	$7 \cdot 7$
10	3075.61	5124.37	115.0	7.
11	3172.63	5136.23	112.7	7.0
12	2958.13	5006.65	114.4	7. 1
13	2771.33	4876.02	117.9	7.4
14	2581.02	4729.89	156.9	$8 \cdot 2$
15	2584.41	4665.31	124.0	7.9
16	2740.05	4805.63	116.7	$7 \cdot 3$
17	2913.27	4928.51	112.8	7.0
18	3097.44	5047.77	111.2	6.9
19	=193.94	5103.46	110.9	6.9
20	2627.47	4659.05	118.8	7.4
21	2762.15	4769.60	113.2	7.1
22	2904.91	4875.24	110.5	6.9
2	3056.38	4975.73	109.3	6.9
24	3207.36	5064.00	108.9	6.8
25	$\frac{3}{31} 73.36$	5101.96	107.1	6.8
26	3190.64	5007.38	106-8	6.8
27	3015.45	4900.75	107.1	6.8
28	2839.38	4778.31	108.7	6.8
$3{ }^{2}$	2679.98	4651.31	112.8	7.0
31	2 ¢99.83	4776.97	105.2	6.7
32	3092.77	4901.75	104.4	6.6
33	3295.42	5019.92	105.0	6.7
34	3502.07	5123.36	106.0	6.7
35	3697.02	5151.09	105.3	6.7
36	3474.77	5065.57	104.0	6.7
37	3257.48	4953.37	102.7	6.6
38	3043.03	4821.88	101.7	6.6
39	2845.07	4680.80	101.7	6.6
40	2746.96	4608.32	103.1	6.6
41	2748.09	4550.40	97.5	6.5
43	3134.33	4834.56	99.4	6.5
44	3317.94	4944.55	101.0	6.6
45	3515.14	5043.56	102.6	6.6
46	3720.18	5117.15	103.9	6.6
48	3724.93	5083.62	102.6	6.0
40	3 312.88	4989.13 4891.55	100.3	6.6 6.5

```
                        B=0.7101*C+1.36546
```



```
    EISE IF ({C.iN:0.5) AND.S(C.GT.0.4)) THEN
    ELSE IF ((C.IE.0.4) AND. (C.GT.0.3)) THEN
    EISE IF ((C)IE-0.3) AND. (C,GT.0.2)) TAEN
    ELSE IF ({C.IE.O.2)-AND: (C.GT.0.1)) THEN
    B=.094*C+1.63851
    B=0.0306*C+1.64485
    ENDIFF
    RADIUS=B*SICX
    SGX90=2.146*SIGX
    SGY90=2.146%SIGY
    CIRAR=3.1415c26*RADIUS**2
    EIAR=3.1415926*SGX90*SGY90
FETUEN
ENE
```


APPENDIX A

SOERCUTINE FOR 90 FERCENT CONFIDENCE CIRCLE PARAMETEFS

SUEFCUTINE PROEISIG1,SIG2,COR,TBETA, SGXGO, SGY90.

* EADIOS ELAR, CIFAR)

IMEIICIH REAL* 4 (A-H O-Z)
C CCMPOTES AADIUS DF GO\% CONFIDENCE CIRCLE (BUET, METEOD 2) C THIS SUBROUTINE WORKS FCR COFRELATEDAND UNCOERELATE C IINES CF POSITION.

INEDT EAFAMETEES:

กดกกดกดก

जOEK KITH AN ANGLE IESS THAN 90 DEGREES
IF (TEETA GT-90.) BETA $=180 .-T B E T A$

C CHANGE DEGREES TO FADIANS
RAC=.0174532*BETA
C TRANSFCEMATION SIG1 AND SIG2 TO CORRELATED
TANGULAR SYSTEM

SIGB=SIG2
C TRANSFCRM CORREIATICN COEFFICIENT TO CORRELATED
C RECTANGOLAR COORDINATE SYSTEM
$A=1(S I G 2 * \operatorname{COS}($ RAC $)) / S I G 1)+C O R$
$\mathrm{F}=1 \mathrm{SQRT}(1+2 * \mathrm{CCF} * \operatorname{SIG} 2 * \operatorname{COS}(\mathrm{RAD}) / \mathrm{SIG} 1+(\mathrm{SIG} 2 / \mathrm{SIG} 1) * * 2 *$
(CCS (RAD) $\binom{$ RAF }{ (OA }
C TRANSFCEM TO UNCORRELATED RECTANGULAR

*(SIGA**2+SIGB**2)**2) $D D=S Q R T(1+C C)$
$S T G X=A A * D$
SIGY=SQRT(SIGA**2*SIGB**2-SIGX**2)
C CCMFOTE ECCENOFICITY OF ELIIESE
COMEUTE C=SIGY/SIGX
C COMEUTE BURT'S K FACTOR BY LINEAR INTERPCLATION

ELSE IF ($(C=0.1 E-8.8)-A N D .(C . G T .0 .7))$ THEN
ELSE IF ((C.IE.0.7).AND.(C.GT.0.6)) THEN

Many variables exist wher considering accuracy requirements fcr a hydrographic survey. In general, higher accuracy means more time, money, and effort. Azimuth-azimuth geometry is the most accurate method of positioning analyzed in this thesis. This method involves at least two peofle asiore and good shif-to-shore communications. currently, NOS accuires these data manually, which minimizes the sfeed that the vessel can cferate and adds to processing tife. or the otter hand, a survey using a medium-range system nefds little shore support and the data acquisition is autcmated. Accuracy fredictions telp keep a balance between accuracy and effort. If the desired accuracy is attainable using a range-range system instead of an azimuth-azimuth systen. then the chcice is orvious.

Hydrcgraphic pcsitioning in the future will be dcmirated Ly two methcds. For cffshore surveys, the Global
Positioning System (GES) is expected to give positioral accuracy to 10 meters or better. GPS is a satellite fositioning system currently being deployed by the Department of Defense and will provide near worldwide coverage for users. Since the full constellation of 18 satellites will not be operational until 1988, it is not yet known if the exfected accuracy of 10 meters will be met. Nearshore surveys may use wultifle LOP's for establishing hydrografhic pcsiticns. The principle of least squares is applied to redundant cbservations yielding the most frobable position. Fcr toth. GPS and least squares positioning, confidence ellipses and circles can be determined, although the technigues involved are much mare complicated than those presented in this thesis.

The accuracy classification scheme presented in this thesis is fredicated cn the elimination of systematic errors. Much work is needed in identifying the sources of systematic errors asscciated with hydrographic positioning equipmert.
lengtbened. In an investigation such as this, it is advisable tce conservative and use the maximum length of line which is oferationally feasible to provide coverage cf ar area as large as possitle. The radius of the 90 percent confidence circle gives the hydrographer a rough figure fcr answering the questicn: Does the submerged pile exist?

Knowing the farautters of the error ellifse could $t \in$ useful fcr conducting wire-drag, wire-sweep, and side scar sonar oferations. Fcr a position obtained with low frecision positioning eguifment, the search to relocate a subuerced feature could cover a large area. Knowing the farameters cf the errcr eiligse could reduce the area, time, and effort of the search. The search pattern could ke Flanned to cover the desired confidence ellifse.

With the quantification of accuracy, a decision must te made concerning how auch confidence is needed to delete a certain feature from the chart after a search has keen rade. The 90 fercent confidence level may be too low, whereas the C5 or 99 percent level may suffice. A balance must remaintained tetween confidence of disproval and time and effcrt spent on the search.

Accuracy predicticns in the form of reliability contours can $k \in$ displayed using computer graphic terminals. These displays will contrifute to the efficient planning of surveys to meet specifications. Given the survey area, tre availarle control, the positioning methods, and the precision of the positionirg equifment, the hydrographer can plan the accuracy of the survey before it is conducted. The survey area and the available control may be such that there is flexifility to change control stations to optimize accuracy $c \forall \in r$ an area of critical importance. This informaticn can $t \in$ displayed graphically and plans for the survey can be made accordingly. Likewise, given an accuracy limit, such as a 10 -meter radius cf the 90 percent confidence circle, the area tc be covered at that accuracy can be maximized.

B. USES FOR ACCURACY FIGURES

NCS is currently developing the Shipboard Data System III (SDS III), a hydrcgraphic data acquisition and frocessing system which will replace the present HYDROLCG/ HYDRCELCI system. SES III will revolutionize data acquisition and frocessing techniques with the capability tc perfori high-speed calculaticns and display color graphics. with this increased computer fotertial, data manipulaticns-such as accuracy comfutations--can be performed.

Each position in a survey can be given a quality figure based on the radius of the 90 fercent confidence circle. This figure is sufficient for non-critical positions of ordinary hydrographic data. Critical positions are thcse which are determined for significant features (i.e.. wrecks, least depths, rocks, and other potential hazards). Fcr these fositions, the farameters of the 90 fercent error ellifse can be computed, as well as the radius of the $9 C$ Fercent confidence circle.

Many schemes can te envisioned for the use of an accuracy figure. For exaøple, suppose the position of a submerced pile was determined ky range-aziautingeometry ir a prior survey. The radius of the 90 percent confidence circle is then 5.1 meters (Ex. 2. Ch. II). The chartirg agency now wishes to relocate the pile to determine if it still exists and is still a hazard to mavigation. In low water visibility, a common technique used to resolve such an item hould re to send divers down over the reported positiou and conduct a circle search. Cne diver remains at the reported fosition, hclding a line, while the other diver swims a circumference holding the other end of the line. Theoretically, if the line is about 5 meters long and a hang does rct cccur, it is 90 percent certain that the file has Eeen removed. For a higher confidence, th: ine is

taccuracy plgores for $\sigma_{1}=\sigma_{2}=3 \mathrm{am}, 0_{12}=0$					
$\begin{aligned} & \text { Angle of } \\ & \text { Inter. } \end{aligned}$	$\pi \sigma_{x}$	KO_{y}	Radius of 90: Circ.	AFea of	Area cf Gicle
($\mathrm{d} \in \mathrm{g}$)	(a)	(1)	(a)	(sq a)	(sq m)
30 85 80 75 70 65 60 5 50 4 4 40 35 30 25 20 15 15 10	6.4 6.7 7.1 7.5 7.9 8.5 9.1 9.9 10.8 11.9 13	6.4 6.2 6.0 5.7 5.6 5.0 5.0 5 5	6.4 5.5 6.5 6.7 6.9 7.2 7.5 8.0 8.7 904 10.5 11.8 13.7 16.3 20.2 26	130 131 132 135 139 144 150 159 1780 203 227 260 308 381 503 750	130 131 135 141 149 162 179 203 235 280 345 4
$\mathrm{K}=2.146$ for 90\% probability					

Angie ${ }_{\text {a }}$	${ }_{K \sigma}$	${ }_{x}{ }_{y}$	Radius of	Area of	direa ${ }_{\text {circle }}$
(deg)	(im)	(I)	(m)	(sq m)	(squ)
90	21.5	21.5	21.5	1,447	1.447
88	22.5	190.6	21.6	1,452	1.4597
75	24.9	19:1	22.3	1, 498	1, 1.562
76	24:5	18.5	23.9 23.9	1:540	1:657
60 55	30.3	17.5	25.2	1.671	1:989
55	32.9	17.1	26.8	1.769	2.252
45	39.6	16.4	37.5	2:046	3, ${ }^{2} 117$
40	44.4 50.5	16.1	34.9	2,251	3.835
30	58.6	15:7	45.6		6:528
25	70:1	15.5	54.3 67.4	3. 423	9 94.250
	116. 3	15	89:4	5: 590	25:12 ${ }^{\text {5 }}$
10 5	174.19	15.2	133.7 266.9	16:600	- 56.1800
$\mathrm{R}=2.146$ for 909 frobability					

figures as a function of B for uncorrelated icp's have been compiled using standard errors of 1.3 meters for azimathazimuth (Tahle VIII), 3.0 meters for range-range short-rarge (Table $I X$), and 10 meters for range-ranye medium-range (makle x) positioning sistems.

TABLE VIII
Accuracy Figures for $\sigma_{1}=\sigma_{2}=1.3 \mathrm{~m}_{\mathrm{t}} 0_{12}=0$

However, as mentioned for 1:10,000-scale surveys in a rangerange mode ($\sigma=3$ meters), this rule does not always hold. Cn the other hand, it is possifle to have B 's of less than 30° and still meet sfecificaticns. For example, azimutrazimuth fositioning can theoretically be used for B 's of 180 to 1620 for a $1: 10,00 C-s c a l e ~ s u r v e y . ~ H o w e v e r, ~ t h e ~ e c c e n-~$ tricity of the error ellipse is so small that the distcrtion introduced by using ccnfidence circles can become misleading. In view cf this, eccentricities of less that 0.2 should not $b \in u s \in C$.

Using the 90 percent radius criterion, a table has kef assemfled illustrating the B limit for various positioning geometries at different survey scales, using assumed stardard errcrs (Table VII). The information in Table VII illustrates that the $=00$ to 1500 B limit need not be fixed. The B liaits should vary based on the scale of the survey and the frecision of the positioning equipment. Accuracy

TABLE VII

B Limits for Surveys

Survey Scale	$\begin{gathered} 90 \% \\ \text { Radius } \end{gathered}$	$\beta^{R-R}=\frac{3)}{\left(\sigma_{i}\right)}$	$\begin{aligned} & R-R \\ & \left.S^{\circ}=10\right) \end{aligned}$	$\begin{aligned} & A z-A z \\ & \left.B^{\left(\sigma_{I}=1\right.} \overline{=} 1 i^{3}\right) \end{aligned}$
	(m)	(deg)	(deg)	(deg)
1:2,500	2.5	------	------	------
1: $1: 5.000$	5.0 10.0	42-1	------	35-145
1:2C.000	20.0	27-153		23-157*
1:40,000	40.0	23-157*	35-145	23-157*

* Fccentricity limit of 0.2

Note: 90% radii cf all range-azimuth positions are
assumed to be 5.1 meters for

$$
\text { assuded to be 5. } 1 \text { meters for } \sigma_{1} \underset{3}{ } \operatorname{and}_{2}=1.3 \text {. }
$$

X	
Coordinate	Ccordinate
4611.20	4421.29
4610.07	4315.24
4609.84	4204.66
4603.99	4098.63
4600.52	3992.16
4601.27	3883.40
4601.13	3780.02
4602.22	3675.49
4601.48	3574.94
4603.21	3458.09
4524.84	3728.78
4657.06	3506.75
4648.60	3602.24
4630.15	3696.13
4629.80	3793.39
4623.03	3889.32
4622.83	3978.70
4617.60	4071.98
4623.30	4163.73
4618.23	4256.25

 4611.20
4610.07
4609.84
4603.99
4600.52
4601.27
4601.13
4602.22
4601.48
4603.21
4524.84
4657.06
4648.60
4630.15
4629.80
4623.03
4622.83
4617.60
4623.30
4618.23
91.0
94.1
97.4
100.7
104.0
107.3
110.4
113.5
116.5
120.0
114.8
116.1
113.7
111.8
108.9
106.3
103.7
101.1
98.2
95.7
2.8
2.8
2.8
2.8
$2: 0$
2.
3.
3.0
3.1
3.
3.
3
3

Contrcl Stations: MCSSEI 1932 occupied, initial USE MCN 1978 Standard Errors: Fance--3 meters; $T-2-1.3$ meters

	-	
\bigcirc	$\begin{aligned} & \text { BOI } \\ & \text { col } \end{aligned}$	
\bigcirc	cl	
z	01	
H	$\cdot 71$	
E	4	
z	OU1	
$\underline{0}$	Q	
	© ©	000000000000000000
	-14	
¢	\square	
	도닫	
U		
${ }_{4}^{4}$		
S	\pm	
\%	${ }_{6}$	omstrriorminnus
	-	
	$\geqslant 41$	
$\stackrel{H}{-}$	O	
	O	mmmmmmmmmmmmmmmmmmmmm
H		
N		
4		
	d	
	A	
¢	-rf	
	$\bigcirc 4$	-omonrionvrounnomonmत
		mmmmnner-nnmmjゴJmmner
	ol	мпmmmmminmmmmmmmmmmmm

APPENDIX C

pgogban for 90 percent confidence ellipse pafametefs

$\mathrm{INC}=\delta$
IF (IFIX.EG.999) GO TO 900
IF TD.LT:90-\{ GOTO 30
C HORK WINHBETA LESS THAN 90 DEGREES: TOGGIE TURNED CN TC CNE $D L=180 .-T D$
INC=1
$30 \quad$ CCNIINUE
C
C
C
C
C
C
C
C
C
C
C KEEE TANGENT FUNCTICN FROM GCING UNDEFINED IN A RARE CASE OF TEEFIX AND CONTFOL STATION HAVING SAME COORDINATES
$\left.\begin{array}{l}I F \\ I F \\ \{E Y: E Q: X I \\ E X\end{array}\right\} \begin{aligned} & E X=P X+0.5 \\ & E Y=P Y+0.5\end{aligned}$
C CHANGE LEGREES TO FADIANS
USE AETA = 0174532 C *DD
OSEIEFT STATION AS BASIS FCR COMPOTATIONS
C
C
C
C
C
C
C
C FINL AZIMUTH FROM NCRTH BETREEN HYDRO ROSITION AND IEFT
C MEASURED CIOCKHISE FROM NORTH. AED EETHEEN - DEGREES
C MEASORED CLOCKWISE FROM NORIHOH DETERMINATION.

IF (PX.GE.XL) THEN
ELSE ALPHA $=\operatorname{ATAN}((P Y-Y L) /(X L-P X))$
EISE
IF (PX.GE. XI) THEN
ELSE ALPHA = ATAN($(Y-P Y) /(P X-X L))$
END $I F E E A=P I-A T A N((Y I-P Y) /(X L-P X))$
FND IF
$G C$ TO 60
C AOIMUTH FIXING FOR AZIMUTH-AZIMUTH POSITIONS
40 CCNTINOE
C
IF(EYGGE(PL) TEEN THEN
ELSEALPA = ATAN ((PX-XL)/(PY-YL))
END $\frac{A L P H A}{I F}=I-A T A N((X I-P X) /(P Y-Y I))$
EISE

ELSE
$A L P H A=A T A N((X L-P X) /(Y L-P Y))$
END IF
C AZIMUTH EQUALS THETA FOR KANGE AZIMUTH CASE, ASSUMING
C TEFODCLITE SIGMA IS LESS THAN RANGE SIGMA
IF (IND.EQ.3) GC TO 70
C
C
C
C
BEGIN COMPUTING THETA, THAT IS THE ANGLE OF ROTATICN FACM $60^{L E F T} \quad \mathrm{CCP}$

CCNTINUE
ET=SIGI
ET=SIGL**2*SIN(2*BETA) + 2*RO*SIGL*SIGR*SIN(BETA)

```
                        B2=SIGL**2*COS (2*BETA) +2*RO*SIGL*SIGR*COS(BEIA) *SIGR**2
                        IF {ABS (B2).LI.0.0001) E2=.0001
C COMEUTTETH ROTATION ANCLE FROM IEFT LOP
    IOH=0.5*ATAN(B`)
    90 CCNTINUE
C
DEFINE SEMI-MAJOR AXES ORIENTATION IN TEEMS OF 0-180 [EGREES
C BOTATICN, CLOCKWISE FROM NOFIN
C RANGE-fange case
    IF(IND.EQ.1) TEEN
            IF {INC.EQ. I} THETA=AIPHA+TH
    FNDIF
C AZIMUTE-AZIMUTH CASE
C AZIMUTE-AZINUTH CASEEN
    IF(IND.EQ.2) IEEN 
C
C FIX RCTATION ANGIE FROM 0-180 DGREES
70 CCNTINUE
C CCNLITICN FOR RANGE-AZIMOTH DATA
                                    IF (IND.EQ-3) THETA=ALPHA
                                    IF (THETA.LT.O-) THETA= EI+THETA
    IF(THETA.GT.PI) THETA= EINETAEPA
C DEG ISS HE SEMINMASCE EILIESE AXIS ORIENTATIUN IN DEGFEES
C COMEUTE 90% SIGMAX AND SIGMAY OF ERROR ELIIPSE
                        CALI PROB SSIGI SIGRRRO&TD,SGX9O SGYOO RADIUS,FLAE,CIRAR)
```



```
    GC'TO-10
    900 CCNIINUE
    STCE
```


APPENDIX D
 accuracy Classification: 90 percent Confidence ellipses

CLASSIFIED RANGE-RANGE POSITIONS

Contrcl Stations: BEACY LAB 1982 and MUSSEL 1932
Standard Error Used in Computations: 3 meters

Contrci Stations: USE MON 1978 and MUSSEL 1932
Standard Error Used in Computations: 1.3 meters

CLASSIFIED RANGE-AZIMUTH POSITICNS

Contrcl stations: USE MON 1978, MUSSEL 1932
Standard Errors: RANCE--3 meters; $\mathrm{T}-2-1.3$

2. HEinzen, M. R., Hydrografhic Surveys: Geodetic

3. Naval Warfare Research Center Research Memorandua NWRC-RM34, Stanford Research Institute, Menlo Fark, CA. Mathematical Considerations pertainincitothe

4. Adams, K. T., Eydrograchic Manual, U.S. Coast and Geodetic Survey. 1942.
5. International Hyarograghic organizaticn special
 S
6. Wallace. J. L. telephone conyersation, National Oceanic and Atmcspheric Administration, National ccean Service, Rockville, MD, June 1984.
7. Laurila, S. H. Electronic Surveying ヨnd Navigaticn, John Wiley ε Scns. 1976 .
8. Davis, R. E. and others Surveying Theory and

3. Munson, R. C. Eositionigg Systems: Report on the
 SwGden. 1977.
10. Bowditch N. AqErican Practical Navigator, Defense

11. Hccier, W. E. Alqorithms for Confidence Circles and

12. ACIC Technical Feport No. 96, USAF Aeronautical Chart and Informaticn Center, St. Louis MO principles of

13. Waltz, D. A.. An Error Analisis of Range-Azimuth

14. Umbach. M. J. Fydrographic Manual Fourth Edition.
 National Ocean Survey. 1976.
15. Harter, H. L., "Circular Error Probabiiities," Journal

17. National Ocean Survey Technical Manual No. 1.
 -
No. Ccpies

1. Defense Technical Information Center Cameron Station 22314 Alexandria, VA
2. Iirrary. Code 0142 2
Naval fostgraduate School Monterey, Ca 95943
3. Chairaan Department of Oceanography code 68 Mr
Naval Postgraduate School chool
Monterey, CA 939434. NCAA Iiaison Officer2Fost Office Box 8688Most office Box 9680
4. Erofessor Joseph J. von Schwind 1code f8VsNaval Postgraduate SchoolMcnterey, Ca $9: 943$
5. It. Nicholas E. Eerugini 1
NOAA Ship RAINIEF1801 Fairvíw Avenue, EastSeattle, NA 981 C 2
6. Cffice of the Director
Naval Oceanografky Divisicn (OP-952)1Cefartment of $t h \in N a v y$
wastington,
D. C.
7. Ccmander
Naval Cceanografty Command1
G. Ccmmanding Officer 1
Naval nceanograftic office Eayti. MS Louiss 3952
8. Commanding Officer 1Naval Ocean Research and Development ActivityEay St. LouisNSII, MS 39522
9. Chief of Naval Fesearch 1
Arlington, VA Street
2
217
10. Chairran, Oceanccraphy Department 1
Annafolis. mD
11. Chief, Hydrograftic Proqrams Division PPH)
Eufense vap O.S.Naval Observatory
Washington, D.C. $20305-3000$
12. Asscciate Deputy Director for Hydroyrapny Lef $\in n_{i}$ Mapping Agency (Ccde DH) Euilding 56
D. S Naval Observatory
Washington, D.C. $20305-3000$
13. Topcyraphic Sciences Department Code TSD-MC
fefense Mapping School Ft. Belvoir. VA 22060-5828
14. Eirector Charting and Geodetic Services
N/CG, ROOm 1006, WSC-1 Natiópai Oceanićand Atmospheric Administration Fockville, MD $2 C 852$
15. Chief, Nautical Charting Division 1
N/CG2, ROOM 1003. WSC-1 National Oceanićand Atmospheric Adminsitration Fockvilie, MD 20852
16. Chief Hydrograftic Surveys Branch 1
N/CG24. ROOM 404. WSC-
Fockville, MD 20852
17. Frogram Planning, Liaison and Training Div. NC2. Room 105. Fćckwall Builiding National oceanic and atmosfheric Administration Fockville. MD 2C852
18. Iirector, Pacific Marine Center1$\mathrm{N} / \mathrm{MCP}$
Naticnal Ocean Service, NCAA1801 Fairview a v Gnue, Eastseattle. WA 98102
19. Lirector, Atlantic Marine Center 1 N/MCA
National Ocean Service, NCAA 439 West York street Norfolk, VA 23510
20. Chiefz Program Services Division - MCA2
National Ocean Service, NoAA439 west york streetNcrfolk, VA 23510
21. It. Bruce Hillard NOAA 1
NOAA Ship DAVIDSCN

1801 Fairview AvGnue. East Seattle, | A |
| :---: |
| 8102 |

 11554
 18704
26. Mr. Fdward N. PeIugini 2
Swoyersvilie。 Pa 18704

