
AD-A 198 597

TART P.IAI, NLLIEC

DTT

M. Browrm a UO

This eflt t fiw pwuy by the -LaboratoY blmidos ftnd.

- APPROVE F UBLC RELEASE, ISIBJIULMIED.

ROME AIR DEVELOPMENT CENTER
Air Force Systms Command
Gritn AFB, NY 13441,5700

, - . 1 ,11,1

A, 1:.

M~bea I Vby tbe- RADC Public. Affairs Of fiCO-tA and
46 *a n3 ebical -inforitation Strvice (NTIS). At STIS

ab1 to Xfie general ptublict' including. foreigni nations.

88-11~ Voltame ViII (of eigh1t), Part B -has been'reviewed and Ise
publcation.

YMICHAEL D). RICHAPD, Captain., USAP
ptoj ect -Engine

APPROVED! '

OMPY W., BAPRMGMR
* Techaical Director.

Directorate of Intelligence & Recomiaias"ane

POR TM C0PAMMER

JAMES --W4 9YDR III
Directorate of Plans.& Programs

If your address has changed or if you wish to be removed from the RADC
miling list, or if the addressee is no longer employed by your organization,
please notify RADC (IRRE) Griffiss APB NY 13441-570,0. This will assist us in%,
maintaining a current mailing list.

-~ Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

0-' AL...

UNCLASSIFIED
SECURITY CLASS'FCATION O; T,.S PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMBNo 0704-0188

7. REPORT SECJRITY CLASS1I4CATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT
N/A Approved for public release; distribution

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited.
N/A

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) -l

N/A RADC-TR-88-11, Vol VIII (of eight), Part B

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Northeast Artificial (if applicable) Rome Air Development Center (COES)Intelligence Consortium (NAIC) RoeArDvlpenIetr(OS

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State. and ZIP Code)
409 Link Hall Griffiss AFB NY 13441-5700 ,
Syracuse University
Syracuse NY 13244-1240

8a. NAME OF FUNDING/SPONSORiNG 8o OIFCE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Rome Air Development Center COES F30602-85-C-0008

9c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
Griffiss AFB NY 13441-5700 PROGRAM PROJECT TASK WORK UNITELEMENT NO NO. NO ACCESSION NO.

62702F 5581 27 13

11. TITLE (include Security Classification)
NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT 1986 Parallel, Structural, and
Optimal Techniques in Vision

12. PERSONAL AUTHOR(S)
Christopher . Bro n .et.aC

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS PAGE COUNT
Interim FROM Jan 86 TO Dec 86 June 1988 238

1j SUPPLEMENTARY NOTATION
This effort was performed as a subcontract by the University of P.ochestcr to Syracuse
University, Office of Sponsored Programs. (See reverse)

17. COSATI CODES. 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB GPOUP Artificial Intelligence. Temporal Reasoning.- Planning,' Plan

12 05 Recognition,' Computer Vision,' Parallel Computation,'
25 05 Multiprocessing,' Edge Detection. I d .

05.
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

- ;The Northeast Artificial Intelligence Consortiumj(_IC) was created by the Air Force Systems
Command, Rome Air Development Center, and the Off ic&a-f_.Sa.ientif iResearch. It#purpose
is to conduct pertinent research in artificial intelligence and to perform activities
ancillary to this research. These volumes describe progress that has been made in the
second year of the existence of the NAIC on the technical research tasks undertaken at the
member universities. The topics covered in general are: versatile expert system for
equipment maintenance, distributed Al for communications system control, automatic photo
interpretation, time-oriented problem solving, speech understanding systems, knowledge base
maintenance, hardware architectures for very large systems, knowledge-based reasoning and ...
planning, and a knowledge acquisition, assistance, and explanation system. The specific
topic for PART A of this volume is a model theory and axiomatization of a logic for reasoning
about planning in domains of concurrent actions. "TAT-B~addresses various aspects of paral-
lel, structural, and optimal techniques in computer vision. . /.7

20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION %'

El UNCLASSIFIED/UNLIMITED [] SAME AS RPT []DTIC USERS UNCLASSIFIED %%

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELPHONEl inlude Are oe) c. OFFICE SYMBOL
Michael D. Richard 1) 3-778 RADC(IR).,Ae: ,S

DO Form 1473. JUN &F Previouseditions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE •
UNCLASSIFIED

UNCLASSIFIED 5 5

Block 10 (Cont'd)

Program Element Project Task Work Unit
Number Number Number Number

62702F 4594 18 E2
61101F LDFP 15 C4
61102F 2304 J5 01
33126F 2155 02 10

Block 16 (Cont'd)

This effort was funded partially by the Laboratory Directors' Fund.

I •

Acession For r

NTIS GRA&I
DTIC TAB C]

QSAT Unannounced [
Just if ic lt i on-----------

By
D istributlon/

Dist Speciail

UNCLASSIFIED 0

.pl1 .

Part B: Parallel, Structural and Optimal Techniques in Vision

Christopher M. Brown
Computer Science Department

University of Rochester
Rochester, NY 14627

Table of Contents

B.1 Computer Vision and Structure B-1

B.2 A Probabilistic Approach to Low-Level Vision B-2

B.3 Information Fusion for Multi-Modal Segmentation B-3

B.4 Computer Vision on a Multiprocessor B-4

B.5 Analyzing Massively Parallel Computation B-6

B.6 References B-7

Appendix B-1 DARPA Parallel Architecture Benchmark Study B-1 1

Appendix B-2 Rover Programmer's Guide B-63

Appendix B-3 Roving Eyes -- Prototype of an Active Vision System B-80

Appendix B-4 The Automatic Generation of Digital Terrain Models From Satellite
Images by Stereo B-109

Appendix B-5 Subgraph Isomorphism on the BBN Butterfly Multiprocessor B-119

Appendix B-6 Advanced Likelihood Generators for Boundary Detection B-139

Appendix B-7 Evidence Combination Using Likelihood Generators B-190

Appendix B-8 Optimal Likelihood Generators for Edge Detection under Gaussian

Additive Noise B-219

B- i

-. e i

EZ7.

'N

B.1 Computer Vision and Structure L

Paul Cooper's goal is to do object recognition, using structural (relational)
information about the object rather than global properties such as shape (Cooper
1987]. The other characteristic that sets this work apart is the large database of
models from which identification is to take place. This work is applicable to any
object-recognition situation in which the relations of the parts form an appreciable
part of the semantics of the configuration. For instance, it could be used to classify
arrangements of units deployed in a tactical situation into such classes as "convoy,"
"patrol," "defensive line," etc.

The work has taken three main paths simultaneously:

1) Development of a prototype end-to-end system, experimentation with it, and
documentation of results.

2) Work on stereo from structure.

3) Work on uncertainty in recognition from structure.

Each is expanded upon briefly below.

B.1.1 Prototype end-to-end System

Work on this system was begun in the spring of 86, with Susan Hollbach, Nigel
Goddard, and Jerry Feldman [Holibach 1986]. In the fall and winter, Cooper's
primary focus was upon making some major improvements to the algorithm,
establishing a broader rationale for the approach taken, performing some detailed
analysis of the expected performance of the algorithm, and performing a long series
of much more comprehensive experiments. Some modules of the algorithm were
implemented in parallel upon the butterfly parallel processor by Steve Whitehead. A

A paper documenting the results was submitted to ICCV and AAAI-87. The
paper as well as a videotape and operational demo of the system were presented at
the 1987 DARPA Image Understanding Workshop [Cooper and Hollbach 1987].
Overall, we now have a good idea of the capabilities and limitations of the system.

B.1.2 Stereo from Structure

A potential requirement for 3D input into the recognition process prompted work on
porting a stereo algorithm Cooper developed in other work [Cooper et al. 1985].
After extensive recoding and porting, the system is now operational and easily
usable on our new Sun3 with floating point accelerator. In [Cooper 19871, Cooper
explored the relationship between the domain and the underlying principles that
made the stereo work successful. This paper was prepared in December/January
1986.

B-i

| OM0

B.l.3 Uncertainty in Recognition from Structure

The necessity of working with imperfect and incomplete data necessitates handling
uncertainty in recognition from structure. Cooper attended a course on uncertain
inference in the fall of 1986, for which he prepared a number of small but relevant
papers, for orientation toward this goal. He has recently spent a larger fraction of
his time working upon this problcm, the results of which will be reported upon
shortly.

B.2 A Probabilistic Approach to Low-Level Vision

Work has proceeded with a probabilistic approach to limited support boundary point
detection. The approach uses the model developed in [Hueckel 1971] and [Canny
1986]--that is, step edges with uncorrelated Gaussian additive noise and linear blur.
The algorithms implementing the approach can also handle other edge profiles and
correlated noise. The algorithms return both probabilities and inverse probabilities,
and have been shown to be superior to simple edge detectors such as those of Sobel
and of Kirsch. These algorithms are documented in [Sher 1987a]. In the near future
they will be tested against Nalwa's state-of-the-art edge detector [Nalwa and Binford
1986].

The detection algorithms have also been used for testing the theory for evidence
combination developed in [Sher 1987b]. This work uses inverse probabilities (called
likelihoods) for robust evidence combination. Inverse probabilities carry information *
about the fit of a model to the data thus can be used for added robustness. Work has
shown that using the evidence combination to combine operators that assume
differing levels of noise the combination achieves error rates as small as that of the
best operator. Combining 9 X 9 and 5 X 5 detectors has resulted in detectors that have
the noise resistance of the 9 x 9 detectors but the perturbation resistance of the 5 X 5
detectors (5X5 detectors are less sensitive to small perturbations from the model,
such as having curved rather than straight edges). Combining different sized
operators to get the strengths of both has long been an objective of computer vision
[Marr 1982].

Sher's detectors have been tested using a set of graphics programs developed by
Myra Van Inwegan. These programs generate images with shapes chosen at random
with random intensities and positions. Van Inwegan also developed programs to add .\

noise of specified distribution mean and standard deviation to images. An upcoming
technical report describes this package.

All of this work was done using the C + + image processing environment. This I
environment makes it easy to implement simple image processing routines in a file '
format independent manner. This image processing environment is available in the
public domain.

B-2

inJ

Sher has also consulted with Paul Chou on his work on information fusion for
vision. Chou is using Sher's software as a first stage for his Markov random field
work based on [Marroquin 19851 and documented in [Chou 1987]. 0

A probabilistic approach also facilitates the low-level vision task of template
matching. Template matching is used for object recognition. A template is a
representation of the appearance of an object that is looked for in the scene. A
probabilistic analysis of template matching yields algorithms to:

1) Translate the results of template matching into probabilities and inverse
probabilities for the presence of the object.

2) Take the possibility of occluding objects into account with a Markov random
field.

3) Weight a template in an optimal manner. \ ,+

These techniques will be documented in Sher's forthcoming thesis.

Another profitable line of research involves deriving prior probabilities from
user-provided models. As an example the prior probability of a boundary point can
be deduced from the average size of objects in a scene.

B.3 Information Fusion for Multi-Modal Segmentation

Chou's thesis research addresses the problem of integrating the disparate sources of
information available in low-level image computations to obtain scene properties of
the image segments. He has identified the different characteristics of the available
information and has proposed integration tools to utilize them.

In (Chou and Brown 1987a, b], a probabilistic approach to combining information
from various sources for image segmentation has been proposed. In this approach,
observable evidence and prior knowledge are separately modeled due to their
distinct characteristics. Bodies of evidence are modeled as opinions provided by a set
of early visual modules about individual image elements based on disparate sources
of image observations. These opinions, represented as likelihood ratios with respect
to a set of hypotheses about the image elements, are combined coherently and
consistently through a hierarchically structured knowledge tree by propagating
each opinion up and down the tree with simple computations. The combined opinions
are shown, under some conditional independence assumptions, to be the joint
likelihood ratios in Bayesian probability theory. Prior knowledge of spatialinteractions of the image features is modeled with Markov Random Fields so that it

can be characterized by a small set of parameters associated with the variousconfigurations of local neighborhoods. A posteriori probability distributions of
segmentations resulting from combining the prior knowledge and the available
opinions following Bayes' rule are maintained incrementally and represented in a
distributed fashion. These distributed representations could be used by several

B-3

...:,-

estimation methods, such as the simulated annealing algorithm for MAP
estimations [Geman and Geman 1984] and the Monte Carlo algorithm for MPMTNI
estimations [Marroquin et al. 19851, to produce statistically optimal Cstirnations for
segmentations under Bayesian decision rationale.

Preliminary experimental results, with synthetically generated images as input
and a set of likelihood edge detcctors [Sher 19871 to compute likelihood ratios, have
shown several advantages of this approach:

1) Qualitative knowledge of the image features can be encoded adequately with
the a priori probability distributions characterized by the local characteristics
of Markov Random Fields.

2) Modules (experts) that know only a part of the set of hypotheses individually
can be independently designed. Their opinions can be combined coherently.

3) Prior knowledge and observable information are integrated following
Bayesian probability theory. The a posteriori probability distributions are
constantly maintained to reflect the up-to-date knowledge.

4) Well-established statistical decision theories can easily be adopted to estimate
segmentations.

5) The modularization of this approach simplifies the design and
implementation of large low-level vision systems.

Chou [1987] has argued that stochastic estimation methods as well as some
existing deterministic methods [Cohen and Cooper 1987] are inadequate for
applications with computational constraints. In general, disparate sources of
information might not be present at certain time and space. However, a segmenter
should be able to provide higher-level processes reasonable segmentation
estimations upon requests. With the above fusion mechanism, Chou has designed
and implemented a deterministic estimation procedure that dynamically adjusts its
estimations as new bodies of evidence arrive. Basically, this procedure maintains a
priority queue; the image element with the least stable current estimation (under a
stabilty measurement related to its neighboring estimations and external
observations) is always the next to check. Like every deterministic local-
minimization algorithm, this procedure does not guarantee to lead to the MAP S
estimator. However, its results are comparable to the stochastic estimation methods
and usually superior to the existing deterministic method. An intuitive explanation
for these promising results is that this procedure starts with a reasonable initial
estimation and follows a path that is likely to converge to good results. Chou and
Raman have implemented a simulation package to compare various estimation
methods. This package and a set of experimental results will be described in a
forthcoming technical report [Chou and Raman 1987].

B-4

_ P*

B.4 Computer Vision on a Multiprocessor

B.4.1 Utilities and Benchmarks

Olson has been looking at software architectures for combining the output of
independent low-level vision processes on the BBN Butterfly Multiprocessor. As a
vehicle for studying these issues Olson implemented a two-dimensional image
segmentor. The program iteratively splits regions taken from an active list until the
list is empty; the choice of where to split is made by reconciling the recommendations
of a user-supplied set of segmentation experts. The current implementation has only
a single expert, a single-band version of the multiband histogram-based splitter used
by Shafer and Kanade in the Phoenix system [Shafer and Kanade 1982]. Olson
reported on his experiences with the segmentor at the DARPA Workshop on
Blackboard Architectures for Image Understanding in June of 1986.

In support of the above work and in connection with Chris Brown's vision
practicum course, Liudvikas Bukys and Olson adapted parts of the IFF/UBX image
processing package to the Butterfly. As used at Rochester, IFF is an image file
format, a standard filter-oriented style of writing vision applications, and a library of
useful programs (filters, edge detectors, et cetera). Our efforts divided into three
subprojects: a) Porting the IFF bit-oriented file packing and unpacking library to the
Butterfly environment, b) providing an appropriate replacement for UNIX file
system and pipes, and c) rewriting existing IFF utilities to take advantage of the
Butterfly's capabilities. The first subproject was relatively simple, thanks to clean
machine-independent design on the part of IFFs original authors. The only changes
we made were to replace file accesses with access to TCP/IP connections to file server
demons on remote machines. The second subproject was handled on the Butterfly
end by a package (written by Olson). Olson joined several other members of the
Rochester Vision Group in implementing the DARPA Image Understanding
benchmark set [Simpson et al. 1986] on the Butterfly. For one benchmark Olson I 1we
implemented a line-finding Hough Transform algorithm and compared it to a
similar program he had written last year. This work is described in [Olson 1986b]. .-..
Olson also worked with Liud Bukys to adapt some of the BIFF utilities to meet the
requirements of another of the DARPA benchmarks. He was able to show that for
the benchmark tasks the Butterfly is almost completely CPU bound rather than
communication bound. This work is described in a technical appendix to [Brown et
al. 1986].

B.4.2 Concurrent Memory Allocation .'

In cooperation with Carla Ellis, Olson has been working on concurrent versions of
the well-known first-fit memory allocation algorithm [Knuth 1968]. This work
assumes a shared-memory machine supporting the fetch-and-add instruction
[Gottlieb, Lubachevsky, and Rudolph 1983]; such machines include the BBN %
Butterfly, the NYU Ultracomputer [Gottlieb, Grishman et al. 1983] and the IBM
RP3 [Pfister et al. 19851. This work was motivated by our desire to improve on the
solution of Stone [Stone 1982], which requires off-line storage proportional to the 0

B-5

% %

I A

number of blocks in the free storage list. We have designed a number of algorithms
that trade overhead for concurrency in various ways. A description of the algorithms
will appear in [Ellis and Olson 1987]. Stuart Friedberg provided valuable advice in
the course of this work. Olson is implementing the algorithms on the Butterfly, and S
hopes ultimately to be able to evaluate their performance under various simulated
load conditions.

B.4.3 Computational Models of Human Motion Perception

Olson has been studying the architecture of the human motion processing system.
So far this has been mostly a matter of reviewing the literature rather than
conducting new experiments, but it has led to some interesting conclusions.
Following [Braddick 1974], Olson believes that the system can be divided into short-
and long-range processes. However, it is clear from the nature of Braddick's
experiments and the neurophysiological facts that the short-range process has a
much greater spatial range than Braddick originally believed. Braddick set the limit
of the short-range process at 15 min of arc. This lalue was accepted by Marr and
Ullman [Marr 1980; Ullman 19791, and strongly affected their theories of motion
processing. Olson prefers to identify the short-range process with receptive fields in
striate visual cortex, and set the limit at one to two degrees of arc. Taken together A
with classical work on apparent motion [Kolers 1972], this change leads to the
following picture. The short-range process treats motion as an abstract property of
the image function. It is retinotopic, two-dimensional, and ignores any higher-level
information about the scene. It can serve as the basis for segmentation (as in
Braddick's experiments) but does not operate on segmented input. Its output is
probably a noisy approximation to the optical flow field. Exactly what mathematical
property of the image it measures is subject to debate. Olson favors the modified
spatio-temporal energy formulation of [Adelson and Bergen 1986], but other energy
formulations [Watson and Ahumada 1985; Adelson and Bergen 1985; Van Santen
and Sperling 1985] or gradient-based methods [Fennema and Thompson 1979; Horn
and Schunck 1981] are also reasonable. All of these methods compute more or lessthe same thing, so Olson does not regard the debate as crucial to his work.

The long-range process is vastly different. Its spatial range covers nearly the
whole visual field, and it integrates information over time intervals as long as half a
second. For the long-range process, motion is a property of high-level features
(segments or objects). It recognizes the identity of objects over time and, in the
special case of an apparent motion stimulus, chooses correspondences between
features. Its choice is based on a complex metric involving plausibility of the speed
and trajectory, figural match, salience, and even the expectations and desires of the
observer.

B.5 Analyzing Massively Parallel Computation

Recently, researchers in Artificial Intelligence have been actively investigating
various connectionist models of computation, also referred to as neural networks.
Sara Porat frames her work in this area mostly as a connectionist model, defined by
elementary processors that are similar to binary threshold units. Thus, we assume a

B-6

SZZ % .-..

finite discrete space of states. This architecture has became one of the popular means
of exploring the question of intelligence. Some recent works relate to the
connectionist model as a model of computation and discuss its similarity to other
non-uniform computational models, its computational power, and its complexity.
We proceed in this direction and explore theoretic arguments that are natural in
usual computational models, within this context of neural networks.

The model that is often studied is that of an asynchronous, symmetric network,
where a global energy/goodness measure can be established and used to prove that
the network totally stabilizes. This symmetry condition is somewhat unnatural for
biological reasons, and moreover it precludes many computations that are
biologically important. Certainly, any behavior that requires a loop, cycle or
oscillation cannot be described by a monotonic goodness function.

In (Porat 1987] we discuss asymmetric networks, that might admit infinite
activated computations. Within this framework, we define an operational semantizs
and analyze formally flow properties of some specific structured network wiLh
respect to a given specification (or correctness criterion) that characterizes the
dynamics of an oscillator. We discuss the influence of a formal specification on the
design of the network's structure, computational ability of its units, connections
between them and rules of timing. We prove formally the behavioral correctness of 0
some implementations, using a slightly different approach from that defined
through the energy function, basically by proving logical assertions.

By shifting the discussion to asymmetric neural networks, it is natural to ask, for
a given network, whether or not it stabilizes totally. We regard this property of
stability as a major specification, while characterizing the behavior of a given
network. This raises the importance of exploring the complexity of this decidable
question. We prove the NP-hardness of this question under a synchronous activation
rule, and similarly under a fair asynchronous rule. We also show that this problem
is solvable in polynomial space. This investigation is original in this context of
neural networks, and it motivates further research on other correctness assertions
within this model. ,

This year, Porat attended the Foundations of Computer Science (FOCS)
Conference in Toronto (October 1986), and was invited by the Computer Science
Department at Carnegie Mellon University to give a seminar on the subject S
"Fairness in Models for Nondeterministic Computations" (November 1986).

B.6 References

Adelson, E.H., and J.R. Bergen. Spatiotemporal Energy Models for the Perception of
Motion, J. Opt. Soc. A m. A. 2, 2, 1985.

Adelson, E.H., and J.R. Bergen. The Extraction of Spatio-temporal Energy in
Human and Machine Vision, Proc., IEEE Workshop on Motion Representation
and Analysis, Kiawah, SC, 1986.

B-7

t,,.P.- -. ," ," ,' ," " ." " .' ," " " - " . - , . . ,-• , , ._ , ,. ' €% %'

a~~~N N. %- -'n " - t
:
5 - 1 - - ' :: t" , L ,• : : :-

Braddick, O.J. A Short-Range Process in Apparent Motion, Vision Research 14,
1974.

Brown, C.M., R. Fowler, T. LeBlanc, M. Scott. M. Srinivas, L. Bukys, J. Costanzo, L.
Crowl, P. Dibble, N. Gafter, B. Marsh, T. Olson, and L. Sanchis. DARPA
Parallel Architecture Benchmark Study, Butterfly Project Report 13,
Computer Science Dept., Univ. Rochester, October 1986.

Canny, J. A Computational Approach to Edge Detection, IEEE Trans. on Pattern
Analysis and Machine Intelligence PAMI-8, 6, 679-698, November 1986.

Chou, P.B. Multi-Modal Segmentation Using Markov Random Fields, to appear, ,' W

Proc.. IJCAI-87, Milano, Italy, August 1987.

Chou, P.B. Dynamic Multi-Modal Image Segmentation, internal documentation,
Computer Science Dept., Univ. Rochester, March 1987.

Chou, P.B. and C.M. Brown. Multi-Modal Segmentation Using Markov Random p
Fields, Proc., Darpa Image Understanding Workshop, 663-670, Feb. 1987a.

Chou, P.B. and C.M. Brown. Probabilistic Information Fusion for Multi-Modal 0
Image Segmentation, to appear, Proc., IJCAI-87, August 1987b.

Chou, P.B. and R. Raman. Relaxation Algorithms Based on Markov Random Fields,
forthcurning Technical Report, Computer Science Dept., Univ. Rochester, 1987.

Cohen, F.S. and D.B. Cooper. Simple Parallel Hierarchical and Relaxation
Algorithms for Segme.iting Noncausal Markovian Random Fields, IEEE
Trans. Pattern Analysis and Machine Intell. PAMI-9, 2, 195-219, March 1987.

Cooper, P.R. Order and Structure in Correspondence by Dynamic Programming,
submitted, International Journal of Computer Vision, January 1987.

Cooper, P.R. and S.C. Hollbach. Parallel Recognition of Objects Comprised of Pure
Structure, Proc., DARPA IU Workshop, Los Angeles, CA, February 1987;
submitted, AAAI-87.

Cooper, P.R., D.E. Friedmann and S.A. Wood. The Automatic Generation of Digital
Terrain Models from Satellite Images by Stereo, 36th Congress of the Int'l. .%
Astronautical Federation, Stockholm, Sweden, October 1985; to appear, Acta
A strona utica.

Ellis, C.S. and T.J. Olson. Parallel First Fit Memory Allocation, to appear, Proc.,
IEEE Int'l. Conf. on Parallel Processing, 1987.

Fennema, C.L., and W.B. Thompson. Velocity Determination in Scenes Containing
Several Moving Objects, Computer Graphics and Image Processing 9, 1979.

B-8

V.P'V:,2.:,:.:;".5 .*" 2 :%:*.L .- 4:. ?% * .?? ? ¢'? -.' 4 ,. * .. 4 . •.' "". 4*

W. V 'No 4 .% . ' ,

% 0

Geman, S. and D. Geman. Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images, IEEE Trans. Pattern Analysis and Machine
Intelligence PAMI-6, 6, 1984.

Gottlieb, A., B.D. Lubachevsky, and L. Rudolph. Basic Techniques for the Efficient
Coordination of Very Large Numbers of Cooperating Sequential Processors.
ACM Trans., Programming Languages and Systems 9,6, April 1983.

Gottlieb, A., R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph and M. Snir.
The NYU Ultracomputer--Designing an MIMD Shared Memory Parallel
Computer, IEEE Trans. Computers 32, 2, February 1983.

Hollbach, S.C. Tinker Toy Recognition from 2D Connectivity, TR 196, Computer
Science Dept., Univ. Rochester, October 1986. *

Horn, B.K.P. and B.G. Schunck. Determining Optical Flow, Artificial Intelligence
17,1981.

Hueckel, M.H. An Operator Which Locates Edges in Digitized Pictures, Journal of
the Assoc. for Computing Machinery 18, 1, 113-125, January 1971.

Kolers, P.A. Aspects of Motion Perception. New York: Pergamon Press, 1972.

Knuth, D.E. The Art of Computer Programming, Vol. 1: Fundamental Algorithms.
Addison-Wesley, 1968.

Marr, D. Vision. San Francisco: W.H. Freeman, 1980.

Marroquin, J.L. Probabilistic Solution of Inverse Problems, Tech. Rept. 860, MIT
Artificial Intelligence Laboratory, September 1985.

Marroquin, J.L., S. Mitter, and T. Poggio. Probabilistic Solution of Ill-Posed
Problems in Computational Vision, Proc., DARPA Image Understanding
Workshop, December 1985.

Nalwa, V.S. and T.O. Binford. IEEE Trans. Pattern Analysis and Machine
Intelligence PAMI-6, 679-698, November 1986). [.__ S

Olson, T.J. An Image Processing Package for the BBN Butterfly Parallel Processor,
Butterfly Project Report 9, Computer Science Dept., Univ. Rochester, August
1986a.

Olson, T.J. Finding Lines with the Hough Transform on the BBN Butterfly Parallel
Processor, Butterfly Project Report 10, Computer Science Dept., Univ.
Rochester, August 1986b.

B-9

P(~JPM *.d.f'.~:.~."g..-.-.Jv * .'. d2P
-INS p.

Olson, T.J., L. Bukys and C.M. Brown. Low-level Image Analysis on an MIMD
Architecture, to appear, Proc., First Int'l. Conf. on Computer Vision, London.
June 1987.

Pfister, G.F., W.C. Brantley, D.A. George, S.L. Harvey, W.J. Kleinfelder, K.P.
McAuliffe, E.A. Melton, V.A. Norton and J. Weiss. The IBM Research Parallel
Processor Prototype (RP3): Introduction and Architecture, Proc., ICPP, 1985.

Porat, S. Stability and Looping in Connectionist Models with Asymmetric Weights,
TR 210, Computer Science Dept., U. Rochester, 1987.

Porat, S. and N. Francez. Fairness in Context-Free Grammars under Every Choice-
Strategy, to appear, Information and Computation, 1987.

Shafer, S. and T. Kanade. Recursive Region Segmentation by Analysis of 6
Histograms, Proc.. IEEE Int'l. Conf. on Acoustics, Speech, and Signal
Processing, Paris, France, May 1982.

Sher, D.B. Evidence Combination Based on Likelihood Generators, TR 192,
Computer Science Dept., Univ. Rochester, January 1987a.

Sher, D.B. Advanced Likelihood Generators for Boundary Detection, TR 197,
Computer Science Dept., Univ. Rochester, January 1987b.

Simpson, R., S. Squires, and A. Rosenfeld. Strategic Computing Vision Architecture
Benchmarks, private communication, July 1986. 1

Stone, H.S. Parallel Memory Allocation using the FETCH-AND-ADD instruction,
IBM T.J. Watson Research Center Tech. Rept. RC9674, November 1982.

Ullman, S. The Interpretation of Visual Motion. Cambridge, MA: MIT Press, 1979.

van Santen, J.P.H. and G. Sperling. Elaborated Reichardt Detectors, J. Opt. Soc.
Am. A 2, 2, 1985.

Watson, A.B. and A.J. Ahumada, Jr. Model of Human Visual-Motion Sensing, J.
Opt. Soc. Am. A 2,2,1985.

B-10

-. ..V. IV . % .

,,~~~~~~ %,. %. %.** w~ . . . P ' ~ ~ ~ , S

Appendix B-1

DARPA Parallel Architecture Benchmark Study

C. Brown, R. Fowler, T. LeBlanc, M. Scott, M. Srinivas, L. Bukys, J. Costanzo,
L. Crowl, P. Dibble, N. Gafter, B. Marsh, T. Olson, L. Sanchis K-

October 1986

Abstract

In intensive work over a four-week period in the summer of 1986, seven
problems were studied and implemented on the Butterfly. The problems were
inspired by various capabilities in computer vision, and were proposed as
benchmarks for a DARPA workshop on parallel architectures. They were:
convolution and zero-crossing detection for edges, edge tracking, connected
component labeling, hough transform, three computational geometry problems
(convex hull, voronoi diagram, and minimum spanning tree), three-dimensional
visibility calculations, subgraph isomorphism and minimum cost path calculation.
BPRs 10, 11, and 14 are detailed reports on three of the problems. BPR13 contains
the conclusions of the study and writeups of the work not covered in other BPRs.

This work was supported in part by the Defense Advanced Research Projects Agency
U.S. Army Topo aphic Labs under grant number DACA76-85-C-0001 and in part
by the National Sience Foundation under grant number DCR-8320136.

B- 111

BlN

P_ _ K

-~~~ %.~

U_ -O

Table of Contents

1. Overview In this document

2. Problem Specifications In this document

3. Edge Finding and Zero-Crossing Detection In this document

4. Connected Component Labeling Butterfly Project Report 11

5. Hough Transformation Butterfly Project Report 10
o

6. Geometrical Constructions In this document

7. Visibility Calculations In this document

8. Graph Matching Butterfly Project Report 14

9. Minimum-Cost Path In this document

9

4.4 1%NB-1 2

Chapter One: Overview

B- 13

L jP.
I ' ll , l j~ l I I I

Overview

Christopher Brown, Tom LeBlanc, Michael Scott
Computer Science Department .

29 August 1986

1. Disclaimer
The University of Rochester's response to the DARPA Architecture

Workshop Benchmark Study request was a three-week period of activity,
commenced from a standing start with the arrival of the problem specifications
(Chapter 2). During this time the researchers had to make difficult technical
decisions very quickly and to implement and run experiments under severe time
pressure. Often sub-optimal methods were chosen for practical reasons. Some of
the work has led to internal technical reports, and much of the work is being
followed up and will appear in more finished form elsewhere. The contents of this
report represent a snapshot of work not currently written up elsewhere, as of our
self-imposed deadline of 1 September 1986 (The Architecture Workshop was later
rescheduled to mid-November 1986).

The contents of this report represent preliminary work, and should not be
considered our best or final answers to the various levels of problems raised by the
Benchmark Study.

2. The Study
Rochester's DARPA Architecture Workshop Benchmark Study is made up of

several chapters, each written by an individual or a small group. This, Chapter 1,
gives an overview of the work and the resulting conclusions. Chapter 2 is a
formatted version of the original memo that gave the problem specifications.

The remainder of this document, Chapters 3-9, along with separate Computer
Science Department Butterfly Project Reports, (numbers 10, 11, and 14) detail
technical aspects of our work on individual problems. Generally there is one
chapter per problem, except that we used the connected components algorithm
(Problem 2, described in BPR 11) to do edge-following (Problem 1.c.) as well.
Thus Chapter 3 gives results on edge-finding and zero-crossing detection, while
Chapter 4 (BPR 11) discusses the work on edge-following and connected
components. Chapte 5 is equivalent to BPR 10 and Chapter 8 is equivalent to
BPR 14.

3. The Effort
Over a three-week period, several students and faculty at the University of

Rochester's Computer Science Department worked on the seven architecture
B- 14

~WV ~*0

benchmarks proposed by Rosenfeld, Squires, and Simpson (Chapter 2). Because
of the short time and limited personnel resources available, the results reported
here should not be considered as our last word on any of the problems. We did,
however, find the exercise to be stimulating and a good investment. Our report
takes the form of this brief summary document and a collection of chapters
written by individuals and small groups who addressed individual problems.

Those directly involved in the effort were two staff members, five faculty
members, and six graduate students varying from pre-first-year to third year in the
areas of artificial intelligence, systems, and theory. The concentration of work was
relatively intense, varying from approximately 20% effort to 75% effort per person
over the three week

Rochester's place in the Strategic Computing program is to investigate and
build programming environments for parallel vision. With this charter, we felt
that the more benchmark implementations we could build the better. Further, in
the area of programming advanced parallel architectures, often interesting software
engineering must be done to improve implementations in the face of performance
facts. We believe that theoretical or simulated results, while safer to propound,
are of limited interest. Beyond our desire to get programs running, our goals were
diverse.
(1) The primary goal is to evaluate the Butterfly Parallel Processor architecture

and its existing software resources.

(2) Some of us wanted to use and test utilities we had already developed (e.g. the
BIFF utilities used for the edge-finding task and the UNION-FIND package
used for connected component labelling.)

(3) Some wanted to code applications in recently-implemented parallel languages
and program libraries (e.g. LYNX was used in the triangle visibility task, and
the Structured Message Passing library was used in the shortest path
problem).

(4) Some wanted to modify and extend existing projects (e.g. the undirected
edge-detector extension for the Hough transform task. Another example was
an experimental modification of a clustering program to do the minimum
spanning tree task -- that work is not reported here.)

(5) Some wanted to explore the mapping of current parallel algorithms from the
theoretical literature onto parallel architectures, and to open research avenues
in this direction (e.g. the subgraph isomorphism task, which has already
generated interesting new scientific results, and the computational geometry
tasks).
There was little problem in implementing most of the problems. All told,

four programming environments were used:
(1) C and raw Chrysalis (the Butterfly operating system)
(2) The Uniform System of BBN

B-15

(3) Structured Message Passing (developed at Rochester)
(4) LYNX (ported to the Butterfly at Rochester).

The programmers ranged from naive first-time users of the Butterfly to highly
experienced and sophisticated programmers who could (and did) modify system
internals to improve performance.

4. The Problems

The original problem statements appear in the next chapter. Detailed write-
ups of our approach to and results on the problems follow in separate chapters.
The problem statements were followed as closely as made sense given the scientific
goals of the study. For example, in the triangle visibility problem, floating point
was not used because the inefficient software implementation of floating point
would distort the interesting statistics. (The Butterfly does in fact need the
Floating Point Platform upgrade if it is to be useful in serious scientific
computing.) In the convex hull problem we went to a larger-than-specified
problem size because of results with sequential implementations, and in the graph
isomorphism problem we used a smaller problem size than specified for technical
reasons. An ambiguity in the shortest path problem statement was interpreted in a
way that was not advantageous to the Butterfly architecture but seemed to be
indicated by the "hint" in the problem statement, and which was more practical
given the time constraints. Wherever we have changed a problem specification we
have tried to explain why, and tried to indicate responsibly what the consequences
of literal interpretation would have been.

We chose the Butterfly several years ago because, among other things, its ,
hardware architecture imposed the least constraint on the abstract models of
computation it supported. Thus mapping problems onto the Butterfly is a doubly
interesting exercise. There is a theoretical phase in which a good algorithm (using
one or another abstract computational model) is chosen and the abstract model is
matched with a Butterfly programming environment. Then there is an engineering
phase in which the implemention is built and made efficient. The best results
occur when both these phases are done well. In this set of problems sometimes
the first phase went well but the second phase was not attempted (as in the
geometry problems we did not implement) or needs more work (as in the triangle 6
visibility problem). Also there were some cases in which the first phase was given
short shrift because it looked like a research problem (e.g. the subgraph
isomorphism problem), but the second phase was done very stylishly.

The computational domain of the benchmark was not one that could fully
take advantage of the Butterfly's MIMD architecture. One computational aspect
lacking in the benchmark problems is the case of a cooperating set of independent
programs, such as occurs in client-server models. The benchmark tested
performance (of programmers, languages, architectures, operating systems,
programming environments) on single algorithms solving easily-stated problems.
This limitation is worth noting since, in advanced systems, cooperation and

B- 16

IF III

communication between basically independent processes will be important. Also ' K;
the benchmark problems were small compared to a working Al system. Another
set of benchmark problems to illuminate these issues could be proposed and might
include construction of a file system, or a system in which results of disparate,
asynchronously computed results are merged.

Within its limited perspective, the benchmark did comprise a diverse and
challenging set of problems, and allowed us to reach several conclusions. For
details on the technical approaches, performance, and individual conclusions, see
the following chapters. The next section gives some highlights of our observations.

5. Observations
It is difficult to boil down the diversity of our results into a small set of out-

of-context conclusions. Nevertheless, the following observations seem safe.
(1) During the last year, advances made at BBN and at the University of

Rochester have made the Butterfly much easier to program under several
complementary models of computation. A programmer starting with only a
knowledge of standard sequential programming can now produce parallel
programs (in the Uniform System or Structured Message Passing) in a day or
two. Alternatively, knowing a modem language like Ada would make ,.
learning LYNX, and subsequent Butterfly programming, quite easy.

(2) The Butterfly can be efficiently (as well as easily) programmed using several
"virtual architectures" (models of parallel computation).

(3) The Butterfly architecture can implement a wide variety of abstract parallel
models of computation. Further, the combination of significant local memory
and quickly accessible "shared" memory gives the capability for several
complementary types of parallelism working together. While programming
environments that emphasize one or another parallel model are available now,
a single environment that gives the programmer access to a mix of
computational models is not. The subgraph isomorphism problem illustrates
one case in which a mix would have been useful. At Rochester the PSYCHE
project has the goal of providing unified support for a variety of parallel
computation models, including both shared memory and message-passing.

(4) For serious work in the area of scientific computation covered in the
benchmark, and probably for general programs, the new Butterfly Floating
Point Platform is a necessity. Both floating point operations and integer
multiplies are a serious bottleneck (see the Hough Transform Problem).

(5) Microcode support for debugging and performance monitoring would be a
significant improvement. There would be considerable payoff in a small
microcode fix to provide 32-bit atomic operations. One specific (and easy) 'ot

upgrade would be microcode hooks to allow logging atomic operations. This
facility would allow a reliable record of the order that processes enqueued
entries on dual queues.

B- 17

(6) Memory management is a serious problem. The scarcity of Segment
Attribute Registers makes their management a major concern. The inability
of the 68000 to do demand paging is also awkward (here again the problem is
solved by the Floating Point Platform upgrade). Very large memory objects
(larger than one physical memory) are an interesting issue that a few groups
are working on -- some benchmark problems (e.g. shortest path) expose the
desirability of a clean solution for the large object problem.

(7) A switch that supported simultaneous communication with several
destinations would improve the implementation of broadcast or multicast
communication used in many algorithms. A combining switch might reduce
memory contention, but its efficacy is a research issue.

(8) The Uniform System really provides a global shared name space, not a shared
memory. To achieve good speedup of parallel algorithms, local memory must
be used to avoid memory contention. Even knowing the standard tricks is
not enough to guarantee good performance. The Hough Transform chapter
provides an interesting example evolution of program ameliorations. A
"shared memory" (as in the planned Monarch) would seem to support
Uniform System style programming better. However, it is doubtful that
remote memory can ever be made as fast as local memory, and so the local-
global question cannot be avoided. A very fast block-transfer capability
would improve matters in the current architecture, and would not close off
any options in the computational models the Butterfly would support.
However, the block-transfer fix does not address the local-global conflict at
the conceptual level. Similarly, the fast-switch "shared-memory" does not
solve the local-global conflict at the technical level. What is needed perhaps
is continued diversification of the abstract models of computation available
and in the programming environments that support them.

(9) Amdahl's law is important, and any serial program behavior has serious
adverse consequences in speedup performance. Such serialization sometimes
hides in the system software and special effort (and talent) are required to
avoid or fix it (e.g. the parallel memory allocation modification introduced in
the convex hull implementation). The timings shown in Chapter 4 (BPR 11,
connected components) and Chapter 7 (triangle visibility) are revealing. 0
Systems code to allocate memory and replicate data dominates times if it is
not parallel.

(10) Software to support (efficiently) many more processes than processors on the
Butterfly would make implementing a great many important algorithms ,
easier. There are many algorithms in which a process is dynamically allocated
to each problem object (e.g. the nodes of a graph), for large numbers of
objects. The Uniform System does not answer because it is unable to do
process synchronization: processes cannot be blocked, unscheduled,
awakened, etc. One reasonable response to this need would be a
programming environment such as Concurrent Euclid (Ada would be usable

B- 18

_ S

but not as good), with monitors or a similar means of concurrency
control/encapsulation. The actual composition of the environment is a
research issue, but it may be necessary to have something like a full blown
object-oriented system in which tasks are represented as first class entities S S
encapsulating data, code, and process.

6. Concluding Remarks

The Benchmark Study was a stimulating exercise that served several purposes
at Rochester. It has led to new software utilities, to new understandings of
Butterfly strengths and weaknesses, to applications for new programming
environments developed at Rochester, and to new research avenues in parallel
algorithm theory and development. It has encouraged us that our work in
building programming environments for the Butterfly has been effective.

Several of the benchmark problems (e.g. the geometry problems) were useful
but uncomfortable because they underlined current weak points in the
programming systems we have. The graph algorithms need a high degree of cheap
(i.e. not SMP or LYNX) parallelism that is independent (i.e. not US-style) -- thus
they exposed fruitful areas for future research. We welcome such problems. Our 6 6
goal is to get the most out of the flexible MIMD architectures of the future, and .. , .
"counterexamples" to current solutions are always interesting and important. We
believe that one of the most promising and important research areas centers
around the goal of a single programming environment that can take advantage of
the potential for several sorts of parallelism in tightly-coupled MIMD computers, a
and we are now working actively in in that area.

We believe that much can and will be gained by continuing with the method
we have been pursuing at Rochester -- a symbiosis of theoretical, systems, and
applications research. We shall continue to build systems for internal and external
use that incorporate our theoretical insights and meet the needs of applications.
With the basic research underlying the systems, and with the systems as tools, we
and others will move forward toward understanding and controlling state-of-the-
art parallel programming systems. ,

B'U1

B- 19

J,' , % ¢' ,.> ,; Y' I . ,., . .' ,";,'- ,";". ,, ,. :-..".2 .-- : .-.- " .';".°:.-'.- ,,". ". ", "- ". ".: .-. --" -'-.-

Chapter Two: Problem Specifications
B 0

% %

%

S

•~ . -

*

. - - S, , , ° '

DRAFT

MEMO TO: Designers of architectures for image understanding (IU)

FROM: Azriel Rosenfeld, Bob Simpson, Steve Squires

SUBJECT: New architectures for IU

DARPA plans to hold a workshop during the week of Sep- tember 8 in.I,-'..
McLean, Virginia to discuss what the next steps should be in developing IU
architectures that could be available to researchers by the 1990's. ..-,:-Y

A lot is known about architectures for low-level vision, but we need to
move toward systems that can handle the total v;sion problem, including both the 6

low- and high- level ends as well as the interface between the two.

Appended to this memo is a set of "benchmark" IU problems. We have
tried to define them as precisely as pos- sible, so as to make it possible to predict
how a given sys- tem would perform on them. (We have provided some refer-
ences to the relevant literature for your convenience.)

You are invited to make such predictions for your (existing or proposed)
systems, and to prepare a short paper documenting the results. This paper should
be sent to us for distribution to the Workshop attendees by mid August, so
everyone will have a chance to evaluate the results and dis- cuss them at the
Workshop. If your system is not very effi- cient at some of the tasks, you may
wish to indicate how you would improve or augment it to make it more efficient.

We look forward to hearing from you and to seeing you at the Workshop.

." g .:-, ,.

B-21
* 6U.

Appendix: IU benchmarks p.

(1) Edge detection
In this task, assume that the input is an 8-bit digital image of size 512 x 512
pixels.

a) Convolve the image with an 11 x 11 sampled "Laplacian" operator [1].
(Results within 5 pixels of the image border can be ignored.)

b) Detect zero-crossings of the output of the operation, i.e. pixels at which
the output is positive but which have neighbors where the output is
negative.

c) Such pixels lie on the borders of regions where the Laplacian is positive.
Output sequences of the coordinates of these pixels that lie along the
borders (On border following see [2], Section 11.2.2.)

(2) Connected component labeling
Here the input is a 1-bit digital image of size 512 x 512 pixels. The output
is a 512 x 512 array of nonnegative integers in which

a) pixels that were O's in the input image have value 0
b) pixels that were l's in the input image have positive values; two such pixels

have the same value if and only if they belong to the same connected
component of l's in the input image.

On connected component labeling see [2], Section 11.3.1.)

(3) Hough transform
The input is a 1-bit digital image of size 512 x 512. Assume that the
origin (0,0) image is at the lower left-hand corner of the image, with the
x-axis along the bottom row. The output is a 180 x 512 array of nonnegative
integers constructed as follows: For each pixel (x,y) having value 1 in the
input image, and each i, 0 << i << 180, add 1 to the output image in position
(ij), where j is the perpendicular distance (rounded to the nearest integer)
from (0,0) to the line through (x,y) making angle i-degrees with the x-axis
(measured counterclockwise). (This output is a type of Hough transform; if
the input image has many collinear l's, they will give rise to a high-valued
peak in the output image. On Hough transforms see [2], Section 10.3.3.)

(4) Geometrical constructions
The input is a set S of 1000 real coordinate pairs, defining a set of 1000
points in the plane, selected at random, with each coordinate in the range
[0,10001. Several outputs are required.

a) An ordered list of the pairs that lie on the boundary of the convex hull of S,
in sequence around the boundary. (On convex hulls see [3], Chapters 3-4.)

b) The Voronoi diagram of S, defined by the set of coordinates of its •
vertices, the set of pairs of vertices that are joined by edges, and the set of ,

B-22

A0 %, % % V %
"),', ,'# '" , #" " * ' " ,) % % % w ', % % " d""'.#,),w ''" € " " ,"" '%,''," 5

rays emanating from vertices and not terminating at another vertex. (On
Voronoi diagrams see [3], Section 5.5.)

c) The minimal spanning tree of S, defined by the set of pairs of points of S
that are joined by edges of the tree. (On minimal spanning trees see [3],
Section 6.1.)

(5) Visibility
The input is a set of 1000 triples of triples of real coordinates
((r,s,t),(u,v,w),(x,yx)), defining 1000 opaque triangles in three-dimensional
space, selected at random with each coordinate in the range [0,1000]. The
output is a list of vertices of the triangles that are visible from (0,0,0).

(6) Graph matching
The input is a graph G having 100 vertices, each joined by an edge to 10
other vertices selected at random, and another graph H having 30 vertices,
each joined by an edge to 3 other vertices selected at random. The output is
a list of the occurrences of (an isomorphic image of) H as a subgraph of G.
As a variation on this task, suppose the vertices (and edges) of G and H
have real-valued labels in some bounded range; then the output is that
occurrence (if any) of H as a subgraph of G for which the sum of the
absolute differences between corresponding pairs of labels is a minimum.

(7) Minimum-cost path
The input is a graph G having 1000 vertices, each joined by an edge to
100 other vertices selected at random, and where each edge has a
nonnegative real- valued weight in some bounded range. Given two
vertices P,Q of G, the problem is to find a path from P to Q along which
the sum of the weights is minimum. (Dynamic programming may be used,
if desired.)

References

(1) R.M. Haralick, Digital step edges from zero crossings of second directional
derivatives, IEEE Transactions on Pattern Analysis and Machine Intelligence
6, 1984, 58-68. -

(2) A Rosenfeld and A.C. Kak, Digital Picture Processing (second edition),
Academic Press, New York, 1982.

(3) F.P. PN'eparata and M.l. Shamos, Computational Geometry - An
Introduction, Springer, New York, 1985.

B-23
\S

jOW

Chapter Three: Edge Finding and Zero-Crossing Detection

S

V
S
S

IN
~ - I~S ~ P ~- A. 1 W -

-.- ,. , ,, . .A . , S , .-. ,.,.A. , _ _ "," ," .'." ," . , ., ,.".S '" ... ,' .'.",''".-, "" ,t- , ,'n .4 . ,,.',, ,A. L *",.'. '.~

Task One : Edge Detection
Thomas J. Olson

1. Introduction

The task is to detect edges in an eight-bit digital image of size 512 x 512 pixels. It is
divided into three steps : convolution with an 11 x 11 Laplacian-of-Gaussian operator,
zero crossing detection, and chain encoding sequences of connected zero crossings. In
these experiments steps a) and b) were handled using image processing utility functions
from the Butterfly IFF (BIFF) image processing library [3]. Step c) was performed by a
special purpose routine adapted from a connected component labelling function. The
test image was a densely textured natural scene in which approximately 25% of the pixels
in the zero crossing image were ones. Our conclusions, briefly, are that for the 119-node
Butterfly

a) convolution takes 3.48 seconds,

b) zero crossing deteCtion takes 0.16 seconds, and

c) finding chain codes for lines takes 1.47 seconds for this image.

These times are for computational kernels; they do not include time to load the image,
allocate memory for the output, et cetera. The sections that follow present
implementation details and benchmarks for the first two steps. The third is described in
the attached Butterfly Project Report [2].

2. Convolution

The convolution was performed by convolveo, the library version of the BIFF utility
lffconvolve. ConvolveO uses the Uniform System library [1] to perform a parallel FOR
loop over rows of the output image. Each process created in this way does a sequential
loop over rows of the mask; for each mask row it makes local copies of the appropriate
mask and image rows and then does a linear convolution of the copied rows into a local
array of 32-bit accumulators. Finally, it divides each accumulator by the user-supplied
divisor and copies it to the output image.

It is easy to see that in order to produce an output, convolveO must perform

(5022X112) = 30,492,484 multiplications. (The first term involves 502 rather than 512
because we ignore outputs within five pixels of the border.) Because it does so many
multiplications, the execution time of convolveo is dominated by the 68000's
multiplication time. Unfortunately the current Butterfly C compiler generates a call to an
integer (32-bit) multiply routine even when the arguments are both shorts. Figure 1 J.
shows timings and speedup curves for four versions of iffoonvolve running an 11 by 11
mask on a 512 by 512 image. The first is coded in standard optimized C. The second
replaces the multiplication in the innermost loop with a call to an assembly language

B-25

short multiply routine. For the third, we edited the compiler's assembly language output
to replace the subroutine call with an in-line short multiply instruction. This is the
version normally kept in the BIFF library. In the last version we replaced the multiply
instruction with an addition. This gives an incorrect output, but indicates the sort of
performance we might expect from a Butterfly with a fast full-parallel multiplier.

The convolveO routine is written to be as general as possible and therefor does not
take advantage of some features of the problem as stated. Frst, the 1I by liinask to be
used is known at compile time. This makes it possible to avoid copying the mask rows
into local memory at execution time. The copy operation is quite fast, so we would
expect the principal effect of this change to be a reduction in memory contention. The
speedup curves of Figure 1 indicate that memory contention is not a serious problem for
convolveO, so the net effect would be minor. Second, the mask is symmetrical. By
factoring appropriately, the number of multiplies that the convolver must do can be cut
almost in half. For example, a process working on input rows 0 through 10 would add
row 10 to row 0, row 9 to row 1 et cetera, and then convolve rows 0 through 5 with rows
0 through 5 of the mask. Figure 2 shows the effect of these optimizations on the standard
and simulated fast multiply versions of convolveO.

It should be noted that if we are willing to accept an approximation to the laplacian
of a gaussian, we can speed the computation up substantially. Since gaussian masks are
x-y separable, we can reduce convolution with an l1xl mask to two convolutions with
llx1 masks. We can take advantage of symmetry as before, so that for each convolution
we do 6 multiplies and 11 adds per pixel. The cost of an lxll gaussian convolution
then becomes a mere 3,084,288 multiplies and 5,654,528 additions. We can compute the
aplacian of the result by convolving with a 3x3 laplacian approximator. However, this
method gives a relatively poor approximation to the truth. Better, though slightly more
expensive, is to use the Difference of Gaussian (DOG) approximation, which requires
two lxl convolutions followed by a pointwise difference. We have not benchmarked
this method, but expect that it would reduce execution times by at least a factor of three
(to about 1 seconds) based on the relative numbers of operations.

3. Zero Crossing Detection

For zero crossing detection we use the BIFF utility zeroctO. Zerocto is written as a
parallel FOR loop over output scan lines. Each row process reads in the corresponding
input row and its two neighbors (the top and bottom rows are handled specially). For
every positive pixel in the input row it examines the eight neighbors and stores a one in a
local array if any of them is negative - otherwise it stores a zero. Finally it copies the
local array into the output array. Timings are shown in Figure 3.

B-26 -Ns

References

1. BBN Laboratories, The Uniform System Approach To Programming the Butterfly
Parallel Processor, Version 1, Oct 1985.

2. L. Bukys, Connected Component Labelling and Border Following on the BBN
Butterfly Parallel Processor, Butterfly Project Report' 11: University of Rochester,
Computer Science Department, Aug 1986.

3. T. J. Olson, An Image Processing Package for the BBN Butterfly Parallel Processor,
Butterfly Project Report 9, University of Rochester, Computer Science Department,
Aug 1986.

* S

* S

B-27

D t

0~

Figure I1: Four Versions of Iff convolve
convolving 1 lxii delsqg with 5126512 natural image

run times in seconds

procs standard C short mpy short mpy simulated
subroutine in line fast mpy

4 617.52 318.68 153.53 121.11

8 313.66 159.35 78.00 61.53

16 156.84 80.95 39.00 30.77

32 78.44 40.49 19.52 15.40

64 39.23 20.26 9.77 7.71

119 24.52 12.66 6.11 4.82

effective vs actual processors

120 ideal

standard C -

100 short mpy-
subroutine

80 short mpy
in line

simulated *-*-

60 fast mpy_____

40

20

0 I I I I

0 20 40 60 80 100 120

B-28

III~ Ir

16, ed~=A
a~ ml-

Figure 2: Optimized Iffconvolve
convolving 1 lx11 delsqg with 512x512 natural image

taking advantage of mask properties
run times in seconds

standard standard optimized optimized
procs short mpy simulated short mpy simulated

in line fast mpy in line fast mpy

4 153.53 121.11 87.27 68.25

8 78.00 61.53 43.58 34.04

16 39.00 30.77 22.14 17.30
32 19.52 15.40 11.08 8.66

64 9.77 7.71 5.56 4.35 *

119 6.11 4.82 3.48 2.72

effective vs actual processors

120 ideal

standard
short mpy100 in line

standard
80 simulated

fast mpy

optimized
60 short mpy

in line

optimized
simulated

fast mpy _

20

0
0 20 40 60 80 100 120

B-29 *

" "p r " " " "='"'-'. '.'' '4' " "
'

" ', ' 2.'-..,
•

.,.'-r P', , -,. ,. ..-.. .. . • . .- € '

Figure 3 : zero crossing detection
run times in seconds

procs iffzerocr

1 15.77
2 7.85
4 3.92

8 1.96
16 0.99
32 0.51
64 0.26
119 0.16

effective vs actual processors

120 ideal

iffzerocr -

100

80

600

40

20

0
0 20 40 60 s0 100 120

B-30

,. y

Efficient Convolution with Symmetric Masks
Tom Olson

The following amelioration to the inner loop of the 11xll Laplacian convolution
approximately halved the time needed for this portion of the benchmark, from 6.11
seconds to 3.48 seconds.

In the basic convolution multiply and add stage, every point (x, y) in the output
can be computed by the expression

for row = 0 to 10
for col = 0 to 10
tmp = tmp + mask(row, col)*image(y+row, x + col)

which requires 121 adds and multiplies. We can use the symmetry properties of the
mask to reduce the work. First, rewriting the above gives

for col = 0 to 10 trp = tmp + mask(5, col)*image(y+5, x+col)
for row = 0 to 4
for col = 0 to 10

tmp = tmp +
mask(row, col)*image(y+row, x+col) +
mask(10-row, col) *image(y+10-row, x+col);

Since mask(10-row, col) == mask(row, col), we can write this as

for col= 0 to 10 tmp = trnp + rnask(5, col)*image(y+5, x+col) 0
for row = 0 to 4
for col = 0 to 10
trnP = tmp +

mask(row, col)*(image (y+row, x+col) image(y+10-row,
x+col))

which takes the same number of adds but only 66 multiplies. We can do even better
by realizing that we're going to do this at every point along a row. That means we
can precompute the image row sums once and for all. That is, to compute row y in
output, sum rows y and y+10, y+1 and y+9, ..., y+4 and y+6, and include row y+5 to
get a 6 row by n column matrix. Then simply convolve with the bottom six rows of -
the mask.

In summary, the standard convolution for a 512x512 image and 1Ixll mask,
ignoring dropping edge outputs is

502x502xllx11 = 30,492,484 mpys and adds.

Using the symmetry of the mask, the code above reduces the counts to
502x512x5 = 1,285,120 adds to make the 502 6x512 matrices, plus

B-31

%., ,

A'r AA

MXRXMAK1LV -W-K W WX1X W KArP2ILM-M x

502x502xllx6 = 16,632,264 mpys and adds to do the individual convolutions.

So multiplies are reduced by almost half.

We can take further advantage of the available symmetries by folding the 6x11
mask we use in the implementation above around the middle column. This cuts
the number of multiplies to 502x502x6x6 = 98,072,144. Similarly, by folding the 6x6
mask around its diagonal we can reduce the total number of multiplies to 21 per
mask, giving 502x502x21 = 5,292,084 for the total. Unfortunately the number of
additions stays constant at about 16M, and the loops and indexing become complex,
so that it is not clear that these refinements will actually improve execution times.
These techniques are applicable to any rotationally symmetric mask, so if they do
prove worthwhile we will probably put a special convolution routine into the BIFF
library for rotationally symmetric masks.

*_ 0

NN
S-S

B-32

% *, , I"

Chapter Four: Connected Component Labeling

see: Butterfly Project Report I1I

B-33

% %

%* %

Chapter Five: Hough Transformation I

see: Butterfly Project Report 10

B- 34 %

.0.

Chapter Six: Geometrical Constructions
* S

* 02

N

- @

]0

Geometry Problems
Robert J. Fowler and Neal Gafter

August 21, 1986

1 Introduction.
The approach that we took in investigating the suitability of the Butterfly architecture for the -M
geometric problems was to attempt the parallelization of good sequential algorithms for those same
problems. Thorough discussions of such sequential algorithms for computational geometry may
be found in [Mel84] and fPS86]. In ACG*85,1 Aggarwal et al sketched some parallel algorithms V
for computational geometry derived from these sequential algorithms. Problems they addressed
included the computation of two-dimensional convex hulls. Voronoi diagrams, and other problems.
The model of computation that they used is the concurrent-read, exclusive-write (CREW) variant i S
of the PRAM model of computation. The methods used by Aggarwal et al (at least for convex
hull and the Voronoi diagram) are the parallelization of optimal sequential algorithms. We use a
similar approach, but directed not towards the theoretically interesting questions of optimality in
the asymptotic sense and of membership in well known complexity classes (e.g. NC), rather towards
achieving good performance when implemented on the Butterfly. In particular, we are using these
problems as an opportunity to explore how to map algorithms designed for abstract models of parallel S
computation onto a physically realized parallel architecture.

2 Salient Aspects of the Butterfly Architecture.

Each node on the Butterfly consists of a processor and a megabyte of memory local to that node. S
In addition, the nodes are connected with a "butterfly" (hence the name) interconnection network
that allows each node to access the memory of the others. The interconnection network resolves
contending attempts to access each memory module by serializing those attempts. Because of the
large granularity of the memory modules this hidden" serialization of contending access attempts
can be a major problem with the approach of attempting to adapt PRAIM algorithms that assume
the possibility of very fine grained parallelism. We believe that the investigation| of data structures
that can be shared with low contention among a reasonable number of processors to achieve medium
scale parallelism on such a machine is an area for potentially fruitful research .

The architecture seen by an application programmer is not determined solely by the underlying - N

hardware. rather by a combination of hardware and the software architecture of the operating system
cum programming environment. The latter can have as much or more of an effect as the former on the e
successful implementation of an algorithm on a particular machine. The quality of the programming
environment affects both the ease of implementation as well as how well the underlying machine is
used [Sny86'1. N

Of the programming environments currently available on the Butterfly we chose the Uniform
System because it most closely resembles the PRAM model. In the course of this exerecis we
encountered the following specific problematic aspects of the Uniform System:

* The Uniform System appears to have been designed to be used in a style in which memory is
statically allocated when the application is initialized and in which there is a mall number of
geerators that spawn a large number of tasks. In contrast, the geometric problems naturally

Iee to fit into a style that uses dynamic memory allocation and in which tasks are spawned .b-"-.
dynamically a few at a time as a program executes its recursive algorithm. There appear to
be substantial penalties for using this latter style in the Uniform System.

B-36

.0.5 .0 F.
% % % % P

" The geometric problems all involve the construction of a graph with some specified properties
from a set of input points. An efficient parallel program to solve such problems must have
efficient parallel implementations of the abstract data types set and graph. A natural repre-
sentation of a graph is as some form of dynamic list structure. One consequence of this is thateither the system or the application program should provide effcient parallel memiory manage- "

mert. The global memory management provided by the Uniform System is in fact sequential.
Thus, even a program that appears to be parallel can in fact be serialized by system code. We 6
provided our own parallel memory management, but this illustrates how easy it is for implicit
serialization to be introduced by the programming environment.

" Another consequence of using dynamic list data structures is the need to provide concurrency
control for the elements. It is possible to do concurrency control in the Uniform System but it
is awkward. The natural way of doing this is to incorporate the concurrency control mechanism
in the programming language.

" The assignment of processors to tasks must be made more efficient and flexible. Task startup
can introduce a substantial amount of overhead that can wipe out the benefits of fine and
medium grain parallelism. In addition, we discovered that the implementation of task schedul-
ing task allocation scheme can force a processor to be idle when it is not logically required by
the application to be so and there is useful work it could do.

These factors contribute to the difficulty of using the Butterfly hardware architecture effectively.
This illustrates the need for improved parallel programming environments as well as the need for
those environments to provide the programmer with an accurate and detailed enough model of
computation to guide intelligent choices in implementation.

Because our interest in these exercises is the investigation of the problem of mapping abstract
algorithms onto the Butterfly we emphasized general implementations rather than attempting to
tune the programs to exploit specific details of the problem statement(s). Thus, we are at least as
interested in very large numbers of points distributed in arbitrary regions as we are in small numbers
of points distributed uniformly in a square.

3 An Abstract Convex Hull Algorithm.]

We concentrated our efforts on understanding the design and implementation of a parallel two-
dimensional convex hull program. Most of the issues that would arise in the implementation of
programs to solve the other problems appear in the convex hull problem and. in the limited time
available, we deemed it more important to understand one implementation than to dilute our efforts
by attempting "quick and dirty' implementations of all of the geometric problems .

Our approach is similar to that proposed by Aggarwal et at, but is an attempt to exploit the
bounded, medium-grained parallelism found on a Butterfly. It is a parallelization of the Quickhull
[PS86] algorithm. Our parallel implementation has the following steps:

1. Select the maximum and minimum elements along some direction using as muchparallelism
as is effectively available. We assume that there are N points and that we can use P procesor,
effectively. Each processor is given a subset of approximately NIP elements of which it finds
the maximum and minimum elements. The global maximum and minimum is computed from
Ce subset values using the usual PRAM trick of combining the subset extrema using binary
trees. The useful (non-overhead) part of this step require, time proportional to N/P + logP.

2. If the initial points are A and B, then the initial approximation to the hull is the ordered list
of the directed line segments AB and BA. The remaining points are partitioned into two sets.
one above AB and the other above BA. This is done in parallel, with each processor working
on a subset of the input. To allow for parallel partitioning, a set of points can be represented
as a tree of variable length arrays (sub-buckets) of points. The partitioning is done by having
each processor copy its part of the input local memory using a block transfer. It then scans
it's input sequentially while locally building its part of the output set consisting of those points
above the specified line. The other points are discarded from the set because they can not
contribute to the hull at this location. The sub-sets from each process are merged in parallel
into the output trees. The reason for using a tree rather than a simple linked list is to allow for

9-37 V

% % % N
A:K %'~ As ~ %

efficient parallel access and to allow each internal node of the tree to keep a count of the points
that it contains. As each sub-set is constructed the point furthest from the line is found. The
local extrema are also combined in the binary tree to find the global extremem. This point is
on the convex hull. The time for one of these steps is proportional to N/P + log P.

3. At any time the current approximation to the hull is kept as a doubly-linked list of points. All
of the u yet unknown points on the hull are outside this approximation so the points within
it can be discarded. Furthermore, any point that can possibly be added to the hull between a .
pair of points in the current approximation must be above the line of support through them.
When a newly found hull point is added to the list it replaces one of the line segments on the
approximation with two others. A new task is created for each of these. Each task takes as
its input a new line segment and the set of points above the old segment. It selects the set of
points above its line segment and finds the extremal point with respect to that segment. This
point is guaranteed to be on the convex and when added to the approximation initiates the
next level of recursion. Each branch of the recursion terminates when its input is the empty
set.
These sub-problems generated by the recursion are solved in parallel. As above, selection and
maximum are done in parallel if the size of the input set is large enough. If the largest sub-
problem of each step in the recursion is a bounded fraction of the size of its parent problem
then the total depth of the tree will be proportional to log H where H is the number of points
on the hull. Since the expected number of hull points will be proportional to log N [PS861 the •
total expected time to execute the algorithm should be proportional to log log N(N/P + log P).

Note that the problem statement says that the points are distributed uniformly in a square and
that there are only 1000 of them. By [PS86] this means that the expected number of points on the
hull will be approximately twenty. Given the granularity of parallelism available on the Butterfly
this is a very small problem instance and it is difficult to justify a parallel solution for it. We have
therefore taken the licence to solve much larger problem instances and to look at other distributions
of the points.

Although we have not attempted to tune the program to take advantage of the details of the
problem statement, we are taking advantage of the square region by using the line z = y to determine
the direction in which to search for the initial extremal points.

Note also that our initial implementation does not use the above mentioned "tree of arrays"
representation of a set. As a result there may be contention for adding points to the set. This
contention may be contributing a linear time component to the running times. Once we have had
the time to run the experiments needed to understand the current implementation better we can
experiment with changing the representation of a set.

4 Evaluation of the Convex Hull Program.

It is difficult to evaluate the effectiveness of parallelism in geometry problems because the sequential
Quickl ull algorithm is so good. Craig McGowan provided the following set of single processor %

Quickhull timings (in seconds) obtained on several varieties of Sun workstation.

Points 2/50,4 Meg 2/120 2 M 3/160C, 4 Meg S
1 0.02 0.0.01
200 0.04 0.04 0.02
500 0.08 0.08 0.03

1000 0.18 0.16 0.05
2000 0.34 0.34 0.09
5000 0.84 0.84 0.24 1

10000 1.66 1.66 0.48
20000 3.34 3.34 0.98
50000 8.16 8.16 2.42

100000 16.30 16.30 4.87
200000 32.64 50.74 9.72
500000 182.95 308.51 37.23

B-38

.. y \1k

These are Stuart Friedberg's comments on these experiments: _. _

1. This Quickhull program is a CPU-bound task that carefully avoids 32-bit multiplies and
floating point operations. The Sun-3"s are roughly 4 times faster than Sun-2's. For CPU-
bound tasks with int or long multiplies or with floating point, the Sun-3's should do even better.
A simple program profiler for the Butterfly indicates that some programs spend more than 95
percent of their time in Chrysalis doing the software integer multiply necessary to compute
array indicies. The 68020 processor, unlike the 68000 has a hardware 32-bit multiply. Thus it 0
appears that a processor upgrade could have a significant impact upon execution speeds. The
addition of a 68881 floating point coprocessor could have an even greater effect on speed in
computations in which floating point and trigonometric functions are common.

2. The Sun 2/120's are Multibus-based, while 2/50's don't even have a bus. This makes 1O
comparisons hard between them and a Sun-3/160C, which is VMEbus-based. However, we can
see that when both the 2/50 and 3/160C with the same amount of memory are thrashing, the
Sun-3 still runs 6 times faster. It would be interesting to see a comparison between a /120 and
a /160 with the same amount of memory and the same processor type.

Despite the excellent performance of the sequential algorithm the parallel version wad able to use
some parallelism effectively. Given our initial implementation using the sequential memory allocator,
a Butterfly computes the convex hull of 10000 points in the following times:

Processors Time Speedup
1 7.60 1.00
2 4.31 1.76
3 3.22 2.35 I
4 2.54 2.99
5 2.06 3.68
6 1.81 4.18
7 1.73 4.38
8 1.54 4.91
9 1.48 5.13

10 1.42 5.32
11 1.20 6.32
12 1.24 6.11
13 1.37 5.52
14 1.17 6.44
15 1.20 6.33 0 0.
16 1.15 6.60

These times (in seconds) reflect the actual computation time, excluding the time to load the
program and the input data. As expected. the high overhead of managing the parallel implementation
limits the amount of effective parallelism obtainable. Furthermore, the execution times do not
decrease monotonically as processors are added. The source of this is likely to be some kind of -
scheduling or concurrency control artifact introducing serialization in a way that is very sensitive to
the number of processors.

Note that a single Butterfly node executes the parallel implementation at about one sixth of the
speed of a Sun 2 executing the straightforward sequential implementation. Part of the difference
is due to hardware differences and part is due to overhead in accomodating potential parallelism.
When S nodes are allocated to the problem the Butterfly outperforms the Sun 2. but at no point
can it compete with the Sun 3. It is difficult to overcome the handicaps of lower single processor
and memory speeds combined with the disadvantage of not having powerful parallel arithmetic in
hardware.

*To reduce the total amount of overhead and to eliminate a known significant source of "hidden"
serialization a second version of the program was written that incorporated its own parallel memory
management package. This second implementation performed as follows:

B- 39

N '- '-'

Number of Points
1000 5000 10000

Procesors Time Speedup Time Speedup Time Speedup
1 1.08 0.99 4.29 1.0 8.01 0.99
2 .60 1.78 2.4 1.78 4.33 1.84
3 .46 2.30 1.8 2.38 3.27 2.44
4 .32 3.28 1.37 3.12 2.46 3.25
5 .29 3.70 1.16 3.68 2.00 3.99
6 .25 4.25 1.02 4.18 1.81 4.42
7 .26 4.09 .91 4.7 1.61 4.96
8 .24 4.36 .83 5.14 1.46 5.47
9 .22 4.87 .77 5.53 1.35 5.89

10 .22 4.75 .74 5.8 1.28 6.25
11 .20 5.20 .7 6.12 1.20 6.62
12 .20 5.38 .67 6.37 1.14 7.00
13 .19 5.48 .63 6.71 1.11 7.20
14 .20 5.31 .62 6.89 1.08 7.40
15 .19 5.46 .61 6.93 1.04 7.65
16 .19 5.42 .62 6.82 1.03 7.73
17 .18 5.83 .62 6.88 1.02 7.79
18 .19 5.54 .60 7.05 .99 8.06
19 .17 6.14 .6 7.05 .98 8.11
20 .17 6.00 .6 7.10 .97 8.19

The improved program is faster than the original, is able to use more processors effectively on
average, and as processors are added the running time decreases.

5 The Voronoi Diagram.

Rather than compute the Voronoi diagram directly we would compute its dual. the Delaunay tri-
angulation. We expect that a straightforward recursive parallelization can be performed upon the
divide and conquer Delaunay triangulation program of Lee and Schacter [LS80]. We believe that
this is the approach appropriate for the Butterfly.

The problem with this is that the final merge step will take time proportional to on average.
If all partitions are made so as to keep the merges proportional to boundary length, such as by
alternating in the X and Y directions then the expected time could be O(logNVN). The question
is whether or not this can be improved on the Butterfly. The Aggarwal e al paper sketched a parallel
merge step using O(LogN) time and O(N) processors. Thus, it is clear that the merge can be sped
up aymptotically on a PRAM. but at the moment it is not clear how to program it and how to design
the data structures on the Butterfly so as to simulate the fine granularity implied by their paper.

The "divide" step of the algorithm requires partitioning the points into linearly separable sub-
sets. In sequential implementations this is done by sorting the points along one of the coordinate
axes. There is at the moment no general purpose sorting package for the Butterfly. Sorting is one
of the most studied and fundamental computational problems, the fact that we still do not have
a good, implemented solution on the Butterfly is indicative of the lack of maturity of the software
environment on the machine.

6 The Euclidian Minimum Spanning Tree.

The EMST can be easily derived in sequential time proportional to N from the Voronoi diagram
(Delaunay triangulation) (PS861 since the edges of the tree will be a subset of the edges of the
triangulation.

Kwan and Ruzzo [KR841 survey "edge-adaptive' parallel algorithms for computing minimum
spanning trees of arbitrary graphs. These have running times in the CREW PRAM model of

B-40

Ir W, 1.

O(ElogN/P. Since the edges that need to be considered are a sub-set of the edges of the De-
launay triangulation the cost for the Euclidian minimum spanning tree once the triangulation is
found will be O(N log N). As with the other two problems, this presupposes that we will be able to
program efficiently shareable data structures representing dynamic graphs.

An alternative to using a PRAM style algorithm would be to use Bentley's [Ben80] optimal
algorithm that uses NI log N processors in a fixed interconnection network. Since log 1000 k 10 the
a program that finds the EMST for 1000 nodes would potentially map very well onto a Butterfly of
100 nodes. In contrast to the PRAM algorithms mentioned above. Bentley's algorithm is designed
for a set of simple processing elements that communicate over a fixed interconnection network. In
particular, it is suitable for a VLSI implementation. While this avoids the problem of designing
.hareable dynamic data structures for graphs, the algorithm assumes a fine grained parallelism

that depends upon very efficient inter-processor communication. As mentioned elsewhere in this
collection of reports the SMP programming environment provides interprocessor communication in
approximately two milliseconds. This is still too large in comparison to the amount of computation to
be done at each node per message. The effect of communication overhead can be reduced by blocking
several logical messages per physical message, but this increases the complexity of the programming
effort. What seems to be needed here is some form of inter-processor streams interface.

References
[ACG*85] Alok Aggarwal, Bernard Chaselle, Leo Guibas, Colim O'Dunlaing, and Chee Yap. Par-

allel computational geometry (extended abstract). In Proceedings 26th IEEE FOCS,
pages 468-477, Tucson AZ, October 1985.

[Ben80] Jon Louis Bentley. A parallel algorithm for constructing minimum spanning trees. Journal
of Algorithms, 1:51-59, 1980.

[KR84. S.C. Kwan and W.L. Ruzzo. Adaptive parallel algorithms for finding minimum span-
ning trees. In Proceedings of the 1984 International Conference on Parallel Processing,
pages 439-443. Bellaire, Mich., 1984.

[LS80] D.T. Lee and B.J. Schachter. Two algorithms for constructiong a delaunay triangulation.
Int. J. Comput. Inf. Sci.. (3):219-242. 1980. Also appeared as GE Technical Report
79ASD007, July 1979.

[Mel84] Kurt Melhorn. Data Structures and Algorithms. Volume 3: Multi-Dimensional Searching
and Computational Geometry. EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, New York, 1984.

[PS86 Franco P. Preparata and Michael Ian Shamos. Computational Geometry. An Introduction.
Springer-Verlag, New York, 1986.

[Sny86] Lawrence Snyder. Type Architectures, Shored Memory. and the Corollary of Modest Po.
tential. Technical Report TR 86-03-04, Department of Computer Science. University of
Washington, Seattle, WA, 1986. To appear in Annual Review of Computer Science. Vol.
1, 198.

B-41

I 9

ym~.

Chapter Seven: Visibility Calculations
S

S

S

1%

S

AM

B-42

S

r ~
'S .~pvS.

Triangle Visibility
Christopher Brown, Liudvikas Bukys, Michael Scott

16 October 1986

L The Problem
The problem as stated is ambiguous. We take it to mean "report visible

vertkeY'. The size of the problem was well-chosen, providing a reasonable
exercise that exposed limitations in algorithms and data structures. The problem
specifies floating point, but we use integers. The lack of hardware 32-bit
arithmetic in the 68000 is enough to confuse the architectural issues, and the lack
of floating point is such an obvious and important one that it should not be
further folded into the problem. There is evidence that even the integer
multiplication in array index calculations on the 68000 is inefficient enough to
distort the architectural picture. Since there is an easy fix to this problem on the
Butterfly, issues such as contention, the number of processes supported, and so
forth are more interesting.

2. The Approach
A shared memory, SIMD-like, Uniform System virtual architecture fits with

the algorithm we chose to implement,. which is a quadratic all-against-all
comparision of points against triangles for visibility. Below we discuss variations
on this theme, and give the justification for the approach that we ultimately
implemented. There is of course substantial room for more work on this
algorithm, and there are other approaches as well.

3. Three Algorithms
We describe two algorithms, PointTrio and TriTrio, and a hybrid variant.

PointTrio is basic.

PointTri(Points, Triangles){
for-each Point

for-each Triangle
if Occludes(Triangle, Point) mark Point "Hidden";

}

PointTrio can be enhanced in obvious ways to prune the full 3N2 search: In
OccludesO, quit early and continue the loop as soon as it is determined that a
triangle cannot hide a point. As soon as a point is found to be occluded, break
the inner loop. Empirically, it seems this pruning gives a factor of two speedup
(random inputs) over the full search. This speedup motivates TriTri0, which
removes (a subset of) occluded triangles as well as occluded points from
consideration, thus cutting down on the length of both inner and outer loops.

B-43

S S

3.1. Point against Triangle
For PointTriO, computation falls into two stages, called 1 and 3 for

consistency with TriTriO.
(1) Stage 1 is a linear setup stage in which four planes are calculated for each

triangle: the plane in which the triangle lies and the plane through the origin
and each triangle side. These planes are kept together as a row in a Triangle
array, and each point is a row in a Point array.

(2) Stage 3 is the quadratic (doubly-nested for-loop) comparison of points with
triangles referred to above. Occluded points are marked "Hidden."

3.2. Triangle against Triangle
In TnTrio, Stage 1 has more to do, there is a Stage 2, and Stage 3 is more

complicated. The idea is to sort triangles by order of their likelihood of obscuring
other triangles, and to consider them in this order,-getting the maximum pruning
advantage. The right quantity to sort on is the amount of volume in the (1000 x
1000 x 1000) cube of space shadowed by a triangle (hidden by it from the origin).
A quick approximation to this volume is quite good enough (details below). •
(1) Stage 1 computes the triangle's approximate shadowed volume as well as its

planes.
(2) Stage 2 sorts triangles by their approximate shadowed volume.
(3) Stage 3 calculates hidden points and a subset of hidden triangles: triangles

and points each have a "Hidden" mark. Without solving the full hidden line
problem, it is safe to mark a triangle "Hidden" if it is hidden by another
single triangle. The control structure of the nested loops is slightly more
complex because of the extra break condition (a triangle is hidden). The
same Occluded(PointTriangle) function is still the inner-loop workhorse.

3.3. Hybrid - Point against Sorted Triangles
The idea here is add TriTrio's Stage 2 to PointTrio. to sort triangles by

shadowed volume, again hoping the extra work pays for itself with an increased
pruning factor.

4. Some Geometric Details
Points are represented by three integers (x~yz), planes by four integers

(A,B,CD) from the plane equation Ax+By+Cz+D. For Stage 1, if u and Y are
"triangle edge" vectors (the difference between two vertex points) then uXv is a
vector (AB,C), giving three plane coordinates- The fourth coordinate is given by
D = -(xyvyz(AB,C). A,B,C.D need not be scaled to make (A,B,C) a unit
vector for the purposes of this work, and integer arithmetic is sufficient to hold all
significant digits. Further, for the edge plane calculations the origin is a vertex, so
* and v are just triangle vertices and D=0.

B-44

VJ V

For Stage 2, the triple product V = xXy-z gives a volume proportional to
that enclosed between the origin and the triangle. The strange quantity e, simply
the sum of all the nine x, y, and z components of the three vertex points, is taken
approximately to vary monotonically with the distance from the origin to the - S
centroid of the triangle. (V/e 3)- V is the final approximation of trucated
shadowed volume, up to some scaling constants. The cost of the whole
approximation is 17 multiplies and 14 adds.

This approximation was compared with a much more elaborate one that
projects the triangle onto the unit sphere, computes the area of the resulting
triangle, computes the centroid exactly, and then computes the shadowed volume
fairly precisely truncated by a sphere of radius 1.42. PointTri was modified to do
a non-pruned triangle-point computation and to report how many points were
occluded by each triangle. This information was used to establish the "correct"
order for the triangles - increasing number of occluded points. The sort by both
the shadowed-volume criteria was quite successful and yielded a (surprisingly)
good approximation to the "correct" sort. The availability of a relatively cheap
and effective sorting criterion paved the way for a fair experimental investigation
of the sort's utility, which was easier than a responsible theoretical analysis. 0

For Stage 3, the central visibility calculation for point x and triangle
(A,B,C,D) is d = x.(A,B,C) + D. If the d for any of the four planes is negative
(with my sign conventions) the point is on the unshadowed side of the plane.
Thus in the worst (point hidden) case there are three multiplies, three adds and a
comparison for one plane (with nonzero D) and three multiplies, two adds, and a
comparision for each of three planes (with D zero). Any negative result terminates
the calculation with a "Not Hidden By This Triangle" result.

5. Early Experiments
Uniprocessor implementations of the three algorithms established that the .

pruning accomplished by TriTrio and the Hybrid PointTrio was not worth the
effort. Sorting was done by the UNIX qsorto utility. With TriTrio in the worst
case, three times the number of points must be checked as in PointTriO, and the
number of triangles that are wholly hidden by other single triangles is not very
large. The Hybrid algorithm produced times comparable with PointTriO, but up
to 1300 points no dear dominance was established, so it appears that sorting just
pays for itself in the Hybrid PointTriO. Of course a fast parallel sort could change
the results on the Butterfly. The linear Stage 1 (setting up the geometry) is, as
expected, extremely fast compared to the quadratic Stage 3. The pruning -
provided by quitting early in the Stage 3 of PointTryo yields about a factor of two
in speed.

6.Intal Uniform System Iupleuientations
The algorithm PointTriO lends itself naturally to a Uniform System

implementation. The Uniform System gives parallel for-loop capability. The
implementation simply parallelized the main loops in Stages 1 and 3. The

B-45 Oi

N~e .W. ", € .. KA, ,J * ,7'Ar' ,L ,M,q';,3/'X # ' o -"•"2 , " * ---
, "

e ' "' , "- ".I "e" . ,

resulting code came to 450 lines for Stage 1 and 185 lines for Stage 3. It was run
in several versions on the three Butterfly Parallel Processors at the University of
Rochester. Representative code appears in the last section.

Version 1 scattered the (point, visibility) and triangle arrays as usual. Version S

2 locally cached the row pointers to these arrays. Version 3 locally stored the
point coordinates and cached the row pointers to the triangle and visibility arrays.

7. Times
Comparative timing shows that the VAX 750 is approximately 10 times as fast

on this job as a single node in our (not floating-point platform) Butterfly
computer.

1000 Triangles "
VAX and Butterfly (Version 1) Times

Configuration Time in Seconds
1 VAX 11/750 97
1 Bfly Node 1035
2 Bfly Nodes 520
4 Bfly Nodes 261
8 Bfly Nodes 131
16 Bfly Nodes 67
32 Bfly Nodes 35
64 Bfly Nodes 25

1000 Triangles on Butterfly (8 Nodes)

Eff6ect of Caching (Versions 1. 2, 3)
Caching Version Time in Seconds-
8 Nodes, Version 1 131
8 Nodes, Version 2 (row ptrs) 79

8 Nodes, Version 3 (Vers. 2 + points) 67

& Further Uniform System Implementations
Two revised versions of the PointTriO algorithm were implemented by Bukys

with improved results. Some of the improvements are due to the release of the
new Butterfly compiler; others are due to some tuning of the implementation.

The major difference between this implementation and the previous ones is
the memory-sharing strategy. Since the algorithm uses a brute-force 0(n2)
strategy, each point-proceing step may aes every triangle data structure.
These computations will clearly run fastest when every processor has its own local
copy of the data structures describing triangle geometry. Such sharing is possible
because the data strctures are computed only once and can be treated as read-only
and static thereafter. Unfortunately, it takes time to replicate the data structures.

B-46

This program illustrates the resulting tradeoff dramatically: Replicating read-only
data takes some time, but makes the computation run fast; sharing some data
reduces replication overhead but increases computation time due to remote
references and (perhaps) memory contention.

Further, the method of replication has a significant impact on runtime. The
Uniform System implements two mechanisms -for- automatic - replication:
SharePtrAndBlk, which makes all copies from a single master, and ShareSM,
which makes copies from previous copies, distributing the replication load among
memories in a tree-like fashion with resulting logarithmic speedup. While the two
procedures implement essentially the same function, their performance varies
drastically. In the table below, compare the times in the rows "replicate triangle
points" and "replicate planes" for the two implementations. Experiments have
shown that the simple SharePtrAndBlk procedure works well for small pieces of
data (under 2200 bytes), while the fancier ShareSM begins paying for itself for
pieces of data larger than that. Unfortunately, the current Uniform System
package provides the ShareSM procedure in a form suitable only for sharing row
pointers of matrices. It would be a good idea to make both Share procedures use
a data-size criterion for choosing replication method.

The following table breaks down the time spent in different phases of the
computation for a 100-processor run of the algorithm. The final times were 6.5
seconds and 4.1 seconds, with the difference mainly accounted for by the different
system calls implementing replication (shown in the "replicate planes" row. A
constant 1.4 seconds is spent in generating the data (serially for replicability). The
table illustrates that in the two computational steps (compute triangle parameters
and detemine obscuration of points by triangles) typical speedups were almost
linear (note the processor efficiencies of between 69% and 86% in the rows "make
triangle and edge planes" and "visibility"), even with 100 processors running.
However, the cost of replication is significant, and actually slows down the
computation in the SharePtrAndBlk implementation for large numbers of
processors. See the listing of times and graphs below. An obvious further tuning
is to explore the tradeoff and find the amount of maximally efficient sharing.

B-47 O

-IR~4 ik %,4,

Times for 100 Processors, 1000 Triangles

step SharePtrAndBlkp SharQeSM0 0 0
step_______ effcy Imesecs) e timesecs)

initialize benchmark (100 procs) - 4.186 4.200
allocate triangle pts 3.9% .000 3.9% .000
make 1000 random triangles 3.9% 1.473 4.0% 1.463
replicate triangle points .1% .669 1.% .124
Alocate planes, replicate ptrs 1.1% .026 1.0% .030
make triangle & edge planes 74.1% .035 68.7% .033
replicate planes .1% 2.368 .6% .590
visibility: 256 points visible 86.4% L839 77.0% 1.852
FreeAU 2.3% .048 .6% .062
TOTAL (w/o initialization) 25.2% 6.458 34.6% 4.154

Speedup Graphs for Triangle Visibility
* 0

effective processors runtime (seconds) runtime (seconds) (log-log)

100 50 50
so40 , %,

60 30, 10
40 20 5
20 10 '.

0 0 1
0 40 80 0 40 80 5 50

real processors real processors real processors

B-48

.,, , .. . , , ,T- ,, T " " " '-I .¢ W% .
€ '

The graphs above were produced from the following raw data.

Raw Data for SharePtrAndBlk version:

[4] time = 676665 ticks = 4229 sec ep = 3.9; eff = 0.9999
[8] time = 332146 ticks = 20.75 sec; ep = 8.1; eff = L0186
[161 time = 188039 ticks = 11.75 sec; ep = 14.3; eff = .8996
[32] time = 120625 ticks = 7.53 sec; ep = 22.4; eff = .7012
[64] time = 99205 ticks = 620 sec; ep = 27.2; eff = .4263
[100] time = 107235 ticks = 6.70 sec; ep = 25.2; eff = .2524 -'

Raw Data for ShareSM version: I.

[4] time =. 610096 ticks = 38.13 sec; ep = 3.9; eff = 0.9999 S 6
[8] time = 324462 ticks = 20.27 sec; ep = 7.5; eff = .9401
[161 time = 184055 ticks = 11.50 sec; ep = 13.2; eff = .8286
[32] time = 113449 ticks = 7.09 sec; ep =21.5; eff = .6722
[64] time = 79820 ticks = 4.98 sec; ep = 30.5; eff = .4777
[1OO time = 70453 ticks = 4.40 sec; ep= 34.6; eff = .3463

9. A Pipeline Algorithm in LYNX
A systolic approach to solving the triangles problem was suggested by Peter

Dibble and refined and implemented by Michael Scott. Triangles are fed into one
end of a process pipeline. When they emerge at the other end, their vertices are
marked "visible" or "hidden." In the simplest version of the algorithm, there are
an equal number of triangles and processes. A special process feeds the head of
the pipeline with triangles whose vertices are all marked "visible." An additional,
marker triangle is fed through last. Before the pipeline begins operation, a e
preliminary phase of the algorithm precomputes, in parallel, the coefficients of
plane equations that will be needed to determine if a point is obscured.

Each pipeline process keeps the flist triangle that reaches it. It passes
subsequent triangles on to its successor, marking as hidden any previously-visible
vertices that are obscured by the original triangle it kept. When the marker
triangle arrives, the process passes its personal triangle on to its successor, followed
by the marker. Triangles emerging from the end of the pipeline have been
compared against every other triangle. 'p

An optimized version of the algorithm attempts to hasten comparisons that
are most likely to find obscured points. In addition to computing plane equations, .-. ' '
the initialization phase also computes the approximate volume of space shaded by
each triangle. Each pipeline process compares the shaded volume of each newly-
received triangle against the shaded volume of its personal triangle. If the new
triangle is "bigger," it swaps them, keeping the new triangle and passing the old
on to its successor.

B-49

Il ~

* 0

The optimization is particularly important in practice, as there are many fewer
processors than triangles. If each of the early stages of the pipeline is run on a
different processor, and if each of the triangles in those early stages shadows a
large volume of space, then the odds are good that relatively few obscuration tests S

will be needed in later stages of the pipeline.

Scott coded the pipeline algorithm in LYNX, a message-based language
available on the Butterfly here at Rochester. The original version, with one
process per triangle, does not accommodate large problem instances, because of
operating-system limitations on the number of processes per processor. Scott then
made a second implementation in which the pipeline, having exhausted processors,
doubles back through existing processes as many times as necessary to provide one
stage per triangle. If there are K processors, then processor I contains stages I.
2K-I+ 1, 2K+ I, 4K-I+ I,

The multiple-stages-per-process implementation is significantly more
complicated that the original version. It has uncovered a bug iD the Chrysalis
operating system which, in the limited time available to us, we have not yet been
able to correct For 200 triangles (the largest problem size that does not trigger
the Chrysalis bug), the algorithm completes in about 15 seconds with a 100-
processor pipeline.

10. Architectural Implications

Floating point processing (and hardware integer processing) is necessary.
BBN currently provides an upgrade package (M68020-68881 daughter board) that
we hope to acquire.

The Butterfly can present many abstract architectures to the user. For the
Uniform System algorithm, a high-level and fairly superficial list of observations
follows. In the US, memory allocation causes dramatic serialization: Parallel
allocation would help. Carla Ellis and Tom Olson at Rochester are studying that %J
problem. A geometric coprocessor or preprocessor for fast computation of X.
trigonometric, roots, vector and matrix operations would be useful (the WARP %*
comes to mind here). Better debugging support, from symbolic tools down to &_
certain microcode enhancements would speed the development cycle. A
combining switch would reduce memory contention, which may be a bottleneck in
this computation.

The ability to share (copy) data quickly between processors would make a
significant difference in this implementation, since in the final versions much data
copying was done to increase the locality of computations on individual nodes.
There is clearly a tradeoff in the current architecture between memory contention
and the cost of massive data copying.

Serialization within the system is costly. Some of it can be avoided by the
clever user, but some of it (such as memory allocation) should be parallelized by
the system. 8-50B-50 , ,,- -

-'.- -. . ." -- ." - -" " . ."-" , ." "." "." :'. ." ".". e @, T10.%I "_,,...: ,, .., .:_, ,,...., .., .., , .o._ ., ,_._ _, _,,, ,<. ., , _ ,- -... :;-, N .N

In the LYNX algorithm, we believe that the inefficiency of the pipeline is due
primarily to the relative expense of sending a message (on the order of 2 or 3 J
milliseconds) compared to the amount of real work performed per message. To
amortize the cost of message-passing, we would need in a practical implementation 0
to pass more than one triangle in each message. Like the need to package more
than one pipeline stage in a process, the need to package more than one triangle
in a message complicates the implementation considerably, and suggests that the
parallelism of the pipeline is too fine-grained for effective expression in LYNX.
Unfortunately, there is no software package currently available on the Butterfly
that supports orders of magnitude more processes than proc'ssors. The Uniform
System does not count in this regard because its tasks cannot be suspended and
are therefore able to synchronize only by busy-waiting. V.

We hle b gun to realize that a large and important class of problems can be
solved by devoting a process to each of a very large number of objects. Many 0

parallel algorithms in the current literature are of this flavor: the geometric
problems in the benchmark provide more examples. To aid in mapping
algorithms from the literature onto the Butterfly, a language akin to Mesa or
Concurrent Euclid would be a very useful tool. Ada would also work, though
probably not as well. 0

11. Stage 3, Version 3 Of PointTriO and the Uniform System
Besides making the inner loop of the computation explicit, this code segment

illustrates several points. First, it shows that the Uniform System is easy to use:
Both the US and SMP libraries give the new user very rapid startup. Second, it
reveals that the Butterfly architecture is not actually a shared memory machine.
There are several standard practices to reduce memory contention, the most
common being local caching or copying of data. These practices acknowledge
local memory. Below, local copies are made in the initializing routines
GenericlnitO and TInitO, and in the inner loop routine TriHidesPto. Also the
point array ShrPts] has been copied to every node. Further, US has some hidden
serializations: the storage allocator works sequentially, using global locks. The
AllocateQ call in ForAllTrianglesQ is natural but can (and should) be eliminated.
Implicit in this example is that the ease of Butterfly programming and the
flexibility of the architecture place a burden on the designer to come up with an
efficient algorithm and data structures - the architecture does not dictate them.
/*"**********STAGE 1 NOT SHOWN HERE /
/********AGE 3 - CHECK POINT S AGAINST TIANGLES ""/

CheckPointso /outer parallel for loop - for all points /

GenOnIndex(Genericlnit, ForAllTriangles, p, 3*(P->N));

ForAllTriangles(Arg, PointNdx) /* inner loop -- for all triangles 0/

B-51

* *-*~ ~....... .I.%N.

k:.A A ~~ ~~->. WI*t*Zd

Problem *Arg;,
mnt PointNdx;
I
Problem *t
int i;

t = (Problem $) Allocate(sizeot(robleni));
/this Allocate should be avoided: allocation is done serially 0/

0* N = myproblem.N;
t->ThisPointNdx = PointNdx;
0- Vis =myproblem.Vis;,
t-> Tris =myproblem.Tris;-
t->ThisVis = -1; /create problem structure '

GenOnlndex(Tnit, TriHidesPt, t, tON); /parallel for loop/
I

TInit(Arg) 1. Standard practice. make local copies of
global scattered data to avoid contention. In this case
copy row pointers and problem structure .

Problem *Arg;

static int *vis[POINTS];
static int *tris[TRIANGLES];
block...copy(Arg, &MyTProb, sizeof(Problem));
block-copy(MyT Prob.Tris, tris,(MyTProbN)sizeof(int))
block...copy(MyTProb.Vis, vis,(MyTProb.N)3sizeof(int))
MyTProb.Tnis tiis;
MyTProb.Vis =vis;

Tri~des~rg Tr~dx /0inner lopcomputation: does triangle hide pt?/

Problem $Arg; ./?
int TriNdx;

int offset, MyX, MyY, MyZ PlaneNdx;

if(MyTProb.ThnisVis ==0) return; Mis point already invisible? .

offset = (MyTProb.ThisPointNdx)*POINTCOLS;
MyX = ShrPtsfoffset];
MyY = ShrPts~offset+ Yj;

B-52

~~RN

* 0

MyZ = ShrPts(offset+Z]; /*get point x, y, z

block_copy(MyTwrob.TriTriNdx],MyTriangle,(T COLS)*sizeo(int));
/* make local copy of scattered data /

if((MyX * CoordoRPLANEA) /* dotproduct with plane of triangle 0/
+ MyY * CoordURIPLANEB)
+ MyZ * Coord(TRIPLANE,C)
+ Coord(TRIPLANED)) <= 0)
return, /*not hidden - quit /

for (PlaneNdx = EDPLANE1; PlaneNdx <= EDPLANE3; PlaneNdx+ +)
/*dot with 3 planes of edges /
{
if((MyX * Coord(PlaneNdxA)
+ MyY Coord(PlaneNdx,B)
+ MyZ * Coord(PlaneNdx,C)
<= 0))
return; /*quit early if not hidden*/

/*point hidden if get to here*/
MyTProb.ThisVis = 0;
MyTProb.Vis[MyTProb.ThisPointNdx][0] = 0;

/*set local and global visibility ./

} /* end TriI-lidesPts /

•* ** M ROUTINES *

FullJobo{
MakeTrianglesO; /*do Stage I */
CheckPointsO; /* do Stage 3 - see above 0/
FrecAllO; /' clean up *-

mainO

InitializeUsO; /*Uniform System nitislize*/
MakeShrPtso; /* generate random 3-D triangle vertices 0/ :- '-
TmeTest(SetUp, FulJob, MyTestPrint); '
/*run algorithm, get times on different numbers of processors */

}%

B-53

, i -'t ' , -+. ;+ " • " " I" " ' =" - -- L ',.w.' .

Chapter Eight: Graph Matching

see: Butterfly Project Report 14

4~ 'A.

8-54w

Chapter Nine: Minimum-Cost Path

B-55

%:S

N N % N % .

!Zee '®

Minimum-Cost Path

Brian D. Marsh and Thomas J. LeBlanc
August 1986

L Introduction
We describe an implementation of the minimum-cost path problem on the BBN

Butterfly using the SMP message-passing library developed at the University of
Rochester. The problem statement for finding the minimum-cost path is as follows:

The input is a graph G having 1000 vertice each joined by an edge to 100 other vertices
selected at random, and where each edge has a nonnegative real-swlued weight in some
bounded range Given two vertices P. Q of G. the problem is to find a path from P to Q
along which the sum of the weights is minimum. (Dynamic programming may be used if
desired)

Given this problem statement, it is ambiguous "as to whether we are required to solve
the all-pairs-shortest-path problem, which then allows the user to query the result
regarding individual pairs of nodes, or whether we are to sohe the single-source-shortest-
path problem for a particular pair of nodes. Given that dynamic programming was
specifically mentioned in the problem statement and is normall) used to solve the all-
pairs-shortest-path problem, we felt constrained to implement that problem, despite the
fact that we believe the single-source-shortest-path problem has a more interesting parallel
solution and would better exhibit the flexibility of the BBN Butterfl. architecture. In the
following sections we describe our parallelization of Flo)d's algorithm for the all-pairs-
shortest-path problem, an implementation of the algorithm on the Butterfly using the SMP
message-passing library package, and our performance results.

2. A Parallelization of Floyd's Algorithm
We chose to implement a parallel version of Floyd's dynamic programming solution

to the all-pairs-shortest-path problem [11. The input graph is represented by an adjacency
matrix. An entry, [i], corresponds to the weight of the edge from vertex i to vertex j.
Nonexistent edges are denoted b) a symbol representing infinite distance.

During execution each entry of the matrix corresponds to the cost of the minimum-
cost path between two vertices. Initially, only those vertices that share an edge have a
path of finite cost. Floyd's algorithm iterates over each row of the matrix, finding
successively lower cost paths. During the k'th iteration, the algorithm computes the cost
of the minimum-cost path between all pairs of nodes, i and j, that pass through no vertex
numbered greater than k. For a graph with N vertices, N iterations are necessary.
Therefore, the algorithm is O(N3). The code for the algorithm is as follows:

B-56

IS N

for k:= Ito Ndo
for i:= I to Ndo

for j:= Ito Ndo
If A[i, k] + A[k, j (A[4 1 then

4fiA/:= 1 4" k] + Afk, J/
end If

end for
end for

end for

An obvious parallelization of this algorithm results from treating each for loop as a
parallel for loop. However, the granularity of the innermost loop is not large enough to
justify the overhead of process allocation in the Butterfly. For this reason we chose to
use the processing of an entire row as the unit of granularity for parallelism. We divided
the problem matrix uniformly among the available processors, so that each processor has
some subset of rows in the matrix. Since the size of the input graph is defined to be on
the order of 1000 vertices, each processor must iterate over approximately 10 rows. The
code for each process is:

for k:= ItoNdo
if row k is local then

broadcast row k
else

receive row k
end if
for each local row i do

forj := Ito N do
if A[4 k] + A[k, j < A[4 J1 then

.4[11.= 4 k] + Al..U
end if

end for
end for

end for

The primary data dependency in this algorithm is that all processes need a specific
row at the same time, a row whose values are dependent on past computation. This
synchronization constraint forces the processes in the algorithm to run in lockstep. On
the k'th iteration, each process computes the optimal paths for its local rows using the
values stored in row k. Computation cannot proceed until these values are known. The
implementation, therefore, must have an efficient broadcast mechanism. For this reason,
among others, we chose to implement the algorithm using the SMP library package. *

B-57

i- f~ ?',_, , '2dS ''% S,'',- Yx ' '". .,'',='''. ".7'. "".,'""' ": :. :;". ,":,.';.;. €"q', ,,.. ,,.. , '% ,' % %. %.-.V

3. An SMP Implementation of Floyd's Algorithm

An implementation of the all-pairs-shortest-path problem was done in C using the
SMP library package developed at the University of Rochester [3]. SMP is a message-
based programming environment for the Butterfly. Processes are dynamically created
within SMP families. Interprocess communication within a family is based on
asynchronous message-passing (send/receive) according to a fixed communication
topology. When using SMP the programmer sees a small set of procedure calls for
creating processes, specifying interconnection topologies, and sending messages. The
details of the Chrysalis operating system needed to implement processes and
communication are hidden. The programmer is free to concentrate on the issues
pertaining to the application, rather than the underlying primitives.

There were several reasons for choosing SMP for this application. The most
important reason is that our experience with a similar application [4] had shown that
exploiting data locality could lead to significant performance advantages when compared
with the shared memory approach of the Uniform System [2]. That is, storing a subset of
the rows in memory local to the process that will modify those rows and exchanging rows S

in messages requires less communication than storing the rows in a globally shared
memory. Another reason for using SMP is that broadcast communication, which is used
in our algorithm, is directly supported. Finally, we were able to use this application to
gain additional experience with SMP.

Our parallel version of Floyd's algorithm does not make full use of the tree of
dynamic process structures available in SMP. In our implementation, a single parent
process is responsible for creating a child process on each processor. Each child process
is given some subset of the rows in the initial adjacenc) matrix. On the k'th iteration,
each child process receives a message containing row k and computes new values for its
local rows. The process containing row k+ 1 then broadcasts that row to all its siblings to
start the next iteration.

The send primitive of SMP accepts a list of destination processes, therefore, both
broadcast and multicast can be done directly in SMP. The SMP implementation of send
is such that the cost of sending to one sibling (or to the parent) is the same as sending to
100 siblings. In each case, the message is copied to a buffer local to the sending process
and flags are set indicating the intended recipients. Using the SMP receive primitive,
destination processes can inspect the shared buffer to determine if there is a message
directed to them. If so, the message is copied into the local memory of the receiving
process.

One of the problems with broadcasting in SMP is that the Butterfly provides no
hardware support for simultaneous communication with multiple destinations. In SMP
each potential recipient of a message must map the message buffer into its local address

8-58

% %J, -Z

space to check for a message. Since each process in our algorithm is expecting to receive
rows from every other process, the source list of each receive operation is very long. All
the processes listed in the source list will have their message buffers mapped into the
local address space during each iteration. This turns out to be extremely time consuming
when the list is very long and, in an early implementation of our algorithm, was a
dominating factor. Fortunately, we were able to exploit the inherent synchronization in
our algorithm to reduce the overhead of broadcasting by minimizing the number of
buffers examined on each iteration.

On each iteration, every process expects to receive a particular row. Despite the fact
that rows are broadcast, the source for each row is known. Hence, in our
implementation, we invoke the receive operation on the krth iteration with a source list of
size 1, namely, the process containing row k. This way, only one message buffer is -
mapped into the local address space on each iteration. We were able to improve
performance by 50% using this approach. The performance of the resulting
implementation is summarized in the next section.

4. Performance Results

The program to solve the all-pairs-shortest-path problem was developed on a host
Vax 11/750 and downloaded to the Butterfly for execution. A sequential version was also
implemented on a SUN workstation for comparison purposes. Coding and debugging *
the application program required about one week of effort by a graduate student; some
additional time was spent debugging the SMP library.

For the purposes of the benchmark experiments, random graphs of various sizes
were generated. We performed detailed experiments using two graphs: G1, a random
graph containing 100 vertices with 10 edges per vertex, and G2, a random graph
containing 300 vertices with 30 edges per vertex. We did not perform any experiments
with the graph size given i- the problem statement, 1000 vertices with 100 edges per
vertex, for two reasons:

a) In order to demonstrate how well our implementation scales to multiple processors,
we needed to run the algorithm with a varying number of processors and compare it
to the single processor case. G2 requires 33 minutes of execution time on a single
processor. By running significantly larger problems, we would be consuming a
limited resource (Butterfly availability) and learn very little in return.

b) The cost matrix for a graph with 1000 vertices requires 4MB. While our Butterfly
does have 1MB on each node, Chrysalis does not have good tools for creating and
manipulating large objects that span multiple processors. The extra programming
effort necessary to run such a large problem was not warranted. - _

B-59

, %

% % ~ '

In each of our test runs, only 100 processors were used, even though 120 processors
were available. We did this so that all of our graphs would be uniformly distributed
among the available processors. In this way, we eliminated the "tail end" effects that
might otherwise distort our measurements.

Our performance results for finding the all-pairs-shortest-path solution for G1 and
G2 on the Butterfly are shown in Figures 1-4. We have not included the initialization
overhead in the results; only actual computation time was measured. The parent process
in the SMP family was responsible for maintaining the timing results. All children
synchronize with the parent, the clock is initialized, and all processes then begin
computing. The results show the elapsed time between clock initialization and the final
response from child processes.

These same graphs were also run on a SUN 2/50 workstation with 4MB of memory
and a Vax 11/750 with 2MB of memory. G1 took 44.5 seconds on the SUN, 158 seconds t
on the Vax, and 69 seconds on a single Butterfly processor. G2 took 1205 seconds on the
SUN, 2787 seconds on the Vax, and 1907 seconds on a single Butterfly processor. As can
be seen in Figure 1., a small graph of 100 vertices can efficiently use 25 processors on the 5

Butterfly (19 effective processors); additional processors do not provide much
improvement in performance. The larger graph, G2, can make use of all 100 processors.
In either case, only 2 Butterfly nodes are needed to significantly improve upon the
sequential version on both the SUN and Vax.

5. Conclusions

To summarize the results of our expe'I nce with the all-pairs-shortest-path problem:
a parallel version of Floyd's algorithm was easily implemented using SMP on the
Butterfly and the resulting performance demonstrated nearly linear speedup using up to
100 processors. What follows are some comments about the choice of algorithm,
software, and architecture.

The dynamic programming approach to the all-pairs-shortest-path problem is ideally
suited to a vector machine; the Butterfly Parallel Processor has no special capability in
this regard. Nevertheless, we felt this would be the easiest solution to implement in the
limited time available. The fact that we were able to implement a solution to this
problem on the Butterfly in a short period of time, a solution that demonstrated nearly
linear speedup over the sequential version for large graphs, gives some measure of the
flexibility of the Butterfly architecture. It would have been interesting to compare our
experiences on this problem with similar experiences on the single-source-shortest-path
problem, a similar problem with a more interesting parallel solution. Tune did not permit
this comparison.

Our experiences with the SMP system were very positive. A new graduate student
was able to implement Floyd's algorithm in about one week of effort. The SMP library

B-60

% % .%.. e

dramatically reduces the learning curve for the Butterfly. However, the SMP library was
only recently released, and we did encounter a few system bugs. All of the bugs were
repaired in the same week. This effort did point out the need for some optimizations _
when handling source and destination lists in an SMP broadcast. We expect this will lead
to slight m.xifications in the way SMP teats such lists. We also plan to add some
additional routines that help in performing timing tests.

Our biggest problems with the Butterfly architecture continue to be related to
memory management, in particular, the lack of segment attribute registers (SARs). SAR
management was the source of most of the SMP bugs and is also the main difficulty in
manipulating large objects. However, as we have gained more experience with the
Butterfly, we have accumulated tools and techniques for solving most of the problems
associated with SAR management. (For example, SMP incorporates a SAR cache for
message buffers.) We expect that continued experimentation will yield additional
solutions.

References 9

1. A. Aho, J. E. Hopcroft and J. D. Ullman, Data Structures and Algorithms,
Addison-Wesley Publishing Company, 1983.

2. BBN Laboratories, The Uniform System Approach To Programming the Butterfly
Parallel Processor, Version 1, Oct 1985.

3. T. J. LeBlanc, N. M. Gafter and T. Ohkami, SMP: A Message-Based Programming
Environment for the BBN Butterfly, Butterfly Project Report 8, Computer Science
Department, University of Rochester. July 1986.

4. T. J. LeBlanc, Shared Memory Versus Message-Passing in a Tightly-Coupled
Multiprocessor: A Case Study, Proceedings of 1986 International Conference on
Parallel Processing, (to appear) August 1986. ,

B-61

W-"--'

GI: Execution Time Gi: Speedup

Seconds Effective
Processors

80 100

60 80

•d40

40

20 . S S

02
O~L- ! Ij I I I I

0 20 40 60 80 100 0 20 40 60 80 100

Processors Actual Processors

Figure 1 Figure 2

G2: Execution Time G2: Speedup 5
Effective

Seconds Processors
400 100 -

300

100

20 ~

0 0 _ _ _ _ _ _ _ _ _

0 20 40 60 80 100 0 20 40 60 80 100
Processors Actual Processors

Figure 3 Figure 4 A.

B-62

lr.* ., *. ' -a .

*..***~*.**,** ',*.: * * * * * .*.**. , +

Appendix B-2

Rover Programmer's Guide

David J. Coombs' W ..

coombs%cs.rochester.edutrelay.cs.net

The University of Rochester
Computer Science Department
Rochester, New York 14627

Technical Report DRAFT

May 1987

*

Abstract r

This is the programmer's guide to Rover, a prototype active vision system
[Coombs and Marsh 19861. The system was built as a project for CSC 400 and CSC
446, but it is hoped the system will be used by others as a tool for investigating ac-
tive vision problems in the laboratory. This guide describes not only the conceptual
organization of the system, but also the existing source code.

The University of Rochester Computer Science Department supported this work.

*Thanks are due to Chris Brown, Brian Madden and Brian Marsh for their support and critiques of this
document.

B-63

% 1.'

V3.VVWV7 w . '-V '-W.'v IU- V V VV U-V Nn ~ %r~ ~~ - . ~

Contents

1 Overview of Rover B-65
1.1 Inter-Module Communication.. B-65

2 Existing System B-67
2.1 Executive (re exec) .. B-67
2.2 Clusters ... B-67

Raster Scan Cluster (rs-*).. B-67
23 Object Discrimination Cluster (od- B-69
23 Libraries... B-69 --

Task Queue Manager (re-queue) .. B-69
Graphics Display (re-gfx)... B-70
Data Cube Interface (re-dq) .. B-70
Binary Line Segmenting (rsjlib) ... B-70
Segment and Blob Lists (re-segbuO)...................................... B-70
Temporary Image Buffers (re-tib).. B-70
Image Partitioning (re-partition)... B-70
Object Color Identification (re-color).................................... B-70
World Database (DB) Manager (re-world) B-71

A Building on Rover B-73
A. Hints for Anguish-free Hacking.. B-73
A.2 Exercises and Obvious Extensions.. B-73
A.3 Templates for Your Own Code ... B-75

B Rover's Code B-75 ~ ~
B.1 Coding Conventions .. B-75

List of Figures

1 Functional Overview of Rover... B-66
2 Rover's Source Code Files.. B-68
3 Sample Cluster Declaration (cluster..types.h)........................ B-76
4 Sample Module Source (module.c)...................................... B-77
5 Sample Library Declaration (library.h) B-78
6 Sample Library Source (library.c) ... B-79

B-64

A J(

W rdU-r

I r

I Overview of Rover

Rover is the result of an attempt to build an extendible active vision system that is flex-
ible enough to support vastly differing control strategies. Both top-down and bottom-up ____

processing can be implemented in the Rover paradigm.

The current implementation of Rover performs the task of maintaining correspondences
of distinctly colored spheres over time in i dynamically changing scene. Figure I diagrams
Rover's main functional units and their relations to one another. Briefly, the Executive
begins the work on each image frame by enqueueing a batch of "raster scans" in a static
search pattern and then watches a clock to avoid spending too much time on any single
image frame. (Other strategies could be employed to search the image frame for potential
objects-see Section A.2.) The Raster Scan Cluster seeks light-colored "blobs" in the image
frame that may be objects in the scene. The Object Discrimination Cluster scrutinizes the
blobs pointed out by the R.S. Cluster and updates the world database. Thus the Executive
performs limited top-down direction of computation, but otherwise, computation proceeds
in a bottom-up fashion.

1.1 Inter-module Communication

A module is an open-loop I process that is invoked by another module. Modules that perform
functions related to a particular goal are grouped together in a iuoster. Rover maintains ,,

a priority queue of tasks waiting to execute. Arguments are enqueued with each module
when it is entered on the queue of waiting tasks. Each module returns a special defined
type as its result.-o

In the current implementation, module invocation (beyond the initial enqueuing of O

enough raster scans for the whole image frame) is driven by the results of each stage of
processing. Each module performs its assigned task and enqueues the module whose work
should be done next, based on the results of the current module. Information is passed be-
tween modules either by placing it in a global data structure (as in the raster scan cluster)
or by wrapping it up and handing it to the next module as its argument (as in the object
discrimination cluster).

A module may be composed of several functions, although it is crucial that each module
execute and return quickly so the entire system is not bogged down by a sluggish module.
(Rover is intended to be robust enough to adapt to a more rapidly changing environment
by processing each frame less completely, and a module that runs a long time can cause the
executive to lose track of the environment.) A module that needs to perform some auxiliary
task to continue its computation is thus split into .

1. a module to perform the initial computation, * 0

2. a module to accomplish the auxiliary work,

3. and a module to be enqueued by 2 to conclude the work. %

'Here open-loop means that the process can be dispatched without requiring the invoking module to N
monitor its progress. 0 S

B-65

executive modu'e

data :re-exec * control
flow fo

...........

data
object

worldfrm
model buffer

* U * U g

* 3 Uo*id Ui

*od-iernblob

* S rs-sement

I N"

Figue 1:Funcionl Ovrvie of ove

B-66S

v, Z

A good rule of thumb is to design each module to perform a fairly straight-line function V
and then at a major decision point or functional transition to enqueue the next appropriate
function to carry on.2

2 Existing System

Figure 2 depicts the topology of Rover's source code files. This should serve as a guide to
the source code.3 The clusters and libraries are briefly described in this section to provide
an introduction to the code in the current implementation.

2.1 Executive (re.exec)

Rover begins execution in the Executive, setting the command line options and initializing ,
the global data structures. The Executive then starts the first frame interval.

At the beginning of work on each frame, the Executive notes the time and enqueues
enough raster scans to search the entire frame image at a predefined density (every 16
horizontal lines). When all interesting work has completed or time runs out on the current
frame (the time limit is a compile-time system parameter) the Executive flushes the queue 0
and degrades the confidence4 of each object in the world database (DB). The confidence .

of an object is degraded the most if it was not updated at all during the previous frame
interval. The confidence is degraded a little if its position and motion were updated based
only on location and size correspondence with the image, and it not degraded at all if .

the "color" of the item was used in the correspondence check (i.e.the object's identity was
"completely" verified, assuming each object has a unique 'color').

2.2 Clusters
Raster Scan Cluster (rs_*) 0 0

This cluster scans the image frame coarsely to quickly identify blobs in the image and
estimates the horizontal motion of each blob found. (Recall that the objects in the scene

are assumed to move in horizontal planes.)

Rs.scan is called by the Executive to enqueue the scans initially; it also takes a new;
image in the frame buffer. (Actually, each image frame consists of a pair of images at 'V'. ,
one-half horizontal resolution. Rs.segment uses these two images to estimate the horizontal
velocity of each detected segment. Subsequent modules use only the second image of the Z

pair.)-

'Although the modules in each cluster are currently structured as a progression of computational stages, 4 , ,
Rover's facilities can support other organizations (e+&~ hierarchical system in which each cluster also has a
queue of tasks and one module in each cluster acts an the "executive" for that cluster). In fact, Rover was
intended as a vehicle for exploring various organizations for active vision systems.

"A listing of the code is available in TR ??? (wre we sure we want to do this?).
"The confidence of an object reflects the quality of the data about the object.

B-67 U
~

-%'

-~ ~ e % k .- '- -~ -~

rover Ilegendexecutive I iintended to
I etpeh re__exec.h Qbe exported

Ireyvert-seg.h reec.c intended to

i raster scan__ _ _ _

cluster~ ~ ~ rstps ~ ssegparms~h

object
discrimination od~ys.- dzomoNI cluster -. I

r -N MW - --

I rover " ' regfx.h I
Ilibraries reqeu~

re~r dhL~ euec re~fx.c I_
I ______________ regfxpatches.c I

I re__dq.c __lIib.hI

re...dqReadBlockxy.c - c ecolor.h re__worldg.h

i reqWriteBlockxy.c re__color.c rew..orld.c

I re__tb4 repartition.h resegbuf.h jjre-w.Jib.h I
I ~ mE~b~ repartition.c r eufc re w lib.c

Figure 2: Rover's Source Code Files

B-68

Rs.segment recognizes a segment' in the pair of images if the segment appears in both
frames and its images overlap spatially (if the two images are overlaid on one another).
Each detected segment's horizontal velocity is also estimated. and all the segments detected
on this horizontal raster line are recorded in the segment list. Then an rs.seg..merge is
enqueued to work on these results.

Rs-seg...merge tries to merge each segment found on the indicated raster line either into
an existing blob6 or with another unmerged segment to create a new blob. A segment may
merge into a blob or with another segment if they overlap and their estimated velocities are
"close' to one another (as determined by a pre-defined percentage-error threshold). Then
an instance of rs.sweep is enqueued.

Rs.sweep sweeps through the blob list to cap off existing blobs by noting a lack of
segments in the expected positions on the rasters above and below the known extent of each
blob. For each blob that is apparently bounded by background. an od.zoom is enqueued to
examine that region of the image.

Object Discrimination Cluster (od_')

This cluster examines at finer resolution each subimage identified by the Raster Scan Cluster
as a potential object and uses its results to update the world database.

Od-zoom copies the indicated subimage from the frame buffer into a temporary image "

buffer. If an object appears to be "clipped" by any edge of the subimage (i. e.the object is not
completely contained in the subimage) the subimage is discarded: otherwise, an od-identify
is enqueued for each object found in the image. .

Od.identify spatially back-projects its object-image onto the world DB to find objects
already known in the world to which this image might correspond. If no objects of about
the same size are found in the expected locations, or the confidence of the closest match is
low (i.e.the accuracy of the information on this object is suspect) the image's "color' (mean
and variance oi brightness) is calculated and the world DB updated by the best match (if
any are "close9) in color, size, and etc.. If no existing object matches the image well enough,
a new object is placed in the world DB.

2.3 Libraries

Task Queue Manager (re-queue)

This library provides the operations new-queue, enqueue, dequeue-highest, dequeue. and
q.flush operations on instances of priority queues of tasks. A Module is enqueued as a
pointer to a function, with a pointer to a structure that holds the function's arguments, a
function to free the argument in case of a q flush, and the module's priority., P%

'Aegment is a bright section of a horizontal hune that is surroumnded dark sections.
A bob is a set of vertically adjacent and horizontally overlapping segments whose velocity estimates are

compatible. 0 •

B-69

Graphics Display (re-gfx)

The graphics display runs under SunTools. It provides the ability to start up Rover's display
window, clear it, and draw crosses. lines and boxes in the window. These facilities are used .0
by the clusters to display their results as Rover runs.

DataCube Interface (re.dq)

This library implements functions to digitize a new image frame in the frame buffer. and
to get any subwindow of the frame buffer for closer inspection.

Binary Line Segmenting (rslib)

A one-dimensional Kirsch edge detector and general-purpose line segmenter are imple- 0
mented. The edge detector is a simple "difference of boxes" applied to each point on
the line (image vector) that is an argument to the edge detector. Thus the result of the
edge detector is a magnitude vector in which rising edges of brightness in the image vec-
tor appear as peaks, falling edges appear as valleys, and segments of constant brightness
give no response. The edge detector also returns the mean and standard deviation of the S
brightnesses of the points on the line. The line segmenter locates "peak-valley" pairs whose
absolute values exceed a threshold supplied to the function as an argument.

Segment and Blob Lists (re.segbuf)

Essentially, the operations new, insert, and member (like the operations on the abstract
data type, set) are implemented for use on segment and blob lists.

Temporary Image Buffers (retib)

The operations new, get-image, and free are provided for using the Temporary Image Buffers
(TIBs). TIBs are used in the Object Discrimination Cluster to hold subimages from the
image frame.

* 0

Image Partitioning (re-partition)

Facilities are provided for searching within and splitting image partitions in TIBs.

Object Color Identification (re-color)

This library implements functions to calculate the "color" of an image, and to match a
color against the system's current registry of colors. The color an object is the pair (mean,
variance) of the brightness of the image of the object. It is assumed to uniquely identify an
object.

B-70

%
% NI I V4m-- - -- J -.,- s - - ;. - - -. -- -: - -- -%

World Database (DB) Manager (re.world)

This library provides the interface to the spatially indexed world model. It implements
the operations necessary initialize the DB. search a spatial region of the world, attempt to S

match a given object with an existing one in the DB, update an existing object with new
information, insert a new object in the DB, and degrade the information in the DB.

N -

* .

B-71

'd % g%'.

References

[Coombs and Marsh 1986j' David 3. Coomnbs and Brian D. Marsh, Roving eyes - prototype
of an active vision system, December 1986. CSC 400/446 Project Report.

[Kernighan and Plauger 19781 Brian W. Kernighan and P. J. Plauger, The Elements of
Programming Style, McGraw-Hill Book Company, second edition, 1978.

% %r~\ A

%~~~~ IOx8-72

A Building on Rover

For the reader who wishes to extend the current implementation of Rover to realize greater
functionality, this section is devoted to outlining our mistakes for your benefit. and indicat-
ing obvious directions for extending Rover.

A.1 Hints for Anguish-free Hacking

We offer these suggestions for your enhanced hacking pleasure (take them with as many
grains of salt as you like):

1. Read The Elements of Programming Style [Kernighan and Plauger 1978]. At least
scan the Summary of Rules at the end-it only takes two minutes. and the reminders
may save you many horrors we were not spared in the initial implementation.

2. Follow the conventions established in the existing code. Each lends itself to clear code,
and minimum interaction between source code in separate files.

3. Adopt the following convention regarding allocating and freeing memory for tempo-
rary results:

" Any library that exports a function which returns malloc 'd memory as a result '.

must also export a function to free such objects as its functions create.

" Any function using a function that returns malloc'd memory is responsible for
utilizing the associated freeing mechanism to prevent memory leaks.

4. Of course, it is even more important to avoid free' ing memory that other functions
may reference in future, as this leads to unpredictable results. N.

5. Try to use a tight design-implement-test cycle to keep changes as incremental as
possible. And of course keep backup copies of the latest version of working code.
(RCS is fairly nice for this.)

A.2 Exercises and Obvious Extensions

These exercises are intended as vehicles for familiarizing the reader with the core ideas _ 0
of Rover and the current implementation. Exercises affecting specific parts of the system
appear early in the list, and enhancements involving the entire system later.

1. (useful) Do something better with clipped windows than discarding them. For in- ,."
stance, try getting a subimage from the frame buffer adjacent to the clipped edge to 0
grow the window in hopes of finding the whole object. Windows are clipped frequently
in practice, so this could lead to significant gains in performance. It could, of course,
be argued that the Raster Scanner should be improved to reduce this frequency. (Why ..-. ,.-*
not do both?) Also, in the presence of occluded images (consider several balls, each
overlapping) we might not be able to afford to discard partial images. 0

B-73

A I., '-

M21l N. % ,*

* M

2. (useful) Replace simple thresholding in the Object Discrimination Cluster with sparse
application of an edge operator to locate approximate boundaries of objects. (The
rs-lib was not available when the od.* cluster was implemented.)

3. (useful) Develop an error-handling scheme to enable the system to die gracefully and
diagnostically.

4. (tedious) Apply convention 3 in Section A.1 to the existing code to find and plug
memory leaks.

5. (insidious) Find the bug that causes floating exceptions occasionally and fix it. Per-
haps a local patch will be best, but it may be the result of a previous function not

doing its job properly.
"* S

6. (straight-forward) Extend the declaration of the return values of modules to be a
struct union and use this to explore top-down strategies for directing the search of
the image frame and processing of located blobs.

7. (tweaking) Fiddle with the compile-time parameters (e.g.confidence thresholds, error
measures and limits) of the system to improve performance in any or all modules and
libraries. In fact, making these parameters command-line arguments (with defaults, of
course) might speed development efforts, although accessing variables slows execution
when compared to compiled constants.

8. (model extension) Extend the model of the world, and the library functions to recog-
nize occlusion explicitly (rather than dealing with it implicitly as the current imple-
mentation does).

9. (for kicks) Exploit existing handles (e.g.pointers to specific segments in the segment
list) and devise your own to improve access efficiency in the system's data structures.

10. (even better than 9) Replace simple linked lists with data structures which are more
efficient where your analysis indicates improvements will be yielded for the current
system or an expanded version(!).

11. (interesting) Explore other structures for organizing the system (e.g.hierarchical-see
Section 1.1 on inter-module communication) and other control strategies (e.g.more
direction by the executive, dynamic search for blobs, and using dynamically assigned
priorities to direct processing).

12. (expanding universe) Extend the system to recognize and handle other types of objects'
(e.g.cubes) and more sophisticated identification methods (e.g.markings on objects).

13. (interesting and difficult) Extend the model and system to explore a larger universe
by moving the camera, and maybe even add another camera.

B-74

L AlP '. %~,'!#.I .*. -t

A.3 Templates for Your Own Code

To illustrate the basic forms of the main types of Rover's components, Figure 3 gives a
sample of how the skeleton of a cluster declaration file should look. Similarly, Figure 4
describes how a module in that cluster might appear, and Figures 5 and 6 illustrate the p
essential structure of a library.

B Rover's Code

The Rover Programmer 'a Guide concludes with more detail on the existing source code itself.
The code can be found on the system in /u/coomba/projects/rover. An executable is
available to be run (on the Sun with the DataCube-currently betelgeuse) and is located
in directory /u/coomb/projects/rover/bin. It is invoked by

rover [-c<camera#>] [-f<follow-target#>]

from the shell.

B.1 Coding Conventions p

Several conventions are followed in the Rover code. Some of the more helpful ones are listed
here.

" Declaration files are protected against being multiply included (leading to redefini-
tions of objects and types) by defining a constant upon the first inclusion that acts
as a guard against subsequent inclusion during a single compilation. (See Figures 3
and 5.)

* Type definitions are named in either of two common forms:

1. .EW-TYPE in all capital letters, or 6

2. nhw-type-t in lower case, with the suffix " t". ._.t".

" Declarations are made as local as possible to avoid interference among types, data~ ,

objects, and functions. *

" File name prefixes refer to the major component of the system to which the file - ..

belongs. The three primary prefixes in the current code are:

1. re_--the system at large (Roving Eyes)

2. rs..-the Raster Scan cluster 6

3. od_--the Object Discrimination cluster.

B-75

Alt

I. Rtover Sample Cluster Declaration Template -- for EXPORTING
declarations to modules that need to know your types. etc to
interact with this cluster. .

Sifndef CLUSTER-.TYPES I. Protect your declaration files from
being included more than once.
Hence, this #define'd constant must
be unique in your system. That's
why we base it on the file name. as
a convention. S

*define CLUSTER-.TYPES I

/* Include only those declarations needed to declare the types. etc
that you declare here. I_ 0

*include "re-.types.h" /*i aeyuneed global declarations -41.yr. 41?
$include "re..queue.h" I. needed to declare your modules *

I. Module parameter types are declared here so other modules can
construct arguments for your modules. '

typedef struct {4'
mnt argi;
float arg2;

}mod..parm..t;

I. export modules in this cluster so other modules can enqueue them on
the task queue. 0/

extern q..func-.t this-.modulo);

#endif CLUSTER-.TYPES

%%

B- 7

% %~* v
or - 4

V V S U t * ,V %V.V U

/- Rover Sample Module Template --- Include declarations of global
system, libraries, and other clusters that this module interacts
with. a/

#include "re-types.h" /* Always include rover's global types -/
#include "re.exec.h" /* declaration of global data objects 0/ _.

#include "re.queue.h" /* any necessary libraries */
*include "re.gfx.h"

#include "other.cluster-types.h" /* a cluster this module will
interact with */

#include ecluster-types.h" /* this cluster's declarations 0/

q.func-t /* every module returns type q.func-t

(declared in re-queue.h) o/

module (myparm)

mod.parm.t * my.parm;
{ S

other.mod-parmt * other-modargs; /* declared in other-cluster-types.h */
q_func.t return-value;

/* my processing here /

/* enquoue another module on the global task queue (work-q, from

re.exec.h) to perform the next logical operation based on what I
have seen. Coerce the type of the args-ptr to what the queue

library expects. 0/

enqueue(work-q. other-module, (q.argptrt) othermodargs.
arg-freefn. OTHERMODPRIO); • •

return (q-funct) return-value; /* return a value -1

Figure 4: Sample Module Source (module.c) ,'- ,

B- 77

% 0

rIN

I. Rover Sample Library Declaration Template -- for EXPORTING
declarations to modules and libraries that want to use the "

facilities you provide. '

#it ndef LIBRARY /* Always protect your declaration
files from be included more

than once.
*define LIBRARY 1

#include "re-types.h" 1' any declarations needed .

/* Library function parameter type declarations 0

typedef some-type arg-.typet;
typedef global-.type arg-.type2; /* global-.type declared

in re-types.h 0

typedef return-.type funcl..t;
ty~edef another-type func2..t;%%%

/0 export functions in this library 0

extern funcl-t funcl(); t
extern func2t func2();

Sendif LIBRARY .,.

Figure 5: Sample Library Declaration (Iibrary.h)

B-7S

%."

% % %
% % % %

% % %

I. Rover Sample Library Template -- this file (library.c) contains%
the library functions advertised in library.h and any internal
utilities that are expected to be of use only in implementing
this library's facilities. /

#include Ore-types.h" I. Always include rover's global types .
*include "re-exec.h" I' declaration of global data objects

if necessary *

*include "re-.queue.h" I. any necessary other libraries *
#include "re..gfx.h"

#include "library.h" /* my declarations ~

func 1t /* lib functions declare their

return types .
funcl~argl, arg2) S

arg-.typel argi. arg2;

funcl- .t return-.value;

/*my code here '

return (funcl-t) return-.value; /~return my value *

func 2-.t /* lib functions declare their
return types *

func2(argl, arg2) 0"'..
arg-.type2 argi. arg2;

func2-t return..value;

I' my code here *

return (func2-.t) return-,value; I. return my value 0,/

Figure 6: Sample Library Source (libraryc)

N, %

If,~~I~ J -%,%

% 1. W' It q

Appendix B-3 A

CSC 400/446 Project Report:
Roving Eyes -Prototype of an Active Vision

System

David J. Coombs
Brian D. Marsh *

University of Rochester Computer Science Department

15 December 1986

Abstract

The Roving Eyes project is an experiment in active vision. We present the
design and implementation of a prototype that tracks colored balls in images S
from an on-line CCD camera. Rover is designed to keep up with its rapidly
changing environment by handling best and average case conditions and ig-
noring the worst case. This strategy is predicated on the assumption that
worst case conditions will not persist for long periods of time and the system's
limited resources should be directed at the problems which are likely to yield
the most results for the least effort. This allows Rover's techniques to be less
sophisticated and consequently faster. Each of Rover's major functional units
is relatively isolated from the others. and an executive which knows all the
functional units directs the computation by deciding which jobs would be most
effective to run. This organization is realized with a priority queue of jobs and
their arguments. Rover's structure not only allows it to adapt its strategy to
the environment, but also makes the system extensible. A capability can be
added to the system by adding a functional module with a well-defined inter- . -

face and by modifying the executive to make use of the new module. Possible "
generalizations and future work are discussed. '"'

: .,.-.;

*Many thanks are due to Chris Brown, Jerry Feldman and Brian Madden for guiding and en-
couraging this project, and to Stuart Friedberg for taking the time to. profle and speed up our
code.

B-80

-S7.; .S *./?' * -d5~ /-~ s S*.S S..*/ 55. **- 5,,;- -

r 'd. e.'.'.. , .. ., r % % %S- % we

Contents

1 Introduction B-83

2 Maintaining Correspondence - Strategic Issues B-84

3 Real World Design Constraints B-85

4 The Rover Prototype B-86
4.1 Design Issues .. B-86

4.2 The Executive... B-88
4.2.1 Tasking... B-89
4.2.2 Temporal Model of the World..................................... B-90
4.2.3 System Intialization .. B-92

4.3 Image Segmentation - Divining Objects B-92
4.3.1 Segmenting Rasters......................... I.......................... B-94
4.3.2 Pairing Segments .. B-94
4.3.3 Growing Objects B-94

4.4 Object Discrimination - Maintaining Correspondence B-95
4.4.1 Image Validity.. B-96 -0
4.4.2 Maintaining the World .. B-98

Future Directions ... B-99
5.1 Cognition ... B-100
5.2 Dealing with Occlusion ... B-1 00
5.3 Dealing with Blocks B-101

6 Appendix A - Graphics Display and Sample Run B-104

e 'r

List of Figures

1 Paired raster segments and an object region grown from them.
Paired segments are denoted by crosses and the object region is
enclosed in a box.. B-93

2 A blob identified by the Image Segmenter and properly split up
by the Object Discriminater.. B-97

nq

k J4

%.h

B-82

w- r r

% % %.% %

9e

X O

I INTRODUCTION

1 Introduction

The Roving Eyes project (Rover) is an experiment in the design and implementa-
tion of an active vision system. Such a system is placed in a dynamic world and
interacts with it in a non-trivial way. For this project, the interaction is the iden-
tification and tracking of moving (as well as stationary) objects. Images are input
using a CCD camera mounted on the Department's robot head. Once loaded into
a Datacube frame buffer, these images are then transferred into a Sun-2/120 and
analyzed to detect areas of motion. These areas are further analyzed to detect the
specific identity of the moving objects. The results of this identification process are
then incorporated into a database which represents the system's model of the world. 0 •
With such a model, the system is capable of maintaining accurate correspondence
between distinct objects over time. This temporal interaction with its real world
means that the system must be real time in some sense. Hence, Rover represents a
"real time" vision system with cognitive as well as sensory abilities.

The initial Rover prototype has been designed only to deal with distinctly col-
ored spheres. This represents a necessary simplification of the cognitive domain
intended to facilitate the successful construction of the prototype. Dealing with
only spheres permits the development effort to be concentrated on the system as a
whole by constraining the amount of sophistication needed to reasonable first-pass
limits. Ultimately, Rover will collect enough information to perform such tasks as
identifying a solitary block in a field of spheres or identifying particular blocks not
just by color (which in fact is just the simple calculation of a moment) but by using
alphabet blocks which may be distinguished by the letters on their faces.

The structure of the prototype has been strongly influenced by a contemporary
understanding of how the human visual system works. Readings, in particular
[Lev85I, and close interaction with Brian Madden, a post-doctoral fellow whose
particular interest is biological vision systems, provided us with many insights about
how best to approach the design problem.

In addition to the participation of Brian Madden, this project comprises our
term project for CSC400 and CSC446. It was conducted under the auspices of
Chris Brown and in conjunction with the Active Vision Group here at the Univer-
sity of Rochester. That group currently consists of Brian Marsh, Dave Coombs,
Barun Chandra, Brian Madden, and Chris Brown. The project itself represents a
continuation of work begun by Michael Swain, Chris Brown and Dana Ballard using ", , s._,

the robot head to track the centroid of a brightness distribution calculated from a
light source moving in front of the cameras.

This document presents the design work and implementation work that has gone FZ11
into the development of the Rover prototype. It is organized as follows. First, the _ 0

general problem of maintaining correspondence over time in a changing world is
addressed. The next section discusses constraints on our design. The next section

B-83

, ,P,'' ,.'.' " '4,., , , " ,,._'.,r

2 MAINTAINING CORRESPONDENCE - STRATEGIC ISSUES

discusses the actual design of the prototype. Specific problems and solutions are
discussed. The following section contains a discussion of the actual implementation
and structure of the system. The major modules are identified and the various
software packages that were constructed are discussed. The last section contains
our conclusions about the design and about the implementation. Problem areas that
went unaddressed either due to oversight or for the sake of simplicity are identified.
Finally, as a technical appendix the graphics display is described and a sample run
of the prototype is presented.

The source code for the entire system can be found in /usr/vision/src/rover/src.
The modules are named in the following way:

" re. - General purpose routines.

" od. - Object discrimination routines.

" re.rs - Raster segmentation routines.

" re.dq - Datacube interface routines.

2 Maintaining Correspondence - Strategic Issues

One of the major problems in tracking moving objects is the correspondence prob-
lem. Specifically, given two images, we want to be able to identify those objects in
both images which actually represent the same observed object. It raises issues of
cognition as well as sensation and is not easily solved by simple template matching
techniques. Unlike biological vision systems which can sample at a high enough
frequency to avoid it, it is a typical problem facing computer vision systems like
Rover.

Biological vision systems avoid the correspondence problem by sainpling at a
very high rate. Computer vision systems can do the same thing and reduce the t.6

severity of the problem by obtaining images of the same objects across very short -
time intervals. Keeping the sampling time interval short, however, requires Rover's
cognitive analysis to be fairly fast, and consequently it must be simple. Due to
the simplicity of these algorithms, we can only expect them to succeed most of the %.
time. Occasional failures are tolerable because the world is changing and will likely

present more favorable data within a short time.

Rover's strategy for maintaining correspondence between objects in a scene is
based on a separation between cognition (and attention) and sensation. Maintaining
correspondence over time is a cognitive ability. Motion detection and object identi-
fication are lower-level, sensory problems. Sensory techniques (e.g. for motion and 1
blob detection) are used to analyze the current image and translate it into symbols
that may be effectively manipulated by cognitive processes. These processes use

*B-84

.. -or 1P X.. ,. ..I. ..%.
-% %=- I , i - h : , -

3 REAL WORLD DESIGN CONSTRAINTS

this information not only to maintain correspondence but also to focus attention
on areas of relative importance.

The most natural way to coordinate sensory tasks and cognitive tasks would be
in a connectionist event driven semantic network. Such a structure run in parallel
would present an extremely powerful organization. Unfortunately, the machine used
for the implementation of the prototype is not a parallel architecture. Hence, we
use the resources at our disposal as efficiently as possible. This translates to pseudo .

real-time pseudo parallel tasking. Sub-problems are kept small and are executed
only when their relative importance is great enough to the overall functioning of J.,e
the system. These sub-tasks are: 1. iul

1. Several kinds of independent sensory analyses continuously process raw image
data.

2. Cognitive processes focus (the more expensive) attentive resources (3) on in-
teresting parts of the scene. When they need input from the real world they *
sample the results from (1)-

3. There may be more than one simultaneous locus of attention and more than
one attentive process working on each locus at the same time.

Rover's organization is based on this approach to understanding a changing world. Fe. en
So Rover's behavior can be characterized by a coping strategy-it accumulates

as much information as it can at every moment, but it must guard against spend-
ing a an excessive amount of time extracting a particular bit of information and
consequently losing track of the objects in the scene. For this reason, the system
accumulates information incrementally, to preserve as many results as possible if
analysis must be cut short during periods of rapid change.

3 Real World Design Constraints

The Rover prototype is constrained by several environmental factors beyond our
control. The most important constraint on our design is the computational envi-
ronment used for the implementation. In particular, the supporting hardware, a
Sun-2/120, is a serial machine, with no reasonable facility for exploiting parallelism.
With no mechanism for parallel task execution, there is no natural way to realize
our task-oriented system organization. At the same time we want our implementa- "
tion to embody the natural strategy described above. To do this, our system will
explicitly multiplex its analysis between the sensory and cognitive levels. The serial
nature of the computational resources make it essential to be able to constantly
direct our resources at the most promising task. In a parallel environment, irrele- , .

vant tasks do not seriously impair the overall computation since other computation 'A

B-85

S-., ,, .B.. .- ,., , . 4,.. ,,. , . ,: ..,. .. P ,. , *. -, ., ., ., - '.-...- 'g ..T.,, ~~~~~~~~~~~~~~~~~~~~~~ ... "' :=""-N -'i" " -" """" i "" """" : .. :! ...r-e P

4 THE ROVER PROTOTYPE

is proceeding concurrently. In a serial environment irrelevant computation can be s
disasterous for system performance. To enable processing to focus on only the most
promising areas, it is essential that our analysis be broken into small computational
tasks. At the end of each task the relative importance of that area of analysis can
be re-evaluated.

One of the most telling limitations of the hardware is the bottleneck that exists
between the Datacube frame buffer and the Sun. When the project began, it took a
full 8 seconds to transfer the contents of the entire frame buffer to on-board memory.
Due to the lack of powerful image processing hardware all image operations have
to be performed on the Sun. Hand optimizations lowered this figure by a factor of
8, but the significance of the bottleneck is still substantial. -

Another major consideration was that the prototype design, ore implemented,
be easily extensible. We feel there is significant potential for future research involv-
ing the Rover system and we want to provide a useful software base for this work.
The Rover prototype is designed to facilitate the replacement and addition of func- A

tional units. This will ease the eventual replacement of the simple routines of the 0
initial prototype with more sophisticated ones. Although we place some credence
in the Waffle Principle' we believe that the framework of our system will provide
a useful framework for the solution of active vision problems long after the initial
prototype has been thrown out. j

Perhaps of equal importance to future research is our expectation that the sup-
porting hardware will be changing fairly soon with the arrival of new Suns and
image processing boards. This new equipment will make it possible to do much
more sophisticated analysis of images and much more computationally intensive
processing of our symbolic representations.

4 The Rover Prototype

This section describes the Rover Prototype. Design goals and issues are outlined.
Constraints made to facilitate prototype development are discussed. The framework
of the prototype is described along with a discussion of its major modules. :.

4.1 Design Issues

The Rover prototype both embodies the design strategy discussed previously and %
resolves many issues that would not have been dealt with but for the actual imple- %

mentation.

'The waffle principle states that the first attempt at an implementation should be thrown out at *
the second stage and the system should be implemented again from scratch.

B-86

I

, f o, % %---:., . v.. . -. v %.. ' ..

WN-WV W %XF7T T.A77" I -7777.- Tol77 7-7717

4 THE ROVER PROTOTYPE

The principal goal of the Rover system is to maintain correspondence between f •
moving objects in the viewing plane. To do this many different elements need to #q ,'-< ,I
be manipulated. The world database representing the most current state of the
world needs to be maintained. To keep this information up to date, input images
must be analyzed to detect areas of motion. These areas of interest in the original
image are then correlated with the world database and if necessary have further
discriminatory techniques applied to them. Since there are potentially multiple
areas of interest in any input image but a limited amount of computational power
and time to spend processing them, the cycles spent processing each area must be
carefully monitored to insure that the information derived from each input image
is complete as possible. It is conceivable that any input image will contain more S 6
information than the system can process in a reasonable amount of time. If this
happens the image and all associated processing is abandoned for a fresh view of
the world.

To perform these various tasks, the prototype is broken up into three main
modules:

" Executive - Responsible for overall system coordination and task scheduling.

" Raster Segmentation/Motion Detection - Responsible for detecting ar-
eas of motion in the input image and for segmenting the image into small
manageable sub-images.

" Object Discrimination and Correspondence - Responsible for identify-
ing the sub-images supplied by the Raster Segmentation module and integrat-
ing them into the world database.

The remaining sub-sections in the Prototype section of this report describe these
various modules in detail.

Before beginning our discussion of the prototype modules, it is important to ' -
note the assumptions we made on the world to facilitate the development of the 9 .
prototype. Our initial ambitions for the Rover prototype included such things as
using alphabet blocks as tracking targets. Since our overriding concern was to
complete a working prototype by the end of the term, we constra'ined the problem
Rover would have to solve as follows:2

" Simple Targets - The targets used for tracking are different colored spheres
of uniform reflectance. Actual identification of different spheres is done on
the basis of past position and reflectance.

" Carefully Controlled Lighting - Shadows are not a problem that with
which we wanted to deal in the initial prototype.

2Especially since we didn't begin coding until what was effectively the last week of school

B-87

-. "'01 _

% % % %:~ s-

* 0

4 THE ROVER PROTOTYPE

" Limited Cognition - The amount of correspondence that would be at-
tempted by actual cognition was severly limited.

" Horizontal Motion Only - The permitted motion for an observed object
is limited to that along the y-axis (horizontal) only. (In fact we were able to
loosen this constraint considerably).

" No Occlusion - Targets are not permitted to occlude one another. This was
another constraint which che design of rur system obviated.

" No Complete Displacement - Balls are not allowed to swap position.
* S

" Control Over World - Random motion is not permitted. In fact, we reserve
the right to control motion in the world (say by slowing it down) sufficiently
to allow our system to function.

The utility of each assumption, while perhaps not yet clear, is discussed in the
context of the prototype modules.

4.2 The Executive

The Executive is the framework of the prototype which serves to organize all the
other functional modules. Its primary responsibilities are organizational. It co-
ordinates the integration of all the functional units, from the extremely low-level
sensation oriented modules that perform pixel operations to the higher level cogni-
tive modules that maintain the world database. The specific functions it performs
are controlling task scheduling, task execution, resolving temporally global issues .7
of correspondence and system initialization.

Work is done in the system by enqueuing task requests on a general work queue.
If and when there is time to process that particular request then the task is dequeued
and the corresponding code is invoked. The framework (i.e., main loop) looks like
the following:

" Initialize work queue

" Initialize world database

" Enqueue initial Raster Segmentation / Motion Detection task

" Forever

- Get a task off of the work queue if it isn't empty.

- If the queue is empty then enqueue a Raster Segmentation task and reset

the interval timer. % ?I%'

B-88 %

J

-V % % Z-

0 0

4 THE ROVER PROTOTYPE

- Invoke the routin? specified by the task Just dequeued.3 If the specified task
involves bringing in a completely new image then increment the virtual ,

time stamp counter and reset the interval timer.

- If there is any time left in the current interval then return to the work
queue for more work. If there is no time left in the current interval then
queue a Raster Segmentation task and reset the interval timer.

The code implementing this framework can be found in re-exec. c.

4.2.1 Tasking .

For task scheduling the executive uses a simple priority queue of queues. (Implemen- -
tation is provided by the package in queue. c). Tasks may be queued with priorities
ranging from 1 upwards where 1 represents the highest priority. When the current
task completes execution, the executive will dequeue the highest priority task and
execute it. Should there be no tasks waiting for execution then the executive will
move on to the next image (we assume that there is always new information that 0 0

can be input to the system by processing new images).
Tasks are created by enqueuing requests for their execution on the Executive's

work queue. The interface to the queue package permits the enqueuing of an oper- .%
ation type, an argument to the specific operation, and the type of the argument to
be queued at a specific priority. This was designed to facilitate the future addition -

of other other types of tasks. It also structures the flow of the system in such a
way that would map reasonable to a parallel machine. The actual command for the .

enqueuing operation is

enqueue (work- q, task-type, arg-ptr, arg-type, priority)
QHEAD * workq;
short task-type;
baddr.t arg.ptr;
short arg.type; •

short priority;

The tasks that execute in the current prototype are specified in re-exec. h. They '.
are specified by the #defines:

/* Operation types */
#define OPRAS 1 . .,.
#define OPOBJDIS 2 • "

#define OPOBJCOLOR 3
3This is where the majority of the processin, is done. These routines are described in the sections

on Raster Segmentation / Motion Detection and Object Discrimination /Correspondence
B-89

V. % % -

4 THE ROVER PROTOTYPE

OPRAS is used to enqueue a Raster Segmentation / Motion Detection task. No
arguments are enqueued. OP.OBJDIS is used to enqueue an Object Discrimination
task. These tasks are used on images that have just been analyzed by the Raster
Segmenter. The image is the argument queued with the task type. This is the first
pass of the object discrimination process and is used to insure that the input image
is usable and that it contains only one object. OPOBJCOLOR is used to enqueue
tasks that perform identification on images that have been passed on by Object
Discrimination tasks. The actual image serves as the argument and is guaranteed
to contain an object by the Object Discrimination tasks.

The priorities at which these tasks are enqueued are:

/* Operation priorities */ •
#define OPOBJCOLORPRIO I

#define OPOBJDISPRIO 2

#define OPRASPRIO 3

These priorities are static, but their assignment is not strictly arbitrary. The
Raster Segmentation priority (OPRASPRIO) is the lowest because a raster segmen-
tation task should only be executed when all other processing on other portions
of the input image has finished. In the initial prototype this actually represents a
degenerate usage of the priority queue since raster segmentation is done only when
the work queue empties itself or has been flushed. Regardless of this however, since
object discrimination tasks are not queued until the raster segmentation of the cur-
rent image has been done, the object discrimination routines naturally receive a '
higher priority since their existence on the queue implies that enough information
has been secured for their successful execution. With this in mind, individual ob-
ject discrimination (OPOBJCOLOR) is given priority over the preliminary processing .. '

of images (OPOBJ.LDIS) since the queuing of OP_OBJ_COLOR tasks implies that the %

system is quite close to the complete classification of an object. %

It is expected that future work on Rover will encorporate a dynamic priority
scheme that takes into account such issues as spatial relevance and confidence levels _ _

(see Object Discrimination - Maintaining the World). "...

4.2.2 Temporal Model of the World.-

The executive maintains several notions of time. It helps maintain the world
database over the course of input images by performing functions not rightly rel-
egated to either of the lower level modules. It also attempts to keep track of the , N
passage of real time in relation to the processing it controls. Should excessive corn-
putational effort be exerted in the processing of any one image the model of the e,' 1.0

world maintained internally could fall hopelessly out-of-date. S 0

The executive manipulates various lower-level modules (i.e., Raster Segmenta-
tion and Object Discrimination) to perform the analysis of an image that represents

B-90

% % %

4 THE ROVER PROTOTYPE

a snapshot of the world at a given moment. These routines perform an analysis
that is largely restricted to the input snapshot and the past history of the world
stored in the world database. An obvious problem with this is that information that
is either missing in the current snapshot of the world or that is simply missed by
the analysis should still be accounted for in some way. An obvious example occurs
when an object moves from the field of view. While it would be reasonable to sire-
ply delete the object from the world database, this makes the database extremely
volatile since a mistake by the low level routines at any point could result in the
accidental but erroneous removal of an object. To counter this problem the sys-
tem maintains a measure of confidence in each object stored in the world database.
Whenever the position and identification of a particular object are reaffirmed, this _ •
confidence is raised to a maximum level. Should an image be processed without
any new information being provided about an object, for whatever the reason, the
confidence in the identity (as well as its existence) is lowered.' Once this confidence
falls below a certain threshhold the object is deleted. This provides the system with
some measure of resiliency. -

An additional interesting result of this degradation of objects which receive
no updating over a period of time is that the system is capable of dealing with
temporary occlusion. In such a case, two objects will enter a spatial relationship
such that their images overlap resulting in that partial occlusion of one of them.
Should they be identified as a single object by the Raster Segmentation and Object %
Discrimination procedures then one of two things can happen. The combined colors
of the objects might be identified in a new color and assigned a completely new entry
(albeit a fake one) in the world database. Alternatively, the object will be identified
as one of the existing objects that the system expects to find in the area. In this
case there will be a partially erroneous aliasing of one of the objects to the other. %
Since we assume that the occlusion is temporary, in the first case, the objects will
separate and the confidence in the fake object will eventually degrade and it will be
removed. Clearly no harm is done here. In the second case as long as the obje-ts
separate soon enough the world model will still contain the aliased object and its B

position can be updated. Again, the loss of correspondence is minimized.
The executive maintains a notion of a virtual time segment (enforced by the

global variable current-vts) whose length is defined to be VTSLENGTH seconds.
This segment is the maximum length of time that Rover should spend processing
any single input image. If at the end of a time segment there is still processing
to do on the current image, it is likely that any information that could be derived
from it would be obtained at the expense of falling way behind the state of the %
real world. To avoid this problem, any tasks that are pending at this point are , .

destroyed and processing on the new image is started by enqueuing a new Raster

'In the implementation this operation is performed jn1t prior to the processing of a new image
by the routine world-degrade().

B-:91

?%'. % N. %?Z -OZk '

AD-R199 597 NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL 2/3
REPORT 19% VOLUME S..(U) SYRRCUSE UNIV NY C N BRON

I I JUN 89 RRC-TR-S-1-VOL-6-PT-I F39682-05-C-SSSS
UNCLAISSIFIED F/G 12/9 N

mohhosmhEmmE-

1.0 jj* 8*1.5lIII,-N

11111112.2ill. - 'Illu.06

Hit .!V IIL ! - II

11Q1

1.25 1111 .4 11111.

0' S S S- -0 IN

4 THE ROVER PROTOTYPE

Segmentation task. Task destruction is accomplished by simply fHushing the queue
of any waiting tasks. Additionally though, all objects whose internal representation
went un-updated have their confidence degraded.

The virtual time segment is also used for manipulating the world database.
When a database object is updated it is stamped with the value in currentvts.

This value is then used to exempt the updated object from further processing in
this time segment.

4.2.3 System Initialization

System initialization consists of initializing the various system data structures.

These are:

" World Database - This is a spatially indexed representation of the world

(see the Data Structures section).

" Work Queue - This is the priority queue used for task scheduling and exe- O

cution.

" Graphics Screen - This is the window used on the Sun screen for demon-
strating the actions being performed by Rover.

The various interfaces for the software packages used to manipulate these data
structures can be found in the Data Structures section.

Additionally, the initial Raster Segmentation tasks are enqueued and the main
loop is entered.

4.3 Image Segmentation - Divining Objects

The Image Segmentation module isolates the locations of objects in, the scene using
a coarse sampling of the image. When the executive notices that a potential object
has been located, it enqueues an Object Discriminater to examine it. Thus, the

portions of the image from the frame buffer (a real bottleneck) and allows the system

to concentrate high resolution (expensive) operations on areas of the image which
are likely to produce the most useful results.

The Image Segmenter's design was strongly influenced by the characteristics

of the Datacube frame buffer and our interface to it. Grabbing horizontal lines

from the frame buffer is faster than any other mode of acquisition, so the Image

Segmenter uses a coarse sampling of horizontal "rasters" from the frame buffer to

locate potential objects.
Each raster is examined by an image segmenting task. (Each "frame" in the

image sequence consists of a pair of images taken in rapid succession from the CCD
B-92

..-. . , .,.. . . ",". , ' " , . ,,, . . * . ' &.-. . .,;.. ,, *',,.,.V.'V.* , \ ',
~ .W,

4 THE ROVER PROTOTYPE

I

Figure 1: Paired raster segments and an object region grown from them. Paired
segments are denoted by crosses and the object region is enclosed in a box.

camera. These images are digitized in the left and the right halves of the frame
buffer, respectively.) At the beginning of processing each frame, the executive
enqueues a raster segmenting task for each of the rasters that will be scanned in
the frame.

Each image segmenter performs these operations on its raster:

1. Segment the raster-locate light segments of the raster which might be
caused by a light object on the dark field of the background.

2. Identify pairs of segments-match pairs of raster segments which appear
in both the first and second images and call these positive segments (i.e. not
likely due to noise in the inage).

3. Identify vertically associated rasters-grow "regions" of positive raster
segments which seem to indicate a single object.

Figure 1 demonstrates the results of segment pairing and object growing. S

B-93

*% ~
.%Fg%

4 THE ROVER PROTOTYPE

4.3.1 Segmenting Rasters

The raster segmenter uses a one-dimensional edge operator (based on the Kirsch
operator) to detect high-contrast edges in its raster from the image. A positive
segment consists of a peak-valley pair in the response of the edge detector. Such
a pair should indicate the presence of a light-colored object in the image (against
the dark background). The segmenter uses a threshold function (of the mean and
variance of the intensity of the image raster) to determine what response magnitude
constitutes a positive response of the edge operator (rather than noise).

4.3.2 Pairing Segments S

Segment pairs of a raster match in the segment in the first image overlaps the
segment in the second image. Any unpaired segments are ignored as bogus or
noisy false responses. This pairing criterion effectively limits the class of objects
the system will recognize to those whose retinal image is not completely displaced 0

in "a blink of the eye."
Thus, a small object traveling at high velocity perpendicular to the line of sight

will be ignored because its images in the first and second blinks will not correspond
to each other. Conversely, an object of virtually any size speeding directly at the
camera will get a very strong match.

4.3.3 Growing Objects

The executive maintains a list of the responses from the image segmenting tasks
(one for each raster being scanned). As each segmenting task returns with its list
of segment pairs, it updates the record for its raster. In addition, the executive
keeps a list of object regions. As each segmenter returns its list of segments, it tries
to update the object list with the new information it is returning about the image.
If one of the segments the task found corresponds to one of the objects in the list
that segment is added to the object. (A segment corresponds to an object if it is
adjacent to the top or bottom of the object, and it overlaps with any of the rasters
already in the object, and its velocity-which is estimated from the rapid pair
of images-matches closely the velocity of the object.) If the segment matches no
current objects, the list of segments is searched for an adjacent (unmatched) segment * -
which could form a new object with the segment being returned. If a segmenter
task returns a negative response (no segments found) the object list is searched for
objects which are adjacent to the empty raster being returned. Any such objects
are bounded by this raster and hence complete. Of course, if a segmenter misses a
segment, it would clip' the object that it failed to see. An object is also bounded
if the adjacent raster contains no segments which match the object (although there

B-94

-6. N

4 THE ROVER PROTOTYPE /

may be some segments in the raster). The executive, rather than the segmenting
tasks, detects this condition.

When the executive notices that an object is bounded above and below, it en-
queues an object discrimination task to examine the object and try to match it
against the current model of the world, as described elsewhere in this report.

4.4 Object Discrimination - Maintaining Correspondence , "

Once areas of movement have been identified by the tracking module, the iden-
tification of individual objects must be determined. The initial identification and
maintenance of correspondence with particular objects is done by the Object Dis- S
crimination module. This module consists of high level routines used to interface
with the executive and low level routines used exclusively by the module for pro-
cessing raw pixel data.

When the tracking module locates an area in which it believes there is a moving 0 .

object, a request for closer inspection is put in the system queue and an entry
is made to a Temporary Image Buffer (TIB). The queued request will contain a
reference to this buffer and will be used when the request is serviced by the Object
Discrimination ,Module (this one). Note that no part of the image is actually copied
out of the frame buffer at this point.

The analysis performed by this module is broken into the following sections:

9 Image Validity - do-objdis() Insures that the sub-image returned by
Raster Segmentation is useful

- Detection of Good Images - Determines if part of the object in the
target image has been cut off by the border of the sub-window.

- Detection of Partitionable Images - Determines if the sub-window
contains more than one object in it.

- Partitioning of Images - Actually partitions the sub-window so that ...

each partition contains only one image.

* Maintaining the world - do-one-obj 0) Actually does the high level corre-
spondence that allows the world database to reflect the state of the observed
world at any point in time. This information is used to determine how much

low level processing is necessary.

- Spatial Matching - Attempts to do object identification by correlating
object position with predictions about the way the world will look given

the passage of time and its effect on the world database.

B-95

4 THE ROVER PROTOTYPE

- Color Identification - Expresses the color of the object in the input
window as the double containing the mean and variance of the object .
image intensity.

- Color Matching - Determines if the color is one already seen by the
system. Assigns each color a unique integer identifier.

The first stage is implemented by the routine do-obj dis and the second stage is
implemented by the routine do-one-obj. These routines can be found in od-discrim. c.
Low level support routines can be found in od-obj dis. c.

4.4.1 Image Validity

The first stage of processing images received from the raster segmentation module
is determining the potential usefulness of the images. In our view, complete identi-
fication of an image is a computationally expensive procedure. As a result, it makes
sense to attempt to determine whether the information derived from a particular
image will be of any use.

In this first stage (the routine do-obj-dis, the dimensions of the window of
interest identified by the raster segmenter are extracted from the TIBOBJ that is
passed as a parameter to do.obj dis.' An example of this can be seen in Figure 2.

At this point, the image is transferred from the Datacube to Sun memory. The
raster segmenter constrains the size of the window considerably.' The image is
then subjected to a series of tests: determining if an object straddles an edge of the
window and determining if multiple objects are present in the window.

The routine ok() determines if an object straddles an edge(s) of the window. It
does this by passing a simple threshhold operator over each boundary to a depth
of MAX.BORDERWIDTH pixels. If a high intensity patch is located, this is taken to
indicate that an object is so close to the edge of the window that part of it has been
lost. This missing portion may be critical to the correct identification of the object.
As a result, we adopt the simple strategy of abandoning further evaluation of this "
image. However, ok() does return a struct containing a list of the boundaries of
the image on which the object is incident. This information is intended for use in
stretching the window to obtain the missing information. This stretching was not
implemented in the prototype. " 0

Once the image has been inspected for incident objects, it is next inspected to
determine if there are multiple objects present. This is done by simply scanning
horizontally along the image every BWIDTH rows. When a high intensity patch is

$The raster segmenter avoids reading blocks of the image from the Datacube frame buffer as the
transfer between Datacube and Sun memory is an extremely time consuming operation. 0 0

SSee figures of sample output.

B-96 K

L

. ' V.,,Y
*' . , , ' . , , - , , , , , ,. , ,

4 THE ROVER PROTOTYPE

- II

- -------------

Figure 2: A blob identified by the Image Segmenter and properly split up by the J-

Object Discriminater.

B-97

0 N-d"*

LI ~ "~ ,~ *

4 THE ROVER PROTOTYPE

detected, this is considered to be an object. The center of the high intensity patch
is calculated and then a line is drawn vertically to determine the upper and lower
boundaries of the object. From this information, a more tightly constrained window
is drawn around the object. This scanning procedure is continued until the entire
input window has been traversed (this is the routine find.mult 0). A list of object
dimensions are returned. An example of this procedure can be seen in Figure 2.

The techniques used for the object location and window partitioning are admit-
tedly primitive. Edge finding, for example, is done by simple threshholding. The
prototype does however, use a more sophisticated one dimensional Kirsch opera-
tor in the raster segmentation routines. The development of the Kirsch occured
concurrent to the development of the object discrimination routines and hence the
immediately available threshholding was chosen simply to speed the development
effort.

If multiple objects are detected in an invocation of do-obj-dis then each object
returned by the partitioning objects are placed on the task queue with a request
for do-oneobj. If only one object is detected then do.one-obj is called directly.
The rationale behind this is that even though partitioning on the window was
completed successfully, the window was of less than perfect quality. Hence, the new
sub-windows are assigned a slightly diminished priority by being placed back on the
task queue.

4.4.2 Maintaining the World

The second phase of the object discrimination process is responsible not only for the
accurate identification of objects at a moment in time, but for doing correspondence
over time. This is where the majority of the maintenance is done on the model of the
world used to represent what Rover has seen. This involves doing spatial matching
to minimize the search space for correspondence; actually identifying objects by
color if necessary; and using the spatial and color information to determine if the
object identified is an object that has moved and for which correspondence is being .
maintained, or if that object is new. The appropriate action is then taken on the
world model. Appendix A shows an example of a such a correspondence over time.

These entries have information about the last determined position of an item
and its last known velocity. Using this information it is possible to predict at a "-- -
given point in time the new position of the object and its approximate velocity.
Should the old velocity of an object and the apparent velocity of the object in e

the window be somewhat different, it may mean that the objects are different.
Alternatively, it may be that the object has changed its velocity. If this is the case
then the expected current position with the new velocity is computed and used as a
basis for comparison. If the position of the referred window is close to the predicted
position of an object then the position of the object in the World is updated and the

B-98

X0~.~ '.'

KY...-

5 FUTURE DIRECTIONS

request is finished. This "dead-reckoning" approach provides a way of conserving

computational power, but provides a potentially less accurate picture of the world. ,

To take this into account, a confidence measure is associated with each object in the
World database. Every time the position of an object is updated without actually
calculating the identity of the object, i.e. with a position correlation, this measure
of confidence is degraded. Once it falls below a certain point, then even if there is
a high correlation between the expected position of the object and the position of
an unidentified object, the unidentified object will be identified completely.

Once the object is identified either by position or by actual identity, the appro-
priate World database entry is updated. The current position of the object and its
new velocity are recorded. If the identification is by position then the confidence
in that identity is degraded. If the identification is by identity the confidence in
the identity of the object is set to 100%. If no entry currently exists in the World
database, then a new entry is made.

Color is distinguished as the mean and variance of the intensity in the object.
The spheres that serve as our initial targets have the nice properties of being rela-
tively invariant in reflectance regardless of the viewing perspective. This simplifies
identification considerably. To ease the cognitive burden, we assume that all spheres
have a distinct color in Rover's world.

In order to calculate the mean and variance of the object body, simple segmen-
tation is done using the data from the application of an edge finder to the image.
The image is scanned row by row. When an edge gradient of significant magnitude
is encountered, intensity values are accumulated. Once a following edge gradient is
encountered, processing skips to the next row.

Inevitably there are some difference between the mean and variance of two dif- A-
ferent images of the same-colored sphere. To deal with this problem, we adopt the
ad hoc approach of considering two colors to be the same if they differ by only a
certain (magic) percentage. This percentage is the difference of the weighted sum
of the means and variances. If the colors are considered to be the same then the ob-
ject being identified is assigned an integer identifier associated with that color. This
identifier is displayed in the figures as a means of demonstrating correspondence and
tracking. Should the difference in the two colors be great enough (larger than the
magic threshhold function) then the system considers the color to be distinct and
assigns it a new identifier.

5 Future Directions

The following section describes work which represents the next logical steps in the
full development of the Rover system. It moves Rover closer toward meaningful cog-
nitive interaction with its environment and attempts to solve some of the more basic

B-99

- \A~.r~~ -~N~'~b - - -.. , Y

S,'~

5 FUTURE DIRECTIONS

sensory problems that are unaddressed in the initial prototype. Typical cognitive .
development involves using the object history and models of object behavior to aid
in identification and correspondence. Typical of these sensory problems are dealing
with occlusion and recognizing more complex objects such as alphabet blocks.

5.1 Cognition

Future cognitive developments would involve things such as using the history of the
world to guide the identification procedure. The executive can make a guess about
what the object in a particular window will be and use it to influence which routines
in the Object Discrimination module are invoked. The result will be a much more 6
intelligent guess about how to go about processing image windows.

In addition, the executive could use such information to decide which areas of
the scene are likely to contain useful information, ignoring other portions during a
crucial detail acquisition task.

Conversely, a good clean image of an object could be saved for later processing
if the system must devote its attention to keeping up with a scene which is changing
extremely rapidly for a short period of time. As long at the old image can reliably
be attributed to the correct object, it can be processed at the system's leisure.

5.2 Dealing with Occlusion

Relaxing the constraints on object movement in Rover's world is an eventual goal.
If objects are no longer restricted to non-intersecting horizontal locii then occlusion
becomes an extremely important problem to address.

It happens that for certain situations in which occlusion occurs, Rover already. ,
maintains correspondence properly. This is done by maintaining a measure of con-
fidence in the existance of an object over time. Should an object stored in the
database go without periodic reaffimation of its existance, its confidence will drop
below a threshhold and will result in the deletion of the object from the database. 6

Since occluding objects are usually considered by the system to be a completely new
object, independent of the separate component objects. Once the objects separate,
there will be no further information about this object and hence it will eventually
disappear. This technique for dealing with occlusion is ad hoc at best.

A more effective technique would be to deal actively with images in which oc-
clusion occurs. In a rudimentary form this would involve merely detecting the
occlusion and eliminating all further processing of the image. This would prevent
the appearance of superfluous objects in the world database. A more sophisticated
solution would attempt to do object identification in spite of the occl,.ion.

The problem of dealing with occlusion is thus reduced to detecting it. The

B-100

'K X X 10 Q X ... 161 rII

. , .

5 FUTURE DIRECTIONS

difficulty of detection is proportional to the complexity of the objects which Rover , S
is required to recognize.

When the cognitive domain is distinctly colored spheres, we need only to use a
segmentation scheme that detects not only binary changes in intensity using edge
operators, but intensity changes from one color to another.

When the cognitive domain becomes more complex, say by using alphabet
blocks, or using both the blocks and the spheres, the solution involves using the
straight line detection techniques of 'BHR86 to detect the outlines of the boxes.
General areas of interest would be detected using a simple edge operator with re-
gion growing. Connected lines could then be grown using the perimeter of the
binary region as a starting point. It would then be necessary to define legal rela-
tionships between these lines and base the detection decision on an evaluation of
these relationships.

An alternative and potentially more successful approach involves simply assum-
ing that there is only one object if multiple objects are not detected. That is, we
ignore occlusion. Instead, we attempt to identify the block using the methods de-
scribed below. One of the constraints mentioned below is that the figures (letters)
that may appear on the blocks are coded beforehand, giving Rover a benchmark
against which to compare potential identifications. If the regions in the object can
be matched to one of these benchmark id's then the information is used. The gam-
ble is that no information will be derivable if the images are occluding. Empirical
results will be needed to determine whether the occlusion will make identification so
difficult as to justify the expense (both in computation and development) of good
techniques for detecting the occlusion so as to prevent the useless expenditure of
computation time. o

5.3 Dealing with Blocks

Identification and tracking of alphabet blocks is significantly more complex than
the corresponding identification problem with the multi-colored spheres. Although
we constrain the problem somewhat by requiring that the same letter occur on
every visible face of the blocks, issues of rotation, projective distortion, and actual
character recognition must all be resolved. The solutions employed must be fast and
effective. They need not, however, work all the time. As long as characters can be •
effectively recognized most of the time when given a good view, enough information
can be gathered to maintain correspondence.

The proposed solution to this recognition problem has three parts:

" Edge Detection

" Segmentation/Blob Growing

" Blob Relations
B-101

-v K.

%K3 Ir yK M IFL -.OCl" Pr 1 _ 'm?-YU

5 FUTURE DIRECTIONS

and is strongly reminiscient of Constructive Solid Geometry Techniques 'BB82. .0
The edge detection facilitates the segmentation/blob growing. The segments are

then partitioned by faces and the region described by each face is compared to a
dictionary of face relations that describe, in a slant-invariant and rotation-invariant
form, the various characters that Rover knows about.

To do segmentation we use a linear region growing approach similar to the one
used by the current prototype to grow raster segments into "objects" (see the section
on Growing Objects). This allows us to segment the image into blobs into time
that is linearly proportional to the size of the image. The algorithm uses a collapsing
union-find technique to achieve this kind of speed. The segmentation parameterizes
the blobs by size and center of mass.

As the blobs in the image are being gathered, relationships between blobs are
being recorded. Information such as which blobs are next to which are stored in
the blob identifiers assigned by the segmentation process.

Once the image has been segmented into blobs, the blob identifiers are inspected o
and fully related to one another. This process yields relationships such as which
blobs surround which, how many blobs are contained in a particular blob and how
many blobs are adjacent to a particular blob. This information should provide Owl
a way of quickly discriminating between different characters as long as the blob
relationships describing them are significantly different. An obvious example is S S
the difference between X's and O's. The X has a oae region containing another,
the 0 a region containing a region containing vet another region. The amount of d,
information stored is small and is easily compared against a dictionary of known ,
recognizable figures.

This technique has advantages over moments [Alt62] in that it seems to be con-
siderably faster and considerably more stable. ([Alt62] advises the calculation of
several moments for accurate character identification.) The blob technique provides-- -
a means for identifying most distinct figures (it would doubtless have trouble distin- .
guishing between "I" and "I") that is completely invariant with regard to rotation
about the z-axis. We would also argue that it is more invariant with regard to the
skewing that results when the cubes rotate abcat their vertical axis.

Of course, due to rotation about the y-axis (vertical), there will be times when
the view of the target block is such that the images of the characters on the sides
of the target are distorted beyond recognition. Since humans would likely have a O
difficult time identifying the target, it is certainly reasonable that our algorithm
not work all the time. Moreover, if the image is bad enough, it may not be worth
the computational effort to extract the identification using any technique.

The effectiveness of this algorithm hinges on the ability to do consistent segmen-
tation. If the segmenter produces different blobs and blob relations when the image • .
is perturbed at all then the technique will fail miserably. We can control Rover's
environment somewhat to ease the burden on the segmentation routine, but only

B-102

'UV

5 FUTURE DIRECTIONS %

experimentation with real images will indicate whether this is a fruitful approach. • S

N

N

•r o P

0%

%

B -103

% %.

'-,

Appendix A

Graphics Display
and

Sample Run

B-1 04

of . IF , vr% %
e. :-I

6 APPENDIX A - GRAPHICS DISPLAY AND SAMPLE RUN

6 Appendix A - Graphics Display and Sample
Run

To demonstrate its functionality, the Rover prototype has a simple graphics display
that uses the Sun window system. The objects that may appear in the display are:

" Rasters - Indicate where the raster segmenter thinks an object might be.
Looks like:

" Matched Rasters - These are raster segments that have been matched be-
tween the two halves of the frame buffer. Looks like:-

4- .

a Raster Windows - A window the raster segmentation routines think en-
compass an object. Looks like:

* -e

I..

B-105

....

, 0

6 APPENDIX A - GRAPHICS DISPLAY AND SAMPLE RUN

" Acquisition Windows - A window the object discrimination routines think
will be positively identified as a sphere. Tends to be a tighter fit than the
Raster Windows. Looks like:

* •

" Confirmation Windows - A window that the object discrimination routines
have positively identified as being a sphere of a particular color. The color
identifier is printed out in the lower left hand corner of the window. Looks
like:

B- 106

V V

6 APPENDIX A - GRAPHICS DISPLAY AND SAMPLE RUN

The following sequence of figures dlemonstrates Rover tracking two balls as they
cross, the field of view, one moving to the right, the other to the left.

I MR.
M4S

I p B.107

REFERENCES

References

[Alt62]j F. L. Alt. Digital pattern recognition by moments. Journal of the A CM,
9:240-258, 1962.

fBB82I Christopher Brown and Dana Ballard. Computer Visi~on. Prentice-Hall,
Inc., 1982.

[BHR861 J. B. Burns, A. R. Hanson, and E. M. Risenian. Extracting straight
lines. IEEE Transactions on Pattern Analysis and Machine Intelligence,
8:425-455, 1986.

[Lev85j M. D. Levine. Visi'on in Man and Machi*ne. MlcGraw-Hill, 1985.

B- 108

Z: %, % % ~ "lol

Appendix B-4 a

m MOMftC 6uNIA1OMP OF DIGITAL. ?3AIR NOXLS
rMON SATIS IITS UINAU MIT S

Paul R. Cooper
Daniel 9. Priamann

Scott A. wood

Mac~onald. Dettviler, and Associates
3751 Shell Road
Richmlond, B.C.

Canada

Satellites can provide cost effective remotely sensed images. The usefulness of these images

is increasing, as the sensors iLprove with each new stelLte. rurthermore,

satellite-acquired iagery is in digital form, suggesting the possibility of automating reate

sensing tasks such as mapping. To date however, satellite imagery has only yielded two

dimenaional pLanimstric information.

With stereo pairs of satellite imagery the capability for generating the third dimension,

height. exists as well. The french SPOT satellite (Chevrel. CourtoiLs and Neill, 1Sl) for

esample, can image high resolution stereo pairs. Depths are generated from such stereo pairs

by stereo matching, normally the task of the human stereo vision system. This paper describes S
a computer system which automates the process of stereo matching. With this system. the

digital equivalent of a contour map (a digital terrain model, or OTHI can be generated

automatically directly from digital satellite images.

Digital terrain models are quite useful, serving every purpose that a contour map does, and

others as well. rat example, terrain dependent parameters such s volumes can be computed

easily frm Os. and VM are used in the production of orthophotos. Unfortunately,
generating a VM manually requires many hours. This cost has mtivated many attempts to
automatically correlate stereo images, without Mach success.

Recent computational vision research has reported some progress In this ares (Barnard and
rischler, 1942). This paper describes work that @standa these results and applies then to

digital satellite images. The result i a system for generating DTH with significant
capability, demostrated with results from beth simulated SPO Images and real Lsndsat S

Thematic Mapper (TH) Images. Ml with height accuracies better than 60 metres have been

obtained from Landsat images. Before these results are presented, the problem is discussed In

detail, and the algorithm which has been developed ie described.

TER PSLUI AM SOLUTION STMATSC

ster*e rarsllas rormation

Depth is recovered through stereo by combining two views of the same scene in the world, each
acquired from a different viewpoint. Figure I outlines the basic situation. Depth at a point

In the world cauaee variation In the position of the Image of the point, separately in both
views. Depth is recovered by matching uch image points, measuring their combined position

variatiom (called stereo parallax or disparity), and converting this parallas to depth.

The Stereo swtching Problem

5y ft the hardest pact of the problem is the matching stage. Hatching the two images really
implies that the radieoettic intensity data from one tige, representing a particular piece of

the real world, mast be mtched to intensity data from the second image, representing the am

B-109
% rI N4.

* S

piece of the real world. Note that this implies considerably more than juat watching image
intensity date (correlation. because the sAm piece of the world may look considerably
different rdioettically from different points of view, or at different times. Inatead, we
detect edges in the Image, which reflect the true structure of the world, and match these
,xart ad PoggiO0 1979; maker and Binford, 19412.

Fig. 1. SimplLfied satellite stereo imaging

Two sources account for the remaining problems in stereo matching. classic signal-to-noise
considerations in the imagery, and the local nature of the depth-induced parallax or position
variation. Different depths in the scene cause locally differing amounts of parallax
everywhere in both images. A match search technique such as correlation is thus necessarily
local in nature. Such local searches suffer 'keyhole" effects from lack of global information.
Two strategies are adopted to counter these protblem. First, connected edges (which ve call
boundaries) with extent over significant portion$ of the image are matched. These boundaries
are non-local in nature, countering keyhole effects. Secondly, the boundaries are detected

and atched in a hierarchic co rse*-to-fin fashion. This helps remove the potential for
localized match Ambiguity, and improves signal-to-noise considerations.

The Stereo Geometry Problem

Once the images are matched, obtaining depth requires a model relating the imaging geometry
and measured parallax to the required heights. While the basic model Is simply a matter of
trigonometry, a variety of complications arise in the satellite Image domain. One set of
difficulties arLses because the imaging geontry varies with tie and is difficult to
detraine accurately. The typical situation in the satellite CAe is a line scanning sensor
mounted on a platform in continuous motion relative to the ground. Appropriate use of an 5
image correction system yields both imaging geometry models and Imagery of sufficient quality
for matching.

The geomtric model mst also compensate for problem inherent in side-to-side satellite
stereo imaging. where the two images eve acquired independently from adjacent orbit paths.
Such problem include relative rotation between the images, earth curvature, and perspective
distortion effects in SPOT Imagery (due to the side-looking angle of the sensor, relative to
vertical or nadir looking).

* T

The overall structure of the system is shown schematically in fig. 2. Bach major stage is
described below. The input to the system conmists of a pair of raw digital stereo images of a
scene. The output ia both a feature 0TM and a gridded MR5. The feature DMII Conaists of
heights everywhere in the scone there are edges or features, such as depth discontinuities.
The gridded 0Th i evenly spaced height amples representing the entire terrain surface. All
heights are in standard format, measured relative to the earth reference geold.

taen Preparation

In this step, the raw Input data is geotricaily corrected and prepared for stereo
processing. Geoetric correction Is dane with Racoonald ettviler's Geocaded Image Correction
System (rriedaamn, 1"11 riedmnn and collegues. 1963. This removes imagery variation due
to Sensor and platform motion. "e imagery is correct..d to *precision* level; that is. ground

B-110 *

truth In the faro of ground control point coordinates is used to derive highly accurate
spacecraft orbit, attitude and Imaging models. Usually, such corrected imagery is then
geocoded - transformed Into sake sap projection and resaapled. to the stereo crse ho ver,
geocdng is not performed. tnstead, the imagery is resaapled into an ideal spacecraft
dependent projction.

the images arce kept in spacecraft dependent projection primarily becuse they mst be put Into
vertical registration. with corresponding scan lines aligned - so-called epipolar
registration. tpipolac lines are defined as the corresponding lines along which stereo -. . ..
atches occur (Sarnard and rischler, 11I2), and are equivalent to the scan lines in satellite

imagery. This is because depth induced parallax can develop only along the scan Line when
each is scanned separately, as is the case with satellite Imagery. The net result Is that
both matching and parallas measurement must occur between corresponding scan Lines.

MW.

fig. 2. saSic system structure s,,,

Establishing this vertical epipolar registration is cmplLcated by a relative rotation between
the inages. This rotation, which is due to changes in the satellite's telative attitude at
the two Image acquisition points, is measured from previously marked ground control points.
it is small enougn (on the order of one degree) that large regions of the Image have the sa&
vertical regLstration. This allows approximate overall epLpolar registration by varying the
vertical alignment in each region.

After all of this preparation, the result is a geometrically correct vertically registered
pair of images in spacecraft projection. figures) and 10 show a Landsot example.

Soundary Extraction

The purpose of this phase is to extract something ftoa the Images for matchLng which is
Invariant to confounding radiocotric effects. such effects include changes in point of view
and illmination. The Invariant selected should correspond to places where real changes occur
In the world - in other words, boundaries. Changes in the world ight be elevation changes
like ridges or changes in reflectance caused by roads or fields. The corresponding boundariea
In the imgea assumd to be characterised by abrupt changes in the Intensity function.

00r bomndery detector Is based upon those of marr and vildreth (13301 and Hacvicar-helan and
ltanard (l4l. The boundeties are detected et a variety of lewvls of resolution, to provide
hierarchical informtion to the matching process. The estracted boundaries arce described by
bmudary poeition (to subpLiel precision), shape, and contrast (the Intensity to either side).

The first part of buadary extraction is an image processing steps application of an edge
operator or filter to the Lage by convolution. i this system, the function convolved with
the iaqe is a difference of two oususiane. ams positive, oe negative. This effectively acts
s a aSet secand derivative of the iage Intensity function, which converts edges in the
initial image to "to-crossings In the filtered image. tt *lSO serS to em00th the image to _ 0
varying levels of recoLutLon, when the width peaater of the seek is altered.

Most, a second convolotion-like traversal with templates Is used to actually detect the
boundaries In the filtered Lage. This traversal locates. links, and Wmasures the shape of

B-111

A o]

the zero-Cosings. and disregards boundaries below thresholds of Structural and radiomerc
ignlificance. soundaries parallel to the &can lines are regarded as insignificant, for
esample because they cannot be used to measure parallax.

Some CeSults of the boundary *Xtraction process are shown in figures 4 through 6. These are

boundaries extracted at thee levels of resolution from the Gun Lake image in fig. 3.

described later. figure 4 Shows boundaries extracted at the coarsest level of resolution.

Only the most obvious image features (e.g. the top of the ridge, the sides of the lake) are

present. tfiure S shov more detail, but image noise has larger significance. Finally, rig. 6

shove some of the finest resolution boundaries st the upper end of the lase surrounding the

dam. The fine detail and obvious structure of the dam and road in the image ore echoed in the

boundaries, even though the features ate sometimes only a single pixel wide.

* -I.. ' "

rig. 3 Gun Lake rig. 4 Gun Lake boundaries rig. 5 Gun Lake boundaries

simulated SPM image at coarse resolution at medium resolution

. * . i, .. ., . - ,Lj iJ (, . ,

4-'X

Fig. 6 Detail Of Gun Lake boundaries at finest resolution

From the boundary extraction phase. the result is a list of symbolically characterized linked
boundaries at varying levels of resolution (from eanch of the left and right images).

Soundinry Patching

The system nest attempts to correctly determine. for a given boundary from the left image,
wshich boundary from the right image corresponds to it lif any). The processing occurs in a
hierarchic lom-in fashion, from the coarsest level of resolution to the finest. At Coarser
levels of resolution. o is better, and ihere sae f boundaries and much less
ambiquity in matching. As a result, coarser resolution matches are more robuet and are used to
constrain later matchas at fino level* of resolution.

Actually deteroininn the best match of boundaries at each level of resolution requires the

folowng. Ficst, there must be a mechanism for compating potential left i8age/right image

boundary pairings. n this system. this is accomplished by computing a statistical similarity

B- 112
;-h

liiqlit in tlhn!. l Itili<, oirec ilollio ll~helIreIre obi< kd Ic 1 ' t... _ .., .. _ ._..,..o.. _.... I
€5i i*nlitr Il 5C4 l ier ev*l I reouin ;- -

)~~l ,llltoems eIMhni O if ig etl etllq/th llei. .

l~llndeiyllirinli.In till il~el0 thi ts ic~lllhod by itigiilitcliilr

A* --*

* S

score betwen the bondries being compared. once this is done, the best overall sot of such
mstch pairings ast be selected. While it Is theoretically possible to test all potential

combinations Of such pairings, the nuaher of such Cobinations ia prohibitively large. To
coastrain this search, w use a dy c€ prrac ing technique similar to that of Maker 11982)
and Ohta Ad canad (19S9). DynaAc programeing (sell0an. 1057) Ia a well known technique for
computing a global optimum (in this case, the best overall Match) efficiontly.

Oen the best match of boundaries at the finest level of resolution (no smnthing) is
determined, stereo parallax is computed by subtraction of the coordinates of the Matched
boundaries in their respective images. The net result of the entire Matching process is a set
Of mtChed bomndAsies, and the associated stereo parallax everywhere along them.

Oeoetric Modelling

It is no necessary to solve the geoetry problem of converting parallas measured in the
Images to depth in the world. The basic base-to-height model provides a starting point
(LaPrade, 1960; Stmacd and rishna, 193). Zn this model, depth is a function of the measured
parallax, the height Of the satellite above the goold, and the base or separation between the
ground tracks of the satellite. Values for the height and base are obtained from the models
of the satellite's attitude and orbit derived during the iLmge correction phase. The parallax
mat be measured to sub-plxel precision to obtain sufficient accuracy. in this system, the
boundary positions (and thus parallax) see easily computed to sub-pixel precision.

As is, however, this basic model is inadequate even for small test cases like those presented
later. As a very mLnimam. it is necessary to compensate for the relative rotation between the
images Mentioned earlier, or lrge height errors result. The curvature of the earth's surface
should be modelled as well. Processing real full-size SPOT images requires even more
Modifications to the Model. The worst problem is the side-looking nature of SPOT's stereo
Imaging (relative to vertical or nadir looking). which introduces non-linesr perspective
distortion Into the iges. Correctly modelling the effects of this distortion in stereo
Linging is extremely difficult.

neights determined so far are all relative to a floating datum plane (defined by zero
parallas. The second step in post-match processing Is therefore to convert these relative
heights into absolute heights, i.e. heights relative to the standard reference for the earth's
surface, the gouid. The incorporation of one or two points of ground truth, so the relative
values can be *tied down' to the surface, accomplishes this.

The nest step Is to place the features (and their depths) in the correct posit'in. This is
similar to the process of orthophoto generation. In that it is desired to place the boundaries
where they would be if viewed from directly above (eather than from the satellite imaging
position). once again the stereo imaging model and the parameters derived during image
correction are used, this time to produce a correction for the position distortion.

Product Generstion

now e have an actual *Feature On" - correctly positioned depths everywhere in the scene
there is interesting structure. To obtain a finished product this feature 0TH. which is still
In spacecraft dependent projection, is rotated and scaled into standard map format. This is
accomplished with standard mathematical warping transformations. because there is not yet a
grid of data, it is not necessary to resample the date for this nov projection.

Obtaining a gridded DTH product requires one final step. The dense surface must be
reconstructed from the garse depth information along the boudaries. This is essentially a
task of interpolation between the boundaries. Such interpolation, in two dimensions with
irregularly spaced sales, i in itself an extremely difficult problem. Gold, Charter. and J
smaden I1977) describes the method we adopted, for convenience and simplicity.

IRS? ArMT

overall Match Results

Feature 0. Mecaus the grid 0TN is derived directly fro the feature 0T, the quality of the
initially produced feature MTh Is of primary concern. The m tching process, due to its corse- 5 0
to-fine sd so-local nature, is extremely robust and always generates a feature 0"h which i
correct in esence. The results of the basic feature match, as show in the suary in Table
1. are withia target accuracy goals.

B-1.13

* •

W6
(a

7 ~ ~ ~ ~ ~ o or if*~ ~ 4 e ~ ~

Table I Summary of Test Results

teat Scene

Gun Lake Death valley Vancouver island

(Simulated SPOT) (Landst S) (Landoat S)

without error removal filter
mper of matched festure points 10203 11104 12429

Feature a"h accuracy 9.9 a 90.5 a 144.6 a
Grid DTI accuracy 9.2 a 78.S m 130.6 a

With error removal filter
mber of matched feature points 9208 9269 7874

feature VTR accuracy 7.9 a 61.8 a 74.7 a

Grid T T accuracy ?.3 a S9.S a 69.8 a

All accuracies measure the MS difference in metree between the satellite derived
UMH and the reference II, over the entire area Of the derived MT. To compute

the feature Dt accuracy. feature position wes rounded to the nearest pixel.

As is to be expected hoever, the match is not perfect. Fortunately, the few errors that are

made are easy to detect, easy to remove, and relatively insignificant. These errors are

incorrect matehes, when the vrong boundaries or boundary fragments are put into

correspondence. The result is errors which are few, randomly distributed, point-like in

character, and almost always in extreme difference with the surrounding terrain (either above

or below). In contrast, most correlation-based matchers tend to err by *gecting lost*

completely, after which they cannot continue without human assistance.

ecause the errors are so easy to detect, we designed a simple adaptive filter to remove thee

in a post-processing phase. The filter computes local statistics about terrain heights along

boundaries, and throw out points which ate in extreme difference. The effect of this filter

can be best seen in Table 1. While only a fraction of the points are rmsowed. almost all the

actual match errors are taken out. This post-processing in no way constitutes smoothing of

the terrain surface; all the detail is still present. It is simply the automatic removal of

the more obvious random errors.

Grid M. Currently, the grid 0T is generated directly from the feature III by

interpolation. As a result, the grid MMH tends to be most accurate at discontinuities and
narrow features such as river edges, usually the most important locations for height. and

usually where moat correlation-based matchers are weakest. On the other hand, the

interpolator we are currently using, based on triangular surface patches, tends to produce

somewhat discontinuous and faceted surfaces between the boundaries.

We plan to use constrained area matching touch as correlation) between matched boundaries

(iaker and sOfard. 1941) to augment the results of the boundary matching. which should

improve the quality of the output grid 0Th. use of any of the smoother interpolation

algoriubs would also improve the quality of the results.

test Scenes

SPOT simulation iosery. Figure 3 shows the left iLmae from the simulated SPOT stereo pair.

The imagery fto this teat case is simulated in two senses (SIMr 1981). First of all, the
actual imagery ws not obtained by the SPOT satellite, but by an airborne multispectral linear

array sceaner. the spatial and radiomtric characteristics of SPOT imaery (10 metre piels

free the panchromsAtic "or) woee then simulated from this input imag. Secondly. the right 0
image of the pair wae sythesised from the left and a digitised contour map of the area; no

real stereo imagery, woe acquired. The base-to-height ratio in the Synthesized stereo Pair is
approximately SG porcent. The Image itself shows a sn ne Gun Lake ,ritish Columbia.
Canada. Over the 3 kum by 6 km scen, the terrtin canges trom 600 to 1300 matres, including an A, ._

abup height Change at a dam.

rigure 7 shows the DM generated automatically from the stereo pair. by matchli and

iterpolating the boundaries show in Figures 4 through 4. (All Ma are presented as images .'. .

in this paper, with brightnesa corresponding to elevationt the higher the brighter. gath D".

baa maximum contast Stretch for Its terrain height range). Figure S. for comparison with the
stereo derived 0Th in Fig. 7. IS a reference 0Th generated from digitized contour maps. (The

smller else of the stereo derived 0Th is due to the sisa of the edge extraction filter. The

Jagged edges are the outecmot matched boIndaries).

B-114

I

* 9

fig. I Gun Lake stereo derived DT% rig. 8 Gun Lake reference CTlq

The It/S @trot. d bet een th e stereo deeried Mr M in rI 4 . 7 and the re fe...... 0 TR in r igq--.- .-

I 's I. 3S settes. This is an unrealistically low error. no doubt duo to the exact
radiomettic

•

.orrspondence between the left ima~ge and the right inage. which Was itself synthesed by IT,7 7

Death valley imag~ery. Figures 9 and 10 show an actual satellite stereo pair. (These figures, J i

The 1: .19es r1a ",t" e nd et Val6ey re i n o al ifo n is 'in the Un ied States and were acquired _ P

by Landst S on June 30 and June 23. 1964, respectively. At this latitude, Landsat S &sages

have about 2S percent overlap providing stereo coverage. from which the two S12 by S12 pixe,

chips were extracted. both images see from bond 5 of the Thematic Htopper ITM) senior, with a -

Pill ground 11s .3 by 30 .. The b...-to-height ratio for Landsat stereo pairs is abo t .

2 * pecent. a iean , including Telescope Ptak at 1161 mottos and nearby Panamnt Valley

a t 1. 00 se es, is extraordinarily
rugged.

Figure 11 shows the grid VTMR generated trot the Deow. valley stereo pair. figure 12 is the

reference DTM,, for cosiparison.agenecated from ;:250,000 scale contour fteps by the United States

Go.Loq, cl Sure IUSGS). The resolution Of this refesence DTM 39 low; the pixel size 19C by

IS •*tes$) necessitated digitally scioutng both figures 11 and 12 by a factor 2 for the

pictures. The 4iffortence between the two oTnq% is presented visually In rig. 11 with the

tontrastestretched to Sake the *Trots visible. Against the grey of Itr error. the low

•o age ude and ri nd•• character of the overall error is apparent, and some triangular artifacts 4j

of the interpolation &to visible.

The ass5 diterence between the satellite derived IOTm and the reference is less then 60 tetras

over the entice ores of the satellite derived Mr ; in most places it is less. This is

particularly impressive when the *trot In the reference ODTH (up to 60 mottos) is taken into

,cc.--nt. Profiles taken vertically (colum 641 through both MRe can be compared in fig. 14.

.t is easy to 2-e th~at the satellite derived DTM has the correct terrain structure.

furtheesoce, much of the diffe-ence between the two is Clearly due to the smoothing which hasI

been done to tihe USGS D0"; considerable terrain detail In the Imago and satellite derived D"~

to not present in the l:jS0.040 scale reference. in sam respect$. the satellite derived DTH

is actually better thn a D7"q derived from 1:250,000 scale maps. The satellite derived

product and reference DMq are show once again in rig, 1• and Pig. 16 respectively. in a

f•reat slallor to cntour maps. The contours ia at abslute intervals of 200 aetres. Net*

again. the Smloothing of the USGS D" is obvious.

Vancouver island Imagery. riquces 17 and IS show the stereo pair for the third test case. on

the northern side of Vancouver island near Kelsey Day, Canada. The left image was acquired on

July 15, 1964. while the eight was acquired an July 24. 1904. both Lasseis are TR band 4 with

30 motto pixel$. S12 by S12 in size. In this Case, the terrain is less &*veto [ranging from

too level to 1S0 metresi and me n-•ado features such s logged iress re present in he 0i

imges.
I

The satellite derived me and the reference are shown in figures 19 and 20. The reference OTM

(whic~h covers only pct of the scene in this casel hag 2S "emte pixel resolution, which is

*von Decree than that of the SOUrCe imges. This results in a degradation In accuracy when

B-115

.. e*

X- L7IL W- W-1 - -I

the satellite derived 01" is registered tothe reference. Even at this resolution, however,
the satelilte derived DT" is oct to w~ithin $$.$ mttes NN5 overall. Inaccuracies due to

the interpolation process. which *to more apparent In the M at this level of resolution, can
be easily removed by smoothing the M" or using a smoother Interpolation.

eaiNCws~cmus

The results presented &bove Indicate quite clearly that It is possible to automatically
generate digital terrain models fro, satellite Imagery. Furthermore, the accuracy of the Di~g
which can be generated is sufficient to ensure their Usefulness for tasks Such as automatic vJ %
terrain mapping.

The Success of a stereo atching system rests almost entirely upon the quality of the matching

prcess. Par the system to be successful, it mest be robust enough to handle a wide variety
of Input imagery, and it must be able to match the entire scene with minimal match errors and

minimal ism assistance, we have built and tested a system which seats these goals
admirably. as demonstrated by Its ability to dertive Dcram of reasonable accuracy from a variety

of real Imagery. the critical strategies adopted in the design - the use of non-local
structure in the image with the boundaries, and the hierarchic coarse-to-fine matching - were

a necessity in obtaining a sufficient degree of robustness in the match process.

ACKNOWIGEWT

The work of the first muthor wes supported in part by U.S. National Science Foundation
Coordinated Eszpariaantal Research Grant OCR-4320136 to the Department of Computer Science at
the University Of Rochester. Rochester. Hew York this current address). The majority of work
done, on the project was supported by an isRAP grant from the Canadian National Research
council to macconald Oettvilar (RD). A. aimerd of the Canadian Centre for Remote Sensing
graciously Provided the SPOT aiMalated imagery and OWa Lake MW. The Canadian Centre for
Remote Sensing supplied the Death Valley Lardsot data and provided the Vancouver island data
through the B.C. ministry of Environment. The B.C. ministry of Environment also provided the
MW for that scene. Processing of the Landest Images on the MR GICS system by Sick Jeffrey
and Nancy Rinielli io gratefully acknowledged. Mall the pictures in this paper were imaged on
an MAColor MIR 240 film recorder. Thanks also to the GICS analysts, and the PFM support
staff who assisted in the preparation of this paper.

maer N.s. (1962t. Depth from 9dge and intensity based Stereo. Stanford University Ain 347,
Stanford California.

aker. a.m..i and T.O. Binford (19511. Depth from Edge and Intensity Based Stereo. Zn Froc. 7th
nt. Joint Canf. on Artificiai Intelligence. pp. 631-636.

Bernard. S.?., and N.A. rischler (1962). Computational Stereo. ACH Computing Survey*. 14.
993472.

bellman. a. 11997). Dynamic Programing. Princeton University Press. Princeton. New Jersey.
Chevrol. N., Courtoa, R.. and 0. Vill (1981). the SP~t Satellite seant* Sensing mission.

Photoea. EMg. and Rmote Sening. 47, 1163-1111.
Friedsom. o.E. (1981). Two-Oimensional Resampling of Line Scan Imagery by oe-Oienaional

Processing. Photogrem. EnS. and Renate Sensing. 1. 14S9-1447.
rioenn. 0.3.. Mredel. J.P.. Magnusen. R.L.. Rush. a. and S. Richardson 19ts)). multiple

Precision Aactification of Soacerse Imagery with very Fev Ground control Points.
rhatogren. E9". and Rmote S"nsing 49. 165741647.

Gold. G.m.. Charters, T.D.. and J. Baesen (1977). Automated Contour Ntepping Using Triangular
Bleoot Oets Structures and6 Anm Interpolant *wo mach Icreguar Triangular Sommin.
AC Cosqpter Graphics. 11. 170-17S.

LaProde. 0.L. (1960). Steraecopy. Io C.C. Slawm 18.). Amal of Photograitrl. 4th ad. 0
Arica society of rfttogtty. Falls cbrch. Virginia. pp. S19-S44.

Mrr. D.. and 9. lilireth (19401. Theory of Edge Detection. Froc. Rt. Sem. 1. 207. 111-317.
Metr. D.. and T. maggie (1979). A Coputational Theory of Suman Stereo Vision. Proc R. Soc.

a. 204. 201-320.
N~mciac-omelaa. P.J.. and T.O. Ginford (1911). Line Finding with Subpiael Precision. Proc.

Gbta. W. and T. Kanade iI ~toera by Intra- and inter-Scanline Search Using Dynamiic%
Ptogiming. 1333 Trans. Patt. Anal. snd mach. let., PANI-7, 133-iS4.

Simai. S. (1981). Semilts of Stereoscopic Image simulations for the POT mv carried ouit at
tOf Gas Lahe Site is British Columbia. In Prc. 7th Canadian Symposium on ___

SMote amusing.. 9Ciblipe. Canada. pp. S41 -91 ,p
Biunrd. 5. AMd V-0. ErLOiebm 119431. A Successful Approach in Throe-Oimnsional Perception of 1

Stereo LWanit-MO Images over Cordilleran Rlief. In Proc. 9th tnt soosium
much. Proc. of Remotely Sensed Data, Purdue Uiviersity. Indiana. pp. 31-40. % .%

B-116'(

WOV~P. "r e- _

%

* WI @I:
iS

_. a

rig. 9 Death Valley stereo pair left rig. 10 Death Valley stereo pair right _

rig. 11 am derived froM Death Valley rig. 12 Reference D'h for Death Valley
Satellite Imagesale

F19g 13 Difference ttf atelteee deie ig. 14 Vertical Profile Plot through

Ot" arid reference OTm for Death Valley Death Valley OMhs

B-117 L

C * .) " , w .% ,".% % ' .% " , '.' .%".*. . . ". N , w% % % . % Cn.C % % % C % % *

" - ---- " .. .i -'tI II " : |' i : "| |

I -

Fig. IS Contoured 0TH derived from rig. 16 Contoured reference OnM for
Death valley Satellite images Death Valley

rig. 07 Vancouver Island Stereo pair Left Fig, IS Vancouver Islend stereo pair right

''SL"W.

rig. 19 OTh derived from Vancouver rig. 20 efference O7n for Vancouver
Island satellite images Island

8-118

y*If
MKN% S~~,~Z' - >vSI

1p \s % .. &/'

Appendix B-5 AAMKJN

Subgraph Isomorphism
on the

BBN Butterfly Multiprocessor*

John Costanso Lawrence Crowi Laura Sazachis
Mandayam Srinivas

Department of Computer Science
University of Rochester8
Rochester, NY 14627

October 7, 1986

Abetract

Thus report describes an algorithm for finding subpraph isomorphisms for a restricted
clas of graphs and a parallel implementation of the algorithm on the BBN Butterfly
Multiprocessor. This effort was part of a larger project to aaim the suitability of the
Butterfy architecture for a variety of machine vision tasks. Our algorithm searches
& tree in which each node represents a partial assignment of vertices in the smaller
graph to vertices in the larger graph. The algorithm prunes the search tree using
properties of the two graphs as constrained by the partial mapping. These properties
are vertex connectivity, distance between vertices, and the local topology of vertex
clusters. By carefully balancing the computational load and the contention for shared
resourceIs, our algorithm achieves almost linea speedup in the processing rate of search
tree nodes. However, the speedup of isomorphism detection rate is poor when looking for
few isomorphisms, and good only when looking for many isomorphisms. We present an
analysis of why we believe this property is intrinsic to algorithms that parallelise the tree
search without parallelizing the node computations. We also discuss the effectiveness of
the Butterfly architecture and programming enviroment in implementing such parallel
algorithms.

*Thi week wa supported in part by the Defense Advaced Resarch Projects Agency U.S. Army Top.
graphic Labe ane ptant nwub- DACA7S4IC-OO1, in part by the National Science Foundation under
pramt nube DCR132136 and in part by an AT&T Foundation Fellowship.

B-119 0

zrIjd .V % '

1 Introduction

The report describes the results of a project to implement a parallel algorithm for subgraph
isomorphism on the BBN Butterfly multiprocessor. This project is part of a larger effort
to assess the suitability of the Butterfly for implementing parallel algorithms for machine
vision [Br86l. Our results indicate that the Butterfly is suitable for implementing an efficient
algorithm for our problem.

1.1 Problem Refinement

The original problem statement, under the title of "Graph Matching", is as follows:

The input is a graph G having 100 vertices, each joined by an edge to 10 other
vertices selected at random, and another graph H having 30 vertices, each joined
by an -dge to 3 other vertices selected at random. The output is a list of. .
occurrences of (an isomorphic image of) H as a subgraph of G. As a variation
of this task, suppose the vertices (and edges) of G and H have real-valued labels
in some bounded range; then the output is that occurrence (if any) of H as a
subgraph of G for which the sum of absolute differences between corresponding
pairs of labels is minimum.

The above problem statement includes two problems. The first problem requires us to
enumerate every isomorphism. Because of the regularity of G and H and because vertices
in G have much larger degree than vertices in H, there are likely to be a very large number
of isomorphisms. We suspect that the average number of isomorphisms is exponential in the
size of H. Thus, any program running on a computer such as the Butterfly would require
prohibitively large amounts of computation, even on the average. (Note that even the
problem of determining the existence of an isomorphism is NP-complete, and is commonly
referred to as the Subgraph Isomorphism Problem [GJ79]). Since we are mainly interested
in assessing the suitability of the Butterfly architecture for this problem under a very tight
development time constraint, we decided to focus on the average time required to find a
small, fixed number of isomorphisms, (e.g., 10 or 100) rather than the average time to
enumerate all of them.

The second problem is a generalization of Subgraph Isomorphism to graphs with edge
and vertex costs. Here each isomorphism is assigned a cost according to some formula, and I
it is required to find the minimum cost isomorphism. Again, because of development time
constraints, we do not address this problem in this report.

Finally, a word about terminology. The word matching has a specific meaning in graph
theory, namely a set of vertex-disjoint edges in a graph. Graph Matching would thus suggest
one of the well-known problems that involve finding such matchings in graphs. We therefore
prefer to use the standard terminology, and will hereafter refer to our problem as Subgraph
Isomorphim

1.2 Approach

Our parallel algorithm is based on a modification of Ullmann's sequential tree-search algo-
rithm for ubgraph isomorphism [u76]. Ulmann's method generates a search tree where

B-120

% % -.

V. , wW ,'.\w' ', " ,? ,w, . ,,7 y '' J' .\ -,,, '...-'j-. -. . ,. . ,.,,....--,",. ,' ? , .'.',, ,- ,. -. , .,-'_--% %w .',

each node in the tree represents a possible partial isomorphism. Let vi, ... , v,, be the ver-
tices of H, ordered so as to correspond to the depth in the search tree. A node at depth k
contains a single mapping for vertices vi,... , vk and a set of possible mappings for vertices
vk+l,..., v. At the leaf nodes of the tree, all vertices, vj,..., v., have a single mapping and
the node repreents an isomorphism.

Ullmann's algorithm prunes the search tree by eliminating mappings that are infeasible
because they violate connectivity requirements. We view this procedure as the application
of a connetiuity filter. The regularity of the graphs for our problem is such that the
connectivity filter will be less effective than in the general case. Because of this, we have
attempted to improve the pruning elficiency of Ullmann's algorithm by precomputing a
good vertex traversal order and by adding two new filters, the distance and conjia'tion
fites.

There are basically two aspects of the sequential algorithm that can be parallelized: the
computation at each node and the exploration of the search tree. We have chosen to focus 0 6
on the latter aspect for two reasons. Parallelizing the exploration of the search tree has
the advantage of requiring minimal communication between processors, which implies low
synchronization and contention costs. We also believe that it is the more interesting aspect,
since the node computations tend to represent matrix computations, and parallelizing such
computations on the Butterfly is better understood. "

The basic algorithm is to generate the graph, perform the precomputations, and spawn
off a number of processes to search the tree. The precomputations include ordering the
vertices to increase search effectiveness, and precomputing constant information for the
distance and configuration filters. Each process searching the tree contains a loop in which
it obtains a search tree node from the shared stack, applies the filters to the node, and
places the feasible children of the node, if any, on the stack. The loop continues until either
the appropriate number of isomorphisms has been found, or there are no more nodes left
to process. For a single processor, this algorithm is equivalent to a depth first search of the
tree.

1.3 Reults

Our algorithm was successfully implemented on the Butterfly. Experiments were conducted
for finding between 1 and 100 isomorphisms, using between I and 96 processors. Figures
1-4 summarise the experimental findings.

The program exhibits almost linear speedup in the node processing rate. However, the
solution rate (i.e., the number of isomorphisms detected per second) shows good speedup
only when the program is looking for 100 isomorphisms. The solution rate speedup is poor
when looking for fewer isomorphisms, a phenomenon that we believe is intrinsic to algo-
rithms that parallelize the tree search without parallelising the node computation. Going
in the other direction, we have evidence to suggest that the solution rate speedup will be @ q
almost linear if we are looking for a very large number of isomorphisms. However, the
actual solution time would be prohibitive in that case.

Our effort indicates that the Butterfly architecture provides an effective balance of fea-
tures for implementing parallel algorithms of the kind likely to be used for problems similar *:v.v,'
to ours. However, architectural suitability alone does not guarantee effective utilization •

B-121

.1 bq,,
- , . "v,, a",'' '', 'K;, ,,....,.. ' - ,,,'V V"4' .,,. "N, . .. , "V "

of a parallel processor. The machine must also be equipped with a workable programming
environment. We found that the Butterfly's programming environment, evidently reflecting
the state of the art in parallel programming environments, is currently inadequate for rapid
and reliable program development.

2 Algorithm Details

This section describes the details of our algorithm. We examine random graph generation,
search vertex traversal order determination, and search tree node filtering.

2.1 Graph Generation

Generating a graph according to the given specificatio is an interesting problem in itself.
Consider an incremental algorithm to generate the graph H, which has 30 vertices each
connected at random to 3 others. Thus H is a 3-regular graph. The 3 neighbors of some
vertex v must be chosen in such a way that the triple that is chosen has the same probability
as any other feasible vertex triple. (A triple is feasible if it does not violate the degree
constraint for any vertex in the triple). Incrementally, we must ensure that the next vertex
added to the triple is chosen at random from the remaining feasible neighbors.

It is not hard to see that such a procedure might not always yield a graph H, since we
might run out of feasible neighbors prematurely, before all vertices have received their full
complement of 3 edges each. We illustrate this phenomenon with a small example. Let K 4
be the complete graph on 4 vertices and K3,3 be the complete bipartite graph with 3 vertices
in each partition. Both K4 and K3 ,3 are 3-regular. Suppose it is required to generate a 3-
regular graph with 6 vertices. The procedure described above might incrementally generate
K4 . At that point, 4 vertices have degree 3 and 2 have degree 0. The only remaining feasible
edge will connect the two zero-degree nodes, which will then each have degree 1. Since no
further edges can be added, the procedure fails.

If we relax the requirement that the neighbors of a vertex must be chosen at random, it
is simple to generate a 3-regular graph on n vertices, for n even. (Exercise for the reader:
prove that for odd n, no 3-regular graph exists). We simply have Ln/4J - 1 copies of K 4

and one copy of either K4 or K3j. However, it is required to choose neighbors at random.
We therefore strengthen our definition of neighbor feasibility.

A vertex is a feasible neighbor of v if adding the edge (v, wo) does not violate the degree
constraint for either v or v, and, furthermore, after adding the edge (v,w), the residual
degree sequence is feasible. The residu degee d, of a vertex i is the number of edges it needs
to bring its degree up to 3. The residual degree sequence of a graph is formed by arranging
the residual vertex degrees in non-increasing order. It can be shown [BM76 that the residual
degree sequence is feasible if, for 1 < k < V,_.t d, <k(k- 1)+,'..j=,& min(k, d}. I a
residual degree sequence is feasible, then we know that the construction can be completed
with the edge (v, w) included.

Following the approach in [Ti79], our graph generator uses the neighbor feasibility test
on-line. Every time a neighbor is examined, the degree constraint and the residual degree
criterion are checked. The neighbor is deemed feasible only if it passes the test. Three

B-122

feasible neighbors are then chosen at random for each vertex. The 10-regular 100-node
graph G is similarly generated.

2.2 Vertex Ordering

The search procedure assumes a vertex traversal order. In this section we show how to
choose this order to our advantage. Consider the situation in the algorithm after vertices
v",...,v , have been mapped. An unmapped vertex that is connected to a larger number
of mapped vertices will have more restrictions on possible mappings. Thus, our goal is to
choose the next vertex to visit in the search as the one that is maximally connected to
vertices already mapped. We believe that this procedure will tend to cause pruning earlier
rather than later, by applying restrictions to the edge mappings as soon as possible. Thi
will male the search tree sparser and reduce the search space.

We compute a vertex ordering as follows. For each vertex we record a label, represent-
ing its position in the eventual ordering, and its residual degree. Initially every vertex is
unlabeled and has residual degree 3. At each step i, 1 5 i < n, we choose an unlabeled
vertex of minimm residual degree, label it with i, and decrement the residual degree of its
unlabeled neighbors. The procedure thus tends to choose vertices highly connected to the
vertices already labeled.

2.3 Node Filters

We have implemented three filters, a connectivity filter modified from Ullmann's original
filter, a distance filter based on the distances between vertices in the two graphs, and
a configuration filter based on the possible configurations a vertex and its three neighbors
can assume in the H graph. Note that the distance and configuration filters, when combined
with use of the connectivity filter to restore consistency after l's have been eliminated, are
a generalization of, and hence more powerful than, the connectivity filter alone.

Ullmann's Approach

In Ullmann's implementation, each node of the search tree is associated with an m by n
binary matrix M where m is the order of H and n is the order of G. The (i, j) entry of
M is set to I if we are still considering the possibility that vertex vi of H may be mapped
to vertex v of G. At depth d in the search tree, M contains a single I in each of its first S
d rows. To generate the children of a node at depth d, we clear all but one of the l's in
row (d + 1) of M and ser out the rest of the column occupied by the remaining 1. So the
branching factor is the number of l's in row d + 1. At the leaf nodes, exactly one I is set
in each raw of M and each column has at most one 1 set. To create the root matrix M we
set the (i,j) entry of M to I unless we have reason to believe that vertex qu of H cannot
be napped to vertex wyof G.

Ulmnn describes a refinement procedure which at each node attempts to get rid of
I's by checking connectivity requirements. If this removal results in a row of M losing all
its I's, the node can be pruned from the search tree. The connectivity check is as follows.
For each I in M, say at position (i, "), the following check must be made. Let v. be any S S
neighbor of vi in H. Then there must be some 1 in v,'s row in M corresponding to some

B-123

-~ N~

neighbor of wt. in G. That is, there must be some y such that w is connected to wj in G
and entry (z,y) of M is set to 1. If no such y exists, then the mapping from vi to w5 is
impossible and we may set entry (i, j) of M to zero. Such a check must be done for every
neighbor v. of i. After all l's in M have been checked in this way, the process must be
repeated if any l's were eliminated during the pass. Checking connectivity at a leaf node
determines whether or not we have found an isomorphism.

Our Modifications

Ulimann's connectivity filter, or refinement procedure described above, can be made more
efficient by making the following 2 observations:

1) It is not necessary at each node to check each I in the M matrix for connectivity
consistency. In fact, it is only necessary to check at each stage the neighbors of those H

vertices whose rows in the M matrix have lost l's since the last connectivity check. Of
course, since this check may result in some l's being eliminated, it may recursively cause
more checks. This implementation of the connectivity filter is described in more detail
below.

2) At depth d, the vertices in rows I through d need not be checked even under the cir-
cumstances described in (1). This is because these vertices have only one I set in their rows S
in M, and by previous connectivity checks all l's in their neighbors' rows must correspond
in G to neighbors of the vertex indicated by the single 1. In particular, this means that at
leaf nodes of the search tree no checking needs to be done at all, and whenever we reach
such a leaf node we are guaranteed to have found an isomorphism.

We now describe the procedures used to eliminate l's at the beginning and throughout
the search.

Connectivity Filter

This filter is invoked by giving it a list of vertices in H whose rows in M have recently
lost l's. This can happen, for instance, when new nodes are generated by branching in
the search tree, or when other filters, described below, have been applied, resulting in the
elimination of l's.

The filter maintains a stack containing the numbers of the vertices whose neighbors must
still be checked. This stack is initialized with the list of vertices passed in to the procedure.
The algorithm proceeds by repeatedly taking vertices off the stack and processing them;
this may result in more vertices being pushed onto the stack. The procedure ends when the
stack is empty.

The following is done for each vertex vi popped off the stack. If a I is in position (i,)
of M, then the jth row of the incidence matrix of G is retrieved. This vector will have a I
corresponding to each neighbor of w, in G. All such vectors are retrieved for each j such
that (i,j) is I in M, and these vectors are ORed together. The resulting vector is ANDed
with each row in M corresponding to a neighbor of sq whose vertex number is not less
than d, the current depth. For each such neighbor of vi, the result of the AND operation
is installed as the new row in M for this vertex. If the row for the vertex in M has been).

zeroed out, the corresponding node is pruned from the search tree. If one or more l's have •
been Aminated from the row, the vertex is pushed onto the stack if it is not already there.

B- 124%

- 'A IM I

Distance Filter

We define the distance between two vertices in a graph to be the smallest number of edges 0
that must be crossed in order to get from one vertex to the other. Clearly, the distance
between the isommphic images in G of vertices u and v must be less than or equal to the
distance betwen u and v in H, since G has an image for every edge in H and potentially
contains some shortcuts between the images of u and v.

This observation forms the basis of the distance filter, which we describe in this section.
The distance filter requires knowledge of the distance between every pair of vertices in both
G and H. We precompute these in two matrices by repeated breadth-first search starting
at each vertex in G and H.

The distance filter may be applied every time a new node has been generated. Suppose a
node has been generated at depth i by seroing out all l' except one in row i of M. Assume
the remaining I is in column j. For eah 1 in each row of M after row i, the following is
done. Let the I be in position (, m) of M (I > i). That is, the 1 signifies that vertex vt in
H may be mapped to vertex w,. of G. For this to be so the distance in G from w. to w,.
must be les than or equal to the distance in H from vi to tq. If this check fails, then the 1
at (1, m) is seroed out.

If the distance filter application results in elimination of I's in one or more rows of M,
the connectivity filter is invoked to restore connectivity consistency.

Configuration Filter

The configuration filter is based on the fact that because every vertex in the H graph has
degree 3, one can enumerate the 4 types of configurations that a vertex v and its 3 neighbors
can be in.

Type 0 configuration occurs when none of the neighbors of v are connected to each
other by an edge. Type I configuration occurs when exactly two of the neighbors of v
are connected to each other. Type 2 configuration occurs when exactly two pairs of the
neighbors of v are connected to each other. Type 3 configuration occurs when all three
neighbors of v are connected to each other, forming an isolated clique of size 4. Each vertex
in H can be determined to be in exactly one of these 4 types.

In the graph G, each vertex has degree 10. If a vertex v in H is mapped to a vertex w in
G, then the 3 neighbors of v in H must be mapped to three neighbors.of w which together 0
with to form a configuration having at least the connectivity of v's configuration. In other
words, if v has configuration type k, v and its three neighbors must be mapped to a vertex
w and 3 of to's neighbors forming configuration type I where 1 2 k. Each vertex to in G
has 120 3-tuples of neighbors and a configuration type corresponding to each of these 120
3-tuples.

Application of the configuration information requires knowledge of the configuration
type of each -ertex in H and of the types associated with each vertex in G and each of
its 3-tuples of neighbors. This information is computed and stored at the beginning of the
algorithmn.

One application of the configuration information takes place when the matrix M is
initialized at the root node of the search tree. At this point each feasible mapping of a 0
vertex vi to a vertex to. in G is checked, to make sure that for some 3-tuple of neighbors of

B-125

%' ON P

v3 , twy has configuration type at least as large as that Of vi. If this is not the case, the (i, 3)
entry of M is zeroed out.

In addition, a configuration filter may be applied whenever a new node is generated in
the search tree. Suppose a new node has been created at depth i. This has been done by
zeroing out all l's in row i of M except one, say in column j. Thus for all isomorphisms that
may be found in this branch of the search tree vertex v, of H is mapped to vertex o. of G.
We want to make sure that the neighbors of v. are all mapped to neighbors of w- which form
the correct type of configuration with wy. In order to do this the filter takes each 3-tuple
of neighbors of wo, whose configuration type is at least as large as %'s configuration type,
and records the fact that each of vi's neighbors may be mapped to any one of the vertices
in the 3-tuple being considered. After this is done for each applicable 3-tuple of neighbors
of wy, the l's corresponding to mappings for the neighbors of vi which were not recorded
in the above procedure are zeroed out in the matrix M. Since this process can result in
elimination of l's in the rows of M corresponding to vu's neighbors, the cannectivity filter
should be then called to restore connectivity consistency.

3 Implementation

The program is implemented on the Butterfly using the C programming language and
calling the Chrysalis operating system [BB85a] directly. Programming with Chrysalis is
appropriate when there is need for shared data but not for a shared address space, and
when the granularity of processes is high. The algorithm chosen has these characteristics.

The implementation has a main process to setup the computation, and several server
processes to perform the tree search. The main process initializes a shared stack, consisting
of tree nodes which have yet to be searched, to the set of possible tree nodes at depth one.
The server processes extract a node from the shared stack, filter it, and place any feasible
children back on the shared stack.

The main process: sets up the shared memory environment through which all processes
will communicate; generates the random graph and first search tree node; precomputes the
vertex order, static distance filter information and static configuration information; spawns
the server processes; signals the processes to start searching; and waits for the processes to
finish.

Each server process: connects to the shared memory environment; waits for the start
signal; copies the constant problem and precomputation information into local memory; ,
loops processing search tree nodes until the appropriate number of isomorphisms have been
found; and signals the main process upon termination. To process a search tree node, the
server process: retrieves a tree node from the shared stack; applies the filters to the node;
and places any feasible child nodes back on the shared stack.

3.1 Sequential Operations

Not all elements of the program could be parallelized in the short time available to our
project. As a result, some parts were implemented sequentially. This section discusses the
reasons each was left sequential.

B-126

L _ N. o V1. I

Graph Generation

We did not consider the random graph generation as part of the problem statement, so no
effort was made to parallelize it.

Precomputation

The precomputation is graph dependent, and therefore is necessarily part of the problem
statement. We did not parallelise the precomputation since it took only about 12 seconds
on a single Butterfly node, which represents a small fraction of the total work. In addition,
the precomputation is a relatively straightforward matrix computation, and parallizing
such computations on the Butterfly is relatively well understood. Therefore we did not feel
that the coding effort would be justified. This precomputation time is not counted in the
solution times cited later.

Spawning Processes

The server processes are sequentially started by the main process. We made no attempt to
parallelize process startup because we feel that, in the context of vision, the isomorphism
search is likely to be repeatedly called on a stream of problems. In such an environment,
the processes would be started and left started, and the relative cost of process startup
would become insignificant. Because of the time to start processes, a process spawned early
could conceivably do a substantial amount of work on the search while other processes were
still being started. This would adversely affect the timing results, so all processes start
computation only when receiving a broadcasted "start" signal.

3.2 Parallel Operations

This section describes those aspects of our implementation that we have parallelized. These
parallelisations strive to keep processors as independent as possible while keeping them as
busy as possible.

Copying Precomputation Results

The precomputation results are placed in a central location by the main process. While the
server processes could use this central location to access the appropriate data, such accesses
would be subject to contention with the other server processes attempting to access the in-
formation. Such contention can result in a substantial performance degradation. Therefore,
we have each server process copy the precomputation results to the local processor for the
duration of the search. The access costs to the data are minimal with the local copy.

Tfre Search

An obvious approach for parallelising a tree search with such a large branching factor is to
assign a processor to each top level subtree and have each processor then execute a sequential
algorithm on the smaller problem. This approach has the advantage that there is almost
no communication between processors, and hence they will not contend for information 0 0

B-127

W, % % %
- -- -fI~

resources. There is, however, a disadvantage in that if a processor finishes early (because
it eliminates a subtree), there is no work left for the processor and it becomes ineffectivc

The first approach implemented had a central stack for all tree nodes. This eliminated
the ineffectiveness of a processor finishing early. Unfortunately, the stack tended to grow
very large. Due to the parallel, random, nature of stack access, the algorithm no longer
has the space preserving properties of a depth first search. Indeed, the stack may grow
as quickly as it would for a breadth first search, which would store a prohibitively large
number of tree nodes for this problem. In addition, processors were always contending for
access to the shared stack.

The second approach implemented used the shared stack only for search tree nodes at
depth one and two. Below that, a local stack was used for searching a subtree in a strictly
depth first manner. Thi reduced overall contention for the shared stack while still leaving
plenty of work for a processor which finished a subtree early.

Shared Stack

The shared stack is implemented as a data structure in shared memory. Each server process
is responsible for consistently updating the stack. Because server processes will start execu-
tion of the stack at arbitrary times relative to each other, these operations must insure that
they do not interfere with each other. We solve this problem by having the server processes
lock the stack using an atomic test and set operation when performing the critical data
structure updates. When a server process finds the stack locked, the process busy waits
until it finds the stack unlocked. Locking the stack produces contention for the stack. This
.ontention in turn reduces the amount of effective parallelism that can be obtained from
the program. Therefore, the program should seek to minimize the amount of time a process
locks the stack relative to the amount of time processing away from the stack.

4 Analysis of Results

Our algorithm was successfully implemented on the Butterfly. Data was collected for
s = 1,5,10,20 or 100, where s is the number of isomorphisms being sought, with p =
1,2,4,8,16,32,64 or 96 processors. For comparison purposes, each Butterfly node is about
50% slower than a Sun 2/50 workstation. Figures 1-4 summarize the experimental findings.
Each data point represents between 6 and 10 trials. The majority of our experiments were
run on a single, randomly generated instance of each of the graphs G and H. More robust
results would be obtained if we were to run our program on different random graphs.

Our experiments indicate that using both the distance and the configuration filter is
only marginally more useful than using either of these Alters alone. In addition, we found \

that the distance filter took less time to run. Because this latter fact was observed too late
in the experimentation, the configuration filter alone was used for all of our trials. However,
the nature of the paraiaton is such that using any combination of filters at each node
should yield the same qualitative results in terms of speedup.

B- 128

.' PI' %4 *V %

_:,M,
..... ~~~ ---- , Mz

4.1 General Analysis

This section provides a general analysis of the parallel algorithm. Analysis specific to our
implementation is discussed in the next section. 5

Node Processing Rate

Figure 1 shows the number of search tree nodes processed per second as a function of the
number of processors. Our program achieves a near linear speedup in the node processing
rate, indicating that our program is an effective parallelisation of the tree sach algorithm.

Solution Rate

Figure 2 shows the number of solutions generated per second as a function of the number
of processors. This figure clearly shows that the program did not achieve linear speedup in 5 S

problem solution time. One may observe, however, that the speedup gets better as larger
numbers of isomorphisms are sought. This seems to confirm the conjecture that near linear
speedup would be achieved by our program if we were to look for a sufficiently large number
of isomorphisms. This conjecture is supported by the following analysis.

Suppose we are looking for one isomorphism. Consider a search tree with two subtrees. 0
A sequential algorithm will explore one subtree first, and then, if a solution is not found,
will explore the second subtree. In parallelizing this search for two processors, we would
send one processor down each of the subtrees. Now, assume the solution is found in the
first ubtree. The first processor will find the solution while the second processor will
not. However, the first processor will find the solution in the same amount of time as the
sequential version. The second processor will contribute nothing to the problem solution
time.

This argument can be extended to multiple processors, and multip!' :e,'tons. As
different processors explore different branches of the search tree, some will find solutions
and some may not. Whether or not a processor finds a solution depends on whether or not
the processor can find a solution before the required number of solutions are found by other
processors. The extent to which processors search without yielding solutions determines
the amount of unprofitable work expended. If some of this work would not take place when
using only one processor, then this work represents a limit to the speedup that can be
achieved with parallelism.

Consider the case where we are searching for a few isomorphisms and the search tree 0
contains a large number of isomorphisms distributed evenly among its branches. A sequen--
tial algorithm would only need to go down a few branches to find the required isomorphisms.
The parallel implementation, however, would explore many branhes at once, and would-

terminate when an appropriate (small) number of processors have found isomorphsms. In
the meantime, the remaining processors would have expended a considerable amount of -
work. Thus parallelisation in this came is only marginally productive.

Now consider the case where we are searching for a large number of isomorphisms and the
search tree contains a large number of isomorphisms distributed evenly among its branches.
Most processors will contribute solutions before the appropriate number of isomorphisms

B-129

w': 'r 3 %w %,,, .--.-.. -. y ; .w ,- -.... '',''.'.'.-'.-'... -. -. -. . -' ".. ," • "-. "',.[.L

have been found. Thus, processors will contribute a larger percentage of their total work
towards the set of solutions, and the efficiency of the parallel algorithm will be higher.

Effective Processors

Figure 3 shows the number of effective processors as a function of the actual number of
processors. This figure again points out the greater effectiveness of parallelisation when a
greater namber of isomorphisms is being sought.

Solution Time

Figure 4 shows the time in seconds for finding a solution as a function of the number of
solutions being sought. Note that the unit cost of finding a solution does not increase as
more isomorphisms are sought, but instead seems to slightly decrease.

4.2 Implementation Analysis

A high degree of contention for a shared resource can severely degrade overall problem
solution time. Much of the art of parallel programming consists of balancing the need for
minImiing contention at shared resources with the necessity of providing enough shared
information for the processors to work effectively.

The current program still has contention for the shared stack, especially at startup, %
which is probably why we achieve slightly less than linear speedup for the node processing
rate. In addition, when looking for 1 isomorphism, the number of nodes evaluated per
second actually decreases beyond p = 64. We suspect this may be because there is an
insufficient amount of work to overcome the initial shared stack contention.

Given more time, we would revise our technique for assigning the initial tree nodes
to processors. The first approach we would take at this point would be to arbitrarily
assign the tree nodes at depth one to the processors as in the naive approach. However,
instead of keeping an entire subtree to itself, each processor would place on the shared stack
those tree nodes at depths two or three that it will not immediately process. This would
restrict startup contention to that caused by placing children on the shared stack, which is
significantly less expensive than retrieving children from the shared stack.

4.3 Other Paralleliuations

This section discusses some approaches that we might take in parallelizing some other
aspects of the computation, such as the py-computations and the node filtering. .. ,%

The node filters and the precomputat- as are array based and may generally be paral- ,.-
lelised with a "parallel for-loop". As such, they are more suitable for implementation under
the Uniform System [BB85b]. Parallelizing these computations can be effective. However,
the precomputation results and individual tree search nodes would become shared resources
and contention for these resources could become significant.

Since the number of available processors is limited, an interesting question arises regard- Z.
ing the tradeoff between the two aspects of parallelisation. In other words, what fraction of
the processors should we devote to speeding up the node computations, and what fraction

B-130

IKN.

should we devote to exploring more nodes. One advantage of parallelizing node computa-

tions is that it does not entail sending processors down unproductive subtrees.

The following subsections describe some of the ways in which these parallelizsations could

be performed.

Vertex Ordering

The current sequential vertex ordering algorithm chooses arbitrarily among vertices con-

tained in the bin with the minimal residual degree. This algorithm may be parallelized by

having several processors extract nodes from the appropriate bin. This approach requires

care to ensure that the actions of one processor reducing a vertex's residual degree do not

adversely affect the processing of another vertex.

Distance Preconputation

The distance matrix may be parallelized by assigning each processor to a distinct vertex

in the two graphs and having the processor compute the distances to all other vertices.

The paralelized distance computations are more appropriate for implementation under the

Uniform System.

Configuration Precomputation

Each processor is assigned a vertex in each of the graphs. Each processor then independently

computes the vertex's configurations.

Connectivity Filtering

The stack based connectivity filter would be parallelized in much the same manner as the

stack based tree search. However, such parallelisation would require careful thought to

ensure that the algorithm would not be affected by one processor turning l's into O's while

another processor examines that information.

Distance Filtering

The distance comparisons are independent and may be distributed among the different

processors.

C.nfBguration Filtering

Paraflelization of the configuration filter may be achieved by distributing the work associated

with each 3-tuple of the neighbors of the mapped G vertex among the different processors.

5 Conclusions

The purpose of this exercise has been to examine the suitability of the Butterfly computer for

solving certain versions of the subgraph isomorphism problem involving fixed size regular

graphs. Since our interest is mainly in studying the effectiveness of parallelisation, we

B-131

N
%.,

* 0

decided to restrict ourselves to finding a small number of isomorphisms. We also chose
to parallelize the exploration of the search tree since the effect of such a parallelization is
interesting but relatively unexplored, both in theoretical and practical terms. * S

5.1 Performance

The program showed effective processor utilization in terms of the gross amount of work
done. The average number of search tree nodes processed per second increased almost
linearly with the number of processors. This supports our claim that our program is an
effective parallelization of our algorithm.

We also found that using more processors resulted in faster detection of isomorphisms,
although the speedup is not linear in the number of processors. The speedup is reasonably
good for a = 100, but is poor for smaller values of a. Our results suggest that the speedup
will be almost linear if a is very large. We believe that this behavior is inherent in the nature *
of the approach to the problem, and independent of the architecture used to implement the
approach.

We also found that in general, the unit cost of finding an isomorphism decreased slightly
as the number of isomorphisms sought increased. We did not look for more than 100
isomorphisms, however, since those alone took the program more than an hour to find
using 1 processor.

5.2 Butterfly Suitability

The Butterfly is suited to the types of parallelization techniques employed in our program.
In general, we find the Butterfly architecture is an effective parallel architecture, but that
the programming environment needs significant work. The weakness of the programming
environment should be considered more of a statement on the state of the art in parallel
programming rather than a statement on BBN or the Butterfly.

Architecture

There is a cost associated with ability to share information, regardless of whether or not
information is actually shared. Unfortunately, architectures which seek to minimize this
cost tend to raise the cost of sharing information. A balance must be struck between the
cost of having access to shared information when it is not being used, and the cost of
accessing shared information when it is used. We believe the Butterfly architecture strikes
a good balance.

The Butterfly provides a number of processor nodes, each containing a processor and
local memory, which are connected via a high-speed omega (butterfly, fft) network. The .

memory management hardware determines whether or not an address references the local
memory, or the memory on another node. When all processors are accessing local memory,
there is no contention for memory resources, and the cost of the ability to share information
is limited to a simple test in the address translation. This model has significantly lower cost
for local accesses than those models which provide a single global memory for all processors.
In addition, it scales to larger numbers of processors far more easily.

B-132

95

%,,.
%. .. .

When access to shared data is needed, processes can place memory on remote nodes into
their address space. This allows access to shared memory, at the cost of a higher memory
cycle time. While this remote access is more costly than those architectures with a single
global memory, the cost to access shared information is lower than message based architec-
tures. The use of shared memory allows concurrent access to data structures which avoids
the process interaction and synchronisation costs that message based systems inherently
force.

When tranderring large amounts of data from one processor's memory to another's,
mensage passing implementations may be more appropriate. This is because the extended
cycle time of remote memory references and repeated instruction interpretation can become
expensive. For such situations, the Butterfly architecture provides a hardware implemented
block memory copy between processors. With this hardware, message based communication
between processors can be efficiently implemented. In addition, with the shared memory
capability discussed earlier, a message based communication does not require interrupting 6 6
the destination processor.

In summary, the Butterfly architecture provides local memory for efficient access to
information that is not shared, an interconnection network for efficient access to remote
memories for small amounts of shared information, and block memory copy for efficient
sharing of large amounts of information. Any single feature could doubtless be implemented
at a lower cost, but it is the balance of these features which determines the effectiveness of
a parallel architecture.

Programming Environment

We find the programming environment for the Butterfly is its weakest attribute. The
Butterfly architecture allows efficient implementation of algorithms based on a variety of
models of computation, unlike many machines where the model of computation is built into
the machine. On the Butterfly, programmers are not locked into a model of computation,
but may choose that which seems most natural to the problem at hand. Unfortunately,
in adopting a model of computation, Butterfly programmers must choose a programming
environment which supports that model. Currently, all programming environments support
a single model of computation. These environments then have a severe, often restricting,
impact on the algorithms chosen. In other words, the current programming environments
do not reflect the flexibility of the architecture.

We chose to program using Chrysalis directly rather than using the Uniform System. S B
Chrysalis is more suitable for the large processes communicating through relatively disjoint
regions of shared memory. Thi characterizes our shared stack tree search algorithm. The
Uniform System is suitable for those instances where one thinks in terms of shared matrices
and "parallel for loops". This characterizes the types of computations needed for paral-
lelising the precomputations and tree node filters. Further efforts at parallelising would
probably involve re-coding the program under the Uniform System for the precomputations
and node Alters and then working the tree search in on top of that. This brings up the
issue of miving models within a single program. These issues are an active research area,
and more work is needed in this area.

B-133

.y ., %. N

II
References

[BB85a BBN Laboratories; Chrysalis Programmer's Manual; Version 2.2, June 1985

[BB85b] BBN Laboratories; The Uniform System Approach to Programming the Butterfly
Parallel Procesor, Version 1, October 1985

[BM76] J. A. Bondy and U. S. R. Murty; Graph Theory and Applications; North-Holland,
1976.

[Br86] C. Brown, R. Fowler, T. LeBlanc, M. Scott, M. Srinivas, L. Bukys, J. Costanzo,
L. Crowl, P. Dibble, N. Gafter, B. Marsh, T. Olson, L. Sanchis DARPA Parallel
Architecture Benchmark Study, Prepared for the DARPA Architecture Work-
shop, November 1986; Butterfly Project Report 13; University of Rochester,
Computer Science Department, Rochester, NY, 14627; October 1986

[GJ79] M. R. Garey and D. S. Johnson; Computers and Intractability: A Guide to the
Theory of NP-Completeness; W. H. Freeman, 1979.

[Ti79] G. Tinhofer; On the generation of random graphs with given properties and
known distributions; Applied Computer Science (Munich), 13 (1979), pp. 265-
297.

[U176] J. R. Ullmann; An Algorithm for Subgraph lsomorphism, J. ACM. 23 (1976),
pp. 3142.

S

B-134

0 eNo

1200

ideal .W

1000 -

N S1

o80

0 . II

d
e
s

600S

e s=1

c

0
n 400
d

200

0
0 20 40 60 80 100

Number of Processors

Figure 1:
Node Processing Rate

B-135

u2.5
S
o
0

11 1.5

s S.U 10
sp

0.5 '

S 20

Fiur 2 b .

0B-

VVI

3r~~vx~cK~~xK~wj.T 0~KRUIA P.Ur SvII

100
ideal

EU

f80
f
e
c

t

V 6 0 S=100
e

P
r
0 40
c

0
r 20

S1

0
0 20 40 60 80 100

Real Processors

Figure 3:
Procesor Efficiency

B- 137

800

S 60

0
n
d
S

S P=1

t
i

20

0 P
0 20 40 60 80 100

Number of Solutions

Figure 4:
Cost per Solution versusNumber of Solutions Sought

B- 138

or0

* 0

Appendix B-6 S

Advanced Likelihood Generators
for Boundary Detection

David Sher *
Computer Science Department

The University of Rochester
Rochester, New York 14627

January 1987
TR 197

In [Sher85] I discussed the advantages of feature detectors that return likelihoods. In (Sher861 I
demonstrated some preliminary results with a boundary point detector that returns likelihoods.
Now I have developed boundary point detectors that have these properties:

" Return probabilities

" Can be combined robustly

" Potential sub-pixel precision

* Work with correlated noise.

• Can handle multiple gray-levels (tested with 255)

These detectors were applied both to aerial images and to teat images whose boundaries are
known. They are compared to established edge detectors.

This work would have been difficult if not impossible without the active support and
encouragement of Chris Brown, my advisor, and Jerry Feldman. This work was supported by the
Defoe Advanced Research Projects Agency U. S. Army Engineering Topographic Labs under
grant number DACA76-85-C-0001. Also this work was supported by the Air Force Systems
Command, Rome Air Development Center, Griffis Air Force Base, New York 13441-5700, and the S •
Air Force Offico of Scientific Research, Boling AFB, DC 20332, under Contract No. F30602-85.C-
0008. This contract supports the Northeast Artificial Intelligence Consortium (NAIC).

B-139

N~

L Introduction
Currently a great variety of tools are available for low-level vision tasks such as image

reconstruction and edge detection. It is time to devote attention to managing tools rather than
creating new ones.

Most of the tools for low level vision are algorithms for intermediate steps towards achieving
a goal. Here, we consider boundary point detection algorithms in then terms. These are
algorithms that try to determine if a boundary passes through a pixel (usually given a window on
the image). This task is similar to edge detection. Boundary point detection algorithms do not
esist to display outlines pleasing to the human eyes. Their output is meant to be input to a higher
level routine such as a shape recognition program or a surface reconstruction program.

Some desiderata for boundary point detection tools are

(1) The output of a boundary point detector should be useful to as many higher level routines
as possible. If every higher level routine required a different boundary point detector then
our technology has not lived up to this desiderata.

(2) Boundary point detectors should accept as input the full range of data available. If a
boundary point detector only worked for binary data when gray scale data was available, it
has not lived up to this desiderata.

(3) Boundary point detectors should do work proportional to the sie of the image.

(4) Boundary paint detectors should do work proportional to the precision of the output. Thus
if subpixel precision is required, it should be made available with work proportional to the
required accuracy of boundaries reports.

(5) Boundary point detectors should be parameterized to features of the data. For example, if
the distribution of reflectances in the scene is known (the expected image histogram) then a
detector should be constructed that uses this information. Another example is if structure
in the noise is known (such as correlation) we should be able to take this structure into
amcount.

In this paper I describe an algorithm that fAte these desiderata. It is a more advanced version
of the algorithm described in (Shr861. Also the results of tests run on this algorithm are reported
here and comparisons with established algorithms such as the Sobel, Kirsch and variants
thereupon. Tests will be done somn on more sophisticated operators. S

2. Definition of Boundary
Befre talking about boundary point detector it is a good idea to deS e exactly what a

boundary is. Vision problems involve imaging a scene. This scene could be an aerial view or a
picture of machine parts or an outdoor scene. This scene is filled with objects. In an aerial
photograph some of these objects are buildings, trees, roads and cars. Each of these objects is
projected into the observed image. Thus each object has an imoge that is a subset of the observed
image. Where the observed image of one object mests an observed image of another object there is
a boundary. such boundaries are sometimes referred to as occlusion boundaries.

3. Returning Probabilities S

The algorithm I describe faills the first desideratum by returning probabilities that a
boundary is near a point. Here I justify returning probabilities and show how I can fulfill the first

B-140

NI _

S 40

desideratum using them.

No tool for boundary point detection or any other low-level vision task ever does its task
without a sigificant probability of being wrong. Thus the error characteristics of a low-level 0
vision algorithm need to be considered. Intermediate-level vision algorithms differ in sensitivities
to different kinds of erron.

Cenider boundary point detection. Regularization algorithms (interpolation algorithms)
[oultW] suffer more from missing a boundary point than from having extra ones. When a
boundary point is missed regularization algorithms try to smooth over the boundary with
dimastrous results. Hough tranform techniques often work effectively when the set of boundary
points detected is sparse because the work a hough transform technique does is proportional to the
sim of that set.

Another reason that Hough transform techniques do well with sparse data is that they are
mode based. Thus Hough transform techniques are robust when feature points are left out and
when there are outlying data points. The robustness of the Hough transform is described in detail
in [Brown82].

It is good software management to use the same boundary point detector to generate input for .
all high level vision tasks that require boundary point detection rather than building a special
detector for each high level routine. If a boundary point detector returns a true/false decision for
each p int then its output does not suit both regularization techniques and hough transform
techniques. Take for example the one dimensional intensity slice shown in Figure 1.

Figure 1: Slice through an image with an ambiguous boundary

For use as a first stage before regularization it is preferable that such ambiguous slices be
considered boundaries because the cost of missing a boundary is high (compared to the cost of
missing an edge). For use with hough transform line detection figure 1 is not a pod boundary
because the cost of an extra edge is high.

The traditional solution to the dilemma of satisfying differing requirements among
intermediate level routines has been to supply numbers such as edge w engtsA rather than
true/false decisions. These strengths describe how likely the low-level vision algorithm considers
the event such as the existnc of a boundary. The example in figure I has the detector return a
low edge strength. Figure 2 shows a 0 edge strength.

Figure 2: Slice through an image with an edge strength of 0

Figure 3 shows a high edge strength.

B-141

r .

intensity

Fiure 3: Slice through an image with a high edge strength

If an edge detector that returns strengths (acting as a boundary point detector) is used as
input for various intermediate level applications, then each application usually uses a threshold to
determine what is and isn't a boundary. If an edge strength is higher than the threshold a
boundary is reported. The threshold is determined by running the boundary point detector and the
intermediate level algorithm with diferent thresholds and finding the threshold that results in the
best results according to some error norm or human observation '. If the boundary point detector is
changed now thresholds need to be found.

If boundary point detectors were standardized so that the correspondence between strength 0
and the probability of the boundary were consistent between all boundary point detectors then the
threshold need only be calculated once for each intermediate level application. Then the thresholds
for intermediate level applications could be calculated from theoretical principles. When the
strengths have clear semantics the entire process of threshold determination would bL lully
understood.

A consistent and well de, ned output for boundary point detectors is the probability of a
boundary. If all boundary point detectors output the probability of a boundary then the boundary
point detector could be improved without changing the rest of the system. If the error sensitivities
of the intermediate level routines are known the thresholds can be determined by a simple
application of decision theory.

4. Likelihoods
Most models for boundary point detection describe how configurations of objects in the real

world generate observed data. Such models do net explitly state how to derive the configuration
of the real world from the sensor data. This behavior of models results in graphics problems being
oniderably easier than vision problems Thus we have programs that can generate realistic
images that no propram can analyse.

Given the assumption "There is a boundary between pizels p, and ps" we can determine a P
probability distribution over possible observed images. Let b(1,2) be the statement that there is a
boundary between pixels p, and p,. Let S(bM ,)) be the set of region maps such that b(1,2) is true
(and generally I use the notation that S(tatement) is the set of reion maps where stament is
true). Let M be the model for the boundary detection task. Then the probability of 0 (the observed ,
image) given b(1,2) under M is calculated by equation 1.

12p re la naou eoithm afs e ad* "t th. ede s emthe For the purpo f o this paper wmider such an alg ithm -

as a part at the dear, the output of this detect. is the e&msgths output by the mhlmtian algSoth-.

B-142

1110 R,

SP(OliwMPuiIM)
P(OIb(1,2)&M)= E1S*b(.2)) (1)P(b(1,2)lIM) -

If 0 is the observed data then the probability calculated in equation 1, P(OIb(I,2)&M), is
called here (inspired by the statistical literature) the ikelhod of b(1,2) given observed data 0
under M. Generally the models we use in computer vision make the calculation of likelihoods
simple for the features we want to extract. However the desired output of a feature detector is the
conditional probability of the feature. Thus in boundary point detection I can derive
P(Ojb(1,2)&M) and I can derive P(OI-b(1,2)&M) (-x means "not z" in this paper) but I want to
derive P(b(1,2)I0&M).

A theorem of probability theory, Bayes' law, shows how to derive conditional probabilities for 4

features from likelihoods and prior probabilities. Bays' law is shown in equation 2.

P(lO& M) = P(O If&31)P(flM)(2P(O If&M)P(IlM)+P(O -f&M)P(-IlM) (2)

In equation 2 f is the feature for which we have likelihoods. M is the model we are using.
P(OIf&M) is the likelihood of f under M and P(/jM) is the probability under M of f (the prior
probability).

For features that can take on several mutually exclusive labels such as surface orientation a
more complex form of Bayes' law shown in equation 3 yields conditional probabilities from
likelihoods and priors.

PnlO&Pf) P(O~lM')PZIM)
O Z P(OIL'&M)P(l'IM) (3)

l is a label for feature f and L(t) is the st of all possible labels for feature f.

Likelihoods are important because they are a usefu intermediate term on the way to deriving
a posterior probability. An upcoming technical report describes formulas for evidence combination
based on likelihoods .[SherS7]. To apply that theory of evidence combination one needs to compute
the likelihoods explicitly. Thus in the succeeding sections I calculate the likelihoods even up to
factors that are equal in all the likelihoods (hence are divided out by equation 3). V

Another important use for explicit likelihoods is for use in Markov random Sold. Markov
random fields describe complex priors that can capture important information. Markov random
fields were applied to vision problems in [Geman84. Likelihoods can be use with a Mmakov
random field algorithm to derive estimates of boundary positions (EMarrequing5] [ChouS7].

5. Simpliications
To make the problem of computing the likelihoods for events computationally tractable, I

simplif my problem in certain ways.

The first simplifcatiom is calculating the probability of a boundary at a point rather than
trying to compute a probability distribution over boundary maps for the entire scene. Even though
a distribution over complete maps would be more general there are too many possible boundary
maps to manage realistically. Under certain circumstances all that is needed is to compute the
probability of a boundary near each pixel [Marroquing5].

B-143

*.,' * N4* .4

""'.".'

I0

5.1. Window Based Boundary Detectors

Rqua*ion 1 implies an algorithm for determining likelihoods of boundaries. It shows that
iterating through all the configurations that cause a boundary at a point is a way to find the '
likelihood of a boundary. A reon map is a description of where the images of the objects are. %
Each coniguration of objects in a scee implies a region map. However, the set of region maps ",e.
that contain a boundary between two pixels is too large to iterate through (for a 512 by 512
observed image it is >>10"'). The cardinality of the set of region maps is in general
exponential in the se of the image.

An obvious solution to the problem is to reduce the number of pixels. Generally, the further
one gets from a boundary the less relevant the data in the image is to that boundary. Thus it is
common to use a relatively small window about the proposed boundary for finding the boundary
(see figure 4). There are many fewer region maps over a 4 by 4 window than over a 512 by 512
image.

image '-

Figure 4: Small Window on Large Image

Thus by looking only at a window I simplify the problem of boundary point detection
considerably. Inevitably, I lose some accuracy in the computation of probabilities from limiting the
data to a window. However the simplification of the algorithm compensates for this loss. Every
attempt at edge detection has used this principle [Hueckel7l] [Canny83] with possibly a further
stage of linking or relaxation.

5.± Constraining Region Maps
Applying a boundary point detector to an H (height) by D (depth) observed image involves

computing the probability of RD boundaries. If H=Dff512, then HD=262144. A boundary point
detection algorithm computes probabilities for all these potential boundaries. The cost of using
algorithm that computes the probability of a boundary at a paint is multiplied by RD. The cost 0
may be reduced by sharing ome of the work between iterations. Still much of the work can not be
shared. Saving time by sharing work between iteratious is discussed in later sections.

Ignoring saving by sharing between iterations, any saving in the algorithm that computes the
probability of a boundary at one point is multiplied manyfold (for H=D512 262144fb1d).
Algorithms for computing the probability of a boundary at a point require work proportional to the
number of region maps. Reducing the number of region maps that need to be considered
proportionately reducs the work required by the algorithms for boundary point detection.

B-144

0 0

The maximal amount a region map can change the likelihood of r. feature label is the
probability of that region map divided by the prior probability of a feature label corresponding to
that region map (shown by a cursory examination of equation 1, repeated below, with i being a
region map).

P(ol alum
P(O I b(1 ,2)&M) = ES(b(')) (1)

P(b(1 ,)IM)
Bayes' law (equation 3) can be broken into two steps. First the likelihoods are multiplied by the
priors. Consider the likelihood of a feature label (say boundary) multiplied by the prior
probability. Call such a term the conjunctive probability of I since it is P(O&f=l&M). The
conjunctive probability of I can be changed by deleting a region map with f = at most the
probability of that region map. The probability P(f=110&M) is derived from the conjunctive

Mrobabilities by dividing P(f=I&O&M) by the sum of the cojunctive probabilities S S
=Pr&O&M). Thus if the probability of a region map is small compared to

P(O&M)= XP(f=r&0&M) deleting the likelihood corresponding to it has a small effect on the
P

resulting distribution. Thus one can with some safety ignore region maps whose prior probability
is small enough.

For standard edge detection algorithms a common restriction on region maps is to assume
that then are at most two object images participating in the window thus there can only be two
regio [Hueckel17). Step edge based models implicitly make this assumption [Canny83]
(Nalwa84]. Windows with more than two object images in them are assumed to occur infrequently
1 call the assumption that there are at most two object images participating in a window the two
object assumption.

Another simplification places a limitation on the curvature of the boundaries observed in the
image. Limiting this parameter limits the set of region maps in a mathematically convenient way.
I! the curvature is limited enough the boundaries can be considered to be straight lines within
windows. Thus the windows on the observed image can be modeled assuming there is no boundary
or a single linear boundary across them. A similar model (it allowed two linear boundaries in a
window) was used in [Hueckel7l]. I call the assumption that there are no high curvature
boundaries the low curvature asumption.

5.3. Numerical Approximations -

Another effect that makes the probabilities calculated by my algorithms inaccurate is that a
real number can only be specified to a limited accuracy on the computer. Thus there is a limit to
the accuracy that calculations can be perft ad to in the computer. In section 6 1 ignore the error
introduced from inexact floating point computations. In my implementation (section 8) I used
double precsion arithmetic throughout in an attempt to reduce this error.

Another source of errors is my simplifying the mathematics to make the algorithm simpler.
One such approximation I make is to use the density of a normal distribution as a probability. In
the equations derived in section 6 I use this approximation in the probability derived from a
multinarmal Gaussian. This approximation simplifed the mathematics for deriving the detector.
Such an approximation is standard.

B-145

. ,'.".
-%* %'*~. ~~*.~

6. Building a Boundary Detector
In section 4 1 discuss why determining likelihoods is a useful first step in feature detection.

In section 5 I decribe the approximations and simplifications necmsary to make the problem of
boundary point detection computationally tractable. Now all that is left is to develop the
algoithm. The first step in deriving a boundary point detection algorithm is to derive the
likelihood that a window is filled with a single object given the observed data (section 6.1). Then
likelihoods for windows with multiple objects are derived (section 6.3). In this section I assume
that the model has Gaussian mean 0 noise with a known standard deviation added to an ideal
image.

6.1. Likelihoods for a Single Object
The problem is to find the likelihood of a single object filling a window in the image. The

expected intensities of the pixels in the window are proportional to the refiectance of 0. Let To be
the expected value of the pixels in the window when 0 has reflectance 1, r(O)= 1. To is often
referred to as a template in the image understanding literature.

Template matching can be best shown on a two dimensional medium (with weak graphical
capacities) when the window is 1 dimensional. Thus I use a 1 by 8 window for examples. A typical
template for a single object in a 1 by 8 window is shown in igure 5.

100 1100 1100 1100 1100 1100 1100 1100]
Figure 5: Template for a single object

This template is boring because I assume that there is little variance in intensity in the image of
the interior of an object. The observed image of the object has a normal iid added to each pixel.
Thus the observed image (when the standard deviation is 8) can look like figure 6.

194 I104 1 100 194 1 92 10 101 103

Figure 6: Noised Template for a single object

The probability that the noised window results from the template is a function of the vector
difference between the window and the template. For the example in figure 6 given the template
for a single object in figure 5, the preability is calculated by summing the squared differences
between the template and the observed data (187) and then applying the normal distribution
function (for 8 independent normally distributed samples mean 0 standard deviation 8 rounded to
the nearest integer) to get 8.873 -12.

In later sections when I use windows or templates in equations the windows or templates are
Blattened into vectors. Thus a two dimensional window is transformed into a vector (Agure 7).

1 2 3 •
4 5 6
7 8 9

Window 1 .

The Vector from Window 1.
Figure 7: Flattening a window into a vector

All the windows and templates are assumed to be flattened thus. When a template is subtracted
B-146

Z,.. , .",. ,..'.. %. . .. ,.. . . %.. ,. . % %,,,..,":','.; , .: ' -.,.,., ..,,.,.. , .
1.%• Z, %.J ,,Z.

from a window, vector subtraction is happening. When a template or window is being multiplied
by a matrix, vector matrix multiplication is happening. In particular, WWT is the sum. of the
squares Of the elements of W while WTT is the sum of the products of th, corresponding elements
of Wand T.

LeIt 4T, be a times the intensities in the template To. The template for an object with

refletAnce r(O) is r(O)T s. The probability of observing a window W when the scone is of 0 is
determine~d by the Gaussian additive &ctor. Equation 4 is the formula for the probability. (Let V
be the variancesof the noise, v2in the rest of this paper) Lot Abe theiseof the window and sebe
the constant 1 /(2wy)IAi

P(WIF()=P&M)=A9ezP(-(W-rT sXW-rTs)T /2V) (4)

Since the refletance of the object in the sgone is not known but the distribution of
redletances is known one must integrate this formula over possible reflectances. Thus the
probability of a window given it is of a single object of known position and shape is in equation 5.

P(WIO&M) = fgexp-(W-rT)(W-rT)T2V)dD(r)()

The term (W-rTs)(W-rT,)f can be rearranged to WWr-2rTWT+rITsTr.0 WWT7 is the
sum of the squares of ths pixels in the window. Let us refer to it as W2 for shorthand. TWT is0
the correlation between T@ and W. Let us refer to it as C for shorthand. T.Tf is the sum of the
squares of the elements of the template. Lest us refer to it as Tsn. Using a rearrangement and these
shorthand. equation 5 can be restated as equation 6.

P(WIO&M) = exp',-W'/2V)Kcfexp((2rC-r')/2V)dD,(r) (6)

Equation 6 is the product of two parts, equation 7: ,.

F1 (W2) = @Xp(-W2/2V)oc (7)

and equation 8:

F2(C) = fexp(c2rC-r2T)/2V)dD,(r) (8)

F, and F, have one parameter that depends on the window (Ts is unchanged over all windows).
They can be implemented by table lookup without excessive use of memory or much computation.

HIe the algorithm to calculate the likelihood of a window given it is of a single object of
known Position and shape (but unknow reetance) is descibed by figure 8 below.

Figure 8: Algorithm to Calculate Likelihood of Known Object for a Single W-indow

7 Multiplies Adds
,WWT W W-1

C .- WTr w W-1
Output Ft(W3)F,(C) 1 0 -

w is th. number of pixels in W and also the number of pixels To. Figure 8 is a4w -1 operations
algorithm.

6.2. Reducing the Configurations Considered
In section 4 1 describe how to derive the likelihood of a boundary at a point from the

likelihoods of configurations Of a the scene given a boundary at a point (equation 1). Here I justify

B- 147

h. ~~ ~-~ %.* .p ~ ~WIN *

using a imnl number of configurations of the scene. Having reduced the set of configurations I can
derive an efficient algorithm for generating likelihoods given multiple objects. In section 5.1 I
made the assumption that only a mall window on the image need be looked at. In section 52 I
justified ignoring region maps with low probability.

There is some number of objects, No, such that the probability No or more objects having an
image in a ingle window has a probability much smaller than the probability of all but a small
prbability subset of the region maps Hence I need only consider configurations of No -1 or less
objects in a window. The two object assumption of section 5.2 is equivalent to saying No = 3.

There are still a large set of configurations of less than No objects. Consider the ideal image
given such a configuration and some coloring of objects. Consider a window on this ideal image,
W1. There is a set of conflgurations with the same coloring such that the resulting window on the
ideal window from such a configuration Wr such that:

(W -W.)IW! -W'r)T < (9)

The likelihood that the observed image results from any of the configurations that fit the criterion
of equation 9 and coloring is close to the likelihood computed from W, because if W is the observed
window the likelihood is a function of the norm of W - Wr. Thus for efficiency sake we can
consider the likelihood of each configuration and coloring that fit equation 9 the same as that of
the coafiguration and coloring of the template that generates W1. Hence we can only consider a
small set of configurations of objects. With a similar argument one can prove that only a subset of
the possible colorings need be considered. Hence I can justify using an argument of this sort using
a mall set of templates and objects. How much inaccuracy results from these smplifications can
be analyzed mathematically.

A step edge model can be derived by assuming that objects' images have a uniform intensity
and the two object assumption. Thus such smplifications underlies work like that of Hueckel73]
[Canny83]. More sophisticated assumptions about the intensities of objects images result in more
complex models [Binford8l] that still can be reduced to a reasonable number of configurations
reflectances with a corresponding loss of accuracy in the resulting probabilities.

6.3. Algorithm for Likelihoods of Multiple Objects
Her I derive an algorithm for finding the likelihood that a scne that contains several objects

given a window.

The statement that the configuration of objects is near the specified configuration is called C.
C has No objects O with refectance. r,. Associated with C are N0 templates T., Each T. is the
liot that hits the im given that 0, has reflectance 1 and unit lighting.

The template that represents the expected window when the O have rdectances r. is V,

D.rT,. Hence the likelihood of the window when the objects have refiectanos r. is shown in

equation 10.

P(WIC&r(O)r ... ,(o.)=r,.&M) = ,ozp(-(W- Xr.T.XW- ,r.T./2V) (10)
n A

To derive the likelihood of the window when the objects are of unknown reflectance it is
necessary to integrate over all possible sets of r.. Equation 11 shows the integrated equation.

B-148

jr or I~*.;*r -0. 'w V

10 , . q , d . -

Wd % % %"%

j ,..,, r,, . ' . ,. .. ,-,-L.-,,/ % OL .,....'.z.- .:.... ,...: :...Z.&....;.-.Z:. ...::-

P(WIC&M)

xcfexp-(W- Xr5.TaXW-Xtn)/V Dt ()

1 Use the simplifying notation from section 6.1. Also let Cx be WTI. Then equation 11 can be
tmuamed into equation 12.

P(WIC&M)

V~fep~yr.CxV~e -(y(12)
Kegxp(-W2 +Wc 2/2 Vrep. 5 5 Vex(- ~~X~ T.)rl2V)dD,,,

5 £ A)(

As in section 6.1 1Ican break up equation 12 into a Pair of functions F, and F4. F, is as
before F4 is described by equation 13.

F4(CIC 2 . CN0,) = fg(aCI)x((a.T)y..T2~Dr (13)
Aa 4

Unlike F2, F4 is a function of several variables. Thus using a1 table for table lookup on Fj
takes a large amount of memory since an entry must be made available for each possible value of
the elements. Experiments with constructing F4 tables for 2 object configurations show that F4 is
smooth and near quadratic. As an example F4 for standard deviation 12 noise and 5 by 5
templates is plotted in figure 9.

Figure 9: log(F 4) with stdev 12 noise and 5x5 template
Hence the tables can be stored sparsely and splines or even linear interpolation used to get at
values that were not given without introducing serious inaccuracy. If the table is close enough to a
quadratic function then perhaps only a polynomial need be stored.

B- 149

VWVT7W.VT KXr Wj 7 U W,7

If all the T. are orthogonal (their pairwise vector products are 0) and D, is a probability
distribution where colors of objects are uncorrelated then F4 can be partitioned into a product of
No functions. Each of these functions computes the probability that the relevant part of the
window observed dta is the image of 0. fur some n. Here N o large precise tables can be stored to
compute each of the functions and their product used for F4 .

Sine F4 can be calculated there in a feasible algorithm for determining the likelihood of an
observed image given a particular pair of objects. A description of that algorithm and the times
spent in each step is shown in figure 10.

Fiure 10: Algorithm to Calculate Likelihood of Multiple Objects for a Single Window

Multiplies Adds
w w-1

No times C, := AI Now NoW-No
Output F (W')'F(C,C3) 1 0

I did not consider the cost of the interpolation or splin-ing for F4 in the operation counts in figure
10. The cost of this algorithm is (No+1)w+1 multiplies and (No+1)(w-1) adds plus the cost
incurred by the interpolation. This cost occurs for each window.

6.4. Blurred Images
The previous sections assume that the only degradation of the image data is a result of

adding a normal random variable to each element of the image (noise axiom). However lanses and
many other sensors degrade the image through blur. Motion also causes blur on film and other
sensors. Blur is often modeled as a linear transformation of the image data that is applied before
the normal variable is added to the pixels [Andrews77]. When blur is shift independent (same blur
everywhere in the image) then the linear operator must be a convolution operator.

The algorithms specified in sections 6.1 and 6.3 require changes to work under this new
assumption. If the blur is linear the change required to these algorithms is to use blurred
templates. The likelihood of the observed data given a template is a function of the vector
difference between the expected observation without the normal additive lid and the observed data.
If it is expected that a blurring has happened then one need to use a blurred template instead of
the unblurred template used in the previous algorithms.

The algorithm of section 6.3 uses two templates (one for each object). If the blur is linear
then the linear function at 1 +bT, and the blur function commute. Thus the two templates can be
blurred and the result of correlating the window with the two blurred templates can be used with
this algorithm.

The problem I address in the rest of this section is how to compute a blurred template from
an unblurred template. A shift independent blurring operation is applying a convolution operator
to the image. A convolution operator has limited extent if the illuminance of at a pixel in the
blurred image depends on a window in the unblurred image. Such a convolution operator can be
described by a matrix the sise of the window that describes the effect each point in the window has
an that point of the blurred image. So a blurring function that causes each point of the blurred %
image to be the result of .5 from the corresponding point of the unblurred image and .25 from the
points immediately to the right and the left has a matrix described by figure 11.

B-150

i.____h
. - .. -.-" -.- %- - T ,.- .

.25 1.5 1.25

Figure 11: Simple Blurring Function Matrix

Given a blurring function matrix of size (MUM) and an unblurred template of size (T.,T), a
blurred template of se (T.-M+1,Tt-Mj+1) can be calculated (figure 12) (S means
convolution).

T:
100 100 10 1001 1 200

M:
.25 .5 12Z

T SM:
100 1125 117520

Figure 12: Effect of Blur Matrix M on Template T

To develop a larger blurred template than (T.-1(..+1,T-M,+1) requires that the blur
function be applied to points outside the unblurred template. If the expected values for such points
are derived then a larger unblurred template has been constructed. Hence the derivation of a
smaller blurred template from an unblurred template suffices for the construction of blurred
templates.

6.5. Correlated Noise
The previous sections assume that an uncorrelated normal variable called noise that is added

into the illuminance of each pixel in the ideal image to get the observed image. It is possible to
relax the assumption that the noise added to each pixel is uncorrelated with the noise added to the
other pixels. Instead a matrix C can be supplied that describes the correlation between the noise 5 •
variables of the window.

One problem is how to handle correlations between points in the window and points outside
the window. Since one can only correlate with expected values of points outside the window (since
we chose to ignore the data from such points in our calculations) the effect of such points can only
introduce a constant factor into the likelihood calculations. When the likelihoods are converted
into probabilities this constant factor is divided out. Hence I can safely ignore such a constant
factor. For the purposes of evidence theory I may need to derive the constant factor but it need .
only be derived once and then all the likelihood# be only multiplied by it. ! ,..r'"

The algorithm in section 6.3 has the algorithm in sections 6.1 as a special case. Thus if I

derive the algorithm corresponding to the one in section 6.3 I can derive the other algorithm. If I
have window W and I expect (possibly blurred) templates T. with unknown relectances then the
equation that describes the likelihood of W is equation 14.

B-151 •

~q'. ~ N N %

7. ,

*(J . 3d&) ~)

(14)
xfexp(-(W.- Xr,T,,)C(W- X:r.T.)/2)dD,.r

I introduce notation to aimplif equation 14 to the point where an algorithm naturally derives
from it. Let W1 be WCW'. C is symmetric so let c8 =WCTTTCWr. Then equation 14 can be
rearranged and simplifed to equation 15.

P(W0 1 .. 00&M)

(15)

no*p - W Z /2)fe*p Xrcmex - (Jr.T.)C(5Xr.T/2)dD.

I can then describe equation 15 as the product of two functions, F5 that takes W1 as an argument
and Fg that takes the set of c.~ as arguments. Equations 16 describe Fs and F.

Fs(X) = nexp(-X/2)

FsX .-- XN0,)= fezp r.X.)ezp(- (r"T)C(XrnTn)T/2)dD~ra 16

P(W0 1 - - NO&) =Fs(WA)F&1c, - - cN0)

Equation 16 is simple enough to derive an algorithm that calculates the likelihood ofa
window given a template and correlated noise with standard deviation a and correlation matrix C. S 0

Figure 13: Algorithm to Calculate Likelihood of Multiple Objects with Correlated Noise
Multiplies Adds%

W1 WCWT W(w + 1) (w+lXw-1)
NO times C2 .- WCTr Now No(w -1)

Output Fs(W)F.(ci4) 1 0

Like F4, F6 may require interpolation. The cast of the potential interpolation was not figured into
these calculations. The algorithm with correlation between the noise variables requires
w(w+1)+Now+1 multiplies and (w+IXw-1)+No(w-1) adds. Substantial savings may be
found when C is sparse. Correlation matrices are typically band matrices. If there are b bands in
C then the number of multiplies is leses than (b +1)w +Now +1 and the number of adds is loe
than (b+lXw-1)+No(w-1) addsL

6.6. Sharing the Work
The algorithms in Aigures 8, 10 and 13 are algorithms for finding the likelihood of a particular

template for a single window. Many of an observed image's windows overlap. If likelihoods are
being computed for two overlapping windows much of the work in computing the likelihoods can be
shared between the computations on the two windows. If the likelihoods are being computed for
every window on the image such savings can be substantial.

When taking the sum of the elements of two overlapping windows, as is one in the algorithm

of figures 8 it is necessary to only sum the overlap once. Figure 14 gives an example of this

B-152
~ ~Is

non

savings.

20 10 15 19

13 18 13 16

9 18 11 4

W, W2

1(W,nW 2) = 10+15+18+13+18+11 = 85

I(W) = 20+13+9+7CW.lnW2) = 127

7(W.) = z(WlnW2)+19+16+4 = 124 ._J

Figure 14: Summing the elements of two overlapping wi-.ws

The work in summing the squares of the elements in two windows can be shared this way too. If
the likelihood generator is being used on every window on an image then the work needed to
calculate sums and sum of squares is a fraction of that needed to calculate the same statistics for
the same number of non-overlapping windows.

If every window (or a substantial fraction thereof) of an image has the algorithms in figure 8
or 10 run on them then the work involved in convolving the image with templates can be saved too
(at least when the templates grow large). Convolution can be performed with the fast Fourier
transform at substantial saving in operations for large templates. For algorithm 13 when the
correlation matrix has structure (such as being a band matrix) then the fast Fourier transform can
be used with substantial savings too.

Thus much of the work can be shared when likelihoods are being determined for every
window of an image. Hence the likelihood generators described in figures 8, 10, and 13 are
competitive in speed with most standard edge detections schemes. O .

Another way the work can be shared is that some of the templates used that describe object
configurations in a window is by describing the configuration in another template shifted 1 pixel
over (se figure 15).

Figure 15: T, is T2 shifted I pisel to the right

If every window in the image is being processed then the likelihoods corresponding to the template
T 2 an approximated by the likelihoods calculated by the template T, for the window 1 pixel to the
right. To realize why such an approximation is good, consider that using a window is itself an

B-153

•-

approximation. The likelihood of the configuration of objects described by Ti is approximated by
running the algorithm over a window. The likelihood of the confiuration described by T2 can be

approximated by running the same algorithm over a window shifted I to the right.

Thus the likelihoods for the template corresponding to T, need only be calculated for the

windows an the far right hand side of the image (the other windows have the T, template run on

them already). Thus instead of having to take into acount templates corresponding to the same
sonmguration of objects shifted several pixels in some direction one need only use a single template
and use the output from this template on windows shifted in that direction.

6.7. Getting Probabilities from Likelihoods

Given likelihood generators the remaining task is to calculate probabilities from these
likelihoods (using priors). The first task that needs to be done is to group the likelihoods generated
into sets that support different labolings for the features. Thus if the configurations C1 , C2, C3 S
correspond to the existence of a boundary at a point and C4, C& and C6 represent situations that
aren't boundaries at that point then I must collect the likelihoods based on C1, C2 and C3 into a
single likelihood and similar with the likelihoods collected from C, C5 and C4. Then I would have
a likelihood corresponding to each possible labeling. of my feature (for boundary point detection I
need to determine the likelihoods corresponding to the existence of a boundary and those that ,
correspond to the nonexistence). Given these likelihoods I can use Bayes' rule to derive

probabilities (see equation 3).

The likelihood of a bounZiry is the- probability of the observed scene being generated when an
object configuration corresponding to the existence of a boundary exists. I can derive an equation
for calculating the probability of a boundary from the outputs of my likelihood generators if I have
the prior probability that the configuration is the position of the objects in the scene for each ''. ,
configuration that corresponds to a boundary. Let the set of configurations that correspond to a
boundary be represented by Cb. Equation 17 is the first step in the derivation expanding out the
likelihood into conditional probabilities.

P(WCb)
PWlb=P(WC) (17)...

Since the real scene can not correspond to two different configurations I can expand equation 17
into equation Is.

YWP(WO&cECj')

P(WoICb)= - P(C(C b) (18)
Z(CEs

A slight change to equation 18 introduces the likelihoods generated by the algorithms in figures 8
through 13 and the prior probabilities that the scene is in a configuration tested by the algorithms. 0

Equation 19 shows this change.

X P(Wotc(Cb)P(c(C b)

P(WoCb) - 5 (19)
(Cb lo

B- 154

Rquation 19 allows me (given priors on the templates or template sets) to gather many
likelihoods into a single one. If I have likelihoods for every feature label and prior probabilities
that the feature takes on that label I can use Bayes' law u in equation 3 (reprised here) to derive S S
proabilities for feature labels given the data in the window.

P(Ojlf&M)P(lfIM)P(lIO&M) = P(OjL'f&M)P(l',IM) (3)

6.8. Estimating Boundaries
In section 6.7 I show how to derive probabilities given a likelihood generator. Often one must

use programs (e. g. programs supplied as part of a package) that take as input estimates of the
poestioms of the boundaries. Such programs can not use probabilities, they just want a boundary
map. He I show how to generate such an input.

To estimate where the boundaries are in an image it is necessary first to develop a cost
function that describes what costs errors in estimation have. To use the probabilities of boundaries
at points to estimate the configuration of boundaries in an image optimally it is necessary to use a
cost function that sums the effects of pointwise errors. Such cost functions are simple to
understand and require few parameters to describe (namely only the costs of different mislabelings
at a point). I only use this type of cost function in this part of the paper. I also assume that
making a correct decision has 0 met.

For boundary point detection the costs that need to be calculated are:
(1) the cost of labeling a point as a boundary when there is no boundary there.

(2) the cost of labeling a point as not being a boundary when it is.

Call the cost of labeling a point (zv) as a boundary point when it isn't c1(zy) and the cost of
labeling a point as not being a boundary when it is cs(xy). Let pa(xy) be the probability of a
boundary at (xj). Let e(zy) be 1 when the estimation procedure indicates there is a boundary at
(xjy) and 0 otherwise. We want a detector that minimizes the expected cost for the estimation.
Thus we want to minimize the summation in equation 20.

aC(xy)(1 -p B(zY)) a(Z.Y) +c 3(zy)p 8 (zX)(1 -e I(xY)) (20)

Let us assume that cl(zxy) is the same for all (zy) and the same for cs. Equation 20 is clearly
minimisd by minimizing equation 21 for each (xy) ((zy) is deleted for clarity).

c1(1 -p8)* +cp 1 (I-eB) (21)

Equatim 21 can be rearranged into equation 22.

(c1(1 -pa)-sp)eI(xy)+C sPa (22) •

Clearly you want eB to be I when equation 23 is positive and eB to be 0 when equation 23 is
negative.%

ci(1-pD)-Lpm (23)

This statement can be algebraically transformed into the statement that en should be 1 when the
inequality in equation 24 is satisfied and 0 otherwise.

B-155

-- - . *~"'hl *l& t t

PB< CI-C2 (24)

C1

Thus one only needs to threshold the probabilities of boundaries with to estimate the

positions of the boundary for the additive cout function with costs ci and c. This argument is
standard in Bayesian decision theory with simple loss functions [Bergerao].

7. Implementation Details
Here, I describe my implementation of the algorithms described in section 6. I have code for

the algorithms in figures 8, and 10. I also have constructed the code that is implied by equations
19 and 3 of section 6.7.

7.1. Likelihood Generators
These algorithms are based on the assumption that the scene can be modeled by a set of

templates. The templates are objects of unit reflectance under unit lighting. I have one template
that represents the window being in the interior of the object shown in figure 16.

1 I1 1 1 1 "-

1L 1 1~ 1 1

Figure 16: Template for the Interior of an Object

For each of 4 direc" 'ois, 0 degrees, 45 degrees, 90 degrees, and 135 degrees, I have 3 pairs of
templates that describe three possible boundaries. For example figure 17 shows the 0 degree
templates.

B- 156 M s0%i
- K4I',e

4. S NMXW X -Jp: LI

1 pair

1 1 0.5 0 0
1 1 0.5 0 0 0 0
1 1 0.5 0 0
1 1 0.5 0 0

1 1 0.5 10 0

0 0 0.5 1 1
0 0 0.5 1 1
0 0 0.5 1 1
0 0 0.5 1 1

2"a pair

1 1 0 0 01 1 0 0 0
1 1 0 0 0
1 1 0 0 0
11 1 0 0 0

0-1 0 0 1 1 1
0 0 1 1 1

0 0 1 1 1
0 0 1 1 1 O

0 0 1 1 1
3rd pair

1 0 0
1 1 1 0 0 .
1 I 1 0 0 I

1 0 0
0 0 1 1''

0 0 0 1 1

0 0 0 1 1 "'

11 0
11 0

Figure 17: Template for the 0 degree Boundary :. ..

Each pair of templates represent two objects, on* occluding the other. Z have not generated . - - '%

aytemplates fo windows with 3 object.. ,

The algorithms in figures 8, and 10 onsist of a part that is dependent on a template used and ... _. -...-.
a part that is a function of the observed window. It is the part that depends on the template that . ¢
prsents implementation difficulties. Function P, is a funaction of the sum of squared elements in •!
the template. Function F4 is a function of the pahirwi products of the templates represnting the

objects in the configfuration. Both of these functions were implemented by table lookup with linear
B-157

VV I

1~ 00

00 OiPW

interpolation in my implementation. For every direction the sum of squares of the templates and
the pairwise products are described by the same 5 numbers. Only two F4 tables need to be
generated.

FS and F4 also depend on the standard deviation of the noise in the image. I call a likelihood
generator that assumes a specified standard deviation of noise a likelihood generator tuned to that
standard deviation of noise. I have likelihood generators tuned to noise with a equal to 4, 8, 12,
and 16.

7.2. Probabilities from Likelihoods
I use equation 19 to gather together the three likelihoods generated from the 3 pairs of

templates in each direction into a single likelihood. Thus I have the likelihoods for the four
directions that a boundary passes through or next to the center pixel

I also need the likelihood that there is no boundary near or through the center pixel. To get
this likelihood I take the likelihood that the window is in the interior of the object and combine it
with likelihoods for central boundaries calculated for the neighboring windows Thus from the 0
degree boundary likelihoods I use the likelihood from the window one pixel left and right and
combine it with the likelihood of a noncentral edge. 0

Thus I have 4 likelihoods for 4 directed boundary points and one likelihood that represents
the likelihood that there is no central edge in the image. I then use Bayes' law from equation 3 to
compute the probabilities of these 4 states. I then threshold the probabilities at 0.5 to present the
rsults shown in section 8. Throughout I assumed that the prior probability of a central edge is 0.1
and that this probability is equally distributed in all 4 directions. This prior information is
sufficient to apply Bayes' law.

8. Results from Implemented Boundary Detectors

I have implemented the algorithms in sections 6.1 and 6.3 figures 8 and 10. Here I describe
the results from testing this detector.

The software I have written is flexible. However I have only constructed templates for a
restricted set of configurations. I have templates for a step edge model with the low curvature
assumption, 4 possible orientations for boundaries, and 255 gray levels in the image. My
templates handle boundaries that occur in the center of pixels or between pixels. I have built the
templates for a 5x5, 7x7 and 9x9 windows. I also have constructed tables to compute F, and F4 for 0
each of these windows that assume noise of standard deviations 4,8,12, and 16.

.1. Results with Artificial Images
I have applied these operators to test images constructed by a package of graphics routines.

This package was written by Myra Van Inwegen and is described in an upcoming technical report. 0 O

I describe my operators applied to two test images generated by this package. One is an N
image of two circles shown on the left in figure 18a.

vo
0 0

8-158
li

%

..

FIgure 18: Artificial Images
A mane challenging and couplex image baa also been tested shown in figure 18b.

The two circle iumage (figure 18a) in a particularly good image to test the effect of boundary
orientation, curvature and crntrast on boundary detection. Figure 19 shows the result of using a
5:5 operator tuned to standard deviation 12 noise on image 18a with standard deviation 12 noise
added to it. The images are white at points of greater than 50% probability and black at points
liess than 50% probability.

4r~

ad

\.'A

B- 159

UvC01*(J~~W7VU A *%RTUWM rVV6TI 6- I W-

-A

s: wht fS o defwiei 3 ereeg

Infiura ,2,ansd 21 al t e nad eitin1 os ar o e ig e 8 it o

little, just right and too much noise respectively. The operator output is black when there is
greater than 50% probability of a boundary. Note that with too littloe noise the detector mise
boundaries that are there. With too much noise the detector detects bout~iaries that are not therem

B- 160

-:~ * .P #J /d L ~ \- ~ % .% I P 'I .

101

a:imgewthWM Ri b O= 2opraora iag wt 0nos

c- mae it 64 aie . rl- Oerto a iag wth6= noie

0:img wth68 * v12oertr n mgewthc,8nos

F~qr 20 6 M12 Z5 oeraor pplid t imaes ithtoo itte 4<2) ois

I.or

B-16

I %

IM V

3-g 1 .nrd .,Osdv

a:~~~~~~~~ img wit a=1 os4:a1 prtro mg iha1 os

aiue : ae 12t US2nie :o operator onledt image with corc a 2 unt noise

KV

%A %
'A e

APF 4
Il d'.

kfj~nn[&In *

a~ ~ I , .0

woo

Apo-
4*.

I

a: iagewitha= 6 nose : a 2 oeratr a imae wth alo ois

wrte sotwr tha conshwmn itks fl * poitvs .n neai ar4 a@i

boundar dtriaetitn. Fals negises d:re oeatboury htnih image withmisseods

budrdeemntn.False pegitives are we boundary that ise inore them thage is missed.r thre
Fals poities ae bundriestha ar reorte whre hereis o bunday tere 0%

B-163

One tricky point is that multiple reports of boundaries are usually considered a bad result
[Canny83]. However systems that report a boundary only once will usually have a high fAd"
negative rate becuse they report an edge one pixel off from where it really is. I consider this er
to have low enough cost to be ignored. So my snoftware ignores false negatives that are next to
reported boundaries in a direction normal to the boundary.

Figure 23 charts the performance of my operator tuned to a=12 on the images shown
previously. Figure 24 charts the perfomance of my operator tuned to cq=4 noiae. Figure 25 charts
the perforance of an operator that is tuned to the same noise level as is contained in the image.
FiArem 26 superimposes the three graphs of total er=o rates to show the relationship.

(a) 0.10

0.08

0.06

v
r0.04

0.02/

0.0 p

0 5 10 15 20 25 30 35
stdev

0.28

026

n

0.24
v .

e
0.22 L - Ototoooo11

Pol0.2018..

0.1 5 10 15 20 25 30 35

B- 164

.,., %I

(c) 0.10 *
0.08

r 0.06
r
0
r

O.04/ * S
0.02 ..

0.0 ' ' , , , , I

0 5 10 15 20 25 30 35
stdev

* 9J
(a) fa"se Positive rate vs increasing a of noise in image
(b) false negativ, rate vs increasing a of noise in image

(c) total error rate vs incrasing a of noise in image
Figure 23: Error Rates for the Operator Tuned to cq=12 noise I

0.14 9 . .

0.12 /

0.10

0.08
v
a 0.06

•0.04

0.02

0.0 L I I I I I

0 5 10 15 20 25 30 35 -
stdev

B- 165

(b) 0.28

0.26 - 6

n0.24

I0.22

0 0.20
*r

0.18

0.16

0.14 ,
0 5 10 15 20 25 30 35

stdev

(c) 0.16

0.14 -

0.12 *7

r 0.10r /
0
r 0.08

f 0.06

0.04 /

0.02 -

0.0 ' S
0 5 10 15 20 25 30 35 0 %

stdev

(a) false positive rate vs increasing a of noise in image .

(b) false negative rate vs increasing a of noise in image
(c) total error rate vs increasing a of noise in image

Figure 24: Error Rates for the Operator Tuned to a=4 noise

B-166

~%

(a)0

0.0068

0.0066S

0.0064

.0062

101-0060

p0058

0.0056

0.0056

0.0052
4 6 8 10 12 14 16

stdev

(b) 0.22

0.21

e 0.20

v 0.19

r
0.18

0.17

0.16 0
4 6 1 10 12 14 16

atdev

B- 167

•NI

* M

(C) 0.0185

0.0180

1.0175
0
r

100

0.0165

0.0160
4 6 8 10 12 14 16

stdev

(f
(a) false positive rate vs increasing a of noise in image(b) false negative rate vs increasing q of noise in image

(c) total error rate vs increasing a of noise in image
Figure 25: Error Rates for the Operator Tuned to a of the noise in the Image 0

B- 168

* A

. ..
-w * '~jU~ ~ ~ w ~ ~WJW ~ ~ . ~ Is

Nd %. -

0.16

0.14 i t (

0.12

;D.10
r
0

r
t.06

0.04 , ,l

0.02

0.0

0 5 10 15 20 25 30 35 S 0
stdev ,"'

irles: Operator Tuned to a= 12
squares: Operator Tuned to a= 4
triangles: Operator Tuned to noise in image

Figure 26: Total error rate for my operators *

As you can see the tuned operator is always at least as good as the operator that has been
developed for stdev 12 or 4 noise.

8.2. Results with Real Images •
1 have also applied my operator to real images. Hee, I use two images, a laboratory image of

i Tinkertoy model (figure 27) and an aerial picture (figure 28). I demonstrate the utility of having
operators that return probabilities with these results. In both these figures (a) is the image, (b) is
the output of my 5z5 stdev 12 operator thresholded at 10% probability, (c) is thrusholded at 90%
probability and (d) is thresholded at 50% probability. (b) would be used when the cost of missing *
an edge is high as when the output would be fed to a regularization technique. Note that for ame
(b) the operator sometimes "returns thickened edges. (c) would be used when the cost of missing an
edge is low. Hough transform techniques are often developed with that assumption in mind. U
The is enough information in figure 27c to And the rods of the tinker toy even though all the
boundaries are not extant. (d) is what you use when an operator is equally troubled by all errors.

B-169

Z 1? .4ed.%

M% ~~ -- o

.~~.

C c -ic kpro~nt ege14,5x cickprb~nt~dge14,5bd

(a 3*ero Image

(b) Oupu ofaS2Oeao ihtrsoda.
(c) Oupu of a- = 12Oeao ih hehlt.

-S.

-N 1P % % ~% - C' 9e

.o-.

7' 2.

a- -' Ir
-. .im~l..- " i - ,

-.- ii*'U~l t •\) I

-- -*,,,

a V•

(a) Aerial Image .

(b) Output of a= 12 Operator with thrshold at .1
() Output of a= 12 Opeator with thrshold at .9 i

Md Output d a= 12 Opersa with th ol at S

Figrure 28:€a=12 US5 operator applied to aerial image *

A particlar threshold may reut in a mot plesing (to a human obsever) nsmble of

-ult (perhaps .5). But this thre shold may not be the best threshold for the succeding I

pi cati n.
One may notice that owerip the threshold wems to incrth the number of bundary points

in t h e r io ns d ra l b u d a rie It is n ot u rprisi th a t th e ra it n th a t look m ost w

bou dari c should be n lr bumdaiss l o the probabilitig of boundarin a be n resporte d as

lowes than h e p s) u t i s th eis im a he A ood ra m for this i th at the m od l or d to Is uctsed.

th e o p e r t r h o n i s n o t al o e r n ot e t r hol o s e m s t o n t h n a r o b dyom e o c e

[Sher87] that the standard deviation of the noise is closer to 4 than 12 in these images. Thus look
at the same results ir the =4 opeto in figures 29 and 30.1

B-171 .

N •%

40

S 7

(a) Tikerto Imag

B-17

.%I

% %. % .

(b)KN Output of %= prtrwt hehl t(c)~ Oupu of %4 Oprao wit tee l atol
%d Opu of---O--to-wth th-so---.

I'MI

its \0--4I N-
S.S

(a Aeria Img

Figure(a 28A= Soeatrapidt erial image

8.3. Comparisons with Established Techniques
Here, I comopare the result& I have just; presented with established edge detect=r. The edge

detectors I currently have results for are the Sobel thresholded at 200, the 5 by 5 Kirchs . :
thresholded at 750, and a thinned 3 by 3 Kirsch thresholded at 100. The thresholds for the Sobel
and the thinned Kirsch wer found to be this ones that minimized the number of errors when
applied to the artifiial image in figure 18b with standard deviation 12 noise added. The threshold *

that minimized the armor with the Kirsch was 1175. However at this threshold more than 50% of
the boundaries were missed. It was difficult to chart the reut of using this operator along with
the ret3 so I used a somewhat lower threshold.

I know these operators are not state of the art. However these results show that tools are
available to test this theory against more sophisticated operators. More sophisticated operators

l~sa ifhpacaca indicated that lowering the threshold would make the reult of the operator -m appeaLing. Not
that it should manor but..

B-173

W. ..

such as Canny's and Haralick's will be tested against my operators in the next month or two.
In figure 31 the results of applying the Sobel, Kirsch and thinned Kirsch to my artiicaal

image with stdev 12 unse.

1W~

44

N N"
(a)~~~~~5 Img wt .2nis..

32.,

IN.

B-174,

x:_I . L

-. - -- JWUULWJ 'Wr* X- P. AIL

0.070

0.0656

0.060

r
r 0.055
r
r 0 .050

*-

0.045

0.040

0.035 p I

0 5 10 15 20 25 30 35
stdev

(b) 0.056

0.0562

0.0560

0
0.0558
r

0.0554

0.0552
0 5 10 15 20 25 30 35

utdev

B-175 S

(c) 0.045 -

0.040

7/

r 0.035 a

r
0.025 a.A

* S

0.020
0 5 10 15 20 25 30 35

stdev
* i

(a) Error rates for the thresholded Sobel
(b) Error rates for the thresholded Kirch

(c) Error rates for the thinied Kirsch
Figure 32: Charts of Total Error Rates for Established Operators

To summarize the results I have a plot that shows the error rates for anl the operators I have tested
so far (figure 33). In this chart my tdev 12 operator is shown as squares, my tuned operator is
shown as circles, the Sobel is shown as triangles, the thresholded Kirsch is shown as crosses and
the thinned Kirsch is shown as X's. %

% %

% %

N

.

• 0

0.16

0.14
0

0.12

r 0.10
r
0
r 0.08-

r
at 0.06

0.04

0.02

0 5 10 15 20 25 30 35 0 0

stdev
circles: Tuned e= 12 operator
squares Tuned a= 4 operator
trianglos: Tuned to noise a operator
arses: Sobel's error rate S S
X'a: 5z5 WKirsch's error rate
diamonds: Thinned Kirsch's error rate

Figure 33: Error Rates for all Operators P .

For comparison, I have run the 3 established edge detector on the two real images shown in
section 8.2. Figures 34 and 35 show the result of runing these operators with my established
operators. Clearly, in these circumstances the most effective established operator for these images
is the thinned Kirsch.

% %

%

,.N..' ..

B-177 " "" "" -

N~ P. z~j *.

v f

(a) __krtyImg

B- 17

N 6-

%a %ikro 4,% ag .'Yo(b)~~~~ Ouptoh oe pial hehle

4 _____._____,._
V-.. % .

m- t " % ". "

,. .__.--. ...

46

(a) Aerial Image

(b) Output of the Sobel Optima~ly Thresholded
(c) Output of the Rv5 Kirsch Optimally Thresholded

(d) Output of the Thinned Ki.rsch Optimaly TLhresholded+
Figu~re 35: Application of Established 0Operators to Aerial Image.., "' ""

One can, criticize these comparisons by saying that the image statistics favor my operators, % .,
whic are robust with dim images. To counte this crtcs I have lo u the thre operators"
(SobeL Kirsch and thinned Kirsch) with a preprocessing stage of histogram equalintion. Thu all •
the test image will be rescaled to have the same statistic. Thus when I Aind the optinua

The optimal thresholds happened to be 220 for the Sobel, 750 for the Kirsch (coincidently), - -. >
and 125 for the thinned Kirsch. The result of usng these operators and thresholods on the standard
deviation 12 ariica image (figur'e 18b) is shown in figure 36. .

%'

1%. %%*~

II

%C1

(a mg wt=12 nose I. a~%(b upu fth itormEqaie Soe Opia Thehl

B-1

* s%J~ w %%'

(a) 0.054

0.052 S

0.050

r~ 0.048
r
0

r0.046

0.044

0.042 ;.

0.040 ,

0.038 ,
0 5 10 15 20 25 30 35

stdev

0.056

0.054

r 0.052
0
r
t 0.050
60 , % , *'

0.048

0.04
"

0 5 10 15 20 25 30 35
tdev IN ,

B- 181

' A V P 1A
%,,, % %,I,

%. -

, + , :.:., ,; ,.,.,.,.,..:,,,,, , .: . ,. ,-,, +.,, ,.....:,,.., ,- -,,:., ,., ., ,, ,,,.,,I,

(c) 0.040 h

0.038Al

r0.036
0
r

e.034/

0.032

0.030 --- -
0 5 10 15 20 25 '30 35

stdov

(a) Total Error rates for the thresholded Sobel on the Histogram Equalized Image ~f f
Wb Total Error rates for the thresholded Kirsch on the Histogram Equalized Image

(c Total Error rates for the thinned Kirsch on the Histogram Equalie mg
Figure 37: Charts of Error Rates for Established Operators

In figure 38 1 compare the 3 operators on histogram equalized images to my operators on the
original images (my operators do not expect histogram equalization and doing so may confuse
them).

% r'

% 0

B- 182

-, - -A --

0.16

0.14

0.12

r 0.10

r0.08

t0.06

0.04 17 7

0.02

0.0
0 5 10 i.5 20 25 30 35 0 0

stdev

circles: Tuned a= 12 operatork
squares: Tuned a=4 operator
triangles: Tuned to noise a operator
croune: Histogram Equalized Sobel's error rate
X's: Histogram Equalized Wz Kirsch's error rate
diamonds: Histogram Equalized Thinned Kirsch's error rate
Figure 38: Comparison with Established Operators Applied to Histogram Equalized Image

Since the artificial images already had the full range of graylewela histogram equalization did
not help the established operators much. However the advanitage of histogram equalization is
shown clearly when the operators are applied to real images in figures 39, and 40. 'r'. N

B-183 0

j~
- ~skr.1* -e

CL~~ ithckit

1;o1

(a) 'flatoy Image
(b) Output of the Histogram Equalizd Sobel Optimally Thruuholded

(c) Output of the Histogram Equalized Wz Kirsch Optimnally Thresholded
(d) Output of the Histogram Equalized Thinned Kira&h Optimally Thresholded

Figure 39: Application of Established Operator, to Tinkertoy Image

N N

B- 184%

%~ %

% I

lakehis ~ e.

kj-

L!

iL, f*q. '

,,S-.7 'K" • ' 1

Jc I!
,2. -, ,,,. - ,.,.

S~j

(a) Aerial Image
(b) Output of the Histogram Equalized Sab.l Optimally Thesholded

(c) Output Of the Histogram Equalized 5z5 Kirsch Optimally Thresholded
(d) Output of the Histogram Equalized Thinned Kiusch optimally Threholded

Figure 40: Application of Established Operators to Aerial Image ~)

9. Previous Work

Edge detection is the established vision task that bear most closely on the boundary
detectiona problem I describe hers. Edge detection has been one of the earliest and modt important Nq=-k
tasks attempted by computer vision systems. Usually edge detection in described as a problem in V
image reonstruc i..

Ed~ge detcton is often characterixed as discovering the contrast in a region of the ideal image
when there is an boundary between two constant intensity regions of the ideal image. Since I am
not motivated by image re construction this task is not of particular interest for me. However often
edge detection algorithms are used fir boundary point detection. The idea is to accept as%%
boundaries the pizels whos windows the detector considers to have hi: contrast. ~

The AMrs work on edge detection was by Roberts who developed - ,berts edge opet ar todetect boundaries and corner of blocks. It was a simple convolution q eator probably inspired by" ,convolution based pattern matching. Since Roberts edge detection has been worked on by a large
number of vision workers. Some of the operators were worked out in a somewhat ad hoc manner

B-185

A. N$iu Work

as the Roberts was. The "best" and most common example of such operators is the Sobel edge
operator

Many have worked on "optimal operators" where some model of edges is presented and the_ .
"best" function that fits a specified functional form. The definition of "best" and the functional
firm varies. Almost everyone who takes this approach limits the functional forms of edge
operators to convolutions.

Hueckel [Huekel71] considers convolutions over a disc on the image. He models edges as
step edges with linear boundaries occurring at random places in the disk. His functions are
limited to look at only certain specific Besel coordinates (of an integral Fourier transform) that he
has determined are useful for edge detection. He takes into account somewhat the possibility of
two edges in the region. In a later paper [Hueckel73] Hueckel considers edges that are two parallel -p
step edges a few pixels apart. He analyzes such edges the same way he analyzed the previous kind
doedges.

At MIT starting with Marr [MarrB2] there has been concentration on zero crossing based edge
detection. The edge detectors they use are to locate edges at zero crossings of a Laplacian of a
Gaussian. [Tomr6] [Lunscher86b] (Lunscher86a) describe how such an edge detector is an
approximation to a spline based operator that has maximal output at edges (compared to
elsewhere). Such an operator also has been shown always to create connected boundaries. 0 •

Canny [Canny83] has examined the issue of convolution based edge detection more closely.
In particular he studied the goals of edge detection. He considered an edge detector to be good if it
reported strongly when there was an edge there and did not report when there was no edge. He
also wanted a detector that only reported once for an edge. He found that these constraints conflict
when one is limited to convolution based edge detectors (such behavior arises naturally for the
boundary point detectors in this paper). His primary work on this topic was with a 1 dimensional
step edge model. He derived a convolution operator that was similar to a 0 crossing operator. He
also discusses how to extend the operators defined for one dimensional images to two dimensional
images, and when oriented operators are desirable. His operators, applied to real images, usually
appear to do a good job of finding the boundaries. In this paper I derive boundary point detectors 4

for stop edges but do not constrain the functional form of the edge detector. Thus the edge .% .

detectors based on this should have performance at least as good as Canny's detector.
Nalwa [Nalwa84) used a more sophisticated model where he assumed that regions in the

intensity image fit (at least locally) surfaces that are planar, cubic or tanh type. He tested whether
a surface fit a window on the image and if not he tried to fit various boundaries between surfaces. % W

He o edd the tests to be of increasing computational complexity. His operators, applied to real
images, usually appear to do a good job of finding the boundaries. The work in this paper handles
models of this form and derives optimal operators.

Another approach to edge detection is to simulate parts of the human early visual system.
Zero crowing operators were originally motivated by this argument since it was found that there
were calls in the human early visual system that compute zero crossings at various frequencies
[Marr82]. Other work that seriously studies the human early visual system was by Fleet RFleet84]
on the spatio-temporal properties of center-surrounds operators in the early human visual system.
My work is not concerned with the structure of the early human visual system since its goals are
to perform a task best as possible rather than as human-like as possible. However I can draw
inspiration from the human visual system since it has been highly optimized to its goals by " "

B- 186

.. ..,.. , ..o .. o ._.****

,,, N

evolution and hence an optimal detection system may be imilr to that of the human eye (or
animal eye for that matter). X

Haralick has taken a similar approach to mine for the problem of edge detection S
[Haralicka]. The diffeences between his approach and mine are that he models the image as a-..
surface rather than a a function of a scene, and his operators generate decisions about edges
rather than probabilities of edges [(Haralick84]. However he has told me that his theory can be
used to generate likelihoods that can be used with the tehniques presented here [Haralick86b].
The relationship between his facet model and my template based models is currently under
investigation.

10. Conclusion
I have demonstrated an operator that fulfills the desiderata in section 1. It has flexible

output that can be used by many operators because it returns probabilities. It works on gray scale
input. Because the operator is based on windows it does work proportional to the size of the image
to calculate boundary probabilities. By constructing templates to represent a boundary shifted less
than a pixel one can have subpixel precision with work proportional to that precision. A
parameter of the algorithms I describe is the expected distribution of illuminances. Another is the
standard deviation of and correlation in the noise. •

Results were reported from using a 5 by 5 operator developed from this theory in section 8. I . -, ,
have applied this detector to artificial and real images. In section 8.3 1 have compared my
detectors to the established detectors, Sobel, Kirsch, and thinned Kirsch. In the next few weeks
results from using a 7 by 7 and 9 by 9 operator will be available. Also comparisons will be done
between thes detectors and more advanced edge detectors such as Canny's (Canny83], and S

H'ralick's [Harelick84].-' ,--- -

In a companion report I describe an evidence combination theory that is applied to operators
that return likelihoods that allows me to combine robustly the output of several different operators
on the same data [Sher87]. Soon there will be result. from using the likelihoods as input to a

Markov random field based system [Chou871.

! " "S

%, %

%~~. % %%

% % A

-17 W NORTHEAST ARTIFICIRl. INTELLIGENCE CONSORTIUN ANNUM. 3/3
REPORT 1906 VOLUME C. (U) SYRACUSE UNIY NY C M BROWNf
JUN 09 NAO-TR-SS-11-YOL-B-PT-9 F31602-85-C-USSUNLASIED. ii!1/9M

1 E mhhh-EEE
EEKKE.KhKmhKo
El..'mmomo

I

1111-33 .8 112.2

1.01 am 4.

11111 1.11112.2
.o

a11 111112.

1.5 1.4 1.6j_

-4II....... Itl

References

[Andrews77)
H. C. Andrews and B. R. Hunt, Digital Image Restoration, 8-26 ,Prentice-Hall, INC..,
Englewood Cliffs, Now Jersey 07632, 1977

(BagrdO]J. 0. Berger, Statistical Decision Theory, 110-112 , Springer-Verlag., Now York S
Heidelberg Berlin, 1980

[Binford~lJ
T. 0. Binford, Inferring Surfaces from Images, Artificial Intelligence 17,1-3 (August
1981), 205-244, North-Holland Publishing Company.

[BoultS?] T. E. Boult and J. R. Kender, On Visual Surface Reconstruction Using Sparse Depth
Data, Department of Computer Science, Columbia University., 1986?

(Brown82] C. M. Brown, Bias and Noise in the Hough Transform 1: theory, 105, Department of
Computer Science, University of Rochester, June 1982.

[Canny831J. F. Canny, Finding Edges and Lines in Images, 720, MIT Artihicial Intelligence
Laboratory, June 1983.

[Chou87] P. Chou and D. Sher, (Markov Random Fields for Information Fusion Based
Segmentation) ,To be Published in 87.

(Fleet84] D. J. fleet, The Early Processing of Spatio - Temporal Visual Information, 84-7,
University of Toronto, Research in Biological and COmputational Vision, September
1984.

[GemanS4) 1
S. Geman and D. Geinan, Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images, PAMI 6,6 (Novermber 1984), 721-741, IEEE.

[Haralickg4j
R. K. Haralick, Digital Step Edges frm Zero Crossing of Second Directional
Derivatives, PAMI 6,1 (January 1984), 58-8, MEEE.

(Haralick86al
R. M. Haralick, The Facet Approach to Gradient Edge Detection, Tutori I Facet Model
Image Procussing (C1VPR), May 1986.

tMaralickg6b] '

R. Haralick, Pesonal Communication, June 1986.
[Hueckel711

M. H. Hueckel, An Operator Whidch Locates Edges in Digitized Pictures, Journal of the
Asecition for Computing Machiner-y 18,1 (January '1971), i13-125, ACM.

B- 188

I-4 .- WI
%"

MONv -I MWU*

(Huackel73]
M. H. Hueckel, A local Visual Operator Which Recognizes Edges and Lines, J. ACM
20,4 (October 1973), 634-647, ACM.

rLunscher8ea]
W. H. H. J. Luicher and M. P. Beddoes, Optimal Edge Detector Design 11: Coefficient
Quantization, Pattern Analyuis and Machine Irtelligence 8,2 (March 1986), 178-187,
IEEE.

[Lunscher86b]
W. KL H. J. Lunscher end M. P. Beddoes, Optimal Edge Detector Design 1: Parameter
Selection and Noise Effects, Pattern Analysis and Machine Intelligence 8,2 (March 1986),
164-177, IEEE.

(Marr82J D. Marr, Vision, W. H. Freeman s-nd Company., New York, 1982
rMarroquing5]

J. L. Marroquin, Probabilistic Solution of Inverse Problems, Tech. Rep. 860, MIT
Artificial Intelligence Laboratory, September 1985.

[Nalwa84J V. S. Naiwa, Ott Detecting Edges, Proceedings: Image Understanding Workshop, October
1984, 157-164.

(SherSS] D. B. Sher, Evidence Combination for Vision using Likelihood Generators, Proceedings:
Image Understanding Workshop (DARPA), Miami, Florida, December 1985, 255-270.
Sponsored by: Information Processing Techniques Office Defence Advanced Research
Projects Agency. F-

[Sher86) D. Sher, Optimal Likelihood Detectors for Boundary Dete'tion Under Gaussian Additive
Noise, IEEE Conference on Computer Vision and Pattern Recognition, Miami, Florida,
June 1986.

(SherS7J D. B. Sher, Evidence Combination Based on Likelihood Generators, TR192, University Of
Rochester Computer Science Department, Milan, Italy, January 1987. Submitted in
shorter form to IJCAI.

[Torre86] V. Torre and T. A. Poggio, On Edge Detection, Pattern Analyuis and MA chine ~
Intelligence 8,2 (March 1986), 147-163, IEEE.

B-189 .

* S

Appendix B-7

Evidence Combination
Using Likelihood Generators

David Sher S

Computer Science Department
The University of Rochester
Rochester, New York 14627

January 1987
TR 192 Oil

B-190

A' ,_ , , '

WN -W

Appendix B-7

Evidence Combination
Using Likelihood Generators

David Sher
Computer Science Department 6
The University of Rochester
Rochester, New York 14627

January 1987
TR192

Abstract
Here. I address the problem of combining output of several detectors for the same feature of an image. I

show that if the detectors return likelihoods I can robustly combine their outputs. The combination has the
advantages that:

* The confidences of the operators in their own reports are taken into account. Hence if an operator is
confident about the situation and the others are not then the reports of the confident operator dominaes
the decision process.

" A priori confidences in the different operators can be taken into account.

" The work to combine 'N' operators is linear in 'N'.

This theory has been applied to the problem of boundary detection. Results from these tests are prewnd
here.

This work would have been impossible without the advice and argumentation of such people as Paul Chou
and Mike Swain (who has made suggestions from the beginning) and of course my advisor Chris Brown.
and who could forget Jerry Feldman. This work was supported by the Defense Advanced Research Projects X*
Agency U. S. Army Engineering Topographic Labs under grant number DACA76-85-C-0001. Also this
work was supported by the Air Force Systems Command. Rome Air Development Center, Griffiss Air
Force Base, New York 13441-5700, and the Air Force Office of Scientific Research, Boiling AFB, D C
20332, under Contract No. F30602-85-C-0O08. This contract supports the Northeast Artificial Intelligence
Consortium (NAIC). it

B-19 1

% % % % % . '

-~ N N ~

1. Introduction

Often in computer vision one has a task to do such as deriving the boundaries of objects in an
image or deriving the surface orientation of objects in an image. Often one also has a variety of
techniques to do this task. For boundary detection there are a variety of techniques from classical

edge detection literature [BallardS2 and the image segmentation literature e.g. [Ohlander79].
For determining surface orientation there are techniques that derive surface orientation from
intensities [Horn70] and texture (Ikeuchi8O] [Aloimonoes85]. These techniques make certain
assumptions about the structure of the scene that produced the data. Such techniques are only
reliable when their assumptions are met. Here I show that if several algorithms return likelihoods
I can derive from them the correct likelihood when at least one of the algorithms' assumptions are
met Thus I derive an algorithm that works well when any of the individual algorithms works
well.

The mathematics here were derived independently but are similar to the treatment in -

[GoodS0]. and [Good83], using different notation. To understand my results first one must
understand the meaning of likelihood.

2. Likelihoods
In this paper I call the assumptions that an algorithm makes about the world a model. Most

models for computer vision problems describe how configurations in the real world generate
observed data. Because imaging projects away information, the models do not explicitly state how
to derive the configuration of the real world from the sensor data. As a result, graphics problems
are considerably easier than vision problems. Programs can generate realistic images that no
program can analyze.

Let 0 be the observed data, f a feature of the scene whose existence we are trying to
determine (like a boundary between two pixels) and M a model. Many computer vision problems
can be reduced to finding the probability of the feature given the model and the data, P(IO&M).
However most models for computer vision instead make it easy to compute P(Olf&M). I call
P(Olf&M) (inspired by the statistical literature) the likelihood of f given observed data 0 under
M. As an example assume f is "the image has a constant intensity before noise". M says that the
image has a normally distributed uncorrelated (between pixels) number added to each pixel (the
noise). Calculating P(OIM&f) is straight-forward (a function of the mean and variance of 0).

A theorem of probability theory, Bayes' law, shows how to derive conditional probabilities for
features from likelihoods and prior probabilities. Bayes' law is shown in equation 1.

P(flO&i)= (ON MP(Of& .f&)

P(O~f&it)P(/1M)+P(O-fAM)P(-t)()
f is the feature for which we have likelihoods. M is the domain model we are using. P(OIf&M) is
the likelihood of f under M and P(A)M) is the probability under M of f

For features that can take on several discrete mutually exclusive labels (rather than just true _-

false) such as surface orientation (which can be a pair of angles to the nearest degree or "not *

applica'e" (at boundsries)) a more complex form of Bayes' law shown in equation 2 yieids
conditional probabilities from likelihoods and priors.

B-192

II .' 1 11 1

P~lIO&M = 21LM)P(YIMt
Z P(OIl'&M)P(l'IM) (2)l'EL(J)

I is a label for feature f and L(f) is the set of all possible labels for feature f.
Another important use for explicit likelihoods is for use in Markov random fields. Karkov

random fids describe complex primn that can capture important information. Several people have
applied Markov random fields to vision problems [Geman84]. Likelihoods can be used in a Markov
random field formulation to derive estimates of boundary positions fMarroquin85b] [Chou87]. In
[Sher86] and [Sher87] I discuss algorithms for determining likelihoods of boundaries.

Lot us call an algorithm that generates likelihoods a likelihood generator. Different models
lead to different likelihood generators. The difference between two likelihood generators' models
can be a single constant (such as the assIsmed standard deviation of the noise) or the two likelihood
genertors' models may not resemble each other in the slightest.

Consider likelihood generators L, and L2 with models M, and M2 and assume they both
determine probability distributioi for the same feature. L I can be considered to return the
likelihood of a label I for feature f given observed data 0 and the domain model MI. Thus LI
calculates P(Olf=l&M 1). Also Lz calculates P(OIf=I&M). A useful combination of LI and L2
is the likelihood detector that returns the likelihoods for the case where M, or M2 is true. Also the
prior conidences one has in M, and M1 should be taken into account.

This paper studies deriving P(Olf=1&(M vMs)). Note that if I can derive rules for
combining likelihoods for two different models then by applying the combination rules N times, N
likelihoods are combined. Thus all that is needed is combination rules for two models.

3. Combining Likelihoods From Different Models
To combine likelihoods derived under M, and M2 an examination of the structure and

interaction of the two models is necessary. M, and M2 must have the same definition for the
feature being detected. If the feature is defined differently for M, and M2 then M, and M2 are
about different events, and the likelihoods can not be combined with the techniques developed in
this section.

Thus the likelihood generated by an occlusion boundary detector can not be combined with
the likelihood generated by a detector for boundaries within the image of an object (such as
cmorn internal to the image). A detector of the likelihood of heads on a coin flip can not be
combined with a detector of the likelihood of rain outside using this theory. (However easy it may
be uing standard probability theory.)

If the labeling ofa feature f implies a labeling for another feature g then in theory one can
combine a f detector with ag detector by uing the g detector that is implied by the f detector. As
an exaiple a region grower could be combined with a boundary detector since the position of the
regions implies the positions of the boundaries.

3.1. Combining Two Likelihoods
The formula for c bining the likelihoods generated under M, and M2 requires prior

knowledge. Necesary are the prior probabilities PMI) and P(Mn) that the domain models M, and O • 1

M2 are correct as well as P(M1 &M2). Often P(M1 &M2) = 0. When this occurs the two models
contradict each other. I call two such models disjoint because both can not describe the situation

B-193

X N

simultaneously. If M, is a model with noise of standard deviation 4±z and M2 is a model with
noise of standard deviation 8±e then their assumptions contradict and P(M1 &M2) = 0.

Prior probabilities for the feature labels under each model (P(f=lIM 1) and P(f=ljM 2)) are
necessary. If P(MI&M2) * O then the prior probability of the feature label under the conjunction of
tv and M: (P(f=lM 1&M2)) and the output of a likelihood generator for the conjunction of the
two models (P(OIf=l&(M 1&M2))) are needed. If I have this prior information I can derive
P(Olf=l&(M 1vM,)).

If I were to combine another model, M3, with this combination I need the priors P(M3),

P(fIMs), P(Ms&(MIVM2) and P(fIMs&(MIvM 2)). To add on another model I need another 4

priors. Thus the number of prior probabilities to combine n models is linear in n.

Thus all that is left is to derive the combination rule for likelihood generators given this prior
information. The derivation starts by applying the definition of conditional probability in equation

3.

P(OIf=I&(M IvM2)) = P(O&f=&(M vM2)) (3)
P(f=I& (M IVM2))

The formula for probability of a diqunction is applied to the numerator and denominator in

equation 4. •

P(Olf=l&(M IVM2)) - P(O&f=I&M 1)+P(O&f=f&M 2)-P(O&f=l&M &M2)
P(f=l&M)+P(f=I&M)-P(f=/&M 1 &M2)

In equation 5 the definition of conditional probability is applied again to the terms of the
numerator and the denominator.

P(01f1&m 1)P(f=LIM 1)P(M1)

P(OJf=l&M t)P(f=lM 2)P(M2)

P(lfl&M VM))P(01f=L&M I&MS)P(f=LIM 1&MO)PMA1 M2)___P(Olf= l&(M 1vM)) = P(f=IIM I)P(M)+P(f=IIM 2)P(M2)-P(f=IIM &M,)P(Mt&M 2)

Different assumptions allow different simplifications to be applied to the rule in equation 5.
If the two models are disjoint equation 5 reduces to equation 6.IP(0 If = &M 1)P(f =lIM 1)P(M 1]

P(O~f=l&(M vMI)) = P(f=4&M)P(f=IIM)P(M) (6)

P(I =lIM z)P(Mi)+P(f =11M 2)P(M2)
Another assumption that simplifies things considerably is the assumption that prior probabilities

for all feature labeling. in all the models and combinations thereof are the same. I call this
assumption constancy of priors. When constancy of priors is assumed
P(ff= IM) = P(f= lIM) = P(f=IIM I&M2). Making this assumption reduces the number of
priors that need to be determined. Since determining prior probabilities from a model is sometimes
a difficult task the constancy of prior is a useful simplification. With constancy of priors equation
5 reduces to equation 7.

B-194

*'i4 N

P(O If= &M)P(M) (7)0

P(OIfI&(M vM2)) = P(Oj) P(M)-P(M &M 2)

Equation 6 with constancy of priors reduces to equation 8.

P(Olf=a&M 1)P(MI)
+

P(Olf=l&(M vM2)) = P(M)+P(M)

Thus equatin B describes the likelihood combination rule with disjoint models and constancy of

3.2. Understanding the Likelihood Combination Rule
The easiest incarnation of the likelihood combination rule to understand is the rule for

combining likelihoods from disjoint models given constancy of priors across models (equation 8).
Here the combined likelihood is the weighted average of the likelihoods from the individual models
weghted by the probabilities of the models applying. (The combined likelihood is the likelihood
given the dijunctim of the models).

If models M, and M2 are considered equally probable and the likelihoods returned by MI's
detector are caiderably larger than those of Ms' detector then the probabilities determined from .
the combination of M, and M2 are close to those determined from M1. Thus a model with large
likelihoods determines the probabilities. To illustrate this principle consider an example.

Assume that a coin has been flipped n + 1 times. The results of flipping it has been reported
for the first n times. The task is to determine the probability of heads having been the result of
the x +I' lip. Consider the results of each coin flip independent. Let M, be the coin being fair so 0 .
that the pIobability of heads and tails is equal. Let M2 be that the coin is biased with the
probability of heads is v and tails I-w with w being a random choice with equal probability
between p and I-p. Hence the coin is biased towards heads or tails with equal probability but the
bias is consistent between coin tosses. The probability of heads remains the same for all coin tosses
in beth model. Mt and M2 are disjoint (the coin is either fair or it isn't but not both) and the •
prior probability of a lip being heads or tail is the same for both, .5.

Under M the probability of each of the possible dips of n+I coins is 2" -. Under M2 the
psubatofa +1 ip of coins with h heads and t=n+1-h tails is:

ip '(1 -p), + (1 -p)h . , . , u

lat x=2 and p=S. Assume the frst two flips are both heads. Let H be "the third flip was head"
and T be "the third flip was tails." The likelihood of H given the observed data is the probability
of al3 3 lips being heads divided by the probability of the third flip being heads. The likelihood of
T given the observed data is the probability of the first 2 being heads and the 3rd tails divided by ,
the probability of the third flip being tails.

Under M, the probability of all 3 flips being heads is 0.125 and the probability of a flip being f,
heads is 05 thus the likelihood of H is 0.25. The likelihood of T is 0.25 by the same reasoning.

B- 195 ' I
41P , - -- - - -c t.

% W 0

Applying Bayes' law to get the probability of H under M, one derives a probability of .5.

Under M2 the probability of all 3 flips being heads is 0.365 and the probability of a flip being --
heads is 0.5. Thus the likelihood of H is 0.73. Under M2 the probability of the first two being

heads and the third being tails is 0.045 and the probability of a flip being tails is 0.5. Thus the

likelihood of T is 0.09. Applying Bayes' law under M2 a probability of H being 0.89 is derived.

If MI and M2 are con sidered equally probable then the combination of the likelihoods from 'P
the two models is the average of the two likelihoods. Thus the likelihood of H for this combination
is 0.49 and the likelihood of T is 0.17 (likelihoods don't have to sum to 1). Bayes' law combines

these probabilities to get 0.74 for the 3 flip to be heads.

he table in figure 1 describes combining various M2's with different values of p with MI for
the different combinations with n = 4

Observed Combined with MI Likelihood of H Likelihood of T Probability of H

Coin Flips or just M2 p =.6 p =.9 p =.6 p =.9 p =.6 p =.9

HHH Just M2 0.088 0.5905 0.0672 0.0657 0.567 0.8999
Combined 0.07525 0.3265 0.06485 0.0641 0.537 0.8359

HlHl-T Just M2 0.0672 0.0657 0.0576 0.0081 0.5385 0.8902
Combined 0.C8485 0.0641 0.06005 0.0353 0.5192 0.6449

HHTr Just M2 0.0576 0.0081 0.0575 0.0081 0.5 0.5
Combined 0.06005 0.0353 0.06 0.0353 0.5 0.5

Hill Just M2 0.0576 0.0081 0.0672 0.0657 0.4615 0.1098

Combined 0.06005 0.0353 0.06485 0.0641 0.4808 0.3551

WI Just M, 0.0672 0.0657 0.088 0.5905 0.433 0.1001

Combined 0.06485 0.0641 0.07525 0.3265 0.4629 0.1641

Figure 1: Result of likelihood combination Rule * S

Look at the probabilities with p=.9 and the observed data is HHHH. For this case the

observed data fits M2 much better than MI and the probability from combining M, and M2 is close

to the probability resulting from using just M2, .9. If we had a longer run of heads the probability
of future heads would approach exactly M,'s prediction, .9. On the other hand if we had a long run

of equal numbers of heads and tails the probability of future heads would quickly approach the
prediction of MU, .5. When the observed data is HHT the observed data fts MI about as well as

M2 and the resulting probability is near the average of .5 predicted by M, and 0.8902 predicted by
M2. Thus when the observed data is a good fit for a particular model (like M2) the probabilities

predicted by the combination is close to the probabilities predicted by the fitted model. If two

models fit about equally then the result is an average of the probabilities ..

4. When No Model Applies
Given a set of likelihood generators and their models, using the evidence combination

described in section 3 we can get the likelihood for the feature labelings given that at least one

model applies. Thus if we have likelihoods of a boundary given models with the noise standard

'However the festur that the decion theory pndids is nat the svuago of the featue predictad under the two
difrest models in pnerl

B-196

F t1%

* 0

deviations near to 4, 8 and 16 in them we can derive the likelihood of a given the noise standard
deviation is near to 4 or 8 or 16 (no matter which). Thus we can derive the probability distribution

over feature labelings given that at least one of our models applies. However what we are trying toto derive is the physical probability distribution over the feature labeling.. This is the probability

distribution over feature labels given the observed data (astimated by the long run frequencies over
the feature labels given the observed data). The problem is that there may be a case where none of
the models assumptions is true. In the Venn diagram of figure 2 each set represents the set of
situations where a model's assumptions are true. The area marked NO MODEL is the set of
situations where all the models fail.

U

NO MODEL 0

Figure 2: Veam Diagrm of Models

What should the likelihood of a feature label be if no model applies? To answer this question 0
I examine the companion question of what should the probability of a feature label be if no model
applis Assume a prior probability for the label is available. If a posterior probability is different
from a prior probability for the feature then information has been added to get the posterior (Only
information can justify changing from the prior.) Since having no model means intuitively having
no information then the posterior should be the same as the prior. If and only if the likelihoods of
all feature labels are equal, the posterior probability is the same as the prior. Hence the
likelihoods of the feature labels should be equal for any particular piece of observed data. In this
section I assume a prior proability distribution is a available over feature labels. If no such
distribution is available an uninformative prior can be constructed [Frieden85].

To constrain the problem further, consider whether any piece of observed data should be more
probable than any other when no model applies. It seems unreasonable that one could conclude
that some observations are more probable than others without any mo'al of how those observations
were produced. Hence all the likelihoods should be equal. This constraint is sufficient to
determine the likelihoods when no model applies. I think that this solution minimizes cross
entropy with the prior (since it returns the prior) (JohnsonS5l. •

To derive the physical probability distribution over feature labels, the "no model" likelihoods
should be combined with the likelihoods derived for the models. The probability of each of the
models and their combinations must have been available to use the combination rules from section
3. Hence the probability that one or more of the models applies is known. The probability of no
model is 1 minus that probability. The conjunction of some model applying and no model applying .
has 0 probability. Hence combination rule 6 can be applied to derive the likelihoods under any
conditions from the likelihoods for any model applying. %

As example consider the problem of seeing RHHH and trying to derive the probability of a
fAM head given the equally likely choices that the coin is fair or is biased to .9 (biased either for
heads or tails with equal probability). The combined likelihood of H is 0.3265 (from figure 1). The 0

combined likelihood of T is 0.0641. As an example, assume that the probabilities that the
assumptions of M, were true was 0.4 and similar for M2 . Then 0.4 of the time we feel the coin is

B-197

I"
-

, " .'%..

P.- - 0

fair, 0.4 of the time we feel it has been biased by 0.9, and 0.2 of the time we have no model about
what happened. The likelihood of HHHH under "NO MODEL" is .0625 regardless of H or T (Since
the likelihood of all 4 coin flip events are equal and must sum to 1). Combining the "NO MODEL"
likelihoods with likelihoods of 0.2737 for H and 0.06378 for T (see figure 1), the probability of H "

from applying Bayes' law to these likelihoods is 0.811. This probability is somewhat nearer to .5
than the probability of 0.8359 derived without taking the possibility of all the models failing into

account.

Taking the possibility of all models failing lends ertain good properties to the system.
Probabilities of 0 or 1 become impossible without priors of 0 or 1. Thus the system is denied total
certainty. Numbe near 0 or I cause singularities in the equations under finite precision
arithmetic. Total certainty represents a willingness to ignore all further evidence. I find that
property undesirable in a system. Denying the system total certainty also results in the property
that the system must have all probability distribution over feature labels between e and 1- e for
an e proportional to the probability that no model applies. Thus there is a limit to how certain our
system is about any feature labeling in our uncertain word.

5. Results
I have applied this evidence combination to the boundary detection likelihood generators •

described in [Sher87]. Here I prove my claims that the evidence combination theory allows me to
take a set of algorithms that are effective but not robust and derive an algorithm that is robust.
The output of such an algorithm is almost as good as the best of its constituents (the algorithms

that are combined).

5.1. Artificial Images

Artificial images were used to test the algorithms described in section 3 quantitatively. I used
as a source of likelihoods the routines described in [Sher87]. Because the positiuns of the
boundaries in an artificial image are known one can accurately measure false positive and negative
rates for different operators. Also one can construct artificial images to precise specifications. The

artificial images I use is an image composed of overlapping circles with constant intensity and
aliasing at the boundaries shown in figure 3.

N0
B-198 *

,,,,. ,............-. % %...

Fiur 3: AriiilTsmg

the ~ ~ ~ ~ ~ ~~Fgr 3:rtificial Tmg ihsadr eito 2niesdt it.Image 1so tersuto

applyies were dedectootunedly dstrabuted decviated 1 noise tanigewith standard deviation 8 2 16, o

nos de oi.In figure 1 how the result of applying the deet cueobsntnardth de cto rs toe

to 4, 8, 12, and 16 standard deviation noise. The combination rule was that for disjint models
with the same priors. The 4 models were combined with equal probability. These operator outputs
are threuholded at 0.5 probability with black indicating an edge end white indicating no edge.

B- 199

~Aft
. o-

i naPInr I U Sde

0*0

a: Image with ir 12 noise b: Output of #=4 detector
Figure 4:0a 4 detector applied to 3 image with a =12 noise

-V.

j% %

V %

a: Image with a= 12 noise b: Output of combined detector
Figure 6: Combined detector applied to 3 image with a= 12 noise____

Net, that the result of using the combined operator is similar to that of the operator tuned to
the correct noise level. Mast of the false boundaries found by the v=4 operator are ignored by the
combined operator.

Using this artificial image I have acquired statistics about the behavior of the combined
detector vs the tuned ones under varying levels of noise. Figure 7 shows the false positive rate for
the detector tuned to standard deviation 4 noise as the noise in the image increases'. Figure 8
shows the false positives for the standard deviation 12 operator. Figure 9 shows the false positive
rate for the operator tuned to the current standard deviation of the noise. Figure 10 shows the
false positive rate of the combined operator. Figure 11 shows the superposition of the 4 previous
graphs.

I J

'The oerame we dbed at 0.5 probability to make the dedeima about wo h onaisa

B-201

0.14

0.12 -

p 0.10

a

0.028

0.0

*0.10

0.02 8

0. 0

r 0.0 _ _ _ _ _ _

at.

0.0

00

aaoi

0.02.

% - ---- ---

0.0068

0.0066 9

0.0064
p

10.0062
t

VO0.0060

~0.0058
t

0.0066

0.00640 6

0.0052
4 6 8 10 12 14 16

a noise

Figure iII False positives vsenoise a for operator tuned to the noise

OM4

0.050

p
0 0.04

v 0.03

0.02

0.0

0 5 10 15 20 25 30 35

a noise

Figure 10, False positives va noise a for combned operator w

B-203

IF, % * ~ ~

I ~ --, Pn -%

0.14

0.12 S

p 0.10

0.0

V

t 0.06

Y

0.02

0.0

0 5 10 15 20 25 30 35

a noise 0

equars: v=4operator circl: a=l2peaw
triangl: banid operator cn: owabnw oprator

igure 11: False positive s ve ni a fir all opsiators

Note that th, combined operator has a false positive rate that is as least as good as that of the
tuned operators.

I can also count false negatives. When I counted false negatives I ignored missed boundaries ~
that had an boundary reported one pixel off normal to the boundary (because such an error is a
matter of discretization rather than of a more fundamental sort). See figure 12 for an example of a
1 pixel off error.

miss GOOD
ISS is recorded as a fakse negative

GOOD is recorded as a true positive , b
Figure 12: Example of one pixel off error0

Fiure 13 shows the false negative rate for the detector tuned to standard deviation 4 noise as
the noise in the image increases. Figure 14 shows the false negatives for the standard deviation 12
operator. Figure 15 shows the false negative rate for the operator tuned to the current standard
deviation of the noise. Figure 16 shows the false negative rate of the combined operator. Figure 17
shows the superposition of the 4 previous graphs.

B-204

f - .. %

A~VJ'ANNA7

0.28

0.26

a 0.24

ft0.22

a 0.18

0.16 S

0.14
0 5 10 15 20 25 30 35

a noie

Figure 13: Palm negative rate for or4 operator

0.28

0.26

n
e

9
a 0.24
t

r 0.22
a

0.20-

0.18 I

0 5 10 i5 20 25 30 35

a noise

Figure 14: False negative rate for a~ 12 operator0

B-205

0.22

0.21

* 0.20
ga
t

v 0.19
6

r

t0.18

0.17

0.16
4 6 8 10 12 14 16

Figure 15: Faise negative rate for tuned operator

0.28

0.26

n 0.245 /
t 0.22
i

0.20
r
a
t
e 0.18

0.16

0.14 i , ,
0 5 10 15 20 25 30 36

a noise

Figuue 16: Palm negative rate far eambined operator

B-206

"N

0.28

0.26

03

t 0.22

V

0.1

0.2'

0.14
0 5 10 15 20 25 30 35

I a= u4 opeator circle: =12 opertor
triangle: tued oeraor czcmmbiad operator

Figure 17: Fale negative rate for all operators

Here the combined operator is not always as good as the tuned operators. One must ask if
this tendency of the combined operator to miss edges offset& its better performance for false
positives. The next series of figures charts the total error rate for the same cases. Figure 18 shows
the error rate for the detector tuned to standard deviation 4 noise as the noise in the image
increases. Figure 19 shows the error rate for the standard deviation 12 operator. Figure 20 shows
the error rate for the operator tuned to the current standard deviation of the noise. Figure 21
shows the error rate of the combined operator. Figure 22 shows the superposition of the 4 previous
graphs.

B-207

d* $~A~N
IL~

0.16

0.14 S

0.12

r 0.10
r
0
r 0.08
t

t 0.06

0.04

0.02 __

0.0 I

0 5 10 15 20 25 30 35
a nose

Fipar 18: Total manm by the a=4 detector

0.10

0.08

r
r 0.06

r

r
t 0.04

0.02 __-

0.0
0 6 10 15 20 25 30 35

a noise

Fipam 19, ToWi mr. by the a= 12 detector

B-208

NA Ip w,

0.015

0.0160

:: 0.0175
0

r

t 0.u170

0.16

0.0165

4 6 10 12 14 16

a noise

Figure 20. Total errr by the tUmed detector

0.07

0.06

r
r
0

r 0.04

r
a
t

0 5 10 15 20 25 30 35%I

Figure n1: TOWa angie by die ambiimd datertor

B-209

of r o

A.. ~r z

0.16

0.14 0 8

0.12

r 0.10
r

• 0.08r•
t 0.06

0.04 0

0.02

0.0I I III

0 5 10 1s 20 25 30 35

a noise

aquam a=4 oprator circle: a=12 opmatu
triangle: tuned operator cos: mbimnd operator

Figure 21 Total n by the all detectors

Thus the superiority of the combined operator for false positives dominates the false negative *
performance and the combined operator minimizes the number of errors in total. These results are

evidence that my combination rule is robust.

5.2. Real Images
I have also tested these theories using two images taken by cameras. One of these images is

a tinker toy image taken in our lab. The other is an aerial image of the vicinity of Lake Ontario.
Figure 23 shows the result of the operator tuned to standard deviation 4 noise applied to the tinker

toy image and thresholded at 0.5 probability. Figure 24 shows the result of the operator tuned to
standard deviation 12 noise applied to the tinker toy image. Figure 25 shows the effect of
combining operators tuned to standard deviation 4, 8, 12 and 16 with equal probability. S S

B-210

AC A--

% VI

-iI-

-~.. ..-~ .

a: Tuakertoy Imago b: Output of a=1 detector
Fgurs 23: a=41 detector applied to tiakertoy imageel;A .P

%%,
lipS '

.~~

...... .

a: Tinkertoy Image b: Output of combined detector
Figure 25: Combined detector applied to tinkertoy image

Here, the result of the combined operator seem. to be a cleaned up version of the sandard 4.
deviation 4 operator. Mast of the features that are represented in the output of the combined
operator are however real featurs of the scoe. The fine running horizontally across the imageo
that the standard deviation 4 operator and the cmbined operator flound is the place where the
table nests the curtain behind the tinkectoy. The standard deviation 4 operator was certain of its
interpretation and the other operators were uncertain at that point so its interpretation was used Aby the combination. ''

I%@ results from the aerial image are also instructive. Figure 26 shows the result of the
operator tuned to standard deviation 4 noise applied to the aerial image and thresholded at 0.5
probability. Figure 27 shows the result of the operator tuned to standard deviation 12 noise
applied to the aerial image. Figure 28 shows the effect of combining operators tuned to standard
deviation 4, 8,12 and 18 with equal probability.

B-212

% %
P%."%- '.,'

IL .1 N!

p" , kA

r.7,

*f %

* ~ ~ r gO '4 4i

a: ~ ~ ~ ~ -AeilIae b upu fv4dtco

Figre 6:6=4dotctr apled o aril iag

B-213

a:.e.a...g...ututof..deeco

I -1

~ I~%

a: ~ ~ ~ ~ -Aeria Img :Otu f obnddtco

Fiur 2: obieddeeto aple t .arilig

Soon Iilla:pl Amya "once cobinOttio mbined dpeatortamkedfen
assumptiosabFuure 28:cte Combgeindteto apitom Tea opeae sd ofrnm

Thperiesulpts ro tueicormbisdoprato reagaen a laned54 Currension of thkerlts fenrorh
hsbe ul ht sue randaddvguo prao.Iblar dthibhaio wri aathcs the prbblt f ete beving
fondnsby thesstandarddevin me foprtorai the i n oee ont hav th grouerthn

tiguthicathe aierel imse bae dofrnh teoyifmage. ra sumto.ftersn

doniwilaplymeerence inmbinationurulesto operators that maedfferentcmiato i nisbe
S aslptioprabor thel eopecte iageaintbenst tga. The opeihos eeratr bud o fhsargemr~~

epetrims w expe uneor hsgame etwen0 cmano 254. Curenty applielod goteerator 0
has e buil tate ussuedb ao rianla edisarbutorithst eemn theeio probabilityoanbechaing

or qul t 18.It is otl der hat ruthe g probbi mye calculatbson thes a bmusod wiy beko
signiomicantl diret fm toebsdo h nfr itormasmto.Ihrsn

difrnch in the opu on tw oper ar tevieeo combination in ivisible ha a nhg ee

baseng eve perator insnbaibl. The fislreoIdelihoodsilt geseratedoase oe thes laero
opreraions un bearatelytned suhe asameaein combinatetion. Then ben tppied to thmpro .the"

distibuios n aeusedb forkovhandhoms fie agthmstoadeerme seior probabilities

6. %P% %i. %Work
Mubo h oka viecdn vdnecobnto nvso hsbe nhg ee

visin. A imortat Baesin aproac (ad a otiatio formy ork)was ybFldma-an

it was sufficiently probable that two adjacent regions were the same.

Work with a similar flavor has been done by Hanson and Riseman. In (Hanson80 Bayesian
theories are applied to edge relaxation. This work had serious problems with its models and the
fact that the initial probabilities input were edge strengths normalized never to exceed 1. Of
course such edge strengths have little relationship to probabilities (a good edge detector tries to be
monotonic in its output with probability but that is about as far as it gets). In [Wesleyf2a] and
[Wesley82b] Dempster-Shafer evidence theory is used to model and understand high level problems .
in vision especially region labeling. In [Wesley82b) there is some informed criticism of Bayesian
approaches. In (Reynolds85] They study how one converts low level feature values into input for a
Dempstr-Shafer evidence system.

In [Levitt851 Tod Levitt takes an approach to managing a hierarchical hypothesis space that
is baysian with some ad hoc assumptions. For the problem worked on here the paper would take e S
weighted sums of probabilities. He does not have any way of taking an operators self confidence
into account in the evidence combination. Since he was not approaching this problem in his paper
I can not fault it in this respect.

There has been much use of likelihoods in recent vision work. In particular work based on
Markov random fields (Geman84] (Marroquin86a] (Marroquin85b] use likelihoods. A Markov S
random field is a prior probability distribution for some feature of an image and the likelihoods are
used to compute the marginal posterior probabilities that are used to update the field. Haralick has
mentioned that his facet model [Haralick84] [Hantlick86b] can be easily used to build edge
detectors that return likelihoods (Haralick86a]. I also have built boundary detectors that return
likelihoods and the results of using them is documented in (Sher87]. Paul Chou is using the .
likelihoods I produce with Markov random fields for edge relaxation (Chou87]. He is also studying
the use of likelihoods for information fusion. Currently, he is concentrating on information fusion
from different sources of information.

7. Conclusion

I have presented a Bayesian technique for information fusion. I show how to fuse information
from detectors with different models. I presented results from applying these techniques to
artificial and real images.

These techniques take several operators that are tuned to work well when the scene has
certainparticular properties and get an algorithm that works almost as well as the best of the
operators being combined. Since most algorithms available for machine vision are erratic when
their assumptions are violated this work can be used to improve the robustness of many
algorithms.

B-215 NhN~
X W%$O

~m

References 6

[Aloimonoes8]
J. Alaimonos and P. Chou, Detection of Surface Orientation and Motion from Texture: 1.
The Cae of Planes, 161, Computer Science Department, University of Rochester,
January 1985.

[BallardB2]
D. H. Bullard and C. M. Brown, in Computer Vision, Prentice-Hall Inc., Englewood
Cliffs, New Jersey, 1982, 125.

[Chou,87) P. Chou, Multi-Modal Segmentation using Markov Random Fields, Submitted to IJCAI,
January 1987.

[Feldman74I
J. A. Feldman and Y. Yakimovaky, Decision Theory and Artificial Intelligence: 1. A
Semantics-Based region Analyzer, Artificial Intelligence 5(1974), 349-371, North-Holland
Publishing Company.

[Frieden85]
B. R. Frieden, Estimating Occurrence Laws with Maximum Probability, and the
Transition to Entropic Estimators, in Maximum-Entropy and Bayesian Methods in
Inverse Problems, C. R. Smith and W. T. G. Jr. (editor), D. Reidel Publishing Company,
Lancaster, 1985.

(Geman84]
S. Gr -a and D. Geman, Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Resto. ion of Images, PAMI 6,6 (Novermber 1984), 721-741, IEEE.

[Good5O) I. J. Good, Probability and the Weighing of Evidence, UHater Publishing Company.,
London, New York, 1950

[Good832 I. J. Good, Subjective Probability as the Measure of a Non-measurable Set, in Good
Thinking: The Foundations of Probability and its Applications, Minneapolis (editor),
University of Minnesota Press, Minneapolis, 1983, 73-82.

[Hanson8O]
A. R. Hanson, E. M. Riueman and F. C. Glazer, Edge Relaxation and Boundary
Continuity, 80-11, University of Massachusetts at Amherst, Computer and Information
Science, May 1980.

[Haralick841
R. M. Haralick,' Digital Step Edges from Zero Crossing of Second Directional
Derivatives, PAMI 6,1 (January 1984), 58-68, IEEE.

B-216

INi

%~' ~ ,

(Haralick86al
R- Haralick, Personal Communication, June 1986.

[Haralick86bl
R- M. Haralick, The Facet Approach to Gradient Edge Detection, Tutorial I Facet Model
Image Processing (CVPR), May 1986.

[H=r70] B. K. P. Horn, Shape from Shading: A Method for FInding the SHape of a Smooth
Opaque Object from One View, Massachusetes Institute of Technology Department of
Electrical Engineering., August 1970

[IkuchiSo]
K. Ikeuchi, Shape fAm Regular Patterns (ani Example of Constraint Propagation in
Vision), 567, Massachusetts Institute of Technology, Artificial Intelligence Laboratory,
March 1980.

[Jahnsong5)
R. W. Johnson and J. E. Shore, introduction to Minimum-Cross-Entropy Spectral
Analysis Of Multiple Signals, in Maimum-Entropy and Bayesian Met hods in Inverse
Pro ble mr, C. R. Smith and W. T. G. Jr. (editor), D. Reidel Publishing Company,
Lancaer 1985.

(Lavitt85] T. S. Levitt, Probabilistic Conflict Resolution in Hierarchical Hypothesis Spaces,
Proceedings: Uncerainty and Probability in Artificial Intelligence, August 14-16, 1985,
265 272.

(Marroquing5a]
J. Marroquin, S. Mitter and T. Poggio, Probabilistic Solution of Ill-Posed Problems in
Computational Vision, Proceedings: Image Understanding Workshop, December 1985,
293-309. Sponsored by: Information Processing Techniques Office Defence Advanced
Research Projects Agency.

[Marroquing5b]
J. L. Marroquin, Probabilistic Solution of Inverse Problems, Tech. Rep. 860, MIT
Artificial Intelligence laboratory, September 1985.

(Ohlander79J
R. Ohlander, K. Price and D. R. Roddy, Picture Segmentation using a Recursive Region
Splitting Method, CGIP 8,3 (1979).

G. Reynolds, D. Strahman and N. Labrer, Converting Feature Values to Evidence,
PROCEEDINGS: IMAGE UNDERSTANDING WORKSHOP, December 1985, 3314339.
Spuaord by: Informato Processing Techniques Office, Dfence Advanced Research
Projects Agency.

[SkerB6J D. Sher, Optimal Likelihood Detectors for Boundary Detection Under Gaussian Additive
Noise, IEEE Conference on Computer Vision and Pattern Recognition, Miami, Florida,
June 1986.

[5her87] D. B. Sher, Advanced Likelihood Generators for Boundary Detection, TR197, University
of Rochester Computer Science Department, London, England, January 1987. Submitted
in shorter form to International Conference on Computer Vision.

B-217

'U~~N N. '

CWesley82a]
L. P. Wesley and A. R. Hanson, The Use of an Evidential-Based Model for Representing
Knowledge and Reasoning about Images in the Visions System, PAMI 4,5 (Sept 1982),
14-25, IEEE.

(Wesley82b]
L. P. Wesley and A. R. Hanson, The use of an Evidential-Based Model for Representing
Knowledge and Reasoning about Images in the VISIONS System, Proceedings of the
Worksshop on Computer VIsion. Representation and Control, August 1982, 14-25.

B-21

Appendix B-8

Optimal Likelihood Generators
for Edge Detection

under Gaussian Additive Noise

David Sher
Computer Science Department
The University of Rochester
Rochester, New York 14627

TR 185 0

August 1986

* St

A technique is presented for determining the probability of an edge at a point in an image. The image is
modeled as an ideal image that is convolved with a linear blurring function and also with uncorrelaced
Gdussian additive noise. The ideal image is modeled by a set of templates for local neighhorhoods. E~erv
neighborhood in the ideal image is assumed to fit one of the templates with high prrubability. A
computationally feasible scheme to compute the probability of edges is given. The output of several of thc
likelihood generators based on this model can be combined to form a more robust likchhood generator
using the results described in Developing and Analyzing Boundar.% Detecnon Oper.r,,rs I vne Probabilislic
Models presented in the first Workshop on Probability and Uncertainty in xrificial Intelligence by the
author [13].

* S

This work would have been impossible without the advice and encouragement of Chris Brown my thesis
advisor. This work was supported in part by the Defense Advanced Research Projects Agency U. S. Amy
Engineering Topographics Lab. grant number DACA76-85-C-0001 and The National Science Foundation.
grant number DCR-8320136..

B-219

%

tn

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPiENT'S CATALOG NUMBER

TR 185
4. TITLE (and Subllle) S. TYPE OF REPORT & PERIOD COVERED

Optimal Likeilhood Generators for Edge Detection
under Gaussian Additive Noise Technical Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTNOR(e) 8. CONTRACT OR GRANT NUMBER(&)

David Sher
DACA76-85-C-0001

I. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Computer Science Department AREA G WORK UNIT NUMBERS

The Unviersity of Rochester
Rochester, New York 14627

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA/1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlington, VA 22209 10
14. MONITORING AGENCY NAME G AODRESS(If diflferm from Cmtrolling Office) IS. SECURITY CLASS. (of IfI reporl)

Office of Naval Research
Information Systems Unclassified
Arlington, VA 22217 S,. DECLASSIPICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (o1 this Reporf)

Distribution of this document is unlimited

17. DISTRIBUTION STATEMENT (of The abetrIac entered In Block 20. it dilfleenl free, Report)

IS. SUPPLEMENTARY NOTES

None

i. KEY WORDS (Contm on Meveae side it neceamy emd Idemtiy by lock number)

edge detection, template, likelihood, Bayesian reasoning

SO. ABSTRACT (Contlnue an Powre Ide It noe.e.ry and identify by Nock number)

A technique is presented for determining the probability of an edge at a point
in an image that is convolve with a linear blurring function and also with
uncorrelated Gaussian additive noise. The ideal image is modeled by a set
of templates for local neighborhoods. Every neighborhood in the ideal image
is assumed to fit one of the templates with hight probability. A computaion-
ally feasible scheme to compute the probability of edges is given. The
output of several of the likelihood generators based on this model can be

OD A:"I 1473 EOITION OP INOV6e IS OSSOTE

* -~ /~?B-2NU

20. ABSTRACT (Continued)

Combined to form a more robust likelihood generator using the results - 6
decribed in Developing and Analyzing Boundary Detection Operators Using
Probabilistic Models presented in the first Workshop in Probability and
Uncertainty in Artificial Intelligence by the author(13).

B-22

*

a I

* •

B-221

Q AV. ~ ,; ;.::.:,/' ;.,.. " ': :,,:,':.,;,.L":..:, :- ..;.'.. ;".' : -..,*'.,-'- ,,- ,- , ' ,"r -" ' , .. .

• , (a' ,(,,,,,'. ... ,-5:, , , . , , .- ', -.,.--. . , ,,, ., :",'. " ,,,,.. ' .,.,,.- ' ','---".". .

1. Edge Detection: The Problem and Previous Approaches

The major problem of low-level vision is that images are ambiguous: two different scenes can result
in the same image. The major source of ambiguity that I am concerned with is noise. Noise is generally
the result of imperfections of the sensors used to produce the image. Because of noise the same scene can
result in any observed image whatsoever. It is much more likely however to result in some images than
others. My work is about techniques for combating noise and the resulting ambiguity and thus is applicable
to vision tasks where noise presents a significant problem.

My approach to low level vision is unusual for such research. Consider the problem of segmentation.
in particular, consider the problem of finding regions of uniform reflectance. The image is modeled as a set
of regions of constant reflectance with occlusion boundaries between them. Most approaches to this
problem try to return an answer that is best, in the sense that the probability of the given answer differing
from the correct answer in a significant way is minimized. Such an algorithm applies estimation theory to
the problem of low level vision.

Instead, this paper derives algorithms that attempt to calculate the probability of a boundary passing
between two points. In low-level vision usually one can acquire a sufficiently specific model for the
probability to be uniquely defined, even through the image is ambiguous. One advantage of this approach
is that a variety of different estimates of the segmentation can be derived from these probabilities by simple
operations.

This paper concentrates on the problem of deriving the probability of a boundary from a window on
the image. Classically this task has been called edge detection. I am using a template based model for this
work: It is assumed that if the image was viewed through a noiseless sensor then every window on the
image would match one element of a set of templates. Since the image wasn't produced by noiseless
sensors its windows look like some template followed b%, noise according to the model.

Recently two works have been published that take an approach similar to mine. One that is similar is
by Art Owen [121 on pixel classification for Landsat images. The operator he denies returns likelihoods for
neighborhoods instead of pixels. Owen's work uses a somewhat more sophisticated model to derive his
priors (a Poisson model of boundaries). The work has no noise model and does not consider combination
rules. Likelihoods are derived by training on test -ases. Owen can use training to get his likelihoods
because of the small number of categories ie uses and because ne uses binary jthresholded) images. This
reduces the number of cases he had to deal with so the operator can be conveniently trained.

Another work that takes an approach .imilar to mine is that of Li and Dubes (91 on matching small
templates in binary images. They use Neyman-Pierson statistics. Neyman-Pierson statistics are used
because there is a well defined null hypothesis ithe object is not in the scene). Li and Dubes derive a
likelihood ratio test. Such a test has maximal power if it is based on a complete and sufficient statistic. The
way they derive the likelihood ratio is to derive likelihood generators. They approximate the likelihoods

deriving operators much in the same spirit that I derive mine in section 3.

There has been some work on using Bayesian techniques (techniques using likelihoods and prior -0
probabilities) to estimate edge positions. In particular the work described in [31 and 161 use Bayesian
techniques for image reconstruction and 181 uses Bayesian technique for reconstruction and edge detection
(as a side effect). These techniques have the weakness that they look for the maximum a posterton
likelihood (the MAP assumpuon). The MAP assumption only holds when a small set of answers are the
onl. ones acceptable as correct with 0 loss and all other segmentations have the same loss (1 loss). I believe
that a 0-1 loss funcuon is unrealistic for most applications. A 0-1 loss function is realistic if getting a.
boundary wrong at a single point is as bad as getting it wrong everywhere, because both possibilities resuit

B-222

in I loss according to the 0-1 loss function. In low-level vision the usefulness of an estimate drops off
gradually as errors accumulate. Some good results have been gained using these techniques.

Much work has been done using signal detection theory for deriving operators. However most work..
based on signal detection theory is limited to operators that compute linear functions on the image. 6

Because of this limitation the operators generated are the optimal linear operators given a figure of merit.
In particular the Wiener filter is optimal for reconstructing images given a least squares cost function and a
correct noise model and i&age model. [1].

Canny 151 has developed an operator that is optimal according to a figure of merit that contains
detection and localization. He limited himself to linear shift invariant operators. His operators looked a
great deal like difference of gaussian operators. He modeled edges as a template and developed a
technique for generating an operator for an arbitrary template. I intend to generate optimal detectors
under my system with the same models.

* 0
Canny [51 Lunscher and Beddoes [101 and Torre and Poggio [151 limit the class of functions that they

consider for edge detection to linear shift independent operators. Thus their operators are convolutions.
When they indicate that their operators are optimal they mean that they do the best job for functions in the
class of linear shift independent operators. The class of functions I use is the class of functions of a
window on the image. Such operators are shift independent but they are not necessarily linear. The
optimal operator from this class theoretically is the best possible edge detector for a specified window size.

Much of the work done in computer vision has been developed with idiosyncratic objectives. Because
of the their objectives differed from mine the algorithms some people developed have serious shortcomings
from m) viewpoint. One alternate set of objectives is those held by researchers inspired by biological
modeling. An excellent work in biological modeling is that of Fleet [7]. His work is on the temporal and
spatal characteristics of center-surround operators. Torre and Poggio's work (151 also is of this form.

When working on modeling one tries to develop algorithms whose behavior closely approximates that
or a human ',ision system. An example of such approximation is to have only band limited operators
because the ceils on ,he mammalian opuc nerve have been shown to be band limited. I only band limit
operators if it is shown that the phenomena being detected are band limited or that a band limited operator
is sufficient to detect the phenomena without loss of accuracy.

Much work has been done on segmentation without considering optunality or probability. A
summary of work on edge detection and relaxation occurs in [41 Recently some good work on edge
detection has been done by Canny [5 and Nalwa [111.

2. The Image Model
In the image restoration literature much work has been done on a particular form of noise. The noise

introduced by the sensor is modeled by a linear bluffing function followed by gaussian additive mean 0
noise [2. The log image from a photograph has gaussian additive noise in its linear region from the
randomness inherent in film grain. Gaussian additive noise occurs in any system whose noise is a result of
many small perturbations added together (by the central limit theorem). Blur can result from vibrations in
the camera, motion in the scene and the physics of light. I make a standard simplification in that I assume
the blur is linear and shift invariant. Blur from vibrations in the camera and the physics of light has this
property. Blur from motion in the scene tends to be linear and shift inanant vithin a rigid object. Thus I

B-223

'p..

rw .w .rim .,,,

model the noise as convolving the image with a blur functon and then adding a gaussian additive mean 0
random factor.

I also need a model of an image to derive a likelihood generator. A likelihood generator is an
intermediate stage in an algorithm that calculates the probability of a boundary at a point. More details on
likelihood generators are in the next section.

Here, I derive the optimal likelihood generator that looks at a window in the image. Thus I need
only model windows in the ideal image. I model the ideal image as consisting of windows that each match
an element of a set in a set of sets of templates. Thus if I can derive the likelihood of the observed window
given that its ideal counterpart matches each template in a set and the a priori probability of each template
then I can derive the likelihood of the window belonging to the set of templates. As an example consider
the set of templates that consist of a uniform intensity (figure 1).

Figure 1: A template of uniform intensity.
100 100 100 100 • S

This set of templates models the interior of a region of uniform intensity. Consider what an occlusion edge
between two such regions looks like. Such an event can be modeled by a template of the form in figure 2.

Figure 2: A template of a step edge.
100 100 1 200 1 200 0

This template is often called a step edge in the edge detection literature. I also need to model the event
that there is an off center edge in the window. I call this event a near edge event. The near edge events
are modeled by templates like those of figure 3.

Figure 3: Templates for a near edge.
100 200 200 200

100i 100 100 200

So 3 useful sets of templates are templates like those in figure 1. 2. and 3 with all possible intensities 0
substituted for 100 and 200. These templates model all possible configurauons of a 1 h% 4 window in an
ideal image where all regions are at least 3 pixels wide. If I can deri'e the likelihood of an observed
window having a counterpart in each of these sets then I can derive the probability of a boundar in the
middle of the window using Baves" law (see next section).

3. Likelihood Generators
Often it is easier to state and solve the inverse vision problem i*hich is ,hy computer graphics can

generate realistic images that current image understanding systems can't analyze). For low level vision it is
easier to describe the probable structure of an observed intensity image in the presence of a boundary than
to descnbe the probability distribution on the boundary given an observed image. In parucular the models
described in the previous section have this property.

The probability that the observed window's pixels are assigned a set of values a when a feature f
takes on value v is the likelihood of v for a. I use Lf(a I v) as shorthand notauon for the likelihood. A %
likelihood generator is an algorithm that uses a model D to estimate the likelihood of v for a. Thus I use
L(a I vdD) as notation for the output of a likelihood generator. Giien a likelihood generator for D and a •
prior estimate of the distribution of t's values then one can make a feature detector for i using Bayes'

B-224

W. , . ,o.i

Rule:

Pf(Y Ia&D)= L(a Iv& D)prior
.(v

a. Lf(a Iv'&D)pior(v') (1)
V -, 141

I call the feature detector thus derived a Bayesian feature detector for model D. %

The set of likelihoods for a feature f given an observation a contains more information than (1) uses.
The denominator in (1)

L f(a I v'&D)priorf(v') (2)
VEV

is the probability that awould occur given the prior estimate of the distribution on f's feature space. If the "
probability is too low then the model being used probably is not correct. I use this information combined
with a prori information about the reliability of the model to derive an evidence theory in [14].

4. Likelihoods for a Single Template
The problem I address in thispaper is to find the likelihood of an observed window given a template

and a model for the noise. Let 0=1 represent the window that was observed. Let T= Il represent the
S 9

template. Then I need P(O I T&D(o,B)) where a is the standard deviation of the gaussian mean 0
additive noise and B represents the blurring function. Assume that B is negligible outside a window of
size (w#./1) pixels and the template is of size (wr,IT). Then the effect of the blurring function BQ T (8 is
correlation where the template never falls beyond the window's edge, X®X is a single numoer that is the
sum of squares of .Y's elements) is completely determined in a region of size (w--w9i-.IT-,s-11) pixels
(see figure 4). - ,

Figure 4: Effect of a Blur Function on a Template.
T:

100 100 100 200 2 00- 200

B:
1.25 I.5 J.25]

"'. x
TOB:

1100 1 125 175 200 1

I assume in the rest of this paper that the observation window 0 lies completely within the determined
region. So the only remaining probabilistic element is the gaussian additive noise. If I is the identity

function then I need to determine P(O I TSB&D(o.I)). I refer to the elements of TOB as the set I1

Since the only noise left in the problem is the uncorrelated gaussian additve noise (since blur has
been handled) the likelihood is the product of the likelihoods at each pixel.

P(O I T®B&D(a.I))= Il P(o, I t'D(o.I)) (3)

Since the noise is gaussian the likelihood at a point has this form:

B-225

P(o, I t'idD(aeJ) -a--exp{ vi-I 'iii[a (4)

Thus the equation for the likelihood of the window can be stated as:

P(O I dBDv1) x 1 .(i1i'1.1(5)

The likelihood can be restated mathematically as:

I x (oO(TOO)/(&J (6)

(XOX42.- Pia,, n(O~o,)En(T8B~v)
Where En(Xo) is e which I refer to as the energy of X relative to a. Note that En(O.a) is 0 •

independent of the template while En(T@B.o) is independent of the observed window. These results
mean that En(TO B.a) can be precomputed while the cost of computing En(Oa) can be amortized over
the entire set of templates.

5. Likelihoods for Sets of Templates S

Here. I examine efficiently calculating the likelihood of a set of templates given an observed image.
In parucular I examine the set of templates whose elements are all linear functions of a characteristic
template. To. Thus I describe such a set as aTo+ b. I call such a set a linear set of templates. The set of
step edges with a fixed step point can be described as a linear set. The set of symmetrc peak edges are

linear functions of a prototypical peak edges hence are a linear set. The linear slopes are linear functions of"
the function f(x =x hence are a linear set too.

I limit mn blur functions to blurs that leave uniform ,ntensitv images unchanged. Then mr set of
BCT is of the form aB Tot b. The likelihood of the observed image given a member of a linear set !s:

f7~f lEnia) elEn(aTOOA-b.aij

The triplet (En(O.o ,2 ToD B.O M) is sufficient tbr determining the likelihood of this set of templates.
The class of templates is indexed by a and b. To find the likelihood I need a priori probabilities for the
different templates. I describe these probabilities with Pr,,(a .b).

The likelihood of a linear set is: NN

_______ exp[1(aO@(TO2B)+bOdI)1, to,) (8

1v Fia J"En(O~a) E~TdBbv
Let FrO be defined in equauon (9).

B-226

Vi

'a- V~ V'

FTO(.S)= expi I(aC+bS)i/I1 POab
a.6 En(aToOB+b.a) (9)

Then equation (7) can be rewritten as equation (10).
-{ - 1

-Fro(O®(ToMB),0OI) (0

¢rWI)("En .)10)

This implies an algorithm for deriving the likelihood of a linear set of templates.

Let V be Je van rice of the noise v2

Let K be IV,,I"
For each 'indow' W in the image do{
S: Let S be the sum of the pixels in W
SS: Let SS be the sum of the squared pixels in W *
C: Let C be the correlation of W with the T0 B
F: Let F be Fo(C.S)
E: Let E be exp(SS / (2V))
0: Output F /(K E)

If uiere are N pixels in the image steps S and SS require 0(N) operations counting adds and %
multiplies. Step C requires O(NlogN) operations. Steps E and 0 are also O(N) operations steps. Thus ?'

the algorithm requires O(NlogN) operations plus whatever is required to execute step F. I propose to
calculate FT. by table-lookup on the values of S and C. Thus step F is just a table-lookup.

The size of the table that holds F is the product of the number of possible values of C and S. Both
of these can be calculated given the number of gray-levels in the image. G. and the number of pixels in the
window. n. and TjOB. T'he number of possible values for S is ,uG and the number of vaiues that C can
be is G(Tomb). Thus the number of elements in the table is n(TOO B)G 2.

For a central step edge with a 1 by 8 window n=8 and T.)O0 R=4. Thus the size of the table is 32G -.
Table I is a table of G values and resulting table sizes.

Table 1: Table Sizes to calculate F,.,
G Number of Storage for Table in bgtes

Table Entries (in double precision)
4 512 4K * _

16 8192 64K
64 131072 IM

256 2097152 16M.

The more gay-levels the more difficult it becomes to store the table. It also becomes more work to
calculate the entire table. Thus to handle 64 or more gray-levels I suggest that a smaller table be used with -
interpolation. If there are symmetries in FT0 a smaller table is sufficient to store the function. As an

example if FT0(S.C)=FT(S+16.C) then only Fro need only be calculated for S between I and 16. At this 0

moment no such symmetnes have been discovered.

B-227

%
e"t"- ,f, . . ,, :C',Z,€%

6. Detecting I-D Step Edges Optimally
For the model of regions of uniform intensity with step edges between them I need only calculate the

likelihoods for two linear sets of templates. One template is the uniform intensity template. The likelihood
of this template can be calculated from the standard deviation of the observed window. The other is the. , .6
step edge template with the step in the middle. If I have a prior on the probability of a boundary then I
have the tools necessary to build an optimal edge detector for my model.

The near edge templates can be approximated by the likelihoods calculated at the neighboring
(overlapping) windows for the central step edge linear set. Since I am deriving a 1 dimensional edge
detector, the likelihood of an edge in the center of an overlapping window is the likelihood of an edge
directly to the right or the left of the center of the window. In the step edge model all regions are at least" "'".
w/'2 pixels wide given a template width of w. Thus the near edge events are exclusive of the central edge -~
events.

I assume a cost function that simply counts the number of points mislabeled as boundaries or
nonboundaries when the opposite is the case. The prior probability of a central edge and any near edge
event is equal under models that do not have a prefered position for objects. Thus if the likelihood of a
central edge is not maximal among all the overlapping windows then the opumal estimate does not have an
edge at this point. Only local maxima among the likelihood of step edge function are reported. Thus
multiple reporting of an edge is precluded. Also only edges that satisfy the inequality (11) are reported:

P(O I E)PE)P(O IU)Pu (11)

where E represents the event that there is an edge in the center of the window and PE is the prior
probability of that event while U represents the event that there is no edge anywhere in the window and
Pt is the prior probability of that event.

I can also use my work on evidence comoinaton to combine likelihood generators that make different,
assumptions about the noise and blur. Many of the operations I use to evaluate the likelihood of a linear%"
set of templates under one kind of noise can be used for many different kinds of noise. As an example
En(O.a) is used by all likelihood generators bdsed on linear sets of templates. Also all templates that have
the same value for En(TODB,a) and (ToRB I1 and have the same values for Pr0 can share the same * S
table to calculate FT0 since it depends only on these parameters. Thus if all the differently onented edge

templates have the same sum of pixel values and the same sum of squares of pixel values they can share
the same table for FT.,

7. Conclusions
In this paper I demonstrated an algorithm for edge detection that is mathematically optimal for a

popular model. Since FT,, is increasing in O (T 09 B) this algorithm thresholds using a function of the

sum of the pixels in the window and the sum of the squares of the pixels in the window. The algonhm
only reports an edge if there are no nearby edges with greater likelihood. That test is similar to edge re
thinning in standard work. Thus the algorithm is similar to algorithms that run a thresholded convolution
and then thin. Currently this algorithm is being implemented and experimental results will soon be
forthcoming.

B-228

z %

%

Referencesar

Ill H. C. Andrews and B. R. Hunt, Digital Image Restoration. 126-147 .Prenr~ice-Hall. INC.,
Englewood Clffs, New Jersey 07632. 1977

[2] H. C. Andrews and B. R. Hunt, Digital Image Restoration. 8-26 .Prentice-Hall. INC.,*
Englewood Cliffs. New Jersey 07632, 1977

[31 H. C. Andrews and B. R. Hunt. Digital Image Restoration. 187-211 .Prentice-Hall. INC.,
Englewood Cliffs. New Jersey 07632. 1977

(41 D. H. Ballard and C. M. Brown, in Computer Vision. Prentice-Hall Inc.. Englewood Cliffs. New
Jersey. 1982.,14,63,85-86.

[51 J. F. Canny, Finding Edges and Lines in Images. 720. MI1T Artificial Intelligence Laboratory.
June 1983.

161 H. Denin. H-. Elliott R. Cristi and D. Gernan. Bayses Smoothing Algorithms for Segmentation
of Binary Images Modeled by Markov Random Fields. PAM? 6.6 (Noverimber 1984). 707-720.
IEEE. %

(7] D. J. Fleet. The Early Processing of Spatio - Temporal Visual Information. 84-'. University of
Toronto. Research in Biological and COmputationaI Vision. September 1984.

181 S. Geman .ind D. Geman. Stochastic Relaxation. Gibbs Distributions. and the Bayesian ~j~"
Restoration of Imaes. PA i/ 6.6 (Novermber 1984). '121-741. IEEE.

[91 X. Li and R. C. Dubes. The Flrst Stage in Two-Stage Template Matching. Pattern Anallsis and
Machine Intelligence 71.6 (\-o% 1985). '00-707. IEEE.

(10] W. H. H. J. Lunscher and M. P. Beddoes. Optimal Edge Detector Design 1: Parameter Selection . .

and Noise Effects. Pattern Analysis and Machine Intelligence 8.2 (March 1986). 164-171. IEEE. %,.

(111 V. S. Nalwa. On Detecting Edges. Proceedings.- Image Understanding Workshop. October 1984.
157-164.

(121 A. Owen, A neighbourhood-based classifier for LANDSAT data, The Canadian Journal of*
Statistics 12.3 (September 1984), 191-200, Statistical Society of Canada.

(131 D. Sher, Developing and Analyzing Boundary Detection Operators Using Probabilistic Models.
Work shop on Probability and Uncertainty in Artificial Intelligence. August 1985.

[141 D. B. Sher, Evidence Combination for Vision using Likelihood Generators, Proceedings: Image
Understanding Workshop (DARPA). December 1985, 255-270. Sponsored by: Information
Processing Techniques Office Defence Advanced Research Projects Agency.

B-229

%iv
% N'"N

1151 V. Torre and T. A. Poggio. On Edge Detection. Pattern Analysts and Al Aclrtne Intiligence /u
(March 1986). 147-163. IEEE.

0~

B-23

0",* 406N

V~' vl< .. 2
-l% *Ario'4 .

4.4

ZVt

JIM.R-

S4 ko"A

44P Aa h. tr r nd. a '

.C~1 ' 4tt '1tc 'eaA c

*44ttts.~ '4& .arwLs," a

24h1, *M att ;t-kt7 g N%
r')

";k

, 't-kVA." .&

-t

I D

/00

-~
- w w D

w o
W

w w-

I L ,

0 ..

