P R :o C EE DI N G S
EXPERT SYSTEMS WORKSHOP |

April 1986

[] D-I:I- HiEININE

AD-A170 399

H B EE B/ E(EEm
DDD- DI:II:]DE]D

-L\ I HIR .
-1'&'1-"*'—1*.- NOO000

OMC FILE copy

DT Ic | " DISTRIBUTION STATEMENT K *
Approved for' public re!me;'f
ELECTE Sponsored by: !M Distribution Unlimited /"]

JUL 29 1088 m
e
86 7 20 046

~ Defense Advanced Research Projects Agency
- Information Processing Techniques Office

AD/A170 399

EXPERT SYSTEMS WORKSHOP

Proceedings of a Workshop
Held at

Asilomar Conference Center
Pacific Grove, California
April 16-18, 1986

Sponsored by the
Defense Advanced Research Projects Agency

Science Applications International Corporation
Report Number SAIC-86/1701

Lee S. Baumann

Workshop Organizer

This report was supported by

The Defense Advanced Research

Projects Agency under DARPA

Order No. 34586, Contract No. MDA903-84-C-0160
Monitored by the

Defense Supply Service, Washington, D.C.

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the United
States Government.

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT DF COMMEI CE
SPRINGFIELD, VA, 22161

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

UNCLASSTFEIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE RS Al it oo S

T. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

1 399

S. TYPE Olg REPORT & PERIOD COVERED

SAIC-86/1701

&. TITLE (and Subtitte) FIFOC 557/4/ S
EXPERT SYSTEMS WORKS"DP ANNUAL TECHNICAL

i April 1986 ‘ October 1985-April 1986

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(®) 8 CONTRACT OR GRANT NUMBER(®)
LEE S. BAUMANN (Ed.) MDA903-84-C-0160
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
!

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION AREAE DTS DN MUMOERS
1710 Goodridge Drive, 10th Floor ARPA ORDER No. 3456
McLean, Virginia 22102

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agenc April 1986
1400 Wilson Boulevard 13. NUMBER OF PAGES

Arlington, Virginia 22209 197
14. MONITORING AGENCY NAME & ADDRESS(!f different from Controiting Office) 1S. SECURITY CLASS. (of thie report)

UNCLASSIFIED

ISe. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Biock 20, If different from Report)
7

e~

|
]
{ 18. SUPPLEMENTARY NOTES
|
|

19. KEY WORDS (Continue on reveree elde if neceseary and identify by biock number)

Expert Systems, Artificial Intelligence, Knowledge Engineering, Experimental
Knowledge Systems, System Building Tools, Reasoning with incomplete infor-
mation, Reasoning with uncertain information, Knowledge Acquisition, Problem

solving frameworks. b
20. ABSTRACT (Continue on reverea side if neceseary and identify by block number)
| This document contains the technical papers for the Expert Systems Program 4

which were presented by the key research specialists from the research
activities participating in this program sponsored by the Information "
Processing Techniques Office, Defense Advanced Research Projects Agency.
The reviews of these papers were presented at a worksliop conducted on 16-18
L April 1986, at Asilomar Conference Center, California.

|

l

; DD , 5%, 1473 eormion oF 1 Nov 6515 OBSOLETE |

‘ R | UNCLASSTFIED]

SECURITY CLASSIFICATION OF TH{S PAGE (When Deta Entered)

The BBN Laboratories Knowledge Acquisition Project: 1
KREME Knowledge Editing Environment '

G. Abrett, M.H. Burstein

BBN Laboratories

Experimental Knowledge System Laboratory Progress 22
Report on Reasoning Under Uncertainty °

P. Cohen and EKSL Group

University of Massachusetts

TABLE OF CONTENTS
Page
FOREWORD .veeecococcosesssoscsccossssssssoscscsoscssccsssosssnce i
AUTHOR INDEX .cccoceocsosososcsscscssoscscecsosscsscscscscccscscs vi
TECHNICAL PAPERS

Progress in Reasoning with Incomplete andccceee-ves 46
Uncertain Information
P.P. Bonissone, G.B. Porter III, A.L. Brown, Jr.
General Electric Company :

Selecting Uncertainty Calculi and Granularity: 48
An Experiment in Trading-off Precision and Complexity

P.P. Bonissone, K.S. Decker

General Electric Company

L .

Summarizing and Propagating Uncertain Information 62
with Triangular Norms ’

\ P.P. Bonissone

' General Electric Company

by Analogy
G.B. Porter, III
General Electric Company

|
]
(Monad A Hierarchical Model Paradigm for Reasoning 72 :
|
|

Modal Propositional Semantics for Reason Maintenance ... 77
Systems °
A.L. Brown, Jr.
General Electric Company :

Reason Maintenance From a Lattice-Theoretic Point 83

of View |
D. Benanav, A.L. Brown, Jr., D.E. Gaucas
General Electric Company

,
\

- T -

TABLE OF CONTENTS (Cont'd)

TECHNICAL PAPERS (Cont'd)

Engineering Intelligent Systems: Progress Report 89
on ABE-

L.D. Erman, J.S. Lark, F. Hayes-Roth

Teknowledge Inc.

Explanation, Problem Solving, and New Generation 101
Tools: A Progress Report!

B. Chandrasekaran, J. Josephson,

with contributions by M.C. Tanner, A. Keuneke,

D. Herman, D. Allemang, T. Johnson

Laboratory for Artificial Intelligence Research

The Ohio State University

Generic Tasks in Expert System Design and Their ceeesee. 127
Role in Explanation of Problem Ssolving '

B. Chandrasekaran

Laboratory for Artificial Intelligence Research

The Ohio State University

Representing Actions with an Assumption-Based 136
Truth Maintenance System '

P.H. Morris, R.A. Nado

IntelliCorp

/CAGE and POLIGON: Two Frameworks for Blackboard-~ 142
based Concurrent Problem Solving '

H.P. Nii

Knowledge Systems Laboratory

stanford University

User-Directed Control of Parallelism; The CAGE System .. 146
N. Aiello
Knowledge Systems Laboratory
stanford University

Poligon, A System for Parallel Problem Solving 152
J.P. Rice
Knowledge Systems Laboratory
Stanford University

Il | ol . bR S s

TABLE OF CONTENTS {(Cont'Q@)

Page

TECHNICAL PAPERS (Cont'd)

The CAOS SYSLEM ‘vevereeececoncsccsscesosasassesssssssess 160
E. Schoen
Knowledge Systems Laboratory
Stanford University

CAREL: A Visible Distributed Lisp .e.ieiivevenncnoenass 171
B. Davies
Knowledge Systems Laboratory
Stanford University and
Corporate Computer Science Center
Texas Instruments

Multi-System Report Integration Using Blackboards '...... 179
J.R. Delaney
Knowledge Systems Laborat»sry
Stanford University

AIDE: A Distributed Environment for Design and

Simulation ' ***f§orking Paper*** ,............c.. RO G00 o ... 185
N.P. Saraiya
Knowledge Systems Laboratory
Stanford University

Recent Developments in NIKL :v..eeeeuoeeoeracnosocsonaaoas 191
T.S. Kaczmarek, R. Bates, G. Robins
UsC/Information Sciences Institute

.

Use the title on the front cover. J
Per Mr. Lee S. Baumann, Science Applications
International Corp.

FOREWORD

A workshop for research personnel involved in the
DARPA program on Expert Systems was held in Palo Alto and at
the Asilomar Conference Center, Monterey, california, from
16-18 April 1986. The purpose of the workshop was to demon-
strate working systems tools and to review progress on the
technical aspects of the research being undertaken. Research
organizations participating in the workshop included the
University of Massachusetts at Amherst; Ohio State Univer-
sity; Stanford University; the Information Sciences Institute
of the University of Southern California; Bolt, Beranek and
Newman Laboratories, Inc.; General Electric Corporation;
Teknowledge, Inc.; and the IntelliCorp Company. Representing
the Department of Defense in addition to the DARPA program
manager were experts £from the Rome Air Development Center,
the Air Force Wright Acronautical Laboratories, the Space and
Naval Warfare Systems Command, and the Naval Underwater
Systems Command. Also attending was a representative from
Texas Instruments, the integration contractor for the Navy

Battle Management Program.

This proceeding is intended to document important
progress being made in the knowledge-based systems part of
the DARPA Strategic Computing Program. The papers included
give a good insight into the current accomplishments.
Included in this foreword is a short documentation of the
demonstrations that were presented but are not further

described in the proceedings.
The workshop met on Wednesday, 16 April 1986, in

the new offices of Teknowledge, Inc., in Palo Alto,
California. The first morning consisted of a series of live

-i- d

P .

A e,

Y

demonstrations given by IntelliCorp, Ohio State University
and Teknowledge. CDR Allen Sears, the DARPA program manager,
welcomed the forty attendees to the demonstration and thanked
the Teknowledge people for their assistance in setting up the
demonstrations, providing the necessary equipment, and their
hospitality in providing conference space to view the
programs. Ohio State University provided the lead off demon-
stration. Dr. Chandrasekaran, the principal investigator,
explained that the program was a prototype mission planning
associate in the domain of an offensive counter air planning
task. This is, he explained, a generic tool using DSPL
representation. DSPL is a language developed at Ohio State
which uses knowledge representation iich in planning primi-
tives. Dave Herman, Dean Allemang and Anne Keuneke of Ohio
State explained the workings of the system as the demonstra-
tion progressed. The program accepted the plan inputs and by
use of design plans selected the aircraft type and ordnance
configuration most appropriate for the mission factors under
consideration. In making its selection the program uses a
functional representation of the plan and the capture of the
agents understanding of how things work. This includes as a
piece of knowledge the order that things are considered in
the planning cycle. The audience was able to see on the
screen the progression of the 1logic flow as the events
progressed.

Dr. Rick Hayes~Roth explained the genesis of the
Teknowledge research effort as the creation of a foundation
on which to build systems with reusable knowledge processing
modules and skeletal systems, modularity and standard inter-
faces, encapsulation and cooperative systems, integration of
technologies, and the ability to take partial solutions off
the shelf and put them together into new systems thus provid-
ing customized solutions to new problems. Hayes-Roth stated

that the program is a twenty four month effort of which they
were now eleven months into the r=zsearch. The Teknowledge
system, called ABE, was able to integrate new modules into
its tools catalogue and to provide a capability to use which-
ever tools best suited the problem domain. The system archi-
tects' catalog contains applications, customizations, skele-
tal systems, capabilities, abstract data types, frameworks,
and languages in a descending order of layered structures.
As goals, the ABE project deems it important to import tech-
nologies, layer systems, and glue them together in a robust
and disciplined way. The demonstration covered six items:
the system architects catalog, a first example, composing
frameworks, importing a capability, variations, and composing
with heterogeneous frameworks. Assisting in the demonstra-
tion were Lee Erman, Jay Lark, Terry Barnes, Kamal Bijlani,
Michael Fehling, Bruce Bullock, and Neil Jacobstein.

The IntelliCorp demonstration was presented by
Richard Fikes. He explained that the essence of their pro-
gram was to take pieces of A.I. technology and integrate them
for use in systems., The outcome is to develop tools which
may be used by others. KEE, the central IntelliCorp product,
has been in use for several years, Fikes noted, and the pro-
tocols for access and use of the system have remained stand-
ard. The recent effort is to develop new tools, such as
distributed knowledge bases, and to fit these new tools into
KEE for use by applications developers. The DARPA program
has now been on-going for one year and a new initial set has
been produced called DARPA-KEE. They have built interfaces
to an assumption based truth maintenance module and to world
based problem solving routines. The demonstration was
designed to include model based reasoning, symbolic descrip-
tion and reasoning about descriptions. The domain selected
involved knowledge based tools to aid the dispatcher of a

~iii-

e

trucking delivery system over a mid-west geographical area.
Involved were manual context exploration, a semi-automatic
task completion rule system, and programmatic automatic
problem solving routines. The progression of the task was
easily followed on the terminal screen as the problem moved
from initiation to suggested solutions and as new parameters
were added or changed.

CDR Sears remarked that the demonstration proved
that a lot has happened in the year since the program was
initiated and that we are now looking at bringing technology
to the applications developers. This, he noted, will require

planning to insure successful implementation.

The remainder of the workshop was conducted at the
Asilomar Conference Center. Each of the organizations
attending presented one or more technical reviews of the
status of the expert systems research being undertaken in the
DARPA program. This proceeding contains copies of those
reviews in order to provide a wide distribution of the pro-
gram and results achieved to date. Following the technical
talks, the participants discussed applications and transition
strategy, future goals, and integration of expert system
technology with other parts of the DARPA research program.
The program concluded with a discussion of high level tools
for expert systems led by Dr. Chandrasekaran of Ohio State
University.

The cover layout for this proceedings was created
by Tom Dickerson of the Graphics Department at SAIC using
diagrams of a multicast-map from the paper: “"CAREL: A
Visable Distributed Lisp," by Byron Davies of the Knowledge
Systems Laboratory at Stanford University and of the Texas
Instruments Corporation. The diagrams are samples from the

—jv—-

execution of the IDENTIFY-YOURSELF program which is described
in Davies paper included herein. This proceedings has been
provided to the Defense Technical Information Center (DTIC)
and copies may be secured from that agency.

Lee S. Baumann

Science Applications International
Corporation

Workshop Organizer

-

NAME
Albrett, G.
Aiello, N.
Allemang, D.
Bates, R.
Benanav, D.
Berman, P.
Bonissone, P.P.
Brown, A.L. Jr.
Burstein, M.H.
Chandrasekaran, B.
Cohen

Davies, B.

Day, D.

Decker, K.S.
Delaney, J.R.
Delisio, J.
Erman, L.P.
Gaucas, D.E.
Greenberg, M.

Hayes-Roth, F.

AUTHOR INDEX

PAGE NAME
1 Herman, D.
146 Howe, A.
101 Johnson, T.
191 Josephson, J.
83 Kaczmnarek, T.S.
22 Keuneke, A.
46, 48, 62 Kjeldsen, R.
46, 77, 83 Lark, J.S.
1 Lewis, D.
101, 127 Morris, P.H.
22 Nado, R.A.
171 Nii, H.P.
22 Porter, G.B. III
46 Rice, J.P.
179 Robins, G.
22 Saraiya, N.P.
89 Schoen, E.
83 Stanhope, P.
22 Tanner, M.C.
89

-yvi-

101
101
191
101
22
89
22
136
136
142
46,
152
191
185
160
22

101

72

TECHNICAL PAPERS

B A

The BBN Laboratories Knowledge Acquisition Project:
KREME Knowledge Editing Environment

Glenn Abrett and Mark H. Burstein

BBN Laboratories
10 Moulton Street
Cambridge, MA 02238

Abstract

One of the major bottlenecks 1n large-scale expert
system development 1s the problem of knowledge
acquisition. the construction, meintenance, and testing of
large knowledge bases. The BBN Laboratories knowledge
Acquisition Project 1s 1nvestigating ways of easing these
problems and. where possihle, auloma ,ng the knowledge
acquisition process Tlus paper details the current state
of development of the IIREME Knowledge Representation
Editing and Modeling Environment KREME 15 an
extensible experimental environment for developing and
editing knowledge bases using a variety of styles of
representations It provides tools for effective viewing
and browsing 1n each kind of representational base,
automatic consistency checking, and macro-editing
facilities to reduce the burdens of large scale knowledge
base revision and reformulation. Our goal 1s to explore a
number of approaches to knowledge acqusition and
knowledge editing that could be 1ncorporated into

existing and future full-scale expert system development
environments.

1. Introduction

1.1. The Knowledge Acquisition Problem

There 1s substantial agreement within the Al
community that the way to make expert systems more
closely approximate the level of performance exhibited by
people 1s to give the systems more knowledge. The
creation of the large and detailed bodies of knowledge
needed to substantially mmprove performance has proven
to be excrutiatingly pamnful. Beyond a certain point,
several factors make the building of very large knowledge
bases a practical impossibihty with current technology.

Knowledge comes in many forms.

Humai: knowledge about the world comes i1n many
disparate forms Squeezing all the knowledge that an
expert system needs into one, or at best two,
representational formalisms (e.g rules and frames) 1s
difficult, time consuming, often 1nappropriate and, 1n
many cases, an Inadequate solution to the task at hand.

"This research was supported by the Defense Advanced
Reseorch Projects Agency of the Deportment of Defense ond was
monitored by RADC under controct number F30602-85-C-0005.

A=

Managing large knowledge bases is difficult.

As knowledge bases grow 1n size and complexity
they strain the capacities of software tools for knowledge
editing, maintenance, and vahdity checking. Viewpoints at
the right level of detall are hard to construct,
consistency checking tekes up more and more time, and
global reorgamzations and modifications can no longer be
done easily one plece at a time. Eventually, user
confidence 1 the 1nternal coherence of the knowledge
base erodes and must be restored by the inefficient.
incomplete, and indirect method of running applications
programs using the knowledge base

Previously encoded knowledge is not re—used.

1t 1s customary to start buillding a new expert
system with an empty knowledge base, even though the
completed knowledge base will contain at least some
general knowledge about the world. To make matters
worse, this general world knowledge 1s usually entered n
a fragmentary and sketchy manner that adds little to the
power of the system If general knowledge about the
world could be transferred across systems, the gradual
accumulation of detall, precision, and richness which
would occur would tremendously enhance the
performance and robustress of most individual expert
systems.

1.2. Overview of the BBN Knowledge Acquisition Project
Our goal has been to develop an environment in
whici. the problems of knowledge acquisition faced by
every knowledge engineer attempting to build a large
expert system are mimmized To this end, we have
organized the task of developing knowledge acquisition
tools mnto two stages. First, we are developing a well-
integrated know'edge representation, editing and
modeling environment. dubbed KREME. Knowledge
engineers and subject matter experts with some
knowledge of basic knowledge representation techniques
will find 1t easy to use KREME to acquire, edit. and view
from multiple perspectives knowledge bases that are
several times larger than those found 1n most current
systems KREME provides. within a uniform environment,
special purpose editing facihties that permit knowledge
to he represented and viewed 1n a variety of formalisms
appropriate to its use, rather than forcing all knowledge
to be represented in a single, unitary formalism During
phase two of the project, we will consider such automatic
Kinds of knowledge acquisition as developing
representations from examples, and learning by analogy.

In addition to a general editing environment. the

first phase has also focused on developing tools that
provide the kinds of validation and consistency checking

S

RPIET B . SR

I ST NP

|
?
|
g
»
|
P
1
?

so essential during the development or modification of
knowledge bases. As the size of knowledge bases grow,
and more people become 1nvolved 1n their development,
this aspect of knowledge acquisition becomes increasingly
mmportant In the hybnid or multi—formalism
representational systems that are becoming prevalent
[11. 2, 19], techmiques must be provided for consistency
checking not only within a single representational
system, but between related systems.

A third mportant area of 1nvestigation in
developing the KREME editing environment has been the
atteinpt to provide of facilities for laige—scale rewvisions
of portions of a knowledge base. Our experience
indicates that the development of an expert system
mevitaclv requires systematic, large scale revisions of
portions of the developed representation. This 1s often
caused by the addition or redefinition of a task the
system 1s to perform. These kinds of systematic changes
to a knowledge base have, to date, only been possible by
painstaking piecemeal revision of each affected element,
one at a time. Our imtial approach has been to provide
a macro—edifing facihty, in which the required editing
operations can be demonstrated by example and apphied
to specified sets of knowledge structures automatically.
We plan to provide a hbrary of such generic macro-
editing operations for the most common and conceptually
simple (though potentially difficult to describe)
operations during phase two of the project

1.3. The KREME Knowledge Editor

KREME attempts to deal with the inextricably
related problems of knowledge representation and
knowledge acquisition in a unified manner by organizing
multiple representation languages and multiple knowledge
editors inside of a coherent global environment. A key
design goal for KREME was to build an environment 1n
which existing knowliedge representation languages,
appropriate to diverse types of Lknowledge, could be
integrated and orgamzed as components of a coherent
global representation csystem, As 1t 1s presently
conceived (and for the most part implemented) the KREME
Knowledge Editor can be thought of as an extensible sel
of globally coherent operations that apply across a
number of related knowledge representation editors, each
tallored to a specific type of knowledge Our appruach
has been to integrate several existing representation
languages 1 an open ended architecture that allows the
extension of each of these languages. In addition, we
have provided for the 1ncorporation of additional
representation languages to handle additional types of
knowledge.

To accomphish this goal, we envisioned a
decomposition of existing knowledge representation
techniques, to be implemented as objects or FLAVORS [6],
m terms of which we could reimplement existing
representation languages. Each object encoding an
aspect of some representation would be responsible for
its own display, editing and internal forms. By
orgamzing this "meta-knowledge base” modularly,
behavioral objects 1mplementing 1nheritance behavior,
subsumption testing, and coreference mechanmsms, etc,
could be "mixed 1n" to a number of representational
subsystems.

The current 1mplementation of KREME partially
accomplishes our goal. We have organized a small hbrary
of component behavioral objects for knowtedge
representations and succeeded 1n remmplementing our
frame language 1n terms of this object base We expect
this hbrary to be an extremely useful set of building
blocks as we attempt various extensions to the
expressive power of our system,

The current version of KREME contains individual
editors for three distinct representation languages, one

for frames, one for rules and one for procedures. The
frame and procedure editors are fully integrated into the
global environment and the rule editor 1s 1n the process
of becoming so Eventually, the rule editor, the
procedure editor and a functional method editor will all
be accessible through a global mechanism that treats
these types of Lknowledge as forms of procedural
attachment to concepts In phase two of the project, we
plan to add a language for representing causal and other
qualitative constraint systems, and several types of
instantiation mechanisms, including ¢ truth maintenance
system for propositional representatiomn

1.4. The KREME Frame Language

Much of the wurk done in the current
mmplementation of KREME has been focused on building a
knowledge editor for a frame representation language.
Such languages have been well researched, and while we
had to have some frame language on which to base sur
mitial editor, we did not want to design and implement &
new one. Our most important criteria for a suitable
frame representation language were that 1t.

1 Allowed multiple inheritance
2 Was a logically worked out mature language.

3. Had some mechanism for internal consistency
checking.

4. Would allow individuals to be 1nstantiated as
aobjects from the defimtions of frames.

5. Was built on a modular object oriented base so
that the language could be decomposed 1n such
a way as to make 1t easily extensible.

NIKL (the defimitional or frame language component
of KL-TWO) [9. 14, 19] seemed an ideal candidate 1t 1s &
fully worked out frame representation language that
allows multiple inheritance, 1s reasoneably expressive and,
perhaps most i1mportantly, contains a fully worked out
automatic classification algorithm that could be easily
adapted to provide a powerful mechamsm for consistency
checking and enforcement during knowledge base
development. However, no object-oriented
implementation of NIKL existed, and the NIKL classifier
was not designed to allow modification and
reclassification of previously defined concepts. A second
frame language, known as MSG. had been built as part of
BBN's STEAMER project and was readily available. M3G 1s
object oriented 1n both of the above senses but i1t has no
classifier and is not as mature or thoroughly specified a
language as NIKL.

To develop KREME, we elected to reimplement NIKL
as an object oriented language using MSG as a guide.
The NIKL data structures were decomposed into a
modular hiererchy of flavor definitions, and the KREME
version of NIKL was then built out of these flavors. This
enabled us to incorporate a great deal of the fairly
sophisticated 1nstantiation mechanism of MSG with
minimal effort. In the process, we were also able to re—
implement the NIKL classifier algorithm to provide the
kind of reclassification capabihty required for a
knowledge editing environment. We will refer to this
enhanced, ob)ect oriented 1mplementation of NIKL as
KREME Frames.

The remainder of this section will review the basic
features of the KREME Frames language. As the
defimtional syntax of KREME Frames coincides almost
exactly with the structure of the NIKL language,
interested readers are referred to [9] for more detail
Section 2 will describe the KREME editing environment

-

e

and the frame editor. Section 3 will discuss the
classifier, and 1ts use 1n an nteractive editing
environment.

1.5. Definition of KREME Frames

In KREME, a frame is called a concept. Collections
of concepts are organized into a rooted inheritance or
subsumption laltice sometimes referred to as a faxonomy
of concepts. A single distinguished concept. usually
called THING, serves as the root or most general concept
of the lattice. Figure 1-1 shows a simple subsumption
lattice.

A concept has a name. a textuas description, a
primitiveness flag. a lst of defined parents (concepts
that it specializes or 1s subsumed by), a hist of role
restrictions, a list of role equwvalences, and a list of

concepts that 1t 1s disjoint from2 In KREME. as in NIKL,
a8 concept may be subsumed by more than Just the
concepts that were 1its defined parents. Thus. classified

Figure 1-1. A Simple Concept Taxonomy

concepts 1n a KKEME hierarchy also contain distinct lists
of those concepts that directly subsume 1t, and those
which 1t directly subsumes or are its direct children.

(defconcept HOUSE
cprimitive t
:specializes (building)
:role-restrictions
((residents (a person) nil (a person))
(front-door (o door} (1 1) (a door}))
cequivalences
({main-entrance) (front-door))
:disjoint (office-building aportment—building))

Figure 1-2: LISP form of a KREME frame defimtion

The hsts of role restrictions, role equivalences and
disjoint concepts are collectively referred to as the
features of a concept. If cach concept can be thought
of as defining a unique category, then features of the
concept define the necessary conditions for inclusion in
that category. If a concept 1s not marked as primitive (a
case sometimes referred to as a defined concept) the
features also constitute the complete set of sufficient
conditions for inclusion 1n that category. A concept
inherits all features from those concepts above 1t in the

Zone concept is disjoint from oanother if being one
precludes being the other.

lattice (those concepts that subsume 1t. and, thus, are
more general) and may define additional features that
serve to distinguish it from its parcnt or parents.

Role restrictions define the necessary slot-value
pairs for any instance to be considered a member of the
class defined by a concept A role restriction consists of
.a role name, a value restriction, a number restriction
and an (optional) default form®°

The role name refers to an object called a role.
Roles 1n KREME, as 1n NIKL and some other frame
languages hke KEE [5], and KnowledgeCraft [7). are
actually distinct, first class objects Roles describe
relations between concepts. A role restriction at a
concept 1s thas a specification of the ways a given role
can be used to relate that concept to other concepts.
As first-class objects. roles form themrr own distinet
taxonomy. rooted at the most general possible role,
usually called RELATION Figure 1-3 shows a portion of a
simple role taxonomy.

ralatian

oroparty

Figure 1-3: A Simple Role Taxonomy

A role has a name, a description, a lhist of roles
that 1t specializes, a domain and a range. 1n a formal
sense, a role 1s a two-place relation that maps 1nstances
of concepts 1n 1ts domain onto sets of Instances 1n 1its
range. The domain of a role is the most general concept
at which the role makes sense That 1s, 1t specifies the
class of things for which the role can name a slot. The
range of a role specifies the general class of concepts
that can serve as values 1n slots defined using that role.
All concepts filing slots whose name 15 a given role must
be elements of the range of that role.

Each role restriction at a concept has as part of
Its definition a value restriction, which 1s the class of
allowed values for that slot. The value restriction must
always be a sub-class of the range of that role, and a
subclass of the value restrictions defined for that role at
all concepts subsuming the one restricted. At present,
following the structure of NIKL. value restrictions must
be defined concepts We expect to relax this constraing
in the near future.

Role restrictions also include a number restriction
that specifies the mimimum and maximum (if any) number
of things that may be related by the role to the concept
at any given time For example, 1f all elephants have
four legs, then the concept ELEPHANT might be defined to
restrict the role LEGS to Exactly 4 ELEPHANT- LEGs?* A
number restriction must be at least as specific as all the
number restrictions for the same role et any of the
concepts parent?s

Role Equivalences describe slots (and slots of slots)
that by definition refer to the same entities. They are
defined &s peirs of paths whose referents are the same
concept A path 1s a hst of role names, the head of which
1s & role restricted at the concept defimmmg the

‘3Defaults were not part of the definition of NIKL

_—
S

e

equivalence. Each subsequent role (slot name) in a path
mus’ be a valid slot in the concept that is the value
restriction of the previous role in the path The referent
of a path 1s the value restriction of the last role
restriction 1n the chain. Figure 1-4 shows a simple
example of role equivalence.

The SUCTION of the PUMP is equivalant to the
INLET of the SUCTION VALVE of the PUMP.

Figure 1-4: A Role Equivalence

Concepts marked as primitive (sometimes referred
to as Natural Kinds) have no complete set of sufficient
conditions For example, an ELEPHANT must, by
necessity, be a MAMMAL, but without an exhaustive list of
the attributes that distinguish it from other mammals, 1t
must be represented as a primitive concept WHITE
ELEPHANT, on the other hand, mght be completely
described by stating that it is a specialization of
ELEPHANT, where the role COLOR was restricted to WHITE

KREME Frames permit slots to have default values
as well as value restrictions. If present, the default must
be the description of some concept which satisfies the
restrictions on the role at that concept. The default 1s
used as a slot filler for instances of a concept that do
not specify a value for the slot at instantiation time
Defaults are inherited from the most specific parent at
which they are defined, just as n most other frame
languages, rather than by logical set intersection, as the
classifier does for other KREME concept features.
Specialization of defaults 1s not enforced Figure
1-5 shows an example of default inheritance. Here, the
default color of elephant is grey, while the color of a
white elephant 1s white. which 1s not a speciahzation of

grey.

restriction

white rastriction and dafault
elephant

Figure 1-5. Restrictions and Defaults

4[.9., Number restriction: min = 4, max = 4; Value
Restrictian: (an ELEPHANT-LEG).

5A number restriction af Exactly 7 (min = max = 1) is mare
specific then a number restrictian of At most 2(min = @, max
= 2.

ke

1.5.1. Instantiation

We envision that a number of different instantiation
mechanisms may be appropriate for KREME Frames. NIKL,
as part of the KL-TWO system, instantiates concepts as
predications in the RUP truth maintenance system i8] on
the other hand, MSG instantiated concepts as flavor
instances, and this 1s the nstantiation mechamsm
currently provided by KREME Frames. We plan to provide
a truth maintenance system as an alternative form of
instantiation 1n the future

When & concept 1s defined, a corresponding flavor
is also defined. This flavor 1s composed of the flavors
corresponding to the concept's immediate parents and an
additional flavor called KROBJECT which provides the
additional functionahty required for instances of KREME
Frames.

Instances of a concept (also known as objects) are
created by the MAKE-OBJECT function. MAKE-OBJECT
creates an instance of the concept's corresponding
flavor, nstalls defaults in unfilled slots, and installs
coreference-handiing objects in each slot for wlich a
role equivalence was defined at the concept The same
coreference object 1s placed in all equivalent slots
These objects are "transparent” to the siot access and
modification functions. Modifying any equivalenced slot
changes the value of the coreference object, and
accessing such slots returns the coreference object’s
value (rather than the object 1itself).

2. The Knowledge Editor

2.1. Background

The KREME Knowledge editor currently consists of
three editor modules, a frame editor, a procedure editor,
and a rule editor, and a large tool-box of editing
techniques that are shared among the editor modules

The original design goal was a global editing
environment tliat could accommodate distinct editor
modules for the various kinds of knowledge that would be
represented. However, from the point of wview of the
user, there would be a single editor with the interfaces
between the modules completely transparent Moreover,
the user would see a single, integrated knowledge base
that had various means for orgamzing different types of
knowledge. The user would move through this space by
pointing at various knrowledge chunks which would cause
the system to present an appropriate view Alternatively,
the user could directly request a specific view for a
specific piece of knowledge

2.2. Basic Features

2.2.1. Views

Each distinct type of representation included in the
system {currently concepts, roles, procedures and rules)
has defined for 1t one or more Views. A view 1S a
collection of panes in a Symbolics window configuration,
each of which displays some aspect of the particular
prece of knowledge being edited and/or a set of editing
operations on 1t. A view can show various aspects of the
specific piece of knowledge as well as various deteaals of
the context in which the piece exists

When the user desires to enter or edit a specific
piece of knowledge, the system opens the most
appropriate view for the type of knowledge and the
editing operation requested When editing a particular
piece of knowledge, the user has available a menu of
different views which are appropriate for different
aspects of that knowledge and can be accessed from a
menu.

Lige o Taralbel £+ isem 4
Abstractions and SBpeciallzations of ‘1-PORT-DEVICE'
Bl Concesgt
Concept: 2-PORT -0 U1
Frimitive: YES
fipecializes: THING
Mescriptlon: btwn port devices

Add Hestriction
Local Restrictions

Leraned tee File ”l_l;'l"?l'il'e,"l WEINn Nalne peirtr ot o Defaute

Lo [H) C-FORT-DEY[CE
€Oy AL
[Classified; lnmodified] € 0] FEETVURE-EEGHLATING»5] F
* "
Kill Redundant Hestrictions
All Restrictions & Edipor pocd

[te o et vin

VLOTAL TOTLET E.act 1o 1 v POFT) i& FOFT)
Lmat e INLET E-3crle] iP5 FOFTY (A PAFT

Figure 2-1: A g~ - with overview

2.2.2. Pointing

Pointing with the mouse 1s the primary means for
performing editing operations. browsing. adding, and
modifying definitions. In general, all visible references to
an object can be pointed at, in order to view the object
In more detail. For example, a concept can be displayed
as a node 1n a graph, as a value restriction or default,
as a parent of another concept. or as an item on the
editor stack. Whatever the form of the display, the
displayed item will respond to the same set of operations
when someone points at 1t. Similarly, when the system
requires the entry of a concept name, the user may
either type the name or point at any visible concept
name In windows displaying features of conc ept
definitions, pointing also 1s used to tell KREME to replace
parts of those defimitions.

Commands that cannot be performed by pointing
directly at an object are usually contained 1 command
menus which are associated with particular windows 1n
each editor view. Such commands are used for changing
views, entering new concept definitions, loading and
saving taxonomes, etc.

2.2.3. The Grapher

The KREME grapher 1s a powerful, generalized
facility that rapidly draws lattices of nodes and links At
present, i1ts main use 1s to provide a dynamically updated
display of the concept or role currently being edited and
all of its classifier determined abstractions and
specializations. Other concepts may be added to the
displayed graph at any time simply by pointing at a node
that 1s already present and requesting all of its
abstractions or specializations to be displayed as well
Nodes and their children (or just the children) may also
be concealed or removed from a presented graph 1if they
are not relevanm and are making 1t hard to read other
portions of the graph. One may also point at nodes to
show a textual form of their current definition and to
edit the defimitions (which pushes the current definition
on the editor stack, as it does by pomting at 1t in other
displays).

An important featu e of the grapher 1s that 1t can
display graphs that ar¢ much larger than the window
through which 1t 1s vewed. When dealing with large

taxonomies, pointing at the graph anywhere else but at
nodes and dragging the mouse causes the grapher to pan
In the direction of mouse motion, making previously
obscured portions of the graph instantly wvisible as
though one was moving a window across a larger page
The grapher also provides an "overview" facility to show
the shape of the full graphed lattice. Pointing at
positions 1 the overview 1s another way to move to a
particular part of the lattice. Figure 2-1 shows a graph
of one portion of the STEAMER frame base, with the
overview exposed.

Currently, the grapher can be used to display only
directed lattices with no loops, e.g., specialization
hierarchies and relationships like part-whole. We expect
to use the grapher to display arbitrary networks of
relationships between between sets of concepts. These
other kinds of views are critical for displaying partially
ordered plan sequences, causal relationships and
constraint systems in general.

2.2.4. Buffers and the Editor Stack

The editor maintains a level of indirection between
the knowledge being edited and the representation of
that piece of knowledge in the knowledge base. This 1s
done by the mechamism of editor buffers, analogously to
the distinction between & text editor buffer and an
assoclated file. Chenges are always made to definition
objccts, which can be subsequently classified The editor
maintains a stack or hst of the objects that have heen
edited, and constantly displays this list, indicating whech
ones have been modified and not reclassified.

The top item 1n the stack 1s the definition
currently being viewed and edited. The user 1s free to
modify this defimtion 1n any way without directly
effecting the krowledge base When the modified
definition 1s to be placed into the knowledge base &
defining function appropriate to the type of knowledge
(e g, classification for concepts and roles), 1s executed
and the knowledge base 1s modified.

The editor stack 1s always visible in its own window
and provides one convenient method for browsing The
user may make any definition item currently 1n the stack
the top, visible item by pointir,; at it. The object will be

i oad LGiaved Network
| Save Network

New Concept o

{Automatically Operated Unlve}:l-k.*
{Locally Controlled Valve
[[Pressure Regulating Valve |—"

___-4;—

=~ Relief Valve ——___
R

New flole
Edit Role

Parameters Generalize

—..—===1 Unloading Valve ————

—{ Hannally Operated Ualvej—-ﬁ-..,_,“
Open Shut Unlve

{ Ganged Valve Pair |

Throttle Valve A ctivated Valve jr=———--.

\' ~~[Tso_Ai- Pilot Unloading Unlvej- T W

" {Stop Check Valve

S ‘?Stﬁu ﬂctlvnted Throttle Valve }j

[Miciroraeter Valve | Ualve

— ___--r——F’-_
———

-{ Guardian Valve

0] 3 Way Valve } {

Fuel 0il Circuit 3 Way Valve | "-“—i Rernotely Controlled Stop Valve |

Ahstractions and Specializations of 'VALVE'
Classify Concept Kill Concept

Concept: UALVE =

Primitive: YES

Specializes: 2-PORT-FLUID-DEVICE ®

Bescription: common 2-way valve

New Related Concept

Add Hestrjction Q Kill Hedundant Hestrictions
Local Restrictions All Restrictions . Edrbar Stk

L[5 U] YALVE

Change View
o n—— — T (U] PRECSURE-FEGULATING- VAL YVE

[Classified; Unnodified]

®

0ef rned o Fole Hambeei rest) 1ot san ERUCINICER NI TR [T D=f3alt Darcrmprion
C-FUFT-FLOTD-DEYICE THLEY E-acet)y | PA FLUTO-FOFT) o4 FLUIO-FOFT) i
C-POFT-FLIND-DEYICE DUTLEY E-acrly | PA FLUID-FRPTY (A FLUID-PDFT

P.‘Talc Fertroctions

@

Ldrtor Interaction Fane

J [g =d pan i H
R P pars Trol LHEFEDD paaan =

Figure 2-2: The Main Concept Editing View

displayed 1n the same editor view as when 1t was last
edited

2.2.5. Files and Multiple Language Support

All definitions manmipulated by the editor are read
and stored in lisp-readable text files of defining forms.
Files are created by the SAVE command which converts
each of the 1tems of the current knowledge base to its
LISP defining form and writes it to the file specified The
files are 1n human readable form and can be edited
offline using an ordinary text editor In fact, KRREME can
read files that were developed independently using a text
editor or some other frame editor.

Files are read in using the LOAD command A file
can be loaded into a blank KREME knowledge base or can
be loaded on top of an already existing knowledge base
This mechanism, which rehes heavily on the use of the
classifier to keep things coherent, enables KREME to
organize 1nformation from multiple knowledge bases to
create a single umfied whole.

KREME currently will read and write definitions 1n
elther its own frame language syntax or in NIKL syntax.
In addition, there is some customization of the displays
viewed while editing networks 1n either of these
languages (e.g., the presence of defaults 1n role
restrictions). This flexibility makes 1t possible for KREME
to be used regularly to examine and update a knowledge
base of approvimately 1000 roles and concepts for a
natural langrage query system that was built using KL-
TWO. KREME can also read files of MSG defining forms,

providing us access to the extensive STEAMER knowledge
base of concepts and procedures.

We feel that this multiple language handling facility
1s a crucial feature of KREME and are committed to
extending 1t, where possible, to other representation
languages. A rich hbrary of mput translation programs
will enable a knowledge base buillder. working in KREME,
to draw upon many previously existing knowledge bases
to create a larger and more detalled whole. It 1s our
opinion that this kind of flexibihity will be crucial if
knowledge bases developed 1n different languages are
ever to related and convemently modified to create a
greater whole. Civen the lavge miersection of features
provided by most current-day frame language
representation systems, we do not see this as an
impossible goal. In the near future, we will be considering
extensions of KREME Frames to provide an environment in
which many KEE knowledge bases could conceivably be
edited One of our goals in redesigning the classifier
was to make such extensions feasible

Frame Editor
editor for the KREME Frames representation
the most fully reahzed editor in the KREME
though we have a host of improvements and
planned for 1t, the current operational version
10 frame editor 1s already an extremely useful tool
for the creation, modification and viewing of KREME
Frames networks. The meain components of the frame
editor are discussed 1n the section which follows.

=

s

2.4. Windows and Views

The current KREME frame editor has six views, each
a fixed configuration of windows appearing at once on
the screen Three windows (screen reglons) are common
to all of these views, the global command window, the
editor stack window, and the state window. Figure
2-2 shows the main concept editing view, which contains
most of the windows used for editing portions of a
concept's definmtion The descriptions of each window
below will refer to the numbers superimposed on that
figure.

The global command window (1) contains commands
that operate on the network as & whole. It 1s &always
visible.

The editor stack window (2), which 1s also always
visible, shows the names of the things being edited and
some information about their current edit state (eg,
whether they have been modified). Iltems in the stack
window can be removed from the editor, made the
currently visible edit item, or reclassified (if modified) by
pomnting at them.

The state window (3), which 1s wvisible 1n all views
for concepts and roles, displays the name, textual
description, primitive class flag, parents and information
on the classification state of the item.

The concept graph window (4) displays =&
dynamically updated graph of all of the abstractions and
specializations of the current concept This view
provides constant visual display of the relative position
of the concept bemng edited 1n the subsumption
hierarchy.

The role restrictions window (5) displays a table of
the role restrictions for the current concept Columns
n the table show the source (where 1t was inherited
from) of the restriction. its role name, value and number
restrictions, default value. and a description

This window can also be used to display the
concept’'s 1nverse role restrictions, which are all of the
restrictions that wuse the concept as their value
restriction. This display resembles the role restrictions
display, though some parts of 1t cannot be edited

The role restrictions command window (6) This menu
contains commands for the role restrictions window.
Currently, commands are available to dispiay the locally
defined restrictions, the full inherited set of restrictions,
or the inverse restrictions. In addition, there 1s a
command to delete redundant defined restrictions that
would be inherited anyway.

The Editor Interaction Window (7) 1s a Lisp Listener
which can be scrolled backward and forward through a
history of the current session. This window also is used
for some data entry and messages.

Four other wviews are currently defined for
concepts, and one view 1s defined for roles.

The role editing view (figure 2-3) appears whenever
the Edit Role or New Role commands are 1ssued. It
contains windows showing a graph of the role network
highlighting the currently wvisible role, and another
displaying the concepts that restrict the role. The role
editing view also conteins a role editing commands
window.

The four other concept views mix some of the
windows above with windows for displaying and editing
disjoint classes, role equivalences, and inverse role
restrictions. In addition to the global commands window,
the editor stack and state windows, these views show the
following.

o An enlarged greph window, filling most of the
screen, for viewing large sections of the
concept hierarchy. (No display or commands for
editing role restrictions are provided in this
view)

o Windows for & concept's inverse restrictions,
role restrictions, equivalences and disjoint
classes, but no graph

o Enlarged regions for all concept features, role
restrictions, equivalences and disjoint classes
(but no graph).

L sFrbcHing v Roie
['H!-E-klil'ﬂrll.-l,r‘
FRRBTTL Fags

Ho le: h

Primitive: VES

Differentiates: UALUES

Domain: Defined: FLUID-DEVICE Computed: FLUID-DEVICE
Range: Delined: URLUE Computed: VALVE

Description:

3
\ i LOV-FRECSUFE-CUTEUT-AWITEN

.
FUEL 01 - T &Mk] T~ $180 1 10M- | SOLATIOM- =80 VE

- L
oRcapls sEkrickh Hole

1602 -PORT-DEVICE

Fome

NP N | TH-NOTOR

BRI TIYE-D1TPLACEMENT - PUSF

FJEL=DIL-TEFV|CE-PUNP

1= L F=l | LT =N Ol | - el o

FUEL - L -URLOAD I N0- SUSE I TEN

PUFLE" =T TFaINER

FUEL-00L-] FRTHEF

1 50=THPOTTLE-L M

FUEL-0L + THROTTLE -L INE

Jan-z-Far T -0f vy EOF - w1 TA-GANsED- vl v
SOUPCE =¥] TH-BARGLD- PL0L AT | 0M: VRLYVES
FUEL-A1L - Tank

ACCIm RTOF
FUEL =01 L -aC CUMS, A Tl
I5n-BFaHCEIHO-DEY [CE

(LT T EL BT ION-WALVEL

(U] VALVEE

fUcu) LmEs

fuuy rarte

[U.0] TeEby -l LHEE

U] PORTE

feauy FugL-01L-TERYIGL-PUNF
fr.uY Z-PORT-DEVICE

feou] vaLvE

[CaU] PEESSURE-REGULATING. Vsl E

[Clansified; Unmodified]

AMASAETE ST Y =

Edipor Stk

Figure 2-3: The Role Editing View

Py

iy

o The structure editing windows and the macro
editor displays, described 1n section 4 below

2.5. Operations

The basic operations used to make new concepts or
roles, change existing ones, and delete concepts and
roles from the network are discussed in the sections
which follow

Making new concepts. Clicking on the New Concept
command in the global command menu will cause a menu
of possibilities to pop up. From this pop—-up menu, the
user can choose to make a new concept that 1s similar to
the currently visible concept or to some other concept, a
specialization of the current concept or some other
cencept, or a specialization of several concepts.

When the initial form for the new concept has been
specified the system creates a new concept definition for
1t and shows this new definttion in the main concept
view. The user is then free to add specific details (slots,
equivalences, additional parents, etc.) to the new voncept
definition, classify 1t, or edit other concepts, leaving the
new concept definition on the editor stack to be fimished
and classified later. There are no constraints on the
order of thcse operations. The new concept definition ;s
treated lke any other concept definition 1in an editor
buffer, except that 1t 1s marked as never having been
classified.

Making new roles. The operations for adding new
roles are essentially the same as those for maliing new
concepts.

Adding and modifying slots. Whenever the window
displaying role restrictions 1s visible, as 1n the main
concept view, role restrictions can be added or modified
A new slot 1s added to the defined slots of the concept
with the 4dd Siot command When this command 1s 1ssued,
the system asks for a role name. a value restriction, a
number restriction and a default form. Any of these
items can be entered by typing or by pointing to the
desired name or form if 1t 1s visible If a role or concept
named 1n & role restriction or default does not exist the
system will offer to make one with the name given.

The user may modify any defined slot or any slot
that 1s 1nherited from a parent or created by the
classifier Slots are modified by pointing at the
appropriate subform and then either typmng 1n or
pointing to a replacement form If any portion of an
inherited or classifier created slot is modified, the new
slot definition becomes part of the definition of the
concept heing edited

Modifying parents. The system displays the classifier

determined parents of a concept 1n two places 1n the
main concept view. The concept graph displays them as

part of the abstraction hierarchy of the concept In
addition, the state pane shows both the defined and
direct or computed parents of the concept. The

classifier may have found that the concept specializes
some concepts more specific than the defined parents,
thus defined parents may or may not be direct parents
In the state pane, defined parents that are not direct
parents are preceded by a -, while -classifier
determined parents thal were not defined parents are
preceded by a "+".

Adding new defined parents to a concept's
definition 1s done by clicking on the Add Parent command
and typing a concept name or pomnting to any wisible
concept. The system prohibits users from defining
concepts as parents of concepts which subsume them.
(This would form an abstraction-specialization loop.)

Defined parents may be deleted by clhicking on their
names 1n the hst of parents displayed 1n the state
window A parent can either be deleted or "sphced out”

~8=

Sphicing out a parent both deletes that parent from the
ust of defined abstractions and makes the deleted
parent's parents parents of the current concept. That
1s, it connects the current concept to (some of) 1ts
grandparents. Ccmmands are also available to delete all
defined parents that the classifier has determined are
not direct parents, and to make all classifier -discovered
parents part of the concepts defimition.

Changing names and killing concepts and roles.
KREME allows the user to change the names of concepts
and roles or to delete them completely. Name changing
is accomplished simply by pomnting at the concept or
role’s name 1n the state pane and entering a new name.
Changing the name of a concept or role directly effects
the network, since the name of the concept defimition, as
well as the name of the corresponding classified concept
(if there 1s one), 1s chang=d All pointers to the concept
(as & parent of other concepts, 1n value restrictions, as
the domain or range of roles etc.,) are automatically
updated with the new name both in the classified
network and 1n all editor buffers.

Killing concepts 1s a somewhat complicated
operation, because of the need to reconfigure the
network following the deletion In essence the Kill
command splices a concept out of the taxonomy by
connecting all of its children to all of its parents. Any
concept that used to define the concept as a parent 1s
reclassified. If the concept was used as a value
restriction, the editor tries to find an appropriate parent
to substitute for the killed concepl. Because this attempt
1s not always successful, user interaction 1s sometimes
required

Our current version of Kill 1s only one of several
that might prove useful For example, We plan to provide
a second kill function that deletes the entire lattice
under the killed concept (the concept and all of its
children) and a third kil function that preserves the
properties of the killed concept by either moving them
up to the concepts parents or down to all of its
children.

Adding and deleting equivalences or disjoint classes.
KREME provides commands to add equivalences and
disjoint classes For equivalences, the user enters two
paths whose referents are to be equated, and the system
checks to make sure that both paths are valid (all slots
along the path are defined) and that the referents of the
paths are subsumption related to each other (that 1s, the
restrictions on the referents cf both paths are
consistent). For disjoint classes, the system checks
whether the concept entered can he disjoint from the
current one {(1e., a concept cannot be disjomt from its
parents) To delete an equivalence or disjoint concept
the user merely clicks on its display in the equivalence
or disjoint concept window, respectively.

Deleting redundant slots. Chckmg on the Delete
Redundancies command causes the system to delete any
defined slots whose definitions are Lhe same as the
inherited definitions. This operation alters the definition
of the concept, but not 1its classification or completed
description.

3. Classification in KREME-FRAME
networks

3.1. Background

One of the most time consuming tasks in building
knowledge bases is maintaining internal consistency.
Adding, deleting and modifying slots and parents 1n a
frame taxonomy may affect the subsumption relations
between frames and, perhaps more 1mportant, may alter
the sets of properties inherited by more specific frames.
The possible consequences of a change in one part of a
network grows rapidly as taxonomies get larger.
Consequently, the size and complexity of knowledge bases
is limited by the extent to which automatic means are
provided for consistency checking.

A central feature of the NIKL representation
language 1s a classification algorithm that allows one to
build networks of NIKL concepts that are not only
consistent {(all subsumption links 1n the network are
consistent with the sets of properties enclosed by nodes)
but also, for all practical purposes, complete (all
subsumption links 1n the network that are logically
entalled by the sets of properties enclosed by the nodes
are explicit 1in the network).

Unfortunately the NIKL classifier can only handle
monoctonic changes to a cancept hierarchy. NIKL can
construct a consistent and complete network from a file
of randomly ordered concept definitions and users may
add new concept definitions to existing networks, but
once a concept has been placed 1n a network, it cannot
be modified or deleted, a severe shortcoming for an
ir' "ractive knowledge editor.

In oider to develop a fully interactive knowledge
editing system we had to extend the NIKL classifier so
that it could deduce all of the consequences of any
modification to any part of the intertwined concept,/role
taxonomies, and effect the rcclassification of all
concepts and roles necessary to maintain internal
consistency.

The remainder of this section will give a brief
description of the KREME classifier. For a formal
description of the NIKL classifier algorithm see [14, 15]
For a more complete description of a somewhat simpler
interactive classifier see [1].

3.2. Completion

Completion refers to the basic inheritance
mechanism used by KREME Frames to 1nstall all inherited
features of a concept 1n 1ts internal description. Given a
set of defined parents and a set of defined features, the
completion algorithm determines the full, logically
entalled set of features at a concept (or role).
Completion always occurs before classification or
reclassification of a role or concept.

The completion algorithm 1s broken up i1nto moedular
chunks that correspond to the decomposition of the
frame language. There 1s a distinct component that deals
with role restriction inheritance, another component that
deals with disjeint class 1nneritance, a third that deals
with role equivalence nheritance and so on. This
organization makes 1t quite straightforward to extend the
language with new features that handle inheritance 1n
different ways.

A concept 1nherits all the role restrictions from all
of 1ts direct parents and adds them to the lhst of
restrictions that 1t defines locally. For each role naming
a slot in the combined list, the algorithm creates a single
restriction that conjunctively combines all restrictions
for that role at that concept. The effective value
restriction 1s either the single most specific of all the

value restrictions for that role at the concept, or a
conjunction of several, if no single one is subsumed by
all the others. The effective number restiiction for each
slot 1s similarly determined by intersecting the number
ranges 1n all of that slot's role restrictions.

Complications arise when there 1s more thau one
restriction for a given role 1n the initial hst, none of
which 1s more specialized than all of the others. Figure
3-! 1llustrates one way this can occur, when the most
specific value restriction 1s 1nherited from one parent
(A"'MAL) and the most specific number restriction 1s
ir terited from another parent {4-LIMBED-THING) to form
the restriction of LIMBS at 4-LIMBED-ANIMAL.

Figure 3-2 shows another example of completion in
which the resulting value restriction must logically be
the conjunction of several concepts. Since ANIMAL-
WITH-LEGS 1s an ANIMAL, and a THING-WITH-LEGS all of
its LIMBS must be both ORGANIC-LIMBs and LEGs. If the
concept ORGANIC-LEG, specializing both ORGANIC-LIMB
and LEG, exists when ANIMAL-WITH-LEGS is classified for

organic
limb

Figure 3—1: Inheriting Number and Value Restrictions

the first time, tlie classifier will find 1t and make 1t the
value restriction of the slot LEGS at ANIMAL-WITH-LEGS.
It 1t does not exist, the classifier stops and asks 1if the
user would like to define 1t.

arganic
limb

thing
with legs

Figure 3—-2: Combining Value Restrictions

In general, whenever a value restriction can only
be defined as a conjunction of several concepts, KREME

offers to form a concept representing the_ conjunction,

and asks for a name for the new concept As 1t turns
out, forming the suggested conjunction is not always the
right thing to do. It often indicates & missing

subsumption relationship between the concepts nvolved
KREME provides several options at this pomnt, as
described in section 3.6

3.3. Subsumption checking

The KREME classifier algorithm 1s built around a
modularly constructed test for a valid subsumption
relationship between two objects, based on their
effective, mnherited features. When a definition 1s being
classified, 1t 1s repeatedly compared to other, potentially
related, ohjects 1n the lattice to see whether 1ts
completed defimtion subsumes or 1s subsumed by those
other objects. The subsumption test compares features
of one with features of the other. For Cl to subsume Cc2
In this sense means that the features of Cl form a
proper subset of the features of C2.

KREME partitions the work of this subsumplion
check 1n much the same way it deals with inheritance.
Each feature type (1e role-restriction, disjoint-class
etc) decides whether, with respect to that type, C1
subsumes C2, Cl 1s equvalent to C2, or Cl does not
subsume C2. 1f any of these tests return DOES-NOT-
SUBSUME, the the entire subsumption check falls
immediately. 1f all of the checks return EQUIVALENT or
SUBSUMES, then the subsumption test succeeds as long
as there was one vote for SUBSUMES. The advantage of
this kind of modular orgamzation 1s extensibiity. If a
new feature that contributes to concept subsumption 1§
added to the language one need only define a
subsumption predicate for that feature, and objects
having that feature will be appropriately classified

3.4. The Classifier

The basic classifier algorithm takes a completed
definition (that 1s, a defimtion plus all 1ts effective,
nherited features) and determines that definition’s single
appropriate spot in the lattice of previously classified
definitions. The result of a classification 1s a unique set
of the most specific objects that subsume the defimtion
and a unique set of the most general objecis that are
subsumed by the definition When the classified
definition 1s installed 1n the lattice all the concepts that
subsume 1ts features will be above 1t 1n the lattice and
all the concepts that are subsumed by its features will
be below it.

The detaills of the classifier’'s 1mplementation and
operation are beyond the scope of this paper. It should
be noted that the basic classifier 1s nearly functionally
equivalent to the NIKu classifier. However, NIKI, merges
concepts that are exactly classifier equivalent, while the
KREME classifier does not normally do this. The decision
not to merge concepts in KREME 1s due 1n part to the
different environments 1n which these classifiers are
being used In an editing environment, where definitions
are expected to change, there may be more to a
concept’s defimition than had been stated when 1t was
first defimed In addition, we foresee a time when not all
of a concept's defined properties are classifier sensitive
In such an environment, merging concepts when their
classifier sensilive properties are 1dentical would be a
mistake

3.5. Reclassification of KREME networks

We are now ready to give a brief description of the
mechamsm that KREME uses to propagate modifications o’
a defimtion to related concepts and roles. The KREME
classifier 1s 1nvoked whenever a concept or role 1s

10~

defined or redefined. The classifier first completes the
defimition by gathering all of its inherited features. and
then determines exactly where 1t should be placed in the
lattic=. 1f the object has never been classified before,
the basic classifier algoritim 1s run to find the most
specific parents and children of the completed defimtion,
and nsert the new object into the network.

1f the new defimtion redefines a previously
classified object, the process 1s more comnlex. First, the
previously classified object must be spi'ced out of the
network, and the basic classifier algorithm is run to find
the correct position for the new definition Since
changing the subsumption relationships of an object can
change the positions of objects referring to 1t, the
reclassifier must then find all other objects that must be
reclassified because of the change The system compares
the previously classified object with the redefined object
in order to determine which other objects, dependent on
the old definmtion, might be affected by the change.
These objects must all be reclassified. As one mght
expect, reclassifving those other objects may 1tself cause
further reclassifications to be necessary.

The reclassification algorithm which accomphshes
this resembles the consistency maintenance algorithms
found 1n truth mantenance systems. A queue of objects
waiting for reclassification 1s maintained, called the
pending reclassification gqueue. As each object s
reclassified, all objects that could be affected by the
changes caused by 1ts reclassification are collected and

placed 1n the queue if they weren't there already.7

Although the above algorithm 1s relatively
straightforward 1n outline, its efficiency and correctness
depends on determining exactly those dependent objects
that need reclassification The algorithms efficiency
depends on reclassifving only those objects that require
it (1 e., whose classifier determined position may change)
Its accuracy and completeness depend on reclassify1r.g all
objects which require 1t.

The vpower of reclassification 1 an editing
environment c¢an be 1llustrated with the following
relatively simple example. Suppose a knowledge base
developer had defined both GASOLINE-POWERED-CAR and
INTERNAL- COMBUSTION ~-POWERED-CAR as specializations of
CAR, but had mmadvertantly defined INTERNAL
COMBUSTION-ENGINE as a kind of GASOLINE-ENGINE. In
this situation, the classifier would deduce that
INTERNAL-COMBUSTION - POWERED - CAR must be a
specialization of GASOLINE-POWERED-CAR, as shown 1n
figure 3-3, since the former restricted the role ENGINE
Lo a subclass of the latter's restriction of the same role.

Bihe NIKL clossifier forms such conjunctive concepts
outomoticolly, but does nat give them names.

7Concepts thot depend on each other pose special problems,
but the detoils of how this is hondled ore beyond the scape
of this dacument.

o,

o in1e'na_i 3
t\\ E 3

* - defined parent

byt

Figure 3-3: An Error Affecting Classification

Redefining INTERNAL~COMBUSTION-ENGINE as a kind
of ENGINE, rather than a GASOLINE-ENGINE and
reclassifying causes all of INTERNAL-COMBUSTION-
ENGINE's dependents to also be reclassified, including

INTERNAL-COMBUGSTION - POWERED-CAR Since

GASOLINE

ENGINE no longer subsumes INTERNAL-COMBUSTION-
ENGINE, the restrictions for GASOLINE-POWERED-CAR no
longer subsume those of INTERNAL-COMBUSTION ~

POWERED-CAR, and the classifier therefore
GASOLINE-POWERED-CAR does not subsume

finds that
INTERNAL-

COMBUSTION-POWERED-CAR This 1s shown 1n figure 3-4

Figure 3—4. After Reclassification

3.6. Editor Interactions with the Classifier

The following sections describe several ways 1n

which the frame editor and the classifier
support the knowledge acquisition process.

mteract to

~11-

Defined/Completed feature displays. The frame
editor uses the classifier's completion algorithm in 1its
display and editing of role restrictions (slots), role
equivalences and disjoint classes, and 1n displaying the
set of all concepts using a role in a value restriction (in
the role editing view) When the role restrictions window
1s visible, the user may toggle between a display that
shows the defined role restrictions for the current
concept and a display that shows all the effective role
restrictions at the concept. When all role restrictions
are displaved, the user may modify a restriction that was
inherited or created by the completion algorithm.
Modifying a restriction automatically adds the modified
restriction to the list of defined restrictions at the
concept. Similar mechanisms are avallable for viewing
and modifying role equivalences, disjoint concepts and
concepts restricting a role.

Classification from the editor. One especially useful
feature of the KREME frame editor 1s its ability to
immediately display the effects of classifying a concept
or role defimtion When the user modifies a concept or
role’'s defimtion and classifies 1t, the editor redisplays
the relevant visible windows to show all classifier added
information. For example, the graph of & ccncept will
show the concept's possibly modified place 1n the
taxonomy Links added or deleted by the classifier seem
to appear or disappear instantaneously.

Making new concepts and roles needed by the
classifier. The KREME classifier sometimes needs to form

new concepts 1n order to atisfy some logical
relationship. This occurs primarilly during role
restriction completion, when the effective value

restriction for a slot can only be described as a
conjunction of two defined concepts, rather that a single
concept (See section 32) It also happens occasionally
when a similar coudition arises 1n determining the
effective restriction on the range of a role. These
classifier required conjunctions are sometimes called
CMEETSs.

While forming the appropriate conjunction 1s the
logically correct thing to do to ensure consistency of the
knowledge base as then defined. 1t often turns out that
the conjunction suggested by the classifier 1s needed
because one of the concepts to be conjoined has been
improperly defined. In particular. a CMEET condition
most frequently arises because the concept used as the
value restriction of a role in the concept being classified
1s not subsumed by the restriction for the same role at a
higher concept, and the restriction must logically satisfy
both constraints. This 1s 1llustrated in figure 3-5 The
figure shows 2-PORT-TANK defined as both a TANK and a
2-PORT-DEVICE. Each of those concepts restricts the
role INLET-VALVE. The classifier finds that the
restriction for slot INLET-VALVE at 2-PORT-TANK must be
both a VALVE and a STOP-VALVE, given the restrictions of
that slot at 2-PORT-TANK's parents. Since STOP-VALVE
was not defined as a kind of VALVE, the conjunction 1s
not the single concept STOP-VALVE, and so the classifier
asks 1f 1t should create a new concept, the CMEET of
VALVE and STOP-VALVE

Whenever the KREME classifier requires that a
CMEET be formed, 1t stops and queries the user, explains
the situation and requests a name for the concept to be
formed for the conjunction, and enumerates several
alternative options. If all of the concepts are defined
correctly, and the proposed CMEET correctly describes
the required restriction, the user simply enters a name
for the new concept and classificution continues. 1i the
problem really lies with an existing defimtion, as 1s the
case with VALVE and STOP-VALVE, the user can choose an
alternative course of action, rather than introducing a
useless new concept Most often. the correct action 1s
to alter the subsumption relations between the named
concepts, so that one of them 1s subsumed by the others.

Fhis 1s done simply by naming one of the concepts to be
conjoined instead of giving a new name. In our example,
the user would simply type STOP-VALVE, in response to
the query. The classifier would then make STOP-VALVE a

Figure 3-5: Discovering a missing subsumer.

kind of VALVE and continue classifying 2-PORT-TANK,
resulting in the relations shown in figure 3-6

Add Parent

inlat
valva

_5(

valve
—

Figure 3-8. After interaction with the classifier

This interaction effectively allows a user to correct
an oversight i1n a previously defined concept's defimtion
at the point the error 1s detected by the classifier's
completion algorithm. By making the classifier less
"automatic” 1n this way, we have made 1t more effective
as a consistency maintenance tool, and avolded some of
the problems incumbant in using a classifier with a less
than totally complete and accurate knowledge base.

We are investigating additional ways 1n which the
classifier, as well as other kinds of consistency
maintenance facihties, can be used interactively to aid
the acquisition and refinement of knowledge bases. We
feel this kind of functionality will become increasingly
important as the size of knowledge bases grows

4. Macro Editing of Knowledge
Bases

An 1mportant focus of the first phase of the BBN
Knowledge Acquisition Project that will be continued 1in
phase two 1s an investigation of and development of tools
supporting macro—editing procedures for automatic
modification and enhancement of partially defined
knowledge bases The need for methods of expressing
and packaging conceptually clear reformulations of
concepts and other representations, as well as simlar
facilities for developing new concepts from old ones 1s
clear.

-12-

We are taking two different approaches to this
problem. First, we have develop2d a macro faciity for
reformulations that can be expressed as sequences of
standard, low-level editing operations which allows users
to define editing macros that can be apphed to sets of
concept definitions by giving a single example. Second,
we are building a small hbrary of functions providing
operations that cannot be defined simply as sejuences of
low level editing operations. OQur main purpose is to
collect and categorize these utilities, and explore their
usefulness 1n a working enviroi.ment. Our hope 1s that a
large fraction of these operations can be convenilently
described using the macro facility, as 1t 1s more
accessible to an experimental user commuuty than any
set of 'prepackaged” utilities, and can be more
responsive to the, as yet, largely unknown special needs
of that community

The current state of this research effort 1s
described below. First, we will describe and provide
illustrations of the macro-editing faciity. Then we will
describe an example of the latter class of operations, a
"generalization” utility for drscovering and presenting
potentially useful generalizations of concepts to the
knowledge engineer.

4.1. The Macro and Structure Editor

One of the views availlable when editing concepts 1n
KREME 1s the macro and structure editfor. This view (See
figure 4-1) provides display and editing fecilities for
concept definitions, which 1s based loosely on the kind of
structure editor provided in many LISP environments
The view provides two windows for the display of styhzed
defining forms for concepts. The current edit window
displays the defimtion of the currently edited concept
(the top item on the editor stack). The display window
1s available for the display of any number of other
concepts Any concept which 1s visible 1n either window
can be edited, and features can be copled from one
concept to another by pointing. Both windows are
scrollable to view additional definitions as required.

As n the normal KREME editing views, both
inherited and defined features can be displaved. Clicking
the mouse over the keyword indicating each feature class
In a concept's definition (e.g., Abstractions., Role
Restrictions., Equivalences., etc.) toggles the display of
that component between defined and all inherited
features of that type That 1s, clicking on the Role
Restrictions changes the display of the concept's role
restrictions from locally defined role restrictions to All
Role Restrictions and vice versa

There 1s a menu of commands for displaymg and
editing defimtions that includes the commands Add
Structure, Change Structure, Delete Structure, Display
Concept and Clear Display Arguments (if any) to these
commands may be describted by pointing or typing. Thus,
to delete a role restriction, one simply clicks on Delete
Structure and the display of the restriction to be
deleted Adding a structure 1s done by chcking on Add
Structure, the kcyword of the feature class of the
concept one wishes to add to (e.g., Role Restrictions:)
The new restriction 1itself may be copied from a displaved
concept by pomting, or a new one may be entered from
the keyboard Changing (that 1s, replacing) a structure
can be done either by pointing 1 succession at the
Change Structure command, the item to be replaced, and
the thing to replace 1t with. In most cascs, Change
Structure can also be invoked simply by pointing at the
structure to be replaced, without the menu command

The last two commands 1n the structure view's main
menu provide the means to change what 1s displayed 1n
the display window Pointing at Display Structure and
then at any visible concept name places the defimition of

Load

aved Network
1ve Network
ngssnfy Concept Kil Concept
Concept: FUEL-OIL-CTRCUI!-3-UAY-URLVE
Prinitive: NO
Specializes: 3-UAY-VALUVE
Description: 3 way valve used in fuel o0il circuit

New Concept

LBviaricpe SLruc i
Moy M
Concept FUEL-DIL-CIFCUIT-3-HAY -\ALYE
Primitive: lig
Desceaption: 3 wa value used in fue, oil carcuit
Abiztractians: (2-WAY-YRLVE)
Fale FPestriccions: [Name HF P Default])

CIFLOW-FRTHS E.actlv 2 (A FLUTD-FATHY (A FLUID-FATH)
(IILET E~actle 1 (A FLUID-FOPT) (R FLUTD-FOFT)
COUTLETS E.sct by 2 (A FLUTD-FOFT ¢ o f FLUID- FOFT)
(FUEL-OIL-FETUFN-OUTLET E.actle 1 (H FLLID-FORT)

(H FLUID-FOFT o1
CCONTAMINATED-FLIEL-OUTLET E.acti. § A FLUID=-FOFT
i (R FLUID-FOFT 1)

Gl atenced:

\ CUFLOM-PATHE 2 OUTLETY (COUTAMINATED- FUEL -(ITLET 1)
VOOUTLETS 20 (CONTAMINATED-FUEL-OUTLET 1)
fOFLOM-PATHS 1 DUTLET! (FUEL-DIL-PETUFN-QUTLET)
fEOUTLEYS 19 (FUEL-OTL-FETURHI-QUTLEY '

COOUTLET ¢ VFUEL~DIL-FPETUFH-DUTLET)
Moy M how

New Hole
Edit Role

filew Related Concept

[

Concept FLUID-FOPT

Generatize

Pararneters
Reset

Change View

[t FUEL =D IL-TTRGITT -5 b,
L U] FLUTO-DEVICE

L] BUARD] AN-ALYE

M) HaLVE

[4iU] FLUTO-POFT

L[0] L-FORT-FLOLD-DEVICE
Eid e

[Classified; Unnmodified]

Rt

viear uispiay

Framtine: Ves

flm=cipty Coport for krarefer ol Flund
Hbstracn ¢ CPLRT

Fole Feztricrions

Equivales

Lz goane

ancept Z~POFT- FLUID-DEVICE
Framitioe: YVes
Descraption: davice wivh tuo flurd port s
Azt e tons: OFT-DEVICE FLLUID-DEVICED
Fole Feztractions: (Hame HF UF Datfault]
CCTHLET E-actl’ 1 of FLUID-FOFT @ FLUTD-FURT 1)
VOUTLET E-actlu 1 0A FLUID-FOFT] A FLUID-PORT 130
Equiualances:
Diziovnr L1

Figure 4-1:

The Macre Structure Editor View

that concept 1n the display window Clear Display
removes all i1tems from the display window. Individual
concepts can be deleted from the display window by
pointing at them and clicking The Edit Concept
command 1s used to change what 1s displayed in the
current edit window. Editing a new concept moves the
old edit concept to the bottom of the display window

4.2. Developing Macro Editing Procedures

These operations, together with the globally
avallable commands for defining new concepts and making
specializations of old concepts essentially by copying
their defimitions, provide an extremely flexible
environment 1n which to define and specify modifications
of concepts with respect to other defined concepts.
Virtually all knowledge editing operations can be done by

a sequence of pointing steps using the current edit
window and the display window This style of editing 1s
also used 1n the rule editor (See section 5) This

combination of editing features and mouse—-based editor
interaction style provides an extremely versatile
environment for the description, by example, of a large
class of editing macros.

The remaiming windows in the Macro and Structure
Editor View are used for defining, editing, and running
macros composed of structure editing operations. Macro
operations are defined by editing a concept for which
the macro will make sense, and then invoking the Define
Macro command from a menu Until the macro definition
1s terminated. all editing and concept display operations
performed are recorded as steps 1n the macro Some
basic facihities are also provide! for editing (inserting
and deleting steps, changing refeients) mucros once they
are defrned

If the macros defined 1n tlus fashion are intended
to work on concepts other than those for which they
were defined, the operations recorded cannot refer
directly to the concepts or objects which were being
edited when the macro was defined. Instead, a kind of
mmphcit variablization takes place, to replace the named
objects with their relationship to the imtially edited
object. In most cases, these indirect references can be
thought of as references to the localion of the object 1n
the structure editor's display windows. In fact, each new
object that 1s displayed or edited in the course of

~-13-

defining a macro 1s placed on a stack called the macro
tlems lis{. together with a pointer to the command that
caused the 1tem to be displayed

For exemple. 1f one was editing the concept
ELEPHANT, & command to Display the concept that was
the value restriction of the role LEGS at that concept
would both place ELEPHANT-LEG 1in the display window
and add that concept to the macro 1items lhst.
Thereafter. all editing commands 1ssued that involve
pointing at ELEPHANT-LEG or any part of 1t arc recorded
in the macro as operations on the item i1n the macro item
Irst at the position ELEPHANT-LEG was when the macro
was defined. The utihty of this form of reference can be
made clear with a couple of examples.

4.2.1. Macro Example 1: Adding Pipes

When the STEAMER [20] system was developed. &
structural model of a steam plant was created to
represent each component mn the steam plant as a frame,
with hnks to all functionally related components (e g.
inputs and outputs) represented as slots pointing at
those other objects So, for example, a tank holding
water to be fed into a boller tank through some pipe
that was gated by a valve was represented as a frame

with an OUTPUT slot whose value was a VALVE. The
OUTPUT of that VALVE was a BOILER-TANhK The pipes
through which the water was conveyed were mof
represented since they had no functional value 1n the
simulation model

If 1t became important to model the pipes, say

because they introduced friction or were susceptible to
leaks or explosions, then the representational model that
STEAMER relied on would have required massive revision
Each component object in the system would have needed
editing to replace the objects in 1ts INPUT and OUTPUT
slots with new frames representing pipes that were 1n
turn connected by their OUTPUT slots to the next
component in the system

One of our goals 1n developing the KREME macro
editor was to be able to make such changes, which are
simple to describe but require many tedious editing
operations to accomplish, given the number of concepts
affected. In the example below, we show how a macro 1s
defined that can be applied to all objects 1n & system
with OUTHUT siuls, 1n order to generate and insert PIPEs

load Saved Network
.Save Network
Classify Concept
oncept: PIPEQ
Primitive:
Specializes:
Description:

'

tdit Concept
Kitl Concept

Structurs Change Structure

CSraRt B St

Corcept FIFED
Fraomitive:
Abizeractionz: (PIFE)

HIT Fola Festeactions: (ltame 15 UP Default]
IHFUT € sct 1 U UM TRINIG-WITH-OUTFI 1)
& VHOTHING-UITH-DUTFUT
(RASE Eoact e 1 DA MARET (A MALE Y
CCOLOF-0F E. sct) § 1A COLOPY WA COLOF 10
VETFUT E act b 1 tA THING-WITH-THFLIT
LA THING-HITH-TIHFUT Y

Eaurualences:

Tes

Macre FIFE

Inzert 3 pipe betuesn tus connested deices

1, Mabe & rau concept which specislizes FIFE,
2 Change the IHFUT walue restractaan af atem 1 to tem 4,

New Hole
Edit Role

New Related Concept

Delete Structure

ramed buooqener st 1ng 3 number

Parameter Generalize

Reset
Change View

0 (V.#) FIFED
[} frint) TWo-pUFT-0EVICE
0 [U] Tankl

[Unclassified; Modified]

Clear Disjlay

Concept TAM L
Fromitaive: Mo

Atk actyoemss 1 TAM

Fiule Fastractiorz: [Hame WP UF Dlef satt]
VOCOLOF-OF E osctde 1 LA YELLORE 1A YELLIMY ¢
VORI E seele 1 06 UHLMES T 1A UHLUED 1 1)

Equivslences;

Dvzpownt (Vazresz:

. Map Edit

. TR 1 e Ent o B2p
1 PIFED [operstion 1]

Tuffa .

Macia Trepps

Macro Drepper - [}
Figure 4-2: View vhen defining the PIPE macro
into those slots The macro also sets the QUTPUTs of

those PIPEs to be the concept that was the old value of
the OUTPUT slot in the concept edited.

Jn this example, the macro 1s defined by editing a
simphfied representation of a tank (TANKI1) connected (by
role OUTPUT) to a valve (VALVEZ), as shown in figure 4-2.
The sequence of steps required 1s shown in figure 4-3,
as they appear 1n the Macro Definition window. (The
italic comments 1n parentheses do not appear 1n the
actual window) Each step describes an editing operation
invoked with the appropriate mouse operations. starting
with the old defimition of TANKI1, as showw 11 the Current
Edit /tem window 1n figure 4-2 Figure 4-4 shows the
state of the editor at the end of this defu.ation process

The PIPES macro shown here 1s sufficient to insert
concepts representing pipes between concepts with a
single OUTPUT and the concepts represented as receiving
that output. The macro works as long as the role
OUTPUT, or a specialization of that role, ex.sts at the
affected concepts.

The current KREME macro and structure editor 1s
still a very preliminary version, and there are still a
number of i1ssues to be addressed We are working on the
general problem of extending the macro facihity so that
magcros of this type will work when component objects
have multiple OUTPUT slots, witn different names. What
1s required 1s a way to specify that a .acro should be
applied to all such slots.

4.2.2. Example 2. Changing features into concepts

Our second example 1s of a moure common kind of
restructuring that occurs when developmg frame
knowledge bases In developing frame representations,
the cholce must often be made between giving frames a
slot to denote that the conce}t has some attribute and
doing the same thing by defining 1t as specializing
another concept denoting the set of all objects with that
attribute Neither option is exclusive, but only one way 1s
typically needed for the purposes of a given application.

~14=

Steps in PIPE macro:

Edit TANKI

Chck on Define Macro (Makes Macro Jtem 0 = TANK?)

1 Make a new concept which specializes PIPE
numed by cenerating a number suffix (Creates
PIFEO as atem 1. puts it in the current cdit
item unndour)

Change the INPUT value restriction of item |
(INPUT of PIPEQ) to item 0 (TANKT)

2

3. Change the OUTPUT value restriction of 1tem |
(OUTPUT of PIPEO) to th. QUTPUT value
restriction of 1tem 0 (QUTPUT of TANK1
VALVET).

4 Classify the current edit concept (Defines
PIPEO).

o

Change the OUTPUT value restriction of item O
(QUTPUT of TANK1 was VALVE?1) to item 1
(PIPEO).

6. Classify item 0 (TANK?1)

T Edit
(Create: item 2 -

the QUTPUT value restriction of item 1
VALVET).

8. Change the INPUT value restriction of item 2
(INPUT of VALVE1 = TANK1) to item 1 (PIPEQ)

End Macro PIPE

Figure 4-3: Steps in PIPE Macro

oy

tl‘*

Load Saved Network

New Concelt

Kill Concept

Save Network
Classify Concept
Concept: VALVLZ
Prinitive: NO
Specializes:
Description:

VALVE

Add Structurey Change Structure

Toncept VALYVED

Feimitioe: Ho

Ahrtiractione; TUHALUEY

Fole Fertrictions: [Hame WP UP Tefautlr]
PUIHFLT E st 1 A RPIFFIY oA PIPER
FEALOP-NF E actl 1 7H BLIEY A BLUE
POUTRUT £ acklor 1 FR FUMP (R FUHPS

Equicalencer:

Drepnint Clarcer:

Hun Macro
Ao

Define Macro

c Clarsate the current concept,

EREES

. Lhage the OUTFOT value 1estriction of item [to vtem 1,

New
Edit

New Reiated Concept

Deiete Structure

Roie I’arameters Generalize
Raie Reset

Change View

1
[F. 0] TENETGE (T F
ropiM] Tanky
[F.M] FIFED

{Crassified; Hodified])

pt Ciear Dispiay

Display Conce

Concept TAN]

Frimitioe: o

Hbhztractinps: CFAN

Fole Fest) ticnirs [Mame HFEOUF Dtef 5utt]
CURITRLIT E acktt. 1 tA FLFEGT A FIFER
VEALOF=-0F E ogeb 1 -) tH CYELLOL vA CELLOM 1

Equi slerer:
Drryoant Clsrrer:

-

cicmpt FIPED

Feimybaoa: Ho

Ab:iractaonr: (FIPES

Fole Fartractiors: [Hame 1P 1P [ef3i1r])
VIANTEINT E act e 1 VA WALMED 1A MALUED
PIRFINT E gok b 1 rR TROCT oA TAHINL 10

Equi-alenas;

Diejonint (larzer:

Display Macro

Load Macros Map tdit
0. TAMEL [ureent
1. PIFED [aper staom 1]
»

st}

Edvt the DIRUT walue restiictyian of rtem 1, L MALVED [operation w]
. Charae the THPUT walue restraction of iten © ta vtem 1,
o Choange pramibivensss of atem 1 ro Mo,
Fanyiled & wrataon af macen PIFE
Figure 4—4. View after defining the PIPE macro

Steps 1n COLOR-OBIJECTS macro

Edit RED

Chick on Define Macro
(Makes Macro Iltem 0 = RED).

o

-1

Malke a new concept which specializes UBJECT,
named by adding as prefix 1tem 0's name
(Creates RED—OBJECT as atem 1, puis il in the
current edit item window)

Change the COLOR-OF value restriction of item
1 to item 0 (RED)

Change the primitiveness of item 1 to No

Classify 1item 1. (This finds all coneepls with
COLOR-0OF slots restricted to RED, and makes
them speeializations of RED-0BJECT.)

The remaining steps make these :specialization
hinks defined links, and remove the COLOR-OF
slots completely.

Do on SPECIALIZATIONS of item 1. Add item 1 to
the parents of iteration 1tem. (This makes each
red objeel have defined parent RED-OBJECT.)

Do on SPECIALIZATIONS of item 1 Classify

iteration 1tem.
Change the primitiveness of item 1 to Yes.
Delete the COLOR—-OF restrietion of item |

Do on ALL SPECIALIZATIONS of item 1| Delete the
COLOR-OF restriction of iteration item.

Classify item 1

Quite frequently the choice made early on 1n the
development of a KB proves to be 1nappropriate, and
massive editing 1s required to eonvert the aeccumulated
representation base. A maero faeility of this type will
make these deeisions easier to reverse and, therefore,
less disruptive and eostly n their pragmatic
consequences

We 1llustrate this kind of restructuring operation
with a macro that provides a way of forming a .oneept
RED-OBJECT denoting the set of all objects with the role
restriction COLOR = RED, and then removing those COLOR
slots. Figure 4-5 shows this macro's steps.

This macro uses the classifier to help make some of
the required deductions. First, for a given COLOR, say
RED, 1t defines RED-OBJECT, a non- primitive
speciahization of OBJECT, with COLOR-OF restricted to
RED Classifyimg this concept automatically pla es all
other objects with COLOR-OF restrieted to RED (or

specializations of RED) beneath it 1n the speeialization
hierarchy”, which simphfies the joh of defining the macro
considerably.

The remaining steps 1n the macro remove the
COLOR-OF restriction from RED-OBJECT and all of its
specializations. First, the concepts the classifier found
to specialize RED—OBJECT must be given RED-OBJECT as
one of theiwr defined parents. RED-OBJECT must also be
made primitive before 1t 1s reclassified, since 1t no longer
has any defined features to distinguish 1t from OBIECT

The steps required to add defined parents
specializations of RED-OBJECT and to remove their
COLOR-OF restrictions make use of the KREME MAP-EDIT
command This command 1s used to perform a single
editing operation on & set of concepts related to the one

Figure 4-5; Changing RED to RED-OBJECT

-] 5=

8RIED—OBJIECT must be marked non—primitive, since it is fully
defined by the feoture that distinguishes it from OBJECT, its
restriction of the COLOR-OF sliot tc RED. 1f morked primitive,
it would anly subsume concepts thot defined it as one of
their parents.

being edited (e.g.. direct speciahizations, all
specializations, abstractions, all abstractions}). The
limited iteration mecheanism provided by MAP-EDIT has

proven useful 1n several macros, and at present we have
not found the need to extend the macro language with
further control mechanisms

4.2.3. Future Directions

Work on macro editing has really just Dbegun.
However, 1t already shows promise as a method for
acconplishing a number of large scale restructurings of
knowledge bases which are relatively simple to describe,
but tedious to perform. ts example 2 above shows,
macros can alsu make use of the classifier to discover
relationships in the knowledge base and exploit them.

At present, the macro editor is only available foi
editing concepts 1n the KREME frame language. As the
PIPEs example shows, there are still Iimitations on 1its
capabilities, even there We are continuing to develop the
abihties of the macro editor. and 1n future will have
version. ‘1at can be used with the other representation
language. .hat KREME can mampulate. As 1t stands, the
system 1s alreadv powerful enough to describe a number

of transformations between semantically equvalent
though functionally and syntactically distinct
representations. We are bullding a hbrary of these

operations so that other users of KREME will not be

required to reinvent them.

We see our investigation of macro editing as only
the first step 1 developing a knowledge reformulation
facihty that will have and make wuse of more
understanding of the logical structure of the represented
knowledge as well as providing a basic means of
describing procedures to manipulate the syntactic
structure of knowledge representations. During the
second phase of this project, we will be attempting to
generalize the functionahty provided by this hbrary 1n a
system thal 1s capable of reasoning about the kinds of
structural changes the macro editor can perform

4.3. The Generalizer

One of the tasks faced by .nowledge engineers 1n
developing robust computerized knowledge bases s
getting experts to express their often unconscious
generalizations about their domains of expertise. While
much of the detailled information about particular
problems can be accessed and represented by looking at
specific examples and problems, the expert's abstract
classification of problem types and the abstract features
he uses to recognize those problem types are less readily
avallahle.

Experienced knowledge engineers are often able to
discover and define wuseful generahzations that help
organize the knowledge described by a human domain
expert. The expert, although not previously aware of
such a generalization, will often immediately perceive its

relevance to and existence within his own reasoning
processes, gomng so far as to suggest 1mprovements,
related generalizations, more ahstract generalzations

and so forth.

An automatic facihity for deducing potentially useful
generalizations from a network of relatively specific
concepts would be an extremely useful capability for a
Lknowledge editing system to provide An overrniding
difficulty 1n building such an engine is the difficulty of
estatishing criteria for determiming what constituies an
“Interesting” or useful generalization

As an initial expermment 1n automatic generahization
within frame taxonomies, KREME provides a relatively
simple generalizer algorithm that deals with this
difficulty by relying on the user to select from & set of
potential generahzations discovered essentially by

~16~

exhaustive search. Potentially useful generahzations are
found by searching for sets of concept features
(primarily role restrictions) that are shared by several
unrelated ccncepts Finding concepts with a given set of

features 1s relatively easy since KREME indexes all
cnncepts under each of 1ts features.
When the generalizer finds a set of at least k

features shared by at least m concepts, where kK and m
are user selable parameters, the system forms the most
specific concept defimtion that would enclose all of the

features but would still be more general than any
concept in the set. This concept definition 1s displayed
to the user. For example, figure 4-6 shows three

concepts that are all ANIMALs and independently define
the slot WINGS. Given this, the generalizer would suggest
forming a specialization of ANIMAL with the slot WINGS
that these concepts would all speciahze. 1f the user
wanted to introduce this concept, he would respond by
naming the new generalization, which 1s then classified
and 1nserted 1nto the network The features that are
enclosed by this new, more general concept, are removed
automatically from each of the more specific concepts
being generalized Figure 4-7 shows the result with a
new concept named FLYING—-ANIMAL.

As one might 1magine, the generalizer algorithm is
fairly slow (taking about 8 minutes to go through a
network of 500 concep.s and 300 roles). 1t must look at
a fair percentage of all the possible combinations of
features 1n the network. Consequently, we have designed
the algorithm to run in a low priority background
process, looking for generahzations only when the editor
1s waiting for mnput from the user

As vet, the effectiveness of this generalizer remains
substantially untested. We have used tried 1t on the two
reasonably large taxonomies that we have available, and
it finds several potential generalizations in each, but the
real test must weit until there are new applications
under development using the KREME environment. The
taxonomies that we have avallable currently have been
carefully developed over long periods of time, and have

mamma!

insect

Figure 4-6. Find a Generahzation

5. Editing Rules in the KREME
Environment

We are 1n the process of 1ncorporating into the
KREME environment an editor for rules wrilten 1n the
FLEX rule language [16] FLEX 1s similar to the rule—
based portion of the LOOPS language and currently runs
on a Symbolics 3600. FLEX provides rule packets, and
rule objects Rule packets provide a wav to organize
rules. Rule packets can be invoked hke functions, with
arguments and local variables, and return values via the
ZETALISP multiple-values mechanism Flex mcorporates a
mechamsm for dealing with uncertainty, based on that in
EMYCIN [18] The system also provides an elementary
history ard tracing mechanism, and an explanation
system that produces pseudo—English explanations from
rule traces.

The forward chaining rule packets come 1n four
varieties, indicating the type of control mechanism used
for rule firing.

Figure 4-7. After Generalization Added

few remaining "holes'.

We are also considering developing another version o do-1-rule—packets execute the first rule
of this generalizer that would attempt to find new whose test succeeds
concepts 1n sets of conditions repeatedly appearing as
parts of rules. Introducing such concepts could o do-all-rule—packets execute all rules whose
concelvably simphfy, and reveal more of the structure of tests succeed

the reasoning involved in rule sets. It might also make
extending such rule sets easier. A generalizer of this
type will be investigated during phase two of the project

RULE EDITOR

Packet (FOSS :VLRIFY-0K) rquments: (none) Returns: » lype: Do 1 Rule Packet «
corecBlege-n--
=+ If [BRRUD RLIGNNENT-STRTUS) is RLIGNED then STATUS « RLICMED.
If [ALPHA-SUPPLY-LINE RLIGNMENT-STRTUS] is NDT-ALIGNED then STATUS « PARTIRLLY-ALICNED.
If [BRAVO RLIGNNENT-STATUS) is NDT-ALIGNED then STATUS « PARTIALLY-ALIGNED.
4
'1 Mark before Add Delete Find Show Property Access environrnent Compile Run
i Mark after Copy Rernermber Describe Add Property Reset Save History
Advance mnark Move Recaht Not Modified Edit Property Verify References Detete
Hew reference element:, ALTGHMENT-STATL
The viame, ALTZHMENT-STHTUS, does ot ream to be
Flesre chooze 3 defined riole,
Fode of FUEL-UTL-LEFVICE-SVSTEM-CIFOUTT : fihe pas =l Goe s elvE BOILER SUFPFLY cUNE Taklt CSONT oW = TEC - 0IL- T alb RE TOFRK-CF.- 0]
> FETURII-LIME 3000 SRR E RECIFC -
£ ir [J
* M — N
<o Rols FOST-wERIF, - -PACIET-)
it:
Alicnmsnt Status of Alpha Supgl . Lins 1 Mot aligned
4 Then:
Status is given Pactially Alianed
% Rule FOST-VERIF =00 -FAr) ET-C
It:
Alianrassat Statuz of Bracan 1z TRt afione:
Than:
Thatus iz givsn Pactiatly 8ligned
) interse thon Window Alvre Mbw
8 R 551 VO R o -0 LU St U 2 Y S SO T T
1 Figure 5—1: The FLEX Rule Editor

-17-

-

-

o while-1~rule—packets repeatedly test all rules,
firing one, until no tests succeed.

o while~all-rule-packets repcatedly fires all
rules whose tests succeed, until none succeed

An important feature of FLEX 1s the capability to
compile rules nto a lower level language, and run
without the rule interpreter present For example,
forward chamming rule packets can now be compiled
directly into LISP functions. This compiing can be
handled by a separate code generator or translator
which can produce code for other languages

Rule packets in FLEX can be connected to KREME
frame systems or other data contexts by specifymg an
access environment An access environment 1s an object
that receives messages dealing with the accessing of
velues for references 1n the rules. It hardles all
messages to get or set the values of variables and their
confidences. Flex uses the notion of paths These are
composed references. Flex sends the access environment
messages to resolve paths that 1t encounters 1n rules.
When connected to KREME frame hierarchies, these paths
describe role or slot chains, as 1n role equivalences.

5.1. The FLEX Rule Editor
The original FLEX rule editor, shown i figure 5-1,
was a predecessor of the KREME structure editor, in

terms of 1ts functionality and styvle of mnteraction Thus,
its functionahity closelv resembles that for the frame

editor described above One defines and edits rules by
specifying and filing out portions of rule templates. The
user refines these templates either by using the mouse
to copy parts of existing rules or by pointing at slots to
be filled and typing 1n the desired values. Once & rule-
set has been developed. the FLEX editor provides
commands to run packets and debug them It can also
generate traces or rule histories paraphrased 1n pseudo-
Enghsh Mechanmisms are also provided for deleting and
reordering rules, and loading and saving them from files

5.2. Interactions with the Frame editor

Although FLEX was or:ginally desigrned as a stand-
alone system, packages of rules can now be written that
refer tc instances of KREME Frames using the KREME
Frames- ACCESS-ENVIRONMENT This access environment
provides the interface functions necessary for FLEX rules
to refer to KREME frame instances, and their slots It
also allows one to write rule packets that serve as
methods on frames.

The KREME uccess environment allows the FLEX rule
editor to validate references (paths) to slots in KREME
frames when building and debugging rules When an
unresolvable reference 1s encountered, the 1nvabhd
portion of the path 1s pinpointed and a menu of pos (bl
actions to fix 1t 1s offered to the user. The options at
this point include switching to a KREME view 1n which the
suspect concept or role can be edited, defining new
concepts, changing the invahd path element, and
cluunging the root element of the path.

We are still in the process of integrating this rule
iystem 1nto the KREME world. In the near future, it will
also be possible to associate rule packets with concepts,
and browse or edit those packets from within the KREME
editing environment.

-18-

6. Editing Procedures in the
KREME Environment

6.1. The KREME Procedure language

6.1.1. Background

An obvious weakness of many knowledge
representation languages 1s their 1nability to handle
declaratively expressed knowledge about procedures as
partially ordered sequences of actions, particularly f
that knowledge 1s represented at multiple levels of
abstraction Although a number of systems have been
developed that do various forms of plannming,
[4. 12, 13, 17], most have not encoded their plans 1n an
entirely declarative or inspectable fashion Certainly the
current generation of expert system tools does not
provide for the description of this kind of knowledge
Although 1t 1s clear that much of an expert's knowledge
about a domain 1s about procedures and their
apphcation, little work has been done on devising ways
to capture that information directly

The STFAMER project began to address the issue of
declarative representations for procedures in the course
of developing a mechanism to teach valhid steam plant
operating procedures. The representation system
developed for this task had to be directly accessible to
the students who were the system's users, and i1t had to
serve as a source of explanations when errors were
made STEAMER was able to describe these procedures,
decompose them, show how they were related to similar
procedures and, in general, deal with them at the
"knowledge level” [10] rather than as pieces of programs
or rule sets. Although the syntax of the language was
quite primitive, with no provisions for branching or
iteration, the mechanisms for procedural abstraction,
specialization and path or reference reformulation that
formed the heart of the language seemed to form the
kernel of an extremely useful representational facility.

The STEAMER procedure language was well
mtegrated with the MSG frame language that was one of
the starting points for KREME Frames, and minimal effort
was necessarv to incorporate a very similar language
into KREME We refer to the results of this effort as
KREME Procedures We expect to expand the KREME
Procedures language. and provide much improved editing
facihties for procedures in the near future.

6.1.2. Basic syntax

A proccdurc consists of a its name, 1ts description,
the action that the procedure 1s meant to accomplish. a
list of steps., and a lLst of ordcring constraints that
determine the partial ordering of the steps. Procedures
are attached to specific frames (concepts)

A stcp consists of an action and a path. The path
(as 1n role equivalences) refers to a particular concept
which 1s seid to be the object of the step For example,
a concept called SUCTION-LINE might have a slot for a
pert named PUMP. which 1s restricted to being a
CENTRIFUGAL- PUMP We might define a procedure for
ALIGNmmg the SUCTION-LINE which would have & step to
OPEN the DISCHARGE-VALVE of the PUMP This would be
expressed 1n step form as OPEN . PUMP DISCHARGE
VALVE - and would ndicate a step that opened the
discharge valve of the centrifugal pump wlhichh was the
pump of the suction hne.

A constraint 1s an ordering between two steps (the
before step and the after step) Each constraint 1s
supported by a principle. A principle consists of its
name, & description of 1ts rationale and & numeric
priority.

Each step 1n a procedure may either be a primitive
action or another procedure. If the object of a step
defines a procedure for the action of that step then this
procedure 1s sald to be & sub-procedure of the
enclosing procedure. Using our example from above, the
ALIGN procedure attached to the concept SUCTION-LINE
could have & step ALIGN PUMP:>. If the concept
CENTRIFUGAL-PUMP, which 1s the object of this step In
ALIGN<SUCTION-LINE>, defined a procedure for the action
ALIGN, then the step ALIGN <PUMP> could be expanded
into the steps of the procedure for aligning & centrifugal

pump.

6.1.3. Procedural abstraction and structure mapping

For knowledge acquisition purposes, 1t would be
very useful if procecures were represented 1n an
abstraction hierarchy hke that for concepts. In a strong
sense, saying that one abstract procedure subsumes
another seems infeasible. However much power can be
gained 1f abstract procedures form templates upon which
more specific procedures can be built, much as was done
in NOAH [13] For example, if you have some i1dea sbout
how to grow plants in general, and you want to grow
tomatoes, you will use vour knowledge about growing
plants 1n general as a starting point for learning about
growing tomatoes The final procedure for growing
tomatoes will include some (presumably more detailed)
versions of steps in the more general procedure, and may
also 1nclude steps that are analogous to those used in
growing other plants for which more detailed knowledge

exists.? KREME Procedures has a mechanism for building
templates of new procedures out of abstract procedures
When a new procedure 1s being defined at a concept, the
procedural abstraction function determines whether any
of that concept's parents have a procedure for
accomplishing the same action. If one or more do, the

O ¢ O F O ep
Save o dit Concept
Concept: FUEL-OIL-SERVICE-PUNP)
Prinitive: MD
Specializes: PUNP-UITH-MOTOR POSITIVE-DISPLACEMENT-PUNP
Description: fuel o0il service punp

At ron Procedure rsme —Z-.er'-‘r et ton ;:t--atu:

new procedure orgamzes the steps and their ordering
constraints, with suitably reconstructed paths. to form a
template on which the new procedure can be built As
yet this facility does not have the ability to do detailed
reasoning with constraints on steps. as NOAH does. We
expect to greatly expand this capability during phase two
of the project

6.2. The Procedure Editor

When procedures are attached to particular
concepts, a procedure editing view 1s one of the views
avallable for that concept. In this wview, the editor
displays a list of all of the existing KREME Procedures
for the current concept (See figure 6-1.) When the
procedures view 1s visible, the user can choose to delete
any existing procedure, edit a procedure or create a new

procedure Several procedures can be edited
simultaneously. with the topmost procedure 1n the
procedure list window being the current, visible

procedure

The current procedure (of the current concept) has
its steps and ordering constraints displayed. Steps and
constraints can be added to or deleted from the current
procedure Editing of the current procedure can be
interrupted by the user choosing another procedure to
edit, switching wviews for the controlling concept or
Interrupting the edit of the controlling concept.

When the user i1s satisfied with the definition of a
procedure he has edited, 1t 1s ready to be inserted into
the knowledge base. The Define Procedure command
accomplishes this by first ordering the procedure's steps
based on their ordering constramnts. If the constraints
are contradictory, the user must resolve the
contradiction by eliminating constraints or by making
some constraints higher priority than others. Next, a

[Classified; Unmodified]

LUE

L por gk

JEETA N T AR DN

AL LEN ALIBH-FOIP altgn a fued 01l e 1ce pomp [Har ™ Edaraor]

I align the zuction valve.
2oomdige the dow peizure cutout cutout waxle

Qpen the ool watue,

Srat A Foeld o3l e ace pomp [In Egitar; Mool 1ed)

A must come hetare step 7
3 must come before step 4

(] IIII-JTFITILLE[I FLI Lozt come hetore step 5

d Deprez: the moter o griated stact wgatoh ¢ CONTROLLED-FLD ;1ep 1 tocome beEtore step O
SWaat urt il motor §a OPEFATING By EOL 4. muzt come betore step & |
B Feleaze the motar dezignated stat zntl By BOZT step 5 muzt come Letore step f
TRty tuel o1l service puop discharge prsiae ecceeds 350F]
Figure 6—1: The Procedure Editor

~19~

Irar a detailec discussion of reloted issues see Corbanell
[3]} an derivotianal analogical planning.

_a

procedure object 1s made and assoclated with the
classified version of the concept 1n the knowledge base
The procedure may also be compiled 1nto a flavor method
that becomes part of the behavior associated with the
concept. After a procedure has been installed, the
procedure editor redisplays the procedure steps, showing
them in their proper partial order.

Clicking on a step that 1s 1itself a procedure causes
the editor to replace the step with the steps of that
procedure, adjusting the paths of the expanded steps
and adding appropriate constraints so that the expansion
falls logically between the steps surrounding its
unexpanded form in the original procedure

A step expansion can be closed by chicking on any
of the expanded steps The editor simply replaces the
expanded set of steps with the original step and adjusts
constraints accordingly Expanded steps are made
permanent when the Define Procedure command 1s
invoked

A new procedure 1s entered by typing the
procedure name, description and action. The procedure
editor checks to see f any of the parents of the
controlling concept have procedures for the same action.
If so. an mtial procedure template 1s built by combimng
the steps and con:traints of all the 1nherited, more
abstract procedures. The paths of the steps are
adjusted to use “local” slot names. as much as possible,
using the concept's role equivalences as described 1n
section 6 The procedure definition object thus formed
1s then displaved for editing

The KREME Procedures language 1s currentlv being
refined for wuse 1n a new training system under
development at BBN That system will teach diagnostic
procedures for the maintenance of a large electronics
system We expect that KREME wili greatly ease the
knowledge acquisition problems faced by the developers
of that system. It will also provide the first serious test
of the effectiveness of the KREME acquisition environment
In general

7. Conclusion

The goal of the BBN Labs Knowledge Acquisition
Project 1s to buid a versatile experimental computer
environment for developing the large knowledge bases
which future expert systems will require We are
pursuing this goal along two complementary paths. First,
we have constructed a flexible, extensible, Knowledge
Representation, Editing and Modehng Environment 1n
which different kinds of representations (imtially frames,
rules, and procedures) can be used, and we can
Investigate the acqusition strategies for a variety of
types of knowledge representations In building and
equipping this “sendbox”., we are adapting and
experimenting with techniques which we think will make
editing, browsing, and consistency checking for each
style of representation easier and more efficient. so that
knowledge engineers and subject matter experts can work
together to build with significantly larger and more
detalled knowledge bases than are presently practical

-20—

Now that we are well along in constructing a first,
experimental version of the editing environment, we are
beginming to address the second aspect of our research
ptan, the development of more automatic tools for
knowledge base reformulation and extension. An
mmportant part of this endeavor 1s the discovery,
categorization and use of expheit knowledge about
knowledge representations, methods for viewing different
knowledge representations, techniques for describing
knowledge base transformations and extrapolations,
techniques for finding and suggesting useful
general zations 1n developing knowledge bases, semi—
automatic procedures for of eliciting knowledge from
experts, and extensions of consistency checking
techniques to provide a mechanism for generating
candidate expansions of a knowledge base.

Our ultimate goal 1s to explore a number of
approaches to knowledge acquisition and knowledge
editing that could be incorporated into existing and
future development environments, not to develop the
definitive knowledge editing environment. Al s still a
young field, and new knowledge representation techniques
will continue to be developed for the foreseeable future.
We are attempting to provide a laboratory for
experimenting with new representation techniques and
new tools for developing knowledge bases. If we are
successful. many of the techniques developed 1n our
laboratory will be adopted by the comprehensive
knowledge acquisition and knowledge representation
systems required to support the development and
mamntenance of Al systems in the future.

ACKNOWLEDGEMENTS We would like to thank the
other members of the BBN Labs Knowledge Acquisition
Project Richard Shapiro and Albert Boulanger. Rich and
Albert jointly develnped the FLEX rule system and editor,
and Rich was also largely responsible for the
Implementation of the Macro and Structure Editor. Dr
Ed Walker read and substantially edited several draf s of
this paper.

Py

o -VISNC— (i

(]

(3]

[4]

(5]

(6]

(9]

[10]

[11]

[12]

. P R

References

Balzac, Stephen R

A System for the Interactive (lassification of
Knowledge.

Technical Report M'S. Thesis, MI.T. Dept of EE.
and C 5., 1986.

Brachman R.J . Fikes, RE., and Levesque, H

krypton A Functional Approach to Knowledge
Representation

IEEE Computer. Special Issue on Rnowledge
Representation . October, 1983.

Carbonell, Jaime G

Derivational Analogy A theory of reconstructive
problem solving and expertise acquisition.

In Michalski, R. S., Carbonell, J. G and Mitchell,
T. M. (editor), Machine Learning. Volume Il
pages 371-392 Morgan Kaufmann Publishers,
Inc., Los Altos, CA, 1986.

Ernst. G W and Newell, A

GPS. A Case Study in Generality and Problem
Solving

Academic Press, New York, 1969

IntethCorp.
KEE Software Development System
IntelliCorp, 1984.

Keene, Sonya E. and Moon, David.

Flavors. Otject-oriented Programming on Symbolics
Computers

Symbolics, Inc

1985

Carnegie Group, Inc
AnowledgeCraft
Carnegie Group, Inc., 1385

McAllester, D A

Reasoning Utihty Package User's Monuol.

Technical Report Al Memo 667, MIT. Al
Laboratory, April, 1983

Moser, Margaret.

An Quverview of NIKL.

Technical Report Section of BBN Report No. 5421,
Bolt Beranek and Newman lnc., 1983

Newell, A.
The knowledge level
Al Magazine 2(2).1-20, 1981.

Rich, C.

Kknowledge Representation Languages and Predicate
Calculus. How to Have Your Cake and Eat It
Too.

In Proe. A4Al, pages 192-196 1982.

Sacerdot1, E E.
Planning 1n a Hierarchy of Abstraction Spaces
Artificial Intelligence 5(2).115-1356, 1974

[13]

[14]

[15]

{16]

[17]

[18]

[19]

[20]

Sacerdot1, Earl D

A structure for plans and behavior.

Technical Keport 109. SKI Artificial Intelligence
Center, 1975

Schmolze, J and Israel. D

KL-ONE. Semantics wnd Clussification.

In Research in Anowlege Representation for
Natural Language Understanding, dnnual
Report. 1 September 1382 to 31 dugust
1983 .BBN Report No. 5421, 1983.

Schmolze, J.G., Lipkis, T.A

Classification 1in the KL -ONF Knowledge
Representation System.

In Proe. 8th 1JCAl 1983

Shapiro, Richard.
FLEX A4 Tool for Rule—based Programming
Technical Report 5643, BBN Labs, 1984

Stefik, Mark
Planning with Constraints. MOLGEN
Artificial Intelligence 16(2).111-169, 1981.

van Melle, W

A domain independent production-rule system for
consultation programs.

In Proecedings of IJCAI-6, pages 923-925. August
1979

Vilain, Marc.

The Restricted Language Architecture of a Hybrid
Representation System

In Proceedings, 1JC4]1-85, pages 547-551
International Joint Conferences on Artificial
Intelhgence, Inc , August, 1985

Wilhams, M, Hollan, J, and Stevens, A

An Overview of STEAMER. An Advanced Computer-—
Assisted Instruction System for Propulsion
Engineering.

Behavitr Fesearch Methods and Instrumentation
14.85-90, 1981

Experimental Knowledge
Systems Laboratory
Progress Report on Reasoning
Under Uncertainty

University of Massachusetts
Ambherst, Mass, 01003

1. Introduction

This paper describes four projects to develop tech-
niques for reasoning under uncertainty in knowledge
systems. The work is based on the premise that knowl-
edge about sources of uncertainty and evidence should
be represented explicitly, so that knowledge systems can
reason about their uncertainty. This position raises
many questions: How should knowledge about uncer-
tainty be represented? what aspects of uncertain sit-
uations should be explicit? How should evidence be
combined? How can a system minimize its uncertainty?
How are decisions taken under uncertainty? These and
other questions are the foci of the four research efforts
described here. One project has resulted in an archi-
tecture for planning medical consultations, that is, de-
termining appropriate questions, tests, and treatments
given previous results during the consultation. The goal
of the project is to integrate current research on explicit,
sophisticated control with explicit reasoning about un-
certainty: the causes of uncertainty and characteristics
of evidence effect control decisions. A second project
shares this concern for control: we have developed a
general method for constructing decisions under uncer-
tainty. By classifying decision-making situations, one
can “read off” actions that will transform uncertain de-
cisions into more tractable ones. This opens the pos-
sibility of sophisticated control by table lookup. The
third and fourth projects focus on the representation of
uncertainty. One proposes a model for reasoning about
the uncertainty inherent in semantic matching prob-
lems. The other extends this work to a view of com-
mon sense inference as “generalized syllogisms” over an
associative knowledge base.

This report is taken from three recent papers: “Man-
aging Uncertainty in Medicine” by Paul Cohen, David
Day, Jeff Delisio, Mike Greenberg, Rick Kjeldsen, and
Paul Berman, M.D.; “A Typology for Constructing De-
cisions” by Adele Howe and Paul Colien; “Classification
by Semantic Matching” by Paul Cohen, Philip Stan-
liope, and Rick Kjeldsen. The section on plausible iu-
ference was written by Paul Colhen and David Lewis.

-2 D=

2. Management of Urcertainty in

Medicine

2.1 Introduction

MUM is a knowledge-based consultation system de-
signed to manage the uncertainty inherent in medical
diagnosis (the acronym stands for Management of Un-
certainty in Medicine). Managing uncertainty means
planning actions to minimize uncertainty or its conse-
quences. Thus it is a control problem - an issue for the
component of a knowledge system that decides how to
proceed from an uncertain state of a problem. Uncer-
tainty can be managed by many strategies, depending
on the kind of problem one s trying to solve. These may
include asking for evidence, hedging one’s bets, deciding
arbitrarily and backtracking on failure, diversification
or risk-sharing, and worst-case analysis. The facility
with which a consultation system such as MUM man-
ages uncertainty is evident in the questions it asks: it
should ask all nhecessary questions, no unnecessary ques-
tions, and it should ask its questions in the right order.
These conditions, especially the last one, preclude uni-
form and inflexible control strategies. They prompted
the development of the MUM architecture in which con-
trol decisions are taken by reasoning about features of
evidence and sources of uncertainty.

2.2 The Goals of MUM

MUM diagnoses chest pain and abdominal pain. This
includes taking a history, asking for physical findings,
ordering tests, and prescribing trial therapy. Physi-
cians call a diagnostic sequence of questions and tests a
workup. MUM’s primary goal is to generate workups for
chest and abdominal diseases tliat include, in the cor-
rect order, all necessary questions and tests and none
that are superfluous. Since we built MUM to study the
management of uncertainty, the goal of correct, diagnosis
is secondary to generating the correct workup. We were

i S

influenced by a distinction physicians make between ret-
rospective diagnosis, in which all evidence is known in
advance and the goal is to make a correct diagnosis, and
prospective diagnosis, which emphasizes the workup and
proper management of the patient, even under uncer-
tainty about his or her condition. MUM is definitely
prospective. Figure 1 illustrates part of the workup for
coronary artery disease. Clearly, we could build a sys-
tem that follows this and other stored workups, but the
point of the research is to be able to reason about the
features of evidence, and the uncertainty in partially-
developed diagnoses, to decide which questions to ask
next. If MUM does this properly then its questioning
will correspond with a standard workup, or at least be
a reasonable alternative workup.

2.2.1 Managing Uncertainty and Control

MUM is based on the idea that managing uncer-
tainty and controlling a complex knowledge system are
manifestations of a single task, namely, acquiring evi-
dence and using it 1o solve problems. Tliere would be
little basis for variation in problem-solving strategies if
all evidence was equally costly, reliable, available, and
pertinent; but if available and attainable evidence is
differentiated along these and other dimensions, then
problem-solving can be guided by the ideal of maxi-
mmum evidence for minimum cost. For example, here is
a strategy for focusing attention on available evidence:

CONTEXT: to minimize cost

CONDITIONS: test; and test, are pertinent, and

test) is potentially-confirniing, and
testy is potentially-supporting, and

cost(test;) >> cost(testy)

ACTIONS: begin
do test,
if supporting then do test,
else do not do test,
end

That is, given cheap, weak evidence and expensive,
strong evidence, get the weak evidence first and don’t
incur the cost of the strong evidence unless the weak
evidence lends support. The rule serves to manage the
uncertainty associated with the weak evidence - it says
seek strong corroboration only if the weak evidence is
positive. It also uses features of evidence such as cost
and reliability to control the acquisition of evidence;
for example, it explains why an angiogram (an expen-
sive, risky, and excruciating test) is done only after a
stress test in Figure 1. We distinguish these functions

-23-

- managing uncertainty and control — only because un-
certainty and control have, with a few exceptions noted
below, been viewed as different topics. In fact, if con-
trol decisions are based on features of evidence, then
control and managing uncertainty are the same thing.
This is the principle that mnotivates the design of MUM
discussed in Section 2.3.3.

2.2.2 Related Work

The close association between control and manag-
ing uncertainty has been apparent in the literature on
sophisticated control for several years ! but is largely
absent from the Al literature on reasoning under un-
certainty. Three important results have emerged from
research on control: First, complex and uncertain prob-
lems must be solved opportunistically and asynchronouslt
~ working on subproblems in an order dictated by the
availability and quality of evidence (Haves-Roth and
Lesser, 1977). Second, since control tends to be accom-
plished by local decisions about focus of attention, the
behavior of complex knowledge systems sometimes lacks
global coherence. Coherence can be achieved by plan-
ning sequences of actions instead of selecting individual
actions by local criteria’. Third, programs are impossi-
ble to understand if the factors that affect control deci-
sions are tmplicit. For example, the focus of attention
in Hearsay-1I was difficult to follow because it depended
on many numerical parameters calculated from data and
combined by empirical functions with “tuning” parame-
ters (Hayes-Roth and Lesser, 1977). A better approach
is to explicitly state and reason about the implicit fac-
tors, called control parameters (Wesley, 1983), that the
numbers represent (Davis, 1985; Clancey, 1983). If the
control parameters are features of evidence and uncer-
tainty, then control strategies can be developed to man-
age uucertainty.

This last point colors our reading of the Al literature
on reasoning under uncertainty. Much of it is concerned
with the mathematics of combining evidence, the calcu-
lation of degrees of belief in hypotheses. (A represen-
tative sample includes Shortliffe and Buchanan, 1975;
Duda, Hart, and Nilsson, 1976; Zadeh, 1975; Shafer,
1976. See Cohen and Gruber, 1985; and Bonissone,
1985, for literature reviews, including nonnumeric ap-
proaches to uncertainty; and Szolovits and Pauker, 1978
for a discussion of uncertainty in medicine.) Degrees of
belief can serve as control parameters, but it is neces-
sary to maintain a distinction between combining ev-
idence and control. Otherwise, degrees of belief {and

'For example, the classic paper by Erman, Hayes-Roth, Lesser,
and Reddy (1980) is called “The Hearsay-1I speech understanding
system: lutegrating knowledge to resolve nncertainty.”

ZPersonal communication, Victor Lesser.

ol

e e S RN o

ey st gy ot

P s g

B loem it es Workup for Angina

oronary : NOTE - Tx refers to non-surgical treatment
History)

[—"

fra - 1 lek HICT A T8
] Faia i CHR i . | EXIT lonaxt bkl
r Henopausal Factors wirkup

HEGT AMEI A #‘ E ; = |
LXIT lo nexl besl -

wir bup | =0 ! e —
tolsode Mk y

: — ¥
- T
. Y : r o for ar
T (lamow) | \ Tx (diagnes v mode al episodes an| s

Flatch pattern e T Lher

not ' \ Improwva J
fmor e g S Improve.
=
atress Test Elective
y Slress Test
4y i { progneat ic)
' , : JI
ey - o hp
Anglogram . i p——
wvara B ot Y
n‘:l-l‘_—'ill'l.-"ll Olher ™~ 1 #
R -
- F
T

the functions that combine them) have to be “tuned”
not only to find the most likely answer but also to fo-
cus attention in a reasonable way. Inevitably they be-
come ambigtous summaries of implicit control parame-
ters. For example, MYCIN's certainty factors contained
probabilistic and salience information, an indirect result
of using them to focus attention (Buchanan and Sliort-
liffe, 1985).

Another important reason to maintain the distinc-
tion between combining evidence and control 1 that
combining evidence is only a part of the problem of rea-
soning under uncertainty. Other aspects include formu-
lating decisions, assessing the need for more evidence,
planning how to get it, deciding whether it is worth
the cost and, if it isn’t, hedging against residual uncer-
tainty. In MUM we address the problem of combining
uncertainty in the context of these other tasks.

noil

Imipriee

Vi

VY . \.LH-
4 & L
Stress Test M BHGINA
[st} EXIT by rnt post
wal kip
[
it
L
FITST AR FIA
EEIT fownr |y for
[#p=rlwepnl Spaan .
ol il 4 Figure I:

2.3 An Architecture for Managing Un-
certainty

Managing uncertainty in MUM requires many kinds
of knowledge, discussed in this section. Anticipating
section 2.3, on control, it may be useful to think of data
moving bottom-up through Figure 2 as it triggers hy-
potheses and is requested by MUM’s planner.

2.3.1 Types of Knowledge

Data, Evidence, and Interpretation Functions.

Evidence is abstracted from data through interpre-
tation functions. All data about a patient are stored
in frames that describe personal history, family history,
tests, histe-y of episodes, and other data, luterpreta-
tion functions map data to evidence; for example, in-
formation that a patient siokes 3 packs of cigarettes
a day is abstracted to the evidence heavy-smoker by
an interpretation function that maps data about smok-
ing habits to one of (non-smoker light-smoker moderate-
smoker heavy-smoker). Interpretation functions are of-

B e

P .

diseese- | diseese-2

iriggering-condition
1 _supporied(ciustier-4)

triggering-condition
7 supporied(ctustier-7)
combining-function
*1f supported(ciusier-4)
then supported
*11 supported(cluster-2)
then supported
®1f(end(supported(cluater-4)
(supportad(cluster-2)
then strongly-supported
«

combining-function.
“ 11 (ond (supported { clustur-2)
(confirmed (cluster-4))
then strongiy-supported

® fconfirmed(cluatar-1)
then detrected

Potentiol-svidence l;]- .:I_.

poltnlltl-uvlduncul!l ']

pnlcnlly-dulrcclhu

cluster—1 1

poltnllull’-lupponlng

combining-function:

clustar-2

11 (end(supported(evidence-1)
(nonsmoker({evidencs-2)
then strongiy-supported

combining-function:
11 (cenfirmed(svidence- 4)
then contirmed

e TaTR] | ey

Z X

evidence-1

tentiel-avidencs | o | 9)

svidence-2

interpretotion interpretstion-function:
function (belief 11 potient smekes
curve):

* pecks > 2 : hesvy-smoker
e 1 <packs < 2 :mad-emoker
/‘/ = pecks < 1 : light smoker
. e pocks = O ;: non-smoker
1 T
L 0ATA DATA]

FIGURE 2: KNOWLEDGE STRUCTURES IN MUNM

ten graphs called belief curves that relate ranges of a
continuous data variable to belief in evideuce. Figure
3 shows a belief curve relating the duration of chest
pain to the evidence classic-anginal-pain, Belief curves
and other interpretation functions are acquired from an
expert. They provide the same functionality as fuzzy
predicates (Zadeh, 1975), and generalize Clancey’s view
of data abstraction as categorical {Clancey, 1933).

Features of Evidence. Evidence may be character-
ized by its cost, reliability, and roles. The cost of evi-
dence reflects monetary cost as well as discomfort and
risk to the patient (later versions of MUM will separate
these and other determinants of cost). Reliability refers
to several factors, including false-positive and miss rates
of tests, and also the beliof in evidence derived from be-
lief curves (e.g., is classt « wnal-pain at least supported
by data about the pain < _.ation?) The most important
feature of evidence is the roles it can play with respect
to evaluating hypotheses. MUM recognizes five roles,
two of which are symmietric pairs:

Potentially-confirming and potentially-discon firming.

If evidence plays a potentially-confirming role with
respect to a hypothesis, then acquiring it might
confirm the hypothesis, though not all potentially-
confirming evidence will, in actuality, confirm. For
example, an EKG confirms the hypothesis of angina

-25=

only if “positive” (i.e., shows ischemic changes.)
Once confirmed (or disconfirmed), a hypothesis
requires no further evidence, though a diagnos-
tician may continue working to disconfirm other
hypotheses, especially if they are dangerous.

Potentially-supporting and potentially-detracting.
Like potentially-confirming and potentially-discon-
firming, but not conclusive. However, combi-
nations of supporting or detracting evidence may
be confirming and disconfirining, respectively (see
“Combining Func tions,” below). The combina-
tion referred to as cluster-2 (Fig. 2) is potentially-
supporting with respect to disease-2; cluster-1 is
potentially-dctracting with respect to disease-1.

Trigger. A piece of evidence plays the triggering role
with respect to a hypothesis if its presence focuses
attention on the hypothesis, or “brings the hy-
pothesis to mind,” or, in MUM, adds the hypoth-
esis to a list of potential diagnoses. Cluster-4, if it
is supported triggers disease-1 (Fig. 2). This role
of evidence is found in virtually all medical expert
systems.

Modifying. Some evidence does not support or detract
from a hypothesis so much as it alters the way di-
agnosis proceeds. For example, risk factors for
coronary artery disease (e.g., hypertension, ele-
vated cholesterol) play a modifying role with re-
spect to the hypothesis of angina since diagnosis
will proceed aggressively if they are present and
less aggressively otherwise.

These are the only roles currently used in MUM;
others are contemplated. Note that evidence can play
multiple roles with respect to any hypothesis; for ex-
ample, risk factors are both potentially-supporting and
modifying with respect to angina; and most triggers are
individually or in combination with other evidence at
least potentially-supporting (e.g., note the roles cluster-
4 plays with respect to disease-1 in Fig. 2). Also, one
piece of evidence can play different roles with respect
to several hypotheses (illustrated by the roles cluster-2
plays with respect to disease-1 and disease-2 in Fig. 2).
Finally, note that some evidence potentially plays two
symmetric roles, while some are “asymmetric”. For ex-
ample, a stress tert will either support coronary artery
disease or detract from it, while an EKG supports angina
if it is positive and is useless otherwise. That is, EKG
plays a potentially-supporting role only.

Figure 3

A beliel curve plotting the datum “Duration of Pain in Minutes
vs. belief in the evidence 'Classic-Anginal-Pain”

= Strongly-
B Supported
a
2 ' Supported
=)
=
<
& Unknown
w 'l
o
L]
[X] r
= Detracted A
— F.
= /
‘g Strongly-
Detracted

25 5 12

3]

4

S 6 7 8 9 i0

Duration of Pain in Minutes

Clusters. Physicians often see collections of evidence
that play particular roles in diagnosis; for example, short-
ness of breath that comes on suddenly but is unrelated
to exercise or other inciting factors triggers the diagno-
sis of pulmonary embolism. Just as evidence has roles
with respect to clusters, so clusters have roles with re-
spect to diseases, and these roles need not be support-
ing; for example, the cluster (patient-age < 30 and no-
family-history-of-coronary-events) plays o potentially-de-
tracting role with respect to all coronary diagnoses of
chest pain. Instead of saying that the available evidence
is a poor match to coronary diagnoses, we can say tlie
evidence is a good match to a cluster that potentially
detracts from or disconfirms coronary diagnoses.

Combining Functions. Every cluster includes a lunc-
tion, specified by the expert, that combines the avail-
able evidence for the cluster and returns a value for the
cluster given evidence. The values returned by combin-
ing functions are just “realizations” of potential roles of
evidence. For example, the value returned by the com-
bining function of a cluster supported by potentially-
confirming evidence could be confirmed. The value
for a cluster with several pieces of potentially-detracting
evidence might be disconfirmed, or perhaps detracted.
Combining functions are further discussed below.

Diseases. A diseaseis technically a cluster. 1t is a col-
lection of clusters, each of that plays an evidential role
in diagnosis and is comnbined by combining functions
with other clusters. ‘'hus diseases reside at the top of a
hierarchy of clusters (as shown in FFig. 2), each of which
has its own combining function and specifications of the
roles played by the clusters below it.

Strategic Knowledge. We characterize strategic kno
ledge as lieuristics for deciding which triggered disease
liypotheses to focus 1, and how to go about selecting
actions to gather eviience pertinent to these hypothe-
ses. These heuristics have the same conlingent nature
as Davis’ meta-rules (Davis, 1985) and control rules in
Neomycin (Clancey, 1985). Strategies are represented
as rules which include:

e conditions for selection of the strategy;

e a focus policy which guides the choice of a subset
of the triggered disease hypotheses to focus on;

e planning criteria which guide the selection of ac-
tions to gather evidence for and treat diseases cur-
rently in the focus.

Examples of focus policies are plausibility (choose
hyr otheses based on their degree of support); criticality
(focus on hypotheses that, if true, would require irnme-
diate action); and differential (focus on hypotheses that
offer alternate explanations for the symptoms). Exam-
ples of planning criteria are cost (prefer evidence that
is easy to obtain, and inexpensive on somne cost netric);
roles (prefer potentially-confirming over potentially-sup-
porting); and diagnosticity, meaning that a given result
has the potential to increase the belief in one hypothesis
and decrease belief in the otlier, as indicated by beliel
curves.

s
T

Py

J“:J“

2.3.2 Combining Evidence and Propagating Be-
lief

MUM combines evidence with local combining func-
tions, as shown in Figure 2. Typically, knowledge sys-
tems require three functions to combine evidence and
propagate belief. Tliese are illustrated in the context of
two inference rules:

RL: (A AND B) - C
R2: (D AND E) - C

One function calculates the degree of belief (doh) in a
coujunction from degrees of belief in the conjuncts:

dob(AND A B) = F(dob(A)dob(B))

The second function calculates the degree of belief in a
conclusion from

a) the degree of belief in its premise (computed by F£})

b) the “couditional” degree of belief in the conclusion
given the premise;

often called the degree of belief in the inference rule:
dob(Cg;) = F,(dob(AND A B),dob(C|{(AND A B)))

The third increases the degree of belief in a conclusion
when it is derived by independent inferences:

dOb(C}”&Rg) = Fg(dOb(CRI), df)b(Cng))

In MUM, these three kinds of combining are main-
tained, but with two important differences. First, there
are no global functions corresponding to £}, F;, and
F3; all combining is done by functions local te clusters.
Second, instead of the usual numeric degrees of belief,
MUM has seven levels of belief: disconfirmed, strongly-
detracted, detracted, unknown, supporicd, strongly-sup
ported, confirmed. These are just “realizations” of the
roles of evidence described earlier.

Combining evidence and propagating belief in MUM
is illustrated in Figure 2. Fach cluster, iucluding dis-
eases, has its own local combining function, specified by
an expert. For example, cluster-1 is strongly-supported
if the data support evidence-1 and if the data on a pa-
tient’s smoking habits support evidence that he or she
is a nonsmoker. This is a conjunction of evidence of
the kind calculated by Fy, above. Another is found in
the combining function for disease-1. If cluster-2 and
cluster-4 are both confirmed, then disease-1 is strongly-
supported. This illustrates the kind of combining for
which F,, above, is required: even when the evidence
for a disease is itself certain, the conditional belief in the
disease given the evidence may not be certain. Disease-
2 also contains a conjunctive rule, but the entire com-
bining function illustrates the corroborative situation

==

for which F3 is needed. In this case, cluster-4 and
cluster-2 individually play potentially-supporting roles,

and taken together case the level of beliel in disease-
2 to strongly-supporting.

Local combining functions have many advantages.
Foremost is the ease with which an expert can specify
precisely how the level of belief in a cluster depends
on the levels of belief in the evidence for that cluster.
Control of combining evidence is not relinquished to an
algorithm, but is acquired from the expert as part of
his or her expertise. Since local combining functions are
specific to clusters, they can be changed independently.
And since the values passed between them in MUM are
few, it i1s easy to trace back the derivation of a level
of belief and pinpoint a faulty local corrbining function.
The prospect of having to acquire many functions seems
daunting, but we have found it easy and intuitive, and
much easier to explain than a global numeric method.

2.3.3 Control of Diagnosis in MUM

Strategic control knowledge, which may be acquired
and modified like any other domain knowledge, will be
described in the context of the basic control loop which
it directs. The implementation of MUM'’s basic control
involves three components:

User Interface: uses data description frames in the
knowledge base to ask questions and create pa-
tient data frames for the results;

Matcher: uses the interpretation and combining func-
tions to record the effect incoming data has on the
belief states for clusters and disease frames, and
triggers new hypotheses as appropriate;

Planner: uses strategic control rules from the knowl-
edge base to guide the selection of focus and the
planning process.

The planner coutrols the user interface and the matcher
by requesting thieir services as described below.

Basic Control. The planner foilows a basic control
loop within which it interprets strategic control rules.
It is implemented in a blackboard system, with knowl-
edge sources specified in the same syntax as that which
strategic control rules are compiled into. This facili-
tates modification of the basic control described liere
as dictated by the strategic knowledge. The design of
the blackboard system was influenced by Hayes-Roth
(1985), and shares the emphasis on explicit solution to
the control problem. We first describe the basic control
loop, then strategies and their selection.

The basic control loop is initiated with the choice
of a straiegic phase. All strategic phases but one in-
clude a focus policy that directs MUM’s attention to
a subset of candidate hypotheses. This is followed by

the generation of short-term plans to gather evidence
and select treatment pertinent to these hypotheses (the
rule in Section 2.2.1 represents such a plan). Since the
effort of developing lengthy plans may well be wasted
in a domain permeated with uncertainty, we currently
constra.l plans to single actions or sequences of two ac-
tions where the applicability of the second depens on
the outcome of the first. Several short-range plans may
be generated and executed.

Carrying out plans typically consists of invoking the
user interface to request some information, updating the
status of the diseases with the matcher, and conditional
continuation of the plan. When no short-term plans
remain, the system iterates the basic control loop to de-
termine if a new strategic phase is appropriate, update
the focus, and generate new short-term plans. MUM
may respond to asynchromnous events such as the alter-
ation of a previously obtained data item by interrupting
this basic control loop to reconsider its strategy.

Strategic Control. We represent MUM’s overall
strategy as an ordered set of rule-like strategic phases,
shown in Figure 4. Fach phase has conditions that acti-
vate it. Once activated, a phase controls MUM’s focus
of attention and the choice of actions pertaining to the

hypotheses in this focus.

The phase Get General Picture is invoked when
the system is started, and mnay also be used if all pre-
viously considered hypotheses are ruled out. It has
no focus policy because no hypotheses are active when
it is invoked. 1t directs the planner to ask for evi-
dence that plays the potential-trigger role for one
or more hypotheses, pursuing the lowest-cost evidence
first. The cluster initial-consultation (consisting of
age, sex, and primary complat) meets the criteria of
potentially triggering many hypotheses and costing lit-
tle. The initial consultation 1 sually triggers some hy-
potheses, which result in a new strategic phase being
selected. 1f no hypotheses were triggered, the planner
asks for potential-triggers of higher cost.

The Initial Assessment for Triggered Hypothe-
ses phase is invoked when new hypotheses are triggered.
Since the conditions of the other strategic phases de-
pend somewhat on the level of belief in candidate hy-
potheses, this phase gathers preliminary evidence for
tire hypotheses. The focus is on the triggered hypothe-
ses, so only evidence playing some role relative to these
hypoiheses is considered by the planner. This phase
directs tlie planner to gather low-cost evidence for the
hypotheses. For example, MUM asks about aspects of
the patient’s episode (the event which is the primary
complaint) which bear on the triggered hypothesis, and
about risk factors.

As soon as the easy questions for triggered I'ypothe-
ses liave been asked, MUM decides between the next two
phases based its belief in the hypothese. asd whether
any of the hypotheses are critical, that is, sequire im
mdiate treatment i supported. Critical hypothese: ar.
dealt with first.

The Deal With Critical Iivpotheses phase pla
all candidate critical hypotheses in MUM’s focns. The
short range planner is then directed to attempt to =,
out these hypotheses. It begins witli potentially iz <
firming or potentially-detraciing evidence. f it 1.'ls v

Strategic Phase:
Conditions:

Focus Policy:
Planning Criteria:

Strategic Phase:
Conditions:
Focus Policy:

Planning Criteria:

Strategic Phase:
Conditions:

Focus-Policy:
Planning Criteria:

Strategic Phase:
Conditions:

Focus-Policy:
Planning Criteria:

Get General Picture.

No candidate hyvpotheses.
None.

Evidence must pley trigger
role; prefer low cost on alt
cost metrics.

Initial Assessment for
Triggered llypotheses.

One or more hypothescs

are triggered.

Focus on triggered hypotl: sses.
Must be low on all cost.
metrics; prefer stronger roies.

Deal With Critical « =sibilities
There are critical hypothe=es
whicli have not been contirmed.
discorfirmed or strongly
deiracted, and if they are
detracted, no other hypothesis
is confirmed.

Criticality.

Rule Out if possible,

else gather support.

Utility of evidence. Low cost
first; as needed let disconfort
and monetary cost increase.

Discriminate Strongest Hypotheses
More than one hypothesis

is supported.

Plausibility.

Diagnosticity, Low cost first.
Utility of evidence. Substitute
high cost confirniation

for one hypothesis with lower cost
disconfinnation for the other.

Figure 4: Four Strategic Phases it MUM’s Diagnosis

==

P .

A Sy

-

find any, then it looks for potentially-supporiing evi-
dence. It will not seek evidence that plays a lesser po-
tential role than evidence it already has. For example,
it will not seek potentially-supporting evidence for a hy-
pothesis that is already strongly supported, but rather
focuses on potentially-confirming evidence. The plan-
ner will focus on low-cost evidence first, but it is not
prohibited froin pursuing high-cost evidence as it was
in the previous phase.

If the focus of attention is not captured by critical
hypotheses, it is dictated by plausibility. The strategic
phase Discriminate Strongest Hypotlieses discrim-
inates competing alternatives with as little cost to the
patient as possible. As before, the potential roles of ev-
idence are used to decide whether it is worth acquiring.

Curiently MUM stops work when a hypothesis is
confirnied and no critical hypotheses remain in its focus.
We are implementing the next strategic phases, progno-
sis and treatment. Both provide evidence of diagnostic
significance; for example, MUM may begin treatment
for angina if it is strongly supported, rather than incur
the cost of absolute confirmation. If the treatment re-
lieves the symptoms, then it is additional evidence for
the diagnosis. If not, it is evidence that detracts from
the diagnosis and may support others. Since treatinent
provides evidence, we represent treatments as clusters,
exactly the same way as we represent tests such as an-
glography.

The emphasis in MUM is on asking the right ques-
tions in the right order without superfluous questions.
MUM'’s control knowledge is not yet sophisticated enough
to satisfy all these criteria. It asks questions in a rea-
sonable order, but it sometimes focuses on the wrong
disease. Since MUM is a nascent system, this does not
yet concern us. We believe the systemn is successful in
providing a framework for exploring manageinent of un-
certainty by sophisticated control, that is, by making
control decisions based on the roles, costs and other
characteristics of evidence, the criticality of diseases,
and the credibility of diagnoses.

2.4 Conclusions

MUM manages uncertainty by reasoning about evi-
dence and its current state of belief in hypotheses. Its
z.al i to generate appropriate workups for chest and
»bdominal pain, that is, to ask the right questions in
‘1 right order without unnecessary questions. To the
extent it succeeds, it demonstrates its ability to man-
age uncertainty, and to select the appropriate action
given uncertainty. We lave said this is a control task.
Indead, much of MUM’s architecture is devoted to ex-
plicit, evidence-based control.

-2G-

Much work remains to be done. Currently, MUM re-
sembles a programming environment more than a medi-
cal expert system. We are devoting ourselves to building
up its knowledge base of clusters, functions, and control
rules, while experimenting with improved representa-
tions for them.

Although MUM was designed for medical problems
and is discussed in that context, we believe the approach
to uncertainty and control it engenders is general to
classification problem solvers, as well as to other sys-
tems responsible for the management of uncertainty. An
empty version of MUM called MU is being developed
and will be tested in other domains.

3. A Typology for Constructing
Decisions

3.1 Introduction

Decision making involves identifying, comparing, and
ultimately selecting from among a set of alternatives.
When the alternatives are not known in advance, or
when the set of alternatives is large, decision making
becomes a constructive, action-oriented process. The
alternatives and their features, implicit in the descrip-
tion of a decision problem, must be compared and so
must be made explicit as the problem is solved. As
these comparisons are made, preferences amnong alter-
natives on features are also mnade explicit. We present a
typology of decision-making situations that tells how to
construct a decision, that is, when to add an alternative,
a feature, or a preference to a developing decision.

The emphasis of this work is constructive decision
making for Al programs. We focus first on problems
where alternatives are supported by conflicting evidence.
The many variants of this type of problemn are organized
into a typology of decision-making situations. Some sit-
uations permit an immediate choice between alterna-
tives. Others require actions to further construct the
decision. The typology associates appropriate actions
with decision-making situations.

The typology shows how to solve “apples and or-
anges” problems and generalizes this result to provide
a view of sophisticated control for decision-making Al
programs as table lookup.

Comparing tLe Incowparable. Decision alterna-
tives are compared on their salient features. Often, the
values of these features cannot be easily combined. We
call this the apples and oranges problem: When you
compare apples and oranges in a grocery store you may
find one fruit preferred on the basis of flavor and the
other on the basis of quality. If you can combine the fea-

el

tures to compare the alternatives on a single, composite
feature, then the choice is clear. But if, as in this case,
flavor and quality cannot be combined, then the chojce
between apples and oranges is problematic. Tradition-
ally, the apples and oranges problemn has been solved by
mappiag the values of features such as flavor and qual-
ity onto a uniform utility scale. The approach described
here keeps the features distinct. The inevitable problem
of conflicting features is solved by constructively adding
features and preferences to a decision.

Closer inspection shows that the apples and oranges
problem is not one, but a family of decision problems
with ditferent solutions. 1n this paper, we derive the
space of decision problems and show how actions asso-
ciated with difficult decision problems can be taken to
reformulate them as easier ones.

3.2 Decision Typology

We begin with a basic decision probleiiz in which two
alternatives are compared on two features, then show
how the typology of two-alternative, two-feature prob-
lems guides the construction of more complex decisions.
Alternatives are referred to as p and ¢, features as F,
and Fj, and values of features for specific alternatives as
Fi[p|. The symbol > indicates preference between two
values. Although we will be using some mathematical
symbols, none of the values need be numbers; for exam-
ple, we can say flavor(apples) > flavor{oranges) without
quantifying quality.

Characteristics of a Decision Two-alternative, two-
feature decision problems can be characterized along
five binary and ternary dimensions:

Sd|F|. A significant difference on feature F, indicates
that the values of the two alternatives are distinct.
If a decision between alternatives p and ¢ can be
based on the values Fi[p] and Fi|q], then the values
are distinct.

1 if Fi[p] and F|q] are distinct

Sd[ﬂ] - { 0 otherwise

Otherwise indicates no significant difference or that
we lack evidence to tell whether there is a signifi-
cant difference.

Sd[F;| Like Sd[F,], but for F;.

C[Fi,F)]. A conflict exists when F; and F; support
different alternatives.

1 if Fy[p]>F,[q| and F,[p]{FJ[q] or
if Fi[p|<Fi[q] and F;[p|>F}[q]
0 otherwise

CIR, F| =

O|F;, F;]. One feature is often more ymportant than
another. This means that one feature is preferred
to another (e.g., quality is preferred to flavor), or
that there is a greater difference between the two
alternatives on one feature than the other.

0 if importance(F;) = importance(F;)
if relative importance unknown

OlF:, Fy] = 1 if importance(/}} > importance([;)

or importance(F;) < importance(F;)

>|F;, F;]. Assuming that O[F;, Fj] = 1, we need to
know which feature is preferred.

SR By = { 0 or importance(F}) < importance(F
AR 1 if importance(F;) > importance(F})

We illustrate these dimensions in the context of the
problem of selecting fruit: F, is quality and I is fla-
vor. If the quality of apples is “good” and the quality
of oranges is “poor,” then Sd[F;] = 1 because good and
poor are distinct values. Similarly, if one prefers the
flavor of oranges to that of apples thien Sd[#] 1.

Since apples have better quality but oranges taste bet-
ter, C|F;, F;] = 1. Finally, if quality is preferred to taste
O|F,,F;] =1 and >[F;, Fj] = 1.

The space of types characterized by these dimen-
sions can be arranged in a table. The problem we just
described is case 23 in this table, illustrated in Figure
5. In English, case 23 says “the quality of evidence for
F[p] and F[q] is sufficient to claim that the difference
supports a choice between p and q; the quality of evi-
dence for F,[p| and Fj[q] is sufficient to claim that the
difference supports a choice between p and q; there is a
conflict between p and q on F, and Fj, and the feature
Fi is more important than F,.”

Collapsing the Table Figure 5 does not represent all
40 combinations of the possible values of Sd[F], Sd|F}),
C|Fi, Fj], O|F;, F;], and >[F;, F,]. From the perspective
of how a decision-maker acts, the 40 decision types con-
tain some redundancies. Consider these cases:

Case 18a: S[F|=1,8[F] =0, C[F,F] -1, Fi>F;
Case 18: S[F;| =0, S[F}| = 1, C[F, F}] = 1, F,>F,

In English, the dimension tor which vour evidence
supports a decision is tlie most iniportant diinension.
The cases are identical in the sense that a decision-
maker would not act differently in response to them.
Consequently, the two cases are represented only by case
18 in the table.

o IS

@
1a.
-l
¢ vl olo|o|e
A =1) ey)
o =|olo]w

DI FoS R PN

3|t | | e

-wQlo|olo
HO| Q|| -2
solo|ml=|wo
W Ol=|ofm=

—
(=]

=
©
Y
S
»
]

21

2
[

O | OO =
=1 =1 I ™

Oj—|=lolo

(=1 S N

Of=lm| =
=1 I ™
—l—| o] =] -
——|—lolo
—f e |]]

Figure 5: Typology of Decisions

Decision Actions The point of characterizing deci-
sions is to select appropriate actions. In our approach
there are three basic actions: decision, transformation,
and stuck. Decision means choosing an alternative based
on available evidence; for example, in case 8 (Fig. 1)
there are significant differences between the alternatives
on both features and their evidence does not conflict.
The decision is straightforward.

Transformations of one decision type into another
are appropriate when a decision cannot be made given
the available evidence. In case 0 (Fig. 1), the values of
the alternatives on features F; and F; do not distinguish
the alternatives, nor do we know whether one feature
is preferred. A decision in this case cannot be made
with confidence, but several transformations of case 0
are possible: If further evidence about F; potentially
shows that the alternatives can be distinguished on F,,
then obtaining the evidence transforms case 0 into case
1 (i.e., the 0 in row Sd[£;] is replaced by a 1). Obtaining
evidence of this kind for both features transforms case
0 into case 2. From case 2, one may confidently make a
decision. Similarly, if evidence exists that F; is preferred
to Fj, then obtaining the evidence tre -forms case 0 into
case 20. Alternatively, evidence may . » that neither
feature is preferred; obtaining this eviden.e transforms
case 0 into case 6. The idea of transformations is to
change one decision type into another, hopefully more
facilitative, type. Transformation is an appropriate ac-
tion for any decision type with 0 in either of its first
three rows or ? in its fourth.

The most obvious way to effect a transformation is
to seek more evidence. The table in Figure 5 allows us to
plan actions to obtain evidence, thus it guides the pro-
cess of constructing a decision. IHowever, the planned
transformation may not be possible; the actual transfor-
mation depends on the evidence obtained. For example,
we may gather evidence about F; with the intention of

-3~

transtorming case 7 to case 8. But if the evidence, when
obtained, indicates that F; and F, actually support dif-
ferent alternatives, then we end up in case 11 instead of
case 8.

In case 11, we are stuck: all available evidence about
the features has been acquired, but it supports conflict-
ing alternatives, and neither feature is preferred. From
case 11, no further transformation is possible, no action
is apparent. In fact, there actions appropriate for the
stuck case, but they expand the decision beyond the
two-alternative, two-feature case under discussion. If a
decision cannot be made on the basis of evidence about
the current features, then the appropriate action is to
further distinguish the alternatives with additional fea-
tures. Because we view decision making as a construc-
tive process in which alternatives and features emerge
only as needed, we imagine a decision-maker adding fea-
tures only when stuck, that is, in case 11.

Each of the 24 decision types has at least one appro-
priate action. Some suggest two (see Fig. 2). These are
situations in which a decision can be made, but with-
out complete confidence. For example, in case 9 there is
significant evidence for Fy, but not Fj, they don’t con-
tradict given the available evidence, and neither feature
is preferred. A decision could be based on F;, but not
without some uncertainty that F, actually supports a
different alternative than F;. Multiple actions permit
different strategies for selecting specific actions. For ex-
ample, a conservative strategy that tries to minimize
uncertainty in decisions encourages transformations.

3.3 Extensions to a Multifeature Model

The decision tables described so far allow compari-
son of two alternatives on two of their featnures. Some-
times, as noted above, a decision cannot be based solely
on these features. These situations arise in three ways.
First, evidence such as the preference for features may
be missing. Second, complete evidence inay 1ot support
a decision; for example, the values of the alternatives on

[.

ey

~

R

the features may be accurately known, but not signifi-
cantly different to support one alternative. Third, these
values may be accurately known, and significantly dif-
ferent, but support different alternatives. lu the first
situation, it is fairly obvious that we should seck the
missing evidence. In the last two, it is necessary to add
another feature. Psychological evidence suggests that
humans in these situations add features and alterna-
tives conservatively, what [Svenson 79| calls “choice by
feedback processing.” Our model emulates this iterative,
constructive behavior.

Adding Features Features may be added by substi-
tuting one for another or by combining a new feature
with an old one. In either case, the typology of Fig-
ure 6 suffices to represent two-alternative, multi-feature
decisions, In substitution, one of the two features cur-
rently under consideration is discarded and a new fea-
ture is substituted, This is appropriate when we know
that two alternatives are not differentiated on an fea-
ture (Sd[F;] = 0). The feature does 1ot provide a basis
for a choice. It should be replaced by another, more
informative, feature.

The second method for adding features is combina-
tion: the evidence provided by the new feature is coin-
bined with evidence accrued from previous comparisons.
This is appropriate when the previous features favor dif-
ferent alternatives. For example, when we add another
feature F,,, to case 11, [1110*], we hope to move to col-
umn 19, [11110], or 23, [11111]. Unlike case 11, cases 19
and 23 indicate a preference between features, Assum-
ing that the alternatives are distinguished on F,,, (oth-
erwise adding it would gain notliing), and assuming that
a combination of two significant features are preferred
to one, Iy, ir.~oduces a preference order when com-
bined witl: the old feature it corroborates, resulting in
case 19 or 23. Thus, the typology of Figure 6 suffices for
a two-alfernative, three-feature decision and, by induc-
tion, for two-alternative, multi-feature decisions. Since
case 11 involves a conflict between features, F),,, must

corroborate either F; or F;. Thus, new evidence can
clustered to support one of two alternatives. Th's addi-
tional support contributes to an ordering over clusters
of features, represented by values in the fourth (order)
and fifth (preference) rows.

Clustering is the key to extending the two-alternative,

two-feature situations to two-alternative, N-feature cases
and finally to N-alternative, N-feature problems, be-
cause it permits complex decision situations to be con-
structed iteratively within the framework of our decision

typology.

-32~

_Case 0 [1 |2]3] 4 5 6 7
1 e
Sd[F] 0o 11 1o 1 1 0 [0
Sd[Fy] 0 | o 1]0] o 1 0 1]
T » T T
hFilo Jofol1lt 110 [0]
OF, KI| T [7 1771 ? 0 0
Z(F, F T S B o ma s ma

l_ctlon “ID/TID/T|[D[T |D/T|S/T]|D/T]|D/T '[|

| 8 |9 10 11 12| 13| 14715
| sdF, 1o 1 1 0 1
PSR 1ol o 1] 0 0 1 1
C[F,,FJ]_ 011 1 7o 0 0 o |
| o[£, F, 0oJojc o 1 1 1 1]
15[F, R T [F * ¥ 0 0 0]
[_Actlon D _[D/T S | D/T |1 T,DJ_ D/T] D |
_ 6 | 17 | 18 20 21 22 |2
| SAF] [o 1 | o 1 0 1] 0
Sd|F,| 0 o 1 1 0t o 1
C[F, F; 1 | 1 1 1 0o [0 1 1
OlF, Fj| | 1 1] 1 1 1_ 1|1 1
>F,,F 0o 0 [T 1 |1
H_Actxon [D/T | D/T | D/T [D/S D/T D | D/T]|D/s

Figure 6: Decision Actions

Revised Set of Decision Actions With the abil-
ity to clustei evidence, we can determine what to do
even in very difficult decision sitnations. The initial
set of actions, decision, transformation, and stuck can
be augmented. The new set is decision, transforma-
tion by feature, transformation by order, substitution,
and combination. In transformation by feature (Tf), we
acquire additional evidence about whether a feature dis-
tinguishes alternatives. This can change Sd[F;] = 0 to
Sd[F;] = 1. Transformation by order (7o) is the corre-
sponding action for gathering order preference informa-
tion. It can transform O[F, Fj] =7 to O[F;, F;] = 0 or
O[F;, F;] = 1. If complete knowledge of the alternatives
is available, but a decision still cannot be made, a state
can be transformed by adding a new feature, either by
substitution (Su) or combination (Co).

Figure 7 contains the decision states with their ap-
propriate actions. The actions are divided into two
rows. The first row shows the actions for states with
complete evidence. The second describes actions to be
performed when some of the state information is miss-
ing. The transformations are listed with numbers that
indicate tne set of possible states you might end up in.
Note it is not possible to say exactly which of these
states will arise.

The actions presented in Figure 7 are somewhat sub-
Jective. In general, combination can be done in auy
state. It isn’t listed because other actions are often more

SR . <% | ow—hend

.

Cage 0 1 R 4 5 6 7
Sd[F, 0 1 1] o 1 1 0 |0]
’sjdﬁ,-___ R I S 0 1 0 1
ClFy, Fj] o[o 0 1} 1 1 1 0 0
OlF:, F, ? ==, 5 R s
‘> F,', F_, & ¥ £ [* k] * * 12
All Co Su | Su Co Co Su
Actions | Info D D D | D D D
Part | Tr O, | Tf1,5,8 TTf345 [Ti24 Tf6, | TI 7,
Info | 1,4 To 7, To9, | To10, | Toll, | 7,10 | 811
13,14 | 1622 | 17,18 | 19,23)
8 0 10 11 12 13 [14 T 15
sd[F| 1 T i = i g e I 1
Sd[FJ-] 1 0 0 - 0 l 0 1 1
C(F:, Fy 0 1 1 1| 0 | 0 | 0 [0 |
O[F; F; 0 0 0 0 | 1 | 1 | 1 1 7
SIF., F; N i J] 0 | 0 | 0 0 |
All Co Su Su Co | Co T Su T Su [Co
Part £9,10,7'1 Tr10,11,8 Ti 12,13, | Tf 13,15,]l T 14,15, |
— Info | To 15,21 laras | 1mp 18,19 | I
16 17 18 19 20 21 22 23
Sd[F] 0 4 1l o 1 0] 0 i
Sd[F,] 0 0 1 1 0 1 0 =
ClF,, F; 1 1 1 1 0 0 1 1
oi(r_,,l_?j 1 1 [. 1 I (A 1
>|F., F, | 0 0 0 0 11 1 1
TAlL T Co Su Su " Co Co Co | Co Co
Actions | Info 1 i D
Part | Tf 16,17, | Tf 17,10, | T1 18,19, Tf 20,13, Tf 22,13,
Info | 13,14,18 15 15 | | 141718 14,17,18

Figure 7: Revised Multi-Feature Decision Actions

appropriate; for example, substitution is more appropri-

ate

when one feature is insignificant. Decision could be

made in cases other than those listed, but they would
be precarious decisions.

3.4 Changes to Decision State

Adding a new feature potentially affects every cell in
a decision state, that is, each value Sd[F}], Sd[Fy], C[F,

Fl,

O[F, Fj|, and >|F, F;]. In combination with a new

feature, a previously insignificant one may becomes sig-
nificant (e.g., Sd[F] = 0 but Sd[FandF,.,] = 1). Less
obviously, adding a new feature can make a previously
significant one insignificant. This happens when the al-
ternatives differ so enormously on the new feature that

any

differences on the old one(s) cease to be significant.

C|F,, F;] may change if the new feature produces a con-

flict

, and O[F;, Fj] and >[F,, Fj| change by clustering

features. Within the framework of our typology, the
effects of adding a new feature are:

1

2.
3.

. to introduce a conflict where there was none
to take a side in a conflict

to join the consensus (C[F, F}, Fy] = 0) but lend
it legitimacy since Sd[Fy] = 1

. to introduce an ordering where there was none

(e.g- O[F, F]=0 but O|E(F, Fy)| - 1)

~33=

5. to change an ordering (e.g., >(F,Fj] = 1 but
>[F"’(FJka)] =0

6. to produce a change in relative significance when
adding radically divergent features.

Figure 8 shows all tlie possible actions and their ef-
fects for a single case in the typology, case 4. In this
example, tliere is enough of a difference to support a
decision on F;, but not F; and the evidence of the two
features is contradictory. Four actions are appropriate:
transformation by feature (the 0 value for Sd|F;] may
indicate insufficient evidence), transformation by order,
substitution (for F}), and combination. Note that it
is possible to return to the same state, case 4, but by
different paths. Substituting F; or combining features
transforms case 4 to case 5. But note that when case 5
was reached by combining features, one of them, F; or
Fj, actually represents the evidence of two features and
so supports a decision more strongly. (This difference

will be represented explicitly in a more complete state
table).

The Mechanics of Combining Features As men-
tioned above, combining features may produce major
changes in the decision state. However, the set of possi-
ble new states can be enumerated. Figure 9 presents the
set of possible states that can be reached by combining
a new feature with all previous states.

A

P . <

O

-CHg PN STuALAng -;
.-‘-'.
-

e e

-~ i
»

|l|l.
!
L3
cn
|1
7]
[*]

Figure 3: Singie Transitlon with Multlple Features

The first five columns of Figure 9 have the same val-
ues as the rows in previous tables. Sd|F| is the signifi-
cant difference value of the new feature; it is always 1,
indicating that the new feature discriininates the alter-
natives. Sd[F¢| is the significant difference of the com-

bined features; the values in its column are the features
that have been combined along with their possible val-

ues. C[all] shows whether there is a conflict between the
combined values and the single feature. >{Fy, Fy| de-
scribes an order between the combined feature and the
single feature. The column labeled ‘Transition’ shows
the possible transitions from that state. Finally, # indi-
cates how many significant features had been combined
to produce the F¢ feature.

Figure 9 presents the single step transitions when
adding features to states as represented in the two fea-
ture tables. We are currently working on a state tran-
sition diagram that will describe all the possible tran-
sitions in the construction of a decision between two
alternatives.

| Sd[F] | Sd[Fy] | C|F;, Fy] | O[F:, Fy] | 3[R, Fy|
0 0 0 0 .
0 0 1 0 |]
1 | o 0 0 *
1 0 1 0 A
= o . - A
1 1 1 0 ¥
1 1 1 0 i
o | o [o T 0/1
0 0 1 1 0
0 0 1 1 0
0 0 1 1 1
0 0 1 1 1
1 0 0 1 0/1
1 0 1 1 0
1 0 1 1 0|
T 0 1 1 1|
1 0 1 1 T
| I 0 1 " 0/1
1 1 1 1 0
1 1 1 1 0
1 1 1 ! 1
1 [1 1 1 1
Sd[Fy] | Sd[F,:] | Clall] | >[F.:, Fy| || Transition %
1 j0/1 | /1 ? 0000* - 0/110/10/17 | 0
T ik 1 1 ‘ 1 0010 -~ 10110 RN
1 i1 | o0/t ? 1000* — 110/10/17 1
1 | k1 N 1010 = 10110 2
1 jk 1 1 1 1010 11111 1
1 k1 | 0/1 ? 1100* —110/10/17 2
1 ik 1 1| 1 1110 11110 2
1 o/t [o/t T 7 00010/1 — 0/110/10/17 | 0
1 ki | 1 | o 00110 » 10110 1
1 k1 [1 77 00110~ 0110/17 i
1 ki [1 ¢ 00111 = 1010/17 1]
1 jk 1 1 1 00111 - 01111 1]
1 ij 1 0/1 7 10010 - 110/10/17 1
1 [k1 [1 7 "o Jiotwo-10110 2|
i jk 1 1 i 10110 » 1110/17 1]
1 | k1 | 1 | 7 10111 —1010/17 [2]
T k1 [1 1 0N 11111 14
T y 1 0/1 7 11010/1 — 110/10/17 2
1 ik 1 1 0 11110~ 11110 T2l
1 jk 1 1 7 F1i0—» 1110/ % 2 |
1 [k [17 s rii1o0/17 2|
IR T N 1111 » 11111 2]

34

Figure 9: Transitious upon Combining Features

3.5 Conclusions

We have presented 2 model of constructive decision
making. We envision a decision-maker starting with a
two-alternative, two-feature problern, then acquiring in-
formation, and perhaps adding features, under the guid-
ance of actions associated with decision types. This
model raises the intriguing possibility of controlling de-
cision making in Al programs by table lookup. Each
decision situation is first classified, then modified by
one of the associated actions. The model is not in-
tended to produce optimal solutions to complex decision
problems given complete information, but rather to ex-
plore methodologies for structuring decision problems,
performing symbolic comparisons, and reasoning about
uncertain decisions.

Other systems have viewed decision making as a con-
structive process. GODDESS, a domain independent
decision support system, constructs a hierarchical goal
representation of decision alternatives by selectively fo-
cusing the users attention on the miost crucial issuve:
[Pear] 82]. Users assign numeric values to probabili-
ties and importance, and the program propagates them
through the structure. ARIADNE does not address
the decision formulation problem, but rather empha-
sizes evaluation by using linear programming algorithms
to produce a dominance structure for the alternatives’
probabilities and utilities and by allowing the iterative
addition of alternatives [Sage 84].

Three facets of the decision typology model are par-
ticularly appealing. First, two-alternative, two-feature
decisions can be characterized according to the dimen-
sions of the decision without requiring an underlying
scale of comparison. Second, the typology relates ac-
tions to decision types. Finally, the model shows how
to change difficult decisions into more tractable ones us-
ing well defined transformations that explicitly identify
the possible results of actions.

Before the model is fully realized, we 1nust resolve
two issues. First, the conditions and mechanisms for
adding new alternatives must be specified as they were
for new features. We believe that alternatives can be
clustered like features, so the two-alternative, two-feature
typology might serve for multiple alternatives and fea-
tures. The second issue is to add continuous values to
the model. The binary/ternary formalism is abstract.
For most situations, this abstraction is not only accept-
able, but fully indicative of the appropriate actions.
However, it does not explicitly capture the effects of
extreme values or context. Sd[F;| indicates a disparity
between alternatives on F;, but not its magnitude. The
difference in degree of differentiation between alterna-
tives on features is captured in the O|F,,F;| diinension,
which may favor the feature that produces a great dis-
parity. This, in turn, implies that O[F;,F}] is not inde-
pendent of alternatives.

«35=

4.Classification by SemanticMatch-

ing

4.1 Introduction

Classification problem solving involves matching data
with pre-established prototypes (Clancey, 1984). Often
the match is not exact: it may be partial because some
aspects of the prototype lack matches in the data. This
paper describes another kind of partial matching and
the role it can play in classification problem solving. Se-
mantic matches hold between concepts that are linked
in characteristic ways in a semiantic network. We have
found that the degree of fit between data and a pro-
totype depends on these semantic matches. Moreover,
the likelihood of a prototype given the data (in the con-
ditional sense) depends on these matches. In another
paper we argued that degrees of belief in classification
problem solvers should be interpreted in terms of seman-
tic matches (Cohen et al. 1985). We have developed a
program called GRANT that exploits semantic match-
ing to find sources of research funding that are likely to
support particular research proposals.

4.2 GRANT

GRANT is a knowledge system that finds sources of
funding for research proposals. The user builds a repre-
sentation of a research proposal and instructs GRANT
to search for funding agencies that are likely to pro-
vide support. GRANT first constructs, then ranks, a
candidate list of agencies. An agency is added to the
candidate list if a single topic in its statement of inter-
ests is a good semantic match to a topic in the research
proposal. Semantic matches exist between topics that
are the endpoints of particular paths through a semnan-
tic network. Agencies on the candidate list are ranked
by the number of semantic matches between all the top-
ics in the proposal and all the topics in each agency’s
statenient of interests. The best-ranked agencies are
thus those that support the largest number of topics
that are semantically related to the proposal.

4.2.1 Knowledge Representation

GRANT depends ou a knowledge base (KB) of re-
search topics and a set of rules for searching it. The
latter is described in the next section. The KB is a se-
mantic network of approximately 4500 node with over
800 research topics. Figure 10 shows a fragment of
GRANT’s knowledge about the heart, cardiovascular
illness, and related topics. Nodes in the network are
defined in terms of their relationships with others; for
example, the heart is something with the purpose of
circulation, the setting of cardiovascular illness, and an

.

St e e et gttt e i ‘-—”i—r-_u—A

-
—— s
Red Blood Cell

Prysinlogical
wiem

5y
I Study =609 i it ol
e

I Study +527 | v
"t poran o

I Promate '48;t

Study 690 |- 7
o

example of an organ®. Appendix 1 lists the most com-
mon relations between topics in the GRANT KB,

The GRANT KB acts as a semantic index to fund-
ing agencies. Nodes are added to the semantic network
as necessary to define the research interests of agen-
cies. An agency is represented as a frame with slots
for stated research interests, average award size, citi-
zenship restrictions, geographic preferences, and so on.
The research-interest slot holds pointers to instances
of one or more activities that are liuked with topics in
the KB. GRANT recognizes 10 activities:

Design Educate Improve
Plan Promote Protect Study Train

For example, the agency associated with study-689
in Figure 10 is interested in funding studies of cardio-
vascular illness and the heart. GRANT’s KB currently
includes the 690 agencies that together provide most of
the research monies at the University of Massachusetts.

When GRANT's user creates a research proposal,
it is linked into the KB through its research interests
just as funding agencies are. The frames that represent

3And thus, by a plausible inference, a component-of the body.
See Section 5.

Circulation

Intervene Manag

~-36-~

N
it

T 3

Lzl

o, TR By
S

5 AFIBEr oL berogis
.
i i

Figure 10:

agencies and proposals have the same slots, illustrated
in Figure 11.

4.2.2 Search Algorithms

GRANT finds agencies to [und a research proposal
by finding paths between the nodes that represent the
proposal’s research interests and nodes associated with
agencies. A blind search of the network in Figure 10
would begin, say, at the node study-527 and extend to
its associated node cardiovascular system, then to the
associations of this node phystological-system, vascular-
system, heart, study-609 and so on, like ripples in a
pond. If a node is found that represents a research in-
terest of an agency, then a path has been established be-
tween the proposal and that agency. The GRANT KB
includes so many agencies and is so highly connected
that, on average, blind search finds 245 agencies within
4 links o” any proposal. But according to our expert, on
average 93.1% of these agencies are unlikely to fund the
proposal. For GRANT to be useful, this false-positive
rate must be reduced. One method is to avoid finding
unlikely agencies, and the other is to discard them once
they are found. These methods are discussed in turn.

oAy =i

pawny

The ABC Foundation is interested in provid-
ing both grants and direct loans in order to
help promote sexual education and to help
control sexually transmitted diseases. Funds
are available for the management and main-
tenance of clinics ...

Funding-source*4:

is-a : funding-source
title : “ABC Foundation”
descr : “... promote sexual
education and to help ...”
topic : manage*4
Manage*4:
is-a ! manage

topic-of : funding-source*4

object : clinic

subject : sexually-transmitted-disease

focus : gonorrhea herpes
venereal-disease contraceptive

purpose: control educate

Figure 11: The ABC Foundation is represented by the
frames FUNDING-SOURCE*4 and MANAGE*4

Best-first Search. One can avoid finding unlikely
agencies by pruning the pa.hs that lead to them during
search. Figure 12 shows th 'ee kinds of paths. The first is
an atomic match between the proposal and the agency:
the object of the proposed study-418 is vascular-disease,
which is also the object of study-297, a research interest
of the agency. With few exceptions an atoinic match
indicates that the agency is likely to fund the proposal.

Since the links in GRANT are directional, and searche:
proceed from proposals to agencies, the path between
the proposal and NHLBI is

study—418 P vascular -disease
297

A path endorsement is a generalization of a set of
paths, obtained by dropping intermediate nodes and
preserving only the relations. The path above is thus
an instance of a general (object, object-inverse) path en-
dorsement.

The second path in Figure 12 is a semantic match
between a proposal and an agency. The proposal wants
to study hypertension. Whereas an atomic match, rep-
resented by a path endorsement like (object, object-inverse),
guarantees that proposal and agency have a common
interest, a semantic match ensures only that the inter-
ests of the proposal and agency are somehow related.

object—inverse
—_

study-

_37=

The nature of the relationship, represented by a path
endorsement, determines the likelihood that the agency
will fund the proposal. For example, when an agency
says it funds research on vascular disease, it means that
it funds research on many or all kinds of vascular dis-
ease, ircluding hypertension. This argument holds for
agencies and topics in general: if agencies say they fund
X, they are likely to fund instances of X. By this rea-
soning, il we begin a search at a proposal and follow a
(object, isa, object-inverse) path to an agency, then the
agency is likely to fund the proposal. Any path that
is an instance of the (object, isa, object-inverse) path
endorsement is apt to find a likely agency.

Just as path endorsements mark likely paths to agen-
cies, so they mark paths to be avoided. The third path
in Figure 12 is an example. The research topic of the
proposal is anorezia and that of the agency is bulimia.
Now bulimia is an instance of an eating-disorder and
when an agency says it will fund the study of an instance
of X it usually means that it will not fund the study of
other instances of X. This agency is unlikely to fund
the study of other eating disorders such as anorexia. In
general, if a path between a proposal and an agency is
an instance of thc path endorsement (object, isa, isa-
inverse, object-inverse), then the agency is unlikely to
fund the proposal and the path should be avoided.

Path endorsements thus constrain the search for agen-
cies in GRANT. Appendix 2 lists some of GRANT’s
path endorsements. The complete set of path endorse-
ments is still only a fraction of the combinatorially pos-
sible path endorsements. Any path that has not been
classified as likely or unlikely is denoted unkrown. Best-
first search in GRANT proceeds as follows:

Assume the program starts at a proposal
and folows link /; to node n,: ;n,). If
a continuation of this path along link [, to
node n, results in a path endorsement (I;,/;)
that GRANT recognizes as pocr, then n; is
pruned from the list of nodes that GRANT
tries to expand. If (/;,/,) is a good path en-
dorsement, then GRANT will give n; prior-
ity to be expanded before any node n; found
by an unknown path (I;n;/;n;). Search from
any path longer than 4 links is terminated.

Ranking Agencies by Partial Matching. The re-
sult of best-first search is a candidate list of agencies.
Each is known to have a single research interest that
atomically or semantically matches one research inter-
est of the proposal. To the extent that the proposal
and an agency share several common research interests,
the agenry is more Fkely to fund the proposal. Thus,
GRANT ranks the candidate list of agencies by the de-
gree of overlap beiween the research interests of the
proposal and each agency. This is done by a partial

matching function based on both atomic and semantic
matching. Hayes-Roth (1978), Tversky (1977), and oth-
ers measure the degree of overlap between sets in terms
of set intersection and symmetric difference; for exam-
ple, Tversky’s contrast model (1977) calculates overlap
this way:

S(a,b) = 0f(AN B) — af(A— B) - (B - A).

The function f returns the cardinality of the set to
which it is applied. If A and B are frames, then f(A
N B} is the number of slot-value pairs shared by A and
B, and f(A — B) is the number of slot-value pairs in

A not shared by B. The parameters 8, a, and § are
set empirically; in GRANT each is 1.0. If A and B are
frames representing the research interests of a proposal
and an agency, respectively, then S(a,b) measures the
number of research topics they have in common relative
to those they do not share. Agencies for which S(a,b)
is higher . re more likely to fund the proposal.

In GRANT, (A N B) includes both atomic and se-
mantic matches. If a path between A and B contains
a single node (e.g., the first case in Fig. 12), or if the
path is an instance of a likely path endorsement (e.g.,
the second case in Fig. 3), then f(A N B) is incre-
mented. Unlikely path endorsements, such as the third
case in Figure 12, and unknown paths do not contribute
to f(A N B). The quantities f(A — B) and f(B — A)
are increased when research topics in the proposal lack
an atomic or semantic match to the agency, and vice
versa.

In summary, GRANT searches for agencies in two
stages. First it constructs a candidate list of agencies
by best-first search in a semantic network of research
topics, then it ranks the agencies on the list by their
degree of overlap with the research proposal.

4.3 Analysis of GRANT Performance

GRANT’s performance has been tested at all stages
of its development. The basic method is to run sam-
ples of proposals and coinpare the agencies selected by
GRANT with the choices of our expert. Sample sizes
have ranged between 20 and 30 proposals. We compute
many statistics for each search from a proposal, but two
are broad indicators of GRANT’s performance:

hit-rate

agencies judged good by tlie expert

false-positive rate =

Figure 12:
Paths Between Proposals and Agencies
{ Proposel ——{Agency

o PO
(Proresl

(Froposa ~

Eating
Disorder

We average these statistics over the searches from
the individual proposals in a sample.

When we first tested GRANT (Cohen et al., 1985)
its knowledge base contained approxirmately 700 nodes
and 50 agencies. We contrasted blind and best-first
search as follows: for each of 23 proposals the system
searched blindly for agencies until it reached a prede-
termined stopping criterion. O1 a.erage, blind search
found 15.1 agencies per proposal. We gave our expert
the list of agencies found for each proposal by blind
search and asked him to rank each agency as likely or
unlikely to fund the proposal. On average, only 2 agen-
cies per proposal were considered likely; that is, the
false-positive rate for blind search was (15.1 - 2)/15.1 =
86%. In contrast, best-first or path endorsement con-
strained search found on average just 2.78 agencies per
proposal, of which 1.48 were judged likely to fund the
proposal. The false-positive rate was 32%, a big im-
provement over blind search. The downside was a hit
rate of 80%, indicating that GRANT had pruned away
one likely agency in five. We have tested all subsequent
versions of GRANT this same way, nsing blind search
to find candidate agencies and an expert to rank them,

agencies judged good by GRANT and by the expert

agencies judged good by GRANT and bad by the expert
number of agencies judged good by GRANT

-38~

e P T — L. ... A .

then comparing best-first search with the expert’s rank-
ings. Table 1 shows best-first search statistics for sev-
eral versions of GRANT. Blind search statistics are not
represented; in all tests blind search had a false posi-
tive rate greater than 80%, and as the knowledge base
increased in size this figure increased dramatically.

Grant, Spring 85 (700 nodes, 50 agencies)
Hit Rate 80%
False Positive Rate 32%

Grant, Fall 85 (2,000 nodes, 200 agencies)

Hit Rate 80%
False Positive Rate 26%
Contrast Model
Hit Rate 76%
False Positive Kate 227

Grant, Winter 86 (4,500 nodes, 700 agencies)

Hit Rate 98%
False Positive Rate 61%
Contrast Model

111: Hit Rate 96.1%

111: False Positive Rate 57%

Grant, Winter 86 (4,500 nodes, 700 agencies)
Modified Path Endorsements

Ilit Rate 96.3%
False Positive Rate 55.8%
Contrast

111: Hit Rate 96.4%

111: False Positive Rate 53.4%
Table 1.

The differences between GRANT today and the ver-
sion we tested in Spring, 1985 are its size and the in-
corporation of Tversky’s contrast model for summing
the total degree of overlap between proposals and agen-
cies. The false positive rate of the early version, 32%,
decreased during the subsequeny months as the knowl-
edge base increased to 2000 nodes with 200 agencies. At
that time we introduced the contrast model, described
above, and realized a further small decrease in the false
positive rate, which was offset by a decrease in the hit
rate. In the last two months we have again more than
doubled the size of the knowledge base and more than
tripled the number of agencies from the Fall, 1985 level,
As a result, performance has decreased substantially.
The hit rate of best-first search is 98%, but the false
positive rate is 61%: the system finds virtually all tlie
agencies it should, but nearly two-thirds of the agencies
it finds are not likely to fund the proposal.

-39~

Why did the increase from Spring, 1985 to Iall, 1985
not decrease GRANT’s performance, while the latter
one did? Many factors are iuvolved. First, the density
of agencies 1s increasing. In the early version, 700 nodes
supported 50 agencies — a ratio of 14:1. In Fall, 1985,
the ratio was 10:1. The most recent knowledge base has
a ratio of 6.4:1. It is much easier to {ind many agencies
close to a proposal in GRANT s semantic net than it was
in the past. Indeed, we have evidence to suggest that
as the density of the knowledge base increases, the hit
rate goes up and the false positive rate down: An inter-
mediate versioln, of the Winter, 1986 knowledge base in-
cluded approximately 600 orphans, nodes used to define
another node but disconnected from all other ncdes. In
this version, the density of nodes per agency was 5.8:1.
There were too many agencies and too few associative
paths to differentiate good agencies from bad ones.

A second contributor to the high false positive rate
in the Winter, 1986 version is the kinds of agencies being
represented. Roughly 200 of the new agencies were for
the arts and humanities. Their descriptions of research
interests were fairly broad and gave little basis for dif-
ferentiation. Consequently, when GRANT searches in
that part of the knowledge base, its false positive rate
increases dramatically. A related problern is that in
the most recent version of GRANT, new agencies were
not represented in as much detail as old ones. Neces-
sarily, this meant viable distinctions between agencies
were lost.

The relations we use to represent agencies have not
changed appreciahly since the early version of GRANT,
but the number of things they are required to repre-
sent is greatly increased. Combined with the fact that
GRANT was devzloped to represent “hard science” top-
ics and now includes arts, humanities, and social sci-
ences, this suggests that the relations must be aug-
rmented and perhaps reworked. Tlhis also requires re-
working the set of path endorsements. In fact, an exper-
imental set of path endorsements gave somewhat better
performance for the Winter, 1986 version. The hit rate
remained very high but the false positive rate dropped

t0 55.8%. _ _
The partial matching algorithm, based on T'versky’s

contrast model, was not as effective as we had hoped in
pruning agencies based on the total degree of overlap be-
tween proposals and agencies. In general, the false pos-
itive rate can be reduced but not witliout a correspond-
ing reduction in the hit rate. The algorithm contributes
little because in most cases, a proposal shares only one
research topic with an agency. Since this overlap is usu-
ally found by semantic matching, best-first search will
continue to he the heart of GRANT’s problem-solving
method, and path endorsements will receive more atten-
tion than tuning the partial matching algorithm. The
next section describes an algorithm for learning path
endorsements.

4.4 In Prospect: Learning Path En-
dorsements

The likelihood that an agency will fund a proposal
depends on the path endorsement that characterizes
the semantic match between them. Path endorsements
as discussed above either support the proposition that
the agency will fund the proposal, or detract from it,
or their support for the proposition is unknown. In
practice, GRANT’s path endorsements are empirically
ranked into six classes: very likely, likely, maybe, un-
known, and trash. Detracting path endorsements be-
long to the class trash. The class very likely is reserved
for atomic matches. Thus, semantic matches that sup-
port the proposition that an agency will fund the pro-
posal are differentiated only by the classes ltkely and
maybe.

We have developed an algorithm to assign a contin-
uous weight to path endorsements, based on whether
they find likely agencies or false positives. The algo-
rithm learns from examples presented by a human tu-
tor. Each example is a pair of nodes for which the tutor
expects GRANT to find a seinantic match. The algo-
rithm generates a set of paths between these nodes from
GRANT’s knowledge base, and adjusts the weight of

each path to favor short paths over long ones. After
many iterations, short paths that are commonly found
between training examples have high weights, relative
to other paths.

The algorithm has been tested on small samples
of examples and it has not yet been integrated with
GRANT. In prospect, however, its principle advantage
is that it learns the empirical worth of path endorse-
ments, in contrast to our a priori efforts to categorize
path endorsements as likely or maybe. Kjeldsen (1986)
describes the algorithm in detail.

Two other extensions to GRANT should be men-
tioned. First, we have developed an “empty” version
and will be experimenting with semantic matching in
other domains. Second, we are generalizing the infer-
ence rule that underlies GRANT — “if an agency is in-
terested in X then they will be interested in Y = R(X)”
— to a logic for plausible inference in associative knowl-
edge bases. This project is discussed in the next section.

4.5 Appendix 1

Relations for funding agencies:

1. The TITLE slot should contain a text string with full
title that will include the Parent Agency, Department,
and Program Name.

2. The UNIQUE- ID slot should contain a text string that
is the unique number assigned by the Catalogue of Fed-
eral Domestic Assistance (CFDA).

3. The FUNDING-TYPE slot should contain the type of
funding that is available, e.g., project-grant, large-grant,
small-grant, direct-loan, fellowship, or scholarship.

4. The CONTACT slot should contain the name, address,
and phone number of the person to contact for more
inforination and applications.

5. The DEADLINES slot should contain the application
and renewal deadlines for the prograin.

6. The DESCRIPTION slot should contain the abstract
that is provided by the agency and describes their in-
terests and motivations.

7. The TOPIC slot should contain one or more instaices
of the STUDY, MANACGE, EDUCATE, or ENGINEER

frames.

8. The PURPOSE slot is optional for the top-level of a
funding-source frame since it might be present in one
of the values for the T OPIC slot.

Relations for defining research interests:

1. The OBIECT slot contain the person, place, process,
or thing that is being studied.

2. The SUBJECT slot contain the particular filed of study
that is to be applied to the object.

3. The FocuUs slot should contain the particular aspect
of the subject that is being considered.

4. The DV slot should contain the object that is being
studied.

5. The Iv slot should contain the variables that whose
effect npon the dependent variable are being studied.

6. The RV slot should contain one or more variables that
are being studied.

7. The PURPOSE slot should contain the overall goal of
the funding source.

8. The WHO-FOR slot should contain an instance of a
social-group that will benefit from the proposed re-
search and funding.

9. The SETTING slot shonld contain the place in which
the object will be studied.

I . S PG

10. The LOCATION slot should contain a geographical place

to which funding is restricted.

Relations for organizing knowledge in GRANT’s knowledge
base:

1. The CAUSES slot should contain a concept that has a
causal association with the node.

2. The EFFECTS slot is used to represent relationships
that are not necessarily causal but nonetheless present.

3. The HAS- COMPONENT slot should contain those things
that make up the node. For example, one could say
that a earthquake has-compcnent shock-wave.

4. The HAS-MECHANISM slot is used to represent those
processes that a concept might have. For example a
seismology has-mechanism seismometer.

5. The HAS-PURPOSE slot is used to hold an instance of
an action. For example, a seismometer has-purpose
measure, with the object of the measure being shock-
wave.

4.6 Appendix 2

Path Endorsements for the Knowledge Base i
the rule set that is used in a bottom-up data driven search
from proposal to funding source. Many of these traversal
rules are effectively used to prune the number of potential
nodes to expand. A SUCCESS-NODF is any node that can
be found as a value for wither the TOPIC or PURPOSE slot
of a funding-source.

e The class SELF has 1 traversal rule

- Self - basically an identity rule for paths of length
0

e The class VERY-LIKELY includes 7 path endorsements,
all atomic matches. For example,
X subject— Y— subject-of—» SUCCESS-NODE
X— focus— Y— focus-of— SUCCES3-NODE
e The class LIKELY has over 50 path endorsements rep-

resenting semantic matches between a proposal and au
agency that is likely to fund it. For example,

— X subject— Y— isa— Z- subject-of » SUCCESS-

NODE
X— subject— Y— component-of— Z— focus-
of » SUCCESS-NODE

X— done-by— Y— does— object-of — SUCCESS-

NODE

o The class MAYBE has 18 path endorsements. These

-41-

represent semantic matches between a proposal and
funding agencies that are somewhat less likely to fund
the research, for example:

—~ X— focus— Y— subject-of— Z— subject-of—
SUCCESS-NODE
- X— object— Y— focus-of —» Z— subject-of - SUCCESS-
NODE
- X— object— Y— object-of— Z— focus-of + SUCCESS-
NODE

The class UNKNOWN accepts any path less than 6 links
long

The class of UNUSAELE pattk unes GRANT’s search.
Among these path- are any t .t contain a node with
an extremely high branching factor (e.g., science, ed-
ucation). Specific pathways of the kind listed above
include

—~ STEP*— isa— example— Y

— STEP*— subfield-of— has-subfield— Y
NOT(new-investigator)— STEP*— new-investigator

- NOT(minority-student)— STEP*- - minority-student

X— object— Y— subject-ol— Z- » focus-of » SUCCESS-
NODE

- X— rv— Y— dv-of— SUCCE3S-NODE
X— subject— Y— isa— Z— dv-o7 - SUCCESS-

NODE

5. Plausible Inference

This research is concerned with the formal underpin-
nings of common sense plaw Lie infcrence, the ability
to give plausible answers to arbitrary questions from
a very large knowl :dge base of associated statements.
The goal is to find one or more answers to a question
by consulting the kncwledge base, and to say which of
the answers are most credible. This has been a goal of
Al since its earliest days (McCarthy, 1958, 1968), and
is now seeing a resurgence (Collins, 1978a,b; Lenat et
al, 1986). Tlie motivation for such work cornes fiom the
increasing realization that powerful Al programs will
depend on very large knowledge bases. It will be neces-
sary for the system to use the Lnowledge base to answer
questions that were not anticipated at the time of its
construction. To handle both the broad ranging nature
of possible queries, and to make usc of large amounts
of knowledge in an efficient manncr, it is expected that
the use of hcuristics, or plausible inference rules, as well

as traditional truth-preserving on vill be necessary.

Our research is directed by these concerns, as well as by
a desire to bring & fermalism to plausible reasoning sim-
ilar to that enjoyed by deductive jogic, so that .osters
using plausible reasoning need nct have the: s nantics
established on a case-by-case, ad hoc basis.

The most important question to be answered ubont
plausible inference is how to judge its credibility. Sinee
plausible inference need not be truth-preserving, some
other semantic property besides truth must be the basis
of judgments of credibility. We propose to develop a
semantics for common sense plausible inference based
on the associations that hold betwecn the antecedents
and consequents of inferences. Our approach is strongly
motivated by evidence-based control: the credibilit, of
a statemrent is represented by reasons why it may be
false, reasons that can be used to control backtracking
and retraction of plausible but false inferences.

Plausibie inferences, unlike deductive inferences, need
not be truth-preserving. The distinction is clear in a
contrast between two rules of inference, mnodus ponens
and abduction:

Modus ponens is truth-preserving: if A - B and A
are true. B cannot be false. Abduction is arule of plau-
sible inference because A is a plausible conclusion given
A — B and B, but this conclusion is not guaranteed to
be true, as the conclusion B is in modus ponens.

Since rules of plausibie inference do ot make guar-
antees about the truth values of their conclusions, how
are we to assess the credibility of conclusions of plausible
inference? In the deductive case we associate credibil-
ity with the semantic property truth: true statements
are credible, false statements are not. ‘What semantic
property of conclusions derived by plausible inference
will be associated with credibility? We could use truth,
since some conclnsions of plausible inference lrave truth
values. The proolem is that rules of plausible infereice
make no guarantees about these truth values, as rules of
deductive iuference do. So the question remains: What
properties of conclusions are preserved by rules of plau-
sible inference and are the basis for judgments of credi-
bility?

Truth is not the semantic property we seek to pre-
serve in plausible inference. This is because of our ai’
ing interest in uncertainty, the state of not knowing
whether a proposition is true or false. Many attempts
have been made to modify deductive logic to repre-
sent uncertainty, including modal logics, 3-valued log-
ics, nonmonotonic logics, fuzzy logics, and probabilistic
logic (Turner, 1984, Zadeh, 1975; Nilsson, 1984) Some
of these approaches “sequester” nncertainty by intro-
ducing a new argument that represents the uncertainty
but is itself true or false. Modal logics do this. Other
approaches augment the valt s true and false; for exani-
ple, three-valned logics add the value “unknown.” and

=

fuzzy logics introduce numeric argume;its. Nomnimono-
tonic logics go further and replace the notion of truth
with one of support. Nonmonotonic formulations differ:
i McDermott and Doyle’s version, the notion of truth
is generalized to support and falsity to lack of support,

(McDermott ard Doyle, 1980).

Although uncertain statements are neither tru- nor
false one can say a great deal more about themr. F .en-
sions to logic, however, say little. With the possible ex-
ception of nonmonotonic logic and dependency-directed
backtracking, none of the extensions to logic enable us
to say why we are uncertain and what we might do
about it (de Kleer, et al. 1977). Shortly, we will dis-
cuss an alternative approach, but first we must address
another common paradigm in Al for plausible inference
and explain why we are avoiding it.

Much of the Al community favors probabilistic rep-
resentacions of uncertainty. We believe that, with one
exception, the semantics of these representations are
opaque. The exception is when the probabilities are
relative frequenc:ss, combined by Bayes’ theorem. This
case is akin to deductive inference in that a semrantic
property (relative frequency) is guaranteed to be pre-
served by a rnle of inference (Bayes’ theorem). Just
as we associated credibility with truth in deductive in-
ference, we can associate it with relative frequency in
probabilistic inference. In both cases, we can guarantee
that the credibility of a conclusion can be unambigu-
onsly determined. Unfortu -tely, the numbers used ir
knowledge systerns are not relative frequencies. Until
we know what they represent, we cannot know whether
their intent or meaning is preserved by the functions
that are used to combine them. The plethora of com-
bining functions discussed in the Al literature suggests
that ao common interpretation of degrees of belief is
available (Duda and lart, 1976; Pearl, 1982: Shafer,
1976).

So we are led back to the question, if truth or relative
frequency are not the basis of credibility when reasoning
under uncertainty, what is? Whet properties of state-
ments determine their credibility, and can we guarantee
that these properties are preserved by inference rules?
In Section 4 we saw that the credibility of iuferences
depends on the semantic associations on which they are
based. For example, if a researcher is interested in VLS
layout, and a funding agency is interested in electronics,
the fit between thein is good and the agency is apt to
fund the proposal. The seinantic association bet'veen
electronics and VLSI is “has-subfield,” and it is the ba-
sis of this plausible inference:

interested-in(agency, electronics)
has-subfield (electronics, VLSI)

interested-in(agency, VLSH)

|

.

In brief, degree of fit between two objects, X and Y,
was defined to mean that some rule of plausible infer-
ence could be invoked to conclude interested-in{agency,
Y) given interested-in(agency, X).

The GRANT system {Section 4) sets the stage for
the current research. Tt is the first step toward a cour-
mon sense plausible inference system as defined above
— a program that answers arbitrary questions from a
large, associative knowledge base. But GRANT does
not, in fact, answer arbitrary questions. It answers the
single question, “If a funding agency is interested in X,
will it be interested in Y?" It can be generalized to a
common sense plausible inference system as follows:

1. Assume that all questions are about properties
of objects; for example, “Does Fido have fur,”
or “Is coughing caused-by bronchitis.” Abbreviate
such questions R{0;,0;)7; for example, caused-
hy(coughing,bronchitis)?.

2. The answer to R{0;,02)7 is yes if the knowledge
base contains O, and O, connected by R. The an-
swer is plausible if there is a rule of plausible in-
ference of the form

Q(03,0,)?

R{05,01)

R{0,,0,)
and Q(Os, 03)7 is plausible. For example, imagine ask-
ing a system, “Are gin-and-tonics intoxicating?” or, has-
effect(zin-and-tonic, intoxication)? Assume that the ob-
jects gin-and-tonic and intoxication are not linked by
has-effect in the knowledge base. The question can be
answered, however, by plausible inference using the rule

has-component(x,y)?
haszeffect(yiz)

has-effect(x,z)

and the knowledge that gin-and-tonics contain alcohol
and alcohol is intoxicating:

has-component{gin-and-tonic,alcohol)?
has-effect(alcohol,intoxication)

has-effect(gin-and-tonic,intoxication)

Property inheritance in frame systems is a special
case of this kind of inference. The rule for property
inheritance is

isa{X,Y)
R(Y,Z)

R(X,Z)

<=

where R is any relation. For example, isa{collie,dog)
and part-of(dog,fur) implies part-of{collie,fur). The ap-
proach we propose here allows us to infer the answers
to questions based on semantic associations other than
isa. Thus, the approach unifies several kinds of plau-
sible inference, including causal inference {Weiss et al,
1977).

The model of plausible inference is not complete,
however, since it lacks statements about the credibility
of inferences drawn by plausible inference rules. Obvi-

ously, do not intend to include rules that draw er-
ror - mclusions, but credibility is not guaranteed,
as logic, by plausible inference. We discussed

how our rules implement a notion of credibility based
on degree of fit, but this still does not guarantee credi-
bility. We know of two general approaches to this prob-
lem. One is to attach to each conclusion a set of coni-
tions that, if inet, would increase its credibility. Collins,

who developed this idea, calls these certainty conditions

{Collins, 1978b). The other is to attach a set of con-
ditions that, if met, would decrease credibility. We
have called these negative endorsements (Cohen, 1984).
From the standpoint of control, certainty conditions can
guide a system to increase its belief and negative en-
dorsements can help a system recover from errorful con-
clusions by pointing to reasons a conclusion might he
wrong. Obviously, both are required for evidence-based
control.

Given a set of rules of plausible inference, with rea-
sons to believe and disbelieve their conclusions, we can
engage in a range of common sense plausible inference
tasks. Our proposed work thus involves several stages:

o Develop common sense plausible inference rules.
These are based on semantic associations, so clearly
we need a set of associations at the outset. We be-
gan with the associations in GRANT’s knowledge
base. Next, we generated all combinations of as-
sociations of the form

AI (xvy)
AZ(YaZ)

Ay(x,2)

These can be filtered by case-semantic consider-
ations: y :nust be a particular kind of object to
fill the A, case of x, and z is also restricted by its
relation to y. In many cases, though, z will not
fill the A, case of x, and so a potential rule can
be filtered out. Even with this filtering, GRANT’s
associations generated about 600 rules of plausible
inference.

ey

The rules are further pruned by automatically gen-
erating, from GRANT’s knowledge base, exam-
ples of inferences made by the rules. Thus we can
select empirically a set of rules that make a high
proportion of truly plausible inferences.

Endorse the rules. Given these rules it remains
to specify the conditions under which they are
more or less likely to generate plausible conclu-
sions. This work remains to be done.

o Test the rules. Recently, Cohen et al. (1985)
tested GRANT by comparing its performance again
that of an expert. The same approach will be used
to test our common sense plausible inference sys-
tem both in the GRANT demain, for which we
have a very large associative knowledge base, and
in other associative domains such as causal rea-
soning.

Further extensions involve generalizing rules of plau-
sible inference to include conjunctions, negations, ani
quantification. It will probably be easy to make theve
extensions given the propositional form of the rules as
shown above, However, the inference mechanisin that
underlies GRANT is a tightly-controlled spreading ac-
tivation. This has several advantages that are discussed
in Cohen et al. (1985), so we want to maintain this ap-
proach in our proposed work. We currently know how to
model the plausible inference rules above as spreading
activation, but we are not sure how to extend this ap-
proach when the rules include conjunctions, negations,
and quantifiers.

The result of this work will be a set of rules of in-
ference whose plausibility for the GRANT knowledge
base has been discovered empirically and confirmed by
comparison with expert judgment. We hope, however,
to go beyond this result to explore the reasons WII'Y
the rules discovered are plausible, in what situations
they would not be plausible, etc. To this end, we plan
to extend our work on plausible reasoning to domains
that already have algorithmic solutions {e.g. deadlock
prevention in operating systems). The use of an algo-
rithmic solution as a foil for plausible ones will aid in
the discovery of formal characterizations of the nature
of plausible inference rules.

REFERENCES

[1] Bonisonne, P. 1985. Reasoning with uncertainty
in expert systems. International Journal of Man-
Machine Studies, 22:3.

[2] Clancey, W.S., 1984. Classification problem solv-
ing. Proceedings of the AAAI p.49.

(3] Clancey, W. 1983. The advantages of abstract con-
trol kinowledge in expert systems design. In Pro-
ceedings of the Third National Conference on Arti-
ficial Intelligence.

[4] Cohen, P. and Stanhope, P. 1986. Finding research
funds with the GRANT systein. Proc. 6th Inter-
national Workshop on Ezpert Systems and Their
Applications, April 28-30, 1986, Avignon, France.

Cohen, P. , Davis, A. , Day, D. , Greenberg, M. ,
Kjeldsen, R. , Lander, S. , and Loiselle, C. 1985.
Representativeness and Uncertainty in Classifica-
tion Systems Al Magazine, 6(3), 136-149.

[5

Cohen, P. and Gruber, T. 1985. Reasoning about
uncertainty: A knowledge representation perspec-
tive. Pergamon Infotech State of the Art Report.

(6

Colien, P. 1985. Ileuristic reasoning about uncer-
tainty: An Al approach. London: Pitman Ad-
vanced Publishing. London.

-3

Cohen, P. 1984. Progress Report on the Theory of
Endorsements: A Heuristic Approach to Reasoning
About Uncertainty. COINS Technical Report 84-
15.

(8

[9] Cohen, P. and Grinberg, M. 1985. A theory of
heuristic reasoning about uncertainty. The Al Mag-
azine. Summer, 1983,

[10] Cohen, P., and Feigenbaum, E. 1982. The Hand-
book of Artificial Intelligence. Volume 3. Los Al-
tos, CA:Williamn I. Kaufmann, Inc.

[11] Collins, A. 1978a. Fragments of a theory of human
plausible reasoning. (D. Waltz, Ed.) Theoretical
Issues in Natural Language Processing. Urbana,
1L: University of Illinois.

[12] Collins, A. 1978b. Human plausible reasoning. Cain-
briuge, MA: Bolt, Beranek and Newman, Inc., Re-
port No. 3810.

[13] Davis, R. 1985. Interactive transfer of expertise.
In Rule-based ezpert systems, B. Buchanan and E.
Shortliffe, (Eds.) Addison-Wesley.

—y

. 2

B S it s o

[14]

[15]

[16]

(18]

[19]

[20]

(21]

22]

23]

[24]

(23]

126]

de Kleer, Johan; Doyle, Jon; Steele, Guy L., Jr.;
Sussman, Gerald Jay, 1977. AMORD: Explicit Con-
trol of Reasoning.Proc. Symposium on Artificial
Intelligence and Programming Languages, SIGPLAN
Notices 12(8), and SIGART Newsletter, 64, 116-
125.

Doyle, J., 1979. A truth maintenance system. Ar-
tificial Intelligence, 13, 81-132.

Duda, R. O. , Hart, P. E. , and Nilsson, N. 1976.
Subjective Bayesian methods for rule-based infer-
ence systems. Technical note 124, Al Center, SRI
International, Menlo Park, CA.

Hayes-Roth, B. 1985. A blackboard architecture
for control. Artificial Intelligence, Vol. 26, pp.
251-321.

Hayes-Roth, F., 1978. The role of partial and best
matches in knowledge systems. Pattern Directed
Inference Systems, Waterman, D., [layes-Roth, D.,
and Lenat, D. (Eds). Academic Press.

Hayes-Roth, F. and Lesser, V. 1977. Focus of at-
tention in the Hearsay-1I speech understanding sys-
tem. Proceedings of the Fifth International Joint
Conference on Artificial Intelligence.

Howe, A., Cohen, P. Comparing alternatives in de-
cision making. EKSL Memo, University of Mas-
sachusetts, January 1986.

Kahneman, D. and Tversky, A. 1982. Judgment
under uncertainty; heuristics and biases. Judgment
under uncertainty, heuristics and biases, D. Kah-
neman, P. Slovic, A. Tversky (Eds.) Cambridge:
Cambridge University Press.

Kjeldsen, Rick, 1986. Learning traversal rules for
semantic nets. EKSL Working Paper.

Lenat, Doug; Prakash, Mayank; and Shepherd, Mary
CYC: Using Common Sense Knowledge to Over-
come Brittleness and Knowledge Acquisition Bot-
tlenecks. Al Magazine, 6(4), 65-85.

McCarthy, John, 1958. Mechanization of Thought
Processes. Proc. Symposium, National Physics
Laboratory, 1, 77-84, London.

McCarthy, John, 1968. Programs with Common
Sense. Semantic Information Processing, 403-418,
edited by M. Minsky, Cambridge, MA: The MIT

Press.

McDermote, D. and Doyle, J. Non-m~onotonic Logic
1. Artificial Intelligence 18, 27-39.

45~

(27]

28]

(29]

[30]

31)

[32]

33

(34]

(35]

(36]

[37]

(38]

(39]

[40]

Nilsson, Nils J. , 1984. Probabilistic Logic. SRI
Al Center Technical Note 321, SRI International,
Menlo Park, CA.

Patel, V. and Groen, G. 1986. Knowledge based
solution strategies in medical reasoning. Cognitive
Sctence, Vol. 10, pp. 91-116.

Payne, J., Braunstein, M., Carroll, J. Exploring
predecisional behavior: an a'ternative approach to
decision research. Organtzational Behavior and Hu-
man Performance, 1978, Vol.22, pp. 17-44.

Pearl, J., Leal, A., Saleh, J. GODDESS: a goal-
dirested decision structuring system. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence, 1982, Vol.4, pp. 250-262.

Pearl, J. 1982, Reverend Bayes on Inference En-
gines: a Distributed Hierarchical Approach. Pro-
ceedings of the National Conference on Artificial
Intelligence, Pittsburgh, PA, 133-136.

Sage, A. & White, C. ARIADNE: a knowledge-
based interactive system for planning and decision
support. IEFEE Transactions on Systems, Man,
and Cybernetics, 1984, Vol.14, pp. 35-47.

Shafer, G. 1976. A Mathematical Theory of Fui-
dence. Princeton: Princeton University Press.

Shortliffe, E. and Buchanan, B. 1975. A model of
inexact reasoning in medicine. Mathematical Bio-
sciences, Vol. 23, pp. 351-379.

Svenson, O. Process descriptions of decision mak-
ing. Organizational Behavior and Human Perfor-
mance, 1979, Vol.23, pp. 86-112.

Szolovits, P. and Pauker, S.G. 1978. Categorical
and Probabilistic Reasoning in Medical Diagnosis.
Artificial Intelligence, V.11, pp. 115-144

Turner, Raymond, 1984. Logics for Artificial In-
telligence. Chichester: Ellis Howard Limited.

Weiss, S. , Kulikowski, C. , and Safir, A. 1977. A
model-based consultation system for the long-term
management of glaucoma. IJCAJ 5, 826-832.

Wesley, L.P. 1983. Reasoning about control: the
investigation of an evidential approach. Proceed-
ings IJCAI-83, pp. 203-206.

Zadeh, L.A. 1975. Fuzzy logic and approximate
reasoning, Synthese, Vol. 30, pp. 4107-428,

[- e

e

~

PROGRESS IN REASONING
WITH INCOMPLETE AND UNCERTAIN INFORMATION*

Part [: Uncertainty Calculi: How Many, When, and Why?
Part II: A Hierarchical Model Paradigm for Reasoning by Analogy
Part III: Theories of Non-Monotonic Reasnning and Reason Maintenance

Piero P. Bonissone, Gilbert B. Porter III, Allen L. Brown, Jr.
General Electric Company
Corporate Research and Development
P.O. Box 8
Schenectady, New York 12301

ABSTRACT

This paper summarizes our research etforts in the area of
Reasoning with Incomplete and Uncertain Information, and
is organized into three parts covering reasoning with uncer-
tainty, reasoning by analogy, and reasoning with incom-
pleteness. Part I, entitled Uncertainty Calculi: How Many,
When, and Why?, is a collection of two papers describing the
evolution of an architecture for reasoning with uncertainty.
The first paper of this collection, entitled Selecting Uncer-
tainty Caleuli and Granularity: An Experiment in Trading-off
Precision and Complexity, describes the experiments that led
to the derivation of equivalence classes among the
(apparently) different uncertainty calculi as a function of the
input granularity. The second paper, entitled Summarizing
and Propagating Uncertain Information with Triangular Norms,
describes an architecture for reasoning with uncertainty,
which is organized in three layers: representation, inference,
and control. The representation loyer describes the struc-
ture required to capture information used in the inference
layer and meta-information used in the control layer. The
inference layer defines uncertainty calculi based on Triangu-
lar norms (T-norms), intersection operators whose truth
tunctionality entails low computational complexity. The con-
trol layer specifies the policy selection for the different cal-
culi used in the inference layer, based on their meanings,
properties, and contextual information. Conflicts and
ignorance measurements are also proposed.

This work was partially supported by the Detense Advanced
Research Projects Agency (DARPA) contract F30602-85-C-0033.
Views and conclusions contained in this paper are those ot the
authors and should not be interpreted as representing the
otticial opinion or policy ot DARPA or the U.S. Government.

a

which is based on a multi-staged decomposition; the
knowledge representation scheme which uses a hierarchy of
models that are ordered by complexity; the search strategy
for dynamically creating a domain model for the current
goal, and the global control method for forming an analogy.
The supporting model paradigm is then described in detail
and a tew preliminary results are noted.

Part HI, entitled Theories of Non-Monotonic Reasoning and
Reason Maintenance, is a collection of two papers describing
the evolution of the theory and the algorithm tor reasoning
with incomplete information. The first paper of this collec-
tion, entitted Modal Propositional Semantics for Reason Mainte-
mnee Systems, detines a propositional dynamic logic ot
derivation (PDLD). PDLD is a specification logic in which
to express declarative control. This is achieved by character-
izing the mental states ot a reasoning agent attempting to
reason with respect to some logic theory. The second
paper, entitted Reason Maintenance from a Lattice-Theoretic
Point of View, provides a mathematical framework (lattice) in
which assumption-based justifications (ATMS) and non-
monotonic justifications can be directly and transparently
described. From this formulation it is possible to derive
algorithms that support efficient revision of beliets, as a rea-
soning agent changes its assumptions and/or its constraints
on beliets.

s

Part I: Uncertainty Calculi: How Many, When, and Why?
Table of Contents

Selecting Uncertainty Calculi and Granularity:
An Experiment in Trading-off Precision and Complexity

L. Introduction
2. Aggregation Operators
2.1 Conjunction and Propagation Using Triangular Norms
2.2 Disjunction U:ing Triangular Conorms
2.3 Relationships 8etween T-norms and T-conorms
2.4 Negation Operators and Calculi of Uncertainty
2.5 Families ot T norms and T-conorms
3. Linguistic Variables Defined on the Interval [0,1]
3.1 Example of a Term Set of Linguistic Probabilities
+. Description of the Experiments and Required Techniques
+.1 The First Experiment
4.2 The Second Experiment
4.3 Computational Techniques
5. Experiment Results and Analysis
5.1 Tabulated Results
5.2 Analysis of the Results of the Experiment
5.3 Meaning of T;, T,, T,
5.4 Meaning of T (a,b,-0.5) and Tq.(a,b,1)
6. Conclusions
6.1 Summary of the Results
6.2 Impact of the Results to Expert System Technology
7. References
8 Appendix: Properties of T-Norm Operators

Summarizing and Propagating Uncertain Information
with Triangular Norms

L. Introduction to Reasoning with Uncertainty
1.1 Three I ayers Organization
1.2 Desiderata for Reasoning with Uncertainty
- Representation Layer

[

2.1 Representing Uncertainty Information and Meta-Information

2.2 Detining Input Granularity for Numerically Valued Slots

3. Inference Laver

3.1 Detining the Uncertainty Calculi

3.2 Parametrized Families of T-norms

3.3 Equivalence Classes Among T-norms
. Control Laver

4.1 Selecting Uncertainty Calculj

+.2 Measuring lgnorance and Consistency
. Conclusions
6. Reterences

4

"1

47—

A

Part IIl: MONAD: A Hierarchical Model Paradigm
for Reasoning by Analogy

Table of Contents

1. Introduction
2. Philosophy
2.1 Motivation
2.2 The Problem Solving Strategy
2.3 Knowledge Representation
2.4 Search Strategy - Forming a Local Problem Model
2.5 Global Control - Finding Known Solutions
3. A Structured Model Representation Paradigm
4. Similarity - Forming an Analogy
5. Temporal Deductive Maintenance
6. Status
7. Results

Part 111: Theories of Non-Monotonic Reasoning
and Reason Maintenance

Table of Contents
Modal Propositional Semantics for Reason Maintenance Systems

1. Introduction

2. Syntax

3. Semantics

4. A Complete Axiomatisation of PDLD
5. Descriptive power

5.1 General Considerations on Monotonic Theories
5.2 Specifying Breadth-first Search
5.3 Finite Reasoning Agents

5.4 Non-monotonic Theories
. Conclusions
. Reterences

~1 o

Reason Maintenance from a Lattice-Theoretic Point of View

. Introduction

. Reason Maintenance in a Lattice-Theoretic Framework

. Embedding ATMS and LPT in a Lattice-Theoretic Framework
3.1 Assumption-based Truth Maintenance
3.2 Logical Process Theory
3.3 Extensions to ATMS and LPT

. Conclusions

. References

w19 —

w

o

—~

“‘Aﬂ-—:k

SELECTING UNCERTAINTY CALCULI AND GRANULARITY:
AN EXPERIMENT IN TRADING-OFF PRECISION AND COMPLEXITY

Piero . Bonissone and K.S. Decker

ABSTRACT

The management of uncertainty in expert systems has
usually been left to ad hoc representations and rules of com-
binations lacking either a sound theory or clear semantics.
The obijective of this paper is to establish a theoretical basis
for defining the syntax and semantics of a small subset of
calculi of uncertainty operating on a given term set of
linguistic statements of likelihood. Each calculus is defined
by specifying a negation, a conjunction and a disjunction
operator. Families ot Triangular norms and conorms consti-
tute the most general representations of conjunction and
disjunction operators. These families provide us with a for-
malism for defining an infinite number ot different calculi of
uncertainty. The term set will define the uncertainty granu-
larity, i.e. the finest level of distinction among different
quantifications of uncertainty. This granularity will limit the
ability to differentiate between two similar operators.
Therefore, only a small finite subset ot the intinite number
of caleuli will produce notably difterent results. This result
is illustrated by two experiments where nine and eleven dif-
ferent calculi of uncertainty are used with three term sets
containing five, nine, and thirteen elements, respectively.
Finally, the use of context dependent rule set is proposed to
select the most appropriate calculus for any given situation.
Such a rule set will be relatively small since it must only
describe the selection policies for a small number of ealculi
(resulting from the analyzed trade-off between complexity
and precision).

INTRODUCTION

The aggregation of uncertain information (facts) is a
recurrent need in the reasoning process of an expert system.
Facts must be aggregated to determine the degree to which
the premise of a given rule has been satisfied, to verify the
extent to which external constraints have been met, to pro-
pagate the amount of uncertainty through the triggering ot a
given rule, to summarize the tindings provided by various
rules or knowledge sources or experts, to detect possible
inconsistencies among the various sources, and to rank dif-
terent alternatives or different goals.

In a recent survey of reasoning with uncertaintyv {1-3], it
is noted that the presence of uncertainty in reasoning sys-
tems is due to a variety of sources: the reliability ot the infor-
mation, the inherent impreaision of the representation
language in which the intormation is conveved, the
incompleteness of the information, and the agyregation or
summarization ot information trom multiple sources.

The existing approaches surveved in that study are
divided into two classc~ “wumerical and symbolic represen-
tations. The numerical approaches generally tend to impose
some restrictions upon the type and structure of the intor-
mation, e.g. mutual exclusiveness of hypotheses, condi-
tional independence of evidence, etc. These approaches
represent uncertainty as a precise quantity (scalar or inter-
val) on a given scale. They require the user or expert to
provide a precise yet consistent numerical assessment of the
uncertainty of the atomic data and of their relations. The

=48~

output produced by these systems is the result of laborious
computations, guided by well-defined calculi, and appears to
be equally precise. However, given the difticulty in con-
sistently eliciting such numerical values from the user, it is
clear that these models of uncertainty require an unrealistic
level of precision that does not actually represent a real
assessment of the uncertainty.

Models based on symbolic representations, on the other
hand, are mostly designed to handle the aspect of uncer-
tainty derived from the incompleteness of the intormation.
However, they are generally inadequate to handle the case
of fmprecise information, since they lack any measure to
quantity confidence levels.

The objective of this paper is to examine the various cal-
culi of uncertainty and to define a rationale for their selec-
tion. The number of calculi to be considered will be a func-
tion of the uncertainty granularity, i.e., the finest level of
distinction among different quantifications of uncertainty
that adequately represent the user’s discriminating percep-
tion. To accomplish this objective we will establish the
theoretical framework for defining the syntax of a small sub-
set of calculi of uncertainty operating on a given term set of
linguistic statements of likelihood.

In Section 2 of this paper, the negation, conjunction, and
disjunction operators that form the various calculi of uncer-
tainty are described in terms of their most generic represen-
tation: families of tunctions (Triangular norms and conorms)
satistying the basic axioms expected of set operations such
as intersection and union.

In Section 3, linguistic variables defined on the {0,1]
interval are interpreted as verbal probabilities and their
semantics are represented by tuzzy numbers. The term set
ot linguistic variables defines the granularitv of the confi-
dence assessment values that can be consistently expressed
by users or experts. A nine element term set is given as an
example.

Section 4 describes two experiments, consisting of
evaluating nine and eleven ditferent I-norms with the ele-
ments ot three difterent term sets containing five, nine, and
thirteen elements, respectively. A review of the techniques
required to implement the experiment is also provided. The
review covers the implementation of the extension principle
{a tormalism that enables crisply defined functions to be
evaluated with fuzzy-valued arguments) and describes
linguistic approximation (a process required to map the
result of the aggregation of two elements of the term set
back into the term set).

Section 5 shows the results of computing the closures of
selected operators on common term sets. An analysis of the
results of these experiments shows the equivalence of some
calculi ot uncertainty that produce indistinguishable results
within the granularity of a given term set. Possible interpre-
tations tor the calculi that produce notably difterent results
are suggested in the last part ot this section.

Section 6 illustrates the conclusions of this paper.

.

- - o .

"

R - o

AGGREGATION OPERATORS

According to their characteristics, there are three basic
classes of aggregation: conjunctions, trade-offs, and disjunc-
tions. Dubois and Prade [4] have shown that Triangular
norms (T-norms), averaging operators, and Triangular
conorms (T-conorms) are the most general families of binary
functions that respectively satisfy the requirements of the
conjunction, trade-off, and disjunction operators. T-norms
and T-conorms are two-place tunctions from [0,1]x[0,1] to
[0,1] that are monotonic, commutative and associative.
Their corresponding boundary conditions satisty the truth
tables of the logical AND and OR operators. Averaging
operators are symmetric and idempotent but are not associa-
tive. They do not have a corresponding logical operator
since, on the [0,1] interval, they are located between the con-
junctions and the disjunctions.

The generalizations of conjunctions and disjunctions play
a vital role in the management of uncertainty in expert sys-
tems: they are used in evaluating the satisfaction of prem-
ises, in propagating uncertainty through rule chaining, and
in consolidating the same conclusion derived trom ditterent
rules. More specitically, they provide the answers to the tol-
lowing questions:

— When the premise is composed of multiple clauses, how
can we aggregate the degree of certainty x, ot the facts
matching the clauses ot the premise? i.e., what is the
tunction T(x;, ,x,) that determines x,, the degree of
certainty of the premise?

pe

— When a rule does not represent a logical nnplication, but
rather an empirical association between premise and con-
clusion, how can we aggregate the degree of satistaction
ot the premise x, with the strength of the association s,?
i.e., what is the function G(x,,s,) that propagates the
uncertainty through the rule?

— When the same conclusion is established by multiple
rules with various degrees of certainty y,,...,y,,, how can
we aggregate these contributions into a final degree « ¢

certainty? i.e., what is the function S(y,...,4,) that con-

solidates the certainty of that conclusion?

The tollowing three subsections describe the axiomatic
definitions of the conjunction, disjunction, and negation
operators.

Conjunctior and Propagation Using Triangular Norms

The function T(a,b) aggregates the degree of certainty of
two clauses in the same premise. This function performs an
intersection operation and satisfies the conditions of a Tri-
angular norm (T-norm):

TO,0=0 [boundary]
T@,1)=T(l,a)=a [boundary]
T(@,b) = T(cd)ita =candb =d [monotonicity]
T(a,by=T(,a) [commutativity]
T, T(,c) = T(T(a,b)c) [associativity]

~4,9-

Although defined as two-place functions, the T-norms
can be used to represent the intersection of a larger number
of clauses in a premise. Because of the associativity of the
T-norms, it is possible to define recursively
T(Xy.0x, X,), for xq,...x, 4 € [0,1], as:

T(xll"'lxn'xn +l) = T(T(.Y],...,,Y"),X" +l)

A special case of the conjunction is the detachment function
G(x,.5,.), which attaches a certainty measure to the conclu-
sion of a rule. This measure represents the aggregation of
the certainty value of the premise of the rule v, (indicating
the degree of fulfillment of the premise) with the strength ot
the rule s, (indicating the degree of causal implication or
empirical association of the rule). This function satisfies the
same conditions of the T-norm (although it does not need to
be commutative.)

Disjunction Using Triangular Conorms

The function Sta.b) aggregates the degree of certainty ot
the (same) conclusions derived from two rules. This
function pertorms a union operation and satisties the condi-
tions of a Triangular conorm (T-conorm}:

S(L1)y =1 {boundary]
5(0,a) = 5(a,0) = a {boundary]
S(@,b)= S dyifa =candb =d [monotonicity]
S(a,by=5(,a) fcommutativity]
S(a,S(b,c)) = S(S5(,b),c) [associativity]

A T-conorm can be extended to operate on more than
two arguments in a manner similar to the extension for the
T-norms. By using a recursive definition, based on the asso-
ciativity of the T-conorms, we can define:

5 (.1/1""1.1/711 'ym +l) N S(S (}/l""/.‘/m)/ym +l)

Relationships Between T-norms and T-conorms

For suitable negation operations N(x), such as N(x)=1-x,
T-norms T and T-conorms S are duals in the sense of the
following generalization of DeMorgan’s Law:

Sa,b)y = N(T(N(@),N(®))
T(@,b) =N(S(N(@),N(®H))

This duality implies that the extensions of the interscection
and union operators cannot be independently defined and
they should, therefore, be analyzed as DeMorgan triples
(T¢...), S(.,.), N(.)) or, for a common negation operator like
N@) = 1-a, as DeMorgan pairs (T(.,.), S(.,.)) ' Some typical
pairs of T-norms T(a,b) and their dual T-conorms S(a,b) are
the following:

1. Quinlan [32] raised a criticism regarding the usc of the mur operator,
considered an optmustie intersection operator, and the max operator,
considered a pessimistic union operator. The usce of this pair ot
operators is actually not a contradiction, since they are their
respective DeMorgan duals.

S

N 4

ctkcaintith aliatee 1

Fir—er—t el

s
@
F
r
|
:
|
?

*

Tola,b) = min (a,b)if max (a,b) = 1
0 otherwise

Ti(a,b) : max (0, a +b-1)

T, 5a,b) (a,b)[2-(a+b—ab)]

Ty(a,b) = ab

T,sab)y = (a,b)Y(a+b-ab)

Tsa br) min («,b)

These operators are ordered as follows:
T=T =T 5=T,=T,5=<T,
53=5,;=5,=5,;=5/ =5

An analysis of their propertics can be found elsewhere [5].
The Appendix provides a summary of such properties.

Notice that any T-norm T(a,b) and any T-conorm S(c,b)
are bounded by:

Tola,b) = T(a,b) = T ,b)
S3(a,b) = S(u,b) = Sy ,b)

This set of boundaries implies that the averaging operators,
used to represent trade-otfs are located between the MIN
operator T (upper bound of T-norms) and the MAX opera-
tor 55 (lower bound of T-conorms). These limits have a
very intuitive explanation since, if compensations are
allowed in the presence of contlicting goals, the resulting
trade-otf should lie between the most optimistic lower
bound and the most pessimistic upper bound, i.c., the
worst and best local estimates. Averaging operators are
symmetric and idempotent, but, unlike T-norms and T-
conorms, are not associative. A detailed description of
averaging operators can be found elsewhere [4].

Negation Operators and Calculi of Uncertainty

The selection of a T-norm, Negation operator and I-
conorm detines a particular calcrlus of uncertainty. The
axioms tor a Negation operator have been discussed by
several researchers [6-8]. The axioms are:

N -1 [boundary]
Ny =0 [boundary]
N(x) > N(y)ifx <y [strictly monotonic decreasing]
N(a)=lim N(x) [continuity]
X~
N(N@xE) = x [involution]

Bellman and Giertz [6] have shown that the above
axioms do not uniquely determine a negation operator. In
wddition to the abcve axioms they imposed a highly con-
straining symmetry condition, i.e., “...A certain change in
the truth value of u(S) of S [i.e., x] should have the same
etfect on the acceptance of “not 5 [i.e., N (x)] regardless of
the value of u(S) [i.e., x]”. Only with this (sometimes
questionable) axiom is it possible to determine uniquely
N(x) = 1 — x. Klement [9] provides an excellent summary
of equivalences among the various sets of axiomatic defini-
tions of conjunction, disjunction and negation operators.

-50-

So(u,b) nmax (a,b) it min (a,b) = 0
1 otherwise

Si(a,b) min (1,a +b)

Sis(aby = (a+b)/(1+ab)

5a(a,b) = a+b—ab

Syslaby = (a+b - 2ab)(1 - ab)

S3(a,b) max (a,b)

It is important to notice that, like intuitionistic logic,
most’ multiple-valued logics defined by selecting the three
operators (T (.,.), 5 (.,.), N(.)) disregard the exctuded middle
law and its DeMorgan’s dual law of non-contradiction. The
historic reason tor this departure from classical logic goes
back to Godel’s proof of incompleteness: if it might not be
possible to derive a true theorem from a given set of
axioms, i.e., if it is possible for a theorem to be logically
uncertain, it would then be necessary to consider at least
three logic values: frue, false, nnknown. Therefore a state-
ment could be something other than truwe or false and the
excluded middle law does not apply.

The requirements of distributivity (or idempotency)
wniquely determine the conjunction and disjunction opera-
tors to be the min (T3) and max (S;) operators [6,11]. This
DeMorgan triple, (T5,551 (), was first used in Lukasiewicz
Alepn-1 multiple-valued logics and has been widely adopted
in tuzzy logic [12-13]. Dubois and Prade [14] have shown
that the DeMorgan triple (T{,5; 1-()) satisties’ the excluded
middle but is not distributive. They have also demonstrated
that the distributivity property is mutually exclusive! with
the axiom of the excluded middle.

2. The only inultiple-valued logics that satisty the excluded middle are
thuse detined by (T(.,.), S(.,.), N(.)), where the three operators were
derived from the same generator. The additive generator of a T-norm
15 a function f that is continuous, strictly decrcasing on [0,1], and
satisfies the boundary conditions: f(0)=by= = and 1) = 0. Then
any continuous Archimedean T-norm [10) T(a,b) can be defined

Ti,b) = f* (f(a)+ f(b))
where f* is a function detined on |0,x] by
frix) = f 7 (x) for v €[0,by]
Otor v €[b,x]

and f ' 1s the inverse tunction of f. The generator of a negation
operator 15 a tunction f that is continuous, increasing and satisfics the
boundaries conditions: t{)=0 and t(l)<x. Then any negation
operator My} can be defined by:

N () -)

The T-norm will Yave the same generator if: fv) = #1)-t(v) The
T-conorm will have the same generator if derived trom the T-norm
using the DeMorgan duality condition [3,8].

3. For this triple, the common generator is Hv)=x.

4 The min and wmax operators, which form the only pair satisiving

distributivity, cannot be defined by any additive gencrator. Thus there
15 no a DeMorgan triple, based on the these two operators and a
negation operator, an which all three operators have a common
generator

PR)

T .

ey

~

In most expert systems, a common selection of functions

CON UNCTION = T(a,b) = T4{a,b) = min(a,b)
WEIGHTING = G(a,b) = T,(a b) = ab
DISJUNCTION = S(a,b) = S4(a,b) = max(a,b)
NEGATION = N(a) = 1-a

Families of T-norms and T-conorms

Sometimes it is desirable to blend some of the previcusly
described T-norm operators in order to smooth some of
their etfects. While it is always possible to generate o linear
combination of two operators, in most cases thic would
imply giving up the associativity property. However, asso-
ciativity is the most crucial property of the T-norms [10,15]
since it allows the decomposition of multiple-place functions
in terms ot two-place functions. The correct sclution is to
tind a family of T-norms that ranges over the desired opera-
tors. The proper selection of a parameter will then define
the intermediate operator with the desired effect while still
preserving associativity.

There are at least six families of T-norms T,(a,b,p) with
their dual’ T-conorms S, (a,b,p). The valiie of the subscript
x will denote the family of norms; p, the third argument of
each norm, will denote the parameter used by the
corresponding family.

Table 1
RANGES OF THE S1X PARAMETRIZED FAMILIES OF T-NORMS

T)(n,b.q) TD(a.b,a) T”(a.h,—y) Tq((n.h,p) T {ab.s) 'I‘Q”(_a,h,)\) T-norm
q a ¥ P 5 X
~ot — 00 -00 - 0 T0
1 1 |-m [4] T1

2 [T, s

d 1 - 0 - 1 TZ

0 T2s

— 0 0 . o0 | =0t T,

The vertical bars | used in Table 1 indicate the legal
ranges of each parameter. The table for the T-conorms is
identical to the above except for the header, where the tami-
lies ot T-norms are replaced by the corresponding families of
T-conorms, and the last column, where the T-norms are
replaced by their respective dual T-conorms, i.e., T, by S,
etc.

LINGUISTIC VARIABLES
DEFINED ON THE INTERVAL [0,1]

These families of norms can specify an infinite number
of calculi that operate on arguments taking real number
values on the [0,1] interval. This fine-tuwung capability

YAGER: Ty(a,b,q) = 1- MIN {1, {(1-a)7 + (I-b)T]'7} forg > 0
YAGER: Sy(a b,g) = MIN {1, (a7 + b7)'7} forg >0

DUBOIS: T; (a,b,a) = (ab)/MAX {a,b,a}

tor a € [0,1]

DUBOIS: S, (a,b,a) = fa+b-ab - MIN {a,b,(1-a)}yMAX {(1-a), (1-b),a} for a € [0,1]

HAMACHER: T, (a,b,y) = (aby/[y+(1-y)a+b-a1>7 s =g
HAMACHER: S;;(a,b,y) = [a+b+(v-2)as 1 (y-i: b} fur ;2 0
SCHWEIZER: Tg, (a,b,p) = MAL {0, (@ " +b P} 4 tor p € [-x¢,x]
SCHWEIZER: Sg.(a,b,p) = 1 - :aAX 10, [(1-a) 7 +(1-b) 7-1]} "7 for p € [-x,x]
FRANK: T, (a,b,s) = Log, [1+(="-1)(s"-1)/(s -1) | fors > 0
FRANK: Sp(a,b,s) = 1- Log, {1+ (s " -1)(s" "-1)/(s -1) | fors > 0
SUGENO: T, (a,b,A) = MAX {0, (A+1)(a+b-1) -Aab} tor A = -1
SUGENO: Sg, (a,b,A) = MIN {1, a+b-Ar.a.b} for A = -1

The above tamilies of T-norms and T-conorms are indivi-
dually described in the literature {5,15-20}.

The following table indicates the value of the parameter
for which the above families of norms reproduce the most
common T-norms {T, .., T}.

5 The Adual T-conorms are obtained from the T-norm by using the
peneratized DeMorgan’s Law with negation defined by M= 1
This negation operator, howcever, is oot unique as dlustrated by
Lowen {7

would be useful if we needed to compute, with a high
degree of precision, the results of aggregating information
characterized by very precise measures of its uncertainty.
However, when users or experts must provide these meas-
ures, an assumption of fake precision must usually be made

to satisfy the requirements of the selected calculus.

Szolovits and Pauker [21] noted that “...while people
seem quite prepared to give qualitative estimates of likeli-
hood, they are often notoriously unwilling to give precise
numerical estimates 10 outcomes.” This seems to indicate
that any scheme that relies on the user providing consistent

~51-

LY

and precise muonerical quantifications of the confidence level
ot his/her conditional or unconditional statements is bound
to fail.

It is instead rrasonable to expect the user to provide
linguwistic estimates of the likelihood of given statements.
The experts and users would be presented with a verbal
scale of certainty expressions that they could then use to
describe their degree of certainty in a given rule or piece of
evidence. Recent psychological studies have shown the
feasibility of such an approach: “...A verbal scale of proba-
bility expressions is a compromise between people’s resis-
tance to the use of numbers and the necessity to have a
common numerical scale” [22].

Linguistic probabilities offer another advantage. When
dealing with subjective assessment of probability, it has
been observed [23] that conservatism is consistently present
among the suppliers of such assessments. The subjects of
various experiments seem to stick to the original (a priori)
assessments regardless of new amount of evidence that
should cause a revision of their belief. In a recent experi-
ment [24], linguistic probabilities have been compared with
numerical probabilities to determine if the observed conser-
vatism in the belief revision was a phenomenon intrinsic in
the perception of the events or due to the tvpe of represen-
tation (i.e., numerical rather than verbal expressions). The
results indicate that people are much closer to the optimal
Bayesian revision when they are allowed to use linguistic
probabilities.

Each linguistic likelihood assessment is internally
represented by fuzzy intervals, i.e., fuzzy numbers. A fuzzy
number is a fuzzy set defined on the real line. In this case,
the membership function of a fuzzy set detined on a truth
space, i.e., the interval [0,1], could be interpreted as the
meaning of a label describing the degree of certainty in a
linguist'c manner [25-26]. During the aggregation process,
these fuzsy numbers will be modified according to given
combination rules and will generate another membership
disiributicn that could be mapped back into a linguistic term
00 e user's convenience or to maintwn closure. This pro-
cess, veterred Lo as lingistic approximation, has been exten-
sively studied [27-28] ard will be briefly reviewed in Section
+.2.

Example of a Term Set of Linguistic Probabilities
Let us consider the following term set [.,:

{impossible extremely_nnlikely very_low_chance small_chance
it_may meaning ful_chance most_likely extremely_likely certain}

Each element E, in the above term set represents a state-
ment of linguistic probability or likelihood. The semantics
of each element F, are provided by a fuzzy number N,
defined on the [0,1] interval. A fuzzy number N, can be
described by its continuous memmbership function ., (x), for
x € [0,1].

A computationally more efficient way to characterize a
fuzzy number is to use a parametric representation of its
membership function. This parametric representation [26] is
achieved by the 4-tuple (a,, b, @;, B,). The first two param-
eters indicate the interval in which the membership value is
L1.0; the third and fourth parameters indicate the left and
right width of the distribution. Linear functions are used to

14

define the slopes. Therefore, the membership iunction
(%), of the fuzzy number N, - (@,, b, a, B,) is defined
as follows:

Py (x) 0 for x < (a, -a,)
(Mo,)x-a, +«,) forx € [(a,-a,),a,]
1 for x € [a,,b,]

—_—

UB)b, +B;-x) for x € [b,.(b,+B,)]
for x > (b, +B,)

=)

Figure 1 shows the membership distribution of the fuzzy
number N, = (a b, ,«,,B,).

A

>

[~ J) S —

Figure 1. Membership Distributions of N; (a;, by, a
B

The following table indicates the semantics of the pro-
posed term set L,

TABLE 2
THE NINE ELEMENT TERM SET L,

impossible (0000)
extremely_unlikely (.01 .02 .01 .05)
very_low_clance (-1.18 .06 .05)

small_chance (.22 .36 .05 .00)
i!_nmy (.41 .58 .09 .07)
meaningful_chance (.63 .80 05 .06)
most_likely (.78 .92 .06 .05)
extremely_likely (.98 .99 .05 .01)
certain (1100)

The membership distributions of the term set elements
are illustrated in Figure 2. The values of the fuzzy interval
associated with each element in the proposed term set were
derived from an adaptation of the results of psvchological
experiments on the use of linguistic probabilities [23]. For
most of the elements in the term set, the two measures of
dispersions used by Bevth-Marom, e.g., the interquartile
range (C,:-C55) and the 80 per cent range (C-Cy)), were
used to define respectively the intervals [a,, b,] and
[(a,-«,).{b,-B,)] of each fuzzy number N, .

" o w o Lo R e cocy I)
" i
vl
L P ' A
i !] i
I J {
o u \ &
.v i 1
° R e)
. Tern-Set b

Figure 2. Membership Distributions of Elements in L,.

eirgon 2

52~

b+

Iy

DESCRIPTION OF THE tXPERIMENTS
AND REQUIRED TECHNIQUES

The First Experiment

The first experiment consists in selecting nine ditferent
T-norms that, in combination with their DeMorgan dual T-
conorms and a negation operator, define nine difterent cal-
culi of uncertainty. Three different term sets--containing
tive, nine, and thirteen elements--provide three different
levels of granularity for quantifying the uncertainty. For
each of the three term sets, the T-norms will be evaluated
on the crossproduct of the term set elements, thus generat-
ing the closure of each T-norm. Each closure will be com-
pared with the closure of the adjacent T-norm and the
number of differences will be computed. If there are no sig-
nificant ditterences, the T-norms will be considered similar
enough to be equivalent for any practical purpose. A thres-
hold value will determine the maximum percentage of
ditferences allowed among members of the same
equivalence class. This concept is analogous to the hierarch-
ical clustering technique typical of Pattera Recognition prob
lems.

Selecting the Term Sets

The term sets used to provide the different levels of granu-
larity in both experiments are: ;, L,. and L3 L, contains
seven elements, and was detined in Table 2. [, and [, con-
tain tive and thirteen elements, respectively. Their labels
and semantics are defined in the following tables:

TABLE 3
THE FIVE ELEMENT TERM SET L,

impossible (0 0 0 0)
unlikely (.01.25.01.1)

tmaybe (4.6.1.1)

likely (.75 .99 .1 .01)

certain (1100)
Table 4

THE THIRTEEN ELEMENT TERM SET L,

impossible 0000)
extremely_unlikely (.01 .02 .01 .05)
not_likely (.05 .15 .03 .03)
very_low_chance (.1.18 .06 .05)
small_chance (.22 .36 .05 .06)
it_may (.41 .58 .09 .07)
likely (.53 .69 .09 .12)
meaning ful_chance (.63 .80 .05 .06)
high_chance (.75 .87 .04 .04)
most_likely (.78 .92 .06 .05)

very_high_chance (.87 .96 .04 .03)
extremely_likely . +.99.05.01)

“

certain 1t 0)

-~53-

Selecting the T-Norms

To select the T-norms for the experiment, we first took the
three most important T-norms, i.e., T, ® T, T3, which pro-
vide the lower bound of the copulas,” an intermediate
value. and the upper bound of the T-norms. We then used
a parameterized tamily of T-norms capable ot covering the
entire spectrum between T, and T;. Our choice fell on the
family of T-norms proposed by Schweizer and Sklar, i.e.,
Ts.(a,b,p), described in Section 2.4. The selection of this
particular tamily of T-norms was due to its full coverage of
the spectrum and its numerical stability in the neighborhood
of the origin. We then selected six values of the parameter
p to probe the space between T, and T, (p € [-1,0]), and
between T, and T, (p € {0,%]). The six T-norms instantiated
from this family were: T (a,b,-0.8), Tg (a,b,-0.5), Tg(ab,-
0.3), Tg,(a,b,0... Ts (u,b,1), Ts.(a,b,2).

The selection of the parameter values was guided by the
relative location of the six T-norms within the T-norm space
bounded by T, and T,. Figure 3 describes the space of T-
norms T,(a,b) = K in the [0,1]x[0,1] universe ot axh for
K=0.25, 0.50, and 0.75. From this figure we can observe
that, for small and medium values of K, the six T-norms
instantiated from the parametric family proposed by
Schweizer and Sklar, ie., Tq (a,br, provide a well distri-
buted coverage® of the space between T, T,, and T,

The Second Experiment

The second experiment was motiva.ed by the behavior of
the triangular conorms for high values of K, as illustrated in
Figure 3. It was noted that the area of the triangular spaces
corresponding to the various Ks decreases as K increases in
value, i.e., Area = (1-K)¥2. This can be explained by the
saturation etfect that most T-norms have for low values of K
{and T-conorms for high values ot K). However, it was also

6. Ty, the lower bound of the T-norms, is rather uninteresting since its
discontinuous and extreme behavior limits its applicability.

7. A copula is a continuous 2 place function T: [0,1{%[0,1] = [0,1] that
satisties the boundary and monotonicity conditions of the T-norms
plus the following condition:

Ta,d) + T(e,b) = T{a,b) + T(c,d)
when a = ¢, b=d
Schweizer and Sklar [15] have shown that it a T-norm has an
additive gencrator, the T-norm is a copula it and only it the additive
generator is a convex function. With this more restrictive condition,
we have that any copula T(a,b) is bounded by:

Tia,b) = T(a,b) = Tiya,b)
This 1 the more tamiliar set of boundarics used tor the probability
(and tor the beliet function) of the intersection of events.

8. The nine T-norms considered in this experiment (six instances of the
Schweicer and Sklar family in addition to Ty, Ty, and Ty arc
maximally scparated at the point a=p. The coordinates of the points

in which the linc a=b interscets the six T-norms T (a,b,p) = 0.25 -

can be obtained from the expression:

a = [05(1+ (K)y ™y)~'r

The values of the coordinate a for the intersection points ot the
ninc T-norms (Tya,0), T, (a,b,—.8), Ts(a,b,-.5, Ts(a,b,—.3),
Tafa, by, Ts (a,0,.5), T; (a,b,1), Ts (a,b,2), Ty b)) with the line a=hb
are.

0250 0.342 0.400 0.4 44 0.5000.373 0.562 0.600 0.623

I .

1.0
y
8.5 :
! \xh\"\-\.. e,

1 L B S
8.0 + + + + + + + + +

8.0 8.5 1.8

X
Window 7

Figure 3. Space of T-norms Ti(a,b) = K, for K 0.25,
0.50, and 0.75.

noted that tor large values of K, most T-norms \all but T5)
seemed to converge toward T, therefore the space between
Ts.(a,b2) and T was much larger than the space between
any other T-norm. Figure 4 shows a plot of the nine T-
norms T (a,b), evaluated on the plane a=b. This fig:re
illustrates both tl.e saturation effect for small values of K
and the convergency effect for high values of K.

For the sake of completeness, a second experiment was
designed to provide a better sample of the space between
Ts.(@b2) and T;. Two more T-norms were instantiated
from the same family of T-norms, namely T: (a,b,5) and
T; (a,b,8), and added to the original nine, for a total of

1.0—

Himdnu 7
_—

Figure 4. Space of T-norms T,(x,y) plotted for x y.

eleven T-norms. The sanie three term sets used in the first
experiment were also used in this second experiment to
detine the input granularity. The objective of the second
experiment was to verify if the first experiment had over-
looked any relevant calculus requiring its own equivalence
class.

Computational Techniques

The above experiments can be performed only if some
particular computational techniques are used It is necessary
to evaluate the selected T-norms (crisply defined functions)
with the elements of the term sets (linguistic variables with
fuzzy-valued semantics). Furthermore, the result of this
evaluation must be another element of the term set. This
implies that closure must be maintained under the applica-
tion of each T-normi. The following two subsections
describe the techniques necessary to satisty these require-
ments.

The Extension Principle

The extension principle {26] allows any non-fuzzy function
to be tuzzided in the sense that it the function arguments
are made fuzzy sets, then the tunction value is also a fuzzy
set whose membership function is uniquely specified. The
extension principle states that if the scalar function, f, takes
I arguments (x;, x,, -+ X,), denoted by X and if the
membership functions of these arguments are denoted by
BI(E), (0, . . . y(x,), then

i) “SUPINF ()
3 =1

st f(X) y

where SUP and INF denote the Suprevim and Infinon
operators.

The use ot th yrmal definition entails various types of

computational dif :lties [26]. The solution to these difficul-
ties is based on the parametric representation ot the
membership distribution of a tuszy number,” i.c N,
(a,, b,a,B,), described in Section 3.1. Such a representation
allows one to describe uniformly a crisp wmber, ey,
(@,,2,,0.0) a crisp interval, e.g., (a, b 0.0) a fuzzy number,
eg. @,a,0,B) and a fuzzy interval (a, b, o, ,B,).

The adopted solution consists ot deriving the closed-form
parametric representation ot the result. This solution is a
very good approximation ot the result obtained from using
the extension principle to evaluate arithmetic tunetions with
tuzzy numbers, and has a much more limited computational
overhead. Table 5 shows the formulae providing the closed
torm solution for inverse, logarithm, addition, subtraction,
multiplication, division, and power. The scope ot each for-

9. Two restrictions are imposed on the shape of the membership
tunction ot the tuzzy number represented by this parametric
representation. normality and convevity. Al the fuzzy numbers used
to define the semantics of the proposed term sets satisty this
condition. Furthermore--except for tmpossible, the first clement of
cach term set Ly, Ly, L3, corresponding to a crisp zero--all the other
elements are positive normal convex fuzzy numbers. Thev are the only
type of tuzey numbers that torm a commutative semi-group [33f. They
do not form a group since they tack the inverse elements tor addition
and multiplication. All other tuzzy numbers cither do not satisty the
closure condition under some operation or do not satisty the
distributivity law

=54~

L

PRSP S .

Table 5

FORMULAE FOR ARITHMETIC OPERATIONS
WITH FUZZY NUMBERS

Operation Result Conditions l Formula No.
}
—i (-d.-c.8,9) alt 1)
1 RIS [[——, 3 A
B ld' ¢ d(@+8) "’ cle-y) A>0h<0 @
el (e, ¢d, e (1-e77), ¢4 (e~ 1)) i>0 (3)
log A | < (d+8) -
og og ¢, log d. log)" log [a>0 4)
m+ i (a+c, b+d, a+y, B+5) all M. f (%)
Mm—f | (a=d, b-c,a+8, B+y) all i, ()
mx f (ac, bd, ay +ca—avy, bs +dg +85) m>0d>0 7
(ad, be, da—ad+ab, —by +c8-8y) m<0,h>0 (8)
(be, ad, by—~cB+By, —da+ab—ab) m>0n<0 9
{bd, ac, —~bb6—dB~p58, ~ay—~ca+ay) m<0.a<0 (10)
W a b ad+da by+cs "
o+ f Id'c‘__d(d+6)'c(c-y) >0.A>0 (7))
a b ca-ay dB-bd - 2
[c' 4" clemy) "’ dld+) T 01 200 i
b a bs-df ay-ca 4 -
d, ¢ a+8)" clomy) A R
b a -by—-¢f —ab—da o A
lc'd' cle=y) " Td(d4s) m<0.h<0 (14)
mh [a" bY, 2t~ (a—a)7, (b+@)9** —bd] the [1,00)
a>0 s
lb‘. ads b= (b+8) Y, (a—n)d"'-a"] mell.o0)
l B<o (16)
' [ad b, 2t~ (a—a)¥* . (b+p)" *—b‘] e (0.1]
l P an
lb" a%, bd- hg)H* (a—qa)® ‘—-a‘] mel0,1]
i <o (s

where m & (a, b.a.8)and i & (c, d, y. 8)

mula is defined by its attached condition'’ on the third
column of Table 5. Table 6 shows the formulae for evaluat-
ing the minimum and maximum ot two normal convex
fuzzy numbers. All these tormulae were used in the imple-
mentation of the experiments described in Sections 4.1
and 4.2,

Linguistic Approximation

The process of linguistic approximation consists of tinding a
label whose meaning is the same or the closest (according to
some metric) to the meaning of an unlabelled membership
function generated by some computational model. Bonis-
sone [27-28] has discussed the general solution to this prob-

lem.

For our experiments, this process was simplified by the
small cardinality of the term sets. Therefore, a simplified
solution was adopted. From each element of the term set
and from the unlabelled membership function representing

10 The conditions described in the third column ot Table 5 reter to the
sign ol a tuzzy number. A tuzzy number N, = (a,, b a0 B) s
positive, .., N, - 0, ift its support 15 positive (i.c., -« Ot az0
or a-x = 01t w=0). Analogously, N; < 0 tmplics that its support 1s
negative (i.c., b+B = 0it =0 or b+ < 0if g=0).

(€]

Table 6

FORMULAE FOR MINIMUM AND MAXIMUM OPERATORS

WITH FUZZY NUMBERS

MAX (P,Q) = (max (a.c), max(b.d), I. 1)

ifh+p)>(d+8) t = (b + B) - max{b.d)
if(b+p)<(d+8) r=(d+ 8§) - max(b.d)

;] ifb>d
f(b+p)=(d+8) r={8 ifb<d
=t ifb=d

I= (¢ +a) - min(a.c)
I=(a+y) - min(a.c)
o ifa>c

-
a=y

MIN (P.Q) = (min(a.c), min(b.d), L. 1)

f(p+p)>(d+ed) r=(d+ 8) - min(b.d)
1b+B)<(d+d) r=(b+ f) - min (b.d)

ifa-a)>(c-y)
ff@a-a)<{c-y)

ifa<e
ifa=c¢

f@-a)y=(-y)

& fb>d
f(b+f)=1(d+8) r=[a ifb<d
8= fb=4d

if(a-a)>(-vy)
H@a-a)<(c-v)

1=(a+7y) - max(a.c)
L= (c+a})-maxiac)

Y ifa>c
= {n
Y=o

the result of some arithmetic operation, two features were
extracted: the first moment of the distribution and the area
under the curve. A weighted Euclidean distance, where the
weights reflected the relevance of the two parameters in
determining semantic similarity, provided the metric
required to select the element of the term set that morc
closely represented the result.

f(@a-a)=(-v) ifa<c

ifa=c¢

This process was used in the experiments described in
Sections 4.1 and 4.2 to provide closure under the application
of the various T-norms. The closure requirement is required
by any calculus of uncertainty to maintain the form and
meaning of the linguistic contidence measures throughout
the rule chaining and aggregation process.

EXPERIMENT RESULTS AND ANALYSIS

Tabulated Results

Selected results of the experiments are shown in tabular
form in Tables 7, 8, and 9. Each table illustrates the etfects
of applying T, T, and T, to the elements of a particular
term set. Because of the commutativity property of the T-
norms, the tables are symmetric.

Analysis of the Results of the Experiment

The three previous tables graphically illustrate the dif-
ferent behaviors of T;, T, and T when applied to a common
term set. As expected, T; was the strictest operator and T
was the most liberal operator. However, the interesting
aspect of the experiment was not rediscovering the behavior
of the two extremes but determining how many different
variations of behavior we had to consider from the operators
located between T and T,.

Table 7
CLOSURE OF Ty, T,, T3, ON 1,

Impossible

Unlikely

Mavbe

Likely

Certaln

[able 9
CLOSUREOF T, I,, T;, ON L,

T3

1 Impossible
Extremely Uniikely
Not Likeiy

Very lL.ow Chance
Smail Chance

It May

Likely

Meaningfui Chance
High Chance

Most Likeiy

Very High Chance
Extremely Likely
Certain

AL

UL

i

B ¥R e
i o

b b

- |
-

Table 8
CLOSURE OF T;, T,, T, ON L,

Impossible
Extremely Unlikely
“t Very Low Chance
Smali Chaiice

‘1 It May

Mie s congful Chance
Mot Likely
Extremely Likely
Cerrain

In the first experiment, the closures of seven T-norms,
bounded by T, from below and by T, from above, were
computed and compared with the closures of the two
extremes. For each of the three term sets, each element in
the closure of a given T-norm, i.e., T.(E,. E)), was com-
pared with the same elemc 1t in the closure of a different T-
norm, i.e., T (E, F). The number of ditferences tound by
moving trom one T-norm to the next was tabulated for each
term set and the results shown in Table 10. The percentages
ol the differences shown in Table 10 were computed as the

Table 10

NUMBER OF DIFFERENCES AMONG THE NINE T-NORMS
APPLIED TOL,, L,, AND L.,

Toorms
| Pure Equwatence Classe:

[™ moresta

ratio of the number ot changes divided by the cardinality ol
the closure for each term set. Since the closures were sym-
metric due to the commutativity property ot the I-norms,
the cardinality ot the closure tor a term set with o elements
was considered 1o be nor- 112, The percentage ditterences
are shown in Table T1.

By analvzing Table 10, it is evident that tor Ly, no differ
enees were found among the intermediate T-norms. There
are indeed three equivalence classes of T-norms producing

Table 11

PERCENTAGE DIFFERENCES AMONG THE NINE T-NORMS
APPLIED TO L, L,, AND L,

| Tas | '} .,J' i n 1“) |}(sn
I A.J o

] Tnoms
7| Pure Equivslence Classes

[7% Threshoia
[JRECRFINO
Wl 5% Tesha

ditferent results when applied to elements of { . These
classes of equivalence are:

T(ab),Ts(a,b,-0.8),T (a,b,0.5)
Ts (a,b,-0.3),T,a,b) Te (a,b,0.5),
Te (a,b,1),Tg.(a,b,2),T4(a,b)

From the same Table 10, we can observe that few significant
dijferences were found ameng the intermediate T-norms
when applied to elements of L,. To create equivalence
classes among the T-norms, we need to establish a thres-
hold value indicating the maximum percentage of ditfer-
ences that we are willing to tolerate among T-norms ot the
same class of equivalence. With a threshold of 7%, using
Table 11 we find five classes:

Ta,b),Ts (a,b,-0.8),
T¢ (a,b,-0.5),

Ts (a,b,-0.3),T,a,b),
Ts (a,b,0.5), T (a,b,1)

T (a.b,2),Tya,b)

With a thresholua of 15% we find three classes:
Tya,b)Ts (a,b,-08)T (a,b, 0.5),

Tg (a,b,-0.3),T,(a,b),
Tg (a,0,0.5),Tq (a,b,1)

Ty (a,b,2),Tya,b)

Finally, we can observe that for Ly a larger number of differ-
ences were found among the intermediate T-norms. Using a
threshold of 127 we find five classes of equivalence:

Tya.b),Ts n,b,-0.8),
Te (a,b,-0.5),
Tg (1,6, 0.3),Ta,b),
Te (a,0,0.5),Tg (a,b,1),Tg (a,h.2),
T, b)

In the second experiment, the closui- o v T-norms, also

bounded by T, trom below and b« 'y ti. m above, were
e 1%

computed and compared with the 1) ares of the two

extremes. For ecach of the same titce term sets, each
element in the closure of a given T-norm was compared
with the same element in the closure ot another, different
T-norm. The number of differences found by moving from
one T-norm to the next was tabulated tor each term set and
the results shown in Table 12. The percentages of the difter-
ences shown in Table 12 were computed as before. The per-
centage ditferences are shown in lable 13.

Table 12

NUMBER OF DIFFERENCES AMONG THE ELEVEN T-NORMS
APPLIED TO L,, L,, AND L.

- 8 - — —
= T, = Tas m N
[Troms b _E'“ i 2; _}J..L
[pure Fauwstence Classes oy e T‘ Tl
[s Teshor e Ty W i
B 2 Tesho l LT Tm T
o oo -

Table 13

PERCENTAGE DIFFERENCES AMONG THE ELEVEN T-NORMS
APPLIED TO L,, L,, AND L,

= %Z{ A F A

[roms "
T T s . Tasn
[Pure Equustence Classes | ke E"' }, E »3
Pl TR = Tues
7% Threshold
(I} 7~ v [1- Tow s T,= Tpon
2 Treeshoid L L —J

Il 5% Toreshold

By analyzing Table 12, 1t is again evident that tor L, no
differcnces were found among the intermediate T-norms.
The three equivalence classes of T-norms producing dit-
ferent results when applied to elements of L are:

T(a,b),Tq (a,b,—0.8),Ts (a,b,-0.5)
Tg (a,b,—0.3),T5a,b), Ty (a,b,0.5),
Te (a,b,1),Tg (a,b,2),Ts.(a,b,5),T¢ (a,b,8),Tsu,b)

~57-

Erom the same Table 12, we can still observe that few siguifi-
cant differences were found among the intermediate T-norms
when applied to elements of L,. After establishing a thres-
hold of 7% and using Table 13 we find six classes (rather
than the five obtained in the first experiment):

T(a,b)Ts (a,b,~0.8),
Tis S, =0.5),
Te (b, ~0.3),7 .2 b),
T (a,b,0.5),Ts (@b, 1), Ts (a,b,2),
Ts.(a.,b.5),
Ts (@,b,8),T3,b)

However, with a threshold of 8%, the last two classes of
equivalence collapse into one, represented by T;. This indi-
cate that, for a slightly larger threshold (8% instead of 7%)
the additional two T-norms added in the second experiment
are not significantly ditferent from Ts.

With a threshold of 15% we find three classes (the same
as in the first experiment}):

Tia,b),Te (@b, 0.8),Tq (a,b,-0.5),
Ts (a,b, 0.3),T5@.b),
Te (a,0,0.5),Ts(a,b,1).Ts (a b,2),Te, (a,b,5),Te (@b ,8), T4a ,b)

Finally, we can observe that for Ly a farger number of differ-
ences were still tound among the intermediate -norms.
Using a threshold of 12% we again lind tive classes of
equivalence:

Ty, b), T (a.b, -0.8),
Tg (a,b,-0.5),
Te (a.b, 0.3),To(a b),
Te (a,b,0.5),Te.(a b0, To (a,0.2),
Tm(u,b,5),T5L.(a,b,8),T3(n,b)

In summary, we can see that three T-norms are sutficiert to
detine the relevant calculi using the five clement term set
L,; tive T-norms are required to represent (88% of the time)
the variations in relevant calculi for the thirteen element
term set L, For the case of L, the same three T-norms
used for L, will suffice if we are willing to accept results
that might be slightly'' different 15% of the time. Other-
wise, we will have to use five T-norms, as for L5, to reduce
the number of slight differences to 8%. These results hold
for both experiments.

For any practical purpose, the three classes of
equivalence represented by T,, T, and T; more than ade-
quately represent the variations of calculi that can produce
different results when applied to elements of term sets with
at most nine elements.

The results of both experiments hold tor the T-conorms
as well. The elements of cach term set are almost sym-
metric with respect to the middle point of the seale, 0.5.
Therefore, by using the Linguistic Approximation, the clo-
sure of the negation operator can be simply computed by

11. The shight ditterence in the result implics thal sometimes the result
will be an clement of the term sct that is adjacent to the correct one.

reversing the order of the elements in each term set. Ihe
closures for the T-conorms can then be computed from the
closares of the T-norms and the elosure ot the negation
operator, using DeMorgan’s identity. The classes of
equivalence obtained for the T-norms are the same as those
obtained for their dual T-conorms.

The appropriate selection of uncertainty granularity (i.e.,
the term set cardinality) is still a matter of subjective judge-
ment. However, if we use the very well-known results on
the span of absotute judgement [29], it seems unlikely that any
expert or user could consistently quantify uncertainty using
more than nine ditferent values.

Meaning of T , P A

T;, To, and Ty were the three operators that produced
notably ditferent results tor £, and [,. A challenging task is
to establish the meaning of each T-norm, i.e., the rationale
for selecting one T-norm over the other two.

A first interpretation indicates that [, seems appropriate
to perform the intersection of lower probability bounds [30].
Similarly, T, is appropriate to represent the intersection of
upper probability bounds. T, is the elassical probabilistic
operator that assumes independence of the arguments; its
dual T-conorm, S,, is the usual additive measure for the

union.

To provide a better understanding of these T-norms, we
will paraphrase an example introduced by Zadeh [31]:

If 30% of the students in a college are engineers, and 80% of the
students are male, how many stwdents are both mule and
engineers?

Although we started with nwnerical quantifiers, the answer is 1o
longer a number, but is given by the interval [10%, 30% |

The lower bound of the answer is provided by T,]0.3,
0.8); T4(0.3, 0.8) generates its upper bound. T,(0.3, 0.8) gives
a somewhat arbitrary estimate ot the answer, based on the
independence of the two pieces of evidence.

In Figure 5, we try to describe gcomekrirall)‘ the meaning
of the three T-norms. The figure illustrates the result of
T,(0.3, 0.8), T,(0.3, 0.8), and T4(0.3, 0.8). T, captures the
notion of worst case, where the (wo arguments are con-
sidered as mutually exclusive as possible (the dimensions on
which they are measured are 1807 apart). T, captures the
notion of independence of the arguments (their dimensions
are 90° apart). T; captures the notion of best case, where one
of the arguments attempts o subsume the other one (their
dimensions are collinear, i.e., 0" apart).

Figure 5. Geometrical [nterpretation of T,(0.3, 0.8), T,(0.3,
0.8), and T4(0.3, 0.8).

~58-

Meaning of Tsc(a,b,-O.S) and TSc(a,b,l)

There are two cases in which we will need to deal with
tive calculi instead of three. In the first case, we want to
decrease the input granularity by using a term set with a
finer resolution than L, (e.g., L5). In the second case,
within the granularity provided by Ly, we want to decrease
the percentage of differences within an equivalence class by
fowering the tolerance threshold from 15% to 8%. In either
case, we must provide an interpretation for the meaning of
the two additional T-norms, i.e., Tg (a,b,-0.5) and Ty .(a,b,1).

A rather straightforward interpretation of Te.(a,b,—0.5)
and T (a,b,1) is to consider them the in! rsection operators
for pieces of evidence that exhibit milJ negative or positive
correlation, respectively. This is in contrast with [and T,
that represent the extreme cases of negative and positive
correlation, respectively.

CONCLUSIONS

Summary of the Results

In this paper we have presented a formalism to
represent any truth functional calculus of uncertainty in
terms of a selection of a negation operator and two elements
trom families of T-norms and T-conorms. Because of our
skepticism regarding the realism of the fake precision
assumption required by most existing numerical
approaches, we proposed the use of a term set that deter-
mines the finest level of specificity, i.e., the granularity, of
the measure of certainty that the user/expert can consistently
provide. The suggested semantics for the elements of the
ferm set are given by fuzzy numbers on the [0,1] interval.
The values of the tuzzy numbers were determined on the
hasis of the results of a psychological experiment aimed at
the consistent use of linguisti probabilities.

We then proceeded to perform two experiments to test
the required level of discrimination among the various cal-
culi, given a fixed uncertainty granularity. We reviewed the
techniques required to implement the experiments, such as
the extension principle (that permits the evaluation of cris-
ply defined function with fuzzy arguments), a parametric
representation of fuzzy numbers (that allows closed form
solutions for arithmetical operations), and the process of
linguistic approximation of a fuzzy number (that guarantees
closure of the term set under the various calculi of uncer-
tainty).

We computed the closure of nine and eleven T-norm
operators applied to three ditferent term sets. We analyzed
the sensitivity of each operator with respect to the granular-
ity of the elements in the terra set; and we finally deter-
mined that only three T-norms — T, T, and T, — gen-
erated sufficiently distinct results for those term sets that
contain no more than nine elements,

Impact of the Results to Expert System Technology

In our final eonclusions, we would like to establish an
explicit link between the results of this paper and the prob-
lem of reasoning with uncertainty in expert systems. In
building expert syvstems architectures three distinct layers
must be defined: representation, fuference, and control lavers.
The treatment of uncertainty in expert systems must address

-59~

each of these layers. The characterization ol uncertainty
measures as linguistic variables with fuzzy-valued semantics
and the use of a given uncertainty calculus address the
representation and inference layers, respectively. The selec-
tion of the most appropriate calculus to be used must be
addressed by the control layer.

Huowvever, in most expert systems, the control layer has
been procedurally embedded in the inference engine, thus
preventing any opportunistic and dynamic change in order-
ing inferences and in aggregating uncertainty. Usually, the
same type of aggregation operators, i.e., the same uncer-
tainty calculus, is selected a priori and is used uniformly for
any inference made by the expert system. The most recent
trend in building expert systems is moving toward having a
declarative representation for the control layer.

As an integral part of this layer, we suggest to define a
set of context dependent rules that will select the most
appropriate calculus for any given situation. Such a rule set
will be relatively small since it must describe only the selec-
tion policies for a small number of calculi. The reduced
number of calculi is the result of the analyzed trade-off
between complexity and precision. These rules will rely on
contextual information -- such as the nature, reliability, and
characteristics of the evidence sources -- as well as on the
meanings of the three or five analvzed calculi that will be
used in the inference layer.

REFERENCES

[1] Bonissone, P.P. & Tong, R.M,, (1985). Editorial: Rea-
soning with Uncertainty in Expert Systems, [nterna-
tional Journal of Man-Machine Studies, Vol. 22, No. 3,
March 1985.

[2] Bonissone, P.P. (1985). Reasoning with Uncertainty
in Expert Systems: Past, Present, and Future, KBS
Working Paper, General Electric Corporate Research
and Development Center, Schenectady, New York,
Presen.ied at the International Fuzzy Systems Associa-
tion (IFSA) 1985, Mallorca, Spain July 1-5, 1985.

[3] Bonissone, P.P. & Brown, A.L. (1985). Expanding
the Horizons of Expert Svstems To appear in the
Proceedings of the Second Interuational Conference on
Artificial Intelligence Techuologies, Expert Systems and
Knozvlalgc Euginccrmg, Ruschlikon, Switzerland, 25-26
April 1985,

[4] Dubois, D. & Prade, H. (1984). Criteria Aggregation
and Ranking of Alternatives in the Framework of
Fuzsy Set Theory, TIMS/Studies in the Muanagement Sei-
cuce,], Zimmerman, L.A. Zadeh, B.R. Gaines
(eds.), Vol. 20, pp. 209-240, Flsevier Science PPublish-
ers.

(5] Dubois, D. & Prade, H., (1982). A Class of Fuzov

Measures Based on Triangular Norms, [uternational
Journal of General Systews, Vol. 8, 1.

(6] Bellman, R. & Giertz, M., (1973). On the analytic for-
malism of the theory of fuzzy sets, Information Sci-
ences, Vol. 5, pp. 149-156.

[7] Lowen, R., (1978). On Fuzzy Complements, Liforuu-
tion Science, Vol. 14, pp. 107-113.

P . 2

L 4

(8]

(91

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

Trillas, E., (1979). Sobre funciones de negacion en la
teoria de conjuntos difusos, Stochastica, (Polytechnic
University of Barcelona, Spain), Vol. I, No.1, pp.
47-60

Kiement, E.P., (1981). Operations on Fuzzy Sets and
Fuzzy Numbers Related to Triangular Norms, Procecd-
ings of the 11th International Symposium on Multiple-
Valued Logic, IEEE Computer Society Press, pp. 218-
225, May 27-29, 1981, Oklahoma City, Oklahoma.

Ling, C-H, (1965). Representation of Associative
Functions, Publicationes Mathematicac Debrecen, Vol. 12,
pp-189-212.

Fung, LW. & Fu, K.S.,, (1975). An axiomatic
approach to rational decision-making in a fuzzy
environment, in Fuzzy sets and their applications to cog-
nitive and decision processes, Zadeh, L.A., Fu, K.S.,
Tanaka, K. and Shimura, M. (eds.), pp. 227-256,
Academic Press, New York.

Zadeh, L.A. (1965). Fuzzy Sets, Information and Con-
trol, Vol. 8, pp. 338-353.

Zadeh, L.A., (1975) Fuzzy logic and approximate rea-
soning (in memory of Grigor Moisil), Synthese, Vol. 30,
pp. 407-428.

Dubois, D. & Prade, H., (1980). New Results about
Properties and semantics of fuzzy set-theoretic opera-
tors, in Fuzzy Sets: Theory and Applications to Policy
Analysts and Information Systems, P.P. Wang & S.K.
Chang (Eds.), pp. 59-75, Plenum Press, New York.

Schweizer, B., Sklar, A. (1963). Associative Functions
and Abstract Semi-Groups, Puoblicationes Mathematicae
Debrecen, Vol. 10, pp. 69-81.

Yager, R., (1980). On a General Class of Fuzzv Con-
nectives, Fuzzy Scts and Systems, Vol. 4, pp. 235-242.

Hamacher, H, (1975). Uber logische Verknuptungen
unscharfer Aussagen und deren zugehorige
Bewertungs-tunktionen, in Progress in Cybernetics und
Systems Rescarch, Vol. II, R. Trappl & F. de P. Hanica
(Eds.), pp. 276-287, Hemisphere Pub. Corp., New
York.

Frank, M.J., (1979). On the simultancous associa-
tivity of F(x,y) and x+y-F(x,v), Aequationcs Mathemati-
cae, Vol. 19, pp. 194-226.

Sugeno, M., (1974). Theory ot Fuzzy Integrals and its
Applications, Ph. D. dissertation, Tokyo Institute of
Technology.

Sugeno, M., (1977). Fuzzy Measures and Fuzzy
Integrals: a Survey, in Fuzzy Auntomate and Decision
Processes, M.M. Gupta, G.N. Saridis & B.R. Gaines
(Eds.), pp- 89-102, North Holland, New York.

Szolovits, P. & Pauker, S5.G., (1978). Categorical and
probabilistic reasoning in medical diagnosis, Artificial
Intelligence Journal, Vol. 11, pp. 115-144

(25]

(28]

(29]

(30]

(31]

(32]

(33]

Beyth-Marom, R., (1982). Flow Probable is Probable?
A Numerical Taxonomy Translation of Verbal Proba-
bility Expressions, fournal of Forecasting, Vol. 1, Pp.
257-269.

Phillips, L. & Edwards, W. (1966). Conservatism in a
simple probability inference task, Journul of Experimen-
tal Psychology, Vol. 72, pp. 346-354.

Zimmer, A.C. (1985). The Estimation of Subjective
Probabilities vai Categorical Judgments of Uncer-
tainty, Proceediugs of the Workshop on Uncertainty and
Probability in Artificial Intelligence, pp. 217-224, UCLA,
Los Angeles, California, August 14-16, 1985.

Zadeh, L.A., (1975) The concept of a linguistic vari-
able and its application to approximate reasoning,
Part 1, Information Sciences, Vol. 8, pp. 199-249; Part II,
Information Sciences, Vol. 8, pp. 301-357; Part IH, Iufor-
nation Scicnces, Vol. 9, pp. 43-80.

Bonissone, P.P., (1980). A Fuzzy Sets Based Linguis-
tic Approach: Theory and Applications, Proceedings of
the 1980 Winter Simulation Conference, edited by T.IL.
Oren, C.M. Shub, P.F. Roth, pp. 99-111, Orlando,
December 1980. Also in Approximate Reasoning in Dect-
sion Analysts, edited by M.M. Gupta, E. Sanchez, PP
329-339, North Holland Publishing Co., New York,
1982.

Bonissone, P.P., (1979). The problem of Linguistic
Approximation in System Analysis, Ph. D. disserta-
tion, Dept. EECS, University of California, Berkeley,
1979. Also in University Microtilms International Pub-
lications #80-14,618, Ann Arbor, Michigan.

Bonissone, P.I'., (1979). A Pattern Recognition
Approach to the Problem of Linguistic Approximation
in System Analysis, Proceedings of the IEEE Interna-
tional Conference on Cybernetics and Society, pp. 793-798,
Denver, October 1979.

Miller, G. A. (1967). The Magical Number Seven Plus
or Minus Two: Some Limits on Qur Capacity for Pro-
cessing Information, in The Psychiology of Communica-
tion, Penguin Books, Inc.

Dempster, A.P. (1967). Upper and Lower Probabili-
ties Induced by a Multivalued Mapping, The Annais of
Mathematical Statistics, 38-2, pp. 325-339.

Zadeh, L.A. (1983). A Computational Approach to
Fuzzy Quantitiers in Natural Languages, Compnter &
Mathematics with Applications, Vol. 9, No. 1, pp. 149-
184.

Quinlan, J.R. (1983). INFERNO: A Cautious
Approach to Uncertain Inference, Computter Journal,
Vol. 26.

Mizurioto, M. & Tanaka, K. (1979). Some Properties
of Fuzzy Numbers, in Advances in Fuzzy Set Theory and
Applications, M.M. Gupta, R.K. Ragade, R.R. Yager
(Eds.), pp. 153-164, North-IHolland Publishing Co.

T . SN

APPENDIX: PROPERTIES OF T-NORM OPERATORS

The subset of properties satistied by a given T-norm
operator succinctly defines its behavior. The properties that
capture the most salient features of such an operator are:

Continuous: an infinitesimal change in one of the
arguments cannot cause a noticeable
change in the result

Archimedean: continuous and satisfying the follow-
ing conditions:

T(x,x) < x S(xx)>x forall x € (0,1)

ldempotent: Tx,x) = x S(xx) = x forall x € [0.1]

Strict: continuous and strictly increasing in
both places, i.e, satistying the the fol-
lowing conditions:

T(x,y) < T(x,y’) and
T(y,x) < T(y',x)
for x>0, y<y’, and
T(a,b)=limT(c,b)= LirET(a,d)
C-a .

Nilpotent: Given a sequence {x;,...,x,} of
numbers in (0,1), there is a finite
number # for which: ;

T{xy,...,x,) = 0 and S) >),
where f(x) =1l

is the additive generator of the T-norm
[10,15].

12 The nilpotent property is defined in terms of the T-norm’s additive

generator - Both Ty and T3 do not have any additive generator (Tq 1s
not continuous, T3 1s nor Archimedean).

-61-

The T-norm operators used in the last column of Table 1
satisfy the following properties:

o T T T, T,5 T,

Continuous NO YES YES YES YES YES
Archimedean NO YES YES YES YES NO
ldempotent NO NO NO NO NO YES
Strict NO NO YES YES YES NO
Nilpotent —? YES NO NO NO _R

Any continuous Archimedean T-norms is either strict or
nilpotent. lts classification can be obtained by analyzing the
T-norm’s additive generator:

Continuous Archimedean Strict T-norms have an addi-
tive generator f(x) such that:

f(0) = = and f(1) = 0

Continuous Archimedean Nilpotent T-norms have an addi-
tive generator f(x) such that:

f0) <=and f(l) =0

It is worth noling that the three T-norms analyzed in the
conclusions, ie., T,, T, and T, are nilpotent, strict, and
idempotcnt, respectively.

ad T

J——.—-—:-.’-“‘.

SUMMARIZING AND PROPAGATING UNCERTAIN INFORMATION
WITH TRIANGULAR NORMS

Piero P. Bonissone

ABSTRACT

A large variety of numerical or symbolic approaches to
reasoning with uncertainty have been proposed in the Al
literature. In this paper we postulate a desiderata that any
such formalism should attempt to satisfy. We then propose
a new formalism for reasoning with uncertainty, which is
organized in three layers: the representation, inference, and
control layer. In the representation layver we describe the
structure required to capture information used in the infer-
ence layer and meta-information used in the control layer.
In this structure, numerical slots take values on linguistic
term sets with fuzzy-valued semantics. These term sets cap-
ture the input granularity usually provided by human experts
or users. In the inference layer we describe a large number
ot uncertainty calculi based on Triangular norms (T-norms),
intersection operators whose truth functionality entails low
computational complexity. We show that, for a cominon
negation operator, the selection of a T-norm uniquely and
completely describes an uncertainty calculus. From previ-
ous experiments we have determined the cxistence of a
smali number of equivalence classes among the uncertainty
caleuli (as a function of the input granularitv). This pro-
perty drastically reduces the number of different combining
rules to be considered. In the control layer we specify the
policy selection for the different calculi used in the interence
layer, based on their meanings, propetties, and contextual
information. Contlicts and ignorance measurements are
also proposed.

INTRODUCTION TO REASONING WITH UNCERTAINTY

In most reclistic situations, the information available to
the decision maker is incomplete and uncertain. In
automated reasoning systems, these two facets of the intor-
mation have usually been treated independently. Theories
and techniques for dealing with incomplete (but precise)
information have evolved into the development of non-
monotonic logics [17-18], Truth Maintenance Svstems (TMS)
[16], and Reason Maintenance Svstems (RMS) [4,7].
Theories and techniques for dealing with uncertain (but
complete) information have been either adapted from other
fields, such as probability theory, bv accepting unrcalistic
global assumptions, or proposed as an ad hoc solution
without formal justifications [6].

In this paper we want to analyze the problem of reason-
ing with unceitainty within the context of automated reason-
ing. This implies that the tormalism for reasoning with
uncertainty must exhibit the same structural (lavered)
decomposition typical of other automated reasoning metho-
dologies. The tormalism must be based on sound theoreti-
cal foundations to guarantee its general applicability to a
variety of reasoning tasks. The proposed layered approach
will be suitable 1o integration with Reason Maintenance Sys-
tems that provide a distinction between the object logic
theory (inference layer) and the meta logic theory (control
laver).

Three Layers Organizatien

In building expert systems architectures three distinct
layers must be defined: representation, inference, and control
layers. It is our claim that the trealment of uncertainty in
expert systeins must address each of these lavers.

The majority of the approaches to reasoning with uncer-
tainty do not properly cover these issues Some approaches
lack expressiveness in their representation paradigm. Other
approaches require unrealistic assumptions to provide uni-
form combining rules defining the plausible inferences.

Specifically, the non-numerical approaches [8-10], are
inadequate to represent and summarize measures of uncer-
tainty. The numerical approaches generally tend to impose
some restrictions upon the type and structure of the infor-
mation (e.g., mutual exclusiveness of hypotheses, condi-
tional independence of evidence). Most numerical
approaches represent uncertainty as a precise quantity
(scalar or interval) on a given scale. They require the user
or expert to provide a precise yet consistent numerical assess-
ment of the uncertainty of the atomic data and of their rela-
tions. The output produced by these systems is the result
of laborious computations, guided by well-defined calculi,
and appears to be equally precise. However, given the diffi-
culty in consistently eliciting such numerical values from the
user, it is clear that these models of uncertainty require an
unrealistic level of precision that does not actually represent
a real assessment of the uncertainty.

With tew exceptions, such as MRS [14], the control of the
interence process in most expert svstems has been procedur
ally embedded in the interence engine, thus preventing any
opportunistic and dynamic change in ordering interences
and in aggregating uncertainty. Usually, the same type of
aggregation operators (i.e.. the same uncertainty calculus) is
selected a priori and is used uniformly for any inference
made by the expert ¢vstem. In the few numerical
approaches where conflictive information is detected [22] its
handling is done in the interence layer, where the contlict
resolution procedure is embedded in the same combining
rules. This procedure consists ot removing the conflictive
part of the intormation. The non-conflictive portion is then
normalized and propagated as if the conflict never existed.

In this paper we describe an alternative paradigm, where
some of the above shortcomings will be avoided. In Section
I, we postulate a desiderata that specifies the most impor-
tant requirements for each of the three lavers of representa-
tion, inference, and control. We then propose an approach
to reasoning, with uncertainty, organizing its description
around the three layers structure. In Section 2, we discuss
the representation laver that determines issues such as the
appropriate data structure for the uncertainty information
{used in the inference laver) and meta-information (used by
the control layer), the input granularity selection, and the
term set calibration. In Section 3, we illustrate the inference
layer that determines the uncertainty calculi to perform the

intersection, detachment, union, and pooling of the intor-
mation. In Section 4, we analyze the control layer that deter-
mines the calculi seleciion, the conflict measurement and
resolution, the ignorance measurement, and the resource
allocation.

Desiderata for Reasoning with Uncertainty

The following desiderata represents a list of requirements
to be satisfied by the ideal formalism for representing uncer-
tainty and making inference with uncertainty. A compara-
tive evaluation of existing approaches to reasoning with
uncertainty against a subset of this requirements list can be
tound in [6]. To be consistent with the organizing principle
described in the Section 2, the desiderata is subdivided into
the same three lavers of Representation, Inference, and
Control.

Representation Layer

1. There should be an explicit representation ot the amonnt
of evidence tor supporting and for refuting any given
hypothesis.

™~

There should be an explicit representation ot the reasons
tor supporting and tor refuting any given hypothesis, to be
used for conflict resolution by the control layer.

3. The representation should allow the user to describe the:
uncertainty of information at the available level ot deta’l
(i.e., allowing heterogencous information granularity).

4. There should be an explicit representation ot consistency.
Some measure of consistency or compatibility should be
available to detect trends ot potential conflicts and to
identify essential contributing factors in the contlict.

5. There should be an explicit representation of ignoranee to
allow the user to make non-committing statements, i.e., to
express the user’s lack of conviction about the certainty
of any of the available choices or events. Some measure
of ignorance, similar to the cor.cept of entropy, should be
available to guide the gathering of discriminant intorma-
tion.

6. The representation must be, or at least must appear to be
natural to the user to enable him/her to describe uncertain
input and to interpret nncertain output. The representation
must also be natural to the expert to enable him/her to
elicit consistent weights representing the strength of the
implication of each rule.

Inference Layer

7. The combining rules should not be based on global
assumptions of evidence independence.

8. The combining rules should not be based on global
assumptions ot hypotheses exhaustiveness and exclusiveness.

9. The combining rules should maintain the closure of the
svntax and semantics of the representation of uncer-
tainty.

10. Any function used to propagate and summarize uncer-
tainty should have clear semantics. This is needed both
to maintain the semantic closure ot the represc tation
and to allow the control laver to sclect the most
appropriate combining rules.

Control Layer

11. There should be a clear distinction between a conflict in
the information (i.e., violation of consistency), and
ignorance about the intormation.

12. The traceability of the aggregation and propagation of
uncertainty through the reasoning process must be
available to resolve conflicts or contradictions, to explain
the support of conclusions, and to perform meta-
reasoning for control.

13. 1t should be possible to make pairwise comparisons of
uncertainty since the induced ordinal or cardinal ranking
is needed for performing any kind ot decision-making
activities.

14. There should be a second order measure of uncertainty.
It is important to measure the uncertainty of the intor-
mation as well as the wicertainty of the measure itselt.

15. 1t should be possible to select the most appropriate com-
bination rule by using a declarative form of control (i.e.,
by using a set of context dependent rules that specity
the selection poiicies).

REPRESENTATION LAYER

Representing Uncertainty Information and Meta-
Information

In a previous paper [3], we noticed that ’*...the uncer-
tainty of some type of evidence or tacts is a complex object,
and it is unlikely that a single, uniform representation will
ever be sufficient to model it. An intriguing approach is
that of attempting to combine, whenever possible, the sym-
bolic information provided by a complex data structure
(frame-like), as in the theory of endorsements, with some ot
the quantitative representations previously duscribed, such
as the theory of necessity and possibility.”

This suggestion has evolved into the development of a
representation that captures uncertainty intormation, used
in the inference layer, and meta-intormation, used in the
control layer. This representation is a certainty-trame (or
unit) with a set of associated slots. Some of these slots con-
tain numerical values, such as the amount of confirmation
and the amount ot refutation of evidence A, denoted by
N(A) and N(-A), respectively, that will be used and com-
bined by the uncertainty calculi. N(A) represents the lower
bound of the degree ot contirmation of evidence A. As in
the case of Dempstet’s (or Shafer’s) lower and upper proba-
bility bounds, the following identity holds: N(-A)=1-Pi(A),
where PI(A) denotes the upper bound ot the certainty in A,
and is interpreted as the amount ot failure to retute A.

Other numerical slots contain the evaluation ot the
measure’s uncertainty (a second order measure analogous to
the concept of viriance), the evaluation of an entropy func-
tion defining the quality of the given information, and a
measure of the (potential) conflict. These slots will quickly
provide the control layer with a numerical summary to
assess the presence and amount of ignorance and contlict.
A description of these slots is given in Section 4.

The non-numerical slots provide turther information to
the control layer allowing it to reason about the evidence’s
uncertainty, rather than with the evidence's uncertainty.

The selection of the appropriate uncertainty caleulus must
be determined in the control layer on the basis of the
calculi’s characteristics and the contextual information cap-
tured by these slots. Such contextual information is
deseribed by slots such as the evidence’s source, the
source’s prior credibility in providing that type of evidence,
the (environmental or operational) conditions under which
the source obtained such information.

Defining Input Granularity for Numerically Valued Slots

Szolovits and Pauker [24] noted that “...while people
seem quite prepared to give qualitative estimates ot likeli-
hood, they are often notoriously unwilling to give precise
numerical estimates to outcomes.” This seems to indicate
that any scheme that relies on the user providing consistent
and precise numerical quantifications of the cenfidence level
of his/her conditional or unconditional statements is bound
to fail.

It is instead reasonable to expect the user to provide
linguistic estimates of the likelihood of given statements.
The experts and users would be presented with a verbal
scale of certainty expressions that they could then use to
describe their degree of certainty in a given rule or piece of
evidence. Recent psychological studies have shown the
feasibility ot such an approach: ”...A verbal scale of proba-
bility expressions is a compromise between people’s resis-
tance to the use ot numbers and the necessity to have a
common numerical scale” [1].

Linguistic probabilities offer another advantage. When
dealing with subjective assessment of probability, it has
been observed [19] that conservatism is consistenlly present
among the suppliers of such assessments. The subjects of
various experiments seem to stick to the original (2 priori)
assessments regardless of new amount of evidence that
should cause a revision ot their belief. In a recent experi-
ment [27], hinguistic probabilities have been compared with
numerical probabilities to determine if the observed conser-
vatism in the beliet revision was a phenomenon intrinsic in
the perception ot the events or due to the tvpe of represen-
tation (i.e., numerical rather than verbal expressions). The
results indicate that people are much closer to the optimal
Bayesian revision when they are allowed to use linguistic
probabilities.

The use of three different term sets, with five, nine and thir-
teen elements, respectively, has been proposed in a previ-
ous paper [5]. Each term set defines a different verbal scale
ot certainty, by providing a different set ot linguistic esti-
mates of the likelihood of anv given statement. Thus, the
selection of a term set determines the uncertainty granular-
ity (i.e., the finest level of distinction among different quan-
titications of uncertainty). The semantics tor the elements of
each term set are given by fuzzy numbers on the [0,1] inter-
val. A fuzzy number is a fuzzy set defined on the real line.
In this case, the membership tunction of a tuzzy set defined
on a truth space, i.e. the interval [0,1], could be interpreted
as the meaning of a label describing the degree of certainty in
a linguistic manner [2,26]. The values of the fuzzy numbers
have beern determined from the results of a psychological

experiment aimed at the consistent use of linguistic proba-
bilities [1].

The triangular norms, which torm the basis for the various
uncertainty calculi discussed in Section 3, take as arguments
real number values on the [0,1] interval, which must be ini-
tially provided by the user or the expert. Their applicability
is extended to fuzzy numbers by using a parametric
representation for fuzzy numbers that allows closed form
solutions tor arithmetical operation.

INFERENCE LAYER

This section summarizes the functionalities and axiomatic
definitions of the operators that form an uncertainty cal-
culus. A detailed discussions of these operators can be
found in a previous paper [5], except for the detachment
operators. These operators, not discussed in reference 5,
are examined in Section 3.1.4.

Defining the Uncertainty Calculi

The generalizations of conjunctions and disjunctions play
a vital role in the management ot uncertainty in expert sve-
tems: thev are used in evaluating the satistaction of prem-
ises, in propagating uncertainty through rule chaining, and
in consolidating the same conclusion derived trom difterent
rules. More specifically, they provide the answers to the
tollowing questions:

— When the premise is composed of multiple clauses, how
can we aggregate the degree of eertainty x, of the tacts
matching the clauses of the premise? (i.e., what is the
tunction T(x,, . . ., x,) that determines x,, the degrec of
certainty of the premise?).

— When a rule does not represent a logical implication, but
rather an empirical association between premise and con-
clusion, how can we aggregate the degree of satisfaction
of the premise x, with the strength of the association s, ?
(i.e., what is the function G(x,, s,) that propagates the
uncertainty through the rule?).

— When the same conclusion is established by multiple
rules with various degrees of certainty v, . . ., y,,, how
can we aggregate these contributions into a final degree
of certainty? (i.e., what is the tunction S(v,, . . ., y,,) that
consolidates the certainty of that conclusior?).

Triangular norms (T-norms) and Triangular conorms (T-
conorms) are the most general tamilies of binarv tunctions
that satisfy the requirements of the conjunction and disjunc-
tion operators, respectively. T-norms and T-conorms are
two-place tunctions from [0,1]x[0,1] to [¢,1] that are mono-
tonic, commutative and associative. Their corresponding
boundary conditions satisty the truth tables 5 the logical
AND and OR operators.

Conjunction Operators

The tunction T(a,b) aggregates the degree of certainty of
two clauses in the same premise. This function is a conjuic-
tion operator and satisties the conditions of a Triangular
norm (T-norm):

64—

e

T(0,0) = 0 [boundary]
T(a,1) = T(1,a) = a [boundary]
T@,b) = T(cd) ifa<cand b=d [monotonicity]
T(a,b) = T(b,a) [commutativity]
T(a, T(b,c)) = T(T(a,b),c) [associativity]

Although defined as a two-place function, a T-norm can
be used to represent the intersection of a larger number of
clauses in a premise. Because of the associativity of the T-
norms, if is possible to define recursively
TOxq, v X, %, 4q) forxy, .., %, 00 €10,1], as:

T(x,, .. T(T(xq, . -

o Xy xni—l) 0g xn)/ xn+l)

Disjunction Operators

The function S(a,b) aggregates the degree of certainty of
the (same) conclusions derived from two rules. This func-
tion is a disjunction operator and satisties the conditions of a
Triangular conorm (T-conorm):

5(1,1) = 1 [boundary]
S(0,a) = S(a,0) = a [boundary]
S(a,b) = S(c,d) ifa<=candb<=d [monotonicity]
S(a,b) = S(b,a) [commutativity|
S(a,S(b,c)) = S(S(a,b),c) lassociativity|

Ty(a,b) min(a,b) it max(a,b)=1
0 otherwise

I {a,b) max(0, a+b-1)

T, 5(a,b) (ab)/[2-(a + b-ab)]

Ts(a,b) ab

T, 5(a,b) = (ab)/(a+b-ab)

T4(a,b) - min(a,b)

-65=

A T-conorm can be extended to operate on more than
two arguments in a manner similar to the extension for the
T-norms. By using a recursive definition, based on the asso-
ciativity of the T-conorms, it is possible to define:

“U Ym)' ¥m H)

S(YI' o Yme)'m+l) - S(S(YI/ c

DeMorgan’s Duality

For suitable negation operations N(a), such as Nfa)=1-ax,
T-norms T(.,.) and T-conorms §(.,.) are duals in the sense of
the following generalization of DeMorgan’s Law:

S(a,b) = N(T (N(a), N(b))
T(a,b) = N(S (N(a), N(b))

This duality implies that the extensions of the intersection
and union operators cannot be independently defined and
they should, therefore, be analyzed as DeMorgan triples
(T(...), 8(.,.), N(.)). Given a common negation operator like
N(a) = I-a, the selection of a T-norm T{(.,.) uniquely con-
strains the selection of the T-conorm S(.,.).

Some typical T-norms T(a,b) and their dual T-conorms
Sfa,b) are the following;

Sp(a,b) = max(a,b) if min(a,b)=0
= 1 otherwise

Sia,b) = min(l,a+b)

Sis(a,b) = (a+b)/(1+ab)

S,(a,b) a~-b-ab

S,s(ab) = (a+b-2ab)/(1-ab)

Si(a,b) = max(a,b)

These operators are ordered as following:
) . .
TosTy=Ts=T =T~ 0y
S3=5,5=5=535=<5 = 5

Detachment Operators

S4(a,b) = max(a,b) Given a statement P, whose certainty
value is located in the interval [b,B], and an inference rule P
~ Q, whose lower bounds for sutficiency and necessity are s
and #, respectively, one can derive the boundaries for the
certainty value of the conclusion Q by using the detachment
operator. Such boundaries, denoted by [N(Q), PlQ)], are
represented by the interval [T(s,b), S5((1-1),B)], where T(.,.)
and S(.,.) stand tor any T-norm and its dual T-conorm. By
using DeMorgan’s identity, this interval can be rewritten as
[N(Q), PUQ)] — [T¢s,b), 1-Tn(1-B))]. Therefore, the detach-
ment operator can be uniquely detined by specifying a T-
norm T(.,.).

P (P-Q (Q=-DP)=(-P--Q
[b,B] [s.] [n,]

Q
[T(s,b), S(B,1-n)]

Proof:

Let: b~ NP B - PID) 1 - N(-P)

where N(A) and PI(A) indicate the lower and upper bounds
of the A’s certainty, respectively.

The lower bound N(Q) can be obdtained by applying
Modus Ponens to the minor premise and the oufficient part
of the interence rule:

PAND (P - Q) = Q

. using any T-norm T(, .} to represenc wie AND operator,
we have

T(NP), NP - Q) = N(Q
N(Q) = T(h,s)

The upper Bound PI(Q) can be obtained by applying Modus

Tollens to the minor premise and the necessary part of the
inference rule:

-P AND (<P - -Q) => -Q

Bv using any T-norm T(.,.) to represent the AND operator,
we have:

T(N(-P), N(-P - -Q)) = N(-Q)
Using the identity N(-Q) = 1 - PIQ):

PIQ) = 1 - T(N(=P), N(-P -~ -Q))

—~66-

Again, using the identity N(-P) = 1 - PI(P):

PI(Q) = 1 - T(1-PI(P), N(-I" - -Q))

Using DeMorgan’s identity S(x,y) = 1- T((1-x),(1-v)):

PI(Q) = S(PIP), 1 - N(-P - -Q})
PI(Q) ~ S(B, (1-n))

The upper bound PI(Q)= 5((1-1),B) correspond to the impli-
cation operator used in multiple-valued logics [20].

For S(x,v) Sy(x,¥) = Max(x,y), the upper bound PI(Q)
becomes Max (I-n, B), the Kleene-Dienes imphcation opera-
tor.

For 5(x,y) = S5i(x,y) = x+ty-xy, the upper bound PI(Q)
becomes I-n+nB, which has been called the Kleene-
Dienes/Lukasiewicz implication operator.

For S(x,y) = Si(x,y) = Min(l, x+y), the upper bound PI(Q)
becomes Min(1, 1I-n+ B), the Lukasiewicz implication opera-
tor.

Clearly, the interval [Ty(s,b), 1-Ti(n,(1-B))] subsumes
[T5(s,b), 1-T5(n,(1-B))], which, in turn, contains the interval
[T4(s,b), 1-T4(n,(1-B))]. The selection of the T-norm (and
therefore the selection of the detachment operator) will
determine the amount of ignorance (width of the interval)
associated with the conclusion by the detachment operator.

The previous analysis ot the detaclment operator
assumed that the conclusion is inferred from the minor and
major premise by applving modus ponens. The symbol ”~"
that is present in the major premise P-Q (sufticiency) and
Q-P (neccssity) represents the materal implication.

e

An alternative interpretation ot is that ot condition-
ing. Under this assumption, if the certainties ot statements
P and Q are given a probabilistic interpretation, then the
boundaries for the certainty of Q is derived from a perturba-
tion analysis of the probability formula:

p(Q = p@QIP) + p(@Q|-P) p(-P)
Let: b = N(P)
B = PI(P) = 1- N(=P)
s = N@QIP)
S - PIQIDP)
r = N@QI-P)
R - PIQI-DP)

where N(A) and PI(A) indicate the lower and upper bounds
ot p(A), the probability of A, Then:

P P-Q e, QlPy -P-Qiie, Q-
b,B] [550 [rR]

Q
[min((sb+ r(1-b), (sB + r(1-B)), max((Sb - R(1-b)),(SB - R(1-B))]

When p(Q| ~P) is unknown (i.e., [r,R[=[0,1[), then:

Q
[min(sb, sB), max((1- b +5b),(1- B +5B))]
[s(min(b,B)), max(1- b(1-5)),(1- B(1-5))]

o A e

’h—--l‘-

since: b=B and max(1-a,1-b)= 1-min(a,b)

[sb, 1-min(b(1-S)),(B(1-S))]
[sb, 1-(1-S)(min (b, B))]

[sb, 1- b(1-S)]

[sb, (1 - b + Sb)]

This result was reported by Ginsbere 129-31] and by Dubois
and Prade [28].

Notice that under the assumption of ignorance about pQ |
-P) (i.e., [r,R]=[0,1]), the boundaries for the probability of
Q are defined by [Ty(s.b), S,((1-b),S)] or equivalently by
[Tus,b), 1-Ty(b,(1-S)].

Parametrized Families of T-norms

The T-norms described in previous sections have dit-
ferent properties and characteristics. It is sometimes desir-
able to blend some of these operators, in order to smooth
some of their effects. While it is always possible to generate
a linear combination of two operators, this would imply giv-
ing up the associativity property. However, associativity is
the most crucial property of the T-norms [21] since it allows
the decomposition of multiple-place functions in terms of
two-place tunctions. The correct solution is to tind a tamily
of T-norms that ranges over the desired operators. The
proper selection of a parameter will then define the inter-
mediate operator with the desired etfect while still presery-
ing associativity.

In a previous paper [5], six parametrized families of T-
norms and dual T-conorms, originally proposed bv Yager
[25], Dubois and Prade [11], Hamacher [15], Schweizer and
Sklar [21], Frank [12], and Sugeno [23], were discussed and
analvzed. Of the six parametrized tamilies, one family has
been selected due to its broad coverage and numerical
stability. This family, proposed by Schweizer & Sklar, is
denoted by Ty (a,b,p), where p is the parameter that spans
the space of T-norms From T, to T;. More specitically:

Teabp) = MAX{0, @ 7+b - 1)} forp € [-%,%)
S (abp) = 1-MAX{0, [(1-a) ¥ +(1-b) 1)} VP forp € [-%,x%]

The following table indicates the value of the parameter for
which this family reproduce the most common T-norms {T,.
. T3k
TABLE 1:
Ranges of values of parameter p
tor Tg. (a,b,p)

Ts.(a,b,p) T-norm
p
- Ty
-1 T
Tis
Ty 5
e T\

-67~

The table for the T-conorms is identical to the above except
for the header, where the families of T-norms are replaced
by the corresponding {amilies of T-conorms, and the last
column, where the T-norms are replaced by their respective
dual T-conorms, i.e., T by S, etc.

These families of norms can specify an intinite number of
calculi that operate on arguments taking real number values
on the [0,1] interval. This fine-tuning capability would be
useful it we needed to compute, with a high degree ot pre-
cision, the results of aggregating information characterized
by very precise measures of its uncertainty. However, when
users or experts must provide these measures, an assump-
tion ot fake precision must usually be made to satisfy the
requirements of the selected calculus.

Equivalence Classes Among T-norms

Because of *he ditticulties in eliciting precise and vet con-
sistent numerical values from the user or expert, the use ot
term sets has been proposed. Fach term set determunes the
finest level of specificity (i.e., the granularity) of the measure
of certainty that the user/expert can consistently provide.
This granularity limits the ability to differentiate between
two similar calculi. Therefore, only a small finite subset of
the infinite number of calculi produces notably different
results. The number of calculi to be considered is a tunction
of the uncertainty granularity.

This result has been contirmed by an experiment [5]
where eleven different calculi of uncertainty, represented by
their corresponding T-norms, were analyzed. Figure 1 illus-
trates a plot of the eleven T-norms, where the parameter p
in Schweizer's family has been given the following values:
-1, -0.8, 0.5, -0.3, 0 (in the limit), 0.5, 1, 2, 5, 8, = (in the
limit). This plot shows the space of T-norms that produce
the same result K, for K=0.25, 0.5, 0.75.

1.2
| i
H
i
lE
8.5 H
1y
| i
b
g.0 + - T + + 4+ +
b0 8.5 1.8
"
i vl o

FIGURE 1: Space of T-norms
T,(a,b) = K, for K=0.25, 0.50, and 0.75

The eleven calculi were used with three term sets con-
taining five, nine, and thirteen elements, respectively. For
each of the three term sets, the T-norms were evaluated on
the crossproduct of the term set elements, generating the
closure of each T-norm. Each closure was compared with
the closure of the adjucent T-norm and the number of ditfer-
ences were computed. The T-norms that did not exhibit sig-
nificant difterences were considered similar enough to be
equivalent for any practical purpose. A threshold value
determined the maximum percentage of di: ‘erences allowed
among members of the same equivalence class. Only three
calculi generated sufficiently distinct results for those term
sets that contained no more than nine elements. Five calculi
were required when a larger term set (containing thirteen
elements) was used.

The three calculi required in the first case were detined
by the following operators:
(Ti(a,b), Si(a,b), N(a))
(T>(a,b), Sy(a,b), N(a))
(Ty(a,b), S4(a,b), N(a))
where N(a) is the negation operator N(a) - [-a, and T,(a,b)
(S,(,by) are the T-norms (DeMorgan duals T-conorms)

defined by the Schweizer tamily T (a,b,p) (S. (a,b,p) for
the tollowing three values of p:

p=-1 T,(ab)=maxOa+b 1)
Sy (e, b) = min(l,a+b)
p-0 Ty (a,b) =ab
Sy (a.by =a+b—ab

p-x Ty(a.b) = min(a,b)
3y (a,b) = wax(a,b)

In addition to the three operators detined above, the five
caleuli (required in the second case) need the following T-
norms.

p 0.5 Tg (a,b,~0.5) = max(0, 034 b“‘.;-_])z .
Ss. (a,b,~0.5) = 1-max {0, [(1-a)" % +(1-b)*-1]12
p=1 Te (@,b,1) = max(0, a "+b 1!
Se. (a,b,1y = T-max {0, [(1-a) '+ (1-b) Lyt

Table 2 illustrates the equivalence classes.
CONTROL LAYER

Selecting Uncertainty Calculi

The selection of the most appropriate uncertainty cal-
culus depends on how well the calculus characteristics fit
the local assumptions described by the context information.
To accomplish this, it is essential to analyze the properties
ot the calculi used in the inference layer.

Since T-conorms and detachment operators can be
expressed as tunctions of the negation operator and the T-
norms, to understand the meaning of each calculus it is
enough to analyze its underlving T-norm operator. A first

TABLE 2:

Percentage Differences Among the Eleven T-norms
Applied to the Three Term Sets

f =
[T

~

To= T T

1 T Tinb
[Toums I e =
[pure Bquivatence Ciasses 5 . |
[7 Theshots T,w Tye T- T
= T,o Tyon T,= Tn
BB 2% hreshoid
W 5 o Percentage Differences across 11 T-Norms

interpretation suggests that T is appropriate to perform the
intersection ot lower probability bounds. T, is appropriate
to represent the intersection of upper probability bounds.
I 15 the classical probabilistic operator that assumes mdepen-
dence of the arguments; its dual T-conorm, S,, is the usual
additive measure for the union.

Figure 2 provides a geometric description of the meaning,
of the three T-norms. The tigure illustrates the result of T,
(0.3, 0.8), T, (0.3, 0.8), and T, (0.3, 0.8). T, captures the
notion of worst case, where the two arguments are con-
sidered as mntually exclusive as possible (the dimensions on
which they are measured are 180° apart). T, captures the
notion ot mdependence of the arguments (their dimensions
are 907 apart). T, captures the notion of best case, where
one argument attempts to subsiume the other one (their
dimensions are collinear, i.e., 0° apart).

| - T
"""" | PR 1)
i
|
NN : *

FIGURE 2: Geomelrical Interpretation
of T,(0.3, 0.8), T,(0.3, 0.8), and T4(0.3, 0.8)

The other two T-norms, Tg (a,b,-0.5) and Ts.(a,b,1), can be
used when the information is known to be mildly negative
or positive correlated, without requiring the drastic extremes
of mutually exclusiveness or subsumption. The two addi-
tional ealculi provide intermediate degrees of pessimism and
optimism in the range of worst case/best case analysis.

Measuring Ignorance and Consistency

The numerical slots that provide control information are:
the wweasure’s uncertainty, the entropy function. and the mcon-
sistency measure.

-H8~

P .

The measure’s uncertainly is detined as the area under
the curve delimited by the (fuzzy) interval [N(A),PI(A)].
When N(A) and PI(A) are crisp numbers such measure is
simply the difference PI(A)-N(A) [13].

The entropy function is detined as: f(x)= -K(x log(x) +
(I-x) log(1-x)) where K is a normalizing constant (e.g.,
K=1log(2) normalizes the range of f(x) to the interval [0,1]).
The evaluation ot the quality of the information is given by
the interval [£(N(A)), f(PI(A))]. When N(A) and PI(A) are
tuzzy numbers, a set ot closed-form formulae [2,5], based on
the extension principle [26], can be used to evaluate such a
tunction.

The detection of inconsistency occurs when
N(A) > PL(A). A measure of such inconsistency is given by
the difference N(A)-PI(A).

CONCLUSIONS

We have proposed a lavered architecture 1o define the
representation, inference, and control of uncertain intorma-
tion. This architecture is summarized in Figure 3.

REPRESENTATION LAYER

Numerical Inforination:

Confirmation
Refutation

Numerical Meta-Information:
2nd Order Uncertainty Measure
Quality of Information (Entropy)
Consistency Measure

Non-numerical Meta-Information:

Source of Information
Source's Prior Credibility
Information Gathering Task’s Conditions

INFERENCE LAYER

Uncertainty Calculus UC1:
Negation N1
T-norm T1
T-conorm S1 = f(N1, T1)
Detachment D1 = g(N1, T1)

Uncertainty Calculus UC2

Uncertainty Calculus UC3

Uncertainty Calculus UC4

S SOV b SN) S

Uncertalnty Calculus UCS

CONTROL LAYER

l Calculus Selection I

l Ignorance Resolution I

l Conflict Resolution]

FIGURE 3: Three Layer Architecture

In the representation layer we have advocated the use ot
frame-like structures, capturing uncertainty information,
such as the degrees ot confirmation and retutation, as well
as uncerlainty meta-information such as the information
quality and measure’s precision. The uncertainty informa-
tion is used and combined in the inference layer by an
appropriate uncerlainty calculus. The uncertainty meta-
intormation is used in the control layer to select the
appropriate uncertainty calculus, based on local (i.e.. contex-
tual), rather than globai assumptions. We have proposed the
use of linguistic term sets of likelihood statements to anchor
the input granularity for the numericahy valued slots.

In the inference layer, we have shown that any truth
functional uncertainty calculus can be represented (and
analyzed) in terms of its underlying T-norm, an associative,
commutative operator that extends the concept of set inter-
section to multiple-valued logics.

The truth tunctionality of the calculi used in this layer
entails low computational complexity: the aggregated cer-
tainty ot any logic expression can be computed directly from
the certainty ot the individual components. The associa-
tivity of the calculi guarantces the recursive decomposition
of multiple-argumenls aggregation into two-argument aggre-
gations. This property is extremely usetul when, by decom-
posing large problems into smaller sub-problems, we can
ther make use of special hardware (custom VIS chips) lo
concurrently evaluate the sub-expressions ad aggregate the
partial results.

We have shown that, for a tixed input granularity, the
infinite number of uncertaintv calculi (T-norms) can be
reduced to at most five distinct equivalence classes. This
fact allows us to individually study the calculi characteristics
and to understand the assumptions that the use of each cal-
culus would entail (mutually exclusiveness, uncorrelation,
subsumption).

In the control layer, we have proposed to select the
appropriate calculus based on each calculus’ properties (con-
text independent information) and on the available meta-
information describing the situation (context dependent
intormation). Unlike the theory ot endorsements, where a
combinatorial problem occurs when the semantic rules
(determining how endorsements are aggregated) must be
detined tor cvery value combination, the seleclion policies set
(meta-rules) to be defined in this laver is relatively small
The selection policies set must only determine which of the
three (or five) calculi, detined in the inference laver, is the
appropriate one for any given case. Usually these cases are
prouped in hierarchical contexts (subclasses) <o that the
selection policies can be assigned to the context nodes and
inheritance methods can be used to pass the assignment to
the rule instances. Once a calculus has been selected, the
combining rules for every value combination are uniquely
determined.

Rather than embedding conflic. resolution in the infer-
ence layer, as it is the case for other approaches, we have
proposed to perform contlict detection and resolution in the
conirol layer. This is motivated by the fact that resolving
conflicis or ignorance is part of the resource allocation prob-
lem which is best done at this layer: deciding if, when, and
how to eliminate contlicting information depends on various
factors, such as the magnitude of the contlict, on the goal’s

~69~

sensitivity to the information, on the cost of hering
further information, on the likelihood of succeediny, . gath-
ering such information, and on the cost of failing in such a
task. The cleaner solution is to declaratively express these
contextually-scoped conflict policies in the control layer.

REFERENCES

{11 Beyth-Marom, R., (1982). How Probable is Probable?
A Numerical Taxonomy Translation of Verbal Proba-
bility Expressions, Journal of Forccasting, Vol. 1, np.
257-269.

|2] Bonissone, P.P., (1980). A Furszy Sets Based Linguis-
tic Approach: Theory and Applications, Proceedings of
the 1980 Winter Simulation Confererice, edited by TI.
Oren, C.M. Shub, P.F. Roth, pp. 99-111, Orlando,
December 1980. Also in Approximate Reasoning in Deci-
sion: Analysi< edited by M.M. Gupta, E. Sanchez, pp.
329-339, North Holland Publishing Co., New York,
1982.

|3] Bonissone, P.P. & Tong, R.M., (1985). Editorial: Rea-
soning with Uncertainty in Expert Systems, Interna-
tional Journal of Man-Machine Studies, Vol. 22, Nn. 3,
pp. 241-250, March 1985.

[4] Bonissone, P.P. & Brown, A.L. (1985). Expanding
the Horizons of Expert Systems To appear in the
Proccedings of the Sccond International Comference on
Artificial Intelligence Technologies, Expert Systems and
Knowledge Fugineering, Ruschlikon, Switzerland, 25-26
April 1985,

[5] Bonissone, D.P. & Decker, K.S., (1985). Selecting
Uncertainty Calculi and Granularity: An Fxperiment
in Trading-ott Precision and Complexity, Proceedings
of the Workshop on Uncertainty and Probability m Artifi-
cial - Intelligence, pp. 57-66, University ot Calitornia,
Los Angeles, August 14-16, 1985, 1o appear in Uncer-
tainty in Artificial Tntelligence, L. Kanal & J. Lemmer
(Eds.), North-Holland, 1986.

|6] Bonissone, P.P., (1986). Plausible Reasoning: Coping
with Uncertainty in Expert Svstems, to appear in the
Encyclopedia of Artificial Intelligence, Stuart C. Shapiro
(Editor), John Wiley & Sons Publishing Co., New
York, New York, 1986.

|71 Brown, A.L., (1985). Modal Propositional Semantics
for Reason Maintenance Systems. Proceedings of the
Ith tuternational Joint Conference on Artificial Intelligence
(IJCAI-85), Los Angeles, Calitornia, August, 1985.

(8] Cohen, P.R. & Grinberg, M.R., (1983). A Theory of
Heuristics Reasoning about Uncertainty, The Al Muga-
zine, pp. 17-23, Summer 1983.

[9] Cohen, P.R. & Grinberg, M.R. (1983). A Framework
tor Heuristics Reasoning about Uncertainty, Procecd-
ings o) the Eighth International foint Conference on Artifi-
cial Imelligence, pp. 355-357, Karlsruhe, West Ger-
inany, 1983.

110 Doyle, J., (1983). Methodological Simplicity in Lxpert
System Construction: The Case of Judgements and
Reasoned Assumptions, The Al Magazine, Summer
1983. Vol. 4, No. 2, pp.39-43, 1983.

-~70-

[11]

112]

[13]

[14]

[15]

[26]

Dubois, D. & Prade, H., (1980). New Results about
Properties and semantics of fuzzy set-theoretic opera-
tors, in Fuzzy Sets: Theory and Applications to Policy
Analysis and Information Systems, P.0. Wang & S.K.
Chang (Eds.), pp. 59-75, Plenum Press, New York.

Frank, M.J.,, (1979). On the simultaneous associa-
tivity of F(x,v) and x+y-F(x,v), Acequationes Muthemati-
cae, Vol. 19, pp. 194-226.

Garvey, T.D., Lowrance,].D. & Fischler, M.A.
(1981). An Inference Tecknique for Integrating
Knowledge trom Disparate Sources, Proceedings of the
7t International Joint Conference on Artificial Intelligence,
pp- 319-325, Vancouver, B.C , Canada, (1981).

Genesereth, M.R (1982). An Overview of MRS for Al
Experts, Stanlord Heuristic Programming Project
Memo [IPP-82-27, Dept. of Computer Seience, Stan-
tord University.

lHamacher, H, (1975). Uber logisehe Verknuptungen
unscharter Aussagen und deren zugehorige
Bewertungs-tunktionen, in Progress in Cybernetics and
Sustesns Research, Vol 1, R. Trappl & F. de P. Hanica
(Eds.), pp. 276-287, Hemisphere Pub. Corp., New
York.

McAllester, D.A., (1980). An OQutlook on Truth
Maintenance. MIT Artificial Intelligence Laboratory,
Cambridge, Massachusetts.

McDermott, D. & Dovle,]. (1980). Non-Monotonic
Logic I, Artificial hutelligence, Vol. 13, pp. 133-170.

McDermott, D. (1982). Non-Monotonic Logic 1I: Non-
Monotonic Modal Theories, Journal of the Assaciation
for Computing Machinery, Vol. 29, pp. 33-57.

Phillips, L. & Edwards, W. (1966). Conservatism in a
simple probability interence task, Journal of Experimen-
tal Psychology, Vol. 72, pp. 346-354.

Reseher, N., (1969). Many-valied logics, Mc-Graw Hill,
New York, New York, 1969.

Schweizer, B., Sklar, A., (1963). Associative Fune-
tions and Abstract Semi-Groups, Publicationes
Mathematicae Debrecen, Vol. 10, pp- 69-81.

Shater, G. (1976). A Mathematical Theory of Evidence,
Princeton University Press, Princeton, NJ.

Sugeno, M., (1977). Fuzzy Measures and Fuzzy
Integrals: a Survey, in Fuzzy Automata and Decision
Processes, M.M. Gupta, G.N. Saridis & B.R. Gaines
(Eds.), pp. 89-102, North Holland, New York.

Seolovits, P. & Pauker, S.G., (1978). Categorical and
probabilistic reasoning in u.edical diagnosis, Artificial
Intelligence Journal, Vol. 11, pp 115-144

Yager, R., (1980). On a General Class of Fuzzy Con-
nectives, Fuzzy Scts and Systems, Vol. 4, pp. 235-242.

Zadeh, L.A., (1975) The concept of a linguistic vari-
able and its application to approximate reasoning,
Part I, Information Sciences, Vol. 8, pp. 199-249; Part I,
information Sciences, Vol. 8, pp. 301-357; Part I, [nfor-
mation Sciences, Vol. 9, pp. 43-80.

-y

(271

(28]

Zimmer, A.C. (1985). The Estimation of Subjective
Probabilities via Categorical Judgments of Uncer-
tainty, Proceedings of the Workshop on Uncertainty amd
Probability in Artificial Intelligence, pp. 217-224, UCLA,
Los Angeles, California, August 14-16, 1985. To
appear in Uncertainty in Artificial Intelligence, 1.. Kanal
& J. Lemmer (Eds.), North-Holland, 1986.

Dubois, D. & Prade, H (1985). Combination and
Propagation of Uncertainly with Belief Functions - A
Reexamination, Proceedings of the Nintlt Internationa
Joint Conference on Artificial Intelligence, 1JCAI8S, pp.
111-113, August 18-23, 1985, Los Angeles, California.

(29]

[30]

(31]

~71-

GINSBERG, M.L. (1984). Non-Monotonic Reasoning
Using Dempster's Rule, Proceedings of the Nutionul
Conference on Artificial lutelligence, pp. 126-129, Aus-
tin, Texas, August 6-10, 1984.

GINSBERG, M.L. (1984). Analyzing Incomplete
Information, Heuristic Programming Project Report
No. [{PP 84-17, June 1984.

GINSBERG, M.L. (1984). Implementing probabilistic
reasoning, Heuristic Programming Project Report No.
HPP 84-31, June 1984.

el
o

s e

MONAD*

A HIERARCHICAL MODEL PARADIGM FOR REASONING BY ANALOGY

Interim Report t

Gilbert B. Porter, 1l

General Electric Company
Corporate Research and Development
Schenectady, NY 12345
ARPANET: GBPorter@GE-CRD

INTRODUCTION

Reasoning by Analogy is a two edged sword: on one
hand it attempts to solve problems that are beyond the
scope of the knowledge contained in the Knowledge Base;
while on the other, it provokes the insidious problem of
searching a universe of potential candidate matches con-
structed under the guise of similarity. This interim report
summarizes some of the work in progress to strike a balance
between these two opposing torces. First, we will describe
the philosophy behind the decisions relating to the overall
architecture of the system: its knowledge representation
scheme, its search strategy, and its analogical method.
Then we will offer a few preliminary results and a status
report.

PHILOSOPHY

The class of problems which are addressed by the
method of reasoning by analogy described in this report
have the characteristic that their solutions are not directly
contained in the Knowledge Base either in the form of a
fact, or as a belief which is directly deducible from a set of
rules applied to the facts. We refer to these problems as
novel with respect to the knowledge base meaning that the
solution must be derived from available solutions by one or
more applications of what we may loosely refer to as a sub-
stitution. In performing a substitution, the reasoning sys-
tem must hypothesize from uncertain evidence that, n
deriving the required goal, a known reasoning step can be
modified to produce a new step which is only weakly justi-
tied by the hypothesis and the knowledge base.

To perform reasoning in which modifications may be
made during the deductive process, the reasoning system
must very caretully address the problem of search. The
main objective of this work is to devise a reasoning method
which can derive solutions to these novel problems by con-
structing near miss solutions contained in the knowledge
base in order to confine the search. We will address three
issues regarding the machinery required to reason in this

"

This work was partially supported by the Detense Advanced
Research Projecls Agency (DARPA) conlracl F306U2-85-C-1033.
View: and conclusions contained in this paper are those ot the
authors and should not be interpreted as representing, the otficial
opinion or policy of DARPA or the U.S. Government.

t This report summarizes a forthcoming paper describing the details ot
this work.

manner: the knowledge representation scheme, the search
strategy used by the model building scheme, and the ana-
logical method. In this section on philosophy, e infor-
mally describe the approach and requirements for analogical
reasoning, an overview of the problem solving approach,
followed by a discussion of the goals and requirements of
the knowledge representation and search strategies.
Although work is well along in producing an implementa-
tion of the system we w:'t describe, the supporting ideas
are, bv no means, immutable: it is quite likely that difticul-
ties will inspire alterations.

Motivation

In our work, the term analogy will be used in a fairly
broad sense: the comparison of problem solutions based on
a notion of similarity for the purpose of recognition of solu-
tions or synthesis of new solutions. As we have said, our
work on reasoning by analogy will concentrate on finding
solutions to problems which are not directly contained in
the knowledge base. The motivation for this type of reason-
ing is fairly simple: as expert system technology is applied
to more complex problems, it becomes less practical to
develop complete and consistent knowledge bases ror these
problems. One alternative is to build multiple cooperating
expert systems that share in the solution of a multi-
disciplined problem. Each expert could be quite complex
but restricted to its specialty. We believe that this approach
requires careful consideration ot the communication
between the systems to make them tunctional and implies a
design coupling between the systems that would have hope-
tully been avoided by the choice of a multi-expert architec-
ture. The alternative we have chosen is to build an abstract
problem solver which produees solutions trom approximate
intormation.

Much ot the previous work on analogical reasoning has
been based on the method of matehing the structures
representing the problem to a representation of a candidate
sulution. Associated with the matching procedure is some
sort of measure of similarity which is used rank the good-
ness of a solution and, perhaps, to order the solution
search. One serious problem which has been encountered
attempting this sort of reasoning is that the representation is
very important in evaluating the similarity. 1t is hard to
devise a general representation scheme in which an often
poorly understood problem/solution can be uniformly

Py

-~

expressed. Additionally, as the problems become complex,
there can be an excess of unimportant information in the
representation which can cause the search for a solution to
be unduly complicated.

By building a system which uses approximate informa-
tion, it is possible to span a larger class of solvable problems
with less overall information. A major drawback to this
type of system is that it is nearly impossible to know how to
debug or erpand a very large system due to the tenuous
coupling between facts and solutions. To address this issue,
we propose a representation which intends to capture the
conceptual underpinnings of the facts in the knowledge
base. We have focused on the problem of making the
representation scheme flexible and highly tuned to each
specitic problem.

Constructing a problem specific model is done dynami-
cally as reasoning proceeds. The basis for the specific prob-
lem model is a hierarchical model definition which captures
many levels of detail from various points of view. The
intent of dynamic model construction is to provide a simple
model of the problem from which analogies may be drawn.
Creating a very simple, uncluttered model reduces
irrelevant details that can hopelessly contuse the search. In
a corresponding manner, the matching procedure avoids
using detailed differences to measure similarity. Instead, it
tries to move to the maximum level of abstraction before
making a comparison. This has the benefit ot making con-
cepts important while prohibiting “un-semantic” comparis-
ons. An un-semantic comparison is one tor which there is
no conceptual founding in the knowledge base. The most
blatant human example is the pun, but there are also many
more subtle and purposeful kinds ot associations such as
rhyming for poetry, thesaural inference, and seemingly
unconnected insight, all of which may occur, initially, by
chance but may be learned and practiced. When it is desir-
able to make such undirected comparisons, a mechanism is
provided for creating arbitrary associations but at a much
higher cost (as we believe it should be).

In the next sections, we will describe the overall strategy
embodied in the reasoning system. Much of the discussion
pertains to the modeling scheme which is the backbone of
the system and deserves the majority of the attention,

The Problem Solving Strategy

The analogical method described here is embedded in a
problem solving system. In order to restrict the scope of
this work, we have chosen to py; ass some issues and give
only cursory mention to others. rhe important supporting
philosophies are those regarding the overall architecture,
the construction of the working representation for pertorm-
ing analogy, and the search strategy. As a side issue, the
philosophy regarding model content has raised some
interesting questions which we will report.

The approach embodied in the problem solver is a
multi-staged decomposition procedure using a hierarchical
model paradigm as the representation scheme. The reason
for choosing a multi-staged decomposition is based on
several observations. First, we observe that the known solu-
tions to this class of problem are few and, usually, quite
complex. If we consiler the notion that a solution might be
composed from a common, flexible set of techniques rather

-73-

than a collection ot new insights, then the multi-staged
approach appears to be a more facile method for combining
ill-mated techniques than a more tightly coupled integration
method.

Secondly, we observe that complex recognition problems
are often solved by starting with a set of observables, which
we shall call features. Features are of two kinds: natural
features, which are usually associated with the physical
characteristics of the involved objects, and process derived
features, which have no observable correspondence but are
essential to the implementation ot the associated recognition
process. The primitive features are combined and recom-
bined into more complex process derived features in a
staged sequence which reduces irrelevant information. The
development cf these teatures is usually ordered due to the
nested feature composition. Additionally, due to the explo-
sion of feature combinations, it is necessary to restrict the
number of features which may be composed within a given
stage. From the number of typically computed features the
staged approach is again suggested.

And finally, we observe that even if we were to try to
use an unstaged solution, the potential connectivity ot the
various modules required to express the solution would be
very large without some restriction which we propose as a
tunction of the staging.

As a result of this philosophy, we have chosen to use a
relatively simple reasoning strategy which relies on com-
plexity of the model structure tor richness. The strategy
may easily be repeatedly applied at each stage to create new
sets ot features. Preliminary results have indicated that a
useful class of problems is solvable by this specialized
method (this is a good sign since we are trying to devise a
programming paradigm for analogical reasoning). It is
encouraging that the same method appears to have applica-
tion to a variety of problem categories such as planning,
design, and diagnosis. Differences in the approach to these
problems is controlled using the notion of point of view
which orders the way in which intormation is portrayed by
the knowledge base rather than a ditterence of method.
The related, but orthogonal notion of context, meaning the
semantics of a particular problem spzcification, will not be
addressed here as it would have little bearing on the details
of our method.

And so, due to this choice of architecture, the notion of
building a general problem solvei need not be addressed,
rather, we will concentrate on techniques of using a special-
ized method to solve a variety of problems. If the method is
to be simplistic, then to gain the necessary variety in solu-
tion capability, it must be applied successively under very
select conditions imposed by the goals. An example will
illustrate our point thus far.

Consider the problem of analyzing a visual scene: the
image understanaing problem. This is a hard class of prob-
lems and has achieved the most success for very constrained
or restricted problems. Traditionally image processing has
been based on the notion of extracting features trom the
image data, combining these, and repeating the process
with higher level features until a high level representation
of the scene is obtained. The high level representation may
be matched against some models to derive the scene con-
tent. This is an admittedly terse, but not terribly inaccurate

summary of one kind of image processing process. As we
would expect, many possible teature representations may be
derived. For example, the natural features could be objects,
subparts, collections, and other geometrically related
features, while the process related teatures would be edges,
corners, edge direction, intensity, intensity derivatives,
regions, boundaries, and the like. To avoid the combinator-
ics, a decoupling of the separable processes and the associ-
ated data is necessary. By this we mean that the interfaces
between the various processes must be organized around
the features as the communications symbology, and the
chosen features must adequately represent the content of
the data. Further, the mechanisms which drive the
extraction of features such as convolutions, grammars, and
the like, must be very efficient and closely tuned to the
expected image behavior to be effective in any real imple-
mentation. We would like to dynamically construct a model
which is carefully matched to the required observabies and
internal states as we proceed. Then we must ask from what
basis the model is constructed and how it is possible to
derive the model for a problem which is initially unknown
to the system? To understand this process, we must first
describe the knowledge representation scheme in some
detail.

Knowledge Representation

As we have said, knowledge is represented using a
hierarchical model paradigm. Models are constructed and
used from a specific point of view which may differ from
construction to use. For example, a set of models for an
object may be constructed tfrom the point of view which
represents the conceptual notion of how the object might be
designed or constructed. In actual use, the models may be
more effective if viewed from a different point ot view. We
wish to recognize and understand this issue before propos-
ing a solution. Thus, the current philosophy is to directly
encode the point of view information in order to make it
explicit both to the reasoning program, and to ourselves tor
further examination.

From a specitic point of view, then, the set of models
representing an object may be viewed as a succession of
vertical layers that are ordered such that, in some sense,
each laver is a more complete nor complex description of the
expected behavior of the object from the stated point of
view. The top layer depicts the normative state and the
contirming observables. For example, if the behavior of a
lead-acid storage battery (whose function is to supply power
to a specific electrical system in a tank) is to produce a cer-
tain voltage at the output terminals, then the corresponding
top level model of the battery is one in which the required
voltage is present - perhaps completely independent of the
load, the charge condition, the electrolyte condition, the
ambient temperature, and many other important, but secon-
dary parameters. The observable is the voltage and is
represented either by a procedure for obtaining its measure,
or a pointer to another model for devising such a procedure.

It is our philosophy that the model scheme should por-
tray the expected behavior and perhaps some embedded
functionality at a particular level of the model and from a
specific point of view. If the observed or desired behavior is
different than that predicted by the model, then, either the
model is insufficient in detail, or the model has been

incorrectly constructed. At any particular level, these two
taults are indistinguishable and the reasoning svstem goes
about urying to construct a more detailed model which
predicts the correct behavior. In answering a query about
what is known by the knowledge base, the reasoning sys-
tem never alters the model. It is always assumed to be
correct at its own level of detail. This is an important issue
in that it is the foundation of the constructive procedure for
a known solution. The precise relation between models is
being formalized and will appear as a future result.

So, for our example of the lead-acid battery, at the top
level, we simply expect the voltage to be present at the out-
put terminals. If we are designing a circuit in which no
further information is required, then the query would only
access the top level. Similarly, if we are diagnosing a
failure, then if the voltage is not present, there is no expla-
nation for the fault at this level, and the model is invalid
(we will explain later what is to be done). In a planning
situation, if we wish to install a new battery in the tank,
then observing the output voltage may obviate any further
steps to validate pertormance. Specifications involving
other abservables which are not included in the top level
model, simply invalidate the utility of the top level model:
we re-iterate, the current level model is considered to per-
fectly explain the expected behavior until a model failure is
determined. The search strategy decides how to correct the
failed model.

In describing the search strategy, we will address two
issues: the local creation of a model during a stage, and the
global process of forming an analogical solution to a prob-
lem.

Search Strategy - Forming a Local Problem Model

The process of forming a local problem model is
intended to construct a very tightly tuned representation of
only the information required to solve the immediate prob-
lem - at least from the standpoint of search. The algorithm
is intent on being very trugal about adding new information
and, thus, the overly complex model paradigm.

Continuing with our example, let us examine what
occurs when a model failure is discovered. Suppose we are
diagnosing the tank electrical system and tind that the vol-
tage on the output terminals is out of specitication. Our top
level model does not predict this behavior and, to proceed,
we must construct a more detailed model to account for this
performance. Assume that the next level model contains
information on the voltage-current behavior of the battery.
Simplistically, we might just add this knowledge to our
current understanding of the battery to conclude that some
check of the loading conditions is relevant. There are two
difticulties with this approach. First, this may not be the
most likely fault; perhaps checking the charge condition is a
better diagnostic method. Secondly, a more serious tlaw is
that the now information may be in conflict with the previ-
ously expected behavior portrayed by the top level model.

To deal with the first problem, we cast each problem
class in the framework of a specific point ot view. As a
matter of choice, we could attempt to deduce the point ot
view from some sort of specification, but, for our work, this
appears to be oft the track. Hence, as we have said, we
have specifically coded the point of view for each class. In

==

addition, we have attempted to ~xic the point of view
implicit in the model structure as it i: presented. We will
evaluate this method for its facility in guiding the interpreta-
tion of a design oriented model to be used for a planning
and a diagnosis task. The utility of this approach remains
to be shown as the implementation proceeds. As a matter
of philosophy, we feel it is an important area which should
not tail to be addressed.

The second difficulty appears to have deep implications.
It is certainly predictable that model conflicts might creep
into the model code as a matter of course. The issue we are
addressing here is that we may choose to create conflicting
models at different levels simply to hide irrelevant details at
the higher levels. Thus far, we have found this to »» a
valuable asset. For example, the voltage/current relation
above could have been modeled at the top level as allowing
infinite current with no drop in voltage - no internal battery
impedance. These simplifying assumptions such as ignor-
ing complex impedance, ignoring friction, ignoring inertia,
an a whole host of others, have been used effectively in
problem solving by humans. Since it is unreasonable for
the system to constantly check tor model consistency, we
have chosen to sidestep the probiem by annotating the
differences in the models to avoid cunplex inheritance
methods. For our first implementation, any information
replicated at a lower level subsumes the inherited intorma-
tion. Complex subsumptions will be directly noted and not
deduced. At first glance, this does not seem to be the right
approach, but it will serve to create instances of the problem
until a more correct approach is understood.

Global Control - Finding Known Solutions

Let us, tor a moment, step back from our example and
look at the overall search process. Each stage of the solu-
tion is a reversible process which builds a local model of the
problem domain using two strategies for search which are
oriented toward a specific point of view. The search stra-
tegies are the equivalent ot forward and backward chaining
and represent recognition and synthesis. The point of view
allows the application of these two strategies to be ordered
in such a way that particular goal methods are observed.

Now suppose that, in the process of searching for a
problem solution in the knowledge base, the available infor-
mation fails to satisty the given goal. The results of the
search leave us, if the notion of point of view is successful,
with a near miss solution embedded somewhere in the his-
tory of the search. Two questions arise at this point: 1) how
do we identify the closest or set of closest misses, and 2)
how can we modify one of the members of this set to pro-
duce an acceptable solution? In order to ‘consider these
notions, we will first describe some details of the model
scheme.

A STRUCTURED MODEL
JAEPRESENTATION PARADIGM

A model is an abstraction for representing the class of its
instances. It is internally consistent but may portray con-
flicting beliefs that are differentiated by their context. For a
given point of view, a model contains four specification
components. As we have said, the function detines the
intentional purpose of the model including side effects.
This component of a model is the primary link between

associated ideas. Function is predominantly represented in
a hierarchy for genetically related classes, along with cross
links which depict associations. Associations may be at dit-
ferent levels since the tunctional information propagated
across any of the links must undergo a transtormation
before it can be used to form an analogy. For example, the
top level model of the battery model would depict it as a
device for the storage of electrical energy and as a device for
supplying electrical energy. In the same hierarchy, other
kinds of energy storage devices would also be linked. Cross
links would account for less conceptual associations such as
other things that use lead or whatever. Not all intents and
purposes can be accounted and thus the need for analogical
methods. It may be necessary to perform tairly wide rang-
ing search to form (previously) unlinked associations. We
intend that these should be strictly confined by the search
procedure. As an example, clearly the battery could be
used as a door stop, a boat anchor, or as a tlower planter
with a little ingenuity. These are not expected uses and
would not be accounted. On the other hand, the model for
an (electrical) resistor would usetully inelude the electrical
definition as well as the side etfect of producing heat.

The model inicrface defines the inputs, ou'puts, states,
and properties exhibited by its instances. This is a, more or
less, conventionat blick box representation which also
serves the purpuse or identifying the observables. By this
we mean those quantities which are somehow measurable
by the enquirer. The plan for measuring these is contained
in the behavior description, described shortly, and may be
either a procedure or a complex plan which invokes other
models. We see the need to supply an ordering mechanism
for acquiring this information but it is not clear how it will
be represented. Currently the notion of an additional
maodel for each process is tavoced. For the battery, the vol-
tage characteristics would be described along with a pro-
cedure or pointer to another model which describes how to
measure it. Incidently, other properties, such as physical
characteristics, fall under another point of view and so it is
possible to deduce the idea of using the battery as a boat
anchor within the same model. Similarly, for the resistor,
the notion of using it as a heater can be gotten from a side
effect directly included in the functional specification. More
complex associations use the tunctional association links.

The model composition defines the internal structure of
the model in terms of other models or components and their
interconnections. This is the block diagram of the model
internal structure. It is the vehicle which allows the search
process to tind more detail when the model fails to explain
the current information. Here, we will highlight the distinc-
tion between our definition of a model and a component. A
component has exactly the same composition as a model but
it is designated to be able to act as a primitive concept in
that it is self-sufficient without reference to its composition,
In a crude way, components delineate the natural modular-
ity present in the structure ot the physical world (i.e. large
separation of physical etfects) which we mentioned earlier.
This type of definition provides the means to avoid using
“quantum mechanics” when analyzing a macroscopic physi-
cal situation; or to avoid using Maxwell's equations when
evaluating a simple electrical circuit. It alerts the reasoning
system to the natural separation of treatment whicn occurs
in most scientific disciplines.

~75-

Finally, the behavior defines the relationships between the
states, inputs, outputs, and propertics which detine the
external appearance of the model in the intertace specifica-
tion above. It defines any necessary action procedures
either within the model or within another model to deter-
mine how the terminal action processes get actual work
done.

SIMILARITY - FORMING AN ANALOGY

Let us return, .uw, to the two questions which arise
atter we have failed to find an acceptable solution in the
knowledge base. We must be able to determine how to
identify the closest or set of closest misses, and how to
modify one of the members of this set to produce an accept-
able solution.

We nave chosen the strategy that each failure will be
traced along the chain of supporting models to the point
that is most abstract, but still embodies the failure. We will
refer to the chain ot models from this most abstract point to
the leaf model as the failure chain. Notice that the tailure
may not stem from ‘he top level since new details may be
introduced at any poat. Contained in the function defini-
tion of the top model in the failure chain is the abstract
description of the conceptual functionality of the object ot
the model. From this model down the failure chain to the
leaf model, is an ordered set of disrupting concepts: the top
model being the most desirable since it has the strongest
conceptual theory for the failure and also the tewest poten-
tial search nodes. Each of the function definitions in the
models along the chain points to the ISA hierarchy of
related models. This ranking is the first factor in the meas-
ure of similarity. The second factor relates to the use of
cross association links from each model along the {ailure
chain. It is not yet clear how to choose between proceeding
down the failure chain and/or across the association links to
propose new avenues for search.

Once we have decided to evaluate a new model to
replace part or all of the failure chain, we must decide how
to modity it to effect a solution. We have approached this
issue by assuming that the symbolic terms in the proposed
model will not be directly compatible with the models in the
failure chain. An equivalent of strong typing of these terins
are described in auxiliary models which provide methods to
perform translations. So, for example, if we were trying to
find a mechanical component to pertorm a desired function
by analogy of mechanical to electrical systems, then the
required translation of terms would be based on the models
for these term equivalences for a given point ot view. Lati-
tude for proposed modifications is not arbitrary and must be
deduced trom the term models.

~76-

TEMPORAL DEDUCTIVE MAINTENANCE

Since we allow modifications to be made (locally) to the
facts during the reasoning process, the (local) appearance ot
the knowledge base is non-monotonic. Thus, the reasoning
steps are not reflexive and the implication is that justifica-
tions for facts can vanish. Since we wish to allow this type
of reasoning in order to perform analogy, then to deal with
this problem, we define the notion of a weak justification as
one which is grounded in a time (i.e. event frame) prior to
the current one and not grounded in the current one.

A utility called the temporal deductive maintenance sys-
tem, (TDMS), manages the state of the knowledge base to
track these changes over time and maintain (relatively) etfi-
cient updates. It is a poor man’s reason (or truth) mainte-
nance system along with the appropriate machinery to
automatically provide the reasoning system with this ser-
vice. No interest in efficiency is pretended: the intent of
this mechanism is strictly for its facility since it allows the
automatic return to a specific reasoning system state without
programming overhead. In addition, it maintains temporal
event frames which will be useful for future projects.

STATUS

The system described here is currently in the preliminary
stages of design and implementation. The deductive
retrieval mechanism is in place along with the model build-
ing search mechanism. Experiments have been performed
on a simple planning problem which does not require anal-
ogy, in order to evaluate the model building strategy. Next,
a simple diagnosis problem will be used to develop the
point of view mechanism. Finally, a simple analogical prob-
lem wilt be constructed to provide a well understood test
case. Each of these examples will use the same knowledge
base which will be augmented as the implementation
proceeds.

RESULTS

Although it is far too early to draw any conclusions, the
chosen hierarchical model structure has uncovered some
interesting issues regarding the distribution of functional
information within the models. The philosophy described
earlier departs from some previous work in causal reasoning
in that there seems to be little penalty for mixing general
laws about object behavior along with specitic tunctionality
since the two are separaited within the model. It seems
acceptable to even describe specific instance data as the
expected behavior at one level with the assurance that it can
be rescinded at another.

MODAL FROPOSITIONAL SEMANTICS IFOR REASON
MAINTENANCE SYSTEMS

Allen L. Brown, Jr.

ABSTRACT

Non-monotonic logics are examined and found to be
inadequate as descriptions of reason maintenance systems
(sometimes called truth maintenance systems). A logic is
proposed that directly addiesses the problem of characteriz-
ing the mental states of a reasoning agent attempting to rea-
son with respect to some object theory. The proposed logic,
propositional dynamic logic of derivation (PDLD), is given a
semantics, and a sound and complete axiomatization. The
descriptive power of PDLD is demonstrated by expressing
various inferential control policies as PDLD formulae.

INTRODUCTION

In this note we will elaborate the propositional fragment
of an axiomatic semantics of reason maintenance systems
(RMS’s) [3]. The development ot such a semantics stems
from the desire to provide a declarative specification
language for RMS's with particular emphasis on the descrip-
tion of the control of their reasoning processes, and to serve
as a formal setting within which to compare and contrast
the properties of ditferent RMS's.

There is considerable ongoing research activity in the
realm of non-monotonic reasoning [14]. The avowed aim of
this research is to capture in a logical formalism some ol the
non-monotonic processes (e.g., default reasoning and
defeasible reasoning) that are clearly part of the common
sense reasoning repertoire enjoyed by humans. Implicit or
explicit in many of these formalisms is the notion that the
tormalism in some sense describes the process carried out
by the reasoning agent. In [11] McDermott and Doyle
analyze Doyle’s TMS [4] in terms of the non-monotonic logic
that they elaborate in (11]. Their analysis suggests that the
logic of TMS is a fragment of their non-monotonic logic. 1
believe that their analysis contuses the logic practiced by the
reasoning agent (the TMS) with the particular object theory
that the agent reasons about. A reasoning agent should be
viewed as a finitary computing entity. The computations
that it carries out have the express aim of mechanizing some
object theory. Depending on the nature of the object theory
or the reasoning agent’s grasp of the theory, the mechaniza-
tion may turn out to be imperfect. With respect to logics
like that ot [10] and [16], because there cannot be, in gen-
eral, a recursive enumeration of the theorems of the object
theory, a reasoning agent’s mechanization ot such theories
is bound to be imperfect. In summary, the relation that
obtains between an object theory and a reasoning agent is
that the theory is an ideal object that the agent might hope
to compute.

-77=

The sense in which many of the non-monotonic logics
that have been studied might be descriptions of RMS's, or
reasoning agents more generally, is roughly the sense in
which a formalization of recursive function theory might be
the description of a programming language, say PASCAL.
Recursive function theory can be taken as an ideal object
that a PASCAL implementation attempts to mechanize.
However, recursive function theory has little to say about
the actual semantics of PASCAL programs. Inevitably, a
tormal semantics of PASCAL would include recursive tunc-
tion theory, but most of the meat in axiomatizing PASCAL
is the tormalization of the states of the abstract machine that
is interpreting PASCAL.

There are some researchers who have attempted to
address the issue of describing the reasoning agent and its
mental states. Weyhrauch’s FOL system [18] has an explicit
notion of object theory and meta-theory. (Indeed, FOL per-
mits the construction of arbitrary hierarchies of such
objectmeta pairs.) FOL is an axiomatic system, specitically,
a first-order system with types. From my perspective, FOL's
main defect is that a FOL. meta-theory, if taken as an
attempt to formalize the properties of reasoning agents, has
no explicit notion ot the agent’s mental state. We believe
that an explicit notion of mental state is key to many
representations and control issues.

Doyle [3] develops a very powerful functional semantics
for theories of reasoned assumptions. His semantics, in the
guise of an admissible set, has a definite notion of the men-
tal state of a reasoning agent. He elaborates his functional
semantics so as to be able give taxonomic structure to a
wide range of reasoning formalisms. He focuses primarily
on giving an account of what inferential theories are sanc-
tioned by ditferent formal notions of reasoned assumptions.
Our interest, in contrast, is in describing the behavior of a
teasoning agent when constrained to adhere to particular
object theories. We should also mention that we prefer
axiomatic to tunctional specifications as we think there is
much more available technology tor compiling operational
{MS’s from axiomatic descriptions.

Goodwin recentlv introduced [5] a new inferential for-
malism, logics ot current proof (LCP’s). His intent is to cap-
ture the dynamic reasoning processes of finite reasoning
agents. LCI”s are not logics in the usual sense as they have
no proof theory or model theory. Goodwin’s formal account
of LCP’s is functional in nature. The principal appeal of
LCPs is that they explicitly encode the development of the
deductive process. It was in attempting to give a first-order

logic account of LCP’s, having models that suitably inter-
preted the sequence of databases in an LCP that we hap-
pened upon the idea of a dynamic logic of derivation.

The proximal technical inspiration of the dynamic logic
of derivation (DLD) is the dynamic logic (DL) formalism
introduced by Pratt and elaborated by Fischer, Harel,
Ladner, Meyer, and others [6,7]. DL gives axiomatic mean-
ing to programs by means of a first-order language aug-
mented with a collection of modal operators corresponding
to those programs. Formulae in the language are used to
characterize the states of computational processes before
and after the execution of some computational step(s). DL’s
model theory is a collection of Kripke-style worlds [8] con-
nected by binary refations corresponding to various possible
programs. Just as the worlds of DL’s semantics capture the
states of a computational machine, the states of a DLD
model will capture the mental states of a rational agent. The
approach that we shall be taking is presaged by Pratt in [15]
where he wuses variants of DL to tormalize individual
actions, sequences of actions (processes), and their etfects.
The remainder of this paper is devoted to elucidating propo-
sitional dvnamic logic of derivation (PDLD).

SYNTAX

Let L be a first-order language equipped with functions,
predicates, connectives, quantitiers, and perhaps even
modalities. [. has the usual formation rules for first-order
languages. The details of [. will not concern me very much
here. Let T be a theory over the language L. T is assumed
to be axiomatizable with a set of axioms and rules of infer-
ence. 'L, the language of PDLD, can to some extent be con-
sidered a meta-language for tor theories over L. Formulae
over '[. will typically be used to specify how the formulae of
T are actually derived from T’s axioms and rules of infer-
ence. This specification will be in the form ot an axioma-
tized theory 'T. We will call ‘T the mechanization of T. In
effect ‘T, when so elaborated, will (partially) specify a rea-
son maintenance system for the theory T.!

‘L has two sets of symbols: the atomic formulae and the
atomic derivations, collectively denoted as I, and j, respec-
tively. The atomic formulae are turther subdivided into two
classes, the proper atomic formulae and the reified atomic
tormulae. ‘& is a reified atomic formula of 'L if, and only if,
& is a formula of L. We will use (possibly subscripted) &, 1,
and x to denote formula variables of L, ®, ¥, and x to
denote instances of formulac . f [; p, g and r to denote tor-
mula variables ot 'L; P, Q, and R to denote instances of
atomic formulae of ‘L; @ and (B to denote derivation vari-
ables; and @ and b to denote instances of named atomic
derivations. There is also the anonymous atomic derivation,
. The proper atomic formulae are meant to behave like the
truth value bearing constants of ordinary propositional logic.
Intuitively reitied atomic formulae are formulae that are
asserted as deduced after some instance of a rule of infer-
ence in T has been applied.? Similarly atomic derivations
are specific instances of inference rules. The PDLD-wffs
and PDLD-derivations are defined by simultancous induc-
tion:

1 We wish to distinguish PDLD (and the first-order dynamic logic of
dernvation) trom the dynamic logics of programs investigated by Pratt
ot al The distinctton 1s not grounded so much in their respective
model theorics or proot theories, but rather in the tact that the
model-theoretic worlds ot the former are related by program
statements while in the latter they are related by interential steps.

I

~78-

{. an atomic formula is a PDLD-wit,

2. an atomic derivation is a PD1.D-derivation,

3. for any PDLD-derivations a and B (o;B), ({JB), o,
and « ! are PD1.D-derivations,

4. for any PDLD-wffs p and g and PDLD-derivation «,

-p, pYq, and <a>p are PDLD-wits.

We will abbreviate ~(~pv-q) to pAq; -pVg to p~q; (p-q
(G-r) to p=q; <" '>p (1>0) to <a">p; ~<a>-p to
[ajv; and <a’>p top.

SEMANTICS

Let W be a non-empty universe of states, elements of
which are denoted by s and t (possibly with subscripts). A
PDLD interpretation determines whether or not an PDLD-
witt P is true in a state s (or s satisties). Atomic deriva-
tions can be viewed as binary relations on W. Accordingly
an interpretation is defined to be a triple <W,mm>}
where W is a non-empty set, : 1;=2" and m: j;-2" "
and m provide meaning tor atomic formulae and deriva-
tions, and are extended inductively to the rest of 'L:

n{a;B) {<sa>Fu<s u>c@y<ut>cmP)}
n(aUB) = nm(a)Um(B),
ma’)y = (m(@),
NG {<s t>l<t,s>cm(a)},
m=) 2 Uaejo Ma)
m(PvQ) = =(P)um(Q)
w(-P) = W-n(P),
m(<a>P) = {s|3t <s,t>¢ m@)yt<m(P)
m(<a;p>P) {s|Zt<s t>em (oYM Em(P
m(<alUB>P) {s1F1<s t> m@aUB) M Em(P)}
a(<a’>) = {s|Tt<s > m’) Mem(P)
m<a >y = slZ s > em(a) Atem(P))

Denoting s €w(dP) by s=d and <s,t>€m(a) by sat and
adopting free usage of conventional logical symbols, one
may write for a fixed interpretation <W,m,m> that sk
<a> if and only if there is a t such that sat and t =®.
Given an interpretation [=<W, w,m >, a PDLD-wif P is I-
valid (written &,P) if for every s ¢ Ws=P. A PDLD-wif P
will be said to be PDLD-valid (written & P} if for every [, it
is I-valid. P will be said to be I-satisfiable if there is an s
such that s P and saticfiable if there is an [such that &, .

The distinction between proper and reified atomic formulae will play
no role in the development ot PDLD proper. The distinction becomes
important when the axioms that describe particular RMS's are
adjoined to the aviomatization ot PDLD.

We will dentity the three constituents of an interpretation with a
particular mterpretation I by suing the notation W', o, mi’.

A COMPLETE AXIOMATIZATION OF PDLD

The system P will constitute an axiomatization of PDLP.
The axioms for I are the tautologies of propositional cal-
culus together with:

[a)(p =) ~(alp~[alq) (1)
[eUBlp =(elp Bip) @
[Blp =(alB)p)
(o Tp ~lap)
(«'1p -p ©)
[Ip <[[l Ip (6)
p-lal<a >p 7)
p-lal<azp (8)
([T ~leddp)) ={e Iy 9)
[E5Ip =~la*)p (ivj
where 7 is an integer or " and o €
The ruies of irference lor P’ are:
if ¢ ¢ P qand < pthen t p 4 (11)
o4y pth~n ‘n—P[nlp (12)

The follo g two theorems are straighiforward conse
quences of the syntax, seraantics, and axiomatization above:

Theorem 4.1 The axwm: 1) through (104 are PDLD-valid.

Theorem 4.2 The rides of inference (11) and (123 are sound with
respeci to PLYLDY ingerpretations

Pasihivs completeness proot for propositional dynamic
iogic of programs [13] can be adapted to PDLD to obtain:

Theorem 4.3 Every POLD-valid formula is in ihe dedictive clo-
sure of Lhe system P,

DESCRIPTIVE POWER

General Considerations on Monotonic Theories

Thus far we have dono nothing that connects any partic-
ular object theory T with a mechanization 'T. In order to
make that connection and to sxhi it the descriptive power
of 'L, we will augment P with proper axioms that chi.racter-
ize a monotonic theory T. Assume thot [includes the tirst-
order predicate calculus. For each axivm i ol T, ther. is an
axiom '@ of ‘'T. Consider an instance ol raodus nonens in
T:

if = ®and - d-Wthen - ¥ (13)
T T T

This suggests an axiom for ‘T of the form:

DA (P MP > (Ih

4. The principal technical hurdles in adapung Parikh’s complex proc f to
P arc in validating certain claims that Parikh mases tor
“pscudo-models” and “closed scts when applied to P

5. For a complete characterization ol & monotonic interence rule such as
modus ponens, one should also add the axiom '@ (b 2F)-|MP|"W
since the rule is entirely deterministic in its consequent.

-79-

The second observation to be made about modus ponens is
that it is “belief conserving.” That is, anything that is
believed before the application of modus ponens should
continue to be believed afterward. Conservation of beliel
(and non-belief) is a property inherent in monotonic rules ot
interence. To generalize then from the case of modus
ponens, for each inference instance (of T) represented by
the atomic derivation a, with antecedents &,,...,®, and con-
sequent W there is an axiom of ‘T of the form

K VAT R B (15)

Given that T is monotonic, it seems natural to require the
following frame axiom schema to enforce belief conservation
relative to each atomic derivation: a

"d-[a]'d where & is any L —-wff (16)
~'db-[a]~"db whered is any [~wff #V¥ (17)

It can be shown that - © =" can be proved from ‘T
(keeping in mind that 'T mechanizes the first-order predi-
cate calculus), an augmentation of P, whenever & is a
theorem of T. Indeed, P augmented with axioms
corresponding to an object theory T together with deriva-
tion and frame axioms as above will be termed the natural
mechanization of T. This leads to asserting that a PDLD
theory 'T completely mechanizes T just in case

~ P ifand only if - < GO R A (18)

Needless to say, if the object theory T to be mechanized
happened to be the pure first-order predicate calculus, for-
mulae such as -~ < >'® cannot generally be proven in the
natural mechanizing theory 'T [1]. This observation has
important consequences vis @’ vis the proof theory of non-
monotonic theories [10] and their mechanizadons (see
below).

Notice that for an object theory T and mechanizing
theory ‘T, We have been implicitly taking <+ >'d to mean
that 'T “believes” '® to be a consequence of believing the
object theory T . Suppose P were taken as the object theory
of 'T.” 'T can be constructed in such a way that @ is a
theorem of 'T if, and only if, <a;...;a,>"® is a theorem of
‘T for some sequence a,,...,a, of (reified) atomic derivations.
On the other hand, it can also be demonstrated tor ‘T that
@ is not a theorem of ‘T if, and only if, <ay;...;a,>"D is not
a theorem of 'T for any sequence ay,...,a, of atomic deriva-
tions In fact, @ s not a theorem of 'T it, and only if,
S b-<a;a,>="D s a theorem of 'T tor every sequence
a4, of tefied atomic derivations. The situation that

~ppears to obta in [then is the PDLD analogue ot what

y *
h. Thear erion +, > “) does not sutfice on the right hand side of the

“it, and only it as T maght be a non-monotonic theorv. The second
clause is necessary 1N order to assure that once ‘T derives " it
sticks” and that ‘T docs not oscillate, believing and disbelieving ",
e to some beliet revision policy
) v such a thing is possible, et 'L be the language L together
<y tee ormula ‘D whenever b is a formula of ‘L. Consider P, the
system ? taken over ‘L together with an axiom '® whenever & 15 an
axtom ol P, the natural axiomatic encodings ot the rules of inference
modus ponens and necessitation) of P, and the frame axioms for
those rules of interence. In the same spint as reitied atomic
tormulae. atomie denvations that are instances of modus ponens and
necessitation o1 she system P owill be called iaitied.

Moore [12] calls autoepistemic stability of an ideally rational
agent. Loosely speaking, @ is a theorem of ‘T if, and only
if, from every mental state (wherein ® mav or may not
believed) there is a derivation leading to a mental state in
which @ is believed. Conversely, & is not a theorem of 'T
it, and only if, (dis-)belief in & is invariant under derivation.

Specifying Breadth-first Search

An explicit derivation of & is a formula of the form
<ay,...q>"P. ‘T enumerates the theorems of T in a
breadth-tirst fashion if and only it

1. for each theorem ® of T, there is an explicit deriva-
tion of ¢ that is a theorem of 'T,

r

the sequence of named atomic derivations that
appears in the prefix of '® corresponds to the
sequence of inference rules applied in the proots of
the theorems of 7 when enumerating them in
breadth-first order,

3. if W, precedes W, in the breadth-first ordering,
then the derivation of ¥, cannot be proved as a
theorem ot ‘T until ¥, has been proved.

A tormula T is said to be of rank n it the shortest proof
ot that formula is of length 1. Then axioms of T are of rank
0. Let A, be an ordered list of the last atomic derivations
applied in the proots of each ot the tormulae of rank 1.*
Breadth-first enumeration is achieved by replacing axiom
(15) above with (19,20) below:

Cy, (19)

¢ b ’ /\’(bn.m,k - Sy > "l’" m . Dn,m (20)

A ok 5
"n,m n,m,1

and adding boundary conditions

Dn n "[an,m]Cn m+1 it there exists By om+1 (21)

Dy w-la, ,1C, +1,1 otherwise (22)

where the a, ,, is the m’th atomic derivation on the list 3y,
and the &, . 's and W, . are, respectively, the antecedents
and consequent of the atomic derivation a,, ,,. The interac-
tion of the C's and D’s prevents ¥, ., from being derived
before W, . is derived. Indeed, no tormula ot rank n is
derived betore every formula of lesser rank is derived. The
W’s are thereby torced to be produced in breadth-first order.
Ot course it must be verified that a theory 'T that mechan-
izes T completely, when modified with the breadth-tirst
axioms, continues to mechanize T completely. To that end
the tollowing holds:

Theorem 5.1 If °'T is the natural mechanization of T with axiom
(15), and if ‘T’ is the breadth-first mechanization of T with
axioms (19,20,21,22) replacing (15), and if H< 1> d, then
F/< ET >0,

With a difterent set of boundary conditions, a depth-first
enumeration of the theorems ot T could have been
achieved. That is, there is a set of boundary conditions such
that

8 tt could be that the formulac of rank n are infinite in number. In that
case the enumeration wilt never get beyond the formulac of rank n.

-80-

1. tor each theorem @ of T there is an explicit deriva-
tion of ¢ that is a theorem of ‘T,

2 the sequence of named atomic derivations that
appears in the pretix of '® corresponds to the
sequence of inference rules applied in the proofs of
the theorems of T when enumerating them in
depth-tirst order,

3. if Wy prececles W, in the depth-first ordering, then
the derivation of W, cannot be proved as a theorem
of 'T until ¥, has been proved.

The interaction between the axioms (19,20) and boundary
conditions suggests a general programming”’ methodology
tor controlling the application of derivations. The proposi-
tional constants D, , and C, ,, should be viewed as "ena-
bling” and “completion” flags for the firing of the atomic
derivation a, . These constants indicate respectively that a
derivation can be used and that a derivation has been used.
Programming then consists of designing systems of boun-
dary conditions to achieve the desired sequencing of infer-
ences by suitably controlling the truth values of enabling
flags in various mental states.

Goodwin 5] (and McDermott before him in {10]) cites a
number of problems in using deduction to control deduc-
tion. He remarks that attempts at controlling inferences by
deductive methods have typically resulted in invalidating
particular inferences altogether, or alternatively resulted in
RMS states that assert that some proposition has been pro-
ven if and only if it has not been proven. It should be clear
from the discussion of programming above that atomic
derivations are enabled with respect to particular states. As
a consequence, an inference can be temporarily en-(dis)-
abled, and there is no problem whatsoever in having some
proposition "W be derived by some derivation that has since
become disabled. The axiom schemata (21,22) could just as
well have been written

Dn .m "[un L]Cn,m +1 '\"'[)n " it there exists (1" a1 (23)

D, n-la, ,1C,+ 11\ =D, ,, otherwise 24

which have the etfect of disabling cach of the (19,20) after
use.

Finite Reasoning Agents

At the outset of this note we proclaimed PDLO s o
mechanism tor describing the behavior 1 finite reasoining
agents. Caretul sceutiny of PDED intc-pretations w'il 1 4,
that PDLD theories admit irterpict tr s v hu
with any reasonable notion v a i 1300t
tollowing observation™= I on_ th 1« ot a v
states related by vaiior. . aton e ferivations
ing to the flwv o1 sore. L
exiend infinitelv into the pmst
tai state can ve fmraed .y oy
Finally, states w12 be donse.” That s, POLD titerpretanons
can be cuch st dor 4y atemnic Aerivation @ whenever
s zem@) by is o onosubh o tnat <. >ema) ane
<L b= em),

REa, e
wide s
e 0l o nlai
cer espond-
et tme, ther fime can
dtotury

receddey

orcover, 1 men-
©.shple states

A

A TR i

As it turns out, all ot these anomalies can be legislated
away with appropriate axioms. Tense logics [17] that impose
various topologies on the ordering of time provide much of
what is needed. To focus on one of the anomalies, consider
the infinite extension into the past. This can be eliminated
with:

< o<k l>p‘.-‘p. (25)

This last formula says that every state either is, or is pre-
ceded by, a state which is not immediately preceded by a
state that satisfies pv-p. But since every state satisties pv-p,
this formula can be satisfied if, and only if, every state is
cither immediately preceded by no state at all, or is pre-
ceded by some state which is in turn preceded by no state.
This axiom prevents infinitely long (receding) chains of
states. On the other hand, it does not prevent interpreta-
tions having a particular state from which there is a reced-
ing chain of any given finite length. More axiomatic
machinery still is required to prevent that.

Non-monotonic Theories

In considering the descriptive power of PDLD with
respect to non-monotonic theories it should first be noted
that the intuitive statement of the rule of possibilitation
introduced in [11] is directly expressible in PDLD. Recall
that McDermott and Doyle first gave an intormal definition
of their non-monotonic rule of inference which stated that it
a proposition were not provable in a theory T, then the
negation of the proposition is provably possible. Though the
intent of this rule is clear, it is unfortunately circular.
McDermott and Doyle had to appeal to an indirect technical
device to capture possibilitation. In the PDLD mechaniza-
tion ot T, however, their original notion of possibilitation
can be expressed as:

TS b <> <> b (26)
where ' " is the consistency modality of {10,11]. Possi-
bilitation is well defined but, unfortunately, not effectively
computable in general. Since there is no magic, a non-
monotonic theory T that is not recursively enumerable, can-
not have a complete mechanization that is recursively enu-
merable. It a (partial) mechanization ‘T is to remain r.c.,
such mechanizations cannot in general have the formulae
~<+~">'¢ (on the antecedent side of 26) as theorems.

Fhe whole point of a non-monotonic logic is to formalize
the default and deteasible inferences that are evident in
common sense reasoning and practiced by various RMS's. It
should be evident that PDLD provides a mechanism for
directly tormalizing such reasoning without necessarily
resorting to the sorts of infinitary processes implicit in
McDermott and Dovle’s rule of possibilitation. In order to
realize defeasible inferences, a PDLD theory cannot have
the general frame axioms (16,17); not all atomic derivations
will be beliet conserving. A default introducing axiom
scheme might be:

R @7)

which says that if - is not currently believed then & can be
believed. Of course, it might be the case that - <+ >'~d.
Thus, the simple notion of default reasoning supported by
27) would admit states to interpretations ot ‘T that sanc-

-31-

tioned inconsistent beliefs. Now for ‘T to have inconsistent
beliefs is not the same as ‘T's being inconsistent. On the
other hand, states that have 'd/A' - true are irrational, and
to have <" >'0"-b as a theorem of ‘T makes 'T irra-
tional. RMS's generally have backtracking mechanisms to
revise the set of current beliefs so that consistency of beliefs
is restored. Although PDLD as presented here is not expres-
sive enough to describe all the details of those mechanisms,
it can describe the general policies that are typically
enforced by those mechanisms. A weak policv might be:

(N ~b)-{F |~(' b ~b) (28)

which says that it the reasoning agent is in a state that is
irrational with respect to a particular formula &, all states
immediately reachable from that state should be rational-
ized. A much stronger (and typically unenforceable by effec-
tive computation) policy is stated by:

(HN =)=]=< "> (b7 ~b) (29)
This schema says that if the reasoning agent is in a state
that is irrational with respect to a particular formula &, the
agent should do something (e.g., withdraw sutticient prem-
ises or hyvpotheses in which the irrational state is grounded)
such that at no future time can the agent be in a state irra-
tional with respect to ¢. These examples ot deduction and
premise control policies seem to respond directly to
McAllester’s [91 objections to non-standard logics:

The problem with non-monotonic logics is that
they bring in non-traditional formalisms too early,
muddying deduction, justifications, and backtrack-
ing. The aspect of truth maintenance which cannot
be formalized in a traditional framework is premise
control...

Dynamic logics of derivation ofier an opportunity to make
the various issues explicit.

CONCLUSIONS

In the foregoing we have developed the syntax and
semantics of the propositional dynamic logic of derivation,
and presented a complete axiomatization tor the logic. By
way of examples we have illustrated some of the expressive
power available in PDLD for specifying and analyzing the
behavior of reason maintenance systems. Finally we have
offered dynamic logic a: an alternative to the sorts of non-
monotonic logics investigated heretotore as a means for giv-
ing a formal account of some aspects of common sense rea-
soning,.

PDID obviocusly cannot be completely expressive of all
properties that might be ascribed to an RMS. For that, one
rxquires the first-oyder dvnamic logic of derivation [2]. In
the latter formalism one can not only give a complete tirst-
order account of control protocols, but also of the collateral
data structures (viz. “no-good” lists, hypothesis contexts,
dependency relations, etc.) that RMS’s utilize in the beliet
revision process. Between PDLD without the i~ derivation
and full first-order dynamic logic of derivation there are
many alternative logics having ditferent powers of expres-
siveness. The analogous dynamic logics of programs have
been extensively investigated. We believe that those investi-
gations will offer a good starting point tor developing an
RMS specification logic which is suitably expressive, while
being deductivaly tractable.

T ..,

(1]

(2]

(6]

(7]

(8]

REFERENCES

Boolos, G., The Uuprovability of Cousistency: An Essay
in Modal lLogic. Cambridge: Cambridge University
Press, 1979.

Brown, A.L. Considerations ou the Semantics of Reason
Maintenance Systes: A Modal - Propositional Theory,
General Electric Research and Development Center
technical report. Schenectady, New York. (forthcom-
ing)

Doyle, J., “A truth maintenance system,” Artificial
Intelligence 12:(1979)231-72.

Dovle, J., Some Theories of Reasoned Assumptions, Car-
negie Mellon University Computer Science Depart-
ment technical report no. CMU CS-83-125. Pitts-
burgh, 1983.

Goodwin, J.W., "WATSON: A dependency directed
inference system,” Proceedings of the AAAIL workshop on
non-monotonic reasoning, ed. R. Reiter et al., pp. 103-
14, 1984.

Harel, D., “Dynamic logic,” Extensions of Classical
Logic, eds. D. Gabbav and F. Guenthner, pp. 497-
604 D. Reidel Publishing Company, Dordrecht,
Netherlands: 1984.

Harel, D., First-order dynamic logic, Lecture Notes in
Computer Science, vol. 68. Berlin: Springer-Verlag,
1979.

Hughes, G.E. and M.]. Cresswell, Au Introduction to
Modal Logic, Methuen, London: 1968,

<82~

(9]

(10]

(1]

(12]

(13]

(14]

{16]
(17]

(18]

McAllester, D.A., An Qutlook on Truth Muintenance,
MIT Artificial Intelligence [aboratory memorandum
no. 551. Cambridge, Massachusetts, 1980.

McDermott, D.V, “Non-monotonic logic II: non-
monotonic modal theories,” Journal of the Associution
for Computing Machinery 29:(1982)33-57.

McDermott, D.V., and J. Doyle, ““Non-monotonic
logic 1,” Artificial Iutelligence 13:(1980)133-70.

Moore, R.C., Semantical considerations on nonmono-
tonic logic, Artificial Intelligence 25, :75-94 January
1985.

Parikh, R., A Completencss Result for a Propositional
Dyuamic Logic. MIT Laboratory for Computer Science
technical memorandum no. 106. Cambridge, Mas-
sachusetts, 1978,

Perlis, D., Bibliography of literature of non-monotonic
reasoning, Proceedings of the AAAI workshop on non-
monotonic reasoning, ed. R Reiter et al., pp. 396-401,
1984

Pratt, V.R., Six Lectures on Dynamic Logic, MIT Labora-
tory: tor Computer Science technical memorandum
no. 117 Cambridge, Massachusetts, 1978,

Reiter, R., “A logic tor default reasoning,”’ Artificial
[ntelligence, 13:(1980)81-132.

Rescher, N and A. Urquhart, Temporal Logic. Library
of Exact Philosophy, Springer-Verlag, New York, 1971.

Wevhrauch, RW., “Prolegomena to a theory of
mechanized formal reasoning,” Artificial lutelligence
13:(1980)133-70.

ey

aa e

-‘ﬂ::-‘-—-

REASON MAINTENANCE
FROM A LATTICE-THEORETIC POINT OF VIEW

Dan Benanav, Allen L. Brown, Jr., and Dale E. Gaucas

ABSTRACT

Goodwin and de Kleer have each investigated certain
fundamental aspects of reason (or truth) maintenance sys-
tems (RMS’s), non-monotonic justifications in the case of the
former and assumption-based justifications in the case of the
latter. To a certain extent, each of their mechanisms can
simulate the other, though not altogether satisfactorily. By
recasting the reason maintenance problem in a lattice-
theoretic framework we are able to develop a bodv of
mathematical theory that elucidates reason maintenance in a
general way so as to include both assumption-based and
non-monotonic justifications in a direct and transparent
fashion. More generally, if a method of labelling proposi-
tions so as to justify them according to some reasoning
agent’s constraints of belief also happens to conform to the
postulates of Boolean lattices, the labelling system can be
accommodated under the same umbrella of abstraction. The
mathematics immediately suggests a collection ot algorithms
that support efficient revision of beliefs as a reasoning agent
changes its assumptions and/or its constraints on beliefs.

INTRODUCTION

We propose here a single theoretical tramework which
subsumes various notions of reason maintenance, including
the assumption-based justifications reported by de
Kleer [9,8,10,11] and the non-monotonic justitications
reported by oodwin [16,.7,18,19]. In this note we will give
an abreviated account of a body of work that is fully
reported in [4]. Our aim here is to motivate the work,
present some of the mathematical theory, and interpret the
theory in relation to other reason maintenance systems and
in terms of algorithmic realizations.

We have a conservative view of the scope of reason
maintenance systems. A similar view is implicitly evi-
denced in de Kleer's work and explicitly articulated by
Goodwin: A reason maintenance system is a utility that
supports deductive problem solving. It maintains a data-
base of facts, some of which a client reasoning system holds
as currently believed, others not.! It also supports relations
over the facts that serve to record the arguments that sanc-
tion a reasoning agent’s belief therein. Because a reason
maintenance system must be founded on low-level facilities
for retaining and matching data structures representing
facts, it may also be convenient for the reason maintenance

" Note that failure to believe a fact is not identical to

belteving its negation.

~83-

system to export interfaces for detecting database incon-
sistency and other “interrupts” triggered by the occurrence
of various patterns in the database. Indeed, we see facts or
propositions as exhibiting a number of salient characteristics
fcr a problem solver: true, provable, and proven. The prob-
lem solving mechanisms for attributing those characteristics
are observation, deduction, and reason maintenance.

Because of our views on how a problem solving system
should be structured, there are some functions that we
believe the reason maintenance system should not fulfill. It
should not be a mechanism for managing the restoration of
consistency when a reasoning agent discovers itself to be in
an inconsistent state. It should neither determine what con-
stitutes a valid deduction nor manage the sequencing of
inferences. The reason maintenance system may provide
support tor all of the foregoing, but is not the most
appropriate place to marshall such efforts.

The initial motivation for this work was the desire to
unify in a single mechanism the reason maintenance
paradigms of de Kleer and Goodwin. The systems of both
investigators can be viewed as constraint propagation
mechanisms. Given disjunctive sets of sets of premises and
a set of (monotonic) deductive constraints, de Kleer's ATMS
tells a client problem solving system what things it is
currently obliged to believe assuming one or another of the
sets of premises. Goodwin’s LPT, on the other hand, tells
the client problem solving system what things it is currently
obliged to believe given a single set of premises under
deductive constraints, some of which may be non-
monotonic in nature.” Our original intuition was that it
should be possible to account sinultanconsly for multiple sets
of premises and non-monotonic deductive constraints.

This intuition arose from the striking similarity that we
observed in the computations of reason maintenance sys-
tems and the computations of slobal flow analysis that
underly modern optimizing compilers [2,20,21,23]. Global
dow analysis can be couched in the following terms: Given
the constraints imposed by individual program statements
and their interconnecting topology, what tacts is a reasoning
agent (in this case concerned with programs) obliged to

A monotonic deductive constraint obliges a rational agent
to believe its consequent given that it currently believes
all ot its antecedents. A non-monotonic deductive
constraint obliges a rational agent to Dbelieve its
consequent given that it believes all of its monotonic
antecedents and none of its non-monotonic antecedents.

believe about the state of computation at various points in
the program’s control flow? In a sense the intormation pro-
pagation problem solved by global fHow analysis can be
viewed as the dual of the reason maintenance problem. The
former assigns propositions to contexts established by vari-
ous paths through a program. The latter assigns contexts of
beliet to propositions under various deductive constraints.
There are two principal methods of solving information pro-
pagation problems. Both hinge on solving systems of equa-
tions whose unknowns range over the domain of an alge-
braic lattice. The work that we will describe presently
retains the idea of equations over a lattice, but for various
technical reasons (principally non-monotonic constraints) the
solution methods used in global flow analysis turn out to be
inappropriate. A rather different solution method has been
developed.

REASON MAINTENANCE
IN A LATTICE-THEORETIC FRAMEWORK

We begin by introducing the idea of a Boolean lattice. A
complete account of such structures can be found in any of
{3,5,22]. For our purposes here, the clements of such a lat-
tice are meant to capture the idea of alternative sifuations.
With respect to any particular situation a finite reasoning
agent takes certain tormulae as premises.

Definition 2.1 Let § be a Boolean lattice equipped with the
usual meet, join, and complementation operators; a partial
order, <; and maximum and minimum elements, T and L
respectively. Elements of B will be called situations, and will
be denoted by A and B. A and B (possibly subscripted) are
{attice expressions in B. Moreover, if A and B are expres-
sions in B thensoare A VB, AAB, A and B.

Especially important to us will be the existence of the
partial order, the complement, maximum and minimum ele-
ments, and the mutual distributivity of meet and join.

A dattice unknown is a super- and/or subscripted s or .
Each lattice expression in B and unknown is a fattice form in
8. Moreover, it X and Y are forms in B then so are
XvY,XAY,Xand Y. Individual (fixed) lattice torms in
B will be denoted by X and Y, possibly subscripted. Lattice
unknowns correspond to what some investigators have
called nodes. Every tact or proposition has an associated
unknown. Note that a proposition and its negation have
distinct associated unknowns.

Definition 2.2 A {uttice equation over B is a relation of the
form X = Y where X is a lattice unknown and Y is a lattice

torm.

Definition 2.3 A lattice equational system over B, X, is any
collection of lattice equations over B such that the total
number of lattice unknowns occurring on the right-hand
sides of the equations is finite and any lattice unknown
occurs at most once on the left-hand side of an equation.
The equation on whose lett-hand side s appears will be
called the s equation. If the right-hand side of the s equa-
tion is a lattice expression, s will be termed trivial.

S will be sub- or superscripted on those occasions when
it is useful to distinguish among various equational systems.
Unless there is some ambiguity in the context, we will freely
say “‘system’” without modifiers. A lattice equational system
should be interpreted as encoding the way a reasoning
agent’s beliet (or disbelief) in a collection of propositions
entail beliet in others.

Definition 2.4 If ¥ is a latticc equational system such that
the right-hand side of each equality is ot the torm 7 *.X,
where each X, is an element of B or an unknown (possibly
complemented), then I is said to be in disjunctive normal
forne.

Disjunctive normal form, a consequence of distributivity
in B, gives us a useful way of presenting lattice torms in
general, and lattice equational systems in particular. Since
we can transtorm any form to disjunctive normal form, we
will usually treat forms over B and lattice equational sys-
tems as if they were in disjunctive normal form.”

Definition 2.5 A sofution to a lattice equational system, X,
is a function, T, from the lattice unknowns appearing in the

“system into B such that if for each equation in the system,

—84—

each unknown s in the equation is replaced by I'(s) the
equation holds in B. A lattice equational system having a
solution will be termed sofvable.

We will, in fact, take solutions as assigning values from
B to every unknown, s, whether it is mentioned explicitly
on the left-hand side of an equation or not. Put another
way, unknowns, s, not having an associated equation,
implicitly have the equation s = L. We will interpret lattice
equations as constraints. A solution, then, is a labelling ot
propositions with situations. In particular, the situations are
those in which a reasoning agent is obliged to believe the
correspondingly labelled proposition given acceptance ot the
constraints imposed by the system.

Definition 2.6 Let X be a form in B and lattice unknowns
of a system, . If T is a solution of T, then I'(X) is the
expression over B that results from substituting tor each
occurrence of each unknown, s, the value I'(s).

Definition 2.7 A justification of a disjunctive normal form
lattice equational system, T, is an ordered pair 5,X,
where s appears on the lett-hand side ot some equation in X
and X is a disjunct on the right-hand side of that same
equation. Also, s is called the consequent of the justific; “1en
d and each conjunct ot the disjunct X is called a non-
monotonic or monotenic antecedent of d depending on whether
or not it is complemented. The sets of monotonic and non-
monotonic antecedents of d are respectively denoted «(d)

and a(d).

Definition 2.8 A justification, d, is valid with respect to a
situation, A, and a solution, I', of an equational system X it
and only if,

A= AN TE)n N TE)

seald) seald)

' The assumption of disjunctive normal torm is a
convenience tor mathematical analysis and not a
requirement for the algorithms en%‘ndered by this
analysis. This is in contrast to the ATMS’s requireient ot
a diéjunctive normal torm representation.

We will write Valid(A,4,T’} to indicate that d is valid with
respect to A and solution T

Definition 2.9 A solution, T, is well-founded with respect to a
lattice equational system, U, at lattice unknown, s, if and only it
I'(s) =V, A, and for each A;, there is a partially ordered
set, (P,, <), such that Py is a set of justifications from T
and

1. there is a justification, d in P4, whose consequent is

s,

[

for every justification d, in P4, Valid(A,,d,T),

3. every unknown, s’, that is a monotonic antecedent of
some d in P, is also the consequent of some justifica-
tiond in Py andd’ < A, d.

Definitinn 2.10 A solution to a lattice equational system is
well-fou, ‘ed if and only if it is well-founded with respect to
the system at every lattice unknown mentioned in the sys-
tem.

We interpret justifications, validity and well-foundedness
in the tollowing way: Validity describes the circumstances
under which the consequents of a justification are to be
believed given the belief status of the antecedents. A justifi-
cation therefore constitutes an independent source of sup-
port justifying belief in a consequent. Chaining justifica-
tions together constitutes a supporting argument. Since we
wish for our argumen.s to be non-circular, we impose an
additional condition, well-foundedness, to guarantee that
state of atfairs.

Using only the concepts we have introduced thus far, it
can be demonstrated that finding solutions to systems is
NP-hard in the number of equations. Dovle [12] and
Goodwin [19] have questioned whether or not the well-
foundedness condition might simplify the solution finding
process. Unhappily, finding well-founded solutions is also
NP-hard in the number of equations.

Definition 2.11 A path from s, to s, is a sequence of triples
of the form X\ 5y, X5,Yas,, o, X,,Y, .5, where X, is
an antecedent of the Y, disjunct of the s, equation in X. X,
is a complemented (uncomplemented) unknown if it is a
complemented (uncomplemented) conjunct of Y; with
X, els, 1,5, ;}and 1 =/ = n. .\ path is odd if it has an
odd number of complemented unknowns and cven other-
wise. A system is odd (and even otherwise) it it has an
unknown, s, and an odd path from s tos.

Thus tar we have established a framework within which
we can formally describe reason maintenance problems. For
this framework to be truly useful we must provide a way of
finding solutions in a structured tashion. There is no obvi-
ous means of finding solutions of lattice equational systems
because of the nature of the meet and join operators. Infor-
mally we may say that meet and join do not have
“inverses”” in the sense that subtraction and division are the
respective inverses of addition and multiplication in an alge-
braic field. For the sake of brevity in the remainder of this
section, we will focus on even lattice equational systems.*

* To the best of our knowledge, the only use to be made of
odd lattice equational systems is to implicitly encode
alternatives. ~"We believe, as does de Kléer, that

alternatives are better encoded explicitly in assumptions.

Finding solutions depends on a pair of lattice equational
system transtorming operations that vyield new systems
whose well-founded solutions are well-founded solutions of
the original system.

Definition 2.12 A local substitntion transformnation mwder s or
a lattice equational system, X, results in a new system T’ such
that

1. the s equation of Zis in X',

2. it T has no equation having an occurrence of s on its
right-hand side, o, (2} = X, otherwise, all the equa-
tions of T except for one having an occurrence of s on
the right-hand side, say the s’ equation, are in ¥,

3. anew s’ equation is included in ¥’ that is identical to
the s” equation in T except that one occurrence of s on
the right-hand side of the s’ equation is replaced by
the right-hand side of the s equation,

4. there are no other equations in T'.

This transtormation is denoted «, (X) = T’

Definition 2.13 A global substitution transformation under s of
a lattice equational system, £, denoted ¢ (Z), is defined by

o, = u where n is the least non-negative integer such that
a3y = o ().

Definition 2.14 A mininization transformation under s of a
lattice equational system, X, results in a new system 2’ such
that

1. if the s equation of I is of the form® s = X,V
(X375)V(X3A5), then the equation, s = X,V X5, is
in I,

2. all the equations of T except for the s equation are in
v(

3. there are no other equations in 2.
This transformation is denoted p.,(2) = 3.

When applied to an even equational system, £, a compo-
sition of the above transformations in the sequence
Pg =05 D, SO Ot S g Oy 30, ° T i

Sa M1

where {slll = j = M} is the set ot non-trivial unknowns in
3, vields a new system having only lattice expressions (con-
stants) on the right-hand sides of its equations. These
expressions can be demonstrated to constitute a well-
founded solution for £. Such a composition of transforma-
tions ir analogous to Gaussian elimination [6,14]. There is a
phase of M pairs of minimization and global substitution
operations followed by a phase of M global substitution
operations. The first phase corresponds to "“forward elimi-
nation;” the second phase corresponds to ““backward substi-
tution.” We now know that for even lattice equational sys-
tems, at least, we can always find solutions. We have addi-
tional mathematical results that essentially guarantee a
unique factorization tor a solution, . Those results

The 5 equation can always be rearranged to be in this
form.

3

e

together with the “Gaussian elimination” just described can
be used to generate in a structured fashion all the solutions®
to every system, even or odd.

The lattice-based theory of reason maintenasice suggests
a number of algorithmic performance improvements, some
oriented toward batch processing, some toward incremental
processing. Certain improvements derive from topological
considerations. A particular notion of connectivity can be
attributed to equations, whence derive notions of strong
connectivity (1,13,15] and strongly connected subsystems.
Considerations on the structure of strongly connected sub-
systems lead to improved computational complexity results
in suitably restricted cases. Similarly, purely algebraic con-
siderations can lead to performance improvements in incre-
mental algorithms when certain local conditions are met.

EMBEDDING ATMS AND LIT
IN A LATTICE-THEORETIC FRAMEWORK

Having introduced our own formal machinery, we turn
now to applying it to the description of the reason mainte-
nance formalisms of de Kleer and Goodwin.

Assumption-based Truth Maintenance

De Kleer's basic” ATMS labelling algorithm can be cast in
a lattice-theoretic framework as follows. Given de Kleer
assumptions {A, |1 < i < n}, let the domain of the lattice, B,
be the closure under meet, join and complement of
{A11 = i< n). An atom of B is an expression of the form
AR where X is either A, or A,. Let A denote an atom
of B and B, and B, b ~rbitrary elements. If A and A" are
distinct atoms, L = AAA" and T = AV A. The partial
order for B is defined as follows:

A=A, = A, appears uncomplemented in A, ;‘\V‘,
A=A, = A appears complemented in \'_; A,
A<BB, = A=B,and A<B,,

A=B\B, = A=B,or A<B,,
B,=B,

for every atom A, A<B~A<B,.

For a given set, |, of ATMS justifications, a lattice equa-
tional system, X, over 8 can be constructed as follows. For
each justified node, s, in |, £ contains the s equation,
5 W Xy, where X, is the ith antecedent node or
assumption of the kth justification of s. For each unjusti-
tied node s’ in [, X contains the s’ equation, s* = L.

Since de Kleer does not supply a formal proof of correct-
ness ot the ATMS algorithm, we have no direct way of
establishing equivalence between the ATMS label propaga-
tion and solving the lattice equational system just given.

® Lattice equational systems with complemented

unknowns have, in general, more than one solution.
This is in contrast to the reason maintenance problem
addressed by the ATMS. Although de Kleer counts each
disjunct of an ATMS label as a “‘solution,” from the point
ot view of lattice-theoretic reason maintenance the entire
disjunctive expression of an ATMS label is a single
solution.

For the purposes of this discussion we exclude de Kleer's
nogoed mechanism from the basic ATMS. Any nogood
environment can be accounted for if we a[ﬁe\brmcally
identify the corresponding lattice expression with ..

86~

On the other hand, de Kleer gives a formal specitication for
the ATMS solutions. We can show that solutions to the lat-
tice equational encoding satisfy the specifications given for
ATMS solutions. In particular, we demonstrate in [4] that
the lattice equational solution is sound, complete and minimal
in the sense that de Kleer uses those terms.

Logical Process Theory

Many ot the tormal concepts we introduced in §2 are
either algebraic restatements or generalizations of
Goodwin’s graph-theoretic notions. Consequently, framing
logical process theory within our Boolean lattice formalism is
completely straightforward. The main task in LPT is to
determine an admissible labelling of a given database, D, of
interence steps. Briefly, an admissible labelling is a function
from a language L to the set of labels {IN,OUT}, where
every formula labelled IN has a well-founded argument,
An inference step, d, is a tripte, 'M,N,c' where
M,N C1,cel,and 1 is the set of all inference steps. The
set M = M-antes(d) contains the non-monotonic
antecedents ot d, the set N = NM-antes(d) contains the
non-monotonic antecedents of 4, and ¢ is a consequent of
d. Given a database D, one can construct a lattice equa-
tional system I, such that a well-founded solution of I
corresponds to an admissible labelling of D. To do this let
{s,|l e L} be a set of lattice unknowns and let B be the
Boolean lattice consisting of the set {I', 1}. For each prem-
ise, |, let T contain the equation s, = T, otherwise ot | is
the consequent of some inference step in D let T contain
the equation,

U [ns,,]n [n s,]
JdelD)’ I,iM I eNM

.

where D' = {d|d e D A conseq(d) = 1} and M and NM are,
respectively, the monotonic and non-monotonic antecedents
of d. If I is not the consequent of any inference step in D
we It T contain the equation 5; = 1. Any well-founded
solution, T, of T determines an admissible labelling if we
associate T with IN, and L with QUT.

Extensions to ATMS and LPT

We have now seen how the model of reason mainte-
nance proposed in §2 can embed both ATMS and LPT.
Given that one wishes to have justifications that admit both
non-monotonic and assumption-based support, the formal-
ism that we have introduced can do this directly without
appeal to these embeddings. De Kleer has used the nogood
and choose mechanisms to simulate non-monotonic justifica-
tion. The Goodwin formalism can accommodate assump-
tions by solving multiple labelling problems. It is instructive
to contemplate natural extensions of each of their formal-
isms to treat (respectively) non-monotonicity and assump-
tions as first-class citizens.

The natural and immediate extension of the embedding
of LI' I considers solving 1 Goodwin systems of equations in
paraliel. We require that the n systems differ only in terms
of the unknowns that correspond to premises, that is, un-
knowns, s, satisfying equations of the form s = I'. This is
a semantically natural extension in that it corresponds to the
reasoning agent’s entertaining ditferent sets of propositions
as hypotheses. We augment the definitions of LI'T as fol-
lows:

A 4

wtl—-

A

Definition 3.1 A premise set p is any subset of the language
L. A labelling G is a function trom L -P:/L)) where P(L)
denotes the power set of L. A databasc is a pair (D ,P’ where
D is a set ot inference steps and P is a set of premise sets.
The antecedents of an inference step are non-empty.

Definition 3.2 Given a premise ser, p, and a labelling, G,
we can define tunctions IN and OUT as follows:

ING.p) = {llp e G()}
OUT(G,p) = {tlp e G()

Definition 3.3 An inference step d is walid with respect to a
labelling G and a premise set p written Valid(p,d,G) if and
only if M-Antes(d) C IN(G,p) and NM-Antes(d) C
OUT(G p).

Definition 3.4 G is a relaxation over database 'D,P" if and
only if

vp e P. IN(G,p) = {I|Zd e D. Vakid (p,d,G) and
(conseq(d) = 1)} iYp

Definition 3.5 A labelling G is well-founded for a database
D.,P if and only il for all p e P there exists a partial order-
ing <~ of L | J I such that:

< e IN(G.p). =d e D. (conseq(d) = 1) and Valid(p,d,G)
and (d<71)
and

~d e D. Valid(p,d,5) - vl e M-antes (d) (I <d)

Definition 3.6 An admissible labelling of a database (D,P) is a
well-founded relaxation of (D, P,

Now we are in a position to encode a database in terms
of a lattice equational system. Given a database, 'D,P}, let
{51l S L} be a set of lattice unknowns. Let B be the
Boolean lattice consisting of the power set of P. For each
1 € L construct the following equation

e [ﬂ sz.] N [Iﬂ SL] U fplp e Pand ! e p}

1eM eNM

where D’ = {d|d e DA conseqd) = 1} and M,NM as
betore. Let (D ,P,L) be the set of all such lattice equations
for each ! € L. Note that only if the ! is the consequent of
some inference step in D will the | equation contain lattice
unknowns. Since D is a finite set there are finitely many
equations with lattice unknowns. In [4] we formally
demonstrate the equivalence of the above encoding to the
extension of Goodwin’s LPT that we informally described at
the beginning of this subsection.

We extend de Kleer's ATMS to accommodate non-
monotonic justifications by first reinterpreting the basic
ATMS in terms of the embedding above of the extended
LPT. The basic ATMS accepts a set of justifications and
assumptions, and determines all possible contexts and their
contents. We take the language, L, to be the set of nodes
and assumptions. Each de Kleer justification,
ay, ay, v, «, == B can be viewed as an inference step
{oy, 00, -, a, }, &,8 . Each de Kleer premise, x, is replaced

It is worth comFaring this equational system with the
one_consiructed for the unadorned Goodwin embedding.
It differs only in the adjoined premise set.

-87-

by the set of justifications {A, = vl =i < un} where
{A]]1 =i < n} is the set of assumptions. For any set of
de Kleer justifications and assumptions, let D,P be a data-
base, where D is the corresponding set of interence steps
and P is the power set of the assumptions. It can be shown
that for any admissible labelling, G, of D,P, the set
IN(G ,p) corresponds to the context of the environment p.
The non-monotonic extension tollows immediately by allow-
ing the non-monotonic antecedents of an inference step to
be non-empty. Observe that LPT allows for the direct
introduction of non-monotonic justifications whereas the
basic ATMS mechanism does not. This is because
de Kleer’'s native semantics for the ATMS is essentially pro-
positional logic. To accommodate non-monotonicity some
other semantics is required, hence our reinterpretation. A
final note: lattice-theoretically framed reason maintenance,
in its full generality does not appear to be naturally describ-
able as an extension to either ATMS or LPT.

CONCLUSIONS

In the foregoing we have introduced a general model of
the problem of reason maintenance couched in a lattice-
theoretic framework. We believe that any of the reason
maintenance systems familiar to us in the literature can be
construed as solving systems of lattice equations. In partic-
ular, we have shown how to encode de Kleer's ATMS and
Goodwin’s LPT in this framework, as well as natural exten-
sions of each of those systems to accommodate aspects of
the other. We introduced the fundamental transformations
of substitution and minimization and showed how they
could be used to produce solutions. We have observed that
we have other mathematical results that allow us to con-
struct all solutions to all systems. We have also informally
described some mathematical considerations that lead to
very etticient algorithms in special cases.

We continue to investigate a number of issues in our
ongoing research in reason maintenance. On the theoretical
side, we believe that the assumption ot a Boolean lattice that
underlies our current results can be considerably loosened.
In particular, we think that those results are preserved
assuming only a lattice with complements. This is of both
theoretical and practical interest as many measures of uncer-
tainty are ot a (non-distributive) lattice-theoretic nature [7].
No longer requiring distributivity, we can treat certainty as
vet another kind of beliet context to be propagated by con-
straints.

On the practical side, we are engaged in an implementa-
tion ot the lattice-theoretic model of reason maintenance.
As we gain experience in using this implementation, we
will attempt to answer a number of questions. Do the
theoretical improvements to which we have alluded have
any practical etfect on the kinds of problems that can be
tackled? Are such improvements even necessary given that
the worst case computational complexities are achieved
through somewhat contrived pathological examples? Are
the incremental algorithmic variants of practical value? If
so, should they alwavs be engaged, or should they be
driven by some algorithmic or heuristic eonsideration?

P .

REFERENCES

(1]

(3]

(4]

(5]

(6]

(7

(8]

91

(10]

(11]

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ull-
man. The Design and Analysis of Computer Algorithnis.
Addison-Wesley, Reading, Massachusetts, 1974.

Alfred V. Aho and Jeffrey D. Ullman. Principles of
Compiler Design. Addison-Wesley, Reading, Mas-
sachusetts, 1977,

Raymond Balbes and Philip Dwinger. Distributive
Lattices. University of Missouri Press, Columbia, Mis-
souri, 1974.

Dan Benanav, Allen L. Brown, Jr., and Dale E. Gau-
cas. A lattice-theoretic framework for reason mainte-
nance. Forthcoming.

Garrett Birkhoff. Lattice Theory. Volume 25 ot Anieri-
can Mathematical Society Colloquitun Publications, Ameri-
can Mathematical Society, Providence, Rhode Island,
third edition, 1967.

Piero P. Bonissone and Keith S. Decker. Selecting
uncertainty calculi and granularity: an experiment in
trading-off precision and complexity. In L.N. <anak
and J.F. Lemmer, editors, Uncertainty in Artificial
Intelligence, North Holland, Amsterdam, 1986.

Johan de Kleer. An assumption-based TMS. Forth-
coming,.

Johan de Kleer. Choices without backtracking. In
Proc. 4th Nat. Conf. on Artificial Intelligence, pages 79-
85, Austin, 1984,

Johan de Kleer. Extending the ATMS. Forthcoming.

Johan de Kleer. Problem solving with the ATMS.
Forthcoming.

Jon Doyle. Some Theories of Reasoned Assmmptions.
Computer Science Department Technical Report CMU
(S-83-125, Carnegie-Mellon University, Pittsburgh,
1983.

-88-

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

Shimon Even. Graplt Algoritluns. Computer Science
Press, Potomac, Maryland, 1979.

I.R. Gantmacher. Matrix Theory. Volume 1, Chelsea,
New York, 1959.

Michel Gondran and Michel Minoux. Graphs and
Algorithms. Wiley, New York, 1984.

James W. Goodwin. An Improved Algorithm for Ni
Mouotonic Dependency Update. Technical Report
LITH-MAT-R-82-23, Linkoping University, Linkopiny,
Sweden, August 1982.

James W. Goodwin. A process theory of non
monotonic inference. In Proc. 9th Int Joint Conf. v
Artificial Intelligence, pages 185-187, Los Angeles,
August 1985.

James W. Goodwin. Watson: a dependency directed
interence system. In Proc. of the Workshop on Noi
Mouwotonic Reasoning, pages 103-104, New Paltz,
October 1984.

Janes W. Goodwin. WATSON: A Dependency
Directed Inference System. PhD thesis, Linkoping
University, Linkoping , Sweden, Forthcoming.

Matthew S. Hecht. Data Flow Analysis of Computer
Programs. American Elsevier, New York, 1977.

Marvin Schaeffer. A Mathematical Theory of Global Pro-
gram Optimization. Prentice-Hall, Englewood Clitts,
New Jersey, 1973.

L.A. Skornjakov. Elements of Lattice Theory. Hindus-
tan Publishing Corporation, Delhi, India, 1977
[ranslated from the Russian by V. Kumar.

William M. Waite and Gerhard Goos. Compiler Con-
striction. Springer-Verlag, New York, 1984.

o
-

P awy

e

Engineering Intelligent Systems:
Progress Report on ABE!

Lee D. Erman
Jay S. Lark
Frederick Hayes-Roth

Teknowledge Inc, Palo Alto, CA 94303

Abstract

Intelligent systems combine the capabilities of
expert/knowledge systems with conventional computer
technologies, significantly extending the capabilities of
either technology. Current expert/knowledge system tools
do not address the key problems of iatelligent systems
engineering: large-scale applications and the reuse and
integration of existing software components. ABE is a
software architecture that directly addresses these
problems.

ABE is a multi-level architecture for developing
intelligent systems. ABE defines a virtual machine for
module-oriented programming and a cooperative operating
system that provides access to the capabilities of that
virtual machine, On top of the virtual machine, ABE
provides a number of problem-solving frameworks, such as
bl.- ."vards and d.. low. Problem-solving frameworks
suppurt the constructi:n of knowledge engineering tools,
which span a range from knowledge processing modules to
skeletal systems. Finally, applications can be built on
skeletal systems. In addition, ABE supports the
importation of existing software, including both
conventional and knowledge engineering tools.

1. Background and Objectives

Expert systems have emerged from about fifteen years
of research and development activities in applied Artificial
Intelligence (AI). Numerous prototype applications have
been demonstrated in government and industry, several
cornmercial systems have been fielded, and the potential
value of expert systems has become widely recognized.
This value derives from their ability to provide a means
for capturing, preserving, applying, and distributing
human knowledge.

As experience has accumulated, it has become clear
that most applications of this technology will not be as
isolated, ‘‘expert’ systems. Rather, the application of
expertise (or more generally, knowledge) will occur in the

1This is an early description of in-progress research. The ideas
described here require experimental testing and will likely change.
This does not constitute a commitment by Teknowledge to any
product or service. ABE is a trademark of Teknowledge Inc.

larger context of integrated systems. We refer to such
comprehensive systems, which combine the capabilities of
expert/knowledge systems with those of more conventional
systems, as intelligent systems. Intelligent systems differ
from conventional systems by a number of attributes, not
all of which are always present:

o They pursue goals and objectives.
Goals form a larger context for the operation of
the system. That context often makes static
algorithms insufficient, requiring the system to
exhibit more flexible behavior than
conventiona! systems.

o They tincorporate, use, and maintain
knowledge.

o They ezploit diverse, ad hoc subsystems
embodying a variety of selected methods.

The subsystems may be ‘intelligent” or
conventional.

o They interact intelligibly with users and other
systems.
Intelligibilty is one of the most striking
attributes of knowledge systems.

o They allocate their own resources and
attention.
Intelligent systems often need to be
introspective and aware of their progress in
applying their knowledge and subsystems in
pursuit of their goals

Most people now perceive a gap between what the
intelligent systems technology should be able to do and
what can be done today. While the technology holds great
promise, it cannot yet supply solutions readily for many of
the problems for which it should be applicable. Today,
that technology transfers froi.. research environments to

applications chiefly through knowledge engineering tools.
Prominent examples of these are the commercial products
ART (from Inference Corp.), KEE ({from Intellicorp),
KnowledgeCraft (from Carnegie Group), and S.1 (from
Teknowledge). These tools incorporate the best methods
of applied artificial intelligence, and they reflect some of
the best techniques for building expert systems. However,

-80-

these tools currently have several weaknesses. Generally,
these reflect the small-scale and isolated nature of the
applications that motivated the tools. Specifically, the
major problems include the following:

® The best current tools are monolithic, single-
purpose software packages. Hence they are
hard to extend or apply beyond their current
range of applications. They are also difficult to
integrate with conventional data processing and
computer technologies.

The tools provide capabilities that are low-
level. Most applications require the user to
build a solution structure on top of those
primitive capabilities. This design and
implementation work is expensive and time-
consuming, and requires a skilled and
experienced knowledge engineer.

The tools support a limited variety of data
types and inference schemes.

o The inference schemes in current tools are

built-in and practically hard-wired.

e Current tools do mnot support large-scale
applications.

The tools have been designed exclusively for
uniprocessor implementations.

The tools have not been designed in a way that
makes them easy to port to alternative new
machines.

To cover a larger set of potential applications, and to
handle the larger context of intelligent systems, new tools
are needed. In general, this new generation of tools must
provide application developers with facilities tc support
reuse of previously-constructed components, incorporating
the best methods of AI and knowledge engineering,
integration of diverse component technologies, and
large-scale application system development.

In particular, these tools need to support alternative
implementations of the various knowledge engineering
functionalities, and need to provide ways to configure

intelligent systems and intelligent system tools out of
modular functions. To be practical, such a new tool must
consist of many preprogrammed functional modules and
provide an effective technique for configuring these
modules into larger systems. In addition to low-level
capabilities, the tool must provide high-level, generic
solutions to classes of problems (similar to the way that
fourth-generation languages provide generic solutions for
classes of database processing tasks); we call such partial
solution structures skeletal systems. Finally, the tool
must also allow the accummulation and incorporation of new
and existing functional modules, both “‘intelligent” and
conventional.

ABE is a new generation tool that satisfies the
requirements for building intelligent systems. ABE is
L. an architecture and methodology for building
intelligent systems by integrating heterogeneous
components, including conventional (i.e., non-
Al) components;

open/extensible The various levels in ABE will be
accessible for modification and
augmentation.

intuitive to learn
To support modification and
augmentation, the various facilities, and
their implementations, must be
understandable.

*
high verforming
ABE must be capable of being used to
build systems that execute efficiently. It
will allow for arbitrary tuning of
application systems, in response to
particular requirements.

portable ABE will be portable to a variety of
machines with relative ease. This
includes both the ABE development
environment and, especially, applications
built on ABE.

distributable /parallelizable”
ABE will support applications on a wide
variety of machine architectures,
especially those that are distributed and
parallel.

* — Features unimplemented at present; scheduled for
phase 2.

Table 1-1: Key design characteristics of ABE

2. a modular and ever-expanding collection of
knowledge-engineering capabilities, including
skeletal systems; and

3.a useful initial set of proven, valuable
knowledge-engineering capabilities.

Certain characteristics of ABE are essential for its
effective use. Table 1-1 lists these. Although some of
these characteristics will not be implemented substantially
until Phase 2, the design is committed to facilitate all of
them.

1.1. Status and Plans

Direct work on ABE began in spring of 1985, under
contract to the Defense Advanced Research Projects
Agency (DARPA) and Rome Air Development Center
{(RADC). A preliminary implementation, in Common LISP
on Symbolics workstations, is operational now (spring
1986). Section 4 describes portions of a recent
demonstration of that version. A few selected projects will
begin using an early delivery version of ABE in summer
1986. These early versions provide the basic ABE
functionalities as described here, including a few
frameworks and access to several existing general-purpose
knowledge engineering tools. The phase 1 prototype
version will be released to DARPA in 1987.

-90~

p

“-%*L

Proposed phase 2 work will emphasize higher
performance, distributed configurations, versions for other
computing equipment, and refinement and extension of the
knowledge engineering capabilities.

2. Overview of ABE

Central to ABE is a multi-level architecture for
developing intelligent systems. This architecture supports
aggregations of cooperating, autonomous, problem-solving
components. At the lowest level is a general model of
computation. Organized around the central notion of
communicating modnles, the computational model is called
Module-Oriented Prcgramming (MOP). This model of

computation provides the foundation and building blocks
for the higher levels -- for expressing designs of intelligent
systems as networks of cooperative problem-solving agents.
The computational model also defines a virtual machine;
this can be mapped onto underlying hardware and
operating system environments.

The ABE architecture is a general-purpose software
architecture for building intelligent systems. In particular,
the ABE architecture supports the construction of
problem-solving frameworks (see below). A framework is
an architecture for building particular intelligent systems,
and MOP is a meta-architecture for building intelligent
system architectures.

The process of building an intelligent system is best
accomplished by building up layers of capabilities. FEach
layer draws on the capabilities made available by the layer
beneath it and presents a new set to the layer above it.
New capabilities are often developed by modifying,
restricting, or reconfiguring the capabilities from the next
lower level.

The ABE architecture defines several functional levels
in int lligent systems. These are listed in Table 2-1, in
descending order. The ABE research effort is
concentrating on providing levels 2, 3, and 4. Associated
with each level is a class of user who uses the facilities at
that level to provide the functionality of the next higher
level: system designer, tool builder, knowledge engineer,
and domain expert. Here a brief description is presented,
with some examples of the facilities to be included in
ABE’s early delivery system. Section 3 provides more
details.

The current underlying computing environment is the
Symbolics LISP machine and Common LISP, augmented
with Coral, an object-oriented language developed for
ABE. The wvirtual machine is ABE's MOP (Module
Oriented Programming system) and the operating system
that supports it is called KJOSK. On this base the system
designer layers problem-solving frameworks of various
kinds. ABE’s early versions include a dataflow framework
and a blackboard framework.

Given one or more frameworks, the tool builder
supplies knowledge processing modules. ~ These might
include capabilities such as a rule interpreter, and facilities

Users of capabilities

Level at this level

5. Intelligent system applications End users

Knowledge engineers
and domain experts

4. Knowledge engineering tools

4b. Skeletal systems

4a. Knowledge processing modules
3. Problem-solving frameworks Tool builders

2. Virtual machine 2nd cooperative System designers
operating system

ABE implementors and
system programmers

1. Underlying computing
environments

Table 2-1: Intelligent system levels,

and associated users

for tasks such as maintaining knowledge bases, running
cases, creating English-like translations of rules and other
constructs, and producing explanations of system behavior.
For example, one set of modules in ABE’s library is built
around structures for plans, and includes facilities for
rep ‘esenting, creating, analyzing, and modifying them.

A knowledge engineer can create a skeletal system by
adding structure to and control over the knowledge
processing modules and their interactions with other
facilities (such as databases). One skeletal system in
ABE'’s library, called PMR (which stands for ‘“Plan
Monitoring and Replanning”), analyzes an existing plan,
monitors a database for critical assumptions of the plan
that might become invalid, replans around violated
assumptions, and interacts with various external agents
about these activities.

The knowledge engineer customizes a skeletal system
for a particular application domain by replacing some of
the generic constructs with more appropriate terms. One
example application domain of the PMR is planning for
offensive air strike missions. For this, terms such as
“flight”, “‘target’”, and “‘ordnance” are appropriate. This
customized skeletal system is called AS-PMR.

Finally, a domain expert adds to this skeletal system
knowledge of spe:ific objects and relationships to create a
domain-specific application system. For AS-PMR, this
includes such information as characteristics of particular
aircraft models, targets, and ordnances. It also includes
the particular rules which govern their interactions, e.g.,
that a particular ordnance is available on a particular
aircraft and is able to destroy a particular target.

-9]~

2.1. What ABE /.ddresses
ABE’s design addresses the weaknesses described in

Section 1.

An important aspect of ABE’s design is the multi-level
architecture and the particular choice of levels. The
multiple levels provides flexibility, and have been chosen
to support the goals of building intelligent systems by
selecting, customizing, and combining modules from
growing iibraries.

As shown in Table 2-1, certain classes of users are

associated with each of the levels. Although in practice a
single individual might encompass more than one of these
functions, the multi-level organization also supports
specialization of these user roles.

The MOP computational model provides flexibility for
expressing a wide range of cooperative problem-solving
architectures, each with its own control and
communication scheme. Diverse schemes, from highly
centralized to fully distributed, are needed to implement
the large variety of intelligent system applications. The
virtuzal machine supplied with the computational model
can be mapped onto a wide range of underlying
hardware/OS environments. Primary targets are parallel
and distributed environments. The model’s flexibility an
also be exploited within a single ABE application system;
various subsystems can be implemented in heterogeneous
problem-solving frameworks, and they can be implemented
on heterogeneous computing facilities.

The developer of a framework needs both a general-
purpose, open organization and a strong computational
model. The open organization of communicating modules
provides the needed flexibility, and the MOP
computational model gives » strong semantic basis for

understanding the computational properties of the systems
built.

Most current efforts at building and improving tools
are concentrating on improving particular Al techniques
used in knowledge engincering tools. A major emphasis in
the ABE project is on providing an organizing framework
and facilities that allow such tools to be accumulated and
re-used. ABE complements these other efforts, since it is
able to import and integrate their efforts.

Another thrust of ABE is in skeletal systems. With a
few notable exceptions (especially see [Clancey 83] and
(Chandrasekaran 83]), the field of intelligent system
engineering has largely ignored and skipped over this level,
in favor of programming shells (at a level below) and
applications (above). A typical knowledge-system project
starts from a shell (e.g., backward-chaining rules over
frames) and creates a new application system, bypassing
the skeletal system level. However, explicit identification
and design of generic, sksletal systems has several
important advantages, including

e increased modularity of systems,

e increased reusability of solutions or parts of
solutions,

Hodules
Local
Controller

1% |~

I/0 Network

Ports
P ——
-

Figure 3-1:

T ey

A standard KIOSK module organization

e easier knowledge acquisition, and

® easier maintenance of the application.

3. System Description
We now discuss in greater details levels 2 through 4 of
the ABE architecture.

3.1. Virtual Machine/OS

The base level of ABE is the wirtual
machine/cooperative operating system level. The virtual
machine designed for ABE embodies a computational
model called Module-Oriented Programming (MOP). The

cooperative operating system that supports this model is
called KIOSK.

At the virtual machine level, an ABE system is
composed of a set of modules -- see Figure 3-1. Modules
communicate with one another by sending messages over
networks. Modules can connect to many networks
simultaneously and can communicate with each network

independently. Modules are either primitive or recursively
composed from another set of modules communicating on
a network. Each composite module has a local controller,
which manages both the communication activities on its
network and the communication between the composite
module as a whole and the networks external to it. The
local controller also controls the allocation of processing
resources among the modules on the network.

KIOSK s called a cooperative operating system for the
MOP virtual machine because it provides services
analogous to the services provided by a standard operating

system. These services include module and network
creation, communication primitives, computational
resource modeling, and primitive resource allocation
schemes. KIOSK provides an abstraction berrier which

allows the ABE system to be mapped to arbitrary physical
computing environments. The term “KIOSK' is used to
refer to both the MOP virtual machine and the KIOSK
cooperative operating system.

~92-

3.2. Problem-solving Frameworks
The next level of ABE consists of pr=iblem-solving

frameworks, also referred to as Ylem-solving
architectures or progremming languaye ‘o have not
found a satisfactory distinction betwee)gramming

languages and problem-solving architectures, so we group
them together in one level.

A framework is a collection of design choices: control
and resource allocation regimes, communication protocols,
shared languages (syntax), and computational organizing
principles. These design choices manifest themselves in
ABE within the local controller of a module, because the
local controller has responsibility for all of these things.
An ABE system may contain instances of many different
frameworks, although not all frameworks can coexist on
the same network.

A framework may present a view of the world quite
different from the underlying KIOSK ‘“modules-on-a-
network" view. For example, 1 framework may designate
certain modules as having some special significance to the
global operation of the system (e.g., the shared blackboard
module in a blackboard-oriented framework). Also, the
framework may provide its own visual representation
which totally masks the underlying virtual machine.

ABE’s library currently includes two primary problem-
solving frameworks: a dataflow framework (called DF)
and a blackboard framework (BBD), both of wuich are
still evolving. Additional frameworks will be added. Also,
the separation between the problem-solving frameworks
and the underlying MOP/KIOSK level is still evolving,
based on experience developing the frameworks.

The DF framework implements many of the concepts
found in standard dataflow languages Davis 82|. It also
includes extra data structuring techniques and a semi-
deterministic scheduler. A program for the DF framework
consists of a number of independent processing modules
which perform computations and communicate with each
other and the outside world. The data structuring
supports the use of abstract datatypes (ADTs) as the
tokens passed between processing modules. The semi-
deterministic scheduler supports building programs with
side effects (such as communicating with the external
environment).

BBD is a framework based on the blackboard
metaphor [Erman 80] A blackboard system consists of a
number of individual computation agents, known as
knowledge sources (KSs), which communicate with each
other through a shared global database, known as the
blackboard. KSs monitor the blackboard with trigger
patterns. When the posting of a datum on the blackboard
matches a KS's trigger pattern, the KS triggers itself. The
triggering operation informs the BBD scheduler that a
particular KS was triggered by a particular set of
blackboard objects. This KS instantiation (KSI) is itself
posted on the blackboard.

The BBD interpreter has a scheduler whose function is
to select a KSI for execution. This scheduler is very
simple, and is refered to as a base scheduler. A special set
of KSs known as ‘scheduling KSs”’ can manipulate the set
of KSIs on the blackboard, thereby producing different
scheduling behavior from the base scheduler.

3.3. Knowledge Engineering Tools

The third level of ABE is the knowledge engineering
tools level. This level spans a range, with knowledge
engineering capabilities at the lower end and skeletal
systems at the higher. A primary research goal at this
level is to develop a methodology for modularizing,
describing, cataloging, reusing, and combining knowledge
engineering tools.

Skeletal systems can be characterized as a way to
organize and control knowledge and other facilities to solve
a class of problems. In an ABE system, a skeletal system
is a particular set of modules defined within a particular
framework. Many of these modules will have mechanisms
for customization by the knowledge engineer with
application-specific knowledge. Other modules may serve
as place holders, which the knowledge engineer will replace
by totally new, but functionally equivalent, application-

specific modules.? Yet other modules may represent a
class of modules or a generator of new modules which the
system will create at runtime. In general, a skeletal
system is a partially instantiated assembly of modules for
solving a class of application problems.

The Plan Monitoring and Replanning (PMR)
Skeletal System

The PMR is the first skeletal system implemented for
the ABE library. It is a generic structure for adaptive
replanning -- keeping a plan consistent with a changing
world. More specifically, it provides facilities to

e analyze a plan to determine its key

assumptions about the world,

e monitor a database describing the unfolding
world situatiou, looking for key assumptions
that no louger hold,

e incrementally replan around these problems,
and

e keep selected agents informed of important
changes in the situation and the plan.

This skeletal system is independent of any particular
application or application domain. For example, we have
built one instance of the PMR customized for planning of
air strike missions. We have built a second application, in
the domain of personal travel planning.

Vst . ore
This can be viewed as an extreme form of ‘‘customization.”

-9 3~

i External i

\V\\\\Y\\\\\\
3 Plan Failure

Agents
......... i
L2 Database i
L Monitor]G i
A T AR *
et) ‘/'s.’tﬁ’a{i’ér{ ;
S Plansy
Assumptions ,9““"’5'-:,//
4K

1_Plan \
n

\Assumptm

\ Explamer\ C

\\\\\\\

. ///’////r

// Messaqes to ///,

7,Concerned A cnts

ey

Copier
AN\ C

AN NANN NN \\

N

lan Cﬁange\ N
\ \Analyst\g1 T ~‘~w---rl't?1 Rationale

/ Im Iementatmn/

'A'c'tidri//

\‘Dld Plan™

MDA DREL RN IR EEEE:

8 Plan Changes. ”///Messaqes to,,
N\ Explainer 7,Cancerned Agents /
> RCS

C: Places for application—speclfic customlzation

information and knowledge

ACTIVE MODULES:
1) Determine the plan's key assumptions

2) Monltor the database for changes that may be critical to the plan

3) Send messages to Interested agents describlng the problems of Interest to them
4) Invoke an incremental replanner to patch around the problems

5) Compare the old plan to the new one to identify changes

6) Save the newly created plan

7) Send messages ordering the implementation of plan changes
8) Send messages to interested agents explaining the changes of interest to them

Figure 3-2: PMR: Plan Monitoring and Replanning
skeletal systein (dataflow version)

There are actually two different versions of PMR.
The first one is implemented in the DF (dataflow)
framework. Figure 3-2 shows the modules and places in
the DF version of the PMR skeletal system. The second
version, is implemented in the BBD (blackboard)
framework. It reuses the PMR modules, and incorporates

additionsi ones that exploit the greater control flexibility
of the BBD framework to implement more complex
scheduling behaviors of its component modules. Section 4
shows some details of these skeletal systems and
applications.

-94—

P . 2

A g

Basic Facilities

At the lowest level of knowlecge engineering tools,
ABE allows the user to program modules in Common
LISP. Above that level, the Coral object-oriented
programming facility, embedded in Commmon LISP, can be
used.

Somewhat higher still, ABE supports the concept of
abstract data types (ADT) as a commonly useful
methodology for defining and accessing structured objects.
For example, most DF programs use ADTs to implement
the data tokens passed among the process modules.
Similarly, the BBD framework uses ADTs to implement
blackboard objects. In addition to this general ADT
facility, ABE’s initial library contains particular ADTs for
the plan structures used in the PMR skeletal system; these
(as well as the individual PMR modules) are available for
reuse, perhaps with some customization or other
modification.

ABE'’s initial library contains an abstract, symbolic
database facility, known as GDB (generic database), which
can be used to define, store, and retrieve symbolic
structures. GDB is used by various PMR modules, both as
internal databases and to represent the external world.
There are two alternative implementations of the GDB --
one in MRS and one in Prolog.

Integration of Pre-existing KE Tools

One goal of ABE is to allow the use and combination
of existing knowledge engineering tools of various kinds.
The early delivery version will contain interfaces for
several of these, including MRS, Knowledge Craft, and S.1.

MRS [Russell 85| is a research system developed at
Stanford University, and available under license from
Stanford. MRS provides general-purpose facilities (with an
underlying first-order predicate calculus basis) for
representation and, especially, control. MRS is highly
articulated and modular, and therefore allows intimate
integration with relative ease. A user can access MRS
directly from within Common Lisp code in ABE (e.g., from
within DF or BBD modules). As noted above, ABE's
library also contains a version of its GDB symbolic
database facility implemented in MRS.

Knowledge Craft [Knowledge Craft 85 is a
commercial product of Carnegie Group, Inc. It is a
general purpose knowledge-engineering ‘“shell”’. The heart
of Knowledge Craft is a schema (frame) system, called
CRL (“Carnegie Representation Language”). Knowledge
Craft also has several separate facilities, including
implementations of the OPS5 forward-chaining rule system
and the PROLOG logic programming language. Each of
these facilities is augmented to allow access to CRL
schema. ABE's initial Knowledge Craft interface supports
the implementation of abstract data types as CRL
schemata and, in general, translating between schemata
and ADTs. The ABE library also contains a Knowledge

Craft version of the same abstract symbolic database
mentioned above for MRS. Finally, the interface also
allows fairly direct access to any of Knowledge Craft’s
facilities.

The early delivery library will also supply an interface
to S.1 [Erman 84|. A commercial product of Teknowledge,
S.1 s a higher-level knowledge engineering ‘‘shell”. S.1
provides a backward-chaining, rule-based system that also
allows for expression of procedurally represented
knowledge, usually for control purposes.

4. Examples
This section describes some of the features of ABE
through examples of their operation and use.

Figure 4-1 shows part of the current ABE catalog. At
the lowest level are the programming languages, including
Common LISP, Coral (an object-oriented system built on
Common LISP), MRS, and three components of
Knowledge Craft: Carnegie Representation Language,
Prolog, and OPS5. S.1 will be available soon.

Above the languages are the frameworks -- the various
ways in which modules can be implemented. Each
framework has its identifying icon. The BBD blackboard
and DF dataflow frameworks are described in Section 3.
The TX transaction framework is used for implementing a
server module (such as a database) that has one or more
client modules. The set of facilities for abstract data types
(ADTs) is also considered a framework. A module
implemented in the blackboz framework just has arbitrary
code, not internally analyzable by ABE. An importer
module is a special case of a blackbox module, one which
imports some foreign code with a wrapper that makes it
ABE-compatible. Finally, the catalog facility is itself a
form of framework.

Above the frameworks is a collection of modules of
various capabilities. Included are a number of ADTs (e.g.,
for plans and actions). Finally, there are several skeletal
systems, domain-specific customizations, and applications.
An application is a skeletal system that has already been
customize'.

The largest window in Figure 4-2 shows the central
part of the dataflow version of the plan monitoring and
replanning (PMR) skeletal system. Using standard
dataflow notation, processing modules are shown as
rectangles and token places as ovals. The dashed oval
indicates the input to the PMR as a whole. The Situation
Monitor module is itself implemented as a dataflow
program, and that is shown in the upper right-hand
window. This version of the PMR uses the MRS
implementation of the symbolic database system for the
world situation, shown in the lower right-hand window.
While the Situation Monitor is an example of
hierarchically composed module, the connections between
the Situation Database and its eclients via the TX
(transaction) framework is an example of non-hierarchical
interactions between frameworks; we call such interactions
meshing.

-95—

ystem Architects’ Catalog

APPLICATICONS CllSlﬂNlZHIIUf;‘;

 ascemr PHR 7] [’Ts-ﬁﬁ?ﬁ)— [ns-prr—craL l’jr_sﬁﬁé
L oF) =i __C|
Rir Strike
S
SKELETRAL SYSIEMS KRS

PHR (HRS) PR (Prolog) | PR (KRS+HRS) Travel
SO
s | o8 o c

CAPABILITIES
Database Systems Replanners Schedul iny-KSs
CDB-HRS l’GﬂB—PROLOG Conp.Replanner KRS Replanner Explain + Replan Copy - ﬂnalyziJ

Sit.Monitor DB HMonitor Assump .finalyst

Pattern (‘-LnJ [ﬁ!ﬂ Copies Cel wie Explj Change Expl ll
'y M v IR \ =i -

Abstract Data Types (RADTs)

Plan rﬂction D0 Patterns Constraints Crit .Assunpts Viol.Assumpts Set
Ed Ed | E4 Ed Fel Ed e

FRAMENORKS

Blackboar?l Dataflow ransaction, any 8lackbon Imwporter Catalog
=N u§$ gy =
& _ =4 m | L B3

LANGURGES AB E ™
m > Coral nRS CRL/KC 5 ¥ W 2 5.1 (
e e s R s WAL | e OWLEDGE

Figure 4-1: A portion of the current catalog

DF | PMR (MRS) | * ™
ABE

TEKNOWLEDGE

Situation Monito-

) Situation Monitor T -
ECritical """'"'"’s on m‘gr‘i‘ __v_l»'"”“’ ~Vinlated n,,u"pts\ ‘ “5!unpt1 R u;nj,,"‘g He ‘mofs ;

BEEEES (ns Querieh

1" assunpts luiolatione lrnnslator OB Monltor
E‘"mp“o" Analyst 7 New Plan S_new EJ?"{ Replanner]
l‘n_r“ ;

Tnput Plan > -

iR | Par

Tan

Y A -
i; £an] Copist JSQEY i eid Plan)

—_— ~——

Sltuation DB

wms
Load Customize Input
Run Reset Catalog

Figure 4-2: The core of the PMR system, with
views of the Situation Monitor module and
the Situation Database server and clients

-96-

- T T

—_— -

]};gssungts

lbrltlcsl Hqﬁunpt5 y_Aassumptsy
FBSUMPEIO" Analyst|,

lan N

Input Plan

DF | PMR (MRS) | *

TEKNOWLEDGE

ABE "

Situation Monitor

or

'
-—

%Ti
Lo

Situation Monlitor

5 /—-'—‘_”*_\\\
New Plan

-

W "’/_,.ﬁ—«——-_\\\)
jresults e(Violated Assumpts
\

H

Liclated-assunptions
KNOOS RAeplanner
KRS

DF Editing Operations §-.-.
Add Module pts
— Add Place ’
X odule Input
odule Output :l

Add Input Parm
Add Output Parm
Add Input Arc
Add Output Arc
Delete Object
Mave Object o
Reshape Object

--‘

[Plan Copier

01d Plan

Situation DB

I Inc Replanner I

ow

DB Monitor I

P
MRS | Translator |
Load Custonize Input
Run Reset Catalog

Figure 4-3:

The KNOBS Replanner (KRS) being edited

into the dataflow graph to replace
the composite replanner

//Go—lo—largct<§

gggné——ﬂcstroy-larget
=

Return-Home <

Air Strike Plan

Load-0Ordnance

FIy—lo:larget

Fly-To-Airbase
Land

Figure 4-4:

IAKFOFF
Agent.: FLIGHT

Prerequisites:

(LACATIAN 7FLIGHI 7AIRBASE)
(FLICHT-AVAILHBLE ?FLIGHT)
(NOT (AIRHORNE 7FLIGHI))

Results:
(AIRBORNF ?FLIGHI)

The Air Strike application:

a plan's structure and example action

Go~To-Airport

Go-To-Hotel

TAKF -FLIGHT
Agent :

Prerequisites:

PASSENGER

Trip m

(FLIGHI -SCHEOULED ?FLIGHI 7HUME-AIRPORI ?DESTINAITON-AIRPORT)

Get-Settled

<iCheck—In

(PASSENGFR-LACATTON 7HOME-ATRPORT)

Results:

Travel Plan

Figure 4-5:

PASSENGER-1 ACATTION ?DFSITNATTAN-AIRPART)

The Travel Planning application:

a plan’s structure and example action

Figure 4-3 contains an example of replacing one
module with another. The relatively simple replanner
implemented originally for the PMR is being replaced by
{he KNOBS Replanning System (KRS), imported from the
Mitre Corporation. (See [Engelman 79| for a description of
the earlier KNOBS work which led to KRS.) The
replacement is done graphically, by deleting the box
representing the original replanner and connecting in a box
representing KRS.

Two applications of the generic PMR are shown in the
next two figures. The Air Strike application deals with

planning offensive counter air missions and is similar to
that used in the KNOBS system. Figure 4-4 shows the
structure of an air strike plan and an example of one
action of that plan. The Travel Planning application,
shown in Figure 4-5, handles trips from one's home to a
hotel in a distant city. ABE’s current catalog contains
customizations for specializing the PMR to each of these
applications. Each customization includes definitions for
actions and states, plan structures, and example test-case
plans and situations.

=97~

DF | PMR (Prolog) | Travel

ABE "

TEKNOWLEDGE

Failure Explainer
v OPSS

failures

— Sit ation Monitor == -
~ uvatio -
ICritical Assunpts F_g}gqugi{ i WIEQElEi—*Lviolatvd Assumpts)
< - ~. -

= e’

ma— I Jvlnlat’lnns

Assumptlon Analyst IIMII -~ Mo Plan ""\.'. neu plan Paplanner
i e - L]
i]n_ui' plan
i

Irepit P 1mn

- I —

1% | PMR
r Inc Replanner

|
['—' Of MonTtor i

J |
Ll) 1 |

Plan Copler -opy P

oid Plan) |
Situation DB |

| =

. '["_Tr...maﬁif' _'J

ey

Load Custon’ze Input
Run Reset Catalog
terrrr ALY
Plan W<PLAN 10 57367673> will fail because (HOTEL-RODM-BOOKING BOSTON-RAMAOA-TINN) is false,
which will prevent PASSENGER fron checking-in at BOSTON-RAMOOA-THN .
end -- no production true
13 productions (64 7/ 89 nodes)
2 Firings (16 rhs actinns)
2 mean unrking mennry size (2 naxinun)
2 mean canflict set size (2 naxinun)
2 mean token nmennry size (2 naxinum)
ee—— T

The PMR, with the Prolog database system
and the added Failure Explainer module

Figure 4-6:

Figure 4-6 shows a version of the PMR with the
Situation database implemented by Prolog, in place of the
MRS implementation. This figure also shows the central
part of the PMR augmented with a module that generates
explanations of the detected plan failures. Near the
bottom of the figure, the two-line output of that module is
shown. This module is implemented in OPS5 (and some
internal tracing of the OPS5 operation is also shown at the
bottom of the figure).

The control regime provided with the dataflow
framework allows the system architect to configure a
system without having to be overly concerned about
control. However, if the architect wants to specify more
fine-grained control, a dataflow framework is
inappropriate or poor. For example, it is difficult to
specify in a dataflow framework that the Failure Explainer
should operate before the Replanner, which is probably
desirable for the PMR. Figure 4-7 shows the same five
processing modules of the DF PMR functioning as

knowledge sources within the BBD blackboard framework.
In additicn, two scheduling knowledge sources have been
added, to provide explicit scheduling knowledge.

Figure 4-7 shows the state of execution after the
Failure Explainer and Replanner have both been triggered
by the Situation Monitor posting on the blackboard one or
more violated plan assumptions. The triggering of those
two knowledge sources has also triggered the Explain-
Failure-Before-Replanning scheduling knowledge source.
Figure 4-8 shows the result of that scheduling knowledge
souree -- it has explicitly ordered on the agenda (near the
top of the figure) the two other pending sources, to achieve
the desired sequencing. This example shows not only the
multiple frameworks and why they are desirable, but also
shows that ABE's module¢-oriented programming style
allows for the reuse of modules within a wvariety of
frameworks.

-98-

ABE "

TEKNOWLEDGE

Agenda leve) SCHEDULING
FLPLRNNEE]

Rgenda level DOMAIN

Copier
Before
Analyst

Explain
Failure

Before
Replanning

Assumption
Analyst

S:ttuation
Monitor

OF

hknouledge Sources

Blackboard Levels

Agenda =
Fail Critical Assumptions TR | PHR
t b Plan Replanner New Plan e [_inc Replanner
exglafinen Copier 01d Plan SituationDB | |
oPSS DF Violated Assumptions £ O Monltor -J

a

] 3 '] _‘rr'".'a;r;T[

Load Custonize Inpui
Reset Trace Run
Catalog

Figure 4-7:

The Blackboard version of the PMR,
be fore execution of the
Explain-Failure-Before-Replanning
scheduling knowledge source

BBD | PMR(MRS) | Air Strike

ABE "

Raenda level SCHEDULING

TEKNOWLEDGE

Agenda level DOMAIN

. Explain
Copier Failure
Before Before
! Analyst Replanning
Plan Replanner
Copier
0oF

As=umpt 1an

Situation

Agenda

[Critical Assumptions

N
T8 | PHR

New Plan

0ld Plan

Violated Assumpt ions

1

fne HipTithF"l

Sltuntion DB

e

o e]

"“['ﬁ;ﬁiﬁm—j

Frndwat Monitor
| Losd Customlre Input
L L. Reael Trace Hun
fknouledge Sources Blackboard Levels Catalog

Figure 4-8:

The Blackboard version of the PMR,
after execution of the

Explain-Failure-Before-Replanning
scheduling knowledge source

~99-

Acknowledgments

A number of people have contributed substantially to
ABE. Michael Fehling has been particularly instrumental
in the conception and design of the MOP model of
computation, strongly influenced by his Schemer system.
William Clancey and James Bennett have also participated
in the general design. Terry Barnes and Kamal Bijlani
have contributed to the design work and have been central
to the implementation. Bruce Bullock and Neil Jacobstein
have provided managerial support and technical guidance.
Stephanic Forrest and Wayne Caplinger have provided
helpful comments on drafts of this paper.

RADC supplied the KRS system, implemented by the
Mitre Corporation. Lt. Kevin Benner provided valuable
help in importing KRS. B. Chandrasekaren and John
Josephson and their colleagues at Ohio State University
helped in formulating the Air Strike application. Carnegie
Group Inc. provided help in importing Knowledge Craft.

This research is partially sponsored by the Air Force
Systems Command, Rome Air Development Center,
Criffiss Air Force Base, NY 13441-5700 and the Defense
Advanced Research Projects Agency, 1400 Wilsen Blvd.,
Arlington, VA 22209, under contract F30602-85-C-0135.

REFERENCES

[Chandrasekaran 83|

[Clancey 83

[Davis 82|

[Engelman 79

[Erman 80

[Erman 84]

Chandrasekaran, B.

Towards a Taxonomy of Problem-Solving
Types.

Al Magazine 4(1):9-17, Winter/Spring,
1983.

Clancey, W. J.

The Advantages of Abstract Control
Knowledge in Expert System Design.

In Proc. National Conf. on Artificial
Intelligence, pages 74-78.
Washington, D. C., August, 1983.

Dayvis, A. L.

Data Flow Program Graphs.

IEEE Computer 15(2):26-41, February,
1982.

Engelman, C., C. H. Berg, M. Bischoff.

KNOBS: An Experimental Knowledge
Based Tactical Air Mission Planning
System and a Rule Based Aircraft
Identification Simulation Facility.

In Proc. 6th Int. Joint Conf. on
Arti ficial Intelligence, pages 247-249.
Tokyo, 1979.

Erman, L. D., F. Hayes-Roth,

V. R. Lesser, and D. R. Reddy.

The Hearsay-II Speech-Understanding
System: Integrating Knowledge to
Resolve Uncertainty.

Computing Surveys 12(2):213-253, June,
1980.

Erman, L. D., P. E. London, and

A. C. Scott.

Separating and Integrating Control in a
Rule-Based Tool.

In Proc. IEEE Workshop on Principles of
Knowledge-Based Systems, pages
37-43. Denver, CO, December, 1984.

[Knowledge Craft 85/

[Russell 85]

-100~

Knowledge Craft Manual Guide
Carnegie Group Inc., Pittsburgh, PA,
1985.

Russell, S.

The Compleat Guide to MRS.
Technical Report KSL-85-12, Stanford
Knowledge Systems Laboratory,
Computer Science Dept., Stanford

University, 1985.

EXPLANATION, PROBLIM SOLVING,

AND NEW GENERATION TOOLS:

A PROGRESS REPORT

B. Chandrasekaran and John Josephson
with contributions by Michael (. Tanner, Aine Keuneke
David llerman. Dean Allemang. and Tod Johnson.

Laboeratory for Artificial Intelligence Research
The Ohio State University

L. Background of the Research and
verview of Accomplishments

L.1. Introduction

This is a progress report on our project on
“Explanation in Plannir and Problem Solving
Systems.” It is being written approximately at the
I5-month mark. Conceptual frameworks for gencration
of explanation of two kinds have been built: one for
explaining how dedisions are made during problem
solving. explaining control strategies as well as other
aspects of run-time behavior, and the other to give a
planner the capacity to represent an understanding of
its own plan fragments, and thus to explain to the
user how a plan is meant to work. A prototype mis-
sion planning system with some explanation
capabilities has been built, and a number of high-level
knowledge-based system construction tools have heen
built with features that facilitate knowledge acquisi-
tion, system implementation and explanation genera-
tion. Two of these tools (DSPL and HYPER) are
discussed in this report 3, one (CSRL) predates this
explanation project and has been extensively reported
onoh 5,6, 7, 12] and several others are in various
stages of design and implementation. Together they
will constitute a high-level tool box for the construc-
tion of knowtedge-based systems. They will be useful
for building a variety of planning, diagnostic, abduc-
tive. and retrieval systems, and systems which are
combinations of these types. These tools have as
design featires a number of “hooks” for tlre attach-
ment of explanation synthesis tools.

In the first stage of the project, we have chosen
“routine planning” as a task for which to build a
prototype. In particular, a planning task for Offensive
Counter Air (OCA) missions was chosen [or analysis
and implernentation.

1.2. A Dccomposition of the Explanation
Problem

A hriel recapitutation of our decomposition of the
problem of explanation generation in knowledge-based

systems is in order at this stage to motivate the issues
discussed in this report. I our original proposal we
had argued that there are three top-level components
that can be distinguished:

¢ i) Ilow a problem solver represents its own
problem solving activity and retrieves the
relevant portions appropriately in response
to user queries. Here the language in
which the problem solving behavior is en-
coded is very important for whether the
response is perspicuous.

e ii) How user’s goals, state of knowledge,
ete, are nsed to filter and shape the output
of the process in i} above so that the ex-
planation is responsive to user’s needs, is
not overly and unneccessarily detailed, s
couched in terms which are appropriate to
the user’s level of understanding, etc. Here
user modeling is an important issue.

e iii} How an appropriate human-machine in-
terface displays and presents the infor-
mation to a user in an effective way. Here
the issues include natural language under-
standing, natural language generation, and
principles of effective graphieal displays.

We argued in the original proposal that no mat-
ter how good the theories are for i) and i), if a poor
representation is adopted for i), then at best in-
appropriate explanation will be presented packaged in
a good interface. That is. the basic content of the ex-
planation is generated in stage i), Thus we need to
pay great attention to how «a problem solver can com-
prehend its own problem-solving activity. Much of our
I’hase-1 effort is devoted to developing a good theory
of this, testing it by implementation of a prototype
system, ctc.

The explanation of problemn solving itself in our
analysis has 3 components:

1. Explaining why certain decisions were made
or were not made. This has to do with
how the data in a particular case .lated to
the knowledge for making specific decisions
or choices.

-101-

2. Explaining the problem solving strategy and
the control behavior of the problem solver.
This would typically be at a higher level of
abstraction than answers to I,

3. Explaining the eclements of the knowledge
base itself. For example, if the knowledge
base contains plan fragments which are to
be instantiated and assembled into longer
plans. the problem solver may be called
upon to explain the rationale hehind the
plan fragments. Similarly if. during a par-
ticular diagnosis, a trouble-shooter uses the
knowledge that a low voltage between cer-
tain lerminals is evidence for a particular
malfunction, a user might want to know
the reasoning behind the knowledge frag-
ment.

It should be noted that typically I and 2 above
involve the run-time behavior of a problem solver (and
thus cannot in general be precompiled without running
into combinatorial problems), while explanation struc-
tures for 3 above can in principle be attached to the
knowledge fragments at the time the knowledge base
is put together.

1.3. Overview of the Work So Far

Our work in Phase t of the project has con-
tributed to each of the above types of explanation.
Our theoretical position is that in order to generate
explanation of type L and tvpe 2 al the appropriate
level of abstraction, the problem so'ving process needs
to be represented at what we have called the generie
task level. 'The essence of the argument is that most
of the current approaches to expert system construc-
tion use knowledge representation languages and con-
trol primitives at too low a level of abstraction (the
rule-frame-logical formulae level), and this makes both
system design and explanation difficult, since the sys-
tem designer often has to transform a higher-level
problem into the lower-level implementation language.
We have identified a sct of higher-level building blocks
in terms of which systems can be conceptualized,
designed and implemented. The basic explanation
constructs are then available closer to the conceptnal
level of the user than they would be il they had to be
extracted from the implementation language level.
This point of view has led us to propose a new ap-
proach 1o the design of knowledge-based systems,
namely the gencric task level. In order to facilitate
expert system construction at this level, we have
devoted a considerable amonnt of encrgy to the design
and implementation of a set of higher level tools for
the construction of expert systemns of various types.

The theory itself is being pnt to the test at this
stage for what can be called routine planning or
routine design tasks. We lave identified the OCA

mission problemn as a problem of this type, used one
of our generic task languages (DSPL) for both
knowledge acquisition and system implementation, and
by nsing the constructs in DSPL elfectively, have been
able to show how erplanation at higher and wnore ap-
propriate levels of abstraction can be automatically
generaled from the problem solver. Some of the tools
that we have built to lay a proper foundation for
explanation-capable expert system are described in a
later seetion (3).

Explanation of Type 3 above. viz., explanation of
knowledge fragments in the knowledge base, has been
approached by us in the context of the OCA mission
as erplanation of plens (i.c., the plans themselves, not
the planning process). We propose that plans can be
viewed as devices, and as such an ecarlier represen-
tation developed in our laboratory for representing a
device’s functioning can be used clfectively for explain-
ing plans.

1.4. Organization of the Progress Report

The work that has gone on in our laboratory is
reported in two separate papers in this Proceedings.
In this paper, we give a description of our work on
the design and implementation of the MPA system for
mission-planning, including the generation of explana-
tion of various types. It ought to be emphasized that
the MPA project is uot completed. and so what s
reported here should be viewed mainly as an interim
report. Both the design of the planner and the ex-
planation components are still in the process of [urther
analysis and expansion. We also include in this paper
reports on two high-level tools that we have been
building for the construction of knowledge-based sys-
temms: DSPL for construction of systems that help
with routine design (including planning), and HYPER.
l[or deciding how data match hypotheses, a component
of a number of distinct. kinds of problem solving.
These two are part of a tool-kit that includes CSRIL,
a language already devcloped and reported on, and
others that are in various stages of implementation.

We include an additional paper reporting on the
conceptual and theoretical foundations for much of our
work on explanation. This provides the rationale for
using the generic tasks approach, both for system con-
struction and for cxplanation.

1.5. 1 Plans

e to continue and add lunctionalities
to the MP'A System, and also to increase the range ol
explanations olfered by the system. We also plan in
the near terin to show how our approach to explana-
tion can be incorporated to a diagnostic or situation
assessment task,

-102-

2. MPA: A Mission Plamnin
Assistant in the KNOBS gDomnin

2.1. Design and Construction of the Mission
Planning Assistant

David Herinan, Anne Keuneke,
Michael C. Tanuner, Ron Hartung, John Josephson

One najor application area relevant 1o the
Strategic Computing Program is planning and plan
support systems. Our inlerest in planning concerns
the explanation facilities that will be necessary in ex-
pert systems that assist in planning. This report
summarizes our current work in this area in the
domain of tactical mission planuing. After investigat-
ing KNOBS (10}, an existing mission planning system,
we have developed our own mission planning system
(MPA) using our generic task approach to building ex-
pert systems. The system is implemented in DSPL. a
language initially developed i support of planning
research in the domain of mechanical design 1],

The task we are investigating involves one of the
functions of Tactical Air Control Centers (TACCs).
Their concerns are to assign available resources to the
various tasks of an “appointment” order. The output
is an Air Tasking Order (ATO), which summarizes
the responsibilities of each unit with respect to the
day's missions. Each inission planned requires atten-
tion to such details as the selection of aircraft type
appropriate to the mission. selection of a hase from
which to fly the mission, coordination with other mis-
sions, etc,

Our most recent ohjectives have been to deter-
mine the knowledge a system would require to plan a
particular type of ission, the Offensive Counter-Air
(OCA) mission. We are interested in the planning
process, as well as the ahility to explain the reasoning
of the planning process. Our selection of the OCA
mission in particular arose partly from the availability
of the KNOBS system and its knowledge base for tac-
tical planning support in this domain.

2.1.1. The KNODS System

The KNOBS systern was built to address plan-
ning tasks which involve the specification of values for
a set of pre-established components known to be
necessary for the planned activity. Planning offensive
eounter air missions can be viewed as such a task.

KNOBS secs planning as temmplate instantiation -
a process of filling in a number of slots with accept-
able values. The order in which the slots are con-
sidered is defined in advance by the plan template,
and is determined by the expert’s domain planning

knowledge. Acceptability of slot values is hased upon
satisfaction of constraints. Constraints are attached to
the template (rather than the slots) to reflect the view
that “all action is in the interaction of 1he slots".
Constraints are organized as a list of “bueckets™, or-
dered to express priority in constraint satisfaction.
Kach bucket contains an nnordered list of constraints.
The testing of slot values is accomplished by travers-
ing and checking constraints in the order specified by
the priority buckets.

[n order to determine acceptable choices for
values of slots, KNOBS associates a generator with
cach slot to cnumerate potential values. The gener-
ator produces a subset of all possible values of the
slot. The generator is derived hy “inverting” con-
straint knowledge pertinent to the slot.

Given the slot ordering, constraints. and
generators, KNOBS “plans” as follows: The generator
of the first slot is asked for its first candidate, the
generator for the second slot is asked for its first can-
didate, and so on. At each slot filling, all applicable
constraints are checked, If any are not satisfied, then
the slot. generator is asked for another candidate. {f
another candidate exists. it is tried, and so on uantil
cither afl slots have aecepted values or a generator
runs ont of candidates. ff this happens, KNOBS
would back up to the most recently filled slot that
was involved in the constraint that failed. KNOBS is
successful when all slots are filled and all eonstraints
are satisfied. The basic planning algorithm for
KNOBS can thns be described as generate and test
with dependency-directed backtracking.

KNOBS was successful in showing the feasibility
of Al techniques for certain classes of mission plan-
ning. The constraint technique in particular is useful
where applicable, but as far as we can determine
KNOBS was not intended as a generic approach to
planning in general. The methodology for planning
based on template instantiation and constraint satisfac-
tion will not typically scale up well, since, as the size
of problem space increases, the exhaustive depth-first
nature of the search makes the technique computation-
alfy infeasible. In addition extensions or adaptations
to such a template would he difficult, sinee most of
the planning knowledge is lmplicit (and thus hidden)
in the ordering of template slots and constraints.

These problems arise hecause the system does
not have significant amounts of problem-solving exper-
tise for planning. Any explanation in KNOBS s
finited 1o answers based on a constraint - either a
value is bad because it fails a constraint. or it is good
because it satisfies a constraint. There is no
knowledge of why the system should satisfy a con-
straint (its functionality) nor why this coustraint (vs
any other) is being considered now (plan strategy).
Similarly, this knowledge is missing for slots - why is

~103-~

this slot necessary, and why is this the best ordering

of slots - are questions which cannot be answered hy
a KNOBS-like system.

Thns the KNOBS mechanism does not allow for
two major types of explanation: neither the planning
control strategy, uor functional knowledge of the
domain can be justified. These kinds of explanation
for a planuer are feasible if the planning and func-
tional knowledge is represented with appropriate stric-
tures,

It should be added that the designers ol KNOBS
were also aware of these limitations and are currently
building a system called KRS which includes some of
the additional functionalities described above.

2]

2.1.2. Class Il Design

Our approach to tactical mission planning treats
the Air Tasking Order (ATO) as an abstract device to
be designed. The planning of the missions or groups ol
missions that comprise the completed ATO involves a

process similar to the process a designer nndergoes

when faced with a complex device 1o design. An

overview of the design domain will illmninate this
analogy. For a more coniprehensive description see
1.

The general domain ol design is vast. It in-
volves creativity, many problem-solving techniques, and
many kinds of knowledge. Coals are often poorly
specified. and may change during the course ol
problem solving. However, a spectrum of design
classes can be identified, varying from completely
open-ended activity to the most routine, depending on
what sorts of knowledge is available prior to the start
of problem solving,.

By 1
3

What we have called “Class Design™ charac-
terizes a form of routine design activity. Complete
knowledge of both the components and design plans
for the device is assumed to be available prior to the
problem solving activity. The solving
proceeds by using recognition knowledge to select
among the previously known sequences of design ac-
tions. While the choices at each point may be simple.
this does not imply that the design process itself is

simmple, nor that the components so designed must he

problein

simple. [t appears that a significant portion ol
cveryday activity of practicing designers falls into this
class. In order to explore this class ol design
problems, the DSPL (Design Structures and Plans

Language) system was developed. 1, 2, 31 The routine
design task is viewed as decomposable into a hierar-
chical planning task. where typically each level makes
some design commitmems, and the design is further
refined by the lower level planners. A design problem
solver in DSPL consists of a hierarchy of cooperating,

~104-

conceptual specialists, with each specialist responsible
for particutar portion of the design. Specialists
higher np in the hierarchy deal with the more general
aspects of the device being designed. while specialists
lower in the hicrarchy design more specific snb-
portions of the device, or address other design sub-
tasks. Any specialist may access a design data-base
(mediated by an intelligent data-base assistant). The
organization of the specialists and the specific content
of cach is intended to precisely capture the designer’s
expertise of the problem domain.

a

Fach specialist in the design hicrarchy contains
locally the design knowledge necessary to accomplish
that portion of the design for which it is responsible.
There are several types of knowledge represented in
cach specialist, three of which are described here.
First, explicit design plans in each specialist encode se-
quences of possible actions to snccessfully complete the
specialist’s task. Different design plans within a
specialist may encode alternative action sequences, but
plans within a particular specialist are always aimed
at achieving the specilic design goals of that specialist.
A second type ol nowledge encoded within specialists
i5 encoded in design plan svonsors. [Fach design plan
has an associated sponsor 1o determine the ap-
propriateness of the plan in the run-time context.
The third type ol planning knowledge in a specialist is
encoded in design plan selectors. The [unction of the
selector knowledge is to examine the run-time judge-
ments of the design plan sponsors and determine
which of the design plans within the specialist is most
appropriate to the current problem context.

Control in a DSPL, system proceeds from the
top-most specialist in the design hierarchy to the
lowest. Beginning with the top-most specialist, cach
specialist selects a design plan appropriate to the re-
quircments of the problein and the current state of
the solution. The selected plan is executed by per-
forming the design actions specilied by the plan. This
inay include computing and assigning specific valies to
attrihutes of the device, running constraints to check
the progress of the design, or invoking sub-specialists
to complete another pertion of the design. Thus
design plans which refer to a sub-specialist, are refined
by passing control 1o that sub-specialist,

The discussion of the control strategies in a
DSPL systern has thus far ounly included successful
plan execution. lowever DSPL does inclnde facilities
for the handling of various types of plan failures. and
for controlling redesign suggested by snch Tlailures.
The details ol these features of the language can be

found in |1 .

2.1.3. Mission Planning as Class HI Design

Onr view of tactical mission planning is that it

is essentially a class 3 design task. The prohlem can

be decomposed into the design of subcomponents ol
the mission plan. th the device design domain, the
design of a device is decomposed into the design of
sib-asscinblies and their components, etc, where each
sub-assembly or component can be designed in a fairly
independent fashion. In the tactical mission planning
domain the ATO is decomposed into various missions
or groups of missions of known types, where each nis-
sion or group of missions able to be planned relatively
independently of the others, modulo resonree e¢onten-
tion considerations. In both domains, ol course, cach
of the solutions to the subproblems must be ap-
propriately combined into the solution for the problem
which they decompose. Due to the well known limita-
tions of human problem solving capacities, it is ap-
parent that a human problem solver can be successful
in such a situation only to the extent that he can also
decompose the problem into a manageable number of
somewhat independent sub-problems which can De
solved separately and combined into a final solution.
Using DSPL as a natural mechanism for representing
the necessary knowledge, the MPA systemn closely mir-
rors these ideas.

Another type of local, declarative knowledge in a

DSPL speeialist is expressed in the form of con-
straints. Constraints are nsed to decide on the
suttability f incoming requirements and data. and on

the ultimate success of the specialist itself (i.e., the
constraints capture knowledge about those things that
must be true of the specialists’ design belore it can be
considered to be successfully completed). Other

straints, embedded in the specialist’s design plans, are
used to check the correctness of intermediate design
decisions. The use of such constraints in the MDA
system easily captures the kinds of knowledge encoded
as constraints in KNOBS, but incorporating the con-
straints into a rich overall control structure further al-

con-

lows the constraint knowledge to be utilized during
problem solving in a sharply focused manner.
Analysis ol the success or failure of constraints during
runtime, gencrated from the trace of the problem
solver’s execution, yields explanation capabilities
similar to that found in KNODBS, but with the ad-

ditional context provided by the rich DS’ control
structure.

The additional context ol the DSPL control
structure provides the springboard for a more com-
prehensive explanation facility. In addition to the
necessary ability to examine particnlar atiributes of a
mission plan, the control structure provides the ability
to examine the probleni solving strategies ol the plan-
ning system. This kind ol explanation is not easily
extracted from a system which uses template instantia-
tion and constraint satisfaction its primary
mechanisms for problem solving, sinee problem solving
strategies are absent or at best implicitly represented.

ds

-105-

2.1.4. The MPA System

The following discussion gives a general deserip-
tion of the planning strategies particular teo the MPA
system as currently implemented in DSPL.

Several in order concerning the
domain of the MPA system. The MPA system cur-
rently on' handles the planning of OCA\ inissions. al-
though we believe other missions could be handled in
a similar fashion. Our prototype systern does not ad-
dress several minor bookkeeping aspects
planning, which although ol theoretical
wenld be necessary to a lully functional mission plan-
ner. Such items as assigning radio [requencies to a
flight and designating mission call-signs Tall into this
category. Finally, although the specilic military
knowledge in the MPA system is adequate for
demonstration pnurposes, it by no means meant to
reflect complete or even accurate knowledge of aircraft
capabilities. We believe that the knowledge
represented is representative of the knowledge utilized
by a human mission planner, and that the problem
solving exhibited by the system fairly represents the
human problem solver’s activities.

caveats are

risston
interest.

of
no

The
specialists.
iission requirements and ultimately produces the Tinal
The OCA specialist divides its work be-
The base

prototype MPA system contains six

The topmost specialist. OC'A. accepts the

mission plan.
tween two snbspecialists, base and aireraft.
specialist 1s responsible lor selecting an appropriate
while the aircraft specialist selects an aireraft
The aircraft specialist has three snbspecialists,

hase.
Lype.
one for cach of the three aircraft types known te the
MPA system. As needed, one of these specialists will
select an appropriate configuration for its aircraft type.

Problem solving begins when the OCA specialist
is requested to plan a mission. Currently the OCA
specialist contains only a single design plan which first
requests the base specialist to determine base and
then requests the aircraft speciafist to determine (and
configure) an appropriate aircraft for the rission.
The carrent base speeialist simply selects a base from
a list of candidate bases geographically near the tar-
get. The aireraft specialist cons.derations of
threat types and weather conditions at the target to

a

1565

select an appropriate aireraft for the mission. The
aircraft specialist and its three configuration sub-
specialists represent the most elahorate aspects of

domain knowledge in the MPA system.

In the current version of the MPA system, the
aircraft speecialist is entered with a tentative selection
for the base already specilied. The target and re-
quired probability of destruction are known from the
input requirements of the mission. At this point each
of the plan sponsors in the aircralt specialist are ex-
ecuted by the DSPL interpreter. Fhie three plan

sponsors deterinine the appropriateness ol their respec-

tive plans. In this case, each of the three plans deter-
mine which of the three aircraft types should be used
for the mission. Thus the thiee plan sponsors deter-
mine the appropriateness of using, respectively, F-111s.
F-4s. or A-10s for the mission. Plan sponsors may
access a global database as necessary in their execu-
tion. In the MPA system. such items as target
characteristics and weather couditions are requested in
determining the appropriateness of a particular aircraft
type. After the suitability of all plans in the aircraft
specialist has been determined. the DSPPL interpreter
executes the plan setector in the specialist. The plan
selector, given the suitabilities of cach of the aircraft
types. can then determine which aircralt is most ap-
propriate for the nission. The plan selector returns
this information to the specialist, which then causes
the selected plan to be executed.

Suppose the mission requirements call for a night
raid. The plan sponsors for both the A-10 and F-1
would rule out the possibility of using these aircraft,
since (in our domain model) neither of these aircraft
have night flying capability. The F-111 plan sponsor.
since it is an all-weather fighter with night
capabilities, wonld not be exclnded. The plan sponsor
for the F-111, based on this and other considerations
(range, ability to carry appropriate ordinance, target
characteristics, cte) would find the -1l suitable for
the nissiou. The plan selector in the aircraft
specialist, finding that two design plans have ruled
out, would select the “suitable” F-T1T1 design plan. and
return this information to the The
specialist proceeds to execute the F-111 design plan,
which incindes marking the aircralt type in the ruis-
sion template to ‘F-111", and invoking the F-I111 cou-
figuration specialist whicl in turn decides an accept-
able ordinance toad for the F-1tF for this mission.
Once the configuration of the aircraft is known, the
single aircraft probability of destruction in the mission
context can be computed. Finally, knowing the mis-
sion capabilities of each aireraft, the required number
of aircralt can be determined in order to achicve the
required probability of destruction, and the required
aircraft can be reserved from the proper unit.

specialist.

The MPA system could be readity extended in
several directions. Additional situation kuowledge at
the OCA level would allow fer wore robust planning
with less backtracking. More complete knowledge of
the OCA nission lor specifying various aspects of the
flight plan, etc. could be added. Also, as previously
mentioned, other types of missions could he encoded
in hicrarchies similar to the OCA hierarchy. The
most theoretically interesting addition to the MI?A
system would be abstractions above the single mission
level. Clusters ol coordinated missions and even a
complete A'TO abstraction should be possible within
the Class Hl Design Iramework. For example, ex-
tended range OCA missions requiring coordination
with refueting and escort missions should be able to

-106—

be planned in a straightforward fashion. The single
greatest hindrance to such work is the lack of acces-
sibility of experienced domain experts.

2.2. Explanation in the Mission Plauning
Assistant

Michael C. Tanner, Dean Allemarg,
John Josephson, Matt Dedongh

4
A

2.1, Types of Questions for the Mission Planner

We have generated a broad list of questions that
may ask of a Mission Planning Assistant
ftere we will give a categorization of those
In this preliminary analysis we will be able
to sketch techiniques for answering questions in some
categories. But in others we have little to say at this

a user
(MPA).

questions.

poirt.

252

1B Overall Objectives

There were questions about the objectives of the
ptan. Some questions of this kind can be answered
directly by the wmission planner:

Question. What will this plan achieve?

Answer. This plan will achieve destruction
of target X with probability Y.

Other questions of this type have answers external to
the program. Ior example,

Question. Why are you doing an OCA?

The trivial answer:
Because you told e to.

is probably not the desired answer. The reasons for
planning an OCA come prior to tuvocation of an OCA
planning assistant. On the other hand it is perfectly
reasonable for an MPA program to have some built-in
definition of the reasons OCAs are done.

2.2.1.2. Justifving Decisions

The most common kind of question asks for jus-
tification of some decision made during problem-
solving. These seem to come in two kinds:

1. Why did yon do X7

2. Why didn't vou do Y?

Answering the “Why did you .77 questions requires
finding, or reconstructing. the poiut in problein-solving
where the choice was made, then giving the reasons

which support that decision. For example:

Question. Why was an F-1 chosen?

Answer. The choices were A-10. F-1, and
F-111. A-10 was ruled out. In cases where
F-4 and F-111 are available, | prefei to nse
F-4.

Any such answer may point to further decisions which
might be questioned in the same way. In the above
example one may ask why A-10 ruled ont, and pursne
the decision process further.

Answering “Why didn’t you ...?" questions is a
little harder. There are at least two distinct cases.
tn one case, the alternative might have explicitly heen

decided against. In the above example a “Why didn’t
you choose A-107" would he answered by “A-10 was
ruled out.” The other case is that the explicit alter-
native never came up. Answering the ques. 'n in this
case requires an understanding of the problem-solving
strategy and an explanation in those terms.

Question. Why didn't you allocate a
KC-135 for this mission?

Answer. KC-135 is a tanker. tankers are
only used if refieling is necessary, and reluel-
ing is not necessary for this mission.

2.2.1.3. Critigne

A number of questions were related to plan
criticism. A user might want to know where the
weak points in the plan are. Or the user might want
to know if some alternate plan is any good. We have
not worked on questions of this kind but it seems as
though critics could operate on the functional
representation of the plan and that such criticism
would not be closely related to the process of design-
ing the plan.

2.2.1.4. Questions During Problem-Solving

Nearly all of the questions that might be asked
after the MPA has produced an answer could also be
asked during problem-solving. In addition there are a
host of questions about the probleni-solving process it-
self — why something is being done now, what is left
to do, etc.

2.2.1.5. Questions about Function

Many questions are abont the furction of varions
parts of the plan. II the plan is viewed as a deviee,
it can be represcuted using the lnuetional represen-
tation of Moorthy and Chandra 1. This will he
discussed in section 2.3, Using this representation it
would be possible to answer questions such as “Why
are airplanes used?” and “How will the mission

proceed?”

2.2.1.6. Questions Ahont the lLnpact of Data

Often it is nseful to know how some fact alfected
the problem-solving and how the result would be dif-
ferent if that fact changed. ‘Fhis could be related to
critique. That is, il a small change in data makes a
hig difference then that data could be critical to suc-
cess of the plan. W might also be usefnl for making
small changes in the final plan, snch as forcing
aircraft type to be F-111. If it makes little difference,
the planner should be able to say so.

2.2.1.7. Questions Abonut Strategy

Answering some questions requires understanding
the problem-solving strategy used by the program.
Questions of this sort can he directly answered using
the explicit encoding of the generic aspects of
knowledge and control for the generic task. Fhe
framework for this is discussed in the coniparnion
paper in this Proceedings.

2.2.1.8. Summary Comments

The categorization given above is not neant 1o
be exhanstive or mutually exclnsive. In fact. answers
to questions of one type. say justilication, may include
answers ol another type, say strategy. For explana-
tion of the planner itself the most important kind
given above s justification of run-time decisions. For
one thing. such justification would be useful for debug-
ging a planner and is likely to be a part of many
other kinds of explanation. In the remainder of this
report we will desceribe how we are implementing jus-
tilication of a certain kind for the mission planning as-
sistant,

2.2.2. Erplanation for the MP.l

Our implementation is based on the organizing
principle that the agent which makes a decision s
responsible Tor justifying it. The MPA is built in
DSPL so the agents which contribute to the final plan
are: Specialists, Design Plans, Design Plan Selectors,
Design Plan Sponsors, Tasks. Steps, and Constraints.
In the present implementation there are some 200 of
these agents, though not all of them contribute to any
particular plan. Al of these agents perforin
“knowledge-level™ tasks (ie., epistemically significant)
so explanation of any one agent’s problem-solving deci-
sions can be given in terms of the goals ol the agent
whieh uses it, and the function of the agents it uses.

The final answer produced by the MPA can be
viewed as a list of attribute-value pairs as in Knobs.
That is, a list of the form:

Target = Berlin
Aircraft Type = F-111
Number Aircraft = 6

~-107-

We have decided to concentrate on gnestions of the
form. “How was it decided?” which can be asked of
the value of any attribnte. For example. selecting
F-11t in the above list would initiate a dialog on the
question of how MPA decided to use F-111 as the
value of Aircraft Type. More particularly, an ex-
planation window would appear containing the answer
to “How was it decided?” produced by the agent
which actually set the value of Aircraft Type to
F-1tt. In this window certain other things would be
selectable. Setecting any of them will produce another
window with a similar explanation for the proper
agent. In this way the user will he able to pose
follow-np questions by using the mouse to steer
through the decision dependencies.

To support “llow was it decided?” explanations
we determined three basic questions which all agents
must be able to answer:

I. “Give me the bottom line: what did von
do?" This question would be answered
with a one-sentence summary of the result
of the agent’s action.

2. “What is your purpose?” This question
would be posed by sub-agents who want to
have knowledge of the context they are
operating in, and should he answered by a
short description.

3. “How did you do it?"" This question would
be answered by displaying a window with a
complete explanation of the context of the
agent’s activation followed by a fonctional
description of its action. The agent may
have to ask its sub-agents QI and its
super-agent Q2.

Then, in general. the explanation for “llow was
it decided?” is the answer to question 3 above. The
answer to q3 is a combination ol the answer to g2 for
the calling agent and gl for all sub-agents. So an ex-
planation window contains:

In the context of <answer to Q2 for callin
we did the following:
<answer to Q1 from subagentl>
<answer to Ql from subagent2>
<answer to Q1 from subagent3>

Below we show detailed examples of all the agent
types and the explanations they can produce.

Our work to this point is about generating cx-
planation fragments and does not address other issues
of explanation such as summarization, user modeling,
or human factors.

In Tignre 1 is a sample of the ontput for MPA
on a particular problem. It is simply a list of at-
tributes of OCA missions and the values that the
MPA determines for them dnring problem solving.
The user begins to get explanations by selecting one
of the valnes and asking! how MPA decided on that
value.

Target BrandenburgSAM
PD .8704

AircraltType F-4

NumberA/C 4

Unit 113TFW

Airbase Wiesbaden
Configuration B2

Figure 1: Example of a particalar OCA miission

2.2.2.1. Step Explanation

The values are actually set by a DSPL Step, so
the first explanation a nser gets comes from a Step.
Suppose the value of NumberA/C, 4, was chosen. A
slightly simplilied version of the code for the step
which actually set this wvalue is given in Tlignre 2.
This step sets some local variables by looking things
up in the data base. E.g., the local variable
configuration is set to the result of asking the data
base what confliguration is bheing used, (KB-FETCII
CONFIGURATION). The KB-STORE tells the data
base to set the attribute AIRCRAFT-NUMBER 1o the
valne returned by the function num-a ¢, which
depends on the local variables. REPLY indicates that
what follows is the main function of the step and sets
DSPL up to handle failures if something should go
wrong.

(STEP setNumberA/C

{SETQ configuration (KB-FETCH CONFIGURATION})

(SETQ requiredPD (KB-FETCH REQ-PD))

(SETQ targetType (KB-FETCH TARGETTYPE))

REPLY

(KB-STORE AIRCRAFT-NUMBER (num-a/c configuration

requiredpPD
targetType)))

Figure 2: DSPL code for a step

Fignre 3 shows the explanation of the step given
in fignre 2. The context, shown in italics, is retrieved
from the task which invoked the step. The values set
for the local variables are remembered by the step at
run-time as is the value returned by the Lisp function
num-a/c. DSPL then [its these picces into the general
framework for explaining steps.

{ o) : '
Fignratively, since the systent can only answer this one ques
Lion al present.

~108-

The context ol working out the details of con-
figuration B2 determined that:

o configuration was B2
e requiredP) was .65
o targetType was SA-6

So, 1 was
NUMBER.

an appropriate choice for AIRCRAFT-

Figure 3: Explanation for a step

In fignre 4 is a general description of steps show-
ing the relationship between the code and the explena-
tion which can be produced from it. The purpose of
the calling Task is found by asking, “What is your
purpose?” of the calling Task (see section 2.2.2). The
values of local variables, and the value given to the
attribute, are remembered by the step at run-time and
retrieved for explanation.

2.2.2.2. Task Explanation

After looking at the explanation for a step. the
only further explanation is for the task which invoked
it. This is obtained by selecting the context given in
the step explanation.

Figure 5 gives the DSPL code lor a Task. A
task is simply a sequence of steps. with constraint
checks possible. Il the user had been looking at the
explanation for the base-assign step and pursued its
context, the explanation, which would come from the
task shown in figure 5. would be that shown in figure
6. As with steps, the context is obtained from the
calling agent, in this case a Plan. The rest of the ex-
planation is obtainea from the steps which make np
the task.

Form:

(STEP <stepName>
(SETQ <localvarl> <vall>)

(SETQ <localvVarN> <valN>)
REPLY
(KB-STORE <attribute> <attributeVal>))

Explanation:

The context of < purpose of containing task

e <localVarl> was <vall>
L

o <localVarN > was valN-

So, atlributeVal - was an appreoriate choice for < attribute -

Figure 4: Template for Steps and their

Explanation

determined that:

-109~-

{(TASK squadron
(STEP squadron)
(STEP base-assign)
(STEP get-range))

Figure 5: DSPL code for a Task
Figure 7 gives a general description of Tasks

showirg the relationship between the code and the ex-
planaticn produced from it. The purpose of the con-
taining Plan is lound by asking, “What is vour
purpose?” of the plan. What a particnlar step did.
or its purpose, is found by asking, “What did you
do?” or “What is yonr purpose’” as appropriate. of
the step. DSPL fits these
framework for explaining tasks.

answers into a general

In the context of considering the feasibility of an
F-4 for the mussion. | did the following step:
of HI3TKW the

e selection for

mission

as squadron

I was in the process of:
e sclecting a base for the mission
I had yet to do the following step:

o determine the range lor the mission

Figure 6: [ixplanation for a Task. entered from
base-assign step
2.2.2.3. Plan lixplanation
From a task the nser might select either ex-

planation of the various steps in the tasks or of the
task’s containing Plan. The syntax of plans and their
explanation is very similar to that of tasks. The ox-
ception is that Plans can invoke design specialists, as
shown by the DESIGN statement in fignre & Figure
9 shows the explanation given by this plan and figure
10 gives a general description of plans and their ex-
planation.

2.2.2.4. Specialist Explanation

As with Tasks. a user can choose to pursne ex-
planation of a Plan’s context or ol its sub-agents.
The sub-agents are Tasks, which have been described.
The context is given by a design specialist. The logic
of design specialists inplicit, that is, defined by
what a design specialist s, The Specialists™ job is to
choose a design plan and exeonte i, [t chooses the
plan by plan selector. The ex-
planation for a specialist is given in lignre H oand the

is

imvoking its design

general form of specialist explanation i in ligure 12,
The context of a specialist is given by the plan which
invoked it and it knows its own purpose. The pur-
pose of the plan it selected is obtained by asking that
plan.

[Form:

(TASK <taskName>
(STEP 1)
(STEP 1)

(STEP n))
Fxplanation, entered from STEP i

In the context of - purpose of eontaining

plan> we did:
e - what STEP I did-

e <what STEP i-1 did*:
we were doing:

e - purpose of STEP i
and were about to do:

e - purpose of STEP i1 -

e < purpose of STEP n -

Figure 7: Template for Tasks and their Explanatio

(PLAN F-4
(TASK assignF-4)
(TASK squadron)
(DESIGN F-4Configuration))

Figure 8: DSPL code for a Design Plan

in the context of selecting an appropriate aircraft
Jor the mission | was in the process of:

e assigning an F-4 for the mission
[had yet to do the following steps:
e find an appropriate squadron for the mis-

sion

e choose a conliguration for the F-1 in this
mission

Explanation for a Design Plan,
entered from the assignF-4 task

Figure 9:

2.2.2.5. Selector Explanation

From the specialist a user could pursue the con-
text of the specialist. the plan that called it, or the
specialist’s sclector. Figure 13 shows the DSPL code
for a Selector. The typieal selector simply chooses the

-110-

best perfect plan, if there are any, or the best suitable
plan if there are no perfect ones. The selector shown
in figure 13, however. encodes the additional
knowledge that if certain plans are available they
ought to be chosen.

The explanation of the selector in figure 13 is
given in figure [4. lere the context comes from the
specialist. The rest of the explanation comes from
remembering the values of the predicates. The value
returned by the selector, in this ease, depends on bheth
the fact that A-10 is not « perfect plan and that F-1I
is.

The general form of selectors and their explana-
tion is shown in figure 5. A selector is essentiafly an
IF-THEN-ELSE statement so it mu-t bhe able to
remeimber, or reconstriuct, the values of the I part to
explain which branch was taken.

Formn:

(PLAN <planName>
(TASK 1)
(TASK 1)

(TASK n))
Explanation. entered from TASK @

In the context of < purpose of containing

specialist > we did:

e - what TASK 1 did>

e - what TASK i-1 did >
we were doing:

o <purpose of TASK i
and were about to do:

e < purpose of TASIK i+l

e < purpose of TASK n

Figure 10: Template for Design Plans and their

Fxplanation

In the context of using the old-reliable plan to
plan the mission | was performing my task of selecting
an appropriate aireraft for the mission. 1 had:

e decided to consider -1 as aircraft for the
mission

I was in the process of:

o considering the feasibility of an -4 for the
mission

Ixplanation for a Design Specialist.
entered from plan F-4

Figure 11:

Sxplanation. entered from PLAN I:

In the context of - purpose of containing
plan> I was performing my task of <purpose
of self>. 1 had:

e seclected PLAN 1
| was in the process of:

e < purpose of PLAN 1

Figure 12: Template for Explanation of Design

sSpecialists

(SELECTOR aircraftSelector
(IF (MEMBER A-10 PERFECT-PLANS) THEN
ELSEIF (MEMBER F-4 PERFECT-PLANS
ELSEIF (MEMBER F-111 PERFECT-PLA

Figure 13: DSI’L code for a Design Plan Selector

The context of selecting an appropriate aireraft
for the mission determined that:

e Since A-10 is not one of PERFRCT-
PLANS,

o | chose plan F-1 because F-1 is one of
PERFECT-PLANS.

Figure 14: Fxplanation for a Design Plan Selector

2.2.2.6. Sponsor Explanation

From a selector the user conld get explanation
from any of the plan sponsors which it uses. A spon-
sor matches characteristics of the plan te information
about. the problem at hand and produces a measiure of
how nsefnl the plan will he on a scale of: Ruled-Out,
Unsuitable, Suitable. and Perfeet. The code for a
sponsor is given in figure 16. It first sets some local
variables by looking them up in the data base (nsing
KB-FETCH as disenssed with steps). It then uses the

=11

Form:

(SELECTOR <selectorName>
(IF <there are perfect plans>
THEN <choose the best perfect plan>
ELSEIF <PLAN 1l is suitable>
THEN <choose PLAN 1>
ELSEIF <there are suitable plans>
THEN <choose the best suitable plan>))

Explanation:

The context of - purpose of containing
specialist - determined that:

e Since there were no perfect plans.

e | chose PLAN | because PLAN 1 was
suitable.

Figure 15: Template for Design Plan Selectors

and their Explanation
TABLE construct, which is essentially a gronp of rules
which all depend on predicates of the same valies.
[or example. the table setting the vaiable conditions
contains three rules which depend on the valies

returned by the functions night and weather. The
first rule requires night to retnrn F and weather to
return - FULL. If the predicates are true. then

conditions will be UNSUITABLE. 'The symbol *7" in
the tables represents a predicate which is always true.
The table is finished when one rale matches. REPLY
tells DSPL that what follows is the main function of
the sponsor.

The explanation for this sponsor is given in
figure 17. Values for the local variables are given,
those fetched from the database are not justified white
those determined by tables are given justification.
The final REPLY is nsed to determine the actual
decision made by the sponsor.

{ SPONSOR A-10
(SETQ target (KB-FETCH TARGET})
(SETQ timeOverTarget (KB-FETCH TIMEOVERTARGET})
(SETQ threat
(TABLE (airborne){AAA)(SAM)
(IF T ? 2 THEN UNSUITABLE)

(IF % T ? THEN UNSUITABLE)
(IF % 2 T THEN UNSUITABLE)
(IF ? 2 2 THEN PERFECT)))

(SETQ conditions
{TABLE (night)(weather)
{LF El FULL THEN UNSUITABLE)
(IF F PARTIAL THEN SUITABLE}
(1P ? ? THEN PERFECT)))
REPLY
(TABLE conditions threat
{IF UNSUITABLE & THEN RULE-OUT)
{IF B UNSUITABLE THEN RULE-OUT)
(IF SUITABLE ? THEN SUITABLE)
(IF ? ? TEEN PERFECT})

Figure 16: DSPL code for a Design Plan Sponsor

A general pictire of sponsors and their explana-
tion is given in figure 18. Generally, the values sect
for local variables, the values of columns and predi-
cates [rom tables, are stored away at run-time to he
used in explanation. Explanation then involves pars-
ing the sponsor’s code and fitting these values into the
explanation template as needed.

2.3. Understanding an QOCA Mission Plan

Anne Keuneke, John Joseplison

Knowledge-based systems use knowledge to arrive
at selutions. If a system will be used to provide con-
sultation or dvise, it will need o
knowledge and _roblem solving in order to be accept-
able and useful. In the task of planning, for instance.
the planner must have access to its knowledge of
problem solving strategies if it wishes to provide ex-
planation of its design decisions. If the system hopes
to provide an understanding of how the designed plan
will work, it must have this knowledge, too,
represented in a meaningful and accessible fashion.

erplain its

To illustrate the different types of explanation
capabilities arising from knowledge structures within a
system, consider the task of OCA mission planning.
The planning task accomplished by the MPA (Mission
Planning Assistant) system at OSU. involves specifica-
tion for a set of pre-established components. That is,
the planner knows the mission needs a eertain type of
component - its job is to make a concrete commitment
as to which specific component of that type wonld be
Lest. The planner requires only a limited knowledge
of these components in order to make such decisions.
Its understanding of the resnltant mission plan is thus
restricted.

The context of selecting an aircraft to consider
for the mission determined that:

o target is BrandenburgSAM
o timeOverTarget is 1300
o threat is UNSUITABLE becanse:
SAM s TRUE
o conditions are PERFECT becanse:
-~ weather is not FULL

.~ weather is not PARTIAL

I determined the value of plan A-10 to bhe
RULE-OUT because:

Form:

(SPONSOR <sponsorName>
{PLAN 1}
{SETQ <varl> <vall>)
(SETQ <vari>
(TABLE <col 1> <col 2>
{IF <pred 1> <pred 2> THEN <val x>)

(IF <pred 3> ? THEN <val y>)))
REPLY
(TABLE <col 3> <col 4>
(IF <pred 4> 2 THEN <rating 1>)
(IF <pred 5> <pred 6> THEN <rating 2>)))
Explanation:

The contex! of - purpose of containing selector > determined that:
e wvar - i val |
.
e war i-i5s valy because
pred 1 - is not true of - col 1
pred 3 - is true of - col { -
| determined that the value of PLAN 1 1o be - rating 1> because
e <pred 1 - is true of col 3 -
Figure 18: Template for Designe Plan Sponsors
and their lixplanation

For example, suppose a nser of the mission plan-
ner asks the question, “Why was an F-15 used?”
Depending on the intentions of the inquirer, the ques-
tion counld be answered in different ways. For a
particular mission, the question might be addressed
directly by the mission planner. Here, the inquiry is

interpreted as, “Why did yon use an F-15 instead of
any other aircraft for this mission?” Explanation
wonld indicate what makes the F-15 appropriate
(speed, weather compatible, etc.). Since this is the
specific information the system used in making its
decision, the planner shounld be able to explain it.

In the above, interpretation of the question was,
“Why choose an F-157". An alternate interpretation
could be. “Why is the F-[5 used in the mission
plan?”. A good response here might be. “The F-15 is
an aircraft. Aircraft are used in OCA's because they
have the ability to fly and to deliver the ordinance.
These functions are used to get to the target location
and to destroy the target - the pritnary goal of an
OCA mission.” This explanation requires a deeper
understanding of the domain than the planner has
readily available within its compiled planning
knowledge. Here we need a structure to represent dis-
tinctly how the plan works.

zMoortllv, V.S, and Chandrasekaran, B., “A Representation for

the Functioning of Devices that Supports Compilation of Expen
Problem Solving Structures”, Proceediugs of MEDCOMP'A3, [ELE
Compuler Society, Septeniber, 1983

o threat is UNSUITABLE.

Figure 17: Explanation for a Design PPlan Sponsor

-112-

To represent this nnderstanding, we propose nse
of a knowledge stricture based upon the Functional
Representation ol Devices as designed by Moorthy and
Chandrasekaran.® A device is any structure (concrete
or abstract) which serves a pnrpose. Thus, a plan
can be viewed as an abstract device in that it has
components which it together in such a way to ach-
ieve a desired goal. We hope, in this paper. to il-
lustrate how a functional representation lor a plan can
serve as a knowledge structure from which a more
complete understanding of the specific planning domain
can be derived.

The Functional Representation: An Overview

The first concept is that an agent’s understand-
ing of how a device warks is organized as a represen-
tation that shows how an intended function is ac-
complished as a series of behavioral states of the
device. The device. itself. is represented in varions
levels. The topmost level describes the functioning of
the device in terms ol the roles of its components.
The next level describes the functioning ol these comn-
ponents using the roles of their subcomponents, and so
on. At cach level of a device's representation there
mav be five signilicant aspects to an agent's
knowledge of the functioning of the device:

SSTRUCTURIS: specifies the components of a
device and the relations between them.

-FUNCTION: specifies WIAT is the resnlt or

goal of an activity of a deviee or component.

-BEITAVIOR: specifies TIOW. given a stimulus,
the resnlt is accomplished.

-GENERIC KNOWLEDGI: pointers o general
knowledge that shows how key states occur.

SASSUMPTIONS: under which a behavior is ac-
complished.

The functional specification of the “abstract
device™ OCAMission is illustrated below by describing
the main function of an OCA - to destroy a target.

FUNCTION: DestroyTarget:
TOMAKE: (Destroyed Target)
II°: (Funetional Target)
PROVIDED: (Functional Flight)
BY: OCAplan

The description indicstes that the plan, OCAMis-
sion. has a lunction called DestroyTarget. This fune-
tion is used if a target is operational{functional).
When this lTunction is nsed. the target will be
destroyed by a behavior called OCAplan. This be-
havior should succeed in accomplishing the goal of tar-
get destruction provided the flight s operational

throughout the behavior.

The behavioral specification of a device describes
the manner in which a function is accomplished by
using the functions of components, generic knowledge,

and sub-behaviors. The behavior for an OCA plan is
described by a chain of events caused by the specified

actions:
[ReFiavicor Tor OCAPLin /]

(Functional Target)

UsingFunction Prepareflight
ol ArBase

(Prepared Flight)

UsingFunction OllensiveAr |
of Fught

(Destroyed Target)

|

Usinghunction FollowianHone
ol Feght

i
i
l]

! i
(Location Flight HomeBase) !

The structure is meant to represent the temporal
sequence (from top to bottom) of states which ocenr
as a resnlt of actions taken. The diagram thus in-
dicates that the OCAPlan’s behavior begins when a
Target is in a Functional state. lHere an QOCA plan
will use the function Preparel’light of the component
AirBase to make the Flight Prepared. Upon achieving
this state, the plan use. the component Flight since it
has the functionality (OftensiveAir) to Destroy the
Target (and s0 on).

The structare of the OCAMission is defined by
its components and relations:

GroundCrew

AirBase —————
OCAMission <
S8l Ordnance

Flight <
AirCraft ———— Pilot ————— ECM

~113~

w0

- —

Links in the chain indicate subcomponents in the
sense that the first component uses the next in order
to achieve its goals. The OCAMission uses the com-
ponent AirBase to prepare the aircraft and the com-
ponent Flight to get 1o the target and destroy it.

Some important characteristics which make this

representation useful for the design and repair of
devices, plans include:
1) A component is specified independent of the
representation of the device which contains it. More
specifically, the specification of a component does not
refer to the role of the component in the composite.
If replacements are necessary. this property allows lor
the determination of allowable snbstitutions by simply
comparing functional capabilitics of current components
with alternatives.

2) Not the behavior specifications of components.
but only the names of the functions are carried over
to a higher level. This property is important if an
agent needs to replace a malfunctioning component by
a functionally equivalent but behaviorally dilferent one.
(le. It is not how the function is achieved that is ln-
perative, but what is achieved.)

Since much of planning involves adaptations of
atready established plans, these traits which allow for
such adaptations for components and behaviors are
valuable.

Current Research: Iknhancements to the
Representation

Enhancements to the Functional Representation
are being made both to further the above capabilities
for adaptation and for richer understanding and ex-
planation capabilities. New primitives established for
representations include:

t. A means of distinguishing between the
definition of a function and events which
trigger the use of the function in the
specified device.

Example: An aircraft has the function
“Fly™ which is used to change location.
ie. 1t (Location Aircraft x) the function
Fh is used TOMAKE: (Location Aircraft
y) For the OCA mission use of this func-
tion is triggered when the current leg of
the Flightplan indicates a change of loca-
tionr froin x Lo y.

The distinction between triggers and the
“definition iI"" is uselnl for replacement con-
siderations. Functions must match defini-
tions to be equivalent. Triggers are relative
to the device in which the component is
being used. If a component is replaced,
adaptations to a plan may he needed to
change a triggering mechanisr.

To determine il a helicopter could be nsed

instead of an aircraft within an OCA plan,
a top-level response involves checking the
functionalities of the two devices. Here the
trigger is transferable to the other device
(the FlightPlan could just as casily specify
helicopters as airplanes). I the fnnctions of
the devices are equivalent, the question
might be sent to the plan designer ol this
level to determine why bolicopters were not
chosen as the device. Notice that functions
of devices shonld not change but events
that trigger their use may.

2. Explicit distinction of device's “secondary
functions™.
These are functions which are present in
support of another main function. Specifica-
tion of such functions 1s needed for proper
explanation and Tor information when con-
sidering replacement of components. Three
types have been determined:

a. Subfunctions:
- functions a device possesses simply
as a means lo establish preconditions
for a primary function. (e.g. takcoff
for fly in aircraft)
- functions a device possesses to snup-
port a provided clause (assumptions)
on behaviors lor a primary function.
(e windshield-wiper:car
ECM-Ou L)

b. Secondary functions:

With respect to the desired use of the
given device, these are extraneous
[unctions. Consider a kerosene lamp
one hundred years ago. It's
functionality then was to give light.
Today its use is often decorative (the
rustic look). When purchased for this
purpose, the functionality of producing
light is rarely used. Notice that
secondary functions could be primary
lunctions depending on the device
designer’s and, or the user’s purposes.
(OCA missions have none of these.)

¢. Other design considerations:

- goals because of sitnation context of
the device (e.g. The component Flight
of device OCAMissiot. has the function
FollowPlanHome. The main goal of
an OCA is to destroy a target. With
respect. to the device OCAMission, ex-
planation of why Followplanhome is
needed involves “‘external” considera-
tions. It is present because in the
process ol destroyving the target swe
also hope Lo protect our people and
resonrees)

~114-

i

3. Specification ol rationales for links within
behaviors,
The designer of a device specifies a function
or behavior for a purpose. Explicit
representation of this rationale assists ex-
planation. This feature is necessary in
planning where states may be achieved to
establish conditions for futnre use. Linear
sequencing of events does not always
provide a full understanding of the be-
havior. (e.g. an aircraft is loaded with the
ordinance long before the device OCA s
ready to use the ordinance)

. Availability of conditions on links in be-
haviors.
Functions can be achieved throngh more
than one behavior. Use of a specilic be-
havior may be contingent on specific con-
ditions. {c.g. an aircraft may refuel while
flying if it is at a refueling service and it
requires fuel)

To summarize, the changes to the original
specification ol the functional representation language
as defined by Moorthy and Chandrasekaran that have
been made involve the specifications of functions and
behavior links. The primitives of these objects are
now as follows:

FUNCTION: - name
e

TONMAKE:
BY:

PROVIDED:
TRIGGERED WHEN:
SubFunctionOf: ?

ExternalConsideration: ?

Behavior Links:

CONDITION:

RATIONALE:

LINKTYPE: (one of: as per. nsing fanction, by
behavior)

SPECIFICATIONS contingent on linktype choice:
identification of (knowledge’ function; behavior)

I'rplanation of Plans

Understanding of an OCA plan can now be il-
fnstrated through the explanation capabilities inherent
in its functional representation. The representation is
apable of answering qguestions about its devices. func-
wns, and behaviors, [xample answers to questions
will be given in the context of a top-level device of
OCAMission. Iixplanation responses are built using
aceess to the proper functional primitives.

-115-

I Devices

QUESTION: “Why is this device needed?”

ANSWER: Device is used because

it has the functional capabhilities to o
, and .

EXAMPLE: “The device Flight is used be-

cause it has the following [unctional

capabilities:

To achieve offensive air missions

To reach the target

To return to the homebase alter a mission™

QUESTION: “What subcomponents does
this device require?”

ANSWER: The structure of the device in
the form of a hicrarchy of components is
given (as was illnstrated earlier by the
structure of an OCAMission).

3. QUESTION: “What are the secondary Mine-

tions of this device and their roles?™
ANSWER: The device has the
functionality because it supports the
primary fincton -

ANSWER: The device has the
Mmnctionality present because it has
a design consideration for

EXAMPLE: “The device AirCraft has the
Minctionality TakeOIf becanse it supports
the primary function Fly.”

EXAMPLE: “The device OCAMission has
the functionality AMaintainResources present
because it has a design consideration for
preservation of the crew and aircraft.”

[I. Functions

. QUESTION: “Why is this function

needed?”

ANSWER: This function is needed to en-
sure that . Here. secondary functions
specify that they are needed lor
functionalities !

EXAMPLIE: The function [Protection of
ECM is necded for its capabilities to
protect the aircralt and crew. to ensure
that the Aircraflt is not threatened, and to
support conditions for the function
Destroy Target.™

"Further inquiry show= 1hai DestroyTargel has a PROVIDED
of the flight being funetional

2. QUESTION: “What does this function do?”
ANSAWER: The function s ac-
complished by behavior to ensnre
that . The behavior can be used if

It is triggered when .
ENXAMPLE: “The Tunction Offensive Air s
accomplished by belavior OffensiveAirTac-
lies to ensure that the target is destroyed.
The behavior can be used if the target is
functional, the flight is loaded, and the con-
straint FFuelSufficientForPlan is satisfied by
FlightPlan. It is triggered when the time
of departure of the OCAMission s
Current’T'ime.”

3. QUESTION: “low is this function
achieved?”
ANSWER: The behavior for the function is
shown with the use ol its “‘behavior
browser”” as previously shown for the
OCAPlan.

. QUESTION: “Where is this function used?”

ANSAVER: Functions Behaviors of the mis-
sion are inspected to see where the function
s used.
EXAMPLE: “The function fly is used in
the behavior GetThere of function ol
lowPlanToTarget and in the behavior Get-
Back of function FollowManilome.”

1. Behaviors

QUESTION: “\Why is this action performed?”

ANSWER: Either a specific rationale for the action is
obtained from the link or a default answer of the fol-
lowing state in the behavior is specified.
ENXAMPLE: “The function LoadOrdnance is used in
OffensiveAirTactics because it ensnres that the flight is
loaded which is needed for the primary goal to
destroy the target.”

Potentials and Future Research

Capabilities of the functional representation as a
structure of nnderstanding are not limited to explana-
tion of devices, functions, and behaviors. A diagnostic
compiler which takes as input a functional represen-
tation of a device, and outputs an expert system for
diagnosis of problems of the device is already imple-
mented. Il one views debugging of a plan as trouble-
shooting in an abstract device. such a diagnostic sys-
tem is useful for reasoning about why a plan will or
will not work.

Similarly, the representation may be useful for
simulation of plans. The planner establishing the use
of specific devices may wish to use this potential to
check the feasibility of his planning decisions. Neces-
sary provisions to the functional representation for
such use would include:

-116-

. the addition of a clause for behaviors which
indicates side effects
In simulating a mission plan. the system
would need to know that using behavior
Cruise (from function Fly of AirCraft) to
change the location ol the Aircralt will also
cause a depletion of the fuel in the aircraft.

2. a concept of time usage must be available
The functional representation s illustrated
with discrete state changes. Behaviors
whicn cavse these state changes may vary
in the length of time required. Some ac-
tions appear instantancons (Ordinance
delivered to target - - target destroved),
while others may have interimediate. un-
specilied states. This would also require a
more specific definition of what constitutes
a “state. Another time consideration in-
volves thie representation of behaviors which
occur in parallel or in synchronous motion.

With the above capabilities of debugging and
simulation in mind, obviously a planner lias oppor-
tunity to use the functional representation in making
its decisions. Further rescarch is needed to determrine
how much assistance the representation can donate
towards the building of a planner. Mueh ol the
planner’s domain knowledge can be derived frour this
representation which specifies liow the donmin works.
How does the planner choose what information to use
{and when) for making his decisions regarding the best
choice? What inlluences does the deeper model have
on the knowledge used by the planner?

Other areas of concern include the creation ol
plans and or adaptations to existing plans. Using a
functional representation. components of plans are

I I

specified independent. of the representation of the plan
which contains them. This makes it feasible to create
and modify plans given the goals desired and the func-
tional specifications of available components.

There are many unexplored aspects to the task
of planning. tt is apparent that the functional
representatior is a useful strueture for approaching the
problem - for an understanding of the problem solv-
ing, as a representation of knowledge in the domain,
and as an abstract knowledge structure to use in con-
struction of plans.

3. DSPL and HYPER: Two
High-Level Tools

In the companion paper, we describe a nuinber
of generic tasks aronnd which we propose that
problem solving, knowledge organization, and explana-
tion be organized. Two ol those are: class 3 design,

and hypothesis matching. In our deseription of the
Mission Planning Assistant, we indicated that a lan-
guage called DSPL was used to encode the systein as
well as to generate the explanations. DSPL was
described in some detail as part of explaining the con-
striuetion of the MPA system.

In this section we present a manual for DSPL,
and also a description for another tool that we call
HYPER. These tools along with other tools that are
under construction i our laboratory will provide a
powerful set of high level tools for tiie construction ol
a variety of knowledge-based systeins.

3.1. The DSPL Manual

David llerman and David . Brown

DSPL (Design Stractures and Plans Language) is
a language developed for mmplementing expert systems
which perform a kind of design problem solving. This
docnment covers various details of loading and inter-
acting with DSPL on a XNerox 1108 Lisp machine
(a.k.a. Dandelion). running at least the Buattress
release of LOOPS with at least the Koto release of
INTERLISP-D. It is assnmed that the reader s
familiar with both LOOPS and INTERLISP-D on a
Dandelion, as well as an exposure to the theoretical
motivations underlying the DSPL language.

3.2. Loading DSPL

DsPL may be loaded either by installing the
DSPL sysout, or by loading the DSPL system onto an
existing sysout. In order to load DSPL on an existing
cysout, both Interlisp and LOOPS must be already
loaded. A fresh version of LOOPS is recommended,
although not necessary.

To load DSPL. insert the floppy with the
INTERLISP-D DsPL files on it and type in:

LOAD({FLOPPY}LOADDSPL)

Before any Tiles are loaded, vou will be asked 2 ques-
tiems. The first question asks if the DSPL o source

Ud be loaded, and the second question asks if the
AH-CYLL expert system should be loaded. The AIR-
CY1. expert systemn is written in DSPL and is nsed to
illusrrate the use of DSPL thronghout this paper. If
vou «re exploring DSPL for the first thne, you should
answer n’ to the first question and vy to the
second When DSPL has completed loading, 1the
DSPL icon will appear on the screen,

3.2.1. The DSPL leon

The DSIPL icon facilitates access to the top level
NS, functions through the use of the monse. The
icon allows new DSPPL problemn solvers to be created

and existing problem solvers to be loaded Trom a lile
and browsed. It also allows certain modes ol opera-
tion of the DSPL interpreter to be modilied as
desired. The specilic commands available ave Dbrielly
described below.

Left Button Commands

Move - This comunand is identical to the Move com-
mand for the LOOPS icon class. It allows the icon to
be placed at an arbitrary location on the screen under
mousce control.,

Middle Button Comnmairds
Creates a new instance ol a DSPL problem

Thie mame of the new problem solver and its
specialist. s

Create
solver.

top-most prompted Tor in the

PROMPTWINDOW.
in section 3) is also created for the new problem sol-
ver. This browser organizes all access to and
modification of the problem solver as it is being
developed.

A Specialist Browser (described

Browse ™ Brings up a Specialist Browser for an exist-
ing problem solver. (See section 3.) The nawme of the
problemn solver is prompted for in the PROMPTWIN-

DOW.

Load ~ Causes an existing DSPL problem solver to
be loaded from disk or floppy. Several variants are
available in a snbmenu. depending on the type ol file
1o be loaded.

Load - This is the standard mechanisut for loading
an existing problem solver which was previonsly saved
to disk or floppy. The name of the Tlile must be
typed into the PROMPTWINDOW wlhien requested.
Al DSPL sonrce code and function definition are
loaded directly from the ftile specified. This subinenu
command is identical to the main mewu command.

Load Source - This version of hLoad reads the input
file as a tist of DSPL source code statements. The
name of the file, the problem solver, and the top-most
specialist must be entered into the PROMPTIIN-
DOW, as requested. Each statement is parsed by the
DSPL systein and added 1o the specified problem sol-
ver. The input file may have been created either by
the DSPL systemn (sce the Save source only comumand.
section 3), or by a text editor on another host com-
puter.

set modes - This conmmand controls certain aspects
of the behavior of the DSPL systemn.
options is available.

A submenu of

Controls the amount ol detail
provided in the messages from the DSPL systent when
The defanh ser-

< Set parser modes -

parsing pieces ol DSPL source code.

~117-

ting prints a brief message cach time a DSPL agent is
successfully parsed, and an error message when a
parse lails.

< Set demo fonts > Changes the display fonts in the
SRLISP-D environment to fonts which are sized

a, ~copriate for demonstrations. A submenu command

allows the fonts to be returned to the standar sizes.

Help> Provides a brief introdnction to the use of
the DSPL system as implemented in INTERLISP-]).

Right Button Commands
Move > same as the lelt button command.
Close> This command is identical to the Close com-

mard for the LOOPS icon class.
DSPL icon from the screen,

Hose removes the
Clo em tl

All of the middle button DSP], icon fnctions
can also be invoked under program control by sending
the appropriate message to the DSPL icon instance.
The pointer to the instance s maintained in the
global variable DSPL.con, which is set when the
DSPL interpreter s initially loaded. If no arguments
are supplied with the message then they will be
prompted for, just as if the DSPL icon was buttoned
with the mouse. Alternately, the necessary argunents
may be supplied with the message. The order of the
arguments anatches the order they are prompted lor
when the DSPL icon is used interactively.

3.2.2. The DSPL Browsers

Several types of browsers are used to organize
and access problem solvers built nsing DSPILL.

There are four different agent browsers in DSPL,
cach of which display a particular grouping of DSPI,
agents, as described later in this section. Al of the
agent browsers, however, share the communon ability to
create aud manipulate the varions DSPL const pcts of
the language. The following describes the operations
common to all of the agent browsers.

Left Button Connmands

The left button commands are displayed in a
pop-up menu when left monse button is pressed and
held while the cursor is pointing to an agent label in
any of the agent browsers. Again, the command
selected will act on the agent which the cursor was
pointing at when the mouse button was pressed. The
following commands are available:

PP Pretty prints the DSPI, agent definition lor the
sclected agent in the PPdefault window.

lnspeet = (this agent) Brings up an INTERLISP-1)
inspector window on the instance of the selected

agent. Two options are available,

Inspect this agent - Identical to the above cotnmand,
Inspect component - Similar o the Inspect com-

mand, but the selection is made from a subtnenu of

agents which are components of the selected agent.

Browse specialist> If the selected agent is a DSPI,
specialist, this command will bring up a Specialist
Component Browser showing the internal stracture of
the specralist. If the selected agent is not a specialist,
this command has no effect.

Browse plan > If the selected agent is a DSPL, plan,
this command will bring up a P’lan Component Brow-
ser showing the internal structure of the plan. If the
selected agent is a specialist. this command will bring
up a snbmenu of all the plans contained in the
specialist. Selecting one of (he plans in the submenn
will cause that plan to be browsed. If the selected
agent is not a plan or specialist this command has no
effect.

Middfe Button Conmands

The middle button commands are displayed in a
pop-upmenn - when the middle monse button s
pressed while the carsor is pointing to an agent label
in any of the agent browsers. Again, the commani
selected will act on the agent which the cursor was
pointing at when the monse button was pressed. The
following commands are available.

Edit > Invokes Dedit on the DSPL source for the
selected agent. The source may then be modified as
desired. When Dedit is exited. the DSPL system
parses the edited source and compiles a new agent in-
stance, which is consequently installed into the
problem solver. |If any errors are encountered by the
system during processing, the source may be re-edited,
or optionally saved for later consideration. (See the
lidit Bad Source option below.) If no changes are
made to the source code. (he parser s not invoked
and no change is made to the problem solver. Several
subnienu options are available.

Fdit this ageat - Identical to the above command.

Fdit object code - Shnilar 1o the edit command, b
invokes Dedit on the INTERLISP-D code generated by
the DSPL parser Tor the selected agent.

Edit component - Shmilar 1o the edit command. but
the selection is made from a snbmenn of agents which
are components of the selected agent.

Add undefined agent - Allows for the delinition of
new DSPL agents from a list of agents currently
referenced but anedefined in the problein solver. The

-118~

T gyt

s

command causes a submenn ol all DSPL agent types
to be presented. Selection ol an agent type canses a
menu of the nndefined agents of that type to be
presented. Selection of an agent canses Dedit to be
invoked on a source code template ol that type.
From here. the Add command works similar to Iidit.

Delete > Deletes the selected agent [rom the problem
solver.

Deletel'romBrowser -+ Removes the selected agent and
its subagents from the browser. This does not alfect
the structure of the hierarchy, only what is displaved.
This command effeets are undone by the
RemoveFromBadList command in the Title Nenn
Commands.

Title Menu Commands

The title menu commands are displaved in a
pop-up menu when either the left or middle monse
button is pressed and the cursor is pointing to the
title bar within an agent browser. The following com-
mands are available.

Recompute ~ This command is nearly identical to
the Recompute command for LOOPS class browsers.
The only difference is that the submenn itein Chan-
geFontSize is replaced with SelectlFont. This new
itemm allows a greater sclection of fonts for the brow-
ser. Recompute is called automatically when agents
are added, deleted or edited via other browser com-
mands.

saveValie - Same as saveValne in the LOOPS elass
hrowser.

Removel romBadbist - Same as Removel romBadlist
in the LOODPS class browser.

Where Is Agent? - This command allows selection of
a DSPL agent type from a submenn, followed by the
presentation of all agents currently defined for the
problem solver of the selected type. The specialist
containing that agent is then flashed in the Specialist
Browser. Additionally, any agenl browser containing
the selected agent is also flashed.

Edit > (agent) Similar to the Edit command of the
Middle Button Commands, except that the desired
agent is selected +~ia a mechanism identical to rthe
Where Is Agent? command. Several submenu options
are available.

Edit agent - ldentical 1o the above commmand.

Edit last - Invokes Dedit on the sonree ol the lasi
agent edited from the hrowser.

Fdit object code - Similar to the edit command. bt

-119-

invokes Dedit on the INTERLISP-D code generated by
the DSPL parser for the selecled agent.

Idit last object code Invokes Dedit on the
INTERLISP-1) code of the last agent edited from the
hrowser,

lidit unreferenced agent - Similar to the edit com-
mand, bnt the selection is made from a menn of
agents which are referenced by no other agent in the
problem solver.

Iidit bad sonrce - Similar to the edit command, bt
the selection if made from a mmenn of agents known to
have syntax errors in their DSl source code.

Delete - Deletes the selected agent Trom the problem
solver, The agent is selected via a mechanism identical
to the Where Is Agent? command.

Add > (agent) Allows for the definition of new DSPL
agents. This command canses a snbmenn of all DSPL
agent types to be presented. Seleetion of an agent
type canses Dedit to be invoked on a sonrce code
template of that type. From here. the Add command
works similar to Edit. The following snboptions are
available:

Add agent > Same as above.

Add undelined agent - ldentical to the Middle But-
ton Command.

Inspect - (agent) Similar to the Left Bntton Com-
mand, except the selection mechanism is again similar
to the Where Is Agent? command. Several submenn
options are available:

Inspect agent - Identical to the above command.

Inspect last agent Brings up an INTERLISP-DI in-
spector window on tle LOOPS instance of the last
agent edited Trom this browser,

Inspeet problem solver - Brings np an INTERLISP-D
inspector window on the instance of the problem sol-
ver.

Browse » (specialist) Creates a browser on the
sciected agent from a list ol all agents of a certain
type. The defanlt type is Specialist.

Browse Specialist » This command will bring up a
siubmenn of all the specialists enrrently defined in the
problem solver. Selecting one of the specialists in the
subinenu will canse that specialist to be browsed.

Browse PPlan - Sinilar to Browse Specialist, but Tor
plans.

e R e i

Browse FailureHandler > Creates a browser contain-
ing all failure handlers in the system.

3.2.3. The Specialist Browser

The Specialist Browser displays a lattice which
shows the hierarchy of design specialists of the expert
system. Bumper, for example, is a subspecialist of the
Rest specialist, while the AirCylinder speciatist is a su-
perspecialist of the Spring. Illead and Rest specialists.
Each specialist of the AIR-CYL, problem solver is
responsible for a particular portion of the air cylinder
design. As you might expect, the Spring specialist
contains knowledge about designing the spring com-
portent, while the Bumper specialist contains
knowledge abhout designing the bumper. In general,
specialists lower in the lierarchy are responsible for
progressively smaller sib-portions of the design
problem, while the specialists liigher in the hierarchy
are responsible for larger assemblies in the design
problem. In the AIR-CYL cxample, the top specialist
coordinates the design of the entire air cylinder. wiile
the tip specialists only contain knowledge about a
single component in the device.

The specialist browser has the lollowing com-
mands in addition to the standard commands,

Left Batton Commands

Set trace modes Determines wlich components of
the selected specialist will be traced during execution,
Note that tracing agents does not alter the coniputa-
tions made during execution. The agents to be traced
are selected from a submenu of agent types in the
systenr.

Title Menn Commands

Save - Saves the entire problem solver to a loadable
file. Since the both DSPL soncee and any generated
INTERLISP-D code is saved, no reparsing by the
DSPL system is required when the problem solver is
reloaded.

Run Initiates execution of the problem soiver,
Several submenn options related to rnnuing e
problein solver are available.

Ruu - ldentical to the above command.

set defanlt trace modes - Similar to the Left Bntton

Command in operation, except that the modes set by
this command affect the tracing of all agents in the
problem solver. This setting is overridden by trace
modes set in an tndividual speciafist.

“Graphie trace - This command enables a Dbrowser
oriented forin of tracing of the execution of the
problem solver. In this mode a hox is drawn around

-120-

cach agent as it is entered, and removed upon exit.
Only agents currently being browsed are affected. A
submenn of this command allows this mode to he
turned ecither on or off. as desired.

< Single step - Causes the DSPL interpreter to halt

before each agent is entered or exited. A menu pops
up at the cursor to which must be battoned to allow
exccution to continue. A submenn of this command

allows single stepping to be turned either on or off, as
desired.

3.2.4. The Specialist Component Browser

The Speciafist Component Browser displays a lat-
tice which shows the internal structure ol a DSPL
specialist down to the plan fevet. The use ol browser
is very similar to the Speciafist Browser. Kach node
in the lattice represents a DSPL agent. which mayv be
directly edited, displayved. or deleted via monse actions.

The struncture of a design specialist in DSPLL s
very constrained. and hence the lattice displayed in
the Specialist Component Browser is very regular.
The only types of DSPL agents that will be displayed
in a sSpecialist Component Browser are specialists,
selectors, plan sponsors, plans, and constraints. The
root node of the lattice will always be the specialist
whose components are being displayved. The rest of
the agents in the lattice are organized to suggest
relationships among the vartous components; selectors
arc displayved above the plan sponsors which the selec-
tor uses, plan sponsors are displaved above the plans
being sponsored, ete.

The Speciatist Component Browser has no ad-
ditional commands over the standard commands
described at the beginning of this section.

3.2.5. The Plan Component Browser

The Plan Component Browser parallels the
Specialist Coraponent Browser in both function and
use. The Plan Component Browser displavs a lattice
which shows the internal stracture ol a DSPL plan
and its components. Again, ecach node in the lattice
represents a2 DSPLoagent. which may be manipulaied
via mouse actions,

Plans are represented in DSPLL as a sequence of
actions. These actions may be thonght of as com-
mands to various types of agents to perform a specific
job. DSPL plans currently contain only three sucl
agent types; constraints, tasks. and specialists. The
root node of the fattice will afways be the plan whose
components are bheing displayed. The agents
relerenced by the plan will appear directly bencath the
plan in the hrowser. Additionally, the Plan Com-
ponent Browser displays the strncture of each task it
contains. Components of cach task are displayed

I, & &SN

bencath the task in the browser. Tasks are composed
of agents of two types, constraints and steps. Finally,
any redesign or failure handling knowledge referred to
by an agent in the plan browser will be displayed
beneath that agent.

The Plan Component Browser commands are
identical to the Specialist Component Browser com-
mands.

2.2.6. The Failure Handler Drowser

The Failure Handler Browser displays a lattice
showing relationships ameng every failure handler
agent in the problem solver. Both system and user
lailnre handlers are displayed.

Note that consistency is maintained among the
DSPL browsers throngh any editing or other modifica-
tions performed via the browser commands. Deletion
of an agent, lor example, will result in the removal of
that agent from everv browser that the agent appears
in.

3.2.7. The Message Trace Browser

The message browser does not show a lattice of
DSPL agents. Instead, as its name implies, this brow-
ser displays a trace of the messages generated during
the execution of a DsPL o problem solver. tThe
prohlemn solver is initiated when a design message s
sent to it. The problem solver forwards this message
to the topmost specialist in its design hierarchy which
in turn nses the message to activate its own plan
selector in order to find an appropriate plan. ete.
Lach of the DNPL agents are activated by and
respond with messages which can viewed via the Mes-
sage Trace Browser.

NSince the objects in the Message Trace Browser
are not DSPL agents, the commands available soime-
what different from the other hrowsers discnssed.

Left Button Commands

Most of the left button commands are identical
to the left button commands in the agent browsers,
except that the agent that is operated on is typically
the originator of the message displaved in the lattice.

l.xplain Displays an explanation window for this
portion of the problem trace. Fhis is the access
mechanism to the explanation facilities of the DsPIL,
problem trace.

PP - Same as the PP command in the agent brow-

50rs,

Inspect - (this message) Brings ap an INTERLISP-D
inspector window on the message instance buttoned.
A snbmenn allows the originating agent to be in-

~121-

spected.
Inspect this message - Same as above

Inspect agent > Inspects the agent which originated
this message.

< Browse > Bring up a browser on the originator of
this message.

< Wherels > Same as the agent browser command.
Middle Button Commands
Edit > Same as the agent browser command.

3.2.8. Running DSPL

The execution of a DSPL system proceeds in a
top-down Tashion. beginning Irom the top-most node in
the design hierarchy. At each node in the specialist
hierarchy, the knowledge encoded in the plan selectors
and plan sponsors is used to select a plan appropriate
to the carrent state of the planner. On finding such
a plan, il one exists, the specialist procecds to execnte
the plan. This overall control strategy of the DSPL
interpreter is known as plan scleetion and refinement.

2.2.9. Bwlding a DSPL FErpert System

This section gives a brief, incomplete description
of how to bnild an expert system in DSPL.

Having loaded the DSPL system from floppy. the
creation of a new DSPL problem solver is begun by
buttoning the create command of the BDSPL icon.
The name of the problent solver as well as the name
of the top-most specialist is prompted for in the
PROMPTWINDOW. Enter these items as requested.
A empty specialist browser is displayed, [rom which
the structure of the design problem solver can be en-
tered. Buttoning the Add undefined agent command
will display a menu with a single item on it; the
name of the top-most specialist which was entered
when the create command was buttoned. Bnttoning,
this item will canse Dedit 1o display a DSPL specialist
template with the name ol the specialist already en-
tered. Simply exiting [rom Dedit will canse this
agent, the top-most specialist in the design hierarchy,
to be added to the spectalist browser. The lirst agent
of the new design system has been created, Ad-
ditional agents are added by using the Add agent
command to edit DSPPL templates as needed.

The recommended procedure for bnilding a
design system with DSPL is to [first define the
specialist hierarchy. then “flesh ont” the hicrarchy
with design and rongh-design plans and associated
sponsor and selector knowledge in cach speeialist as
appropriate. This gives a fairly complete overview of
the system’s organization. The addition of task and

step knowledge is typically the inost time consnming
job in building a system due to the proportionately
larger amount of knowledge to be entered. The task
of entering this potentially large volume of data
made easier by the organized nature of the specialist

hierarchy.

is

At any point in the development of the problem
solver. the system may he executed to test its opera-
tion. Any missing agents necessary for execution will
be noted by the DSPL interpreter. Missing DSP’L
constraint and step knowledge may be “dummiecd ont”
taking advantage of facilities such as ASKUSER in ci-
ther step or constraint bodies.

3.3. HYPER: The Hypothesis Matelier Tool

Todd Johnson and John Josephson

INTRODUCTION

This paper describes HYPER a software tool
that is used to build knowledge-based agents which
perform the generic task of hypotlesis matching for

relevance. We first describe the classification tool
called CSRL which gave rise to. and greatly in-
fluences, 1YPER. Next, we deseribe hypothesis

matching as a generic task and proceed to discuss the
particulars of the tool. We then describe the types of
explanation we expect from a hypothesis matcher,
Finally we give an example of a system which uses
hypothesis matching as a subtask.

3.3.1. CSRL -- Motivation for HYPER

Over the last two years much work has been
done at OSU-LAIR using the classification system-
bnilding language called CSRIL 4, 5, 6. 7. 12.. Using

CSRL one can easily build systems which classity a
description of a sitnation into a set of nodes in a class
hierarchy. Portions of medical diagnosis can
thought of as classification where a patient’s symptoms
are classified into discase elasses.

be

Systems bnilt using
CSRE are organized as a classificatory hierarchy of
conceptual specialists in Figure 1. This figure
represents part of the hierarchy used by an antomobile
diagnosis expert systemn. called Auto-Mech. Auto-
Mech asks questions about a particular car and
teinpts to diagnese the problem by classilying the cur-
rent state of the car as a specitic malfunction class.
sach speciatist in the hierarchy represents a malfune-
tion, with subnodes representing a more specifie mal-

an

al-

function than their parent nodes. For example,
LowOctane, WaterlnFuel, and DirtlnFuel are more
detailed descriptions of the BadFuel “mallunction.”
Fach specialist in the hierarchy contains knowledge
that helps it to estabi'sh. that is, to deterinine
whether the current situation is retevant to its con-
cept. Thus Badlfuel must “look™ at the ('e}r's
symptoms and deeide if they “look like™ a tuel

-122-

problem,

In a CSRL systein problem solving proceeds top-
down using the Establish-Refine strategy developed in
MDX & First, the top node in the hierarchy at-
tempts to establish itself. If it sueceeds, then it at-
tempts Lo refine itself by establishing its subnodes.
Figure 1. Auto-Mech establishes if it determines that
something conld be wrong with the car. Once Aulo-
Mech is established, FFaelSystem will attempt to estaly-
lish itself by determining whether the problem is with
the car’s fuet system. At ran-time each specialist can

In

be taken to represent a hypothesis concerning the
relevance of its concept. For instance, in order to es-
tablish or reject itsef BadlFuel must determine the

relevance of the hypothesis: “Something is wrong with
the fuel.”™ Thus hypothesis matching for relevance be-
comes an important subtask of classification.

So far vothing has been said about the represen-

tation of the kunowledge used by cach conceptuat
specialist. This knowledge must be used to map a
partial situation description into evidence for or
against the specialist’s hypothesis. That is. the

knowledge is used to determine the relevance of the
specialist’s concept to the current situation. CSRI, en-

codes this information in a mechanism called a
Knowledge Group. Know' Groups work by map-

ping situation features into ..xed range of confidence
values. Kach specialist contains a Knowledge Group
which is invoked whenever the specialist is asked to
establish itself. If the conlidence value of the
specialist’s Knowtedge Group is above a certain
threshold, the specialist is considered to be established
otherwise it is laken 1o be rejected. Thus Knowledge
Gronps do the work of matching for relevance

After building several systems we began to real
ize the usefulness of this task in non-classification Sys-
tems. In fact, we decided that Fypothesis matching
for relevance should be a separate generic task. Work
then began to separate CSRL into two soparate tools:

CSRL for classification and HYPER for Iy pothesis
Matching.
Auto-Mech
|
FuelSystem
ZE L
4 I \
BadFuel Delivery Mixture
/1N 7AN AN
// I \
/ | \
/ I \
LowOctane DirtInFuel WaterInFuel

Figure 19: Auto-Mech's conceptuat specialist

hierarchy

L o

3.9.2. Hypothesis Matehing as a Cenerie Task

A Generic Task is characterized by a task
specification, the specific kinds and organization ol
domain knowledge, and a family of control regimes ap-
propriate to the task ‘9. This information is vital to
the production of a good knowledge level tool since
withont it we can produce little more than an adhoc
and narrowly useful system. The generie task formunla-
tion for hypothesis matching is as lollows:

Task Specification
Given a concept and a set of situa-
tion leatures, determine the degree to
which the concept matches the sitna-
tion.

Organization of Knowledge

A hierarchical organization of
evidence abstractions. The top node
computes the degree to which the
concept matches the situation. Sub-
nodes compute evidence components
for their parent nodes. For example,
the BadFuel hypothesis matcher in
Figure 2 has two subnodes: Perfor-
manceRelated and FillupRelated.
These subnodes respectively rate the
cvidence for DPerformance problems
and Fillup problems indicative of bad
fuel. A similar task is performed by
Saimuel’s signa ure tables.

Kinds of Knowledge
What the evidence components are,
how to determine their strengths, and
how to combine evidence.

Control Control is initiated in a top-down
fashion. The top node can call on
any of its subnodes to ather
evidence. Fvidence abstraction data

flows bottom-up.

BadFuel

%z N

/ \
Performance FillupRelated
Related

Figure 20: Ilierarchical structure ol the Badl'nel
Ny pothesis matcher

Detatls of HYPER
As a tool TYPER provides the following facilities
to the system builder:

1. A browser for creating, displaying, and edir-
ing the evidence abstraction hicrarchy for a
hypothes’s matcher.

2. A language for representing the knowledge

which maps [leatures to conlidence values,
This language represents the internal strie-
ture of cach node in a hypothesis matcher’s
hierarchy.

3. Explanation Facilities (Discussed in the next
section.)

The hypothesis matchers produced using NYPER
are independent knowledge-based agents. Invocation is
accomplished by sending 2 M-otch message to a par-
ticular matcher. Whea a hyp hesis matcher receives
a Match message, it evaluates wue features and returns
a confidence valne. A confidence value is a symbolic
measure of relevance. The default range provided by
HYPER is: HighlyUnlikely, Unlikely., Unknown. Likely.
and IlighlyLikely. The range ol confidence values can
be supplied by the system designer to suit whatever
purpose is needed.

A tabular representation of the Badluel
liypothests matcher is shown in Figure 3. The column
headings represent the features to be matched against
ecach row of the table. The entries in cach row are
tests to be perfortued upon the corresponding features.
Question marks represent “don’t care” condilions.
For Badluel the leatures are actually the result of the
evidence components FillupRelated and PerformanceRe-
lated. Each row in the table represents a set ol tests
to apply to the features followed by the confidence
value to be returned il the row matches. The con-
lidence value can either be one of the symbolic values
or a hypothesis matcher which can be used to comn-
pute a value. For example, if both FillnpRelated and
PerformancelRelated returned Highlylikely, then the
first row in the table wouid match. In this case,
BadFuel would return HighlyLikely. The rows are
evaluated from top to bottom, left to right. until a
row matches. The conlidence valne of the matching
row is then returned. A certain amount of optimiza-
tion is done duriug the evaluation ol the table to
avoid evaluating unnecessary components.

BadFuel:
PerformanceRelated FillupRelated
(EQ HighlyLikely) {GE Unknown) => HighlyLikely
(EQ Likely) (GE Unknown) => Likely
? (LT Unknown} => HighlyUnlikel
2 &) => PerformanceRelated

Figure 21: Top node of the Badl'nel matcher

3.3.3. lrplanation in HYPER

Since hypothesis matchers are viewed as inde-
pendent agents, it makes sense to directly ask a
matcher about its bhehavior rather than an additional
“module” whose purpose is to construct an explana-
tion. Also, bhecause hypothesis matching is a generic
task. knowledge and control are represented at a level

~123-

which facilitates explanation. FFor these reasons,
hypathesis matchers designed using HHYPER come
complete with the ability to handle the following ex-
planatory questions.

“Why Value? Asks for an explanation of whv a
certain value was returned. This re-
quires knowledge of run-time be-
havior.

Justify Knowledge
Questions of the formm “Whv do vou
say knocking and pinging indicate a
high likelihood for bad luel?” Sach
qQuestions require justification of the
knowledge being used by the agent.

Why not valie? This asks for an explanation of why
a certain value was not returned.
Such questions require knowledge of
the control strategy. as well as. the
run-time behavior, Other possible
questions of this form include: Why
not higher 'lower, and What do |
need to do to make the value X7

»

“Why value” questions can easily be answered
by simply stating why rows failed or sncceeded. An
example of this is given in the next section. Because
Hypothesis Matchers represent compiled knowledge,
Jjustification requires the use of pre-canned strings.
HYPER provides a facility for attaching appropriate
explanatory strings to cach row of the table. Iix-
planations given by HYPKER can appear in either a
machine readable form or a human readable form.
thus explanations can be nsed by both other agents
and the human user ol the syster

3.3.4. Using HYPER from CSRL -- An Erample

The following example shows how a hypothesis
matcher can be used from a clessification system. We
will use the portion of Auto-Mech shown in Figure f.
To begin let ns assume that BadFuel has received an
establish-reline message. The top node of BadFuel’s
hypothesis matcher is shown in Figure 3. The two
subnodes. PerformanceRelated and FillupRelated, are
shown in Figure 4. The function AskYNU? asks the
user a question expecting a reply of yes, ro. or un-
known, and returns T, F, or U.

When the BadFuel spectalist receives an Estal-
lish nessage it must attempt to establish or reject it-
sell. To do this it sends a Match message to its
hypothesis matcher. Referring te Figure 3, the
matcher lirst attempts to evaluate (1EQ HighlyLikely)
with respect to PerformanceRetated. In order to per-
lorm this comparison, PerformanceRelated must be
evaluated. The matcher then calls PerformanceRelated
causing the sequence ol events shown in Figure 5.

~-124-

Since in this case Ihighly Likely is returned. the com-
parison succeeds and the mnatcher tries to determine
whether FillupRelated is greater-than or squal to Un-
known (GE Unknown); continuing with eve, ating the
first rov o Badlfnel s <thown in Pigare 20 Thus
Fillupitelated must be evaluated. Figure & shows \he
sequence of events resulting in o conlidence valus of
Highly Unlikely. Since HighlyUrliely is less than Us-
known, (GE Unknown) fails thus causing the lirs: 1w
ol BadFuel to lail. The matcher then 1asves to b
second row and immediately fails on (EQ Likely) si
PerformanceRelated roturned HighlyLikely., Newt the
third row is tried. The first test is a “don’t care
condition so evalnation proceeds to the second test i
the row (LT Unknown). Since FillupRelated .eturned
Highly Unlikely the test clearly succeeds, meaning the
entire row has matched. The matcher then returns
the associated conlidence value, HighlyUrlikely, to the
BadFuel Specialist.

Now that the BadFuel specialist has a confide
value it must decide whether to reject or establ
The establish threshold is set at Likely so with a ¢
fidence value of HighlyUnlikely BadFuel fismly roje
it »If and does not altempt to establish any of its s
nodes.

PerformanceRelated:
Ql: AskYNU? "'Is the car slow to respond‘"‘
(0] AskYNU? "'Does the car start hard‘'
Q3: (And AskYNU? ''Do you hear knocking or pinging sounds' '

Ask¢YNU? ''Does the problem occur while ac.elerating

Q1L Q2 Q3
(EQ T) E ? => HighlyUnl.kely
? (EQ T) ? => HighlyUnlikely
? ? (EQ T) => HighlyLikely
? ? ? => Unknown
FillupRelated:

Ql: AskYNU? " "Have you tried a higher grade of gas''
Q2: AskYNU? ''Did the problem start after the last fillup''
Q3: AskYNU? °'Has the problem gotten worse since the last

£illup®"
ol Q2 Q3
(EQ T) & 2 => HighlyUnlikely
? {EQ T} ? => HighlyLikely
? {EQ F) (EQ T) => Likely
2 2 ? => HighlyUnlikely
Figure 22: Tabular representation of BadFuel's

subnodes

(BadFuel sends a Match message to PerformanceRelated)
Is the car slow to respond? no

Does the car start hard? no

Do you hear knocking or pinging sounds? yes

Does the problem occur while accelerating? yes
(PerformancePalated returns HighlyLikely)

Figure 23: Run-time snapshot of PerlormanceRelated

P Y

P 4

(3adfuel sends a Match message to FillupReletcd)
Have you tried a higher grade of gas? yes
(FillupRelated returns HighlyUnlikely)

Figure 24: Run-time snapshot of FillupRelated

Suppose now that the persen running Auto-Mecl
wishes to know why the Badluel specialist rejected it-
self. Withont appeal to its hypothesis matcher, the
specialist can only answer the question by saying that
HighlyUnlikely was less than the establish threshold.
lowever, since HIYPER provides explanation facilities.
Badl'uel can send the message “Why IHighly Unlikely?™
to its matcher and give the user a better explanation,
such as that shown in Figure 7. A general explanation
browser may then he used to ask further questions
about the initial explanation.

BadFuel hypothesis matcher resulted in Hig

PerformanceRelated returned Highly
FillupRelated returned HighlyUnlik

(GE FillupRelated Unknown) is fals
(EQ PerformanceRelated Likely) is
(LT FillupRelated Unknown) is true

HighlyUnlikely is below the establish thre
BadFuel rejected.

Figure 25: Explanation about why BadFuel rejecte
CONCLUSION

Because hypothesis matehing appears to be a
very uscful generic task we feel that a robust version
of HYPER is needed for our set of high-level tools.
Siuch a version will greatly speed the development of
other useful tools and systems. The first implemen-
tation of HYPER has just been completed and is un-
dergoing testing. Part of this testing involves the
rewriting of CSRIL to allow the use of hypothesis
matchers as independent agents separate from the
CSRL lareaage. This is beginning to bring up issues
about agent integration, and about the designer inter-
face needed to switch between several cooperating high
level tools. Thus, HYPER is forcing us to look at
issues vital to the production of a useful set of
knowledg: level tools.

Acknowledgments

We gratefully acknowledge the cooperation of the
Mitre Corporation in providing us with the code and
knowledge base for the KNOBS system, and for taking
the time to host a visit by somie of ns to view the
systern and ask probing questions.

-125-

REFERENCES

Brown, D.C. / Chandrasekaran, B.

Expert Systems for a Class of Mechanical
Design Activity.

1984

Paper for IFIP? WG5.2 Working Conference.
Sept. 84,

Brown, D.C.

Expert Systems for Design PProblem-Solving
Using Design Refinervent with Plan Selection
and Redesign.

1984

Dissertation.

D. C. Brown and B. Chandrasckaran.

IKnowledge and Control for Design IProblem
solving.

January 10, 1985,

Technical Report, Laboratory of Artificial Intel-
ligence Research. Departient of Computer
and Information Science. The Ohio State
University.

Bylander, T. Mittal. 8./ Chandrasckaran, B.
CSRL: A Language for Expert Systems for
Diagnosis.

I Proe. of the International Joinl Conference
on Artificial Intelligence, pages 218-221,
August, 1983,

An extended article appears in the Special Issue
of Intnl Jrnl. of Computers and
Mathematics on "practical artificial intel-
ligence systems”™, and another article on
CSRL. with emphasis on uncertainty han-
dling will soon appear in Af Magazine.

T. Bylander and J. W. Smith, M.D.

Using CSRL for Medical Diagnosis.

In Proceedings of MEDCOMP'83. LEE Comn-
puter Society, 1983,

T. Bylander.

Syntax and Semantics of CSRL in INTFRLISDP-
D.

April 9. 1985

Technical report, Laboratory of Artificial Intel-
ligence Rescarch. Departinent of Computer
and Information Science, The Ohio State
University.

T. Bylander.

Using CSRL in INTERLISP-D.

April 9. 1985

Technical report. Labhoratory of Artilicial Intel-
ligence Rescarch, Departiment of Cornputer
and Information Science. The Ohio State
University.

el

P . A

A e

8]

10

11

Chandrasekaran, 1.

Decomposition of Domain Knowledge into
Knowledge Sources: The MDX Approach.
Proe. 4th Nat. Conf. Cunadian Society for Com-
putational Studies of Intelligence :1-8, May,

1982,

An expanded version appears as " Towards a
Taxonomy of P’roblem Solving Types,” in the
Winter 1983 issuc of AT Magazine.

Chandrasekaran, 1.

Generic Tasks in Expert System Design and
Their Role in Explanation of ’roblem Solv-
ing.

May 1985

Invited paper presented at the National
Academy of Sciences, Office of Naval
Research Workshop on Distributed Problem
Solving, May 16-17, 1985, Washington, D.C.,
appears in the Proc. of the Workshop to be
published by the National Academy of
Sciences.

Engelman, C. Millen, J.K. Scarl, F.A.

KNOBS: An Integrated Al Interactive Planning
Architecture.

1984

Sembugamoorthy, V. Chandrasekaran. B

Functional Representation of Devices and Com-
pilation of Diagnostic Problemn Solving Svs-
tems.

August, 1981

To appear in Coguitive Seience.

M. C. Tanner and T. Bylander.

Application of the CSRL Language to the
Design of Expert Diagnosis Systems: The
Auto-Mech Experience.

In Proceedings of the Joint Services Workshop
on Artificial Intelligence in Maintenance,
pages 131-152. Department of Defense, 1984,

-126-

GENERIC TASKS IN EXPERT SYSTEM DESIGN AND
THEIR ROLE IN EXPLANATION OF PROBLEM SOLVING!

B. Chandrasekaran
Laboratory lor Artificial Intelligence Research
Department of Computer and Information Science
The Ohio State University
Columbus, Ohio 43210

ABSTRACT

We outline the elements of a framework for ex-
pert system design that we have been developing in
our research group over the last several years. This
framework is based on the claim that complex
knowledge-based reasoning tasks can often be decom-
posed into a number of generic tasks each with as-
sociated types of knowledge and family of control
reqimes. At different stages in reasoning, the system
will typically engage in one of the tasks, depending
upon the knowledge available and the state of problem
solving. The advantages of this point of view are
manifold: (i) Since typically the generic tasks are at
a much higher level of abstraction than those as-
sociated with first generation expert system langnages,
knowledge can be represented directly at the level ap-
proprive to the information processing task. (it)
Since each of the generic tasks has an appropriate
control regime, problem solving behavior may be more
perspicuously encoded. (ili}) Decause of a richer
generic vocabulary in terms of which knowledge and
control are represented, explanation of problem solving
behavior is also more perspicuous. We hriefly describe
six generic tasks that we have found very useful in
our work on knowledge-based reasoning: classification,
state abstraction, knowledge-directed retrieval, object
synthesis by plan selection and refinemnent, hypothesis
matching, and assembly of compound hvpotheses for
abduction.

1. Information Processing Tasks in
Knowledge-Based Reasoning

Intuitively one thinks that there are types of
knowledge and control regimes that are common to
diagnostic reasoning in different domains, and similarly
there would be common structures and regimes for say
design as an activity. but that the struetures and con-
trol regimes for diagnostic reasoning and design
problem solving will be gencrally speaking different.
However, when one looks at the formalisins (or equiv-
alently the langnages) that are commonly used in ex-
pert systemn design. the knowledge representation and
control regimes do not typically capture these distine-
tions For cxample. in diagnostic reasoning. one
might generically wish to speak in terms of malfunc-

tion hierarchies, rule-ont strategies, setting up a dif-
ferential, etc., while for design, the generic terms
might be device /component hierarchies, design plans.
ordering of subtasks, etc. [Ideally one would like to
represent diagnostic knowledge in a domain by using
the vocabulary? that is appropriate for the task. DBut
typically the langnages in which the expert systems
have been implemented have sought unilormity across
tasks, and thus have had to lose perspicuity of
represencation at the task level. The computational
universality of representation langnages such as
Emycin or OPS5 -- ic.. the fact that any computer
program can be written in these languages, more or
less naturally -- often confuses the issue, since after
the system is finally built it is often unclear which
portions of the system represent domain expertise and
which are programmming devices. In addition. the con-
trol regimes that these languages come with {in rule-
based systems they are typically variants ol
hypothesize and mateh, such as forward or backward
chaining) do not explicitly indicate the real control
structure of the systein at the task level. E.g., the
fact that RI 12 performs a lincar sequence of sub-

tasks -- a very special and atypically sitnple version of
design problem solving -- is not explicitly encoded: the
systemn designer so to speak ‘“‘encrypted” this control
i the pattern-matching control of OPS5.

These comments need not be restricted to the
rile-based framework. One could represent knowledge
as sentences in a logical calenlus and use logical in-
ference mechanisms to solve problems. Or one could

oy

"Research supported by Defense Advanced Research Projects
Agency, RADC Contract F30602 35 0010, and Air Force
Office of Scientific Researchh grant #2 0255, This paper was 4
originally presented at the Office of Naval Reseavch, National
Academy of Sciences Symposinm on Distributed Artificial Inrel
ligence, May 1985,

I alzo nse the term primitives of the longuage in Vhe vest of
e paper to refer to the vocabulary

S

represent it as a frame hierarchy with procedural at-
tachments in the slots. (It is a relatively straightfor-
ward thing. e.g. to rewrite MYCIN [i4] in this man-
ner, see [16.) tn the former, the control issues would
deal with choice ol predicates and clauses, and in the
latter, they will be at the level of which links to pur-
sue for inheritance, e.g. None of these have any
natural connection with the control issues natural to
the tosk.

Actually the sitnation is even worse: because ol
the relatively low level of absiraction relative to the
information processing task. there are control issues
that are artifacts of the representation, but often in
our opinion misinterpreted as issues at the
“knowledge-level.” K.g., rule-based approaches often
concern themselves with conflict resolution strategies.
If the knowledge were viewed at the level of abstrac-
tion appropriate to the task. often there will be or-
ganizational clements which would only bring up a
small, highly relevant pieces of knowledge or rules to
be considered without any conflict resolution strategies
needed. Of course, these organizational constructs
could be “programmed™ in the rule language, but be-
cause of the status assigned to the rules and and their
control as knowledge-level phenomena (as opposed to
the implementation level phenomena, whicl they often
are), knowledge acquisition is often directed towards
strategies for conflict resolution., whereas the really
operational expert knowledge is at the organizational
level.

This level problem with control structures is mir-
rored in the relative poverty of knowledge-level primi-
tives for representation E.g.. the epistemology of rule
systems is exhausted by data patterns (antecedents or
subgoals) and partial decisions (consequents or goals),
that of logic is similarly by predicates, functions, and
related primitives. Il one wishes to talk about types
of goals or predicates in such a way that control be-
havior can be indexed over this typology, such a be-
havior can often be programmed in these systems, but
there is no explicit encoding ol them that is possible.
.g.. Clancey [8 found in his work using Mycin to
teach students tha' for explanation he needed to at-
tach to cach rule 12 the Mycin knowledge base encod-
ings of types of goals so that explanation of its be-
havior can Dbe couched in terms of this encoding.
rather than only in terins of “Becanse < .. was a
subgoal of < .. -

The above is not to argue that rule represen-
tations and backward or forward chaining controls are
not ‘“natural” for some situations. If all that a
problem solver has in the form of knowledge in a
domain is a large collection of unorganized associative
patterns, then data-directed or goal-directed associa-
tions may be the best that the agent can do. DBut
that is precisely the occasion lor weak methods such
as hypothesize and match (of which the above associa-

tions are variants), and, typically, successlul solutions
cannot be expected in complex problems without com-
binatorial searches. Typically, however. expertise con-
sists of mnch more organized collections of know ledge.
with control behavior indexed by the kinds of or-
ganizations and forms of knowledge in then.

To summarize the argument so lar: There is a
need for understanding the generic information process-
ing tasks that underlie knowledge-based reasoning.
Knowledge ought to be directly encoded at the ap-
propriate level Dby using primitives that naturally
describe the domain knowledge for a given generic
task. Problem solving behavior for the task ought 1o
be controlled by regimes that are appropriate for the
task. I done correctly, this would simultancously
facilitate knowledge representation, problem solving,
and explanation.

At this point it will be useful to make further
distinctions. Typically many tasks that we intuitively
think of as generic tasks are really compler generic
tasks. 1. e., they are further decomposable into com-
ponents which are more elementary in the sense that
each of them has a homogeneous control regime and
knowledge strncture. For example. what one thinks of
the diagnostic task, while it may be generic in the
sense that the task may be quite similar across
domains, it is not a nnitary tass strncture. Diagnosis
may involve classificatory reasoning at a certain point.
reasoning from one datum to another datum at
another point. and abductive assembly ol multiple
diagnostic hvpotheses at another point. Classilication
has a different Torm of knowledge and control behavior
from those for data-to-data reasoning. which in turn is
dissimilar in these dimensions from assembling
hypotheses.

Thesis: Given a complex real world knowledge-
based reasoning task, and a set of generic tasks lor
each of which we have a representation language and
a control regime to perform the task, if we can per-
form an epistemic analysis of the domain such that (i)
the complex task can be decomposed in terms of the
generic tasks, (ii) paths and conditions for information
transfer from the agents that perform these generic
tasks to the others which need the information can
also be established, and (iii) knowledge of the domain
is available to encode into the knowledge structures
for the generic tasks; then that complex task can be
“knowledge-engineered™ successfully and perspicuously.
Notice that an ability to decompose complex tasks in
this way brings with it the ability to characterize
them in a useful way. We can see. e.g.. that the
reason that we are not yet able to handle difficult
design problem solving is that we are often unable to
find an architectnre of generic tasks in terms of which
the complex task can be constrneted.

e

1.___.:? p gy

I the rest of this paper, we will briefly describe
some ol the elementary generic tasks that we have

had occasion to identify and use in the construction ol

expert systems. While we have been adding to onr
repertoire of clementary generie tasks over the years,
the basic clements of the framework have heen in
place for a number of years. Our work on MDY

450, eg adentified classification, knowtedge-directed
inforination passing, and hypothesis matching as threc
generic tasks, and showed how certain classes of diag-
nostic problems can be implemented as an integration
of these generic tasks. (We have earlier referred to
them as problem solving types, but in (6. we began 1o
call them generic tasks.) Over the years. we have
identilied several others: object synthesis by plan setee-
tion und refinement | state abstraction 7. and
abductive assembly of hypotheses 11, There is no
claim that these are exhaustive: in fact. our ongoing
rescarch objective is to identify other useful generic
tasks and understand their knowledge representation
and control ol problen: solving.

2. Some Generic Tasks

2.1 Characterization of Generic Tasks

Fach generic task is characterized by the follow-

1. A task specification in the form of generic
types of input and ontput information.

2. Specific forms ir which the basic pieces of
domain knowledge is needed for the task.
and specilic organizations of this knowledge
particular to the tesk.

3. A family of control regimes that are ap-
propriate for the task.

From the nature of the control regime, we can deter-
mine the types of strategic goals the problem solving
for the task has. These goal types will play a role in
providing explanations ol its problem solving beliavior.

When a complex task is decomposed into a sot
ol generic tasks, it will in general be necessary to
provide for communication hetween the different struc-
tures specializing in these different types of problem
solving. Note that a decomposition does not imply
that there is a predetermined temporal ordering on
when the generic tasks are perlormed: typically the
agent for a generic task is invoked when another agent
needs information that the former can provide. Fur-
ther there is no implication that there is a unigue
decomposition. Depending upon the availability of
particutar pieces ol knowtledge, different architectnres
of generic tasks will typically be possible for a given
complex task.

~129~

We will now proceed to a brief characterization
ol these generic tasks.

e [Chussification

Task specilication: Classify a (possibly
complex) description ol a situation as an
element, as specific as possible, in a
classification hierarehy. [l.g, classify a
medical case description as an element of a
disease hierarchy.

Forms of knowledge: - partial sitnation
description > --- > evidence beliel abont con-
firmation or discontirination of classificatory
hypotheses. Iig., in medicine, a piece of
classificatory knowledge may be: certain
pattern in X-ray & bilirnbin in blood ---
high evidence for cholestasis.

Organization of knowledge: The above clas-
sificainry knowledge distributed anong con-
cepts 11 a classilicatory concept hierarchy.
Each conceptual “specialist™ ideally contains
knowledge that helps it determine whether
it (the concept it stands Tlor) can be
estabhshed or rejected. The form of the
knowledge as stated above is the form
needed for this decision.

Control Regiime: (Simplified forim) Problemn
solving is top down. Fach concept when
called tries to establish itself. M it suc-
ceeds, it lists the reasons lor its snccess,
and calls its snccessors, which repeat the
process, If a specialist fails in its attempt
to establish itself, it rejects itself, and all
its successors are also automaticatly
rejected. This control strategy can be
called Fstablish-Refine, and results in a
specific classification of the case. {The ac-
count is a simplified one. The reader is
referred to '5 for details and elaborations.)

Goal types: E.g., Establish concept -,
Refine (subclassify) < concept >

Example Use: Medical diagnosis can often
be viewed as a classification problem. In
plauning. it is often nseful to classify a
situation as of a certain type, which then
might suggest an appropriate plan.

Il. State abstraction

Task Specilication: Given a change in
some state of a system. provide an account
of the changes that can he expected in the
functions of the system. {Useful lor reason-
ing about conseqnences ol actions on com-
plex systeimns.)

ongn.

Form of knowledge: change in state of value is known, then uses inheritance

subsystem - - . cliange in functionality relationships to determine if the value can
of subsystem change w state of the im- be obtaiued by inference from the values of
mediately larger system - appropriate attributes of its parent or

children, then uses auy demmons that may
he attached to the slot to query other con-
cepts in other parts of the hierarchy for
values of their attributes. If none of it
succeeds and if it is appropriate the delault
value is prodiced as the valne.

Organization of Knowledge: Knowledge of
the above forni distributed in conceptual
specialists corresponding to
system /snbsysteins, These conceptual
specialists are conunected in a way that mir-
rors the way the system subsystem is pnt
together. This is basically a hierarchical information-
passing control regime, with demons provid-

Control regime: Basically botton v, but . " 0 ; .
& aty boup. ing an override of the hierarchical regime.

1 follows the architecture of the
} system 'subsystem relationship. The Goal Types: “g.. lonherit value of
changes in states are followed through. in- attribute -, Ask for concept, attribute
terpreted as changes in functionalities of value) to inler - attribute - by - relation -
subsysterns, until the changes in the
functionalities at the level of abstraction Example Use: Knowledge-based data
desired are obtained. retricval tasks in wide variety ol situations.
Inferring @ medical daturm from another,
3 Goal Types: k.g.. Abstract consequent when the latter is available but the former
state. Deduce change in functionality. is needed for diagnostic reasoning. E.g..
diagnostic reasoning needs information

Exampte Use: Answering guestions of the
form: **What will happen if this wvalve is
closed. while the turbine is running?”
Generic usefulness is in consequence finding.

about whether the patient has been exposed
to “fanesthetics,” because it has diagnostic
knowledge that relates a diagnostic conclu-
sion to this datuni, but the paticut data do
not include any reference to ‘‘anesthetics,”

o'III, Knowledge-Directed Information but mentions “‘major surgery a fow weeks
Passing hefore.” Assuining that the knowledge base
Task specification: Givenl atitribites of for the data retrieval system encodes the !

picce ol knowledge that relates “surgery”
and “possible exposure to anesthetics.” per-

some datum, it is desired to obtain at-
tributes of some other datum. conceptually

related to the original datum. forming the reasoning that connects the two

data items is an example of knowledge-

L

Forms of Knowledge: 1. Default valne ol hased data retrieval.

attribnte » of - datum is value » i

attribnte ~vof - datum ~wis inherited {rom o [V, Object Synthesis by Plan Selection

attribnte of parent of < datum - il and Refinement p
attribute - of datunt - is related as . o . ' .

relation .- to attribute - of children of Fask Specilication: Design an object satis-

datum i attribute> of <datum= is fying specifications (object in an abstract

related as - relation - to attribute ol sense: they can be plans. programs. etc.).

< (& Al g . .

gongapt Forins of knowledge: Object structure is

Organization of Kuowledge: The concepts known at some level of abstraction. and
are organized as a frame hierarchy. Default pre-compiled plans are avaitable which can J
for slots corresponds to form i. above, the make choices of components, and have lists

[S-A or PART-OF links Dbetween parents of concepts to call upon for refining the

and children determine the types ol in- design at that level of abstraction.

heritance in form ii. and iii. Procedural at-
tachments or “demons™ are used to encode
form iv. Each frame is a specialist in
knowledge-directed ¢ata inference for the
concept,

Organization of Knowledge: Concepts cor-
responding to “‘components’ organized in a
hierarchy mirroring the object structure,
Each concept has plans which can he used
to make commitments for sotne
Control regime: A concept, when asked for “dimensions™ of the component.

the value of one of its attributes first 1
checks the data base to sec if the actual

-130-

S . A

Control Regime: Top down in general.
The following is done recnrsively nntil a
complete design is worked ont: A specialist
corresponding 1o a component of the ohject
i called. the specialist clhooses a plan Dhased
on some specification, instantiates and ex-
eentes some part of the plan which suggests
irther specialists to call 10 set other details
of the design. Plan Tailures are passed np
nntil appropriate changes are made by
higher level specialists. so that specialists
who failed may succeed on a retry.

Goal Types: E.g.. Choose plan, execute

plan elemnent -, refine plan - redesign
(modify) - partial design to respond to
failure of - subplan -5, select alternative

plan, etc.

Example: Expert design tasks, synthesis of
everyday plans of action.

o V' Hypothesis Vatebing

Task Specification: Given a hypothesis and
a set of data that describe the problem
state. decide if the hyporthesis matehes the
sitnation.

Form and Organization of Knowledge:
(One form) A hierarchical representation of
evidence abstractions. top node is the de-
gree of matching of the hypothesis to the

data. and nodes at a given level are com-
ponents ol evidence for the evidence
ahstraction at the higher fevel. . g, say
the hypothesis of goodness of a position in
a game is the one to be matched against
the data describing the board confignration.
Goodness may be defined at the top level
in terms of two ahstractions: defensibality
and offensive opportunihes. Form of
knowledge then far this imust be snch as to
enable mapping degrees of befief in ecach of
these evidence abstractions to degree of
belief in the goodness abstraction. The
defensibility abstraction. c.g., may in turn
he delined cither by direct data or inter-
mediate abstractions Samuel’s signature
tables can be thonght of as performing this
task.

Goal LV pes: Ivaluate evidence for
hypothesis. evaluate evidence for contribut-
ing abstraction

o Vi bductive Assembly of Frplanatory

Hypotheses

Task Specification: Given a sitnation
(deseribed by a set ol data itemns) to he ex-

plained by the best explanatory acconnt.
and given a nmmber of hypotheses, cach as
sociated with a degree of belief and each of
which offers to explain a portion ol the
data (possibly overlapping with data to be
accounted Jor by other hypotheses). con
struct the best composite hypothesis ont ol
the given hypotheses.

Forms of Knowledge: cansal or other rela
tions (snch as incompatibility. suggestive-
ness, special case of) between the
hypotheses, relative significance ol data
items.

Organization of Knowledge: For relatively
stall number of hypotheses, this is a global
process. For large numbers, some forin of
recursive assembly will be called for, imply-
ing knowledge organized at dilferent levels
of abstraction of the assembled hypotheses.

Control Regime: (Simplified version: see

FE for o Tuller disenssion.) Assembly and
criticism alternate. In assembly. a means-
ends regime, driven by the goal ol explain-
ing all the significant lindings, is in control.
At each stage, the most signilicant datm
to be explained results in the best
hyvpothesis that offers to explain it heing
added 1< the composite hypothesis so far
assembled. After cach assembly, the eritic
removes explanatorily superflnons parts.
This loops until all the data are explained.
or no hypotheses are left.

Goal Types: e.g. account-for - datum s
check-snperlluonsness-ol - hypothesis

Example Use: In medical diagnosis. the
classilication generie task may produce a set
of classifications. cach of which acconnts for
some of the data. The best account needs
to be put together. The Internist system

4 oand the Dendral system 2 perform
this type of task as part of their problem
solving.

3. Encoding Knowledge at the Level of the
Task

For ecach generic task, the form and organization
of the knowledge directly suggest the appropriate
representation in terms of which domain knowledge for
that task can be encoded. Sinee there is a control
regime associated with ecach task. the problemn solver
can he impfieit in the representation langnage. le., as
soon as Knowledge is represented in the shell cor-
responding to a given generic task, a problem solver
which uses the control regime on the knowledge
representation created for domain can be created hy

-131-

the interpreter. FPhis is similar to what representation
systems sneh as EMYCIN do, bt note that we are
deliberately trading generality at a lower level to
specificity, clarity, richness of ontology and control at
a higher level.

We have designed and implemented represen-
tation languages for a simpler versions of two of these
generic tasks: classification [3), and object synthesis by
selection and refinement 1. We plan to implement a
famiily of sneh representation languages.

4. Generie Tasks and Explanation of Probleimn
Solving

We have developed a frainework for providing,
explanations for the decisions recommenderd by expert
systemns, and this is the basis of a four-year research
effort spensored by the Delense Advanced Research
Projects Agency. For the purpose of this discussion,
we can say that understanding the problem solving he-
havior of an expert problem solving system reqnires
inspeeting three structures, each corresponding to a
type of explanation:

Type I trace of run-time. data-dependent
problemn solving hehavior., viz.. which pieces of
knowledge were used and how. k.g. Why do von say
that the patient has cholestasis? \ns: Because the
patient has high bilirubin in blood. and Janndice and
Xrays suggest an ohstruction in the biliary «dnct. This
is typically done by checking which data items in the
carrent case matched the picce of knowledge rhat en-
abled the system to make a partienlar decision.

Type 2 understanding how a piece of
knowledge relates to the domain. how it can he Jus-
tifie. E.g.. Why do you say that high bilirubin in
blood suggests cholestasis? Here whatever answer is
given. no data abont the current case are being used.
The system is reatly being called upon to Justily its
knowledge.

Type 3. understanding the control strategy nsed
by the programi in a particular situation. k.g. Why
didn’t vou consider portal hypertension in this case?
Ans: Becanse | had ruled out circulatory discases. por-
tal hypertension is a special case of circulatory dis-
cases, and my strategy is not to consider special cuses
when I have ruled out the general case.

The explicit encoding of the generic aspects of
knowledge and control hehavior for cach generic task
can be directly uwsed to produce explanations of T'ype

2

3. We will give some examples

Classification

Q: Why do you wish to know if the patient
had been exposed to anesthetics?

-132-

A: Because T was trying to establish liepatitis
Q : Why?

At Becanse tohad already established that the
patient had liver disease. Now | am trying to sub-
classity the case, and lhepatitis is one of the rh-
categories. Il | can rejeet hepatitis, | can reject all
the following diseases which are its subelasses,

State Abstraction

Let us assume that the nser had asked the sys-
tem, “What will happen if Valve A is closed?"

Q: Why do wish to know the engine speed?
A: Because | am trying to decide the change in

functionality of the cooling systemn when Valve A s
closed, and engine speed is a datum | need for this.

Q: Why are yvou considering the cooling systein?

A Becanse, Valve A is a component of the
Cooling system.

Data Retrieval

Q: Dit the patient have exposure to anes-
thetics?

A: Did he have any surgery?
Q: Why do you ask?

A Fdo net have direct record of anesthetic ex-
posure. | failed to inherit a value for this attribute
from its parent -- no direct record of any drug not
being given, | also failed to infer No Exposure, hy
ruling out its chitdren. Then the Anesthetic concept
suggested that I surgery had been perforined. anes-
thetic can be reasonably tnferred.

Hypothesis Assenibly

Q: Why was hypothesis part ' ‘nctaded in the
best explanation?

A: tnoorder to account-fur datum

Q: Why wasn’t " chosen to explain 1)?

Ar o Becase wssuming partially assembled
conclusion - H is the best way to explain cluster of
data -

Q: Why was hypothesis H o aecepied?

At Hecause it is the only plansible way o
account-for - cluster of data

.

- &

ST et ‘w

ST . T

Plav Refrnevient

Q: Why did you choose Plan A"

A Becanse, | am trying to complete the
specification for Plan A, Tor refunng which 1 need
subgoal - accomplished. The specialist for

subgoal - selected Plan A’ due 1o - reasons -,
Q: What will you do if you fail in Plan A"
\:Subgoal - speciatist will select Plan A,
Q: What if it fails?

Ar o Parent specialist will redesign Plan A. by
weakening - constraint

In the foregoing examples. the italicized terms
represent the type of goal that is being pursned.
Points to be noted here aie: this explanatory richness
(compared 10 the terminology of goal-subgoals) is
made by possible by encoding the control resimes
specific to ecach generic task: and. the explanation is
directly related to the problem solving of the systenr.

4.0 Comparison unth Related Work

With respeet 1o providing explanation 1here are
two key ideas that we are offering in this paper: one.
explanation of problem solving strategios, wlich are
manifested as appropriate control behavior by the
problem solver, can be based on the generic 1ask tha
a problem solver is engaging at a given stage in
problem solving: and two. which is implicit in what
we have said so far. is that control for cach task be
represented abstractly so that explanations can be
conched in terms of these abstractions.

Swartont and Clancey have done significant in-
vestigations of issues in explanation generation by
problem solving systems. The work of both authors
uses the notion of abstraet representation of control as
a basic idea for explanation. 1t will be nseful to re-

late our ideas to those of these ivestigators.,

LEE The Work of Clancey’s Group:

Clancey has contribnted several ideas that are
relevant in this context: one. in 9., he discussed the
advantages of absiract represemtation of control in
reasoning systemns. and specifically pointed ont 1 heir
potential role in explanation; two, in 8. he proposed
th=t. in order to give explanatory capabilities 10
MYCIN for purposes of teaching (he created a system

called GUIDON based on MYCIN) an explanatory
skeleton be attached 1o each rule encoding the role of
the rmle in problemn solving: and three, in his work on
NEOMYCIN 10, he and his group represent the diag-
nostic strategy explicitly (in terims of abstract subtasks
and their relations to diagnosis on the one hand and

-133-

to the domain data on the other).

The miost advanced work by Clancey's group on
explanation is that on NEOMYCIN, amd thus we will
concentrate on that in this section. ltere diagnostic
strategy is represented explicitly as a collection of snb-
tasks. with conditions for inoving lrom snbtask to snb-
task also explicitly stated. This representation enables
an_explanation of strategy 10 be produced at the task
and snb-task level Hf generalization,

This work is it many ways guite close m spirit

to our approach, witn the following comnrents throw-
ing light on the differrnces.

EoONEOMYCINS representation of abstract
strategies is implemented as a body of
metarnles in the rule-based paradigm. We
would note here that the rule paradigm
plays no intrinsic role fir this and can be
viewed as omerely an implementation lan-
gnage. dn onr approach we wonld advocate
a representation langnage with generie
primitive terms for directly encoding control
along the lines discussed earlier in the
paper.

2. The above comment raises the question of
the appropriate langnage in which conch
the tasks abstractly. In this paper we have
proposed i set of generie tasks and sug-
gested that they {and others to be added
as needed on empirical grounds. but at
about the <ame level of grain size) comprise
the elementary tasks in terms of which
complex {generie) tasks such as diagnosis be
decomposed. While we have been able 1o
demonstrate this claim 10 a certain extent
for the diagnostic strategy emploved by ilhe

MDX system, it is a matter of forther em-
pirical research to see whether and how
NEOMYCIN's diagnostic strategy bhe so
decomposed.,

With respect 10 point 2 above, are ithere ad-
vantages from an explanation point of view for such a
decomposition even if it were possible? At 1liis poini
we can ouly give the following tentative answers. To
the extent that the snbtasks in NEOMYCIN were
developed by o direct study of the diagnostic task, i
is likely that some of these tasks (and consequently
the terms which 1wey contribute to the explanation)
are more informative at the diagnostic task level, 13t
it our theory s right. the additional abstractions
specific 10 diagnosis can be obtained naturally from
the abstraction at 1he generie task level. The generic
tasks in our sense will have the further advantage ol
providing the primitives for other “molecular” tasks in
addition 10 diagnosis.

1LE2 Swartont and the XPLAIN System:

Swartont’s NPLAIN system 15 can be som-
marized for onr purposes as follows. 1t has a com-
ponent called Domain Principles, which is best thonght
of as a base ol control abstractions of the goal-subgoal
type. They are of the form, “If goal s G, and if

patternt >, ... <patternN > ocenr in the domain
knowledge base, set up subgoals SGIE, ... SGN
respectively.” As a concrete example, G might be
“Administer < drug -," patternt might be, < finding -
and drug - canse < bad side effect -7 and SGY
might be, "Control toxicity of deg . One can im-
agine an instrnctor teaching a gronp of stndents abont
administration of drugs 0 general, and telling them
that if, for a partienlar drag. there is a possibility of
a bad side effect. then make sure to do whatever will
be needed 1o coutrol the drig toxicity. Note that this
has some degree of generality in that it can be used
to set up systems for a nnmber of different drngs: if a
certen drug does not cause bad side offects, then this
particular subgoal will not he set up by the syvstem.
In general one can best think of this approach as

specification ol an erpert system generator, i that the
same Domain Principles bas
e.g., systems to recommend the administratioun of if-
ferent drags. The Domain Principles then can be
thought of as a collection of controt abstractions,
However, these control abstractions are domain-specific.
Terms sucle as admnaster and control torieity in the

can be used to generate,

©

exampte above are nsed to index and name goals, but
do not have geteral pnrpose problemn solving retevance
across domains. The only elements in the above ex-
ample that are generic in onr sense are, If goal, and
sel up subgoal...

As one wonld expect, the basis for the explana-
tion capability of XPLAIN arises from the goal-snbgoal
control abstractions in Domain Principles. The
generation of explanation in XPLAIN is very similar
to that 1 rote-based systems in that the goal-snbgoat
strncture in Domain Principles is nsed for the explana-
tion in a way very similar to the rule-tracing in
backward-chaining systems such as Mycin. While ex
planation in Mycin is done using the trace of the
rles that fired in a particntar problem. NPLAIN nses
the goal-subgoal retationships that went into the con-
struction of the expert system. with very similar ef-
fects. NXPLAIN can use the names of the goals and
subgoats and the terms in the patterns to provide a
richer qnality to the explanation: “Becanse goal is to
adrmmster digitalis, and digitalts canses dangerons side
effects. there is a need to controf torieity of digitalis.”

Where onr work differs fromn this effort i in the
power that is available in the control abstractions that
are indexed by generic tasks. This enlarges the kinds
of explanatious that can be provided in a domain-
independent way, and that can arise directly from the
control behavior in the problem solving process.

from

Acknowledgiment: The paper has benefited

the contments of Tom Bylander, Jlon Stickten

and Jdohn Josephson.

6

~3

~134-

REFERENCES

Brown, D.C. Chandrasckaran, 13.

lixpert, Systems for a Class of Mechanical
Design Activity.

FO84

Paper for IFIP WG5.2 Working Conference,
Sept. 84,

Buchanan. B, Satherland, G, Feigenbanm,

15.AL

Henristic DENDRAL: A Programn tor Generat-
ing Fxplanatory Hypotheses in Organeic
Chenistry.

1969

in Machine Intelligence 4, American Flsevier,

New York.

Bytander, T, Mhttal, S0 Chandrasekaran, B.

CSRL: A Langiage for Expert Systems for
Diagnosis,

In Proc. of the International Joint Confercnce
on Artificial Intelhgence, pages 248-221,
Augnst, (9%,

To appear in the Special lssne of fntnl drnl. of
Computers and Mathematies on “practical ar
tificial tntelligence systems™,

Chandrasekaran. 13, Mittal, 8. Gomez, IV,

smith M.D., L.

An Approach to Medical Diagnosis Based on
Conceptnal Structinres.

Proceedings of the 6th Intesrational Jomnt Con-
ference on Artificval Intelligence (131-1142,
Augnst, 1979,

LICATTO.

Chandrasekaran, 13. Mittal, s,

Conceptnal Representation of Medical
Knowledge for Diagnosis by Compnter:
MDN and Retated Systems.

tn ML Yovits (editor), Advances in Computers,
pages 207-203. Academie Press, 1983,

Chandrasekaran, 13

Expert Systems: Matching Technignes to
Tasks.

1983

Paper presented at NYU symposiam on Ap-
plications of Al i1 Basiness. Appears in
Artificial Intelligence Applications for
Business, edited by AW, Reitman. Ablex
Corp.. publishers,

Chandrasckaran, 13,
Towards a Tavonomy of Problem-Solving 'ty pes.
Al Magazine 1{1):9-17, Winter Spring, OSN3,

10

13

16

Clancey, William 1.

The Epistemology of a Rnle-Based Expert
System--a Framework for Fxplanation.

trttficral utelligenee 20(3):215-251, May. 1983,

Clicey, William J.

The Advantages of Abstract Control Knowledge
in Expert System Design,

In Proceedings of A1AL-83, pages T1-7T8,
\mnetian Association for Artificial Intel-
ligence, 1983,

Hasling., Diane Warner Claneey, William J.

Reniels.Glenn.,

Strategic Explanations for a Diagnostic Consul.
tation System.

In Coombs, N). (editor), Developments n t5r-
pert Systems, pages 117-133. London and
New York: Academic PPress, 1981,

Josephson, lohn R, Chandrasekaran, B.

Smith, J.\W,

Assembling the Best Explanation.

In Proceedings of the 1L Warkshop on Pnn
aples of Knowledge-Based Systems. [EEF
Compuirer Society, Denver. Colorado. Decemn-
Ler 3-1. 1981,

A revised version by the same title is now
available.

MeDennotr,)

R1: A Rule-Based Configurer of Computer Sys-
teimns.

Lrttheval Intelhgence 19, 1:39-8%. 1982,

Pople. H. AV,

Henristic Mcthods for hnposing Structure on HI-
structnred Problems.

In P. Szolovits (editor). Arnificral Intelligence in
Medicine, pages 119-190. Westview Press,
1982 |

Shortliffe, E.H.
Computer-based Medical Consaltations: MY CLN.
Elsevier North-Tolland Ine.. 1976,

Swartour, W, R,

NPLAIN:D A systemn for Creativg and Fxplaining
Fxpert Consulting Programs

Arteficral Intelligence 21(3):285-325. September,
1083

szolovits, P Panker. N, G
Categorical and Probabilistic Reasoning in Medi-

cal Dragnosis.
Artificial Intelligenee 115-141, 1978,

-

Representing Actions with
an Assumption-Based
Truth Maintenance System

Paul H. Morris
Robert A. Nado

IntelliCorp
1975 El Camino Real West
Mountain View, California 94040

ABSTRACT

The Assumption-based Truth Maintenance System,
introduced by de Kleer, is a powerful new tool for organizing a
search through a space of alternatives. However, the ATMS is
oriented towards inferential problem solving, and provides no
special mechanisms for modeling actions or state changes. We
describe an approach to applying the ATMS to the task of
representing contexts that model actions. The approach extends
traditional tree-structured contex: mechanisnis to allow context
merges. It also takes advantage of the underlying ATMS to
detect inconsistent contexts and to maintain derived results
Some results are presented concerning possible approaches to the
treatment of merges in questionable circumstances. Finally, the
analysis of actions in terms of a truth maintenance system
suggests the need for a more elaborate treatmert of contradiction
in such systems than exists at present.

1. Introduction

The Assumption-Based Truth Maintenance System
(ATMS), introduced by de Kleer [2], is a powerful new tool for
organizing an efficient search through a space of alternatives.
By explicitly recording the dependence of reasoning steps on
individual choices, a truth maintenance system is able to share
partial results across different branches of the scarch space. In
effect, knowledge gleaned in one context is automatically
transfered to otlier contexts where it is relevant. The ATMS
permits simultaneous reasoning about multiple, possibly

conflicting contexts, avoiding the cost of context switching,

The ATMS as presently constituted views problem solving
as purely inferential. This is an appropriate stance for a broad
class of constraint satisfaction problems. However, problems
involving temporal changes or actions require some additional

o

mechanism. As de Kleer [5] points out, ““... problem solvers

-136-

[may| act, changing the world, and this cannot be modeled in a
pure ATMS in which there is no way to prevent the inheritance
of a fact into a daughter context.”” In this paper we explore one
approach to using the ATMS to support the modeling of actions.
The basic idea is to extend a traditional tree-structured context
mechanism (as in CONNIVER and QA4 [1]) to allow context
merges and to take advantage of an underlying ATMS to detect
inconsistent contexts and to maintain derived results. This
approach has been implemented in the KEEworldsTM facility of

the KEETM (Knowledge Engineering EnvironmentTM) system.!

In the following sections, we give a functional overview of
the KEEworlds facility. We then describe the underlying
representation in terms of the ATMS. Special attention is given
to the situation where a world has multiple parents. This is
followed by a discussion of non-monotonic reasoning about
actions in a more general TMS setting, suggested by the worlds

mechanism. We close with some remarks about related systems.

2. Worlds

The basic structure provided for modeling actions is a
directed acyclic graph of worlds. Each world may be regarded as
representing an individual, fully specified action or state change.
A world together with its ancestors in the graph represents a
partially ordered network of actions. Each successor of a world
in the graph then represents a hypothetical extension of the
world’s associated action network to include a new subsequent
action. The world graph as a whole may thus be regarded as
representing multiple, possibly conflicting, action networks.
Each partially ordered action network resembles a procedural net
of NOAH [9], or NONLIN [10], where the actions are fully
specified. We assuine that the effects of a fully specified action
can be represented by additions and deletions of base facts, so

each world lias a set of additions and deletions associated with it

IKEEworlds, KEE and Knowledge Engineering Environment are trademarks of
IntelliCorp.

ek i e

BEL . —

T T e T T T et Yy

which represent the actual primitive changes determined by the
action. Since an action corresponds to an application of an
operator, not an operator itself, this assumption is somewhat less
restrictive than that of STRIPS (8] in that it imposes fewer
constraints on the representation of the operators. Figure 2-1
shows an example worlds graph, from the blocks world. The
deletion and addition at W2, for example, represents the

movement of block a to the table.

+ on(a,b)
+ on(b table)
w1 + on{c,d)
/ N\ + on(d, table)
/ \
7/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
w2 - on(a,b) w3 - on(c,d)
\ + on(a,table) / + on(c,table)
\ /
\ /
\ /
\ /
\ /
\ /
\ /
\ /
\ 7/
w4

Figure 2-1: Worlds Graph

To simplify the discussion we will assume for the moment
that the graph is a tree, i.e., each world has at most one parent
and a branch of the tree corresponds to a linear sequence of
actions. Later, we will consider the conscquences of multiple
parents.

Observe that we may associate each world with the state
that results from applying the changes encoded by the world and
all of its ancestors. Hence, a world plays a double role,
representing both a state change and a state. The facts in the
state will in general be augmented with deductions using general
knowledge of the domain. Thus, the facts which are true at a

world fall into the following three categories:

1. facts inherited from ancestor worlds
2. direct additions at this world

3. deductions from facts in 1 and 2

~-137-

In keeping with the view that additions and deletions
represent actual changes, they are only recorded where they are
effeciive, that is, an addition only occurs where the fact did not

previously hold, and a deletion where it did hold.

The inherited facts follow a principle of inertia (essentially
the STRIPS assumption [11)): a fact which is added at a world
continues to be true in succeeding worlds, up until {but not

including) a world where it is deleted.

The deduced facts may include the distinguished fact
FALSE, representing a contradiction. A world where FALSE
can be deduced is mnarked as inconsistent. The system generally
avoids further reasoni.y .n such worlds (however, it is possible
and somctimes useful to do ta-ievel reasoning about

inconsistent worlds).

3. Worlds in ATMS

Before discussing how the worlds graph is implemented in
terms of the underlying ATMS, we give a briel sketch of the
ATMS mechanisms that are used, primarily to establish
terminology. The reader is urged to consult de leer (3, 4, 5] for

a full description of the ATMS.

The basic elements of the ATMS are assumptions and
nodes. An assumption in the ATMS correspor s 1o a decision or
choice, and is used as an element'n context descriptor. Nodes
correspond tu propositional facts r gata, which may be justified
in terms of other nodes, or assumptions. By tracing back
through the justification structure, it is possible to determine the
ultimate support for a derivation of a node as a set of
assumptions. Such a set is called an environmen: 1or the node.
Since a node may have multiple deriv~tions, it may also have
multiple environments. The :ct of {(minimal) environments for a
node is called its label. Co aputing the labels of nodes is one of
the major activities of the A™ The primary transaction that
the ATMS supports is adding a justification. This causes the
labels of affected nodes to be recomputed. There is a special
element called FALSE, denoting contradiction, which is similar
to a node, and may have justifications. The environments that
would be in its label are called nogoods and constitute minimal
inconsistent environments. Environments which are discovered
to be inconsistent, i.e., which are supersets of nogoods, are
removed from the labels of nodes so that they are not used for

further reasoning.

. LEEes

P - T . . -

~

R

Each world has two ATMS entities associated with it,
reflecting its double role: a world ussuptior wnd a wort:'
environment. The world assumption corresponds to the action
encoded by the world, and may also be thought «f as the choice
or decision that led to the action. The world environment, on
the other hand, corresponds to the state, and actually consists of
the set of world assumptions from the given world and all of its
ancestors. It is convenient to use the ATMS itself to compute
the world environment. This is accomplished by having a speci-l
world node associated with each world. This node may be
thought of as representing the statement that the world’s action
occurs. The world node, Nw, is given a single justification
NypA Ay = Ny
where pr is the world node of the parent, and A, is the world
assumption of the given world. It is not difficult to see that this

results in all world nodes having a single environment, of the

form described.

Adding a fact F at a world can now be accomplished by
supplying a justification in terms of the world node. However,
to allow for the possibility of later deletion, a nondeletion

assumption is included. Thus, the justification has the form
MyAAyp— F
where AW,F is tne nondeletion assumption. A distinct
nondeletion assumption is required for each separate addition of
a fact at a world (to allow independent deletion). 1f F is deleted
at a subsequent world W1, the justification
Ay A AW,F_' FALSE
is supplied to the ATMS, where Awy is the world assumption for
W1. We will call nogoods resulting from justifications of this

form deletion nogoods.

Apart from the justifications supplied by the system to
represent additions and deletions, and justifications for world
nodes, there will be justifications installed by the user to
repres. :t deductions from the primitive facts. These deductions
need be performed only once as the presence of the justifications
in the ATMS allows the efficient determination, via lahel

propagation, of which derived facts hold in which worlds.

Derivations of FALSE are used to determine inconsistent
worlds, representing dead ends in the search. The nogoods
determined by the ATMS may, however, contain nondeletion
assumptions in addition to the world assumptions. However,
only the latter represent choices in the search, and we wish these
to take all the “blame’’ for dead ends (we discuss this further in
section 5). Thus, the multiple worlds system incorporates a

feedback loop which installs in the ATMS reduced nogoods with

the nondeletion assumptions removed. These nogoods are
atbagts of the original ones, and so, in accordance with the
nnniin-lity icquirement, the latter are removed. This process
ensures that the deletion nogoods are the only ones containing
r.ondeletion assumptions.

To test whether a fact holds in a world, we can compare
each environment in the node label with the world environment.
The comparison is done as follows (in principle; the actual
algorithm is equivalent, but more efficient). The world
environment is extended with as many nondeletion assumptions
as are consistent with it (the extension is necessarily unique since
each nogood contains at most one nondeletion assumption). The
extended world environment is then checked to see if it is a
superset of the fact environment. If so, the fact is regarded as

true in the world.

4. Merges

We now consider the niore complex situation where a world
has multiple parents: we call such a world a merge. The ability
to perform merges allows a problem to be decomposed into
nearly independent components, which can be worked on
separately and later recombined. As before, the changes
represented by the ancestor worlds are combined. In the
example of figure 2-1, the world W4 is merge. Thus, the state
corresponding to W4 will have both blocks moved to the table.
We wish to stress that a merge is not the same as a simple union
of the facts in the parent worlds, but rather combines the

changes from all the ancestor worlds.

In the example of figure 2-1, the changes along the two
branc’ es are independent. More generally, a difficulty arises in
that the effect of changes may depend on the order in which they
are applied, resulting in an ambiguous merge. In figure 4-1, we
show two examples of such merges. In both cases, the state at

W5 depends on the order of the preceding changes.

There are a number of ways of dealing with this difficulty.
We have already introduced the requirement that additions and
deletion: at worlds be effective with respect to the state resulting
from actions in ancestor worlds. However, from a strict
standpoint of fully specified actions, the additions and deletions
could be required to be effective even with respect to actions in
sibling or cousin worlds. Thus, one might forbid a nierge if the
ancestor subgraph of the proposed merge possesses any
linearization in which an addition or deletion is ineffective. One

can then prove the following result.

~138-

w1 W1 +P
/ \ / N\
/ \ / \
/ W3 +P / w3 -p
/] / |
/ | /]
W2 +P w4 -P w2 -P W4 +p
\ / \ /
\ / \ /
\ / \ /
\ / \ /
\/ \/
W5 7T w5 ??

Figure 4-1: Ambiguous Merges

Theorem 1: A merge that is not forbidden by
the above ciiterion is unambiguous.

It is also possible to prove the following result, which assists in

the identific: tion of such forbidden merges.

Theorem 2: A graph of worlds admits a
linearization in which an addition is ineffective if and
only if there are at least two worlds where the
addition occurs, such that neither is an ancestor of
the other.

A similar result holds for deletions. With this approach, the

merges in figire 4-1 would be disallowed.

It is of interest that the above restriction resembles that
required for cenflict-free procedural nets [10] where actions that
violate each others’ preconditions must be ordered so that one is
an ancestor of the other. Indeed, additions and deletions which
are mandatory are, in effect, preconditions. From this
perspective, the separate branches of the networks of figure 4-1
are in conflict because each brancli deletes a precondition of the

other.

If one does not require that additions and deletions be
effective with respect to non-ancestor actions, a weaker condition

which guarantees unambiguous merges is as follows:

Theorem 3: A sufficient condition for a merge
to be unambiguous is that the ancestor subgraph may
not contain two worlds, one of which deletes a fact
and the other of which adds it, such that neither is an
ancestor of the other.

This criterion also prohibits the examples of figure 4-1.

Another approach to removing the ambiguity is to adopt
additional criteria for defining the merge. In the pessimistic
merge, an individual fact belongs to the merge if it survives in
every linearization of the actions. The rationale is that we may
then be assured the fact holds, irrespective of the order in which
the actions were performed. Otherwise, we are ignorant of the

fact, and the absence of the fact from the merge simply denotes

~139-

such ignorance, not falsity. Notice that when the effect of the
actions 7s order independent, this definition reduces to the
previous one. With the pessimistic merge, the fact P is absent at
W5 in both examples of figure 4-1. A dual to the pessimistic
merge is the optimistic merge where a fact is true in the merge
if it is true in some linearization. Again, this reduces to the
original merge in the case of order independence. With the

optimistic merge, P is present at W5 in both examples.

We ~uss the ATMS representation for merges.
When a wo multiple parents, the justification for the
world node includes each of the parent world nodes among the
justifiers. The justification scheme for additions and deletions
works as before. The different merges are obtained by different
selections of which additions the deletions affect, i.e., which
justifications for FALSE are entered. For the pessimistic merge,
the deletions are effective with respect to all except descendant
additions. For the optimistic case, the deletions are effective
with respect to ancestor additions only (tlie optimistic merge
tends to be easier to implement efficiently, although less

defensible on semantic grounds).

One might imagine a wide variety of possible merge
algorithms. There are two overriding constraints that led to the
schemes described here. One is the necessity of quickly
determining whether a potential merge would produce a
consistent world, since that is expected to be a high frequency
operation. The schemes described allow the merge to be
computed as a simple union of ATMS environments. The other
constraint is the existence of a large core of unambiguous cases

where there is only one reasonable value for the merge.

A further merge type which has some intuitive appeal, but
does not appear to admit an efficient implementation, arises as
follows. It is possible to show that every linearization of the
ancestor subgraph in which all additions and deletions are
effective gives the same result for the merge. Thus, one might
define the merge to be this common value (if there is any such
linearization). In fignre 4-1, this would lead to P holding at W5

in the left example, but not in the right.

5. Actions and NonMonotonicity

It is instructive to consider how actions might be
represented in a more general TMS setting, as suggested by the
worlds system. For definiteness, and for contrast, this will he
cast in terms of a Doyle-style truth maintenance system [6]. The
general approach we follow is to use a form of nonmonotonic

inference to reason about the effects of actions. Ilowever, the

o

behavior we require in response to contradiction is somewhat
different from the standard approach in truth maintenance

systems.

We will regard a context, or current state of the system, as
describing the evolution of a situation to a particular point in
time. Besides containing assertions about facts in the “present”
such as “block a is on block b,”" the context records past actions
like A3: “block a was placed on block b”’. Note that there may
he several occurrences of individual actions with the same
description; we distinguish between the occurrences by giving
them unique identifiers such as A3. The numbering of the
identifiers is not intended to imply temporal srder. Thus - so far

- the relative timing of past actions has not been represented.

The positive effects of an action can be represented by
justifications linking the occurrence of past actions to present

facts. For example,
A3 A P5 — block 1 is on block b.

P5 is a preservation ~ondition of the form ‘“block a was not
moved off block b after A3.”” In order to allow deletion, we
justify P5 as an assumption by giving it a nonmonotonic
justification of the form

(D5)—P5
Here, “(D5)” indicates that D5 is an OUT-justifier, where D5 is
the statement that “some action after A3 moves block a off
block &". If a subsequent action, say A4, moves the block off, we
supply a justification

A4— D5
causing the OUT-justifier to come IN, thereby undercutting the
derivation of “block a is on block b.” Note that the information
about the relative timing of actions is now implicitly represented

by these justifications.

A difficulty with this representation arises when the
problem solving process generates contradictions that represent
dead ends in the search space. We do not wish the preservation
assumptions to be implicated in these; rather, we wish the
assumptions representing choices of actions to be the ones
considered for revision. Choosing a preservation assumption as
culprit during backtracking would amount to postulating the
existence of an unknown action that deletes one of the facts
leading to the contradiction. However, if we make the
separation between problem solving and truth maintenance
suggested by de Kleer, then from the point of view of the TMS,
the only actions which exist are those which the problem solver
has informed it about. Some new mechanism is required to

ensure that the TMS handles this correctly. One possibility is to

have something like a “‘sheltered” assumption, which could be

refuted directly, but not indirectly in response to a contradiction.

Incidentally, the need for a more discriminating process of
culprit identification is not confined to the difficulty with
preservation assumptions. As another example, consider a
situation where a burglar is planning to break into a house late
at night. To accomplish his purpose, he must choose some
method of entry. One method is to break in a window.
However, this may have the consequence of waking the
occupants, if they are home, which would defeat his purpose.
Let us suppose the burgler makes the default assumption that
the occupants are home. The difficulty is that a standard truth
maintenance system, in attempting to resolve the
‘““contradiction’ of waking the occupants, might elect to revise
the assumption that the occupants are home, even though that is
not subject to the burglar’s control, instead of the real culprit,
breaking the window. The system would in effect regard the
undesired consequence of waking the occupants as evidence for
their absence. However, it is only when there is independent
evidence for the occupants being absent that this possibility is
worth considering. This example of “wishful thinking’’ suggests
that truth n.intenance systems in general need a more refined

treatment of contradiction handling.

Although the approach outlined here could be adapted to
using the ATMS more directly for modeling actions, it would be
cumbersome for a user to have to input the jusiifications
representing additions and deletions by hand. The worlds
facility described earlier provides a framework which represents a

more convenient interface to an action modecling system.

6. Closing Remarks

The worlds considered here resemble the data pools of
McDermott [7]. ITowever, the result of a merge in the data pool
approach is determined by the arbitrary order in which items are
added and dcleted in worlds (beads in McDermott’s terminology).
This means that two graphs with the same apparent external
structure may have different results for a merge. Another
difference is that data pools apparently have no notion of
contradiction. One attractive aspect of McDermott’s approach is

that justifications may have QUT-justifiers.

The ViewpoianTM

facility of Inference Corporation’s
ART™ system appears quite similar in behavior to the worlds
facility described here.” However, it is difficult to make detailed
comparisons since little information has been made available

about the underlying mechanisins of ART.

We have described an approach to constructing a context
mechanism that represents a partially ordered netv.ork of actions
or state changes. A realization of the mechanism has been
described in terms of an underlying Assumption Based Truth
Maintenance System. An examination of a similar representation
in a classical TMS system suggests a shortcoming in the way

existing truth maintenance schemes handle contradictions.

The approach described has been implemented as part of
the KEEworlds facility of KEE and appears to provide a useful
and efficient tool for reasoning about multiple situations. The
KEEworlds facility integrates the multiple worlds system with an
existing frame-based representation system, provides a graphical
browser for manual exploration of worlds and allows rule-based
generation of worlds during either forward or backward

chaining.

a
“Viewpoints and ART are trademarks of Inference Corporation

-141-

References

(1] Bobrow, G. and B. Raphael.
New Programming Languages for Artificial Intelligence
Research.
Computer Surveys 6(3):153-174, 1974.

[2] deKleer, J.
Choices Without Backtracking.
In Proceedings, AAAI-84. Austin, Texas, 1984,

(3] deKleer, J.
An Assumption-Based Truth Maintenance System.
Artificial Intelligence 28(1), 1986.

[4] de Kleer, J.
Extending the ATMS.
Artificial Intelligence 28(1), 1986.

[5] deKleer, J.
Problem Solving with the ATMS.
Arti ficial Intelligence 28(1), 1986.

[6] Doyle, J.
A Truth Maintenance System.
Arti ficial Intelligence 12(3), 1979.

(7] McDermott, D.
Contexts and Data Dependencies: A Synthesis.
IEEE Transactions on Pattern Analysis and Machine
Intelligence 5(3):237-246, May, 1983.

[8] Nilsson, N.J.
Principles of Artificial Intelligence.
Tioga Publishing Company, Palo Alto, Ca., 1980.

[9] Sacerdoti, E.D.
A Structure for Plans and Behavior.
Elsevier Northi-Ilolland, 1977,

[10] Tate, A.
Generating PProject Networks.
In IJCAI-77, pages 888-893. Cambridge, Massachusetts,
1977.

[11] Waldinger, R.J.
Achieving Several Goals Simultaneously.
In Elcock, E. and Michie, D. (editor), Machine
Intelligence 8, pages 94-136. Ellis Horwood,
Chichester, 1977.

Copyright © 1986 IntelliCorp

This research was supported in part by the Defense Advanced
Research Projects Agency under contract No. F30602 85 C 0065.

o A e

I

CAGE and POLIGON: Two Frameworks for
Blackboard-based Concurrent Problem: Solving

H. Penny Nii

Knowledge Systems Laboratory
Computer Science Department
Stanford University

The two articles following this one, User-Directed Control of
Parallelism: The CAGE System and POLIGON: A System Sfor
Parallel Problem Solving, describe two different skeletal
systems representing two models of concurrent problem
solving. Both systems are designed for parallel execution of
application programs built with the systems. This paper
describes the context in which these systems are being
developed and summarizes the differences between the two
systems.

The Context

The POLIGON and the CAGE systems are being developed
within the context of two different families of experiments
within the Advanced Architectures Project. Each family of
experiments consists of a vertically integrated set of programs
from each level of system hierarchy outlined in the project
proposal (i.e. application, problem-solving framework,
knowledge representation and retrieval, implementation
language, and hardware/system architecture levels). POLIGON
and CAGE are two systems at the problem-solving framework
level. The design of both the POLIGON and the CAGE
systems are based on the Blackboard problem solving model

[4].
The Experiments

Each family of experiments starts with a different set of high-
level constraints:

Hardware/system architecture: The POLIGON system is
designed for distributed-memory, multi-processor systems. It
assumes that the underlying system has a large number (100's
to 1000's) of processor memory pairs with very high bandwidth
inter-processor communication. The CAGE system, on the
other hand, assumes a shared-memory, multi-processor system

1This research was supported by DARPA/RADC (F30602-85-C-0012), by
NA"A (NCC 2-220), and by Boeing Computer Services (W-~266875).

with tens to hundreds of processors. The underlying system

architecture influences the additional constructs at the
programming language level needed to support parallel
executions. It also has significant affect on the design of

blackboard frameworks.

Control of parallelism: The POLIGON system is designed with
an assumption that the underlying problem solving framework
on which the application is to be mounted must be
intrinsically parallel. The POLIGON system is designed so
that predefined constructs in the framework always run in
parallel. For example, all rules are evaluated in parallel and
all changes to blackboard nodes are made in parallel. The user
has some ability to introduce serialization., CAGE, on the
other hand, assumes that the user needs control over what is to
run in parallel. Thus, everything in CAGE runs serially unless
specified otherwise by the user. There are prespecified places
where the user can introduce parallel,’m. For example, the
user can specify that the condition parts of rules be evaluated
in parallel and the action parts be executed in series.

The family of experiments of which CAGE is a part consists
of CAGE (problem solving framework) implemented in Qlisp
[2] (implementation language) running on a shared-memory
architecture (system architecture) simulated on CARE [1]
(system simulator). The other family of experiinents consists
of POLIGON (problem solving framework) implemented in
CAOS [5] and Zetalisp (implementation language) running on
a distributed-memory architecture (system architecture)
simulated on CARS, Both CAGE and POLIGON run on the
same system simulation program and share its software
measurement tools. Both skeletal systems will mount the same
application problems.

In keeping with the goals of our Project, the primary objective
of the two families of experiments is to discover methods that
would speed up the execution of knowledge-based application
programs. There are, however, additional reasons for the two
experiments that relate to the primary objective:

To compare the performance gains between shared
versus distributed-memory, multiprocessor systems.

-142-

To provide input to the implementation language
level (QLisp, CAOS and other concurrent Lisp
languages);

To gain some understanding of the differences in
‘programmability’ between POLIGON and CAGE.
More specifically, address the question of whether it
is easier/better to let the user have complete control
over the parallelism in a program; and as a
corollary, to determine the limits of concurrency
that can be designed into a framework, and the
kinds of concurrencies that are problera specitic and
need to be expressed by the user.

To determine the extent of control, or serialization,
needed in both systems in order to solve a class of
problems, and to discover how to apply the needed
control.

To determine if multiplicative speed-up can be
effected between knowledge sources, rules, and lower
level (for example, rule clause evaluation)
concurrencies.

To determine what level of process granularity is
most appropriate for each hardware/systems
architecture.

Comparison of the CAGE and POLIGON Systems

CAGE and POLIGON are concurrent blackboard systems with
two different underlying design philosophies. CAGE is an
extension of the AGE [3] system with primitives to express
parallel execution of knowledge sources, rules, and parts of
rules. It is a conservative, incremental approach to building
parallel systems. POLIGON is a demon-driven system in
which all blackboard nodes are viewed as active agents (and
thus each blackboard node can potentially be a
processor/memory pair). A change made to a node causes
appropriate rules to be evaluated and executed. POLIGON
represents a shift in the way we view blackboard systems.

Both systems have programming languages associated with
them, the POLIGON language and the CAGE language. The
first objective in providing a language at the problem solving
level is to facilitate the writing of application programs. This
is accomplished by abstracting much of the system detail into
language constructs. The second objective is to keep separate
the parallelism in the application problem, as expressed by the
language, and the parallelism built into the framework that
remain invisible to the user. This separation allows us to
experiment with parallelism in the application program
independent of experiments with parallelism within the
framework. Thus, we can for example, keep the application
constant and change the parallel constructs within the
framework, or keep the framework constant and rewrite the
application. In order to facilitate the porting of an
application program between POLIGON and CAGE, both
languages are syntactically similar. However, the semantics of
the languages are very different because the underlying systems
are very different. The differences are summarized below.

~143-

CAGE POLIGON

Incremental additions Redesigned
of parallelism to a parallel system
serial system

User controlled User controlled
parallelism serial operations
Granularity of Granularity of
parallelism parallelism fixed -
under user control rules and actions

Shared memory Distributed memory
multi-processor multi-processor
machines machines

Figure I: Summary of Differences: CAGE and POLIGON

We now describe and discuss some of the issces specific to the
CAGE and the POLIGON systems. The discussions should
serve as a background to the detailed description of the
systems in the separate papers.

CAGE

There are several obvious places for concurrency in blackboard
systems, the knowledge sources, rules within the knowledge
sources, and the components of the rules.

Knowledge Source concurrency: Knowledge sources are logically
independent partitions of domain knowledge. Each knowledge
source is event-driven and becomes active when changes
relevant to the knowledge source are made to the blackboard.
Theoretically, therefore, all knowledge sources can be active at
the same time as long as events relevant to each of the
knowledge sources occur at the ’‘same time’. However,
knowledge sources are often serially dependent in order to
solve a problem. At run time some synchronization (ie.
serialization) must be enforced.

In the class of applications we are considering, the sclution
generation process characteristically occurs ia a pipeline
fashion up the blackboard hierarchy. That is, the knowledge
source dependencies form a chain from the knowledge sources
working on the most detailed level of the blackboard to those
working on the most abstract level. When the program is
model-driven, the pipeline works in the reverse direction. The
task for CAGE in exploring concurrency at this level of
granularity is to determine what percentage of the knowledge
sources can be active at the same time in the pipe.

Rule concurrency: Each knowledge source is composed of many
rules. The condition part of the rules are evaluated for a
non-NIL condition (a match) and the action part of those

.3

rules that match are executed. The condition-pait of all the
rules in a knowledge source can be evaluated in parallel. In
those cases where the action part of all the rules that match
are to be executed, the action part can be executed as soon as
the match is completed. However, if only one of the rules is
to be fired (single-hit), then the system must wait until all the
condition parts are evaluated, and one rule must be chosen
whose action part will be executed. (Note that this is very
similar to the OPS conflict-resolution phase.) In addition, one
can imagine evaluating all of the condition parts in parallel
and executing the appropriate action parts in series.

The situation in which all rules are evaluated and fired
concurrently will result in the most speed-up, since many rules
will be in the state of being evaluated and being executed at
the same time. However, if the rules need access to the same
blackboard item, memory contentions become a hidden point
of serialization, At the same time, the integrity of
information on the blackboard cannot be guaranteed. The
condition which triggered the action part of the rule may not
be the same by the time it is executed. @~ CAGE needs to
address these problems, determine the effect on solution
quality and overall performance gain of the application
program.

Condition-part concurrency: Each condition part of a rule
consists of many clauses to be evaluated. These clauses can be
computed in parallel. Often these clauses involve relatively
large numeric computation (e.g. calculating a track), making
parallel clause evaluation worthwhile. On the other hand,
often the clauses refer to the same data item, making the
clause evaluation appear to be parallel, but in fact forcing
serialization at the data-access level with no gain (and most
likely a loss) in speed of computation. The task at this level
of granularity is to determine if parallelism at this level is
worthwhile, [t may be that what is needed at this level is a
fast algorithm for matching the condition parts and an
appropriate knowledge representation scheme.

Action part concurrency: Often, when a condition part matches,
there are many actions to be executed. This is one place
where no difficulty i¢ anticipated in parallel execution.

Combining the concurrencies: The action parts of rules generate
events, and the knowledge sources are activated by occurrences
of these events. In the AGE system events were posted on an
event-list and a coniwrol monitor invoked the knowledge
sources based on those ¢ its. In order to eliminate the
serialization inherent in this control scheme, a mechanism to
activate the knowledge source upon the completion of the
action parts of rules is needed. The immediate activation of a
knowledge source after action part execution (for example, by
broadcasting an ‘event message’ to all the knowledge sources)
results in the loss of global control over knowledge source
activation. In some cases, this is acceptable. In other cases,
for example when knowledge sources need to be activated on a

priority basis (exemplified by the need for the Agenda
mechanism in AGE), some control mechanism is needed. The
task herc is to determine the best (least overhead) control
mechanism appropriate to the application,

POLIGON

As mentioned earlier, the application programs are event-
driven in blackboard systems. Events are normally defined by
the user and expressed as .hanges to the blackboard nodes.
Because a knowledg. source is activated by the occurrences of
events, and because knowledge sources are collections of rules,
one can view the rules as being activated (indirectly) by
changes to some blackboard nodes. We can take this line of
reasoning one step further and say that a rule is activated by
changes to particular slots of blackboard nodes. If we
associate a set of rules directly with a slot on a node and
evaluate and execute the rules whenever the slot is changed, we
have a system with active blackboard nodes.

Conceptually, at least, every blackboard node can be thought of
as a processor-memory pair. Each node contains a data
structure to store the partial solutions, and the rules are
activated whenever a particular slot is changed. Slots with a
property that enable rule triggering are called "trigger slots”.
When the action part of a rule is executed, the changes to the
blackboard are made via messages to the nodes to be changed.
If the change to is to a trigger slot, then the condition part of
the "triggered rules” are evaluated; changes to non-trigger slots
do not cause processing.

A major difficulty with this approach is the loss of control,
specifically, an ability to control the order of rule firing. By
bypassing the intermediate control step where manipulation of
the events and selection of knowledge sources occurs, the
system has no global control. The rules will be firing almost
indiscriminately all over the blackboard as soli tion state
changes. There is no way to implement problem solving
strategies, for example. In addition, rules will not be evaluated
in situations when the non-occurrence of a change to the
blackboard is significant. Such ability is important in signal
interpretation programs.

In spite of many anticipated difficulties, we have developed a
demon-driven system in hopes of gaining experience with such
a system and discovering solutions to the problems. Although
there is a substantial shift in the problem solving behavior,
POLIGON 1s being evolved out of the functionalities that were
present in AGE. At this point POLIGON is characterized by
the following:

Knowledge sources exist only as a conceptual aid in
partitioning the problem space.

Levels of in the blackboard data exist as a class
hierarchy. A level is a class and a node is an
instance of a class. There is also a super-class that
knows about the classes. (For clarity, the class will
be referred to a more familiar term, the level.)

-144-

All nodes are active entities.

Each rule must specify, in addition te the condition
and action parts, the level and the node with which
it is to be associated, i.e. it must designate a 'trigger'.
A trigger consists of a slot name and a trigger-
condition, which are to be interpreted as follows:
whenever the value of the slot is changed, evaluate
the trigger condition. If the trigger condition is
non-nil then the rule becomes triggered. A triggered
rule is put on a process queue for later evaluation.

The rules can use data futures, and for the time
being all bindings are made through lazy evaluation.
This means that all bindings are made only when
needed. In addition, processing can continue while
values are being fetched from other nodes.

The major control problem to be addressed in
demon-systems is the serialization of demon
activations. Potential for control in POLIGON
exists in three places: (1) On the node, where action
parts of the rules can be serialized, for example. (2)
In the level manager, which knows about the all the
nodes on the level. (3) In the super-manger which
knows about all the level managers. The level
manager that can create and garbage collect the
nodes, and knows which rules to attach to a newly
created node. The level manager is the only agent
that knows about all the existing nodes on its level.
Thus, to send a message to all the nodes on a
particular level, a message is sent to the level
manager which forwards it to all its nodes.

In addition to the parallel evaluation of the
condition parts of rules, the actions in the action
part of the rules are executed in parallel.

Because of POLIGON's uncontrolled parallelism the solution to
a problem will be indeterminate. That is, every execution of
an application problem can potentially result in different
answers. The challenge is to organize the knowledge in such a
way that "acceptable” solutions are produced each time.

Most of the same concurrencies made available to the user in
CAGE are built into the system in POLIGON. The major
challenge in POLIGON is the serialization of rule execution.
For example, the ability to synchronize the execution of
actions in CAGE has no counterpart in POLIGON. Since the
system is demon-driven at the rule level, there are very few
handles available to control the activation of rule evaluation.

Summary

CAGE and POLIGON thus are two very different approaches
to the expression of parallelism at the problem solving
framework level. As we develop and test applications using
these frameworks, we expect to gain a more concrete
understanding of their relative strength and weaknesses with
respect to usability, application characteristics, and speedup.
Each system is discussed in more detail in the following two
articles.

(1]

(2]

3]

(4]

(5]

=145~

References

Bruce Delagi.

CARE Users Manual.

Technical Report KSL-86-36 (working paper),
Knowledge Systems Laboratory, 1986.

Gabriel, R.P. and J. McCarthy.

Queue-Based Multi-Processing Lisp.

In Proceedings of the 1984 Symposium on Lisp and
Functional Programming. August, 1984

H. Penny Nii and Nelleke Aiello.

AGE: A Knowledge-based Program for Building
Knowledge-based Programs.

Proc. of IJCAI 6 :645 - 655, 1979.

H. Penny Nii.

Blackboard Systems.

Technical Report KSL-86-18, Knowledge Systems
Laboratory, Computer Science Department, Stanford
University, April, 1986.

To appear in Al Magazine, vol. 6-6 and vol. 6-7, 1986.

Eric Schoen,

The CAOS System.

Technical Report KSL-86-22, Knowledge Systems
Laboratory, Computer Science Department, Stanford
University, April, 1986.

Also in this Proceedings.

ey

User-Directed Control of Parallelism;

The CAGE System
Nelleke Aiello

Knowledge Systems Laboratory, Stanford University

1 INTRODUCTION

CAGE?*, Concurrent AGE®**, provides a framework for
building and executing application programs as a concurrent
blackboard system. With CAGE, the user can control which
parts of the blackboard system are executed in parallel. A
blackboard application can be implemented and debugged
serially on CAGE. Once the serial version is debugged,
concurrency can be introduced to different parts of the
system, allowing the user to experiment with various
configurations. We believe this incremental approach will
facilitate the construction of concurrent problem solving
systems and will teach us much about programming in a
parallel environment. This paper describes the design of the
CAGE system and gives detailed instructions for
implementing an application, using the CAGE language and
compiler [Rice 86]. We have included advice, warnings, and
caveats based on our experience using CAGE.

The target parallel system architecture for the CAGE system
is currently the same as that of QLAMBDA, a queue-baced
multi-processing Lisp ([Gabriel 84]Jand McCarthy) on which
the parallel simulation is based. We are assuming a shared
memory and a large number of processors. The user can
specify his CAGE application in an extension of the L100
language, called the CAGE language, and use the CAGE
compiler to generate CAGE code. CAGE runs on LOQS, a
functional simulator for QLAMBDA. CAGE is imp mented
in ZETALISP for Symbolics 3600 machines and TI Explorers.

II OVERVIEW OF CAGE DESIGN

CAGE is a blackboard framework system. In addition to
the basic AGE [Nii 79] functionality, CAGE allows user-
directed control over the concurrent execution of many of its
contructs. The basic components of a system built using
CAGE are:

1. A global data base (the blackboard) in which
emerging solutions are posted. The elements on
the blackboard are organized into levels and
represented as a set of attribute-value pairs (a
frame).

2. Globally accessible lists on which control
information is posted (eg. lists of events,
expectations, etc.).

3. An indefinite number of knowledge sources, each
consisting of an indefinite number of production
rules.

*This research is supported by DARPA/RADC under contract number
F30602-85-C-0012, by NASA under contract number NCC 2-220, and by
Bocing Computer Services under contract number W-266875.

**CAGE is based on the AGE System and we have assumed here that the
reader is familiar with the AGE system.

4. Various kinds of control information that
determine (a) which blackboard element is to be
the focus of attention and (b) which knowledge
source is to be used at any given point in the
problem solving process.

5. Declarations that specify what components
(knowledge sources, rules, condition and action
parts of rules) are to be executed in parallel, and
when to force synchronization. During the
execution of the user's application CAGE will run
these specified components in parallel.

Using the concurrency control specifications, the user can
alter the simple, serial control loop of CAGE by introducing
concurrent actions. CAGE allows parallelism ranging from
concurrently executing knowledge sources all the way down to
concurrent actions on the right- or left-hand-sides of the
rules. The serial execution and parallel executions possible in
CAGE are summarized below.

in KS Control
serial: pick one event and execute associated KSs

parallel;
1. as each event is generated execute associated
KSs in parallel***
2. wait until several events are generated then
select a subset and execute relevant KSs for
all subset events in parallel

in KS
serial:1. evaluate bindings
2. evaluate LHS then execute RHS of one rule
whose LHS matches (in written order)
3. evaluate all LHS then execute all RHS
whose LHSs match

parallel:
1. evaluate bindings®
2. evaluate all LHSs in parallel
a. then synchronize (i.e. wait for all
LHS evaluations to complete)
and choose one RHS(pick one in order)
b. then synchronize and execute the
RHSs serially (in written order)
c. execute RHS as LHS matches*

in Rule
serial:evaluate each clause then execute each action

parallel:
evaluate clauses in parallel then execute actions
in parallel®
(first nil clause --> no match; first all non-NIL
clauses --> match)

in clause

serial: Lisp code parallel: Qlambda code

***The starred options indicate the greatest use of concurrency.

146~

111 BUILDING APPLICATIONS IN CAGE

In each of the following sections we will outline the
application data that must be supplied by the user and how
that information should be structured for use by the CAGE
System. The CAGE System provides a CAGE language with
which the user can write his application. The type of user-
supp]icd information is similar to that required for
applications constructed in the original AGE system.
However, the structure of the user information is somewhat
different from that of an AGE application.

A. Blackboard Data Structure

There are two major components in the CAGE blackboard
structure, the hypothesis classes (frequently called levels in
hierarchical blackboard structures) and the hypothesis nodes.
The user must specify the classes that make up his
application’s blackboard structure. For each class, the user
must define the fields to be associated with the nodes created
In that class. Nodes are created in those classes, ecither a
priori by the user or dynamically while executing the user's
tules. The following example shows the definition of several
classes and their fields in the CAGE language.

Class Definitions for Model "example” :

Class name-of-levela :
attributel
attribute2
attributed

Class name-of-levelb :
attributed
attributeb

This will compile into two macro calls, DEFHYPOTHESIS-
STRUCTURE and DEFLEVEL, which the CAGE System will
in turn compile into the appropriate hypothesis structure.

(defhypothesis-structure
user-hypothesis-structure
(application-system-root)
name-of-levela
name-of-levelb
name-of-levelc

(deflevel name-of-levela
((attributel nil
attribute2 nil
attributed n1;

Each of the levels(or classes) will be defined as an object
with the attributes as instance variables and with the noG:5 as
instances of those objects as they are created. (The user can
define methods for the level objects which are generally used
for printing information contained in the nodes on those
levels.)

Definitions:
user-hypothesis-structure. A name the user gives
the application’s blackboard structure.

application-system-root: A handle on the above
hypothesis structure for user access, generally a node
where the input data, or a massaged version of the
input data will reside, or the top level of a
hierarchical hypothesis structure.

name-of-level: Each level or class must have a
user supplied name.

node: An instance of a level, created cither before
or during the execution of the application,
inheriting all the attributes of that level, but no

~147-

values.

attrlbute: For each level the user must specify
the names of the slots, which will become a
template for the Instance nodes, which in turn will
contain the values used by the KSs. These values
are initially NIL,

link: The user may also define links for
connecting nodes. These links are defined in the
knowledge sources which use them and consist of a
link name and an optional, opposite link. The
va(x)l(;xc of a link on a node is the name of another
node.

value: The value of an attribute depends on what
was stored there by the rules and its structure
depends on how it was stored. Values can be
modified only by the user's initialization function
and by the application rules. The structure of the
values is arbitrary. How values are added or
changed s explained in the knowledge source
section.

B. Control Structure

All CAGE control information is referenced through
Control-Structure object.
Control-Structure are:

The major components of

User-Initlallzatlon: This is a user-defined
function, handling any initialization needed for the
user's program, eg. setting-up the appropriate
blackboard stracture {on top of the predefined
hypothesis framework) from the input data.

Termlinatlon-Conditlon: Another user-defined
function, which determines when the application
should be terminated. The Termination-Condition
can access the step-lists for events or expectations,
perhaps checking for a significant event; or the
blackboard, checking a particular node or nodes. It
should return a non-nil value when the application
is to be terminated.

User-Post-Processor: When the termination
condition is true, a user supplied post processing
function is invoked. This function can be used to
print out the application’s results in a readable
form, or 10 handle any other post :iocessing detz.s

Foppt=lafo This 5 & polute, to tne Event-
Infoimatiuin cbici which tontains How .. Lo
specifi=¢ informetion on how events should bt
scheduled, and run-time data including the event
list and the current focus event.

Expect-Info: Similar to the Event-Info pointer,
this object keeps track of the expectations generated
by the application and information specifying how
those expectation should be scheduled.

Control-Rules: A list of of control rules defined
by the user to determine when to execute which
control step (event or expectation). The control
rules are defined using the DEFCONTROL-RULE
macro. [Each control rule consists of a condition,
an arbitrarv LISP expression and a steptype, either
event or expect. The following example of a
control rule says that if there are any cvents
pending on the event list (steplist of event-info is
not null), then do an event next.

Example:

Control Rule : Crule-1
Condition Part:
If : event-info®steplist
Action part : event

the
the

. =

LIIS-Evaluator: The default function for
evaluating the conditions of a rule if the knowledge
source containing that rule has no left hand side
evaluator over-riding this default. For most
applications the CAGE provided function QAND
will suffice. It is a serial or concurrent boolean
AND depending on the parallel options selected by
the user.

1. Event-Information

A blackboard system can be executed in several ways, the
simplest being event-driven. This means that each time a
rule action is executed the system records that change to the
blackboard as an event. Each event is added to a list called
the event list. The scheduler selects an event from the event
list to become the next focus event. The type of focus event
is matched against the preconditions of the knowledge sources,
and all the matching knowledge sources are activated. The
rules of the activated knowledge sources are evaluated, those
rules with satisfied conditions are executed and the cycle
repeats until the termination is true.

To run a blackboard model with an event-driven ccntrol
structure, certain control information must be supplied by the
user.

selection-method: a function that determines
which event to select from the event list. The user
can write his own best-first selection method or
use one of the CAGE provided functions, FIFO,
LIFO, or AGENDA. If the AGENDA selection
method is chosen, the user must also specify the
agenda and an order.

agenda. An ordered list of event types supplied
by the user. (See knowledge source specification for
definition of event type.)

order: LIFO or FIFO order in which to check the
agenda. There may be scveral different events of
the same type on the event list.

collection rules: In some applications many
evenls or the same type and the same node are
generated and added to the event list. If the user
specifies that type of event as a collection rule,
the only one event is pursued and th: others are
co.lr:ted and deleted fro:: the event lis*

2. Expect-1nformation

In an expectation-driven system, a rule may specify an
expected result or change on the blackboard as one of the
actions of that rule (called an expectation rule). When an
expectation rule is executed, the expectation part of the rule is
added to the expectation list. Later, when the control rules
specify that an “"expect” step should be executed, a focus is
selected from the expectation list. If a change has occurred
on the blackboard that satisfies the expect portion, actions
associated with the expectation rule are executed.

Much of the information required 10 execute an
expectation-driven system is similar to that of an event-
driven system. The user must supply a selection-method,
possibly including an agenda and order, and collection rules.
Some additional information is required to execute
expectation.

matcher: a function which defines how to match
expectations to the blackboard. CAGE provides on
default, PASSIVEMATCH, which simply evaluates
the expectation portion of the expectation rule to
see if its value is non-nil.

C. Knowledge Sources

CAGE knowledge sources arec a partitioning of the
application knowledge into sets of rules. Each knowledge
source consists of some declarative information and a set of

=148~

rules.

1. Knowledge Source Declarations
_ The definition of a knowledge source consists of more than
just groups of rules. In order to properly interpret those
Tules, CAGE needs to know certain knowledge source control
information, e.g.,

1. Under what circumstances should this knowledge
source be invoked?

2. How should the rule conditions be evaluated,

3. what levels of the blackboard structure will be
changed?

4. Which one or all of the rules whose conditions are
true should be executed?

S. Are there any local variables or links to be
defined for this KS?

The following features are available for the user to tailor a
knowledge source to his own specifications:

Preconditions: A list of tokens, representing the
event Iypes used in rules. If the focus event has an
event type that matches one of ths knowledge
source’s preconditions, then that knowleage source is
activated.

levels: A list of pairs of blackboard levels or
classes. The user must specify between which levels
of his hypothesis structure a knowledge source
makes inferences.

Links: If a knowledge source adds links between
nodes on the blackboard, they must be defined here.
The definition consists of a list of pairs of link
names, a link and its inverse.

HIt Strategy: There are two main hit strategies
available in CAGE, SINGLE and MULTIPLE
When a knowledge source with a single hit strategy
is interpreted the rules of that KS are evaluated, in
order, until one rule’s condition evaluated to true.
Then that rules actions are executed and no other
rules are even considered. With a multiple hit
strategy, the conditions of all rules of a knowledge
source are evaluated and then all the actions of
rules which successfully evaluated executed. In
conjunction with either single or multiple hit
strategies, the user can also specify ONCEONLY.
This will cause a rule to be marked when its
conditions are successfully evaluated. Its actions
will be executed and it will never be evaluated
again during that run of the applicaiion.

Definitions: A list of local definitions, available
to all the rules of a knowledge source. The
definitions are an efficiency feature to avoid the
repeated calculation of the same value by all the
rules. The structure is similar to that of LET, a
list of pairs, a variable name and an expressions (o
be evaluated and assigned to the the variable. If
the value is NIL it can be omitted.

Rule Order: A list of rule names, representing
the rules of the knowledge source. This is the
order in which the rules will be evaluated serially.
Because the rules are actually defined as methods of
the knowledge source to which they belong, each
name should begin with a colon ().

LHS FEvaluator: The user can optionally specify a
left hand side rule evaluation function for each
knowledge source. There is also a default LHS
evaluator specified for the entire application in the
Control data. The evaluator specified here will
override the default evaluator for this specific

knowledge source. The LHS evaluator Is a function
which determines how the rule conditions are
evaluated. CAGE provides several built-in
functions which the user can select, including AND,
for a simple boolean AND of the conditlons and
QAND for a concurrent boolean AND.

The following is an example of the definition of a
knowledge source from the CRYPTO system written In the
CAGE language.**** The name of this knowledge source is
"combine-weights”, it has two preconditions, makes inferences
from the Cryptoletter level of the hypothesis structure to the
alphabet-letter level, defines a pair of bi-directional links,
and uses the single-hit rule selection strategy. The combine-
weights knowledge source also makes two definitions, possible-
values gets the value NIL and lhs-evaluator the value QAND.

Knowledge Source : combine-weights
Preconditions : Confirmation, Contradiction
Classes : Cryptoletter : alphabei-letter
Links : Possible-Value-of : possible-Letters
Rule Selection : Single

Definitions
possible-values == nil
1hs~evaluator = qand

This compiles to the following CAGE macros.

(defknowledge-source COMBINE-WEIGH1S
:preconditions (confirmation contradiction)
tlevels ((cryptoletter alphabet-letter))
:1inks((possible-value-cf possible-letters))
:hit-strategy (sin?le)
:bindings (?poss1b e-values))
:rule-order (:letters)
:Ths-evaluator qand)

2, Rules] 1
CAGE rules consist of three major parts; definitions,
conditions, and actions. Here is an example from CRYPTO
in CAGE.
Rule : 1letters {3}
Definitions .
possible-values ==
possible-values(focus-node€
possible-latters)

Condition Part :
If : qand(focus-node-is-cryptoletter,
possible-values)

Action Part :

Changes
hange Type Update
Updated Node focus-node
Event Type possible-assignment

Updated Slots
possible-letters «+ possible-values

;Combine the weights of identical possible
;values.

CAGE also provides a macro for defining rules called
DEFRULE, to which the above will compile.

****The colons in the CAGE language ar
spaces from other words in the language.
they directly precede & word.

s when scparated by
Cusuns wticate keywords when

(defrule (combine-weights :letters)
((possible-values
(possible-values
(Svalue foc?s-?ode :possible-letters
:a11))))
((1s-cryptoletter focus-node)
ponssible-values
((propose :EVENT-TYPE 'possible-assignment
:CHANGE-TYPE ‘update
:HYPOTHESIS-ELEMENT focus-node
:LINK-NODE n1i1
*ATTRIBUTES-AND-VALUES
‘((possible-laotters
,possible-values supersede))
) :SUPPORT 'combine-weights)
)

After specifying the knowledge source to which a rule
should be added and the name of the rule, preceded by a
colon, the user m« 't specify the three major parts of the rule.

Definltlo:s: The definition part of a rule is
similar to a LET in structure. The local variables
set here are available only to this rule, both in the
condition and action parts, as well as other
definitions of this rule. This is an optional
component of a rule, and can be NIL.

Conditions: The second part of a rule contains
the conditions. These can be one or more arbitrary
LISP expressions which will be evaluated according
to the left hand side evaluator as specified in the
local knowledge source or at the control level. The
conditions can reference both local variable
definitions or variables bound at the knowledge
source level. The CAGE system provides several
access functions for retrieving values from the
hypothesis structure, which can be used in the
conditions of rules. It is important when writing
the conditions of rules for a CAGE application to
keep in mind the feasibility of rtunning those
clauses concurrently, i.e. keeping them independent
of each other.

Actions: The action clauses make up the final
part of a CAGE rule. These clauses have a very
specific structure as evidenced by the preceding
examples. The actions specify what changes are to
be made to the hypothesis structure by a rule and
how those changes should be made. The user must
specify what node and attributes on the blackboard
are to be changed, what the new links or values are,
and how those changes are to be made (possibly
deleting some old values). The user must also
specify an event type, a name representing the type
of change this action makes to the blackboard. If
and when the event created by this action is
selected as a focus event, this token will be matched
against the preconditions of the knowledge sources
to determine which KS to invoke next.

D. Initialization

There are two types of initialization which can occur at the
beginning of a CAGE run. First CAGE must create the
instances of all the application defined flavors which will
constitute the executable form of the user's system. In
addition, the user can do any other initialization he feels
appropriate by defining his own initialization function, the
name of which should be stored in the application's control
structure. Since the major components of the application are
defined as flavors, initialization can be done by defining
:initialize or :after :init methods.

E. Input Data

The user must define two functions to handle his input
data.

1. INPUT-PROCEDURE(Record, Time) : Given an
input record, retrieved automatically at the correct
time by CAGE, do what ever should be done with
that input,e.g. add it to the blackboard.

2. TIME-OF-INPUT-RECORD(Record) : Given an
input record, return the time stamp,

At the beginning of each run the user will be asked to specify
an input data file by typing in the file name or selecting a
file from a menu of pre-specified input data file names. The
data file consists of records that can be read by the above two
functions. A time stamp is mandatory on each input record.

IV SPECIFYING CONCURRENCY

CAGE supports the concurrent evaluation of pieces of
knowledge. Once an application has been debugged in serial
mode, the user can specify one or several knowledge source
components to be executed in parallel. For example, the user
might specify that the rules of the knowledge source be
evaluated concurrently, or perhaps just the actions of the rules
or a combination of the available options. With a minimem
amount of recompilation, the user can change his parallel
specifications and experiment with many different
configurations.

In general more speed-up should occur as more components
are run in parallel. But for some applications the overhead
of setting up the new processes and inter-process
communication costs will be greater than the speed-up gained
by executing particular components concurrently. For
example, if most or all of the knowledge sources of an
application coutain only one rule, then it would not be
efficient to evaluate rules in parallel since for any one KS
invocation there would only be one item to evaluate,

A. Concurrent Components

The use of knowledge sources to partition the knowledge in
blackboard systems and, in particular, the structure of the
knowledge sources in CAGE provide several obvious places
for concurrency. The knowledge sources group the domain
knowledge into independert modules, which theoretically,
could be invoked independently and concurrently. Within
each knowledge source the rules provide another source of
parallelism, and within each rule, the clauses of the condition
and action parts provide yet another. Of course not all
clauses, rules or even knowledge sources are actually
implemented totally independently of each other and some
serialization may be necessary to correctly solve the
application problem. .

The following are the options for parallelisn & silable in
CAGE, grouped according to their allowec use in
combination.

Clause Ievel: can be used in combination with
each other or any other parallel option.

actions; Execute the RHS action clauses
of a rule in parallel. Note: When
running RHS actions concurrently a non-
deterministic system may result if both
destructive (Supersede in CAGE) and
constructive (Modify) actions occur to the
same object in parallel. (Same object and
attribute) A QLOOP macro is used to
initiate the parallelism for loop actions,
requiring recompilation of the rules
containing loop actions.

Ihs: Evaluate the LHS condition clauses
of a rule in parallel. Note: Use the rule

=150~

bindings to set any local variables tested
here, insuring that the lhs clauses will be
independent. A QAND macro is
provided as the LHS-evaluator to initiate
the concurrency for the conditions,
requiring recompilation when this option
is used.

rule-bindings: Evaluate the definitions
of a rule in parallel. Again, these
definitions should be independent of each
other if their concurrent evaluation is to
result in an actual speed-up.

Rule level: bindings can be used in combination

with any of the other options, but only one of the
rule options, single, multiple, sync or nosync can be
used at a time.

Knowledge sour. Ievel:
knowledge source «
time.

bindings: Concurrently evaluate the
definitions at the beginning of a
knowledge source.

rules-single: Evaluate all of the
conditions of the rules of a knowledge
source concurrently, but only execute the
actions of one successfully evaluated rule.

rules-multiple: Evaluate all of the
conditions of the rules of a knowledge
source concurrently, then serially execute
the actions of all the successfully
evaluated rules.

rules-sync: Evaluate all of the
conditions of the rules of a knowledge
source concurrently, then concurrently
execute the actions of all applicable rules.

rules-nosync: Begin evaluating the
conditions of the rules of a knowledge
source in parallel and execute the actions
of each rules as soon as the conditions
are known to be true. With this option
there is no synchronization between the
left and righ’ : I sides of rules.

Only one of
ions can be set at any

kss: Invoke all the applicable
knowledge sources concurrently at step
selection, synchronizing by waiting for all
knowledge sources to complete execution
and add events to the event list before
concurrently invoking a new set of kss.

kss-nosync: Invoke all applicable
knowledge sources as soon as a new event
is created. This option provides the least
control of all the options available and
does no synchronization. Many
applications will have to be changed
slightly to execute reasonably under these

conditions, nparticularly removing any
possible circular knowledge source
invocations., To implement the parallel

execution of knowledge sources without
any synchronization, the control loop of
CAGE was drastically altered from that
described at the beginning of this paper.
(See CAGE Overview.) Without any
synchronization, as soon as an event is
created it immediately allows all relevant
knowledge sources to be invoked. WNo
events are added to the eventlist and no
focus event is ever selected. A timed
loop was added to the top level control to
re-invoke the user’s initial knowledge

the
one

source in case the system exhausts all
previous events before the termination
condition is satisfied.

kss-minisync: Add an event to the
event list and do minimal computation at
the point of synchronization before
invoking the next set of knowledge
sources. The main computation done is
the collection and prening of similar
events, leaving fewer events to activate
subsequent KSs. The mini-sync and no-
sync options are different from the
parallel kss option in that they don't use
the serial step-selection procedure.

B. How to specify and change parallel
components

A function, SELECT-PARALLEL-OPTIONS is provided to
allow the user to quickly change the selected parallel options.
SELECT-PARALLEL-OPTIONS has no arguments. A menu
of parallel options will pop-up on the screen and the user can
select new options or delete old ones.

V DESIGN DETAILS

CAGE is currently implemented in an object-oriented style,
using the Flavors feature of ZETALISP. The top level object
in CAGE is called the BLACKBOARD. From the Blackboard
object therc are pointers to each of the principle components
of the system, as follows

contrel-structure: all control information
specified before compilation is stored here, as well
as pointers to run-time control structures.

hypothssis-structure: the blackboard
space, which must be structured by the user.

solution

knowledge-source-list: names of the knowledge
sources containing the production rules of the user’s
application.

user-functions: optional, user-defined functions
invoked by the rul:s

information-structure:
static data structures

A separate data structure, Parallel-Specifications, is used to
store the parallel options selected by the user.

The DEFKNOWLEDGESOURCE macros will create, at
compile time, an object for each knowledge source, and a set
of associated methods. During the initialization process an
instance of each knowledge source object is created. Other
instances may be created during system execution if one of
the concurrent knowledge source options is selected. One of
the associated methods, SETUP-AND-START, evaluates the
knowledge source definitions and initiates the rule
interpretation when a knowledge source is invoked.

Each rule is created as three methods, EVALUATE-
DEFINITIONS, EVALUATE-CONDITION, and EVALUATE-
ACTION, associated with the rule’s name using the :case
method-combination feature of Flavors. The keywords of the
action clause listed atove are keywords in the method
definitions, and therefore must be preceded by colons in the
macro definition of a rule.

CAGE utilizes a global variable, @ PARALLEL-
SPECIFICATIONS, whose value is a list of_ the current
parallel options specified by the user. It is initially NIL and
is updated using SELECT-PARALLEL-OPTIONS.

“uring execution CAGE prints out messages indicating the

state of the execution and uses some simple graphics to help
the user observe the simulation of concurrency. A set of
small windows will appear on the right side of the screen, on«
for each process initiated by CAGE. Any state messages

optional, user-defined,

-151~

generated by the parallel process will appear_in one of_ these
associated windows, instead of the main terminal /0 w_mdow.
There is only room to display 12 of these small i/o windows
at the same time and still have them large enough and lea.e
them up long enough to be readable. If more than 12
processes are active at the same time, the windows will
overlap.

VI FUTURE DIRECTIONS

The next step for CAGE will be a reimplementation on
CARE. The instrumentation in CARE will p}'owde us with
the nceded tools for measuring the speed-up gained from each
of the various concurrent options in the CAGE Syslen_"n.
CAGE users will be able to implement and debug their
applications in the current CAGE-on-LOQS system with its
fast simulation time. Once an application is debugged it
could then be run on the CAGE-CARE system for complete
and accurate measurements.

References

[Gabriel 84] Gabriel, Richard P. and McCarthy, John.

Queue-based Multi-processing Lisp.

Proceedings of the ACM Symposium on Lisp
and Functioral programming 125 - 44,

August, 1984,

Nii, H. P. and M. Aiello.

AGE: A Knowledge-based Program for
Building Knowledge-based Programs.

Proc. of IJCAI 6 :645 - 655, 1979.

Rice, J. P.

The L100 Language and Compiler Manual.

Technical Report KSL-86-21, Heuristic
Programming Project, C. S. Dept.,
Stanford University, 1986.

[Nii 79]

[Rice 86]

Poligon, A System for Parallel Problem Solving

J. P. Rice

Knowledge Systems Laboratory, Stanford University

Summary

The Poligon! system is a new, domain-independent language
and attendant support environment, which has been designed
specifically for the implementation of applications using a
Blackboard-like problem-solving framework in a parallel
computational environment.

This paper describes the Poligon system and the Poligon
language, its salient and novel features, Poligon is compared
with other approaches to the programming of parallel systems.

1. Introduction

The larger project of which Poligon is on'y a small part will
not be discussed here in any detail. Design decisions made in
other paris of the project will be held to be axiomatic, though
some mention of these decisions will be made in order to
show the motivation for the features of Poligon. The primary
objective of the overall project is to achieve significant
speedup of knowledge based systems, particularly those
directed at real-time signal understanding.

The purpose of the Poligon language is to svorass the
problem solving behaviour of human experts in o5 .»* to map
them onto a problem solving framework, whick wiil run on
simulated parallel hardware.

The fields of knowledge representation and problem solving
are rich and complex. This paper will not go into any great
detail in describing the problem solving processes involved.
Poligon tries usefully to express knowledge both in a declara-
tive and procedural sense, through rules [Davis 77]; and in a
structural scnse, through the configuration of the solution
space. These will be described below,

Some crucial design criteria and carly design commitments
have affected the developmunt of Poligon, the consequences of
which will be described in this paper. These can be sum-
marised as fo'lows.

o Poligon is intended to be a language for both
problem solving and the general purpose program-
ming necessary to support it Unlike most
programs, Poligon programs must also address the
problems of real-time processing, inclvding
asynchronous events and input data backup.
Poligon, therefore, must assist in this respect.

1The author gratefully acknowledges the support of the following funding
agencies for this project; DARPA/RADC, under contract F30602-85-C-0012:

NASA, under contract number NCC 2-220; Boeing Computer Services, under
contract number W-266875.

o The overall project’s strategy is to solve problems
significantly faster than existing systems through
the exploitation of parallelism. Poligon is targeted
at a MIMD, distributed-memory, message-passing
machine with ~thousands of processors. This
hardware gives direct support for futures, remote
objects and such efficient message -passing
strategies as Broadcast and Multicast so as to take
full advantage of 1ts processor interconnection net-
work.

A consequence of the desire to achieve a sig-
nificant order of parallelism in Poligon programs
is that many of the control mechanisms used in
serial problem solving systems, such as schedulers
and event queues, have been discarded because they
are highly serial. Most actions in Poligon
programs are, therefore, performed asynchronously.
Rules, the primary mechanism in Poligon for
describing things and for getting things done, are
activated as daemons. Much of the work in
Poligon is aimed at providing mechanisms to cope
with this chaotic behaviour,

This paper contains the following;

+ A discussion of related work in parallel languages.

+ A discussion of the design approach guiding the
development of Poligon.

e A description of the abstraction mechanisms
provided by the Poligon system with some small
examples.

 Some concluding remarks.
» References for further reading on the subject.

L1. Knowledge Representation and Problem Solving in Poligon

The primary purpose of this paper is to discuss the Poligon
language. It is, however, not possible completely to divorce
this from the underlying hardware and from its purpose;
knowledge representation and problem solving,

Poligon can be described loosely as a "Blackboard System".
What this means in practice is that the problem solving
metaphor of Poligon is one of cooperating experts gathered
around a blackboard, posting ideas about their deductions on
the blackboard. For an exposition on the term "Blackboard
System” the reader is encouraged to read [Nii 86]. Poligon
tries usefully to express knowledge both in a declarative and
procedural sense, through rules and functions; and in a struc-
tural sense, through the configuration of the solution space on
the blackboard. In particular, the term "blackboard” will be
used to describe the set of all of the nodes in the solution
space of the system.

-152-

—y
o

v . <

The suggestion that Poligon is a blackboard system is a little
controversial. There are a number of respects in which this is
not a satisfactory label. This term will, however, be used
freely from now on for lack of a better label. The reader is
encouraged to substitute for the term ”Blackboard system” any
term, such as "Frame System” which seems best to fit his
mental model of what is being described.

1.2. Poligon’s Model of Parallelism

It seems appropriate here to describe Poligon’s model of
parallelism. In its simplest form this can be thought of as An
Element in the Solution Space as a Processor.

This gives some idea of the granularity that is being sought.
It is, however, by no means the most efficient way to imple-
ment Poligon. Poligon programs want to be able to execute
rules and parts of rules associated with a particular Node in
the solution space in parallel. These rule activations need
processors, on which to execute,

Thus a modified version of Poligon’s model of parallelism
could be A Rule Activation as a Process, with sufficient
processors lo cope with the parallelism exhibited by the rule
during its activation. This tends towards a mapping of solu-
tion space elements onto a cluster of processors to service the
rule activations. In practice, however, a number of nodes
might be folded over the same set of processors, either be-
cause nodes become quiescent or because the load balancing in
the system is sub-optimal.

2. Related Work

Work in this field falls into two distinct categories; work on
parallel knowledge based systems and work on languages for
parallel symbolic computation. The former is, at present, a
very sparse field and, will not be discussed here, though some
references are given in § 6. The latter is much more highly
developed.

Much work is already being done on parallel languages for
general computation. Amongst these languages are Actors,
MultiLisp and QLisp on the one hand and concurrent logic
programming languages and purely functional languages on
the other. Often missing from this work is a thrust toward
the investigation of large applications in parallel domains, for
instance the development of parallel knowledge representation
and problem solving systems. This is, of course, what Poligon
attempts to do. This section will discuss briefly Actors, QLisp
and Multilisp, since these are the parallel syinbolic computa-
tion languages which are most relevant to the development of
Poligon and the software which lies beneath it

2.1. Actors

Actors [Hewitt 73] probably come the closest in their be-
haviour to Poligon, at least at an implementation level. Ac-
tors are independent, asynchronously communicating objects.
As is the way with purely object oriented systems they com-
municate only through message passing and have tightly
defined operaticus. The mutual control of Actors an paral -
lelism is achieved by the support of procedure call and
coroutine model message passing. The modularity afforded by
this sort of programming metaphor may well be especially
useful for the programming of distributed-memory, message-
passing hardware, since having a close match between the
hardware and software metaphors is likely to achieve better
performance. It is not in any way surprising that the operat-
ing system level software, which underlies Poligon, is founded
on many of the same principles as Actors. It has yet to be
seen whether this programming inethodology is able in prac-
tice to extract significant amount of parailelism from
problems, though clearly this project hopes that it is.

2.2. MultiLisp and QLisp

MultiLisp [Halstead 84] and QLisp [Gaiviv) 23] are lumped
together because, at least in some senses, ! .y have strong
generic resemblances. They are both, at the user level, exten-
sions to existing Lisp dialects which provide mechanisms for
the expression of parallelism, such as parallel Let constructs
and parallel function argument evaluation (QLet and PCall).
It is assumed by both of these systems that the hardware at
which they are targeted is a form of shared-memory mul-
tiprocessor. Although there is no particular reason why such
systems could not be implemented on a distributed-memory
system, they are optimised for shared-memory multiprocessors.
These are currently the most readily available form of mul-
tiprocessor. They would, however, need significant extensions
in order to be able to exploit a distributed-memory system as
is shown in CAREL [Davies 86], an implementation of QLisp
for distributed-memory machinés. The assumption of shared-
memory, MIMD processors in these systems imposes con-
straints on the languages. They assume, at least to an extent,
that processes will be expensive and that the user must have
control over their creation. Poligon assumes quite the op-
posite,

3. The Design of Poligon

Poligon will be discussed first in terms of the way in which
the language relates to the problems beiing solved and its un-
derlying systems. Next the language will be discussed ir terms
of the requirements for languages in general and parallel lan-
guages in particular.

3.1. Background and Motivation

The philosophy behind the design of Poligon comes from
intellectual and pragmatic pressures. It attempts to steer a
middle course between the extreme purism of applicativists
and the extreme pragmatism of the proponents of side-effects.

From the outset, the project was oriented towards real-time
problem solving. Blackboard systems are well known to be of
interest as tools in the knowledge engineer’s toolkit. Little
work has been done to investigate the appropriateness of the
blackboard metaphor to parallel execution or the meaning of
parallel blackboard systems, though it is frequently claimed
that they are full of latent parallelism. The excellent formal
properties of pure applicative and logic languages may well be
of little use in a system which, for whatever reasons, needs to
express side-effects and which has to cope with real-time
constraints. Poligon is a system in which some of the formal
rigour of truly applicative systems has been put aside in
favour of a pragmatic approach to the exploitation of paral-
lelism,

The BB1 project [Hayes-Roth 85], also a project at the
HPP, is an attempt to investigate the behaviour of highly
controlled problem solving sys'ems. It attempts to use a great
deal of meta-knowledge and makes significant use of globality
of reference in order to support an holistic view of its solu-
tion space, thus providing a basis for meta-level reasoning,
The Poligon project is an attempt to investigate quite the
reverse. Poligon has very little support for meta-knowledge
and allows no global data or global view of the solution space
whatsoever. The purpose of this experiment is to determine
whether a system, unconstrained by a great deal of serialising
control knowledge, might still be able to find useful answers
faster than an highly controlled system, such as BB1, which
would be extremely difficult to speed up significantly through
parallelism,

The Poligon system pictures the elements in its solution
space as processes resident on processors distributed across a
grid, with the code necessary for them intimately associated
with them. Because no global control is permitted in Poligon
the activation of rules is necessarily completely daemon-

~-153-

ik

driven.

The project hopes to achieve significant speed-up through
parallelism. This can be done only if much parallelism is ex-
tracted from the problem. Ideally, the system would try to
achieve its parallelism by exploiting parallelism in the
program's implementation at a very fine grain. This can, in
principle, extract the maximum amount of parallelism avail-
able. On its own it has drawbacks, however. The costs of
processes and the problems of synchronisation at a fine grain
size make it difficult to exploit such parallelism without the
use of hardware mechanisms significa« 'y different from those
available with prevailing technologies. This approach is also
only part of the story. It neglects the fact that a properly
parallel decomposition of the source problem is crucial to
finding a lot of parallelism. One could summarise the
problems, therefore, as expressing the problem in a suf-
ficiently parallel fashion and the matching of the parallelism
in the program to the grain size of the underlying hardware.
Poligon addresses these issues.

Parallelism is very hard to find in conventional programs.
Applicative systems have an advantage in this respect because
of their relative lack of need to express parallelism explicitly.
Their unchanging semantics when parallelism is introduced
eases matters considerably. Poligon has attempted to learn
from this and has pure applicative semantics in a number of
areas but takes a different approach to the finding of paral-
lelism in programs. It attempts to execute everything in
parallel that it can and leaves it to the programmer (0 find
any serial dependencies.

When the parallelism in a program is user-defined,
problems can result from an inappropriate match between the
granularity of the parallelism expressed in the program and
the granularity of the underlying machine. In systems of the
size aund complexity of a typical Poligon application such a
match would be particularly difficult to find because of the
large number of processors involved and because it would be
difficult for the user to keep track of the location of his data
in the processor array. These characteristics are a consequence
of the highly variable and data dependent state of the solution
space in such programs. Poligon, because of its structure,
should be able largely to obviate such granularity mismatches
because parallelism is defined and controlled by the system
and the Poligon system is closely matched to the granularity
of the underlying system.

It is often thought that problems suitable for solution by
means of the blackboard model tend to partition their solu-
tion spaces into what look rather like pipe-lines. Pipe-lines
are, of course a well known form of parallelism. In practice
pipes in such systems are not pipes in the normal sense, since
they are more like "leaky” pipes. It is one of the prime ob-
jectives of these systems to reduce’the amount of data as it
percolates up through the abstraction hierarchy of the solution
space. Because of the reduction in the data rate flowing in
these pipes the contention problems that one might expect
when pipes are connected into trees, as they often are, are al-
leviated.

A significant limitation of the performance of pipelines is
that, at best, the parallelism that they can produce is propor-
tional to the length of the pipe. This would typically be only
of the order of half a dozen sections. This is clearly not the
"orders of magnitude” of performance improvement that we
all hope for. In practice, though, given a ldrge enough
problem, it is often possible to set up a large number of these
pipes side-by-side. It is one of the major objectives of the
Poligon language to encourage, facilitate and reward the
decomposition of problems so that this form of independence
can be exploited, so that such pipes will be created by the
system.

3.2. Language Requirements

Poligon is a language which is by no means directed at
general computation. It is nevertheless intended to be used
for the solution of large, complex problems on distributed-
memory parallel hardware. The following is a brief list of
the ways in which Poligon attempts to address some of the
primary requirements of programming languages.

« The language should provide a tangible method of
expressing the ideas of the programmer.

The Poligon language has been written with con-
siderable input from those with experience in
problem solving systems in the application
domains at which it is targeted. It is therefore in-
tended to match the ideas of the "Expert”, whose
knowledge is to be encoded. but in a domain inde-
pendent way.

The compiler? should provide a mapping between
the language and the underlying systems, be they
hardware or software.

Poligon’s compiler compiles Poligon language
source into code understood by the underlying Lisp
system and the concurrent object-oriented operat-
ing system running on its target hardware.

The language should abstract the programmer
from its underlying systems.

The Poligon system shields the user from all
aspects of the underlying hardware such as the
topology of the processor network, the message-
passing behaviour of the hardware and the location
of any code or data within the network.

The language should provide mechanisms for the
exploitation of the underlying systems to good ef-
fect.

The underlying hardware and software systems are
exploited in a number of ways in Poligon. Firstly
the language encourages the user naturally to
decompose his problem into a form which will
map efficiently onto the underlying hardware.
Secondly the language offers a number of
application-independent, high-level constructs,
which are designed to exploit the hardware to the
full. These topics are covered more fully in § 4.

The language should allow the development of
software faster than would be the case if it were to
be developed in a less abstract form.

Considerable effort has been spent on making the
Poligon language a high level way to describe the
solutions to parallel knowledge based system
problems. A high level language with such fea-
tures as infix, user-definable operators and user
definable syntax, provides a natural way for the
expert to implement his knowledge.

Much effort has been spent also on integrating the
Poligon system cleanly into the program support
environment of the Lisp Machines on which it
runs. For instance, incremental compilation is
supported from within the editor.

Tne language should assist the development of
reliable, maintainable and modular sof tware.

Language features are provided to minimise the
possibility of inconsistent modifications to the
source code and the structure of the language and
its semantics are defined in a manner which min-

7’Thc: term Compiler is used in its most general sense here, perhaps an in-
terpreter or a machine which is clever enough to execule the language
specified directly.

=154~

_a

e

P . N

imises the probability of complex bugs being in-
troduced by asynchronous side-effects.

A sophisticated set of debugging facilities is
provided. A system that emulates the semantics of
full, parallel Poligon programs as closely as pos-
sible in a serial environment has been produced.
The user is able to debug his program serially to
remove all possible serial bugs and bugs due to the
non-deterministic execution order of Poligon
programs before it is ported to the full parallel
environment.

In addition to these requirements a language targeted at
parallel hardware should have a number of awsibutes which
reflect the parallel nature of the target hardware,

» The language should address the granularity of the
hardware.

Poligon is closely matched to the granularity of
the hardware at which it is targeted. It is generally
expected that the solution space of the problems
addressed by Poligon programs will have of the
order of thousands of nodes. This is of the same
order as the granularity of the hardware.

The language should provide a mechanism for the
extraction of parallelism from programs and from
the programmer.

Poligon extracts parallelism from programs and the
programmer in two main ways. First the decom-
position of the problem is encouraged to be as
modular as possible. Secondly the semantics of
Poligon programs are such that almost all of the
program can be executed in parallel without
changing their behaviour from that seen during
serial execution. This allows the system to execute
most operations in parallel if it has the resources
to do so.

« The language should, where appropriate, shie!d the
programmer from those details of the hardware
which are particular to parallel computing engines,
such as topology.

The hardware, on which Poligon programs runs,
causes Poligon programs to have to cope with
communication between solution space elements on
different processor sites. All such message passing
is hidden from the user. In fact the Poligon lan-
guage has no concept of message-passing at all.

Futures are used for all remote operations in the
user’s program, The hardware implements these
such that there is no efficiency penalty associated
with creating futures for such remote accesses.
The Poligon language copes with these invisibly to
the programmer.

As can be seen quite easily from the above one of the fac-
tors that must be well understood before a language is
designed is the general purpose of the language and the level
of generality that is expected of programs written in it. A
language, whose sole purpose is the expression of solutions to
huge matrix problems on systolic hardware might well be jus-
tified in expecting the programmer to express, at quite a low
level, the mapping of the program onto the hardware
provided. This is less likely to be a reasonable expectation of
a language targeted at the solution of large, complex problems
of an unpredicatable, dynamically-varying or data-dependent
nature. Poligon is a fairly general purpose programming lan-
guage with a very definite bias.

-155~-

4. Abstractions in Poligon

To cope with Poligon's view of parallelism and with the
chaotic execution of rules (see § 1) a number of linguistic
abstractions are provided.

Poligon provides abstractions for knowledge representation,
control, data, parallelising, real-time and side-effect control.
These will be described briefly in this section.

4.1. Knowledge Representation
Knowledge is traditionally represented in blackboard systems
in a number of ways, listed below.

o Declarative Knowledge is enroded in Rules.
o Procedural Knowledge is encoded in procedures.

« Knowledge concerning the sequencing of activities
is encoded in the scheduliny mechanism.

« Knowledge about the structure of the solution
space is encoded by the definition of the structure
of the blackboard.

+ Knowledge about relationships between the objects
in the system is often encoded using a Link
mechanism,

These all represent knowledge about the application domain.
In addition, there is in any program a large body of implicit
knowledge concerning the semantics of assignment, sequencing
and the system’s function as a whole, especially in for systems
with poor formal properties. This will not be discussed here.
The Poligon Ianguage does, however, go to considerable effort
tgblmake the semantics of the Poligon system as clear as pos-
sible.

4.1.1. Declarative Knowledge

The encoding of Declarative Knowledge in blackboard sys-
tems is conventionally done in Rules3, which exist within
scheduling units known as Knowledge Sources. Poligon also
has the concept of Rules and Knowledge Sources, though their
meaning is somewhat different. Unlike serial blackboard sys-
tems, the rules in a Poligon system are activated autonomously
and asynchronously.

Existing blackboard systems usually suffer from a confusion
and overloading in the semantics and purpose of knowledge
sources. It is useful to collect one’s knowledge of one subject
together into one chunk. These chunks are knowledge sources.
Sadly, the implementors of blackboard system frameworks of -
ten think of knowledge sources as scheduling units and thus
design their scheduling strategies around the idea of the
"invocation of knowledge sources”, even though it is by no
means necessarily the case that it is appropriate to schedule
all of knowledge in a chunk at the same time. This has a
detrimental effect on the modularity of the system.

In Poligon, knowledge sources are used as linguistic and
software engineering abstractions provided for the program-
mer in order to allow him to collect related knowledge
together. There are no scheduling semantics associated with
knowledge sources in Poligon. Because of the underlying
system's daemon-'ike rule triggering mechanism the rule
writer is allowed completely to decouple the concept of
scheduling from the concept of chunks of knowledge.

Rules are activated as a result of "events” happening to the
fields of nodes (see § 4.3.1). These events can be caused ei-

3Thc term Rule is used here in the sense of "Pattern/Action pairs”, 1t
should be noted that these are quite unlike the structures called rules used, for
instance, in Prolog. Pattern/Action rules move towards a solution to their
problem by performing side-effects on their environment, in this case the
blackboard, not through unification.

Py

ther by a write operation to a field, by a semaphore being
waved at a field or by the real-time clock.

A powerful Expectation mechanism is provided, which al-
lows the dynamic placement and specialisation of rules. An
Expectation is a way of expressing model-based knowledge.
Given a particular model of the behaviour of a system, cer-
tain changes might be expected if the model's interpretation
of the world is correct. Expectations allow such changes to be
watched and even allow their associated rules to be triggered
if the changes do not happen in a given time. Such expec-
tations can be placed to watch for events happening, or not
happening, in specific places on the blackboard, at specific
times. Expectations provide a focussing mechanism* and,
coupled with the system's ability to trigger® rules and "time-
out" unsatisfied Expectations on the basis of the real-time
clock, Poligon allows complex time-critical knowledge to be
expressed and applied simply.

An example rule is shown in figure 4-1.

4.1.2. Procedural Knowledge

Procedural Knowledge is an all encompassing term usually
used indiscriminately to describe both knowledge about the
relationships between values (Functions) and the mechanisms
for performing side-effects and for sequencing events
(Procedures). This is often a result of such systems being
built on top of Lisp systems, which fail to draw distinctions
between procedures with side-effects and those without.
Poligon does not allow the encoding of arbitrary knowledge
into procedures. Only side-effect free functions are allowed.
Side-effects ere permitted only in the bodies of rules, where
they can be controlled.

4.1.3. The Sequencing of Actlvities

In most blackboard systems knowledge of the required se-
quencing of events at a macroscopic level is expressed by the
implementation of the system's scheduler. In many cases, such
as AGE [Nii 79] this scheduler has fixed characteristics and
the application has a fixed interface to it. In others, such as
MXA [Rice 84], the user can specify the characteristics of the
scheduling of knowledge sources. Poligon provides no such
mechanism. Since all rules are activated as daemons, entirely
asynchronously, the only analogue of scheduling is the im-
plicit sequencing of the activation of rules due to some rules
causing changes that trigger other's rules.

4.1.4. The Structure of the Solution Space

Poligon is unlike most blackboard systems in this respect.
Most blackboard systems partition the blackboard into Levels,
which represent the hlerarchy of abstraction in the solution
space. Poligon uses a much more general representation
which is like that of some Frame systems, providing a "Class"
mechanism with user defined classes and metaclasses, and
compile-time and run-time inheritance. The functionality of
the class mechanism in Poligon is a superset of that of the
levels provided by most blackboard systems. The programmer
can, of course, represent his solution simply using classes as
levels in Poligon if he wishes. Classes are discussed more in §
431.

4Il should be noted 1hat the term Focussing mechanism is used in a more
general sense than by many blackboard systems, There can be any number of
such foci all acting in parallel in a Poligon program. The expectation
mechanism is another wauy of applying knowledge in order to take advantage
of some local circumstances in order to solve a problem more efficiently or
cleanly.

Sa rule is said to have been Triggered when it is activated so that it tries
to evaluate its preconditions and body.

The following is a trivial example rule, which shows a small set
9f the features of Poligon. This rule could be interpreted as say-
ing; “If the most recent two phonemes that hove been seen ore
00" and "ph” then the word is "foo". Having concluded 1his the
rule finds the set of sentence components, which represent polen-
tial conclusions of the word "foo", and sets lthem so that they are
no longer marked as hypothetical. It ulso makes a Sentence-
Seomp'?nendt type node, which represents the word "fuo”, which has

en found.

Rule : Find-the-word-Foo
Clasa : Phoneme

{ Class of nodea with which the rule will be associated }
Field : uncorralated-phonemes

{ Try to activate this rule when this field 1s changed }

Definitions :
all-phonemea-in-order =
Tha-Phonomo@tuncorre'l ated-phonemes

{ The operator "@1f* returns all values in a field in }
{ time order. The-Phoneme repreaents the node, that }
triggered this rule }
most-racent-phonama =
all-phonemaa-1in-order-Haad
neéxt-most-racant-phoneme =
all-phonemes-1in-order-Tail-Head
i Head and Tail are 11ke CAR and CDR only they operata }
on 11ists, Lazy 1ists and Baga }

Condition Part :
When : all-phonamea-in-order-length-of-11ist > 2
{ The "whan" part 1s a locally evaluable pracondition }
Ir : moat-recent-phoneme-Sound = "oo"
And next-most-recent-phoneme-Sound = "ph*
{ The precondition for tha Rula }

Action Part :
Definitiona :
new-sentence-component =
New Instance of Sentence-Component
{ The creation of the new Santence-Component noda }
hypothetical-fooa =
{ A Bag of words, which ara "foo"
Subset of Words which satisfies

A(a-word)
a-word-hypothetised And a-word-letters
=[foo]
End:
{ Process all elaments in the Bag hypothetical-fooa }
Changes :
n Parallel for each a-word in hypothetical-foos
Change Type : Update
Updated Node : a-word

Updated Fielda : hypothetised ¢« nil

Sat fields of new aentence component in R
parallel with updating the elements in the Bag }
Changes g
hange Type ¢ Update
Updated Node : new-aentence-component
Updated Fields : letters « [f o0 o]
conatituenta «
List(next-most-recent-phcneme,
most~-recant-phoneme)

Ail of the actions taken by this rule are performed in parallel,
since they are independent of one another, though there is, of
course, a serial dependency between the condition part and the ac-
tion parl of the rule.

Figure 4-1: An example Poligon rule

4.1.5. Knowledge about Relationships

Relationships between entities in blackboard systems are of-
ten expressed by a form of Link mechanism. Sometimes this
link is not so much a part of the system as a reflection of the
fact that fields in nodes can have as their values other nodes
in the system. Other systems have more sophisticated
mechanisms that express links explicitly and allow property
inheritance along links, eg. BB, or the propagation of
likelihood, e.g. MXA.

Poligon has a number of system defined relationships; "Is an
Instance of”, "Is a part of" and "Is a subclass of”. The user
can define arbitrary relationships between nodes on the black-

~156-

[y Sy

board. These links allow property inheritance and are, them-
selves, represented as nodes and so can have attributes in the
same way that any other nodes can. Links are therefore first-
class citizens in Poligon and they allow Poligon programs to
act like semantic nets.

4.2. Control Abstractions

Tpe flow of control is a rather evanescent concept in a
Poligon program. Any rule can be triggered at any time. It is
important not to think of the control flow in a Poligon
program in the same terms as that of a conventional serial
program. There is a well defined flow of control within
rules; the action part of a rule is activated after the condition
part, upon which it is predicated. Apart from this, however,
there is no flow of control in any normal sense. It should be
noted also that what little flow of control there is only
specifies the strict ordering of activities. The execution of a
sequence of actions can be interrupted at any time. The size
of the atoms for Poligon's atomic actions is very small.

The triggering of rules is controlled by the user associating
rules with particular fields of nodes or classes of nodes on the
blackboard. The triggering of rules occurs when a field,
which is being watched in such a manner, is updated or is
semaphored. A semaphore mechanism is provided to allow
rules to be triggered without a field being updated. This
pro;iges a form of explicit event-based programming, if it is
needed.

Clearly one of the objectives of the design of the Poligon
language is to provide a language in which it is simple to ex-
press logically distinct pieces of knowledge, independent of
other such pieces of knowledge. The decomposition of the
problem in this manner causes the system to appear to iterate
towards the solution of its problem by small, simple and dis-
crete steps, rather than by complex, giant leaps.

4.3. Data Abstractions

Poligon provides a number of distinct data abstractions.
One is characteristic of other blackboard systems, one of pure
functional languages and one is rather novel.

« The structure of the blackboard is characterised by
being made of Nodes, elements in the solution
space. These have a usei-defined, record-like
structure.

« Lazy evaluation is supported.

« Bags are supported as data structures, which paral-
lelism enhancing.

Numerous operations are defined for these data abstractions,
particularly a number of generic operations which can be ap-
plied to lists, lazy lists and bags, which shield the user from
the underlying data structures used by the system or by other
segments of his program.

4.3.1, The Structure of the Solution Space

The most obvious data aostraction provided by Poligon is
similar to that provided by conventional blackboard systems,
that is, the Node on the blackboard as an element in the
solution space. Such nodes are record-like internally. They
have named fields, which can often contain multiple values to
be associated with that name. Poligon provides this but also
goes beyond it.

Conventional blackboard systems, such as AGE, tend to
provide nodes on a blackboard divided into groups, often
called "Levels”. "Levels” themselves are not represented. Ar-
bitrary use of global data, held in global variables, distinct
from the blackboard is also allowed.

Poligon has a much more regular representation for data.
The nodes are represented as instances of Classes. The
Classes themselves are represented as Nodes, which "control”
their instances. Knowledge concerned with classes as a whole
can be associated with these nodes. Shared, global variables
are not allowed in Poligon.

Poligon also provides;

Superclasses Classes that provide characteristics to the
instances of classes. These can be thought
of as templates for the instances.

Metaclasses Classes that provide characteristics to the
classes themselves. These can be thought of
as templates for the classes.

Thus the classes are themselves instances of metaclasses,
which can be user defined, such that instances of a given class
can have any number of superclasses, i.e. component
templates, and any number of metaclasses, i.e. component
templates for their parent class., It is possible to instantiate
classes any number of times, as well as their instances.

Automatic property inheritance allows shared data to be lo-
cated on locally central nodes, which are immediately visible
to the interested parties. This distributes shared data in such
a manner as will, hopefully, minimise hot-spotting.

An example class declaration, the specification of a template
for a class of nodes, is shown below. The declaration defines
a class of nodes called Words, each instance of which has two
fields (slots) called Letters and Sound.

Class Words :

Fields :
Lettera

Sound

Extensions to this sort of syntax allows the definition of
superclasses and metaclasses within class declarations. The
following example defines the class Sheep. Each instance of
the class Sheep will have the characteristics defined for sheep
and for mammals, The class called Sheep (an instance, in
fact, of the class Meta-Sheep) has the characteristics of fypes
of animals.

Class Types-of-animals :
Fields :
Rata-0f-Bresding

Class Mammals :
Fields :
Colour-of-fur
Number-of-legs : 4

Class Sheap :
Metaclasses : Typas-of-animals
Superclassea : Memmals
Fielda :
Thickness-of -wool
Flock

4.3.2, Lazy Evaluation

Lazy Evaluation is supported in the guise of Lazy Lists,
Lazy Function Arguments and in the form of the lazy associa-
tion of expressions with names. The following is an example
of the lazy association of a name with a value. The name A-
Meaningful-Name is associated with the value of the call to
the function An-Expensive-Function®.

Dafinitions :
A-Meaningful-Nama =
An-Expensive-Function(an-arg, another-arg)

6Suitablc Force operations are provided so that the time of evelustion can
be controlled by the progrem if necessery. These force operstors ellow the
progrem to perform Eager Evaluation if it is needed.

-157~

Pt

L,

The value of an item defined in a Definitions construct is
always a future if it is possible to evaluate it as a future.

4.3.3. Bags

One abstraction suited particularly to the parallel mode of
execution of Poligon programs is the Bag data type. Bags are
implemented in Poligon so that they are formed as the result
of efficient parallel operations and can be processed in paral-
lel efficiently. Even when the elements of Bags are processed
serially they perform efficiently. The lack of a defined or-
dering in the Bag means that the system can always return the
first satisfied Future out of a Bag of Futures, causing min-
imum waiting for values. Similarly, when a program attempts
to extract an element from a bag and there are no satisfied
elements the process in which this happens will go to sleep
until the next available future is satisfied.

A Bag is generated, for instance, as the value of the follow-
ing expression. It is a Bag, which contains all of the Words,

whose Sound is "phoo”’.

Subset of Words For Which Element - Sound = "phoo”

4.4, Parallelising Abstractions

Poligon supports data representations which are designed to
give the user a high level handle on the exploitation of paral-
lelism. Most values computed in Poligon are derived as Fu-
tures. Computation is decoupled from the expressions which
reference values. Futures are, however, completely invisible to
the user in Poligon. It understands which functions are strict
in their arguments and so waits for the satisfaction of a Fu-
ture only when it is required. @ The programmer can, of
course, declare his own non-strict functions and operators.
All DeFuturing coercions are performed automatically by the
Poligon system. Thus the following expression will deliver a
list with two elements, one of which is the value of @ and one
of which is the sum of b and ¢. The first wil! be a future, if
a is. The second will be the DeFutured value b+c

List(e, b+c)

The efficient use of the bandwidth of the processor inter-
connection network is enhanced by the use of Broadcast and
Multicast operations., Broadcast messages allow messages to
be sent to every node in the system in a single operation.
Multicast messages allow messages to be sent to a collection of
nodes in a single operation. The Poligon system uses these
extensively in the processing of the Bag data type and in the
execution of groups of actions in parallel. It uses the same
mechanisms to provide an efficient implementation for
searching a collection of nodes on the blackboard for patterns,
which tends to cause significant slowing of serial implemen-
tations because of the combinatorial nature of such searches.
It allows the blackboard to be searched for bags of matching
nodes in a single, fast operation. This provides a significant
improvement over the serial construction of such collections.

4.5. Real-time processing

Real-time processing brings its own problems. Poligon
provides a simple and regular mechanism for defining the in-
terface between the Poligon system and its signal data. This
data can be from an arbitrary number of different types of
sources and is posted on the blackboard asynchronously.

Poligon also provides a mechanism by which each datum is

TThe expression "Element - Sound” denotes extracting one of the values as-
sociated with the "Sound” field of the potentiel element in the bag. :‘~“ is an
operator that selects which of the values associated with the field is to be
delivered.

timestamped from the time that it enters the system. These
timestamps are propagated automatically by the system so that
it is trivial for the programmer to manipulate time-ordered
collections of values. This mechanism is required because the
conventional implicit time ordering of data in lists cannot
apply here and the non-ordered nature of Bags is sometimes
not sufficient.

4.6. The control of assignment

Assignment is something which is likely to cause significant
problems in any parallel system. Poligon constrains assign-
ment in a number of ways. Side-effects are only permitted
on the fields of nodes. All side-effects can be monitored by
rules that might be interested in the changes to values. This
removes the possibility of the knowledge base getting confused
because of surgical side-effects to data structures at arbitrary
times and at arbitrary places in the processor network. As-
signment is also constrained so that all of the updates to the
fields of a given node are done atomically, before any rules
which might be triggered by these changes are allowed to trig-
ger. Such atomicity helps to preserve the consistency of the
system,

An example of a collection of updates to fields of a given
node is given below. In this example the node an-instance-
of-words is having two of its fields updated; Sound and Let-
ters. Operators, such as "«¢”, allow different sorts of
modifications to be made to fields. Such operations might be
"add this value to the values in this field” or "replace all of
the values in the field”, This avoids complex and potentially
expensive expressions in the old value of the field being
evaluated non-locally.

Chenge Type Updete

Updeted Node : en-inetence-of-words

Updeted Fields : Sound « "phoo”
Lettere ¢« { f 00]

5. Conclusions

This paper has described Poligon, a language and system for
the investigation of problem solving on distributed-memory,
parallel hardware. The language was described in the context
of related work in the field and in terms of the abstraction
mechanisms provided. No significant description of the un-
derlying run-time support has been given.

The Poligon system is still young. Only recently have ap-
plications been mounted on it in earnest. Two distinct ap-
plications in the field of real-time signal processing are now
being implemented and more applications are likely to be
started in the near future. Poligon has proved to be well
suited to these applications as far as they have gone. No
results from the simulation process regarding the performance
of Poligon programs are yet available. Significant problems
have been found in the simulation of the fine-grained paral-
lelism required by the Poligon metaphor. Such simulations
are very time consuming, prone to bugs in the underlying sys-
tem software and simulator, and are difficult to debug. It is
for these reasons that Poligon also has a serial version,
Oligon, which accurately emulates the behaviour of the paral-
lel system but without true parallelism. A simulated processor
array of 256 processors has recently been made available to
the users of Poligon. This simulation will allow more satis-
factory investigation of the properties of Poligon programs in
the future.

6. Further Reading

For a significantly more detailed treatment of the Poligon
language and system the reader s encouraged to consult [Rice
26].

-158-

The following topics were not described or discussed but are
relevant to the work described above.

The reader is en-

couraged to consult the following for further information:

o [KSL 85] for a description of the Advanced Ar-
chitectures Project of which Poligon is a part.

o [Delagi 86] for a description of CARE, the
hardware simulator use¢ by Poligon, and of the
particular hardware being simulated.

» [Schoen 86] for a description of CAOS, the con-
current object oriented system running on the
CARE machine, which Poligon uses as its operat-

ing system.

o [Ensor 85], [Lesser 83], [Aiello 86] and [Fennel
17] for other approaches to parallel problem solv-
ing using blackboard systems.

[Aiello 86]

[Davies 86]

[Davis 77]

[Delagi 86]

[Ensor 85]

[Fennel 77]

[Gabriel 84]

[Halstead 84]

References

Aiello, Nelleke.

The Cage User's Manual.

Technical Report KSL-86-23, Heuristic Pro-
gramming Project, C. S. Dept., Stanford
University, 1986.

Davies, Byron.

Carel: A Visible Distributed Lisp.

Technical Report KSL-86-77, Heuristic Pro-
gramming Project, C. S. Dept., Stanford
University, 1986.

Davis, R. and J. King.

An Overview of Production Systems.

In EW. Elcock and D. Michie (editor),
Machine Intelligence 8: Machine
Representation of Knowledge, . John
Wiley, New York, 1977.

Bruce Delagi.

CARE User's Manual

Heuristic Programming Project, Stanford
University, Stanford, Ca. 94305, 1986.

Ensor, J. Robert and Gabbe, John D.
Transactional Blackboards.
Proc. of IJCAI 85 :340 - 344, 1985.

Fennel, R. D. and Lesser, V. R.

Parallelism in Al problem solving: a case
study of Hearsay-Il.

ITEEE Trans on Computers, C-26 :98-111,
1977.

Gabriel, Richard P. and McCarthy, John.

Queue-based Multi-processing Lisp.

Proceedings of the ACM Symposium on Lisp
and Functional programming 25 - 44,
August, 1984,

Halstead, Robert H. Jr.

Implementation of Multilisp: Lisp on a Mul-
tiprocessor.

Proceedings of the ACM Symposium on Lisp
and Functional programming 9 - 17,
August, 1984,

[Hayes-Roth 85]Barbara Hayes-Roth.

[Hewitt 73]

[KSL 85]

[Lesser 83]

[Nii 79]

[Nii 86]

[Rice 84]

[Rice 86]

[Schoen 86]

~-159-

Blackboard Architecture for Control.
Journal of Artificial Intelligence 26:251
- 321, 198s.

Hewitt, C., P. Bishop, and K. Steiger.

A Universal, Modular Actor Formalism for
Artificial Intelligence.

Proceedings of IJCAI-73 :235 - 245, 1973.

Knowledge Systems Laboratory.
Knowledge Systems Laboratory 85, incor-
porating the Heuristic Programming

Project.
KSL, Dept of Computer Science, Stanford
University, 1985.

Lesser, Victor R. and Daniel D. Corkill.
The Distributed Vehicle Monitoring Testbed:
A Tool for Investigation Distributed

Problem Solving Networks.
The Al Magazine Fall:15 - 33, 1983.

Nii, H. P. and N. Aiello.

AGE: A Knowledge-based Program for
Building Knowledge-based Programs.

Proc. of IJCAI 6 :645 - 655, 1979.

Nii, H. P.
Blackboard Systems.
Al Magazine 7.2, 1986.

Rice, J. P.

The MXA user's and writer's companion

Systems Programming Ltd, The Charter,
Abingdon, Oxon, UK, 1984,

Rice, J. P.

The Poligon User's Manual.

Technical Report KSL-86-10, Heuristic Pro-
gramming Project, C. S. Dept., Stanford
University, 1986.

Schoen, Eric.

The CAOS System.

Technical Report KSL-86-22, Heuristic Pro-
gramming Project, C. S. Dept., Stanford
University, 1986.

The CAOS System

Eric Schoen

Knowledge Systems Lab
Department of Computer Science
Stanford University
Stanford, CA 94305

Abstract

The cA0S system is a framework in which multiprocessor expert systems
may be developed. This report documents the principal ideas, program-
ming model, and implementation of cA0s. In addition, we describe a
working cA0s application, and discuss its performance over a class of
(simulated) multiprocessor architectures.

1 Introduction and Overview

This report docunients the cA0S system, a portion of a recent experi-
ment investigating the potential of highly concurrent computing archi-
tectures to enhance the performance of expert systems. The experiment
focuses on the migration of a portion of an existing expert system appli-
cation from a sequential uniprocessor environment to a parallel multi-
processor environment.

The application, called ELINT, is a portion of a multi-sensor infor-
mation fusion system, and was written originally in AGE[2], an expert
system development tool based on the blackboard paradigm. For the
purposes of this experiment, ELINT was reimplemented in CA0S, an ex-
perimental concurrent blackboard framework based on the explicit ex-
change of messages between blackboard agents.

CAOS, in turn, relies on services provided by the underlying machine
environment. In the present set of experiments, the environment is a
simulation of a concurrent architecture, called CARE [5]. CARE simulates
a square grid of processing nodes, each containing a Lisp evaluator,
private memory, and a communications subsystem; message-passing is
the only means of interprocessor communication.

CA0s is principally an operating system, controlling the creation, ini-
tialization, and execution of independent computing tasks in response to
messages received from other tasks. Figure I illustrates the relationship
between the various software components of the ¢xperiment.

ELINT
r CAOS J
I CARE J
r HELIOS l
r ZETALISP

Figure 1: The relationship between ELINT, CARE, and CA0S

—d

The following section briefly describes the salient features of the

This research was supported by DARPA Contract F30602-85-C-0012, NASA
Ames Contract NCC 2-220-51, and Boeing Contract W266875. Eric Schoen was
supported by a fellowship from NL Industries.

CARE environment. Section 3 discusses the ideas behind the caos frame-
work. Section 4 summarizes the CA0S programming environment, and
Section 5 describes its implementation. The final section details the
results of our experiments.

2 An Overview of CARE

CARE is a highly-parameterized and well-instrumented multiprocessor
simulation testbed, designed to aid research in alternative parallel ar-
chitectures. It runs executes within Helios, a hierarchical, event-driven
simulator which has been described elsewhere {3].

A typical CARE architecture is a grid of processing sites, intercon-
nected by a dedicated communications network. For example, the re-
search discussed in this paper was performed on square arrays of hexago-
nally connected processors (e.g., each processor is connected to six of its
eight nearest neighbors, excluding processors at the edges of the grid).

Each processing site consists of an evaluator, a general-purpose pro-
cessor/memory pair, and an operator, a dedicated communications and
process scheduling processor which shares memory with the evaluator.
Application-level computations take place in the evaluator, a component
which is treated as a “black box” Lisp processor. No portion of its inte-
rior is simulated; the host Lisp machine serves as the evaluator in each
processing site. The operator performs two duties. As a communica-
tions processor, it is responsible for routing messages between processing
sites. As a scheduling processor, it queues application-level processes
for execution in the evaluator (we discuss the scheduling mechanism in
greater detail below). The operator is simulated and instrumented in
great detail.

CARE allows a number of parameters of the processor grid to be ad-
justed. Among these parameters are: the speed of the evaluator, the
speed of the communications network, and the speed of the process-
switching mechanism. By altering these parameters, a single proces-
sor grid specification can be made to simulate a wide variety of actual
multiprocessor architectures. For example, we can experiment with the
optimal level-of-granularity of problem decornposition by varying the
speed of both process-switching and communications.

Finally, CARE provides detailed displays of such information as eval-
uator, operator, and communication network utilization, and process
scheduling latencies. This instrumentation package informs developers
of CARE applications of how efficiently their systems make use of the
simulated hardware.

2.1 The CARE Programming Model

CARE programs are made up of processes which communicate by ex-
changing messages. Messages flow across streams, virtual circuits main-
tained by CARE. The following services are used by caos:

New Process: Creates a new process on a specified site, running a spec-
ified top-level function. A new stream is returned, enabling the
“parent” of the process to communicate with its “child.” Pointers

-160-

to the stream may be exchanged freely with other known processes
on other sites.

New Stream: Creates a new stream whose target is the creating process.

Post Packet: Sends a message across a specified stream to a remote
process.

Accept Packet: Returns the next message waiting or. a specified stream.
If no message is waiting when this operation is invoked, the invok-
ing process is suspended and moved into the operator to await the
arrival of a message.

Memory in each processing site is private. Ordinarily, intra-memory
pointers may not be exchanged with processes in other sites. However,
any pointer may be encapsulated in a remote-address, and may then be
included in the contents of a message between sites. A remote address
does not permit direct manipulation of remote structures; instead, it
allows a process in one site to produce a local copy of a structure in
another site.

Scheduling on a CARE node is entirely cooperative, and is based on
message-passing. The message exchange primitives poet-packet and
accept-packet form the basis of process scheduling. A process wishing
to block (yield control of the evaluator) does so by calling accept-
packet to wait for a packet to arrive on a stream. The application
program'sscheduler awakens the process by calling poet-packet to send
a packet to the stream. The process is placed on the queue of processes
waiting for the evaluator, and eventually regains control. The cao0s
scheduler, which we describe in Section 5.3, is implemented in terms of
this paradigm.

3 The CAOS Framework

CAOs is a framework which supports the execuiion of multi-processor
expert systems. Its design i- predicated on the b:lief that future parallel
architectures will emphasize limited communicatisn between processors
rather than uniformly-shared memery, We expected such an architec-
ture would favor coarse-grained problem decomposition, with little or
no synchronization between processors. cA0s is intended for use in
real-time data interpretation applications, such as continuous speech
recognition, passive radar and sonar interpretation, etc {7,11}.

A cAos application consists of a collection of communicating agents,
each responding to a number of application-dependent, predeclared mes-
sages. An agent retains long-term local state. Furthermore, an arbitrary
number of processes may be active at any one time in a single agent.

Whereas the uniprocessor blackboard paradigm usually implies
pattern-directed, demon-triggered knowledge source activation, caos
requires explicit messaging between agents; the costs of automatically
communicating changes in the blackboard state, as required by the tra-
ditional blackboard mechanisni, could be prohibiti+ely expensive in the
distributed-memory multiprocessor environment. Thus, cA0s is de-
signed to express parallelism at a vety coarse grain-size, at the level
of knowledge source invocation in a traditional uniprocessor blackboard
system. 1t supports no mechanism for finer-grained concurrency, such as
within the execution of agent processes, but neither does it rule it out.
For example, we could easily imagine the methods which implement the
messages being written in QLisp (8], a concurrent dialect of Common
Lisp.

3.1 The Structure of CAOS Applications

A caos application is structured to achieve high degrees of concurrency
in two principal manners: pipelining and replication. Pipelining is most
appropriate for representing the flow of information between levels of
abstraction in an interpretation system; replication provides means by
which the interpretation system can cope with arbitrarily high data
rates.

~161-

3.1.1 Pipelining

Pipelining is a common means o, paralleliziag tasks through a decom-
position into a linear sequence of independent stages. Each stage i
assigned to a separate processing unit, which receives the output from
the previous stage and provides input to the next stage. Optimally,
when the pipeline reaches a steady-state, each of its processors is busy
performing its assigned stage of the overall task.

CAOs promotes the use of pipelines to partition an interpretation
task into a sequence of interpretation stages, where each stage of the
interpretation is performed by a separate agent. As data enters one
agent in the pipeline, it is processed, and the results are sent to the
next agent. The data input to each successive stage represents a higher
level of abstraction.

Advantages of Pipelining Sequential decomposition of a large task
is frequently very natural. Structures as disparate as manufacturing
assembly lines and the arithmetic processors of high-speed computing
systems are frequently based on this paradigm.

Pipelining provides a mechanism whereby concurrency is obtained
without duplication of mechanism (that is, machinery, processing hard-
ware, knowledge, etc). In an optimal pipeline of n processing elements,
element 1 is performing work on task t+n—1 when etement 2 is working
on task ¢ + n — 2, and so on, such that element n is working on task (.
As a result, the throughput of the pipeline is n times the throughput of
a single processing element in the pipeline.

In the case of caos applications, the individual agents which com-
pose an interpretation “pipeline” are themselves simple, but the overall
combination of agents may be quite complex.

Disadvantages of Pipelining Unfortunately, it is often the case that
a task cannot be decomposed into a simple linear sequence of subtasks.
Some stage of the sequence may depend not only on the results of its im-
mediate predecessor, but also on the results of more distant predecessors,
or worse, some distant successor (e.g., in feedback loops). An equally
disadvantageous decomposition is one in which some of the processing
stages take substantially more time than others. The effect of either of
these conditions is to cause the pipeline to be used less efficiently. Both
these conditions may cause some processiug stages to be busier than
others; in the worst case, some stages may be so busy that other stages
receive no work at all. As a result, the a-element pipeline achieves less
than an n-times increase i throughput. We discuss a possible remedy
for this situation in the following subsection.

3.1.2 Replication

Concurrency gained through replication is ideally orthogonal to concur-
rency gained through pipelining. Any size processing structure, from
individual processing elements to entire pipelines, is a candidate for
replication. Consider a task which must te performed on average in
time ¢, and a processing structure which is able to perform the task in
time T', where T’ > t. 1f this task were actually a single stage in a larger
pipeline, this stage would then be a bottleneck in the throughput of the
pipeline. However, if the single processing structure which performed
the task were replared by T/t copies of the same processing structure,
the effective time to perform the task would approach t, as required.

Advantages of Replication The advantages of replicating process-
ing structure to improve throughput should be clear; n times the
throughput of a single processing structure is achieved with n times the
mechanism. Replicatior: is more costly than pipelining, but it apparently
avoids problems associated with developing a pipelined decomposition
of a task.

Disadvantages of Replication Our works leads us to believe that
such replicated computing structures are feasible, but not without draw-
backs. Just as performance gains in pipelines are impacted by inter-
stage dependencies, performance gains in replicated structures are im-
pacted by inter-structure dependencies.

Consider a system composed of a number of cop-# of a single
pipeline. Further, assume the actions of a particular stag:. i1 the pipeline
affects each copy of itself in the other pipelines. In ar wxue't system,
for example, a number of independent pieces of evidence 1.1y cause the
system to draw the same conclusion; the system designer may require
that when a conclusion is arrived at independently by different means,
some measure of confidence in the conclusion is iucreased accordingly.
If the inference mechanism which produces these conclusions is realized
as concurrently-operating copies of a single inference engine, the indi-
vidual inference engines will have to communicate between themselves
to avoid producing multiple copies of the same conclusions. A strin-
gent consistency requirement between copics of a processing structure
decreases the throughput of the entire system, since a portion of the
system’s work is dedicated to inter-system communication.

3.2 An Example

We close this section by describing the organization of ELINT, illustrat-
ing the benefits and drawbacks of the cao0s framework applied to this
problem. ELINT is an expert system whose domain is the interpretation
of passively-observed radar emissions. Its goal is to correlate a large
number of radar observations into a smaller number of individual signal
emitters, and then to correlate those emitters into a yet smaller number
of clusters of emitters. ELINT is meant to operate in real time; emit-
ters and clusters appear and disappear during the lifetime of an ELINT
run. The basic flow of information in ELINT is through a pipeline of the
various agent types, which we now describe in detail.

Observation Reader The observation reader is an artificat of the
simulation environment in which ELINT runs. Its purpose is to feed radar
observations into the system. The reader is driven off a clock; at each
tick (I ELINT “time unit"), it supplies all observations for the ussociated
time interval to the proper observation handlers. This behavior is similar
to that of a radar collection site in an actual ELINT setting.

Observation Handler The observation handlers accept radar obser-
vations from associated radar collection sites (in the simulated system,
the observations come from the observation reader agent). “iiere may
be a large number of observation handlers associated witls ezch collec-
tion site. The collection site chooses to which of its many observation
handlers to pass an observation, based on some scheduling criteria such
as random choice or round-robin.

Each observation contains an externally-assigned number to distin-
guish the source of the observation from other known sourc~s (the ob-
servation id is usually, but not always, correct). In addition, cuch obser-
vation contains information about the observed radar signui, such as its
quality, strength, line-of-bearing, and operating mode. Th~ observation
does ot contain information regarding the source'= spes?. flight path,
and istance; ELINT will atiempt to determiie this information as it
monit srs che beleviar of each source ~ver time

When an chservation handicr rece’ves an observation, 1t checks the
observation's id to see if it alrealy kriows about the emitter. 1f it does, it
passes the observation to the appropriate emitier agent which represents
the observation’s source. 1f the observation handler does not know about
the emitter, it asks an emitter manager to create a new emitter agent,
and then passes the observation to that new agent.

Emitter Manager There inay be many emitter managers in the sys-
tem. An emitter manager’s task is to accept requests to create emitters
with specified id numbers, If there is no such emitter in existence when
the request is received, the manager will create one and return its “ad-
dress” to the requesting observation handler. If there is such an emitter
in existence when the request is received, the manager will simply return
its address to the requestor. This situation arises when one observation
handler requests an emitter than another observation handler had pre-
viously requested.

The reason for the emitter manager’s existence is to reduce the
amount of inter-pipeline dependency with respect to the creation of

emitters. When ELINT creates an emitter, it is similar to a typical ex-
pert system's drawing a conclusion about some evidence; as uiscussed
above, ELINT must create its emitters in such a way that the individ-
ual observation handlers do not end up each creating copies of the same
emitter. Consider the following strategies the observation handlers could
use to create new emitters:

I. The handlers conld create the emitters themselves immediately.
Since the collection site may pass observations with ti.e same id
to each observation handler, it is possible for each observation
handler to create its own copy of the same emitter. We reject this
method.

2. The handlers could create the emitters themselves, but inform the
other handlers that they’ve done this. This scheme breaks down
when two handlers try simultaneously to create the same emitter.

3. The handlers could rely on a single emitter manager agent to cre-
ate all emitters. While this approach is safe from a consistency
standpoint, it is likely to be impractical, as the single emitter
manager could become a bottleneck in the interpretation.

4. The handlers could send requests to one of many emitter man-
agers, chosen by some aroitrary method. This idea is nearly cor-
rect, but does not rule out the possibility of two emitter managers
each receiving creation requests for the same emitter.

5. The handlers could send requests to one of many emitter man-
agers, chosen through soime algorithm which is invariant with re-
spect to the observation id. This is in fact the algorithm in use in
ELINT. The algorithm for choosing which emitter manager to use
is based on a many-to-one mapping of observation id’s to emitter
maragers.!

Emitters Emitters hold some state and history regarding observations
of the sources they represent. As each new observation is received, it is
added to a list of new observations. On a regular basis, the list of new
observations is scanned for interesting information. In particular, after
enough observations are received, the emitter may be able to determire
its heading, speed, and location. The first time it is able to determine
this information, it asks a cluster manager to either match the emitter
to an old cluster or create a new cluster to hold the single emitter.
Subsequently, it sends an update message to the cluster to which it
belongs, indicating its current course, speed, and location.

Emitters maintain a qualitative confidence level of their own exis-
tence (possible, probable, and positive). 1f new observations are received
often enough, the emitter will increase its confidence level until it reaches
positive. If an observation is not received in the expected time interval,
the emitter lowers its confidence by one step. If the confidence falls
below possible, the emitter “deletes” itself, informing its manager, and
any cluster to which it is attached.

Cluster Managers The cluster managers play much the same role
in the creation of cluster agents as the emitter managers play in the
creation of emiiters. Hlowever, it is not possible to compute an invariant
to be used as a many-to-one mapping between emitters. If ELINT were
to employ multiple cluster managers, the best strategy for choosing
which of the many managers would still result in the possible creation
of multiple instances of the “same” cluster. Thus, we have chosen to run
ELINT with a single cluster manager. Fortunately, cluster creation is a
rare event, and the single cluster manager has never been a processing
bottleneck.

As indicated above, requests from emitters to create clusters are
specified as match requests over the extant clusters. Emitters are
matched to clusters on the basis of their location, speed, and heading.
However, the cluster manager does not itself perform this matching op-
eration. Although it knows about the existence of each cluster it has
created, it does not know if the cluster has changed course, speed, and/or

! The algorithm computes the observation id modulo the number of emitter man-
agers, and maps that number to a particular manager.

-162-

P .

direction since it was originally created. Thus, the cluster manager asks
each of its clusters to perform a match

If either none of the clusters responds with a positive match, a new
cluster is created for the emitter; if one cluster responds positively, the
emitter is added to the cluster, and is so informed of this fact; if more
than one cluster responds positively, an error (or a mid-air collision)
must have occured.

Clusters The radar emissions of clusters of emitters often indicates
the actual behavior of the cluster. Cluster agents, therefore apply
heuristics about radar signals to determine whether the behaviors of
the clusters they represent are threatening or not. Thw information,
along with the course parameters of each radar source, is the “output”
of the ELINT system. A cluster will delete itself if all constituent emitters
have been deleted.

4 Programming in the CAOS Framework

cA0s is package of functions on top of Lisp. These functions are parti-
tioned into three major classes:

o Those which declare agents.
e Those which initialize agents.

e Those which support communication between agents.

We now describe the cA0s operators for each of these classes.

4.1 Declaration of agents

Agents are declared within an inheritance network. Each agent inher-
its the characteristics of its (multiple) parents. The simplest agent,
vanilla-agent, contains the minimal characteristics required of a func-
tional caos agent. All other caos agents reference vanilla-agent
either directly or indirectly. Another predeclared agent, process-
agenda-agent, is built on top of vanilla-agent, and contains a priority
mechanism for scheduling the execution of messages.

Application agents are declared by augmenting the following char-
acteristics of the base or other ancestral agents:

Local Variables: An agent may refer freely to any variable declared lo-
cal. In addition, each local variable may be declared with an initial
value.

Messages: The only messages to which an agent may respond are those
declared in this table. This simplifies the task of a resource allo-
cator, which must load application code onto each CARE site.

Symbolically Referenced Agents: Some agents exist throughout a CA0S
run. We call such agents static, and we allow code in agent message
handlers to reference such agents by name. Before an agent begins
running, each symbolic reference is resolved by the CAOS runtimes.

There are a number of additional characteristics; most of these are
used by cA0s internally, and we will document these in the next section.

The basic form for declaring a CA0S agent is defagent. It has the
form illustrated by Figure 2. The first element in each sublist is a
keyword; there are a number of defined keywords, and their use in an
agent declaration is strictly optional. An agent inherits the union of
the keyword values of its parents for any unspecified keyword. Of those
keywords which are specified, some are combined with the union of the
keyword values of the agent’s parents, and others supersede the values
in the parents. Figure 3 contains the declaration of the emitter agent,
one of the most complex examples in ELINT.

As we discuss in the next section, defagent forms are translated by
cA0S into Flavors defflavor forms [4]. CA0S messages are then defined
using the defmethod function of ZETALISP. These methods are free to
reference the local variables declared in the defagent expression.

(defagent ageni-name (parent; - parenty)
(localvare variable; --- variabley)
(meseagee message; -+ messagen)

(symbolically-referenced-agente agent; - ageniy))

Figure 2: The basic form of defagent

(defagent el-emitter (process-agenda-agent)
(localvare
(procees-agenda (el-undo-collection-id-exror
el-change-cluster-aesociation
el-emitter-update-on-time-tick
el-initialize-emitter
el—update-emitter-!rom-obeervation))
(last-obeerved -1000000)
(cluster-manager ’clueter-manager-0)
manager
id
type
observed
fixes
last-heading
last-mode
confidence
clueter
new-obeervatione-since-time-tick-flag
id-errore
ge-flag)
(meseagee
el—update-emitter-!rom-obeervation
el-initialize-emitter
el-change-clueter-association
el-undo-collection-id-error)
(symbolically-referenced-agente
el-collection-reporter-0
el-correlation-reporter-0
el-threat-reporter-0
el-clueter-manager-0
el-clueter-manager-1i
el-cluster-manager-2
el-big-ear-handler
el-gotcha-handler
el-emitter-trace-reporter-0))

Figure 3: The emitter agent

-1653-

(cace-initialize
(Cagent — name; agent — class site — address)
L)
(Cinitial — message;)

o))

Figure 4: The basic cA0s initialization form

(caoe-initialize
((el-observation-reader-0 el-obeervation-reader (2 2))

(el-big-ear-handler-i el-obeervation-handler (1 1))

(el-big-ear-handler-2 el-obeervation-handler (1 1))

(el-gotcha-handler-1 el-obeervation~handler (12))

(el-gotcha-handler-2 el-obeervation-handler (12))

(el-emitter-manager-0 el-emitter-manager (2 1))

(el-emitter-manager-i el-emitter-manager (2 2))

(el-collection-reporter-0 el-collection-reporter (1 2))

(el-correlation-reporter-0 el-correlation-reporter

(1 3))

(el-threat-reporter-0 el-threat-reporter (i 3))

(el-emitter-trace-reporter-0 el-emitter-trace-reporter

(3 2))
(el-clueter-trace-reporter-0 el-clueter-trace-reporter
(3 1))
(el-clveter-manager-0 el-clueter-manager (2 1)))
({poet el-obeervation-reader-0 nil
’el-open-obeervation-file
»elint-data-files)

(yoet el-collection-reporter-0 nil
’el-initialize-reporter t
"glint:reporte;collectione.output")

(post el-correlation-reporter-0 nil
’el-initialize-reporter t
"elint:reports;correlatione.output")

(post el-threat-reporter-0 nil
’el-initialize-reporter t
"elint :reports;threate.output")

(poet el-emitter-trace-reporter-0 nil
’initialize-trace-reporter t
"elint:reporte;emitter.tracee")

(post el-clueter-trace-reporter-0 nil
'initialize-trace-reporter t
"elint.reportl;clueter.tracee“)))

.Figure 5: The initialization declaration for ELINT.

4,2 Initialization of agents

The initial A0S configuration is specified by the cace-initialize op-
erator, which takes the form illustrated by figure 4; for example, figure 5
is ELINT’s initialization form.

The first portion of the form creates the static agents. In figure 5,
a static agent named el-gotcha-handler-i, an instance of the class
el-observation-handler, is created on the CARE site at cocrdinates
(1,2) in the processor grid.

The second portion of the formis a list of LIsP expressions to be eval-
uated sequentially when cA0S’s initialization phase is complete. Each
expression is intended to send a message to one of the static agents de-
clared in the first part of the form. These messages serve to initialize
the application; in figure 5, the initialization messages open log files and
start the processing of ELINT observations.

Agents may also be created dynamically. The create-agent-
inetance function accepts an agent class name and a location
speciﬁcation;2 the remote-addreee of the newly-created agent is re-
turned. While dynamically created agents may not be veferenced sym-
bolically, tleir remote-uddreee’s may be exchanged freely.

2Currently, agents may be created at or near specified CARE sites. CAOS makes
no attempt at dynamic load balancing.

4.3 Communications Between Agents

Agents communicate with each other by exchanging messages. CAOS
does not guarantee that messages reach their destinations: due to ex-
cessive message traffic or processing element. failure, messages may be
delayed or lost during routing. 1t is the responsibility of the application
program to detect and recover from lost messages. Commensurate with
the facilities provided by CARE, messages may be tagged with routing
priorities; however, higher priority messages are not guaranteed to arrive
before lower-priotity messages sent concurrently.

Two classes of messages are defined: those which return values
(called value-desired messages), and those which do not (called side-
effect messages). The value-desired-messages are made to return their
values to a special cell called a future. Processes attempting to access
the value of a future are blocked until that future has bad ite value set.
1t is possible for the value of a future to be set more than once, and it
is possible for there to be multiple processes awaiting a future's value
to be set.?

4.3.1 Sending messages

The CARE primitive poet-packet, which sends a packet from one pro-
cess to another, is employed in cA0S to produce three basic kinds of
message sending operations:

post: The post operator sends a side-effect message to an agent. The
sending process supplies the name or pointer to the target agent,
the message routing priority, the message name and arguments.
The sender continues executing while the message is delivered to
the target agent.

post—future: The post-future operator sends a value-desired mes-
sage to the target agent. The sending process supplies the same
parameters as for poet, and is returned a pointer to the future
which will eventually by set by the target agent. As for post, the
sen”er continues executing while the message is being delivered
and executed remotely.

A process may later check the state of the future with the future-
eatisfied? operator, or access the future's value with the value-
future operator, which will block the process until the future has
a value.

poet-value: The poet-value operator is similar to the poet-future
operator; however, the sending process is delayed until the target
agent has returned a value. poet-value is defined in terms of
poet-future and value-future.

4.3.2 Detecting Lost Messages

It is possible to detect the loss of value-desired messages by attaching a
timeout to the associated future. The functions poet-clocked-future
and post-clocked-value are similar to their untimed counterparts, but
allow the caller to specify a timeout and timeout action to be performed
if the future is not set within the timeout period. Typical actions include
setting the future’s value with a default value, or resending the original
message using the repost operator.

4.3.3 Sending to Multiple Agents

There exist versions of the basic posting operators which allow the same
message to be sent to multiple agents.? multipoet sends a side effect
message to a list of agents; multipoet-future and multipost-value
gend a value-desired message to a list of agents. In the latter case, the
associated future is actually a list of futures; the future is not considered
set until all target agents have responded. The value of such a message
is an association-list; each entry in the list is composed of an agent
name or remote-addreee and the returned message value from that

3Futures were also used in QLisp and Multilisp [9]. The HEP Supercomputer [6]
implemented a simple version of futures as a process synchronization mechanism.

4 Neither CAOS nor CARE currently support a predicated multicest mode, wherein
messages would sent to all agents satisfying a particular predicate; messages can only
be sent to a fully-specified list of agents.

~164-

e

P . -

agent. There exist clocked versions of these functions (called, naturally,
multipost-clocked-future and multipost-clocked-value) to aid in
detecting lost multicast messages.

4.4 Communications Between Processes

Processes in each agent communicate using the shared local variables
declared in the agent. Besides sharing previously computed results this
way, processes may also share the results of ongoing computations.

Consider the following scenario; within an agent, some process is
currently computing some answer. At the same time, another process
begins executing, and realizes somehow that the answer it needs to
compute is the same answer the other process is already computing.
The second process could take one of two actions: it could continue
computing the answer, even though tiis would mean redundant work,
or it could wait for the first process to complete, and return its answer.
The second approach is feasible, but it does tie up resources in the form
of an idle process.

The CAO0S operators attach and my-handle offer a third alternative
solution. If a process knows it may ultimately produce an answer needed
by more than one requesting agent, it obtains its “handle” (Section 5.4)
by calling my-handle, and places it in a table for other processes to
reference. Any other process wishing to return the same answer as the
first calls attach, with the first process’s handle as argument. The first
process returns its answer to all requesting agents waiting for answers
from the other processes, and the other processes return no value at all.

4.5 What CAOS Offers Over CARE

CAOS is a large system. It is reasonable to ask what advantages there
are to programming in CA0S as opposed to programming in CARE. We
believe there are three major advantages:

Clarity: The framework in which an agent is declared makes explicit
its storage requirements and functional behavior. In addition, the
agent concept is a helpful abstraction at which to view activity
in a multiprocessing software architecture. The concept lets us
partition a flat collection of processes on a site into groups of
processes attached to agents on a site. CA0S guarantees the only
interaction between processes attached to different agents is by
message-passing.

Convenience: The programmer is freed from interfacing to CARE’s low-
level communications primitives. As we said earlier, CA0S is basi-
cally an operating system, and as such, it shields the programmer
from the same class of details a conventional operating system
does in a conventional hardware environment.

Flexibility: Currently, CARE schedules processes in a strict first-in, first-
out manner. CA0S, on the other hand, can implement arbitrary
scheduling policies (though at a substantial performance cost; we
discuss this in Section 6).

5 The Runtime Structure of CAOS

ca0s is structured around three principsl levels: site, agent, and pro-
cess. Two of these levels-site and process-reflect the organization of
CARE; the remaining (agent) level is an artifact of caos. We discuss
first the general design principles underlying cA0s, and then describe
in greater detail the functions and structure of each of CA0s’s levels.

5.1 General Design Principles

The implementation of cA0s described in this paper is written in ZETAL-
18P, a dialect of Lisp which runs on a number of commercially available
single-user Lisp workstations. ZETALISP includes an object-oriented pro-
gramming tool, called Flavors, which has proved to be a very powerful
facility for structuring large Lisp applications.

In Flavors, the behavior of an object is described by templates known
as classes. An instance, a representation of an individual object, is cre-
ated by instantiating a class. Instances respond to messages defined by

their class, and contain static local storage in the form of instance vari-
ables. Classes are defined within an inheritance network; each instance
contains the instance variables and responds to the messages defined in
its class, as well as those of the classes from which its class inherits.
An appropriate usage for Flavors is the modelling of the behavior of
objects in some (not necessarily real) ‘world. For example, CA0S site and
agents structures are realized as Flavors instances. The characteristics
to be modelled are codified in instance variables and message names.
In a well-designed application, messages and variables are consistently
named; thus, the implementation of a particular behavior is totally en-
capsulated in the anonymous function which responds to a message.

5.1.1 Extending the Notion

In some sense, a Flavors instance is an abstract data type. The instance
holds state, and provides advertised, publiz interfaces (messages) to
functions which change or access its state. The internal data represen-
tation and implementations of the access functions are private.

In Flavors, the abstract data type notion is unavailable within an
individual instance. Frequently, the individual instance variables hold
complex structures (such as dictionaries and priority queues) which
ought to be treated as abstract data types, but there exist no common
means within the standard Flavors mechanism for doing so.

CA0s, however, supports such a mechanism, by providing a means
of sending messages to instance variables (rather than to the instances
themselves). The instance variables are thus able to store anonymous
structures, which are initialized, modified, and accessed through mes-
sages sent to the variable. Similar mechanisms exist in the Unit Package
[14] and in the STROBE system [13], both frameworks for representing
structured knowledge.

The caos environment includes a number of abstract data types
which were found to be useful in supporting its own implementation.
The most commonly used are:

Dictionary: The dictionary is an association list. It responds to put,
get, add, forget, and initialize messages.

Sorted Dictionary: The sorted-dictionary is also implemented as an as-
sociation list, and responds to the same messages as does the stan-
dard dictionary. However, the sorted-dictionary invokes a user-
supplied priority function to merge new items into the dictionary
(higher-priority items appear nearer the front of the dictionary).
This dictionary is able to respond to the greatest message, which
returns the entry with the highest priority, and to the next mes-
sage, which returns the entry with the next-highest priority as
compared to a given entry.

The sorted-dictionary is used primarily to hold time-indexed data
which may be collected out-of-order (e.g. when data for time n+1
may arrive before data for time n).

Hash Dictionary: The hash-dictionary is implemented with a hash ta-
ble, and responds to the same messages as the unsorted association
list dictionary.

Queue: The queue data type is a conventional first-in, first-out storage
structure. The put message enqueues an item on the tail of the
queue, while the get message dequeues an item from the head of
the queue.

Priority Queue: The priority-queue data type supports a dynamic heap-
sort, and is implemented as a partially-ordered binary tree. It re-
sponds to put, get, and initialize messages. Associated with
the queue is a function which computes and compares the priority
of two arbitrary queue elements; this function drives the rebalanc-
ing of the binary tree when elements are added or deleted.

Monitor: A monitor provides mutual exclusion withiu a dynamically-
scoped block of Lisp code. It is similar in implementation to the
monitors of Interlisp-D and Mesa {10].

If the monitor is unlocked, the obtain-lock message stores the
caller’s process id as the monitor’s owner, and marks the monitor

-165-

as locked; otherwise, if the monitor is ‘ocked, the obtain-lock
message places the caller’s process id on the tail of the monitor’s
waiting queue, and suspends the calling process.

The rel~ase-1ock message removes the process id from the head
of the monitor’s waiting queue, marks the monitor’s owner to be
that id, and res hedules the associated ptocess.

Monitors are normally accessed using the with-monitor form,
which accepts the name of an instance variable containing a mon-
1tor, and which cannot be entered until the calling process obtains
ownership of the monitor. The with-monitor form guarantees
ownership of the monitor will be relinquished when the calling
process leaves the scope of the form, even if an error occurs.

5.2 The CAOS Site Manager

The site manager cont 3ts of a Flavors instance containing information
global to the site-information needed by all agents located on the site. In
addition, the site manager includes a cARE-level process which performs
the functions of creating new agents and translating agent names into
agent addresses, as described below.

The following instance variables are part of the site manager:

incoming-stream: This instance varianle contains the CARE inpu’
stream address on which the site manager frocess listens for re-
quests. Agents needing to send messages to their site manager may
reference this instance variable in order to discover the address to
which to direct site requests.

etatic-agent-stream-table: This instance variable is a dictionary
which maps agent names into the CARE streams which may be used
to communicate with the agents. The entries in this dictionary
reflect statically-created agents; new entries are added as the result
of new-initial-agent-online messages directed to the site (see
below). The dictionary is used to resolve agent name-to-address
requests from agents created locally.

unresolved-agent-stream-table: The site manager keeps track of
agent names it is not able to translate to addresses by placing
unsatisfiable requeet-eymbolic-reference requests in this dic-
tionary. The keys of the dictionary are unresolvable agent names.
As the agent names become resolvable, the unsatisfied requests
are satisfied, and the corresponding entries are removed from the
dictionary.

After the initialization phase of a cA0s application has completed,
there will be no entries in this dictionary in any of the sites.

local-agents: Thisinstance variable is a dictionary whose keys are the
names of agents located on the site, and whose values are point-
ers to the Flavors instances which represent each agent. local-
agente is used only for debugging and status-reporting purposes.

free-procese-queue: When a CARE process which was created to ser-
vice a request finishes its work, it tries to perform another task
for the agent in which it was created. If the agent has no work
to do, the process suspends itself, after enqueuing identifying in-
formation in this instance variable, which holds a queue ahstract
data type. When any agent on the same site needs a new process
to service some 1equest, it checks this queue first; if there are any
suspended (free) processes waiting in this queue, it deqieues one
and gives it a task to perform. If this queue is empty, the agent
asks CARE to create a new process.

The site manager responds to the following messages:

new-initial-agent-online: As each static agent starts running dur-
ing initialization of a cA0s run, it broadcasts its name and CARE
input stream to every site in the system, using this message. The
correspondence between the sending agent’s name and address is
placed in the etatic-agent-etream-table dictionary for future
reference by agents located on the receiving sites. If any agents
have placed requests for this new agent in the unresolved-agent-
etream-table, messages containing the new agent’s name and
address are sent to the waiting agents.

requeet-eymbolic-reference: Whenever a static agent is created, it
runs an initialization function, which among other tasks, caches
needed agent name-to-address translations. For each translation,
the agent sends this message to ite site manager, If the site man-
ager can resolve the name upon rec:ipt of the message, it responds
immediately; otherwise, it queues the request in the unresolved-
agent-etream-table, and defers answering until it is able to sat-
isfy the request. The requesting agents waits nntil it has received
the answer before requesting another .ranslation.

make-new-agent: This message is sent to a site to cause a new agent
to be created during the course of a cA0s run. The site manager
creates the new (dynamic) agent and returns the agent’s input
stream to the sender of this message. The newly-created agent
is not placed in the static-agent-stream-table; thus, the only
way to advertise the existence of such a dynamically-created agent
is by the creator of an agent passing the returned input stream to
other agents.

5.3 The CAOS Agent

As discussed above, CAGS agents are implemented as Flavors instances.
Their class definitions are defined by translating defagent expres-
sions into defflavor expressions. CAOs itself defines two basic agent
classes: vanilla-agent and process-agenda-agent. vanilla-agent
defines the minimal agent; proceee-agenda-agent is defined in terms
of vanilla-agent, but adds the ability to assign priorities to messages.’
These basic agents are fully-functional, but lack domain-specific “knowl-
edge,” and cannot be used directly in problem solving applications.

As stated in the previous section, a CA0s agent is a multiple-process
entity. Most of these processes are in created in the course of problem-
solving activity; we refer to these as user processes. At runtime, however,
there are always two special processes associated with each caos agent.
Oue of these processes monitors the CARE stream by which the agent
is known to other agents. The other participates in the scheduling of
user processes. We shall refer to the first of these processes as the
agent inpul monitor, and to the second of these processes as the agent
scheduler. We explain in detail the functioning of these two processes
in the next subsection.

We describe here the role of important instance variables in a basic
CAOS agent:

self-addrese: This ‘nstance variable is an analogue of Flavors’ self
variable. Whercas self is bound to the Flavors instance un-
der which a message is executing, self-addrese is bound to the
stream of the agent under which a cA0s message is executing.
Thus, an agent can post a message to itself by posting the mes-
sage to eelf-addrees.

runnable-process-stream: This instance variable points to the
stream on which the scheduler process listens. Processes which
need to inform the scheduler of various conditions do so by send-
ing CARE-level messages to this stream.

running-processes: This variable holds the list of user processes
which are currently executing within the agent. The current CARE
architecture supports only a single evaluator on each site. caos
tries to keep a nuinber of user processes ready to execute at all
times; thus, the single CPU is kept as busy as possible.

runnable-process-list: A priority queue containing the runnable
user processes. As a process is entered on the queue, its priority is
calculated to determine its ranking in the partial ordering. There
are two available priority evaluation functions: the first computes
the priority based solely on the time the process entered the sys-
tem; the second considers the assigned priority of the executing
message before considering the entry time of the process. These
two functions are used to implement the scheduling algorithms of
the vanilla-agent and the process-agenda-ngent, respectively.

5This is important for applications in which one agent must respond rapidly to
a posting from another agent. Assigning a message a high priority will cause Lhat
message to be processed ahead of any other messages with lower priorities.

~166-

. .

e

—

schaduler-lock: The scheduler data structures are subject to modifi-
cation by any number of processes concurrently. The scheduler-
lock is a monitor which provides mutual exclusion against simul-
taneous access to the scheduler database.

5.4 The CAOS Process

In this subsection, we describe the mechanism by which cAos user pro-
cesses are scheduled for execution on CARE siles. User processes are
created in response to messages from other agents. Associated with
each user process is a data structure called a runnable-item. The
runnable-itsm contains the following fields:

msseage-nems, —arge, -id, —answsr-targete: These fields store the
information necessary to handle a message request and send the
resulting answer back to the proper agents.

for-effsct: This field is a boolean, and indicates whether the message
is being executed for eflect or value. This corresponds directly to
the source of the message coming from a post operation or a
poet-future operation.

etate: This field indicates the state of the process. The possible states
that a process may enter, and the finite state machine which de-
fines the state transition are discussed in the next subsection.

contsxt: This field contains a pointer to the CARE stream upon which
the process waits when it not runnable. A process (such as the
scheduler) wishing to wake another process simply sends a messag:
to this stream. The suspended process will thus be awakened (by
CARE).

time-etamp: This fie'd contains the time at which the process entered
the system. Tt is used by the functions which calculate the execu-
tion priority of processes.

The A0S scheduler’s only handle on a process is the process's
runnable~itsm. In fact, the only communication between a user process
and the cA0s scheduler consists of the exchange of runnable-item’s.

5.5 Flow of Control

In the following, we detail how a user process, the ca0s input moni-
tor, and the cA0s scheduler interact to process a message request from
a remote agent. For purposes of exposition, we assume the following
sequence of events:

1. An agent, agent-1, executes a post operation, with agant-2 as
the target. The posting is for the message named msseage-a.

2. agent-2 receives and executes the posting. In order to complete
the execution of meeeage-a, it must perform a poet-value oper-
ation to a third agent, agsnt-3.

We begin at the point where agent-1 has performed its poet oper-
ation.

5.5.1 Input Processing

The input monitor process handles requests and responses from remote
agents. When the message from agent-1 entcrs agent-2, iis input
monitor creates a new runnable-item to hold the state of the request.
The message name, arguments, id, and answer targets are copied from
the incoming message into the runnabls-itsm. The runnable-itsm’s
state is set to never-run, and its time stamp is set to the current time.
In order to queue the message for execution, the input monitor takes
one of two actions.

If the agent’s runnable-proceee-liet is empty, the runnable-
jtem is sent in a message to the agent scheduler process (by send-
ing the item in a message to the stream whose address is found in
the agent’s runnable-procsss-stream instance variable). When the
agent’s runnabls-procsss-1list is empty, the scheduler process is guar-
anteed to be waiting for messages sent to the scheduler stream, and

hence, will be awakened by the message sent from the input monitor.
The scheduler then computes the priority of the message, and places the
runnable-item in its runnable-process-liet.

If the agent’s runnable~process-1iet is not empty, the input mon-
itor computes the message’s priority and places the runnabls-item on
the runnable-process-1iet itself. When the queue is not empty, it is
guaranteed that the scheduler will examine the queue sometime in the
future to make scheduling decisions; thus, it is not necessary to send any
messages to the scheduler to inform it of the existence of new processes.

5.5.2 Creating Processes

Eventually, the newly-created runnable-itsm will reach the head of
agent-2’s runnabls-proceee-liet. At this time, there is still no pro-
cess associated with the item, so the scheduler creates a process using
the facilities of CARE, adds the process to the running-processee list,
and passes it its runnable-item. The process will eventually gain con-
trol of the evaluator, and will set the state of its runnable-itsm to
running. It then begins executing the requested posting.

5.5.3 Requesting Remote Values

At some point, the process executing on agent-2 requires a value from
agent-3, and performs a poet-value operation to acquire it. The pro-
cess Jooks up the address of agsnt-3, and posts a message which con-
tains the appropriate message name, arguments, id, and answer target.
The message-id unambiguously identifies the future upon which the
process will be waiting for the value to be returned. The answer target
is the agent’s own eelf-addreee; when the answer is received by the
input monitor process, it will be forwarded to the appropriate future,
and the process will be reawakened.

In the meantime, the process sets its state to suepended, removes
its runnabl e-it em from the running-processees list, and appends it to
the list of processes already waiting for the future to be satisfied. If the
runnable-procese-list is not empty, the suspending process wakes
the process at the head of the queue.® The suspending process then
waits for a message on its wakeup stream, the stream whose address is
in the context field of its runnabls-iteu.

5.5.4 Answer Processing

Some time later, agent—3 will have completed its computations, and
will have returned the desired answer to agsnt-2. The answer will be
received by agent-2's input monitor process, which will recognize the
input as a value to be placed in a future. The input monitor sets the
value field of the appropriate future, and moves the runnable-itsms of
the processes waiting on the future to the runnable-process-list.

If the queue was previously empty, the agent must have been (or
will soon be) entirely idle; thus, the runnable-items are sent to the
scheduler in a message, causing the scheduler to be reawakened. If the
queue was not previously empty, the agent must be busy, so the items
are simply added to the queue according to their priorities. In both
cases, the runnabls-iteme are placed in the runnabls state.

5.5.5 Reawakening Suspended Processes

When the runnablas runnabls-item reaches the head of agsnt-2's
runnable-procsse-list, a message (which :untains no useful infor-
mation) is sent to its associated process's wakeup stream. As a result,
process eventually wages up, gains control of the evaluator, and sets its
state to running.

5.5.6 Completing Computation

A process may perform any number of poet, post-future, or post-
value operations during its lifetime. Eventually, however, the process

8In effect, the process takes on the role of the scheduler. Although the system
would continue to work with only a designated scheduler process performing sched-
uler duties, this arrangement permits scheduling to take place with minimal latency.
As a result, fewer evaluator cycles are wasted waiting for the scheduler process to
run the next user process.

~167~

oy

will complete, having computed a value which may or may not be sent
back to the requesting agent. If the process was suspended for any
portion of its lifetime, another process may have attached to it; in this
case, the process may have more than one requesting agent to which to
return an answer.

Before the process terminates, it examines the head of the runnable-
process-list. If the queue is empty, the process simply goes away.
If the runnable-item at the head of the queue is runnable, it sends
the appropriate message to awaken the associated process. Finally, if
the item is never-run, the process makes itself the process associated
with this new runnable-item, and executes the new message in its own
context.” Barring this possibility, the process “queues” itself on a free
process queue associated with the site manager; when a new process
is needed by an agent on the site, one is preferentially removed from
this queue and recycled before a entirely new process is created. This
way, processes, which are expensive to create, are reused as often as
possible.

6 Results and Conclusions

The cAos system we have described has been fully implemented and
is in use by two groups within the Advanced Architecturss Project.
cAo0s runs on the Symbolics 3600 family of machines, as well as on
the Texas Instruments Ezplorer Lisp machine. ELINT, as described in
Section 3.2, has also been fully implemented. We are currently analyzing
its performance on various size processor grids and at various data rates.

6.1 Evaluating CAOS

CAOS is a rather special-purpose environment, and should be evaluated
with respect to the programming of concurrent real-time signal inter-
pretation systems. In this section, we explore CA0s’s suitability along
the following dimensions:

e Expressiveness
o Efficiency
e Scalability

6.1.1 Expressiveness

When we ask that a language be suitably erpressive, we ask that its
primitives be a good match to the concepts the programmer is trying to
encode. The programmer shouldn’t need to resort to low-level “hack-
ery” to implement operations which ought to be part of the language.
We believe we Liave succeeding in meeting this goal for cAos (although
to date, only caos’s designers have written cA0s applications). Pro-
gramming in CAOS is programming in Lisp, but with added features
for declaring, initializing, and controlling concurrent, real-time signal
interpretation applications.

6.1.2 Efficiency

CAOs has a very complicated architecture. The lifetime of a inessage,
as described in Section 5.5, involves numerous processing states and
scheduler interventions. Much of this complexity derives from the de-
sire to support alternate scheduling policies within an agent. The cost
of this complexity is approximately one order of magnitude in process-
ing latency. For the common settings of simulation parameters, CARE
messages are exchanged in about 2-3 milliseconds, while cA0s meisages
requite about 30 milliseconds. It is this cost which forces us to decom-
pose applications coarsely, since more fine-grained decompositiors would
inevitably require more message traffic.

We conclude that cans does not make efficient use of the under-
lying CARE architecture. A compromise, which we are just beginning
to explore, would be to avoid the complex flow of control dzscribed in
Section 5.5 in agents whose scheduling policies are the sarue as CARE’s

"This is another situation in which an application process performs scheduling
duties.

(FIFO). In such agents, we could reduce the cA0s runtimes to simple
functional interfaces to CARE. We anticipate such an approach would
be much more efficient.

6.1.3 Scalability

A system which scales well is one whose performance increases com-
mensurately with its size. Scalability is a common metric by which
multiprocessor hardware architectures are judged: does a 100-processor
realization of a particular architecture perform 10 times better than a
10-processor realization of the same architecture? Does it perform 5
times better? Only just as well? Or Worse? In hardware systems, scal-
ability is typically limited by various forms of contention in memories,
busses, etc. The 100-processor system might be slower than the 10-
processor system because all interprocessor communications are routed
through an element which is only fast enough to support 10 processors.

We ask the same question of a cA0s application: does the through-
put of ELINT, for example, increase as we make more processors available
to it? This question is critical for cAos-based real-time interpretation
systems; our only means of coping with arbitrarily large data rates is
by increasing the number of processors. Section 6.2 discusses this issue
in detail.

We believe cA0s scales well with respect to the number of available
processors. The potential limiting factors to its scaling are (1), increased
software contention, such as inter-pipeline bottlenecks described in Sec-
tion 3.1.2, and (2), increased hacdware contention, such as overloaded
processors and/or communicati=n channels. Software contention can be
miniinized by the design of the application. Communications contention
can be minimized by executing CA0S on top of an appropriate hardware
architecture (such as that afforded by CARE); caos applications tend
to be coarsely decomposed-they are bounded by computation, rather
than communication-and thus, communications loading has never been
a problem.

Unfortunately, processor loading remains an issue. A configuration
with poor load balancing, in which some processors are busy, while oth-
ers are idle, does not scale well. Increased throughput is limited by
contention for processing resources on overloaded sites, while resources
on unloaded sites go unused. The problem of automatic load balancing
is not addressed by caos, agents are assigned to processing sites on
a round-robin basis, with no attempt to keep potentially busy agents
apart.

6.2 Evaluating ELINT Under CAOS

Our experience with ELINT indicates the primary determiner of through-
put and answer-quality is the strategy used in making individual agents
cooperate in producing the desired interpretation. Of secondary impor-
tance is the degree to which processing load is evenly balanced over the
processor grid. We now discuss the impact of these factors on ELINT’s
performance.

The following three strategies were used in our experiments:

Nc: This strategy represents limited inter-ageni cornirol. No attempt
is made to prevent concurrent creation of multiple copies of the
“same” agent (this possibility arises when multiple requests to
create the agent arrive simultaneously at a single manager). As
a result, multiple, non-communicating copies of an abstraction
pipeline are created; each receives a o.1ly portion of the input data
it requires. The NC strategy was expected to produce poor results,
and was intended only as a baseline against which to compare more
realistic control strategies.

cc: In this strategy, the manager agents assure that only one copy of
a agent is created, irrespective of the number of simultaneous cre-
ation requests; all requestors are returned pointers to the single
new agent. Originally, we believed the cc (for “creation control”)
strategy would be sufficient for ELINT to produce correct high-level
interpretations.

cT: The cT (“creation and time control”) strategy was designed to
manage skewed views of real-world time which develop in agent

~168~

ELINT Control Type/Grid Size
Performance NC cC cC CT CT CcT
Dimension 4x4]4x4|6x6[2x2|4x4[6x6
FALSE ALARMS 1 0 0 0 0 0
REINCARNATION 49 42 2 0 0 0
CONFIDENCE LEVEL 19 20 90 89 92 95
FIXES 48 [42 99 100 100 100
FusioN 0 0 77 85 88 89

Table 1: Quality of ELINT performance of various grid sizes and control
strategies (1 ELINT time unit = 0.1 seconds).

Control | Simulated Time (sec)

Type | 2x2 4x4 6 x6
NC > 11.198
cc 10.87 | 5.12
CcT 11.80 8.10 | 4.17

Table 2: Simulated time required to complete an ELINT run (1 ELINT
time unit = 0.1 seconds).

pipelines. In particular, this strategy prevents an emitter agent
from deleting itself when it has not received a new observation
in a while, yet some observation-handler agent has sent the
emitter an observation which it has yet to receive.

lable 1 illustrates the effects of various control strategies and grid
s'zes. The table presents six performance attributes by which the quality
of an ELINT run is measured.

False Alarms: This attribute is the percentage of emitter agents that
ELINT should not have hypothesized as existing.

ELINT was not severely impacted by false alarms in any of the
configurations in which it was run.

Reincarnation: This attribute is the percentage of recreated emitter
agents (e.g., emitters which had previously existed but had
deleted themselves due to lack of observations). Large numbers of
reincarnated emitters indicate some portion ELINT is unable to
keep up with the data rate (i.e., the data rate may be too high
globally, so that all emiiters are overloaded, or the data rate may
be too high locally, due to poor load balancing, so that some subset
of the emitters are overloaded).

The ¢T c¢ontrol strategy was designed to prevent reincarnations;
hence, none occurred when CT was employed ¢ : any size grid.
When cc was used, only the 6 x 6 grid was large enough for ELINT
to keep up with the input data rate.

Confidence Level: This attribute is the percen.age of correctly-deduced
confidence levels of the existence of an emitter.

The correct calculation of confidence levels depends heavily on the
system being able to cope with the incoming data rate. One way
to improve confidence levels was to use a large processor grid. The
other was to employ the CT control strategy, since fewer reincar-
nations result in fever incorrect (e.g., too low) confidence levels.

Fixes: This attribute is the percentage of correctly-calculated fixes of
an emitter.

Fixes can be computed when an emitter has seen at least two
observations in the same time interval. If an emitter is undergo-
ing reincarnation, it will not accumulate enough data to regularly
compute fixes. Thus, the spproaches which minimized reincarna-
tion maximized the correct calculation of fix information.

8 This run was far from completion when it was halted due to excessive accumu-
lated wall-clock time.

Control Message Count
Type |2x2] 4x4 [6x6

NC > 16118

cce 7375

CcT 4516 4703 | 4616

Table 3: Number of messages exchanged during an ELINT run (1 ELINT
time unit = 0.1 seconds).

GRID

S1ZE 1x1[12x2|3x3|4x4|5x5|6x6
SIMULATED

TIME (sec) 942 { 320 149 | 0.74| 052 | 0.56

Table 4: Overall Simulation Times for ¢T Control Strategy (1 ELINT
time unit = 0.01 seconds, debugging agents turned off).

Fusion: This attribute is the percentage of correct clustering of emitter
agents to cluster agents.

The correct computation of fusion appeared to be related, in part,
to the correct computation of confidence levels. The fusion pro-
cess is also the most knowledge-intensive computation in ELINT,
and our imperfect results indicate the extent to which ELINT’s
knowledge is incomplete.

We interpret from Table 1 that control strategy has the greatest
impact on the quality of results. 'The cT strategy produced high-quality
results irrespective of the number of processors used. The cc strategy,
which is much more sensitive to processing delays, performed nearly as
well only on the 6 x 6 processor grid. We believe the added complexity
of the CT strategy, while never detrimental, is only beneficial when the
interpretation system would otherwise be overloaded by high data rates
or poor load baiancing.

Tables 2 and 3 indicate that cost of the added control in the cT
strategy is far outweighed by the benefits in its use. Far less message
traffic is generated, and the overall simulation time is reduced (In Ta-
ble 2, the last observation is fed into the system at 3.6 seconds; hence,
this is the minimum possible simulated run time for the interpretation
problem).

Finally, Table 4 illustrates the effect of processor grid size when the
CT control strategy is employed. This table was produced with the data
rate set ten times higher than that used to prodnce tables 1-3; the
minimum possible simulated run time for the interpretation problem is
0.36 seconds. The speedup achieved by increasing the processor grid
size is nearly linear with the square root of the size; however, the 6 x 6
grid was slightly slower than the 5 x 5 grid. In this last case, we believe
the data rate was not high enough to warrant the additional processors.

6.3 Unaunswered Questions

cA0S has been a suitable framework in which to construct concurrent
signal interpretation systems, and we expect many of its concepts to
be useful in our future computing architectures. Of principal concern
to us now is increasing the efficiency with which the underlying CARE
architecture is used. In addition, our experience suggests a number of
questions to be explored in future research:

e What is the appropriate level of granularity at which to decompose
problems for CARE-like architectures?

e What is the most efficient means to control the actions of concur-
rent problem solvers when necessary?

o How can flexible scheduling policies be implemented withcui sig-
nificant loss of efficiency? What is the impact on problem solving
if alternate scheduling policies are not provided?

-169-

I A

We have started to investigate these questions in the context of a
new CARE environment. The primary difference between the original
environment and the new environment is that the process is no longer
the basic unit of computation. While the new CARE system still supports
the use of processes, it emphasizes the use of conterts: computations
with less state than those of processes.

When a context is forced to suspend to await a value from a stream,
it is aborted, and restarted from'scratch later when a value is available,
This behavior encourages fine-grained decomposition of problems, writ-
ten in a functional style (individual methods are small, and consist of a
binding phase, followed by an evaluation phase).

In addition, CARE now supports arbitrary prioritization of messages
delivered to streams. As a result, it is no longer necessary to include in
CA0S its complex and expensive scheduling strategy. Early indications
are that the new CARE environment with a slightly modified cA0S en-
vironment performs between two and three orders of magnitude faster
than the configuration described in this paper.

Acknowledgements

My thanks to Harold Brown, Bruce Delagi, and Reid Smith for reading
and commenting on earlier drafts of this paper. Bruce Delagi, Sayuri
Nishimura, Russell Nakano, and James Rice created and maintain the
CARE environment. Harold Brown defined the behavior of the Ca0s
operators, ported ELINT from AGE to cAos, and collected the results
which appear in Section 6. Finally, I wish to thank the staff of the
Symbolic Systems Resources Group of the Knowledge Systems Lab for
their excellent support of our computing environment.

References

(1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structure and
Algorithms. Addison-Wesley, 1983.

[2] N. C. Aiello, C. Bock, H. P. Nii, and W. C. White. Joy of AGE-
ing. Technical Report, Heuristic Programming Project, Stanford
University, 1981.

[3] H. Brown, C. Tong, and G. Foyster. PALLADIO: An Exploratory
Environment for Circuit Design. IEEE Computer, 16, December
1983.

(4] H. 1. Cannon. Flavors: 4 Non-Hierarchical Approach to Object-
Oriented Programming. Technical Report, A.l. Lab, Massachusetts
Institute of Technology, 1981.

[5) B. A. Delagi. The CARE User Manual. Technical Report, Knowl-
edge Systems Laboratory, Stanford University, 1986. In prepara-
tion.

[6] Denelcor, Inc. Heterogeneous Element Processor: Principles of Op-
eration. February 1981.

[7] L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy. The
Hearsay-11 Speech Understanding System: Integrating Knowledge
to Resolve Uncertainty. ACM Computing Surveys, 12:213-253,
June 1980.

(8] R. P.Gabriel and J. McCarthy. Queue-Based Multiprocessing Lisp.
In Conference Record of the 193 ACM Symposium on Lisp and
Functional Programming, August 1984,

(9] R. H. Halstead, Jr. Implementation of MultiLisp: Lisp on a Multi-
processor. In Conference Record of the 1984 ACM Symposium on
Lisp and Functional Programming, August 1984,

[10) B. W. Lampson and D. D. Redell. Experience with Processes and
Monitors in Mesa. Communications of the ACM, 23(2):105-117,
February 1980.

[11] V. R. Lesser and D. D. Corkill. The Distributed Vehicle Monitor-
ing Testbed: A Tool for Investigating Distributed Problem Solving
Networks. The Al Magazine, 15-33, Fall 1983.

(12 E. Y. Shapiro. Lecture Notes on the Bagel: A Systolic Concurrent
Prolog Machiune. Technical Memorandum TM-0031, Institute for
New Generation Computer Technology, November 1983.

(13] R. G. Smith. Structured Object Programming in Strobe. Technical
Report SYS-84-08, Schlumberger-Doll Research, March 1984.

(14] R. G. Smith and P. Friedland. Unit Package User’s Guide. Tech-
nical Report HPP-80-28, Heuristic Programming Project, Stanford
University, December 1980.

~170=

-

CAREL: A Visible Distributed Lisp

Byron Davies

Knowledge Systems Laboratory
Stanford University, Palo Alto, California

Abstract

CAREL is a Lisp designed for interactive programming of a
distributed-memory multiprocessor. CAREL insulates the user
from the machine language of the multiprocessor architecture,
but still makes it possible for the user to specify explicitly the
assignment of tasks to processors in the multiprocessor
network. CAREL has been implemented to run on a TI
Explorer Lisp machine using Stanford’s CARE multiprocessor
simulator [Delagi 86].

CAREL is more than a language: real-time grapiical
displays provided by the CARE simulator make CAREL a
novel graphical programming environment for distributed
computing. CAREL enables the user to create programs
interactively and then watch them run on a network of
simulated processors. As a CAREL program executes, the
CARE simulator graphically displays the activity of the
processors and the transmission of data through the network.
Using this capability, CAREL has demonstrated its utility as an
educational tool for multiprocessor computing.

1. Context

CAREL was developed within the Advanced Architectures
Project of the Stanford Knowledge Systems Laboratory. The
goal of the Advanced Architectures Project is to make
knowledge-based programs run much faster on multiple
processors than on one processor. Knowledge-based programs
place different demands on a computing system than do
programs for numerical computation. Indeed, multiprocessor
implementations of expert systems will undoubtedly require
specialized software and hardware architectures for efficient
execution. The Advanced Architectures Project is performing
experiments to understand the potential concurrency in signal
understanding systems, and is developing specialized
architectures to exploit this concurrency.

The project is organized according to a number of
abstraction layers, as shown in Figure 1-1. Much of the work
of the project consists of designing and implementing
languages to span the semantic gap between the applications
layer and the hardware architecture.

The design and implementation of CAREL depends mainly
on the hardware architecture level. At the hardware level, the
project is concentrating on MIMD, large grain, locally-
connected, distributed memory multiprocessors communicating
via buffered messages. This class was chosen to match the
needs of large-scale parallel symbolic computing with the
constraints imposed by the desire for VLSI implementation and

-171-

Corporate Computer Science Center
Texas Instruments, Dallas, Texas

Layer Regearch Question

Applications Where is the potential concurrency
in signal understanding tasks?

Problem-solving How do we maximize useful

frameworks concurrency and minimize
serialization in problem-solving
architectures?

Knowledge How do we develop knowledge

representation represer:tations to maximize

and ‘nference parallelism in inference and
search?

Systems How can a general-purpose symbolic

programming programming language support

language concurrency and help map multitask
programs onto a distributed-memory
multiprocessor?

Hardware What multiprocessor architecture

architecture best supports the concurrency in

signal understanding tasks?

Figure 1-1: Multiple layers in implementing signal
understanding expert systems on multiprocessor
hardware

replication, Like the FAIM-1 project [Davis and Robison 85],
we consider each processing node to have significant
processing and communication capability as well as a
reasonable amount of memory -- about as much as can be
included on a single VLSI circuit (currently a fraction of a
megabit, but several megabits within a few years). Each
processor can support many processes. As both application
and architecture are better understood, the detailed design of
the hardware architecture will be modified to support the needs
of the application.

The hardware architecture level is implemented as a
simulation running on a (uniprocessor) Lisp machine. The
simulator, called CARE for "Concurrent ARray Emulator",
carries out the operation of the architecture at a level
sufficiently detailed to capture both instruction run times and
communication overhead and latency. The CARE simulator
has a programmable instrumentation facility which permits the
user to attach "probes"” to any object or collection of objects in
the simulation, and to display the data and historical summaries
on "instruments" on the Lisp machine screen. Indeed, the
display of the processor grid itself is one such instrument.

WA -

2. Introduction

The CAREL (for CARE Lisp) language is a distributed-
memory variant of QLAMBDA [Gabriel and McCarthy
84] and an extension of a Scheme subset [Abelson and
Sussman 85]. CAREL supports futures (like Multilisp
[Halstead 84}), truly parallel LET binding (like QLAMBDA),
programmer or automatic specification of locality of
computations (like Par-Alfl [Hudak and Smith 86] or
Concurrent Prolog [Shapiro 84], and both static assignment of
process to processor and dynamic spread of recursive
computations through the retwork via remote function call,
Despite the length of this tist of capabilities, CAREL is perhaps
best described as a high-level systems programming language
for distributed-memory multiprocessor computing,

The CAREL environment provides both accessibility and
visibility. CAREL is accessible because, being a Lisp, it is an
interactive a:J interpreted language. The user may type in
expressions directly and have them evaluated immediately, or
load CAREL programs from files. If the multiprocessing
features are ignored, using CAREL is just using Scheme. The
multiprocessing £«tensinns in CAREL are derjved from those
of QLAMBDA. For example, PARALLEL-LET is a simple
extension of LET which computes the values for the LET-
bindings ccncurrently, at locations specified by the
programmer or determined automatically.

CAREL gains its visibility through the CARE simulator:
CAREL programmers can watch their programs execute on a
graphic display of the multiprocessor architecture, Figure 5-1
shows CARE and CAREL with a typical six-by-six grid of
processors. A second window on the Lisp machine screen is
used as the CAREL listener, where programs are entered. As a
CAREL program runs, the simulator illuminates each active
processor and each active communication link. The user may
quickly gain an understanding of the processor usage and
information flow in distributed CAREL programs. CARE
instruments may also be used to gather instantaneous and
historical data about the exection of CAREL programs.

The rest of the paper is divided into a discussion of the
philosophy of CAREL, a description of the language CAREL,
and some illustrated examples of CAREL in action on the
CARE simulator.

3. Philosophy and Design
The CAREL language was developed with the following
assumptions in mind:
1. CAREL (like Multilisp) was designed to augment

a serial Lisp with "discretionary” concurrency:
the programmer, rather than the compiler or the
run-time support system, decides whut parts of a
program will be concurrent. CAREL provides
parallelism through both lexical elaboration and
explicit processes [Filman and Friedman 84].

2. Similarly, CAREL was designed to provide
discretionary locality: the programmer also
decides where concurrent routines will be run. A
variety of abstract mechanisms are provided to
express locality in terms of direction or distance
or both.

-172-

3. CAREL generally implements eager evaluation:
when a task is created, it is immediately started
running, even if the result is not needed
immediately. When the result is needed by a
strict operator, the currently running task blocks
until the result is available.

4. CAREL is designed to automatically manage the
transfer of data, including structures, between
processors. CAREL supports general methods to
copy lists and structures from one processor to
another, and specialized methods to copy
programs and environments.

5. CAREL is designed to maintain "architectural
fidelity": all communication of both data and
executable code is explicitly handled by the
simulator so that all costs of communication may
be accounted for.

6. CAREL provides certain specialized "soft
architectures”, such as pipelines and teams,
superimposed on the processor network.

7. Through CARE, CAREL graphically displays the
runtime behavior of executing programs.

8.Finally, and unfortunately, CAREL ignores
resource management, including the problem of
garbage collecting data and processes on multiple
processors. Resource management is a very
important problem, but CAREL doesn’t yet have
a solution for it. CAREL currently depends on
the memory management of the Lisp machine on
which it runs in simulation.

4. The Language

This section presents a language description of CAREL and
examples -- with graphics -- of its use. The functions and
special forms of CAREL were selected roughly as the union of
the capabilities of QLAMBDA (as extended for distributed
memory) and Par-Alfl. There has been no attempt as yet to
create a minimal but complete subset of CAREL.

On top of a Scheme subset, CAREL supports the following
functions and special forms:

PARALLEL-LET: a special form for parallel evaluation of LET
binding. Optionally, the programmer may specify the
locations at which the values for binding are fo be
evaluated.

PARALLEL-LAMBDA: a special form to create asynchronously
running closures. Optionally, the programmer may
specify the location where the closure is to reside. The
closure may also include state variables so that its
behavior may vary over time.

PARALLEL: a parallel PROGN, evaluating the component
forms concurrently.

PARALLEL-MAP: a parallel mapping function which applies a
single function to multiple arguments at multiple
locations, returning a list of the results.

MULTICAST-MAP: a parallel mapping function which evaluates
the same form at multiple locations and gathers up the
values returned in the order in which they are returned.

FUTURE: a special form specifying a form to be evaluated and
the site at which the evaluation should take place.
Returns a future encapsulating the value that will
eventually be returned.

TOUCH/FORCE: a function to force a future to give up its value.

ON: evaluates a form at a specified location. Equivalent to
(TOUCH (FUTURE ...)).

PIPELINE: a special-form to create a sofiware pipeline of
processes spread across multiple processors.

TEAM: a special form to create a team of processes spread
across multiple processors. Each member of the team
executes the same function. The team manager assigns
a new task to the least loaded team member.

DEFINE-STRUCTURE: a simple version of DEFSTRUCT.

DEFINE-SERIALIZED-STRUCTURE: a serialized version of
DEFINE-STRUCTURE. Each structure created
incorporates a queue to serialize access to the structure.

CAREL augments standard Lisp datatypes with the
following:

FUTURE-OBJECT: a datatype to encapsulate a value to be
returned eventaally after computing at a specified
location

REMOTE-ADDRESS: a pointer to an object at a remote site

LOCATION: grid coordinates, neighbor/polar coordinates, or a
keyword (:ANY, :ANY-NEIGHBOR, :ANY-OTHER)

STRUCTURE: a structure with named slots
SERJALIZED-STRUCTURE: a serialized structure with named

slots

The following describes the syntax of CAREL’s functions
and special forms, and gives illustrated examples of their use.
Certain expressions are used repeatedly in the paragraphs that
follow, so their definitions appear first:

location-form is any form that evaluates to something that
can be interpreted as a location in the CARE network.

body is an arbitrary list of forms.

PARALLEL-LET:
(PARALLEL-LET parallel? bindings . body)

parallel? is an arbitrary form, used to control the parallelism
of the evaluation

bindings is a list of triples (variable value-form
location-form)

As in QLAMBDA, parallel? is used to controi whether the
bindings should indeed be evaluated in parallel. If paraliel?
evaluates to () or #!IFALSE, then the PARALLEL-LET is
evaluated as an ordinary LET, with the bindings being
evaluated in (an unspecified) sequence, and the body being
evaluated in an environment including those bindings.

If parallel? evaluates to T or #!'TRUE, then the location-
forms are evaluated concurrently and the concurrent evaluation
of the value-forms is begun. The variables are immediately
bound to the future-objects corresponding to the values to be
returned, and the evaluation of thc body is begun. The body
may block temporarily on unfinished futures.

In all these cases, the value returned by the PARALLEL-
LET is the (forced) value of the last form in the body.

PARALLEL-LAMBDA:

(PARALLEL-LAMBDA paraliel’ args
location-form state-bindings

- body)

Evaluating a PARALLEL-LAMBDA sets up a closure at a
remote site specified by location and returns a function of the
specified arguments. When this function is applied, the list of
evaluated arguments is sent to the remote closure, the remote
evaluation is initiated, and a future is immediately returned.
The remote closure created by PARALLEL-LAMBDA
contains some state variables, bound in state -bindings. A state
variable is changed by applying the PARALLEL-LAMBDA
function to the arguments (:SET variable-name value).

parallel? is used, as in PARALLEL-LET, to determine
whether parallelism is actually employed.

PARALLEL:
(PARALLEL . body)

The PARALLEL special form initiates the concurrent
evaluation of the forms in the body. Control returns from
PARALLEL when all of the forms have been evaluated. The
value returned by PARALLEL is undefined.

PARALLEL-MAP:

(PARALLEL-MAP function-form arguments-form
locations-form)

function-form evaluates to a function of one argument

arguments-form evaluates to a list, each member of which is
to be used as an argument to the function

locations-form evaluates to a list of locations.

PARALLEL-MAP, like MAP, applies a function repeatedly
to arguments drawn from a list and returns a list of results.
Unlike MAP, PARALLEL-MAP performs the function
applications concurrently and remotely, and returns a list of
futures that will eventually evaluate to the results.

-173~

MULTICAST-MAP:
(MULTICAST-MAP function-form locations-form)

MULTICAST-MAP invokes a function of no arguments at
each location in a list of locations. MULTICAST-MAP
immediately returns a list of futures corresponding to the
values that will eventually be retuned. Since the function
called takes no arguments, the values returned can be different
only if they depend on the local state of the processor at the
location of evaluation, as embodied in the "“global"
environment of that processor.

MULTICAST-MAP-NO-REPLY:
(MULTICAST-MAP-NO-REPLY function-form locations-form)

MULTICAST-MAP-NO-REPLY invokes a function of no
arguments at each location in a list, but does not cause results
to be returned. The value returned by MULTICAST-MAP-
NO-REPLY is undefined.

PIPELINE:
(PIPELINE stagel ... stagen)

where a stage is:

(name args location-form state-variables . output-forms)

For each stage expression, PIPELINE establishes a remote-
closure at the specified location, and then links the remote
closures so that the output of one stage becomes the input of
the next stage. The linked closures form the working part of
the pipeline. PIPELINE then returns a function which, when
applied, passes its arguments on to the first stage of the
pipeline and immediately returns a future which will eventually
contzin the result that comes out of the pipeline. To ensure that
the x sults that comes out of the pipeline correspond one-for-
one with the sets of arguments that went in, the future-object to
hold the result is created aiomically with the entry of the
arguments into the pipeline and is passed along with the data
through the pipeline.

TEAM:
(TEAM args location-forms . body)

The TEAM special form creates a set of closures, called a
team, plus a single distinguished closure called the manager of
the team. Each closure, or member of the team, is identical,
except perhaps for its location within the processor network.
When the manager of the team is applied to a list of arguments,
the manager selects a member of the team and applies that
member to the arguments, immediately returning a future
which will eventually contain the value computed.

The purpose of the team is to spread a workload among a
number of identical processes. Like the stages of a pipeline,
the members of a team are created with a fixed functionality
and are statically assigned to processors. Because of this, the
overhead of invoking a team member is less than creating and
invoking a new process.

-174=

DEFINE-STRUCTURE:
(DEFINE-STRUCTURE structure-name . slot-names)

DEFINE-STRUCTURE is a simple analog of the Common Lisp
DEFSTRUCT. Evaluating a DEFINE-STRUCTURE special
form creates:

1. a MAKE-structure-name function with required
arguments corresponding to the slor-names.

(MAKE-structure-name ., args) creates an
instance of structure-name with slot values
specified by args.

2. structure-name-slot-name functions for each slot.
These functions are used to access the slot values
of a structure instance,

3. SET-structure-name-siot-name functions for each
slot. These functions are used to set the slot
values of a structure instance.

DEFINE-SERJIALIZED-STRUCTURE:
(DEFINE-SERIALIZED-STRUCTURE structure-name . slot-names)

DEFINE-SERIALIZED-STRUCTURE is the same as
DEFINE-STRUCTURE, except that access to the structure created
is serialized. Only one process at a time may modify the
structure.

5. Some Examples

PARALLEL-LET:

;;: This subroutine concurrently performs trivial
;:;: computations at the four corner neighbors of a
;:: given location and collects the results.
(define (cycle-corners-l where)
(parallel~let t
((x1 (list 1 2) (neighbor 0 where))
(x2 (list 3 4) (neighbor 2
{neighbor 1
where)))
(x3 (list 5 6) (neighbor 3 where))
(x4 (list 7 8) (neighbor 5
(neighbor 4
where))))
(append x1 x2 x3 x4)))

:2: CYCLE calls the subroutine starting at tte
;i: current processor
pis

(define (cycle) (cycle-corners-1 *here*))

. =

~

o

PRUSF IS ST S

PARALLEL-MAP (see Figure 5-1): MULTICAST-MAP-NO-REPLY (see Figure 5-2):

ii; FOUR-CYCLE calls the CYCLE program at ;;; This activates the processor at each location
;:; four different locations in the ;7; in SITES, but does no worthwhile computation.
i processor grid. HHH

i (define (activate-locations sites)

(define (four-cycle) (multicast-map-no-reply (lambda () *here*)
sites))

(parallel-map cycle-corners-1l
(2 5) (52) (22) (55))
"2 5) (52) (22) (55)))

CoOomOoOO0
(M]
minElnin

mmis] _[mie
5! [miwl [=
B OO0

Figure 5-1:PARACLEL-MAP: Execution of the D :I D '—
FOUR-CYCLE program. Active -D I —I
pecessors are displayed in inverse —
vidre, Active cominunications links are D f_J . I_-l l -
drawn as lines joining particular ports of - —
the processor nodes. The processors

annotated with astedisks are the cycle . D l—_l I__| I:| |_ : I
enters. Each processor is at a different)

pont in the cycle. L:J E] D '_] |_J1 -
NN .

PARALLEL-LAMBDA:

7+ This creates a process at Some ‘her node i:
iii the network, returning an object shich, when

777 applied as a function to two arg.<mmts, Figure 5-2: MULTICAST-MAP-NO-REPLY:
;7 evaluates a linear expression on Samples from the execution of the
e e e ACTIVATE-LOCATIONS program,

’('défine (linear-evaluator al bl) showing how the multicast message is
(parallel-lambda t (x y) ’‘:any-other distribricd and how the processors
((a al) (b bl)) receiving the message are activated.
(tax) (*by)) Sinc ‘no reply is required, the
computation just dies out once the

distributed programs are run.

=175-

MULTICAST-MAP (see Figure 5-3):

;:;: This sends a message to each loration
;77 in the list SITES, asking it to return
::: its location.

}ééfine (identify-yourself sites)
(multicast-map (lambda () *here*) sites))

WO
OO 00 m
“Im] sl]

mie'wmin
CAATAEI]

Bus) el CIGHEC

E R [y j
NI

| i)

A agn,

~

Figure 5-3: MULTICAST-MAP: Samples from the executior of the ID'"NTIrY- . URSF' s
program. The multicast method is distributed as in Figure 5-2, but in 1ais - myle the
processors must send a value back to the requesting process. Tre new.r i uecom:
congested as all the processors respond ther gradually retans to rest 2 . *Sudg
reach their destination. The notion of a network "hot-spot" is clea-ly ..mor {a

*——-—u—.p_-.J..

-176-

sy . b

PIPELINE:

;3; This sets up a pipeline across the bottom and
;;; up the right-hand side of the processor array.
;i; This trivial pipeline simply adds 1 to the

;;; input value at each stage and passes the result
;;:; on to the next stage. It also prints out the
;;; result at each stage, using a printing

;;; mechanism "outside" the simulation.

(define (make-test-pipeline)
(pipeline . Part 1I, entitled MONAD: A Hierarchical Model Paradigm
22; ﬁ:; 0 :.1, g; B; Egiigt EI for Reasoning by Analogy, describes a methodology for ana-
(s3 (x) r(S 6) 1)) (print (+ logical reasoning. The philosophy for the implementation
(s4 (x) (4 6) 1)) (print (+ in progress is described for the problem solving strategy
(85 (x) ' (5 6) 1)) (print (+
(s6 (x) ‘(6 6) 1)) (print (+
(87 (x) ‘(6 5) 1)) (print (+
(s8 (x) (6 4) 1)) (print (+
(39 (x) ‘(6 3) 1)) (print (+
(s10 (x) ‘(6 2) ((a 1)) (print (+ a
(s1l (x) "(6 1) ((a 1)) (print (+ a

OO0 OO0
OOOO0Od O8O0
om0 OO 0]
BN Y
DO DOO0] -
il i T J

o~ o~ o~
P e)
LU N TR O
LI TR T U TR

x

—

~—

~—

OO0 COO0510
oooood OO0000
OO0O0O0O0 m[m] [=l=ln
OO0O0000 OOO000
OOOO0o0 OO0
DO . EN Em

Figure 5-4: PIPELINE: Samples from the execution of programs constructing and using a CAREL
software pipeline. The pipeline runs along the bottom and up the right side of the
processor array. The pipeline is constructed in two passes. The first pass (a) establishes
a process at each site and the second pass (b) links the processes together. The execution
of the pipeline on a single argument (c) shows data flowing through the pipeline using
only local communication. The last figure (d) shows that multiple data items may flow
through the pipeline simultaneously, keeping multiple processors busy.

-177-

WY gy

P -

6. Implementation

CAREL is implemenied by a "semicircular"! interpreter,
implemented in Zetalisp and drawing heavily on the CARE
simulator. Details of the representation will appear in a later
paper [Davies 86]. These include the representation of CAREL
datatypes in terms of Lisp and CARE primitives, the use of a
"global” environment (full copies of which exist at each
processor) and processor-local environments, and the interface
to the CARE hardware simulator.

7. CAREL and Other Languages

CAREL was strongly influenced by three other languages:
QLAMBDA [Gabriel and McCarthy 84], Par-Alfl [Hudak and
Smith 86], and Actors [Agha 85]. QLAMBDA provided the
idea of having two kinds of parallelism (which Filman and
Friedman called rarallelism by lexical elaboration and
parallelism by cexplicit processes). CAREL addresses the
question, "What would QLAMBDA look like on a distributed-
memory multiprocessor?".

Par-Alfl provided the notion of a dynamic variable $SELF
that a process could use, reflectively, to determine where it was
executing. The part of CAREL that implements parallelism by
lexical elaboration is very similar to Par-Alfl. CAREL adds
the ability to deal with processes as first class objects.

CAREL differs from Actors in its emphasis on discretionary
parallelism and in its reliance on the programmer to manage
process resource allocation. These are consequences of
CAREL'’s design as simple extension of an existing serial Lisp.
CAREL'’s primitives for concurrency and locality are powerful
enough to implement a wide variety of interesting programs,
but still provide less concurrency, less capability for managing
synchroniation, and less theoretical elegance than Actors. For
example, CAREL enforces synchronization at the inputs and
outputs of a function or closure: when APPLY is invoked, all
the arguments must have been pre-evaluated, and multiple
outputs are considered to be generated in a single list. In the
Actor language SAL described by Agha, the inputs to an Actor
may arrive at any time and in any order and outputs likewise
may be generated asynchronously.

8. Acknowledgements

Implementation of CAREL was made possible by the
existence of the CARE simulator, as implemented by Bruce
Delagi and augmented by Eric Schoen. The author further
wishes to acknowledge the intellectual support of the Stanford
Advanced Architectures Project. Contributors to PARSYM,
the netwide mailing list for parallel symbolic computing, have
provided fruitful stimulation.

ISemicircular, not metacircular, because it is implemented in Lisp, but
not in CAREL itself.

References

[Abelson and Sussman 85]
Harold Abelson and Gerald Jay Sussman
with Julie Sussman.
Structure and Interpretation of Computer
Programs.
MIT Press, Cambridge, Massachusetts,
1985.

Gul A. Agha.

Actors: A Model of Concurrent Computation
in Distributed Systems.

Technical Report, MIT AI Laboraiory,
March, 1985.

[Agha 85]

[Davies 86] Byron Davies.

CAREL: Implementation of a Distributed
Scheme.

Technical Report In preparation, Stanford

Knowledge Systems Laboratory, 1986.

[Davis and Robison 85]
A. L. Davis and S. V. Robison.
The Architecture of the FAIM-1 Symbolic
Multiprocessing System.,
In Proceedings of IJCAI-85. 1985.

[Delagi 86] Bruce Delagi.
CARE User’s Manual
Heuristic Programming Project, Stanford

University, Stanford, Ca. 943035, 1986.

[Filman and Friedman 84]
R. E. Filman and D. P. Friedman.
Coordinated Computing: Tools and
Techniques for Distributed Software.
McGraw-Hill, New York, 1984,

[Gabriel and McCarthy 84
Richard P. Gabriel and John McCarthy.
Queue-based multiprocessing Lisp.
In Proceedings of the 1984 ACM Symposium
on Lisp and Functional Programming,
August 1984, 1984,

Robert H. Halstead.

Implementation of Multilisp: Lisp on a
Multiprocessor.

In Proceedings of the 1984 ACM Symposium
on Lisp and Functional Programming,
August 1984, ACM, 1984,

[Hudak and Smith 86]

P. Hudak and L. Smith.

Para-functional programming: A paradigm
for programming multiprocessor
systems.

In Proceedings of ACM Symposium on
Principles of Programming Languages,
January 1986. ACM, 1986.

E. Shapiro.

Systolic programming: A paradigm of
parallel processing.

In Proceedings of the International
Conference on Fifth Generation
Computer Systems. 1984,

[Halstead 84]

[Shapiro 84]

-178-

MULTI-SYSTEM REPORT INTEGRATION USING BLACKBOARDS

John R. Delaney

Knowledge Systems Laboratory
Stanford University
701 Welch Road, Building C
Palo Alto, CA 94303

ABSTRACT

Blackboards are an Al problem soiving methodology.
A blackboard system consists of a structured data base (the
blackboard) holding Input and derived Inferences and a
collection of procedures for deriving inferences (knowiedge
sources). Each knowiedge source Is specialized to operate
on some portion of the biackboard. The knowiedge sources
are invoked opportunistically as the information on the
biackboard increases.

The best known applications of the biackboard
methodology have been In speech understanding and
passlve sonar data Interpretation. The inputs In these cases
were a singie form of raw sensor data. But the
methodology is also wel sulted to Integrating multipie
streams of fully reduced and qualltativeiy different data such
as active radar track reports, passive electronic Inteiligence
reports, and human Intelligence reports about enemy
intentions.

This paper sketches the nature of the blackboard
probiem solving methodology with an emphasis on those
features sulting it to such applications. The sketch Is
lilustrated with exampies from a reiatively simple muitl-
system rcport Integration problem. Reievant applications
currentiy under development at Stanford's Knowiedge
Systems Laboratory are aiso described.

INTRODUCTION

"Muiti-System Report integration” is an odd phrase.
An alternative wouid have been "Sensor Data Fusion”. But
that phrase often implies a less reduced form of information
to integrate than Is intended here. The reporting systems in
this paper are presumed to reduce the data they sense as
fully as Is practlcal with only that data avaliable. The degree
of processing can vary from ¢,stem to system. For a radar
tracking system, the reports would be samples of on-going
tracks Integrating ali measurements up to the present. For
an ELINT system deaiing with intermittent emissions, the
reports might be just current emitter and bearing
characteristics. And for a human intelligence gathering
system, the reports might be Informed guesses about near-
term enemy intentlons.

"Sensor Data Fusion" also usually Implies that the
Information to be Integrated appears at comparablie time
Intervals or is statlc. But the reporting systems In this paper
are presumed to provide reduced data over a wide range of
time intervais. The radar, ELINT, and "humint” systems
mentioned above could produce reports at very different
Intervals with very different degrees of regularity. Assuming
that some reports are locally of comparable frequency whiie
others are locally static informatlon Is Procrustean.

Thls work was supported by the Defense Advanced
Research Projects Agency, the NASA-Ames Research
Center, Boeing Computer Services, and the National
Institutes of Hea'th.

"Blackboards” refers to a particuiar Al problem
solving methodoiogy. The best known appllcations of the
biackboard methodoiogy are HEARSAY-li, a speech
understanding system (2), and the HASP/SIAP sonar data
interpretation system (4,5). These applications effectively
processed regular streams of data from a singie sensor,
treating any other Information as iocally static. But the
plackboard methodology Is more generaliy applicable. in
particuiar, it provides a convenient framework for integrating
maximally reduced information from multiple sources with
different temporal characteristics. Just what Is needed for
multi-system report integration.

in the first section beiow, the fundamental features of
blackboard systems are described abstractly. A consistent
set of exampies are used In the following section to clarify
those features In context of multi-system report integration.
The next section reviews those aspects of the blackboard
methodoiogy particuiarly sulted to muiti-system report
integration. The last section briefly descrlbes work in
progress at Stanford's Knowiedge System Laboratory on
two more ambltious examples. it aiso explains how that work
is embedded in a larger effort.

NATURE OF BLACKBOARDS

The blackboard problem solving methodology
originated approximately 10 years ago and has been
evolving ever since. The hailmarks of a biackboard system

are.

« A global data store hoiding input data and
hypotheses about the solution of the problem
derlved from that data. Reiated Informatlon is
kept together. This data store Is known as the
blackboard.

A coliection of procedures for deriving
hypotheses about the solution of the probiem
from the input data and/or from other
hypotheses. Each procedure is specialized to
operate on a particuiar portion of the
plackboard. These procedures are known as
knowiedge sources.

A mechanism for invoking a knowiedge source
on relevant parts of the blackboard. A
knowledge source Is invoked on a particuiar
piece of the plackboard when the Invocatlon
would incromentaliy advance the solution of the
probiem. This mechanism Is known as the
;ontroi structure.

Each of these hailmarks is described abstractly in the
remainder of this section with simple examples appearing in
the next.

The biackboard hoids the state of the probiem
solving system as the solutlon evoives. In conventional
terms, the dimensionality of the state varies with time. The
elements may be discreteiy or continuously valued. And the

179~

Py

o

elements change values at discrete tlmes. BRut such
observations miss the most significant feature of the
blackboard. It structures the Informatlon it holds.

Closely related Input data or hypotheses are
collected together In the form of blackboard nodes having
certain attrlbbutes and values for those attrlbutes. Related
nodes form blackboard levels. All the nodes in a glven
level having the same attrlbutes but (potentially) different
attribute values. Levels can In turn form hierarchles of
analysis or abstraction, usually with Input data nodes at the
base of each hlerarchy. The most common nodal attributes
are links between nodes on dlifferent levels. Such links
connect hypotheses to Input data or other hypotheses
which support them. They can be links up and down levels
within a hlerarchy or they can be across hlerarchles.

Know!sdge sources transform the state of the
problem solving system by adding nodes to the blackboard,
by removing them, or by modifying thelr attribute values.
Knowledge sources are effectively parametric procedures
for transforming the state. A knowledge source could be
Invoked on any node at a glven level or a tuple of nodes at
one or more levels. It operates only on the node(s) upon
which It Is Invoked plus those nodes linked directly or
Indirectly to them. Knowledge sources are also effectively
typed procedures; a knowledge source can be invoked only
on a node of a particular level or on a tuple of nodes, each
of a partlcular level. This feature of knowledge sources
provides them with a degree of modularity. In particular,
knowledge sources do not interact directly.

The procedure carrled out by a knowledge source
expresses knowledge of how to advance the problem
solution. It Is expressed In the creation, modificatlon, and/or
elimination of particular sorts of hypotheses In the form of
nodes of particular levels. In this sense, a knowledge
source Is a speciallst in the solution of some part of the
overall problem. The details of the procedure can be
expressed in any form. A typlcal form is a set of
productlon rules and a pollcy for using them.

Each productlon rule specifies a logical condition on
the attribute values of the node(s) upon which the
knowledge source Is Invoked and an action to be carried
out if that condition is true. Both the condition and action
can be compound. The value of a compound condltion Is
TRUE If the values of all Its component condltions have
TRUE values. A compound action Is simply a seguence of
indlvidual nodal creatlons, deletions, or modifications.
Evaluating a loglcal condition or modifylng a node may
require the application of complex numerlc functions to
attribute values. In this way, production rules mix symbollc
and numerlc computations.

Different policles for using a set of production rules
allow at most one actlon to occur, or multiple actlons but
never the same one twice, or the same one repeatedly. In
the first case, the rules are scanned in order of definition
with the scan terminating Immediately If a rule's action Is
carrled out. In the second case, the loglcal conditions of
the rules are all tested before any actlons take place. Then
any actlons are carrled out In parallel. The third case Is
simply the second case repeated untll no loglcal condition
Is TRUE. Whlle this style of programming many Sseem
bizarre at flrst, it has proved quilte successful in past and
exlsting blackboard systems.

A knowledge source describes the procedure by
which It changes the blackboard when invoked. 1t also
describes when It Is invocable. The most general form of
thls description Is a (possibly compound) logical condltion
on attrlbute values of the node(s) upon which It could be
invoked. In thls manner, a knowledge source resembles a
productlon rule. The condltion |s parametric in the same
sense that each knowledge source ls parametric. As a
result, the same knowledge source may be invocable on
snveral nodes or tuples of nodes simultaneously. Each such
comblnation of a knowledge source and a node or tuple of
nodes Is called a potential Invocation. At any time, there

are typically many potential invocations. The control
structure determines the set of potential invocations, plcks
one, and causes It to be carried out.

Many blackboard systems do not use the most
general form to describe when a knowledge source is
Invocable. They use events and loglcal comblnations

thereof. An event Is a summary of a blackboard change. A
knowledge source posts the appropriate event or events
when It completes. A pcinter to the affected node Is
assoclated with each event. These systems may also use
events for an addltlonal purpose as explained below.

The control structure is Intended to operate In an
opportunistic manner analogous to the manner in which
people solve jigsaw puzzles. Inltlally, the puzzle solver
scans for pleces wlth singular small-scale characteristics. |If
two such pleces have similar characteristics, they are
tested for fit. Gradually, clusters of pleces accrete as the
puzzle solver continues to scan through the unused pieces.
Once the clusters become sufficlently large, scanning the
pleces Is replaced by searches for specific pieces to
extend a cluster. But pleces plausibly belonging another
cluster are tested for fit there If they are chanced upon
during a search. Eventually, large clusters are recognlzed
as connected on the basls of large scale characterlstics and
are jolnted. If progress while searching for speclflc pleces
bogs down, the puzzle solver reverts to scanning for pleces
wlith simllar characteristics for a time. It choses that activity
which, at the moment, seems likely to make the best
contribution to the overall solutlon of the problem.

A varlety of technlques are¢ used by the control
structures of different blackboard systems to declde which
potentlal invocation would, If carried out, make the best
contribution to the overall solution. The toplc Is belng
actively researched. One system has an additional
blackboard for handling hypotheses about the best choice
(3) and another allows all potential Invocations to be carrled
out in parallel (6).

Several blackboard systems use events In thelr
control structures. After a particular event or sequence of
events, particular knowledge sources are preferred to
others. And they are prefered for Invocation on the affected
node or nodes. These same systems also use events to
describe when a knowledge source is invocable. So the
control structures of these systems need only attend to
events and not to the blackboard nodes themselves.

Some of these blackboard systems also use
expectations In thelr control structures. Expectations are
posted by knowledge sources just as events are posied.
Generally speaking, they are instructions to Invoke a
particular knowledge source on a particular node or nodes
when, if ever, a certaln event or pattern of events occurs
Involving the node(s). Expectations can also be negative.
Such expectations cause a particular knowledge source to
be invoked if a certaln event or pattern of events does not
occur within a specified time interval.

BLACKBOARDS ILLUSTRATED

Conslder the problem of producing a situatlon map of
aircraft flying over an area of Interest. The sltuation map is
based on track reports from an air surveillance radar
tracking system, emitter/bearing reports from an ELINT
system sensing airborne radar emissions, and warnings from
a human Intelligence system. The warnings are that
particular alrcraft or groups of alrcraft may soon enter the
area of Interest with partlcular objectives in mind. The
sltuation map should Identlfy the type of each aircraft as
well as Its current posltion and veloclty. The radar track
reports are regular for aircraft In the area of Interest. The
ELINT re;yorts are Intermittent by comparison. There are no
reports unless an emitter is on. And the detection range of
an actlve emltter can depend on Its type and, in some
cases, on the aircraft's aspect. ELINT reports are also less

~180~

SITUATION MAP
LEVEL

AIRCRAFT
LEVEL

INTELLIGENCE
REPORT
LEVEL

RADAR TRACK
LEVEL

e

ELINT TRACK

LEVEL
RADAR REPORT
LEVEL ° PY ELINI:I'E‘IIREEJ’ORT
Figure - A Blackboard with 7 levels of nodes in 4 hierarchies
accurate geometrically than radar reports. Intelligence the links between the aircraft nodes and both kinds of track

reports are generally less frequent than the ELINT reports,
but can be updated rapidly on occaslon.

Flgure 1 llustrates a posslble blackboard
conflguratlon during the course of solving thls problem.
There are seven levels on the blackboard, a typical number.
The sltuation map and alrcraft levels form one hlerarchy of
levels. Nodes on these two levels hlerarchically express
alternatlve hypotheses about the map of aircraft in the area
of Interest. Two situation map hypotheses exist In thls
case, both Including the same two hypothetical alrcraft and
one Including a hypothetical third aircraft as shown by links
between the corresponding nodes In the figure. One
attribute of a sltuation map node Is thus a set of component
alrcraft nodes. Hypothesls credibllity Is also a situation map
node attribute. A posteriori probabllity would be a
reasonable credibillty measure. The value of that attribute
is a function of the credibllities of the supporting alrcraft
hypotheses.

The Intelligence report level Is treated as a separate,
degenerate hlerarchy in the figure. The flgure shows two
Intelligence report nodes. Links indlcate that one of these
reports supports both situation map hypotheses while the
second report supports only one of them. The credibillty
attrlbute value of each sltuation map node Is also a function
of the credibiiity of each Intelligence report node linked to
it.

The radar track and radar report levels form another
hlerarchy. So do the ELINT track and ELINT report levels.
A sequence of report nodes Is linked to a corresponding
track node to represent the hypothesls that they were all
caused by the same object, aircraft or emitter. Similarly,

nodes represent the hypothesls that the tracks are all of the
same aircraft. The credibllity of an alrcraft hypothesls Is a
functlon of the credibllities of the two kinds of track
hypotheses supporting It.

It will prove useful later to have expliclt definitions of
certain attrlbutes of radar report and radar track nodes. We
do so In pseudo-computerese as follows:

Level: radar-report

Attributes: report-time
track-Identlfler
state-estimate

North posltion
East posltlon
North velocity
East velocity
state-covarlance

assoclated-tracks

Level: radar-track

Attributes: last-assoclated-report
report-history
track-credlbllity

The names of the attrlbbutes suggest thelr Intended
meanings. But attributes are glven pragmatic meaning by the
way the attrlbutes are manlpulated by knowledge sources.
They are analogous to the elements of a state vector In this
sense.

Knowledge sources embody knowledge about how to
solve a problem. Conslder the following fragment of

-181-

| S N T |

i

—y

P,
Ay

I By i,

knowledge about radar tracking:

A sequence of radar reports caused by a
partlcular aircraft usually have the sam~n track
Identifier. An exceptlon may occur If two aircraft
approach closely at some time, In which case the
track Identifiers are swapped at roughly the time
of closest approach.

It can be converted into the following fragments of
knowledge about collecting radar reports Into radar tracks:

Given a radar report node that Is not
associated with any radar track node and glven a
radar track node, If the radar report node's track
Identlfler Is the same as that of the radar track
node's last assoclated radar report node, then
assoclate them.

Given two radar track nodes, If thelr historles
of associated radar report nodes Indicate a close
approach, then create two new radar track nodes
with historles composed by splitting the original
track nodes' histories at the time of closest
approach and rejoining them with the track
Identifiers swapped after that time.

A knowledge source based on the first of these
fragments Is expressed In pseudo-computerese as follows:

Applles-to:
a-radar-track , a-radar-report

Invocation-conditlon:
associated-tracks of a-radar-report =
empty-set

Use-policy:
ail-true-c '~e

Production-rule 1:
Condition:
track-identifier of last-associated-report
of a-radar-track =
track-ldentifier of a-radar-report

Actlon:
last-assoclated-report of a-radar-track
1= iink to a-radar-report ;
report-history of a-radar-track
== link to a-radar-report ;
assoclated-tracks of a-track-report
:= link to a-radar-track

Here ™:=" symbolizes assignment, ":==" slgnifles addition to
a set, and ";" sequences slmple actions In a compound one.

The knowledge source is qulte simple, with just one
productlon rule. That Is atyplcal. Knowledge sources using
production rules typically employ between ten and thirty
productlon ruies. A knowledge source reallzing the second
fragment would be more complex. It would include one or
more productlon rules used to determine whether a possible
close approach occurred and when.

The detalls of any partlcuiar control structure are
complex. And the motlvation for that complexity Is not
apparent In an example Invoiving just one or two knowledge
sources and a few nodes. So no attempt is made to Inciude
control structure details In thls lllustration. A sketch of the
blackboard changes one would prefer under particular
clrcumstances provides a better feel for the control
structure's gross bebavlor. It also |lllustrates how the
different components of a blackboard system can come
together to solve a problem.

Assume that no reports have been recelved of any
sort by the blackboard system. Then one sltuation map
node exists with no links to alrcraft nodes. Thls represents
the hypothesls that no aircraft are In the area of Interest.
Then an intelligence report Is posted on the blackboard. it
warns that some number of alrcraft of a particular type or

types are expected to enter the area during a specifled
time Interval across a speclfied portion of the area's
boundary. Alrcraft nodes are then created with the
appropriate types, ail linked to a new siluation map node.
The credibliity of this new sltuation map node is the same
as that of the intelilgence report. The crediblility of the old
situatlon map node is appropriately adjusted downward.

The radar track attribute of each new aircraft node Is
not fllled In at this polnt. There are no radar track nodes
yet. But an expectatlon Is established that iater examines
newly created radar track nodes. If one is created in the
approprlate time Interval and the appropriate place, a link to
that radar track becomes the value of the associated track
attrlbute. If the expectation goes unsatisfied, the aircraft
node Is deleted and the credibliity of each assoclated
situatlon map is reduced. whenever the credibility of a
situatlon map node slips below a certain ievel, that node Is
also deleted. Any aircraft nodes linked only to that situation
map node are also deleted. The credibilities of ail
remalning situatlon maps are then re-normaiized.

Recelpt of the first few radar track reports causes
them to be posted on the blackboard, but no more. Only
when three report nodes having the same track identifier
appear on the blackboard Is a radar track node created to
represent the hypothesls that they are from a singie aircraft.
In thls manner, the creation of faise radar track nodes based
on radar faise alarms is largeiy avoided. The resuiting node
may then be linked to an existing aircraft node by the
aforementioned expectation.

Failing that, a new alrcraft node is created to which
the new radar track node Is linked. Then the cross-product
Is formed of the old sltuation map hypotheses and the pair
of hypotheses that the radar track was or was not caused
by an aircraftt One new situation map node Is created
corresponding to each existing one. The new situation map
nodes are coples of the oid nodes, each with a link to this
alrcraft node added. Some portion of the credibility of each
old situation map hypothesis must aiso be transferred to the
corresponding new hypothesis. At this point, the knowiedge
source which removes insufficiently credible situation map
nodes Is again applied to reduce the number of situation
map hypotheses malntained.

The accretion of ELINT reports into ELINT tracks is
simllar to that of radar reports into radar tracks. But the
creation an of ELINT track does not satisfy any expectations
or trigger the creation of an aircraft node. Rather it triggers
a search for alrcraft nodes of a type which couid produce
the sensed emlsslon and which has a history of estimated
positions (Implicit In the radar tracks' report history)
consistent with the ELINT track's history of bearings
(simllarly Impliclt). The ELINT track node Is linked with any
and all such alrcraft nodes. The credibllity of any such
aircraft nodes Is Increased appropriately to refiect evidence
that the hypothesis i. represents Is correct. Such a
credibllity Increase must also be propagated up to the
sltuation map nodes. Creation of a new alrcraft node
triggers a simiiar search for supporting ELINT tracks.

Prloritization among the knowiedge sources carrylng
out the aforementioned actions can be relatively simpie. The
arrival of a new Input datum shouid trigger a locus of
actlvity on the blackboard which propagates up the network
of levels, with pauses to spread down along different
hlerarchles as appropriate. All of the activity directiy
triggered by one datum should be compieted before the
next input datum is posted. To keep the amount of inter-
Input processing reasonable, the diversity of hypotheses
created In the normal course of processing must be limited.
Thus as additional radar reports arrive, the posted nodes
are simply assoclated with radar tracks on the basis of
track Identlflers as In the above knowiedge source example.
It would be possibie to create track nodes expressing all
possible hypothetical combination of track reports without
regard to track Identlfiers. But the processing required to
create, qualify, and eventuaily deiete most of these nodes

-182-

would be wasteful glven the number of possible
combinations.

But when should the control structure Invoke the
knowledge source which tests for a close approach of two
alrcraft and creates new track nodes to reflect a possible
confuslon of track identifiers? One answer would be after
the completlon of every invocation of the knowledge source
assoclating a new radar report with an existing radar track.
But that would mean frequent Invocatlons, usually producing
no change. An alternative Is to invcke that knowledge
source only when some other, less frequent, occurrence
suggests the possibllity of a close approach by two alrcraft
and consequent track Identlfler confuslon be consldered.

In the scheme described above, ELINT tracks are
assoclated wlth an alrcraft If they are consistent with the
alrcraft's hypotheslzed type and with the radar track. If the
tracks are geometrically consistent but the nature of the
tracked emission is inconsistent with the aircraft type, one
possibility is that the alrcraft hypothesis was wrong with
regard to type and should be discarded or modified. But
another posslbllity is that the radar track history actually
corresponds to two dlfferent aircraft at two different times
due to a track Identifler confuslon during a close approach.
If ELINT tracks are already linked wlith the alrcraft node as
support for the hypotheses, the posslbliity of a close
approach should be Investigated first.

The above sketch does not reflect the only manner
In which the example problem might be solved. It reflects
varlous optlons for Incrementally advancing the problem
solution. Choosing which option to use In a partlcular
situation can require subtiety If one wishes to be
computationally efficient. Not lllustrated are the additional
subtletles of advising the control structure how to achieve
that sequencing. Experience Is requlred to make such
cholces wisely. Experlence is also Important in the
construction of knowledge sources, the choice of
blackboard levels, and the selectlon of nodal attributes.
Simple examples can only suggest the subtleties involved.

SUITABILITY OF BLACKBOARDS

The above sketch of posslble blackboard changes
illustrates a major reason why the blackboard problem
solving methodology Is suitable for multi-system report
integration. The ordering of changes adapts appropriately to
the arrival of very dlfferent sorts of Input data in different
orders.

If any Intelligence report involving a partlcular aircraft
arrlves after radar track reports corresponding to It, the
hypothesls that it exists wlll still have been formed. The
credibility of the situation map hypotheses supported by
that alrcraft hypothesis will be Increased once the
Intelligence report Is incorporated Into the support for those
situation map hypotheses. ELINT reports are not discarded
Immedilately If they do not confirm an exlsting alrcraft
hypothesis. They are saved for possible confirmation in the
future. And exceptional occurrences need be considered
only when evidence suggests they occur. The close
approach of two aircraft leading to track identlfier confusion
being the case In point.

This adaptabillty In the operation of a blackboard
system is a consequence Oof the control structure's
opportunistlc Invocatlon of knowledge sources, the
knowledge sources’ modularity of forming or altering
hypotheses, and the blackboard's structured composition of
hypotheses. Any knowledge source can be Invoked after
any other completes, depending on the state of the
blackboard, l.e., of the problem’s solution, at that point in
time.

The blackboard methodology also provides a means
for managing the complexlty of large multi-system report
Integration problems. Knowledge sources are modular In
thelr applicability to all nodes o a glven level, or tuples of
given levels, but only to those nodes. Modularlty Is also
achleved by expressing a partial problem solution as

hypotheses supported by a hlerarchy, or a set of linked
hlerarchles, of sub-hypotiheses ultimately based on input
data. Solution to individual parts of a particular muiti-system
report integration problem can be conceptualized and
Implemented without dwelling on the details of how the
results of solving one part are used in the solutions of other
parts.

Standard algorithms can be used where approprlate
to solving part of the problem. But special pre- or post-
processing may be required. Such pragmatic features of a
standard algorithm's use In a partlcular context can be
Isolated from the algorithm Itself by encapsulating them In
separate knowledge sources. Explicitly separating formal
and heurlstic aspects of a problem's solution can highlight
the heurlstlc aspects. It llluminates the assumptions, expliclt
or Impliclt, upon which they are based. Modifying the
heurlstlc aspects without comprormlsing the formal aspects
also becomes easier.

WORK IN PROGRESS

The Heurlstlc Programming Project Group of
Stanford's Knowledge System | aboratory is trylng to

«reallze a new generation of software
architectures using paraliel computation to
speed up Al applications and

« specify multlprocessor system archltectures for
carrylng out those computations efficlently.

Among the Issues belng investlgated are

« recognition of opportunities for parallellsm in
the solution to a problem and

« expression of that potential parallelism In a
problem solving framework that can exploit it.

In particular, this effort is focusing on signal understanding
problems and blackboard-like frameworks.

Blackboard systems appear to be Intrinsically parallel.
At any time, there can be many potential Invocatlons of
knowledge sources. Those involving different nodes seem
eliglble for parallel execution. Within knowledge sources,
production rule conditions could be evaluated In paraliel.
And some production rule actions could be safely executed
In parailel. Currently two dlfferent blackboard systems are
under development, each Investigating a different approach
to expressing opportunities for parallel computation or
requirements for serlal computation. Applicatlons of these
experimental systems used In evaluating their effectlveness.

The focus on slgnal understanding probiems foliows
in large part from the focus on blackboard systems. The
two mate well. But signal understanding problems are
Important In thelr own right. When signal understanding Is
defired broadly, it includes sensor data fusion and multi-
system report integration. That class of problems is large
and of conslderable interest to the military.

Two slignal understanding problems have been
investigated so far as part of the current project. They are
referred to as the TRICERO/ELINT and AIRTRAC problems.
While generally similar, each problem is expected to push
the research Into recognlzing opportunities for, and
expressing, parallel computation in different directions.

In the TRICERO/ELINT probiem, streams of ELINT
emltter/bearing measurements must be combined to
estimate the flight paths and operating modes of non-
cooperating aircraft The problem |s named after ESL's
TRICERO blackboard system for solving a problem of which
this one Is just a component. The knowledge of how to
solve the TRICERO/ELINT problem has already been worked
out, albelt without attentlon to opportunities for parallel
computation. So work on thls problem Is further along.

-183-

ey

bl gt g .

The AIRTRAC probiem Iis recognizing aircraft fiying
across a national border and heading for particular airfields
used by smugglers. The smuggiers' aircraft must be picked
out of the normal air traffic across that border. To soive
the problem, alrcraft destinations must be recognized, not
Just flight paths and types. Streams of radar reports from
muitiple radar systems are avali“ie. But the iow altitude
coverage of those radars is assumed to be limited and the
smugglers are assumed to know the coverage limits. So
smugglers can try to avoid detection. They can aiso
maneuver their aircraft evasively to disrupt tracking. Such
behavior is a sure sign of a smuggier's aircraft, but makes
the recognition of a destination difficuit.

To compilicate the AIRTRAC probiem further,
distributed aeroacoustic tracking systems using modest
batteries of acoustic sensor arrays(1,7) are piaced across
large holes in radar coverage. These Systems provide
tracking reports within their iimited coverage. Because such
systems are passive and readily moved, the smuggiers are
assumed to be unaware of their coverage and so unabie to
avoid detection by these systems. These systems aiso use
acoustic signature information to provide aircraft ciass
estimates along with tracking reports.

initiai solutions to both probiems shouid be
compieted In both experimental blackboard systems by the
eno of the year. Moreover, each soiution shouid have been
appied to several probiem scenarios on reaiistic simulated
muitprocessors. These experiments wili determine how
much paralieilsm was realized and may suggest aiternative
ways of realizing more paralielism.

REFERENCES

(1) JR. Deianey and RR. Tenney, "Broadcast
Communication Policies for Distributed Aeroacoustic
Tracking”, Proceedings of the 8th MIT/ONR Workshop

on_C3 Systems, Cambridge, MA, July, 1985,
pp.195-199.

(2) LD. Erman, F.Hayes-Roth, V.R. Lesser, and DR.
Reddy, "The HEARSAY-ll Speech Understanding
System: integrating Knowiedge To Resoive
Uncertainty”, Computing Surveys, v. 12, December
1980, pp. 213-253. Aiso reprinted in (8).

(3) B.Hayes-Roth, "A Blackboard Architzcture for Controi",
Artificiai inteiligence, vol. 268, no. 3, July 1985, pp.
251-321.

(4) HP. Nii and E.A. Felgenbaum, "Ruie-Based
Understanding of Signais”, in D.A. Waterman and
F. Hayes-Roth, Pattern-Directed inference Systems,
Academic Press, San Francisco, 1978, pp. 483-501,

(5) H.P. Nii, E.A. Feigenbaum, JJ. Anton, and A.J.
Rockmore, "Signai-to-Symboi Transformation:
HASP/SIAP Case Study", Ai Magazine, voi. 3, no. 2,
Spring 1982, pp. 23-35.

(6) J. Rice, "POLIGON: A System for Paraiiei Probiem
Solving", Knowiedge Systems Laboratory Technicai
Report 86-19, Stanford University, 1986

(7) RR. Tenney and J.R. Delaney, "A Distributed
Aeroacoustic Tracking Aigorithm”, Proceedings of the
1984 American _Control Conference, San Diego, CA,
June 1984, pp. 1440-1450. P

(8) BL. Webber and N.J. Nilsson (eds.), Readings in
Artificiai inteliigence, Tioga Press Company, Paio Aito,

1981.

~184-

AIDE : A Distributed Environment for Design and Simulation

*** Working Paper ***

Nakul P. Saraiya
Knowledge Systems Laboratory
Department of Computer Science
Stanford University
April, 1986

Abstract
AIDE is an environment that provides facilities for the design and
simulation of systems, specifically multiprocessor computer systems.
In addition, AIDE has facilities to do distributed simulation of such a
system using a network of hosts. We are currently evaluating the
performance of the distributed simulation algorithm on a network of
workstations for a simulated multiprocessor system.

1. Introduction

A design system is expected to provide a framework for a designer to
adequately implement representations of certain interesting physical
or abstract entities that perform some function. In doing so, it must
provide a suitably precise formalism and an integrated set of tools
allowing the designer to conveniently specify, modify and evaluate
such representations [1, 9]. AIDE? is an attempt to provide such a
framework.

AIDE evolved in the context of the Advanced Architectures for Expert
Sys project of the uristic Programming Project. The project
requ:.'s simulating & ::-ge distributed-memory message-passing
MIMD architecture (CARE [5]) running several additional software
layers (for example, C~uS$, POLIGON, and ELINT). This led naturally
to investigating the utility of distributed simulation both as a means
of reducing simulation turnaround time and in ensuring that the
simulated machine was being programmed fairly (without making use
of the real shared memory available on the host machine).
Furthermore, implementing the distributed simulation algorithm was
in itself a useful exercise in symbolic programming of a multiprocessor
system, addressing some of the same concerns as an application
written for CARE.

This document describes the essential aspects of the AIDE system. The
first part of the document concerns design representation and capture,
and the second part deals with design validation, specifically
sequential and distributed simulation. More detailed documentation
for the system is contained in the user’s manual [7].

2. Design Capture

Design capture denotes the process of specifying a representation of an
abstract entity to a design system. Below we discuss the formalism
and supporting tools provided by AIDE to facilitate this process.

lSupport. for this work was provided by the following : DARPA/RADC, under
contra.i F30602-85-C-0012; NASA, under contract number NCC 2-220; Boeing
Computer Services, under contract number W-266875.

2AIDE Is-a Distributed Environment,

2.1. Representation

Every real-world or abstract entity may be characterized by its
structure and its behavlor. A structural view of an entity is any
organizational view of the entity that decomposes it into (functionally
or otherwise) semi-independent components. The behavior of an
entity is a conceptual formalization of the way certain interesting
properties of the entity change over time; different formulations
(possibly emphasizing different concerns) lead to different
specifications of behavior. A design or model in AIDE is cxactly the
totality of its specified structure and behavior.

The process of design is ‘“‘partially-structured” [1]; designers often
work both top-down and bottom-up. AIDE provides a structural
formalism that supports this notion.

2.1.1. Hierarchical Partitioning

The well-known technique of hierarchical decomposition is one of the
ways in which a designer makes the process of designing a complex
system more tractable. For example, PALLADIO [1] viewed the process
of circuit design as the incremental refinement of a functional
description of the circuit into its physical realization. Here the basic
design refinement step was partitioning the circuit at some abstract
structural level into constituent components specified at either the
same level or a less abstract level.

AIDE supports hierarchical partitioning directly and simply by
allowing the designer to define a component? structurally in terms of
arbitrary (perhaps incompletely specified) subcomponents.

2.1.2. Design Libraries

Complementing hierarchical partitioning is the use of prototypes to
build on previous work [4, 1]. This allows the designer to rapidly
create new designs by modifying existing components or by applying
new composition rules to extant components. AIDE supports this idea
through the use of libraries, which are collections of prototypical
components that the may be stored between sessions and re-used in
the creation of new components.

2.1.3. Behavior
Component behavior specifications must be efficient both in
expression and simulation. AD». uses the ZETALISP [10] language and
programming environment directly in addressing both these concerns,
paying the penalty of expecting the user to be a reasonably competent
LISP programmer.

3A component is the basic unit of design in AIDE.

-185-

I T Y WLy v

2.1.4. Implementation

It is natural to use the object-oriented programming paradigm to
implement the components of a design, directly mapping from entities
in some ‘“real” world (of the designer's choosing) to the data objects
manipulated by the design system; AIDE uses the object-oriented
programming facilities provided by the FLAVOR system [10]. Every
component is an instance of some component class, where the class
defines a component type and is implemented as a flavor.4 Structure
is specified in terms of these flavors and behavior in terms of methods
relevant to them.

2.2. Structure
To the design system, a component’s structure consists of two parts :

o the component’s own properties, and,

o the component’s relationships with other components.

2.2.1. Component Properties

The designer sees a component as a “black box” of a particular type
that has a collection of local named attributes with associated values.
The allowable attributes of a component are defined by its type, while
the values on these attributes may (and usually do) differ for each
component instance, A subset of these properties®, the state
properties, are used by the behavior of the component. Special state
properties known as ports (input and output) constitute a
component’s interface to its environment. Other automatically
inherited properties are used by the system to maintain and display
components,

ADDE provides the defcomponent form for a designer to define the
properties of a new component type and it has a graphical editor to
capture and alter display properties held by components.®

Figure 2-1 is a simple example of the component class declaration for
an abstracted D-type flip-flop. Each instance of d-flip-flop has
three input ports (named d, clock, and clear), one output port
(named q), and no internal state.

(defcomponent D-F1ip-Flop

(:input D Clock Clear)

(:output Q)

(:documentation *Class of positive-edge-triggered D-type
flip-flop witb direct clear. Uses ‘'higb, 'low and °‘x

logic signals. Has unit delay between an input transition
and stable output.®))

Figure 2-1: Definition of the d-f11p-flop Component Class

For a complete description of the defcomponent form see [7]; suffice

it to say here that it translates into the appropriate FLAVORS
declarations.

1n the usual inheritance network.

5We use the term “properties’ loosely to mean the collection of attributes and their
values,

6A large part of the graphical interface was modelled after that used by HEL10s and
PALLADIO.

2.,2.2, Structural Relationships
There are two structural relationships that hold between components

o Composition. Any component may be a subcomponent
of exactly one component and every component may be
composed of any number of subcomponents. When a
component is composite (made up of subcomponents), it
may share its ports, for behavioral purposes, with those of
its subparts through the “connection” relation.

Connection. This relation holds between individual
ports of two components and is specified by lines which
connect the relevant ports. Lines may connect an output
port of some component to an input port of another
component except when connecting ports between a
composite component and one of its subcomponents, in
which case the connected ports are of the same type (port
sharing). Usually a line connects just two ports; contacts
are special entities that provide fan-in and fan-out
capabilities for lines.

These structural relationships are captured by ADE through its
graphical structure editor.

2.2.3. Prototypes

Traditionally, object (frame) systems have had difficulty in
implementing a general mechanism for capturing complex
relationships that must hold between sets of instances of various
classes. The “connection” structural relation is just such a relation
- it is difficult to declare this information in the class definition of a
composite component., The solution we have adopted in AIDE is to
store connectivity information about a composite component type as a
“‘canonical” instance of the relevant component class; this canonical
instance is called the prototype of its class. The structure of a
component class is therefore fully specified by the existence (in the
environment) of both a defcomponent declaration and a prototype.

2.2.4. The Editor

A component in AIDE may be accessed through the graphics-based,
menu-driven interface which provides operations for viewing and
selecting components. Top-level components (devices) are maintained
in book-keeping entities known as worlds, each of which may have
several windows (viewports) viewing the relevant device. The editor
uses the graphics-based interface in providing operations to create
new devices and edit their structure, allowing the designer to creatc,
alter and delete components, lines, ports and contacts. There are also
facilities to copy devices into permanent file storage, prototize devices
for inclusion in libraries, and load devices and libraries from file. A

complete desciption of the operations provided by the editor may be
found in (7).

2.3. Behavior

Behavior is defined by AIDE to be the interaction of a component with
its environment over (simulated) time. A behavioral specification
applies to a class of component; it is implemented by a method on the
class that interacts with the simulator to generate the time-varying
behavior of a component of that class. Since the simulator in ADE is
event-driven, this interaction takes the form of the consumption and
production of events, which are encapsulations of the time-stamped
state changes in the simulated system. Behavior for a component is
therefore simply a specification that relates values on input ports with
values on output ports over (simulated) time; components whose
output values depend on a history of input values mak: use of their
internal state properties.

-186~

N [r— (T .

AIDE provides the defbehavior form to declare the behavior of a
component class. Events relevant to a component are consumed when
the simulator propagates the specified state change and then invokes
the relevant component’s behavior method; the simulator is informed
of new events through the execution of the assert function within a
behavior method, which specifies a change that will be true of some
state of the component at some future simulated time.

2.3.1. An Example

Figure 2-2 is an abstract behavioral specification for the d-flip-
flop component class. The signal on the d input is transferred to the
q output when the clnck input goes from low to high. If, however,
the clear input goes 1o, then so does the q output. The q output
is unaffected by the d input whenever the clock is stable. The clock
period is two simulated time units, and input setup time is ignored.

(defbehavior D-Flip-Flop (ignore state signal now)
;; Clear Clock D 1 qQ

‘; : low x x I low

;; nigh T high | high
nigh 1 lov | 1low

;; high low x | Qo

(selectq state
(Clock
(when (eq (state-value (port-signal Clear)) °high)
(when e? signal 'highy
(when (< (- now (state-time (port-signal D)) 2))
(assert § (state-value (port-signal D))
(1+ now))))))
(Clear

(vhen (eq signal 'low) (assert @ ‘lov (1+ now))))))

Figure 2-2: Behavior Declaration for the d-f11p-flop Class

There are a couple of points worth noting in the cxample of Figure
2-2.

o The style illustrates one of the benefits of event-driven
simulation : only the state changes are propagated as
opposed to recomputing the state of the entire system at
every step {8].

T .e declaration has an explicit notion of the passage of
time; simulated time units have user-defined semantics
and it is up to the designer to ensure that the units be
used consistently by different components.

o« The state changes specified by the cvents for a given
simulated time are all made before behavior methods are
invoked on the events. (This, however, excludes zero-
delay eveats generated by the behavior methods, which
must be dealt with more carefully. These are not
considered in this report, but are handled by AIDE.)
Hence, there is no need to specify a clause to handle a
change in d occurring at the same simulated time as a
clock transition from low to high, where the clock
event is “‘processed’’ earlier in real time than the d event.

2.3.2. Composite Behavior

The benefits to be gained by hierarchical simulation are well-known;
once the behavior of a multi-component system is verified, the
designer may reduce simulation turnaround time by abstracting this
behavior into a less detailed behavior that realizes the same function.
AIDE directly supports this by allowing a designer to specify whether a
composite component’s behavior is its own defined behavior (““top-
level”’) or the compounded behaviors of its connected subcomponents
(“internal”). For example, if we designed a shift-register from D-type
flip-flops, we might initially verify the design using the ‘‘internal”

behavior of the shift-register, that is, the composite behavior of its
flip-flops; later, when using a shift-register in the design of a control-
unit, we might use a “top-level” characterization of its functionality.

How does composite behavior work? During simulation, events on
output ports are immediately transformed into events on the furthest
participating connected input ports (if any), and then forwarded to
the simulator to be consumed by the relevant component at the
specified simulated time.”. Hence, the effects of a local change
propagate through the system along connection paths, achieving the
required overall system behavior.

2.3.3. Behavior Requirements
A top-level behavioral specification is usually required to satisfy the

following properties [2, 5] :

1. Functionality. Events generated on output ports of a
component depend only on events consumed on its input
ports and internal states.

2. Realizability. An event generated for simulated time ¢
cannot depend on any events consumed by the component
for simulated times greater than t. This simply reflects
the notion that no real system can predict the future.

3. Finite Delay. An event on an input port or internal
state with simulated time t cannot gencrate events on
output ;orts with simulated time less than t. This reflects
the idea that no real system can alter the past.

A quick inspection of Figure 2-2 should verify that the behavior
specified for d-f11p-f1op satisfies these properties.

3. Design Validation

Once a design has been specified to a design system, the designer must
be able to validate it by ensuring that it meets both its functional and
performance goals. In the absence of formal verification methods,
simulation is a common technique to establish the functionality of a
design [8]. Furthermore, since simulation (unlike emulation)
automatically carries with it an explicit notion of time8 it can also be
used to compare the performance of a design with other designs or
real systems that realize the same function; this is often as important
to the designer as verifying its functionality [2].

3.1. Discrete Event Simulation

While there are various types of simulation (see {6] for a good
characterization of simulation methods), we are concerned here only
with discrete-time, event-driven simulation. Before proceeding with
our discussion, it is useful to consider some definitions.

3.1.1. Consistency and Acceptability

An event is an atomic state change in the simulated system during
the execution of a simulation. It is represented as a record consisting
of (1) a component. (2) the state or port of the component that
changes, (3) the value that it gets, and (4) the simulated time of this
change. Two events are equivalent if they are isomorphic (thus they
represent the same state change to the simulated system, though for
different executions of the simulation).

7Evem. transformation is done cooperatively by the components themselves through
message-passing

BAS construed by the designer.

-187-

Simulated time is the designer’s abstraction of real time, so that
the state of the real system (device) at any real time corresponds to
the state of the simulated system (device) at the corresponding
simulated time [6]. Simulated time takes on non-negative, discrete,
and, for convenience, integer values.

The simulation of a component (device) refers to the execution of a
simulation of a component (device) under the control of some
simulation algorithm which regulates the consumption and production
of events relevant to that component (device) over real time, For a
given simulation, there is an associated set of events. We say that
two simulations are equivalent if they produce equivalent event sets
(given that the device being simulated is deterministic); two
simulation algorithms are consistent if any two simulations under
the control of each algorithm, respectively, are equivalent. The
actions of a simulator to achieve consistency (using a simulation
algorithin) are collectively called synchronization; hence the
algorithm is often called a synchronization algorithm.

Lastly, we call a synchronization algorithm acceptable if it is
consistent with itself and if it accurately reflects the behavioral
specification of the simulated system. Intuitively, this means that a
synchronization algorithm is acceptable if it always generates all and
only those events induced by the initial state (including initial events)
of the simulated system and the behaviors of the components being
simulated.

3.1.2. Synchronization

Acceptability is the goal of every synchronization algorithm. Since
almost every implementation of a simulator (including AIDE) depends
directly on side-effects to changeable state?, acceptability
operationally means that the simulation algorithm must control the
consumption of events during ezecution so that behavior-generating
code is invoked in the correct context. (This is not necessarily the
case; for example, a simulation system that uses a strict logic
programming system to implement structural and behavioral
specifications need not concern itself with this issue since all “state
changes”” will persist in such a sstem; of course, the burden of
storage management has now been thrust upon the logic
programming system.) With this implementation model in mind, we
provide below an informal relation on events that will be useful in
analyzing the acceptability of synchronization algorithms.

An event e, preempts another event & if either of the following is
true :

1. e and ¢ specify a change to the same state entity but the
simulated time of e; is greater than the simulated time of
&

2. the state change specified by e overwrites information
that is used by & and the behavior of the relevant
component to generaie an event.

Two events are independent if neither preempts the other.

We claim that an acceptable simulation algorithm is one that
generates an event set such that for every ¢ and & in the set, if ¢
preempts ¢; then ¢; is “‘processed after” e

In theory a simulator has to run the entire simulation to determine
the set of preemption relationships between every two events; in
practice, however, it computes a set of possible event preemptions,

gThere is a direct correspondence between a state variable in the specification and
lementation of the specification, dictated by storage management

one in the imp

considerations.

with the requirement that this set be a superset of the set of actual
event preemptions. The problem of synchronization (distributed or
otherwise) is thus essentially the problem of dynamically determining
potential event preemptions and processing those events that canuot
be preempted.

3.2. Sequential Simulation
We discuss briefly the mechanism by which sequential simulation

works in AIDE.

3.2.1. Synchronization Using Simulated Time

The standard sequential synchronization algorithm makes use of the
simulated time of an event and the requirement that the device is
realizable to achieve acceptability. Events with lower simulated times
are always “‘processed before’’ events with higher simuiated times;
therefore, whenever an event is processed, all the events that could
possibly have preempted it have already been processed.

The main advantage of this synclironization algorithm is that it is
simple and easily implementable in a serial system. However, it is too
conservative in its computation of possible event preemptions to be
viable in a distributed environment.

3.2.2. Implementation

ADE implements a simulator as a flavor-instance that maintains a
simulated-time-ordered eventlist and an associated global clock for a
given device. At every step, the simulator removes the event at the
head of the eventlist, moves the clock to the specified simulated time,
makes the appropriate state change, and invokes the behavior method
of the relevant component. Events generated by the behavior of a
component are passed back to the simulator, which sorts them into
the eventlist to be processed when they get to its head.

AIDE uses the graphical interface to allow the designer to access the
simulator associated with a device. It provides operations to reset,
initialize, and run a simulation with or without breakpoints [7].

Current facilities for “observing’’ a simulation are limited; a general
instrumentation interface is under design.

3.3. Distributed Simulation

The motivation for distributed simulation is doing event processing in
parallel using multiple machines to gain a reduction in the overall
simulation turnaround time as compared to a sequential simulation.
Thus, synchronization algorithms for distributed simulation systems
seek ways of processing non-preemptable events in parallel. These
algorithms must trade off the cost of determining potential event
preemptions against the cost of processing the events themselves in
minimizing the total execution time of the simulation. Such costs,
naturally, depend on various factors, including the target machine
environment. Our discussion below assumes a machine environment
that consists of small number of fairly powerful machines (Symbolics
3600s) communicating over a shared network (the ETHERNET).

Though there are various classes of synchronization algorithms for a
distributed environment [6], we only consider those which distribute
control of the simulation to the participating machines, that is,
algorithms that are run individually by each machine.

-188-

T T

T .

=y

T —

~

T ———

3.3.1. Partitioning
Decomposition is not only a powerful tool in design, but also in

distributed problem-solving. It is ther. 1atural to consider
various ways of partitioning the pro f simulation into
subproblems which may be tackled by t rcipating machines

individually. In doing this partitioning, we . keep in mind that
we would like each machine to operate as autonomously as possible
and also that there are costs associated with communicating
information between machines which we would like to minimize.

Usually the structure of a device (system) directly reflects its
functionality. Given the nature of the design representation, this
implies that the subcomponents of the device themselves behave fairly
autononously. This in turn points to the obvious utility of
partitioning the simulation problem by assigning to each machine the
subproblem of simulating some subset of the components of the device
(system) as this will tend to reduce the gross interactions (and shared
state) between the machines, thus reducing the costs associated with
communicating and keeping consistent such information. This
partitioning will also allow each machine to operate reasonably
independently. Furtlermore, if the system being modelled itself
exhibited concurrent activity (a multiprocessor computer system, for
example), then this partitioning scheme may enable the overall
simulation of the system to directly exploit the natural parallelism
visible in the events that represented the “actual” concurrency. The
above are, in fact, basic assumptions of the AIDE distributed
simulation approach, as they are of most other distributed simulation
schemes (5, 2, 6].

3.3.2. Using the Device Specification in Synchronization
Synchronization based on the simulated times of events alone
unnecessarily {and, in most cases, severely) restricts the amount of
exploitable parallelism by assuming that an event with simulated time
t could be preempted by any event for simulated time less than t.
Very few abstract models (for example, CARE, which mixes detailed
simulation of inter-processor communication with more abstract
simulation of processing activities) exhibit such synchronicity at the
event level, thus there will be very few opportunities for parallel
processing in their simulation. The device specification and the
behavior requirements provide additional information for better
estimating potential event preemptions.

Since the preemption relation applies between events, the more
information within an event used by the syn-hronization algorithm,
the closer its synchronization activities come to using the results of
the simulation itself, and the better the estimation of preemption
relationships. We may organize these pieces of information in terms
of the “fields” of an event.

1. Simulated time is already essential, as the definition of
preemption and the implementation of a behavior
specification suggests. We may make use of the property
that two events with the same simulated time are always
independent to find inherent parallelism.

(3]

. The component is also useful within the partitioning
scheme we have chosen. Since each component has a
minimum (non-zero) simulated time delay between
consuming an event and generating onc on an output port,
and since it is also directly connected to only some small
subset of the other components, an event for that
component will have a simulated time ‘““lag” before it may
preempt an event on a component more ‘“distant’ in
terms of connections. This enables a machine simulating
the ‘“‘distant’’ component to process existing events for it
up to ‘‘lag’’ simulated time units beyond the event for the

original component in parallel. Connection information is
available in the structural specification of a device;
minimum delays may be extracted from behavior
specifications.

3. The state being changed within a component is useful
when a component has a number of internal states that
affect its output ports with varying delays. This gives
better bounds for “lag” on a per-event basis within such a
component, thereby giving a better overall approximation
of possible preemptions. Such information can be
determined as for the component itself..

Much of the above information can be efficiently “compiled” before
the actual execution of a partitioned simulation. However, part of it
must still be computed dynamically by the machines, communicated
between them and finally used by them, perhaps undercutting the
increased opportunities for parallelism.

3.3.3. The First Cut

We describe here the first synchronization approach used in AIDE,
which reflects a particulzr choice of only the first two information
sources described above for implementation simplicity.

Distributed simulation in AIDE starts with the designer selecting the
partitioning level for the device in terms of its subcomponents. At
this level, the component and all its subcomponents form a logical
process or ’p within which simulated time will be consistent.
Different Ips may have different simulated times during a simulation,
even within a machine. Thereafter, the designer partitions the
simulation by assigning lps to machines.

At this point, AIDE compiles synchronization information and
distributes components to simulation servers on each (previously
obtained) machine; a server is essentially a sequential simulator plus
support for synchronization.

The synchronization information compiled here is at two levels.
Between machines, the system first computes a table that represents
gross miinimum delays along connections between any lp on one
machine and any lIp on another. Within a machine, Ips are organized
in terms of simulated time windows. Window-out(lp;) is the
minimum simulated time delay before an event consumed at Ip; could
generate an event at for any non-local lp. Similarly, window-in(lp;) is
the minimum simulated time delay before an event consumed by an
“edge’” lp (one with a direct connection from any remote lp} could
generate an event for Ip;, These quantities are static for a given
partition and are directly computed from the structure and a
predeclared minimum delay for each component type.

During execution, a simulation server runs a cycle with two phases.

» Synchronize. If the server was active (processed some
local events) in the last step, it computes the minimum
time that an existing local event could affect any remote
server. This quantity is the next event time (NET) of the
server and is equal to the minimum over all the local
events of the simulated time of the event plus the window-
out of the lp specified in that event. It sends this time to
every other server in a synchronization message.

Each server now waits for all servers active in the last step
to send their NETs. Then it uses the compiled inter-
machine delay table to form the next set of active servers
as follows :

~189-

For server s;, Vs; {NET(s;) < [NET(s;) + delay(s;s;)]} =
active(s;).

Each server also computes the local preemption time.

PT(s)5c)) = minimum{Vs;[NET(s;) + delay(s;,s)ocq))]}-

Simulate. Each server processes all the existing local
events that cannot be preempted by an event that occurs
at an edge lp with time not less than PT(s),.,) (using the
window-in of lps). Events from remote machines may be
asynchronously received for input ports of local edge
components, but they will be for simulated times greater
than PT(s,.,). Similarly, events on local edge output
ports may be transmitted asynchronously to remote input
ports.

The calculations of activity and preemption times ensure that the set
of event preemptions computed by each server is acceptable.
Deadlock is avoided by requiring non-zero delays within
components [6]. Lastly, inconsistent information regarding NETs is
avoided by using the same reliable stream to transmit events as well
as synchronization messages between servers and by having each
server include in the synchronization messages the minimum times of
remote events generated for every server during that step.

3.3.4. Evaluation and Implications

To evaluate the AIDE algorithm, we use a probabilistic model of a
simulated multiprocessor (CARE) induced from its event history in a
serial simulation. As mentioned earlier, CARE exhibits clusters of
‘‘communication’” events (representing packet routing between nodes)
that are localized in simulated time as well as over the processor grid
intermixed with slower “computation’ events (represerting processing
activity within a node) that have larger, more varying simulated time
periods. In using a probabilistic model, we bypass many of the
additional issues involved in distributing CARE programs while still
retaining information that allows us to predict the performance of a
distributed simulation of the model.

Preliminary runs of this model and others using a small number of
machines (1 to 4) indicate that the implementation does attain
speedup when concurrency 18 available. In the probabilistic CARE
model, the “window” inechanism seems to reduce synchronization
points by a factor roughly proportional to the number of components
on a machine, However, we also observe that there are very few
opportunities for parallelism across the machines; rarely is more than
one machine active during any given step. This immediately places
an upper bound (somewhere between 1 and 2) on the speedup that
may be gained by the distributed simulation.

We can suggest two reasons for the above. The first is that the
probabilistic CARE model was generated from early applications that
did not themselves demonstrate much low-level concurrency atop
CARE. The second (more probable) is that the preemption
calculations were too simplistic.

We are taking steps to alleviate the above difficulties. One step is to
use a probabilistic model extracted from the event history of a
demonstrably concurrent application in CARE. Another is to increase
the complexity of compiled synchronization information in attempting
to increase the number of active machines at any step. The latter
involves the following specific actions :

¢ make use of the third facet of information present in an
event in determining precemptions, either through
declarations or by ‘“‘wiring’’ such information into the
behavior specification of a component class;

¢ at compile time, compute better lower-bound delays
between machines by searching connection paths between
all machines (the first implementation only did it for
neighbors and then used a plane assumption);

s compute preemption times on a per-machine basis as
opposed to the conservative strategy of using only the
“most dangerous’’ machine.

We anticipate that the above changes will result in increased parallel
activity for the machines (a necessary condition for speedup);
thereafter, we will determine whether the added cost of maintaining
and using this information will negate (or worse) this gain.

References

1] Harold Brown, Christopher Tong, and Gordon Foyster.
Palladio: An Exploratory Environment for Circuit Design.
Computer Magazine 16(12):41-58, December, 1983,

[2] Randall E. Bryant.
Simulation of Packet Communication Architecture Systems.
Technical Report MIT/LCS/TR-188, Laboratory for Computer
Science, Massachusetts Institute of Technology, November,
1977.

(3] Bruce Delagi, Jerry Yan.
CARiZ User Manual.
HPP Report, Stanford University, Department of Computer
Scienc=, 1986.
[in preparation].

(4] Gordon Foyster.
HELIOS User's Manual.
HPP Report HPP 84-34, Stanford University, Department of
Computer Science, August, 1984,

[5] Jay Misra.
Distributed Simulation.
Tutorial notes, ICDCS, IEEE Computer Society.

(6] J. K. Peacock, J. W. Wong, and E. Manning.
Distributed Simulation using a Network of Processors.
Computer Networks 3(1):44-56, February, 1979.

[7] Nakul P. Saraiya.
AIDE User Manual.
HPP Report, Stanford University, Department of Computer
Science, 1986.
{in preparation).

[8] Narinder Singh.
MARS: A Multiple Abstraction Rule-Based Simulator.
HPP Memo HPP 83-43, Stanford University, Department of
Computer Science, December, 1983.

[9] Narinder Singh.
Corona: A Language for Describing Designs.
HPP Report HPP 84-37, Stanford University, Department of
Computer Science, September, 1984.

[10] TIdcuiel Weinreb and David Moon.
LISP Machine Manual.
Symbolics, Inc., 1981.

-190-

_a

O F = SENETRS. W T g ags v A T R e TR T o R

RECENT DEVELOPMENTS IN NIKL

Thomas S. Kaczmarek
. Raymond Bates
Gabriel Robins

USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292

Abstract

NIKL (a New Implementation of KL-ONE) is one of
the members of the KL-ONE family of knowledge
representation languages. NIKL has been in use for
several years and our experiences have léd us to define
and implement various extensions to the language, its
support environment and the implementation. This
article reports on the extensions that we have found
necessary based on using NIKL in several different
testbeds. The motivations for the extensions and
future plans are also presented.

1. Introduction

Our work on NIKL is motivated by a desire to build a principled
knowledge representation system that can be used to provide
terminological competence in a variety of applications. To this
end, we have solicited use of the system in the following
applications: natural language processing, expert systems, and
knowledge-based software. Our research methodology is to allow
application needs, rather than theoretical interests, to drive the
continued development of the language. This methodology has
allowed us to perform an empirical evaluation of the strengths and
weaknesses of NIKL. Also it has helned us identify some
requirements for any knowledge representation tool that would be
used in a wide range of intelligent systems.

We classify the improvements that we have made or plan to
make into three broad categories:

1. Expressiveness - enhancements to the terminological
competence represented in NIKL and the inferences
NIKL can make regarding the subsumption
relationship,

2. Environment - enhancements to the tools that
accompany NIKL for both maintaining knowledge
bases (knowledge acquisition) and reasoning about
the terminology defined in the knowledge base, and

3. Support - enhancements to user documentation, the
reliability and the availability of the implementation.

This paper will concentrate on enhancements made to the
expressiveness of NIKL but will also describe some improvements
and additions made to the NIKL environment. An Introduction to
NIKL will be included as backgrcund material and enhancements
to the support of NIKL will be mentioned for the sake of
completeness.

2. Background

KL-ONE was designed by[Brachman 78] to "circumvent
common expressiveness shortcomings." It was designed to
embody the principles that concepts are formal representational
objects and that epistemological relationships between formal
objects must be kept distinct from conceptual relations between’
the things that the formal objects represent. KL-ONE defined an
"epistemologically explicit representation language to account for
this distinction.”

A KL-ONE concept is described by “a set of functional roles tied
together by a structuring gestalt." Concept definitions "capture
information about the functional role, number, criteriality and
nature of potential roles fillers; and 'structural conditions’, which
express explicit relationships between the potential role fillers and
give functional roles their meaning.” A overview of the KL-ONE
system has been published by [Brachman and Schmolze 85].

2.1. The classifier

An important consequent of the well-defined semantics of KL-
ONE is that it is possible to define a classification procedure to
determine the subsumption relationship for concepts in a KL-ONE
network. A detailed description of the semantics of the KL-ONE
classifier have been published by [Schmolze and Lipkis 83]. The
classifier for KL-ONE deduces "that the set denoted by some
concept necessarily includes the set denoted by a second
concept but where no subsumption relation between the concepts
was explicitly entered.” Classifiers for KL-ONE and NIKL have
been dev~loped at ISI.

The desirable properties for the classification algorithm are
soundness (no incorrect inference is made), completeness (all
correct inferences are made), and totality (the algorithm always
halts). Theoretical analysis work done by[Brachman and
Levesque 84] has determined the limits on the expressiveness if
completeness of the classification algorithm is to be maintained.
Work on NIKL has concentrated on the issue of soundness,
forgoing completeness in favor of Increased expressiveness. An
efficient implementation has also been a goal of the NIKL effort
and the NIKL classifier is in fact nearly two orders of magnitude
faster for large networks than the KL-ONE classifier.

2.2, Classiflcation-based reasoning

The NIKL classifier provides a general weak m .thod for
categorizing descriptions of objects. It is insufficient as the sole
inference mechanism for an intelligent system but it can be used
very effectively (and efficiently) in what we have termed
classification-based reasoning.

-191-

Most uses of KL-ONE ard NIKL rely heavily on this kind of
reasoning. It consists of a classification-reasoning cycle. The
application first creates a new description of some partial result
and then classifies this in a static network describing knowledge
of the problem domain. Based on the result of classification,
additiona! inferences are drawn about the partial result and a new
description is constructed. These inferences are the result of
some rule or procedure that examines the network looking for
inferences that it is capable of making. Th~ new description that
results may achieve the goal of the reasoning cycle, in which case
reasoning terminates. More typically, further classification and
redescription are required and there is a continuation of the
reasoning cycle.

One way of thinking about this reasoning cycle is to think of the
classifier as selecting api:licable rules based on the terminology
that is used to describe the task domain and the problem at hand.
The selection of the rules is within the terminologica’ =vstem, i.e.,
based on the definitions of terms. However, the ruf " Atside
the teininological component and expressed in sciie other
language.

2.3. NIKL’s evolutior, from KL-ONE

NIKL's name is evidence of the fact that it is thought of as a New
Implementation of KL-ONE. Despite this, there are major
differences between NIKL and KL-ONE. These are in addition to
the emphasis on the efiiciancy of the classification algorithm
already mentioned. Many of the differances are a direct result of
the influence of work on KRYPTON by [Brachman, Fikes, and
Levesque 83). Close cooperation between the NIKL design team
and the KRYPTON designers resulted in many system similarities
despite a strong distinction on the issue of completeness.

The major difference between NIKL and KL-ONE involves the
representation and use of roles.! At the time NIKL was designed,
use of KL-ONE had uncovered a need for revisions of the ideas
about roles. For example, explicit structural conditions were no
longer used to define the meaning of roles partially because of the
inadequacy of the origina! formalization and lack of useful
consequences of these conditions. In addition, the notation
required in KL-ONE for relating roles in concepts (which included
relations such as modifies, differentiates, and individuates) were
cumbersome. The idea of thinking of roles as two-place relations
and concepts as one-place relations emerged, and roles took on a
new significance. Roles were defined as having a domain and a
range, organized in a separate taxonomy, thought of as
representations of relations, and assumed to be used consistently.

3. The status of NIKL

A NIKL implementatior, was first developed approximately two
years ago. Since then it has been in use principally at ISI and at
Bolt, Beranek, and Newman Inc., which contributed to the design
of the system. Several "browsing” tools, syntactic support, and
graphing tools have been developed and used to construct aid
maintain knowledge bases. A natural language paraphraser to
assist users in understanding networks was also developed but
has not been heavily used. Various inference mechanisms driven
by the classifier have also been implemented.

1Ac:tually there are significant differences beyond those having to do with roles
if one takes KL-ONE to be defined by the original formalization rather than the then
current implementation, which did not support much of the formalism.

-192-

Applications of KL-ONE and NIKL have been in the areas of
natural languagé processing (see the publications of [Bobrow and
Webber 80, Sondheimer 84, Sidner 85, Mark 81]), expert systems
(see the work of [Neches, Swartout, and Moore 85]), and software
description (see the publications of [Kaczmarek, Mark and
Wilczynski 83, Wilczynski 84]). Large networks, in excess 1500
concepts, have been developed in these environments.

This experience with NIKL has led us to consider certain
extensions to the language, its environment, and the
implemeritation. The following sections will describe the
extensioris we consider important and explain the motivation and
status of each. The extensions have been divided into roughly
three categories: terminological competence, environment, and
implementation.

3.*. Terminvlogiea! Competence

. terminological competence we mean the ability of the system
to rep-esent and reason about various distinctions that a modeler
might need to capture in defining concepts. For example, the
ability to restrict the range and number of role fillers for a
particular functional role adds to the terminological competence.
Inferring that if a person has at least one son, then the person has
at least one child (based on the fact that son is a specialization of
child) is another example of terminological competence. The
following sections will describe our efforts in this area.

3.1.1. Disjointness and covers

One addition to NIKL that was absent in KL-ONE is support for
disjoint and covering sets. A collection of concepts can be
declared as being disjoint, i.e., have no common extensions in the
world. A collection cen also be declared as a cover of another
concept, i.e., all extensions of the covered concept must be
described by at least one of the members of the covering. These
two declarations can be combined to form partitions.

NIKL supports limited inferences based on these notions.

- As a result of disjoint classes, NIKL can determine if a
concept is coherent or not. For example, a person al!
of whose children are both males and females, would
be marked as being incoherent if male an' female
were declared as being disjoint. An ‘.coherent
description is admissible in NIKL but is assumed to
nnt have any extension in the world.

- With respect to covers, a simple inference procedure
% available to deduce the existence of other covers.
For example, suppose male and female cover sex,
spouses have a sex role that is restricted to sex, and
that husband and wife are specializations of spouse.
Further assume the only difference between husband
and wife is a restriction of the sex role to male and
female respectively, then NIKL can infer that husband
and wife cover spouse. Needs for this kind of
reasoning have come about in using NIKL for expert
systems where certain methods of problem solving
are applicable only when some covering exists.
NIKL's current inferential capabilities for covers are
limited to simple cases such as the one presented in
this example. Plans call for expanding these
capabilities as needed by applications.

S e o L e < A A e o . "N i

3.1.2. Reasoning about role restrictlons

The inclusion f an explicit role hlerarchy in NIKL allows the
system to infer certair properties of concepts. The example of
calculating minimum number restrictions for the son and child
roles presented above illustrates one kind of inference. In that
example, we have propagated a minimum number restriction up to
a more general role. Obviously, we can also propagate a
maximum down to a specializing role. These are two inferences
that we have recently added to NIKL.

Another inference involves value restrictions for roles. It is
illustrated by the network definition seen in Figu' 3-1. The NIKL
specification for this example ~an be paraphrased as follows:

- doctors, famous, and rich are primitive conceptsz.

- surgeons are a primitive specialization of doctors,

- very famous is a primitive specialization of famous,

- all the rich cousins of an "A™ must be doctors,

- all the famous cousins of any "B" must be surgeons
and all the rich relatives of any "B" must be very
famous,

- relative is a primitive relation,

- cousin is a primitive specialization of relative

- any concept that fills the role of famous cousin must
fill the role of cousin and be famous,

- any concept that fills the role of rich relative must fill
tlie role of relative and be rich and,

- any concept that fills the role of rich cousin must fill
the roles of rich relative and cousin.

(DEFCONCEPT Doctor primitive)
(DEFCONCEPT Famous primitive)
(DEFCONCEPT Rich primitive)
(DEFCONCEPT Surgeon primitive
(specializes Doctor))
(DEFCONCEPT Very-Famous
(specializes Famous))

(DEFRELATION Relative primitive)
(DEFRELATION Cousin primitive

(specializes Relative))
(DEFRELATION Famous-Cousin

(specializes Cousin) (range Famous))
(DEFRELATION Rich-Relative

(specializes Relative) (range Rich})
(DEFRELATION Rich-Cousin

(specializes Rich-Relative Cousin))

(DEFCONCEPT A
(restrict Rich-Cousin (VR Doctor)))
(DEFCONCEPT B
(restrict Rich-Relative (VR Very-Famous))
(restrict Famous-Cousin (VR Surgeon)))

Figure 3-1: Example of role reasoning

2A primitive concept or relation corresponds to the notion of a "natural kind ",
i.e., a predication that can only be determined by an oracle. To NIKL this means
Ihat no concept may be placed beneath this one In the hierarchy uniess the
concept specification explicitly says to do so.

~193-

From this specification, NIKL infers the following:

- all of A’s rich cousins are rich doctors,

-all of B's rich cousins are rich and very famous
surgeons,

- all of B's famous cousins are famous surgeons, and
- all of B's rich relatives are rich and very famous.

Figure 3-2 graphlcally depicts the network after classification
has been performed.

The conclusions illustrated in the figure are derived from the
following line of reasoning. All of B's rich cousins are rich
relatives and therefore very famous, so they are all also surgeons
(since all the famous cousins of B are surgeons), making them
doctors as well. It follows then that B specializes A since all of its
rich cousins are rich and very famous surgeons, which is a

specialization of rich doctors. The current classifier for NIKL
supports this kind of reasoning based on the role hierarchy.

i . .,

¢ / i, VAR R

f _.\?::}\H" i — o,
|I 3)
/

!
T e

: = smaon i
EL B
-, B

SHEIS B LA
[\ TN R SEIEE-ERaLin
III'.' = R - - P BB iGakie
'I'.I'Hl.-lm——n PR LR 0 =1
Y o= AW
I| T
II Sempcoatraina
1 EEAr TR
| — B - §
1 " s ST
T -
=i
LT3 =1

TN - T T T S -

Figure 3-2: Graph of taxonomy defined in Figure 3-1

Our plans for enhancing reasoning about role restrictions
include adding logic to account for coverings and disjointness in
the role hierarchy. For example, if we knew that the roles, son and
daughter, are disjoint and that they cover the role, child (i.e., form
a partition) then we can determine the maximum and minimum
number restrictions for child based on the number restrictions for
son and daughter. Similar kinds of inferences can be made
involving the value restrictions.

3.1.3. Roles and relatlons E

One of the criticisms of KL-ONE and NIKL was an incomplete
treatment of roles. In KL-ONE the semantics for roles was
determined only by other constructs that were described for
concepts. In previous versions of NIKL, all roles were primitive,
Work In natural language text generation has pointed out the need
for a more uniform treatment because sometimes a sentence
needs to describe the relationships that exist between concepts.
This requires giving relations the same status as concepts In the
network and establishing a correspondence between restrictions
of roles at a concept and the relations those restrictions refer to.

We have thus adapted a position where roles are thought of as two
place relations that are defined in the concept hierarchy. We have
implemented this strategy by allowing the user to define relations
that may then be used as roles. The example above in Figure 3-1
illustrates thls capability. Under this new implementation,
relations are represented as concepts in the same hierarchy with
all other concepts. All relations have at least two roles, a range
and a domain.

One implication of this support is that it has allowed the user a
simple way to say things such as "a car, one of whose tires is flat.”
In the previous implementation, the user would have to specify
and name a primitive role that specialized the tire role for a car
and then restrict the value of that role.

A more significant improvement results from removing an
unfortunate consequence of this old procedure (which resulted
from the primitiveness of the role). The result of that procedure
was that nothing would classify as a kind of the concept being
defined unless the user added the same role (presumably by
referring to it by name) and restricting if to the same range (or
some specialization of it). In the current implementation, we
"gensym" a relation that specializes tire and restrict its range to
flat. Any other similar or more specialized relation resulting from a
restriction, for example, the one generated by "a car with a blown-
out tire," will either merge with the gensymed relation or classify
as a specialization of it. Thus, classification of a car with a blown-
out tire under a car with a flat tire can happen without having to
refer to a specific (and primitive) flat-tire role in the specification of
the car with a blow-out.

Since relations are now part of the concept hierarchy, we can
define other properties for roles and declare disjointness and
coverings. One consequence of this is that we have simplified the
development of support for reasoning about number and value
restrictions for roles based on these notions. Another is that we
can specify more completely the meaning of a relation.

3.1.4. Cyclesinthe network

The current NIKL classifier cannot reason effectively about
cycles in the network. A cycle occurs whenever one classification
depends on another. In general, the classifier stops trying to draw
inferences about any of the concepts in a cycle when one is
encountered. Typically a large collection of static concept
specifications are presented to the classifier. It recursively
descends the known hierarchy to find and classify those new
concepts that have no dependencies on any other new concepts.
It then unwinds the recursion and forms the newly classified
hierarchy as a result. If it discovers a cycle, it simply declares the
concepts classified and warns the user about the existence of the
cycle.

The exception to this processing involves cycles that result from
roles being defined as concepts. For example, if the son relation
is used to define a person, then person cannot be classified until
the relation son has been classified. But if the domain of son is
person, then it cannot be classified until person is classified.
Obviously, a cycle results. The current NIKL classifier detects this
special case of a cycle and marks the relation as being classified
and it continues to attempt to classify the concept that used the
relation.

~194~

A more sophisticated classification control strategy could
obviously result in a more complete classification. We have
designed, and are in the process of implementing and testing,
what we call the incremental classification control strategy. Under
this regime, the classifier will maintain dependency links for all
concepts and use an iterative approach to classification. When a
cycle Is encountered, the classifier will do the best it can with the
concept with the fewest dependencies. It will then classify all
those concepts that depend on that one and eventually (because
of the cycle) try to reclassify the original concapt -fter having
done its best on the dependent concepts. This approach
obviously cycles and needs a termination condition. The
incremental classifier will stop classification when the network has
reached a quiet state, i.e., no new inferences can be drawn, or
some user-settable number of dependency cycles have been
completed. This strategy will allow more inferences to be made by
the classifier and will also provide the basis for a much improved
knowledge acquisition environment. Details of the implications for
acquisition will be presented later in Section 3.2.4.

3.1.5. Partial orderings

One glaring shortcoming of KL-ONE and NIKL has been an
inability to define sequences. Requests for this capability have
come from nearly all applicationsa. We have examined the
requirements and designed a more general capability that
supports partial orderings on roles.

The partial orderings in NIKL represent relations that evist
between role fillers. Support includes knowledge (in the classifier)
about the reflexive, antisymmetric, and transitive nature of partial
orderings. One partial ordering may be a specialization of another
and they are defined in the concept hierarchy like all other
relations.

The NIKL user can make several different kinds of statements
about the partial orderings of the role fillers. One states that all
the fillers of a particular role must be ordered by a particular
relation. For example, the statements of a computer program are
ordered by the lexically-before relation. A second kind of
statement is that all the fillers of one role are related to all the
fillers of anotner role by a particular ordering. An example is a

statement that the initialization steps of a while loop come before
the termination tests, which in turn come before the steps in the
body. The final kind of statement declares that the fillers of one
role are the immediate predecessors (or successors) of the fillers
of another. An example is the statement that one statement of a
program is immediately lexically-before another.

Classification will involve the determination of subsumption
between partially ordered sets (posets), which is a fairly expensive
operation. The expense includes the construction of the
representation of posets as graphs and the determination of
whether one graph is a subgraph of another. The design of the
implementation is such that overhead caused by this
enhancement will be minimal for concepts that do not involve use
of this feature.

aVarious extra-NIKL schemes ha'e been 1<4~ntent in past work to handle this
problem. In past applications, it vias not necessary for the classifier to deal with
sequences so a special purpose sequence reasoner could be used.

3.1.6. Necessary and sufficlent conditlons

The NIKL classifier represents a particular kind of classification,
one that depends on certaln logical properties. There are other
kinds of classification that depend on domain specific knowledge.
One such kind of classification involves the definition of sufficient
conditions. The idea is that the presence of certain evidence is
sufficient to draw a conclusion if there is no contradictory
evidence. For example, one might be willing to say that any
mammal with a human DNA structure must be a kind of human
unless there is evidence to the contrary even though we do not
have evidence for upright posture, opposing thumbs and <o forth.

Such reasoning has heretofore been unavailable in NIKL and
KL-ONE. In light of this one can characterize the definitions of
current NIKL concepts as stating necessary conditions (since no
part of the description could be missing) and sufficient conditions
(since the presence of them is sufficient evidence for the classifier
to draw specialization conclusicns). The exception to this is for
concepts marked as primitive, which indicates that no set of
sufficient conditions can be found.

The proposal for adding sufficient conditions would allow the
user to state that some collection or collections of roles were
sufficient. For example, if you know that an animal has four legs
and a trunk or a finger on the end of its nose (and there is no
contradictory evidence, such as it lives in a tree) then it is an
elephant. Still in question is the proper handling and possible
inclusion of other constructs of the description language, such as
structural descriptions and partial orderings. Our plan is to
proceed with defining sufficient conditions In terms of roles and
role sets and see if applications will require more complex
support. An initial investigation indicates that this limited support
will suffice.

3.1.7. Negation

Negation is a problem for the classification algorithm as has
been shown by the work of [Brachman and Levesque 84].
Nevertheless, it is a notion that nearly all applications find useful.
Since we cannot admit negation and maintain decidability for the
classifier, we have provided other mechanisms and conventions
that seem to satisfy most users. One convention is the use of zero
as the minimum and maximum number restriction for a role
restriction. For example, a verb phrase with no time modifier can
be modeled this way.

The ability to define partitions as disjoint covers provides a way
to talk about complements, which are akin to negation. This is
another addition to NIKL that was the result of expressed desires
for negation. The strategy exemplified in these two capabilities,
namely, providing something different than what the user asked
for but which meets the requirements of the application is very
much a part of our methodology for continuing the evolution of
NIKL.

3.2, The Environment

The NIKL environment consists of tools that aid in knowledge
acquisition and reasoning. Our experience has led to the
generation of tools in both of these areas.

3.2.1. Assertlons
Recording and reasoning about extensions of the terminological
knowledge represented in NIKL is considered to be outside of

NIKL ltself and part of the environment. An ad hoc assertional
mechanism* was developed for use with the CUE and Consul
applications (see, [Kaczmarek, Mark, and Sondhelmer 83]). A
more systematic approach has led to the development of a major
tool for reasoning about assertions by [Vilain 84] of Bolt Beranek
and Newman. This tool, KL-TWO, combined the RUP package of
[McAllester 82] with NIKL. KL-TWO provides a truth maintenance
package that is very useful in some applications. However, it Is
inappropriate for large data bases and for certain kinds of
applications where efficient implementations of the asseitions are
required.

To correct these deficiencies (for certain applications) we have
planned two other hybrid systems. The first involves coordination
between the conceptual hierarchy defined in NIKL with the
schemata for a commercial relational data base. With this scheme
we plan to use NIKL in appiications requiring the kinds of semantic
browsing techniques found in the work of [Patel-Schneider,
Brachman, and Levesque 84] and[Tou, Williams, Fikes,
Henderson and Malone 82]. The second involves using NIKL in
coordination with the knowledge representation aspects of a
knowledge-based software development paradigm. Here we are
actively involved in using NIKL to define a type hierarchy and
relations for the AP5 language of [Cohen and Goldman 85).

3.2.2. Reformulation

As was previously mentioned, classification-based reasoning is a
common mode of use of NIKL. The terms, reformulation and
mapping, have been used in KL-ONE applications to refer to this
kind of activity. Currently there is a reformulation facility available
that is used in the expert system resea-ch of [Neches, Swartout,
and Moore 85). This mechanism is used to satisfy goals by
expanding plans. Within the paradigm of their project,
reformulation is used to generate an expert system based on a
knowledge of the domain and expert problem solving knowledge.
In this methodology, goals, methods, and plans are all expressed
in NIKL and the expert system shell uses these to generate the
expert system for a particular domain and set of goals and
methods. While the facility provided was designed for a particular
use, the mechanism is generic and can be applied to any number
of other applications.

3.2.3. Graphic-based editing

The KL-ONE community has a rich tradition of drawing pictures
with "circles and arrows.” A graphical representation of concepts
and networks has always been a part of the language. As the
expressiveness of NIKL has increased, the cleanliness of the
graphs has diminished, but nevertheless, the graphs remain
useful.

We have developed an integrated set of acquisition tools in a
window-based workstation environment. The tools include a
graph of the concept hierarchy, an EMACS editing window, and a
LISP interaction window. Within the LISP Interaction window, the
environment can produce highly formatted (’pretty-printed”)
descriptions of concepts. The atoms in these formatted displays,
which refer to concepts and relations, as well as the nodes of the
graph and the text in the edit buffer are all mouse sensitive and
known to be NIKL constructs by the environment. This allows the

4This scheme was built around the KL-ONE notion of a nexus

~195-

user to move from one window to another in a coordinated way. It
also allows the user to refer to a NIKL object simply by pointing at
it in any of the various views of the network. A ratural language
paraphraser has also been added to this environment to assist in
the understanding of the network.

We also have a tool to graph the definition of a particular
concept. This tool has proven to be less useful than originally

thought. While drawing concept specifications on paper with a
pencil Is extremely useful, we haven't been able to duplicate the
free flowing expressiveness of that mode of design. Work on the
human factors of the tool and the inclusion of higher level
operations (the current level is, for example, add a role) are
anticipated. However, the tool is useful in terms of providing a
graphin presentation of a concept. The deficiencies become
obvious in ¢creating or editing a concept definition.

3.2.4. Incremental classification

A major problem with the NIKL environment arises from the
batch nature of the classifier. The example in Figure 3-1 illustrates
some of the many inferences that the classifier makes. For
example, deciding that the user really meant rich cousins to be
rich doctors, not just doctors. This kind of inference can be
particularly troublescme for the user because NIKL frequently
needs to generate new concepts that the user hasn't explicitly
defined. Usually NIKL cannot pick an appropriate name for the
concepts it generates. In many cases the need to generate a new
concept arises from the fact that the user has inadvertently
omitted the concept or made some modeling error. A better
acquisition environment can be obtained by having the classifier
interact with the user whenever such a concept must be
generated. The user could then choose an approprlate name,
decide there is an error, or tell NIKL that the concept will be
defined later.

The example of interaction arising from new concepts being
generated is just one case In which interaction during
classification can improve the modeling environment. The control
strategy that will be employed in the incremental classifier will be
much more supportive of the kind of interaction that knowledge
acquisition requires.

The dependency information that the incremental classifier will
keep can also be used to enhance the modeling environment.
This information is particularly useful for editing a concept
definition and then making sure the network is properly updated
and for supporting various kinds of analysis tools.

3.2.5. Surface language support

As part of our efforts we have used a general lexical analysis and
semantic interpretation package developed by [Wile 81]. This
package gives a flexible surface language that allows easy
modifications to accommodate extensions to NIKL as we develop
them. It also opens up the possibility of defining highly application
dependent surface languages.

3.3. The Implementation

The current version of NIKL is in Common LISP and we have
experimented with its use on a variety of workstations and
mainframe implementations of Common LISP. The integrated
acquisition environment depends on some specific tools found in
the Symbolics ZETALISP environment. We are actively pursuing
the development of similar facilities that rely on a Common LISP
implementation of a form and graphics package that requires only
modest customizations for various graphic environments.

4. Summary

NIKL is an evolving knowledge representation tool based on KL-
ONE., The experiences gained in a variety of applications have
shaped the current implementation. Principal enhancements
made to NIKL that were in direct response to applications needs
were: the representation of roles more uniformly with concepts,
support for negation, a connection to an assertional truth
maintenance system, support for domain specific reasoning
(triggered by classification), and more complete Inferences drawn
as a result of having a relation hierarchy. Further enhancements
have also been suggested and continue to be developed. They
include: the representation of sequences and orderings, the
availability of sufficiency reasoning in the classifier, more
complete inferences regarding cycles in the models, and
coordination with an assertional component that supports efficient
data base access.

In addition we have implemented and continue to develop tools
for the knowledge acquisition environment. This work has also
been sensitive to the needs that have arisen out of several
application environments. Principle developments include a
Common LISP implementation, and an integrated tool set that
features graphic representations, formatting and paraphrasing
tools, and flexible lexical analysis support. The addition of a more
interactive editing style and various analysis tools is forthcoming.

5. Acknowledgement

The development of NIKL and our plans have been the result of
interactions with a number of Al researchers. Many of these were
developers or experienced users of KL-ONE or one of its variants.
The rest were potential or new users. The contributors represent
many different organizations and research interests. The
following have all made, and in many cases continue to .nake,
significant contributions: Don Cohen, Neil Goldman, Bill Mann,
Norm Sondheimer, Bill Swartout, Bob Neches, Don Voreck, Steve
Smoliar, Ron Brachman, Victoria Pigman, Peter Patel-Schnieder,
Richard Fikes, Ramesh Patil, Jim Schmolze, Rusty Bobrow, Marc
Vilain, Bill Mark, David Wilczynski, Mark Feber, and Tom Lipkis.

References

[Bobrow and Webber 80] Robert Bobrow and Bonnie Webber,
"Knowledge Representation for Syntactic/Semantic
Processing,"” in Proceedings of the National Conference on
Artificial Intelligence, AAAI, August 1980.

{Brachman 78] Ronald Brachman, A Structural Paradigm for
Representing Knowledge, Bolt, Beranek, and Newman, Inc.,
Technical Report, 1978.

[Brachman and Levesque 84] Ronald J. Brachman and Hector
J. Levesque, The Tractability of Subsumption in Frame-Based
Description Languages, Fairchild Research Laboratories,
Techniral Report, 1984.

{Brachman and Schmolze 85] Brachman, R.J., and Schmolze,
J.G., "An Overview of the KL -ONE Knowledge
Representation System,” Cognitive Science, August 1985,
171-216.

[Brachman, Fikes, and Levesque 83] Ronald Brachman, Richard
Fikes, and Hector Levesque, "KRYPTON: A Functional
Approach to Knowledge Representation," /IEEE Computer,
September 1983.

-196-

[Cohen and Goldman 85] Cohen, D and Goldman N., Efficient
Compilation of Virtual Database Specifications, 1985.

[Kaczmarek, Mark and Wilczynski 83] Kaczmarek, T., W. Mark,
and D. Wilczynski, "The CUE Project," in Proceedings of
SoftFair, July 1983.

[Kaczmarek, Mark, and Sondheimer 83] T. Kaczmarek, W. Mark,
and N. Sondheimer, "The Consul/CUE Interface: An
Integrated Interactive Environment," in Proceedings of CHI
'83 Human Factors in Computing Systems, pp. 98-102, ACM,
December 1983.

[Mark 81] William Mark, "Representation and Inference in the
Consul System," in Proceedings of the Seventh International
Joint Conference on Artificial Intelligence, WJCAI, 1981.

[McAllester 82] D.A. McAllester, Reasoning Utility Package User's
Manual, Massachusetts Institute Technology , Technical
Report, April 1982.

[Neches, Swartout, and Moore 85] Robert Neches, William
R. Swartout, and Johanna Moore, "Explainable (and
Maintainable) Expert S s," in Proceedings of the Ninth
International Joint Conference on Artificial Intelligence,
pp. 382-389, International Joint Conferences on Artificial
Intelligence and American Association for Artificial
Intelligence, August 1985.

[Patel-Schneider, Brachman, and Levesque 84] Peter
F. Patel-Schneider, Ronald J. Brachman, and Hector
J. Levesque, ARGON: Knowledge Representation meets
Information Retrieval, Fairchild Research Laboratories,
Technical Report 654, September 1984.

[Schmolze and Lipkis 83] James Schmolze and Thomas Lipkis,
"Classification in the KL-ONE Knowledge Representation
System," In Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, \JCAI, 1983.

[Sidner 85] Candace L. Sidner, "Plan parsing for intended
response recognition in discourse,” Computer Intelligence 1,
1985.

[Sondheimer 84] Norman K. Sondheimer, Ralph M. Weischede!,
and Robert J. Bobrow, "Semantic Interpretation Using KL-
ONE," in Proceedings of Coling84, pp. 101-107, Association
for Computational Linguistics, July 1884,

[Tou, Williams, Fikes, Henderson and Malone 82] Tou, F.F., M.D.
Williams, R, Fikes, A. Henderson, and T. Malone, "RABBIT:
An Intelligent Database Assistant," in Proceedings AAAI-82,
pp. 314-318, 1982.

[Vilain 84] Marc Vilain, KL-TWO, A Hybrid Knowledge
Representation System, Bolt Beranak and Newman,
Technical Report 5694, September 1984.

[Wilczynski 84] David Wilczynski and Norman Sondheimer,
Transportability in the Consul System: Model Modularity and
Acquisition, 1984.

[Wile 81] David S. Wile, POPART: Producer of Parsers and
Related Tools System Builders' Manual, 1981.

-197-

