US Army Corps of Engineers

Mississippi River
Commission

FOREST VEGETATION OF THE LEVEED FLOODPLAIN OF THE LOWER MISSISSIPPI RIVER

LOWER MISSISSIPPI RIVER ENVIRONMENTAL PROGRAM REPORT 11
FEBRUARY 1988

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Unclassified
security ciassification of phis page

$\begin{aligned} & \text { 1a REPORT SECURITY CLASSIFICATION } \\ & \text { Unclassified } \end{aligned}$				PAGE			form Approved OMB NO OTO\& 0188 Eno Oate Iun 301986
				10 RESTAICTI	MARKINGS		
2a SECURITY CLASSIFICATION AUTHORITY				3 DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited.			
4 PERFORMING ORGANIZATION REPORT NUMBER(S)				5 MONITORING ORGANIZATION REPORT NLMBER(S) Lower Mississippi River Environmental Program Report 11			
6a NAME OF PERFORMING ORGANIZATIONUSAEWES,Environmental Laboratory				7a NAME OF MONITORING ORGANIZATION Mississippi River Commission			
```6c. ADORESS (City, State. and 2IP Code) PO Box 631 Vicksburg, MS 39180-0631```				7b ADDRESS (City, State. and 21P Code) PO Box 80 Vicksburg, MS 39180-0080			
8a. NAME OF FUNDING/SPONSORINGORGANIZATION $\quad$ President,Mississippi River Commission				9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
```8c. ADDRESS(CIty. State, and ZIP Code) PO Box }8 Vicksburg, MS 39180-0080```				10 SOURCE OF FUNDING NUMBERS			
				PROGRAM ELEMENT NO	$\begin{aligned} & \text { PROJECT } \\ & \text { NO } \end{aligned}$	TASK WORK UNIT NO ACGESSION NO	
il TiTLE (Include Security Classfication)							
12 PERSONAL AUTHOR(S) Klimas, Charles V							
13a TYPE OF REPORT Final report		$\left[\begin{array}{c}130 \text { TIME COVERED } \\ \text { FROM }\end{array} \quad \begin{array}{c}14 \text { DATE OF REPORT (Year, MOnth, Oay) } \\ \text { FebTuary } 1988\end{array}\right.$					15 PAGE COUNT 365
16 SUPPLEMENTARY NOTATION							
17 COSATICOOES			18 SUBJECT TERMS (Continue on reverse if necessary and identity by block number) Eloodplain forests Wildlife nabitats Geographic Information System				
FIELD	GROUP	SLS-GROUP					

ABSTRACT (Continue on reverse if necessary and identify by block number)
The main stem levee system and loess bluffs of the Lower Mississippi River Valley (LMRV) confine 955 miles of river in an area about 600 miles long and up to 20 miles wide. The corridor of unprotected floodplain flanking the lower river supports over one-million acres of forest; about one-quarter of the total bottomland hardwood forest estimated to remain in the LMRV. In 1982, the US Army Corps of Engineers Mississippi River Conmission initiated the Lower Mississippi River Environmental Program, which included development of a geographic information system and studies of selected ecosystem components within the confined floodplain. The research reported here was designed to provide a description of forest resources of the study area, with particular attention to forest attributes commonly considered in evaluations of wildlife habitat suitability.
(Continued)

20 Jistribution avallabliov of abstract JNCLASSIFEDUNLM:TEJ SAME AS RP* otic users	21 abstract securify ciassifica Unclassified	
228 NAME OF RESDONSIBEE NJVIUUAL	220 IE, EOMONE (inelude Area Code)	225 OFF LE 5 vivos.

DD FORM 1473, 84 MAR
83 Apr edition may be used until exrausted
SECLRITY CLASSIFICATION OF H S SPACE
19. ABSTRACT (Continued).

Twenty-three forest cover types occur in the study area, but over one half of these are of very limited extent. More than 40 percent of the total forested area is classified as either Hackberry-Elm-Ash or Sycamore-Sweetgum-Elm, and more than 30 percent is Black Willow, Cottonwood, or Cottonwood-Willow. Distinct commuities within these broad types are recognizable, but their identification requires knowledge of a variety of soil and site factors. Certain special habitats (bluff bases, tributary-influenced sites) are particularly conducive to the development of diverse plant communities of high wildife value. Sites subjected to heavy sedimentation or repeated improper harvest procedures tend to remain in a low-quality condition indefinitely. A site classification procedure and associated vegetation models were developed to promote accurate estimation of current and future fc:czt and wilcilife havivat conditions on the majority of sites in the study area.

The factors that drive the vegetation models include geomorphic features that reflect site drainage, substrate age as indicated by periodic river surveys, river reach, and forest cover type as mapped from aerial photos. These site descriptors applied in a key format reference any given site in the study area to one of 51 forest subtypes, the sample characteristics of which are presented in detail. Application of the simple replacement sequences presented should assist managers and planners in developing realistic estimates of probable and potential future conditions. These functions of the system are demonstrated in limited tests of model performance.

The Lower Mississippi River Environmental Program (LMREP) is a comprehensive investigation of the Lower Mississippi River and its leveed floodplain being conducted by the US Army Corps of Engineers, Mississippi River Commission (MRC). The objectives of the LMREP are to obtain environmental inventory data on the project area and to develop environmental design considerations for navigation and flood control features of the Mississippi River and Tributaries Project.

This report presents results of one component of the environmental inventory task, the Terrestrial Vegetation Study. The study was designed to provide quantitative data on the forest vegetation of the project area, and to complement spatial data on plant communities contained in the Computerized Environmental Resources Data System geographic information system. The research was conducted by Mr. Charles V. Klimas, Environmental Laboratory (EL), US Army Engineer Waterways Experiment Station (WES). Dr. Mary Landin, WES, and Messrs. Stephen P. Cobb and James M. Sigrest, MRC, participated in designing the study. WES personnel involved in the field effort included Dr. Landin, and Mr. Larry Marcy; Dr. C. H. Pennington, and Mr. Richard Kasul provided other special assistance. Ms. Virginia Sotler, WES, designed and managed the database and did the programming required to support statistical analyses. Mr. Tom Heineke, US Army Engineer District, Memphis, served as plant systematist for this research and participated in most of the field sampling.

Drs. Roger Saucier and Lawson Smith, WES, assisted with the identification and interpretation of geomorphic data. Ms. Linda Wright and Dr. Frank Miller, Mississippi State University, provided specific information regarding the forest cover-typing protocols used in assembling land cover maps referred to herein. Dr. Robert Johnson, US Forest Service, and Dr. James Wiseman, Mississippi Museum of Natural Science, contributed information and permitted the use of their research data. Dr. Leigh Fredrickson, University of Missouri, Columbia, reviewed the original study design and the report manuscript and provided helpful comments.

Many landowners provided access to their properties for sampling. Particularly helpful in this regard were the Anderson-Tully, International Paper, Soterra, Westvaco, and US Gypsum Corporations. Mr. Bill Tomlinson,

Anderson-Tully Co., greatly assisted with the identification of landowners and arranged for permission to sample extensive portions of the study area.

This research was managed by the Planning Division of the MRC and was sponsored by the Engineering Division. Mr. Cobb was the program manager for the LMREP. The investigation was conducted under the direction of the President of the Mississippi River Commission, BG Thomas A. Sands, CE.

CONTENTS

Page
PREFACE 1
LIST OF TABLES 4
LIST OF FIGURES 4
CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT 6
PART I: INTRODUCTION 7
Background 7
Terrestrial Vegetation Study 7
Study Area 8
PART II: METHODS 14
Forest Sampling 14
Database Assembly 18
Classification Procedures 20
Model Development 21
PART III: RESULTS 22
General Forest Characteristics 22
Sample Classification 26
Site Affinities 29
Key Structure 33
Subtype Descriptions 37
PART IV: SYSTEM APPLICATION AND PERFORMANCE 48
Sequence Selection 48
Interpretation of Summary Data 49
Model Test: Overstory Composition 53
Example Application: Habitat Quality Estimation 57
PART V: DISCUSSION 60
Ecosystem Characteristics 60
Considerations in the Application of Resource Models 62
Summary 65
REFERENCES 67
APPENDIX A: LIST OF SPECIES A1
APPENDIX B: FOREST SUBTYPE SUMMARIES B1
No. Page1 Landcquer Types of the Study Area, as Summarized by CERDS
($50 \mathrm{~m}^{2}$ Resolution) 12
Cover-Type Classification of Samp!ed Stands 23
2
Example Model Application: Habitat Quality. 583
Example Model Application: Future Conditions 59
LIST OF FIGURES
No. Page
The Lower Mississippi River Valley, showing the approximate extent of historic flooding (shaded area), and the levee system confining the study area. Non-leveed areas east of the river are confined by bluffs 92 Geomorphology of the confined floodplain, RM 800-820(Tennessee-Arkansas), illustrating typical environments of
deposition.. 1111Classification of sampled stands using cluster analysis withubiquitous species deleted to identify basic compositionalgroupings (character species level). Final subclusters weredesignated with an ordination approach applied to the fullspecies complement.27
Ordination of Cluster H with three subclusters identified and one outlier isolated. 28
The distribution of parent cluster groups along an elevation gradient standardized to the LWRP 30
Subcluster fidelity (50 percent or greater) to selected geo- morphic and site-age factors 327 Key to forest subtypes. Key elements are recoverable fromCERDS and topographic maps. Subtype summaries are presentedin Appendix B34
Cottonwood plantation basal area at various spacings over a 20-year period, from a leveed floodplain site in central Mississippi 39
Common replacement sequences for forest subtypes on sites without natural levee deposits (south of Baton Rouge) $4!$
Common replacement sequences for forest subtypes on natural levee sites (south of Baton Rouge) 42
11 Common replacement sequences for forest subtypes on point bars without surface deposits or with ailuvial apron deposits (north of Baton Rouge) 43
Common replacement sequences for forest subtypes on point bars with natural levee deposits (north of Baton Rouge) 45
Common replacement sequences for forest subtypes in point bar swales (north of Baton Rouge) 45Common replacement sequences for forest subtypes in abandonedchannels, backswamps, and large swales, without natural leveedeposits (north of Baton Rouge)46Common replacement sequences for forest subtypes in abandonedchannels, backswamps, and large swales with natural leveedeposits (north of Baton Rouge)47

No.		Page
16	Ordination array for stands in abandoned channels (subtypes 43 through 48), with subtype distribution limits	
	indicated..	50
17	Canopy cover, snag density, and mast tree density plotted against time as represented by ordination Axis 1 (see Figure 16) for subtypes 43 through 45 . Hand-fitted curves	
	include common harvest practices............................	52
18	Environment of deposition, surface deposits, and site age at Huntington Point. Wiseman's (1982) sample areas are	
	indicated.	54
19	Land cover at Huntington Point. Forest types and boundaries were generated using CERDS, with pure stands incorporated into parent types to conform with the subtype key format.	54
20	Comparison of sample data (Wiseman 1982) and predicted values	
	for overstory trees at Huntington Point (Zone HPI)............	55
21	Comparison of sample data (Wiseman 1982) and predicted values	
	for overstory trees at Huntington Point (Zone HPII).	56
22	Comparison of sample data (Wisemen 1982) and predicted values	
	for overstory trees at Huntington Point (Zone HPIII)..........	56

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	By
acres	0.4046873
feet	0.3048
inches	2.54
miles (US statute)	1.609347
square feet square feet per acre	0.09290304
	0.229567471

To Obtain
hectares
metres
centimetres
kilometres
square metres
square metres
per hectare

FOREST VEGETATION OF THE LEVEED FLOODPLAIN OF THE LOWER MISSISSIPPI RIVER

PART I: INTRODUCTION

Background

Mississippi River and
 Tributaries (MR\&T) Project

1. The Mississippi River and Tributaries (MR\&T) Project is a comprehensive flood control and navigation plan for the Lower Mississippi River and tributary streams. The MR\&T was authorized under the Flood Control Act of 1928, and is the responsibility of the Mississippi River Commission (MRC). The project consists primarily of a system of levees, channel improvement works, and floodways.

Lower Mississippi River Environmental Program (LMREP)
2. The Lower Mississippi River Environmental Program (LMREP) is a 7-yr inventory and research program initiated in 1981, under the direction of the MRC. The objectives of the LMREP are to assemble baseline data on environmental resources of the leveed floodplain of the lower river, and to develop environmental design consideratiuns for levees, revetments, and other features of the MR\&T project. The LMREP is made up of five work units: levee borrow pit investigations; dike system investigations; revetment investigations; environmental inventories, including development of a Computerized Environmental Resources Data System (CERDS); and formulation of environmental design considerations.

Terrestrial Vegetation Study

3. One of the LMREP habitat inventories, the Terrestrial Vegetation Study, was designed to provide quantitative information on forest structure and composition within the study area. Plant communities are of concern because they influence wildlife resources. Therefore, the objective of this study was to describe forest characteristics in a manner compatible with standard wildlife habitat suitability assessment procedures such as HES
(Habitat Evaluation System) (USAE Lower Mississippi Valley Division 1980) and HEP (Habitat Evaluation Procedures) (US Fish and Wildlife Service 1980).
4. Conducting this research in the context of the LMREP presented unusual opportunities. The availability of the geographic information system (CERDS) was a consideration in the design of the field studies. CERDS represented both a source of sample site information to assist in the vegetation analysis, and a means of extrapolating study results to unsampled portions of the study area. The research design also included an exploration of the potential for developing models of forest development patterns to assist in estimating future conditions.

Study Area

5. The Lower Mississippi Hiver alluvial valley (Figure 1) comprises an area about 600 mi long* (from Cairo, Illinois, to the Gulf of Mexico) and from 30 to 125 mi wide encompassing some 24 million acres (Mississippi River Commission 1970). At the time of European settlement, this area was almost entirely forested, was subject to periodic flooding, and provided habitat for a diverse array of wildlife species. Since the first levee was constructed at New Orleans, Louisiana, in 1727 (Mississippi River Commission 1970) a continual effort to constrain the river has been underway. Currently, the river is entirely contained by either bluffs or levees from Cairo to a point 90 river miles below New Orleans, except where major tributaries are confluent (Figure 1). This effort has been extremely successful in reducing or eliminating flooding over most of the historic floodplain and contributing to agricultural and urban development. As a result of floodplain development, only an estimated 4.5 million acres of forest remained in 1985 , which was less than 20 percent of the original forested acreage (Forsythe 1985). Over one million acres of this remnant bottomland forest lie within the leveed floodplain of the Lower Mississippi River where most sites are still subject to annual flooding. Peak river flows typically occur in March, April, and May. Development of the Alluvial Valley
6. The current configuration and geomorphology of the alluvial valley of the Lower Mississippi River are regarded by Saucier (1974) as the products of

[^0]

Figure 1. The Lower Mississippi River Valley, showing the approximate extent of historic flooding (shaded area), and the levee system confining the study area. Non-leveed areas east of the river are confined by bluffs
quaternary glacial cycles as they influenced stream discharges, sediment volumes, and sea levels. Although not directly impacted by continental ice sheets, the Lower Valley carried glacial meltwaters and outwash in a braidedstream pattern that concurrently widened and aggraded the valley during periods of waning glaciation. As each glacial cycle progressed and sediment load and stream discharge declined, the river abandoned its braided stream configuration in favor of a single-channel meandering pattern. This shift last occurred about 12,000 years ago south of Baton Rouge, Louisiar.a, but only about 6,000 years ago north of Memphis, Tennessee.
7. The influence of glaciation on sea levels further affected valley development near the mouth of the river. During periods of shoreline retreat in the Gulf of Mexico, the lower portion of the valley became deeply entrenched, but increasing sea levels reduced stream gradients and promoted the development of deltaic plains. In recent (Holocene) times, the meander behavior of the river has reworked the deposits along the current course to produce a landscape defined by patterns of channel migration and abandonment as well as continuing alluviation (Saucier 1974). Figure 2 illustrates some geomorphic features commonly recognized in the vicinity of the modern river channel.
8. Soils of the alluvial valley are highly variable due to the dynamic processes described above. Textures range from loamy sands to heavy clays, and the relatively flat topography often causes very poor drainage. Neverthe. less, generally high nutrient status and organic matter content make Lower Mississippi Valley alluvium among the most productive agricultural soils in the United States (Brown et al. 1971).
Vegetation and wildlife
9. General ecological studies of Mississippi Valley floodplain forests (e.g. Shelford 1954, Robertson, Weaver, and Cavanaugh 1978) have been few, as most research has concerned sites capable of producing valuable hardwood stands. US Forest Service studies have generally focused on tree species autecology (Putnam and Bull 1932) and evaluations of site capability to support commercially important species (Putnam, Furnival, and McKnight 1960, Baker and Broadfoot 1979) or with stand management (Putnam, Furnival, and MeKnight 1960, Johnson 1973, 1978).
10. Forest types traditionally regarded as being of the highest commercial and wildlife value (particularly Sweetgum-Oak) account for a relatively small percentage of the total forest cover within the leveed floodplain

Figure 2. Geomorphology of the confined floodplain. RM 800-820 (Tennessee-Arkansas), illustrating typical environments o deposition. Adapted from Kolb et al. (1968)
(Table 1). The majority of the area is occupied by forest cover types typically dismissed in the literature as short-lived successional stages or severely mismanaged types that are appropriate candidates for intensive management practices such as clearcutting and deadening of weed species (Putnam, Furnival, and McKnight 1960, Johnson 1973, 1978). Studies designed specifically to investigate the development and characteristics of these stands have been rare. Detailed investigations of specific leveed floodplain sites have been reported by Shelford (1954) and Wiseman (1982).
11. The leveed floodplain of the Lower Mississippi River is densely forested over much of its length. The significance of this resource has increased as extensive forest clearing has occurred in the valley on the land side of the levee system. The importance of the Lower Mississippi Valley as habitat for wintering waterfowl (Bellrose 1976), other game species (Glasgow and Noble 1971), and a great variety of non-game animals (Fredrickson 1978) suggests that the diminished habitat base is critical to wildlife populations. Habitat loss in the area has been an important factor in the

Table 1 Landcover Types of the Study Area, as Summarized by CERDS ($50 \mathrm{~m}^{2}$ Resolution)

CERDS Cover Type	Acreage by River Reach			Total	Percent of\qquad Area
	South of Baton Rouge (RM 2-230)	$\begin{aligned} & \text { Baton Rouge } \\ & \text { to Memphis } \\ & \text { (RM } \\ & 230-735 \text {) } \\ & \hline \end{aligned}$	Memphis to Cairo (RM $735-954$)		
Forested					
Black Willow	12,572	110,367	25,404	148,343	14.34
CottonwoodWillow	3,528	34,843	14,703	53,074	5.13
Cottonwood	1,378	105,572	34,757	141,707	13.70
Sycamore-					
Sweetgum-Elm	1,886	175,673	35,162	212,721	$\bigcirc 0.57$
Sycamore	15	1,024	13	1,052	0.10
Sweetgum	170	1,743	112	2,025	0.20
Elm	0	6	0	6	0.00
Pecan	159	20,568	101	20,828	2.01
Sweetgum-Oak	59	39,788	14,286	54,133	5.23
Oak	0	206	27	233	0.02
Hackberry-Elm-					
Hackberry	24	5,037	198	5,259	0.51
Green Ash	46	4,310	87	4,443	0.43
Overcup Oak-					
Overcup Oak	49	152	114	315	0.03
Cypress-Tupelo	0	24,502	7,526	32,028	3.10
Cypress	0	9,470	534	10,004	0.97
Tupelo	0	457	51	508	0.05
Scrub	2,703	36,645	5,794	45,142	4.36
Tree Plantation	14	43,832	6,632	50,478	4.88
Ridge-Slough Complex	0	4,242	0	4,242	0.41
Live Oak-PecanSugarberry	1,083	58	0	1,141	0.11
Live Oak	0	24	0	24	0.0
Total	27,053	824,438	182,767	1,034,258	$\overline{99.88}$
Non-Forested					
Cropland	191	184,952	235,723	420,875	38.82
$\begin{aligned} & \text { Pasture-Old } \\ & \text { Field-Levee } \end{aligned}$					
Inert	3,473	45,095 56,310	10,547	58,3 70,330	5.39 6.48
Open Water	76,293	307,072	133,697	517,062	47.69
Non-Forested Wetland	1,819	12,665	2,917	17,401	1.60
Marsh	- 0	17	0	17	0.0
TOTAL	86,026	606,111	392,028	1,084,165	$\overline{99.98}$
All SITES-TOTAL	113,079	1,430,549	574,795	2,118,423	

extirpation of several avian species and the sharply reduced distribution of a variety of birds and mammals (Fredrickson 1978). As bottomland forest tracts have been fragmented and reduced in size, spatial considerations such as corridor contiguity should be of increasing interest in habitat evaluations (Kroodsma 1978).
Land use
12. The first MRC comprehensive river survey maps (Mississippi River Commission 1881-1897) included very detailed depictions of land use in the immediate vicinity of the river. Plantation farming thrived adjacent to the river in the $1880^{\prime} \mathrm{s}$, and in many reaches agricultural fields were nearly continuous for miles along its banks. Many of these fields have since reverted to forest, and about a quarter of the confined floodplain is currently in rowcrops (Table 1). Other agricultural areas include cattlegrazed levees and pastures (nearly 60,000 acres) and tree plantations (about 50,000 acres) (Table 1).
13. Farming along the river has declined over the past century, but timber harvesting has continued. However, planned timber management has been employed only since the 1950's (Wiseman 1982), and most small holdings continue to be subject to simple high-grading operations without attention to residual stand quality (Johnson 1978). Most larger forested sites are leased for hunting. The value of such leases and the level of attention given to game species management has risen dramatically as forested bottomland acreage has declined.*

[^1]
Forest Sampling

14. Field sampling was conducted from July through November 1984 and in June and July 1985. Sampling procedures were designed to detect and describe common forest community types as well as within-type variations related to latitude, site conditions, and stand management. A stratified sampling approach was adopted because certain forest cover types are extremely common within the study area, others are relatively localized or rare, and some are structurally and compositionally simple or consistent. Areas where special environmental conditions might influence forest communities were specifically targeted for sampling. Among these were islands, subject to high flood flow velocities and relatively isolated, sites near the confluence of tributary streams, where unusual soil and flooding characteristics may occur, severely disturbed soils in the vicinity of the mainline levee borrow pits, and floodplain areas near the base of the loess bluffs, where local colluvial and alluvial deposits may be markedly different from the Mississippi River deposited soils.
15. Potential sampling sites were designated at regular intervals (approximately every 10 miles) along the river. During the 1984 season, the full length of the study area was traversed twice, with samples taken at broad (30to $60-\mathrm{mile}$) intervals, to provide two seasonal samples of ground cover vegetation. The 1985 field effort was based on a preliminary analysis of cover type, stand structure, and distributional data from the 1984 season and was largely devoted to filling gaps in the database. For example, in the 1984 sample the Black Willow* type was represented only by mature (sawtimber) stands in the reach between RM 555 and RM 855. In 1985 a special effort was made to sample younger (pole and sapling) Black Willow stands in that part of the river.
16. A systematic approach was employed to select stands and array sample

[^2]plots. The sampling design called for the establishment of east-west transects between the river and the floodplain boundary (levee or bluff line). At 150-ft intervals along each transect line, surrounding stands were examined and accepted or rejected as sampling sites depending on representation of similar stands in the dataset for that $50-\mathrm{mile}$ river reach. Plots were established within selected stands at 150 -ft intervals along or perpendicular to the transect, depending on stand configuration. Plot locations were rejected if they fell in areas judged transitional to other stands.
17. An effort was made to develop a variance criterion for determining the number of plots to be sampled in each stand. This was tested in a pilot study, but proved infeasible due to the large number of forest characteristics being sampled. For example, a criterion based on overstory tree variables may tend to result in under-sampling of the ground layer where the former is fairly uniform and the latter is complex. For this reason, sample adequacy was based on a subjective evaluation of overall stand variability. This approach resulted in stand samples consisting of up to 11 plots in complex and diverse stands, and a single plot in extremely small, but internally consistent stands. Average sampling intensity was 3.5 plots per stand. It was often necessary to deviate from the straight-line transect system described above due to inaccessibility of sites, discontinuity of forested areas, and the targeting of unique sites to be sampled. In all cases, however, sampling within stands was systematic. Detailed field notes were taken concerning bearings and paced distances from known points to each plot. A total of 1,110 plots were sampled, representing 316 stands.
18. Sampling locations designated through the process described above formed the center point for three nested, circular plots. The variables evaluated in each plot and the rationale for collecting these data are described below.
Stand data
19. Ownership. Stand ownership was ascertained wherever feasible to facilitate access and provide some basis for estimating probable management history and future exploitation patterns. Hardwood timber companies, paper companies, and large hunting clubs accounted for most large tracts. Smaller private holdings and levee-board-controlled lands were recorded as "private" and not otherwise differentiated. Local, state, and federal lands were noted as such, but accounted for very little of the study area.
20. Grazing. Direct evidence of current domestic livestock usage was noted on the assumption that understory and ground cover characteristics would be markedly influenced.
21. Special sites. Certain unusual site conditions were noted during field data collection. Plantations, recently harvested areas, sites affected by soil disturbance or water accumulation during or after borrow pit operations, stands directly influenced by tributary flows or directly adjacent to the base of bluffs, and stands subject to deep accumulations of sediments in recent (<15) years were identified on field data forms. Plot data (1/10-acre circle)
22. Elevation. Plots were classified as higher, lower, or the same elevation relative to the surrounding terrain as an indicator of general drainage conditions.
23. Topography. In addition to the general drainage status of the site as a whole inferred from Elevation, significant small-scale variations were noted by classifying plot topography as either a ridge, depression, slope, or flat.
24. Overstory vegetation. This stratum was characterized based on the following field measurements.
a. Mean canopy height was estimated, and estimates were periodically checked with a clinometer.
b. Canopy cover was estimated using Daubenmire's (1968) standard cover-class system (percent cover intervals of 0 to 5, 5 to 25, 25 to 50,50 to 75,75 to 95 , and 95 to 100). Cover-class midpoints were used for all subsequent analyses.
c. Trees with diameter-at-breast-height (dbh) of 2 in. or greater were measured to the nearest inch $d b h$ and recorded by species.
25. Habitat structure. Specific components of habitat quality were evaluated using the following variables:
a. Understory height was estimated to the nearest foot as the average height of woody vegetation less than 2 in. dbh but greater than 4.5 ft tall. Certain persistent non-woody or semi-woody species that are structurally appropriate to the understory category (such as Arundinaria gigantea and Sambucus canadensis) were included in this evaluation.
b. Understory cover was estimated using the cover class system described above.
c. Average ground vegetation height was estimated and recorded to the nearest foot. A value of 0.5 ft was assigned to any plot having an average ground vegetation height greater than zero but less than 0.75 ft .
d. Ground vegetation cover was estimated using cover classes.
e. Debris piles, defined as accumulations of woody debris at least 1 ft deep over an area of at least 9 square feet (sq ft), were counted as an indication of cover available on the ground, other than standing vegetation.
E. Logs at least 7 in . in diameter over a length of at least 5 ft were counted as potential den sites, foraging substrates and cover.
g. Stumps at least 7 in . in diameter and 1 ft tall were counted both as habitat components and as indicators of recent logging activity.
h. Snags, defined as standing dead wood at least 7 in. dbh and 8 ft tall, were counted as fc aging and nesting habitat for a variety of species.
i. Pool sites were counted as the number of depressions capable of ponding water with a surface area of at least 9 sq ft . Only pool sites on substrates with clay or silt-clay soils at or near the surface were used in subsequent analyses. Pool sites are highly productive following rains in the summer, and larger pool sites have been considered an important component of floodplain forest complexes used heavily by wintering mallards (Anas platyrhynchos) in southeastern Missouri (Heitmeyer 1985).

Plot data (1/100-acre circle)
26. Understory vegetation. Stem counts by species of all vegetation meeting the understory criteria described above were made to complement the general height and cover data tabulated in the larger plot.
27. Vines. Vines were classified as either "Canopy vines" (having leaves exposed to direct sunlight in the tree canopy) or "Subcanopy vines" (less than canopy height but with stems reaching at least 4.5 ft above ground level). The number of stems in each category were counted and recorded by species if they were rooted in the plot. Density estimates were employed instead of counts for extremely abundant subcanopy vines.
28. Soil texture. Soils were sampled at two points opposite one another on the perimeter of each 0.01-acre circular plot. A tube-sampler was used to obtain soil samples to a depth of 15 in . The texture of each distinct stratum encountered was recorded. The purpose of this procedure was to obtain an indication of soil permeability to complement other independently derived estimates of site drainage.
Plot data ($1 / 1000$-acre circle)
29. Ground vegetation. Ground cover was estimated using cover classes, by species, for all woody and herbaceous plants not included in understorylevel evaluations.
30. Seedling density. All woody shrub and tree seedlings in the ground cover layer were counted, by species.
31. Detritus accumulation. Decomposing plant material on the forest floor (excluding freshly fallen leaves) was evaluated with respect to depth and distribution using a three-class rating system which indicated accumulation as sparse or none; deeper than $1 / 2 \mathrm{in}$. but patchy; and, deeper than $1 / 2$ in. over the entire plot.

Database Assembly

32. Database construction proceeded in three phases consisting of the summarization of field data, the development of site or environmental variables to be linked with plot data, and the identification and rectification of errors. All raw biotic and site data were maintained in the database, but a working subsei ui synthesized information was also created for use in the primary analyses.
33. Forest overstory data were summarized on both a plot and stand basis in standard basal area and density terminology. Three size classes were designated that approximately correspond to typical forestry categories (sapling, pole, sawtimber) and that also can be applied to habitat analyses that are concerned with canopy layering or assumed maturity of mast species. The two larger size classes (including all trees / 5.5 in . dbh) were used to assign a cover-type designation to each stand based on the standards given by the Society of American Foresters (1975).
34. Plot and stand densities were calculated for understory trees and shrubs, seedlings, canopy and subcanopy vines and all other tally data (logs, snags, etc.). All ground cover, understory cover and canopy-cover estimates were taken as the midpoint of the assigned cover class. Categorical data (soils, detritus) were retained in raw form and accumulated at the stand level.
35. Plot locations were carefully mapped throughout the field effort. This was done because plot locations are precise enough and stand sampling intensity was adequate to regard the sampled stands as permanent reference areas for subsequent study, and referencing plot data to precise points on the ground provided access to a variety of site data developed from other sources.
36. Data on the alluvial soil type, vegetation association (forest cover type), and elevation of each plot were obtained from the CERDS geographic information system (Cobb and Williamson 1986). Site data derived from CERDS for each plot were checked against field data to identify gross errors, and final values were assigned to each plot. Sources of error (i.e., plot mapping errors versus photointerpretation errors) were identified.
37. In addition to the field data and CERDS information, certain database site factors were derived from other sources. Surface soil deposits were taken directly from the same maps (Kolb 1962, Kolb et al. 1968, (revised 1979-1985), Saucier 1964, 1967, 1969) that provided environments of deposition through CERDS. Another factor, referred to here as "site age", was inferred from information contained in a series of river survey maps covering the study area from Baton Rouge to Cairo (Mississippi River Commission 1938, 1941). These maps show the probable position of the river channel at intervals since 1765 (1765 , 1820's, 1880's, 1930-32, 1940-41). Using the old surveys in conjunction with the environments of deposition maps and the current comprehensive hydrographic survey (US Army Engineer District, Memphis 1976, US Army Engineer District, New Orleans 1976, US Army Engineer District, Vicksburg 1977), it was possible to assign to each stand an estimate of the relative age of the deposit occupied. This was done categorically, where stands were designated as occupying sites that have been fastland throughout historic times (>200 years), that were river channel sometime between 1765 and 1893, that were river channel during the 1930-1932 survey, and that were river channel during the 1940-1941 survey. Included in these categories were sites that were reworked by river meandering during the time periods covered. Sites below Baton Rouge were not used in the site-age analyses because of the lack of meander activity in recent centuries (Saucier 1974).
38. Additional site data were added to the database as derived variables recalculated in useable terms from field data or other sources. The field observations of surface soil texture were converted to a simple permeability index, where permeable soils were those where sand predominated, impermeable soils were either predominantly clay or contained a distinct clay horizon, and moderately permeable soils were either silty or characterized by a mixture of thin deposits of varying textures.
39. Flood frequency (return period) was calculated for each stand using the National Geodetic Vertical Datum (NGVD) plot elevations and river mile
plot locations provided by CERDS in conjunction with flood frequency data for the river. Frequency profiles (or flow lines) were available for the Memphis and Vicksburg Districts, and allowed all stands in those areas to be assigned to either the 2-, 5-, 10-, 25-, 50-, or 100-year flood zones. Elevations below the 2 -year flowline were designated as 1 -year floodplain. For New Orleans District, only monthly mean, maximum, and minimum water level records were available. Using these records for the gauge nearest each sampled stand, plots were assigned to the 1-year flood zone if their elevations were at or below the average annual maximum (usually April) water levels, and to the 2-year flood zone if above that point.
40. A second indicator of flooding influence was also examined. Because of the broad and unequal intervals used to portray flood frequency data, Low Water Reference Plane (LWRP) elevations were used to standardize plot flooding throughout the study area in terms of a continuous variable. While subject to deviations related to variation in channel and floodplain shape, this "relative elevation" factor allows plots to be roughly compared to one another in terms of equivalent river stage elevations over the length of the study area; that is, a plot 20 ft above LWRP at Memphis should have a flooding regime generally similar to a plot 20 ft above LWRP at Vicksburg.

Classification Procedures

41. Analysis focused on the classification of recurring, recognizable vegetation community types in terms of their relation to mappable site factors. The first step in this process was identification of repeatedly occurring vegetation units. A variety of multivariate analysis techniques such as cluster and ordination analyses have been employed successfully in vegetation studies to recognize similar communities from spatially separated samples (Gauch 1982). These techniques group stands of similar composition and structure and were applied in this study as data reduction and pattern recognition tools.
42. All analyses in the classification phase were performed on stand basal area data (trees $/ 2 \mathrm{in} . \mathrm{dbh}$). The clustering procedure (Boesch 1977) used a flexible clustering strategy on a percent-similarity (standardized Bray-Curtis) data matrix. Cluster analysis was used to identify broad groups of stands with certain basic compositional similarities. The ordination
technique known as detrended correspondence analysis (Hill 1979, Hill and Gauch 1980) was employed to further subdivide clusters in a manner that reflected the effects of historic management practices and subtle differences in site moisture conditions. Certain special sites (plantations, borrow pit areas, and scrub stands) were deleted from the multivariate classification procedures because of their unique association with disturbed sites or with agricultural activities. Selective partitioning of the dataset was employed to facilitate sample classification and is described with examples in Part III.

Model Development

43. The objective of the model development process was to identify a group of site variables that, in appropriate combinations, were predictive of the potential occurrence of the forest communities. Forest communities were rated according to their frequency of occurrence in site factor categories (e.g. alluvial soils). Continuous site factors (e.g. elevation) were evaluated by plotting site-factor means and standard deviations for each forest community type and assessing the resulting distributions for distinct community separations.
44. A key was constructed for classification of any site in the study area based on a series of five or fewer site or stand characteristics identified as highly restrictive of forest communities. The estimation of future conditions is common to most water resource planning studies; therefore, generalized replacement sequences were developed for the site types identified in the key. These sequences were based on published literature and field observations, and reflect various levels of forest exploitation and management. To assess the feasibility of developing models predictive of forest conditions over time, a single site type, its associated cover types, and the replacement sequence developed for them were examined to assign relative time scales against which selected vegetation composition and structure factors were plotted. The resulting curves were used to evaluate the overall performance of the nodels. A limited test of the key and models and a demonstration application to wildlife habitat assessment was conducted for a small area on Huntington Point, Mississippi (RM 552) (see Part IV).

General Forest Characteristics

45. Of the 23 forest cover types represented in the CERDS database, 17 were encountered in the field sampling effort. Those not sampled were three "pure stand" (single-species dominance) types (Elm, Tupelo, and Live Oak), two multiple-species dominance types (Oak, Live Oak-Pecan-Sugarberry), and one type devised as a mapping convenience where site and stand variability were high (Ridge-Slough Comp:nx). The two types that had live oak (Quercus virginiana) as an important component were not represented outside the extreme southern end of the study area, and the field sampling procedure failed to detect them. Also, stands appropriate to the Ridge-Slough Complex were not encountered in the field effort or were typed at a finer level of resolution. The Elm, Tupelo, and Oak types were not sampled but are closely aliied with the sampled types Hackberry-Elm-Ash, Cypress-Tupelo, and Sweetgum-Oak.
46. The 17 cover types that were recognized in the field included six single-species types that might also be regarded as variants of more complex or common cover types. These six types (Baldcypress, Overcup Oak, Green Ash, Pecan, Hackberry, and Sycamore) each accounted for less than one percent of forests in the study area (Table 1) and were represented by relatively small samples that were inconsistently treated in the type mapping process, being noted as pure stands in some cases and as more complex types in others. For the purposes of this analysis, these samples were included under their more common and generalized parent cover types. One other type (Cottonwood-Willow) tended to be mapped where a mosaic of interspersed pure stands of each species existed, and did not often represent within-stand codominance. As with the Ridge-Slough Complex, this type was not distinguished in the field samples, which were based on within-stand compositional and structural integrity. Therefore, Cottonwood-Willow also was not recognized as a type in the descriptive phase of this research.
47. Ten of the 23 CERDS cover types were recognized as being common and consistently classified within the study area, based on the exclusions described above (see Table 2). Of these, two types (Hackberry-Elm-Ash and Sycamore-Sweetgum-Elm) accounted for over one-half of the forested area represented in CERDS (Table 1) and sampled in the field. These two forest types

Table 2
Cover-Type Classification of Sampled Stands

Coven Type	Number of Stands	Percent of Sample	Percent of Forested Acreage*
Tree Plantation	7	2.2	4.4
Black Willow	56	17.7	16.9
Cottonwood	47	14.9	16.3
Sycamore-Sweetgum-Elm	89	28.1	20.6
Sweetgum	8	2.5	0.1
Sweetgum-Oak	20	6.3	5.2
Hackberry-Elm-Ash	74	23.4	23.1
Overcup Oak-Bitter Pecan	2	0.6	0.4
Cypress-Tupelo	8	2.5	3.1
Scrub	5	1.6	4.4

* From Table 1. In this category, the Cottonwood-Willow type is evenly apportioned to the two parent types. CERDS forest cover types not repre sented here each account for less than 1 perce of forest cover in the study area and were inconsistently typed or not sampled.
were highly variable in structure and composition and contained all stands not strongly dominated by one or two species (e.g. Cypress-Tupelo, Black Willow, and Overcup Oak-Bitter Pecan types) as well as most transitional areas. The "Scrub" cover type was strictly a structural classification that included developing new stands, regenerating clearcut stands, or shrub-dominated sites. Similarly, the "plantation" designation was applied to any recognizably planted forest, regardless of composition. Of the various species that may occur in plantation culture, only Populus deltoides and Platanus occidentalis represented the plantation type in this study.

48. Most of the tree species that define the common cover types (e.g. Sycamore-Sweetgum-Elm, Cottonwood-Willow, etc) are distributed over the entire length of the study area. Latitudinal restrictions occur for a variety of
secondary species, however. Quercus virginiana is restricted to sites downstream of Baton Rouge. Tree species characteristic of the leveed floodplain segment between Baton Rouge and Memphis include Quercus nuttallii and Ulmus orassifolia. Acer saccharinum, Carya cordiformis, Carya laciniosa, and Juglans nigra are largely restricted to sites north of Memphis.
49. Shrub species show less latitudinal restriction than trees, although few native species occur south of Baton Rouge. Shrub density and diversity vary primarily with soil moisture (few shrubs occur in Cypress-Tupelo or Overcup Oak-Bitter Pecan forest types or in swales) and soil age or lack of disturbance (new bar deposits and heavily sedimented areas rarely support shrubs). The richest shrub communities are found in late-successional Sweetgum-Oak stands where species such as Lindera benzoin, Ilex decidua and Asimina triloba are common understory components.
50. Vine abundance and diversity tend to be greatest at mid-successional stages (Sycamore-Sweetgum-Elm and Hackberry-Elm-Ash). Most Black Willow and Cypress-Tupelo stands have few vines. Many vine species considered valuable for wildlife (Smilax spp. and Vitis spp.) are largely restricted to the central and northern portions of the study area, although Toxicodendron radicans is ubiquitous, occurring in nearly all habitats.
51. Ground-cover vegetation varies seasonally as well as with successional stage, soil moisture, and latitude. Many sites support an early-summer flora dominated by one or several herbaceous species such as Galium aparine, Laportea canadensis, Sicyos angulatus, or Commelina spp. By late summer most areas have a much more diverse ground cover, often including widespread species such as Polygonum virginanum, Aster spp., Carex spp., and a wide variety of vines. Total ground cover tends to be lowest in Cypress-Tupelo, Overcup Oak-Bitter Pecan, and Sweetgum-Oak stands, probably because of restrictive moisture conditions in the first two and a lack of light due to understory development in the latter. Mid-successional stages (Sycamore-Sweetgum-Elm, Hackberry-Elm-Ash) and Cottonwood-Willow types often have a very dense ground cover, except where a dense subcanopy (usually of Celtis laevigata) has developed. Piantations, riverfront stands, most stands downriver of Baton Rouge, and other sites where a great deal of light reaches the forest floor have consistently dense ground cover.
52. Certain special habitats tend to show consistent patterns of forest community structure and diversity. Overall species riahness is often high
near the confluence of tributary streams and the Mississippi River. Quercus lyrata and Taxodium distichum are commonly associated with oxbow lakes, and other Quercus species are often present. Similarly, floodplain stands near bluffs frequently have a diverse tree flora; such sites are the only habitats that support Quercus michauxii, and are the primary locations for Quercus pagoda, Carya cordiformis, Carya laciniosa, and Juglans nigra. Diversity is particularly high on tributary- and bluff-associated sites that show no evidence of having been cleared for agriculture. Where farming has occurred in the past, these areas frequently include Quercus nigra and Liquidambar styraciflua as major components.
53. River islands are unique habitats in several respects. They show the direct influence of the river in that they are geomorphically dynamic. Accretion zones on the downstream end of islands show classic patterns of forest community zonation. New deposits often support dense stands of Salix interior, Salix nigra, and Populus deltoides. Interior to these pioneer stands are even-aged Salix nigra stands, and on older, higher sites, Populus deltoides is found.
54. Mid-successional island stands are similar to those found in the floodplain, but often appear to have been less frequently harvested than more accessible sites. One tree species, Gymnocladus dioica was almost exclusively associated with island sites. Islands tend to be subjected to regular, sometimes severe sedimentation and erosion along their banks. Where deep, recent sediment deposits are found, disturbed-site species such as Acer negundo and Celtis laevigata are favored, and ground cover consists almost entirely of vines. Sediment accumulation frequently blocks internal arainage on islands, creating small sumps and wet flats dominated by even-aged stands of Acer saccharinum or Fraxinus pennsylvanica.
55. It is difficult to make general statements beyond the distributional limits and special habitats described above. The forests of the leveed floodplain are a complex mosaic of plant communities not easily summarized by general habitat or cover-type designations. The approach presented below provides a system for estimating forest community characteristics over a wide range of sites.
56. Cluster analysis was initially ineffective in separating meaningful subgroups within cover-types. Examination of early results indicated that the technique was highly sensitive to the importance of two ubiquitous species: Celtis laevigata and Acer negundo. One or both of these species were present in the majority of stands sampled, and the clustering technique was more responsive to dominance values of these species than to overall stand structure and composition. Application of various data manipulation procedures did not improve results significantly and tended to obscure other stand structural information of interest in this study.
57. Because stand composition and structure were often masked by the prevalence of \underline{C}. laevigata and A. negundo, these species were removed from the data set to allow species of secondary importance to be the focus of the cluster analysis. For example, two stands strongly dominated by C. laevigata, and having similar basal area values for that species, tended to cluster together, regardless of the secondary species present. Removal of \mathbf{C}. laevigata would shift the emphasis to the secondary species and might completely separate the same two stands if their secondary species were, for example, remnant scattered Salix nigra in one case and dense, pole-sized Liquidambar styraciflua in the other. This modified approach produced a more ecologically meaningful classification of stands, up to the point of identifying broad groups defined by the presence of certain unifying "character" (but not necessarily dominant) species (Figure 3). Beyond the "character species" level, the cluster analysis tended to focus on total basal area rather than compositional factors.
58. To further subdivide the broad cluster groups, and reintroduce Celtis laevigata and Acer negundo to the analysis, detrended correspondence analysis was employed on the smaller data sets represented by each cluster grouping. This technique provided a multidimensional array that allowed identification of subclusters based on ecologically meaningful variations in composition and structure. For the example given earlier, the C. laevigata-dominated stand with some Liquidambar styraciflua would be classified with other stands having the same strong C. laevigata dominance, but only within the L. styraciflua cluster group. A simple, two-dimensional example of the subcluster designation procedure is given in Figure 4.

Figure 4. Ordination of Cluster H with three subclusters identified and one outlier isolated
59. Extracting cluster H from the overall ordination array (Figure 4) allowed recognition of three discreet subclusters and an outlier stand. Subcluster H 1 contains stands strongly dominated by Acer negundo, Celtis laevigata, Fraxinus pennsylvanica, and Ulmus americana. These were covertyped as Hackberry-Elm-Ash, and their secondary species tend to have an earlysuccessional character (e.g. Platanus occidentalis and Populus deltoides), although a very minor but consistent quercus spp. component suggests that site potential is good. It was the Quercus spp. and Fraxinus pennsylvanica that originally caused this subcluster to be included in the overall set of stands assigned to the Cypress character species group, even though Taxodium distichum was nearly absent from these samples.
60. Subcluster H 2 also had a large Fraxinus pennsylvanica component, but had less of a Hackberry-Elm-Ash character than H1. A variety of species typical of very wet sites were common in this group of stands, including Taxodium distichum, Carya aquatica, Nyssa aquatica, Acer rubrum, Planera aquatica, and Gleditsia aquatica.
61. Subcluster H 3 was neither as wet as H 2 nor does it have the early
successional characteristics of H 1 . F. pennsylvanica was again very common, but oaks (Q. lyrata and Q. nuttallii) were important as was Liquidambar styraciflua. The outlier stand was evidently included in cluster H due to the strong presence of Forestiera acuminata, which occurred in nearly all of the H stands; however, the outlier also included a large amount of Salix nigra, which accounted for its distinct separation in the ordination analysis.
62. The process used to divide cluster H into meaningful subclusters was applied to all of the cluster groups to define the 52 subclusters illustrated in Figure 3. Outlier stands identified in this process were reserved (along with plantations, borrow areas, and scrub stands set aside earlier) for use in devising the final subtype descriptions, but were not employed in the site affinity analyses, below.

Site Affinities

63. The site condition variables associated with each stand in the dataset were evaluated as potential indicators of the occurrence of the individual subclusters. Of the 52 subclusters recognized, 11 were not used in this phase of the analysis because of their occurrence exclusively below Baton Rouge or on heavily sedimented sites, and one was deleted because it contained only highly disturbed stands associated with old home sites (cluster " 0 ").
64. Flood frequency and duration are commonly employed as indicators of anaerobic conditions and forest species distributions in southern bottomlands (Wharton et al. 1982). The available site factors indicative of flooding included flood frequency and elevation above the LWRP, referred to here as relative elevation. Of 40 subclusters evaluated, only one was restricted to a zone flooded at a frequency of less than once every 2 years. All other subclusters included stands that occurred within the 2-year floodplain although they often contained stands that ranged as high as the 100 -year floodplain. Flood frequency, then, was a very poor discriminator of subcluster distributions. The standard flood frequency zones are broad and unequal categories, each of which may represent a considerable range of flood durations and depths.
65. A more direct, equal-interval descriptor of the flooding gradient is relative elevation (elevation above LWRP). Plotting cluster distribution against relative elevation (Figure 5) illustrates that this approach did not

Figure 5. The distribution of parent cluster groups (see Figure 3) along an elevation gradient standardized to the LWRP
significantly improve cluster separation. An effort was made to further refine the flooding gradient by adjusting relative elevation slightly where microrelief data (field observations) suggested that CERDS-derived elevations may not have reflected the local conditions. These procedures did not improve cluster separations to any marked degree.
66. The failure of the elevation data to be predictive of cluster distributions was not anticipated. Possible reasons for these results included a basic error in the cluster designations, errors in the elevation database, or a weakness in the rationale behind the entire analytic approach. Further analyses, however, suggested that none of these explanations were appropriate; rather, the problem was that elevation data insufficiently reflected the importance of localized drainage in addition to flooding as a part of the overall water regime on these sites. Since much of the study area is flooded nearly every year, and all of it is subject to high annual rainfall (US Army Engineer District, Vicksburg 1976), soil moisture differences between sites derive largely from drainage rates. While the overall topography is
relatively flat in most areas, low sandy ridges, broad sumps, gentle slopes at the base of bluffs and other minor topographic features strongly influence site drainage (Putnam, Furnival, and McKnight 1960).
67. The geomorphology (environments of deposition) maps represent landscape features in a manner that reflects site drainage characteristics. Abandoned channels, backswamps, and large swales are sizeable depressions, usually partly filled with clay deposits, that tend to gather and hold water. Point bar sites generally have less fine-textured soils and are better drained. Superimposed on these gross patterns are a variety of surface deposits that may moderate the basic drainage characteristics of a site. Natural levee deposits are extensive in the study area, and may blanket large complexes of point bars, abandoned channels, and other features. The relatively well- drained character of this type of surface deposit tends to make any particular site somewhat drier than the basic environment of deposition would indicate. Alluvial apron deposits also have a moderating effect on moisture conditions as well as improved fertility and a loamy soil texture. Other surface deposits similarly modify site drainage predictably.
68. The utility of floodplain geomorphology in accounting for forest community distribution was investigated by evaluating the tendency for clusters to be restricted to specific depositional environments or combinations of environments. In general, the basic depositional environments were predictive of cluster occurrence (≥ 50 percent fidelity) when divided into point bar (well to moderately well drained) versus all other types, such as abandoned channel, backswamp, and large swales (poorly drained) (Figure 6). The presence or absence of surface deposits was also effective in isolating a large proportion of the clusters.
69. The site-age information, derived from the periodic surveys since 1765, was useful in two applications. Oak-dominated forests do not develop on new alluvium for 150 to 200 yrs (Shelford 1954, Wiseman 1982), a limitation at least partly related to the high pH usually associated with recent deposits.* The site-age analysis, indicated almost complete restriction of oak-containing clusters to sites that have not been occupied by the river in historic times (Figure 6). Recognition of this relationship is important in estimating the progress of stand development over time; that is, successional rates are

[^3]
SITE

factors

abandoned channel. LARGE SWiALE. BACKSWAMP
point bah
natural levee
substrates
200 YRS OLD
no Surface
DEPOSITS substrates
50 YRS OLD
SMALL SWALE

Figure 6. Subcluster fidelity (50 percent or greater) to selected geomorphic and site-age factors
limited by soil maturity. Another application of the site age factor concerns early-successional communitics. Where sites are less than 50 years old, they usually are occupied by the pioneer Black Willow or Cottonwood communities. Where these pioneer types occur on older substrates, they are either very mature stands, or are invaders on abandoned farmland, and are distinctly different from the stands invading new lands. Site age is useful, therefore, both in estimating rates of change over time, and in discriminating superficially similar but functionally and compositionally different stands within the early successional forest types.
70. A similar process of grouping variables and assessing cluster restriction was applied to the other categorical site factors in the database. Some of these did not discriminate clusters (e.g. flood frequency and microrelief), while others accounted for cluster distribution to some extent, but reflected relationships that were more clearly defined by other site factors. For example, soils classified in the field as permeable or moderately permeable tended to be associated with clusters found primarily on natural levee, alluvial apron, or point bar deposits. Similarly, 75 percent of the clusters with impermeable soils were associated with swales, abandoned channels, or deposits over 200 years old. In such cases the mapped site factor (environment of deposition or surface deposit) was preferable to the field observation in meeting the objectives of this research.
71. One group of variables was not particularly helpful in assessing site
affinites, but was useful in identifying certain trends or special circumstances that were considered in subsequent data evaluation and discussions. Stand ownership, for example, did not usefully discriminate among clusters, since there is a tendency for large tracts on older soils to be owned by hardwood timber companies. That is, sites capable of supporting extensive oak stands were recognized and purchased based on the same site-quality factors already represented in the geomorphology and site-age factors identified in this study. However, ownership remains useful in estimating probable future stand development trends if it is taken as an indicator of long-term management strategies. Certain other factors were similarly useful for limited generalizations regarding special sites (e.g. association with permanent water bodies, borrow pits, and stands subject to heavy sedimentation).

Key Structure

72. The cluster-site affinity evaluation process resulted in identification of a set of site and stand descriptors that, taken together, are predictive of community composition and structure at a more detailed level than the CERDS cover-type designations. Figure 7 is the final key to forest subtypes constructed through this process. The subtype key is inclusive of all sites within the study area. This structure unavoidably introduces some random variation to the final subtype descriptions, and requires qualification of the elements that make up the key.
73. The key consists of a series of site or cover-type categories (levels) that are considered to arrive at one of the 51 subtypes. Appendix B contains descriptions of each subtype in terms of overstory, understory, ground cover and site characteristics indicative of community structure and habitat quality. The subtype descriptions are presented as mean or frequency (constancy) values for all plots in the sample that meet the key criteria, except for three extreme outlier stands identified as associated with old home sites, and a set of 28 stands classified as heavily sedimented and described outside the key context (see Part IV). Appendix B also reports standard deviations associated with each mean value, or maximum and minimum values. These provide an indication of the variability associated with each subtype element, but they should be interpreted with reference to the temporal considerations discussed later in this section.

Figure 7. Key to forest subtypes. Key elements are recoverable from CERDS and topographic maps. Subtype summaries are presented in Appendix B.
74. The key element descriptions below contain qualifications essential to proper application of the system. Certain special considerations are discussed that may improve estimates where more detailed site data are available. Level 1: Land cover
75. This includes four elements recoverable through CERDS, and one element estimable from existing maps. The first four elements encountered in the
key are special sites described in detail under the subtype descriptions below. The fifth element ("other") includes all remaining CERDS forest land cover categories.

Level 2: River segment
76. The key requires identification of the position along the river which is recoverable through CERDS as the River Mile (distance above Head of Passes, LA). This is because of a basic dichotomy between sites upstream and downstream of Baton Rouge (RM 234). The downriver quarter of the study area differs strikingly from the rest in several respects. The floodplain between the levees is very narrow; the levees are located within a few hundred yards of the top bank through most of this reach. Overbank flows affect nearly all lands on the leveed floodplain downstream of Baton Rouge on an annual basis. This drastically limits forest development as discussed later, and requires that sites in the area be divorced from sites to the north, if meaningful data are to be developed regarding succession in both areas. The lower river also differs geomorphically, in that the features produced by recent river meandering are only present on a small fraction of the floodplain. The geomorphic data stored in CERDS reflect this fact; most of the area below Baton Rouge is mapped only with respect to flood-deposited surface alluvium, while more complex overlapping alluvial features are mapped north of Baton Rouge. The dichotomous key structure was adopted in this instance to reflect both the ecological differences between the two areas as well as the inconsistent mapping conventions used in defining environments of deposition.
77. Another logical geographic split in the key could be established at about Memphis (RM 735), for reasons similar to those that dictate the Baton Rouge division. Above Memphis, bluffs and small tributaries have a greater influence on the floodplain than below that point, particularly the reach between Memphis and Vicksburg. The vegetation changes distinctly north of Memphis, where Acer saccharinum is a common, and often dominant, component in several forest types. South of Memphis other species replace A. saccharinum almost entirely. " is is not reflected in the key because no Silver MapleAmerican Elm type or any Silver Maple variant of other types were included in the CERDS cover types. Key users must be aware of this major difference in interpreting the subtype descriptions, as discussed later.
Level 3: Environment of deposition
78. This factor applies only above Baton Rouge, where relatively recent
river meandering has defined the basic geomorphology of the floodplain. Based on the affinity analyses reported earlier, a simple dichotomy is recognized between poorly drained sites (abandoned channels, backswamps, large swales) and the more variable point bar deposits.
Level 4: Surface deposits
79. Below Baton Rouge, the key recognizes a distinction between relatively well-drained natural levee deposits, and the moderately to poorly drained coastal plain and alluvial apron deposits together with the small swale formations that temporarily impound flood and rain waters. Above Baton Rouge these same distinctions apply, but small swales are sufficiently common to merit separate treatment in the key.
Level 5: Site age
80. This factor is not incorporated in CERDS but can be estimated either from the survey maps from which it was derived, or indirectly from topographic maps which usually indicate past bank line positions. The principal value of site age as a key factor derives from its usefulness in distinguishing pioneer (new substrate; plant communities from older stands or superficially similar stands that have invaded abandoned fields (older substrates). For this reason, the key deals with site age only as a modifier of point bar deposits, which continue to accrete in some areas along the river upstream of Baton Rouge. Below Baton Rouge and on abandoned channel and similar sites this factor is not used, since these areas have essentially been stabilized since the 1940's (Tuttle and Pinner 1982); that is, no new abandoned channels are being formed, and lateral accretion is minimal in the downstream one-quarter of the river. Site age is also useful in estimating limits to succession rates, but this is dealt with in later discussions rather than in the key. Level 6: Cover type
81. The cover type categories used in the key are a subset of those employed in CERDS. Due to classification inconsistencies and analytic protocols discussed earlier, the general types used in the key often represent a complex of possibie CERDS types. For example, pure Populus deltoides stands identified through CERDS are assumed to be part of the Cottonwood-Willow type in the key, although extensive pure Salix nigra stands are common and are handled separately as the Black Willow type in some sections of the key. In general, single species dominance-types (e.g. Green Ash, Sycamore) can be assumed to be similar to their parent type (Hackberry-Elm-Ash, Sycamore-Sweetgum-Elm)
in general composition, but overstory diversity will be lower than average and a more even-aged structure can be assumed. The Ridge-Swale Complex type in CERDS represents the later-successional key types in a mosaic pattern on undulating (usually point bar) topography, and must be evaluated by the key user depending on site (KEY LEVELS 3, 4, 5). As noted earlier, the CERDS types characterized by Quercus virginiana were not sampled in this effort; therefore, their structural and compositional characteristics cannot be recovered through this key or the subtype descriptions. Such areas are of very limited distribution within the study area, however.
Level 7: Modifiers
82. These are specific to the four special "Land Cover" categories, (Level 1), and are referenced in the subtype descriptions below. Resolution of key divisions below the modifier level require reference to the subtype replacement sequences below.
Level 8: Subtype
83. Fifty-one subtypes are identified as possible endpoints from the application of the key. They are summarized in Appendix B in terms judged to be convenient to key users seeking general ecological characteristics as well as estimates of wildlife habitat suitability evaluation factors. The sample data stored in the CERDS database are available for development of summary statistics other than those provided in Appendix B.

Subtype Descriptions

84. To employ the key and subtype descriptions profitably, the user must be aware of certain limitations and characteristics of the system. Pure cover types and the Ridge-Swale Complex must be regarded as variants of other types, as discussed earlier. There is also a subset of sites that were excluded frol. the basic subtypes because of the dramatic impact of sedimentation. These sites occur directly adjacent to the riverbank, of ten in association with revetments, and extend up to 500 ft from the river. They occur particularly on the outside of bends, at the head of islands, and where the river is sharply constricted by levees and bluffs (Klimas 1987a). Where this burial phenomenon is anticipated, the key is applied as usual, but severe retardation of succession, mortality among older trees, and an element of "weediness" (e.g. increased importance of Acer negundo) can be assumed on most sites.
85. One weakness in the subtype summaries is the lack of a mechanism to show variation within cover types over time. Consequently, most summary statistics in Appendix B are associated with large sample variations (reported as standard deviations). In the absence of more specific site data than those stored in CERDS, the user shculd assume that the mean values reported in Appendix B represent the best available estimates. However, where there is some basis for estimating the position of a target stand on a temporal scale (early-to-late in the development of a particular cover type) the mean values may be adjusted in a systematic way. One site type (abandoned ciannel, no surface deposits) is used to develop an example of this process later in this section.
86. Temporal scales also are not available to indicate changes in cover type within a site type. However, the following subtype descriptions are accompanied by a general replacement sequence developed for each site type in the key (excluding special sites: subtypes 1 through 8). Summary data are presented in Appendix B.
Subtypes 1 through 8
87. Plantations. Tree plantations are common in the study area. They are primarily monocultures of Populus deltoides (Subtype 1) and to a much lesser extent, Platanus occidentalis (Subtype 2). Sites planted with Liquidambar styraciflua, Fraxinus pennsylvanica, Carya illinoensis and Quercus sp . may occur but are rare and were not sampled in this study.
88. The subtype descriptions represent mean values for a sample of plantations. Since plantations are intensively managed systems, most of the structural information of interest can be better inferred from published descriptions of stand growth and harvest practices. For example, unthinned stands in a $20-y r-o l d$ plantation within the levee system near Fitler, Mississippi (Krinard and Johnson 1984) showed the development patterns illustrated in Figure 8. The plantation subtype descriptions are of particular interest with respect to the ground cover, vine, and site factor data not usually evaluated in studies concerned with maximizing wood production. These features are highly variable depending on weed control practices and thinning schedules; therefore, the mean values in Appendix B are the best available estimates for a particular site without specific stand structural and management data. Where plantations might be expected to be abandoned after the final harvest, the understory data (Appendix B) suggest the probable residual stand

Figure 8. Cottonwood plantation basal area at various spacings over a 20-yr period, from a leveed floodplain site in central Mississippi. Adapted from Krinard and Johnson (1984)
and establish stand position on the replacement sequences described later in this section.
89. Scrub. This CERDS category includes all sites having woody vegetation of a subcanopy stature or less. These can be categorized as either shrubfield (subtype 3) or regeneration (subtype 4). Shrubfields occur in very limited areas (generally less than an acre) on lands disturbed by agriculture, sedimentation, or construction activities, and on low bars. They are most common in the vicinity of levees, where cattle grazing has arrested the development of overstory species to the benefit of subcanopy or shrub species such as Cornus drummondii and Forestiera accuminata, or on riverfront sites where dense young Salix interior thickets occur. This community structure may persist indefinitely under continual grazing pressure, long-duration flooding, or the impact of high-velocity river flows. Ground cover is usually minimal and other habitat structure components (snags, logs, etc.) tend to be absent or rare.
90. The regeneration category (subtype 4) includes a wide variety of potential dominant species, most of which actually occur in two or threespecies combinations on any particular site. Heavily cut stands, abandoned
fields, and some pioneer riverfront sites are included within this subtype. Subtype 4 differs from subtype 3 primarily with respect to development potential. For the purposes of estimating replacement sequence position, "scrub" considered to be regeneration should generally be regarded as equivalent to very early stages of the Hackberry-Elm-Ash or Sycamore-Sweetgum-Elm types.
91. Borrow areas. The immediate vicinity of water bodies resulting from levee construction (borrow pits, subtype 6) can be identified with CERDS, and the uneven terrain of non-ponded areas disturbed by borrow operations (subtype 5) is usually discernible from mapped elevation contours. These areas are discriminated in the key because the severe soil disturbance associated with construction activities and levee grazing practices appear to have an effect similar to periodic sedimentation in stalling the development of forests. These sites should be considered to be similar to oxbow perimeters or new bars in estimating future rates of compositional change.
92. Cypress-Tupelo. This land cover type is summarized separately from others because of its longevity and association with extreme flood durations. It is intended to incorporate both pure Taxodium distichum and pure Nyssa aquatica stands as well as intermediate mixed types. In general, the lakeshore stands (subtype 7) can be regarded as arrested; near-permanent annual flooding limits regeneration of other species. Gradual filling of the deep swales and abandoned channels that impound water bodies may result in a shift in the Cypress-Tupelo zone lakeward, but the magnitude and rate of invasion are dependent on a variety of factors, including lake bottom morphology and the type and amount of river-borne or locally eroded sediments that are deposited on the site, as they influence substrate exposure frequency (Klimas 1987b).
93. Another Cypress-Tupelo site that occurs regularly is on substrates that are flooded infrequently enough to permit invasion by other species (subtype 8). These are primarily sites that have filled with sediments or have improved drainage since the original Cypress-Tupelo stand established. Although the long-lived Taxodium distichum may dictate stand character for decades (or centuries in the absence of harvest), the relative importance of species such as Quercus lyrata suggests the future composition of the stand. Ground cover and understory vegetation also reflect the shifting nature of the site.
94. As noted earlier, the narrow floodplain downstream of Baton Rouge is subject to frequent flooding as well as a high level of human disturbance. Subtypes 9 through 12 occupy sites where natural levee deposits have not accumulated, but they are still subject to harsh environmental conditions in most cases.
95. The Black Willow type on these sites is treated as two subtypes in the key. Subtype 10 is typical of fairly young, pioneer stands where trees are small and density is high. The riverfront character of these stands is illustrated by the occurrence of Salix interior, a very short-lived, strictly pioneer species (Noble 1979). Other riverfront species (e.g. Amorpha fruticosa) also are common. This subtype (rather than subtype 9) can be assumed to be appropriate on most riverfront sites, particularly in bank zones with elevations generally <+15 ft LWRP. As Figure 5 suggests, sites below that level are unlikely to support other vegetation types unless protected or isolated from the river. In the absence of any land building (which is limited in the canal-like lower river) these low-elevation riverfront sites may be assumed to be permanently stagnated in subtype 10 , which simply replaces itself as portions of the stand mature and collapse. On sites where substrate elevations are increasing due to trapping of sediments, or on off-river sites, subtype 10 will progress to resemble the stands summarized in subtype 9 (Figure 9). These are older stands with mature Salix nigra dominating, but with elements of later forest types present. On higher elevation riverfront sites, subtype 9 may be replaced by stands similar to

Figure 9. Common replacement sequences for forest subtypes on sites without natural levee deposits (south of Baton Rouge)
those in subtype 11. This type also tends to stagnate where it is exposed to high velocity flows. However, where sites are protected from direct impacts of river flows or are far enough from the channel that flood velocities are moderated, subtype 12 may develop, either subsequent to disturbance in subtype 11 , or, on wet flats, directly following subtype 9. Subtype 12 contains some elements (Quercus nigra and Q. virginiana) of later types on particularly protected sites, but repeated disturbance and high flow velocities are probably sufficient to preclude progression beyond the Sycamore-Sweetgum-Elm and Hackberry-Elm-Ash types. Remnant Taxodium distichum stands in the area are consistent with subtype 7 , but appear more likely to eventually convert to a Black Willow type (subtype 9) than a mixed-species stand such as subtype 8. Subtypes 13 through 16
96. Where natural levee deposits have accumulated, forest development (Figure 10) is similar to that described in Figure 9 , but species composition

Figure 10. Common replacement sequences for forest subtypes on natural levee sites (south of Baton Rouge)
shifts significantly. The Black Willow type (subtype 13) is similar to those described above, but sedimentation promotes development of other riverfront species such as Populus deltoides and Platanus occidentalis. These two species, which are unimportant in subtypes 9 through 12 , are characteristic of the better-drained natural levee sites. A Cottonwood-Willow type (subtype 14) is recognized on these sites, where it occurs as a mosaic of stands dominated by either of these species, depending on substrate. These stands progress to a Sycamore-Sweetgum-Elm cover type (subtype 15) on most natural levee sites, with P. occidentalis a common dominant. On wetter sites, or where subtypes 14 or 15 have been disturbed, composition and structure more closely resemble subtype 16. Again, occasional elements typical of later successional stages occur (e.g. Quercus nigra), but overall composition does not progress beyond the Hackberry-Elm-Ash or Sycamore-Sweetgum-Elm cover types.
97. In this group, riverfront stands typed as Black Willow (subtype 18) typically include Salix interior as a common associate, and they tend to accrete sediments unlike most of the similar low-elevation stands south of Baton Rouge. As stands mature and sediments accrete (Figure 11), the Black

Figure 11. Common replacement sequences for forest subtypes on point bars without surface deposits or with alluvial apron deposits (north of Baton Rouge)

Willow type more closely resembles subtype 17 , with S. interior becoming less important and other species (e.g. Celtis laevigata, Platanus occidentalis) occurring in the subcanopy. The collapse or harvest of the S. nigra overstory creates canopy openings and composition shifts to more shadetolerant types.
98. These open \underline{S}. nigra stands as well as S. nigra stands intermixed with Populus deltoides stands, are often mapped as Cottonwood-Willow (subtypes 19 and 21). Subtype 19 is replaced by a Sycamore-Sweetgum-Elm type on most sites, but this subtype (23) should be interpreted carefully. The summary (Appendix B) indicates a high percentage of Acer saccharinum in subtype 23 , but this applies primarily to interior (non-riverfront) sites north of Memphis. On such sites A. saccharinum often occurs as a dominant in fairly even-aged stands, and other species are less important than indicated in

Appendix B. On riverfront sites and south of Memphis, stands typed as Sycamore-Sweetgum-Elm are similar to subtype 23 , but without A. saccharinum as a common dominant and with a reciprocal increase in the importance of other species (subtype 22). Subtype 20 may develop directly from subtype 19 in certain very wet or disturbed sites. Both subtypes 23 and 20 have the potential under very favorable circumstances (see Part V) to progress to the point of being madped as the Sweetgum-Oak type (subtype 25) on wotter sitos. Early or mismanaged stages of this type may be mapped as Hackberry-Elm-Ash (subtype 27), which generally includes enough of a Quercus spp. component to indicate that it could be managed to eventually be regarded as subtype 25. Certain conditions discussed later in this section may promote development of nearly pure Liquidambar styraciflua stands on these sites (subtype 24). Associated species in subtype 24 stands usually indicate a potential to progress to subtype 25 .
99. Relatively dry sites tend to progress similarly to the sequence desoribed above, but species such as Populus deltoides and Platanus occidentalis are more important and Liquidambar styraciflua and Fraxinus pennsylvanica less so. The progression from subtypes 17 through 21 and 22 occurs commonly, but further development again requires special conditions (see Part V). Where those conditions exist, subtypes 26 and 28 may be present. subtype 24 (pure Liquidambar styraciflua) may also occur on these sites, particularly on abandoned fields.
Subtypes 29 through 37
100. In most cases, point bar-natural levee sites have accumulated sufficient coarse-grained sediments to shift pioneer stands to a predominantly Populus deltoides composition, with Salix nigra in a subordinate position (subtype 29). A later phase (Figure 12) of the Cottonwood-Willow type (subtype 30) shows further decline of S. nigra. Generally, this type is harvested for P. deltoides and the residual stand progresses to other cover types; in some cases, however, the P. deltoides overstory persists and assumes a "supercanopy" status, with a subcanopy dominated strongly by Celtis laevigata (subtype 37). In these instances, the replacement stands have a strong C. laevigata character (subtype 36 on most sites, subtype 35 on wetter or non-riverfront sites north of Memphis). In most cases, however, the P. deltoides overstory is removed before a closed subcanopy develops, and a progression to stands with greater A. saccharinum (subtype 31) or Carya

Figure 12. Common replacement sequences for forest subtypes on point bars with natural levee deposits (north of Baton Rouge)
illinoensis (subtype 32) components occurs. These in turn may be degraded to subtypes 35 or 36 . Under favorable conditions a Sweetgum-Oak type (subtype 34) or a pure Sweetgum type (subtype 33) may develop on these sites. Subtypes 38 through 42
101. The subtypes associated with swales on point bars are comnositionally similar to other point bar stands, but are slightly "wetter" in character. As indicated in Figure 13, replacement sequences proceed from a Cottonwood-Willow complex (Subtype 38) to Hackberry-Elm-Ash and Sycamore-Sweetgum-Elm types

Figure 13. Common replacement sequences for forest subtypes in point bar swales (north of Baton Rouge)
(subtypes 42 and 40), again with a strong Acer saccharinum component north of Memphis. Selective harvests have promoted development of a persistent Sycamore-Sweetgum-Elm type (subtype 39) (actually a consistently mis-mapped Hackberry-Elm-Ash type) on many sites. In some cases, a more advanced Hackberry-Elm-Ash type has developed (subtype 41) with a good representation of Quercus species suggesting that, under ideal conditions, a Sweetgum-Oak type similar to subtype 25 may occur. In nearly all cases, the swale sites are differentiated from other point bar sites by an increased importance of species such as Acer negundo, Diospyros virginiana, and Fraxinus pennsylvanica. In 1 are instances, swales are configured to hold sufficient water to support a Cypress-Tupeio stand, but these are not self-reproducing, and associated species suggest subtype 41 as a probable replacement type. Subtypes 43 through 48
102. The poorly drained, non-point bar sites (Figure 14) show a

Figure 14. Common replacement sequences for forest subtypes in abandoned channels, backswamps, and large swales, without natural levee deposits (north of Baton Rouge)
progression of forest types similar to that described above, but have a decidedly "wetter" character, with species such as Carya aquatica, Forestiera accuminata, Fraxinus pennsylvanica, and F. profunda occurring regularly. The Cottonwood-Willow type (subtype 43) includes remnant swamp species and elements of drier types, suggesting sediment accretion or complex microrelief. This type develops to resemble subtype 44 and, eventually, subtype 45 under good conditions. However, poor management often results in degradation to stands strongly dominated by Celtis laevigata. Heavy selective harvest during early successional development tends to produce stands similar to subtype 46 ; during late stages subtype 47 , with some Quercus and Carya species present, is
a more typical product of poor management. Both of these Hackberry-Elm-Ash subtypes can potentially be managed back to Sweetgum-Oak (subtype 45) but in most cases they are likely to remain dominated by C.
laevigata indefinitely.
103. One plant community often present in abandoned channels is the Cypress-Tupelo type or pure stands of either character species. Where a channel ponds water year-round, these resemble subtype 7 , but as the channel fills with sediment, the mixed-species subtype 8 develops. Both of these types may occur on other sites, but in abandoned channels subtype 8 often progresses, through either sediment accretion and/or harvest, to an Overcup Oak-Bitter Pecan type (subtype 48). On some very wet sites, subtype 48 also develops from the Hackberry-Elm-Ash subtype 47.
Subtypes 49 through 51
104. As indicated above, some sediment accretion occurs in nearly all abandoned channels. Where these sediments are deep natural levee deposits, they influence vegetation composition by favoring drier-site species. Subtype 49 has little of the remnant swamp character of subtype 43 and the later stages (suhtypes 50 and 51) (Figure 15) more closely resemble point bar

Figure 15. Common replacement sequences for forest subtypes in abandoned channels, backswamps, and large swales with natural levee deposits (north of Baton Rouge)
communities than abandoned channel types. Although the high rate of sediment accretion in near-river abandoned channels probably prevents development of Sweetgum-Oak stands, these types may develop on older natural levee soils. Minor species found in subtypes 50 and 51 suggest that eventual Quercus dominated stands may resemble those on either point bars or abandoned channels, depending on relative drainage and site management.

Sequence Selection

105. The replacement sequences described in the Results section of this report (Part III) require that decisions be made regarding the proper choice of pathways, and whethor or nct a given developmental stage is relatively permanent. The choice of appropriate replacement pathways is largely a matter of identifying drainage characteristics within the broad geomorphological categories provided by CERDS. Elevation relative to surrounding sites is suggestive of moisture status, and CERDS can provide an overview of topography for any given river reach.
106. Another pathway choice that commonly must be made concerns the distribution of Acer saccharinum, which is a common dominant only above Memphis. Subtypes on the "north" pathways are segregated to reflect the temporary importance of A. saccharinum on certain sites. Since these subtypes could not be formally separated in the key, however, (because A. saccharinum-dominated stands are not differentiated in CERDS from stands of otherwise similar composition) they include southern stands with little or no A. saccharinum. Sites dominated by this species in the north tend to be somewhat less welldrained than other intermediate-aged sites; therefore, the "wet" pathway for southern sites should probably inciude a brief stage similar to the A. saccharinum stands, but with other species (notably A. negundo) assuming the dominant role.
107. The replacement sequences illustrate site potential, but the direction and degree of probable changes must be estimated for any given site based on a variety of ecological considerations. The following generalizations are intended as a guide to the common constraints on stand development.
108. Sites subjected to prolonged annual inundation may be arrested in very early developmental stages. This applies most commonly to Cypress-Tupelo and related cover types and certain low elevation Black Willow type stands, particularly downriver of Baton Rouge. Stand development also may be repeatediy set back by severe sedimentation, as often occurs in the vicinity of stabilized (revetted) riverbanks, and frequent deposition of high pH sediments may prevent many later-successional species (particularly Quercus spp.) from establishing on a site. Similarly, soil disturbance associated with
levee borrow areas appears to be unfavorable to late-successional species. Both new and severely disturbed soils probably require at least 200 years of soil development before conditions are appropriate for the establishment of Sweetgum-Oak and related cover types (see Part III). However, moderate soil disturbance from farming operations may produce site conditions that favor species such as Quercus nigra and Liquidambar styraciflua. While abandoned farmland of ten is invaded by light-seeded pioneer species, it may be immediatcly occupied by later-successional species if seed or viable sprout material is present on the site.
109. Within these general constraints, forest stands of the study area might be expected to progress in an orcierly fashion from pioneer to climax composition as substrate elevations rise, soils mature, and gradual replacement by heavier-seeded, longer-lived tree species proceeds. However, this pattern is almost universally disrupted by land use and timber harvesting practices that complicate prediction of forest development. Most forests of the study area are repeatedly impacted by activities that discourage development or persistence of late-successional stages (Sweetgum-0ak and similar types) and tend to promote types (such as Hackberry-Elm-Ash) that are composed of species of less commercial value.

Interpretation of Summary Data

110. One site type (abandoned channel, no surface deposits) was examined in detail to provide an independent evaluation of the vegetation models. This tested the efficacy of the site type as a recognizable unit and the logic of the replacement sequence devised for that type, demonstrated the feasibility of using the vegetation models to predict future conditions, and provided an explanation for much of the variation associated with the mean values for vegetation variables reported in Appendix B.
111. Ordination of stand data from subtypes 43 through 48 resulted in the array presented in Figure 16. Superimposing the subtype and cover-type designations from the key on the ordination array shows little overlap between types. Although clusters were originally designated partly through this approach, cover types (and therefore subtypes) were not; therefore, this pattern is taken as verification of the integrity (internal cohesion) of the subtype designations.

AXIS 1
Figure 16. Ordination array for stands in abandoned channels (subtypes 43 through 48), with subtype distribution limits indicated
112. The replacement sequence for this site also appears to be verified by the ordination. Taking Axis 1 of the ordination as generally representing successional development (Salix T Quercus) and Axis 2 as a stress gradient (flooding and abusive management) the replacement sequence developed from literature sources and field observations parallels the ordination results closely.
113. Just as the proximity and arrangement of subtypes may be regarded as indicative of developmental sequences and trends, the arrangement of particular stands can be taken as an indication of "ecological distance" (Gauch 1982). Since the ordination Axis 1 appears to represent a successional
gradient, the spread of stands along that axis represents a relative time scale. Projecting stand position onto fxis 1 and interpreting distance from the origin as successional time allows particular stand characteristics to be examined as site conditions and vegetation change over time. This approach is used here to further evaluate the vegetation model developed earlier, to demonstrate the feasibility of predicting future conditions, and to illustrate the source of much of the variation associated with the subtype summaries in Appendix B.
114. To simplify this analysis, it was limited to the subtypes forming the strong horizontal axis of the ordination. The model and the ordination indicate that these subtypes (43 through 45) represent a relatively undisturbed (or well-managed) sequence of stand development; the excluded stands (subtypes 46, 47, 48) are strongly reiated to extreme exploitation and/or flooding effects. Projecting the position of each stand (subtypes 43-45) to this axis provides a basis for plotting stand structure and composition data as they vary through time.
115. Figure 17 presents such a plot for stand canopy cover, with a handfitted curve imposed that reflects the probable events and patterns that produced this array. Canopy cover varies as the Cottonwood-Willow type progresses, reflecting the break up of the even-aged Salix nigra stands, and the harvest of that species on some sites and Populus deltoides in nearly all cases. Canopy cover of the resulting Sycamore-Sweetgum-Elm type increases rapidly following harvest of the P . deltoides, but does not close sompletely due to occasional removal of timber and natural mortality. Subsequent variations in canopy cover also occur, possibly in response to stand management using small-patch clearcuts, as is generally recommended for Quercus reproduction (Kennedy and Johnson 1984).
116. A similar pattern can be derived from the ordination analysis for other stand structure and composition factors. Snag density and mast tree density (Figure 17), for example, show interpretable patterns over time. The collapse of the Salix nigra stands generates a large snag population that is eventually eliminated in the populus deltoides harvest operation. The number of snags increases as the Sycamore-Sweetgum-Elm type develops and intermediate-sized trees die because of normal thinning processes. The increasing interest in timber recovery during the latter Sycamore-Sweetgum-Elm stages and the subsequent Sweetgum-Oak type tends to prevent snag development

Figure 17. Canopy cover, snag density, and mast tree density plotted against time as represented by ordination Axis 1 (see Figure 16) for subtypes 43 through 45. Hand-fitted curves include common harvest practices
(because of cull removal and heavy equipment operation). The exception (the aberrant stand in the snag graph) tends to verify this interpretation; this stand was on a small remnant of government-owned property where the usual Populus deltoides harvest did not occur. The large number of snags persisting into later developmental stages were remnants of the \underline{P}. deltoides and later stands that were never removed.
117. The final example concerns the predictability of mast-producing trees, (Figure 17) which are important in many wildlife habitat evaluations. As expected, these species (Carya sp. and Quercus sp. other than Q. lyrata)
begin to enter the canopy in the mid-Sycamore-Sweetgum-Elm stage, and vary in density with subsequent management activities. Despite the designation of later stages as Sweetgum-Oak, mast tree density remains fairly low. This illustrates the utility of the subtype and key system devised in this study: although these stands are typed as Sweetgum-Oak, they are different from similarly-typed stands outside abandoned channels in that species such as Q. lyrata and Liquidambar styraciflua dominate rather than the preferred mastproducing species of Quercus and Carya.
118. These three examples derived from the ordination analysis are informative in several respects. They produce patterns that are interpretable in terms of ecological and management trends already described as important, and thereby constitute an independent verification of the utility of the classification approach that forms the basis of the subtype key. Further, they illustrate that the variation associated with the subtype means (Appendix B) is attributable largely to temporal changes within subtypes. For example, the wide variation in canopy cover for subtype 44 (37.5 to 97.5 percent) can be seen as arising from a predictable process of recovery from disturbance (Figure 17). Finally, the demonstration that a relative temporal scale can be devised verifies that the vegetation models can be used in a predictive mode.

Model Test: Overstory Composition

119. Wiseman (1982) sampled stands on Huntington Point, Mississippi (RM 552) where river accretion rates and stand management were documented. Three zones of accretion were identified (1830-1880, 1880-1930, and post-1930) and sampled for soil and vegetation characteristics. He found significant soil differences between the oldest and youngest sites. Percent sand and pH decreased with age, while percent clay, organic matter, and potassium, magnesium, and calcium concentrations all increased over time. These patterns tend to verify the general soil maturity processes noted elsewhere in this report. Vegetation changes across these zones were taken is indicative of classical succession patterns, with identifiable historic management influences.
120. Applying CERDS to Wiseman's study sites indicates that the stands in question are on a point bar without additional surface deposits (Figure 18). The land cover maps in CERDS (Figure 19) (with pure stands reincorporated into parent types to conform with the key structure) indicate that Wiseman's

Figure 18. Environment of deposition, surface deposits, and site age at Huntington Point. Wiseman's (1982) sample areas are indicated

Figure 19. Land cover at Huntington Point. Forest types and boundaries were generated using CERDS, with pure stands incorporated into parent types to conform with the subtype key format

Huntington Point zone III (HPIII) is predominantly Cottonwood-Willow, HPII is predominantly Hackberry-Elm-Ash, and HPI is mapped as a combination of Hackberry-Elm-Ash and Sycamore-Sweetgum-Elm. Since the latter type was dominant in HPI, it was selected to represent that zone for the purposes of this exercise. Two other site factors required for application of the key were taken directly from topographic maps; the position of the bank in 1930 (Figure 18) and the generally well-drained terrain of the area are apparent on river navigation maps (Mississippi River Commission 1983).
121. The CERDS and map-derived data suggest that HPIII should be best represented by subtype 19 (substrates mostly less than 50 years old), HPII should be similar to subtype 28 (dry rather than wet pathway) and HPI should resemble subtype 22 for the most part. Figures 20 through 22 illustrate the results of these comparisons.* In two cases (HPII and HPIII), the basic species complement and relative importance of species predicted by the models were in good agreement with the actual values reported by Wiseman. (Note:

Figure 20. Comparison of sample data (Wiseman 1982) and predicted values for overstory trees at Huntington Point (Zone HPI)

[^4]

Figure 21. Comparison of sample data (Wiseman 1982) and predicted values for overstory trees at Huntington Point (Zone HPII)

Figure 22. Comparison of sample data (Wiseman 1982) and predicted values for overstory trees at Huntington Point (Zone HPIII)

Acer saccharinum was deleted from the Appendix B dataset prior to relativization to reflect its distributional limitations). The HPI zone showed the only distinct difference between modelled and measured importance of dominant species; however, as noted earlier, Wiseman's summary data probably include samples from the Hackberry-Elm-Ash cover type not included in the model prediction for HPI. The comparisons also illustrate a characteristic of the subtype summaries that should be kept in mind in other applications; due to the relatively large sample contributing to the subtype summaries, the total species complement is likely to be predicted as larger than will be encountered on most specific sites. That is, relatively rare species are accumulated in the summaries but are infrequently seen in the field. In general, application of CERDS, the subtype key, and the replacement sequences recovered information similar to that reported by Wiseman for his study sites on the Mississippi Delta.

Example Application: Habitat Quality Estimation

122. A simple example application of this system to the decision-making process is developeu heit from the modelled Huntington Point (HP) data. The Habitat Evaluation System (HES) (US Army Engineer Division, Lower Mississippi Valley 1980) is employed to estimate current and future habitat quality, generalized for a variety of wildlife species. For floodplain forests, HES requires estimation of values for a set of seven key variables, weighted and summarized to produce an overall Habitat Quality Index (HQI) ranging from 0.0 to 1.0. Multiplied by the acreage of the assessment area, the HQI yields the number of Habitat Units (HU) represented. The US Fish and Wildlife Service (1980) Habitat Evaluation Procedures (HEP) follow a similar process for single-species assessments. Reference to Appendix B and the CERDS database allows development of HQI scores (Table 3) for current and potential forest subtypes (derived from Figure 11) at Huntington Point. The Sweetgum type (subtype 24) is not included as a potential type since more site-specific information is required to justify its recognition or prediction (see Part III).
123. The estimated HQI scores for current and potential conditions can be compared in a simple matrix (Table 4) for estimation of future habitat value under various levels of management, which has application to both impact

Table 3
Example Model Application: Habitat Quality

HES Variable	Cottonwood- Willow (Subtype 19)		Sycamore- Sweetgum-Elm (Subtype 22)	Hackberry- Elm-Ash (Subtype 28)	Sweetgum- Oak
Species association	0.075		0.170		0.163

* HES Habitat Quality Index (HQI) scores approximated from CERDS, the LMREP
database, and Appendix B data for predominant forest subtypes in Huntington
Point, MS zones HPI, HPII, and HPIII, including potential future subtype 26.
assessment and mitigation planning. In this example, the HPI zone will probably degrade in an unmanaged condition, but will gain 0.12 HQI units under management. The HPII zone would gain 0.12 HQI units under intensive management, but is unlikely to progress otherwise. The HPIII zone will probably gain 0.18 HQI units even if unmanaged; 0.24 units under management. In this case the models indicate that management of zones HPI and HP III would increase habitat values over unmanaged sites by 0.12 and 0.06 units, respectively, but only intensive management can improve habitat value in the HPII zone. On the other hand, intensive management would not be justified over normal hardwood management on HPI and HPIII sites, as it would not significantly add habitat value. This type of analysis can be employed to identify sites that will deteriorate in value under normal conditions (HPI) those that will improve under good management practices (HPI and HPIII) and those that require intensive management, such as clearcutting, site preparation, and direct seeding, in order to improve significantly (HPII).

Table 4
Example Model Application: Future Conditions

HP Zones	Current Subtype	Current HQI	Potential Pathways	Probable Future Subtype	Future HQI	Change From Current HQI
I	22	0.79	Unmanaged	28	0.73	-. 06
			Managed	26	0.85	+. 06
			Intensively managed	26	0.85	+. 06
II	28	0.73	Unmanaged	28	0.73	0.0
			Managed	28	0.73	0.0
			Intensively managed	26	0.85	+. 12
III	19	0.55	Unmanaged	28	0.73	+. 18
			Managed	22	0.79	+. 24
			Intensively managed	22	0.79	+. 24

[^5]
PART V: DISCUSSION

Ecosystem Characteristics

124. Forests of the confined floodplain of the Lower Mississippi River show little latitudinal variation reflective of climatic differences. A few species (e.g. Acer saccharinum, Quercus virginiana) have latitudinally restricted ranges, but only A. saccharinum is sufficiently important to merit special consideration of its distribution in applying the models developed here. The major latitudinal variation observed was the narrowness and industrial development of the leveed floodplain downriver of Baton Rouge. The frequent disturbance typical of the lower reaches of the river arrests forest development in very early stages or imparts a weedy character to midsuccessional stages. These same patterns are observed on the river above Baton Rouge wherever the levee closely approaches the river channel, creating a narrow floodplain subject to turbulent, unmoderated flows during periods of overbank flooding.
125. Most of the leveed floodplain upstream of Baton Rouge is sufficiently wide that environmental factors other than flooding and disturbance influence forest deveirpment. The test predictors of forest site potential identified in this study relate to drainage characteristics and the development of soils as inferred from geomorphic and river survey maps. Evaluation of forest sample data in the context of these mapped features demonstrated their strong influence throughout the study area regardless of most other site characteristics. Although forests respond to the special conditions associated with certain unique habitats (e.g. islands), those conditions tend to be reflected in the geomorphology and meander history of those habitats.
126. One obvious reflection of the importance of fluviai processes along the river is the often repeated pattern of primary succession on newly created lands. The invasion of new bars by pioneer species (Salix nigra, S. interior, Populus deltoides) occurs much as described by Shelford (1954). Rapid sediment accretion on these newly colonized sites promotes a smooth transition to other forest types, the character of which is usually evident in the understory of the pioneer stand well before it reaches maturity. If left undisturbed subsequent stand development and changes in the relative importance of canopy species proceed in an orderly fashion reflecting individual species'
tolerances of shade and flooding, species' longevity, and soil drainage and chemistry. The later stages in this process rarely develop undisturbed, however, (see below), and Wiseman (1982) suggested that the availability of new bars for vegetation colonization has been increasingly restricted as river engineering works have progressed.
127. While forest site potential can be estimated largely on the basis of patterns of alluvial soil deposition and development, the actual characteristics of any particular forest stand may be highly variable depending on historical patterns of land use and forest exploitation. Surveys of the river and adjacent lands from the 1880's (Mississippi River Commission 1881-1897) indicate intensive agricultural development over much of what is now forested riverfront. As local and federal levee development projects progressed during this century most of these riverfront fields were abandoned and the character of the secondary forest no doubt reflected both the prior soil disturbance and the seed-source dependent colonization patterns associated with forest invasion of old fields.
128. For the most part, land clearing and abandonment effects since the turn of the century have been largely obliterated by decades of forest exploitation. There are very few examples of "old growth" of any forest type, and the small groves of large-diameter trees that remain tend to be on relatively inaccessible sites. Selective removal of high-value trees and particular species have left many stands in a degraded condition. Celtis laevigata, Acer negundo and other species of relatively low commercial value dominate most sites capable of supporting the more valuable Sweetgum-Oak type.
129. The current management objectives of commercial landowners provide a basis for estimating the future condition of many of the largest tracts in the study area. Hardwood timber companies own a large proportion of the lands along the river, and nearly all of the sites capable of supporting high value (Sweetgum-Oak type) species. While most of these lands show the effects of selective harvesting, recent logging operations on commercial lands usually reflect concern for the quality of the residual stand. Hardwood timber companies have an obvious interest in long-term stand quality for lumber production, and the soaring value of hunting leases on good quality forest land in recent years further encourages management rather than exploitation. Other owners (e.g. paper companies) may be less likely to manage for hardwood sawlog production, but also have a financial interest in maintaining huntable game populations.
130. Overall, forest development in the study area can be summarized as following classic succession patterns on newly accreted lands, but older sites are likely to support somewhat degraded stands dominated by fairly long-lived, shade tolerant species of moderate to low commercial value (such as Celtis laevigata). Very large tracts, which are usually owned by hardwood timber companies, are the only areas likely to be actively managed for species that are difficult to regenerate and slow to reach sawlog size (particularly Quercus species). Even on these sites, conversion of low-quality stands to Sweetgum-Oak or similar types is often complicated by the lack of a seed source and the stressful flooding and sedimentation conditions that may occur in portions of the confined floodplain. Therefore, while these large tracts have the potential to support highly desirable forest typ this is uniikely under most conditions. Most sites can be assumed to remain in relatively lowquality forest types indefinitely, or be managed to favor particular species (e.g. Carya illinoensis, Fraxinus pennsylvanica) when they are already present on a site

Considerations in the Application of Resource Models

131. One objective of this research was to devise a method of estimating forest conditions at a scale compatible with habitat-based wildlife assessments for floodplain forest wildlife species. Current assessment approaches (US Army Engineer Division, Lower Mississippi Valley 1980, US Fish and Wildlife Service 1980) focus primarily on four categories of habitat components: availability of permanent or seasonal surface waters, proximity to crop residues, size of the forested tract, and forest structure and composition. The first three of these factors can be directly calculated using the CERDS geographic information system. However, forest characteristics are represented in CERDS only as generalized forest cover types. The sampling and data analysis procedures dezcribed here allowed partitioning of the general cover types based on site affinities, and management history. Thus, using CERDS and the models described herein mean values for a variety of variables important for wildlife habitat evaluation can be derived (Appendix B). Certain considerations are important, however, for proper application of the information developed.
132. The most obvious problem with adopting the mean values given in

Appendix B is the high degree of variation associated with most of them. As demonstrated previously (Figure 17) much of this variation reflects a predictable process of community development or responses to perturbations. Factors such as canopy cover may vary from near zero after harvest to near 100 percent within a decade. While the mean values reported in Appendix B are the best available estimate in the absence of specific stand data for a given site, a temporal frame of reference would clearly improve estimates and predictive capabilities.
133. Even without knowledge of the specific developmental stage at a site, the general replacement sequences and Appendix B data have potential application in various natural resource planning and management situations. In the planning context, these models address the question of short- and long-term site potential. For example, a lower-bank Black Willow stand downstream of Baton Rouge (e.g. subtype 10) is structurally and compositionally similar to the same type elsewhere on the river (e.g. subtype 18), but has a much more limited development potential (Figures 9 and 11). Similarly, CottonwoodWillow stands on older lands away from the channel (e.g. subtype 21) have the potential to be intensively managed to a Sweetgum-Oak composition within decades, while 150 years or more may be required for a Cottonwood-Willow stand on newly accreted land (e.g. subtype 19) to succeed to Sweetgum-Oak. A planner evaluating current and future habitat values for wildife species heavily dependent on hard mast would assign low current values to all of these stands, but potential future values wouid differ greatly, with subtypes 18 and 21 favored over subtypes 10 and 19, respectively.
134. Managers can exploit the predictive capability of this system to improve decisions regarding future resource availability. The ability to recognize site potential can guide management decisions, allowing intensive efforts to be applied where they will be most effective. Examples of temporal variation for particular habitat components (Figure 17) illustrate the potential of this system to assist in anticipating the occurrence of (or managing for) particular periods of high-quality habitat for certain wildlife species. For example, the high snag density resulting from the disintegration of even aged Salix nigra stands (Figure 17) may be a desirable element within a large management block. By evaluating the distribution of Black Willow type stands in the area (using CERDS), a manager can anticipate the occurrence of these temporary snag concentrations and make decisions to allow their development on
some sites, or speed transition to a more desirable cover type on other sites by harvesting the Black Willow type prior to or at maturity.
135. The long-term view of habitat quality afforded by this approach underscores the need to differentiate short-lived phenomena, permanent site characteristics and potential habitat quality in making sound resource management and land use decisions. As noted above, habitat components related to normal temporal variation in vegetation structure have limited bearing on the long-term wildlife habitat quality of a particular site. Snag, stump, and log densities, and canopy and ground cover vary widely depending on management practices and the size-class structure of the forest overstory. Conditions observed at any one time are likely to change substantially, and the mean values reported in Appendix B probably represent a good estimate of average conditions over time. Specific current values for such factors are relatively uninformative for determining future habitat quality.
136. Estimates of site potential are of much greater interest for habitat quality evaluations. As indicated in the examples reviewed above, stands of similar structure and composition may differ greatly in their poten-ial to progress or be manipulated to a more desirable condition. Certain sites (sedimentation areas, shrubfields, disturbed soils, lower banks) are essentially arrested in early or mid-developmental stages for the foreseeable future. Even where progression to a desirable end-point (e.g. Sweetgum-Oak type) is anticipated on two different sites, the actual characteristics of those final stands may be very different. Contrasting a Sweetgum-Oak type on point bar (subtype 26) with one on natural levee underlain by point bar deposits (subtype 34) illustrates this point. Subtype 26 includes a more diverse mast species composition and is more consistently dominated by Quercus species than is subtype 34. If long-term wildlife management objectives include provision of an abundant and reliable mast crop, sites with the potential (including seed sources) to support subtype 26 would be preferred regardless of current stand conditions. Where understory characteristics are of primary interest, there is some indication that subtype 34 may tend to support a somewhat more diverse shrub assemblage, although ground cover and vine components are generally more diverse and abundant in subtype 26 . These examples illustrate the value of makinc resource acquisition and management decisions based more on site potential than on current observalions of highly variable vegetation structure attributes.
137. Current and future vegetation characteristics are estimated at the stand level (cove:-type-by-site-type) in tr: modeliing system presented herein. To take full advantage of this information for wildlife habitat assessments it must be interpreted in the context of the larger surrounding landscape and habitat components unrelated to stand attributes. Spatial considerations (furest tract size, connecting corridors between habitat types, juxtaposition and interspersion of habitat types, distance to crop residues, seed sources, or permanent water bodies) can be evaluated using CERDS to proriuce an overview of specific areas. Specific spatial questions can be e:plored using simple data-scanning and summarization procedures within CERDS. Fo: example, proximity analysis is an internal CERDS procedure that allows the syscem to search for a feature (e.g. cropland) within a specific distanee of arother feature (e.g. a permanent water body). By further restricting the search to croplands within the 2-year floodplain (based on eievition above LWRE), the user can isolate potential waterfowl foraging sites within a specified distance from waterfowl resting areas. If the location of potential future mast production areas is of interest, the same process can be employed to identify sites (either forested or not) capable of supporting mast- producing species, as indicated by the models presented here. Extrapolating this process to a larger scale, CERDS and the vegetation models can be applied to assessinents of long-range migration routes, anticipation of oritical losses of rare or important habitat types, and large-scale assessments of potential changes in land use or management patterns.

Summary

138. Twenty-three forest cover types occur on the leveed floodpiain of the Lower Mississippi River. Over a million acres of the area are forested, but nearly half of that acreage is occupied by two cover types: Sycamore-Sweevgum-Elm and Hackberry-Eim-Ash. About a third of the forests are earlysuccessional (Elack. Wiliow and/or Cottonwood) and the remainder consist of localized stands of varled composition, including Sweetgum-Oak, CypressTupelo, and ree plantations.
139. Most of the major dominant tree species are common throughout the stidy area, Dut some species show distinot latitudinal restrictions. Quercus virginiara is near!j absent on sites no h of Baton Rouge, and Acer
saccharinum is largely restricted to sites north of Memphis. Some tree species occur primarily in special habitats, such as oxbow lakes, near tributary streams, and near bluffs. Understory vegetation development is related to overstory condition and successional stage. Shrub communities are most diverse in late-successional stands, while vine abundance and ground cover Fend to be greatest in mid-successional stages.
140. Sample classification and site affinity evaluation were employed to Investigate the processes influencing forest community distribution and change witnin the study area. Aside from the special habitats and latitudinal restričions noted above, the site variables that most effectively accounted for tne coserved vegetation patterns were floodplain geomorphology and age of the sesiments. These factors reflect site drainage conditions and soil development, both of which greatly influence the ability of particular tree species to germinate and persist. An additional important variable is forest succession and management. While classic succession patterns occur, particularly on islanis and other sites where sediment accretion is substantial, forest characteristics generaliy reflect the strong influence of past timber harvesting practices. The combination of selective harvesting, isolation from seed sources, and stressful flooding and sedimentation conditions has resulted in the elimination of late-successional species (e.g. Quercus spp.) from many sites, while favoring opportunistic, shade-tolerant species (e.g. Celtis spp.).
141. Based on the site relationships and development trends described, gryeral models of vegetation distribution and change were devised. Application of the models using the CERDS geographic information system to indicate site conditions allows estimation of current and probable future vegetation structure and composition for any site within the study area. The efficacy of this system ivas demonstrated for a test site, where current overstory composit:on was modelled with considerable accuracy, and future wildife habitat quaiity was estimated under each of three management regimes.

- 42 . This exercise illustrated the flexibility afforded by linking reJon ot mode S_{s} with a geographic information system, which allows realistic cossideration oi management alternatives, site potential, and spatial relatorstar in wildife habitat quality evaluations and projections.

Baker, J. B., and Broadfoot, W. M. 1979. "A Practical Field Method of Site Evaluation for Commercially Important Southern Hardwoods," US Department of Agriculture Forest Service Southern Forest Experiment Station General Technical Report SO-26, New Orleans, La.

Bellrose, F. C. 1976. Ducks, Geese, and Swans of North America, Stackpole Books, Harrisburg, Pa.
Boesch, D. F. 1977. "Application of Numerical Classification in Ecological Investigations of Water Pollution," Environmental Protection Agency Ecological Research Series EPA-600/3-77-033. Corvallis Oregon.

Brown, D. A., Nash, V. E., Caldwell, A. G., Bartelli, L. J., Carter, R. C., and Carter, O. R. 1971. "A Monograph of the Soils of the Southern Mississippi River Valley Alluvium," Southern Cooperative Series Bulletin 178.

Cobb, S. P., and Williamson, A. N. 1986. "The Computerized Environmental Resources Data System (CERDS): A Geographic Information System for Environmental Data on the Leveed Floodplain of the Lower Mississippi River," Remote Sensing Applications for Water Resources Management: Proceedings of the USACE Fifth Remote Sensing Symposium, pp 450-476.

Daubenmire, R. 1968. Plant Communities. Harper and Row, New York.
Forsythe, S. W. 1985. "The Protection of Bottomland Hardwood Wetlands in the Lower Mississippi Valley," Transactions of the North American wiidiife and Natural Resources Conference Vol 50, pp 566-572.
Fredrickson, L. H. 1978. "Lowland Hardwood Wetlands: Current Status and Habitat Values for Wildlife," in Greeson, P. E., Clark, V. R., and Clark, J. E., eds. Wetland Functions and Values: The State of Our Understanding, American Water Resources Association, Minneapolis, Minn., pp 296-306.

Gauch, H. G. Jr. 1982. Multivariate Analysis in Community Ecology, Cambridge University Press, New York.

Glasgow, L. L., and Noble, R. E. 1971. "The Importance of Bottomland Hardwoods to Wildlife," Proceedings of the Symposium on Southeastern Hardwoods, US Department of Agriculture Forest Service Southeast Area State and Private Forestry, pp 30-43.
Heitmeyer, M. E. 1985. "Wintering Strategies of Female Mallards Related to Dynamics of Lowland Hardwood Wetlands in the Upper Mississippi Delta," Ph.D. Thesis, University of Missouri-Columbia.

Hill, M. O. 1979. "DECORANA - A FORTRAN Program for Detrended Correspondence Analysis and Reciprocal Averaging," Cornell University, Ithaca, N.Y.
Hill, M. O., and Gauch, H. 1980. "Detrended Correspondence Aralysis, An Improved Ordination Technique," Vegetation, Vol 42, pp 47-58.

Johnson, R. L. 1973. "Oak-Gum-Cypress in the Midsouth," Silvicultural Systems for the Major Forest Types of the United States, US Department of Agriculture of Forest Service Agricultural Handbook 445, pp 98-102.

Johnson, R. L. 1978. "Timber Harvests From Wetlands," Greeson, P. E., Clark, J. R., and Clark, J. E., eds. Wetland Functions and Values: The State of Our Understanding. American Water Resources Association, Minneapolis, Minn., pp 598-605.
Kartesz, J. T., and Kartesz, R. 1980. A Synonomized Checklist of the VascuLar Flora of the United States, Canada, and Greenland. Vol. II: The Biota of North America, University of North Carolina Press, Chapel Hill.
Kennedy, H. E., and Johnson, R. L. 1984. "Silvicultural Alternatives in Bottomland Hardwoods and Their Impact on Stand Quality," Proc. 14th Annual Southern Forest Economics Workshop, Memphis TN, pp 6-18.

Klimas, C. V. 1987a. "The Influence of Forest Vegetation in Attenuating Sedimentation Associated with Lower Mississippi River Revetments," Miscellaneous Paper (in preparation). US Army Engineer Waterways Experiment Station Vicksburg, Miss.
: 1987b. "Baldcypress Response to Increased Water Levels, Caddo Lake LA-TX," Wetlands, Vol 7, pp 25-37.
Kolb, C. R. 1962. "Distribution of Soils Bordering the Mississippi River From Donaldsonville to Head of Passes," Technical Report 3-601, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
Kcle, C. R., Steinriede, W. B., Jr., Krinitzsky, E. L., Saucier, R. T., Habrey, P. R., Smith, F. L., and Fleetwood, A. R. 1968. "Geological Investigation of the Yazoo Basin, Lower Mississippi Valley," Technical Report 3-480, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
Krinard, R. M., and Johnson, R. L. 1984. "Cottonwood Plantation Growth Through 20 Years," US Department of Agriculture Forest Service Southern Forest Experiment Station, Res. Pap. So-212.
Krocdsma, D. E. 1978. "Habitat Values for Nongame Wetland Birds," Greeson, P. E., Clark, V. R., and Clark, J. E., eds. Wetland Functions and Values: The State of Our Understanding, American Water Resources Association, Minneapolis, Minn., pp 320-329.
Mississippi River Commission. 1881-1897. Map of the Lower Mississippi River from the mouth of the Ohio River to the Head of Passes, in 32 sheets, Vicksburg, Miss.
. 1938. Lower Mississippi River early stream channels, at approximate half-century intervals, in 12 sheets, Vicksburg, Miss.

[^6]Putnam, J. A., and Bull, H. 1932. "The Trees of the Bottomlands of the Mississippi River, Delta Region," US Department of Agriculture Forest Service Southern Forest Experiment Station, Occasional Paper 27.
Putnam, J. A., Furnival, G. M., and McKnight, J. S. 1960. "Management and inventory of southern hardwoods," US Department of Agriculture Forest Service Agricultural Handbook 181.
Robertson, P. A., Weaver, G. T., and Cavanaugh, J. A. 1978. "Vegetation and Tree Species Patterns Near the Northern Terminus of the Southern Floodplain Forest," Ecological Monographs, Vol 48, pp 249-267.
Saucier, R. T. 1964. "Geological Investigation of the St. Francis Basin, Lower Mississippi Valley," Technical Report 3-659, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.

> 1967. "Geological Investigation of the Boeuf-Tensas Basin, Lower $\overline{\text { Mississippi Valley, Technical Report 3-757, US Army Engineer Waterways }}$ Experiment Station, Vicksburg, Miss.
\qquad . 1969. "Geological Investigation of the Mississippi River Area, Artonish to Donaldsonville, Louisiana," Technical Report S-69-4, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.

. 1974. "Quaternary Geology of the Lower Mississippi Valley,"
 Arkansas Archeological Survey Research Series No. 6.

Shelford, V. E. 1954. "Some Lower Mississippi Valley Floodplain Biotic Communities: Their Age and Elevation," Ecology Vol 35, pp 126-142.
Society of American Foresters. 1975. "Forest Cover Types of North America, Exclusive of Mexico," Society of American Foresters, Washington, D.C.
Tuttle, J. R., and Pinner, W. 1982. "Analysis of Major Parameters Affecting the Behavior of the Mississippi River," US Army Engineer Lower Mississippi Valley Division Potamology Program Report 4. Vicksburg, Miss.
US Army Engineer District, Memphis. 1976. "Mississippi River Hydrographic Survey, 1973-1975, Cairo, Illinois to White River, Arkansas, River Miles 595 to 954, AHP," Memphis, Tenn.
US Army Engineer District, New Orleans. 1976. "Mississippi River Hydrographic Survey, 1973-1975, Black Hawk, Louisiana to Head of Passes, Louisiana, River Miles 0 to 324, AHP," New Orleans, La.

US Army Engineer Division, Lower Mississippi Valley. 1980. "A Habitat Evaluation System for Water Resources Planning," Vicksburg, Miss.

US Army Engineer District, Vicksourg. 1976. "Mississippi River and Tributaries, Mississippi River Levees and Channel Improvement," Final Environmental Impact Statement. Vicksburg, Miss.

[^7]Wharton, C. H., Kitchens, W. M., Pendleton, E. C., and Sipe, T. W. 1982. "The Ecology of Bottomland Hardwood Swamps of the Southeast: A Community Profile," US Fish and Wildlife Service, Wash. D.C.

Wiseman, J. B., Jr. 1982. "A Study of the Composition, Successional Relationships and Floristics of Mississippi River Floodplain Forests in Parts of Washington, Bolivar, and Sharkey Counties, Mississippi." Ph.D. thesis, Mississippi State University, Starkville, Miss.

APPENDIX A
LIST OF SPECIES

EQUISETACEAE
Equisetum hyemale L.
OPHIOGLOSSACEAE
Botrychium virginianum (L.) Swartz
SCHIZAEACEAE
Lygodium japonicum (Thunberg) Swartz
PINACEAE
Pinus taeda L.
TAXODIACEAE
Taxodium distichum (L.) Richard
CUPRESSACEAE
Juniperus virginiana L.

POACEAE

Andropogon glomeratus (Walt.) B.S.P. Arundinaria gigantea (Walt.) Muhl. Chasmanthium latifolium (Michx.) Yates Cynodon dactylon (L.) Persoon Dichanthelium clandestinum (L.) Gould Digitaria sanguinalis (L.) Scopoli Diplachne uninervia (Presl.) Parodi Echinochloa colonum (L.) Link Echinochloa crus-gali1 (L.) Beauvois Elymus canadensis L . Elymus virginicus L.
Eragrostis hypnoides (Lam.) B.S.P. Eragrostis spectabilis (Pursh) Steudel
Leersia hexandra Swartz
Leersia lenticularis Michaux
Leersia virginica Willd.
Leptochloa filiformis (Lam.) Beauvois Oplismenus setarius (Lam.) R. \& S.
Paspalum sp.
Paspalum floridanum Michaux
Panicum sp.
Panicum anceps Michaux
Panicum dichotimoflorum Michaux Panicum flexile (Gattinger) Scribner
Panicue lanuginosum Ell.
Panicum ridigulum Bosc.
Poa sp.
Sorghum halepense (L.) Persoon
Setaria geniculata (Lam.) Beauvois
Sphenopholis obtusata (Michaux) Scribner Triticum aestivum L.
CYPERACEAE
Carex sp.Carex crus-corvi Shuttlew. ex KuntzeCarex muhlenbergii Schkuhr
Carex torta Boott
Cyperus sp.
Cyperus aristatus Rottboell
Cyperus erythrorhizos Muhl.
Cyperus esculentus L .
Cyperus rotundus L .
Cyperus strigosus L.
Fimbristylis autumnalis (L.) $R \& S$
ARACEAE
Arisaema dracontium (L.) SchottArisaema triphyllum (L.) Schott
Peltandra virginica (L.) Kunth.
LEMNACEAE
Lemna minor L.
COMMELINACEAE
Commelina communis L.
Commelina diffusa Burman f.
Commelina virginica L.
Tradescantia ohiensis Raf.Tradescantia virginiana L.
PONTEDERIACEAEEichhornia crassipes (Martius) SolmsHeteranthera limosa (Sw.) Willd.
LILIACEAE
Dioscorea quaternata (Walt.) G.F. Gmel.Smilax bona-nox L.Smilax glauca WalterSmilax hispida Muh1.Smilax rotundifolia L.
IRIDACEAE
Iris fulva Ker.
ORCHIDACEAETriphora trianthophora (Swartz) Rydberg
SAURURACEAESaururus cernuus L.
SALICACEAE
Salix exigua Nuttall
Salix nigra Marshall
Populus deltoldes Marshall
Populus heterophy11a L.

JUGLANDACEAE

Carya aquatica (M1 chaux f.) Nuttall Carya cordiformis (Wang.) K. Koch Carya illinoensis (Wang.) K. Koch Carya laciniosa (Michaux f.) Loudon Juglans nigra .

BETULACEAE

Carpinus caroliniana Walter Ostrya virginiana (M111er) K. Koch

FAGACEAE

Quercus lyrata Walter
Quercus michauxii Nuttall
Quercus nigra L.
Quercus nuttallif Palmer
Quercus pagoda Raf.
Quercus palustris Muenchh.
Quercus phellos L .
Quercus virginiana Miller
ULMACEAE
Celtis laevigata Willd.
Celtis occidentalis L.
Planern aquatica Walter ex J.F. Gmelin
Ulmus alata Michaux
U1mus americana L.
Ulmus crassifolia Nuttall
Ulmus rubra Muh1.
MORACEAE
Broussonetia papyrifera (L.) Vent.
Maclura pomifera (Raf.) Schneider
Morus alba L.
Morus rubra L.
URTICACEAE
Boehmeria cylindrica (L.) Swartz
Laportea canadensis (L.) Weddell
Pilea pumila (L.) Gray
Urtica chamaedryoides Pursh.
Urtica dioica L.
ARISTOLOCHIACEAE
Aristolochia serpentaria L .
POLYGONACEAE
Brunnichia cirrhosa Banks ex Gaertner
Polygonum sp.
Polygonum amphibium L.
Polygonum densiflorum Meissner
Polygonum hydropiperoides Michaux
Polygonum lapathifolium L.

Polygonum punctatum E11.
Polygonum scandens L.
Polygonum virginianum L.
CHENOPODIACEAE
Sinenopodium album L.
AMARANTHACEAE
Alternanthera philoxeroides (Martius) Grisebach
Amaranthus palmeri Watson
Iresine rhizomatosa Standley
PHYTOLACCACEAE
Phytolacca americana L.
AIZOACEAE
Mollugo verticillata L.
CARYOPHYLLACEAE
Cerastium semidecandrum L.
Stellaria media (L.) Cyrillo
RANUNCULACEAE
Clematis sp.
Clematis crispa L.
Clematis virginiana L.
MENISPERMACEAE
Cocculus carolinus (L.) DC.
Menispermum canadense L.
ANNONACEAE
Asimina triloba (L.) Dunal
LAURACEAE
Lindera benzoin (L.) Blume
Sassafras albidum (Nuttall) Nees
BRASSICACEAE
Rorippa barbareifolia (DC.) Kttagawa
Rorippa sessiliflora (Nuttall) Hitchcock
Rorippa sinuata (Nuttall) Hitchcock
CRASSULACEAE
Penthorum sedoides L.
SAXIFRAGACEAF
Decumaria barbara L.
HAMAMELIDACEAE
Liquidambar styraciflua L.
PLATANACEAE
Platanus occidentalis L.
ROSACEAE
Agrimonia parvifiora Aiton
Crataegus sp.
Crataegus marshalli1 Eggl.
Crataegus viridus L.
Geum canadense Jacquin
Malus coronaria (L.) Miller
Prunus americana Marshall
Prunus serotina Ehrhart
Rubus sp.
Rubus argutus Link
Rubus trivialis Michaux
FABACEAE
Amorpha fruticosa L.
Apios americana Medicus
Cercis canadensis L.
Desmanthus illinoensis (Michaux) MacM.
Desmodium sp.
Desmodium canescens (L.) DC
Desmodium paniculatum (L.) DC
Gleditsia aquatica Marshall
Gleditsia triacanthos L.
Gymnocladus dioica (L.) K. Koch
Strophostyles helvola (L.) Ell.
Vicia sp.
OXALIDACEAE
Oxalis stricta L .
MELIACEAE
Melia azedarach L.
EUPHORBIACEAE
Acalypha ostryaefolia Riddell
Acalypha rhomboidea Raf.
Chamaesyce humistrata (Englm.) Small
Croton sp.
Croton glandulosa L .
Euphorbia maculata (L.) Small
Sapium sebiferum (L.) Roxb.
ANACARDIACEAE
Rhus copallina L .
Toxicodendron radicans
AQUIFOLIACEAE
Ilex decidua Walter
CELASTRACEAE
Evonymus amercanus L.

ACERACEAE

Acer negundo L.
Acer rubrum var. drummondii (Hook. \& Arn.) Sarg. Acer saccharinum L .

SAPINDACEAE
Cardiospermum halicacabum L.

BALSAMINACEAE
Impatiens capensis Meerb.
RHAMNACEAE
Berchemia scandens (Hill) K. Koch
VITACEAE
Ampelopsis arborea (L.) Koehne
Ampelopsis cordata Michaux
Parthenocissus quinquefolia (L.) Planchon
Vitis aestivalis Michaux
Vitis cinerea Engelm
V1tis palmata Vah1.
Vitis riparia Michaux
Vitis rotundifolia Michaux
MALVACEAE
Hibiscus militaris Cav. Sida spinosa L.

HYPERICACEAE
Hypericum mutilum L.
Triadenum walteri (J.G. Gael.) Gleason
VIOLACEAE
Viola papilionacea Pursh
Viola raffinesquif Greene
PASSIFLORACEAE
Passiflora lutea L.
LYTHRACEAE
Lythrum alatum Pursh
Rotala ramosior (L.) Koehne

ONAGRACFAE

Ludwigia sp.
Ludwigia alternifolia L.
Ludwigia decurrens Walter
Ludwigia peploides (H.B.K.) Ravens
APIACEAE
Chaerophyllum sp.
Cryptotaenia canadensis (L.) DC.
Hydrocotyle sp.

Sanicula canadensis L. Trepocarpus aethusae Nuttall

NYSSACEAE

Nyssa aquatica L.
Nyssa sylvatica Marshall

CORNACEAE

Cornus drummondii C. A. Mey.
ERICACEAE
Vaccineum sp.
PRIMULACEAE
Samolus valerandi L.
EBENACEAE
Diospyros virginiana L.
STYRACEAE
Styrax americana Lam.
Styrax grandifolia Aiton

OLEACEAE

Forestiera acuminata (Michaux) Poiret
Fraxinus pennsylvanica Marshall
Fraxinus tomentosa Michaux f.
Ligustrum lucidum Ait.
Ligustrum sinense Lour.
LOGANIACEAE
Cynoctonum mitreola (L.) Britton Gelsemium sempervirens (L.) Aiton f.

APOCYNACEAE
Trachelospermum difforme (Walter) Gray
ASCLEPIADACEAE
Asclepias perennis Walter
Cynanchum laeve (Michaux) Persoon Matelea gonocarpa (Walter) Shinners

CONVOLVULACEAE

Cuscuta sp.
ipomea sp.
Ipomea hederacea (L.) Jacquin
Ipomea lacunosa L.
Ipomea purpurea (L.) Roth
BURAGINACEAE
Hackelia virginiana (L.) I.M. Johnston Heliotropium indicum L.
VERBENACEAE
Lippia lanceolata Michaux
LAMIACEAF
Lycopus rubellus Moench.
Perilla irutescens (L.) Britton
Prunella vulgaris L.
Stachys tenuifolia Willd.
Teucrium canadense L.
SOLANACEAE
Physallis angulata L.
Physallis pubescens L.
Solanum americanum Miller
Solanum rostratum Dunal
SCROPHLLARIACEAE
Gratiola sp.
Lindernia sp.
Lindernia dubia (L.) Pennell
Lindernia dubia var. anagallidea (Michx.) Penn.
Mazus japonicus (Thunberg) Kuntze
Veronica peregrina L.
BIGNONLACEAE
Bignonia capreolata L.
Campsis radicans (L.) Seemann
ACANTHACEAE
Dicliptera brachiata (Pursh) SprengelJusticia ovata (Walter) LindauRuellia strepens J.
RUBIACEAE
Diodia virginiana L.
Cephalanthus occidentalis L.
Galium aparine L.
Spermacoce glabra Michaux
CAPRIFOLIACEAE
Lonicera japonica Thunberg
Sambur'ds canadensis L .
CUCLRBITACEAEMelothria pendula L.Si=vos angulatus L.
CAMPABLLACEAECampanula americana L.

```
ASTERACEAE
    Ambrosia artemesiifolia L.
    Ambrosia trifida L.
    Artemesia sp.
    Artemesia annua L.
    Aster &D.
    Aster tteriflorus (L.) Britton
    Aster simplex Willd.
    Bidens sp.
    Bidens aristosa (Michaux) Britton
    Bidens frondosa L.
    Eclipta alba (L.) Hasskarl
    Elephantopus carolinianus Willd.
    Erechtites hieracifolia (L.) Raf.
    Eupatorium coelestinum L.
    Eupatorium incarnatum Walter
    Eupatorium maculatum L.
    Eupatorium rugosum Houttuyn
    Eupatorium serotinum Vichaux
    Iva sp.
    Iva annua L.
    Lactuca sp.
    Lactuca canadensis L.
    Mikania scandens (L.) Willd.
    Pluchea camphorata (L.) DC.
    Serecio glabellus Poiret
    Solidago canadensis L.
    Spilanthes americana (Mutis) Hieron
    Vernonia altissima Nuttall
    Vernonia glgantea (Walt.) Trel.
    Xanthium strumarium L.
```


APPENDIX B

FOREST SUBTYPE SUMMARIES*

* Subtype numbers correspond to those in the subtype key (Figure 7).Additional detalled data are available in the LMREP database. This appendixis organized in five sections:Page
Tree Density and Constancy B3
Tree Basal Area B54
Saplings, Seedlings, and Shrubs B105
Vines and Ground Cover B155
Site Characteristics and Habitat Structure B231
$9 I$: S107d $\ddagger 0$ yヨgWnn

SPECIES	CONSTANCY	$\begin{aligned} & \text { DBH } \\ & 2-5.4 \\ & \text { INCHES } \end{aligned}$	- DENSI DBH 5.5-9.4 INCHES	$\begin{aligned} & \text { ACRE -- } \\ & \text { DBH } \\ & >9.4 \\ & \text { INCHES } \end{aligned}$	$\begin{gathered} \text { TOTAL } \\ \text { DBH } \\ >2.0 \\ \text { INCHES } \end{gathered}$
ACER NEGUNDO	43.8	16.25	2.50	0	18.75
CARYA ILLINOENSIS	56.3	16.25	1.25	0	17.50
CELTIS LAEVIGATA	62.5	30.63	8.13	0	38.75
CORNUS DRUMMONDII	43.8	16.88		0	16.88
FRAXINUS PENNSYLVANICA	25.0	10.00	0	0.63	10.63
GLEDITSIA TRIACANTHOS	12.5	1.25	0	0	1.25
ILEX DECIDUA	12.5	1.88	0	0	1.88
LIQUIDAMBAR STYRACIFLUA	6.3	1.25	0	0	1.25
PLATANUS OCCIDENTALIS	31.3	3.13	0	${ }^{0} 18$	3.13
POPULUS DELTOIDES	100.0	55.00	51.25	41.88	148.13
$\begin{aligned} & \text { TOTAL } \\ & \text { STD DEV } \end{aligned}$	100.0	$\begin{aligned} & 152.50 \\ & 164.34 \end{aligned}$	$\begin{aligned} & 63.13 \\ & 51.86 \end{aligned}$	$\begin{aligned} & 42.50 \\ & 30.66 \end{aligned}$	$\begin{aligned} & 258.13 \\ & 186.98 \end{aligned}$

SUBTYPE: 2
NUMBER OF PLOTS: 7

SUBTYPE: 4
NUMBER OF PLOTS: 10 CARYA ILLINOENSIS
CELTIS LAEVIGATA FORESTIERA ACUMINATA
FRAXINUS PENNSYLVANICA
GLEDITSIA AQUATICA
S出

$$
5 \times
$$

STD DEV
L
CHUM
50.0

SPECIES	CONSTANCY	$\begin{aligned} & \text { DBH } \\ & 2-5.4 \\ & \text { INCHES } \end{aligned}$	$\begin{gathered} \text { DENSI } 1 \\ \text { DBH } \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { CRE -- } \\ \text { DBH } \\ >9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { DBH } \\ >2.0 \\ \text { INCHES } \end{gathered}$
ACER NEGUNDO	40.0	2.40	2.00	1.20	5.60
ACER SACCHARINUM	20.0	5.20	11.60	21.60	38.40
CARYA ILLINOENSIS	60.0	16.40	6.40	9.60	32.40
CELTIS LAEVIGATA	88.0	37.20	17.60	16.00	70.80
CORNUS DRUTMMONDII	32.0	10.00	0	0	10.00
CRATAEGUS SP	4.0	0.40	0	0	0.40
DIOSPYROS VIRGINIANA	4.0	0.40	0.40	0	0.80
FORESTIERA ACUMINATA	36.0	25.20	2.00	0	27.20
FRAXINUS PENNSYLVANICA	20.0	3.20	0.80	0	4.00
GLEDITSIA TRIACANTHOS	28.0	0	2.80	4.40	7.20
ILEX DECIDUA	8.0	2.00	0	0	2.00
MACLURA POMIFERA	4.0	0.80	0.80	0.40	2.00
MORUS ALBA	8.0	0.80	0.40	0.40	1.60
MORUS RUBRA	32.0	4.00	1.20	0.80	6.00
PLATANUS OCCIDENTALIS	12.0	0.80	0.40	2.00	3.20
POPULUS DELTOIDES	36.0	0	0.40	9.60	10.00
QUERCUS LYRATA	4.0	0.40	0	0	0.40
SALIX NIGRA	12.0	0	0	4.00	4.00
ULIIUS AMERICANA	44.0	10.80	7.60	2.80	21.20
TOTAL STD DEV	100.0	$\begin{array}{r} 120.00 \\ 72.57 \end{array}$	$\begin{aligned} & 54.40 \\ & 29.73 \end{aligned}$	$\begin{aligned} & 72.80 \\ & 40.16 \end{aligned}$	$\begin{array}{r} 247.20 \\ 61.34 \end{array}$

SUBTYPE: 7
NUMBER OF PLOTS: 6

SPECIES	CONSTANCY	$\begin{aligned} & \text { DBH } \\ & 2-5 \cdot 4 \\ & \text { INCHES } \end{aligned}$	$\begin{gathered} \text { DBH } \\ 5.5-9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { DBH } \\ >9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { DBH } \\ >2.0 \\ \text { INCHES } \end{gathered}$
CARYA AQUATICA	50.0	0	1.67	10.00	11.67
GLEDITSIA AQUATICA	33.3	0	1.67	1.67	1 3.33
NYSSA AQUATICA	33.3	230.00	48.33	6.67	285.00
PLANERA AQUATICA	66.7	30.00	10.00	0	40.00
QUERCUS LYRATA	16.7	0	10	1.67	1.67
SALIX NIGRA	50.0	1.67	10.00	11.67	23.33
TAXODIUM DISTICHUTI	83.3	3.33	1.67	30.00	35.00
$\begin{aligned} & \text { TOTAL } \\ & \text { STD DEV } \end{aligned}$	100.0	$\begin{aligned} & 265.00 \\ & 362.48 \end{aligned}$	$\begin{aligned} & 73.33 \\ & 57.50 \end{aligned}$	$\begin{aligned} & 61.67 \\ & 34.30 \end{aligned}$	$\begin{aligned} & 400.00 \\ & 390.33 \end{aligned}$

SUBTYPE： 10
NUMBER OF PLOTS： 11

	DENSITY	PER ACRE	
DBH	DBH	DBH	TOTAL
$2-5.4$	$5.5-9.4$	>9.4	DBH
INCHES	INCHES	IHCHES	INCHES
0.91	6	0	0.91
29.09	2.73	0	31.82
251.82	84.55	11.82	348.18
0.91	0.91	5.45	7.27
282.73	88.18	17.27	388.18
162.12	46.87	25.33	142.96

100.0
גJNVISNOS
TOTAL
STD DEV AMORPHA FRUTICOSA
SALIX INTERIOR
SALIX NIGRA
TAXODIUM DISTICHUM
TOTAL
くのいに।

SUBTYPE: 12
NUMBER OF PLOTS: 19

21
ヘN 0 0∞ N
STD DEV
TOTAL n： Wnyany
oanngn
 CELTIS LAEVIGATA
CORNUS DRUFIMNDII
CRATAEGUS VIRIDUS
DIOSPYROS VIRGINIANA
FORESTIERA ACUMINATA
FRAXINUS PENNSYLVANICA
GLEDITSIA AQUATICA
GLEDITSIA TRIACANTHOS
ILEX DECIDUA
LIGUSTRUM SINENSE
LIGUSTRUM LUCIDUM
MORUS RUBRA
PLATANUS OCCIDENTALIS
POPULUS DELTOIDES
PRUNUS SEROTINA
QUERCUS LYRATA
QUERCUS NIGRA
QUERCUS VIRGINIANA
SALIX NIGRA
TAXODIUM DISTICHUM
ULMUS AMERICANA
$------------------------~$ CELTIS LAEVIGATA
CORNUS DRUFIMNDII
CRATAEGUS VIRIDUS
DIOSPYROS VIRGINIANA
FORESTIERA ACUMINATA
FRAXINUS PENNSYLVANICA
GLEDITSIA AQUATICA
GLEDITSIA TRIACANTHOS
ILEX DECIDUA
LIGUSTRUM SINENSE
LIGUSTRUM LUCIDUM
MORUS RUBRA
PLATANUS OCCIDENTALIS
POPULUS DELTOIDES
PRUNUS SEROTINA
QUERCUS LYRATA
QUERCUS NIGRA
QUERCUS VIRGINIANA
SALIX NIGRA
TAXODIUM DISTICHUM
ULMUS AMERICANA
$------------------------~$ ω
U
\ll ACER NEGUNDO
ACER RUBRUM
CARYA ILLINOENSIS
CELTIS LAEVIGATA
CORNUS DRUPMONDII
CRATAEGUS VIRIDUS
DIOSPYROS VIRGINIANA
FORESTIERA ACUMINATA
FRAXINUS PENNSYLVANICA
GLEDITSIA ARUATICA
GLEDITSIA TRIACANTHOS
ILEX DECIDUA
LIGUSTRUM SINENSE
LIGUSTRUM LUCIDUM
MORUS RUBRA
PLATANUS OCCIDENTALIS
POPULUS DELTOIDES
PRUNUS SEROTINA
QUERCUS LYRATA
QUERCUS NIGRA
QUERCUS VIRGINIANA
SALIX NIGRA
TAXODIUM DISTICHUM
ULMUS AMERICANA
－ CELTIS LAEVIGATA
CORNUS DRUFIMNDII
CRATAEGUS VIRIDUS
DIOSPYROS VIRGINIANA
FORESTIERA ACUMINATA
FRAXINUS PENNSYLVANICA
GLEDITSIA AQUATICA
GLEDITSIA TRIACANTHOS
ILEX DECIDUA
LIGUSTRUM SINENSE
LIGUSTRUM LUCIDUM
MORUS RUBRA
PLATANUS OCCIDENTALIS
POPULUS DELTOIDES
PRUNUS SEROTINA
QUERCUS LYRATA
QUERCUS NIGRA
QUERCUS VIRGINIANA
SALIX NIGRA
TAXODIUM DISTICHUM
ULMUS AMERICANA
$------------------------~$ CELTIS LAEVIGATA
CORNUS DRUFIMNDII
CRATAEGUS VIRIDUS
DIOSPYROS VIRGINIANA
FORESTIERA ACUMINATA
FRAXINUS PENNSYLVANICA
GLEDITSIA AQUATICA
GLEDITSIA TRIACANTHOS
ILEX DECIDUA
LIGUSTRUM SINENSE
LIGUSTRUM LUCIDUM
MORUS RUBRA
PLATANUS OCCIDENTALIS
POPULUS DELTOIDES
PRUNUS SEROTINA
QUERCUS LYRATA
QUERCUS NIGRA
QUERCUS VIRGINIANA
SALIX NIGRA
TAXODIUM DISTICHUM
ULMUS AMERICANA
$------------------------~$ CELTIS LAEVIGATA
CORNUS DRUMIMNDII
CRATAEGUS VIRIDUS
DIOSPYROS VIRGINIANA
FORESTIERA ACUMINATA
FRAXINUS PENNSYLVANICA
GLEDITSIA AQUATICA
GLEDITSIA TRIACANTHOS
ILEX DECIDUA
LIGUSTRUUM SINENSE
LIGUSTRUM LUCIDUM
MORUS RUBRA
PLATANUS OCCIDENTALIS
POPULUS DELTOIDES
PRUNUS SEROTINA
QUERCUS LYRATA
QUERCUS NIGRA
QUERCUS VIRGINIANA
SALIX NIGRA
TAXODIUM DISTICHUM
ULMUS AMERICANA
CELTIS LAEVIGATA
CORNUS DRUMIMNDII
CRATAEGUS VIRIDUS
DIOSPYROS VIRGINIANA
FORESTIERA ACUMINATA
FRAXINUS PENNSYLVANICA
GLEDITSIA AQUATICA
GLEDITSIA TRIACANTHOS
ILEX DECIDUA
LIGUSTRUUM SINENSE
LIGUSTRUM LUCIDUM
MORUS RUBRA
PLATANUS OCCIDENTALIS
POPULUS DELTOIDES
PRUNUS SEROTINA
QUERCUS LYRATA
QUERCUS NIGRA
QUERCUS VIRGINIANA
SALIX NIGRA
TAXODIUM DISTICHUM
ULMUS AMERICANA
CELTIS LAEVIGATA
CORNUS DRUMIMNDII
CRATAEGUS VIRIDUS
DIOSPYROS VIRGINIANA
FORESTIERA ACUMINATA
FRAXINUS PENNSYLVANICA
GLEDITSIA AQUATICA
GLEDITSIA TRIACANTHOS
ILEX DECIDUA
LIGUSTRUUM SINENSE
LIGUSTRUM LUCIDUM
MORUS RUBRA
PLATANUS OCCIDENTALIS
POPULUS DELTOIDES
PRUNUS SEROTINA
QUERCUS LYRATA
QUERCUS NIGRA
QUERCUS VIRGINIANA
SALIX NIGRA
TAXODIUM DISTICHUM
ULMUS AMERICANA
CELTIS LAEVIGATA
CORNUS DRUMIMNDII
CRATAEGUS VIRIDUS
DIOSPYROS VIRGINIANA
FORESTIERA ACUMINATA
FRAXINUS PENNSYLVANICA
GLEDITSIA AQUATICA
GLEDITSIA TRIACANTHOS
ILEX DECIDUA
LIGUSTRUUM SINENSE
LIGUSTRUM LUCIDUM
MORUS RUBRA
PLATANUS OCCIDENTALIS
POPULUS DELTOIDES
PRUNUS SEROTINA
QUERCUS LYRATA
QUERCUS NIGRA
QUERCUS VIRGINIANA
SALIX NIGRA
TAXODIUM DISTICHUM
ULMUS AMERICANA
CELTIS LAEVIGATA
CORNUS DRUMIMNDII
CRATAEGUS VIRIDUS
DIOSPYROS VIRGINIANA
FORESTIERA ACUMINATA
FRAXINUS PENNSYLVANICA
GLEDITSIA AQUATICA
GLEDITSIA TRIACANTHOS
ILEX DECIDUA
LIGUSTRUUM SINENSE
LIGUSTRUM LUCIDUM
MORUS RUBRA
PLATANUS OCCIDENTALIS
POPULUS DELTOIDES
PRUNUS SEROTINA
QUERCUS LYRATA
QUERCUS NIGRA
QUERCUS VIRGINIANA
SALIX NIGRA
TAXODIUM DISTICHUM
ULMUS AMERICANA
$\forall 1 V 9 I A \exists \forall 7$ SIL7ヨ
SISNGONITII $\forall \lambda ぬ \forall ~$ CELTIS LAEVIGATA
CORNUS DRUMIMNDII
CRATAEGUS VIRIDUS
DIOSPYROS VIRGINIANA
FORESTIERA ACUMINATA
FRAXINUS PENNSYLVANICA
GLEDITSIA AQUATICA
GLEDITSIA TRIACANTHOS
ILEX DECIDUA
LIGUSTRUUM SINENSE
LIGUSTRUM LUCIDUM
MORUS RUBRA
PLATANUS OCCIDENTALIS
POPULUS DELTOIDES
PRUNUS SEROTINA
QUERCUS LYRATA
QUERCUS NIGRA
QUERCUS VIRGINIANA
SALIX NIGRA
TAXODIUM DISTICHUM
ULMUS AMERICANA
ULMUS AMERICANA \qquad

$$
=---------
$$

$\begin{array}{ll}\text { SUBTYPE: } & 18 \\ \text { NUMBER OF PLOTS: } & 6\end{array}$
MORUS RUBRA
POPULUS DELTOIDES
SALIX INTERIOR
SALIX NIGRA
SALIX NIGRA
㟧

SUBTYPE: 20
NUMBER OF PL
$\angle 2: S 107 d$ jo yヨawnn

SUBTYPE: 21
NUMBER OF PLOTS: 37

SUBTYPE: 25
NUMBER OF PLOTS: 10

NUABBER OF PLOTS: 12

SPECIES	CONSTANCY	$\begin{aligned} & \text { DBH } \\ & 2-5.4 \\ & \text { INCHES } \end{aligned}$	$\begin{gathered} - \text { DENSI } \\ \text { DBH } \\ 5.5-9.4 \\ \text { IMCHES } \end{gathered}$	$\begin{gathered} \text { ACRE -- } \\ \text { DBH } \\ >9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { DBH } \\ >2.0 \\ \text { INCHES } \end{gathered}$
CARYA CORDIFORMIS	41.7	11.67	7.50	2.50	21.67
CARYA ILLINOENSIS	16.7	0	4.17	4.17	8.33
CARYA LACINIOSA	50.0	30.00	3.33	1.67	35.00
CERCIS CANADENSIS	16.7	3.33	1.67	0	5.00
CELTIS LAEVIGATA	33.3	7.50	0	0	7.50
CRATAEGUS VIRIDUS	8.3	0.83	0	0	0.83
DIOSPYROS VIRGINIANA	25.0	2.50	0.33	0.83	4.17
FRAXINUS PENNSYLVANICA	8.3	1.67	5.00	0	6.67
ILEX DECIDUA	25.0	4.17	0	0	4.17
LIQUIDAMBAR STYRACIFLUA	83.3	32.50	13.33	8.33	54.17
MORUS RUBRA	41.7	5.00	1.67	0	6.67
HYSSA SYLVATICA	25.0	3.33	1.67	0	5.00
PLATANUS OCCIDENTALIS	8.3	0.83	0	0	0.83
PRUNUS AMERICANA	8.3	0.83	0	0	0.83
QUERCUS NIGRA	66.7	1.67	8.33	21.67	31.67
QUERCUS PAGODA	33.3	0.83	2.50	2.50	5.83
QUERCUS PHELLOS	50.0	11.67	8.33	10.83	30.83
SASSAFRAS ALBIDUM	8.5	1.67	0	0	1.67
ULMUS AIIERICANA	75.0	28.33	6.67	0	35.00
TOTAL STD DEV	100.0	148.33 87.37	65.00 35.03	52.50 51.19	265.83 83.17

SUBTYPE: 28
NUMBER OF PLOTS: 61

SPECIES	CONSTANCY	$\begin{aligned} & \text { DBH } \\ & 2-5 \cdot 4 \\ & \text { INCHES } \end{aligned}$	$\begin{gathered} \text { DBH } \\ 5.5-9.4 \end{gathered}$ INCHES	$\begin{gathered} \text { DBH } \\ >9.4 \\ \text { INCHES } \end{gathered}$	$\begin{aligned} & \text { TOTAL } \\ & \text { DBH } \\ & >2.0 \\ & \text { INCHES } \end{aligned}$
ACER NEGUNDO	100.0	30.00	10.00	23.33	63.33
ACER SACCHARINUM	22.2	2.22	0	2.22	4.44
ASIMINA TRILOBA	55.6	45.56	0	0	45.56
CARYA CORDIFORIIIS	11.1	0	0	1.11	1.11
CARYA ILLINOENSIS	22.2	2.22	0	1.11	3.33
CARYA LACINIOSA	11.1	0	0	1.11	1.11
CELTIS LAEVIGATA	100.0	47.78	6.67	16.67	71.11
FRAXINUS PENHSYLVANICA	55.6	5.56	5.56	10.00	21.11
ILEX DECIDUA	11.1	1.11	0	0	1.11
JUGLANS NIGRA	22.2	0	1.11	1.11	2.22
LIQUIDAMBAR STYRACIFLUA	88.9	5.56	11.11	41.11	57.78
MORUS RUBRA	22.2	2.22	2.22	0	4.44
PLATANUS OCCIDENTALIS	11.1	0	0	1.11	1.11
POPULUS DELTOIDES	11.1	0	0	2.22	2.22
QUERCUS NIGRA	22.2	2.22	0	0	2.22
QUERCUS NUTTALLII	11.1	0	0	1.11	1.11
QUERCUS PALUSTRIS	33.3	1.11	1.11	1.11	3.33
ULMUS AMERICANA	55.6	14.44	12.22	1.11	27.78
ULMUS RUBRA	11.1	1.11	12	0	1.11
$\begin{aligned} & \text { TOTAL } \\ & \text { STD DEV } \end{aligned}$	100.0	$\begin{array}{r} 161.11 \\ 84.33 \end{array}$	$\begin{aligned} & 50.00 \\ & 27.84 \end{aligned}$	$\begin{array}{r} 104.44 \\ 37.12 \end{array}$	$\begin{aligned} & 315.56 \\ & 109.44 \end{aligned}$

NUIIBER OF PLOTS:
$\begin{array}{ll}\text { SUBTYPE: } & 34 \\ \text { NUMBER OF PLOTS: } 7\end{array}$

$$

$$

SPECIES
DENSITY PER ACRE ------------------
No rotal
TOTAL
$12: S 107 d$ forgennn
SPECIES

プソ1 甘NIWIS
CARYA ILLINOENSIS
CELTIS LAEVIGATA
CORNUS DKUIV：ONDII
DIOSPYROS VIRGINIANA

GLEDITSIA TRI
ILEX DECIDUA

PLATANUS OCCIDENTALIS
POPULUS DELTOIDES
QUERCIIS LYRATA
『
CANA

0
0
0
-1
TOTAL
STD DEV
SUBTYPE: 33
NUMBER OF PLOTS: 3

SUBTYPE: 40
NUMBER OF PLOTS: 12

SPECIES	CONSTANCY	$\begin{aligned} & \text { DBH } \\ & 2-5.4 \\ & \text { IHCHES } \end{aligned}$	$\begin{gathered} \text { DBH } \\ 5.5-9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { DBH } \\ >9.4 \\ \text { IHCHES } \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { DBH } \\ >2.0 \\ \text { INCHES } \end{gathered}$
ACER NEGUNDO	83.3	9.17	25.83	15.00	50.00
ACER SACCHARINUM	16.7	1.67	2.50	15.83	20.00
CARYA ILLINOENSIS	91.7	0	5.00	19.17	24.17
CELTIS LAEVIGATA	91.7	42.50	15.00	21.67	79.17
CORNUS DRUP'MONDII	41.7	20.83	0	0	20.83
DIOSPYROS VIRGINIANA	8.3	0	0	0.83	0.83
FRAXINUS PENNSYLVANICA	33.3	0.83	0	3.33	4.17
MORUS RUBRA	33.3	0	3.33	0.83	4.17
PLATANUS OCCIDENTALIS	8.3	1.67	0	$0^{0.83}$	1.67
ULIUS AMERICANA	58.3	≥ 1.67	1.67	2.50	15.83
total STD DEV	100.0	$\begin{array}{r} 88.33 \\ 105.73 \end{array}$	$\begin{aligned} & 53.33 \\ & 29.64 \end{aligned}$	$\begin{aligned} & 79.17 \\ & 25.03 \end{aligned}$	$\begin{array}{r} 220.83 \\ 93.95 \end{array}$

SUBTYPE: 45
NUMBER OF PLOTS: 15

SUBTYPE: 46
NUNIBER OF PLOTS: 34
TOTAL
STD DEV ACER NEGUNDO

ACER SACCHARINUM
CARYA AQUATICA
CARYA ILIINOENSIS
CARYA LACINIOSA
CELTIS LAEVIGATA
CORNUS DRUMMONDII
CRATAEGUS SP
DIOSPYROS VIRGINIANA
FORESTIERA ACUMINATA
FRAXINUS PENNSYLVANICA
GLEDITSIA AQUATICA
GLEDITSIA TRIACANTHOS
GYMNOCLADUS DIOICA
ILEX DECIDUA
LIQUIDAHBAR STYRACIFIUA
MORUS RUBRA
PLATANUS OCCIDENTALIS
POPULUS DELTOIDES
QUERCUS LYRATA
QUERCUS NIGRA
QUERCUS NUTTALLII
SALIX NIGRA
TAXODIUM DISTICHUM
ULMUS AMERICANA
ULMUS CRASSIFOLIA
-

SUBTYPE: 47
NUMBER OF PLOTS: 17

STD DEV
SUBTYPE: 48 ${ }^{\text {4 }}$ NUMBER OF PLOTS: 7

SPECIES	CONSTANCY	$\begin{aligned} & \text { DEH } \\ & 2-5.4 \\ & \text { INCHES } \end{aligned}$			$\begin{gathered} \text { TOTAL } \\ \text { DBH } \\ >2.0 \\ \text { IMCHES } \end{gathered}$
CARYA AQUATICA	71.4	52.86	8.57	10.00	71.43
CELTIS LAEVIGATA	100.0	11.43	5.71	18.57	35.71
CEPHALANTHUS OCCIDENTALIS	14.3	1.43	0		1.43
DIOSPYROS VIRGINIANA	14.3	1.43	0	0	1.43
FORESTIERA ACUMINATA	57.1	30.00	1.43	0	31.43
FRAXINUS PENHSYLVANICA	100.0	54.29	15.71	5.71	75.71
PLANERA AQUATICA	14.3	2.86	0	0	2.86
QUERCUS LYRATA	130.0	42.86	42.86	35.71	121.43
QUERCUS NUTTALLII	57.1	4.29	4.29	4.29	12.86
ULMUS AMERICANA	28.6	1.43	1.43	0	2.86
TOTAL	100.0	202.86 155.32	80.00 23.80	74.29 30.47	357.14 143.26

SPECIES	CONSTANCY	$\begin{aligned} & \text { DBH } \\ & 2-5.4 \\ & \text { INCHES } \end{aligned}$	$\begin{gathered} \text { DBH } \\ 5.5-9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { DBH } \\ >9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { DBH } \\ >2.0 \\ \text { IHCHES } \end{gathered}$
ACER NEGUNDO	68.8	16.88	7.50	5.63	30.00
ACER SACCHARINUM	62.5	30.63	2.50	9.38	42.50
ASIMINA TRILOBA	31.3	5.53	0	0	5.63
CARPINUS CAROLINIAHA	6.3	0.63	0	0	0.63
CARYA ILLIHOENSIS	37.5	0.63	1.88	2.50	5.00
CARYA LACINIOSA	18.8	1.88	3.75	3.75	9.38
CELTIS LAEVIGATA	93.8	15.00	10.00	11.88	36.88
CORNUS DRUMNONDII	6.3	0.63	0	12	0.63
DIOSPYROS VIRGINIANA	18.8	2.50	0	3.75	6.25
FORESTIERA ACUNINATA	12.5	8.13	0.63	0	8.75
FRAXINUS PENISYLVANICA	68.8	11.88	2.50	13.13	27.50
GLEDITSIA AQUATICA	6.3	0	0	0.53	0.63
GLEDITSIA TRIACAATHOS GYMPOCLADUS DIOICA	6.3	0	0	0.63	0.63
GYMMOCLADUS DIOICA ILEX DECIDUA	6.3	${ }^{0}$	0	0.63	0.63
ILEX DECIDUA	12.5	3.75	\bigcirc	0.0	3.75
LIQUIDAMBAR STYRACIFLUA MORUS RUBRA	43.8	1.88	?. 50	11.88	21.25
PLATANUS OCCIDENTALIS	31.3 43.8	17.50 10	0	11.88	17.50
POPULUS DELTOIDES	25.0	19.38	18.13	5.63 4.38	15.63
QUERCUS LYRATA	12.5	0.63	180	0.63	41.88
QUERCUS NUTTALLII	6.3	0	0	0.63	1.25 0.63
QUERCUS PAGODA	6.3	0.63	0	0	0.63
SALIX NIGRA	6.3	0	0.63	0	0.63
ULMUS AMERICANA	75.0	13.13	10.00	6.88	30.00
$\begin{aligned} & \text { TOTAL } \\ & \text { STD DEV } \end{aligned}$	100.0	$\begin{aligned} & 161.25 \\ & 150.59 \end{aligned}$	$\begin{aligned} & 65.00 \\ & 42.43 \end{aligned}$	$\begin{aligned} & 81.88 \\ & 25.62 \end{aligned}$	$\begin{aligned} & 308.13 \\ & 177.17 \end{aligned}$

SPECIES	$\begin{aligned} & \text { DBH } \\ & 2-5.4 \\ & \text { INCHES } \end{aligned}$	$\begin{gathered} \text { DBH } \\ 5.5-9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { DBH } \\ >9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { DBH } \\ >2.0 \\ \text { INCHES } \end{gathered}$
DIOSPY只OS VIPGINIANA PLATANUS OCCIDENTALIS	$\begin{array}{r} 0.07 \\ 10.69 \end{array}$	$\begin{gathered} 0 \\ 35.12 \end{gathered}$	5.78	0.07 51.59
$\begin{aligned} & \text { TOTAL } \\ & \text { STD DEV } \end{aligned}$	10.76 5.50	35.12 17.70	$\begin{aligned} & 5.78 \\ & 6.64 \end{aligned}$	$\begin{aligned} & 51.66 \\ & 16.51 \end{aligned}$

SUBTYPE: 3
NUMBER OF PLOTS: 4
0
0.81
3.90
0.68
0.25
5.62
1.04
0.07
12.36
2.37
TOTAL
STD DEV
ILLINOENSI
LAEVIGATA
CARYA ILLINOENSIS
CELTIS LAEVIGATA
CORNUS DRUMMONDII
GLEDITSIA TRIACANTHOS
POPULUS DELTOIDES
SALIX INTERIOR
SALIX NIGRA
ULMUS AMERICANA
\forall 납
SUBTYPE: 4
NUMBER OF PLOTS: 10

SPECIES	$\begin{aligned} & \text { DBH } \\ & 2-5.4 \\ & \text { INCHES } \end{aligned}$	$\begin{aligned} & \text { DBH } \\ & 5.5-9.4 \\ & \text { INCHES } \end{aligned}$	$\begin{gathered} \text { DBH } \\ >9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { DBH } \\ >2.0 \\ \text { INCHES } \end{gathered}$
CARYA AQUATICA	2.44	12.06	29.23	
CARYA ILLINOENSIS	0	0.35	${ }^{29}$	43.73 0.35
CELTIS LAEVIGATA	0.45	0.20	2.80	3.44
FORESTIERA ACUMINATA	5.35	3.67	6.15	15.17
FRAXINUS PENIJSYLVANICA	0	0.44	0	0.44
GLEDITSIA AQUATICA	0.73	0.65	0	1.39
PLANERA AQUATICA	0.74	0.81	0.55	2.10
POPULUS DELTOIDES	0.67	0	0	0.67
QUERCUS LYRATA	0.89	1.06	2.97	4.93
SALIX INTERIOR	0.66	0	0	0.66
TAXODIUM DISTICHUM	0.48 0.03	0.59	3.69	4.75
TOTAL	12.43			
STD DEV	8.50	18.46	45.38 36.22	77.64

NUIABER OF PLOTS: 25

SPECIES	$\begin{gathered} \text { DBH } \\ 2-5.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { DBH } \\ 5.5-9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { DBH } \\ >9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { DBH } \\ >2.0 \\ \text { INCHES } \end{gathered}$
ACER NEGUNDO	2.32	2.31	1.71	6.35
ACER SACCHARINUM	0.22	2.96	3.86	6.35 7.05
CARYA ILIINOENSIS	0.18	0.08	7.57	7.83
CELTIS LAEVIGATA	2.08	4.00	2.85	8.94
CORNUS DRUMMONDII	0.84	0	2.8	0.84
CRATAEGUS VIRIDUS	0.06	0	0	0.06
DIOSPYROS VIRGINIANA	0.09	0.33	0.26	0.67
FORESTIERA ACUMINATA	1.29	0.31	0	1.60
FRAXINUS PENNSYLVANICA GIEDITSTA AQUATICA	2.01	2.79	0.58	5.38
GLEDITSIA AQUATICA ILEX DECIDUA	0	0.32	0	0.32
ILEX DECIDUA LIQUIDAMBAR STYRACIFLUA	0.07	${ }^{0} 0$	0	0.07
LIQUIDAMBAR STYRACIFLUA MORUS RUBRA	0.44	3.05	17.06	20.55
PLATANUS OCCIDENTALIS	0.05	0	${ }^{0}$	0.05
PCPULUS DELTOIDES	0.67	0.64	2.82	4.14
QUERCUS NIGRA	0.09	0.29	76.23 1.83	76.63
SALIX NIGRA	0.13	0. 21 2.21	1.83 4.89	2.22 7.23
SAPIUM SEBIFERUM	0.05	0	0	0.05
ULMUS AMERICANA	0.44	0.32	0.65	1.41
total STD DEV	11.09 7.48	19.91 14.64	$\begin{array}{r} 120.33 \\ 93.05 \end{array}$	$\begin{array}{r} 151.38 \\ 93.31 \end{array}$

SUBTYPE:
NUMBER OF PLOTS:
12

SPECIES	$\begin{gathered} \text { DBH } \\ 2-5.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { DBH } \\ 5.5-9.4 \\ \text { INEHES } \end{gathered}$	$\begin{gathered} \text { /ACRE } \\ \text { DBH } \\ >9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { DBH } \\ >2.0 \\ \text { IHCHES } \end{gathered}$
CARYA ILLINOENSIS	0.10	0	0	0.10
CELTIS LAEVIGATA	0.31	1.33	0	1.64
CORNUS DRUMIONDII	0.02	0	0	0.02
FORESTIERA ACUMINATA	0.19	0	0	0.19
MORUS RUBRA	0.09	0	0	0.09
PLATANUS OCCIDENTALIS	0.40	0.22	2.00	2.63
QUERCUS NIGRA	0.08	0	0.55	0.63
SALIX MIGRA	1.44	20.18	110.90	132.53
total STD DEV	2.64 1.67	21.73 11.24	113.45 41.32	137.83 47.06

SUBTYPE: 10
NUMBER OF PLOTS: 11
11

SPECIES	$\begin{aligned} & \text { DBH } \\ & 2-5.4 \\ & \text { INCHES } \end{aligned}$	$\begin{gathered} \text { DBH } \\ 5.5-9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { DEH } \\ >9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { DBH } \\ \text { >2.0 } \\ \text { INCHES } \end{gathered}$
ACER NEGUNDO				
ACER RUBRUM	0.27	0.22	0.01	0.26 1
AMIORPHA FRUTICOSA	0.69	0.02	0.61	1.09 0.09
CARYA ILLIHIOENSIS	0.53	0	0	0.09 0.53
CELTIS LAEVIGATA	1.92	4.45	4.46	0.53 10.83
CORNUS DRUMITONDI	0.21	0	0_{0}	10.8
FORESTIERA ACUIIINATA FRAXIIHUS PENNSYLVANICA	0.70	0	0	0.21
FRAXIIHUS PENNSYLVANICA PLATANUS OCCIDENTALIS	0	0.30	0.73	$1 . .03$
POPULUS DELTOIDES	0.72	0.95	3.96	5.63
SALIX INTERIOR	4.24	6.06	14.00	24.30
SALIX NIGRA	1.61	0.22	0	1.83
SAPIUM SEBIFERUM	7.66 0.20	6.30	6.47	20.43
ULMUS AMERICANA	0.20 0.33	0.52		0.20
TOTAL	18.73	19.02	32.39	
STD DEV	8.97	12.63	39.87	70.14 39.53

SUBTYPE: 15
NUMBER OF PLOTS: 15

SPECIES	$\begin{aligned} & \text { DBH } \\ & 2-5.4 \\ & \text { INCHESS } \end{aligned}$	$\begin{gathered} \text { DBH } \\ 5.5-9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { DBH } \\ >9.4 \\ \text { IHCHES } \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { DBH } \\ >2.0 \\ \text { INCHES } \end{gathered}$
ACER NEGUNDO	1.32	2.83	4.10	8.25
CARYA ILLINOENSIS	2.81	5.36	12.73	20.91
CELTIS LAEVIGATA	2.44	2.72	17.70	22.86
CORNUS DRUMMONDII	1.01	0	0	1.01
DIOSPYROS VIRGINIANA	0.23	0.44	0	0.72
FORESTIERA ACUIIINATA	0.11	0.31	0	0.42
LIqUIDAMBAR STYRACIFLUA	0.03	0	0	0.03
PLATAHUS OCCIDENTALIS	1.22	3.42	18.99	23.63
POPULUS DELTOIDES	0.54	1.35	12.34	14.23
QUERCUS LYRATA	0	0	0.36	0.36
SALIX NIGRA	0.31	0.84	4.49	5.64
TAXODIUM DISTICHUM	0.06	0.29	0	0.35
ULMUS AMERICAHA	0.56	0.13	0.52	1.22
TOTAL STD DEV	10.70 3.74	17.68 7.63	71.24 38.30	99.62 36.33

NUIABER OF PLOTS: 32

SUBTYPE:
NUMBER OF PLOTS: 15

SPECIES	$\begin{gathered} \text { DBH } \\ 2-5.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { DBH } \\ 5.5-9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { DBH } \\ >9.4 \\ \text { INCHES } \end{gathered}$	$\begin{aligned} & \text { TOTAL } \\ & \text { DBH } \\ & >2 . D \\ & \text { INCHES } \end{aligned}$
ACER SACCHARINUM	0.32	0.13	0	0.45
CARYA ILLINOENSIS	0.15	0	0	0.15
CELTIS LAEVIGATA	0.72	0.60	0	1.32
FORESTIERA ACUMINATA	0.11	0	0	0.11
GLEDITSIA TRIACANTHOS	0.10	0	0	0.10
PLANERA AQUATICA	0.05	0	0	0.05
PLATANUS OCCIDENTALIS	0.20	1.61	1.41	3.23
POPULUJ DELTOIDES	0.37	2.60	2.84	5.82
SALIX INTERIOR	0.15	0.72	0.44	1.31
SALIX NIGRA	15.64	20.07	92.45	128.16
$\begin{aligned} & \text { TOTAL } \\ & \text { STD DEV } \end{aligned}$	17.82 20.67	25.73 23.27	97.15 85.15	$\begin{array}{r} 140.70 \\ 59.27 \end{array}$

SUBTYPE: 19
NUMBER OF PLOTS: 9

SPECIES	$\begin{aligned} & \text { DBH } \\ & 2-5.4 \\ & \text { INCHES } \end{aligned}$	$\begin{gathered} \text { DBH } \\ 5.5-9.4 \\ \text { INCHES } \end{gathered}$	$\begin{aligned} & \text { DBH } \\ & >9.4 \\ & \text { INCHES } \end{aligned}$	$\begin{aligned} & \text { TOTAL } \\ & \text { DBH } \\ & >2.0 \\ & \text { INCHES } \end{aligned}$
ACER NEGUKDO	1.99	4.59	12.96	19.54
ACER RUBRUM	0.00	0.03	12.	0.03
ACER SACCHARINUM	0.17	0.19	1.21	1.57
CARYA ILLINOENSIS	0.25	2.25	33.73	35.28
CELTIS LAEVIGATA	2.62	5.03	19.91	27.56
CORNUS DRUMMONDI I	0.84	0	0	0.84
CRATAEGUS SP	0	0.07	0	0.07
DIOSPYROS VIRGINIANA	0	0.05	0	0.05
FORESTIERA ACUMINATA	0.65	0.15	0	0.80
FRAXINUS PENNSYLVAHICA	0.03	0.53	2.34	2.90
GLEDITSIA TRIACANTHOS	0	0	0.37	0.37
GYIINOCLADUS DIOICA	0.03	0	0.19	0.22
ILEX DECIDUA	0.09	0.11	0	0.20
LIQUIDAMBAR STYRACIFLUA	0.03	0.42	1.86	2.31
MORUS RUBRA	0.24	0.26	0.58	1.09
PLATANUS DCCIDENTALIS	0.11	0.55	15.11	15.78
POPULUS DELTOIDES	0	0.04	1.85	1.89
QUERCUS LYRATA	0.01	0	0.72	0.73
QUERCUS NUTTALLII	0.03	0.13	0.41	0.58
RHUS COPPALINA	0.05	0.11	0	0.16
SALIX NIGRA	0	0	0.98	0.96
ULMUS AMERICAHA	0.66	0.93	3.17	4.77
ULMUS CRASSIFOLIA	0.02	0.03	0	0.05
total STD DEV	$\begin{aligned} & 7.83 \\ & 4.02 \end{aligned}$	$\begin{array}{r} 15.48 \\ 9.08 \end{array}$	$\begin{aligned} & 95.43 \\ & 51.53 \end{aligned}$	$\begin{array}{r} 118.74 \\ 50.41 \end{array}$

$\begin{array}{ll}\text { SUBTYPE: } & 24 \\ \text { NUHBER OF PLOTS: } & 14\end{array}$

SPECIES	$\begin{aligned} & \text { DBH } \\ & 2-5.4 \\ & \text { INCHES } \end{aligned}$	$\begin{gathered} \text { BASAL } \\ \text { DEH } \\ 5.5-9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { /ACRE } \\ \text { DBH } \\ >9.4 \\ \text { INCHES } \end{gathered}$	$\begin{aligned} & \text { TOTAL } \\ & \text { DBH } \\ & >2.0 \\ & \text { IHCHES } \end{aligned}$
ACER NEGUNDO	0.03	0.19	0	0.27
ACER RUBRUIT	0.30	0.64	1.03	1.97
ACER SACCHARINUM	0.02	0	0	0.02
CARYA AQUATICA	0.37	0.67	2.25	3.28
CARPINUS CAROLINIANA	0	0.25	0	0.25
CARYA ILLIINENSIS	0	0.46	3.91	4.37
CARYA LACINIOSA	0.07	0	2.12	2.19
CERCIS CAHADENSIS	0.07	0	0	0.07
CELTIS LAEVIGATA	1.24	0.14	0	1.38
CORNUS DRUMMONDII	0.07	0	0	0.07
CRATAEGUS SP	0.02	0	0	0.02
DIOSPYROS VIRGIUIANA	0.16	1.42	1.90	3.48
FRAXINUS PEINNSYLVANICA	0	0	0.56	0.56
GLEDITSIA TRIACANTHOS	0	0.63	3.09	3.72
ILEX DECIDUA	0.13	0	0	0.13
LIQUIDAIMBAR STYRACIFLUA	1.30	5.96	82.81	90.07
MORUS RUBRA	0.06	0	0	0.06
PLATANUS OCCIDENTALIS	0	0	2.63	2.63
QUERCUS LYRATA	0.34	0.86	1.73	2.93
QUERCUS MICHAUXII	0	0	1.89	1.89
QUERCUS NIGRA	0.78	0.90	3.17	4.85
QUERCUS NUTTALLII	0.04	0	0	0.04
QUERCUS PAGODA	0.16	0	0	0.16
QUERCUS PHELLOS	0.60	0.61	2.63	3.84
ULMUS AMERICANA	1.89	1.51	2.47	5.87
$\begin{aligned} & \text { TOTAL } \\ & \text { STD DEV } \end{aligned}$	7.69 4.39	14.24 12.07	112.20 64.62	$\begin{array}{r} 134.13 \\ 63.00 \end{array}$

SPECIES	$\begin{aligned} & \text { DBH } \\ & 2-5.4 \\ & \text { INCHES } \end{aligned}$	$\begin{gathered} \text { DBH } \\ 5.5-9.4 \\ \text { INCHES } \end{gathered}$	$\begin{aligned} & \text { DEH } \\ & 29.4 \\ & \text { IMCHES } \end{aligned}$	$\begin{gathered} \text { TOTAL } \\ \text { D3H } \\ >2.0 \\ \text { IHCHES } \end{gathered}$
ACER NEGUNDO	2.53	5.03	6.96	14.52
ACER SACCHARINUN	0.05	0.05	2.79	2.90
CARYA AQUATICA	0	0	0.68	0.68
CARYA CORDIFORMIS	0.04	0	0	0.04
CARYA ILLINOENSIS	0.04	0.67	5.30	6.50
CELTIS LAEVIGATA	3.14	6.74	37.60	47.56
CORNUS DRUTIIONDII	0.10	0	0	0.10
CRATAEGUS SP	0.07	0	0	0.07
DIOSPYROS VIRGINIANA	0.03	0.13	0	0.16
FORESTIERA ACUMINATA	0.96	0.24	0	1.20
FRAXINUS PEHISSYLVANICA	1.72	3.36	32.79	37.86
GLEDITSIA AQUSTICA	0	0	0.30	0.30
LJQUIDAMBAR STYRACIFLUA	0.09	0.15	1.46	1.70
MOPUS RUBRA	0.09	0	0	0.09
PLANERA AQUATICA	0.04	0	0	0.04
PLATANUS OCCIDEHTALIS	0.01	0.12	1.30	1.43
POFULUS DELTGIDES	0	0	4.79	4.79
QUERCUS LYRATA	0.18	0.69	6.10	6.98
QUERCUS NIGRA	0.08	0	1.20	1.28
QUERCUS NUTTALLII	0.08	0.20	1.75	2.03
TAXODIUM DISTICHUM	0.08	0.10	11.87	12.04
ULHUS AMERICANA	0.85	2.74	6.29	9.38
TOTAL STD DEV	10.17 6.72	20.22 11.00	121.76 66.44	152.15 65.74

$\varsigma 2: 5107 d \quad 70$ yヨawne

SPECIES	$\begin{gathered} \text { DBH } \\ 2-5.4 \\ \text { WCHFS } \end{gathered}$	$\begin{gathered} \text { DBH } \\ 5.5-9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { DBH } \\ >9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { DEH } \\ >2.0 \\ \text { IHCHES } \end{gathered}$
ACER NEGUNDO	1.80	4.69	3.12	9.61
ACER SACCHARINUM	4.45	5.56	7.63	17.54
ASIMINA TRILOBA	0.03	0	.	0.03
CfRYA ILLINOENSIS	0.01	0.08	0	0.09
CELTIS LAEVIGATA	0.42	0.19	0	0.60
CORTIUS DRUMİONDII	0.17	0	0	0.17
FRAXINUS PENNSYLVANICA	0.02	0	0	0.02
MORUS RUBRA	1.20	0.76	0	1.96
PLATANUS OCCIDENTALIS	0.72	1.88	19.28	21.88
POPULUS DELTOIDES	0.31	0.86	48.40	50.07
SALIX INTERIOR	1.73	0	0	1.73
SALIX NIGRA	1.92	1.71	29.58	33.22
ULMUS AMERICANA	2.19	2.23	0	4.43
$\begin{aligned} & \text { TOTAL } \\ & \text { STD DEV } \end{aligned}$	$\begin{aligned} & 15.46 \\ & 12.64 \end{aligned}$	17.97 12.19	103.00 67.94	141.44 61.71

	$\begin{aligned} & 5 \varepsilon \cdot 25 \\ & 32 \cdot 8 L \end{aligned}$	$\begin{aligned} & 26.6 \\ & 18.61 \end{aligned}$	$\begin{aligned} & 55^{\circ} 9 \\ & 90^{\circ} 0 \mathrm{I} \end{aligned}$
$06^{\circ} \mathrm{L}$	［ $8^{\circ} \mathrm{E}$	$\tau G^{\cdot} \boldsymbol{Z}$	$\angle S^{\circ}$ T
ゅI I	わて「	0	0
10＊0	0	0	10\％
［0＊	$68^{\circ} \mathrm{E}$	0	こI•0
$9 L^{\circ} \mathrm{E}$	$50^{\circ} \mathrm{E}$	$05^{\circ} 0$	で0
$0 G^{-L}$	$0<0$	Lて．0	ヵら＊0
OI．0	0	0	OT＊ 0
をカ・「	こT•6	［0＊2	$0 E^{\circ} 0$
8［ 0	0	0	$81^{\circ} 0$
91＊0	0	E［ 0	$20^{\circ} 0$
S0＇	S0．	0	0
84．9	［ 6°－	G2．	2¢0
GT•0	0	$80^{\circ} 0$	$80^{\circ} 0$
£ \％ 0	こて・0	$80^{\circ} 0$	$20^{\circ} 0$
$6 \varepsilon \cdot 0$	0	0	$6 £ \cdot 0$
$28 \cdot 68$	EL．62	8L9	I $\mathcal{E} \boldsymbol{\varepsilon}$
6I．0	6 I－0	0	0
カG•T	EI．τ	$G ¢^{\circ} 0$	$90^{\circ} 0$
［E＊0	0	$90^{\circ} 0$	$92^{\circ} 0$
	カウ・で	\mathcal{G} ． 2	$99^{\circ} 0$
9て＇こ！	$68^{\circ} 9$	Gサ・を	26°
SJHJNT	SJHONI	SヨHONI	SヨHJNI
$0^{\circ} \mathrm{Z}$ ：	\％ 6 ＜	カ・6－5． 5	$\vdash^{\circ} \mathrm{S}-2$
H9］	Hga	Had	HEO
$7 \forall 101$			

TOTAL
STD DEV
SUBTYPE: 36
IUUBBER OF PLOTS: 21 ACER NEGUNDO
ASIIINA TRILOBA
CARYA ILLINOENSIS
CELTIS LAEVIGATA
CORNUS DRUIIOHDII
DIOSPYROS VIRGINIAHA
FRAXIHUS PEHNSYLVAHICA
GLEDITSIA TRIACANTHOS
ILEX DECIDUA
MORUS PUBRA
PLATAUUS OCCIDENTALIS
POPULUS DELTOIDES
QIERCUS LYRATA
QUERCUS NIGRA
SALIX NIGRA
ULMUS AMERICANA
-
STD DEV
SUBTYPE: 37
NUHBER OF PLOTS: 15

SUBTYPE: 33
HUTBER OF PLOTS: 3

SPECIES	$\begin{gathered} \text { DBH } \\ 2-5.4 \\ \text { IHCHES } \end{gathered}$	$\begin{gathered} - \text { BASAL } \\ \text { DBH } \\ \text { 5.5-9.4 } \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { T/ACRE } \\ \text { DBH } \\ >9.4 \\ \text { IHCHES } \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { DBH } \\ >2.0 \\ \text { IHCHES } \end{gathered}$
CARYA ILLINOENSIS	0.09	0	0	0.09
CELTIS LAEVIGATA	214	0	5.25	7.39
POPULUS DELTOIDES	1.04	12.05	72.90	85.99
SALIX INTERIOR	1.04	0	0	1.04
SALIX HIGRA	0	0	4.09	4.09
TOTAL	4.31	12.05	82.25	98.61
sto dev	1.73	11.46	77.06	83.84

SUBTYPE: 39
IIUMBER OF PLO

SPECIES	$\begin{gathered} \text { DBH } \\ 2-5 \cdot 4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { CBH } \\ 5.5-9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { DBH } \\ >9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { DBH } \\ >2.0 \\ \text { INCHES } \end{gathered}$
ACER NEGUNDO	0.44	8.22	17.96	26.62
CELTIS LAEVIGATA	1.95	10.04	51.16	63.14
DIOSPYROS VIRGINIANA	0	0	4.65	4.65
FRAXINUS PENNSYLVANICA	0	0	9.89	9.89
ILEX DECIDUA	0.16	0	0	0.16
MORUS RUBRA	0.75	0	0	0.75
ULMUS AMERICANA	0.16	0.65	0	0.82
TOTAL STD DEV	3.46 2.03	$\begin{aligned} & 18.91 \\ & 10.49 \end{aligned}$	$\begin{aligned} & 83.67 \\ & 33.89 \end{aligned}$	$\begin{array}{r} 106.03 \\ 34.16 \end{array}$

SLBTYPE: 43
NUMBER OF PLOTS: 34

DBH	DBH	DBH	$\begin{gathered} \text { TOTAL } \\ \text { DBH } \end{gathered}$
2-5.4	5.5-9.4	>9.4	>2. 0
INCHES	INCHES	IHCHES	INCHES
0.48	0.62	0	1.10
0.19	0.43	2.36	2.77
2.73	5.62	18.07	26.47
0.02	0	0	0.32
2.03	0.75	0	1.70
0.02	0	0.56	0.58
0	0	2.23	0.23
0.04	0	0	0.04
0.37	0	0	0.37
0.41	0.38	0.46	1.25
2.35	1.69	27.95	32.00
3.02	3.58	34.86	101.46
0	0	2.20	2.20
0	0	0.90	0.90
10.72	13.06	147.57	171.36
17.04	12.51	67.11	57.31

TOTAL
STD DEV

> SPECIES

$$
\begin{aligned}
& \text { ACER NEGUNDO } \\
& \text { CARYA ILLIHOENSIS } \\
& \text { CELTIS LAEVIGATA } \\
& \text { CEPHALANTHUS OCCIDENTALIS } \\
& \text { FQRESTIERA ACUMINATA } \\
& \text { FRAXINUS PENNSYLVANICA } \\
& \text { GLEDITSIA TRIACANTHOS } \\
& \text { ILEX DECIDUA } \\
& \text { PLANEPA AQUATICA } \\
& \text { PLATANUS OCCIDENTALIS } \\
& \text { POPULUS DELTCIDES } \\
& \text { SALIX NIGRA } \\
& \text { TAXODIUM DISTICHUM } \\
& \text { ULMUS AIIERICANA }
\end{aligned}
$$

$\begin{array}{ll}\text { SUBTYPE: } & 45 \\ \text { NUIIBER OF PLOTS: } & 15\end{array}$

SPECIES	$\begin{gathered} \text { DBH } \\ 2-5.4 \\ \text { IHCHES } \end{gathered}$	$\begin{aligned} & \text { BASAL } \\ & \text { DBH } \\ & \text { INCHES } \end{aligned}$	$\begin{aligned} & \text { I/ACRE } \\ & \text { DBH } \\ & >9.4 \\ & \text { INCHES } \end{aligned}$	$\begin{aligned} & \text { TOTAL } \\ & \text { DEH } \\ & >2.0 \\ & \text { INCHES } \end{aligned}$
ACER NEGUIIDO	0.20	0.13	0.52	0.85
ACER RUBRUM	0.02	0.54	0	0.56
ASIMINA TRILOBA	0.02	0	0	0.02
CARPINUS CAROLINIANA	0.07	0	0	0.07
CARYA ILLINOENSIS	0.27	0.71	8.59	9.56
CELTIS LAEVIGATA	2.75	7.60	4.66	15.01
CORNUS DRUMIONDII	0.12	0	0	0.12
DIOSPYROS VIRGINIANA	0	0.82	0	0.82
GLEDITSIA TRIACANTHOS	0	0.29	3.95	4.24
ILEX DECIDUA	1.20	0	0	1.20
LIGUIDAl13AR STYRACIFLUA	1.24	3.67	28.01	32.91
MORUS RUBRA	0.12	0.54	0	0.66
NYSSA SYLVATICA	0.09	0	0	0.03
POPULUS DELTOIDES	0	0	5.82	5.82
QUERCUS LYRATA	0	0.13	0	0.13
QUERCUS MICHAUXII	0.43	0.54	3.25	4.21
QUERCUS NIGRA	3.72	3.11	13.77	20.59
QUERCUS NUTTALLII	0.11	0	3.92	4.03
ULMUS AMERICAHA	0.37	1.39	4.91	6.67
TOTAL STD DEV	10.71 5.42	19.47 9.72	77.39 36.74	$\begin{array}{r} 107.57 \\ 34.66 \end{array}$

SUBTYPE: 47
NUMBER OF PLOTS: 17

SPECIES
ACER NEGUNDO

1.79
0
0
0.51
2.48
0.10
0
0.08
0.03
0.14
0.03
0.10
0.03
0.05
0.05
0.79
0
-7.28
4.99

SPECIES	$\begin{aligned} & \text { DBH } \\ & 2-5.4 \\ & \text { INCHES } \end{aligned}$	$\begin{aligned} & \text { DASAL } \\ & \text { DBH } \\ & 5.5-9.4 \\ & \text { INGHES } \end{aligned}$	$\begin{gathered} \text { T/ACRE } \\ \text { DBH } \\ >9.4 \\ \text { INCHES } \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { DBH } \\ >2.0 \\ \text { INCHES } \end{gathered}$
ACER HEGUNDO	1.79	3.88	8.50	14.17
ACER SACCHARINUM	0	0	10.06	10.06
CARYA CORDIFORMIS	0	0.21	0	0.21
CARYA ILLINOENSIS	0.51	1.69	14.58	16.77
CELTIS LAEVIGATA	2.48	7.02	24.42	33.91
CORFIUS DRUMMONDI I	0.10	0	0	0.10
DIOSPYROS VIRGINIANA	0	0.21	0	0.21
FRAXINUS PEIHNSYLVANICA	0.08	1.36	13.09	14.53
FRAXINUS PROFUNDA	0.03	0.21	4.34	4.53
ILEX DECIDUA	0.14	0	0	0.14
LIQUIDAP1DAR STYRACIFLUA	0.03	0.26	10.54	10.83
MORUS RUBRA	0.10	0.12	${ }^{0}$	0.22
PLATANUS OCCIDENTALIS	0.03	0	22.63	22.66
QUERCUS LYRATA	0	0.12	0	0.12
QUERCUS NIGRA	0.05	0	0	0.05
QUERCUS NUTTALLII	0.15	0.83	2.04	3.0%
ULMUS AMERICAMA	0.77	1.37	6.07	8.23
ULMUS CRASSIFOLIA	0	0.21	0	0.21
$\begin{aligned} & \text { TOTAL } \\ & \text { STD DEV } \end{aligned}$	$\begin{aligned} & 6.28 \\ & 4.99 \end{aligned}$	17.51 11.39	$\begin{array}{r} 116.26 \\ 45.78 \end{array}$	$\begin{array}{r} 140.06 \\ 41.99 \end{array}$

SPECIES	$\begin{aligned} & \text { DBH } \\ & 2-5.4 \\ & \text { IHCHES } \end{aligned}$	$\begin{gathered} \text { DBH } \\ 5.5-9.4 \end{gathered}$ INCHES	$\begin{gathered} \text { DBH } \\ >9.4 \\ \text { IHCHES } \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { DEH } \\ >2.0 \\ \text { INCHES } \end{gathered}$
ACER NEGUNDO	4.54	6.57	0.30	11.42
CARYA AQUATICA	0	0	0.37	0.37
CARYA ILLINOENSIS	1.25	1.01	23.23	25.49
CELTIS LAEVIGATA	1.45	3.41	13.19	13.05
CORIUS DRURMMHDII	0.53	0	0	0.53
CRATAEGUS VIRIDUS	0.02	0	0	0.02
DIDSPYROS VIRGINIANA	0.02	0.50	1.50	2.02
FORESTIERA ACUMINATA	0.46	0.22	0	0.68
FRAXINUS PENNSYLVANICA	0.19	1.10	13.95	15.24
GLEDITSIA TRIACANTHOS	0	0.19	1.83	2.02
ILEX DECIDUA	0.14	0	0	0.14
LIQUIDAMBAR STYRACIFLUA	0.89	1.13	0.30	2.32
PLATANUS OCCIDEITTALIS	0.97	3.53	12.89	17.40
POPULUS DELTOIDES	0.07	0.25	17.52	17.83
QUERCUS LYRATA	0.23	0.19	0.96	1.33
QUERCUS NIGRA	0.64	0.41	0	1.06
QUERCUS NUTTALLII	0.16	0.11	2.89	3.15
SALIX MIGRA	0.30	0	0	0.30
TAXODIUN DISTICHUM	0.43	0.50	0.37	1.30
ULMUS AFIERICANA	0.83	1.01	1.97	3.81
$\begin{aligned} & \text { TOTAL } \\ & \text { STD DEV } \end{aligned}$	$\begin{array}{r} 13.12 \\ 4.85 \end{array}$	20.14 15.51	$\begin{aligned} & 91.26 \\ & 49.63 \end{aligned}$	$\begin{array}{r} 124.52 \\ 46.64 \end{array}$

SUBTYPE:
NUMBER OF PLOTS: 16

SUBTYPE： 3
RUMBER OF PLOTS： 4

[^8]ECIES
SUBTYPE:
NUMBER OF FLOTS: 10

SUBTYPE: 5 NUMBER OF PLOTS: 25

B110

$\begin{array}{ll}\text { SUBTYPE: } & 8 \\ \text { NUMBER OF PLOTS: } 20\end{array}$
SAPLINGS

SUBTYPE:
NUMEER OF PLOTS:
12

SUBTYPE: 10
HUMBER OF PLOTS: 11

SUBTYPE: 12
NUMBER OF PLOTS: 19

NUMBER OF PLOTS: 5

SUBTYPE： 14
NUMBER OF PLOTS： 9

11.1
SHFUBS
S9HI70ヨコS
$\xrightarrow[-100000000]{-100}$

SפNITdVS

R ACR

166.67
11.11
33
15
-1
32.33
22.15 19

	SAPLINGS		SEEDLINGS		SHRUBS	
SPECIES	DENSITY PER ACRE	CONSTANCY	DENSITY		DENSITY	
ACER NEGUNDO		CONSTANCY	PER ACRE	CONSTANCY	PER ACRE	CONSTANCY
CELTIS LAEVIGATA	40.00	20.0	0			
CORNUS DRUMMONDII	73.33 13.33	26.7	533.33	20.0	0	
DIOSPYROS VIRGIHIANA	13.33 5.67	6.7	5	20	0	0
TOTAL		6.7	0	0	0	0
STD DEV	133.33	53.3	533.33	20.0		
			1355.78		0	0

NUMBER OF PLOTS: 15

SUBTYPE: 20
NUIGBER OF PLOTS: 27

SUBTYPE: 21
NUMBER OF PLOTS: 37

SUBTYPE: 22
NUMBER OF PLOTS: 64

$$
\begin{aligned}
& \\
& \begin{array}{l}
\text { DENSITY } \\
\text { PER ACRE CON }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{n}{n}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\infty & N \\
\infty & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array} \\
& \begin{array}{l}
\text { DENSITY } \\
\text { PER } I C R E \quad \text { CON }
\end{array}
\end{aligned}
$$

> --- NEGUNDO
> IQUIDAMBAR STYRACIFLUA
> $\begin{aligned} & \text { HRUS RUBRA } \\ & \text { HUS COPPALINA }\end{aligned}$
> ULMUS AMERICANA
> $\begin{aligned} & \text { TOTAL } \\ & \text { STD DEV }\end{aligned}$
$\begin{array}{ll}\text { SUBTYPE: } & 23 \\ \text { NUIGBER OF PLOTS: } 16\end{array}$

SUBTYPE: 25
NUIGBER OF PLOTS: 10

SUBTYPE: 27
NUMBER OF PLOTS: 36

$\begin{array}{ll}\text { SUBTYPE: } & 28 \\ \text { NUMBER OF PLOT:: } 61\end{array}$

STD DEV
SUBTYPE: 29
HUTBER OF PLOTS: 25

SUBTYPE: 30
NUMBER OF PLOTS: 25

NUMBER OF PLOTS: 35

SUBTYPE: 32
NUMBER OF PLOTS: 44

SUBTYPE: 34
NUMBER OF PLOTS:

> SPECIES

[^9]TOTAL
STD DEV
\[

$$
\begin{aligned}
& \text { TOTAL } \\
& \text { STD DEV }
\end{aligned}
$$
\]

SUBTYPE: 36
NUABER OF PLOTS: 21
SPECIES

ACER NEGUNDO
ASIMINA TRILOBA
CELTIS LAEVIGATA
CORNUS DRUAMOHDII
FORESTIERA ACUIIINATA
FRAXINUS PENNSYLVANICA
MORUS RUBRA
$-1 O T A L$
STD DEV

SUBTYPE: 38
NUMBER OF PLOTS: 3

SUBTYPE: 40
NUMBER OF PLOTS: 12

[^10]DENSITY
SEEDLINGS

10
0
10
SHRUBS

3916.67
5712.16
SUBTYPE: 41
NUMBER OF PLOTS: 12

SUBTYPE: 42
NUITBER OF PLOTS: 8
SUBTYPE:
NUMBER OF PLOTS:
34

NUMBER OF PLOTS: 24
SAPLINGS
SEEDLINGS

SUBTYPE: 45
HUIIBER OF PLOTS: 15

SUBTYPE: ${ }^{\text {47 }}$
NUMBER OF PLOTS:
17
ECIE

WกNI $\begin{array}{r}\text { OUHJJ } \\ \text { OONOS }\end{array}$

$\cdots \operatorname{mincos}^{n}$
58.8
TY
ACRE
TANCY

∞
-1
\sim
-1
$-\infty$
0
\cdots

SUBTYPE: 49
NUMBER OF PLOTS: 13

91 :S101d $\ddagger 0$ yヨginn
SPECIES
---------.-.
̌
$\substack{a \\ \vdots \\ \vdots \\ 0 \\ 0}$

 56.3 SAPLIHGS

SEEDLINGS

3437.50
5632.86 137.50
202.90 13
TOTAL
STD DEV
ILEX DECIDUA
INDERA BENZO
TAXDIUN DIST
ULHUS AMERICA

خ!

 PERCENT

 SUBCANOPY VINES

setaria geniculata

SMILAX BOHA-NOX	0	0	0	0	0.16	6.3
SOLIDAGO CANADENSIS	0	0	0	0	7.34	25.0
SORGHUM HALEPEYSE	0	0	0	0	6.25	12.5
STACHYS TENUIFOLIA	0	0	0	0	5.31	6.3
ULMUS AMERICANA	0	0	0	0	0.16	6.3
VICIA SP	0	0	0	0	0.16	6.3
VIOLA PAPILIONACEA	0	0	0	0	0.16	6.3
VITIS RIPARIA	37.50	12.5	43.75	18.8	0.16	6.3
XAHTHIUH STRUMARIUM	0	0	0	0	0.31	12.5
TOTAL STD DEV	$\begin{aligned} & 337.50 \\ & 497.83 \end{aligned}$	43.8	$\begin{array}{r} 850.00 \\ 1135.49 \end{array}$	87.5	122.34	100.0

$L \quad$: $107 d \quad \pm 0$ y \quad ghnN
$: \exists d \lambda \perp g \cap S$
SUBTYPE:
NUMBER OF PLOTS: 4

[^11]SPECIES
TOTAL
STD DEV

SヨNIA AdONVO
SPECIES
\[

$$
\begin{aligned}
& \begin{array}{l}
\text { ACALYPHA RHOMBOIDEA } \\
\text { ATIPELDPSYS ARBOREA }
\end{array} \\
& \text { ASCLEPIAS PERENHIIS } \\
& \text { BERCHEHIA.A SCANDENS } \\
& \frac{2}{2} \pi \\
& \begin{array}{l}
\text { ARDIOSPERMUM HALICACABUM } \\
\text { ELTIS LAEVIGATA } \\
\text { EPHALANTHUS OCCIDENTALIS } \\
\text { EEIATIS CRISPA } \\
\text { ICCULUS CGROLINUS } \\
\text { IODIA VIRGIMIANA } \\
\text { LIPTA PROSTRATA } \\
\text { EERSIA LACUHOSA } \\
\text { EERSIA VIRGIINICA } \\
\text { IHDERNIA DUYIA } \\
\text { IPPIA I ANCEOLATA } \\
\text { ALUS CORONARIA } \\
\text { LANERA AQUATICA } \\
\text { UERCUS LYRATA } \\
\text { OXICODENDRON RADICANS }
\end{array} \\
& \text { CYOS ATIGULATUS } \\
& \text { ABRA } \\
& \begin{array}{l}
\text { ICHUM } \\
\text { IUM DIFF }
\end{array} \\
& \stackrel{\Sigma}{2}
\end{aligned}
$$
\]

a
은

STD DEV

$$
00
$$

[^12]| 100.00 | 24.0 | 296.00 | 44.0 | 22.20 | 68.0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0.10 | 4.0 |
| 0 | 0 | 0 | 0 | 2.90 | 40.0 |
| 0 | 0 | 0 | 0 | 0.10 | 4.0 |
| 0 | 0 | 0 | 0 | 0.30 | 12.0 |
| 0 | 0 | 0 | 0 | 0.10 | 4.0 |
| 0 | 0 | 24.00 | 8.0 | 0.30 | 12.0 |
| 0 | 0 | 72.00 | 12.0 | 2.00 | 40.0 |
| 0 | 0 | 52.00 | 8.0 | 0 | 0 |
| 0 | 0 | 96.00 | 24.0 | 0.80 | 12.0 |
| 0 | 0 | 0 | 0 | 0.10 | 4.0 |
| 0 | 0 | 0 | 0 | 0.20 | 8.0 |
| 0 | 0 | 0 | 0 | 0.20 | 8.0 |
| 0 | 0 | 0 | 0 | 0.20 | 8.0 |
| 0 | 0 | 0 | 0 | 0.10 | 4.0 |
| 0 | 0 | 0 | 0 | 0.10 | 4.0 |
| 0 | 0 | 16.00 | 8.0 | 0.30 | 12.0 |
| 0 | 0 | 0 | 0 | 0.10 | 4.0 |
| 0 | 0 | 0 | 0 | 0.20 | 8.0 |
| 0 | 0 | 0 | 0 | 1.70 | 12.0 |
| 84.00 | 24.0 | 40.00 | 12.0 | 1.40 | 16.0 |
| 228.00 369.14 | 52.0 | $\begin{aligned} & 892.00 \\ & 846.03 \end{aligned}$ | 80.0 | 66.10 | 100.0 |

[^13]

$$
i m
$$
MNNMONMNOOMMMONMNMMMMNMNNMMMMMMNONM NvMnun いMー $\rightarrow \mathrm{mm}$

$$
0_{-\infty}^{\sim_{0}^{m}} \underbrace{n}_{n} 000 \frac{0}{0} 0
$$
 $00_{\infty}^{m} 00000_{\infty}^{m} 00000000000000000000000_{\infty}^{m} 0000$
COHS TANCY
$$
m \quad \infty \quad n
$$

$100{\underset{\infty}{m}}_{m}^{m} 00000_{0}^{N} 000000000000000000000000_{0}^{N} 0000$
SPECIES

[^14]

B168
SUBTYPE: 10
NUMBER OF PLOTS: 11

SPECIES

ALTERNANTHERA PHILOXEROIDES
ARTENTISIA SP
 BRUNNICHIA CIRRHOSA
CARYA ILLINOENSIS COMTELINA VIRGINICA CYNODON DACTYLON CYPERUS SP
ECLIPTA PROSTRATA ECLIPTA PROSTRATA
 VIRGINICA ANCEOLATA
DECURRENS RUBELLUS IIPHORATA
SSILIFLORA
OSIOR
PIOR
A RNUUS
AMERICANA
ANADEHSE
TRUMARIUM

 TOTAL
STD DEV CANOPY VINES

$$
\begin{gathered}
-- \\
0 \\
0
\end{gathered}
$$

CANOPY VINES

ER ACRE	CONSTANCY	PER ACEE	CONSTANCY
0	0	0	0
0	0	0	0
10.53	10.5	5.26	5.3
0	0	0	0
0	0	26.32	5.3
0	0	0	0
0	0	36.84	10.5
5.26	5.3	26.32	10.5
0	0	0	0
0	0	0	0
0	0	5.26	5.3
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	84.21	10.5
0	0	52.63	5.3
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
26.32	15.8	257.89	36.8
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	21.05	5.3
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

$$
\begin{aligned}
& \begin{array}{l}
5.3 \\
5.3 \\
\hdashline-1
\end{array} \\
& \begin{array}{l}
0.79 \\
0.13 \\
\hline 69.74
\end{array} \\
& \begin{array}{c}
+ \\
\infty
\end{array} \\
& \begin{array}{l}
515.79 \\
617.53
\end{array} \\
& 0^{m} \infty^{\infty} \\
& 36.8 \\
& \begin{array}{l}
\text { VIOLA PAPILIONACEA } \\
\text { VITIS RIPARIA }
\end{array} \\
& \begin{array}{l}
\text { TOTAL } \\
\text { STD DEV }
\end{array}
\end{aligned}
$$

SUBCANOPY VINES
A
SヨIつヨdS

[^15]JUBTYPE: 14
JUNBER OF PLOTS: 9

NUMTER OF PLOTS: 15

SJIJヨdS

\qquad
00!

B177

$$
\begin{aligned}
& \text { SAMBUCUS CANADENSIS } \\
& \text { SMLIX NIGRA } \\
& \text { SAURURUS CERNUUS } \\
& \text { SENECIO GLABELLUS } \\
& \text { SICYOS AYGULATUS } \\
& \text { SMILAX BJHA-MOX } \\
& \text { SMILAX HISIEA } \\
& \text { SOLIDAGO CANADENSIS } \\
& \text { SPILANTHES AMERICANA } \\
& \text { STACHYS TENUTFOLIA } \\
& \text { TEUCRIUM CANADEHSE } \\
& \text { VICIA SP } \\
& \text { VITISRIPARIA } \\
& \text { XANTHIUNI STRUMARIUM }
\end{aligned}
$$

[^16] SUBCANOPY VINES DENSITY
PER ACRE
 0000000 NNO 00000000000000000 NO SヨNIA גdONBJ DENSITY
PER ACRE

X

SIDENS FRONDOSA
BOEHIERIA CYLIMDRICA
BRUPINICHIA CIRRHOSA
CAIIPSIS RADICANS
COPITELINA CONOUNIS
COT:CIELINA DIFFUSA
COMMELINA VIRGIHICA
CYPERUS SP
ECLIPTA PROSTRATA
EUPHORBIA MACULATA
FORESTIERA ACUITIIHATA
GEUM CASIADENSE
GLEDITSIA TRIACANTHOS
GRATIOLA SP
IPOTOEA SP
IPONOEA LACUNOSA
IPCMOEA PURPUREA
JUSTICIA OVATA
LEERSIA LENTICULARIS
LEERSIA VIRGINICA
LIPPIA LANCEOLATA
LUDNIGIA SP
HATELEA GOMOCARPA
MAZUS JAPCNICUS
MOLLUGO VERTICILLATA
PANICUM SP
PASPALUM FLORIDANUTY
PHYSALIS PUBESCEHS
POPULUS DELTOIDES
POLYGONUM VIRGINIANUM
TOXICODEMDRON RADICANS

SUBTYPE: 19
NU:IBER OF PLOTS: 9

 455.56
671.03 SヨNIA גdONVJ

ENS ITY ER ACRE
0
0
0
155.56
0
0
0
0
0
0
0
0
0
0
0
0
44.44
0
0
155.56
0
355.56
622.72

SPECIES ACALYPHA RHOMBOIDEA ACALYPHA RHOHB
ACER NEGUIHD ACER SACCHARI AMPELOPSIS ARBOREA
 OIG甘y

$$
\begin{aligned}
& \text { CELTIS LAEVIGATA } \\
& \text { COMMELINA VIRGINICA } \\
& \text { IPOHOEA SP } \\
& \text { LAPORTEA CANADENSIS } \\
& \text { LEERSIA VIRGINICA } \\
& \text { LIPPIA LANCEOLATA } \\
& \text { MIKAIIIA SCANDENS } \\
& \text { PHYSALIS PUBESCENS } \\
& \text { PILEA PUNIILA } \\
& \text { TOXICODENORON RADICA } \\
& \text { RUBUS TRIVIALIS } \\
& \text { SICYOS ANGULATUS } \\
& \text { VITIS RIPARIA } \\
& \text { XANTHIUM STRUHARIUM }
\end{aligned}
$$

TOTAL
STD DEV

CANOPY	VIHES	SUECAN	VINES	GROUND	COVER
$\begin{aligned} & \text { ENSITY } \\ & \text { ER ACRE } \end{aligned}$	CONSTANCY	$\begin{aligned} & \text { DENSITY } \\ & \text { PER ACRE } \end{aligned}$	CONSTANCY	$\begin{aligned} & \text { PERCENT } \\ & \text { COVER } \end{aligned}$	CONSTANCY
0	0	0	0	0.19	7.4
14.81	7.4	7.41	3.7	1.67	29.6
0	0	0	0	0.37	14.8
0	0	7.41	3.7	0.09	3.7
0	0	0	0	0.09	5.7
14.81	3.7	225.93	11.1	3.33	25.9
0	0	0	0	1.11	7.4
7.41	7.4	270.37	25．9	7.69	59.3
0	0	0	0	0.09	3.7
0	0	0	0	0.56	22．2
0	0	0	0	0.28	11.1
0	0	0	0	0.83	14.8
0	0	51.85	7.4	0.09	3.7
0	0	0	0	0.09	3.7
0	0	0	0	0.09	3.7
0	0	0	0	5.98	18.5
0	0	29.63	3.7	0.23	11.1
0	0	0	0	0.28	11.1
0	0	0	0	0.09	3.7
0	0	0	0	0.46	18.5
25．93	11.1	40.74	11.1	0.28	11.1
0	0	0	0	14.07	18.5
100.00	25.9	233.33	37.0	5.65	63.0
0	0	0	0	6.67	37.0
0	0	0	0	0.09	3.7
0	0	0	0	1.30	33.3
0	0	0	0	1.67	14.8
0	0	0	0	0.65	7.4
0	0	0	0	0.09	3.7
0	0	0	0	0.09	3.7
0	0	0	0	0.09	3.7
0	0	0	0	0.09	3.7
0	0	0	0	1.39	18.5
0	0	0	0	0.09	3.7
0	0	0	0	0.19	7.4
0	0	0	0	0.46	13.5

[^17]PECIES

SPECIES

[^18]受足

[^19] $0000_{N}^{N 000000000} 0.000000000000000000000$ \pm

\qquad

$1 m$
-

[^20]3188

B192

PERCENT
COVER
anmo o
inninon
ino
ino gunino
SNNNin
onono
0
0
0

$$
00.0
$$

$$
0_{0}^{0} 000_{0}^{0} 0
$$

$$
0 \underset{\sim}{0} 0
$$

$$
00
$$

$$
\begin{aligned}
& \text { DENSITY } \\
& \text { PER ACRE CONST }
\end{aligned}
$$

PER ACRE CONSTANCY

$$
\frac{C R E ~ C O N S T}{0}
$$

$$
0
$$

$$
\begin{aligned}
& 441.67 \\
& 328.79
\end{aligned}
$$

$$
\begin{gathered}
C \\
0
\end{gathered}
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{gathered}
10.7 \\
0 \\
0
\end{gathered}
$$

$$
25.0
$$

\square

\square

ARISAEMA DRACONTIUM
BERCHEMI A SCAIDENS
BIGHONIA CAPREOLATA
BRUNHICHIA CIRRHOSA
CARYA CORDIFORMIS
CARYA LACIHIOSA
CATPSIS RADICANS
CARES SP
CERCIS CANADENSIS
CELTIS LAEVIGATA
CCCCULUS CAROLIUUS
GALACTIA MOHLEYEROCKII
DIOSCIREA QUATEFNATA SPECIES

PLATIERA AQUATICA

$\rightarrow N+\pi$ N

ENSITY
DENSITY CORSTANCY

SUBTYPE: 29
NUMBER OF PLOTS: 25

NUMBER OF PLOTS： 25

SヨIJヨdS

～O
00
 ANITHEHOCISSUS QUINQUEFOLIA TOXICODENDRON RADICAHS RUBUS TRIVIALIS AITBUCUS CANADENSIS SASSAFRAS ALBIDUN
SICYOS ANGULATUS

OLAMUM AVYERICANUM TRADESCANTIA VIRGINIANA IOLA PAPILIONACEA VIOLA VLINS

 ： PERCENT

 CANOPY VINES

 m
m
m
m $\stackrel{-}{4}$ $\stackrel{n}{n} \stackrel{n}{n}$ 000000_{N}^{∞}
SPECIES
－ーーーーーーーーー
CA P PER ACRE

TY
CRE

0
0
0
CANOPY VINES
SUBCANOPY VINES
SUBTYPE: 32
NUIBER OF PLOTS: 44

$$
\begin{aligned}
& m \\
& N
\end{aligned}
$$

$$
\begin{array}{ll}
+ & t \\
0 & \infty
\end{array}
$$

$$
\begin{aligned}
& 0 \infty \\
& \infty 0
\end{aligned}
$$

$$
\begin{aligned}
& m \sigma \\
& m m \\
& n \\
& n=1
\end{aligned}
$$

TOTAL
STD DEV

$$
\begin{aligned}
& \text { GLEDITSIA TRIACINTHOS } \\
& \text { ILEX DECIDUA } \\
& \text { IPOPGEA S? } \\
& \text { IPDOOA ICUYDSA }
\end{aligned}
$$

解
TOXICODENDROH RADICANS

5
5
2

$6: 5107 d$ Jo ชヨgwnN

$$
000000000000000 \sim 0000 \mathrm{~N}
$$

$$
\begin{array}{ll}
444.44 & 55.6 \\
458.56 &
\end{array}
$$

$$
100.0
$$

-----------------RISAEHA DRACOHTIUH1
STER SIMPLEX
CARYA ILLINOENSIS
CARYA LACIHIOSA
CARYA LACIHIOSA
CAIPSIS RADICANS
CAIMPSS RADICANS
CELTIS LAEVIGATA
COCCULUS CAROLINUS
OCCULUS CAROLINUS
ECUITARIA BARBARA
ACTUCA CANADEIISIS
APORTEA CANADENSIS
MENISPERY:LM CAHADEHSE
PANICUM SP
PARTHENOCISSUS QUINQUEFOLIA
CLYGCHUM IROIHEANU.Y

RUELLIA STREPENS
SIIILAX HISPIDA TRIPHORA TRIANTHOPHDRA URTICA DIOICA UITIS RIPARIA
TOTAL
STD DEV

$\stackrel{H}{\mathrm{~N}}$

APORTEA CANADENSIS
 PILEA PUPIILA
TOXICODEIIDRON RADICANS

SAMBUCUS CAMADEISSIS
SANICULA CAMADENSIS
SANICULA CARIADENOLIA
ULMUS AMERICAN
VITIS RIPARIA
VIII nif An土

$$
\begin{aligned}
& \text { TOTAL } \\
& \text { STD DEV }
\end{aligned}
$$

「くい

$m-4$ mm $a n$
4π

[^21] $\stackrel{r}{\infty}$

\[

$$
\begin{aligned}
& \text { EAREX SP } \\
& \text { SELTIS LAEVIGATA }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { ELTIS LAEVIGATA } \\
& \text { ZHENOPODIUM ALBUM }
\end{aligned}
$$

$$
\begin{aligned}
& \text { HENUPGDIUM ALBUM } \\
& \text { CLEMATIS CRISPA } \\
& \text { COCMUHS CAROITNHG }
\end{aligned}
$$

$$
\begin{aligned}
& \text { GOCCULUS CAROLINUS } \\
& \therefore O R I U S ~ D R U Y H O N D I I ~
\end{aligned}
$$

$$
\begin{aligned}
& \text { EORNUS DRUH1HONDII } \\
& \text { EUPATORIUH RUGOSUM }
\end{aligned}
$$

$$
\begin{aligned}
& \text { FORESTIERA ACUMIHATA } \\
& \text { FRAXINUS PENHSYLVANICA } \\
& \text { GEUM CANADEHSE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { IEUM CANADENEE } \\
& \text { IPOMOEA LACUHOSA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ACTUCA CANADENSIS } \\
& \text { EERSIA LENTICULARIS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { LEERSIA LENTICULARIS } \\
& \text { LEERSIA VIRGINICA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { LEERSIA VIRGINICA } \\
& \text { LINDERNIA DUEIA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MORUS RUBRA } \\
& \text { PARTHENOCISSUS QUIHQUEFOLIA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { POLYGONUM VIRGINIANUM } \\
& \text { TOXICODENDRON RADICAINS } \\
& \text { DHRUG ED }
\end{aligned}
$$

 \qquad TOTAL
STD DEV
$\begin{array}{ll}\text { SUETYPE: } & 37 \\ \text { NUMBER OF PLOTS: } & 15\end{array}$
Co Mo 0 o 100 or --o 0 -i on mmm -

$$
\begin{aligned}
& \text { YEGUNDO } \\
& \text { SACCHARINUM } \\
& \text { OPSIS ARBOREA } \\
& \text { OPSIS CORDATA } \\
& \text { SIMPLEX } \\
& \text { HIA CAPFEOLATA } \\
& \text { ERIA CYLIHDRICA } \\
& \text { ICHIA CIRRHOSA } \\
& \text { OSPERHUN HALICACABUM } \\
& \text { ILLINOEHSIS } \\
& \text { IS RADICAHS } \\
& \text { SP }
\end{aligned}
$$

OUNHS

$$
\begin{aligned}
& \text { TOTAL } \\
& \text { STD DEV }
\end{aligned}
$$

SUBTYPE: 39
NUMBER OF PLOTS:
CANOPY VINES

SPECIES	CANOP DENSITY PER ACRE	VINES CONSTANCY	SUBCAN DENSITY PER ACRE	VINES CONSTANCY	GROUHD PERCENT COVER	COVER COHSTANCY
CAREX SP	0	0	0	0	5.00	33.3
COMMELINA VIRGINICA	0	0	0	0	0.83	33.3
ELEPHANTOPUS CAROLINIANUS	0	0	3	0	0.83	33.3
GALIUM APARINE	0	0	0	0	0.83	33.3
gEUM CAlladense	0	0	0	0	0.83	33.3
LEERSIA VIRGIMICA	0	0	0	0	6.67	100.0
PARTHENOCISSUS QUINQUEFOLIA	166.67	66.7	1200.00	100.0	0	0
POLYGOIIUM VIRGINIARUM	0	0	0	0	37.50	100.0
TOXICODENDROA RADICANS	100.00	33.3	133.33	33.3	0	30
RUZUS TRIVIALIS	0	0	0	0	5.00	33.3
SANICULA CAidADENSIS	0	0	0	0	18.33	100.0
SMILAX HISPIDA	0	0	0	0	0.33	33.3
TREPOCARPUS AETHUSAE	0	0	0	0	5.00	33.3
URTICA CHAMAEDRYOIDES	0	0	0	0	1.67	66.7
VIOLA SP	0	0	0	0	0.83	33.3
VITIS RIPARIA	33.33	33.3	0	0	0.83	33.3
$\begin{aligned} & \text { TOTAL } \\ & \text { STD DEV } \end{aligned}$	$\begin{aligned} & 300.00 \\ & 300.00 \end{aligned}$	66.7	$\begin{aligned} & 1333.33 \\ & 1429.45 \end{aligned}$	100.0	85.00	100.0

ACER NEGUNDO ACER SACCHARINUM
AMPELOPSIS ARBOREA
AMPELOPSIS CORDATA
ARISTOLOCHIA SERPENTARIA
ASIMINA TRILOBA
ASTER SIMPLEX
BIGIUNIA CAPREOLATA
BOEHiAEPIA CYLINDRICA
BRUNNICHIA CIRRIIUSA
CAllPSIS RADICATIS
CAREX SP
CELTIS LAEVIGATA
CCCCULUS CAROLINUS
CRYPTOTAEHIA CANADENSIS
ELEPHANTOPUS CAROLINIANUS
FORESTIERA ACUIIINATA
GALIUM APARINE
GEUP1 CAHADENSE
LACTUCA CAllADENSIS
LAPORTEA CANADENSIS
LEERSIA LENTICULARIS
LEERSIA VIRGINICA
MATELEA GOHOCARPA
MENISPERMUM CANADENSE
MORUS RUERA
OXALIS STRICTA
PANICUM SP
PARTHENOCISSUS QUINQUEFOLIA
POLYGONUM VIRGINIANUM
TOXICODENDRON RADICANS
RUBUS SP
RUELLIA STREPENS
RUBUS TRIVIALIS
SAUFURUS CERIUUUS
SMILAX BONA-NOX

$$
0000000 \underset{\sim}{n} \underset{\sim}{n}: c
$$

$$
\begin{array}{r}
0000000 \sim \\
\\
\sim
\end{array}
$$

$$
00000000_{\infty}^{m}
$$

$$
\begin{aligned}
& m a \\
& m m \\
& \infty 0 \\
& n M
\end{aligned}
$$

\square

[^22]AL
品品 $\stackrel{n}{n}$ 112.5 PERCENT
CDVER
0
0
0
0
0
$\underset{\sim}{n} \underset{\sim}{n}$

 AMPELOPSIS ARBOREA
AIIPELOPSIS CORDATA
ASTER SIPIPLEX AMPELOPSIS ARBOREA
ATIPELOPSIS CORDATA
ASTER SIPIPLEX

 TOTAL
STD DEV

CANOPY	VINES	SUBCANO	VINES	GROUND	COVER
ISITY		DENSITY		PERCENT	
R ACRE	CONSTANCY	PER ACRE	CONSTANCY	COVER	CONSTANCY
0	0	0	0	0.22	8.8
0	0	0	0	0.07	2.9
0	0	0	0	0.29	11.8
0	0	0	0	0.07	2.9
2.94	2.9	0	0	0	0
0	0	0	0	0.07	2.9
0	0	0	0	0.15	5.9
0	0	0	0	0.66	11.8
0	0	0	0	3.75	11.8
0	0	0	0	5.81	35.3
0	0	252.94	41.2	4.34	44.1
0	0	8.82	2.9	3.75	35.3
8.82	8.8	161.76	17.6	10.22	29.4
0	0	0	0	0.07	2.9
0	0	0	0	1.32	11.8
0	0	0	0	1.10	2.9
23.53	5.9	32.35	8.8	0.15	5.9
0	0	0	0	0.29	11.8
0	0	0	0	0.07	2.9
0	0	0	0	0.15	5.9
0	0	0	0	0.15	5.9
0	0	0	0	0.07	2.9
0	0	0	0	4.04	8.8
0	0	0	0	0.07	2.9
0	0	0	0	0.22	8.8
0	0	0	0	6.03	17.6
0	0	0	0	1.69	11.8
0	0	0	0	3.60	20.6
0	0	0	0	5.15	11.3
0	0	0	0	0.22	8.8
0	0	0	0	0.15	5.9
0	0	0	0	1.10	14.7
0	0	0	0	0.07	2.9
0	0	0	0	0.07	2.9
0	0	0	0	0.07	2.9
0	0	0	0	5.22	14.7

	ACALYPHA RHOMBOIDEA
	ACALYPHA OSTRYAEFOLIA
	ACER SACCHARINUM
	AMBROSIA TRIFIDA
	AIPPELDPSIS CORDATA
	AMARANTHUS PALMERI
	ASTER SIMPLEX
	BIDENS SP
	BIDENS FRONDOSA
	BOEHMERIA CYLINDRICA
	BRUNNICHIA CIRRHOSA
	CARDIOSPERMUT HALICACABUM
	CAMPSIS RADICAHS
	CAREX SP
	こELTIS LAEVIGATA
	CEPHALANTHUS OCCIDENTALIS
	cocculus carolinus
	COMMELINA DIFFUSA
	COMMELINA VIRGINICA
	CUSCUTA SP
	CYNANCHUM LAEVE
	CYPERUS STRIGOSUS
	CYPERUS ROTUNDUS
	ECLIPTA PROSTRATA
	FORESTIERA ACUSIINATA
	HIBISCUS MILITARIS
	IPGILOEA SP
	IPOMOEA LACUHOSA
	LEERSIA LENTICULARIS
	LEERSIA VIRGINICA
	LINDERNIA DUBIA
	LIPPIA LANCEOLATA
	mollugo verticillata
	PANICUM RIGIDULUM
	PAMICUM SP
	Pilea pumila

$\begin{array}{ll}\text { SUBTYPE: } & 44 \\ \text { NUIIBER OF PLOTS: } & 24\end{array}$

	CANOPY VINES		SUBCANOPY VINES		GROUND COVER	
SPECIES	DENSITY PER ACRE	COMSTANCY	$\begin{aligned} & \text { DENSITY } \\ & \text { PER ACRE } \end{aligned}$	CONSTANCY	$\begin{aligned} & \text { PERCENT } \\ & \text { COVER } \end{aligned}$	COHSTANCY
ACALYPHA RHO:IBOIDEA	0	0	0	0	0.10	4.2
ACER SACCHARINUM	0	0	0	0	0.42	16.7
AMPELOPSIS AREOREA	0	0	4.17	4.2	0.73	8.3
ASIMINA TRILOBA	0	0	0	0	0.21	8.3
ASTER SIMPLEX	0	0	0	0	3.33	16.7
BERCHEMIA SCANDENS	0	0	37.50	16.7	0.10	4.2
BIDENS FRONDOSA	0	0	0	0	0.63	4.2
EOEHIMERIA CYLINDRICA	0	0	0	0	2.92	16.7
BRUHNICHIA CIPRHOSA	4.17	4.2	25.00	20.8	1.35	33.3
CARYA ILLINOENSIS	0	0	0	0	0.10	4.2
CARYA LACINIUSA	0	0	0	0	0.10	4.2
CAMPSIS RADICANS	8.33	8.3	62.50	20.8	4.69	66.7
CELTIS LAEVIGATA	0	0	0	0	2.19	45.8
COCCULUS CAROLINUS	0	0	41.67	8.3	0.31	12.5
CRYPTOTAENIA CANADENSIS	0	0	0	0	0.63	4.2
CYNANCHUM LAEVE	0	0	0	0	0.10	4.2
EUOHYMIUS AllERICANUS	0	0	0	0	0.10	4.2
FORESTIERA ACUMINATA	0	0	0	0	0.21	8.3
FRAXITUS PENNSYLVANICA	0	0	0	0	0.10	4.2
GEUM CAHADENSE	0	0	0	0	3. 21	8.3
IMPATIENS CAFENSIS	0	0	0	0	0.73	8.3
IPORIOEA SP	0	0	0	0	0.10	4.2
IPOI:OEA LACUNOSA	0	0	0	0	0.63	25.0
LACTUCA CANADE:'SIS	0	0	0	0	0.73	29.2
LAPORTEA CANADEISSIS	0	0	0	0	10.31	20.8
LEERSIA LEHTICULARIS	0	0	0	0	0.10	4.2
LIHDERA BEHZOIN	0	0	0	0	0.83	12.5
LONICERA JAPOHICA	0	0	41.67	12.5	3.23	12.5
MENISPERMUM CANADENSE	0	0	0	0	0.10	4.2
MIKANIA SCAHDENS	0	0	8.33	4.2	0	0
MORUS RUBRA	0	0	0	0	0.21	8.3
PASSIFLORA LUTEA	0	0	8.33	4.2	0	0
PANICUY SP	0	0	0	0	0.63	25.0
PARTHENOCISSUS QUINQUEFOLIA	75.00	29.2	425.00	58.3	2.71	45.8
PHYTOLACCA AMERICANA	0	0	0	0	0.21	8.3
PILEA PUilila	0	0	0	0	1.88	16.7

TREPOCARPUS AETHUSAE
VIOLA SP
VIOLA PAFILIONACEA
VITIS RIPARIA
VITIS ROTUNDIFOLIA
STD DEV

 mooonoonoo 000000000000000010

 1094.12
434.66
 $\begin{array}{ll}\infty & \\ \cdots & \\ \cdots & \end{array}$ $1!$ m 20

PARTHENOCISSUS QUINQUEFOLIA
PILEA PUMILA
－ロ 응 POLYGOHUM VIRGINIANUM
QUERCUS NUTTALLII
TOXICODEHDRON RADICANS RUELLIA STREPENS
RUBUS TRIVIALIS
SAURURUS CERNUUS
SENECIO GLABELLUS
SICYOS ANGULATUS
SMILAX BONA－ROX
SMILAX HISPIDA
SMILAX ROTUNDIFOLIA
SOLANUM AMERICANUM
TAXDDIUM DISTICHUM
TEUCRIUM CANADENSE
TRACHELOSPERMUM DIFFORME NIANA
$\frac{5}{2}$ ゅめ

SPAPILIONACEA PAPILIONACEA
PALMATA
RIPARIA －シ － そしむはひのに
 TOTAL
STD DEV
SUBTYPE: 47
NUMBER OF PLOTS: 17

ACER SACCHARINUM
AMPELOPSIS ARBOREA
ANPELOPSIS CORDATA
ASTER SIVPLEX
BERCHEMTA SCANDENS
BIGHONIA CAPREOLATA
BOEHMERIA CYLINDRICA
BRUNNICHIA CIRRHOSA
CARYA ILLINOENSIS
CAMPSIS RADICANS
CELTIS LAEVIGATA
COCCULUS CAROLINUS
COMNELINA VIRGINICA
CUSCUTA SP
CYNANCHUN
HUABER OF PLOTS: 13

SPECIES	$\begin{aligned} & \text { CANOF } \\ & \text { DENSITYY } \\ & \text { PER A.CRE } \end{aligned}$	VINES CONSTANCY	SUBCANO DENSITY PER ACRE	VINES CONSTANCY	GROUND PERCENT COVER	COVER CONSTANCY
ACALYPHA RHOMBOIDEA	0	0	0	0	0.38	15.4
ACER NEGUNDO	0	0	0	0	0.19	7.7
AMPELOPSIS ARBOREA	15.38	7.7	30.77	7.7	1.73	30.8
AMPELOPSIS CORDATA	0	0	7.69	7.7	0	0
ASTER SIMPLEX	0	0	0	0	7.12	30.8
BOEHMERIA CYLINDRICA	0	0	0	0	0.19	7.7
BRUNMICHIA CIRRHOSA	0	0	76.92	23.1	0.77	30.8
CARDIJSPERMUM HALICACABUM	0	0	0	0	0.38	15.4
CAMPSIS RADICANS	0	0	61.54	15.4	1. 54	23.1
CELTIS LAEVIGATA	0	0	0	0	0.19	7.7
ECLIPTA PROSTRATA	0	0	0	0	0.19	7.7
FORESTIERA ACUMINATA	0	0	0	0	1.35	15.4
IPOMOEA LACUNOSA	0	0	0	0	0.58	23.1
LACTUCA CANADENSIS	0	0	0	0	0.19	7.7
LAPORTEA CANADENSIS	0	0	0	0	0.19	7.7
LEERSIA LENTICULARIS	0	0	0	0	1.54	61.5
LEERSIA VIRGINICA	0	0	0	0	0.19	7.7
LIPPIA LANCEOLATA	0	0	0	0	0.19	7.7
MORUS RUBRA	0	0	0	0	0.19	7.7
TOXICODENDRON RADICANS	0	0	192.31	7.7	0.58	23.1
RUBUS SP	0	0	0	0	25.38	61.5
RUBUS TRIVIALIS	0	0	0	0	1.35	15.4
SALIX INTERIOR	0	0	0	0	0.19	7.7
SAURURUS CERNUUS	0	0	0	0	5.00	15.4
STACHYS TENUIFOLIA	0	0	0	0	0.19	7.7
TRADESCANTIA VIRGINIANA	0	0	0	0	2.88	7.7
UNKNOWN FORB	0	0	0	0	0.58 0.19	23.1
URTICA DIOICA	0	0	0	0	3.27	53.8
VIOLA RAFFINESQUE	0	0	0	0	0.19	7.7
VITIS RIPARIA	0	0	0	0	0.38	15.4
TOTAL STD DEV	$\begin{aligned} & 15.38 \\ & 55.47 \end{aligned}$	7.7	$\begin{aligned} & 369.23 \\ & 759.81 \end{aligned}$	46.2	57.31	100.0

SPECIES

\qquad

ARUNDINARIA GIGANTEA

IDENS ARISTOSA

BRUNNICHIA CIRRHCSA

AMPSIS RADICANS
ELTIS LAEVIGATA
OCCULUS CAROLINUS

MENISPERMUI CANADENSE
PARTHENOCISSUS QUIHQUEFOLIA
PILEA PUMILA
POLYGONUM VIRGINIANUM
QUERCUS LYRATA

3
0
0
0
0
0
0
0
0
0

TAXODIUM DISTICHUM

VITIS RIPARIA
䓘
SUBTYPE： 51
NUIABER OF PLOTS： 18

SPECIES

No	－	N	∞	N	m	－	∞
－10							
N	0	N	N	N	m	un	N－1
	\cdots				\checkmark	\checkmark	

のッドッいなくなくた

$$
\begin{aligned}
& \text { 品丘 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 足 }
\end{aligned}
$$

SUBTYPE:
HUABER OF PLOTS: 16

Statistic	CANOPY HT (FT)	$\begin{aligned} & \text { CAHOPY } \\ & \text { COVER } \\ & \text { (\%) } \end{aligned}$	UNDERSTORY HEIGHT (FT)	UNDERSTORY COVER (\%)	$\begin{gathered} \text { GROUND } \\ \text { VEGETATION } \\ \text { HT (FT) } \end{gathered}$	$\begin{aligned} & \text { GROUND } \\ & \text { VEGTATION } \\ & \text { COER }(\%) \end{aligned}$
average	51.83	59.53	7.69	25.16	2.75	81.88
STD DEV	10.78	20.58	4.19	20.11	1.39	25.06
MAXIMUM	65.00	97.50	14.00	62.50	5.00	97.50
minimum	35.00	37.50	0.00	0.00	1.00	15.00

STATISTIC	DEBRIS PILES , ACRE	$\begin{gathered} \text { LOGS } \\ , ~ A C R E \end{gathered}$	$\begin{aligned} & \text { STUMPS } \\ & / \text { ACRE } \end{aligned}$	$\begin{aligned} & \text { SNAGS } \\ & / \text { ACRE } \end{aligned}$	$\begin{gathered} \text { POOLSITES } \\ \text { ACRE } \end{gathered}$
Average	1.25	8.13	0.00	6.25	4.38
STD DEV	3.42	10.47	0.00	7.19	7.27
MAXIMUM	10.00	30.00	0.00	20.00	20.00
MINIMUM	0.00	0.00	0.00	0.00	0.00

SUBTYPE:
NUMBER OF PLOTS:

Statistic	CANOPY HT (FT)	CANOPY COVER (\%)	UNDERSTORY	UNDERSTORY COVER (\%)	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \\ & \text { HT (FT) } \end{aligned}$	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \\ & \text { COVER (\%) } \end{aligned}$
average	32.86	93.93	3.86	11.43	1.86	62.14
STD DEV	13.18	6.10	5.05	23.18	0.90	23.34
maximum	50.00	97.50	12.00	62.50	3.00	85.00
minimum	20.00	85.00	0.00	0.00	1.00	15.00

STATISTIC	$\begin{aligned} & \text { DEBRIS } \\ & \text { PILES } \\ & \text { ACRE } \end{aligned}$	$\begin{aligned} & \text { LOGS } \\ & \hline \text { ACRE } \end{aligned}$	STUNPS , ACRE	SNAGS / ACRE	$\begin{gathered} \text { POOLSITES } \\ \text { ACRE } \end{gathered}$
average	8.57	1.43	0.00	1.43	12.86
STD DEV	10.69	3.78	0.00	3.78	11.13
MAXIMUM	20.00	10.00	0.00	10.00	30.00
MINIMUM	0.00	0.00	0.00	0.00	0.00

SUBTYPE: $\quad 3$
NUPIBER OF PLOTS: 4

[^23]

$\begin{array}{ll}\text { GROUND } & \text { GROUND } \\ \text { VEGETATION } & \text { VEGETATION }\end{array}$
no 0 o
Nin
min
-

COVE 1
DEBRIS
LOGS STUMPS SHAGS POOLSITES ACRE
.50
.62
.00
.00 1 Nóo
\qquad
\qquad

- 0
 OいO
1
1
1
1
1
1
1
w
व
<
1
0000
0000
0000
$10 N O O$
1000
1000
0 1 Noo
1 नNo
足
mineo
ont?
omnti
HNOM
AVERAGE
STD DEV
MAXIMUM
MINIMUM
SUBTYPE: 4
$\begin{array}{lr}\text { AVERAGE } & 40.56 \\ \text { STD DEV } & 17.93 \\ \text { MAXIMUM } & 75.00 \\ \text { MINIMUM } & 20.00\end{array}$

Statistic	CANDPY HT (FT)	CANOPY COVER (\%)	UNDERSTORY HEIGHT (FT)	UNDERSTORY COVER (\%)	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \\ & \text { HT (FT) } \end{aligned}$	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \\ & \text { COVER (\%) } \end{aligned}$
average	40.56	58.89	7.44	30.83	0.97	50.00
STD DEV	17.93	34.30	6.39	39.59	0.68	36.93
maximum	75.00	97.50	18.00	97.50	2.00	35.00
MINIMUM	20.00	0.00	0.00	0.00	0.25	2.50

StATISTIC	DEBRIS PILES / ACRE	$\stackrel{10 G 5}{{ }^{\text {ACPE }}}$	STUMPS	SNAGS	POOLSITES
Average	12.22	27.78	6.67	3.33	4.44
STD DEV	12.02	16.41	10.00	5.00	5.27
maximum	30.00	60.00	20.00	10.00	10.00
MIMIMUM	0.00	10.00	0.00	0.00	0.00

SUBTYPE: 5
NUMBER OF PLOTS: 25

SUBTYPE:
NUAMER OF PLOTS: 25

STATISTIC	$\begin{aligned} & \text { DEBRIS } \\ & \text { PILES } \end{aligned}$ ACRE	$\begin{aligned} & \text { LOGS } \\ & \hline \text { ACRE } \end{aligned}$	STUMPS / ACRE	$\begin{aligned} & \text { SNAGS } \\ & / \text { ACRE } \end{aligned}$	$\begin{gathered} \text { POOLSITES } \\ \text { ACPE } \end{gathered}$
AVERAGE	5.60	16.80	1.20	10.80	14.40
STD DEV	8.21	19.52	4.40	11.52	12.61
Maximum	30.00	70.00	20.00	30.00	40.00
MINIMUM	0.00	0.00	0.00	0.00	0.00

SUBTYPE: 10
NUMBER OF PLOTS: 11 $\begin{array}{cl}\text { GROUND } & \text { GROUND } \\ \text { VEGETATION } & \text { VEGETATION } \\ \text { HT }(F T) & \text { COVER }(\%)\end{array}$
 >1 $\begin{array}{ll}1 & m \\ \vdots \\ \vdots \\ 1 & - \\ 1 \\ 1 & \end{array}$
nmo
Nó
ino न-mmo

SUBTYPE: 11
NUMBER OF PLOTS: 7

$\begin{array}{ll}\text { SUBTYPE: } 14 \\ \text { NUMBER OF PLOTS: } & 9\end{array}$

STATISTIC	$\begin{aligned} & \text { CANOPY } \\ & \text { HT (FT) } \end{aligned}$	$\begin{aligned} & \text { CANOPY } \\ & \text { CQVER } \\ & (\%) \end{aligned}$	UNDERSTORY HEIGHT (FT)	URDERSTORY COVER (\%)	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \\ & \text { HT (FT) } \end{aligned}$	GROUND VEGETATIDN COVER (\%)
AVERAGE	36.67	80.00	8.89	27.22	2.44	75.00
STD DEV	13.23	9.92	5.30	20.37	0.73	30.39
MAXIMUM	50.00	85.00	15.00	62.50	3.00	97.50
MINIMUN	20.00	62.50	0.00	0.00	1.00	15.00

STATISTIC	DEBRIS PILES / ACRE	LOGS	STUMPS / ACRE	$\begin{aligned} & \text { SNAGS } \\ & / \text { ACRE } \end{aligned}$	POOLSITES $/ A C R E$
AVERAGE	5.56	17.78	4.44	2.22	7.78
STD DEV	13.33	24.38	8.82	6.67	6.67
MAXIMUM	40.00	70.00	20.00	20.00	20.00
MINIMUM	0.00	0.00	0.00	0.90	0.00

SUBTYPE: 15
HUIIBER OF P!OTS: 15

STATISTIC	CANOPY $\mathrm{HT}(\mathrm{FT})$	CAHOPY COVER (\%)	UNDERSTORY HEIGHT (FT)	UNDERSTORY COVER (\%)	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \\ & \text { HT (FT) } \end{aligned}$	GPOUND vegetation COVER (\%)
AVERAGE	57.67	85.33	8.13	13.67	1.13	51.50
Stid DEV	6.78	16.25	6.98	18.59	0.71	34.93
Maximium	65.00	97.50	20.00	62.50	2.00	97.50
MIHIMUM	40.00	37.50	0.00	0.00	0.25	2.50

STATISTIC	DEBRIS PILES / ACRE	LOGS	STUMPS 1 ACRE	$\begin{aligned} & \text { SNAGS } \\ & / \text { ACRE } \end{aligned}$	$\begin{gathered} \text { POOLSITES } \\ \text { ACRE } \end{gathered}$
AVERAGE	3.33	20.67	0.67	8.00	6.67
STO DEV	4.83	45.59	2.58	8.62	7.24
MAXIMUM	10.00	180.00	10.00	20.00	20.00
MINIMUM	0.00	0.00	0.00	0.00	0.00

SUBTYPE: 16
NUMBER OF PLOTS: 32

STATISTIC	DEBRIS PILES / ACRE	$\begin{aligned} & \text { LOGS } \\ & , ~ A C R E \end{aligned}$	NUMBER STUMPS / ACRE	$\begin{aligned} & \text { SNAGS } \\ & / \text { ACRE } \end{aligned}$	$\begin{gathered} \text { POOLSITES } \\ \text { ACRE } \end{gathered}$
AVERAGE	5.00	18.13	4.69	5.31	10.94
STD DEV	6.72	16.35	8.03	7.18	6.89
MAXIMUM	20.00	70.00	30.00	30.00	20.00
MINIMUM	0.00	0.00	0.00	0.00	0.00

15
SUBTYPE: 17
NUMBER OF PLOTS:

STATISTIC	CANOPY HT (FT)	CANOPY COVER (\%)	UNDERSTORY HEIGHT (FT)	UNDERSTORY COVER (\%)	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \\ & \text { HT (F } \end{aligned}$	GROUND VEGETATION COVER (\%)
AVERAGE	56.00	73.33	6.27	5.33	1.28	37.17
STD DEV	19.01	20.52	8.22	7.13	1.12	39.84
MaXitiun	85.00	97.50	25.00	15.00	4.00	97.50
MINIMUM	30.00	37.50	0.00	0.00	0.25	0.00

STATISTIC	$\begin{aligned} & \text { DEBRIS } \\ & \text { PILES } \\ & \text { ACRE } \end{aligned}$	$\begin{aligned} & \text { LOGS } \\ & \text { ACRE } \end{aligned}$	STUMPS / ACRE	$\begin{aligned} & \text { SNAGS } \\ & / \text { ACRE } \end{aligned}$	$\begin{aligned} & \text { POOLSITES } \\ & \hline \text { ACRE } \end{aligned}$
AVERAGE	12.00	12.67	2.67	6.67	43.33
STD DEV	13.73	20.52	7.99	13.45	57.65
MAXIMUM	40.00	60.00	30.00	50.00	180.00
MINIMUM	0.00	0.00	0.00	0.00	0.00

SUBTYPE: 18
NUMBER OF PLOT

SUBTYPE: 19
NUMBER OF PLOTS: 9

85

NUMBER OF FLOTS: 64

STATISTIC	$\begin{aligned} & \text { CANOPY } \\ & \text { HT (FT) } \end{aligned}$	CANOPY COVER (\%)	UNDERSTORY HEIGHT (FT)	UNDERSTORY CDVER (\%)	$\begin{gathered} \text { GROUND } \\ \text { VEGETATION } \\ \text { HT (FT) } \end{gathered}$	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \\ & \text { COVER }(\%) \end{aligned}$
AVERAGE	69.22	82.85	10.28	21.05	1.26	43.55
STD DEV	22.49	14.87	7.57	27.26	0.75	27.78
MAXIMUM	110.00	97.50	30.00	97.50	4.00	97.50
MINIMUM	30.00	37.50	0.00	0.00	0.25	2.50

STATISTIC	$\begin{aligned} & \text { DEBRIS } \\ & \text { PILES } \\ & \text { / ACRE } \end{aligned}$	$\begin{aligned} & \text { LOGS } \\ & / \text { ACRE } \end{aligned}$	STUMPS / ACRE	SNAGS , ACRE	$\begin{gathered} \text { POOLSITES } \\ \text { ACRE } \end{gathered}$
AVERAGE	6.41	19.69	3.44	6.56	9.06
STD DEV	8.04	19.19	6.48	7.81	9.71
MAXIMUM	40.00	90.00	30.00	30.00	40.00
MINIMUM	0.00	0.00	0.00	0.00	0.00

StATISTIC	CANOPY HT (FT)	CANOPY COVER (\%)	UNDERSTORY HEICHT (FT)	UNDERSTORY COVER $(\%)$	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \\ & \text { HT (FT) } \end{aligned}$	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \\ & \text { COVER (} \% \text {) } \end{aligned}$
average	58.75	88.28	9.00	27.81	0.97	25.47
STD DEV	21.25	9.21	6.61	31.17	0.79	29.7
MAXIMUM	95.00	97.50	20.00	85.00	3.00	97
MINIMUM	30.00	62.50	0.00	0.00	0.25	2.,

STATISTIC	$\begin{aligned} & \text { DEBRIS } \\ & \text { PILES } \\ & \text { / ACRE } \end{aligned}$, LOGS	NUMBER STUMPS / ACRE	SNAGS / ACRE	POOLSITES / ACRE
average	7.50	31.88	13.13	10.00	17.50
STD DEV	9.31	32.29	14.93	14.61	8.56
maxinum	20.00	100.00	40.00	50.00	40.00
Minimum	0.00	0.00	0.00	0.00	10.00

$\begin{array}{ll}\text { SUBTYPE: } & 24 \\ \text { NUMBER OF PLOTS: } & 14\end{array}$
$\begin{array}{lr}-7 V---17 \\ \text { AVERAGE } & 77.14 \\ \text { STD DEV } & 18.78 \\ \text { MAXIMUM } & 100.00 \\ \text { MINIMUM } & 40.00\end{array}$
(\%) $\% \exists 100$
MOI $1 \forall 1 \exists 9 \exists A$
QNOOdS
tuog
bun?
mañ
mma 1
1
1
1
1
1
1
1
1
1
1
1NHOO anon
án in $m m \infty$
$1 \rightarrow$

SUBTYPE:
NUMBER OF PLOTS: 12

STATISTIC	$\begin{aligned} & \text { CANOPY } \\ & \text { HT (FT) } \end{aligned}$	CANDPY COVER (\%)	UNDERSTORY HEIGHT (FT)	UNDERSTORY COVER (\%)	$\begin{gathered} \text { GROUND } \\ \text { VEGETATION } \\ \text { HT (FT) } \end{gathered}$	GROUND VEGETATION COVER (\%)
	62.50	96.46	12.17	41.04	0.96	38.13
STD DEV	13.90	3.61	5.34	33.79	0.44	35.58
MAXIMUM	75.00	97.50	20.00	85.00	2.00	85.00
MINIMUM	40.00	85.60	5.00	2.50	0.25	2.50

STATISTIC	DEBRIS PILES / ACRE	$\begin{aligned} & \text { LOGS } \\ & \hline \quad A C R E \end{aligned}$	STUMPS 1 ACRE	SNAGS , ACRE	$\begin{gathered} \text { POOLSITES } \\ \hline \text { ACRE } \end{gathered}$
		19.17	7.50	10.83	7.50
AVEFAGE STD DEV	6.22	15.05	8.66	11.65	6.22
MAXIMUM	20.00	50.00	20.00	30.00	20.00
MINIMUM	0.00	0.00	0.00	0.00	0.00

SUBTYPE: ${ }_{\text {NUMBER }}$ OF PLOTS: 36								
STATISTIC	CANOPY	$\begin{aligned} & \text { CANOPY } \\ & \text { COVER } \\ & (\%) \end{aligned}$	UNDERSTORY HEIGHT (FT)	UNDERSTORY COVER (\%)		$\begin{gathered} \text { GPOUND } \\ \text { VEGETATION } \\ \text { HT (FI) } \end{gathered}$		$\begin{aligned} & \text { VEGOUND } \\ & \text { VETATION } \\ & \text { COVER } \% \text { (} \end{aligned}$
AVERAGE MaA IHUH MINIMUM	58.59 17.36 110.00 35.00	89.55 77.61 97.50 62.50	7.82 6.52 20.00 0.00	10.77 14.31 62.50 0.00		1.03 0.67 3.00 0.25		43.27 32.55 97 2.50 2.50
STATISTIC		DEBRIS PILES /ACRE	- ${ }_{\text {LOGS }}^{\text {ack }}$	stumps , ACRE	SNAGS		$\begin{aligned} & \text { POOLSITE } \\ & \hline \end{aligned}$	
average STD DEV minimum		6.67 8.98 30.00 0.00	27.44 20.99 80.00 0.00	1.54 4.32 20.00 0.00	8.9 10.7 50.7 0.0		15.90 11.63 40.00 0.00	

SUBTYPE: 28
NUMBER OF PLOTS:
61

STATISTIC	CANOPY HT (FT)	CAROPY COVER (\%)	UNDERSTORY HEIGHT (FT)	UNDERSTORY COVER (\%)	$\begin{aligned} & \text { GPOUND } \\ & \text { VEGETATION } \\ & \text { HT (FT) } \end{aligned}$	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \\ & \text { COVER }(\%) \end{aligned}$
average	59.83	82.33	7.58	16.88	1.50	44.71
STD DEV	18.20	17.71	7.62	23.50	0.85	30.83
MAXIMUM	100.00	97.50	30.00	85.00	3.00	97.50
MINIMUA	25.00	2.50	0.00	0.00	0.25	2.50

STATISTIC	DEBRIS PILES / ACRE	$\begin{aligned} & \text { LOGS } \\ & / \text { ACRE } \end{aligned}$	STUMPS , ACRE	SHAGS	POOLSITES
average	5.17	19.00	4.17	6.67	9.00
STD DEV	7.25	17.53	8.50	8.77	9.15
MAXITIUM	30.00	80.00	40.00	30.00	30.00
MINIMUM	0.00	0.00	0.00	0.00	0.00

SUBTYPE: 29
NUABER OF PLOTS: 25

Statistic	CANOPY HT (FT)	CANOPY COVER (\%)	UNDERSTORY HEIGHT (FT	UNDERSTORY COVER (\%)	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \\ & \text { liT (FI) } \end{aligned}$	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \\ & \text { COVER (} \% \text {) } \end{aligned}$
AVERAGE	83.64	75.20	17.04	42.50	1.08	23.50
STD DEV	32.13	15.88	11.00	35.96	0.68	30.59
maximum	136.00	97.50	35.00	97.50	3.00	85.00
Misimum	30.00	37.50	0.00	0.00	0.00	0.00

Stailstic	DEBRIS PILES / ACRE	$\begin{aligned} & \text { LOGS } \\ & / \text { ACRE } \end{aligned}$	NUMBER STUMPS / ACRE	SNAGS , ACRE	$\underset{\text { POOLSITES }}{\text { ACRE }}$
average	13.60	16.00	2.00	10.00	2.00
STD DEV	9.95	18.03	5.00	12.58	6.45
MAXIDUM	40.00	60.00	20.00	40.00	30.00
mimitura	0.00	0.00	0.00	0.00	0.00

 2

SUBTYPE: 32
NUMBER OF PLOTS: 44

STATISTIC	$\begin{aligned} & \text { DEBRIS } \\ & \text { PILES } \\ & \text { ACRE } \end{aligned}$	$\begin{aligned} & \text { LOGS } \\ & / \quad A C R E \end{aligned}$	STUMPS / ACRE	SNAGS $/$ ACRE	$\begin{aligned} & \text { POOLSITES } \\ & \text { / ACRE } \end{aligned}$
AVERAGE	7.95	24.55	2.50	6.59	10.00
STD DEV	9.78	23.77	5.34	9.14	11.81
MAXITYM	30.00	120.00	20.00	40.00	40.00
MINIMUM	0.00	0.00	0.00	0.00	0.00

$\begin{array}{ll}\text { SUBTYPE: } & 34 \\ \text { NUMBER OF PLOTS: } 7\end{array}$

STATISTIC	$\begin{aligned} & \text { CANOPY } \\ & \text { HT (FT) } \end{aligned}$	CANOPY COVER (\%)	UNDERSTORY HEIGHT (FT)	UNDERSTORY COVER (\%)	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \\ & \text { HT (FT) } \end{aligned}$	GROUND VEGETATION COVER (\%)
AVERAGE	81.43	83.57	13.71	53.21	0.86	31.07
STD DEV	26.88	10.39	6.73	29.61	1.01	38.99
MAXIMUII	120.00	97.50	25.00	97.50	3.00	85.00
MINIMUM	50.00	62.50	7.00	15.00	0.25	2.50

STATISTIC	$\begin{aligned} & \text { DEBRIS } \\ & \text { PILES } \\ & \text { ACRE } \end{aligned}$	$\begin{aligned} & \text { LOGS } \\ & \text { ACRE } \end{aligned}$	$\begin{aligned} & \text { STUMPS } \\ & / \text { ACRE } \end{aligned}$	$\begin{aligned} & \text { SNAGS } \\ & \text { /ACRE } \end{aligned}$	$\begin{gathered} \text { POOLSITES } \\ \text { ACRE } \end{gathered}$
AVERAGE	1.43	35.71	5.71	12.86	15.71
STD DEV	3.78	31.01	11.34	11.13	7.87
MAXIMUM	10.00	100.00	30.00	30.00	30.00
MIHIIIUM	0.00	10.00	0.00	0.00	10.00

SUBTYPE: 35
NUMBER OF PLOTS: 45

	CANOPY
STATISTIC	HT (FT)
AVERAGE	57.22
STD DEV	15.69
MAXIMUM	100.00
MINIMUM	30.00

TATION	VEGETATION
(FT)	COVER $(\%)$
1.14	31.00
0.68	29.70
3.00	97.50
0.00	0.00

SUBTYPE: ${ }^{36}$
NUMBER OF PLOTS: 21

	CANOPY
STATISTIC	HT (FT)
AVERAGE	67.38
STD DEV	17.93
MAXIMM	110.00
MINIMUM	35.00

Statistic	$\begin{aligned} & \text { DEBRIS } \\ & \text { PILES } \\ & \text { ACRE } \end{aligned}$	$\stackrel{\text { LOGS }}{\text { / }}$	STUMPS / ACRE	SNAGS / ACRE	$\underset{A C R E}{ }$
average	9.05	15.71	0.95	8.57	4.76
STD DEV	9.44	21.58	3.01	7.27	6.80
Maximum	30.00	80.00	10.00	20.00	20.00
minimum	0.00	0.00	0.00	0.00	0.00

SUBTYPE:
NUMBER OF PLOTS: 15

statistic	CANOPY HT (FT)	CANOPY COVER (\%)	UNDERSTORY HEIGHT (FT)	UNDERSTORY COVER (\%)	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \\ & \text { HT (FT) } \end{aligned}$	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \\ & \text { COVER }(\%) \end{aligned}$
averace	69.33	79.17	8.87	12.50	1.93	56.33
STD DEV	21.62	21.60	6.17	17.17	0.70	23.35
miaximuti	110.00	97.50	20.00	62.50	3.00	97.50
MIHIMUM	40.00	15.00	0.00	0.00	1.00	2.50

SUBTYPE: 38
NUHBER OF PLOTS: 3

STATISTIC	$\begin{aligned} & \text { CANOPY } \\ & \text { HT (FT) } \end{aligned}$	CANOPY COVER (\%)	UNDERSTORY HEIGHT (FT)	UHDERSTORY COVER (\%)	$\begin{gathered} \text { GROUND } \\ \text { VEGETATION } \\ \text { HT (FT) } \end{gathered}$	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \end{aligned}$ COVER (\%)
AVERAGE	67.75	55.63	7.25	31.88	2.06	94.38
STD DEV	57.48	35.14	5.85	35.38	1.74	6.25
maximum	120.00	85.00	12.00	62.50	4.00	97.50
MINIMUM	13.00	15.00	0.00	0.00	0.25	85.00

STATISTIC	$\begin{aligned} & \text { DEBRIS } \\ & \text { PILES } \\ & / \text { ACRE } \end{aligned}$	LOGS	STUMPS , ACRE	SNAGS / ACRE	$\begin{aligned} & \text { POOLSITES } \\ & \text { /ACRE } \end{aligned}$
AVERAGE	0.00	0.00	0.00	2.50	7.50
STD DEV	0.00	0.00	0.00	5.00	5.00
MAXIMUM	0.00	0.00	0.00	10.00	10.00
MINIMUM	0.00	0.00	0.00	0.00	0.00

SUBTYPE: 39
NUNBER OF PLOTS: 3

STATISTIC	$\begin{aligned} & \text { CARIOPY } \\ & \text { HT (FT) } \end{aligned}$	CANOPY COVER (\%)	UNDERSTORY HEIGHT (FT)	UNDERSTORY COVER (\%)	$\begin{gathered} \text { GROUND } \\ \text { VEGETATION } \\ \text { HT (FT) } \end{gathered}$	GROUND VEGETATION COVER (\%)
AVERAGE	81.67	89.17	0.00	0.00	1.33	89.17
STD DEV	2.89	7.22	0.00	0.00	0.53	7.22
MAXIMUM	85.00	97.50	0.00	0.00	2.00	97.50
MINIIMU	80.00	85.00	0.00	0.00	1.00	85.00

SUBTYPE: 41
RUL:BEP OF PLOTS: 12

STATISTIC	CANOPY HT (FT)	CANOPY cQVER (\%)	UNDERSTORY HEIGHT (FT)	UNDERSTORY COVER (\%)	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \\ & \text { HT (FT) } \end{aligned}$	GPOUHD VEGETATION CCVER (\%)
Average	66.67	71.46	7.42	12.29	1.75	68.54
STD DEV	19.69	29.03	4.98	10.36	0.37	25.68
MAXIFIUM	25.00	97.50	13.00	37.50	3.00	97.50
MIHItuU1	35.00	0.00	0.00	0.00	1.00	37.50

STATISTIC	$\begin{aligned} & \text { DEERIS } \\ & \text { PILES } \end{aligned}$	$\begin{aligned} & \text { LOGS } \\ & \text { /ACRE } \end{aligned}$	NUMBER STUMPS , ACRE	$\begin{aligned} & \text { SNAGS } \\ & / \text { ACRE } \end{aligned}$	$\begin{gathered} \text { POOLSITES } \\ \text { /ACRE } \end{gathered}$
AVERAGE	0.83	20.83	9.17	11.67	8.33
STD DEV	2.89	18.32	9.96	11.15	8.35
MAXIMUM	10.00	50.00	30.00	30.00	20.60
MINIMUM	0.00	0.00	0.00	0.00	0.00

NUMBER OF PLOTS: 8

STATISTIC	CANOPY HT (FT)	CANOPY COVER (\%)	UHDERSTORY HEIGIT (FT)	UHDERSTORY COVER (\%)	GROUHD vegetation HT (FT)	ground VEGETATIOH COVER (\%)
AVERAGE	57.78	93.61	5.44	5.83	0.78	19.72
STD DEV	17.34	11.67	5.29	6.96	0.59	31.41
MAXIMUM	90.00	97.50	15.00	15.00	2.00	97.50
MINIMUM	40.00	62.50	0.00	0.00	0.25	2.50

STATISTIC	DEBRIS PILES / ACRE	$\begin{aligned} & \text { LOGS } \\ & \hline A C R E \end{aligned}$	STUMPS / ACRE	$\begin{aligned} & \text { SNAGS } \\ & / \text { ACRE } \end{aligned}$	$\begin{gathered} \text { POOLSITES } \\ \text { ACRE } \end{gathered}$
AVETAGE	7.78	18.89	0.00	7.78	4.44
STD DEV	6.67	15.37	0.00	6.67	5.27
MANIMUM	20.00	40.00	0.00	20.00	10.00
rindimum	0.00	0.00	0.00	0.00	0.00

SUBTYPE: 43
NUMSER DF PLOTS: 34

STATISTIC	CANOPY $H T \text { (FI) }$	CANOPY COVER (\because)	UNDERSTORY HEIGHT (FT)	UNDERSTORY COVER (\%)	$\begin{aligned} & \text { GROUPD } \\ & \text { VEGETATION } \end{aligned}$ HT (FT)	GROUND VEGETATION COVER (\%)
AVERACE	65.00	73.24	8.53	20.88	1.35	57.50
Sid dey	15.37	17.72	9.40	26.13	0.77	36.85
maximun	85.00	97.50	30.00	85.00	3.00	97.50
Mifimuld	25.00	37.50	0.00	0.00	0.00	0.00

STATISTIC	$\begin{aligned} & \text { DEBRIS } \\ & \text { PILES } \\ & \text { ACRE } \end{aligned}$, LOGS	NUMBER STUITPS / ACRE	$\begin{aligned} & \text { SHAGS } \\ & / \text { ACRE } \end{aligned}$	$\begin{gathered} \text { POOLSITES } \\ \text { AC?E } \end{gathered}$
average	6.18	42.35	3.53	13.24	10.29
STD DEV	7.79	51.29	5.44	10.93	10.29
maxiplum	20.00	230.00	20.00	40.00	40.00
Minimum	0.00	0.00	0.00	0.00	0.00

$\begin{array}{ll}\text { SUBTYPE: } & 44 \\ \text { NUMBER OF PLOTS: } & 24\end{array}$

STATISTIC	$\begin{aligned} & \text { CANOFY } \\ & \text { HT (FT) } \end{aligned}$	CANOPY cover (\%)	UNDERSTORY HEIGHT (FT)	UNDERSTORY COVER (\because)	GROUND VEGETATION HT (FT)	GROUND VEGETATION COVER (\%)
AVERAGE	63.54	77.92	10.04	30.10	1.16	43.38
STD DEV	13.79	16.55	6.71	23.55	1.07	31.48
MAXIP!UM	110.00	97.50	25.00	85.00	4.00	97.50
HIINIMCM	40.00	37.50	0.00	0.00	0.25	2.50

DEBRIS
PILES LOGS STUMPS SMAGS POOLSITES

	1	
w	1	
\square	1	n
	1	
$<$	1	

N~OO
$\rightarrow \infty$
N
896
596
HS
NUMBER OF
10400
10 O 0 O
1
1000
 $1 \rightarrow \rightarrow 0$

$$
T
$$

1-MMOO
STATISTIC
AVERAGE
STD DEV
MAXIMUM
MIIIMUTI

$$
\begin{aligned}
& 1625 \\
& 3.33 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

15
$\begin{array}{ll}\text { SUBTYPE: } & 45 \\ \text { NUMBER OF PLOTS: }\end{array}$

STATISTIC	CANOPY HT (FT)	$\begin{aligned} & \text { CANOPY } \\ & \text { COVER } \\ & (\%) \end{aligned}$	UIDEERSTORY HEIGHT (FT)	UNDERSTORY COVER (\%)	$\begin{gathered} \text { GROUND } \\ \text { VEGETATION } \\ \text { HT (FT) } \end{gathered}$	GROUND VEGETATION COVER (\%)
AVERAGE	71.33	91.67	9.53	19.67	0.60	15.17
STD DEV	10.93	6.45	6.93	21.02	0.39	22.86
MAXIMJM	90.00	97.50	20.00	62.50	1.00	85.00
MINIMUT!	55.00	85.00	0.00	0.00	0.25	2.50

STATISTIC	$\begin{aligned} & \text { DEBRIS } \\ & \text { PILES } \\ & \text { ACRE } \end{aligned}$	$\begin{aligned} & \text { LOGS } \\ & , ~ A C P E \end{aligned}$	$\begin{aligned} & \text { STUMPS } \\ & \text { / ACRE } \end{aligned}$	$\begin{aligned} & \text { SNAGS } \\ & / \text { ACRE } \end{aligned}$	$\begin{gathered} \text { POOLSITES } \\ \text { ACRE } \end{gathered}$
AVERAGE	21.33	13.33	0.00	7.33	9.33
STD DEV	21.00	11.13	0.00	7.99	10.33
MAXIPIUM	70.00	40.00	0.00	20.00	30.00
MIIIMUM	0.00	0.00	0.00	0.00	0.00

STATISTIC	CANOPY HT (FT)	CANOPY COVER (\%)	UHDERSTORY HEIGHT (FT)	UNDERSTORY COVER (\%)	$\begin{gathered} \text { GROUND } \\ \text { VEGETATION } \\ \text { HT (FT) } \end{gathered}$	GROUHD vegetation COVER (\%)
AVERAGE	49.29	93.93	7.00	13.57	0.79	6.07
StD dev	12.72	6.10	5.43	17.13	0.37	6.10
Maxillum	65.00	97.50	15.00	37.50	2.00	15.30
MINIMUM	30.00	35.00	0.00	0.00	0.25	2.50

STATISTIC	$\begin{aligned} & \text { DEBRIS } \\ & \text { PILES } \\ & \prime \text { ACRE } \end{aligned}$	$\begin{aligned} & \text { LOGS } \\ & , \quad A C P E \end{aligned}$	STUMPS 1 ACRE	$\begin{aligned} & \text { SNAGS } \\ & \text { / ACRE } \end{aligned}$	$\begin{gathered} \text { POOLSITES } \\ \text { ACRE } \end{gathered}$
AVERAGE	4.23	4.29	10.00	4.29	15.71
STD DEV	7.87	5.35	14.14	7.87	9.76
MAXIMUM	20.00	10.00	40.00	20.00	30.00
MINIMUM	0.00	0.00	0.00	0.00	10.00

AVERAGE
STD DEV
NAXIMUM
MINIMUM
SUBTYPE: ${ }^{49}$ NUIABER OF PLOTS: 13

STATISTIC	CANOPY HT (FT)	CANOPY COVER (\%)	UNDERSTORY HEICHT (FT)	UNDERSTORY COVER (\%)	$\begin{gathered} \text { GROUND } \\ \text { VEGETATION } \\ \text { HT (FT) } \end{gathered}$	GROUFID vEGETATION COVER (\%)
A ${ }^{\text {IERAGE }}$	83.08	60.19	29.62	43.65	1.19	58.08
STD DEV	21.27	15.33	12.45	25.69	0.62	32.74
Misxirium	110.00	\&5.00	45.00	85.00	2.00	85.00
Minimuil	25.00	37.50	7.00	15.00	0.25	2.50

STATISTIC	DEBRIS PILES / ACRE	$\begin{aligned} & \text { LOGS } \\ & , ~ A C R E \end{aligned}$	STUMPS $/$ ACRE	SNAGS	$\begin{gathered} \text { POOLSITES } \\ \text { ACRE } \end{gathered}$
AVERAGE	19.23	34.62	3.03	10.77	1.54
STD DEV	10.38	29.04	4.80	14.98	3.76
MAXIIIUP	40.00	100.00	10.00	50.00	10.00
MINIMUM	10.00	0.00	0.00	0.00	0.00

SUBTYPE: 50
NUMBER OF

STATISTIC	CANOPY HT (FT)	CANOPY COVER (\%)	UNDERSTORY HEIGHT (FT)	UNDERSTORY COVER (\%)	$\begin{gathered} \text { GROUND } \\ \text { VEGETATION } \\ \text { HT (FT) } \end{gathered}$	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \end{aligned}$ COVER (\%)
AVERAGE	68.44	81.56	9.63	21.56	1.75	62.34
STD DEV	13.63	15.38	4.86	21.48	0.53	25.36
TAXIT:UM	90.00	97.50	18.00	62.50	3.00	97.50
MINIMUM	50.00	37.50	0.00	0.00	1.00	15.00

STATISTIC	DEBRIS PILES 1 ACRE	$\begin{aligned} & \text { LOGS } \\ & \hline \text { ACRE } \end{aligned}$	STUMPS / ACRE	SNAGS 1 ACRE	$\begin{gathered} \text { POOLSITES } \\ \text {, ACRE } \end{gathered}$
Average	3.13	24.38	0.63	4.38	11.88
STD DEV	6.02	20.97	2.50	6.29	10.47
Maxitiu:	20.00	70.00	10.00	20.00	30.00
MINIMUM	0.60	0.00	0.00	0.00	0.00

SUBTYPE: 51
NUMBER OF PLOTS: 18

STATISTIC	$\begin{aligned} & \text { CANOPY } \\ & \text { HT (FT) } \end{aligned}$	CANOPY COVER (\%)	UNDERSTORY HEIGHT (FT)	UNDERSTORY COVER (\%)	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATIOH } \\ & \text { HT (FT) } \end{aligned}$	$\begin{aligned} & \text { GROUND } \\ & \text { VEGETATION } \\ & \text { COVER (} \% \text {) } \end{aligned}$
average	68.06	88.06	9.00	20.00	0.72	13.33
STD DEV	19.18	11.10	5.72	23.67	0.49	10.57
MAIMUM	110.00	97.50	20.00	85.00	2.00	37.50
MINIPUM	30.00	62.50	0.00	0.00	0.25	2.50

STATISTIC	DEBRIS PILES / ACRE	LOGS	STUMPS , ACRE	SNAGS / ACRE	$\begin{gathered} \text { POOLSITES } \\ \text { ACRE } \end{gathered}$
AVERAGE	13.33	36.67	1.11	8.33	7.78
STD DEV	18.47	38.19	4.71	10.43	3.78
maximum	70.00	150.00	20.00	30.00	20.00
MINImum	0.00	0.00	0.00	0.00	0.00

[^0]: * A table of factors for converting non-SI units of measurement to SI (metric) units is presented on page 6.

[^1]: * Personal Communication, 1-3-85, B. Tomlinson, Anderson-Tully Co., Vicksburg, MS.

[^2]: * Forest cover type designations follow the general common-name format of the Society of American Foresters (1975), but certain specific variations were employed in CERDS that reflect prevailing community composition within the study area. Plant species are referced to in this report in scientific nomenclature, following Kartesz and Kartesz (1980), and a list of all species sampled is presented in Appendix A.

[^3]: * Personal Communication, 20-9-86, Dr. Robert Johnson, US Forest Service, Stoneville, MS.

[^4]: * Huntington Point sample data are taken from Wiseman (1982) by permission of the author.

[^5]: * Estimated HES riainita+ Q:ality Index scores for current and predicted (year 100) subtypes under various levels of management in Huntington Point, MS zones HPI, HPII, and HPIII.

[^6]: 1941. Lower Mississippi River stream channels, 1930-1932 and 1940-1941, 12 sheets, Vicksburg, Miss.
 1942. "Flood Control in the Lower Mississippi River Valley," Vicksburg, Miss. 3pp plus appendixes.
 1943. "Flood Control and Navigation Maps of the Mississippi Ri:er, Vairo, Illinois to the Gulf of Mexico," 51st edition, Vicksburg, Miss. Noble, M. G. 1979. "The Origin of Populus deltoides and Salix interior Zones on Point Bars Along the Minnesota River," American Midland Naturalist, Vo1. 102, pp 59-67.
[^7]: 1977. Mississippi River Hydrographic Survey, 1973-1975, Mouth of White River, Arkansas to Black Hawk, Louisiana, River Miles 320-595, AHP. Vicksburg, Miss.

 US Fish and Wildlife Service. 1980. Habitat Evaluation Procedures (HEP). Ecological Services Manual 102, USDI-FWS, Washington D.C.

[^8]:
 式気勋品皆
 DEv

[^9]: ACER RUBRUM
 ARUNDINARIA GIGANTEA
 ASIMINA TRILOBA
 CELTIS LAEVIGATA
 CORNUS DRUIGONDII
 ILEX DECIEUA
 INDERA BEMZOIN
 UMUS AMERICANA

[^10]: | ACER NEGUNDO |
 | :--- |
 | CELTIS LAEVIGA |
 | CELTIS OCEIDEN |
 | CORNUS DRUMiMOHD |
 | DIOSPYROS VIRG |
 | FRAXINUS PENHS |
 | ULMUS AMERICAH |
 | - TOTAL |
 | STD DEV |

 CELTIS LAEVIGATA
 CELTIS OCCIDENTALIS
 CORNUS DRUM:IOHDII
 DIOSPYROS VIRGINIANA
 FRAXINUS PENHSYLVANICA
 ULIUS ANERICAHA

[^11]: ACER NEGUNDO
 CARYA ILLINOENSIS
 PARTHENOCISSUS QUINQUEFOLIA
 POPULUS DELTOIDES
 OLYGONUM VIRGINIANUM
 POLYGONUM VIRGINIAN
 TOXICODENDRDH RADI
 SALIX INTERIOR
 VIOLA PAPILIONACEA
 IITS RIPARIA

[^12]: ACALYPHA RHOIIBOIDEA
 aunox<
 日

 ISSUS QUINQUEFOLIA ulgaris

[^13]:

[^14]: A

 퐁몽

[^15]: SALIX NIGPA
 SAPIUM SEBIFERUM
 SENECIO GLABELLUS
 SICYOS AHGULATUS
 SMILAX BOHA-NOX
 SOLIDAGO CAHADENSIS
 SPHEMOPHOLIS OBTUSATA
 SPILANTHES AMERICAIIA
 TAXODIUM DISTICHUM
 TEUCRIUM CANADENSE
 VITIS RIPARIA
 XAHTHIUN STRUMARIUM

[^16]: PERCENT
 COVER CONSTANCY

[^17]: NEGUNDO
 OPSIS ARBOREA
 山の以ットエロ

[^18]: ACALYPHA RHONBOIDEA
 ACER NEGUHDO
 ACER SACCHARINUM
 ARPELOPSIS ARDOREA
 ARTEIIISIA ANIIUA
 ARUNDIIIARIA GIGANTEA
 FRONDOSA
 IA CYLIIIDRICA
 HIA CIRREIOSA
 PERMUM HALICACABUM
 LINOENSIS
 RINOENSIS
 RADICANS
 LAEVIGATA
 S SP
 US CAROLINUS
 DRUPBONDII
 INA VIRGINICA
 $\stackrel{\text { 山 }}{\stackrel{y}{\text { u }}}$
 a no DUA

 IPGIMOEA SP
 IPOMOEA LACUNOSA
 IRESIHE PHIZOAATOSA
 LACTUCA CANADENSIS
 LACORTEA CANADERSIS
 LEERSIA LENTICULARIS区霉

[^19]: PER ACRE CONSTANCY

[^20]:

[^21]: OVATA
 CANADENSIS ISSUS QUINQUEFOL IA
 ANGULATA

[^22]: SMILAX ROTUNDIFOLIA
 TRACHELOSPERRUIT DIFFORME
 RACHELOSPERMUO DIFFOR
 TRADESCANTIA VIRGINIANA
 URTICA DIOICA
 viola spapilionacea
 PAPILIORACEA

 をの』

[^23]: CANOPY
 HT (FT)
 응ㅇㅇㅇ
 25.00
 $\min _{m} \operatorname{nin}$

