

UNCLASSIFIED
SECURITY CLASSFICATION OF TH:S PACE

Block 10 (Cont'd)

Program Element Number	Project Nufber	Task Number	Work Unit Number
62702F	4594	18	E2
61101F	LDFP	15	C4
$61102 F$	2304	J5	01
33126 F	2155	02	10

Block 16 (Cont'd)
This effort was funded partially by the Laboratory Directors' Fund.

Part B: Parallel, Structural and Optimal Techniques in Vision

Christopher M. Brown
Computer Science Department
University of Rochester
Rochester, NY 14627

Table of Contents
B. 1 Computer Vision and Structure B-1
B. 2 A Probabilistic Approach to Low-Level Vision B-2
B. 3 Information Fusion for Multi-Modal Segmentation B-3
B. 4 Computer Vision on a Multiprocessor B-4
B. 5 Analyzing Massively Parallel Computation B-6
B. 6 References B-7
Appendix B-1 DARPA Parallel Architecture Benchmark Study B-11
Appendix B-2 Rover Programmer's Guide B-63
Appendix B-3 Roving Eyes -- Prototype of an Active Vision System B-80
Appendix B-4 The Automatic Generation of Digital Terrain Models From Satellite Images by Stereo B-109
Appendix B-5 Subgraph Isomorphism on the BBN Butterfly Multiprocessor B-119
Appendix B-6 Advanced Likelihood Generators for Boundary Detection B-139
Appendix B-7 Evidence Combination Using Likelihood Generators B-190
Appendix B-8 Optimal Likelihood Generators for Edge Detection under Gaussian Additive Noise B-219

B. 1 Computer Vision and Structure

Paul Cooper's goal is to do object recognition, using structural (relational) information about the object rather than global properties such as shape [Cooper 1987]. The other characteristic that sets this work apart is the large database of models from which identification is to take place. This work is applicable to any object-recognition situation in which the relations of the parts form an appreciable part of the semantics of the configuration. For instance, it could be used to classify arrangements of units deployed in a tactical situation into such classes as "convoy," "patrol," "defensive line," etc.

The work has taken three main paths simultaneously:

1) Development of a prototype end-to-end system, experimentation with it, and documentation of results.
2) Work on stereo from structure.
3) Work on uncertainty in recognition from structure.

Each is expanded upon briefly below.

B.1.1 Prototype end-to-end System

Work on this system was begun in the spring of 86, with Susan Hollbach, Nigel Goddard, and Jerry Feldman [Hollbach 1986]. In the fall and winter, Cooper's primary focus was upon making some major improvements to the algorithm, establishing a broader rationale for the approach taken, performing some detailed analysis of the expected performance of the algorithm, and performing a long series of much more comprehensive experiments. Some modules of the algorithm were implemented in parallel upon the butterfly parallel processor by Steve Whitehead.

A paper documenting the results was submitted to ICCV and AAAI-87. The paper as well as a videotape and operational demo of the system were presented at the 1987 DARPA Image Understanding Workshop [Cooper and Hollbach 1987]. Overall, we now have a good idea of the capabilities and limitations of the system.

B.1.2 Stereo from Structure

A potential requirement for 3D input into the recognition process prompted work on porting a stereo algorithm Cooper developed in other work [Cooper et al. 1985]. After extensive recoding and porting, the system is now operational and easily usable on our new Sun3 with floating point accelerator. In [Cooper 1987], Cooper explored the relationship between the domain and the underlying principles that made the stereo work successful. This paper was prepared in December/January 1986.

B.1.3 Uncertainty in Recognition from Structure

The necessity of working with imperfect and incomplete data necessitates handling uncertainty in recognition from structure. Cooper attended a course on uncertain inference in the fall of 1986, for which he prepared a number of small but relevant papers, for orientation toward this goal. He has recently spent a larger fraction of his time working upon this problem, the results of which will be reported upon shortly.

B. 2 A Probabilistic Approach to Low-Level Vision

Work has proceeded with a probabilistic approach to limited support boundary point detection. The approach uses the model developed in [Hueckel 1971] and [Canny 1986]-that is, step edges with uncorrelated Gaussian additive noise and linear blur. The algorithms implementing the approach can also handle other edge profiles and correlated noise. The algorithms return both probabilities and inverse probabilities, and have been shown to be superior to simple edge detectors such as those of Sobel and of Kirsch. These algorithms are documented in [Sher 1987a]. In the near future they will be tested against Nalwa's state-of-the-art edge detector [Nalwa and Binford 1986].

The detection algorithms have also been used for testing the theory for evidence combination developed in [Sher 1987b]. This work uses inverse probabilities (called likelihoods) for robust evidence combination. Inverse probabilities carry information about the fit of a model to the data thus can be used for added robustness. Work has shown that using the evidence combination to combine operators that assume differing levels of noise the combination achieves error rates as small as that of the best operator. Combining 9×9 and 5×5 detectors has resulted in detectors that have the noise resistance of the 9×9 detectors but the perturbation resistance of the 5×5 detectors (5×5 detectors are less sensitive to small perturbations from the model, such as having curved rather than straight edges). Combining different sized operators to get the strengths of both has long been an objective of computer vision [Marr 1982].

Sher's detectors have been tested using a set of graphics programs developed by Myra Van Inwegan. These programs generate images with shapes chosen at random with random intensities and positions. Van Inwegan also developed programs to add noise of specified distribution mean and standard deviation to images. An upcoming technical report describes this package.

All of this work was done using the $\mathrm{C}++$ image processing environment. This environment makes it easy to implement simple image processing routines in a file format independent manner. This image processing environment is available in the public domain.

Sher has also consulted with Paul Chou on his work on information fusion for vision. Chou is using Sher's software as a first stage for his Markov random field work based on [Marroquin 1985] and documented in [Chou 1987].

A probabilistic approach also facilitates the low-level vision task of template matching. Template matching is used for object recognition. A template is a representation of the appearance of an object that is looked for in the scene. A probabilistic analysis of template matching yields algorithms to:

1) Translate the results of template matching into probabilities and inverse probabilities for the presence of the object.
2) Take the possibility of occluding objects into account with a Markov random field.
3) Weight a template in an optimal manner.

These techniques will be documented in Sher's forthcoming thesis.
Another profitable line of research involves deriving prior probabilities from user-provided models. As an example the prior probability of a boundary point can be deduced from the average size of objects in a scene.

B. 3 Information Fusion for Multi-Modal Segmentation

Chou's thesis research addresses the problem of integrating the disparate sources of information available in low-level image computations to obtain scene properties of the image segments. He has identified the different characteristics of the available information and has proposed integration tools to utilize them.

In [Chou and Brown 1987a, b], a probabilistic approach to combining information from various sources for image segmentation has been proposed. In this approach, observable evidence and prior knowledge are separately modeled due to their distinct characteristics. Bodies of evidence are modeled as opinions provided by a set of early visual modules about individual image elements based on disparate sources of image observations. These opinions, represented as likelihood ratios with respect to a set of hypotheses about the image elements, are combined coherently and consistently through a hierarchically structured knowledge tree by propagating each opinion up and down the tree with simple computations. The combined opinions are shown, under some conditional independence assumptions, to be the joint likelihood ratios in Bayesian probability theory. Prior knowledge of spatial interactions of the image features is modeled with Markov Random Fields so that it can be characterized by a small set of parameters associated with the various configurations of local neighborhoods. A posteriori probability distributions of segmentations resulting from combining the prior knowledge and the available opinions following Bayes' rule are maintained incrementally and represented in a distributed fashion. These distributed representations could be used by several
estimation methods, such as the simulated annealing algorithm for MAP estimations [Geman and Geman 1984] and the Monte Carlo algorithm for MPM estimations [Marroquin et al. 1985], to produce statistically optimal estimations for segmentations under Bayesian decision rationale.

Preliminary experimental results, with synthetically generated images as input and a set of likelihood edge detcctors [Sher 1987] to compute likelihood ratios, have shown several advantages of this approach:

1) Qualitative knowledge of the image features can be encoded adequately with the a priori probability distributions characterized by the local characteristics of Markov Random Fields.
2) Modules (experts) that know only a part of the set of hypotheses individually can be independently designed. Their opinions can be combined coherently.
3) Prior knowledge and observable information are integrated following Bayesian probability theory. The a posteriori probability distributions are constantly maintained to reflect the up-to-date knowledge.
4) Well-established statistical decision theories can easily be adopted to estimate segmentations.
5) The modularization of this approach simplifies the design and implementation of large low-level vision systems.

Chou [1987] has argued that stochastic estimation methods as well as some existing deterministic methods [Cohen and Cooper 1987] are inadequate for applications with computational constraints. In general, disparate sources of information might not be present at certain time and space. However, a segmenter should be able to provide higher-level processes reasonable segmentation estimations upon requests. With the above fusion mechanism, Chou has designed and implemented a deterministic estimation procedure that dynamically adjusts its estimations as new bodies of evidence arrive. Basically, this procedure maintains a priority queue; the image element with the least stable current estimation (under a stability measurement related to its neighboring estimations and external observations) is always the next to check. Like every deterministic localminimization algorithm, this procedure does not guarantee to lead to the MAP estimator. However, its results are comparable to the stochastic estimation methods and usually superior to the existing deterministic method. An intuitive explanation for these promising results is that this procedure starts with a reasonable initial estimation and follows a path that is likely to converge to good results. Chou and Raman have implemented a simulation package to compare various estimation methods. This package and a set of experimental results will be described in a forthcoming technical report [Chou and Raman 1987].

B. 4 Computer Vision on a Multiprocessor

B.4.1 Utilities and Benchmarks

Olson has been looking at software architectures for combining the output of independent low-level vision processes on the BBN Butterfly Multiprocessor. As a vehicle for studying these issues Olson implemented a two-dimensional image segmentor. The program iteratively splits regions taken from an active list until the list is empty; the choice of where to split is made by reconciling the recommendations of a user-supplied set of segmentation experts. The current implementation has only a single expert, a single-band version of the multiband histogram-based splitter used by Shafer and Kanade in the Phoenix system [Shafer and Kanade 1982]. Olson reported on his experiences with the segmentor at the DARPA Workshop on Blackboard Architectures for Image Understanding in June of 1986.

In support of the above work and in connection with Chris Brown's vision practicum course, Liudvikas Bukys and Olson adapted parts of the IFF/UBX image processing package to the Butterfly. As used at Rochester, IFF is an image file format, a standard filter-oriented style of writing vision applications, and a library of useful programs (filters, edge detectors, et cetera). Our efforts divided into three subprojects: a) Porting the IFF bit-oriented file packing and unpacking library to the Butterfly environment, b) providing an appropriate replacement for UNIX file system and pipes, and c) rewriting existing IFF utilities to take advantage of the Butterfly's capabilities. The first subproject was relatively simple, thanks to clean machine-independent design on the part of IFFs original authors. The only changes we made were to replace file accesses with access to TCP/IP connections to file server demons on remote machines. The second subproject was handled on the Butterfly end by a package (written by Olson). Olson joined several other members of the Rochester Vision Group in implementing the DARPA Image Understanding benchmark set [Simpson et al. 1986] on the Butterfly. For one benchmark Olson implemented a line-finding Hough Transform algorithm and compared it to a similar program he had written last year. This work is described in [Olson 1986b]. Olson also worked with Liud Bukys to adapt some of the BIFF utilities to meet the requirements of another of the DARPA benchmarks. He was able to show that for the benchmark tasks the Butterfly is almost completely CPU bound rather than communication bound. This work is described in a technical appendix to [Brown et al. 1986].

B.4.2 Concurrent Memory Allocation

In cooperation with Carla Ellis, Olson has been working on concurrent versions of the well-known first-fit memory allocation algorithm [Knuth 1968]. This work assumes a shared-memory machine supporting the fetch-and-add instruction [Gottlieb, Lubachevsky, and Rudolph 1983]; such machines include the BBN Butterfly, the NYU Ultracomputer [Gottlieb, Grishman et al. 1983] and the IBM RP3 [Pfister et al. 1985]. This work was motivated by our desire to improve on the solution of Stone [Stone 1982], which requires off-line storage proportional to the
number of blocks in the free storage list. We have designed a number of algorithms that trade overhead for concurrency in various ways. A description of the algorithms will appear in [Ellis and Olson 1987]. Stuart Friedberg provided valuable advice in the course of this work. Olson is implementing the algorithms on the Butterfly, and hopes ultimately to be able to evaluate their performance under various simulated load conditions.

B.4.3 Computational Models of Human Motion Perception

Olson has been studying the architecture of the human motion processing system. So far this has been mostly a matter of reviewing the literature rather than conducting new experiments, but it has led to some interesting conclusions. Following [Braddick 1974], Olson believes that the system can be divided into shortand long-range processes. However, it is clear from the nature of Braddick's experiments and the neurophysiological facts that the short-range process has a much greater spatial range than Braddick originally believed. Braddick set the limit of the short-range process at 15 min of arc. This value was accepted by Marr and Ullman [Marr 1980; Ullman 1979], and strongly affected their theories of motion processing. Olson prefers to identify the short-range process with receptive fields in striate visual cortex, and set the limit at one to two degrees of arc. Taken together witi classical work on apparent motion [Kolers 1972], this change leads to the following picture. The short-range process treats motion as an abstract property of the image function. It is retinotopic, two-dimensional, and ignores any higher-level information about the scene. It can serve as the basis for segmentation (as in Braddick's experiments) but does not operate on segmented input. Its output is probably a noisy approximation to the optical flow field. Exactly what mathematical property of the image it measures is subject to debate. Olson favors the modified spatio-temporal energy formulation of [Adelson and Bergen 1986], but other energy formulations [Watson and Ahumada 1985; Adelson and Bergen 1985; Van Santen and Sperling 1985] or gradient-based methods [Fennema and Thompson 1979; Horn and Schunck 1981] are also reasonable. All of these methods compute more or less the same thing, so Olson does not regard the debate as crucial to his work.

The long-range process is vastly different. Its spatial range covers nearly the whole visual field, and it integrates information over time intervals as long as half a second. For the long-range process, motion is a property of high-level features (segments or objects). It recognizes the identity of objects over time and, in the special case of an apparent motion stimulus, chooses correspondences between features. Its choice is based on a complex metric involving plausibility of the speed and trajectory, figural match, salience, and even the expectations and desires of the observer.

B. 5 Analyzing Massively Parallel Computation

Recently, researchers in Artificial Intelligence have been actively investigating various connectionist models of computation, also referred to as neural networks. Sara Porat frames her work in this area mostly as a connectionist model, defined by elementary processors that are similar to binary threshold units. Thus, we assume a
finite discrete space of states. This architecture has became one of the popular means of exploring the question of intelligence. Some recent works relate to the connectionist model as a model of computation and discuss its similarity to other non-uniform computational models, its computational power, and its complexity. We proceed in this direction and explore theoretic arguments that are natural in usual computational models, within this context of neural networks.

The model that is often studied is that cr an asynchronous, symmetric network, where a global energy/goodness measure can be established and used to prove that the network totally stabilizes. This symmetry condition is somewhat unnatural for biological reasons, and moreover it precludes many computations that are biologically important. Certainly, any behavior that requires a loop, cycle or oscillation cannot be described by a monotonic goodness function.

In [Porat 1987] we discuss asymmetric networks, that might admit infinite activated computations. Within this framework, we define an operational semantiss and analyze formally flow properties of some specific structured network with respect to a given specification (or correctness criterion) that characterizes the dynamics of an oscillator. We discuss the influence of a formal specification on the design of the network's structure, computational ability of its units, connections between them and rules of timing. We prove formally the behavioral correctness of some implementations, using a slightly different approach from that defined through the energy function, basically by proving logical assertions.

By shifting the discussion to asymmetric neural networks, it is natural to ask, for a given network, whether or not it stabilizes totally. We regard this property of stability as a major specification, while characterizing the behavior of a given network. This raises the importance of exploring the complexity of this decidable question. We prove the NP-hardness of this question under a synchronous activation rule, and similarly under a fair asynchronous rule. We also show that this problem is solvable in polynomial space. This investigation is original in this context of neural networks, and it motivates further research on other correctness assertions within this model.

This year, Porat attended the Foundations of Computer Science (FOCS) Conference in Toronto (October 1986), and was invited by the Computer Science Department at Carnegie Mellon Uriversity to give a seminar on the subject "Fairness in Models for Nondeterministic Computations" (November 1986).

B. 6 References

Adelson, E.H., and J.R. Bergen. Spatiotemporal Energy Models for the Perception of Motion, J. Opt. Soc. Am. A. 2, 2, 1985.

Adelson, E.H., and J.R. Bergen. The Extraction of Spatio-temporal Energy in Human and Machine Vision, Proc., IEEE Workshop on Motion Representation and Analysis, Kiawah, SC, 1986.

Braddick, O.J. A Short-Range Process in Apparent Motion, Vision Research 14. 1974.

Brown, C.M., R. Fowler, T. LeBlanc, M. Scott, M. Srinivas, L. Bukys, J. Costanzo, L. Crowl, P. Dibble, N. Gafter, B. Marsh, T. Olson, and L. Sanchis. DARPA Parallel Architecture Benchmark Study, Butterfly Project Report 13, Computer Science Dept., Univ. Rochester, October 1986.

Canny, J. A Computational Approach to Edge Detection, IEEE Trans. on Pattern Analysis and Machine Intelligence PAMI-8, 6, 679-698, November 1986.

Chou, P.B. Multi-Modal Segmentation Using Markov Random Fields, to appear, Proc., IJCAI-87, Milano, Italy, August 1987.

Chou, P.B. Dynamic Multi-Modal Image Segmentation, internal documentation, Computer Science Dept., Univ. Rochester, March 1987.

Chou, P.B. and C.M. Brown. Multi-Modal Segmentation Using Markov Random Fields, Proc., Darpa Image Understanding Workshop, 663-670, Feb. 1987a.

Chou, P.B. and C.M. Brown. Probabilistic Information Fusion for Multi-Modal Image Segmentation, to appear, Proc., IJCAI-87, August 1987b.

Chou, P.B. and R. Raman. Relaxation Algorithms Based on Markov Random Fields, forthcuming Technical Report, Computer Science Dept., Univ. Rochester, 1987.

Cohen, F.S. and D.B. Cooper. Simple Parallel Hierarchical and Relaxation Algorithms for Segmeating Noncausal Markovian Random Fields, IEEE Trans. Pattern Analysis and Machine Intell. PAMI-9, 2, 195-219, March 1987.

Cooper, P.R. Order and Structure in Correspondence by Dynamic Programming, submitted, International Journal of Computer Vision, January 1987.

Cooper, P.R. and S.C. Hollbach. Parallel Recognition of Objects Comprised of Pure Structure, Proc., DARPA IU Workshop, Los Angeles, CA, February 1987; submitted, AAAI-87.

Cooper, P.R., D.E. Friedmann and S.A. Wood. The Automatic Generation of Digital Terrain Models from Satellite Images by Stereo, 36 th Congress of the Int'l. Astronautical Federation, Stockholm, Sweden, October 1985; to appear, Acta Astronautica.

Ellis, C.S. and T.J. Olson. Parallel First Fit Memory Allocation, to appear, Proc., IEEE Int l. Conf. on Parallel Processing, 1987.

Fennema, C.L., and W.B. Thompson. Velocity Determination in Scenes Containing Several Moving Objects, Computer Graphics and Image Processing 9, 1979.

Geman, S. and D. Geman. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images, IEEE Trans. Pattern Analysis and Machine Intelligence PAM1-6, 6, 1984.

Gottlieb, A., B.D. Lubachevsky, and L. Rudolph. Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors. ACM Trans., Programming Languages and Systems 9, 6, April 1983.

Gottlieb, A., R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph and M. Snir. The NYU Ultracomputer--Designing an MIMD Shared Memory Parallel Computer, IEEE Trans. Computers 32, 2, February 1983.

Hollbach, S.C. Tinker Toy Recognition from 2D Connectivity, TR 196, Computer Science Dept., Univ. Rochester, October 1986.

Horn, B.K.P. and B.G. Schunck. Determining Optical Flow, Artificial Intelligence 17, 1981.

Hueckel, M.H. An Operator Which Locates Edges in Digitized Pictures, Journal of the Assoc. for Computing Machinery 18, 1, 113-125, January 1971.

Kolers, P.A. Aspects of Motion Perception. New York: Pergamon Press, 1972.
Knuth, D.E. The Art of Computer Programming, Vol. 1: Fundamentai Algorithms. Addison-Wesley, 1968.

Marr, D. Vision. San Francisco: W.H. Freeman, 1980.
Marroquin, J.L. Probabilistic Solution of Inverse Problems, Tech. Rept. 860, MIT Artificial Intelligence Laboratory, September 1985.

Marroquin, J.L., S. Mitter, and T. Poggio. Probabilistic Solution of Ill-Posed Problems in Computational Vision, Proc., DARPA Image Understanding Workshop, December 1985.

Nalwa, V.S. and T.O. Binford. IEEE Trans. Pattern Analysis and Machine Intelligence PAMI-6, 679-698, November 1986).

Olson, T.J. An Image Processing Package for the BBN Butterfly Parallel Processor, Butterfly Project Report 9, Computer Science Dept., Univ. Rochester, August 1986a.

Olson, T.J. Finding Lines with the Hough Transform on the BBN Butterfly Parallel Processor, Butterfly Project Report 10, Computer Science Dept., Univ. Rochester, August 1986b.

Olson, T.J., L. Bukys and C.M. Brown. Low-level Image Analysis on an MIMD Architecture, to appear, Proc.. First Int ${ }^{\prime}$ l. Conf. on Computer Vision, London. June 1987.

Pfister, G.F., W.C. Brantley, D.A. George, S.L. Harvey, W.J. Kleinfelder, K.P. McAuliffe, E.A. Melton, V.A. Norton and J. Weiss. The IBM Research Parallel Processor Prototype (RP3): Introduction and Architecture, Proc., ICPP, 1985.

Porat, S. Stability and Looping in Connectionist Models with Asymmetric Weights, TR 210, Computer Science Dept., U. Rochester, 1987.

Porat, S. and N. Francez. Fairness in Context-Free Grammars under Every ChoiceStrategy, to appear, Information and Computation, 1987.

Shafer, S. and T. Kanade. Recursive Region Segmentation by Analysis of Histograms, Proc.. IEEE Int l. Conf. on Acoustics, Speech, and Signal Processing. Paris, France, May 1982.

Sher, D.B. Evidence Combination Based on Likelihood Generators, TR 192, Computer Science Dept., Univ. Rochester, January 1987 a.

Sher, D.B. Advanced Likelihood Generators for Boundary Detection, TR 197, Computer Science Dept., Univ. Rochester, January 1987b.

Simpson, R., S. Squires, and A. Rosenfeld. Strategic Computing Vision Architecture Benchmarks, private communication, July 1986.

Stone, H.S. Parallel Memory Allocation using the FETCH-AND-ADD instruction, IBM T.J. Watson Research Center Tech. Rept. RC9674, November 1982.

Ullman, S. The Interpretation of Visual Motion. Cambridge, MA: MIT Press, 1979.
van Santen, J.P.H. and G. Sperling. Elaborated Reichardt Detectors, J. Opt. Soc. Am. A 2, 2, 1985.

Watson, A.B. and A.J. Ahumada, Jr. Model of Human Visual-Motion Sensing, J. Opt. Soc. Am. A 2, 2, 1985.

DARPA Parallel Architecture Benchmark Study

C. Brown, R. Fowler, T. LeBlanc, M. Scott, M. Srinivas, L. Bukys, J. Costanzo, L. Crowl, P. Dibble, N. Gafter, B. Marsh, T. Olson, L. Sanchis

October 1986

Abstract

In intensive work over a four-week period in the summer of 1986, seven problems were studied and implemented on the Butterfly. The problems were inspired by various capabilities in computer vision, and were proposed as benchmarks for a DARPA workshop on parallel architectures. They were: convolution and zero-crossing detection for edges, edge tracking, connected component labeling, hough transform, three computational geometry problems (convex hull, voronoi diagram, and minimum spanning tree), three-dimensional visibility calculations, subgraph isomorphism and minimum cost path calculation. BPRs 10, 11, and 14 are detailed reports on three of the problems. BPR13 contains the conclusions of the study and writeups of the work not covered in other BPRs.

This work was supported in part by the Defense Advanced Research Projects Agency U.S. Army Topographic Labs under grant number DACA76-85-C-0001 and in part by the National Science Foundation under grant number DCR-8320136.

Table of Contents

1. Overview
2. Problem Specifications
3. Edge Finding and Zero-Crossing Detection
4. Connected Component Labeling
5. Hough Transformation
6. Geometrical Constructions
7. Visibility Calculations
8. Graph Matching
9. Minimum-Cost Path

In this document
In this document
In this document
Butterfly Project Report 11
Butterfly Project Report 10
In this document
In this document
Butterfly Project Report 14
In this document

Chapter One: Overview

Overview

Christopher Brown, Tom LeBlanc, Michael Scott

Computer Science Department
29 August 1986

1. Disclaimer

The University of Rochester's response to the DARPA Architecture Workshop Benchmark Study request was a three-week period of activity, commenced from a standing start with the arrival of the problem specifications (Chapter 2). During this time the researchers had to make difficult technical decisions very quickly and to implement and run experiments under severe time pressure. Often sub-optimal methods were chosen for practical reasons. Some of the work has led to internal technical reports, and much of the work is being followed up and will appear in more finished form elsewhere. The contents of this report represent a snapshot of work not currently written up elsewhere, as of our self-imposed deadline of 1 September 1986 (The Architecture Workshop was later rescheduled to mid-November 1986).

The contents of this report represent preliminary work, and should not be considered our best or final answers to the various levels of problems raised by the Benchmark Study.

2. The Study

Rochester's DARPA Architecture Workshop Benchmark Study is made up of several chapters, each written by an individual or a small group. This, Chapter 1, gives an overview of the work and the resulting conclusions. Chapter 2 is a formatted version of the original memo that gave the problem specifications.

The remainder of this document, Chapters $3-9$, along with separate Computer Science Department Butterfly Project Reports, (numbers 10, 11, and 14) detail technical aspects of our work on individual problems. Generally there is one chapter per problem, except that we used the connected components algorithm (Problem 2, described in BPR 11) to do edge-following (Problem 1.c.) as well. Thus Chapter 3 gives results on edge-finding and zero-crossing detection, while Chapter 4 (BPR 11) discusses the work on edge-following and connected components. Chapte 5 is equivalent to $B P R 10$ and Chapter 8 is equivalent to BPR 14.

3. The Effort

Over a three-week period, several students and faculty at the University of Rochester's Computer Science Department worked on the seven architecture
benchmarks proposed by Rosenfeld, Squires, and Simpson (Chapter 2). Because of the short time and limited personnel resources available, the results reported here should not be considered as our last word on any of the problems. We did, however, find the exercise to be stimulating and a good investment. Our report takes the form of this brief summary document and a collection of chapters written by individuals and small groups who addressed individual problems.

Those directly involved in the effort were two staff members, five faculty members, and six graduate students varying from pre-first-year to third year in the areas of artificial intelligence, systems, and theory. The concentration of work was relatively intense, varying from approximately 20% effort to 75% effort per person over the three week

Rochester's place in the Strategic Computing program is to investigate and build programming environments for parallel vision. With this charter, we felt that the more benchmark implementations we could build the better. Further in the area of programming advanced parallel architectures, often interesting software engineering must be done to improve implementations in the face of performance facts. We believe that theoretical or simulated results, while safer to propound, are of limited interest. Beyond our desire to get programs running, our goals were diverse.
(1) The primary goal is to evaluate the Butterfly Parallel Processor architecture and its existing software resources.
(2) Some of us wanted to use and test utilities we had already developed (e.g. the BIFF utilities used for the edge-finding task and the UNION-FIND package used for connected component labelling.)
(3) Some wanted to code applications in recently-implemented parallel languages and program libraries (e.g. LYNX was used in the triangle visibility task, and the Structured Message Passing library was used in the shortest path problem).
(4) Some wanted to modify and extend existing projects (e.g. the undirected edge-detector extension for the Hough transform task. Another example was an experimental modification of a clustering program to do the minimum spanning tree task -- that work is not reported here.)
(5) Some wanted to explore the mapping of current parallel algorithms from the theoretical literature onto parallel architectures, and to open research avenues in this direction (e.g. the subgraph isomorphism task, which has already generated interesting new scientific results, and the computational geometry tasks).
There was little problem in implementing most of the problems. All told, four programming environments were used:
(1) C and raw Chrysalis (the Butterfly operating system)
(2) The Uniform System of BBN
(3) Structured Message Passing (developed at Rochester)

LYNX (ported to the Butterfly at Rochester).
The programmers ranged from naive first-time users of the Butterfly to highly experienced and sophisticated programmers who could (and did) modify system internals to improve performance.

4. The Problems

The original problem statements appear in the next chapter. Detailed writeups of our approach to and results on the problems follow in separate chapters. The problem statements were followed as closely as made sense given the scientific goals of the study. For example, in the triangle visibility problem, floating point was not used because the inefficient software implementation of floating point would distort the interesting statistics. (The Butterfly does in fact need the Floating Point Platform upgrade if it is to be useful in serious scientific computing.) In the convex hull problem we went to a larger-than-specified problem size because of results with sequential implementations, and in the graph isomorphism problem we used a smaller problem size than specified for technical reasons. An ambiguity in the shortest path problem statement was interpreted in a way that was not advantageous to the Butterfly architecture but seemed to be indicated by the "hint" in the problem statement, and which was more practical given the time constraints. Wherever we have changed a problem specification we have tried to explain why, and tried to indicate responsibly what the consequences of literal interpretation would have been.

We chose the Butterfly several years ago because, among other things, its hardware architecture imposed the least constraint on the abstract models of computation it supported. Thus mapping problems onto the Butterfly is a doubly interesting exercise. There is a theoretical phase in which a good algorithm (using one or another abstract computational model) is chosen and the abstract model is matched with a Butterfly programming environment. Then there is an engineering phase in which the implemention is built and made efficient. The best results occur when both these phases are done well. In this set of problems sometimes the first phase went well but the second phase was not attempted (as in the geometry problems we did not implement) or needs more work (as in the triangle visibility problem). Also there were some cases in which the first phase was given short shrift because it looked like a research problem (e.g. the subgraph isomorphism problem), but the second phase was done very stylishly.

The computational domain of the benchmark was not one that could fully take advantage of the Butterfly's MIMD architecture. One computational aspect lacking in the benchmark problems is the case of a cooperating set of independent programs, such as occurs in client-server models. The benchmark tested performance (of programmers, languages, architectures, operating systems, programming environments) on single algorithms solving easily-stated problems. This limitation is worth noting since, in advanced systems, cooperation and
communication between basically independent processes will be important. Also the benchmark problems were small compared to a working AI system. Another set of benchmark problems to illuminate these issues could be proposed and might include construction of a file system, or a system in which results of disparate, asynchronously computed results are merged.

Within its limited perspective, the benchmark did comprise a diverse and challenging set of problems, and allowed us to reach several conclusions. For details on the technical approaches, performance, and individual conclusions, see the following chapters. The next section gives some highlights of our observations.

5. Observations

It is difficult to boil down the diversity of our results into a small set of out-of-context conclusions. Nevertheless, the following observations seem safe.
(1) During the last year, advances made at BBN and at the University of Rochester have made the Butterfly much easier to program under several complementary models of computation. A programmer starting with only a knowledge of standard sequential programming can now produce parallel programs (in the Uniform System or Structured Message Passing) in a day or two. Alternatively, knowing a modern language like Ada would make learning LYNX, and subsequent Butterfly programming, quite easy.
(2) The Butterfly can be efficiently (as well as easily) programmed using several "virtual architectures" (models of parallel computation).
(3) The Butterfly architecture can implement a wide variety of abstract parallel models of computation. Further, the combination of significant local memory and quickly accessible "shared" memory gives the capability for several complementary types of parallelism working together. While programming environments that emphasize one or another parallel model are available now. a single environment that gives the programmer access to a mix of computational models is not. The subgraph isomorphism problem illustrates one case in which a mix would have been useful. At Rochester the PSYCHE project has the goal of providing unified support for a variety of parallel computation models, including both shared memory and message-passsing.
(4) For serious work in the area of scientific computation covered in the benchmark, and probably for general programs, the new Butterfly Floating Point Platform is a necessity. Both floating point operations and integer multiplies are a serious bouleneck (see the Hough Transform Problem).
(5) Microcode support for debugging and performance monitoring would be a significant improvement. There would be considerable payoff in a small microcode fix to provide 32 -bit atomic operations. One specific (and easy) upgrade would be microcode hooks to allow logging atomic operations. This facility would allow a reliable record of the order that processes enqueued entries on dual queues.
(6) Memory management is a serious problem. The scarcity of Segment Attribute Registers makes their management a major concern. The inability of the 68000 to do demand paging is also awkward (here again the problem is solved by the Floating Point Platform upgrade). Very large memory objects (larger than one physical memory) are an interesting issue that a few groups are working on -- some benchmark problems (e.g. shortest path) expose the desirability of a clean solution for the large object problem.
(7) A switch that supported simultaneous communication with several destinations would improve the implementation of broadcast or multicast communication used in many algorithms. A combining switch might reduce memiory contention, but its efficacy is a research issue.
(8) The Uniform System really provides a global shared name space, not a shared memory. To achieve good speedup of parallel algorithms, local memory must be used to avoid memory contention. Even knowing the standard tricks is not enough to guarantee good performance. The Hough Transform chapter provides an interesting example evolution of program ameliorations. A "shared memory" (as in the planned Monarch) would seem to support Uniform System style programming better. However, it is doubtful that remote memory can ever be made as fast as local memory, and so the localglobal question cannot be avoided. A very fast block-transfer capability would improve matters in the current architecture, and would not close off any options in the computational models the Butterfly would support. However, the block-transfer fix does not address the local-global conflict at the conceptual level. Similarly, the fast-switch "shared-memory" does not solve the local-global conflict at the technical level. What is needed perhaps is continued diversification of the abstract models of computation available and in the programming environments that support them.
(9) Amdahl's law is important, and any serial program behavior has serious adverse consequences in speedup performance. Such serialization sometimes hides in the system software and special effort (and talent) are required to avoid or fix it (e.g. the parallel memory allocation modification introduced in the convex hull implementation). The timings shown in Chapter 4 (BPR 11, connected components) and Chapter 7 (triangle visibility) are revealing. Systems code to allocate memory and replicate data dominates times if it is not parallel.
(10) Software to support (efficiently) many more processes than processors on the Butterfly would make implementing a great many important algorithms easier. There are many algorithms in which a process is dynamically allocated to each problem object (e.g. the nodes of a graph), for large numbers of objects. The Uniform System does not answer because it is unable to do process synchronization: processes cannot be blocked, unscheduled, awakened, etc. One reasonable response to this need would be a programming environment such as Concurrent Euclid (Ada would be usable
but not as good), with monitors or a similar means of concurrency control/encapsulation. The actual composition of the environment is a research issue, but it may be necessary to have something like a full blown object-oriented system in which tasks are represented as first class entities encapsulating data, code, and process.

6. Conclading Remarks

The Benchmark Study was a stimulating exercise that served several purposes at Rochester. It has led to new software utilities, to new understandings of Butterfly strengths and weaknesses, to applications for new programming environments developed at Rochester, and to new research avenues in parallel algorithm theory and development. It has encouraged us that our work in building programming environments for the Butterfly has been effective.

Several of the benchmark problems (e.g. the geometry problems) were useful but uncomfortable because they underlined current weak points in the programming systems we have. The graph algorithms need a high degree of cheap (i.e. not SMP or LYNX) parallelism that is independent (i.e. not US-style) -- thus they exposed fruitful areas for future research. We welcome such problems. Our goal is to get the most out of the fexible MIMD architectures of the future, and "counterexamples" to current solutions are always interesting and important. We believe that one of the most promising and important research areas centers around the goal of a single programming environment that can take advantage of the potential for several sorts of parallelism in tightly-coupled MIMD computers, and we are now working actively in in that area.

We believe that much can and will be gained by continuing with the method we have been pursuing at Rochester -- a symbiosis of theoretical, systems, and applications research. We shall continue to build systems for internal and external use that incorporate our theoretical insights and meet the needs of applications. With the basic research underlying the systems, and with the systems as tools, we and others will move forward toward understanding and controlling state-of-theart parallel programming systems.

Chapter Two: Problem Specifications

DRAFT

MEMO TO: Designers of architectures for image understanding (IU)
FROM: Azriel Rosenfeld, Bob Simpson, Steve Squires
SUBJECT: New architectures for IU
DARPA plans to hold a workshop during the week of Sep- tember 8 in McLean, Virginia to discuss what the next steps should be in developing IU architectures that could be available to researchers by the 1990 's.

A lot is known about architectures for low-level vision, but we need to move toward systems that can handle the total vision problem, including both the low- and high- level ends as well as the interface between the two.

Appended to this memo is a set of "benchmark" IU problems. We have tried to define them as precisely as pos- sible, so as to make it possible to predict how a given sys- tem would perform on them. (We have provided some references to the relevant literature for your convenience.)

You are invited to make such predictions for your (existing or proposed) systems, and to prepare a short paper documenting the results. This paper should be sent to us for distribution to the Workshop attendees by mid August, so everyone will have a chance to evaluate the results and dis- cuss them at the Workshop. If your system is not very effi- cient at some of the tasks, you may wish to indicate how you would improve or augment it to make it more efficient.

We look forward to hearing from you and to seeing you at the Workshop.

Appendix: IU benchmarks

(1) Edge detection

In this task, assume that the input is an 8 -bit digital image of size 512×512 pixels.
a) Convolve the image with an 11×11 sampled "Laplacian" operator [1]. (Results within 5 pixels of the image border can be ignored.)
b) Detect zero-crossings of the output of the operation, i.e. pixels at which the output is positive but which have neighbors where the output is negative.
c) Such pixels lie on the borders of regions where the Laplacian is positive. Output sequences of the coordinates of these pixels that lie along the borders (On border following see [2], Section 11.2.2.)
(2) Connected component labeling

Here the input is a l-bit digital image of size 512×512 pixels. The output is a 512×512 array of nonnegative integers in which
a) pixels that were 0 's in the input image have value 0
b) pixels that were l's in the input image have positive values; two such pixels have the same value if and only if they belong to the same connected component of l's in the input image.

On connected component labeling see [2], Section 11.3.1.)
(3) Hough transform

The input is a 1 -bit digital image of size 512×512. Assume that the origin $(0,0)$ image is at the lower left-hand corner of the image, with the x-axis along the bottom row. The output is a 180×512 array of nonnegative integers constructed as follows: For each pixel (x, y) having value l in the input image, and each $\mathrm{i}, 0 \ll \mathrm{i} \ll 180$, add 1 to the output image in position (i, j), where j is the perpendicular distance (rounded to the nearest integer) from $(0,0)$ to the line through (x, y) making angle i -degrees with the x -axis (measured counterclockwise). (This output is a type of Hough transform; if the input image has many collinear l's, they will give rise to a high-valued peak in the output image. On Hough transforms see [2], Section 10.3.3.)
(4) Geometrical constructions

The input is a set S of 1000 real coordinate pairs, defining a set of 1000 points in the plane, selected at random, with each coordinate in the range [0,1000]. Several outputs are required.
a) An ordered list of the pairs that lie on the boundary of the convex hull of S, in sequence around the boundary. (On convex hulls see [3], Chapters 3-4.)
b) The Voronoi diagram of S, defined by the set of coordinates of its vertices, the set of pairs of vertices that are joined by edges, and the set of
rays emanating from vertices and not terminating at another vertex. (On Voronoi diagrams see [3], Section 5.5.)
c) The minimal spanning tree of S, defined by the set of pairs of points of S that are joined by edges of the tree. (On minimal spanning trees see [3], Section 6.1.)
(5) Visibility

The input is a set of 1000 triples of triples of real coordinates ($(\mathrm{r}, \mathrm{s}, \mathrm{t}),(\mathrm{u}, \mathrm{v}, \mathrm{w}),(\mathrm{x}, \mathrm{y}, \mathrm{x})$), defining 1000 opaque triangles in three-dimensional space, selected at random with each coordinate in the range $[0,1000]$. The output is a list of vertices of the triangles that are visible from ($0,0,0$).
(6) Graph matching

The input is a graph G having 100 vertices, each joined by an edge to 10 other vertices selected at random, and another graph H having 30 vertices, each joined by an edge to 3 other vertices selected at random. The output is a list of the occurrences of (an isomorphic image of) H as a subgraph of G . As a variation on this task, suppose the vertices (and edges) of G and H have real-valued labels in some bounded range; then the output is that occurrence (if any) of H as a subgraph of G for which the sum of the absolute differences between corresponding pairs of labels is a minimum.
(7) Minimum-cost path

The input is a graph G having 1000 vertices, each joined by an edge to 100 other vertices selected at random, and where each edge has a nonnegative real-valued weight in some bounded range. Given two vertices P, Q of G, the problem is to find a path from P to Q along which the sum of the weights is minimum. (Dynamic programming may be used, if desired.)

References

(1) R.M. Haralick, Digital step edges from zero crossings of second directional derivatives, IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 1984, 58-68.
(2) A Rosenfeld and A.C. Kak, Digital Picture Processing (second edition), Academic Press, New York, 1982.
(3) F.P. Pieparata and M.I. Shamos, Computational Geometry - An Introduction, Springer, New York, 1985.

Chapter Three: Edge Finding and Zero-Crossing Detection

Task One : Edge Detection
Thomas J. Olson

1. Introduction

The task is to detect edges in an eight-bit digital image of size 512×512 pixels. It is divided into three steps: convolution with an 11×11 Laplacian-of-Gaussian operator, zero crossing detection, and chain encoding sequences of connected zero crossings. In these experiments steps a) and b) were handled using image processing utility functions from the Butterfly IFF (BIFF) image processing library [3]. Step c) was performed by a special purpose routine adapted from a connected component labelling function. The test image was a densely textured natural scene in which approximately 25% of the pixels in the zero crossing image were ones. Our conclusions, briefly, are that for the 119 -node Butterfly
a) convolution takes 3.48 seconds,
b) zero crossing detection takes 0.16 seconds, and
c) finding chain codes for lines takes 1.47 seconds for this image.

These times are for computational kernels; they do not include ime to load the image, allocate memory for the output, et cetera. The sections that follow present implementation details and benchmarks for the first two steps. The third is described in the attached Butterfly Project Report [2].

2. Convolution

The convolution was performed by convolve(, the library version of the BIFF utility iffconvolve. Convolvel uses the Uniform System library [1] to perform a parallel FOR loop over rows of the output image. Each process created in this way does a sequential loop over rows of the mask; for each mask row it makes local copies of the appropriate mask and image rows and then does a linear convolution of the copied rows into a local array of 32 -bit accumulators. Finally, it divides each accumulator by the user-supplied divisor and copies it to the output image.

It is easy to see that in order to produce an output, convolve 0 must perform $\left(502^{2}\right)\left(11^{2}\right)=30,492,484$ multiplications. (The first term involves 502 rather than 512 because we ignore outputs within five pixels of the border.) Because it does so many multiplications, the execution time of convolve) is dominated by the 68000's multiplication time. Unfortunately the current Butterfly C compiler generates a call to an integer (32 -bit) multiply routine even when the arguments are both shorts. Figure 1 shows timings and speedup curves for four versions of iffconvolve running an 11 by 11 mask on a 512 by 512 image. The first is coded in standard optimized C. The second replaces the multiplication in the innermost loop with a call to an assembly language B-25
short multiply routine. For the third, we edited the compiler's assembly language output to replace the subroutine call with an in-line short multiply instruction. This is the version normally kept in the BIFF library. In the last version we replaced the multiply instruction with an addition. This gives an incorrect output, but indicates the sort of performance we might expect from a Butterfly with a fast full-parallel multiplier.

The convolve O routine is written to be as general as possible and therefor does not take advantage of some features of the problem as stated. First, the Il by 11 mask to be used is known at compile time. This makes it possible to avoid copying the mask rows into local memory at execution time. The copy operation is quite fast, so we would expect the principal effect of this change to be a reduction in memory contention. The speedup curves of Figure 1 indicate that memory contention is not a serious problem for convolve (, so the net effect would be minor. Second, the mask is symmetrical. By factoring appropriately, the number of multiplies that the convolver must do can be cut almost in half. For example, a process working on input rows 0 through 10 would add row 10 to row 0 , row 9 to row 1 et cetera, and then convolve rows 0 through 5 with rows 0 through 5 of the mask. Figure 2 shows the effect of these optimizations on the standard and simulated fast multiply versions of convolve).

It should be noted that if we are willing to accept an approximation to the laplacian of a gaussian, we can speed the computation up substantially. Since gaussian masks are $x-y$ separable, we can reduce convolution with an llxll mask to two convolutions with 11×1 masks. We can take advantage of symmetry as before, so that for each convolution we do 6 multiplies and 11 adds per pixel. The cost of an 11×11 gaussian convolution then becomes a mere $3,084,288$ multiplies and $5,654,528$ additions. We can compute the laplacian of the result by convolving with a 3×3 laplacian approximator. However, this method gives a relatively poor approximation to the truth. Better, though slightly more expensive, is to use the Difference of Gaussian (DOG) approximation, which requires two llxll convolutions followed by a pointwise difference. We have not benchmarked this method, but expect that it would reduce execution times by at least a factor of three (to about 1.1 seconds) based on the relative numbers of operations.

3. Zero Crossing Detection

For zero crossing detection we use the BIFF utility zerocro. Zerocr0 is written as a parallel FOR loop over output scan lines. Each row process reads in the corresponding input row and its two neighbors (the top and bottom rows are handled specially). For every positive pixel in the input row it examines the eight neighbors and stores a one in a local array if any of them is negative - otherwise it stores a zero. Finally it copies the local array into the output array. Timings are shown in Figure 3.

References

1. BBN Laboratories, The Uniform System Approach To Programming the Butterfly Parallel Processor, Version l, Oct 1985.
2. L. Bukys, Connected Component Labelling and Border Following on the BBN Butterfly Parallel Processor, Butterfly Project Report 11, University of Rochester, Computer Science Deparment, Aug 1986.
3. T. J. Olson, An Image Processing Package for the BBN Butterfly Parallel Processor, Butterfly Project Report 9, University of Rochester, Computer Science Department, Aug 1986.

Figure 1 : Four Versions of Iffconvolve convolving 11×11 delsqg with 512×512 natural image run times in seconds

procs	standard C	short mpy subroutine	short mpy in line	simulated fast mpy
4	617.52	318.68	153.53	121.11
8	313.66	159.35	78.00	61.53
16	156.84	80.95	39.00	30.77
32	78.44	40.49	19.52	15.40
64	39.23	20.26	9.77	7.71
119	24.52	12.66	6.11	4.82

B-28

Figure 2: Optimized Iffconvolve convolving 11×11 delsqg with 512×512 natural image taking advantage of mask properties run times in seconds

procs	standard short mpy in line	standard simulated fast mpy	optimized short mpy in line	optimized simulated fast mpy
4	153.53	121.11	87.27	68.25
8	78.00	61.53	43.58	34.04
16	39.00	30.77	22.14	17.30
32	19.52	15.40	11.08	8.66
64	9.77	7.71	5.56	4.35
119	6.11	4.82	3.48	2.72

B-29

Figure 3 : zero crossing detection
run times in seconds

procs	iffzerocr
1	15.77
2	7.85
4	3.92
8	1.96
16	0.99
32	0.51
64	0.26
119	0.16

Efficient Convolution with Symmetric Masks Tom Olson

The following amelioration to the inner loop of the 11×11 Laplacian convolution approximately halved the time needed for this portion of the benchmark, from 6.11 seconds to 3.48 seconds.

In the basic convolution multiply and add stage, every point (x, y) in the output can be computed by the expression

```
for row = 0 to 10
    for col = 0 to 10
        tmp = tmp + mask(row, col)*image(y+row, x + col)
```

which requires 121 adds and multiplies. We can use the symmetry properties of the mask to reduce the work. First, rewriting the above gives

```
for col = 0 to 10 tmp = tmp + mask(5, col)*image(y+5, x+col)
    for row = 0 to 4
        for col = 0 to 10
            tmp = tmp +
                        mask(row, col)*image(y+row, x+col) +
                        mask(10-row, col)*image(y+10-row, x+col);
```

Since $\operatorname{mask}(10-$ row, col $)==\operatorname{mask}($ row, col $)$, we can write this as

```
for col = 0 to 10 tmp=tmp + mask(5, col)*image(y+5, x+col)
    for row = 0 to 4
        for col = 0 to 10
            tmp = tmp +
                        mask(row, col)*(image(y+row, x+col) ; image(y+10-row,
x+col))
```

which takes the same number of adds but only 66 multiplies. We can do even better by realizing that we're going to do this at every point along a row. That means we can precompute the image row sums once and for all. That is, to compute row y in output, sum rows y and $y+10, y+1$ and $y+9, \ldots, y+4$ and $y+6$, and include row $y+5$ to get a 6 row by n column matrix. Then simply convolve with the bottom six rows of the mask.

In summary, the standard convolution for a 512×512 image and 11×11 mask, ignoring dropping edge outputs is
$502 \times 502 \times 11 \times 11=30,492,484 \mathrm{mpys}$ and adds.
Using the symmetry of the mask, the code above reduces the counts to $502 \times 512 \times 5=1,285,120$ adds to make the 5026×512 matrices, plus

So multiplies are reduced by almost half.
We can take further advantage of the available symmetries by folding the 6×11 mask we use in the implementation above around the middle column. This cuts the number of multiplies to $502 \times 502 \times 6 \times 6=98,072,144$. Similarly, by folding the 6×6 mask around its diagonal we can reduce the total number of multiplies to 21 per mask, giving $502 \times 502 \times 21=5,292,084$ for the total. Unfortunately the number of additions stays constant at about 16 M , and the loops and indexing become complex, so that it is not clear that these refinements will actually improve execution times. These techniques are applicable to any rotationally symmetric mask, so if they do prove worthwhile we will probably put a special convolution routine into the BIFF library for rotationally symmetric masks.

Chapter Four: Connected Component Labeling

see: Butterfly Project Report 11

Chapter Five: Hough Transformation

see: Butterfly Project Report 10

Geometry Problems
Robert J. Fowler and Neal Gafter August 21, 1986

1 Introduction.
The approach that we took in investigating the suitability of the Butterfly architecture for the geometric problems was to attempt the parallelization of good sequential algorithms for those same problems. Thorough discussions of such sequential algorithms for computational geometry may be found in [Mel84] and [PS86]. In [ACG*85] Aggarwal et al aketched some parallel algorithms for computational geometry derived from these sequential algorithms. Problems they addressed included the computation of two-dimensional convex hulls, Voronoi diagrams, and other problems. The model of computation that they used is the concurrent-read, exclusive-write (CREW) variant of the PRAM model of computation. The methods used by Aggarwal et al (at least for convex hull and the Voronoi diagram) are the parallelization of optimal sequential algorithms. We use a similar approach, but directed not towards the theoretically interesting quentions of optimality in the asymptotic sense and of membership in we!! known complexity classes (e.g. NC), rather towards achieving good performance when implemented on the Butterly. In particular, we are using these problems as an opportunity to explore how to map algorithms designed for abstract models of parallel computation onto a physically realized parallel arrhitecture.

2 Salient Aspects of the Butterfly Architecture.
Each node on the Butterfly consists of a processor and a megabyte of memory local to that node. In addition, the nodes are connected with a "butterfly" (hence the name) interconnection network that allows each node to access the memory of the others. The interconnection network resolves contending attempts to access each memory module by serializing those attempts. Because of the large granularity of the memory modules this "hidden" serialization of contending access attempts can be a major problem with the approach of attempting to adapt PRAM algorithms that assume the possibility of very fine grained parallelism. We believe that the investigation of data structures that can be shared with low contention among a reasonable number of processors to achieve medium scale parallelism on such a machine is an area for potentially fruitful research.

The architecture seen by an application programmer is not determined solely by the underlying hardware. rather by a combination of hardware and the software architecture of the operating system cum programming environment. The latter can have as much or more of an effect as the former on the successful implementation of an algorithm on a particular machine. The quality of the programming environment affects both the ease of implementation as well as how well the underiying machine is used [Sny86].

Of the programming environments currently available on the Butterfly we chose the Uniform System because it most closely resembles the PRAM model. In the course of this exerecise we encountered the following specific problematic aspects of the Uniform System:

- The Uniform System appears to have been deaigned to be used in a style in which memory is atatically allocated when the application is initialized and in which there is a small number of generators that spawn a large number of tasks. In contrast, the geometric problems naturally seem to fit into a style that uses dynamic memory allocation and in which tasks are spawned dynamically a few at a time as a program executes its recursive algorithm. There appear to be substantial penalties for using this latter style in the Uniform System.
- The geometric problems all involve the construction of a graph with some specified properties from a set of input points. An efficient parallel program to solve such problems must have efficient parallel implementations of the abstract data types set and graph. A natural representation of a graph is as some form of dynamic list structure. One consequence of this is that either the system or the application program should provide efficient parallel memöry management. The global memory management provided by the Uniform System is in fact sequential. Thus, even a program that appears to be parallel can in fact be serialized by system code. We provided our own parallel memory management, but this illustrates how easy it is for implicit serialization to be introduced by the programming environment.
- Another consequence of using dynamic list data structures is the need to provide concurrency control for the elements. It is possible to do concurrency control in the Uniform System but it is awtward. The natural way of doing this is to incorporate the concurrency control mechanism in the programming language.
- The assignment of processors to tasks must be made more efficient and fiexible. Task startup can introduce a subatantial amount of overhead that can wipe out the benefits of fine and medium grain parallelism. In addition, we discovered that the implementation of task scheduling task allocation scheme can force a processor to be idle when it is not logically required by the application to be so and there is useful work it could do.

These factors contribute to the difficulty of using the Butterfly hardware architecture effectively. This illustrates the need for improved parallel programming environments as well as the need for those environments to provide the programmer with an accurate and detailed enough model of computation to guide intelligent choices in implementation.

Because our interest in these exercises is the investigation of the problem of mapping abstract algorithms onto the Butterfly we emphasized general implementations rather than attempting to tune the programs to exploit specific details of the problem statement(s). Thus, we are at least as interested in very large numbers of points distributed in arbitrary regions as we are in small numbers of points distributed uniformly in a square

3 An Abstract Convex Hull Algorithm.

We concentrated our efforts on understanding the design and implementation of a parallel twodimensional convex hull program. Most of the issues that would arise in the implementation of programs to solve the other problems appear in the convex hull problem and. in the limited time available, we deemed it more important to understand one implementation than to dilute our efforts by attempting "quick and dirty implementations of all of the geometric problens

Our approach is similar to that proposed by Aggarwal et al, but is an attempt to exploit the bounded, medium-grained parallelism found on a Butterfly. It is a parallelization of the Quirkhull [PS86] algorithm. Our parallel implementation has the following steps:

1. Select the maximum and minimum elements along some direction using as much parallelism as is effectively available. We assume that there are \boldsymbol{N} points and that we can use P procesors effectively. Each processor is given a subset of approximately N / P elements of which it finds the maximum and minimum elements. The global maximum and minimum is computed from ide subset values using the usual PRAM trick of combining the subset extrems using binary trees. The useful (bon-overbead) part of this step requires time proportional to $N / P+\log P$.
2. If the initial points are A and B, then the initial approximation to the hull is the ordered list of the directed line segments $A B$ and $B A$. The remaining points are partitioned into two sets. one above $A B$ and the other above BA. This is done in parallel, with each processor working on a subset of the input. To allow for parallel partitioning, a set of points can be represented as a tree of variable length arrays (oub-buckets) of points. The partitioning is done by having each processor copy its part of the input local memory using a block transfer. It then scans it's input sequentially while locally building its part of the output set consisting of those points above the specified line. The other pointa are discarded from the set because they can not contribute to the hull at this location. The sub-sets from each process are merged in parallel into the output trees. The reason for using a tree rather than a simple linked list is to allow for
efficient parallel access and to allow each internal node of the tree to keep a count of the points that it contains. As each sub-set is constructed the point furthest from the line is found. The local extrema are also combined in the binary tree to find the global extremem. This point is on the convex hull. The time for one of these steps is proportional to $N / P+\log P$.
3. At any time the current approximation to the hull is kept as a doubly-linked list of points. All of the as yet unknown points on the hull are outside this approximation so the points within it can be discarded. Furtbermore, any point that can possibly be adued to the hull between a pair of points in the current approximation must be above the line of support through them. When a newly found hull point is added to the list it replaces one of the line segments on the approximation with two others. A new task is created for each of these. Each tank takes as its input a new line segment and the set of points above the old segment. It selects the set of points above its line segment and finds the extremal point with respect to that segment. This point is guaranteed to be on the convex and when added to the approximation initiates the next level of recursion. Each branch of the recursion terminates when its input is the empty set.
These rub-problems generated by the recurvion are solved in parallel. As above, selection and maximum are done in parallel if the size of the input set is large enough. If the largest subproblem of each step in the recursion is a bounded fraction of the size of its parent problem then the total depth of the tree will be proportional to $\log H$ where H is the number of points on the hull. Since the expected number of hull points will be proportional to $\log N$ (PS86] the total expected time to execute the algorithm should be proportional to $\log \log N(N / P+\log P)$.

Note that the problem statement says that the points are distributed uniformly in a square and that there are only 1000 of them. By [PS86] this means that the expected number of points on the hull will be approximately twenty. Given the granularity of parallelism available on the Butterfly this is a very small problem instance and it is dificult to justify a parallel solution for it. We have therefore taken the licence to solve much larger problem instances and to look at other distributions of the points.

Although we have not attempted to tune the program to take advantage of the details of the problem statement, we are taking advantage of the square region by using the line $x=y$ to determine the direction in which to search for the initial extremal points.

Note also that our initial implementation does not use the above mentioned "tree of arrays" representation of a set. As a result there may be contention for adding points to the set. This contention may be contributing a linear time component to the running times. Once we have had the time to run the experiments needed to understand the current implementation better we can experiment with changing the representation of a set.

4 Evaluation of the Convex Hull Program.

It is difficult to evaluate the effectiveness of parallelism in geometry problems because the sequential Quichhull algorithm is so good. Craig McGowan provided the following set of single processor Quickhull timings (in seconds) obtained on several varieties of Sun workstation.

Points	$2 / 50,4 \mathrm{Meg}$	$2 / 1202 \mathrm{Meg}$	$3 / 160 \mathrm{C}, 4 \mathrm{Meg}$
100	0.02	0.02	0.01
200	0.04	0.04	0.02
500	0.08	0.08	0.03
1000	0.16	0.16	0.05
2000	0.34	0.34	0.09
5000	0.84	0.84	0.24
10000	1.66	1.66	0.48
20000	3.34	3.34	0.98
50000	8.16	8.16	2.42
100000	16.30	16.30	4.87
20000	32.64	50.74	9.72
500000	182.95	308.51	37.23

These are Stuart Friedberg's comments on these experiments:

1. This Quickhull program is a CPU-bound task that carefully avoids 32-bit multiplies and foating point operations. The Sun -3 's are roughly 4 times faster than Sun-2's. For CPUbound tasks with int or long multiplies or with floating point, the Sun-3's should do even better. A simple program profiler for the Butterfly indicates that some programs spend more than 95 percent of their time in Chrysalis doing the software integer multiply necessary to compute array indicies. The 68020 processor, unlike the 68000 has a hardware 32 -bit multiply. Thus it appears that a processor upgrade could have a significant impact upon execution speeds. The addition of a 68881 floating point coprocessor could have an even greater effect on speed in computations in which floating point and trigonometric functions are common.
2. The Sun $2 / 120$'s are Multibus-based, while $2 / 50$'s don't even have a bus. This makes 10 comparisons hard between them and a Sun-3/160C, which is VMEbus-based. However, we can see that when both the $2 / 50$ and $3 / 160 \mathrm{C}$ with the same amount of memory are thrashing, the Sun-3 still runs 6 times faster. It would be interesting to see a comparison between a / 120 and a / 160 with the same amount of memory and the same processor type.
Despite the excellent performance of the sequential algorithm the parallel version was able to use some parallelism effectively. Given our initial implementation using the sequential memory allocator, a Butterfy computes the convex hull of 10000 points in the following times:

Processors	Time	Speedup
1	7.60	1.00
2	4.31	1.76
3	3.22	2.35
4	2.54	2.99
5	2.06	3.68
6	1.81	4.18
7	1.73	4.38
8	1.54	4.91
9	1.48	5.13
10	1.42	5.32
11	1.20	6.32
12	1.24	6.11
13	1.37	5.52
14	1.17	6.44
15	1.20	6.33
16	1.15	6.60

These times (in seconds) reflect the actual computation time, excluding the time to load the program and the input data. As expected. the high overhead of managing the parallel implementation limits the amount of effective parallelism obtainable. Furthermore, the execution times do not decrease monotonically as processors are added. The source of this is likely to be some kind of scheduling or concurrency control artifact introducing serialization in a way that is very sensitive to the number of processors.

Note that a single Butterfy node executes the parallel implementation at about one sixth of the apeed of a Sun 2 executing the straightforward sequential implementation. Part of the difference is due to hardware differences and part is due to overhead in accomodating potential parallelism. When 8 nodes are allocated to the problem the Butterfly outperforms the Sun 2. but at no point can it compete with the Sun 3. It is difficult to overcome the handicaps of lower single processor and memory speeds combined with the disadvantage of not having powerful parallel arithmetic in hardware.

To reduce the total amount of overhead and to eliminate a lnown significant source of "hidden" serialisation a second version of the program was written that incorporated its own parallel memory management package. This second implementation performed as follows:

	Number of Points					
	1000		5000		10000	
Processors	Time	Speedup	Time	Speedup	Time	Speedup
1	1.08	0.99	4.29	1.0	8.01	0.99
2	. 60	1.78	2.4	1.78	4.33	1.84
3	. 46	2.30	1.8	2.38	3.27	2.44
4	. 32	3.28	1.37	3.12	2.46	3.25
5	. 29	3.70	1.16	3.68	2.00	3.99
6	. 25	4.25	1.02	4.18	1.81	4.42
7	. 26	4.09	. 91	4.7	1.61	4.96
8	. 24	4.36	. 83	5.14	1.46	5.47
9	. 22	4.87	. 77	5.53	1.35	5.89
10	. 22	4.75	. 74	5.8	1.28	6.25
11	. 20	5.20	. 7	6.12	1.20	6.62
12	. 20	5.38	. 67	6.37	1.14	7.00
13	. 19	5.48	. 63	6.71	1.11	7.20
14	. 20	5.31	. 62	6.89	1.08	7.40
15	. 19	5.46	. 61	6.93	1.04	7.65
16	. 19	5.42	. 62	6.82	1.03	7.73
17	. 18	5.83	. 62	6.88	1.02	7.79
18	. 19	5.54	. 60	7.05	. 99	8.06
19	. 17	6.14	. 6	7.05	. 98	8.11
20	. 17	6.00	. 6	7.10	. 97	8.19

$O(E \log N / P$. Since the edges that need to be considered are a sub-set of the edges of the $\mathrm{De}-$ launay triangulation the cost for the Euclidian minimum spanning tree once the triangulation is found will be $O(N \log N)$. As with the other two problems, this presupposes that we will be able to program efficiently shareable data structures representing dynamic graphs.

An alternative to using a PRAM style algorithm would be to use Bentley's [Ben80] optimal algorithm that uses $N / \log N$ processors in a $6 x e d$ interconnection network. Since $\log 1000 \approx 10$ the a program that finds the EMST for 1000 nodes would potentially map very well onto a Butterfy of 100 nodes. In contrast to the PRAM algorithms mentioned above. Bentley's algorithm is designed for a set of simple processing elements that communicate over a fixed interconnection network. In particular, it is suitable for a VLSI implementation. While this avoids the problem of designing shareable dynamic data structures for graphs, the algorithm assumes a fine grained parallelism that depends upon very efficient inter-processor communication. As mentioned elsewhere in this collection of reports the SMP programming environment provides interprocessor communication in approximately two milliseconds. This is still too large in comparison to the amount of computation to be done at each node per message. The effect of communication overhead can be reduced by blocking several logical messages per physical message, but this increases the complexity of the programming effort. What seems to be needed here is some form of inter-processor streams interface.

References

[ACG*85]. Alok Aggarwal, Bernard Chaselle, Leo Guibas, Colm O'Dunlaing, and Chee Yap. Parallel computational geometry (extended abstract). In Proceedings 26th IEEE FOCS, pages 468-477, Tucson AZ, October 1985.
[Ben80] Jon Louis Bentley. A parallel algorithm for constructing minimum spanning trees. Journal of Algorithms, 1:51-59, 1980.
[KR84: S.C. Kwan and W.L. Ruzzo. Adaptive parallel algorithms for finding minimum spanning trees. In Proceedings of the 1984 International Conference on Parallel Processing, pages 439-443. Bellaire, Mich., 1984.
[LS80] D.T. Lee and B.J. Schachter. Two algorithms for constructiong a delaunay triangulation. Int. J. Comput. Inf. Sci.. (3):219-242. 1980. Also appeared as GE Technical Report 79ASD007, July 1979.
[Mel84] Kurt Melhorn. Data Structures and Algorithms. Volume 9: Multi-Dimensional Searching and Computational Geometry. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, New Yory, 1984.
[PS86] Franco P. Preparata and Michael Ian Shamos. Computational Geometry. An Introduction. Springer-Verlag, New York, 1986.
[Sny86] Lawrence Snyder. Type Architectures, Shared Memory. and the Corollary of Modest Potential. Technical Report TR 86-03-04, Department of Computer Science. University of Washington, Seattle, WA, 1986. To appear in Annual Review of Computer Science. Vol. 1, 1986.

Chapter Seven: Visibility Calculations

Triangle Visibility
Christopher Brown, Liudvikas Bukys, Michael Scott 16 October 1986

1. The Problem

The problem as stated is ambiguous. We take it to mean "report visible vertices". The size of the problem was well-chosen, providing a reasonable exercise that exposed limitations in algorithms and data structures. The problem specifies floating point, but we use integers. The lack of hardware 32 -bit arithmetic in the 68000 is enough to confuse the architectural issues, and the lack of fioating point is such an obvious and important one that it should not be further folded into the problem. There is evidence that even the integer multiplication in array index calculations on the 68000 is inefficient enough to distort the architectural picture. Since there is an easy fix to this problem on the Butterfly, issues such as contention, the number of processes supported, and so forth are more interesting.

2. The Approach

A shared memory, SIMD-like, Uniform System virtual architecture fits with the algorithm we chose to implement, which is a quadratic all-against-all comparision of points against triangles for visibility. Below we discuss variations on this theme, and give the justification for the approach that we ultimately implemented. There is of course substantial room for more work on this algorithm, and there are other approaches as well.

3. Three Algorithms

We describe two algorithms, PointTri0 and TriTri0, and a hybrid variant. PointTri0 is basic.

```
PointTr(Points, Triangles)
{
for_each Point
    for_each Triangle
        if Occludes(Triangle, Point) mark Point "Hidden";
}
```

PointTri0 can be enhanced in obvious ways to prune the full $3 N^{2}$ search: In Occludes), quit early and continue the loop as soon as it is determined that a triangle cannot hide a point. As soon as a point is found to be occluded, break the inner loop. Empirically, it seems this pruning gives a factor of two speedup (random inputs) over the full search. This speedup motivates TriTriO, which removes (a subset of) occluded triangles as well as occluded points from consideration, thus cutting down on the length of both inner and outer loops.

3.1. Point against Triangle

For PointTri0, computation falls into two stages, called 1 and 3 for consistency with TriTri0.
(1) Stage 1 is a linear setup stage in which four planes are calculated for each triangle: the plane in which the triangle lies and the plane through the origin and each triangle side. These planes are kept together as a row in a Triangle array, and each point is a row in a Point array.
(2) Stage 3 is the quadratic (doubly-nested for_loop) comparison of points with triangles referred to above. Occluded points are marked "Hidden."

3.2. Triangle against Triangle

In TriTri0, Stage 1 has more to do, there is a Stage 2, and Stage 3 is more complicated. The idea is to sort triangles by order of their likelihood of obscuring other triangles, and to consider them in this order, getting the maximum pruning advantage. The right quantity to sort on is the amount of volume in the (1000 x 1000×1000) cube of space shadowed by a triangle (hidden by it from the origin). A quick approximation to this volume is quite good enough (details below).
(1) Stage 1 computes the triangle's approximate shadowed volume as well as its planes.
(2) Stage 2 sorts triangles by their approximate shadowed volume.
(3) Stage 3 calculates hidden points and a subset of hidden triangles: triangles and points each have a "Hidden" mark. Without solving the full hidden line problem, it is safe to mark a triangle "Hidden" if it is hidden by another single triangle. The control structure of the nested loops is slightly more complex because of the extra break condition (a triangle is hidden). The same Occluded(Point, Triangle) function is still the inner-loop workhorse.

3.3. Hybrid -. Point against Sorted Triangles

The idea here is add TriTri0's Stage 2 to PointTriO, to sort triangles by shadowed volume, again hoping the extra work pays for itself with an increased pruning factor.

4. Some Geometric Details

Points are represented by three integers (x, y, z), planes by four integers (A, B, C, D) from the plane equation $A x+B y+C z+D$. For Stage l, if u and v are "triangle edge" vectors (the difference between two vertex points) then $u \times r$ is a vector (A, B, C), giving three plane coordinates. The fourth coordinate is given by $D=-(x, y, z)(A, B, C) . \quad A, B, C, D$ need not be scaled to make (A, B, C) a unit vector for the purposes of this work, and integer arithmetic is sufficient to hold all significant digits. Further, for the edge plane calculations the origin is a vertex, so u and v are just triangle vertices and $D=0$.

For Stage 2, the triple product $V=x \times y \cdot z$ gives a volume proportional to that enclosed between the origin and the triangle. The strange quantity e, simply the sum of all the nine x, y, and z components of the three vertex points, is taken approximately to vary monotonically with the distance from the origin to the centroid of the triangle. $\left(V / e^{3}\right)-V$ is the final approximation of trucated shadowed volume, up to some scaling constants. The cost of the whole approximation is 17 multiplies and 14 adds.

This approximation was compared with a much more elaborate one that projects the triangle onto the unit sphere, computes the area of the resulting triangle, computes the centroid exactly, and then computes the shadowed volume fairly precisely truncated by a sphere of radius 1.42 . PointTri was modified to do a non-pruned triangle-point computation and to report how many points were occluded by each triangle. This information was used to establish the "correct" order for the triangles - increasing number of occluded points. The sort by both the shadowed-volume criteria was quite successful and yielded a (surprisingly) good approximation to the "correct" sort. The availability of a relatively cheap and effective sorting criterion paved the way for a fair experimental investigation of the sort's utility, which was easier than a responsible theoretical analysis.

For Stage 3, the central visibility calculation for point x and triangle (A, B, C, D) is $d=x \cdot(A, B, C)+D$. If the d for any of the four planes is negative (with my sign conventions) the point is on the unshadowed side of the plane. Thus in the worst (point hidden) case there are three multiplies, three adds and a comparison for one plane (with nonzero D) and three multiplies, two adds, and a comparision for each of three planes (with D zero). Any negative result terminates the calculation with a "Not Hidden By This Triangle" result.

5. Early Experiments

Uniprocessor implementations of the three algorithms established that the pruning accomplished by TriTri0 and the Hybrid PointTri0 was not worth the effort. Sorting was done by the UNIX qsort0 utility. With TriTri0 in the worst case, three times the number of points must be checked as in PointTriO, and the number of triangles that are wholly hidden by other single triangles is not very large. The Hybrid algorithm produced times comparable with PointTri0, but up to 1300 points no clear dominance was established, so it appears that sorting just pays for itself in the Hybrid PointTri0. Of course a fast parallel sort could change the results on the Butterfly. The linear Stage 1 (setting up the geometry) is, as expected, extremely fast compared to the quadratic Stage 3. The pruning provided by quituing early in the Stage 3 of PointTryO yields about a factor of two in speed.

6. Initial Uniform System Implementations

The algorithm PointTri0 lends itself naturally to a Uniform System implementation. The Uniform System gives parallel for-loop capability. The implementation simply parallelized the main loops in Stages 1 and 3. The
resulting code came to 450 lines for Stage 1 and 185 lines for Stage 3. It was run in several versions on the three Butterfly Parallel Processors at the University of Rochester. Representative code appears in the last section.

Version 1 scattered the (point, visibility) and triangle arrays as usual. Version 2 locally cached the row pointers to these arrays. Version 3 locally stored the point coordinates and cached the row pointers to the triangle and visibility arrays.

7. Times

Comparative timing shows that the VAX 750 is approximately 10 times as fast on this job as a single node in our (not floating-point platform) Butterfly computer.

1000 Triangles	
VAX and Butterfly (Version 1) Times	
Configuration	Time in Seconds
1 VAX 11/750	97
1 Bfly Node	1035
2 Bly Nodes	520
4 Bly Nodes	261
8 Bfly Nodes	131
16 Bfly Nodes	67
32 Bfly Nodes	35
64 Bfly Nodes	25

1000 Triangles on Butterfy (8 Nodes) Effect of Caching (Versions 1, 2, 3)	
Caching Version	Time in Seconds
8 Nodes, Version 1	131
8 Nodes, Version 2 (row ptrs)	79
8 Nodes, Version 3 (Vers. $2+$ points)	67

8. Further Uniform System Implementations

Two revised versions of the PointTri0 algorithm were implemented by Bukys with improved results. Some of the improvements are due to the release of the new Butterfly compiler; others are due to some tuning of the implementation.

The major difference between this implementation and the previous ones is the memory-sharing strategy. Since the algorithm uses a brute-force $O\left(n^{2}\right)$ strategy, each point-processing step may access every triangle data structure. These computations will clearly run fastest when every processor has its own local copy of the data structures describing triangle geometry. Such sharing is possible because the data strctures are computed only once and can be treated as read-only and static thereafter. Unfortunately, it takes time to replicate the data structures.

This program illustrates the resulting tradeoff dramatically: Replicating read-only data takes some time, but makes the computation run fast; sharing some data reduces replication overhead but increases computation time due to remote references and (perhaps) memory contention.

Further, the method of replication has a significant impact on runtime. The Uniform System implements two mechanisms for automatic replication: SharePtrAndBlk, which makes all copies from a single master, and ShareSM, which makes copies from previous copies, distributing the replication load among memories in a tree-like fashion with resulting logarithmic speedup. While the two procedures implement essentially the same function, their performance varies drastically. In the table below, compare the times in the rows "replicate triangle points" and "replicate planes" for the two implementations. Experiments have shown that the simple SharePtrAndBlik procedure works well for small pieces of data (under 2200 bytes), while the fancier ShareSM begins paying for itself for pieces of data larger than that Unfortunately, the current Uniform System package provides the ShareSM procedure in a form suitable only for sharing row pointers of matrices. It would be a good idea to make both Share procedures use a data-size criterion for choosing replication method

The following table breaks down the time spent in different phases of the computation for a 100 -processor run of the algorithm. The final times were 6.5 seconds and 4.1 seconds, with the difference mainly accounted for by the different system calls implementing replication (shown in the "replicate planes" row. A constant 1.4 seconds is spent in generating the data (serially for replicability). The table illustrates that in the two computational steps (compute triangle parameters and detemine obscuration of points by triangles) typical speedups were almost linear (note the processor efficiencies of between 69% and 86% in the rows "make triangle and edge planes" and "visibility"), even with 100 processors running. However, the cost of replication is significant, and actually slows down the computation in the SharePtandBlk implementation for large numbers of processors. See the listing of times and graphs below. An obvious further tuning is to explore the tradeoff and find the amount of maximally efficient sharing.

Times for 100 Processors, 1000 Triangles

step	SharePtrAndBIk0		ShareSM0	
	effcy	time(secs)	effcy	time(secs)
initialize benchmark (100 procs)	-	4.186	-	4.200
allocate triangle pts	3.9%	.000	3.9%	.000
make 1000 random triangles	3.9%	1.473	4.0%	1.463
replicate triangle points	$.1 \%$.669	1.1%	.124
allocate planes, replicate ptrs	1.1%	.026	1.0%	.030
make triangle \& edge planes	74.1%	.035	68.7%	.033
replicate planes	$.1 \%$	2.368	$.6 \%$.590
visibility: 256 points visible	86.4%	1.839	77.0%	1.852
FreeAll	2.3%	.048	$.6 \%$.062
TOTAL (w/o initialization)	25.2%	6.458	34.6%	4.154

Speedup Graphs for Triangle Visibility

	effective processors
100 80 60 40 20	
	$\begin{array}{cc} 40 \quad 80 \\ \text { real processors } \end{array}$

The graphs above were produced from the following raw data

Raw Data for SharePtrAndBlk version:

$[4]$ time $=676665$ ticks $=42.29 \mathrm{sec} ; \mathrm{ep}=3.9 ;$ eff $=0.9999$
$[8]$ time $=332146$ ticks $=20.75 \mathrm{sec} ; \mathrm{ep}=8.1 ;$ eff $=1.0186$
$[16]$ time $=188039$ ticks $=11.75 \mathrm{sec} ; \mathrm{ep}=14.3 ;$ eff $=.8996$
$[32]$ time $=120625$ ticks $=7.53 \mathrm{sec} ; \mathrm{ep}=22.4 ;$ eff $=.7012$
$[64]$ time $=99205$ ticks $=6.20$ sec $\mathrm{ep}=27.2 ;$ eff $=.4263$
$[100]$ time $=107235$ ticks $=6.70$ sec; ep $=25.2 ;$ eff $=.2524$

Raw Data for ShareSM version:
[4] time $=610096$ ticks $=38.13 \mathrm{sec} ; \mathrm{ep}=3.9$; eff $=0.9999$
[8] time $=324462$ ticks $=20.27 \mathrm{sec} ;$ ep $=7.5$; eff $=.9401$
[16] time $=184055$ ticks $=11.50 \mathrm{sec} ;$ ep $=13.2$; eff $=.8286$
[32] time $=113449$ ticks $=7.09 \mathrm{sec} ;$ ep $=21.5 ;$ eff $=.6722$
[64] time $=79820$ ticks $=4.98 \mathrm{sec} ;$ ep $=30.5 ;$ eff $=.4777$
[100] time $=70453$ ticks $=4.40 \mathrm{sec} ;$ ep $=34.6 ;$ eff $=.3463$

9. A Pipeline Algorithm in LYNX

A systolic approach to solving the triangles problem was suggested by Peter Dibble and refined and implemented by Michael Scott. Triangles are fed into one end of a process pipeline. When they emerge at the other end, their vertices are marked "visible" or "hidden." In the simplest version of the algorithm, there are an equal number of triangles and processes. A special process feeds the head of the pipeline with triangles whose vertices are all marked "visible." An additional, marker triangle is fed through last. Before the pipeline begins operation, a preliminary phase of the algorithm precomputes, in parallel, the coefficients of plane equations that will be needed to determine if a point is obscured.

Each pipeline process keeps the first triangle that reaches it. It passes subsequent triangles on to its successor, marking as hidden any previously-visible vertices that are obscured by the original triangle it kept. When the marker triangle arrives, the process passes its personal triangle on to its successor, followed by the marker. Triangles emerging from the end of the pipeline have been compared against every other triangle.

An optimized version of the algorithm attempts to hasten comparisons that are most likely to find obscured points. In addition to computing plane equations, the initialization phase also computes the approximate volume of space shaded by each triangle. Each pipeline process compares the shaded volume of each newlyreceived triangle against the shaded volume of its personal triangle. If the new triangle is "bigger," it swaps them, keeping the new triangle and passing the old on to its successor.

The optimization is particularly important in practice, as there are many fewer processors than triangles. If each of the early stages of the pipeline is run on a different processor, and if each of the triangles in those early stages shadows a large volume of space, then the odds are good that relatively few obscuration tests will be needed in later stages of the pipeline.

Scort coded the pipeline algorithm in LYNX, a message-based language available on the Butterfly here at Rochester. The original version, with one process per triangle, does not accommodate large problem instances, because of operating-system limitations on the number of processes per processor. Scout then made a second implementation in which the pipeline, having exhausted processors, doubles back through existing processes as many times as necessary to provide one stage per triangle. If there are K processors, then processor I contains stages I, $2 K-I+1,2 K+I, 4 K-I+1$,

The multiple-stages-per-process implementation is signifcantly more complicated that the original version. It has uncovered a bug in the Chrysalis operating system which, in the limited time available to us, we have not yet been able to correct. For 200 triangles (the largest problem size that does not trigger the Chrysalis bug), the algorithm completes in about 15 seconds with a 100 processor pipeline.

10. Architectural Implications

Floating point processing (and hardware integer processing) is necessary. BBN currently provides an upgrade package (M68020-68881 daughter board) that we hope to acquire.

The Butterfly can present many abstract architectures to the user. For the Uniform System algorithm, a high-level and fairly superficial list of observations follows. In the US, memory allocation causes dramatic serialization: Parallel allocation would help. Carla Ellis and Tom Olson at Rochester are studying that problem. A geometric coprocessor or preprocessor for fast computation of trigonometric, roots, vector and matrix operations would be useful (the WARP comes to mind here). Better debugging support, from symbolic tools down to certain microcode enhancements would speed the development cycle. A combining switch would reduce memory contention, which may be a boutleneck in this computation.

The ability to share (copy) data quickly between processors would make a significant difference in this implementation, since in the final versions much data copying was done to increase the locality of computations on individual nodes. There is clearly a tradeoff in the current architecture between memory contention and the cost of massive data copying.

Serialization within the system is costly. Some of it can be avoided by the clever user, but some of it (such as memory allocation) should be parallelized by the system.

In the LYNX algorithm, we believe that the inefficiency of the pipeline is due primarily to the relative expense of sending a message (on the order of 2 or 3 milliseconds) compared to the amount of real work performed per message. To amortize the cost of message-passing, we would need in a practical implementation to pass more than one triangle in each message. Like the need to package more than one pipeline stage in a process, the need to package more than one triangle in a message complicates the implementation considerably, and suggests that the parallelism of the pipeline is too fine-grained for effective expression in LYNX. Unfortunately, there is no software package currently available on the Butterfly that supports orders of magnitude more processes than procssors. The Uniform System does not count in this regard because its tasks cannot be suspended and are therefore able to synchronize only by busy-waiting.

We hàye begun to realize that a large and important class of problems can be solved by devoting a process to each of a very large number of objects. Many parallel algorithms in the current literature are of this flavor: the geometric problems in the benchmark provide more examples. To aid in mapping algorithms from the literature onto the Butterfly, a language akin to Mesa or Concurrent Euclid would be a very useful tool. Ada would also work, though probably not as well.

11. Stage 3, Version 3 Of PointTriO and the Uniform System

Besides making the inner loop of the computation explicit, this code segment illustrates several points. First, it shows that the Uniform System is easy to use: Both the US and SMP libraries give the new user very rapid startup. Second, it reveals that the Butterfly architecture is not actually a shared memory machine. There are several standard practices to reduce memory contention, the most common being local caching or copying of data. These practices acknowledge local memory. Below, local copies are made in the initializing routines GenericInit0 and Tlnit0, and in the inner loop routine TriHidesPt0. Also the point array ShrPtsil has been copied to every node. Further, US has some hidden serializations: the storage allocator works sequentially, using global locks. The Allocate 0 call in ForAllTriangles 0 is natural but can (and should) be eliminated. Implicit in this example is that the ease of Butterfly programming and the flexibility of the architecture place a burden on the designer to come up with an efficient algorithm and data structures - the architecture does not dictate them.

「*****
CheckPoints0 /"outer parallel for loop - for all points */
\{ GenOnIndex(GenericInit, ForAllTriangles, $\mathrm{p}, 3^{*}(\mathrm{p}->\mathrm{N})$); \}

ForAllTriangles(Arg, PointNdx) /* inner loop -- for all triangles */

```
Problem *Arg:
int PointNdx;
{
Problem "t;
int i;
t = (Problem *) Allocate(sizeof(Problem));
    /this Allocate should be avoided: allocation is done serially */
t-> N = myproblem.N;
t->ThisPointNdx = PointNdx;
t-> Vis = myproblem.Vis;
t-> Tris = myproblem.Tris;
t->ThisVis =-1; }\quad/*\mathrm{ create problem structure */
GenOnIndex(Tlnit, TriHidesPt, t, t->N); /*parallel for loop */
}
```

Problem *Arg;
{
static int *vis[POINTS];
MyTProb.Tris = tris;
MyTProb.Vis = vis;
}

```
```

Tlnit(Arg) /* Standard practice. make local copies of

```
Tlnit(Arg) /* Standard practice. make local copies of
        global scattered data to avoid contention. In this case
        global scattered data to avoid contention. In this case
        copy row pointers and problem structure */
        copy row pointers and problem structure */
static int "tris(TRIANGLES];
static int "tris(TRIANGLES];
block_copy(Arg, &MyTProb, sizeof(Problem));
block_copy(Arg, &MyTProb, sizeof(Problem));
block_copy(MyTProb.Tris, tris,(MyTProb.N)*sizeof( int *));
block_copy(MyTProb.Tris, tris,(MyTProb.N)*sizeof( int *));
block_copy(MyTProb.Vis, vis,(MyTProb.N)*3*sizeof( int *));
```

block_copy(MyTProb.Vis, vis,(MyTProb.N)*3*sizeof(int *));

```

TriHidespt(Arg, TriNdx) /* inner loop computation: does triangle hide pt? */ Problem "Arg; int TriNdx;
\{
int offset, MyX, MyY, MyZ, PlaneNdx;
if MyTProb.ThisVis \(=\mathbf{=} \mathbf{0}\) ) return; /*is point already invisible? */
offset \(=(\text { MyTProb.ThisPointNdx })^{*}\) POINTCOLS;
MyX \(=\) ShrPts[offet];
MyY \(=\operatorname{ShrPts[0ffet}+\mathrm{Y}]\);

MyZ \(=\operatorname{ShrPts[offset}+Z] ; /\) get point \(x, y, z * /\)
block_copy(MyTProb.Tris[TriNdx],MyTriangle,(TRICOLS)*sizeof(int));
\(/\) make local copy of scattered data */
iff (MyX * Coord(TRIPLANE,A) /* dotproduct with plane of triangle */
                return; \(/\) not hidden - quit */
for (PlaneNdx = EDPLANE1; PlaneNdx \(<=\) EDPLANE3; PlaneNdx + +) \(/{ }^{*}\) dot with 3 planes of edges */ \{
if( (MyX * Coord(PlaneNdx,A)
+ MyY * Coord(PlaneNdx,B)
+ MyZ * Coord(PlaneNdx,C)
<=0) )
return; /*quit early if not hidden*/ \}
\(/ *\) point hidden if get to here*/
MyTProb.ThisVis = 0 ;
MyTProb.Vis[MyTProb.ThisPointNdx][0] \(=0\);
\(/\) set local and global visibility */
\} /* end TriHidesPts */
*MAIN ROUTINES ****************/
Fulliobo
\(\{\)
MakeTriangles0; \(/\) *do Stage 1 */
CheckPoints0; /* do Stage \(3-\) see above */
FreeAll(); /* clean up */
\}
main()
\(\{\)
InitializeUs0; /*Uniform System Initialize*/
MakeShrPis0; \(\quad / *\) generate random 3-D triangle vertices */ TimeTest(SetUp, FullJob, MyTestPrint); \({ }^{*}\) run algorithm, get times on different numbers of processors */ \}

\title{
Chapter Eight: Graph Matching
}

\section*{see: Butterfly Project Report 14}

Chapter Nine: Minimum-Cost Path

\title{
Minimum-Cost Path
}

Brian D. Marsh and Thomas J. LeBlanc
August 1986

\section*{1. Introduction}

We describe an implementation of the minimum-cost path problem on the BBN Butterfly using the SMP message-passing library developed at the University of Rochester. The problem statement for finding the minimum-cost path is as follows:

The input is a graph \(G\) having 1000 verices, each joined by an edge to 100 other vertices selected at random, and where each edge has a nonnegative real-walued weight in some bounded range. Given two vertices \(P . Q\) of \(G\), the problem is to find a path from \(P\) to \(Q\) along which the sum of the weights is minimum (Dynamic programming may be used, if desired)

Given this problem statement, it is ambiguous as to whether we are required to solve the all-pairs-shortest-path problem, which then allows the user to query the result regarding individual pairs of nodes, or whether we are to solve the single-source-shortestpath problem for a particular pair of nodes. Given that dynamic programming was specifically mentioned in the problem statement and is normally used to solve the all-pairs-shortest-path problem, we felt constrained to implement that problem, despite the fact that we believe the single-source-shortest-path problem has a more interesting parallel solution and would better exhibit the flexibility of the BBN Butterfly architecture. In the following sections we describe our parallelization of Floyd's algorithm for the all-pairs-shortest-path problem, an implementation of the algorithm on the Butterfly using the SMP message-passing library package, and our performance results.

\section*{2. A Parallelization of Floyd's Algorithm}

We chose to implement a parallel version of Floyd's dynamic programming solution to the all-pairs-shorlest-path problem [1]. The input graph is represented by an adjacency matrix. An entry, [ij], corresponds to the weight of the edge from vertex ito vertex \(j\). Nonexistent edges are denoted by a symbol representing infinite distance.

During execution each entry of the matrix corresponds to the cost of the minimumcost path between two vertices. Initially, only those vertices that share an edge have a path of finite cost. Floyd's algorithm iterates over each row of the matrix, finding successively lower cost paths. During the \(\mathbf{k}\) 'th iteration, the algorithm computes the cost of the minimum-cost path between all pairs of nodes, i and j , that pass through no vertex numbered greater than \(\mathbf{k}\). For a graph with \(\mathbf{N}\) vertices, \(\mathbf{N}\) iterations are necessary. Therefore, the algorithm is \(\mathbf{O}\left(\mathrm{N}^{3}\right)\). The code for the algorithm is as follows:
```

for $k:=1$ to N do
for $i:=1$ to N do
for $j:=1$ to N do
if $A[i, k]+A[k, j]<A[\zeta j]$ then
$A[i j]:=A[i, k]+A[k, j]$
end if
end for
end for
end for

```

An obvious parallelization of this algorithm results from treating each for loop as a parallel for loop. However, the granularity of the innermost loop is not large enough to justify the overhead of process allocation in the Butterfly. For this reason we chose to use the processing of an entire row as the unit of granularity for parallelism. We divided the problem matrix uniformly among the available processors, so that each processor has some subset of rows in the matrix. Since the size of the input graph is defined to be on the order of 1000 vertices, each processor must iterate over approximately 10 rows. The code for each process is:
```

for $k:=I$ to N do
if row k is local then
broadcast row k
else
receive row k
end if
for each local row i do
for $j:=1$ to N do
if $A[i ; k]+A[k, j]<A[i, j]$ then
$A[i j]:=A[i k]+A[k, j]$
end if
end for
end for
end for

```

The primary data dependency in this algorithm is that all processes need a specific row at the same time, a row whose values are dependent on past computation. This synchronization constraint forces the processes in the algorithm to run in lockstep. On the r'th iteration, each process computes the optimal paths for its local rows using the values stored in row \(\mathbf{k}\). Computation cannot proceed until these values are known. The implementation, therefore, must have an efficient broadcast mechanism. For this reason, among others, we chose to implement the algorithm using the SMP library package.

\section*{3. An SMP Implementation of Floyd's Algorithm}

An implementation of the all-pairs-shortest-path problem was done in C using the SMP library package developed at the University of Rochester [3]. SMP is a messagebased programming environment for the Butterfly. Processes are dynamically created within SMP families. Interprocess communication within a family is based on asynchronous message-passing (send/receive) according to a fixed communication topology. When using SMP the programmer sees a small set of procedure calls for creating processes, specifying interconnection topologies, and sending messages. The details of the Chrysalis operating system needed to implement processes and communication are hidden. The programmer is free to concentrate on the issues pertaining to the application, rather than the underlying primitives.

There were several reasons for choosing SMP for this application. The most important reason is that our experience with a similar application [4] had shown that exploiting data locality could lead to significant performance advantages when compared with the shared memory approach of the Uniform System [2]. That is, storing a subset of the rows in memory local to the process that will modify those rows and exchanging rows in messages requires less communication than storing the rows in a globally shared memory. Another reason for using SMP is that broadcast communication, which is used in our algorithm, is directly supported. Finally, we were able to use this application to gain additional experience with SMP.

Our parallel version of Floyd's algorithm does not make full use of the tree of dynamic process structures available in SMP. In our implementation, a single parent process is responsible for creating a child process on each processor. Each child process is given some subset of the rows in the initial adjacency matrix. On the \(\mathbf{k}\) 'th iteration, each child process receives a message containing row \(\mathbf{k}\) and computes new values for its local rows. The process containing row \(\mathbf{k}+1\) then broadcasts that row to all its siblings to start the next iteration.

The send primitive of SMP accepts a list of destination processes, therefore, both broadcast and multicast can be done directly in SMP. The SMP implementation of send is such that the cost of sending to one sibling (or to the parent) is the same as sending to 100 siblings. In each case, the message is copied to a buffer local to the sending process and flags are set indicating the intended recipients. Using the SMP receive primitive, destination processes can inspect the shared buffer to determine if there is a message directed to them. If so, the message is copied into the local memory of the receiving process.

One of the problems with broadcasting in SMP is that the Butterfly provides no hardware support for simultaneous communication with multiple destinations. In SMP each potential recipient of a message must map the message buffer into its local address
space to check for a message. Since each process in our algorithm is expecting to receive rows from every other process, the source list of each receive operation is very long. All the processes listed in the source list will have their message buffers mapped into the local address space during each iteration. This turns out to be extremely time consuming when the list is very long and, in an early implementation of our algorithm, was a dominating factor. Fortunately, we were able to exploit the inherent synchronization in our algorithm to reduce the overhead of broadcasting by minimizing the number of buffers examined on each iteration.

On each iteration, every process expects to receive a particular row. Despite the fact that rows are broadcast, the source for each row is known. Hence, in our implementation, we invoke the receive operation on the \(k\) th iteration with a source list of size \(l\), namely, the process containing row \(k\). This way, only one message buffer is mapped into the local address space on each iteration. We were able to improve performance by \(50 \%\) using this approach. The performance of the resulting implementation is summarized in the next section.

\section*{4. Performance Results}

The program to solve the all-pairs-shortest-path problem was developed on a host Vax 11/750 and downloaded to the Butterfly for execution. A sequential version was also implemented on a SUN workstation for comparison purposes. Coding and debugging the application program required about one week of effort by a graduate student: some additional time was spent debugging the SMP library.

For the purposes of the benchmark experiments, random graphs of various sizes were generated. We performed detailed experiments using two graphs: Gl, a random graph containing 100 vertices with 10 edges per vertex, and G2, a random graph containing 300 vertices with 30 edges per vertex. We did not perform any experiments with the graph size given i- the problem statement, 1000 vertices with 100 edges per vertex, for two reasons:
a) In order to demonstrate how well our implementation scales to multiple processors, we needed to run the algorithm with a varying number of processors and compare it to the single processor case. G2 requires 33 minutes of execution time on a single processor. By running significantly larger problems, we would be consuming a limited resource (Butterfly availability) and learn very little in return.
b) The cost matrix for a graph with 1000 vertices requires 4 MB . While our Butterfly does have lMB on each node, Chrysalis does not have good tools for creating and manipulating large objects that span multiple processors. The extra programming effort necessary to run such a large problem was not warranted.

In each of our test runs, only 100 processors were used, even though 120 processors were available. We did this so that all of our graphs would be uniformly distributed among the available processors. In this way, we eliminated the "tail end" effects that might otherwise distor our measurements.

Our performance results for finding the all-pairs-shortest-path solution for Gl and G2 on the Butterfly are shown in Figures 1-4. We have not included the initialization overhead in the results; only actual computation time was measured. The parent process in the SMP family was responsible for maintaining the timing results. All children synchronize with the parent, the clock is initialized, and all processes then begin computing. The results show the elapsed time between clock initialization and the final response from child processes.

These same graphs were also run on a SUN \(2 / 50\) workstation with 4 MB of memory and a Vax \(11 / 750\) with 2 MB of memory. Gl took 44.5 seconds on the SUN, 158 seconds on the Vax, and 69 seconds on a single Butterfly processor. G2 took 1205 seconds on the SUN, 2787 seconds on the Vax, and 1907 seconds on a single Butterfly processor. As can be seen in Figure l. a small graph of 100 vertices can efficiently use 25 processors on the Butterfly ( 19 effective processors); additional processors do not provide much improvement in performance. The larger graph, G2, can make use of all 100 processors. In either case, only 2 Butterfly nodes are needed to significantly improve upon the sequential version on both the SUNi and Vax.

\section*{5. Conclusions}

To summarize the results of our expe-ience with the all-pairs-shortest-path problem: a parallel version of Floyd's algorithm was easily implemented using SMP on the Butterfly and the resulting performance demonstrated nearly linear speedup using up to 100 processors. What follows are some comments about the choice of algorithm, software, and architecture.

The dynamic programming approach to the all-pairs-shortest-path problem is ideally suited to a vector machine: the Butterfly Parallel Processor has no special capability in this regard. Nevertheless, we felt this would be the easiest soluion to implement in the limited time available. The fact that we were able to implement a solution to this problem on the Butterfly in a short period of time, a solution that demonstrated nearly linear speedup over the sequential version for large graphs, gives some measure of the fiexibility of the Butterfly architecture. It would have been interesting to compare our experiences on this problem with similar experiences on the single-source-shortest-path problem, a similar problem with a more interesting parallel solution. Time did not permit this comparison.

Our experiences with the SMP system were very positive. A new graduate student was able to implement Floyd's algorithm in about one week of effort The SMP library
dramatically reduces the learning curve for the Butterfly. However, the SMP library was only recently released, and we did encounter a few system bugs. All of the bugs were repaired in the same week. This effort did point out the need for some optimizations when handling source and destination lists in an SMP broadcast. We expect this will lead to slight midifications in the way SMP treats such lists. We also plan to add some additional routines that help in performing timing tests.

Our biggest problems with the Butterfly architecture continue to be related to memory management, in particular, the lack of segment attribute registers (SARs). SAR management was the source of most of the SMP bugs and is also the main difficulty in manipulating large objects. However, as we have gained more experience with the Butterfly, we have accumulated tools and techniques for solving most of the problems associated with SAR management. (For example, SMP incorporates a SAR cache for message buffers.) We expect that continued experimentation will yield additional solutions.

\section*{References}
1. A. Aho, J. E. Hopcroft and J. D. Ullman, Data Structures and Algorithms. Addison-Wesley Publishing Company, 1983.
2. BBN Laboratories, The Uniform System Approach To Programming the Butterfly Parallel Processor, Version 1. Oct 1985.
3. T. J. LeBlanc. N. M. Gafter and T. Ohkami, SMP: A Message-Based Programming Environment for the BBN Butterfly, Butterfly Project Report 8, Computer Science Deparment, University of Rochester. July 1986.
4. T. J. LeBlanc, Shared Memory Versus Message-Passing in a Tightly-Coupled Multiprocessor: A Case Study, Proceedings of 1986 International Conference on Parallel Processing, (to appear) August 1986.

G1: Execution Time


Figure 1

G2: Execution Time


Figure 3

G1: Speedup


Figure 2

G2: Speedup


Figure 4

\section*{Appendix B-2}

\title{
Rover Programmer's Guide
}

\author{
David J. Coombs" coombs\%cs.rochester.edu@relay.cs.net \\ The University of Rochester \\ Computer Science Department Rochester, New York 14627
}

Technical Report DRAFT
May 1987

\begin{abstract}
This is the programmer's guide to Rover, a prototype active vision system [Coombs and Marsh 1986]. The system was built as a project for CSC 400 and CSC 446, but it is hoped the system will be used by others as a tool for investigating active vision problems in the laboratory. This guide describes not only the conceptual organisation of the system, but also the existing source code.
\end{abstract}

The University of Rochester Computer Science Department supported this work.

\footnotetext{
-Thanks are due to Chris Brown, Brian Madden and Brian Marsh for their support and critiquea of this docwment.
}

Contents

1 Overview of Rover B-65
1.1 Inter-Module Communication........................................................... B-65

2 Existing System
B-67
2.1 Executive (re_exec)................................................................................ B-67
2.2 Clusters..................................................................................................... B-67

Raster Scan Cluster (rs_*).................................................................... B-67
Object Discrimination Cluster (od_*)................................................ B-69
2.3 Libraries................................................................................................... B-69

Task Queue Manager (re_queue)....................................................... B-69
Graphics Display (re_gfx) .................................................................... B-70
Data Cube Interface (re_dq)................................................................. B-70
Binary Line Segmenting (rs_lib)........................................................ B-70
Segment and Blob Lists (re_segbuf)................................................... B-70
Temporary Image Buffers (re_tib)...................................................... B-70
Image Partitioning (re_partition)........................................................ B-70
Object Color Identification (re_color)................................................ B-70
World Database (DB) Manager (re_world)........................................ B-71
A Building on Rover
A. 1 Hints for Anguish-free Hacking......................................................... B-73
A. 2 Exercises and Obvious Extensions \(\qquad\)
A. 3 Templates for Your Own Code \(\qquad\) B-73
A. 3 Templates for Your Own Code B-75

B Rover's Code
B. 1 Coding Conventions. \(\qquad\) B-75

List of Figures
\begin{tabular}{lll}
1 & Functional Overview of Rover............................................... B-66 \\
2
\end{tabular} Rover Source Code Files............................................................................................... B-77

1 Overview of Rover

Rover is the result of an attempt to build an extendible active vision system that is flexible enough to support vastly differing control strategies. Both top-down and bottom-up processing can be implemented in the Rover paradigm.

The current implementation of Rover performs the task of maintaining correspondences of distinctly colored spheres over time in \(z\) dynamically changing scene. Figure 1 diagranns Rover's main functional units and their relations to one another. Briefly, the Executive begins the work on each image frame by enqueueing a batch of "raster scans" in a static search pattern and then watches a clock to avoid spending too much time on any single image frame. (Other strategies could be employed to search the image frame for potential objects-see Section A.2.) The Raster Scan Cluster seeks light-colored "blobs" in the image frame that may be objects in the scene. The Object Discrimination Cluster scrutinizes the blobs pointed out by the R.S. Cluster and updates the world database. Thus the Executive performs limited top-down direction of computation, but otherwise, computation proceeds in a bottom-up fashion.
1.1 Inter-module Communication

A module is an open-loop \({ }^{1}\) process that is invoked by another module. Modules that perform functions related to a particular goal are grouped together in a cluster. Rover maintains a priority queue of tasks waiting to execute. Arguments are enqueued with each module when it is entered on the queue of waiting tasks. Each module returns a special defined type as its result.

In the current implementation, module invocation (beyond the initial enqueuing of enough raster scans for the whole image frame) is driven by the results of each stage of processing. Each module performs its assigned task and enqueues the module whose work should be done next, based on the results of the current module. Information is passed between modules either by placing it in a global data structure (as in the raster scan cluster) or by wrapping it up and handing it to the next module as its argument (as in the object discrimination cluster).

A module may be composed of several functions, although it is crucial that each module execute and return quickly so the entire system is not bogged down by a sluggish module. (Rover is intended to be robust enough to adapt to a more rapidly changing environment by processing each frame less completely, and a module that runs a long time can cause the executive to lose track of the environment.) A module that needs to perform some auxiliary task to continue its computation is thus split into
1. a module to perform the initial computation,
2. a module to accomplish the auxiliary work,
3. and a module to be enqueued by 2 to conclude the work.
\({ }^{1}\) Bere open-loop means that the procese can be dispatched without requiring the invoking module to monitor its progress.


A good rule of thumb is to design each module to perform a fairly straight-line function and then at a major decision point or functional transition to enqueue the next appropriate function to carry on. \({ }^{2}\)

2 Existing System
Figure 2 depicts the topology of Rover's source code files. This should serve as a guide to the source code. \({ }^{3}\) The clusters and libraries are briefly described in this section to provide an introduction to the code in the current implementation.
2.1 Executive (re_exec)

Rover begins execution in the Executive, setting the command line options and initializing the global data structures. The Executive then starts the first frame interval.

At the beginning of work on each frame, the Executive notes the time and enqueues enough raster scans to search the entire frame image at a predefined density (every 16 horizontal lines). When all interesting work has completed or time runs out on the current frame (the time limit is a compile-time system parameter) the Executive fushes the queue and degrades the confidence \({ }^{4}\) of each object in the world database (DB). The confidence of an object is degraded the most if it was not updated at all during the previous frame interval. The confidence is degraded a little if its position and motion were updated based only on location and size correspondence with the image, and it not degraded at all if the "color" of the item was used in the correspondence check (i.e.the object's identity was "completely" verified, assuming each object has a unique "color").
2.2 Clusters

Raster Scan Cluster (rs_*)
This cluster scans the image frame coarsely to quickly identify blobs in the image and estimates the horizontal motion of each blob found. (Recall that the objects in the scene are assumed to move in horizontal planes.)

Rsscan is called by the Executive to enqueue the scans initially; it also takes a new image in the frame buffer. (Actually, each image frame consists of a pair of images at one-half horizontal resolution. Rs_segment uses these two images to estimate the horizontal velocity of each detected segment. Subsequent modules use only the second image of the pair.)
\({ }^{2}\) Although the modules in each cluster are currently structured as a progression of computational stages. Rover's facilities can support other organizations (e.g.a hierarchical system in which each cluster also has a queue of tasks and one module in each cluster acts as the "executive" for that cluster). In fact, Rover was intended as a vehicle for exploring rarious organisations for active vision syatems.
\({ }^{3}\) A listing of the code is available in TR ??? (are we sure we want to do this?).
'The confidence of an object reflects the quality of the data about the object.


Figure 2: Rover's Source Code Files

Rssegment recognizes a segment \({ }^{5}\) in the pair of images if the segment appears in both frames and its images overlap spatially (if the two images are overlaid on one another). Each detected segment's horizontal velocity is also estimated, and all the segments detected on this horizontal raster line are recorded in the segment list. Then an rs_seg_merge is enqueued to work on these results.

Rs_seg_merge tries to merge each segment found on the indicated raster line either into an existing blob \({ }^{6}\) or with another unmerged segment to create a new blob. A segment may merge into a blob or with another segment if they overlap and their estimated velocities are "close" to one another (as determined by a pre-defined percentage-error threshold). Then an instance of rs_sweep is enqueued.

Rs_sweep sweeps through the blob list to cap off existing blobs by noting a lack of segments in the expected positions on the rasters above and below the known extent of each blob. For each blob that is apparently bounded by background, an od_zoom is enqueued to examine that region of the image.

\section*{Object Discrimination Cluster (od_*)}

This cluster examines at finer resolution each subimage identified by the Raster Scan Cluster as a potential object and uses its results to update the world database.

Od_zoom copies the indicated subimage from the frame buffer into a temporary image buffer. If an object appears to be "clipped" by any edge of the subimage (i.e.the object is not completely contained in the subimage) the subimage is discarded: otherwise, an odidentify is enqueued for each object found in the image.

Odjdentify spatially back-projects its object-image onto the world DB to find objects already known in the world to which this image might correspond. If no objects of about the same size are found in the expected locations, or the confidence of the closest match is low (i.e.the accuracy of the information on this object is suspect) the image's "color" (mean and variance oi brightness) is calculated and the world DB updated by the best match (if any are "close" ) in color, size, and etc.. If no existing object matches the image well enough, a new object is placed in the world DB.

\subsection*{2.3 Libraries}

\section*{Task Queue Manager (re-queue)}

This library provides the operations new_queue, enqueue, dequeue_highest, dequeue, and \(q\)-fush operations on instances of priority queues of tasiks. A Module is enqueued as a pointer to a function. with a pointer to a structure that holds the function's arguments, a function to free the argument in case of a q.flush, and the module's priority.

\footnotetext{
\({ }^{5}\) A segment is a bright section of a horizontal line that is surrounded dark sections.
\({ }^{4}\) A blob is a set of vertically adjacent and horisontally overlapping segments whose velocity estimates are compatible.
}

\section*{Graphics Display (re_gfx)}

The graphics display runs under SunTools. It provides the ability to start up Rover's display window, clear it, and draw crosses. lines and boxes in the window. These facilities are used by the clusters to display their results as Rover runs.

\section*{DataCube Interface (re_dq)}

This library implements functions to digitize a new image frame in the frame buffer. and to get any subwindow of the frame buffer for closer inspection.

Binary Line Segmenting (rs_lib)
A one-dimensional Kirsch edge detector and general-purpose line segmenter are implemented. The edge detector is a simple "difference of boxes" applied to each point on the line (image vector) that is an argument to the edge detector. Thus the result of the edge detector is a magnitude vector in which rising edges of brightness in the image vector appear as peaks, falling edges appear as valleys, and segments of constant brightness give no response. The edge detector also returns the mean and standard deviation of the brightnesses of the points on the line. The line segmenter locates "peak-valley" pairs whose absolute values exceed a threshold supplied to the function as an argument.

\section*{Segment and Blob Lists (resegbuf)}

Essentially, the operations new, insert, and member (like the operations on the abstract data type, set) are implemented for use on segment and blob lists.

Temporary Image Buffers (re_tib)
The operations new, get image, and free are provided for using the Temporary Image Buffers (TIBs). TIBs are used in the Object Discrimination Cluster to hold subimages from the image frame.

\section*{Image Partitioning (re_partition)}

Facilities are provided for searching within and splitting image partitions in TIBs.

\section*{Object Color Identification (re_color)}

This library implements functions to calculate the "color" of an image, and to match a color against the system's current registry of colors. The color an object is the pair (mean, variance) of the brightness of the image of the object. It is assumed to uniquely identify an object.

World Database (DB) Manager (re_world)
This library provides the interface to the spatially indexed world model. It implements the operations necessary initialize the DB, search a spatial region of the world, attempt to match a given object with an existing one in the DB, update an existing object with new information, insert a new object in the DB, and degrade the information in the DB.

\section*{References}
[Coombs and Marsh 1986] David J. Coombs and Brian D. Marsh, Roving eyes - prototype of an active vision system, December 1986, CSC 400/446 Project Report.
[Kernighan and Plauger 1978] Brian W. Kernighan and P. J. Plauger, The Elements of Programming Style, McGraw-Hill Book Company, second edition, 1978.

A Building on Rover
For the reader who wishes to extend the current implementation of Rover to realize greater functionality, this section is devoted to outlining our mistakes for your benefit, and indicat. ing obvious directions for extending Rover.
A. 1 Hints for Anguish-free Hacking

We offer these suggestions for your enhanced hacking pleasure (take them with as many grains of salt as you like):
1. Read The Elements of Programming Style [Kernighan and Plauger 1978]. At least scan the Summary of Rules at the end-it only takes two minutes, and the reminders may save you many horrors we were not spared in the initial implementation.
2. Follow the conventions established in the existing code. Each lends itself to clear code, and minimum interaction between source code in separate files.
3. Adopt the following convention regarding allocating and freeing memory for temporary results:
- Any library that exports a function which returns malloc'd memory as a result must also export a function to free such objects as its functions create.
- Any function using a function that returns malloc'd memory is responsible for utilizing the associated freeing mechanism to prevent memory leaks.
4. Of course, it is even more important to avoid free'ing memory that other functions may reference in future, as this leads to unpredictable results.
5. Try to use a tight design-implement-test cycle to keep changes as incremental as possible. And of course keep backup copies of the latest version of working code. (RCS is fairly nice for this.)
A. 2 Exercises and Obvious Extensions

These exercises are intended as vehicles for familiarizing the reader with the core ideas of Rover and the current implementation. Exercises affecting specific parts of the system appear early in the list. and enhancements involving the entire system later.
1. (useful) Do something better with clipped windows than discarding them. For instance, try getting a subimage from the frame buffer adjacent to the clipped edge to grow the window in hopes of finding the whole object. Windows are clipped frequently in practice, so this could lead to significant gains in performance. It could, of course, be argued that the Raster Scanner should be improved to reduce this frequency. (Why not do both?) Also, in the presence of occluded images (consider several balls, each overlapping) we might not be able to afford to discard partial images.
2. (useful) Replace simple thresholding in the Object Discrimination Cluster with sparse application of an edge operator to locate approximate boundaries of objects. (The rs_lib was not available when the od_* cluster was implemented.)
3. (useful) Develop an error-handling scheme to enable the system to die gracefully and diagnostically.
4. (tedious) Apply convention 3 in Section A. 1 to the existing code to find and plug memory leaks.
5. (insidious) Find the bug that causes floating exceptions occasionally and fix it. Perhaps a local patch will be best, but it may be the result of a previous function not doing its job properly.
6. (straight-forward) Extend the declaration of the return values of modules to be a struct union and use this to explore top-down strategies for directing the search of the image frame and processing of located blobs.
7. (tweaking) Fiddle with the compile-time parameters (e.g.confidence thresholds, error measures and limits) of the system to improve performance in any or all modules and libraries. In fact, making these parameters command-line arguments (with defaults, of course) might speed development efforts, although accessing variables slows execution when compared to compiled cunstants.
8. (model extension) Extend the model of the world. and the library functions to recognize occlusion explicitly (rather than dealing with it implicitly as the current implementation does).
9. (for kicks) Exploit existing handles (e.g.pointers to specific segments in the segment list) and devise your own to improve access efficiency in the system's data structures.
10. (even better than 9) Replace simple linked lists with data structures which are more efficient where your analysis indicates improvements will be yielded for the current system or an expanded version(!).
11. (interesting) Explore other structures for organizing the system (e.g.hierarchical-see Section 1.1 on inter-module communication) and other control strategies (e.g.more direction by the executive, dynamic search for blobs, and using dynamically assigned priorities to direct processing).
12. (expanding universe) Extend the system to recognize and handle other types of objects (e.g.cubes) and more sophisticated identification methods (e.g.markings on objects).
13. (interesting and difficult) Extend the model and system to explore a larger universe by moving the camera, and maybe even add another camera.

\section*{A. 3 Templates for Your Own Code}

To illustrate the basic forms of the main types of Rover's components, Figure 3 gives a sample of how the skeleton of a cluster declaration file should look. Similarly, Figure 4 describes how a module in that cluster might appear, and Figures 5 and 6 illustrate the essential stricture of a library.

\section*{B Rover's Code}

The Rover Programmer's Guide concludes with more detail on the existing source code itself. The code can be found on the system in /u/coombs/projects/rover. An executable is available to be run (on the Sun with the DataCube-currently betelgeuse) and is located in directory/u/coombs/projects/rover/bin. It is invoked by
```

rover [-c<camera\#>] [-f<follow-target\#>]

```
from the shell.

\section*{B. 1 Coding Conventions}

Several conventions are followed in the Rover code. Some of the more helpful ones are listed here.
- Declaration files are protected against being multiply included (leading to redefinitions of objects and types) by defining a constant upon the first inclusion that acts as a guard against subsequent inclusion during a single compilation. (See Figures 3 and 5.)
- Type definitions are named in either of two common forms:
1. NEW-TYPE in all capital letters, or
2. ner_type t in lower case, with the suffix " \(t\) " .
- Declarations are made as local as possible to avoid interference among types, data objects, and functions.
- File name prefixes refer to the major component of the system to which the file belongs. The three primary prefixes in the current code are:
1. re_-the system at large (Roving Eyes)
2. ra_-the Raster Scan cluster
3. od_-the Object Discrimination cluster.

```

 * Rover Sample Cluster Declaration Template --- for EXPORTING
 declarations to modules that need to know your types, etc to
 interact vith this cluster. */
 \#ifndef CLUSTER_TYPES /* Protect your declaration files from
being included more than once.
*)
why ve base it on the file name, as
a convention. */
\#define CLUSTER_TYPES \&
* Include only those declarations needed to declare the types, etc
that you declare here. */
\#include "re_types.h" /* in case you need global declarations */
\#include "re_queue.h" /* needed to declare your molules */
/* Module parameter types are declared here so other modules can
construct arguments for your modules. */
typedef struct {
int arg1;
float arg2:
} mod_Parm_t;
/* export modules in this cluster so other modules can enqueue them on
the task queue. */
extern q_func_t this_module():
\#endif CLUSTER_TYPES

```

Figure 3: Sample Cluster Declaration (cluster_types.h)
```

 /* Rover Sample Module Template --- Include declarations of global
 system, libraries, and other clusters that this module interacts
 vith. -/
 \#include "re_types.h"
\#include "re_exec.h"
\#include "re_queue.h" /* any necessary libraries */
\#include "re_gfx.h"
\#include "other_cluster_types.h" /* a cluster this module vill
interact with */
\#include "cluster_types.h" /* this cluster's declarations */
q_func_t
/* every module returns type q_func_t
(declared in re_queue.h) */
module(my_parm)
mod_parm_t * my_parm;
{
other_mod_parm_t * other_mod_args: /* declared in other_cluster_types.h */
q_func_t return_value;
/* my processing here */
/* enqueue another module on the global task queue (work_q, from
re_exec.h) to perform the next logical operation based on what I
have seen. Coerce the type of the args-ptr to vhat the queue
library expects. */
enqueue(vork_q, other_module, (q_arg_ptr_t) other_mod_args.
arg_free_fn, OTHER_MOD_PRIO);
return (q_func_t) return_value; /* return a value *i
}

```

Figure 4: Sample Module Source (module.c)
```

 /* Rover Sample Library Declaration Template --- for EXPORTING
 declarations to modules and libraries that vant to use the
 facilities you provide. */
 \#ifndef LIbrary
/* Alvays protect your declaration
files from be included more
than once. */
\#define LIBRARY 1
\#include "re_types.h" /* any declarations needed */
/* Library function parameter type declarations */
typedef some_type arg_typel;
typedef global_type arg_type2: /* global_type declared
in re_types.h */
typedef return_type func1_t;
tyredef another_type func2_t;
/* export functions in this library */
extern funci_t funci():
extern func2_t func2();
\#endif library

```

Figure 5: Sample Library Declaration (library.h)
\[
B-78
\]
```

 /* Rover Sample Library Template --- this file (library.c) contains
 the library functions advertised in library.h and any internal
 utilities that are expected to be of use only in implementing
 this library's facilities. */
 #include "re_types.h"
 #include "re_exec.h"
 #include "re_queue.h"
 #include "re_gfx.h"
 #include "library.h"
 /* my declarations */
 func1_t
 /* lib functions declare their
 return types */
 funcl(arg1, arg2)
 arg_type1 arg1, arg2:
 {
 func1_t return_value:
 /* my code here */
 return (funci_t) return_value: /* return my value */
 }
 Iunc2_t
/* lib functions declare their
return types */
func2(arg1, arg2)
arg_type2 arg1, arg2:
{
func2_t return_value;
/* my code here */
return (func2_t) return_value: /* return my value */
}

```

Figure 6: Sample Library Source (library.c)

\title{
CSC 400/446 Project Report: Roving Eyes -Prototype of an Active Vision System
}

\author{
David J. Coombs \\ Brian D. Marsh* \\ University of Rochester Computer Science Department
}

15 December 1986

\begin{abstract}
The Roving Eyes project is an experiment in active vision. We present the design and implementation of a prototype that tracks colored balls in images from an on-line CCD camera. Rover is designed to keep up with its rapidly changing environment by handling best and average case conditions and ignoring the worst case. This strategy is predicated on the assumption that worst case conditions will not persist for long periods of time and the system's limited resources should be directed at the problems which are likely to yield the most results for the least effort. This allows Rover's techniques to be less sophisticated and consequently faster. Each of Rover's major functional units is relatively isolated from the others, and an executive which knows all the functional units directs the computation by deciding which jobs would be most effective to run. This organization is realized with a priority queue of jnbs and their arguments. Rover's structure not only allows it to adapt its strategy to the environment, but also makes the system extensible. A capability can be added to the system by adding a functional module with a well-defined interface and by modifying the executive to make use of the new module. Possible generalizations and future work are discussed.
\end{abstract}

\footnotetext{
- Many thanks are due to Chris Brown, Jerry Feldman and Brian Madden for guiding and encouraging this project, and to Stuart Friedberg for taking the time te profile and speed up our code.
}

\section*{Contents}
1 Introduction ..... B-83
2 Maintaining Correspondence - Strategic Issues ..... B-84
3 Real World Design Constraints ..... B-85
4 The Rover Prototype ..... B-86
4.1 Design Issues ..... B-86
4.2 The Executive ..... B-88
4.2.1 Tasking ..... B-89
4.2.2 Temporal Model of the World ..... B-90
4.2.3 System Intialization ..... B-92
4.3 Image Segmentation - Divining Objects ..... B-92
4.3.1 Segmenting Rasters ..... B-94
4.3.2 Pairing Segments ..... B-94
4.3.3 Growing Objects ..... B-94
4.4 Object Discrimination - Maintaining Correspondence ..... B-95
4.4.1 Image Validity ..... B-96
4.4.2 Maintaining the World ..... B-98
Future Directions ..... B-99
5.1 Cognition ..... B-100
5.2 Dealing with Occlusion ..... B-100
5.3 Dealing with Blocks. ..... B-101
6 Appendix A - Graphics Display and Sample Run ..... B-104

\section*{List of Figures}
1 Paired raster segments and an object region grown from them. Paired segments are denoted by crosses and the object region is enclosed in a boxB-93
2 A blob identified by the Image Segmenter and properly split up by the Object Discriminater. ..... B-97

\section*{1 INTRODUCTION}

\section*{1 Introduction}

The Roving Eyes project (Rover) is an experiment in the design and implementation of an active vision system. Such a system is placed in a dynamic world and interacts with it in a non-trivial way. For this project, the interaction is the identification and tracking of moving (as well as stationary) objects. Images are input using a CCD camera mounted on the Department's robot head. Once loaded into a Datacube frame buffer, these images are then transferred into a Sun-2/120 and analyzed to detect areas of motion. These areas are further analyzed to detect the specific identity of the moving objects. The results of this identification process are then incorporated into a database which represents the system's model of the world. With such a model, the system is capable of maintaining accurate correspondence between distinct objects over time. This temporal interaction with its real world means that the system must be real time in some sense. Hence, Rover represents a "real time" vision system with cognitive as well as sensory abilities.

The initial Rover prototype has been designed only to deal with distinctly colored spheres. This represents a necessary simplification of the cognitive domain intended to facilitate the successful construction of the prototype. Dealing with only spheres permits the development effort to be concentrated on the system as a whole by constraining the amount of sophistication needed to reasonable first-pass limits. Ultimately, Rover will collect enough information to perform such tasks as identifying a solitary block in a field of spheres or identifying particular blocks not just by color (which in fact is just the simple calculation of a moment) but by using alphabet blocks which may be distinguished by the letters on their faces.

The structure of the prototype has been strongly influenced by a contemporary understanding of how the human visual system works. Readings, in particular [Lev85], and close interaction with Brian Madden, a post-doctoral fellow whose particular interest is biological vision systems, provided us with many insights about how best to approach the design problem.

In addition to the participation of Brian Madden, this project comprises our term project for CSC400 and CSC446. It was conducted under the auspices of Chris Brown and in conjunction with the Active Vision Group here at the University of Rochester. That group currently consists of Brian Marsh, Dave Coombs, Barun Chandra, Brian Madden, and Chris Brown. The project itself represents a continuation of work begun by Michael Swain, Chris Brown and Dana Ballard using the robot head to track the centroid of a brightness distribution calculated from a light source moving in front of the cameras.

This document presents the design work and implementation work that has gone into the development of the Rover prototype. It is organized as follows. First, the general problem of maintaining correspondence over time in a changing world is addressed. The next section discusses constraints on our design. The next section

\section*{2 MAINTAINING CORRESPONDENCE - STRATEGIC ISSUES}
discusses the actual design of the prototype. Specific problems and solutions are discussed. The following section contains a discussion of the actual implementation and structure of the system. The major modules are identified and the various software packages that were constructed are discussed. The last section contains our conclusions about the design and about the implementation. Problem areas that went unaddressed either due to oversight or for the sake of simplicity are identified. Finally, as a technical appendix the graphics display is described and a sample run of the prototype is presented.

The source code for the entire system can be found in/usr/vision/src/rover/src The modules are named in the following way:
- re_- General purpose routines.
- od_ - Object discrimination routines.
- re_rs - Raster segmentation routines.
- re_dq - Datacube interface routines.

\section*{2 Maintaining Correspondence - Strategic Issues}

One of the major problems in tracking moving objects is the correspondence problem. Specifically, given two images, we want to be able to identify those objects in both images which actually represent the same observed object. It raises issues of cognition as well as sensation and is not easily solved by simple template matching techniques. Unlike biological vision systems which can sample at a high enough frequency to avoid it, it is a typical problem facing computer vision systems like Rover.

Biological vision systems avoid the correspondence problem by sampling at a very high rate. Computer vision systems can do the same thing and reduce the severity of the problem by obtaining images of the same objects across very short time intervals. Keeping the sampling time interval short, however, requires Rover's cognitive analysis to be fairly fast, and consequently it must be simple. Due to the simplicity of these algorithms, we can only expect them to succeed most of the time. Occasional failures are tolerable because the world is changing and will likely present more favorable data within a short time.

Rover's strategy for maintaining correspondence between objects in a scene is based on a separation between cognition (and attention) and sensation. Maintaining correspondence over time is a cognitive ability. Motion detection and object identification are lower-level, sensory problems. Sensory techniques (e.g. for motion and blob detection) are used to analyze the current image and translate it into symbols that may be effectively manipulated by cognitive processes. These processes use
B-84

\section*{3 REAL WORLD DESIGN CONSTRAINTS}
this information not only to maintain correspondence but also to focus attention on areas of relative importance.

The most natural way to coordinate sensory tasks and cognitive tasks would be in a connectionist event driven semantic network. Such a structure run in parallel would present an extremely powerful organization. Unfortunately, the machine used for the implementation of the prototype is not a parallel architecture. Hence, we use the resources at our disposal as efficiently as possible. This translates to pseudo real-time pseudo parallel tasking. Sub-problems are kept small and are executed only when their relative importance is great enough to the overall functioning of the system. These sub-tasks are:
1. Several kinds of independent sensory analyses continuously process raw image data.
2. Cognitive processes focus (the more expensive) attentive resources (3) on interesting parts of the scene. When they need input from the real world they sample the results from (1).
3. There may be more than one simultaneous locus of attention and more than one attentive process working on each locus at the same time.

Rover's organization is based on this approach to understanding a changing world.
So Rover's behavior can be characterized by a coping strategy-it accumulates as much information as it can at every moment, but it must guard against spending a an excessive amount of time extracting a particular bit of information and consequently losing track of the objects in the scene. For this reason, the system accumulates information incrementally, to preserve as many results as possible if analysis must be cut short during periods of rapid change.

\section*{3 Real World Design Constraints}

The Rover prototype is constrained by several environmental factors beyond our control. The most important constraint on our design is the computational environment used for the implementation. In particular, the supporting hardware, a Sun-2/120, is a serial machine, with no reasonable facility for exploiting parallelism. With no mechanism for parallel task execution, there is no natural way to realize our task-oriented system organization. At the same time we want our implementation to embody the natural strategy described above. To do this, our system will explicitly multiplex its analysis between the sensory and cognitive levels. The serial nature of the computational resources make it essential to be able to constantly direct our resources at the most promising task. In a parallel environment, irrelevant tasks do not seriously impair the overall computation since other computation

\section*{4 THE ROVER PROTOTYPE}
is proceeding concurrently. In a serial environment irrelevant computation can be disasterous for system performance. To enable processing to focus on only the most promising areas, it is essential that our analysis be broken into small computational tasks. At the end of each task the relative importance of that area of analysis can be re-evaluated.

One of the most telling limitations of the hardware is the bottleneck that exists between the Datacube frame buffer and the Sun. When the project began, it took a full 8 seconds to transfer the contents of the entire frame buffer to on-board memory. Due to the lack of powerful image processing hardware all image operations have to be performed on the Sun. Hand optimizations lowered this figure by a factor of 8, but the significance of the bottleneck is still substantial.

Another major consideration was that the prototype design, or ee implemented, be easily extensible. We feel there is significant potential for future research involving the Rover system and we want to provide a useful software base for this work. The Rover prototype is designed to facilitate the replacement and addition of functional units. This will ease the eventual replacement of the simple routines of the initial prototype with more sophisticated ones. Although we place some credence in the Waffle Principle \({ }^{1}\) we believe that the framework of our system will provide a useful framework for the solution of active vision problems long after the initial prototype has been thrown out.

Perhaps of equal importance to future research is our expectation that the supporting hardware will be changing fairly soon with the arrival of new Suns and image processing boards. This new equipment will make it possible to do much more sophisticated analysis of images and much more computationally intensive processing of our symbolic representations.

\section*{4 The Rover Prototype}

This section describes the Rover Prototype. Design goals and issues are outlined. Constraints made to facilitate prototype development are discussed. The framework of the prototype is described along with a discussion of its major modules.

\subsection*{4.1 Design Issues}

The Rover prototype both embodies the design strategy discussed previously and resolves many issues that would not have been dealt with but for the actual implementation.

\footnotetext{
\({ }^{1}\) The waffle principle states that the first attempt at an implementation should be thrown out at the second stage and the system should be implemented again from scratch.
}

\section*{4 THE ROVER PROTOTYPE}

The principal goal of the Rover system is to maintain correspondence between moving objects in the viewing plane. To do this many different elements need to be manipulated. The world database representing the most current state of the world needs to be maintained. To keep this information up to date, input images must be analyzed to detect areas of motion. These areas of interest in the original image are then correlated with the world database and if necessary have further discriminatory techniques applied to them. Since there are potentially multiple areas of interest in any input image but a limited amount of computational power and time to spend processing them, the cycles spent processing each area must be carefully monitored to insure that the information derived from each input image is complete as possible. It is conceivable that any input image will contain more information than the system can process in a reasonable amount of time. If this happens the image and all associated processing is abandoned for a fresh view of the world.

To perform these various tasks, the prototype is broken up into three main modules:
- Executive - Responsible for overall system coordination and task scheduling.
- Raster Segmentation/Motion Detection - Responsible for detecting areas of motion in the input image and for segmenting the image into small manageable sub-images.
- Object Discrimination and Correspondence - Responsible for identifying the sub-images supplied by the Raster Segmentation module and integrating them into the world database.

The remaining sub-sections in the Prototype section of this report describe these various modules in detail.

Before beginning our discussion of the prototype modules, it is important to note the assumptions we made on the world to facilitate the development of the prototype. Our initial ambitions for the Rover prototype included such things as using alphabet blocks as tracking targets. Since our overriding concern was to complete a working prototype by the end of the term, we constrained the problem Rover would have to solve as follows: \({ }^{2}\)
- Simple Targets - The targets used for tracking are different colored spheres of uniform refiectance. Actual identification of different spheres is done on the basis of past position and reflectance.
- Carefully Controlled Lighting - Shadows are not a problem that with which we wanted to deal in the initial prototype.

\footnotetext{
\({ }^{2}\) Especially since we didn't begin coding until what was effectively the last week of school B-87
}

\section*{4 THE ROVER PROTOTYPE}
- Limited Cognition - The amount of correspondence that would be attempted by actual cognition was severly limited.
- Horizontal Motion Only - The permitted motion for an observed object is limited to that along the \(y\)-axis (horizontal) only. (In fact we were able to loosen this constraint considerably).
- No Occlusion - Targets are not permitted to occlude one another. This was another constraint which che design of cur system obviated.
- No Complete Displacement - Balls are not allowed to swap position.
- Control Over World - Random motion is not permitted. In fact, we reserve the right to control motion in the world (say by slowing it down) sufficiently to allow our system to function.

The utility of each assumption, while perhaps not yet clear, is discussed in the context of the prototype modules.

\subsection*{4.2 The Executive}

The Executive is the framework of the prototype which serves to organize all the other functional modules. Its primary responsibilities are organizational. It coordinates the integration of all the functional units, from the extremely low-level sensation oriented modules that perform pixel operations to the higher level cognitive modules that maintain the world database. The specific functions it performs are controlling task scheduling, task execution, resolving temporally global issues of correspondence and systum initialization.

Work is done in the system by enqueuing task requests on a general work queue. If and when there is time to process that particular request then the task is dequeued and the corresponding code is invoked. The framework (i.e., main loop) looks like the following:

\section*{- Initialize work queue}
- Initialize world database
- Enqueue initial Raster Segmentation / Motion Detection task
- Forever
- Get a task off of the work queue if it isn't empty.
- If the queue is empty then enqueue a Raster Segmentation task and reset the interval timer.

\section*{4 THE ROVER PROTOTYPE}
- Invoke the routine specified by the task just dequeued. \({ }^{3}\) If the specified task involves bringing in a completely new image then increment the virtual time stamp counter and reset the interval timer.
- If there is any time left in the current interval then return to the work queue for more work. If there is no time left in the current interval then queue a Raster Segmentation task and reset the interval timer.

The code implementing this framework can be found in re_exec.c.

\subsection*{4.2.1 Tasking}

For task scheduling the executive uses a simple priority queue of queues. (Implementation is provided by the package in queue.c). Tasks may be queued with priorities ranging from 1 upwards where 1 represents the highest priority. When the current task completes execution, the executive will dequeue the highest priority task and execute it. Should there be no tasks waiting for execution then the executive will move on to the next image (we assume that there is always new information that can be input to the system by processing new images).

Tasks are created by enqueuing requests for their execution on the Executive's work queue. The interface to the queue package permits the enqueuing of an operation type, an argument to the specific operation, and the type of the argument to be queued at a specific priority. This was designed to facilitate the future addition of other other types of tasks. It also structures the flow of the system in such a way that would map reasonable to a parallel machine. The actual command for the enqueuing operation is
```

enqueue(work_q, task_type, arg_ptr, arg_type, priority)
Q_HEAD * workq;
short task_type;
baddr_t arg_ptr;
short arg_type;
short priority;

```

The tasks that execute in the current prototype are specified in re_exec.h. They are specified by the \#defines:
```

/* Operation types */
\#define OP_RAS 1
\#define OP_OBJ_DIS 2
\#define OP_OBJ_COLOR 3

```

\footnotetext{
\({ }^{3}\) This is where the majority of the processing is done. These routines are described in the sections on Raster Segmentation / Motion Detection and Object Discrimination / Correspondence
}

B-89

OP_RAS is used to enqueue a Raster Segmentation / Motion Detection task. No arguments are enqueued. OP_OBJ_DIS is used to enqueue an Object Discrimination task. These tasks are used on images that have just been analyzed by the Raster Segmenter. The image is the argument queued with the task type. This is the first pass of the object discrimination process and is used to insure that the input image is usable and that it contains only one object. OP_OBJ_COLOR is used to enqueue tasks that perform identification on images that have been passed on by Object Discrimination tasks. The actual image serves as the argument and is guaranteed to contain an object by the Object Discrimination tasks.

The priorities at which these tasks are enqueued are:
```

/* Operation priorities */
\#define OP_OBJ_COLOR_PRIO 1
\#define OP_OBJ_DIS_PRIO 2
\#define OP_RAS_PRIO 3

```

These priorities are static, but their assignment is not strictly arbitrary. The Raster Segmentation priority (OP_RAS_PRIO) is the lowest because a raster segmentation task should only be executed when all other processing on other portions of the input image has finished. In the initial prototype this actually represents a degenerate usage of the priority queue since raster segmentation is done only when the work queue empties itself or has been fushed. Regardless of this however, since object discrimination tasks are not queued until the raster segmentation of the current image has been done, the object discrimination routines naturally receive a higher priority since their existence on the queue implies that enough information has been secured for their successful execution. With this in mind, individual object discrimination (OP_OBJ_COLOR) is given priority over the preliminary processing of images (OP_OBJ_DIS) since the queuing of OP_OBJ_COLOR tasks implies that the system is quite close to the complete classification of an object.

It is expected that future work on Rover will encorporate a dynamic priority scheme that takes into account such issues as spatial relevance and confidence levels (see Object Discrimination - Maintaining the World).

\subsection*{4.2.2 Temporal Model of the World}

The executive maintains several notions of time. It helps maintain the world database over the course of input images by performing functions not rightly relegated to either of the lower level modules. It also attempts to keep track of the passage of real time in relation to the processing it controls. Should excessive computational effort be exerted in the processing of any one image the model of the world maintained internally could fall hopelessly out-of-date.

The executive manipulates various lower-level modules (i.e., Raster Segmentation and Object Discrimination) to perform the analysis of an image that represents

\section*{4 THE ROVER PROTOTYPE}
a snapshot of the world at a given moment. These routines perform an analysis that is largely restricted to the input snapshot and the past history of the world stored in the world database. An obvious problem with this is that information that is either missing in the current snapshot of the world or that is simply missed by the analysis should still be accounted for in some way. An obvious example occurs when an object moves from the field of view. While it would be reasonable to simply delete the object from the world database, this makes the database extremely volatile since a mistake by the low level routines at any point could result in the accidental but erroneous removal of an object. To counter this problem the system maintains a measure of confidence in each object stored in the world database. Whenever the position and identification of a particular object are reaffirmed, this confidence is raised to a maximum level. Should an image be processed without any new information being provided about an object, for whatever the reason, the confidence in the identity (as well as its existence) is lowered. \({ }^{4}\) Once this confidence falls below a certain threshhold the object is deleted. This provides the system with some measure of resiliency.

An additional interesting result of this degradation of objects which receive no updating over a period of time is that the system is capable of dealing with temporary occlusion. In such a case, two objects will enter a spatial relationship such that their images overlap resulting in that partial occlusion of one of them. Should they be identified as a single object by the Raster Segmentation and Object Discrimination procedures then one of two things can happen. The combined colors of the objects might be identifed in a new color and assigned a completely new entry (albeit a fake one) in the world database. Alternatively, the object will be identified as one of the existing objects that the system expects to find in the area. In this case there will be a partially erroneous aliasing of one of the objects to the other. Since we assume that the occlusion is temporary, in the first case, the objects will separate and the confidence in the fake object will eventually degrade and it will be removed. Clearly no harm is done here. In the second case as long as the obje-ts separate soon enough the world model will still contain the aliased object and its position can be updated. Again, the loss of correspondence is minimized.

The executive maintains a notion of a virtual time segment (enforced by the global variable current-vts) whose length is defined to be VTS LENGTH seconds. This segment is the maximum length of time that Rover shouid spend processing any single input inage. If at the end of a time segment there is still processing to do on the current image, it is likely that any information that could be derived from it would be obtained at the expense of falling way behind the state of the real world. To avoid this problem, any tasks that are pending at this point are destroyed and processing on the new image is started by enqueuing a new Raster

\footnotetext{
\({ }^{4}\) In the implementation this operation is performed jusi prior to the processing of a new image by the routine vorld_degrade().
}



\section*{4 THE ROVER PROTOTYPE}

Segmentation task. Task destruction is accomplished by simply flushing the queue of any waiting tasks. Additionally though, all objects whose internal representation went un-updated have their confidence degraded.

The virtual time segment is also used for manipulating the world database. When a database object is updated it is stamped with the value in current_vts. This value is then used to exempt the updated object from further processing in this time segment.

\subsection*{4.2.3 System Initialization}

System initialization consists of initializing the various system data structures. These are:
- World Database - This is a spatially indexed representation of the world (see the Data Structures section).
- Work Queue - This is the priority queue used for task scheduling and execution.
- Graphics Screen - This is the window used on the Sun screen for demonstrating the actions being performed by Rover.

The various interfaces for the software packages used to manipulate these data structures can be found in the Data Structures section.

Additionally, the initial Raster Segmentation tasks are enqueued and the main loop is entered.

\subsection*{4.3 Image Segmentation - Divining Objects}

The Image Segmentation module isolates the locations of objects in the scene using a coarse sampling of the image. When the executive notices that a potential object has been located, it enqueues an Object Discriminater to examine it. Thus, the Image Segmenter is a cheap filter that saves the expense of inputting uninteresting portions of the image from the frame buffer (a real bottleneck) and allows the system to concentrate high resolution (expensive) operations on areas of the image which are likely to produce the most useful results.

The Image Segmenter's design was strongly influenced by the characteristics of the Datacube frame buffer and our interface to it. Grabbing horizontal lines from the frame buffer is faster than any other mode of acquisition, so the Image Segmenter uses a coarse sampling of horizontal "rasters" from the frame buffer to locate potential objects.

Each raster is examined by an image segmenting task. (Each "frame" in the image sequence consists of a pair of images taken in rapid succession from the CCD

\section*{4 THE ROVER PROTOTYPE}


Figure 1: Paired raster segments and an object region grown from them. Paired segments are denoted by crosses and the object region is enclosed in a box.
camera. These images are digitized in the left and the right halves of the frame buffer, respectively.) At the beginning of processing each frame, the executive enqueues a raster segmenting task for each of the rasters that will be scanned in the frame.

Each image segmenter performs these operations on its raster:
1. Segment the raster-locate light segments of the raster which might be caused by a light object on the dark field of the background.
2. Identify pairs of segments-match pairs of raster segments which appear in both the first and second images and call these positive segments (i.e. not likely due to noise in the image).
3. Identify vertically associated rasters-grow "regions" of positive raster segments which seem to indicate a single object.

Figure 1 demonstrates the results of segment pairing and object growing.
\[
\text { B- } 03
\]

4 THE ROVER PROTOTYPE

\subsection*{4.3.1 Segmenting Rasters}

The raster segmenter uses a one-dimensional edge operator (based on the Kirsch operator) to detect high-contrast edges in its raster from the image. A positive segment consists of a peak-valley pair in the response of the edge detector. Such a pair should indicate the presence of a light-colored object in the image (against the dark background). The segmenter uses a threshold function (of the mean and variance of the intensity of the image raster) to determine what response magnitude constitutes a positive response of the edge operator (rather than noise).

\subsection*{4.3.2 Pairing Segments}

Segment pairs of a raster match in the segment in the first image overlaps the segment in the second image. Any unpaired segments are ignored as bogus or noisy false responses. This pairing criterion effectively limits the class of objects the system will recognize to those whose retinal image is not completely displaced in "a blink of the eye."

Thus, a small object traveling at high velocity perpendicular to the line of sight will be ignored because its images in the first and second blinks will not correspond to each other. Conversely, an object of virtually any size speeding directly at the camera will get a very strong match.

\subsection*{4.3.3 Growing Objects}

The executive maintains a list of the responses from the image segmenting tasks (one for each raster being scanned). As each segmenting task returns with its list of segment pairs, it updates the record for its raster. In addition, the executive keeps a list of object regions. As each segmenter returns its list of segments, it tries to update the object list with the new information it is returning about the inage. If one of the segments the task found corresponds to one of the objects in the list that segment is added to the object. (A segment corresponds to an object if it is adjacent to the top or bottom of the object, and it overlaps with any of the rasters already in the object, and its velocity-which is estimated from the rapid pair of images-matches closely the velocity of the object.) If the segment matches no current objects, the list of segments is searched for an adjacent (unmatched) segment which could form a new object with the segment being returned. If a segmenter task returns a negative response (no segments found) the object list is searched for objects which are adjacent to the empty raster being returned. Any such objects are bounded by this raster and hence complete. Of course, if a segmenter misses a segment, it would clip' the object that it failed to see. An object is also bounded if the adjacent raster contains no segments which match the object (although there
may be some segments in the raster). The executive, rather than the segmenting tasks, detects this condition.

When the executive notices that an object is bounded above and below, it enqueues an object discrimination task to examine the object and try to match it against the current model of the world, as described elsewhere in this report.

\subsection*{4.4 Object Discrimination - Maintaining Correspondence}

Once areas of movement have been identified by the tracking module, the identification of individual objects must be determined. The initial identification and maintenance of correspondence with particular objects is done by the Object Discrimination module. This module consists of high level routines used to interface with the executive and low level routines used exclusively by the module for processing raw pixel data.

When the tracking module locates an area in which it believes there is a moving object, a request for closer inspection is put in the system queue and an entry is made to a Temporary Image Buffer (TIB). The queued request will contain a reference to this buffer and will be used when the request is serviced by the Object Discrimination Module (this one). Note that no part of the image is actually copied out of the frame buffer at this point.

The analysis performed by this module is broken into the following sections:
- Image Validity - do_obj_dis() Insures that the sub-image returned by Raster Segmentation is useful
- Detection of Good Images - Determines if part of the object in the target image has been cut off by the border of the sub-window.
- Detection of Partitionable Images - Determines if the sub-window contains more than one object in it.
- Partitioning of Images - Actually partitions the sub-window so that each partition contains only one image.
- Maintaining the world - do_one_obj ()) Actually does the high level correspondence that allows the world database to reflect the state of the observed world at any point in time. This information is used to determine how much low level processing is necessary.
- Spatial Matching - Attempts to do object identification by correlating object position with predictions about the way the world will look given the passage of time and its effect on the world database
- Color Identification - Expresses the color of the object in the input window as the double containing the mean and variance of the object image intensity.
- Color Matching - Determines if the color is one already seen by the system. Assigns each color a unique integer identifier.

The first stage is implemented by the routine da_obj-dis and the second stage is implemented by the routine do_one_obj. These routines can be found in od_discrim.e. Low level support routines can be found in ad_obj-dis.c.

\subsection*{4.4.1 Image Validity}

The first stage of processing images received from the raster segmentation module is determining the potential usefulness of the images. In our view, complete identification of an image is a computationally expensive procedure. As a result, it makes sense to attempt to determine whether the information derived from a particular image will be of any use.

In this first stage (the routine do obj-dis, the dimensions of the window of interest identified by the raster segmenter are extracted from the TIB_OBJ that is passed as a parameter to do_obj dis. \({ }^{5}\) An example of this can be seen in Figure 2.

At this point, the image is transferred from the Datacube to Sun memory. The raster segmenter constrains the size of the window considerably. \({ }^{6}\) The image is then subjected to a series of tests: determining if an object straddles an edge of the window and determining if multiple objects are present in the window.

The routine ok() determines if an object straddles an edge(s) of the window. It does this by passing a simple threshhold operator over each boundary to a depth of MAX_BORDER_WIDTH pixels. If a high intensity patch is located, this is taken to indicate that an object is so close to the edge of the window that part of it has been lost. This missing portion may be critical to the correct identification of the object. As a result, we adopt the simple strategy of abandoning further evaluation of this image. However, ok() does return a struct containing a list of the boundaries of the image on which the object is incident. This information is intended for use in stretching the window to obtain the missing information. This stretching was not implemented in the prototype.

Once the image has been inspected for incident objects, it is next inspected to determine if there are multiple objects present. This is done by simply scanning horizontally along the image every B_WIDTH rows. When a high intensity patch is

\footnotetext{
\({ }^{5}\) The raster segmenter avoids reading blocks of the image from the Datacube frame buffer as the tranafer between Datacube and Sun memory is an extremely time consuming operation.
'See figures of sample output.
}

\section*{4 THE ROVER PROTOTYPE}


Figure 2: A blob identified by the Image Segmenter and properly split up by the Object Discriminater.

\section*{4 THE ROVER PROTOTYPE}
detected, this is considered to be an object. The center of the high intensity patch is calculated and then a line is drawn vertically to determine the upper and lower boundaries of the object. From this information, a more tightly constrained window is drawn around the object. This scanning procedure is continued until the entire input window has been traversed (this is the routine find_mult()). A list of object dimensions are returned. An example of this procedure can be seen in Figure 2.

The techniques used for the object location and window partitioning are admittedly primitive. Edge finding, for example, is done by simple threshholding. The prototype does however, use a more sophisticated one dimensional Kirsch operator in the raster segmentation routines. The development of the Kirsch occured concurrent to the development of the object discrimination routines and hence the immediately available threshholding was chosen simply to speed the development effort.

If multiple objects are detected in an invocation of do_obj_dis then each object returned by the partitioning objects are placed on the task queue with a request for do_one_obj. If only one object is detected then do_one_obj is called directly. The rationale behind this is that even though partitioning on the window was completed successfully, the window was of less than perfect quality. Hence, the new sub-windows are assigned a slightly diminished priority by being placed back on the task queue.

\subsection*{4.4.2 Maintaining the World}

The second phase of the object discrimination process is responsible not only for the accurate identification of objects at a moment in time, but for doing correspondence over time. This is where the majority of the maintenance is done on the model of the world used to represent what Rover has seen. This involves doing spatial matching to minimize the search space for correspondence; actually identifying objects by color if necessary; and using the spatial and color information to determine if the object identified is an object that has moved and for which correspondence is being maintained, or if that object is new. The appropriate action is then taken on the world model. Appendix A shows an example of a such a correspondence over time.

These entries have information about the last determined position of an item and its last known velocity. Using this information it is possible to predict at a given point in time the new position of the object and its approximate velocity. Should the old velocity of an object and the apparent velocity of the object in the window be somewhat different, it may mean that the objects are different. Alternatively, it may be that the object has changed its velocity. If this is the case then the expected current position with the new velocity is computed and used as a basis for comparison. If the position of the referred window is close to the predicted position of an object then the position of the object in the World is updated and the

\section*{5 FUTURE DIRECTIONS}
request is finished. This "dead-reckoning" approach provides a way of conserving computational power, but provides a potentially less accurate picture of the world. To take this into account, a confidence measure is associated with each object in the World database. Every time the position of an object is updated without actually calculating the identity of the object, i.e. with a position correlation, this measure of confidence is degraded. Once it falls below a certain point, then even if there is a high correlation between the expected position of the object and the position of an unidentified object, the unidentified object will be identified completely.

Once the object is identified either by position or by actual identity, the appropriate World database entry is updated. The current position of the object and its new velocity are recorded. If the identification is by position then the confidence in that identity is degraded. If the identification is by identity the confidence in the identity of the object is set to \(100 \%\). If no entry currently exists in the World database, then a new entry is made.

Color is distinguished as the mean and variance of the intensity in the object. The spheres that serve as our initial targets have the nice properties of being relatively invariant in reflectance regardless of the viewing perspective. This simplifies identification considerably. To ease the cognitive burden, we assume that all spheres have a distinct color in Rover's world.

In order to calculate the mean and variance of the object body, simple segmentation is done using the data from the application of an edge finder to the image. The image is scanned row by row. When an edge gradient of significant magnitude is encountered, intensity values are accumulated. Once a following edge gradient is encountered, processing skips to the next row.

Inevitably there are some difference between the mean and variance of two different images of the same-colored sphere. To deal with this problem, we adopt the ad hoc approach of considering two colors to be the same if they differ by only a certain (magic) percentage. This percentage is the difference of the weighted sum of the means and variances. If the colors are considered to be the same then the object being identified is assigned an integer identifier associated with that color. This identifier is displayed in the figures as a means of demonstrating correspondence and tracking. Should the difference in the two colors be great enough (larger than the magic threshhold function) then the system considers the color to be distinct and assigns it a new identifier.

\section*{5 Future Directions}

The following section describes work which represents the next logical steps in the full deveiopment of the Rover system. It moves Rover closer toward meaningful cognitive interaction with its environment and attempts to solve some of the more basic
sensory problems that are unaddressed in the initial prototype. Typical cognitive development involves using the object history and models of object behavior to aid in identification and correspondence. Typical of these sensory problems are dealing with occlusion and recognizing more complex objects such as alphabet blocks.

\subsection*{5.1 Cognition}

Future cognitive developments would involve things such as using the history of the world to guide the identification procedure. The executive can make a guess about what the object in a particular window will be and use it to in fluence which routines in the Object Discrimination module are invoked. The result will be a much more intelligent guess about how to go about processing image windows.

In addition, the executive could use such information to decide which areas of the scene are likely to contain useful information, ignoring other portions during a crucial detail acquisition task.

Conversely, a good clean image of an object could be saved for later processing if the system must devote its attention to keeping up with a scene which is changing extremely rapidly for a short period of time. As long at the old image can reliably be attributed to the correct object, it can be processed at the system's leisure.

\subsection*{5.2 Dealing with Occlusion}

Relaxing the constraints on object movement in Rover's world is an eventual goal. If objects are no longer restricted to non-intersecting horizontal locii then occlusion becomes an extremely important problem to address.

It happens that for certain situations in which occlusion occurs, Rover already maintains correspondence properly. This is done by maintaining a measure of confidence in the existance of an object over time. Should an object stored in the database go without periodic reaffimation of its existance, its confidence will drop below a threshhold and will result in the deletion of the object from the database. Since occluding objects are usually considered by the system to be a completely new object, independent of the separate component objects. Once the objects separate, there will be no further information about this object and hence it will eventually disappear. This technique for dealing with occlusion is ad hoc at best.

A more effective technique would be to deal actively with images in which occlusion occurs. In a rudimentary form this would involve merely detecting the occlusion and eliminating all further processing of the image. This would prevent the appearance of superfuous objects in the world database. A more sophisticated solution would attempt to do object identifiaation in spite of the occiusion.

The problem of dealing with occlusion is thus reduced to detecting it. The

\section*{5 FU'TURE DIRECTIONS}
difficulty of detection is proportional to the complexity of the objects which Rover is required to recognize.

When the cognitive domain is distinctly colored spheres, we need only to use a segmentation scheme that detects not only binary changes in intensity using edge operators, but intensity changes from one color to another.

When the cognitive domain becomes more complex, say by using alphabet blocks, or using both the blocks and the spheres, the solution involves using the straight line detection techniques of ©BHR86 to detect the outlines of the boxes. General areas of interest would be detected using a simple edge operator with region growing. Connected lines could then be grown using the perimeter of the binary region as a starting point. It would then be necessary to define legal relationships between these lines and base the detection decision on an evaluation of these relationships.

An alternative and potentially more successful approach involves simply assuming that there is only one object if multiple objects are not detected. That is, we ignore occlusion. Instead, we attempt to identify the block using the methods described below. One of the constraints mentioned below is that the figures (letters) that may appear on the blocks are coded beforehand, giving Rover a benchmark against which to compare potential identifications. If the regions in the object can be matched to one of these benchmark id's then the information is used. The gamble is that no information will be derivable if the images are occluding. Empirical resilts will be needed to determine whether the occlusion will make identification so difficult as to justify the expense (both in computation and development) of good techniques for detecting the occlusion so as to prevent the useless expenditure of computation time.

\subsection*{5.3 Dealing with Blocks}

Identification and tracking of alphabet blocks is significantly more complex than the corresponding identification problem with the multi-colored spheres. Although we constrain the problem somewhat by requiring that the same letter occur on every visible face of the blocks, issues of rotation, projective distortion, and actual character recognition must all be resolved. The solutions employed must be fast and effective. They need not, however, work all the time. As long as characters can be effectively recognized most of the time when given a good view, enough information can be gathered to maintain correspondence.

The proposed solution to this recognition problem has three parts:

\section*{- Edge Detection}
- Segmentation/Blob Growing
- Blob Relations

\section*{5 FUTURE DIRECTIONS}
and is strongly reminiscient of Constructive Solid Geometry Techniques : BB8:
The edge detection facilitates the segmentation/blob growing. The segments are then partitioned by faces and the region described by each face is compared to a dictionary of face relations that describe, in a slant-invariant and rotation-invariant form, the various characters that Rover knows about.

To do segmentation we use a linear region growing approach similar to the one used by the current prototype to grow raster segments into "objects" (see the section on Growing Objects). This allows us to segment the image into blobs into time that is linearly proportional to the size of the image. The algorithm uses a collapsing union-find technique to achieve this kind of speed. The segmentation parameterizes the blobs by size and center of mass.

As the blobs in the image are being gathered, relationships between blobs are being recorded. Information such as which blobs are next to which are stored in the blob identifiers assigned by the segmentation process.

Once the image has been segmented into blobs, the blob identifiers are inspected and fully related to one another. This process yields relationships such as which blobs surround which, how many blobs are contained in a particular blob and how many blobs are adjacent to a particular blob. This information should provide a way of quickly discriminating between different characters as long as the blob relationships describing them are significantly different. An obvious example is the difference between \(X\) 's and \(O\) 's. The \(X\) has a oae region containing another, the O a region containing a region containing yet another region. The amount of information stored is small and is easily compared against a dictionary of known recognizable figures.

This technique has advantages over moments [Alt62] in that it seems to be considerably faster and considerably more stable. ([Alt62] advises the calculation of several moments for accurate character identification.) The blob technique provides a means for identifying most distinct figures (it would doubtless have trouble distinguishing between "I" and "l") that is completely invariant with regard to rotation about the \(z\)-axis. We would also argue that it is more invariant with regard to the skewing that results when the cubes rotate about their vertical axis.

Of course, due to rotation about the \(y\)-axis (vertical), there will be times when the view of the target block is such that the images of the characters on the sides of the target are distorted beyond recognition. Since humans would likely have a difficult time identifying the target, it is certainly reasonable that our algorithm not work all the time. Moreover, if the image is bad enough, it may not be worth the computational effort to extract the identification using any technique.

The effectiveness of this algorithm hinges on the ability to do consistent segmentation. If the segmenter produces different blobs and blob relations when the image is perturbed at all then the technique will fail miserably. We can control Rover's environment somewhat to ease the burden on the segmentation routine, but only

\section*{5 FUTLRE DIRECTIONS}
experimentation with real images will indicate whether this is a fruitful approach.

Appendix A

Graphics Display
and
Sample Run

B-104

\section*{6 Appendix A - Graphics Display and Sample Run}

To demonstrate its functionality, the Rover prototype has a simple graphics display that uses the Sun window system. The objects that may appear in the display are:
- Rasters - Indicate where the raster segmenter thinks an object might be. Looks like:

- Matched Rasters - These are raster segments that have been matched between the two halves of the frame buffer. Looks like:
- Raster Windows - A window the raster segmentation routines think encompass an object. Looks like:
- Acquisition Windows - A window the object discrimination routines think will be positively identified as a sphere. Tends to be a tighter fit than the Raster Windows. Looks like:

- Confirmation Windows - A window that the object discrimination routines have positively identified as being a sphere of a particular color. The color identifier is printed out in the lower left hand corner of the window. Looks like:

\section*{6 APPENDIX A - GRAPHICS DISPLAY AND SAMPLE RUN}

The following sequence of figures demonstrates Rover tracking two balls as they cross the feld of view, one moving to the right, the other to the left.


\section*{REFERENCES}

\section*{References}
[Alt62] F. L. Alt. Digital pattern recognition by moments. Journal of the ACM, 9:240-258, 1962.
[BB82] Christopher Brown and Dana Ballard. Computer Vision. Prentice-Hall, Inc., 1982.
[BHR86] J. B. Burns, A. R. Hanson, and E. M. Riseman. Extracting straight lines. IEEE Transactions on Pattern Analysis and Machine Intelligence. 8:425-455, 1986.
[Lev85] M. D. Levine. Vision in Man and Machine. McGraw-Hill, 1985.
Faut R. Cooper
Denied E. Prledenn
scott A. mood
maeconele, Dettusler, and Aseociates
3751 sheli Roed
Richmond, s.C.
Canada

\section*{INTRODUCTION}
satellites can provide cost fifective remotely sensed iages. The uaffiness of thase fages is increasing, as the sensort deprove with each nev satelilite. furthermere. satelilte-acquired imgery is in digital fore, quggesting the posibilifty of autometing retote sensing tasks iuch as mpping. To date however, satelife inagery has only yielded two dimensional planimetic inforestion.

With atereo pairs of satelite leagery the capability for generating the third diemsion. height, enists as vell. The Prench 5por satellite (chevrel. Courtois and welll, 1901) for araple, can tage high cesolution tereo pairs. Depths are generated from suen stereo paifs by stereo matching, normally the task of the human stereo vision system. This paper describes a computer systes, yhich sutonates the process of stereo mishing. With this systes, the digital equivalent of contour eap io digital tecrain model, or otm can be generated autontically directly from digital satellite inges.

Digital terrain modela are quite useful. serving every purpose that a contour map does. and others as well. Por example, terrain dependent paraceters such as volumes can be coeputed esily ifron Dins. and Dins are used in the production of orthophotos. Untortunately, generating a oth manully geguires many hours. This cost mas eotivated many acteapts to sutconically correlate atereo inges, Mthout much auccess.
 Fischlec, lses). This peper describes work thet extends these resulte and applies then to digital catelidte ienges. The result is a ayter for generating ding vith significant capability, demonitrated vith resulta fro both simulated spor fage: and real bandsat 5
 obtalned tron Landeat legen. Before thege realta ore presented, the problem it discusech in detall, and the alporithe wich has been developed is daceribed.

\section*{THI HOMLD AW sourion stmatecres}

\section*{seeceg parallaz pornation}

Depth is seteovered through sterec by combining two viow of the eane seane in the world, each sequired iron differmit viempoint. Figure \(i\) outlines the beste sitwetion. bepth ot point In the varid equepe veriation in the position of the iesge of the polat, separitely in beth viove. Depth is recovered by matehing sueh iage points, mazuring theit combined position variation lealled ateree parallaz ot dispasity), and convesting this parallaz to depth.

\section*{The stereo matehim Proble}

Oy fat the hardest part of the problen is the matching etage. matching the two fogges ceally


lace of the rael werle. Wote that this iaplies coasiderably more than just mething lange latensity tate (corialation). becouse the sam plece of the world ay look considerably differant radfontrically iron ditterent polnts of viow, of at different times. ingtas, we detect edges la the image, wheh rallact the true strueture of the world, and meth thete (Fatz and Foggio. 1979; baker and blaferd, 1981).


Pig. 1. Siaplified satellite stereo iaging
TVo sources account for the reatining probieat in stereo mathing: classic signal-to-nolse considerations in the iagery, and the local nature of the depth-induced perallaz or position veriation. oifferent depths in the seene ceuse lecally differing abounts of parallax everywere in both lagges. A mith search ceehnique such as correlation is thus necesgarily local in neture. Such local searches suffer "keyhole" effects froe lack of global informetion. Two strategies are adopted to counter these probleas. Fitst, connected edges (which we call boundaries) vith extent over significant portions of the leage are eatehod. These boundaries are non-local in naturf, countering keyhole effects. secondy, the boundarles are detected and matched in hifrazchic coarseto-iine sashion. this heips reave the potential for localised match ambigulty, and laproves atgnal-to-noise considerations.

\section*{The stareo Geopety Problas}

Once the fanges are atehed, obtaining depth requices a mol relating the ianging geometry and meanured geraliax to the requiced heights. While the besic model lis siaply a mitter of erigonopery, variety of complications arise in the satelilite lage doasin. one set of ditifeultife arises because the laging geomety varies vith tim and is difficult to detertion accurately. The typleal altuation in the satelilte caet is a line seanning eansor mounted on platiote in contlauous cotion relative to the ground. Appropritete use of in fege corcection syate yields both tasging geometry modele and ieagery of sutficiont guality for ateching.

The geomeric model ast alse compangete for probleng inherent in aide-to-aide satellite stereo taging, whe the two inges ace acquired Independentiy fromadjacent orbit paths. such probleas include relative rotation betwen the leages, espth curvature, and peripective distortion offect in spor iagery fue to the alde-looking angle of the sensor, relative to vertical or medis looking).

Tu
The overall terueture of the systen In shown sementically is Fig. 2. Each major stage is coscribed belew. The input to the systen consiats of a pir of rav digital btereo deages of a ecene. The outgut is both a tanture oth and a grided bin. The featuse din consists of maghts averymere in the scene there ere ages or features, such as depth discontinuities. the grisied pew is ewealy epaced helght comples representing the antire tercin surface. ald heights are in atminerd formet, measured celative to the earth reference peoid.

\section*{tinge Preparation}

In this atep, the ray leput date ia geoentrically corrected end prepared for stereo procesaing. Geopetric correction is done with mecoonald Dettwiler' Geocoded ienge correction
 to eancer and platiort motion. The iemery is corfec'.-d to "precinion" level; that is, ground
truth in the fors of ground control point coordinates is used to derive highly accurate spaceeraft orbit, attitude and daging adels. Uauply, such corrected fagery is then geocoded. tranaformed Into som app projection and secapled. In the sterec case bovever.
 copendent projectien.

The inages are hept in spacecsast dependent profection primarily becauce they must be put into vertieal registration, uth cerceppending sean limes aligned eo-called epipolar registration. tpipolar lines art delined ts the corceaponding lises along wheh atereo eatches occur (Earnard and fischiet, 1sh2), and ate equivalent to the scan lines in eatelifte teagery. this is because depth induced perallaz can develop oaly along the ecan line when each if meanned separately, as is the case with eatelifte lagery. The net result is that boch metehing and parallax measurement must occur betwen corresponding sean lines.


Establishing this vertical eplpolar tegistration is complicated by a relative rotation betven the ieages. This rotation. which is due to changes in the satellite's relative atitude at the two ieage acquisition points, it mabured from previously eafted ground control points. It is sasil enougn ion the order of one degreal that large regions of the iage have the game verticel regiatracion. This allown approziate overall epipolar efegistration by varying the vertical slignetnt in each region.

After all of this preparation, the result is a geoetrically correct vertieally registered pair of ienges in apacecraft projection. Pigures 9 and 10 show a Landsat example.

\section*{moundery textraction}

The purpoee of this phase if to entract gemthing from the laggea for atehing which is Invariant to confounding sadiontric effects. Such effects inclues changes io peint of viev and iliugination. The invariant selected should correspond to pleces where real changes occur in the vorid - In other vorde, boundaries. changes in the wordd aight be olevation changes like sidqes or changes in rotiectance cauced by roads or fielda. The corresponding boundaries Ia the leage ase asmund to be eharacterised by abrupt ehanges la the latenslty function.

 hlerarehteal lateration to the entehing process. The eatracted boundaries are deseribed by


The firit pert of boundary estrection to as iage precessing stept application of an eoge eperator or filter te the leape by comvolution. Ia this ayetes, the function convolved with the lage is a differmes of two cousofane, coe positive, one nopativo. This effectively sets as apolt second terivitive of the lage intensity fuackien, thich ceaverts edges in the ialtial dage to sero-crestage in the tilteced teape. It also serves to capoth the teage to varying levels of cecolutien, van the with paraneter of the ast is altered.

Mart, a secead comvelution-1fte traveral vith tepplates is used to actually detect the boundertes in the siltered imepe. Inis travertal locstes, linke, ond matures the shape of
the zero-erossings, and disregacds boundaries below thresholds of structural and tadionettc significance. soundsties paraliel to the sean lines are regarded as insignificant, for sxample, because they cannot be used to mesure parallay.
somes retults of the boundary extcaction process are ahown in figures 4 through 6. Thest ate beundaries extracted et three levels of tesolution irom the cun lake ieage in fig. 3 . described later. tigure shovs boundarles extracted at the coarsest level of resolution Only the soit obvious image teatures ie.g. the top of the sidge, the sides of the lakel are present. Figure 5 shovs more detail, but lage nolse has darger aignificance. Finaliy, fig. 6 shovs towe of the finest resolution boundarles th the uppet and of the lake sutrounding the dat. The fine detail and obvieus rtructure of the dan and road in the isage are tenoed in the boundaries, even though the features ace soetimes only aingle piael vide.

rig. 5 Cun lake boundaries ar medium resolution


Fig. 6 Detall of Gun Lake boundaries at finest rasolution
Proe the boundary estraction phase. the reault is a list of syabolically characterised linked boundaries at vacying levels of resolution (froe each of the left and right leages).

Boundary matching
The syatea neat arteapts to corfectly detecaine, for a given boundary trom the left iage, whith beundery froe the cight lage cortespond: to it lif anyl. The procesing occura in hierarchic soos-in fashion. from the coarsest level of sesolution to the finest. ac coarser levela of cesoluction, algnal-te-nolse ia better, and there ore tower boundaries and mueh less abigusty in mething. At resule, coarser resolution etehes are eore cobust ind ure used to constrain lacer eatches at liner levels of resolution.
actually deteraining the best atten of boundaries at each leveb of resolution requires the tollowing. first. there anse be eechanise for comparing potential left iengefright iasge boundery pairinga. in this eysten, this is accomplished by computing atatistical siailarisy
score between the boundaries being compared. Once this fs tone, the best overall set of aueh ateh pairings mast be selected. While it is theoretically posible to cest all potentisl comblations of such pelringe, the nuabet of such combination ia prohibitively large. To coastrain this search. whe aymate progranalng teehnsque siailar to that of taker (1982) and onte and ranede (1985). Dynaste prograning isellimn, 2957) is a will know technigue for computing a globel optime (in this case, the beat overall estch) efficiently.

When the best eath of bounderies at the finest level of resolurion (no seoothing) is deteraiond, stereo parallan ts computed by abtraction of the coordinates of the mathed Boundapies is theis respective lages. The set reault of the entire earching proceas is a met of antehed boundazies, and the asociated stereo parallaz everyonere along them.

\section*{Gacantic modelilng}

It is now necessacy to solve the geometry problen of converting perallax masured in the leagen to Gepth in the wrld. the basle base-so-beight godel provides atarting point
 parallax, the height of the satellite above the geold, and the base of separation berveen the ground tracky of the catellite. Values for the halght and base are obtained froe the aodels of che satellite's attitude and orbit derived during the iage correction phase. The persllax mat be coasured to sub-pigel precision to obtain ouficient accuracy. in this aysen, the boundary positions (and thus paraliax) are sasily computed to sub-placi precision.

As ts, however, ths basie model is inadequate even for mand test cases like those presented
 lages sontioned earlier, or large helght errors reault. The eurvature of the earth's surface ahould be modelled as will. froctising real tull-sise spor images requires even more eodffications to the model. The worst probles is the side-looking nature of spor'e sterto feging itelative to vertical or nadic lookingl. with introducet non-binear pertpective distortion lato the ieages. Corfectiy bodeling the effects of this distortion in stereo fanging is ertremply dificult.
wights detertined so far are all relative to a floating datur plane (defined by zero persilax). The second step in post-asth procesing is eherefore to convert these relative mights into absolute heights, i.e. helghts relative to the standard reference tor the earth's surface, the geoid. The incorporation of one or two points of ground truth, so the relative values can be "Eled down' to the suriace. accouplishes this.

The nezt step is to plaee the features (and thele depths) in the earrect position. This is giailer to the procest of orthophoto generation, In that it is desired to place the boundaries Where they would be if viewed froe difectly above irather than from the satelifte ieaging positionj. Once again the stereo imaging codel and the parametert decived during fange corfection ere uted, this time to produce correction for the position distortion.

\section*{Product Gemeration}
move heve an actual "Feature brin" correctly positioned depths everywhere in the seene there is interesting atructure. To obtain a finished product this feature orm, with is still in speceeraft dependent projection, is rotated and scaled into standard eap forme. This is accoplished with etonderd esthemetical warping transforentions. because there is not yet grid of data, it is mot mecessery to resemple the date for this new projection.

Optaining a grided Din product requites one final step. The dense suzface mast be ceconstrueted isom the sparse depth inforestion blong the boundaries. This is easentially e cask of interpolation between the boundaries. such interpoletion, in two dieensions vith



\section*{fest agrots}

\section*{Overall 胙解 Roults}

Peature orn. Hecoust the grid Din it cerived directiy free the feature prin, the quality of the
 to-ifin and mon-lecal mature, is axtrembly robust and alvays genarates a feature orm which is
 1. are vithia carget accursey gools.
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{test scene} \\
\hline & Gun bake (slmulated SFOT) & Death valley (Landeat 5 ) & Vancouver island (Landsae 5) \\
\hline \begin{tabular}{l}
Without error gemoval 2llter \\
mumber of matched festure points \\
feature orn accuracy \\
Grid onn accuracy
\end{tabular} & \[
\begin{aligned}
& 10203 \\
& 9.9 \\
& 9.2=
\end{aligned}
\] & \[
\begin{array}{r}
11106 \\
90.5 \mathrm{a} \\
78.5
\end{array}
\] & \[
\begin{aligned}
& 12429 \\
& 144.6 \text { = } \\
& 130.6 \text { e }
\end{aligned}
\] \\
\hline with error zemoval filter Haber of astehed feacure points peature gin meenacy Grid tim aceuracy & \begin{tabular}{l}
9208 \\
7.9 a \\
7.3 —
\end{tabular} & \[
\begin{aligned}
& 9269 \\
& 61.8= \\
& 59.5=
\end{aligned}
\] & \begin{tabular}{l}
7874 \\
74.7 e 69.8 .
\end{tabular} \\
\hline
\end{tabular}

All securaciet ambure the ins difference in eetres betwen the satellite derived OTM and the reference OTH, over the entiry atea of the derived DTh. To compute the feature om accuracy, feature position was rounded to the nearest pixel.

As is to be expected hovever, the mech is not perfect. Portunately, the fev ecrors that are ade are easy to detect, essy to remove, and relatively ingignificant. these ercors are incorrect atches, when the vrong boundaties or boundary iragaents are put inte eorrempondence. The result is errors thich are few, sandoaly distilbuted, point-ilite in charecter, and aleost alvay in extrese difference with the murgounding terrian ieithet above or belowl. In contrast, most correlation-based mechers tend to tict by getting lost" completely, after which they cannot continue without human astistance.
secause the ecrots are so easy to detect. we designed a siople adaptive fllter to cemove then in a post-processing phase. The filter computes local statisties about terrain heights along boundaries, and throwg out polnts which are in entreme difference. The effect of this filter
 actual eten efrocs are taken out. This post-processing in no vay constitutes smoothing of the terrain surface; all the detail is seill present. It is aimply the automatic removal of the sore obvious randon ercors.

Grid Din. Curiently, the gidd DTM is generaced dicectiy from the feature oth by interpolation. As result, the grid 0 tm tends to be most accurate at disconcinuities and nerrow features sueh as river edges, usually the ast faportant locations for height, and usuoliy there cost correlation-based atehers are wekest. On the other hand, the interpolator we are custenty using. based on trlangular surface patehes, tends to produce mombet discoptsmous and enceted sucfaces between the bounderies.
weplan to use constrained ares mething (buch as cortelation) betweon atened boundaries (Bhter and Biaford, 1911) te augnent the results of the boundary matening, wich should improve the quality of the output grid Dri. Dse of any of the seoother interpolation algorithas would also improve the quality of the results.

\section*{test scenes}
spor simulation ingery. Figure 3 thows the left ieage fron the simulated spor sereo paic.
 tetual feagery was not obtained by the gror antelilte, but by an ifroorte mitiapectral ifnear



 approzinaty so perceat. The laga ltailf shove acene near oun whe eritish colvabla,
 abupt selght change it dea.
 Interpolating the bounderies shou in Figures 4 ehrough 6. iAl otre are presented as deages io this paper. with briqpenese coriesponding to lowation, the higher the brighter. cach orm


 jaged ares are the outecegt atched boundacies).


Fig. 7 Gun Lake stereo derived 0TM


Fiq. Gun bake teference DTM

The MS etcor eedsured betveen the stereo derived DTm in fia. 7 and the riference otm in ing. 0 is 7.35 eetres. This is an uncealisticelly low eror. no doubt duf co the exact radiosettic cortempondence betven the left ieage and the right lage. which was itself synthestied by geamezically but not radioentically altering the left lage.

Death Valley inagery; Figures 9 and 10 show an actual satellite steteo pait. (These figures. The amages ace of the Death valley tegion of califosnia in the united gtates and vere acquired by landset 5 on June 30 and June 23,1984 , respectively. At this latizude, Landsat \(S\) igages nave bout 25 petcent overbap providing stereo coverage, fcom uhich the two 512 by 512 pixel Chaps vere eitracted. both imges are from band 5 of the thematic mapper fith eensor, vith o oixel ground tize of 30 by 30 . The besero-height fatio for bandset sterec paiss is about 20 percent. The tertain, inciuding felescope peak at 3367 eetres and nemrby panasint valley at 500 ettres, is extraerdinarily rugged.

Pigure lil shows the grid orm generoted froc the deatr valley stereo pair. rigure : 2 is the teference DTM for coeparison, genctated ftob : 250,000 scale contour eaps by the Unated States Geological survey tusast. The regodution of this refeienee grm is lowi the pirel size lic by 15 eteres neceseltated digitally soowing both figures 11 and 12 by a factor 2 for the pictures. The Jifterence between the two DTms is presented visually bn fig. il with ene
 eggntude and candoteharacter of the overald erior is apparent, and some triangular artifacts of the incerpolation ace visible.

The ms difierence betwen the tatellite derived DTM and the reference do less than 60 eetres over the entire sese of the eatililite derived DTH; in most places it is lests. This is
 eccount. Profiles teken vertically (columen 364 ) through both ormb con beopered in fig. if. It is easy te e*e that che satellite derived orm hes the coriect tertain structure. betn done to the uscs otm; considersble terciln detali ln the liege and eatelilite derived oth Is net present in the \(1: \mathbf{2 5 0 . 0 0 0}\) scale reference. In some repeces. the satelititederived otm is ectualiy betef than a Dim derived froe \(1: 250,000\) geale eaps. The betelifite derived produce and reference orn ere show once agin in rig. 15 and pig. 16 respectively, in a sgain. the seoothing of the uscs oth is obvious.
vancouver island leogety. figures 17 and 18 thow the sereo pair for the thite test cise, on the norchern side of vancouver lsland near relsey bay. Canads. The left itege was acquited on 10 etere piati. 512 by 312 in sise. In this case, the ceriain is less severe lianging from sea level to 1750 eetesl and ean-mate features such as logged areas ore present in the ieages.

The satellite derived orm and the tefetence are bhown in ilgures 19 and 20 . The reterence orm twien covers only part of the scene in this casel has 25 eterepizel resolution. vhich is even beter enan thee of ene source trages. This retuits in a degradation in aceuracy when

the aatelilte derived orm is registered to the reference. rith et this resolution, hovever, the interpolation procese, with ate core apoerent in the dim at this level of cesolution, can be casily reapved by smothing the oth or using a emother interpolation.
conctustons
The results presented above indeate quite clearly that it is posible co automeleally penerate digital terrain madels fros satelidte dagery. Furthermort, the aceuracy of she pris wich can begnesated is sufilicient to onsure theif usetulmes for task such ab automele tertain empaling.
 process. For the syaten to be tuctessful. it must be robust enough to handle aide variety of input iengery, and it mut be bole to meth the entife beem vith ainicul atch errors and alniabl human assictance. mo have built and tested byster onith mets these goals adairably, as dempatzated by ita ability to derive prins of reasonable mecuraty fico variety
 a necessity in obcaining a sufficient degree of robustness in the esten procest.

MCDOMLEDEMCTS
The work of the tiste author was supported in part by U.s. National seience Poundation
 the Oniversity of mochester, mochaster. Mev yort this eutrent oddressl. The majoilty of wort done on the projuct was supported by an lNa grant item the camedian mational fesearch Council to macgomald deteviler (mal). B. steprd of the canadion centef for meote sening graciously provided the sfor simulated lagery and oun tete oth. The Canadian centre for leate fanaing mpplied the beath valley Lendsat data and provided the vancouver island data through the E.C. Ministry of Envisomment. The B.C. Miniatry of Enviroment also provided the oin for that scene. Frocessing of the landest lasges on the mak Gics syitet by lick jefirey and mancy minielif is gratefully netinowledged. Ald the pictures in this paper vere iaged on an ma color titat 240 film secorder. thants also to the Gics analysts, and the man support staff tho assisted in the preparation of this paper.

REPEAEMCES
Beker, ©.E. (1902). Depth fcon edge and intensity maged stereo. stanford University AIM 347, stantord californib.
 Int. Jolnt Conf. on astificial Intelifgence. pp. 631-616.
 553-572.
mellam. A. 119571 . Gneale prepralng. Frinceton University press, Princeton. Wew Jercey.
 Motercas. Eng. and Remore sensing. 47. 1163-1171.
Frietmana, D.E. (1911). Two-Dicensiont feeapling of line scan inagery by one-Dimensional Procwseiny. Photertes. Eng, and Rempte sensing. 41. 1454-2467.
 Precisice metification of specoborno rasgery with Very Pou Ground Control Polnts. protersan. Ear. and topote senting. 49. 1657-2667.
Gold, G.m.. Charters, T.D.. ans J. macden (1977). Autcented contour mopping Using filangular dement met structures and in interpolent ower cech tereqular felanguler Domein. ACN Comper Grephics. \(11,170-175\).



 B. 204. 101-320.
 Soc. Protocot. Inst. tne., 20!, 211-216.


 the On Late site ia Britith Columbia. In Proe. Th canelian grogelun on maple seacim. Wimalpap. Caseds. De. S41-551.
simard, R. V.G. Friching 119011. A sueceseful Appreach ta mret-0imenalonal merception of
 Fach. Prec. of mapely senied pars. Hurdue univereity. indiam. pp. 31-40.


Pig. Sath Valley stereo pair left


P19. 12 otm derived froe Death Valley etellite deages


Fig. 10 death valley stereo pair zighe

fig. 12 Refertace otm tor death valley


Fig. 14 vertical profile plot encough Destn valley dims

B-117



\title{
Appendix B-5 \\ Subgraph Isomorphism on the BBN Butterfly Multiprocessor*
}

\author{
John Costanso Lawrence Crowl Laura Sanchis Mandayam Srinivas \\ Department of Computer Science \\ University of Rochester \\ Rochester, NY 14627
}

October 7, 1986

\begin{abstract}
Abatract
This report describes an algorithm for finding rubgraph inomorphimes for a restricted ches of graphs and a parallel implementation of the algorithm on the BBN Butterfy Multiprocessor. Thin effort was part of a larger project to somes the sritability of the Butterfy architecture for a variety of machine vision takk. Our algorithm searches a tree in which each node reprementa a partial asoignment of vertices in the amaller graph to vertices in the larger graph. The algorithm prones the search tree uaing properties of the two grapha as conatrained by the partial mapping. These properties are verter connectivity, distance between vertices, and the local topology of vertex clusters. By earefully bainncing the computational load and the contention for ahared rewources, our algorithm achieves almost linear speedup in the procesaing rate of search tree noden. However, the speedup of isomorphism detection rate is poor when looking for few inomorphims, and good only when looking for many isomorphims. We present an analyais of why we believe this property is intrinsic to algorithms that parallelise the tree search without parallelising the node computations. We aleo discuse the effectiveness of the Buttenfly architecture and programming environment in implementing such parallel algorithme.
\end{abstract}
"This work wie supported in part by the Defense Advaced Reveareh Projects Agency U.S. Arw Topo erephic labe under grant mumber DACA70-85-C-0001, in part by the Natioad Science Poundation under grant armber DCR-8320136 and in part by an AT\&T Poendetion Fellowahip.

\section*{1 Introduction}

The report deacribes the results of a project to implement a parallel algorithm for subgraph isomorphism on the BBN Butterfly multiprocessor. This project is part of a larger effort to asess the suitability of the Butterfly for implementing parallel algorithms for machine vision [ Br 86 ]. Our results indicate that the Butterfly is suitable for implementing an efficient algorithm for our problem.

\subsection*{1.1 Problem Refinement}

The original problem statement, under the title of "Graph Matching", is as follows:

> The input is a graph \(G\) having 100 vertices, each joined by an edge to 10 other vertices selected at random, and another graph \(H\) having 30 vertices, each joined by an sdge to 3 other vertices selected at random. The output is a list of occurrences of (an isomorphic image of) \(H\) as a subgraph of \(G\). As a variation of this task, suppose the vertices (and edges) of \(G\) and \(H\) have real-valued labels in some bounded range; then the output is that occurrence (if any) of \(H\) as a subgraph of \(G\) for which the sum of absolute differences between corresponding pairs of labela is minimum.

The above problem atatement includes two problems. The first problem requires us to enumerate every isomorphism. Because of the regularity of \(G\) and \(B\) and because vertices in \(G\) have much larger degree than vertices in \(H\), there are likely to be a very large number of isomorphisms. We suspect that the average number of iscmorphisms is exponential in the sise of \(\boldsymbol{H}\). Thus, any program running on a computer such as the Butterfly would require prohibitively large amounts of computation, even on the average. (Note that even the problem of determining the existence of an isomorphism is NP-complete, and is commonly referred to as the Subgraph Icomorphimm Problem [GJ79]). Since we are mainly interested in asceasing the suitability of the Butterfly architecture for this problem under a very tight development time constraint, we decided to focus on the average time required to find a small, fixed number of isomorphisms, (e.g., 10 or 100 ) rather than the average time to enumerate all of them.

The second problem is a generalization of Subgraph Lsomorphism to graphs with edge and vertex costs. Here each isomorphism is assigned a coat according to some formula, and it is required to find the minimum cost isomorphism. Again, because of development time constraints, we do not addreas this problem in this report.

Finally, a word about terminology. The word matching has a apecific meaning in graph theory, namely a set of vertex-disjoint edges in a graph. Graph Matching would thus suggest one of the well-hown problems that involve finding such matchings in graphs. We therefore prefer to use the standard terminology, and will hereatter refer to our problem as Subgraph Eomorphism.

\subsection*{1.2 Approach}

Our parallel algorithm is baced on a modification of Ullmann's sequential tree-search algorithm for rubgraph inomorphism [U776]. Ullmann's method generates a search tree where
each node in the tree represents a possible partial isomorphism. Let \(v_{1}, \ldots, v_{n}\) be the vertices of \(H\), ordered so as to correapond to the depth in the search tree. A node at depth \(k\) contains a single mapping for vertices \(v_{1}, \ldots, v_{k}\) and a set of possible mappings for vertices \(v_{k+1}, \ldots, v_{n}\) At the leaf nodes of the tree, all vertices, \(v_{1}, \ldots, v_{n}\), have a single mapping and the node represents an ieomorphism.

Ullmann's algorithm prunes the search tree by eliminating mappings that are infescible because they violate conneetivity requirements. We view this procedure as the application of a connectivity filter. The regularity of the graphs for our problem is such that the connectivity filter will be less effective than in the general case. Because of this, we have attempted to improve the pruning efficiency of Ullmann's algorithm by precomputing a good vertex traverial order and by adding two new filters, the distance and configuration filters.

There are bacically two aspects of the sequential algorithm that can be parallelised: the computation at each node and the exploration of the search tree. We have chosen to focus on the latter aspect for two reasons. Parallelizing the exploration of the search tree has the advantage of requiring minimal communication between processors, which implies low synchronisation and contention costs. We also believe that it is the more interesting aspect. since the node computations tend to represent matrix computations, and paralleliving such computations on the Butterfiy is better understood.

The basic algorithm is to generate the graph, perform the precomputations, and spawn off a number of processes to search the tree. The precomputations include ordering the vertices to increase search effectiveness, and precomputing constant information for the distance and configuration filters. Each process searching the tree contains a loop in which it obtains a search tree node from the shared stack, applies the filters to the node, and places the feacible children of the node, if any, on the stack. The loop continues until either the appropriate number of isomorphisms has been found, or there are no more nodes left to process. For a single processor, this algorithm is equivalent to a depth first search of the tree.

\subsection*{1.3 Reaults}

Our algorithm was successfully implemented on the Butterfly. Experiments were conducted for finding between 1 and 100 isomorphisms, using between 1 and 96 processors. Figures 1-4 summarise the experimental findings.

The program exhibits almost linear speedup in the node processing rate. However, the solution rate (i.e., the number of isomorphisms detected per second) shows good speedup only when the program is looking for 100 isomorphisms. The solution rate speedup is poor when looking for fewer isomorphisms, a phenomenon that we believe is intrinsic to algorithme that parallelize the tree search without parallelising the node computation. Going in the other direction, we have evidence to suggest that the solution rate speedup will be almont linear if we are looking for a very large number of icomorphisms. However, the actual solution time would be prohibitive in that case.

Our effort indicates that the Butterfly architecture provides an effective balance of features for implementing parallel algorithms of the kind likely to be used for problems similar to ours. However, architectural suitability alone does not guarantee effective utilization
of a parallel proceasor. The machine must also be equipped with a workable programming environment. We found that the Butterfly's programming environment, evidently reflecting the state of the art in parallel programming environments, is currently inadequate for rapid and reliable program development.

\section*{2 Algorithm Details}

This section describes the details of our algorithm. We examine random graph generation, cearch vertex traversal order determination, and soarch tree node illtering.

\subsection*{2.1 Graph Generation}

Generating a graph according to the given apecifications is an interesting problem in iteelf. Consider an incremental algorithm to generate the graph \(H\), which has 30 vertices each connected at random to 3 others. Thus \(H\) is a 3 -regular graph. The 3 neighbors of some vertex v must be chosen in such a way that the triple that is chosen has the same probsbility as any other feacible vertex triple. (A triple is feasible if it does not violate the degree constraint for any vertex in the triple). Incrementally, we must ensure that the next vertex added to the triple is chooen at random from the remaining feasible neighbors.

It is not hard to see that such a procedure might not always yield a graph \(\boldsymbol{H}\), since we might sun out of feacible neighbors prematurely, before all vertices have received their full complement of 3 edges each. We illuatrate this phenomenon with a small example. Let \(K_{4}\) be the complete graph on 4 vertices and \(K_{3,5}\) be the complete bipartite graph with 3 vertices in each partition. Both \(K_{4}\) and \(K_{3, j}\) are 3 -regular. Suppose it is required to generate a 3regular graph with 6 vertices. The procedure deacribed above might incrementally generate \(K_{4}\). At that point, 4 vertices have degree 3 and 2 have degree 0 . The only remaining feacible edge will connect the two rero-degree nodes, which will then each have degree 1 . Since no further edges can be added, the procedure fails.

If we relax the requirement that the neighbors of a vertex must be chooen at random, it is simple to generate a 3 -regular graph on \(n\) vertices, for \(n\) even. (Exercise for the reader: prove that for odd \(n\), no 3 -regular graph exists). We simply have [ \(n / 4\) ]-1 copies of \(K_{4}\) and one copy of either \(K_{4}\) or \(K_{3,3}\). However, it is required to choose neighbors at random. We therefore atrengthen our definition of neighbor feasibility.

A vertex \(v\) is a feasible neighbor of \(v\) if adding the edge \((v, v)\) does not violate the degree conatraint for cither \(v\) or \(w\), and, furthermore, after adding the edge ( \(v, v\) ), the reaidual degree sequence is feasible. The residucl degree \(d_{i}\) of a vertex \(i\) is the number of edges it needs to bring its degree up to 3 . The residual degree sequence of a graph is formed by arranging the reaidual vertex degrees in non-increasing order. It can be ahown [BM76] that the residual degree sequence is feasible if, for \(1 \leq k \leq n, \sum_{i=1}^{k} d_{i} \leq k(k-1)+\sum_{i=k+1}^{n} \min \left\{k, d_{i}\right\}\). If a reaidual degree sequence is fessible, then we know that the construction can be completed with the edge ( \(v, w\) ) included.

Following the approach in [Ti79], our graph generator uses the neighbor feacibility teat on-line. Every time a neighbor is examined, the degree constraint and the residual degree criterion are checked. The neighbor is deemed feasible only if it passes the test. Three
feasible neighbors are then chosen at random for each vertex. The 10 -regular 100 -node graph \(G\) is similarly generated.

\subsection*{2.2 Vartex Ordering}

The search procedure asoumes a vertex traversal order. In this section we show how to choose this order to our advantage. Consider the situation in the algorithm after vertices \(v_{1}, \ldots, v_{k}\) have been mapped. An unmapped vertex that is connected to a larger number of mapped vertices will have more rentrictions on possible mappings. Thus, our goal is to choose the next vertex to visit in the search an the one that in maximally connected to vertices already mapped. We believe that this procedure will tend to cause pruning earlier rather than later, by applying restrictions to the edge mappings as soon as possible. This will make the soarch tree sparser and redure the search space.

We compute a vertex ordering as follows. For each vertex we record a label, representing its ponition in the eventual ordering, and its reaidual degree. Initially every vertex is unlabeled and has residual degree 3. At each step \(i, 1 \leq i \leq n\), we choose an unlabeied vertex of minimum residual degree, label it with \(i\), and decrement the residual degree of its unlabeled neighbors. The procedure thus tends to choose vertices highly connected to the vertices already labeled.

\subsection*{2.3 Node Filters}

We have implemented three filters, a connectivity filter modified from Ullmann's original filter, a distance filter based on the distances between vertices in the two graphs, and a configuration filter based on the possible configurations a vertex and its three neighbors can assume in the \(H\) graph. Note that the distance and configuration filters, when combined with use of the connectivity filter to restore consistency after l's have been eliminated, are a generalisation of, and hence more powerful than, the connectivity filter alone.

\section*{Ullmann's Approach}

In Ullmann's implementation, each node of the search tree is associated with an \(m\) by \(n\) binary matrix \(M\) where \(m\) is the order of \(H\) and \(n\) is the order of \(G\). The ( \(i, j\) ) entry of \(M\) is set to 1 if we are atill considering the pomibility that vertex \(v_{i}\) of \(H\) may be mapped to vertex \(v_{j}\) of \(G\). At depth \(d\) in the search tree, \(M\) contains a single 1 in each of its first \(d\) rows. To generate the children of a node at depth \(d\), we clear all but one of the 1 's in row ( \(d+1\) ) of \(M\) and sero out the rest of the column occupied by the remaining 1 . So the branching factor is the number of 1 's in row \(d+1\). At the leaf nodes, exactly one 1 is set in each row of \(M\) and each column has at most one 1 set. To create the root matrix \(M\) we set the ( \(i, j\) ) eatry of \(M\) to 1 unless we have reasoa to believe that vertex \(v_{i}\) of \(B\) cannot be mapped to vertex \(w_{j}\) of \(\boldsymbol{G}\).

Ullmann describes a refinement procedure which at each node attempts to get rid of l's by checking connectivity requirements. If this removal results in a row of \(M\) losing all ite 1's, the node can be pruned from the search tree. The connectivity check is as follows. For each 1 in \(M\), say at porition ( \(i, j\) ), the following check must be made. Let \(v_{z}\) be any neighbor of \(v_{i}\) in \(H\). Then there must be some 1 in \(v_{z}\) 's row in \(M\) corresponding to some
neighbor of \(w_{j}\) in \(G\). That is, there must be some \(y\) such that \(w_{y}\) is connected to \(w_{j}\) in \(G\) and entry \((x, y)\) of \(M\) is set to 1 . If no such \(y\) exists, then the mapping from \(v_{i}\) to \(w_{j}\) is imponible and we may set entry \((i, j)\) of \(M\) to sero. Such a check must be done for every neighbor \(v_{\mathrm{s}}\) of \(v_{i}\). After all 1 's in \(M\) have been checked in this way, the process must be repeated if any 1 's were eliminated during the pas. Checking connectivity at a leaf node determines whether or not we have found an isomorphiam.

\section*{Our Modifications}

Ullmann's connectivity filter, or refinement procedure described above, can be made more efficient by mating the following 2 observations:
1) It is not neceesary at each node to check each 1 in the \(M\) matrix for connectivity conaistency. In fact, it is only neceasary to check at each stage the neighbors of those \(\boldsymbol{H}\) vertices whose rows in the \(M\) matrix have lost 1 's aince the last connectivity check. Of course, since this check may result in some 1's being eliminated, it may recursively cause more checks. This implementation of the connectivity filter is described in more detail below.
2) At depth \(d\), the vertices in rows 1 through \(d\) need not be checked even under the circumstances described in (1). This is because these vertices have only one 1 set in their rows in \(M\), and by previous connectivity checks all 1 's in their neighbors' rows must correspond in \(G\) to neighbors of the vertex indicated by the single 1 . In particular, this means that at leaf nodes of the search tree no checking needs to be done at all, and whenever we reach such a leaf node we are guaranteed to have found an isomorphism.

We now describe the procedures used to eliminate 1 's at the beginning and throughout the search.

\section*{Connectivity Filter}

This filter is invoked by giving it a list of vertices in \(H\) whose rows in \(M\) have recently lost 1 's. This can happen, for instance, when new nodes are generated by branching in the search tree, or when other filters, described below, have been applied, resulting in the elimination of 1 's.

The filter maintains a stack containing the numbers of the vertices whose neighbors must atill be checked. This stack is initialized with the list of vertices passed in to the procedure. The algorithm proceeds by repeatedly taking vertices off the stack and processing them; this may result in more vertices being pushed onto the stack. The procedure ends when the stack is empty.

The following is done for each vertex \(v_{i}\) popped off the stack. If a 1 is in position \((i, j)\) of \(M\), then the \(j\) th row of the incidence matrix of \(G\) is retrieved. This vector will have a 1 corresponding to each neighbor of \(v_{j}\) in \(G\). All such vectors are retrieved for each \(j\) such that \((i, j)\) is 1 in \(M\), and these vectors are ORed together. The rerulting vector is ANDed with asch row in \(M\) corresponding to a neighbor of \(v_{i}\) whose vertex number is not less than \(d\), the current depth. For each such neighbor of \(v_{i}\), the result of the AND operation is ingtalled as the new row in \(M\) for this vertex. If the row for the vertex in \(M\) has been seroed out, the correuponding node is prused from the search tree. If one or more l's have been eliminated from the row, the vertex is puahed onto the stack if it is not already there.

\section*{Diatance Filter}

We define the distance between two vertices in a graph to be the smallest number of edges that must be crossed in order to get from one vertex to the other. Clearly, the distance between the isomorphic images in \(G\) of vertices \(u\) and \(v\) must be leas than or equal to the diatance between \(u\) and \(v\) in \(H\), since \(G\) has an image for every edge in \(H\) and potentially contains some ahortcuts between the images of \(u\) and \(v\).

This observation forms the basis of the distance filter, which we dencribe in this section. The distance filter requires knowledge of the distance between every pair of vertices in both \(\boldsymbol{G}\) and \(\boldsymbol{H}\). We precompute these in two matrices by repeated breadth-first search starting at aach vertex in \(G\) and \(H\).

The distance filter may be applied every time a new node has been generated. Suppose a node has been generated at depth \(i\) by seroing out all 1's except one in row \(i\) of \(M\). Assume the remaining 1 is in column \(j\). For each 1 in each row of \(M\) after row \(i\), the following is done. Let the 1 be in position \((l, m)\) of \(M(l>i)\). That is, the 1 signifies that vertex \(v_{l}\) in \(H\) may be mapped to vertex \(w_{m}\) of \(G\). For this to be so the dirtance in \(G\) from \(v_{j}\) to \(w_{m}\) must be leas than or equal to the distance in \(H\) from \(v_{i}\) to \(v_{l}\). If this check fails, then the 1 at ( \(l, m\) ) is seroed out.

If the distance filter application results in elimination of 1 's in one or more rows of \(M\), the connectivity filter is invoked to restore connectivity consistency.

\section*{Conffuration Filter}

The configuration filter is based on the fact that because every vertex in the \(H\) graph has degree 3, one can enumerate the 4 types of configurations that a vertex \(v\) and its 3 neighbors can be in.

Type 0 configuration occurs when none of the neighbors of \(v\) are connected to each other by an edge. Type 1 configuration occurs when exactly two of the neighbors of \(v\) are connected to each other. Type 2 configuration occurs when exactly two pairs of the neighbors of \(v\) are connected to each other. Type 3 configuration occurs when all three neighbors of \(v\) are connected to each other, forming an isolated clique of size 4 . Each vertex in \(H\) can be determined to be in exactij one of these 4 types.

In the graph \(G\), each vertex has degree 10. If a vertex \(v\) in \(H\) is mapped to a vertex \(w\) in \(G\), then the 3 neighbors of \(v\) in \(H\) must be mapped to three neighbors of \(v\) which together with \(w\) form a configuration having at least the connectivity of \(v\) 'a configuration. In other word, if \(v\) has configuration type \(k, v\) and its three neighbors must be mapped to a vertex vand 3 of w's neighbors forming configuration type \(l\) where \(l \geq k\). Each vertex \(w\) in \(G\) has 120 3-tuples of neighbors and a confguration type correaponding to each of these 120 3 -tuples.

Application of the conffuration information requires knowledge of the configuration type of each restex in \(H\) and of the typen ascociated with each vertex in \(G\) and each of its 3-tuples of neighbors. This information is computed and stored at the beginning of the algorithm.

One application of the configuration information takes place when the matrix \(M\) is initialised at the root node of the search tree. At this point each feasible mapping of a vertex \(v_{i}\) to a vertex \(v_{j}\) in \(G\) is checked, to make sure that for some 3 -tuple of neighbors of
\(w_{j}, w_{j}\) has configuration type at least as large as that of \(v_{i}\). If this is not the case, the ( \(i, j\) ) entry of \(M\) is seroed out.

In addition, a configuration filter may be applied whenever a new node is generated in the search tree. Suppose a new node has been created at depth \(i\). This has been done by seroing out all 1 's in row \(i\) of \(M\) except one, say in column \(j\). Thus for all isomorphisms that may be found in this branch of the search tree vertex \(v_{i}\) of \(H\) is mapped to vertex \(v_{j}\) of \(G\). We want to make sure that the neighbors of \(v_{i}\) are all mapped to neighbors of \(v_{j}\) which form the correct type of configuration with \(w_{j}\). In order to do this the filter takes each 3 -tuple of neighbors of \(w_{j}\) whose configuration type is at least as large as \(v_{i}\) 's configuration type, and records the fact that each of \(v_{i}\) 's neighbors may be mapped to any one of the vertices in the 3-tuple being considered. After this is done for each applicable 3-tuple of neighbors of \(w_{j}\), the 1 's corresponding to mappings for the neighbors of \(v_{i}\) which were not recorded in the above procedure are seroed out in the matrix \(M\). Since this process can result in elimination of 1 's in the rows of \(M\) corresponding to \(v_{i}\) 's neighbors, the connectivity filter should be then called to restore connectivity consistency.

\section*{3 Implementation}

The program is implemented on the Butterfy using the C programming language and calling the Chrysalis operating system [BB85s] directly. Programming with Chrysalis is appropriate when there is need for shared data but not for a shared address space, and when the granularity of processes is high. The algorithm chosen has these characteristics.

The implementation has a main process to setup the computation, and several server processes to perform the tree search. The main process initializes a shared stack, consisting of tree nodes which have yet to be searched, to the set of possible tree nodes at depth one. The server processes extract a node from the shared stack, filter it, and place any feasible children back on the shared stack.

The main process: sets up the ahared memory environment through which all processes will communicate; generates the random graph and first search tree node; precomputes the vertex order, atatic distance filter information and static configuration information; spawns the server processes; signals the processen to start searching; and waits for the processes to finish.

Eech server process: connects to the shared memory environment; waits for the start signal; copies the constant problem and precomputation information into local memory; loope procesing rearch tree nodes until the appropriate number of isomorphisms have been found; and aignals the main process upon termination. To process a search tree node, the server process: retrieves a tree node from the shared atack; applies the filters to the node; and places any feasible child nodes back on the shared stack.

\subsection*{3.1 Sequential Operations}

Not all elements of the program could be parallelized in the short time available to our project. As a result, some parts were implemented sequentially. This section discusses the reacons each wac left sequential.

\section*{Graph Generation}

We did not consider the random graph generation as part of the problem statement, so no effort was made to parallelise it.

\section*{Precomputation}

The precomputation is graph dependent, and therefore is necessarily part of the problem statement. We did not parallelise the precomputation since it took only about 12 seconds on a single Butterfly node, which represents a amall fraction of the total work. In addition, the precomputation is a relatively straightforward matrix computation, and parallelizing such computations on the Butterfly is relatively well understood. Therefore we did not feel that the coding effort would be justified. This precomputation time is not counted in the solution times cited later.

\section*{Spawning Processen}

The server processes are sequentially started by the main process. We made no attempt to parallelize process startup because we feel that, in the context of vision, the isomorphism search is likely to be repeatedly called on a stream of problems. In such an environment, the processes would be started and left started, and the relative cost of process startup would become insignificant. Because of the time to start processes, a process spawned early could conceivably do a substantial amount of work on the search while other procesces were atill being started. This would adversely affect the timing results, so all processes start computation only when receiving a broadcasted "start" signal.

\subsection*{3.2 Parallel Operations}

This section describes those aspects of our implementation that we have parallelized. These parallelizations strive to keep processors as independent as possible while keeping them as bury as possible.

\section*{Copying Precomputation Results}

The precomputation resulte are placed in a central location by the main process. While the server processes could use this central location to access the appropriate data, such acceases would be subject to contention with the other server processes attempting to access the information. Such contention can result in a subatantial performance degradation. Therefore, we have esch server process copy the precomputation results to the local processor for the duration of the search. The access costs to the data are minimal with the local copy.

\section*{Troe Search}

An obvious approach for parallelising a tree search with such a large branching factor is to asaign a processor to each top level subtree and have each processor then execute a sequential algorithm on the smaller problem. This approsch has the advantage that there is almost no communication between processors, and hence they will not contend for information
resources. There is, however, a disadvantage in that if a processor finishes early (because it eliminates a subtree), there is no work left for the processor and it becomes ineffective

The first approach implemented had a central stack for all tree nodes. This eliminated the ineffectiveness of a processor finishing early. Unfortunately, the stack tended to grow very large. Due to the parallel, random, nature of stack access, the algorithm no longer has the apace preserving properties of a depth first mearch. Indeed, the stack may grow as quickly as it would for a breadth first search, which would atore a prohibitively large number of tree nodea for this problem. In addition, processors were always contending for access to the shared stack.

The second approach implemented used the ahared atack only for search tree nodes at depth one and two. Below that, a local stack was used for searching a subtree in a strictly depth first manner. This reduced overall contention for the ahared stack while still leaving plenty of work for a processor which finished a subtree early.

\section*{Shared Stack}

The shared stack is implemented as a data structure in shared memory. Each server process is responsible for consistently updating the stack. Because server processes will start execution of the stack at arbitrary times relative to each other, these operations must insure that they do not interfere with each other. We solve this problem by having the server processes lock the stack using an atomic test and set operation when performing the critical data structure updates. When a server process finds the stack locked, the process busy waits until it finds the stack unlocked. Locking the stack produces contention for the stack. This sontention in turn reduces the amount of effective parallelism that can be obtained from the program. Therefore, the program should seek to minimize the amount of time a process locks the stack relative to the amount of time processing away from the stack.

\section*{4 Analysis of Results}

Our algorithm was successfully implemented on the Butterfly. Data was collected for \(s=1,5,10,20\) or 100 . Where \(s\) is the number of isomorphisms being sought, with \(p=\) \(1,2,4,8,16,32,64\) or 96 processors. For comparison purposes, each Butterfly node is about \(\mathbf{5 0 \%}\) alower than a Sun \(2 / 50\) workstation. Figurea 1-4 summarize the experimental findings. Each data point represents between 6 and 10 triala. The majority of our experiments were run on a single, randomly generated instance of each of the graphs \(G\) and \(H\). More robust results would be obtained if we were to run our program on different random graphs.

Our experiments indicate that using both the distance and the configuration filter is only marginally more useful than uning either of these filters alone. In addition, we found that the distance filter took leas time to run. Because this latter fact was observed too late in the experimentation, the configuration filter alone was used for all of our trials. However, the nature of the parallelisation is such that uaing any combination of filters at each node should yield the same qualitative results in term of speedup.

\subsection*{4.1 General Analyais}

This section provides a general analysis of the parallel algorithm. Analysis specific to our implementation is discussed in the next section.

\section*{Node Proceaning Rate}

Figure 1 shows the number of search tree nodes processed per second as a function of the number of procesocrs. Our program achieves a near linear speedup in the node processing rate, indicating that our program is an effective parallelization of the tree search algorithm.

\section*{Solution Rate}

Figure 2 shows the number of solutions generated per second as a function of the number of processors. This figure clearly shows that the program did not achieve linear speedup in problem solution time. One may observe, however, that the speedup gets better as larger numbers of isomorphisms are sought. This seems to confirm the conjecture that near linear speedup would be achieved by our program if we were to look for a sufficiently large number of isomorphisms. This conjecture is supported by the following analysis.

Suppose we are looking for one isomorphism. Consider a search tree with two subtrees. A sequential algorithm will explore one subtree first, and then, if a solution is not found, will explore the second subtree. In parallelising this search for two processors, we would send one processor down each of the subtrees. Now, ascume the solution is found in the first subtree. The first processor will find the solution while the second processor will not. However, the first processor will find the solution in the same amount of time as the sequential version. The second processor will contribute nothing to the problem solution time.

This argument can be extended to multiple processors, and multiple sclations. As different processors explore different branches of the search tree, some will find solutions and some may nok. Whether or not a processor find a solution depends on whether or not the processor can find a colution before the required number of solutions are found by other procescors. The extent to which processors search without yieiding solutions determines the amount of unprofitable work expended. If some of this work would not take place when using only one processor, then this work represents a limit to the speedup that can be schieved with parallelism.

Consider the case where we are searching for a few isomorphisms and the search tree contains a large number of isomorphisms distributed evenly among its branches. A sequential algorithm would only need to go down a few branches to find the required isomorphimes. The parallel implementation, however, would explore many branches at once, and would terminate when an appropriate (amall) number of processors have found isomorphisms. In the meantime, the remaining proceasors would have expended a considerable amount of work. Thus parallelisation in this case is only marginally productive.

Now consider the case where we are searching for a large number of isomorphiams and the search tree contains a large number of isomorphinms distributed evenly among its branches. Mont processors will contribute solutions before the appropriate number of isomorphisms
have been found. Thus, processors will contribute a larger percentage of their total work towards the set of solutions, and the efficiency of the parallel algorithm will be higher.

\section*{Effective Processori}

Figure 3 shows the number of effective processors as a function of the actual number of processors. This figure again points out the greater effectiveness of parallelisation when a greater number of isomorphisms is being sought.

\section*{Solution Time}

Figure 4 ahow the time in reconds for finding a solution as a function of the number of solutions being sought. Note that the unit cost of finding a solution does not increase as more isomorphiams are sought, but instead seems to slightly decrease.

\subsection*{4.2 Implementation Analysis}

A high degree of contention for a shared resource can severely degrade overall problem solution time. Much of the art of parallel programming consists of balancing the need for minimising contention at shared resources with the necessity of providing enough shared information for the processors to work effectively.

The current program still has contention for the ahared stack, especially at startup, which is probably why we achieve slightly less than linear speedup for the node processing rate. In addition, when looking for 1 isomorphism, the number of nodes evaluated per second actually decreases beyond \(p=64\). We suspect this may be because there is an insufficient amount of work to overcome the initial shared stack contention.

Given more time, we would revise our technique for ascigning the initial tree nodes to processors. The first approach we would take at this point would be to arbitrarily assign the tree nodes at depth one to the processors as in the naive approsch. However, instead of keeping an entire subtree to itself, each processor would place on the shared stack those tree nodes at depths two or three that it will not immediately process. This would reatrict startup contention to that caused by placing children on the shared stack. which is significantly less expensive than retrieving children from the ahared stack.

\subsection*{4.3 Other Parallelizations}

This section discusses some approsches that we might take in parallelising some other espects of the computation, such as the \(p\) " "computations and the node filtering.

The node filters and the precomputat: ns are array baced and may generally be parallelised with a "parallel for-loop". As such, they are more suitable for implementation under the Uniform System [BB85b]. Parallelizing these computations can be effective. However, the precomputation results and individual tree search nodes would become ahared resources and contention for these resources could become significant.

Since the number of available processors is limited, an interesting question arises regarding the tradeofi between the two aspects of parallelisation. In other words, what fraction of the procescors should we devote to speeding up the node computations, and what fraction
should we devote to exploring more nodes. One advantage of parallelizing node computations is that it does not entail sending processors down unproductive subtrees.

The following subsections describe some of the ways in which these parallelizations could be performed.

\section*{Vertex Ordering}

The current sequential vertex ordering algorithm chooses arbitrarily among vertices contained in the bin with the minimal residual degree. This algorithm may be parallelized by having several processora extract nodes from the appropriate bin. This approach requires care to ensure that the actions of one processor reducing a vertex's residual degree do not adversely affect the processing of another vertex.

\section*{Distance Precomputation}

The distance matrix may be parallelized by assigning each processor to a distinct vertex in the two graphs and having the processor compute the distances to all other vertices. The parallelized distance computations are more appropriate for implementation under the Uniform System.

\section*{Configuration Precomputation}

Esch processor is assigned a vertex in each of the graphs. Each processor then independently computes the vertex's configurations.

\section*{Connectivity Filtering}

The stack based connectivity filter would be parallelized in much the same manner as the stack based tree search. However, such parallelization would require careful thought to ensure that the algorithm would not be affected by one processor turning 1 's into 0 's while another processor examines that information.

\section*{Dintance Filtering}

The distance comparisons are independent and may be distributed among the different processors.

\section*{Coafguration Filtering}

Parallelisation of the configuration filter may be achieved by distributing the work associated with each 3 -tuple of the neighbors of the mapped \(G\) vertex among the different processors.

\section*{5 Conclusions}

The purpose of this exercise has been to examine the suitability of the Butterfly computer for colving certain versions of the rubgraph isomorphism problem involving fixed sise regular graphs. Since our interest is mainly in studying the effectiveness of parallelisation, we
decided to restrict ourselves to finding a small number of isomorphisms. We also chose to parallelize the exploration of the search tree since the effect of such a parallelization is interesting but relatively unexplored, both in theoretical and practical terms.

\subsection*{5.1 Performance}

The program ahowed effective processor utilisation in terms of the gross amount of work done. The average number of search tree nodes processed per second increased almost linearly with the number of processors. This supports our claim that our program is an effective parallelisation of our algorithm.

We also found that using more processors resulted in faster detection of isomorphisms, although the speedup is not linear in the number of processors. The speedup is reasonably good fors \(=100\), but is poor for smaller values of s. Our results suggest that the speedup will be almost linear if \(s\) is very large. We believe that this behavior is inherent in the nature of the approach to the problem, and independent of the architecture used to implement the approach.

We also found that in general, the unit cost of finding an ioomorphism decressed slightly as the number of isomorphisms sought increased. We did not look for more than 100 isomorphisms, however, since those alone took the program more than an hour to find using 1 processor.

\subsection*{5.2 Butterfly Suitability}

The Butterfly is suited to the types of parallelization techniques employed in our program. In general, we find the Butterfly architecture is an effective parallel architecture, but that the programming environment needs significant work. The weakness of the programming environment should be considered more of a statement on the state of the art in parallel programming rather than a statement on BBN or the Butterfly.

\section*{Architecture}

Tbere is a cost associated with ability to share information, regardless of whether or not information is actually shared. Unfortunately, architectures which seek to minimize this cost tend to raise the cost of sharing information. A balance must be struck between the cost of having acceas to shared information when it is not being used, and the cost of accessing shared information when it is used. We believe the Butterfly architecture strikes a good balance.

The Butterfly provides a number of processor nodes, each containing a processor and local memory, which are connected via a high-speed omega (butterfy, fit) network. The memory management hardware determines whether or not an address references the local memory, or the memory on another node. When all processors are acceasing local memory, there is no contention for memory resources, and the cost of the ability to share information is limited to a simple teat in the address tranalation. This model has significantly lower cost for local accesses than those models which provide a single global memory for all processors. In addition, it scales to larger numbers of processors far more easily.

When access to shared data is needed, processes can place memory on remote nodes into their address space. This allows access to shared memory, at the coat of a higher memory cycle time. While this remote access is more costly than those architectures with a single global memory, the cost to access shared information is lower than message based architectures. The use of shared memory allows concurrent access to data structures which avoids the process interaction and synchronisation costs that message based aystems inherently force.

When transferring large amounts of data from one processor's memory to another's, message passing implementations may be more appropriate. This is because the extended cycle time of remote memory references and repeated instruction interpretation can become expensive. For such situations, the Butterfly architecture providen a hardware implemented block memory copy between proceseors. With this hardware, message based communication between processors can be efficiently implemented. In addition, with the shared memory capability discussed earlier, a message based communication does not require interrupting the destination proceasor.

In summary, the Butterfly architecture provides local memory for efficient access to information that is not shared, an interconnection network for efficient access to remote memories for small amounts of shared information, and block memory copy for efficient sharing of large amounts of information. Any single feature could doubtless be implemented at a lower cost, but it is the balance of these features which determines the effectiveness of a parallel architecture.

\section*{Programming Environment}

We find the programming environment for the Butterfly is its weakest attribute. The Butterfly architecture allows efficient implementation of algorithms based on a variety of models of computation, unlike many machines where the model of computation is built into the machine. On the Butterfly, programmers are not locked into a model of computation, but may choose that which seems most natural to the problem at hand. Unfortunately, in adopting a model of computation, Butterfly programmers must choose a programming environment which supports that model. Currently, all programming environments support a single model of computation. These environments then have a severe, often restricting, impact on the algorithms chosen. In other words, the current programming environments do not reflect the flexibility of the architecture.

We chooe to program using Chryealis directly rather than using the Uniform System. Chryalis is more suitable for the large processes communicating through relatively diajoint regions of ahared memory. This characterises our chared stack tree search algorithm. The Uniform Syatem is suitable for thoee instances where one thinks in terms of ahared matrices and "parallel for loops". This characterises the types of computations needed for parallelising the precomputations and tree node filters. Further efforts at parallelising would probably involve re-coding the program under the Uniform System for the precomputations and node filters and then working the tree search in on top of that. This brings up the inve of mixing models within a single program. These issues are an active research area, and more work is needed in this area.

\section*{References}
[BB85a] BBN Laboratories; Chrysalis Programmer's Manual; Version 2.2, June 1985
[BB85b] BBN Laboratories; The Uniform Syatem Approach to Programming the Butterfly Parallel Processor, Version 1, October 1985
[BM76] J. A. Bondy and U. S. R. Murty; Graph Theory and Applications; North-Holland, 1976.
[Br86] C. Brown, R. Fowler, T. LeBlanc, M. Scott, M. Srinivas, L. Bukya, J. Costanzo, L. Crowl, P. Dibble, N. Gafter, B. Marth, T. Olson, L. Sanchic; DARPA Parallel Architecture Benchmark Stedy, Prepared for the DARPA Architecture Workshop, November 1986; Butterfy Project Report 13; University of Rochester, Computer Science Department, Rochester, NY, 14627; October 1986
[GJ79] M. R. Garey and D. S. Johnson; Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman, 1979.
[Ti79] G. Tinhofer; On the generation of random graphs with given properties and known distributions; Applied Computer Science (Munich), 13 (1979), pp. 265297.
[U176] J. R. Ullmann; An Algorithm for Subgraph Isomorphism; J. ACM, 23 (1976), pp. 31-42.


Figure 1:
Node Processing Rate



Figure 3:
Processor Efficiency


Figure 4:
Cost per Solution versus
Number of Solutions Sought

\title{
Advanced Likelihood Generators for Boundary Detection
}

\author{
David Sher \\ Computer Science Department \\ The University of Rochester Rochester, New York 14627
}

January 1987
TR 197

In [Sher85] I discussed the advantages of feature detectors that return likelihoods. In [Sher86] I demoastrated some preliminary results with a boundary point detector that returns likelihoods. Now I have developed boundary point detectors that have these properties:
- Retura probabilities
- Can be combined robustly
- Potential sub-pizel preciaion
- Work with correlated noise.
- Can haodle multiple gray-lovels (tested with 255)

These detectars were applied both to aerial images and to test images whose boundaries are known. They are compared to established adge detectors.

This work would have bean difficult if not impossible without the active support and encouragement of Chris Brown, my advisor, and Jerry Feldman. This work was supported by the Defoane Advanced Reearch Projects Agency U. S. Army Engineering Topographic Labe under grant number DACA76-85-C-0001. Aleo this work was supported by the Air Force Systems Command, Rome Air Development Center, Grifise Air Force Base, Now York 13441-5700, and the Air Force Office of Scientific Research, Bolling AFB, DC 20332, under Contract No. F30602-85-C0008. This contract supports the Northeast Artificial Intelligence Consortium (NAIC).

\section*{1. Introduction}

Currontly a great variety of tools are available for low-level vision tasks such as image reconetruction and edge detection. It is time to devote attention to managing tools rather than areating new anes.

Mout of the tools for low level vision are algorithms for intermediate steps towards achieving a poal. Here, we consider boundary point detection algorithms in these terms. These are alserithms that try to determine if a boundary pasces through a piral (usually given a window on the image). This talk is aimilar to edge detection. Boundary point detection algorithms do not exist to display outlines plasing to the human eyea. Thoir output is meant to be input to a higher level routine such as a shape recognition program or a surfice reconstruction program.

Some deaderata for boundary point dotection tools ara:
(1) The output of a boundery point detector should be ucaful to an meny higher lovel routines as posaible. If every higher level routine required a diferent boundary point detector then our technology has not lived up to this deciderata.
(2) Boandary point detectors should accept as input the full range of data available. If a boundary point detector only worked for binary data when gray ecale data was available, it has not lived up to this desiderata.
(3) Boundary point detectors should do work proportional to the size of the image.
(4) Boundary point detectors should do wort proportional to the precision of the output. Thus if subpirel precision is required, it should be made evailable with work proportional to the required accuracy of boundaries raports.
(5) Boundary point detectors ahould be parameterised to features of the data. For example, if the distribution of reflectances in the scene is known (the expected image histogram) then a detector chould be constructed that uses this information. Another azample is if structure in the noise is known (auch as correlation) we should be able to take this atructure into account.
In this paper I describe an algorithm that fite thea deaidarata. It is a more advanced veraion of the algorithm deccribed in [Sher86]. Also the remults of teate run on this algorithm are reported hare and comparisons with eatablished algorithms anch as the Sobel, Kirsch and variants thereapon. Teats will be done soon on more sophisticuted operntors.

\section*{2. Definition of Boundary}

Before talling about boundary point detector it is a good idea to dofine axactly what a boundary is. Vision problams involve imaging a scene. This scene could be an acrial viow or a picture of machine parts or an outdoors scenc. This soene is Alled with objects. In an ascial photograph some of these cbjects are buildings, treen, roads and ears. Each of theas objects is projected into the obearved image. Thu each object has an inage that is a subset of the observed image. Whers the observed image of one object meats an obsarved image of another object there is a boundary. such boundarioe are sometimes roferred to as ocelusion boundaries.

\section*{3. Returning Probabilities}

The algorithm I deseribe fulfils the frot deaideratum by returning probabilities that a boundary is near a point. Here I justify returning probabilities and show how I can fulfill the first
desideratum uaing them.
No tool for boundary paint detection or any other low-level vision task ever does its task without a mignificant probability of baing wrong. Thue the arror characteristics of a low-level vision algorithm need to be considered. Intarmediato-level vision algorithms diffor in sensitivities to different kinds of errors.

Coasider boundary point detection. Regularization algorithms (intarpolation algorithms) [Boalte?] cuffer more from miacing a boundary point than from having axtra onee. When a boundary point is micsed regularization algorithms try to emooth over the boundary with dinastrous results. Hough transform tachniques aften work effectively when the set of boundary points detected is sparse because the work a hough tranaform technique does is proportional to the sise of that set.

Another rescon that Hough transform techniques do well with aparse data is that they are mode baced. Thus Hough tranoform techniques are robust when feature points are left out and when there are outlying data points. The robustness of the Hough transform is described in detail is [Brown82].

It is good software management to use the same boundary point detector to generate input for all high level vision tasks that require boundary point detection rather than building a apecial detector for each high level routine. If a boundary point detector returns a truefalee decision for each point then its output does not suit both regularizstion techniques and hough tranaform techniques. Take for example the one dimensional intensity slice shown in Figure 1.

Figure 1: Slice through an image with an ambiguous boundary
For use as a first stage before regularization it in preferable that such ambiguous slices be coasidered boundaries because the cost of misaing a boundary is high (compared to the cont of misaing an edge). For use with hough tranaform line detection figure 1 is not a good boundary because the cost of an extra edge is high.

The traditional solution to the dilemme of satisfying differing requirements among intermedinte level routines has been to supply numbers auch as edge strengths rather than truefralse decisions. These streagths deccribe how likely the low-level vision algorithm considers the event such as the exiatence of a boundary. The example in figure 1 has the detector return a low edge atreagth. Figure 2 ahowa a 0 edge etrength.

Figure 2: Slice through an image with an edge atrongth of 0
Fipure 3 shows a high edge strength.


Figure 3: Slice through an image with a high edge etreagth
If an edge detector that returns atrengths (acting as a boundary point dotector) is uned as input for various intermediate levol applications, then each application usually uses a threabold to dotermine what is and inn't a boundary. If an edge atrangth is higher than the threahold a boundary is reported. The threshold is determined by running the boundary point detector and the intarmediate lovel algorithm with different thresholds and finding the threshold that results in the best resulte according to some arror norm or buman observation \({ }^{1}\). If the boundary point detector is changed new thresholds need to be found.

If boundary point detectors were standardized so that the correspondence between streagth and the probability of the boundary were consistent between all boundary point detectors then the threahold need only be calculated once for each intermediate level application. Then the threaholds for intarmediate lovel applications could be calculated from theoretical principles. When the strengths have clear semantics the entire process of threshold determination would be fully underatood.

A consistent and well defined output for boundary point detectors is the probability of a boundary. If all boundary point detectors output the probability of a boundary then the boundary point detector could be improved without changing the reat of the syatem. If the error censitivities of the intermediate leval routines are known the thresholds can be determined by a aimple application of decision theory.

\section*{4. Likelihoods}

Moot models for boundary point detection describe how configurations of objects in the reel world renerate observed data. Such models do aot explicitly state bow to derive the confguration of the smal world from the sansor data. This behavior of models recolts in graphies problems being considerably casier than vision problema. Thus we have programe that can generate realistic inages that no program can analyze.

Given the asoumption "There is a boundary between piscle \(p_{1}\) and \(p_{2}\) " we can detarmine a probability dirtribution over poasible observed imagea. Let \(b(1,2)\) be tioe statement that there is a boundary between pixels \(p_{1}\) and \(p_{2}\). Lat \(S(b(1,2)\) be the ent of region maps such that \(b(1,2)\) is true (and gencrally I une the notation that \(S\) (statement) is the set of region maps where statement is true). Let \(M\) be the model for the boundary detection task. Then the probability of \(O\) (the observed imago) given \(b(1,2)\) under \(M\) is calculated by equation 1.

\footnotetext{
\({ }^{1}\) Fede relaration alguithme olae aljust the edge otreagthe. For the porpoees of this papar consider auch an algorithm a spar of the datacter, the output of this detecter is the eteregthe output by the rolapatice alporithm.
}
\(P(O \mid b(1,2) \& M)=\frac{\sum_{i \in S(b(1,2))} P(O \mid i \& M) P(i \mid M)}{P(b(1,2) \mid M)}\)
If 0 is the otserved data then the probability calculated in equation \(1, P(O \mid b(1,2) \& M)\), is called hare (inspired by the statistical litarature) the likelihood of \(b(1,2)\) given observed data \(O\) under M. Generally the models we use in computer vision make the calculation of likelihoods simple for the features we want to extract. However the decired output of a feature detector is the conditional probability of the fanture. Thus in boundary point detection \(I\) can derive \(P(O \mid b(1,2) \& M)\) and \(I\) can derive \(P(O \mid \sim b(1,2) \& M)\) ( \(\sim x\) means "not \(x^{n}\) in this paper) but I want to derive \(P(b(1,2) \mid O \& M)\).

A theoram of probability theory, Bayes' law, shows how to derive conditional probabilities for features from likelihoods and prior probabilities. Bayes' law is ahown in equation 2.
\[
\begin{equation*}
P(f \mid O \& M)=\frac{P(O \mid f \& M) P(f \mid M)}{P(O \mid f \& M) P(f \mid M)+P(O \mid \sim f \& M) P(\sim f \mid M)}- \tag{2}
\end{equation*}
\]

In equation \(2 f\) is the feature for which we have likelihoods. \(M\) is the model we are using. \(P(O \mid f \& M)\) is the likelihood of \(f\) under \(M\) and \(P(f \mid M)\) is the probability under \(M\) of \(f\) (the prior probability).

For fatures that can take on everal mutually exclusive labels such as aurface orientation a more complex form of Bayes' law shown in equation 3 yields conditional probabilities from likelihoods and priors.
\[
\begin{equation*}
P(l \mid O \& M)=\frac{P(O \mid L \& M) P(l \mid M)}{\sum_{l \in L(f)}^{P\left(O \mid l^{\prime} \& M\right) P\left(l^{\prime} \mid M\right)}} \tag{3}
\end{equation*}
\]
\(l\) is a label for feature \(f\) and \(L(f)\) is the set of all possible labels for feature \(f\).
Likelihoods are important because they are a useful intermediate term on the way to deriving a pastarior probability. An upcoming technical roport deecribes formulas for ovidence combination beaed on likelihoode [Sher87]. To apply that theory of evidence combination one noeds to compute the likelihoods explicitly. Thus in the succeeding sections I caleulate the likelihoods even up to factors that are equal in all the likelihoods (hence are divided out by equation 3).

Ancther important use for explicit likelihoods is for uee in Markov random fields. Markov random fields decribe complex priors that can capture important information. Markor random fielde were applied to vision problems in [Geman84]. Likelihoode can be used with a Martor random feld algorithm to dorive entimates of boundary positions [Marroquin85] [Chou87].

\section*{6. Simplifications}

To make the problem of computing the likelihoods for eventa computationally tractable, I simplify my problem in certain ways.

The firat simplification is calculating the probability of a boundary at a point rather than trying to compute a probability distribution over boundary mapa for the entire scane. Even though a distribution over complete mape would be more general there are too many posible boundary maps to manage realistically. Under cortain circumstances all that is needed is to compute the probability of a boundars near ach pirel [Marroquin85].
5.1. Window Based Boundary Detectors

Equation 1 implies an algorithm for determining likelihoods of boundaries. It ahows that iterating through all the confgurations that cause a boundary at a point is a way to find the likelihood of a boundary. A region map is a description of where the images of the objects are.
r. Each configuration of object in a reme implice a region map. However, the eet of region maps that contain a boundary betwean two pirels is too large to itarate through (for a 512 by 512 observed image it is \(\gg 10^{25,009}\) ). The cardinality of the set of region maps is in general exponential in the sise of the inage.

An obvious solution to the problem is to reduce the number of pixels. Generaly, the further ane gete from a boundary the lese relevant the data in the image in to that boundery. Thus it is common to use a relatively amall window about the proposed boundary for finding the boundary (eve figure 4). Thare are many fower region mapi over a 4 by 4 window than over a 512 by 512 image.


Figure 4: Small Window on Large Image
Thus by looking only at a window I simplify the problem of boundary point detection considarably. Inevitably, I lose some accuracy in the computation of probabilities from limiting the data to a window. However the simplification of the algorithm compensates for this loas. Every attampt at edge detection has used this prisciple [Hueckel71] [Canny83] with poaibly a further stage of linking or relazation.
6.2. Constraining Region Maps

Applying a boundary point dotector to as \(H\) (haight) by \(D\) (dopth) observed image involves computing the probability of \(F D\) boundaries. If \(H=D=512\), then \(H D=262144\). A boundary point detection algarithm computes probabilities for all theee potential boundaries. The cont of using algorithm that computer the probability of a boundary at a point is multiplied by FDD. The coot may be reduced by shariag some of the work betwean iterations. Still much of the work can not be chased. Saving time by sharing work between itaratiose is discused in later actions.

Ifnoring esving by sharing between iterations, any saving in the algarithm that computee the probability of a boundary at one point is multiplied manyfold (for \(H=D=512262144\) fold). Algorithms for computing the probability of a boundary at a point require work proportional to the number of rogion maps. Roducing the number of region maps that need to be concidered proportionately reduces the work required by the algorithms for boundary point detection.

The maximal amount a region map can chenge the likelihood of c feature labol is the probability of that region map divided by the prior probability of a feature label corresponding to that region map (ahown by a curwory examination of equation 1 , repeated below, with \(i\) being a region map).
\[
\begin{equation*}
P(O \mid b(1,2) \& M)=\frac{\sum_{i \in S 1 b(1,2))} P(0 \mid i \& M P(i \mid M)}{P(b(1,2) \mid M)} \tag{1}
\end{equation*}
\]

Bayea' law (equation 3) ean be broken into two steps. First the likelihoods are multiplied by the priors. Coasider the likelibood of a feature label (eay boundary) multiplied by the prior probability. Call such a term the conjunctive probability of \(l\) since it is \(P(O \& f=l \& M)\). The conjunctive probsbility of \(l\) can be changed by deleting a region map with \(f=l\) at most the probability of that region map. The prooability \(P(f=\| \mid O \& M)\) is derived from the conjunetive probabilities by dividing \(P(f=l \$ O \& M)\) by the sum of the conjunctive probabilities \(\sum_{p} P(f=r \& O \& M)\). Thus if the probability of a region map is amall compared to \(P(O \& M)=\sum_{r} P(f=r \$ O \& M)\) deleting the likelihood corresponding to it has a small effect on the resulting distribution. Thus one can with some safety ignore region maps whose prior probability is small enough.

For atandard edge detection algorithms a common restriction on region maps is to assume that there are at most two object images participating in the window thus there can only be two regions [Huectel71]. Stop edge based models implicitly make this asoumption [Canay83] [Nalwa84]. Windows with more than two object images in them are assumed to occur infrequently. I call the assumption that there are at most two object images participating in a window the two object assumption.

Another simplification places a limitation on the curvature of the boundaries observed in the image. Limiting this parameter limits the set of region maps in a mathematically convenient way. If the curvature is limited enough the bounderies can be considered to be atraight lines within windows. Thus the windows on the observed image can be modeled assuming there is no boundary or a aingle linear boundary across them. A similar model (it allowed two linear boundaries in a window) was used in [Hueckel71]. I call the assumption that there are no high curvature boundaries the low curvature assumption.

\subsection*{6.3. Numerical Approximations}

Ancther wrect that makes the probabilities calculated by my algorithms inaccurate is that a real number can caly be apecified to a limited aceuracy on the computer. Thus there is a limit to the accuracy that calculations can be performed to in the computer. In section 6 I ignore the arror introdued trom ineract floating point computations. In my implementation (eection 8) I used double procision arithmetic throughout in an attempt to redece this error.

Another source of erross is my simplifying the mathematics to make the algorithm simpler. One such approzimation I make is to use the deasity of a normal dietribution as a probability. In the equations derived in rection 6 I use thin approximation in the probability derived from a multinormal Geusain. This approximation simplified the mathematics for deriving the detector. Such an approximation is standerd.
6. Building a Boundary Detector

In section 4 I discuse why determining likelihoods is a useful first atep in feature detection. In section 5 I deacribe the approcimations and simplifications necessary to make the problem of boundary point detection computationally tractable. Now all that is laft is to develop the algarithm. The first atep in deriving a boundary point detection algorithm is to derive the bikelihood that a window is alled with a single object given the observed data (ecetion 6.1). Then likelihoods for windows with multiple objects are derived (eection 6.3). In this section I ascume that the model has Gauscian mean 0 noise with a known atandard deviation added to an ideal image.
6.1. Likelihoods for a Single Object

The problem is to find the likelihood of a single object filling a window in the image. The axpected inteasities of the pisels in the window are proportional to the reflectance of 0 . Let \(T_{0}\) be the expected value of the pirels in the window when \(O\) has reflectance \(1, r(0)=1 . T_{0}\) is often referred to at a template in the image underatanding literature.

Template matching can be best shown on a two dimensional medium (with weak graphical capacities) when the window is 1 dimensional. Thus I ase a 1 by 8 window for examples. A typical template for a single object in a 1 by 8 window is shown in figure 5 .
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline
\end{tabular}

Figure 5: Template for a single object
This template is boring because I assume that there is little variance in inteasity in the image of the interior of an object. The observed image of the object has a normal iid added to each pizel. Thus the observed image (when the standard deviation is 8) can look like figure 6.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 94 & 104 & 100 & 94 & 92 & 105 & 101 & 103 \\
\hline
\end{tabular}

Figure 6: Noised Template for a single object
The probability that the noised window results from the template is a function of the vector difference between the window and the template. For the example in figure 6 given the tamplate for a single object in figure 5, the prehability in calculated by summing the equared differences between the template and the obsorved data (187) and then applying the normal dintribution function (for 8 independent normally diatributed samples mean 0 standard deviation 8 rounded to the mearest integer) to get 8.873-12.

In later ecetions when I use windows or templates in equations the windows or templates are flattened into vectors. Thus a two dimensional window is transformed into a vector (figure 7).
\begin{tabular}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & 5 & 6 \\
\hline 7 & 8 & 9 \\
\hline
\end{tabular}

Window 1
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
\end{tabular}

The Vector from Window 1.
Figure 7: Flattening a window into a vector
All the windows and templates are assumed to be fattened thus. When a template is aubtracted B-146
from a window, vector cubtraction is happening. When a tomplate or mindow is being multiplied by a matrix, vector matris multiplication is happening. In particular, \(W W^{T}\) is the aum of the squares of the elements of \(W\) while \(W T^{T}\) is the sum of the products of the corresponding elements of \(W\) and \(T\).

Lat \(a T_{0}\) be a times the intensities in the template \(T_{0}\). The template for an object with rafectance \(r(0)\) is \(r(0) T_{\mathrm{a}}\). The probability of obsarving a window W when the scane is of 0 is detarmined by the Gausian additive fector. Equation 4 is the formule for the probability. (Let \(V\) be the variance of the naise, \(\sigma^{2}\) in the reat of this paper) Let \(n\) be the sise of the vindow and \(\kappa\) be the constant \(1 /(2 \pi V)^{n / 2}\).
\[
\begin{equation*}
P(W \mid r(O)=r \mathbb{A} M)=\operatorname{\kappa exp}\left(-\left(W-r T{ }_{0}\right)\left(W-r T_{0}\right)^{T} / 2 V\right) \tag{4}
\end{equation*}
\]

Since the reflectance of the object in the scene is not known but the distribution of refectances is known one must integrate this formula over pourible reflectances. Thus the probability of a window given it is of a single object of known position and ahape is in equation 5.
\[
\begin{equation*}
P(W \mid O \& M)=\int \kappa \exp \left(-\left(W-r T_{0}\right)\left(W-r T_{0}\right)^{T} / 2 V\right) d D_{r}(r) \tag{5}
\end{equation*}
\]

The term \(\left(W-r T_{0}\right)\left(W-r T_{0}\right)^{T}\) can be rearranged to \(W W^{T}-2 r T_{0} W^{T}+r^{2} T_{0} T_{0}^{T}\). \(W W^{T}\) is the sum of the equares of the pixels in the window. Let us refer to it as \(W^{2}\) for shorthand. \(T_{0} W^{T}\) is the correlation between \(T_{0}\) and \(W\). Let us refer to it as \(C\) for ahorthand. \(T_{0} T T\) is the sum of the equares of the elements of the template. Let us refor to it as \(T^{2}\). Using a rearrangement and these shorthands equation 5 can be restated as equation 6.
\[
\begin{equation*}
P(W \mid O \& M)=\exp \left(-W^{2} / 2 V\right) k \int \exp \left(\left(2 r C-r^{2} T^{2}\right) / 2 V\right) d D_{r}(r) \tag{6}
\end{equation*}
\]

Equation 6 is the product of two parts, equation 7 :
\[
\begin{equation*}
F_{1}\left(W^{2}\right)=\exp \left(-W^{2} / 2 V\right) \kappa \tag{7}
\end{equation*}
\]
and equation 8 :
\[
\begin{equation*}
F_{2}(C)=\int \exp \left(\left(2 r C-r^{2} T^{2}\right) / 2 V\right) d D_{r}(r) \tag{8}
\end{equation*}
\]
\(F_{1}\) and \(F_{2}\) have one parameter that depends on the window ( \(T^{2}\) is unchanged over all windowa). They can be implemented by table lookup without excescive use of memory or much computation.

Hence the algorithm to calculate the likelihood of a window given it is of a single object of known position and shape (but unknown refectance) is deecribed by figure 8 below.

Figure 8: Algorithm to Calculate Likelihood of Known Object for a Single Window
\[
\begin{array}{ccc|cc} 
& & & \text { Multiplies } & \text { Adds } \\
W^{2} & := & W W^{r} & w & w-1 \\
C & := & W T_{0}^{T} & w & W-1 \\
\text { Output } & & F_{1}\left(W^{2}\right)^{*} F_{2}(C) & 1 & 0
\end{array}
\]
\(\boldsymbol{w}\) is the number of pixels in \(W\) and also the number of pixels \(T_{0}\). Figure 8 is a \(4 w-1\) operations algorithm.

\subsection*{6.2. Reducing the Configurations Considered}

In section 4 I describe how to derive the likelihood of a boundary at a point from the likelihoods of configurations of a the scene given a boundary at a point (equation 1). Here I justify
using a emall number of configurations of the scence. Having reduced the set of configurations I can derive an efficient algorithm for generating likelihoods given multiple objects. In section 5.1 I made the acoumption that coly a mall window on the image need be booked at. In eection 5.2 I juctified isnoring region mape with low probability.

There is some number of objecta, \(N_{0}\), such that the probability \(N_{0}\) or more objects heving an image in a single window has a probability much amaller than the probability of all but a mall probability subset of the region mapa. Hence I need only consider configurations of \(N_{0}-1\) or lase cbjecte in a window. The two object aesumption of eection 5.2 is equivalont to saging \(N_{0}=3\).

There are atill a large set of configurations of has then \(\boldsymbol{N}_{0}\) objects. Considor the ideal image given such a configuration and some coloring of objects. Consider a window on this ideal image, \(W_{l}\). There is a sot of confgurations with the same coloring such that the roculting window on the ideal window from such a configuration \(W_{J}\) such that:
\[
\begin{equation*}
\left(W_{I}-W_{J}\right)\left(W_{I}-W_{J}\right)^{T}<\varepsilon \tag{9}
\end{equation*}
\]

The likelihood that the observed image results from any of the configurations that fit the criterion of equation 9 and coloring is close to the likelihood computed from \(W_{l}\) because if \(W\) is the observed wiadow the likelihood is a function of the norm of \(W-W_{J}\). Thus for efficiency anke we can consider the likelihood of each configuration and coloring that fit equation 9 the same as that of the configuration and coloring of the template that generates \(W_{l}\). Hence we can only coasider a amall set of configurations of objects. With a similar argument one can prove that only a subset of the possible coloringa need be considered. Hence I can justify using an argument of this eort using a amall set of templates and objects. How much inaccuracy results from these simplifications can be analyzed mathematically.

A step edge model can be derived by assuming that objecta' images have a uniform intensity and the two object assumption. Thus such simplifications underlies work like that of (Hueckel73) [Canny83]. More sophisticated asumptions about the intensities of objecta images result is more complez models [Binford81] that atill can be reduced to a reasonable number of configurations reflectances with a corresponding lose of accuracy in the resulting probabilities.

\subsection*{6.3. Algorithm for Likelihoods of Multiple Objects}

Here I derive an algorithm for finding the likelihood that a scene that contains several objects given a window.

The statement that the configuration of objecta is near the specified configuration is called \(\mathbf{C}\). \(C\) has \(N_{0}\) objects \(O_{n}\) with refectancea \(r_{n}\). Aesociated with \(C\) are \(N_{0}\) templates \(T_{n}\). Each \(T_{n}\) is the light that hits the image given that \(O_{n}\) has refoctance 1 and unit lighting.

The tomplate that ropresents the expected window when the \(O_{n}\) have refectances \(r_{n}\) is \(\sum_{n} r_{n} T_{n}\). Hence the likelihood of the window when the objects have reflectances \(r_{n}\) is ahown in equation 10.
\[
\begin{equation*}
\left.P\left(W \mid C \& r\left(O_{L}\right)=r_{1} \cdots r\left(O_{n}\right)=r_{n} \& M\right)=\operatorname{kexp}\left(-\left(W-\sum_{n} r_{n} T_{n}\right) X W-\sum_{n} r_{n} T_{n}\right)^{T} / 2 V\right) \tag{10}
\end{equation*}
\]

To derive the likelihood of the window when the objects are of unknown reflectance it is accescary to intagrate over all poseible ents of \(r_{n}\). Equation 11 ahows the integrated equation.
\[
\begin{align*}
& P(W \mid C \& M) \\
& = \\
& N \int \exp \left(-\left(W-\sum_{n} r_{n} T_{n}\right)\left(W-\sum_{n} r_{n} T_{n}\right)^{T} / 2 V\right) d D_{\cdot} r_{n} \tag{11}
\end{align*}
\]

I uee the simplifying notation from eection 6.1. Also let \(C_{n}\) be \(W T_{n}^{T}\). Then equation 11 can be traneformed into equation 12.
\[
\begin{align*}
& P(W \mid C \& M) \\
& =  \tag{12}\\
& \operatorname{xexp}\left(-W^{2}+w a^{2} / 2 V\right) \int \exp \left(\sum_{n} r_{n} C_{n} N\right) \exp \left(-\left(\sum_{n} r_{n} T_{n}\right)\left(\sum_{n} r_{n} T_{n}\right)^{T} / 2 V\right) d D_{4} r_{n}
\end{align*}
\]

As in section 6.1 I can break up equation 12 into a pair of functions \(F_{1}\) and \(F_{4} . F_{1}\) is as before \(F_{4}\) is described by equation 13.
\[
\begin{equation*}
F_{4}\left(C_{1}, C_{2}, \cdots C_{N_{0}}\right)=\int \operatorname{axp}\left(\sum_{n} r_{n} C_{n} / V\right) \exp \left(-\left(\sum_{n} r_{n} T_{n}\right)\left(\sum_{n} r_{n} T_{n}\right)^{T} / 2 V\right) d D_{e} r_{n} \tag{13}
\end{equation*}
\]

Unlike \(F_{2}, F_{4}\) is a function of several variables. Thus using a table for table lookup on \(F_{4}\) takes a large amount of memory since an entry munt be made available for each possible value of the elements. Experiments with constructing \(F_{4}\) tables for 2 object configurations ahow that \(F_{4}\) is amooth and near quadratic. As an example \(F_{4}\) for standard deviation 12 noise and 5 by 5 templates is plotted in figure 9.


Figure 9: \(\log \left(F_{4}\right)\) with stder 12 noive and \(5 \mathrm{z5}\) template
Hences the tables can be atored aparsely and aplines or oven linear interpolation used to get at values that were not given without introducing serious inaccuracy. If the table is close enough to a quadratic function then perhape only a polynomial need be stored.


If all the \(T_{n}\) are orthogonal (their pairwiee vector products are 0 ) and \(D_{c}\) is a probability distribution where colors of objects are uncorrelated then \(F_{4}\) can be partitioned into a product of \(N_{0}\) functions. Each of these functions computes the probability that the relevant part of the window observed data is the image of \(O_{n}\) for come \(n\). Here \(N_{0}\) large procise tables can be atored to compute anch of the functions and their product used for \(F_{4}\).

Since \(F_{4}\) can be calculated there is a foasible algorithm for dotermining the likolihood of an oberred image given a particular pair of objecta. A description of that algorithm and the times spent in each step is shown in figure 10.

Figure 10: Algorithm to Calculate Likelihood of Multiple Objects for a Single Window
\begin{tabular}{|c|c|c|c|c|}
\hline \(W^{2}\) & := & W \(W^{T}\) & Multiplies w & \[
\begin{aligned}
& \text { Adds } \\
& w-1
\end{aligned}
\] \\
\hline \(N_{0}\) times \(C_{i}\) & := & WT \({ }_{\text {T }}\) & Now & Now-N0 \\
\hline Output & & \(F_{1}\left(W^{2}\right)^{*} F_{4}\left(C_{1}, C_{2}\right)\) & 1 & O \\
\hline
\end{tabular}

I did not consider the cont of the interpolation or aplining for \(F_{4}\) in the operation counts in figure 10. The cost of this algorithm is \(\left(N_{0}+1\right) w+1\) multiplies and \(\left(N_{0}+1\right)(w-1)\) adds plus the cost incurred by the interpolation. This cont occurs for each window.

\subsection*{6.4. Blurred Images}

The previous sections assume that the only degradation of the image data is a result of adding a normal random variable to each element of the image (noise axiom). However lanses and many other cantorn degrade the image through blur. Motion aleo causes blur on film and other consors. Blur is often modeled as a linear transformation of the image data that is applied before the normal rariable is added to the pirels [Andrews77]. When blur is ahift independent (same blur everywhere in the image) then the linear operator must be a convolution operator.

The algorithms specified in eections 6.1 and 6.3 require changes to work under this new asaumption. If the blur is linear the change required to these algorithms is to use blurred templates. The likelihood of the observed data given a template is a function of the vector difference between the expected observation without the normal additive iid and the observed data. If it is expected that a blurring has happened then one need to use a blurred template instead of the unblurred tomplate used in the previous algorithme.

The algorithm of rection 6.3 uses two templates (one for each object). If the blur is linear then the linear function \(a T_{1}+b T_{3}\) and the blur function commute. Thus the two templatees cen be blursod and the result of correlating the window with the two blurred templates can be used with this algorithm.

The problem I address in the rest of this section is how to compute a blurred tamplate from an unblursed template. A shill independent blurring operation is applying a convolution eperator to the image. A convolution operator has limitad extent if the illaminance of at a pirel in the blurred image depends on a window in the unblurred image. Such a convolution oparator can be described by a matrix the sive of the window that describes the effiect anch point in the window has on that point of the blurred image. So a blurring function that causes each point of the blurred image to be the rosult of .5 from the corresponding point of the unblurred image and 25 from the pointa immediately to the right and the left has a matrix detcribed by figure 11.
\begin{tabular}{|l|l|l|}
\hline .25 & .5 & .25 \\
\hline
\end{tabular}

Figure 11: Simple Blurring Function Matrix
Given a blurring function matrix of aize ( \(M_{n}, M_{l}\) ) and an unblurred template of size ( \(T_{n}, T_{l}\) ), a blurred template of aine ( \(T_{\omega}-M_{\omega}+1, T_{l}-M_{l}+1\) ) an be calculated (figure 12) (0 means convolution).


Figure 12: Effect of Blur Matrix \(M\) on Template \(T\)
To develop a larger blurred template than ( \(T_{w}-M_{w}+1, T_{1}-M_{i}+1\) ) sequires that the blur function be applied to points outside the unblurred template. If the expected values for such points are derived then a larger unblurred template has been constructed. Hence the derivation of a amaller blurred template from an unblurred template suffices for the construction of blurred templates.

\subsection*{6.5. Correlated Noise}

The provious sections assume that an uncorrelated normal variable called noise that in added into the illuminance of each pizel in the ideal image to get the observed image. It is possible to relas the assumption that the soise added to each pixel is uncorrelated with the noise added to the other pixels. Instead a matrix C can be supplied that describes the correlation between the noise variables of the window.

One problom is how to handle corrolations between points in the window and points outaide the window. Since one can only correlate with expected values of points outaide the window (aince we chose to ignore the data from such points in our calculations) the effict of auch points can only introduce a constant factor into the likelihood calculations. When the likelihoods are converted into probabilities this constant fictor is divided out. Hance I ean safoly ignore such a constant factor. For the purpoese of evidance theory I may noed to derive the constant factor but it need oaly be derived once and then all the likelihoods be only multiplied by it.

The algorithm in section 6.3 has the algorithm in sections 6.1 as a special case. Thus if I derive the alforithm corrouponding to the one in aection 6.3 I can derive the other algorithm. If I have window \(W\) and I expect (possibly blurred) templates \(T_{n}\) with unknown refectances then the equation that describes the likelihood of \(W\) is equation 14.
\[
\begin{align*}
& P\left(W \mid O_{1} \cdots O_{n} \& M\right) \\
& =  \tag{14}\\
& \times \int \operatorname{axp}\left(-\left(W-\sum_{n} r_{n} T_{n}\right) C\left(W-\sum_{n} r_{n} T_{n}\right)^{T} / 2\right) d D_{e} r_{n}
\end{align*}
\]

I introduce notation to simplify equation 14 to the point where an algorithm naturally derives from it. Let \(W \mathbb{C}\) be \(W C W^{T}\). \(C\) is aymmetric so let \(c_{n}=W C T_{n}^{T}=T_{1} C W^{T}\). Then equation 14 can be rearranged and simplified to equation 15.
\[
\begin{align*}
& P\left(W \mid O_{1} \cdots O_{n} \& M\right) \\
& =  \tag{15}\\
& \operatorname{rexp}(-W \mathbb{C} / 2) \int \exp \left(\sum_{n} r_{n} c_{n}\right) \exp \left(-\left(\sum_{n} r_{n} T_{n}\right) C\left(\sum_{n} r_{n} T_{n}\right)^{T} / 2\right) d D_{n} r_{n}
\end{align*}
\]

I can then deacribe equation 15 as the product of two functions, \(F_{6}\) that takes \(W_{c} \mathbf{c}\) as an argument and \(F_{6}\) that takes the set of \(c_{n}\) as arguments. Equations 16 describe \(F_{5}\) and \(F_{6}\).
\[
\begin{align*}
& F_{5}(X)=\operatorname{\kappa exp}(-X / 2) \\
& F_{6}\left(X_{1}, \cdots X_{N_{0}}\right)=\int \exp \left(\sum_{n} r_{n} X_{n}\right) \exp \left(-\left(\sum_{n} r_{n} T_{n}\right) C\left(\sum_{n} r_{n} T_{n}\right)^{T} / 2\right) d D_{4} r_{n}  \tag{16}\\
& P\left(W \mid O_{1}, \cdots O_{N_{0}} \& M\right)=F_{s}(W \mathcal{Z}) F_{6}\left(c_{1}, \cdots c_{N_{0}}\right)
\end{align*}
\]

Equation 16 is simple enough to derive an algorithm that calculates the likelihood of a window given a template and correlated noise with atandard deviation \(\sigma\) and correlation matris \(\mathbf{C}\). Figure 13 shows this algorithm.

Figure 13: Algorithm to Calculate Likelihood of Multiple Objects with Correlated Noise
\begin{tabular}{|c|c|c|c|c|}
\hline We & & WCW \({ }^{\text {T }}\) & Multiplies \(w(w+1)\) & \[
\begin{gathered}
\text { Adds } \\
(\boldsymbol{w}+1)(w-1)
\end{gathered}
\] \\
\hline \(N_{0}\) times \(c_{2}\) & \(=\) & WCT \({ }_{n}{ }^{\boldsymbol{T}}\) & Now & \(N_{0}(w-1)\) \\
\hline Output & &  & 1 & 0 \\
\hline
\end{tabular}

Like \(F_{4}, F_{6}\) may require interpolation. The cont of the potential interpolation wat not figured into these calculations. The algorithm with correlation between the noise variables requires \(w(w+1)+N_{0} w+1\) multiplise and \((w+1)(w-1)+N_{0}(w-1)\) adds. Substantial savinge may be found when \(C\) is aparse. Corrolation matrices are typically bend matrices. If there are \(b\) bande in C then the number of multiplies is leas than ( \(b+1\) )w \(+N_{0 w+1}\) and the number of adde is lase than \((b+1)(w-1)+N_{o}(w-1)\) adds.

\subsection*{6.6. Sharing the Work}

The algorithms in figures 8,10 and 13 ase algorithms for finding the likelihood of a particular template for a aingle window. Many of an observed image's windows overlap. If likelihoode are being computed for two overiapping windows much of the wort in computing the likelihoods can be shared between the computations on the two windows. If the likelihoods are being computed for overy window on the inage such eavings can be substantial.

When taking the sum of the elements of two overlapping windows, as is one in the algorithm of figures 8 it is necoseary to only sum the overlap once. Figure 14 given an example of this
envinga.
\begin{tabular}{|c|c|c|c|}
\hline 20 & 10 & 15 & 19 \\
\hline 13 & 18 & 13 & 16 \\
\hline 9 & 18 & 11 & 4 \\
\hline & \(W_{1}\) & \(W_{2}\) & \\
\hline \multicolumn{4}{|l|}{\(\Sigma\left(W_{1} \cap W_{2}\right)=10+15+18+13+18+11=8\)} \\
\hline \multicolumn{4}{|l|}{\(\Sigma\left(W_{1}\right)=20+13+9+\Sigma\left(W_{1} \cap W_{2}\right)=127\)} \\
\hline \multicolumn{4}{|l|}{\(\Sigma\left(W_{2}\right)=\Sigma\left(W_{1} \cap W_{2}\right)+19+16+4=124\)} \\
\hline
\end{tabular}

Figure 14: Summing the elemente of two overlapping wind ows
The work in summing the equares of the elements in two windowe can be shared this way too. If the likelihood generator is being used on every window on an image then the work needed to calculate sums and sum of squares is a fraction of that needed to calculate the same statistics for the same number of non-overlapping windows.

If every window (or a substantial fraction thereof) of an image has the algorithme in figure 8 or 10 run on them then the work involved in convolving the image with templates can be saved too (at least when the templates grow large). Convolution can be performed with the fast Fourier tranaform at substantial saving in operations for large templates. For algorithm 13 when the correlation matrix has atructure (such as being a band matrix) then the fast Fourier transform can be used with substantial savings too.

Thus much of the work can be shared when likelihoods are being determined for every wisdow of an image. Hence the likelihood generators described in figures 8, 10, and 13 are competitive in speed with moot standard edge detections schemes.

Another way the work can be shared is that some of the tamplates used that deecribe object configurations in a window is by describing the configuration in another template ahifted 1 pirel over (ece figure 15).


Figure 15: \(T_{1}\) is \(T_{2}\) shifted 1 pisel to the right
If every window in the image is being procesced then the likelihoods corresponding to the template \(T_{1}\) are approximated by the likelihoods calculated by the template \(T_{1}\) for the window 1 pixel to the right. To realize why such an approsimation is good, consider that using a window is ittelf an
approximation. The likelihood of the configuration of objects described by \(T_{1}\) is approximated by running the algorithom over a window. The likelihood of the configuration deccribed by \(T_{2}\) can be approximated by running the came algorithm over a window shifted 1 to the right.

Thus the likelihoods for the template corresponding to \(T_{2}\) noed only be calculsted for the windows an the far right hand side of the inage (the other windows have the \(T_{1}\) template ran on them already). Thus instead of having to take into account tamplates corresponding to the same coafigration of objects shifted several pirels in some direction one noed only une a single template and weo the output from this template on windows ahiftod in that direction.

\subsection*{6.7. Getting Probabilities from Likelihoods}

Given likelihood geaerators the remaining tack is to calculate probabilities from these likelihoods (wing priors). The first task that needs to be done is to group the likelihoode generated into meta that support diferent labelings for the features. Thus if the configurstions \(C_{1}, C_{2}, C_{3}\) corroepond to the existence of a boundary at a point and \(C_{4}, C_{8}\) and \(C_{6}\) represent aituations that aren't boundaries at that point then I must collect the likelihoods based on \(C_{1}, C_{2}\) and \(C_{3}\) into a singla likelihood and aimilar with the likelihoode collected from \(C_{4}, C_{5}\) and \(C_{5}\). Then I would have a likelihood corresponding to each possible labelings of my feature (for boundary point detection I neod to determine the likelihoods corresponding to the existance of a boundary and those that corrempond to the noneristence). Given these likelihoods I can use Bayes' rule to derive probabilities (soe equation 3).

The likelihood of a bounciary is thy probability of the observed acone being generated when an object configuration corresponding to the existence of a boundary exista. I can derive an equation for calculating the probability of a boundary from the outputs of my bikelihood generators if I have the prior probability that the configuration is the position of the objects in the scene for each configuration that corresponde to a boundary. Let the set of configurations that correspond to a boundary be represented by \(C_{b}\). Equation 17 is the first step in the derivation expanding out the likelihood into conditional probabilities.
\[
\begin{equation*}
P\left(W_{o} \mid C_{b}\right)=\frac{P\left(W_{0} C_{b}\right)}{P\left(C_{b}\right)} \tag{17}
\end{equation*}
\]

Since the real scene can not correspond to two different configurations I ean expand equation 17 into equation 18.
\[
\begin{equation*}
P\left(W_{o} \mid C_{b}\right)=\frac{\sum_{c \in C_{b}} P\left(W_{o} \& c \in C_{0}\right)}{\sum_{c \in C_{b}} P\left(c \in C_{0}\right)} \tag{18}
\end{equation*}
\]

A alight change to equation 18 introduces the birelihoods genarnted by the algorithms in figures 8 through 13 and the prior probabilities that the scene in in a configuration testad by the algorithma. Equation 19 ahows this change.
\[
\begin{equation*}
P\left(W_{o} \mid C_{b}\right)=\frac{\sum_{c \in C_{b}} P\left(W_{0} \mid c \in C_{b}\right) P\left(c \in C_{b}\right)}{\sum_{c \in C_{b}} P\left(c \in C_{b}\right)} \tag{1}
\end{equation*}
\]

Equation 19 allows me (given priors on the tampletes or remplate ceta) to gather many bikelihoods into a single one. If I have likelihoods for overy feature label and priar probabilities that the feature takes on that label I can uee Bayes' law as in equation 3 (reprised here) to derive probabilities for fenture labels given the data in the window.
\[
\begin{equation*}
P\left(l_{f} \mid O \& M\right)=\frac{P\left(O \mid l_{f} \& M\right) P\left(l_{f} \mid M\right)}{\sum_{r_{f} \in L_{f}}^{\prime} P\left(O \mid l^{\prime}{ }_{f} \otimes M\right) P\left(l^{\prime} \mid M\right)} \tag{3}
\end{equation*}
\]

\subsection*{6.8. Estimating Boundaries}

In action 6.7 I ahow how to derive probabilities given a likelihood generator. Often one must use programs (e. g. programe mpplied as part of a package) that take as input eatimates of the poaitions of the boundarim. Such programs can not use probabilities, they just want a boundary map. Here I ahow how to generate such an input.

To eatimate where the boundarien are in an image it is necesary first to develop a cost function that describes what costs arrors in estimation have. To use the probabilities of boundaries at pointa to estimate the configuration of boundaries in an image optimally it is necessary to use a cont function that sums the effecta of pointwise arrors. Such cost functions are simple to anderatand and require fow paramoters to describe (namely only the costs of different mialabelings at a point). I only uee this type of cost function in this part of the paper. I also assume that making a correct decision has 0 cost.

For boundary point detection the conts that noed to be calculated are:
(1) the cost of labeling a point as a boundary when there is no boundary there.
(2) the coat of labeling a point as not being a boundary when it ia.

Call the cost of labeling a point ( \(x, y\) ) as a boundary point when it isn't \(c_{1}(x, y)\) and the coat of laboling a point as not being a boundary when it is \(c_{9}(x, y)\). Let \(p_{g}(x, y)\) be the probability of a boundary at \((x, y)\). Let \(e_{B}(x, y)\) be 1 when the eatimation procedure indicates there is a boundary at \((x, y)\) and 0 otherwise. We want a detector that minimires the expected cost for the eatimation. Thus we want to minimize the summation in equation 20.
\[
\begin{equation*}
\sum_{(x, y)} c_{1}(x, y)\left(1-p_{B}(x, y)\right) e_{B}(x, y)+c_{g}(x, y) p_{B}(x, y)\left(1-e_{B}(x, y)\right) \tag{20}
\end{equation*}
\]

Lat us asoume that \(c_{1}(x, y)\) is the same for all ( \(x, y\) ) and the anme for \(c_{2}\). Equation 20 is clearly minimised by minimising equation 21 for each ( \(x, y\) ) ( \((x, y)\) is deloted for clarity).
\[
\begin{equation*}
c_{1}\left(1-p_{B}\right) e_{B}+c_{2} p_{B}\left(1-e_{B}\right) \tag{21}
\end{equation*}
\]

Equation 21 can be rearranged into equation 22.
\[
\begin{equation*}
\left(c_{1}\left(1-p_{B}\right)-c_{2} p_{B}\right) e_{B}(x, y)+c_{2} p_{B} \tag{22}
\end{equation*}
\]

Clearly you want \(e_{B}\) to be 1 when equation 23 is positive and \(e_{B}\) to be 0 when equation 23 is segative.
\[
\begin{equation*}
c_{1}\left(1-p_{B}\right)-c_{2} p_{B} \tag{23}
\end{equation*}
\]

This statement can be algebraically tranoformed into the statement that \(e_{B}\) should be 1 when the inequality in equation 24 is satisfied and 0 otherwise.
\[
\begin{equation*}
p_{B}<\frac{c_{1}-c_{2}}{c_{1}} \tag{24}
\end{equation*}
\]

Thus one only aeeds to threshold the probabilities of boundaries with \(\frac{c_{1}-c_{2}}{c_{1}}\) to estimate the positions of the boundary for the additive cost function with conts \(c_{1}\) and \(c_{2}\). This argument is standard in Bayesian decision theory with simple loss functions [Berger80].

\section*{7. Implementation Details}

Hare, I describe my implementation of the algorithms described in section 6. I have code for the algorithms in figures 8 , and 10 . I also have constructed the code that is implied by equations 19 and 3 of section 6.7.

\subsection*{7.1. Likelihood Generators}

These algorithms are based on the assumption that the scene can be modeled by a set of templates. The templates are objects of unit refectance under unit lighting. I have one template that reprecente the window being in the interior of the object shown in figure 16.
\begin{tabular}{|l|l|l|l|l|}
\hline 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

Figure 16: Template for the Interior of an Object
For each of 4 direc sas, 0 degrees, 45 degrees, 90 degrees, and 135 degrees, I have 3 pairs of templates that describe three possible boundaries. For example figure 17 shows the 0 degree tomplates.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(1^{*}\) pair} \\
\hline 1 & 1 & 0.5 & 0 & 0 \\
\hline 1 & 1 & 0.5 & 0 & 0 \\
\hline 1 & 1 & 0.5 & 0 & 0 \\
\hline 1 & 1 & 0.5 & 0 & 0 \\
\hline 1 & 1 & 0.5 & 0 & 0 \\
\hline 0 & 0 & 0.5 & 1 & 1 \\
\hline 0 & 0 & 0.5 & 1 & 1 \\
\hline 0 & 0 & 0.5 & 1 & 1 \\
\hline 0 & 0 & 0.5 & 1 & 1 \\
\hline 0 & 0 & 0.5 & 1 & 1 \\
\hline \multicolumn{5}{|c|}{\(2^{\text {nd }}\) pair} \\
\hline 1 & 1 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 1 & 1 \\
\hline 0 & 0 & 1 & 1 & 1 \\
\hline 0 & 0 & 1 & 1 & 1 \\
\hline 0 & 0 & 1 & 1 & 1 \\
\hline 0 & 0 & 1 & 1 & 1 \\
\hline \multicolumn{5}{|c|}{\(3^{\text {rd }}\) pair} \\
\hline 1 & 1 & 1 & 0 & 0 \\
\hline 1 & 1 & 1 & 0 & 0 \\
\hline 1 & 1 & 1 & 0 & 0 \\
\hline 1 & 1 & 1 & 0 & 0 \\
\hline 1 & 1 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 1 \\
\hline 0 & 0 & 0 & 1 & 1 \\
\hline 0 & 0 & 0 & 1 & 1 \\
\hline 0 & 0 & 0 & 1 & 1 \\
\hline 0 & 0 & 0 & 1 & 1 \\
\hline
\end{tabular}

Figure 17: Template for the 0 degree Boundary
Each pair of templates represent two objects, ane occluding the other. I have not generated any templater foer windows with 3 objects.

The algorithms in figures 8, and 10 consist of a part that is dependent on a template used and a part that is a function of the obserred window. It is the part that depends on the template that prosenta implementation difficulties. Function \(F_{2}\) is a function of the oum of squared elements in the tamplate. Function \(F_{8}\) is a function of the pairwie products of the templates representing the objects in the configuration. Both of these functions were implemented by table lookup with linear
interpolation in my implementation. For every direction the sum of squares of the templates and the pairwise products are described by the same 5 numbers. Only two \(F_{4}\) tables need to be generated.
\(F_{2}\) and \(F_{4}\) aleo depend on the standard deviation of the noise in the image. I call a likelihood geearator that acsumes a apecified atandard deviation of noise a likelihood generator tuned to that standard deviation of noise. I have likelihood generators tuned to noise with \(\sigma\) equal to \(4,8,12\), and 16.

\subsection*{7.2. Probabilities from Likelihoods}

I use equation 19 to gather together the three likelihoods generated from the 3 pairs of templates in each direction into a single likelihood. Thus I have the likelihoods for the four directions that a boundary passes through or next to the center pisel.

I also need the likelihood that there is no boundary near or through the center pizel. To get this likelihood I take the likelihood that the window is in the interior of the object and combine it with likelihoods for central boundaries calculated for the neighboring windows. Thus from the 0 degree boundary likelihoods I use the likelihood from the window one pixel laft and right and combine it with the likelihood of a noncentral edge.

Thus I have 4 likelihoods for 4 directed boundary points and one likelihood that represents the likelihood that there is no ceatral edge in the image. I then une Bayes' law from equation 3 to compute the probabilities of these 4 states. I then threahold the probabilities at 0.5 to present the results shown in rection 8. Throughout I assumed that the prior probability of a contral odge is 0.1 and that this probability is equally distributed in all 4 directions. This prior information is sufficient to apply Bayes' law.

\section*{8. Results from Implemented Boundary Detectors}

I have implemented the algorithms in sections 6.1 and 6.3 figures 8 and 10. Here I describe the results from testing this detector.

The software I have written is Gexible. However I have only constructed templates for a reatricted set of configurations. I have templates for a step edge model with the low curvature ascumption, 4 possible orientations for boundaries, and 255 gray levels in the image. My templates handle boundaries that occur in the canter of pixels or between pixela. I have built the tamplates for a 5x5, 7x7 and 9x9 windowe. I aleo have constructed tables to compute \(F_{1}\) and \(F_{4}\) for each of these windows that ascume noise of otandard deviations 4,8,12, and 16 .

\subsection*{8.1. Results with Artificial Images}

I have applied these operators to test images conatructed by a package of graphics routines. Thin peckage was written by Myra Van Inwegen and is described in an upeoming technical report.

I describe my operators applied to two teat images generated by this package. One is an image of two circles shown on the let in figure 18a.


Firure 18: Artificial Images
A mare challenging and complex image has aleo been teated ahown in figura 18t.
The two circlo image (figure 18a) is a particularly good image to tent the effect of boundary oriontation, currature and ccatrast on boundary detection. Figure 19 shows the result of using a \(5 \times 5\) oparator tuned to atandard doviation 12 noise an image 18a with standard deviation 12 noise added to it. The images are white at pointe of grator than \(50 \%\) probability and black at points less than 50\% probability.


a: image with \(\sigma=0\) noise
b: \(\sigma=12\) eperator an image with \(\sigma=0\) naive
e: image with \(\sigma=4\) soico
d: \(\sigma=12\) operator an image with \(\sigma=4\) noise
e: image with \(\sigma=8\) soise
f: \(\sigma=12\) operator on image with \(\sigma=8\) noise Figure 20: \(\sigma=125\) 55 operstor applied to imagee with too little ( \(\sigma<12\) ) noice

a: image with \(\sigma=12\) noise
Figure 21: \(\sigma=125 \times 5\) operator applied to image with correct ( \(\sigma=12\) ) amount of noise


One trichy point is that multiple reports of boundaries are usually considered a bad result [Canny83]. Howover aystams that report a boundary only once will usually have a high false negative rate becauce they report an edge one pizel off from where it really is. I consider this error to have low enough cont to be ignored. So my software ignoren falee negatives that are next to ruported boundaries in a direction normal to the boundary.

Figure 23 charts the performance of \(m y\) operator tuned to \(\sigma=12\) on the images nhown previously. Figure 24 charts the performance of my operator tuned to \(\sigma=4\) noied. Figure 25 charts the performance of an oparator that is tuned to the same noice lovel as is contained in the image. Figase 26 superimposes the three graphe of total arror rates to show the relationship.

(c)

(a) false positive rate \(v\) increasing 0 of noise in image
(b) false negative rate vi increaning \(\sigma\) of noise in image
(c) total error rate va increasing \(\sigma\) of noise in image

Figure 23: Error Rates for the Operator Tuned to \(\sigma=12\) noise
(a)

(b)

(c)

(a) frle positive rate vi increasing of noise in image
(b) false negative rate \(v\) increasing \(\sigma\) of noise in image
(c) total orror rate ve increasing \(\sigma\) of noise in image

Figure 24: Error Rates for the Operator Tuned to \(\sigma=4\) noise
(a)

(b)


(c)

(a) fale positive rate vi increasing \(\sigma\) of noise in image (b) falee negative rate ve increasing of noise in image (c) total error rate vs increasing \(\sigma\) of noise in image

Figure 25: Error Rates for the Operator Tuned to \(\sigma\) of the noise in the Image


Figure 26: Total error rate for my operatora
As you cas see the tuned operator is always at least as good as the operator that has been developed for stdev 12 or 4 noise.

\subsection*{8.2. Results with Real Images}

I have also applied my operator to real images. Here, I use two images, a laboratory image of a Tinkertoy model (figure 27) and an aerial picture (figure 28). I demonstrate the utility of having operators that return probabilities with these results. In both these figures (a) is the image, (b) is the output of my 585 otder 12 operator threaholded at \(10 \%\) probability, (e) is thresholded at \(90 \%\) probability and (d) is thresholded at 50\% probability. (b) would be used when the cont of misaing an edge is high as when the output would be fed to a regularization technique. Note that for case (b) the oparator sometimes roturns thickened edges. (c) would be used when the coot of misaing an edge is low. Hough tranaform techniques are oftan developed with that asoumption in mind. There is enough information in figure 27e to find the rods of the tinker toy even though all the boundaries are not ertant. (d) is what you use when an operator is equally troubled by all errors.



A particular threahold may reault in a mort pleasing (to a human observer) ansemble of results (perhape 5). But this threshold may not be the best threshold for the succeeding applicatice.

Ose may notice that lowering the threahold seems to incrsese the number of boundary pointe is the regions of real boundaries. It is aot surprising that the regioas that look moat like boundaries should be near boundarice. Also the probabilitiee of boundaries are being reported as bower than they should be in this image. A good rasson for this is that the model used to conatruct the operator ahown is not a good model for this image. In particular there is some ovidence [Sher87] that the atandard deviation of the noise is cloeer to 4 than 12 in these inages. Thus look at the same revult for the \(\sigma=4\) operator in frgures 29 and 30.

(a) Tinkertoy Lmage
(b) Output of \(\sigma=4\) Operator with threahold at .1
(c) Output of \(\sigma=4\) Operator with threshold at .9
(d) Output of \(\sigma=4\) Operator with threahold at .5

Figure 27: \(\sigma=45 \times 5\) operator applied to tinker toy image



\subsection*{8.3. Comparisons with Established Techniques}

Here, I compare the resulte I have just precented with eatablished edge detectars. The edge dotectors I curratily have reeulte for are the Sobel thresholded at 200, the 5 by 5 Kirsch threaholded at 750, and a thinned 3 by 3 Kirsch thresholded at 100. The throwholde for the Sobel and the thinned Kirach were found to be the anes that minimised the number of erross when applied to the artificinl image in figure 18 b with standard deviation 12 noise added. The threshold that minimized the errors with the Kirsch was 1175. However at this thremold more than \(50 \%\) of the boundaries ware mised. It was differlt to chart the result of using this operator aloag with the rest \({ }^{2}\) so I used a somewhat lower throchold.

I know these operators are not state of the art. However these resulte show that tools are available to teat thin theory against more sophisticated operators. Mare sophisticatod operators

\footnotetext{
\({ }^{2}\) Vioual inspection iodicated that loweriag the throbbold would mike the renult of the operator mose appealiog. Not that it should mattor but
}
such as Canny's and Haralick's will be teated against my operators in the next month or two.
In figure 31 the resulta of applying the Sobel, Kirach and thinned Kirach to my artificial imege with atder 12 noine.


I have measured the arror rates for these operators and have charted the total error rates in figure 32.
(a)

(b)

(c)

(a) Error rates for the thremholded Sobel
(b) Error rates for the threaholded Kirach
(c) Error rates for the thinned Kiruch

Figure 32: Charts of Total Error Rates for Established Operators
To summarize the resulte I have a plot that shows the error ratee for all the operators I have tested \(s 0\) far (figure 33). In this chart my stdev 12 operator is shown as squares, my tuned operator is ahown as circles, the Sobel is shown as triengles, the threaholded Kirsch is ahown as crosses and the thinned Kirsch is shown as X's.

\begin{tabular}{ll} 
circles: & Tuned \(\sigma=12\) operator \\
Tuned \(\sigma=4\) operator \\
aruerea: & \multicolumn{1}{c}{+} \\
triangles: & Tuned to noise \(\sigma\) operator \\
crosces: & Sobel's error rate \\
X'z: & 5x5 Kirsch's error rate \\
diamonds: & Thinned Kirech's arror rate
\end{tabular}

Figure 33: Error Rates for all Operators
For comparison, I have run the 3 established edge detector on the two real images abown in section 8.2. Figures 34 and 35 ahow the result of runing these operators with my eatabliahed operators. Clearly, in these circumstances the most effective eatablished operator for these images is the thinned Kirsch.

\(C\)



(a) Tinkertoy Image
(b) Output of the Sobel Optimally Threshoided
(c) Output of the 5x5 Kiruch Optimally Thresholded
(d) Output of the Thinned Kirsch Optimally Thresholded Figure 34: Application of Established Operators to Tinkertoy Image

(a) Acrial Image
(b) Output of the Sobel Optimally Thresholded
(c) Output of the \(5 \times 5\) Kirech Optimally Thresholded
(d) Output of the Thinned Kirech Optimally Threehoided

Figure 35: Application of Entabliched Operatora to Aerial Image
One can criticise these compariens by easing that the image statistics favor my operators, which are robuct with dim images. To counter this criticism I have also run the three operators (Sobol, Kirsch and thinned Kirseh) with a praprocossing stage of histogram equalization. Thus all the teat imagee will be recaled to have the same atatistica. Thus when I find the optimal threahold fer the atandard doviation 12 artificial image it ahould remain a good threshold for all the teets.

The optimal threaholds happened to be 220 for the Sobel, 750 for the Kirsch (eciscidently), and 125 for the thinned Kirsch. The result of using these operators and throsholds on the standard deviation 12 artificial image (fgure 18b) is shown in figure 36.

(a) Image with \(\sigma=12\) aoise.
(b) Output of the Hiatogram Equalized Sobel Optimally Thresholded (e) Output of the Histogram Equalized 5z5 Kirech Optimally Threaholded (d) Output of the Hintogram Equalised Thinned Kirach Optimally Threaholded Figure 36: Application of Histogramed Equalised Operators to Artificial Image
In figure 37 are charts that deacribe the reault of applying these operatore to the histogram equalized artificial image (figure 18b).

(c)

(a) Total Error rates for the thresholded Sobel on the Histogram Equalized Image
(b) Total Error rates for the threaholded Kirsch on the Histogram Equalized Image
(c) Total Error rates for the thinned Kirsch on the Histogram Equalized Image

Figure 37: Charts of Error Ratee for Established Operators
In figure 38 I compare the 3 operators on histogram equalized images to my operators on the original images (my operators do not axpect histogram equalization and daing so may confuse them).

circlet:
equares:
triangles:
crosces:
X's: diamonds:

Tuned \(\sigma=12\) operator Tuned \(\sigma=4\) operator
Tuned to noise o operator
Histogram Equalized Sobel's error rate
Histogram Equalized 5x5 Kirach's arror rate
Histogram Equalized Thinned Kirsch's error rete
Figure 38: Comparison with Establiahed Operators Applied to Histogram Equalized Image
Since the artificial images already had the full range of graylevels histogram equalization did not help the established operators much. Howevar the advantage of histogram equalization is shown clearly when the operators are applied to real images in figures 39, and 40.

(a) Tinkertoy Image
(b) Output of the Histogram Equalized Sobel Optimally Threaholded (c) Output of the Hintogram Equalized 5x5 Kirch Optimally Threaholded (d) Output of the Histogrem Equalized Thinned Kirech Optimally Thresholded Figure 39: Application of Established Operatore to Tinkertoy Image


C

(a) Aerial Image
(b) Output of the Histogram Equalized Sobel Optimally Throsholded
(c) Output of the Histogram Equalized \(5 \times 5\) Kirseh Optimally Threaholded
(d) Output of the Histogram Equalized Thinned Kirach Optimally Thresholded Figure 40: Application of Eatabliahed Operatore to Aerial Image

\section*{9. Previous Work}

Edge dotection is the cutabliched vision takk that bears most clowhy on the boundary dotection problam I describe hers. Edge dotection has been one of the earliest and moat important tacke attampted by computer vision syateme. Usually adge dotection is described as a problem in inage reccastruction.

Edge detection is oftan charactarised as discoveriag the contrast in a region of the ideal image when thase is an boundary between two constant intensity regions of the ideal image. Since 1 am not crotivated by image roconstruction this tank is not of particular interset for me. Howover aften edge defection algorithms are used for boundery point detection. The iden is to accopt as boundaries the pisele whose windows the detector conaiders to have hi,th contragt.

The furst work on edge detection was by Roborts who developed - isoberts edge operator to detect boundaries and comers of blocke. It was a simple convolution of ator probably inapired by convolution based pattorn matching. Since Roberta edge dotection hea bean worted on by a large number of vision workers. Some of the operators were worked out in a somewhat ad hoc manner
as the Roberts was. The "best" and mont common example of such operators is the Sobel edge operator

Many have worked on "optimel operators" where some model of edges is presented and the "best" function thet fite a apecified functional form. The definition of "best" and the functional form varies. Almost overyone who takes this approach limits the functionel forms of edge operaters to convolutigas.

Ereckel [Hreckel71] considers convolutions over a dise on the image. He models edges as step edges with linear boundarien oceurring at random places in the disk. His functions are limited to look at only cortain specific Beacel coordinates (of an integral Fourier tranaform) that he has detarmined are useful for edge detection. He takes into account somewhat the possibility of two edgen in the region. In a later paper (Hueckel73] Hueckel considers edgen that are two parallel step edges a fow pirels apart. He analysea much edges the aame way be analyzed the provious kind of edges.

At MIT starting with Marr [Marr82] there has been concentration on zero crossing based edge detection. The edge detectors they use are to locate edges at zero crossings of a Laplacian of a Gausaing. [Torre86] [Lunscher86b] [Lunscher86a] describe how such an edge detector is an approximation to a apline based operator that has maximal output at edges (compared to elsowhere). Such an operator also has been shown always to create connected boundaries.

Canny [Canny83] has azamined the isave of convolution based edge detection more closely. In particular he studied the goals of edge detection. He considered an edge detector to be good if it reported strongly when there was an edge there and did not report when there was no edge. He aloo wanted a detector that only reported once for an edge. He found that these constraints conflict when one is limited to convolution based edge detectors (such babavior arises naturally for the boundary point detectors in this paper). His primary work on this topic was with a 1 dimenaional step edge model. He derived a convolution operator that was similar to a crossing operator. He also discusces how to extend the operators defined for one dimensional images to two dimensional images, and when oriented operators are desirable. His operatora, applied to real images, uaually appear to do a good job of finding the boundaries. In this paper I derive boundary point detectors for step edges but do not constrain the functional form of the edge detector. Thus the edge detectors based on this ahould have performance at least as good as Canny's detector.

Natwa (Nalwa84] used a more sophisticated model where he asumed that regions in the intenaity image fit (at least locally) surfaces that are planar, cubic or tanh type. He tested whether a surfee fit a window on the image and if not he tried to fit various boundarien between surfaces. He odered the tente to be of increasing computational complerity. His operatorn, applied to real images, umally appear to do a good job of finding the boundaries. The work in this paper handles modele of this form and dorives optimal oparators.

Another approach to edge detection is to simulate parts of the human early visual aystem. Zoro croaing operators wase originally motivated by this argument since it was found that there ware calls in the human early rinual systam that compute saro crosinge at various frequencies [Marr82]. Other work that mriously studies the human aerly visual system was by Fleet [F'leet84] on the spatio-temporal properties of centar-surrounds operators in the early human visual system. My work is not concorned with the structure of the early human visual system since ite gosis are to parform a task best as posaible rather than as human-like as posible. However I can draw inopiration from the human vioual aystem since it has been highly optimized to its goals by
evolution and hence an optimal detection system may be similer to that of the human eye (or animal eye for that matter).

Haralick has taken a similar approach to mine for the problem of edge detection [Haralick86a]. The differences between his approach and mine are that he models the image as a surface rather than as a function of a scene, and his operators generate decisions about odges rather than probabilities of edges [Haralick84]. However he has told me that his theory can be used to generate likelihoods that can be used with the techniques presented here [Haralick86b]. The relationahip between his ficet model and my template based models is currently under inventigation.

\section*{10. Conclusion}

I have demonatrated an operator that fulfills the deniderata in rection 1. It has fexible output that can be used by many operators because it returns probabilities. It works on gray acale input. Because the operator is based on windows it does work proportional to the sive of the image to calculate boundary probsbilities. By constructing templates to represent a boundary shifted less than a pirel one can heve subpirel precision with work proportional to that precision. A parameter of the algorithms I describe is the expected diotribution of illuminances. Another is the standard deviation of and correlation in the noise.

Resulta were reported from using a 5 by 5 operator developed from this theory in section 8. I have applied this detector to artificial and real images. In eection 8.3 I have compared my detectors to the established detectors, Sobel, Kirsch, and thinned Kirsch. In the next few weeks results from using a 7 by 7 and 9 by 9 operator will be available. Also comparisons will be done between these detectors and more advanced edge detectors such an Canay's [Canny83], and Heralick's [Haralict84].

In a companion report I describe an evidence combination theory that is applied to operators that return likelihoods that allows me to combine robustly the output of eeveral different operators on the same data [Sher87]. Soon there will be results from using the likelihoods as input to a Markov random field based system [Chou87].



\section*{References}

\section*{[Andrews77]}
H. C. Androws and B. R. Hunt, Digital Image Restoration, 8-26 , Prentice-Hall, INC.., Englewood Cliff, New Jorsey 07632, 1977
[Berger80]J. O. Berger, Statistical Decision Theory, 110-112 , Springer-Verlag., New York Heidelberg Berlin, 1980
[Binford81]
T. O. Binford, Inferring Surfaces from Images, Artificial Intelligence 17,1-3 (August 1981), 205-244, North-Holland Publishing Company.
[Boult6?] T. E. Boult and J. R. Kender, On Visual Surface Reconstruction Using Sparse Depth Data, Department of Computer Science, Columbia University., 1986?
[Brown82] C. M. Brown, Bias and Noise in the Hough Transform 1: theory, 105, Department of Computer Science, University of Rochester, June 1982.
[Canny83]J. F. Canny, Finding Edges and Lines in Images, 720, MIT Artificial Intalligence Laboratory, June 1983.
[Chou87] P. Chou and D. Sher, ( Markov Random Fields for Information Fusion Based Segmentation) ?, To be Published in 87.
[Fleet84] D. J. Fleet, The Early Procescing of Spatio - Temporal Visual Information, 84-7, University of Taroato, Research in Biological and COmputational Vision, September 1984.
[Geman84]
S. Geman and D. Geman, Stochastic Relaration, Gibbs Distributions, and the Bayesian Reatoration of Imagea, PAMI 6,6 (Novermber 1984), 721-741, IEEE.

\section*{[Haralick84]}
R. M. Haralick, Digital Step Edgee from Zero Crosing of Second Directional Darivatives, PAMI 6,1 (January 1984), 58-68, EEEE.
[Haralick86a]
R. M. Haralick, The Facet Approach to Gradient Edge Detection, Tutorial 1 Facet Model Image Processing (CVPR), May 1986.

\section*{[Haralick86b]}
R. Haralick, Permonal Communication, June 1986.

\section*{[Hueckel71]}
M. H. Hueckel, An Operator Which Locates Edges in Digitized Picturea, Journal of the Association for Computing Machinery 18,1 (January 1971), 113-125, ACM.
[Hucckel73]
M. H. Hueckel, A local Visual Operator Which Recognizes Edges and Lines, J. ACM 20,4 (October 1973), 634-647, ACM.

\section*{[Runecher86a]}
W. H. H. J. Lunacher and M. P. Beddoes, Optimal Edge Detector Design II: Coefficient Quantization, Pattern Analybis and Machine Intelligence 8,2 (March 1986), 178-187, IEEE.

\section*{[Luncher86b]}
W. H. H. J. Lunscher and M. P. Beddoes, Optimal Edge Detector Design I: Parameter Selection and Noise Effects, Pattern Analyais and Machine Intelligence 8,2 (March 1986), 164-177, IEEE.
[Marr82] D. Mart, Vision, W. H. Froeman and Company., New York, 1982
[Marroquin85]
J. L. Marroquin, Probabilistic Solution of Inverse Problems, Tech. Rep. 860, MTT Artificial Intelligence Laboratory, September 1985.
[Nalwe84] V. S. NaIwa, On Detecting Edges, Proceedings: Image Understanding Workshop, October 1984, 157-164.
[Sher85] D. B. Sher, Evidence Combination for Vision using Likelihood Generators, Proceedings: Image Understanding Workshop (DARPA), Miami, Florida, December 1985, 255-270. Sponsored by: Information Procesaing Techaiques Office Defence Advanced Research Projecta Ageacy.
[Sher86] D. Sher, Optimal Likelihood Detectors for Boundary Detention Under Gaussian Additive Noise, IEEE Conference on Computer Vision and Pattern Recognition, Miami, Florida, June 1986.
[Sher87] D. B. Sher, Evidence Combination Based on Likelihood Generators, TR192, University of Rochester Computer Science Department, Milan, Italy, January 1987. Submitted in shorter form to LJCAI.
[Torre86] V. Torre and T. A. Poggio, On Edge Detection, Pattern Analysis and MAchine Intelligence 8,2 (March 1986), 147-163, IEEE.

Appendix B-7

\section*{Evidence Combination Using Likelihood Generators}

\author{
David Sher Computer Science Department The University of Rochester Rochester, New York 14627
}

January 1987
TR 192

B-190

\title{
Evidence Combination Using Likelihood Generators
}

\author{
David Sher \\ Computer Science Department \\ The University of Rochester Rochester, New York 14627
}

January 1987
TR192

\begin{abstract}
Here. I address the probiem of combining output of several detectors for the same feature of an image I shou that if the detectors return likelihoods I can robusdy combine their outputs. The combination has the advantages that:
- The confidences of the operators in their own reports are taken into account. Hence if an operator is confident about the situation and the others are not then the repors of the confident operator dominates the decision process.
- A priori confidences in the different operators can be taken into account.
- The work to combine ' N ' operators is linear in ' N '.

This theory has been applied to the problem of boundary detection. Results from these tests are presented here.

This work would have been impossible without the advice and argumentation of such people as Paul Chou and Mike Swain (who has made suggestions from the beginning) and of course my advisor Chris Brown. and who could forget Jerry Feldman. This work was supported by the Defense Advanced Research Projects Agency U. S. Army Engineering Topographic Labs under grant number DACA76-85-C-0001. Also this work was supported by the Air Force Systems Command. Rome Air Development Center, Griffiss Air Force Base. New York 13441-5700, and the Arr Force Office of Scientific Research, Bolling AFB. DC 20332, under Contract No. F30602-85-C-0008. This contract supports the Northeast Arificial Inteligene Consortium (NAIC).
\end{abstract}

\section*{1. Introduction}

Often in computer vision one has a takk to do such as deriving the boundaries of objects in an image or deriving the surface orientation of objects in an image. Often one also has a variety of techniques to do this task. For boundary detection there are a variety of techniques from clasaical edge detection literature [Balland82] and the image eegmentation literature e.g. [Ohlander79]. For determining surface orientation there are techniques that derive surface orientation from intensities [Horn70] and texture [Ikeuchi80] [Aloimonos85]. These techniques make certain aseumptions about the structure of the scese that produced the data. Such techniques are only reliable when their assumptions are met. Here I show that if eeveral algorithms return likelihoods I can derive from them the correct likelihood when at least one of the algorithms' assumptions are met Thus I derive an algorithm that works well when any of the individual algarithms works well.

The mathematics here were derived independently but are aimilar to the treatment in [Good50]. and [Good83], using different notation. To understand my results first one must understand the meaning of likelihood.

\section*{2. Likelihoods}

In this paper I call the asoumptions that an algorithm makes about the world a model. Most models for computer vision problems describe how configurations in the real world generate obaerved data. Because imaging projects away information, the models do not explicitly state how to derive the configuration of the real world from the sensor data. As a result, graphics problems are considerably easier than vision problems. Programs can generate realistic images that no program can analyze.

Let \(O\) be the observed data, \(f\) a feature of the scene whose existence we are trying to determine (like a boundary between two pizels) and \(M\) a model. Many computer vision problems ean be reduced to finding the probability of the feature given the model and the data, \(P(f \mid O \& M)\). However most models for computer vision instead make it easy to compute \(\mu(O \mid f \& M)\). I call \(P(O \mid f\) e \(M\) ) (inspired by the statistical literature) the likelihood of \(f\) given observed data \(O\) under M. As an example acoume \(f\) is "the image has a constant intensity before noise". \(M\) says that the image has a normally distributed uncorrelated (between pizels) number added to each pirel (the noise). Calculating \(P(O \mid M \& f)\) is atraight-forward (a function of the mean and variance of \(O\) ).

A theorem of probability theory, Bayes' law, show how to derive conditional probabilities for features from likelihoods and prior probabilities. Bayes' law is ahown in equation 1.
\[
\begin{equation*}
P(f \mid O \& M)=\frac{P(O \mid f \& M) P(f \mid M)}{P(O \mid f \& M) P(f \mid M)+P(O \mid \sim f \& M) P(\sim f \mid M)} \tag{1}
\end{equation*}
\]
\(f\) is the feature for which we have likelihoods. \(M\) is the domain model we are using. \(P(O \mid f \& M)\) is the likelihood of \(f\) under \(M\) and \(P(f \mid M)\) is the probability under \(M\) of \(f\)

For fentures that can take on severai discrete mutually ozclusive labels (rather than just true and false) auch as surface orientation (which can be a pair of anglen to the nearest degree or "not applica'ble" (at bounderies)) a more complez form of Bayes' law shown in equation 2 yieids conditional probabilities from likelihoods and priors.
\[
\begin{equation*}
P(l \mid O \& M)=\frac{P(O \mid l \& M) P(l \mid M)}{\sum_{l \in L( } P\left(O \mid l^{\prime} \& M\right) P\left(l^{\prime} \mid M\right)} \tag{2}
\end{equation*}
\]
\(l\) is a label for feature \(f\) and \(L(f)\) is the set of all possible labels for feature \(f\).
Another important use for explicit likelihoods is for use in Markov random fields. Martov random fiolde describe complax prices that can capture important information. Several people have applied Markov randem fields to vinion problems [Geman84]. Likelihoods can be used in a Markov random field formulation to derive entimates of boundary positions [Marroquin85b] [Chou87]. In [Sher86] and [Sher87] I discuss algorithme for determining likelihoods of boundaries.

Let us call an algorithm that generates likelihoods a likelihood generator. Different models lead to different likelihood generators. The difference between two likelihood generators' models can be a singh constant (auch as the asomed standard deviation of the noise) or the two likelihood generators' models may not resemble each other in the alightest.

Coasider likelihood generators \(L_{1}\) and \(L_{2}\) with models \(M_{1}\) and \(M_{2}\) and assume they both determine probability distributions for the same feature. \(L_{1}\) can be considered to return the likelibood of a label \(I\) for fanture \(f\) civen observed data \(O\) and the domain model \(M_{1}\). Thus \(L_{1}\) calculates \(P\left(O \mid f=l \& M_{1}\right)\). Also \(L_{2}\) calculates \(P\left(O \mid f=l \& M_{2}\right)\). A useful combination of \(L_{1}\) and \(L_{2}\) is the likelihood detector that returns the likelihoods for the case where \(M_{1}\) or \(M_{2}\) is true. Also the prior confidences one has in \(M_{1}\) and \(M_{2}\) should be taken into account.

This paper studies deriving \(P\left(O \mid f=1 \&\left(M_{1} \vee M_{2}\right)\right.\). Note that if I can derive rules for combining likelihoods for two different models then by applying the combination rules \(\boldsymbol{N}\) times, \(\boldsymbol{N}\) likelihoods are combined. Thus all that is needed is combination rules for two models.

\section*{3. Combining Likelihoods From Different Models}

To combine likeliboods derived under \(M_{1}\) and \(M_{2}\) an axamination of the structure and interaction of the two medels is necessary. \(M_{1}\) and \(M_{2}\) must have the same definition for the feature being detected. If the feature is defined differently for \(M_{1}\) and \(M_{2}\) then \(M_{1}\) and \(M_{2}\) are about different events, and the likelihoods can not be combined with the techniques developed in this eection.

Thus the likelihood generated by an occlusion boundary detector can not be combined with the bikelihood generated by a detector for boundaries within the image of an object (such as corners internal to the image). A detector of the likelihood of heads on a coin aip can not be combined with a detector of the Fikelihood of rain outside uning this theory. (However easy it may be using standard probability theory.)

If the laboling of a feature \(f\) inplies a labeling for another feature \(g\) then in theory one can combine a \(f\) detector with \(\mathrm{a} g\) detector by uaing the \(g\) detector that is implied by the \(f\) detector. As an axample a region grower could be combined with a boundary detector aince the position of the regioas inaplies the positions of the boundaries.

\subsection*{3.1. Combining Two Likelihoods}

The formula for cambining the likelihoods generated under \(M_{1}\) and \(M_{2}\) requires prior knowledge. Neceseary are the prior probabilities \(P\left(M_{1}\right)\) and \(P\left(M_{3}\right)\) that the domain models \(M_{1}\) and \(M_{2}\) are correct as well as \(P\left(M_{1} \& M_{2}\right)\). Otten \(P\left(M_{1} \& M_{2}\right)=0\). When this occurs the two models contradict sach other. I eall two such models disjoint because both can not describe the situation
simultaneously. If \(M_{1}\) is a model with noise of standard ceviation \(4 \pm \varepsilon\) and \(M_{2}\) is a model with noise of atandard deviation \(8 \pm \varepsilon\) then their asaumptions contradict and \(P\left(M_{1} \& M_{2}\right)=0\).

Prior probabilities for the feature labels under each model ( \(P\left(f=l \mid M_{1}\right)\) and \(P\left(f=l \mid M_{2}\right)\) ) are necessary. If \(P\left(M_{1} \& M_{2}\right) \neq 0\) then the prior probability of the feature label under the conjunction of \(M_{1}\) and \(M_{2}\left(P\left(f=l \mid M_{1} \& M_{2}\right)\right)\) and the output of a likelihood generator for the conjunction of the two models \(\left(P\left(O \mid f=l e\left(M_{1}{ }_{(1)} M_{2}\right)\right)\right.\) are needed. If I have this prior information I can derive \(P\left(O \mid f=L\right.\) ( \(\left.M_{1} \vee M_{2}\right)\) ).

If I were to combine another model, \(M_{3}\), with this combination I need the priors \(P\left(M_{3}\right)\), \(P\left(f \mid M_{3}\right), P\left(M_{3} \&\left(M_{1} \vee M_{2}\right)\right.\) and \(P\left(f \mid M_{3} \&\left(M_{2} \vee M_{2}\right)\right.\). To add on another model I need another 4 priors. Thus the number of prior probabilities to combine \(n\) models is linear in \(n\).

Thus all that is left is to derive the combination rule for likelihood genarators given this prior information. The derivation starts by applying the definition of conditional probability in equation 3.
\[
\begin{equation*}
P\left(O \mid f=l \&\left(M_{1} \vee M_{2}\right)\right)=\frac{P\left(O \& f=l \&\left(M_{1} \vee M_{2}\right)\right)}{P\left(f=l \&\left(M_{1} \vee M_{2}\right)\right)} \tag{3}
\end{equation*}
\]

The formula for probability of a digjunction is applied to the numerator and denominator in equation 4.
\[
\begin{equation*}
P\left(O \mid f=l \&\left(M_{1} \vee M_{2}\right)\right)=\frac{P\left(O \& f=l \& M_{1}\right)+P\left(O \& f=l \& M_{2}\right)-P\left(O \& f=l \& M_{1} \& M_{2}\right)}{P\left(f=l \& M_{1}\right)+P\left(f=l \& M_{2}\right)-P\left(f=l \& M_{2} \& M_{2}\right)} \tag{4}
\end{equation*}
\]

In equation 5 the definition of conditional probability is applied again to the terms of the numerator and the denominator.

Different asoumptions allow different simplifications to be applied to the rule in equation 5. If the two models are disjoint equation 5 reduces to equation 6.
\[
\begin{equation*}
P\left(O \mid f=l \&\left(M_{1} \vee M_{2}\right)\right)=\frac{\binom{P\left(O \mid f=l \& M_{1}\right) P\left(f=l \mid M_{1}\right) P\left(M_{1}\right)}{P\left(O \mid f=l \& M_{2}\right) P\left(f=l \mid M_{2}\right) P\left(M_{2}\right)}}{P\left(f=l \mid M_{1}\right) P\left(M_{1}\right)+P\left(f=l \mid M_{2}\right) P\left(M_{2}\right)} \tag{6}
\end{equation*}
\]

Another ascumption that aimplifies things considerably is the asmmption that prior probabilities for all fanture labelings in all the models and combinations thereof are the ame. I call this assumption constancy of priors. When coastancy of priors is asoumed \(P\left(f=l \mid M_{1}\right)=P\left(f=l \mid M_{2}\right)=P\left(f=l \mid M_{1} M_{2}\right)\). Making this asamption reduces the number of priors that need to be determined. Since determining prior probabilities from a model is cometimes a difficult tant the constancy of priors is a useful simplification. With constancy of priors equation 5 reduces to equation 7.
\[
P\left(O \mid f=l \&\left(M_{1} \vee M_{2}\right)\right)=\frac{\left.\left\lvert\, \begin{array}{c}
P\left(O \mid f=l \& M_{2}\right) P\left(M_{1}\right)  \tag{7}\\
P\left(O \mid f=l \& M_{2}\right) P\left(M_{2}\right) \\
P\left(O \mid f=l \& M_{1} \& M_{2}\right) P\left(M_{1} \& M_{2}\right)
\end{array}\right.\right]}{P\left(M_{1}\right)+P\left(M_{2}\right)-P\left(M_{1} \& M_{2}\right)}
\]

Equation 6 with constancy of priors reduces to equation 8.
\[
P\left(O \mid f=l \&\left(M_{1} \vee M_{2}\right)\right)=\frac{\left\{\begin{array}{c}
P\left(O \mid f=l \& M_{1}\right) P\left(M_{1}\right)  \tag{8}\\
P\left(O \mid f=l \& M_{2}\right) P\left(M_{2}\right)
\end{array}\right\}}{P\left(M_{1}\right)+P\left(M_{2}\right)}
\]

Thus equation \(B\) deacribes the likelihood combination rule with digjoint models and constancy of priors.

\subsection*{3.2. Understanding the Likelihood Combination Rule}

The arient incarnation of the likelihood combination rule to understand is the rule for combining liketihoods from disjoint models given constancy of priors acrose models (equation 8). Here the combined likelihood is the weighted average of the likelihoods from the individual models waighted by the probebilities of the modele applying. (The combined likelihood is the likelihood given the dirjunction of the models).

If modele \(M_{1}\) and \(M_{2}\) are considered equally probable and the likelihoods returned by \(M_{1}\) 's detector are conaciderably larger than those of \(M_{2}\) 's detector then the probabilities determined from the combination of \(M_{1}\) and \(M_{2}\) are close to those determined from \(M_{1}\). Thus a model with large likelihoods determines the probabilities. To illustrate this principle consider an example.

Ascume that a coin has been flipped \(n+1\) times. The results of fipping it has been reported for the first \(n\) times. The task is to determine the probability of heads having been the result of the \(n+1^{* *}\) fip. Consider the results of each coin flip independent. Let \(M_{1}\) be the coin being fair so that the probability of heads and tails is equal. Let \(M_{2}\) be that the coin is biased with the probability of heads is and tails \(1-\pi\) with \(\pi\) being a random choice with equal probability between \(p\) and 1-p. Hence the coin is biased towards heads or tails with equal probability but the bias is consistent between coin tosses. The probability of heads remains the same for all coin tosees in both modela \(\boldsymbol{M}_{1}\) and \(M_{2}\) are digjoint (the coin is either fair or it isn't but not both) and the prior probability of a tip being heads or tail is the same for both, .5.

Uader \(\boldsymbol{M}_{1}\) the probability of each of the possible fips of \(n+1\) coins is \(2^{-n-1}\). Under \(M_{1}\) the probebility of \(n+1\) sipe of coins with \(h\) heads and \(t=n+1-h\) tails is:
\[
\not p^{h}(1-p)^{t}+\nleftarrow p^{2}(1-p)^{n}
\]

Let \(n=2\) and \(p=9\). Aseume the first two fipe are both heads. Lat \(H\) be "the third fip was heads" and \(T\) be "the third flip was tails." The likelihood of \(H\) given the obsorved data is the probability of all 3 flipe being heade divided by the probability of the third flip being heads. The likelihood of \(T\) given the obeerved data is the probsbility of the firat 2 being heade and the 3 rd tails divided by the peobebility of the third fip being tails.

Under \(\boldsymbol{M}_{1}\) the probebility of all 3 tips being heads is 0.125 and the probability of a fip being hoeds is 0.5 thes the likelihood of \(H\) is 0.25 . The likelihood of \(T\) is 0.25 by the same reasoning.

Applying Bayes' law to get the probability of \(H\) under \(M_{1}\) one derives a probability of .5 .
Under \(M_{2}\) the probability of all 3 flips being heads is 0.365 and the probability of a flip being heads is 0.5 . Thus the likelihood of \(H\) is 0.73 . Under \(M_{2}\) the probability of the first two being heads and the third being tails is 0.045 and the probsbility of a flip being tails is 0.5 . Thus the likelihood of \(T\) is 0.09 . Applying Bayes' law under \(M_{2}\) a probability of \(H\) being 0.89 is derived.

If \(M_{1}\) and \(M_{2}\) are connidered equally probable then the combination of the likelihoods from the two models is the average of the two likelihoods. Thus the likelihood of \(H\) for this combination is 0.49 and the likelihood of \(T\) is 0.17 (likelihoods don't have to sum to 1). Bayes' law combines these probabilities to get 0.74 for the \(3^{\text {rd }}\) flip to be heads.

The table in figure 1 describes combining various \(M_{2}\) 's with different values of \(p\) with \(M_{1}\) for the different combinations with \(n=4\)
\begin{tabular}{lclllllll} 
Observed & Combined with \(M_{1}\) & \multicolumn{2}{c}{ Likelihood of \(H\)} & \multicolumn{2}{c}{ Likelihood of \(T\)} & \multicolumn{2}{c}{ Probability of \(H\)} \\
Coin Flips & or just \(M_{2}\) & \(p=.6\) & \(p=.9\) & \(p=.6\) & \(p=.9\) & \(p=.6\) & \(p=.9\) \\
\hline HHHH & Just \(M_{2}\) & 0.088 & 0.5905 & 0.0672 & 0.0657 & 0.567 & 0.8999 \\
& Combined & 0.07525 & 0.3265 & 0.06485 & 0.0641 & 0.537 & 0.8359 \\
\hline HHHT & Just \(M_{2}\) & 0.0672 & 0.0657 & 0.0576 & 0.0081 & 0.5385 & 0.8902 \\
& Combined & 0.08485 & 0.0641 & 0.06005 & 0.0353 & 0.5192 & 0.6449 \\
\hline HHTT & Just \(M_{2}\) & 0.0576 & 0.0081 & 0.0575 & 0.0081 & 0.5 & 0.5 \\
& Combined & 0.06005 & 0.0353 & 0.06 & 0.0353 & 0.5 & 0.5 \\
\hline HTTTT & Just \(M_{2}\) & 0.0576 & 0.0081 & 0.0672 & 0.0657 & 0.4615 & 0.1098 \\
& Combined & 0.06005 & 0.0353 & 0.06485 & 0.0641 & 0.4808 & 0.3551 \\
\hline TTTT & Just \(M_{2}\) & 0.0672 & 0.0657 & 0.088 & 0.5905 & 0.433 & 0.1001 \\
& Combined & 0.06485 & 0.0641 & 0.07525 & 0.3265 & 0.4629 & 0.1641 \\
\hline
\end{tabular}

Figure 1: Result of likelihood combination Rule
Look at the probabilities with \(p=.9\) and the observed data is HHHH. For this case the observed data fits \(M_{2}\) much better than \(M_{1}\) and the probability from combining \(M_{1}\) and \(M_{2}\) is close to the probability resulting from uaing just \(M_{2}\), 9. If we had a longer run of heads the probability of future heads would approach exactly \(M_{2}\) 's prediction, 9 . On the other hand if we had a long run of equal numbers of heads and tails the probability of future heade would quickly approach the prediction of \(M_{2}, .5\). When the observed data is HHHT the obeorved data fits \(M_{1}\) about as well as \(M_{2}\) and the resulting probability is near the average of .5 predicted by \(M_{1}\) and 0.8902 predicted by \(\boldsymbol{M}_{\mathbf{2}}\). Thus when the obeerved date is a good fit for a particular model (like \(\mathbf{M}_{2}\) ) the probabilities prodicted by the combination is clowe to the probabilities predicted by the fitted model. If two models fit about equally then the result is an average of the probabilities \({ }^{\text {! }}\).

\section*{4. When No Model Applies}

Given a eet of likelihood generntors and their models, using the ovidence combination described in section 3 wo can get the likelihood for the feature labelings given that at least one model applies. Thus if we have likelihoode of a boundary given models with the noise standard

\footnotetext{
\({ }^{1}\) However the fature that the decisicn theory prodicts is not the average of the fantura prodicted under the two dificaret models in manaral
}
deviations near to 4, 8 and 16 in them we can derive the likelihood of a given the noise standard deviation is near to 4 or 8 or 16 (no matter which). Thus we can derive the probability distribution over feature labelings given that at least one of our models applies. Howover what we are trying to derive is the physical probability distribution over the feature labelings. This is the probability distribution over feeture labele given the obserred date (entimeted by the long run frequencies over the fanture labela given the observed data). The problem in that there may be a case where none of the models asoumptions is true. In the Venn diagram of figure 2 each ret represents the net of aituations where a model's assumptions are true. The area marked NO MODEL is the set of situationa where all the models fail.


Figure 2: Vean Diagram of Models
What should the likelihood of a feature label be if no model applies? To answer this question I axamine the companion question of what ahould the probability of a faature label be if no model applien. Aseume a prior probability for the label is availeble. If a pocterior probability is different from a prior probability for the feature then information has been added to get the posterior. (Only information can justify changing from the prior.) Since having no model means intuitively having no information then the posterior should be the same as the prior. If and only if the likelihoods of all fanture labels are equal, the posterior probability in the aame as the prior. Hence the likelihoods of the feature labels ahould be equal for any particular piece of observed data. In this section I assume a prior proability distribution is a available over feature labels. If no such distribution is available an uninformative prior can be constructed [Frieden85].

To canstrain the problem further, consider whether any piece of observed data should be more probable than any other when no model applies. It seems unreasonable that one could conclude that some observations are more probable than others without any ma'al of how those observations were produced. Hence all the likelihoods should be equal. This constraint is sufficient to determine the likelihoods when no model applies. I think that this solution minimizes croses entropy with the prior (eince it returne the prior) [Johnson85].

To derive the physical probability distribution over feature labels, the "no model" likelihoods ahould be combined with the likelihoods derived for the models. The probability of each of the models and their combinations must have been available to uee the combination rulee from cection 3. Heace the probability that one or more of the models applies is known. The probability of no moded is 1 minus that probability. The coajunction of some model applying and no model applying has 0 probability. Hence combination rule 6 can be applied to derive the likelihoods under any canditions from the likelihoods for any model applying.

As axample consider the problem of aceing HFHH and trying to derive the probability of a fith head given the equally likely choices that the coin is frir or is biased to .9 (biased either for heads or tails with equal probability). The combined likelihood of \(H\) is 0.3265 (from figure 1). The combined likelihood of \(T\) is 0.0641 . As an example, asoume that the probabilities that the asoumptions of \(M_{1}\) were true was 0.4 and similar for \(M_{2}\). Then 0.4 of the time we foel the coin is
fing, 0.4 of the time we feel it has been biased by 0.9 , and 0.2 of the time we have no model about what happened. The likelihood of HHHH under "NO MODEL" is .0625 regardless of \(H\) or \(T\) (Since the likelihood of all 4 coin flip events are equal and must aum to 1). Combining the "NO MODEL" likelihoods with likelihoods of 0.2737 for \(H\) and 0.06378 for \(T\) (see figure 1), the probability of \(H\) from applying Bayes' law to these likelihoods is 0.811 . This probability is somewhat nearer to 5 than the probability of 0.8359 derived without taking the posability of all the models friling into account.

Taking the possibility of all models failing bends cortain good properties to the system. Probabilities of 0 or 1 become impossible without priors of 0 or 1 . Thus the syatem is denied total certainty. Numbers near 0 or 1 cause singularities in the equations under finite precision arithmetic. Total certainty represents a willingness to ignore all further evidence. I find that property undecirable in a system. Denying the aystom total certainty also results in the property that the ayatem must heve all probability diatribution over feature labels between \(c\) and \(1-e\) for an e proportional to the probability that no model applies. Thus there is a limit to how certain our aystem is about any feature labeling in our uncertain wor d.

\section*{5. Results}

I have applied this evidence combination to the boundary detection likelihood generators described in [Sher87]. Here I prove my claims that the evidence combination theory allows me to take a cot of algorithms that are effective but not robust and derive an algorithm that is robust. The output of such an algorithm is almost as good as the best of its constituents (the algorithms that are combined).

\subsection*{6.1. Artificial Images}

Artificial images were used to test the algorithms described in section 3 quantitatively. I used as a source of likelihoods the routines described in [Sher87]. Because the positivas of the boundaries in an artificial image are known one can accurately measure false positive and negative rates for different operators. Also one can construct artificial images to precise apecifications. The artificial images I use is an image composed of overlapping circles with constant intensity and aliasing at the boundaries shown in figure 3.


Figure 3: Artificial Teat Image
The intensities of the circles were selected from a uniform distribution from 0 to 254. To the circles ware added normally distributed uncorrelated noise with standard deviations \(4,8,12,16\), 20, and 32. The cosware to generate imagee of thin form was built by Myra Van Inwegen working under my direction. This coftware will be deacribed in an upcoming technical report.

In figure 4 I show the result of epplying the detector tuned to standard deviation 4 noise to the artifcial image with standard deviation 12 noise added to it. In figure 5 I show the renult of applying the detector tuned to standard deviation 12 noise to an image with standard deviation 12 naie added to it. In figure 6 I show the result of applying the combination of the detectors tuned to \(4,8,12\), and 16 standard devistion noise. The combination rule was that for disjoinc models with the eame priors. The 4 modela were combined with equal probability. These operator outputs are threholded at 0.5 probability with black indieating an adre and white indicating no edge.


a: Image with \(\theta=12\) noise
b: Output of \(a=4\) detector
Figure 4: \(\sigma=4\) detector applied to 3 image with \(\sigma=12\) noise


a: Image with \(\sigma=12\) noise
b: Output of combined detector Figure 6: Combined detector applied to 3 image with \(\sigma=12\) noise

Nete that the rucult of using the combined operator is similar to that of the operator tunced to the cerrect aoise level. Most of the false boundaries found by the \(\sigma=4\) operator are ignored by the combined operator.

Uaing this artificial image I have aequired statistica about the behavior of the combined dotector withe tuned ones under varying levels of noise. Figure 7 shows the false positive rate for the detactor tuned to ctandard deviation 4 noise as the noise in the image increases \({ }^{2}\). Figure 8 shows the false positives for the standand deviation 12 oparator. Figure 9 shows the false poaitive rate for the operator tuned to the current atandard deviation of the noise. Figure 10 show the fale positive rate of the combined operator. Figure 11 shows the superposition of the 4 previous eraphs.

\footnotetext{
The oppraters ase thaverided at 0.5 probability to make the decisicas about where the boundarim are.
}

B-201



Figure 9. False paitives vo noice \(\sigma\) for operator tuncd to the noice


Pigure 10: Falee poitive \(v\) moine of for cocobined oparator


Figure 11: Palve poaitiven on aciee \(\sigma\) for all operaton
Note that the combined operator has a false positive rate that is as least as good as that of the tuned operators.

I can also count fale negatives. When I counted false negatives I ignored missed boundaries that had an boundary reported one pirel off normal to the boundary (because such an error is a matter of discretization rather than of a more fundamental sort). Soe figure 12 for an example of a 1 pixel off error.

\section*{MISS}

GOOD
MISS is recorded as a false negative
GOOD is recorded as a true positive
Figure 12: Example of one pizel off error
Figure 13 shows the falee negative rate for the detector tuned to atandard deviation 4 noise as the noise in the image increases. Figure 14 shows the falee negatives for the atandard deviation 12 operator. Figure 15 ehows the false negative rate for the operator tuned to the current atandard deviation of the noice. Figure 16 shows the falce negative rate of the combined operator. Figure 17 shows the superposition of the 4 previous graphs.


Figure 19: Palse nogative rate for \(\sigma=4\) operator


Pigure 14: Fale agative rate for \(\sigma=12\) operator


Figure 15: Falee negative rate for tuned oporator



Figure 18: Total arros by the \(\sigma=4\) detector


Figure 19. Total errore by the \(\sigma=12\) detector


Figure 20: Total errons by the tured detector


Figure 2n: Total arrore by the combined detector

equare \(\sigma=4\) operator circle: \(\sigma=12\) operatior
triengle: tuned oparator croas: combined operator
Figure 22: Total errors by the all detectors
Thus the superiority of the combined operator for falee positives dominates the false negative performance and the combined operator minimizes the number of errors in total. These results are evidence that my combination rule is robust.

\subsection*{5.2. Real Images}

I have also teated these theories using two images taken by cameras. One of these images is a tinker toy image taken in our lab. The other is an aerial image of the vicinity of Lake Ontario. Figure 23 shows the result of the operator tuned to standard deviation 4 noise applied to the tinker toy image and thresholded at 0.5 probability. Figure 24 ahows the result of the operator tuned to standard deviation 12 noise applied to the tinker toy image. Figure 25 showe the effect of combining operators tuned to atandard deviation \(4,8,12\) and 16 with equal probability.

a: Tinkertoy Image
b: Output of \(\sigma=4\) detector Figure 23: \(\sigma=4\) detector applied to tinkertoy image

a: Tinkertoy Image b: Output of \(\sigma=12\) detector Figure 24: \(\sigma=12\) detector applied to tinkertoy image


a: Acrial Image
F: Output of \(\sigma=4\) detector
Figure 26: \(\sigma=4\) detector applied to aerial image

a: Acrial Image
b: Ontput of \(\sigma=12\) detector
Figure 27: \(\sigma=12\) detactor applied to acrial image


The results from the combined operator are again a cleaned up version of the results from the standard dovistion 4 operator. I believe this behavior aceurs again becauce the fostures baing found by the atendard deviation 4 operator are in the seene. However I do not have the ground truth for the aerial image as I do for the tinkertoy image.

\subsection*{5.3. Puture Experiments}

Soon, I will apply my evidence combination rules to operators that make different asumptions about the expected image inteasity histogram. The operator used so far in my experiments expects a uniform histogram betwean 0 and 254. Currently, a likelihood generator hea bean built that asaumee a triaggular distribution with the probability of an object having intensity lowe than 128 being oae fourth the probability of an object having intensity greater than or equal to 128. It is not elear that the probabilities calculated based on this assumption will be significantly different from thoee based on the uniform histogram ascumption. If there is no difieresces in the output of two operators the effect of combination is invisible.

Larger operators will coon be available. The likolihoode generated based on these larger eperatens woald be finoly tuned. The same evidence combination can be applied to theee operatoren.

Likaliboode are used by Markor random field algorithms to dotarmine poatarior probabilities [Marroquin86b] [Chou87]. Likelihoode resulting from my combination rules can be used by Martor random fich algorithma.

\section*{6. Previous Work}

Much of the work on ovideace and ovidance combination in vision has been on high level vision. An important Bayeainn approach (and a motivation for my work) was by Foldman and Yakimovaky (Foldman74]. In this work Foldman and Yakimovaky ware atodying region merging based on high bovel conotrainta. They first tried to find a probability distribution over the labele of a region using charactaristica auch as mean color or taxture. Thay then triod to improve thoee distributions using labolings for the neighbors. Then they made merge decisions based on whether
B-214
it was sufficiently probable that two adjacent regions were the same.
Work with a similar flavor has been done by Hanson and Riseman. In [Hanson80] Bayesian theories are applied to edge relaration. This work had serious problems with its models and the fact that the initial probabilities input were edge strengths normalized never to exceed 1 . Of course such edge strengths have little relationahip to probabilities (a good edge detector tries to be monotonic in its output with probability but that is about as far as it geta). In [Weslay82a] and [Wealey82b] Dempatar-Shafer ovidence theory is used to model and underatand high level problems in rision especially region labeling. In [Wesley82b] there is some informed criticism of Bayesian appronches. In [Rejnolds85] They study how ane converts low level feature values into input for a Dempater-Shafer evidence syatem.

In [Levitt85] Tod Levitt takes an approach to managing a hierarchical hypothesis apace that is baysian with some ad hoc assumptions. For the problem worked on here the paper would take weighted cums of probabilities. He does not have any way of taking an operators self confidence into account in the evidence combination. Since he was not approaching this problem in his paper I can not fault it in this reepect.

There has been much use of likelihoods in recent vision work. In particular work based on Markov random fields [Geman84] [Marroquin85a] [Marrequin85b] use likelihoods. A Markov random field is a prior probability distribution for some foature of an image and the likelihoods are used to compute the marginal posterior probabilities that are used to updato the field. Haralick has mentioned that his facet model [Haralick84] [Haralick86b] can be easily used to build edge detectors that return likelihoods [Haralick86a]. I also have built boundary detectors that return likelihoods and the results of using them is documented in [Sher87]. Paul Chou is using the likelihoods I produce with Markov random fields for edge relazation [Chou87]. He is also studying the use of likeliboods for information fusion. Currently, he is concentrating on information fusion from different sources of information.

\section*{7. Conclusion}

I have presented a Bayesian technique for information fusion. I ahow how to fuse information from detectors with different models. I presented results from applying these techniques to artificial and real images.

These techniques take sevaral operstors that are tuned to work well when the scene has cartain particular properties and get an algorithm that works almoat as well as the best of the operatora being combined. Since most algorithms available for machine vision are arratic when their asumptions are violated this work can be ueod to improve the robustness of many algorithme.

\section*{References}

\section*{[Aloimonos85]}
J. Aloimonos and P. Chou, Detection of Surface Orientation and Motion from Texture: 1. The Case of Plenes, 161, Computer Saience Department, University of Rochester, January 1985.
[Ballard82]
D. H. Ballard and C. M. Brown, in Computer Vision, Prentice-Hall Inc., Englewood Cliff, New Jersey, 1982, 125.
[Chou87] P. Chou, Multi-Modal Segmentation using Markov Random Fields, Submitted to IJCAI, January 1987.
[Feldman74]
J. A. Feldman and Y. Yakimovaky, Decision Theory and Artificial Intelligence: I. A Semantics-Based region Analyzer, Artificial Intelligence 5(1974), 349-371, North-Holland Publishing Company.

\section*{[Frieden85]}
B. R. Frieden, Eatimating Occurrence Laws with Maximum Probability, and the Transition to Entropic Estimators, in Maximum-Entropy and Bayesian Methods in Inverse Problems, C. R. Smith and W. T. G. Jr. (editor), D. Reidel Publishing Company, Lancater, 1985.
[Geman84]
S. Ge n and D. Geman, Stochastic Relaration, Gibbs Distributions, and the Bayesian Reato. ion of Images, PAMI 6,6 (Novermber 1984), 721-741, IEEE.
[Good50] I. J. Good, Probability and the Weighing of Evidence, Hafner Publishing Company., London, New York, 1950
[Good83] I. J. Good, Subjective Probability as the Measure of a Non-measurable Set, in Good Thinking: The Foundations of Probability and its Applications, Minneapolis (editor), University of Minnesota Press, Minneapolis, 1983, 73-82.
[Hanson80]
A. R. Hanson, E. M. Riseman and F. C. Glazer, Edge Relazation and Boundary Continuity, 80-11, University of Massachusetts at Amherat, Computar and Information Science, May 1980.
[Haralick84]
R. M. Haralick, Digital Step Edges from Zero Crossing of Second Directional Derivatives, PAMI 6,1 (January 1984), 58-68, LEEE.

\section*{[Haralick86a]}
R. Haralick, Personal Communication, June 1986.
[Haralick86b]
R. M. Haralick, The Facet Approach to Gradient Edge Detection, Tutorial 1 Facet Model Image Processing (CVPR), May 1986.
[Horn70] B. K. P. Horn, Shape from Shading: A Method for FInding the SHape of a Smooth Opaque Object from One View, Massachusetss Institute of Technology Department of ELectrical Engineering., August 1970
[treuchi80]
K. Ireuchi, Shape form Regular Patterns (an Exampie of Constraint Propagation in Vision), 567, Maseachusetts Institute of Technology, Artificial Intelligence Laboratory, Mareh 1980.
[Johneon85]
R. W. Johnson and J. E. Shore, Introduction to Minimum-Crose-Entropy Spectral Analysis of Multiple Signals, in Maimum-Entropy and Bayesian Methods in Inverse Probleme, C. R. Smith and W. T. G. Jr. (editor), D. Reidel Publishing Company, Lancaster, 1985.
[Revitt85] T. S. Lovitt, Probabilistic Conflict Resolution in Hierarchical Hjpothesis Spaces, Proceedings: Uncertainty and Probability in Artificial Intelligence, August 14-16, 1985, 265272.
[Marroquin85a]
J. Marroquin, S. Mitter and T. Poggio, Probabilistic Solution of Ill-Posed Problems in Computational Vision, Proceedings: Image Understanding Workshop, December 1985, 293-309. Sponsored by: Information Processing Techniques Office Defence Advanced Research Projects Agency.
[Marroquin85b]
J. L. Marroquin, Probabilistic Solution of Inverse Problems, Tech. Rep. 860, MIT Artificial Intalligence Laboratory, September 1985.
[Ohlander79]
R. Ohlander, K. Price and D. R. Reddy, Picture Segmentation using a Recurnive Region Splitting Method, CGIP 8,3 (1979).
[Reynolde85]
G. Reynolds, D. Strahman and N. Lahrer, Converting Feature Values to Evidence, PROCEEDINGS: IMAGE UNDERSTANDING WORKSHOP, December 1985, 331-339. Sponsored by: Information Procesaing Techniques Office, Defenve Advanced Research Projects Agency.
[Sher86] D. Sher, Optimal Likelihood Detectors for Boundary Detection Under Gaunaian Additive Noise, IEEE Conference on Computer Vision and Pattern Recognition, Miami, Florida, June 1986.
[Sher87] D. B. Sher, Advanced Likelihood Generatora for Boundary Detection, TR197, Univernity of Rochester Computer Science Department, London, England, January 1987. Submitted in shorter form to International Conference on Computer Vision.

\section*{[Weley82a]}
L. P. Wesley and A. R. Hanson, The Use of an Evidential-Based Model for Representing Knowledge and Reatoning about Images in the Visions Syatem, PAMI 4,5 (Sept 1982), 14-25, IEEE.
[Wealoy82b]
L. P. Wealey and A. R. Haneon, The use of an Evidential-Baed Model for Representing Knowledge and Reasoning about Images in the VISIONS Syatam, Proceedings of the Worksshop on Computer Vlsion: Representation and Control, August 1982, 14-25.

\title{
Optimal Likelihood Generators for Edge Detection under Gaussian Additive Noise
}

\author{
David Sher \\ Computer Science Department \\ The University of Rochester Rochester, New York 14627
}

TR 185
August 1986

A technique is presented for determining the probability of an edge at a point in an image. The image is modeled as an ideal image that is convoived with a linear blurring function and also with uncorrelared Gaussian additive noise. The ideal image is modeled by a set of templates for local netghnorhouds. Every neignborhood in the ideal image is assumed to fit one of the templates with high prudability. A computationally feasible scheme to compute the probability of edges is given. The output of several of the likelihood generators based on this model can be combined to form a mure robust likelincod generator using the results described in Developing and Analyzing Boundan Detection Operatur) I stme Probabilistic Modeis presented in the first Workshop on Probability and Linceraanty in Arufical Intelligence by the author [13].

This work would have been impossible without the advice and encouragement of Chris Brown my thesis advisor. This work was supported in part by the Defense Advanced Research Projects Agency U. S. Army Engineering Topographics Lab. grant number DACA76-85-C-0001 and The National Science Foundation. grant number DCR-8320136.

20. ABSTRACT (Continued)

Combined to form a more robust likelihood generator using the results decribed in Developing and Analyzing Boundary Detection Operators Using Probabilistic Models presented in the first Workshop in Probability and Uncertainty in Ariificial Intelligence by the author(13).

\section*{1. Edge Detection: The Problem and Previous Approaches}

The major problem of low-level vision is that images are ambiguous: two different scenes can result in the same image. The major source of ambiguity that I am concerned with is noise. Noise is generally the result of imperfections of the sensors used to produce the image. Because of noise the same scene can result in any observed image whatsoever. It is much more likely however to resuit in some unages than others. My work is about techniques for combating noise and the resulting ambiguity and thus is applicable to vision tasks where noise presents a significant problem.

My approach to low level vision is unusual for such research. Consider the problem of segmentation. in paricular, consider the problem of finding regions of uniform reflectance. The image is modeled as a set of regions of constant reflectance with occlusion boundaries between them. Most approaches to this problem try to return an answer that is best in the sense that the probability of the given answer differing from the correct answer in a significant way is minimized. Such an algorithm applies estimation theory to the problem of low level vision.

Instead, this paper derives algorithms that attempt to calculate the probability of a boundary passing between two points. In low-level vision usually one can acquire a sufficiently specific model for the probability to be uniquely defined, even through the image is ambiguous. One advantage of this approach is that a variety of different estimates of the segmentation can be derived from these probabilities by simple operations.

This paper concentrates on the problem of deriving the probability of a boundary from a window on the image. Classically this task has been called edge detection. I am using a template based model for this work: It is assumed that if the image was viewed through a noiseless sensor then every window on the umage would match one element of a set of templates. Since the image wasn't produced by noiseless sensors its windows look like some template followed by noise according to the model.

Recently two works have been published that take an approach similar to mine. One that is similar is by Ar Owen [12] on pixel classification ior Landasat umages. The operator he derives returns likelihnods ior neighborhoods instead of pixels. Owen's work uses a somewhat more sophisticated model to derive his priors (a Poisson model of boundanes). The work has no noise model and does not consider combination rules. Likelihoods are derived by tramıng on test jases. Owen can use training to get his likelihoods because of the small number of categon's ne uses and because ne uses binary (thresholded) images. This reduces the number of cases he had to deal with so the operator can be conveniently trained.

Another work that takes an approach similar to mine is that of Li and Dubes [9] on matching small templates in binary images. They use .Veyman-Pierson staustics. Veyman-Pierson statistics are used because there is a well defined null hypothesis (the object is not in the scene). Li and Dubes derive a likelihood ratio test. Such a test has maximal power if it is based on a complete and sufficient statistic. The way they derive the likelihood ratio is to derive likelihood generators. They approximate the likelihoods deriving operators much in the same spirit that I derive mine in section 3.

There has been some work on using Bayesian techniques (techniques using likelihoods and prior probabilities) to estimate edge positions. In particular the work described in [3] and [6] use Bayesian rechniques for image reconstruction and [8] uses Bayesian technique for reconstruction and edge detection las a side effect). These techniques have the weakness that they look for the maximum a posterion likelihood (the MAP assumption). The MAP assumption only holds when a small set of answers are the oniv ones scceptable as correct with 0 loss and all other segmentations have the same loss (1 loss). I believe that a \(0-1\) loss function is unrealistic for most applications. A \(0-1\) loss function is realistuc if getting a boundary wrong at a single point is as bad as getuing it wrong everywhere. because both possibilites resuit
in 1 loss according \(\omega\) the \(0-1\) loss function. In low-level vision the usefulness of an estimate drops off gradually as errors accumulare. Some good results have been gained using these techniques.

Much work has been done using signal detection theory for deriving operators. However most work based on signal detection theory is limited to operators that compute linear functions on the image. Because of this limitation the operators generated are the optimal linear operators given a figure of merit In particular the Wiener filter is optimal for reconstructing images given a least squares cost function and a correct noise model and image model. [1].

Canny [5] has developed an operator that is optimal according to a figure of merit that contains detection and localization. He limited himself to linear shift invariant operators. His operators looked a great deal like difference of gaussian operators. He modeled edges as a template and developed a technique for generating an operator for an arbitrary template. I intend to generate optimal detectors under my system with the same models.

Canny [5] Lunscher and Beddoes [10] and Torre and Poggio [15] limit the class of functions that they consider for edge detection to linear shift independent operators. Thus their operators are convolutions. When they indicate that their operators are optimal they mean that they do the best job for functions in the class of linear shift independent operators. The class of functions I use is the class of functions of a window on the image. Such operators are shift independent but they are not necessarily linear. The optimal operator from this class theorevically is the best possible edge detector for a specified window size.

Much of the work done in computer vision has been developed with idiosyncratic objectives. Because of the their objectives differed from mine the algorithms some people developed have serious shorcomings from my viewpoint. One alternate set of objectives is those held by researchers inspired by biological modeling. An excellent work in biological modeling is that of Fleet [7]. His work is on the temporal and sparial characteristics of center-surround operators. Torre and Poggio's work [15] alsn is of chis form.

When wurking on modeling one tries to develop algorithms whose behavior closely approximates that ui \(a\) human vision system. An example of such approximation is to have only band limited operaturs because the ceils on the mammalian opuc nerve have been shown to be band limited. I only band limit operators if it is shown that the phenomena being detected are band limited or that a band limited operator is sufficient to derect the phenomena without loss of accuracy.

Much work has been done on segmentation without considering opumality or probability. A summary of work on edge detection and relaxation occurs in [4] Recendy some good work on edge detection has been done by Canny [ 5 ] and Valwa [11].

\section*{2. The Image Model}

In the image restoration literature much work has been done on a paricular form of noise. The noise introduced by the sensor is modeled by a linear blurring function followed by gaussian additive mean 0 noise [2] The log image from a photograph has gaussian additive noise in its linear region from the randomness inherent in film grain. Gaussian additive noise occurs in any systern whose noise is a result of many small perturbations added togecher (by the central limit theorem). Blur can result from vibrations in the camera. motion in the scene and the physics of light. I make a standard simplification in that I assume the blur is linear and shift invariant. Blur from vibrations in the camera and the physics of light has this property. Blur from motion in the scene tends to be linear and shift invanant within a ngid vbiect. Thus I
model the noise as convolving the image with a blur function and then adding a gaussian additive mean 0 random factor.

I also need a model of an image to derive a likelihood generator. A likelihood generator is an intermediate stage in an algorithm that calculates the probability of a boundary at a point. More details on likelihood generators are in the next section.

Here, I derive the optimal likelihood generator that looks at a window in the image. Thus I need only model windows in the ideal image. I model the ideal image as consisting of windows that each match an element of a set in a set of sets of templates. Thus if I can derive the likelihood of the observed window given that its ideal counterpart matches each template in a set and the a priori probability of each template then I can derive the likelihood of the window belonging to the set of templates. As an example consider the set of templates that consist of a uniform intensity (figure 1 ).
Fiqure 1: A template of uniform intensity.
\begin{tabular}{|c|c|c|c|}
\hline 100 & 100 & 100 & 100 \\
\hline
\end{tabular}

This set of templates models the interior of a region of uniform intensity. Consider what an occiusion edge between two such regions looks like. Such an event can be modeled by a template of the form in figure 2.
\begin{tabular}{l} 
Figure 2: A template of a step edge. \\
\hline 100
\end{tabular} 100
This template is often called a step edge in the edge detection literanure. I also need to model the event that there is an off center edge in the window. I call this event a near edge event. The near edge events are modeled by templates like chose of figure 3.
Figure 3: Templates for a near edge.
\begin{tabular}{|c|c|c|c|}
\hline 100 & 200 & 200 & 200 \\
\hline & & & \\
\hline 100 & 100 & 100 & 200 \\
\hline
\end{tabular}

So 3 useful sets of templates are templates like those in figure l. 2. and 3 with all possible intensities substituted for 100 and 200 . These templates model all possible configurations of a \(1 \mathrm{hb}+\) window in an ideal image where all regions are at least 3 pixels wide. If I can derie the likelihood of an observed window having a counterpart in each of these sets then I can denive the probability of a boundar! in the middle of the window using Bayes' law (see next section).

\section*{3. Likelihood Generators}

Often it is easier to state and solve the inverse vision problem (which is why computer graphics can generate realistic images that current image understanding systems can't analyze). For inw. level vision it is easier to describe the probable structure of an observed intensity image in the presence of a boundary than to describe the probability distribution on the boundary given an observed image. In parucular the models described in the previous section have this property.

The probability that the observed window's pixels are assigned a set of values a when a feature \(f\) takes on value \(v\) is the likelihood of \(v\) for \(a\). I use \(L_{f}(a \mid v)\) as shurthand notauon for the likelihood. A likelihood generator is an algorithm that uses a model \(D\) to estimate the likelihood of \(v\) for \(a\). Thus I use \(L_{f}(a \mid \cup \& D)\) as notation for the output of a likelihood generator. Given a likelihood generator for \(D\) and a prior esumate of the distribution of is values then one can make a feature detector for \(t\) using Baves

Rule:
\[
\begin{equation*}
P_{f}(v \mid a \& D) \equiv \frac{L_{f}(a \mid v \& D) \text { prior }_{f}(v)}{\sum_{v \in V} L_{f}\left(a \mid v^{\prime} \& D\right) \text { prior } r_{f}\left(v^{\prime}\right)} \tag{1}
\end{equation*}
\]

I call the fearure decector thus derived a Bayesian feature detector for model \(D\).
The set of likelihoods for a feature \(f\) given an observation a contains more information than (1) uses. The denominator in (1)
\[
\begin{equation*}
\sum_{v \in V} L_{f}\left(a \mid v^{\prime} \& D\right) \text { prior }_{f}\left(v^{\prime}\right) \tag{2}
\end{equation*}
\]
is the probability that awould occur given the prior estimate of the distribution on \(f\) 's feature space. If the probability is too low then the model being used probably is not correct. I use this information combined with a priori information about the reliability of the model to derive an evidence theory in [14].

\section*{4. Likelihoods for a Single Template}

The problem I address in this paper is to find the likelihood of an observed window given a template and a model for the noise. Let \(O=\left\{o_{i}\right\}\) represent the window that was observed. Let \(T=\left\{t_{j}\right\}\) represent the template. Then I need \(P(O \mid T \& D(\sigma, B))\) where \(\sigma\) is the standard deviation of the gaussian mean 0 addidive noise and \(B\) represents the blurring function. Assume that \(B\) is negligible outside a window of size \(\left(w_{B}, l_{B}\right)\) pixels and the template is of size ( \(w_{T}, l_{T}\) ). Then the effect of the blurring function \(B \otimes T(\mathbb{Q}\) correlation where the template never fallis beyond the window's edge, \(X Q X\) is a single number that is the sum of squares of \(X\) 's elements) is completely determined in a region of size ( \(w_{T}-w_{B}+1 . l_{T}-i_{B}^{\prime}+1\) ) pixels ( see figure 4 ).

Figure 4: Effect of a Blur Function on a Template.
\(T\) :
\begin{tabular}{|l|l|l|l|l|l|}
\hline 100 & 100 & 100 & 200 & 200 & 200 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\[
\begin{aligned}
& \otimes \\
& B:
\end{aligned}
\]} \\
\hline \multicolumn{2}{|r|}{. 25} & . 25 & \\
\hline \multicolumn{4}{|c|}{\[
\overline{=}{ }_{B}
\]} \\
\hline 100 & 125 & 175 & 200 \\
\hline
\end{tabular}

I assume in the rest of this paper that the observation window \(O\) lies completely within the determined region So the only remaining probabilistic element is the gaussian additive noise. If \(l\) is the idenuty function then I need to determine \(P\left(O \mid T \otimes B \& D(\sigma . I)\right.\) ). I refer to the elements of \(T \otimes B\) as the ser \(\left\{I^{\prime} k\right\}\).

Since the only noise left in the problem is the uncorrelated gaussian additive notse (since blur has been handled) the likelihood is the product of the likelihoods at each pixel.
\[
\begin{equation*}
P\left(O \mid T \otimes B \& D(\sigma . I)=\prod_{i} P\left(o_{i} \mid \iota_{i}^{\prime} \& D(\sigma . I)\right)\right. \tag{3}
\end{equation*}
\]

Since the noise is gaussian the likelihood at a point has this form:
\[
\begin{equation*}
P\left(o_{i} \left\lvert\, t_{i}^{\prime} \& D(\sigma . l)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(\left[-\left(o_{i}-i_{i}^{\prime}\right)^{2}\right),\left(2 \sigma^{2}\right)\right\}\right.\right. \tag{4}
\end{equation*}
\]

Thus the equation for the likelihood of the windou can be stated as:
\[
\begin{equation*}
P(O \mid T Q B \& D(\sigma, I))=\frac{1}{(\sqrt{2 \pi} \sigma)^{n}} \exp \left(\left[-\sum_{i}\left[o_{i}-t_{i}^{\prime}\right]^{2}\right\}\left\langle\left\{2 \sigma^{2}\right]\right)\right. \tag{5}
\end{equation*}
\]

The likelihood can be restated mathematically as:
\[
\begin{equation*}
\frac{1}{(\sqrt{2 \pi} \sigma)^{n}} \frac{\exp \left[\left(O \otimes(T \otimes B) \mid /\left(\sigma^{2}\right)\right]\right.}{\operatorname{En}(O . \sigma) \operatorname{En}(T \otimes B, \sigma)} \tag{6}
\end{equation*}
\]

Where \(\operatorname{En}(X, \sigma)\) is \(e^{\left(X \otimes x Y 2 \sigma^{-7}\right)}\) which I refer to as the energy of \(X\) relative to \(\sigma\). Note that \(\operatorname{En}(O . \sigma)\) is independent of the template while \(\operatorname{En}(T \otimes B . \sigma)\) is independent of the observed window. These results mean that \(\operatorname{En}(T \otimes B . \sigma)\) can be precomputed while the cost of computing \(\operatorname{En}(O, \sigma)\) can be amorized over the entire set of templates.

\section*{5. Likelihoods for Sets of Templates}

Here. I examine efficiendy calculating the likelihood of a set of templates given an observed image. In parucular I examine the set of templates whose elements are all linear functions of a characteristic template. \(T_{0}\). Thus I describe such a set as \(a T_{0}+b\). I call such a set a linear set of templates. The set of step edges with a fixed step point can be described as a linear set. The set of symmetric peak edges are linear functions of a protorypical peak edges hence are a linear sel. The linear slopes are linear functions of the function \(f(x)=x\) hence are a linear set too.

I limit my blur functions to blurs that leave uniform intensity images unchanged. Then my jet vi \(B \otimes T\) is of the form \(a B \otimes T_{0}+b\). The likelihood of the obserned image given a member of a inear set is:
\[
\frac{1}{\left(v^{2}-\pi \sigma\right]^{n}} \frac{\exp \left(\left[2(a) \otimes\left(T_{0} \otimes B+b() \otimes I\right) \mid,\left(2 \sigma^{2}\right)\right]\right.}{[E n(O \sigma)]\left[E n\left(a T_{0} \otimes B-b . \sigma\right)\right]}
\]

The triplet ( \(\operatorname{En}(O . \sigma), O \otimes T_{0} \otimes B .0 \otimes /\) ) is sufficient for determining the likelihood of this set of templates. The class of templates is indexed by \(a\) and \(b\). To find the likelihowd I need a priori probabilities for the different templates. I describe these probabilitues with \(P_{T_{n}}(a, b)\).

The likelihood of a linear set is:
\[
\begin{equation*}
\frac{1}{\left.\sqrt{2 \pi} \sigma\right|^{n} \operatorname{En}(O . \sigma)} \sum_{a, b} \frac{\left.\exp \left[\left(a O \otimes\left(T_{0} \otimes B\right)+b O \otimes \Lambda\right) j, \sigma^{2}\right]\right)}{\operatorname{En}\left(a T_{0} \otimes B+b . \sigma\right)} P_{T_{0}(a . b)} \tag{8}
\end{equation*}
\]

Let \(F_{T_{n}}\) be defined in equation (9).
\[
\begin{equation*}
F_{T_{0}}(C . S)=\sum_{a . b} \frac{\left.\exp \left[((a C+b S)] / \mid \sigma^{2}\right)\right]}{\operatorname{En}\left(a T_{0} \otimes B+b . \sigma\right)} P_{T_{0}(a, b)} \tag{9}
\end{equation*}
\]

Then equation (7) can be rewritten as equation (10).
\[
\begin{equation*}
\frac{1}{\sqrt{2 \pi} \sigma]^{n} \mathrm{En}(O . \sigma)} F_{T_{0}}\left(O \otimes\left(T_{0} \otimes B\right), O \otimes I\right) \tag{10}
\end{equation*}
\]

This implies an algorithm for deriving the likelihood of a linear set of templates.


If nere are \(N\) pixels in the image steps S and SS require \(O(N)\) operations counting adds and multiplies. Step C requires \(O(N \log N\) ) operations. Steps E and O are also \(O(N)\) operations steps. Thus the algorithm requires \(O(N \log N\) ) operations plus whatever is required to execute step \(F\). I propose to calculate \(F_{T_{0}}\) by table-lookup on the values of \(S\) and \(C\). Thus step \(F\) is just a table-lookup.

The size of the table that holds \(F\) is the product of the number of possible values of \(C\) and \(S\). Both of these can be calculated given the number of gray-levels in the image. \(G\). and the number of pixeis in the window. \(n\). and \(T, \otimes B\). The number of possible values for \(S\) is \(n i j\) and the number of vaiues that \(C\) can be is \(G\left(T_{0} \otimes B\right)\). Thus the number of elements in the table is \(n\left(T_{0} \otimes B\right) G^{2}\).

For a cencral step edge with a 1 by 8 window \(n=3\) and \(T, \otimes B=4\). Thus the size of the table is \(32 G^{2}\). Table 1 is a table of \(G\) values and resulting table sizes.

Table 1: Table Sizes to calculate \(F_{:}\).
\begin{tabular}{ccc}
\(G\) & \begin{tabular}{c} 
Number of \\
Table Enıries
\end{tabular} & \begin{tabular}{c} 
Storage for Table in bytes \\
(in double precision)
\end{tabular} \\
4 & 512 & 4 K \\
16 & 8152 & 64 K \\
64 & 131072 & 1.1 H \\
256 & 2097152 & 16 M
\end{tabular}

The more gray-levels the more difficult it becomes to store the cable. It also becomes more work to calculate the entire table. Thus to handle 64 or more gray-leveis I suggest that a smaller table be used with interpolation. If there are symmetries in \(F_{T_{0}}\) a smaller table is sufficient to store the function. As an exampie if \(F_{T_{0}}\left(S . C=F_{T_{0}}(S+16 . C)\right.\) then only \(F_{T_{0}}\) need only be calcuiated for \(S\) between \(I\) and 16 . At this moment no such symmetres have been discovered.

\section*{6. Detecting 1-D Step Edges Optimally}

For the model of regions of uniform intensity with step edges between them I need only calculate the likelihoods for two linear sers of templates. One template is the uniform intensity template. The likelihood of this template can be calculated from the standard deviation of the observed window. The other is the step edge template with the step in the middle. If I have a prior on the probability of a boundary then I have the tools necessary to build an optimal edge detector for my model.

The near edge templates can be approximated by the likelihoods calculated at the neighburing (overlapping) windows for the central step edge linear set. Since I am deriving a 1 dimensional edge derector, the likelihood of an edge in the center of an overlapping window is the likelihood of an edge directly to the right or the left of the center of the window. In the step edge model all regions are at least \(w / \Omega\) pixels wide given a template width of \(w\). Thus the near edge events are exclusive of the central edge events.

I assume a cost function that simply counts the number of points mislabeled as boundaries or noaboundaries when the opposite is the case. The prior probability of a central edge and any near edge event is equal under models that do not have a prefered position for objects. Thus if the likelihood of a central edge is not maximal among all the overlapping windows then the opimal estimate does nut have an edge at this point. Only local maxima among the likelihood of step edge function are reported. Thus multiple reporing of an edge is precluded. Also only edges that satisfy the inequality (11) are reporred:
\[
\begin{equation*}
\left.P(O \mid E) P_{E}\right) P\left(O \mid U^{\prime}\right) P_{U} \tag{11}
\end{equation*}
\]
where \(E\) represents the event that there is an edge in the center of the window and \(P_{E}\) is the prior probability of that event while \(U\) represents the event that there is no edge anywhere in the window and \(P_{L^{\cdot}}\) is the prior probability of that event.

I can also use my work on evidence combination to combine likelihood generators that make different assumptions about the noise and blur. Many of the operations I use to evaluate the likelihood of a linear set of templates under one kind of noise can be used for many different kinds of noise. As an example \(E n(O . \sigma)\) is used by all likelihood generators based on linear sets of templates. Also all templates that have the same value for \(E n\left(T_{0} \otimes B, \sigma\right)\) and \(\left(T_{0} \otimes B\right) \otimes I\) and have the same values for \(P_{T_{n}}\) can share the same table to calculate \(F_{T_{0}}\) since it depends only on these parameters. Thus if all the differendy onented edge templates have the same sum of pixel values and the same sum of squares of pixel values they can share the same table for \(F_{T_{i j}}\)

\section*{7. Conclusions}

In this paper I demonstrated an algorithm for edge detection that is mathematically optimal for a popular model. Since \(F_{T_{4}}\) is increasing in \(O \otimes\left(T_{0} \otimes B\right)\) this algorithm thresholds using a function of the sum of the pixels in the window and the sum of the squares of the pixels in the window. The algorichm only reports an edge if there are no nearby edges with greater likelihood. That test is similar to edge thinning in standard work. Thus the algorithm is similar to algorithms that run a thresholded convolution and then thin. Currently this algorithm is being implemented and experimental results will soon be forthcoming.

\section*{References}
[1] H. C. Andrews and B. R. Hunt. Digital Image Restoration. 126-147. Prentice-Hall. INC., Englewood Cliffs, New Jersey 07632. 1977
[2] H. C. Andrews and B. R. Hunt Digital Image Restoration 8-26 . Prentice-Hall. INC., Englewood Cliffs, New Jersey 07632, 1977
[3] H. C. Andrews and B. R. Hunt. Digital Image Restoration. 187-211 . Prentice-Hall. INC.. Englewood Cliffs. New Jersey 07632. 1977
[4] D. H. Ballard and C. M. Brown, in Computer Vision. Prentice-Hall Inc.. Englewood Cliffs. Vew Jersey. 1982, 14,63,85-86.
[5] J. F. Canny, Finding Edges and Lines in Images. 720. MIT Arificial Intelligence Laboratory, June 1983.
[6] H. Derin. H. Ellioth, R. Cristi and D. Geman. Bayses Smoothing Algorithms for Segmentation of Binary Images Modeled by Markov Random Fields. P.AMI 6.6 (Novermber 1984). 707-720. IEEF.
[7] D. J. Fleet. The Early Processing of Spatio - Temporal Visual Information. 84-?. University of Torontu. Research in Bivlogical and COmputational Vision. September 1984.
[8] S. Geman and D. Geman. Stochastic Relaxation. Gibbs Distributions. and the Bayesian Restorauon of Images. P. 1 1// 0.6 ( Novermber 1984). 721 -741. IEEE.
[9] \(\mathrm{X} . \mathrm{Li}\) and R. C. Dubes. The FIrst Stage in Two-Stage Template Matching. Pattern Analisis and Machine Intelligence 7.6 (Nov 1985). 700-707. IEEE.
[10] W. H. H. J. Lunscher and M. P. Beddoes. Optimal Edge Detector Design I: Parameter Selection and Noise Effects. Pattern Analysis and Machine Intelligence 8.2 (March 1986). 164-177. IFEF.
[11] V. S. Nalwa. On Detecting Edges. Proceedings: Image E'nderstanding Workshop. October 1984. 157-164.
[12] A. Owen, A neighbourhood-based classifier for LANDSAT data, The Canadian Journal of Statistics 12.3 (September 1984), 191-200. Staustical Society of Canada.
[13] D. Sher, Developing and Analyzing Boundary Detection Operators Using Probabilistic Models. Workshop on Probability and Uncertainty in Aruficial Intelligence. August 1985.
D. B. Sher, Evidence Combination for Vision using Likelihood Generators, Proceedings: Image Cinderstanding Workshop (DARPA). December 1985. 255-270. Sponsored by: Information Processing Techniques Office Defence Advanced Research Projects Agency.
[15] V. Torre and T. A. Poggı. On Edge Detection. Patlern Analysis and MA Achine Inteiligence 9.2 (March 1986), 147-163. IEEE.


\[
E N D
\]

DATE
FILMED
\[
\begin{aligned}
& \text { OTiC } \\
& 10-88
\end{aligned}
\]```

