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FOREWORD

The Seventh Army Conference on Applied Mathematics and Computing was held at
the U.S. Military Academy, West Point, New York, on 6-9 June 1989., This is the
second time the Military Academy has served as the host for this series of Army
conferences. For each of these meetings we were fortunate to have the heads of
the Department of Mathematics as Chairpersons on Local Arrangdeents. This year
Colonel Frank Giordano served in this capacity. He was-assisted in this task

by Lieutenant Colonel David Arney and Capl-i.n-Suzanne Swann. These individuals
are to b commeed-fof-thetr-efflo-ts in coordinating all the details required
to conduct this large successful scientific meeting.

This 1 -9S9 conference was attended by more than 80 scientists and engineers
representing academia and various Army agencies. The meeting featured seven
invited speakers. These general talks covered several topics of current
interest, including multi-scale methods and wavelet transforms, high
performance computing, phase transformations, multivariate splines, and
stochastic control.Y TAe mei.Qof these speakers, together with the titles of

their addresses, are listed below."-The second part of the program consisted of

special sessions on topics such as stochastic methods for image analysis,

mathematical issues in computer science, computational methods for multibody

dynamics, and mechanics of large deformations.-, In addition, about 40

contributed papers were presented by both Army 'and academic participants.

SPEAKER AND AFFILIATION TITLE OF ADDRESS

Professor Alan S. Willsky Estimation of Spatially-Distributed

Massachusetts Institute Processes
of Technology

Professor Richard D. James Microstructure of Crystals Undergoing
University of Minnesota Phase Transformation .1

Professor Robert V. Kohn Modelling Microstructure by Energy
New York University Minimization

Professor S. Lennarl, Johnsson High Performance Computing
Yale University

Professor Mark H.A. Davis Theory and Application of Piecew'ise-

Imperial College of Science Deterministic Processes

Professor A. Cohen Wavelet Transforms
Universite of Paris-
Dauphine

Professor Carl de Boor What's New in Multivariate Splines?
University of Wisconsin-
Madi son
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One of the sessions at this conference was called "Mathematics at West Point."
In it, members of the Department of Mathematics outlined a new program for the
cadets entitled "USMA's Mathematics Program in 1990 and Beyond." The first
article in these proceedings is devoted to this curriculum.

This conference is part of a continuing program of Army-wide symposia held
under the auspices of the Army Mathematics Steering Committee (AMSC) to promote
better communication between Army scientists and the Army Research Office
investigdtors. In order that this mission be accomplished, a large number of
scientists had 'o expend a great deal of effort. The members of the AMSC would
like to thank all these individuals for their excellent presentations and their
valuable contributions to the field of science.
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USMA'S MATHEMATICS PROGRAM FOR 1990 and BEYOND

David C. Arney
Lee S. Dewald, Sr.

John R. Edwards

Department of Mathematics
United States Military Academy

West Point, New York 10996-1786

ABSTRACT: The following paper stemmed from a special
presentation by the authors at the Seventh Annual Army
Conference on Applied Mathematics and Computing. The
presentation described the background of, motivation for,
and broad content of the new core mathematics program for
all cadets starting in the Fall of 1990 -- discrete
dynamical systems, calculus, and probability and statistics.
The United States Military Academy (USMA) is the single
largest source of officers to the Army with mathematics,
science, and engineering backgrounds. It is necessary to
inform Army mathematicians and scientists of these
curricular developments and the department's research
program.

1. Introduction.

Mathematics is the language of science. Continuous
mathematics, especially calculus, has been the cornerstone
of undergraduate education in the sciences. First models of
a behavior are often continuous. We need to continue to
teach continuous mathematics since we all, students
especially, gain great insights from the closed-form
solutions to continuous models that calculus affords, even
when these models oversimplify reality. These first models
assume the world is linear, continuous, and deterministic.
More often, it is nonlinear, ultimately discrete, and
usually stochastic. Discrete mathematics is not only the
language of the discrete world but also is the language of
the computer. Probabilistic mathematics is the language of
uncertainty. The study of all these fundamental areas of
mathematics would provide a much better basis to view and
model our world.

The order of presentation, discrete dynamical systems,
calculus and probability and statistics, is important.
Discrete mathematics progressing from algebra to matrix
algebra to discrete dynamical systems is a better transition
from high school mathematics and can be used to preview the
more difficult concepts (for example, the limit) that
underly continuous mathematics. Finally, probability is
based on both continuous and discrete mathematics. With



recent advances in textbooks and software, we at USMA are in
an unprecendented position with each cadet possessing a
computer (portable in 1990) to present an integrated four-
course curriculum treating the fundamental ideas of
discrete, continuous and stochastic mathematics.

We feel that an integrated curriculum will permit us to
develop the following attitudes in cadets that will carry
over into their careers as officers:

- Mathematics is deductive in character. A few
principles must be internalized but most notions are
derived.

- Mathematics is a medium of communications in which
ideas are formalized and through which theories are
synthesized.

- Curiosity and experimental disposition are essential
characteristics of mathematics education. Through
observation one seeks universal truths and establishes
them by proof.

- Learning mathematics is an individual responsibility.
Textbooks, instructors, and members of study groups
only facilitate the process.

- Mathematics is useful.

In the next three sections we describe in more detail
the plans for each of the three courses in the four
semesters of mathematics - discrete dynamical systems, the
calculus, and probability and statistics. In designing our
curriculum, we have taken into account several national
reports on the current status of mathematics, calculus in
particular, and the changes needed to improve the status of
our educational program (1,2].

In the final section we briefly describe the research
program to which the Department of Mathematics ascribes for
tenured and non-tenured faculty as well as the cadets. We
see this program as the ultimate capstone of the new
program. Problem solving is aggressively encouraged by
providing ample opportunities to solve meaningful practical
problems requiring the integration of fundametal ideas
encompassing one or more lesson blocks from one or more core
mathematics courses.
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2. Discrete Dynamical Systems.

Under USMA's proposed curriculum, the first core
mathematics course is MA 103: Discrete Dynamical Systems
with Matrix Algebra. This is a 3 credit hour course. It
provides introductions to elementary matrix operations and
matrix methods to solve systems of linear equations.
Several applications of these subjects are also studied.
Most of the course is devoted to topics and problems in the
mathematics of discrete dynamical systems. Introductory
material on modeling problems using difference equations
motivates the study of solution techniques for these
equations and the eventual study of calculus and
differential equations. Concepts and techniques are
discussed for first-order linear and nonlinear equations and
higher order linear equations, and systems of equations.
Computer software is used to demonstrate and solve problems
in both the matrix algebra and the discrete dynamical
systems sections of the course.

While the placement and scope of our course in the
curriculum may be unique, we feel that this will be the
ultimate role of a discrete mathematics course. As stated
by Maurer in [3], "there may yet be a move toward more
discrete math in the first year." We intend to lead the way
in designing, testing, and teaching a discrete course for
the first semester of college mathematics. In order to
start this course in the 1990-1991 academic year, we will
have to piece together textual material and write some
ourselves. [4,5]

There are several reasons to begin our curriculum with
such a course. It provides a logical transition from high
school to college mathematics and provides an intuitive
motivation for the limiting concepts of the calculus.
Discrete mathematics also is the language of the computer,
and difference equations provide an intuitive introduction
to recursion. Discrete models, many in the form of
difference equations, are popular models of dynamic behavior
and are worthy of increased study.

Some of the goals for the students in the course are:
ability to formulate discrete mathematical models; ability
to solve algebraic and discrete models; motivation for the
calculus; and internalization of a few principles of
mathematics. We hope to use this course to develop the
following attitudes early in the curriculum: curiosity and
experimental disposition; a desire to structure and
communicate quantitative ideas; an appreciation for
mathematics as a useful tool to solve real problems; and an
appreciation for the power of deductive reasoning.
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The first block of 12-15 lessons covers matrix algebra.
The major topics in this block are the basic concept of
linearity, matrix operations, determinants, inverses, Markov
processes, and linear programming. The second block on
difference equations covers first order theory and
applications, second order theory and applications, first
order systems, Markov chains, and nonlinear difference
equations. The final block establishes a foundation for
calculus by introducing sequences and difference quotients.

One unifying feature of all the blocks in this course is
the use of the computer. The computer will be used to
demonstrate concepts in class as well as a tool to solve
problems. USMA and the Department of Mathematics, in
particular, have had an aggressive program of computer
assisted instruction for several years [6]. This course
intends to establish the foundation for computer use by
cadets in solving problems of a mathematical or scientific
nature and to establish the computer as a tool in
mathematical experimentation.

3. Lean and Lively _aciUlus.

3.1. Rackground.

From the 1950's through 1974 the core mathematics
program at USMA was a strong and stable program in
undergraduate mathematics both in content and credit. In
four semesters each cadet received the equivalent of six
courses in mathematics -- single-variable (integral and
differential) calculus, multivariable calculus, linear
algebra, ordinary differential equations, and elementary
probability and statistics. Cadets attended class six days
a week for 17 weeks a semester at 80 minutes per day. All
of the textual materials were written at USMA either
directly or under the supervision of the Chairman of the
Department of Mathematics, Charles P. Nicholas.

Since the mid-70's there has been a constant and
steady erosion of the depth and breadth of coverage in the
core mathematics at USMA. Part of this was the result of
offering academic majors in non-science and non-engineering
fields. Regardless of the rationale for the reduced
emphasis on mathematics, the effects were the same. By the
end of the 1980's the core mathematics program was reduced
by 30%. Unlike many other schools, USMA still has
maintained an emphasis on mathematics by keeping four
mathematics courses in its core curriculum. (7]

The resulting programs never reached a steady-
state. Topics would appear, disappear, and reappear from
semester to semester. Conceptual development was replaced
entirely by the learning of algorithmic skills. There was
no real plan.
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In 1984 the Chairman of the Department of
Mathematics received a report from the tenured faculty which
recognized a need to change the core mathematics program at
USMA and to take advantage of the technological advances in
computers and symbolic manipulatiion. Howver, textbooks
were not available (essentially are still not) and there was
no authority or time to write these textual materials at
USMA. Therefore, little was changed.

However, since the beginning of the National
Reform Movement in Calculus in 1987 there has been
increasing interest in mathematics education in many sectors
[1], [2] -- publishers, authors, professors, computer
scientists, and students. It is against this backdrop that
the West Point version of the "Lean and Lively" Calculus is
being developed.

3.2. Course Description - Calculus T and TT.

These are the second and third courses of the
mathematics core curriculum and are each 4.5 credit hours.
These standard courses provide study of mathematics as an
intellectual discipline and as a foundation for continued
study of mathematics and for the subsequent study of
physical sciences, social sciences, and engineering.
Beginning with functions and the sequential development of
the limit, the calculus is covered through the development
and evaluation of multiple integrals. No vector calculus is
included. Ordinary differential equations are integrated
into the course as soon as higher order derivatives are
covered. Computers and symbolic manipulation are integrated
throughout the program to foster both discovery and
intellectual curiosity and to enhance problem-solving.

3.3. Objectives of th3 Calculus Sequance.

There are four basic objectives to the study of
calculus which support the overall objectives of the
mathematics curriculum at USMA:

a. Students learn the three basic limit ideas of
calculus: The limit of a convergent sequence is related to
the concept of a continuous function; the limit of a
quotient is related to a derivative; the limit of a sum is
related to the definite integral.

b. Students be able to prove some of the basic
results in the calculus.

c. Students be able to formulate ideas in the
mathematics of the calculus.
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d. Students be able to solve problems using
calculus by formulating the models and applying the
appropriate techniques and algorithms.

3.4. A "Lean" Calculus.

Two problems contribute to a need for a new "lean"
calculus. Both problems lie in the size of the calculus
text. Calculus books are too large! Even though there are
only three principle ideas there are typically 16-19
chapters of material. What once were applications or
examples have been elevated to the status of independent
topics. Thus problem one is the growth of "important"
topics.

The second problem is the reluctance to remove
outdated or irrelevant material from the textbooks. Many
topics which are purely algorithmic by nature and easily
implemented with a computer, are still being drilled and
memorized in calculus classrooms.

There are two approaches to be taken in deriving
this new lean calculus -- the butcher's approach or that of
the sculptor.

The butcher's approach is relatively easy to
implement and requires no new textbooks. Essentially the
topics of the textbook are divided between baseline and
enhancement. Every student of calculus does the baseline
and some percentage of the enhancement depending on
background, instructor preference, etc. This idea has
essentially been implemented by Scott Foresman Publishers
for the Calculus and Analytic C-ometry by Al Shenk. On the
surface this approach sounds like little improvement. Some
agreement across colleges over what is baseline and what is
enhancement would be required.

There are however Computer Algebra Systems (CAS)
that can support a butcher's approach independent of the
choice of textbooks. CAS is the new technology that would
make this approach a major improvement over the existing
programs. CAS performs symbolic manipulation to include
symbolic integration and differentiation in either a hand-
held calculator or computer software.

CAS is not a crutch to do for students what they
should be able to do for themselves. CAS is a force
multiplier that makes for a more efficient use of study time
for the student and allows professors to change course
priorities. Much of the time that is spent on drill and
memorization is eliminated. Topics and problems that were
not accessible before can now be explored using CAS and
other computer support.
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The sculptor's approach to a "lean" calculus will
be a work of art and is probably still a couple of years in
the making. Central to this approach are new textual
materials which incorporate several major differences from
the same "ole brewski."

Emphasis must shift to conceptual understanding
and problem solving and away from memorization and drilling
on formulas. More writing requirements and interpretation
of results should be emphasized instead of the production of
results. Differential equations should be integrated
throughout the calculus textbook instead of being treated in
isolation. Finally, CAS and other computer capabilities
should be integrated into the text to capitalize even more
on the new technology.

3.5. A "Lively" Calculus.

Many ideas for implementing a "lean" calculus
exist. What seems to be more difficult is the question of
how to "liven-up" the calculus program. We look to
relevance and experimentation. We intend to emphasize the
relevance of calculus to the solving of problems --
motivational and carry-over. We also intend to emphasize
experimentation and the discovery of new techniques to solve
interesting but previously unsolvable problems.

Several special problems have already been
developed for use in the calculus program that emphasize
integration and modeling and solution of differential
equations. New carry-over problems are being developed in
probability and statistics as well as optimization and
economics.

Computers, CAS, and specialty software will play
two major roles in the lively calculus. The use of
computational software opens up a wider variety of problems
that are more realistic and interesting for students to
solve. The student is also much more inclined to explore
the nature of functions and discover their properties with
the use of computers.

Cadets at USMA currently own The Calculus Toolkit,
the Midshipman's Plotting Package, and DERIVE, CAS for IBM
compatible PC's.
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4. Prhahility and Statisting

The USMA probability and statistics course is the
capstone of the mathematics required of all cadets and is 3
credit hours. In negotiating this course we expect students
to show sophistication and technical maturity. When
students come to us from their precollege experience their
learning is essentially skill based; and the pedagogy and
material at the beginning of our core curriculum reflect
this as a point of departure. Our curriculum is designed to
gradually wean students from this learning approach
culminating in this final course, probability and
statistics, in which the learning is wholly cognitive; very
little time and class reward is devoted to skill learning.
The issues confronted by the student are not closed form and
require him to interpret his mathematical manipulations.

Because the course is conceptual in character, we
emphasize the unified structure of the study of uncertainty.
Computation is pushed off to software (currently MINITAB).
Learning is socratic in character; students are directed in
such a way that they "discover" the two distributions that
form the center of the course; one discrete and one
continuous. It is our goal that students internalize the
idea that once an issue can be modeled by a random variable
and its distribution, one has a complete guage of the
inherent uncertainties. While only two distributions are
formally developed in class, students are expected to lift
the essence of a distribution to other functions; to
generalize the concepts and apply them to problems other
than the two 'learning examples.'

Our transition to statistics appeals to the intuitive
notion that the character of a population can be forecast
from a suitable subset of the population. The notion of
"sample space", first discussed in probability, is replaced
with the space of all subsets of a fixed size ("the sample
space of samples of size n"). The student observes that
measures taken on these samples meet the definition of
random variables on this new sample space. At this point
the structure of the course quickly narrows his
consideration to two such measures: mean for central
tendency and variance for spread. This approach causes
students to take the perspective that the most important
need for interpreting a sample outcome is to characterize
the distribution of these measures.

This perspective leads to the study of the Central
Limit Theorem. The result of the theorem is motivated
experimentally; first by mechanical means (e.g. drawing
numbered slips out of a container) and then through computer
simulation. It is beyond the scope of the course to provide
an analytic proof of the theorem, but students have a strong
intuitive appreciation of the result.
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Establishing the distribution of the variance is less
elegant. It is our assessment that the knowledge required
to logically develop the relationship between the
distribution of the variance and the corresponding Chi-
squared distribution would demand an effort all out of
proportion to the gain in a one semester course. Thus the
transformation of variable is simply given as an analogue of
the Z-transform with which they have become familiar.

Central to the course is a case study that, in an actual
example, reviews and reinforces all the ideas discussed. In
addition to accomplishing the technical analysis of the
issues, students are required to interpret their "numbers."
Furthermore, the minimum course standard requires that their
case study be in a professionally acceptable format. This
includes embedding files from their statistical software
into their word processing files and integrating
mathematical exhibits with text. To reinforce the Case
Study's importance, the grade for the effort is one third of
their final exam.

A remark on the choice of case study is in order. We
have found the learning is far greater if the topic is taken
from actual student experience, something that effects their
lives. For example, we selected as a population the grades
of a preceding class and asked them to draw conclusions
about the types of career success these students enjoyed and
how that was correlated to various academy successes:
academic grades, military leadership grades, and physical
fitness grades. This case study was far more successful as
a learning tool than an earlier one that investigated a very
important weapons systems (the Bradely fighting vehicle) but
a subject that was only vicarious to sophomore level cadet.
We concluded that having as an object of study something
that the students actually experience and see as real
imposes and sense of urgency in their study; students want
to understand those issues that influence their lives now.

Completion of the course poises students to address

problems:

- That require interval estimates of parameters.

- That establish rational decision values for
experimental variables.

- That require simple design of an experiment.

The course does not leave them as skilled statisticians.
However, it does blend together the key elements of all
preceding mathematics courses. It prepares them to use
quantitative methods to solve significant and unstructured
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problems that require sophisticated interpretation. And it
prepares them to communicate their findings in a clear and
professional manner.

5. Research Program.

This is a brief description of the faculty and student
research program of the Department of Mathematics. With
regard to faculty basic and applied research, the
departmental program supports the philosophy of the USMA
Superintendent, LTG Palmer. In a position paper, he stated:

"...The faculty at USMA constitutes a
valuable resource to the Army [and the
nation at large] in that nowhere else is
there as large a concentration of highly
educated personnel as at West Point. The
potential of this resource to solve Army
problems should be fully exploited ...

"These officers will take this valuable
experience back to the Army with them, and
many will put it to good use in positions
in the acquisition system such as project
manager. Thus USMA will provide the Army
with officers that understand the reserch
process and who will not be technically at
the mercy of government contractors ..." [8]

There is no question that the Department has committed its
faculty to the furtherance of knowledge in the areas of
prime concern to the Army and nation. Over 20 of the 60
officers in the Department were directly involved in
significant research or consulting projects during the last
academic year. These projects are described in [9] and
include applications in many areas of mathematics and
science, i.e., numerical computing, fluid dynamics, number
theory, underwater and atmospheric acoustics, probability
distributions, statistical analysis, time series, computer
aided design, computer aided instruction, air defense
methodology, signal processing, financial modeling, and
combat modeling. In addition, 18 officers spent time during
the summer of 1989 at an Army laboratory or government
agency performing research or consulting. Many other
instructors were involved in smaller part-time efforts. The
tenured faculty particularly were involved in this effort
through consulting with Army laboratories, schools, and
agencies, attending conferences, presenting results, and
publishing in technical journals.
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Under the direction of MAJ John S. Robertson, the
Department of Mathematics research program was particularly
successful in 1989. Four members of the Department served
in Dean's Research positions and were funded by the USMA
Science Research Laboratory with money from the Army
Research Office. Several other researchers received this
same funding. For the first time ever, substantial funding
was obtained from external agencies for travel, supplies,
computer hardware, software, and library services. With
this funding and direction, the future looks bright for the
Department's research program.

One enhancement for the program may come from the
Department's use of Foundation Schools for instructor
education. Starting this year, all the non-tenured faculty
(85% of the Department's strength) will receive their
masters-level education at one of three schools, Georgia
Tech, Rensselaer Polytechnic Institute, or the Naval
Postgraduate School with degrees in either applied
mathematics or operations research. This program will
enable the tenured faculty to interface with the officers at
an earlier stage for better control of professional
development with emphasis on finding research opportunities
that can continue while the officer is assigned to the
Department.

The student-research program is focused in two areas:
Volunteer Summer Training (VST) and a 3-credit Research
Seminar (MA 491). Over the last two years, over 25 cadets
have participated in a 4-6 week VST research program at many
agencies including TRADOC Analysis Center-Monterey,
Ballistic Research Laboratory, Natick Laboratory, Concepts
Analysis Agency, and Los Alamos National Laboratory.
Several cadets have completed the MA 491 course through
their undergraduate research in topics such as numerical
computing, chaos and fractals, combat modeling, and
financial modeling.

As we head into the 1990's, research has taken an
important place in the Department of Mathematics. Student
and faculty involvement in research activities has been
beneficial and rewarding and most likely will continue to
grow in the future.
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Modeling and Estimation for Multiresolution
Stochastic Processes

A.S. Willsky1

1 Multiscale Representations and Homogeneous

Trees

The recently-introduced theory of multiscale representations and wavelet transforms

[41 provides a sequence of approximations of signals at finer and finer scales. In 1-D a
signal f(x) is represented at the mth scale by a sequence f(m, n) which provides the

amplitudes of time-scaled pulses located at the points n2-". The progression from

one scale to the next thus introduces twice as many points and indeed provides a

tree structure with the pair (2-", n) at one scale associated with (2- (m+'), 2n) and

(2-(-+'), 2n + 1) at the next. This provides the motivation for the development

of a system and stochastic process theory when the index set is taken to be a

homogeneous dyadic tree. In this paper we outline some of the basic ideas behind

our work.

Let T denote the index set of the tree and we use the single symbol t for nodes on

the tree. The scale associated with t is denoted by m(t), and we write s -< t (s -< t)

if r(s) < m(t)(m(s) < m(t)). We also let d(s, t) denote the distance between s and

t, and s A t the common "parent" node of s and t (e.g. (2- ', n) is the parent of

(2-( " +1), 2n) and (2- (" +1), 2n + 1). In analogy with the shift operator z-1 used as

the basis for describing discrete-time dynamics we also define several shift operators

on the tree: -0, the identity operator (no move); -y-1, the fine-to-coarse shift (e.g.

from (2- (" +1), 2n or '2n + 1) to (2-, n)); a, the left coarse-to-fine shift ((2-', n) to

(2-(0n+i), 2n)); /, the right coarse-to-fine shift ((2-"', n) to (2-(-+1), 2n + 1)); and 6,

the exchange operator ((2- ( -+), 2n) + (2- (- +'), 2n + 1)). Note that 0 and 6 are

'This research was supported in part by the Army Research Office under grant DAAL03-86-K-
0171 (Center for Intelligent Control Systems), AFOSR grant AFOSR-88-0032 and the NSF under
grant ECS-8700903.

13



isometries in that they are one-to-one, onto maps of T that preserve distances.

Also we have the relations

P -- 7- -1 C = 0 , - = - , =(1.1)

It is possible to code all points on the tree via shifts from an arbitrary origin node,

i.e. as wt 0 , w E C, where

'= (-U-) u {U,}'6(-- ) u {o, 0}" (1.2)

The length of a word w is denoted I1w and equals d(wt,t) (e.g. k'I- = 1, I1 = 2).

Also, since we will be interested in coarse-to-fine dynamic models, we define some

notation for causal moves:

w -< 0 (w -< 0) if wt -< t (wt -< t) (1.3)

2 Modeling of Isotropic Processes on Trees

A zero-mean process Yt, t E T is isotropic if

E[YY.] = rd(,,) (2.1)

i.e. if its second-order statistics are invariant under any isometry of T. These pro-

cesses have been the subject of some study, and a Bochner-like spectral theorem

has been developed [1,2]. However, many questions remain including an explicit

criterion for a sequence r, to be the covariance of such a process and the repre-

sentations of isotropic processes as outputs of systems driven by white noise. Note

first that the sequence {Y,--t} is an ordinary time series so that r, must be positive

semidefinite; however, the constraints of isotropy require even more. To uncover

this structure we have developed in [2] a complete characterization of the class of

isotropic autoregressive (AR) models where an AR model of order p has the form

Y,= E aYw + aW, (2.2)
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where Wt is a white noise with unit variance. Note that this model is "causal"-i.e.

it has a coarse-to-fine direction of propagation-since w -< 0. Also, a first thought

might be to examine models with strict past dependence, i.e. Y a function of W.,-,t;

however as shown in [2], the constraints of isotropy allow us to show that only AR(1)

has such dependence. Thus we have that AR(p) involves a full set of 2P- ' a,'s and

one or so that the number of parameters doubles as p increases by one. In addition as

shown in [2], isotropy places numerous polynomial constraints on these parameters.

As we develop in [2] a better representation is provided by the generalization of

lattice structures which involves only one new parameter as p increases by one.

Let 7{... } denote the Gaussian linear space spanned by the variables in braces

and define the (nth order) past of the node t:

Y,,, R= "I Y,t : w "< 0, 1 w[ n} (2.3)

As for time series, the development of models of increasing order involves recursions

for the forward and backward prediction errors. Specifically, define the backward

residual space:

Yt,, = Yt,,,-I e .t,, (2.4)

where t,n is spanned by the backward prediction errors

Ft,n(w) _ Y., - E(YtIY,,._1 ) (2.5)

where w --< 0, IwI = n. These variables are collected into a 2[']-dimensional vector

(see [2] for the order), F,.n. For IwI < n and w - 0 (i.e. m(wt) = m(t)) define the

forward prediction errors:

Et,,(w) Y yt - E (Y-tIY-,-,t.-) (2.6)

and let &,, denote the span of these residuals and Et,,, the 2["2-]-dimensional vector

of these variables (see [2]).

The key to the development of our models is the recursive computation of Ft,,,

and Et.,, as n increases. The general idea is the same as for time series but we must

deal with the more complex geometry of the tree and the changing dimensions of
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Ft,,, and Et,,,. In particular, as shown in [2], it is necessary to distinguish between n

even and odd and between different groups of the components of Ft,n and Et,,, For

example, Ft,n consists of Ft,,(w) in eq.(2.5) with Iwi = n, w < 0. Suppose that n is

even and consider elements of Ft,, for which 1w! = n, w -< 0. In this case w = t 'y- '

for some ti -< 0, with ItZl = n - 1, and by an argument exactly analogous to the

time series case we obtain the recursion:

Ft,n(w) = F.y-lt,,,_INt - E [Fy-t,_(f)E,-] (2.7)

This procedure identifies several projections, as in eq.(2.7), to be calculated. A key

result is that these projection operators can in fact be reduced to scalar projections

involving a single new reflection coefficient and the local averages or barycenters

of the residuals:

e,, = 2- [ ' l  Et,n(w) (2.8)
lwl<n,wxo

An = 2- V Ft,.(w) (2.9)
JwI=n,w( O

For example, the projection in eq.(2.7) is the same for all such tb and in fact equals

E [F.y-it,,._.(tib)Iet,,,_1]. This and related expressions follow from the properties of

isotropy and from a very important fact: any local isometry, i.e. a map f from

one subset of A onto another that preserves distances, can be extended to a full

isometry on T.

As a consequence of this result, we can obtain scalar Levinson recursions for

the barycenters themselves [2]. These recursions introduce a sequence of reflection

coefficients, kn, and lead to a generalization of the Schur recursions for time series.

In [2] we also show how these same k, can be used to construct whitening and

modeling filters for Y and we present a stability result analogous to the time series

case. In this case, however, the condition is somewhat more complex: for n Odd we

have the same condition as for time series, namely Ik,,I < 1; for n even, however, we

must have - 1< kn < 1. In addition we demonstrate in [2] that the class of AR(p)

processes are completely equivalent to reflection coefficient sequences with k, = 0,
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n > p and we show that these processes are exactly the isotropic processes with

impulse responses with support on a cylinder of radius [R] about the strict past -- n.

3 State Models and Multigrid Estimation

A second class of models displaying coarse-to-fine structure is specified by state

models of the form

x(t) = A(m(t))x( 7- 1t) + B(m(t))w(t) (3.1)

where w(t) is a vector white noise process with covariance I. The model eq.(3.1)

describes a process that is Markov scale-to-scale and, because of this, we can readily

calculate its second order statistics. For example in the case in which A and B are

constant and A is stable, eq.(3.1) can describe stationary processes, where the

covariance of x satisfies the Lyapunov equation

P= APAT + BBT (3.2)

and the correlation function is

K_(t, s) - Ad(t 'St) P-(AT)d(t 'sA t ) (3.3)

In the scalar case, or if AP,, = P AT , eq.(3.1) describes an isotropic process, but in

general eq.(3.1) describes a somewhat larger set of processes.

Consider now the estimation of x(t) based on measurements

y(t) = C(m(t))x(t) + v(t) (3.4)

where v(t) is white noise of covariance R(m(t)), independent of x. In many prob-

lems we may only have data at the finest level; however in some applications such

as geophysical signal processing or the fusion of multispectral data, data at multiple

scales is collected and must be combined. In (3] we describe three different algorith-

mic structures for estimating x(t) based on the measurements in eq.(3.4). One of

these involves processing from one scale to the next. This structure resembles the
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Laplacian pyramid processing structure [4] and can be performed extremely quickly

using discrete Haar transforms.

A second structure is based on the following equality which can be derived from

the Markovian structure of eq.(3.1):

i(t) = Lp(r 1 t) + L 2(at) + i(#t)) + L 3Y(t) (3.5)

where L 1, L 2, and L 3 are gains (depending upon scale in general). Eq.(3.5) describes

a set of coupled equations from scale to scale which can be solved by Gauss-Seidel

relaxation that can be structured exactly as in multigrid algorithms for the solution

of partial differential equations.

A third algorithm involves a single fine-to-coarse sweep followed by a coarse-

to-fine corrrection. In the first step we recursively calculate the best estimate of

x(t) based on observations in its descendent subtree. This recursion involves three

steps, which together define a new Riccati equation: a backward prediction

step to predict from at and 3t to t; a merge step, merging these two estimates;

and an update step incorporating the measurement at t. The merge step is the

new feature that has no counterpart for standard temporal models. Once we have

reached the top node of the tree, the downward sweep has the same form as the

Rauch-Tung-Striebel form of the optimal smoother for temporal models (allowing

of course for the proliferation of parallel calculations as the algorithm passes from

coarser to finer scales): the best smoothed estimate at t is calculated in terms of the

best smoothed estimate at -1 t and the filtered estimate at that node calculated

during the upward sweep.
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ABSTRACT. We present stochastic model-based methods both for restoring images

corrupted by impulse noise and for detecting edges in an image which may be caused either
by changes in intensity or texture.

The image is represented by a nonsymmetric half plane autoregressive model driven by
impulse contaminated Gaussian noise. This type of noise is more commonly encountered in
real images, unlike the pure Gaussian noise treated in earlier papers. We develop an image

restoration algorithm given only the image corrupted by additive noise, the original clean

image or its model being unknown. We show that this method gives much better results than
currently available methods based on median filters or alpha-trimmed filters.

Next we develop methods which can detect both intensity edges and texture edges. It is
well known that traditional edge detection methods have difficulty in detecting texture boun-

daries. We first generate edge hypotheses. We use two different procedures for confirming
whether it is an intensity edge or a texture edge. We give several examples to illustrate the

efficacy of the proposed approach.

I. INTRODUCTION AND OVERVIEW. In the past decade, there has been remarkable

progress in the researmh on statistical image models and their applications. Statistical image

models (often called random field models or spatial interaction models) represent the image
intensity of a given picture by a small number of parameters. There are many applications of

image models in image processing and analysis. For instance, they can be used for image

synthesis (Kashyap, 1984; Cross and Jain, 1983), image restoration (Chellappa and Kashyap,

1982; Geman and Geman, 1984), image coding (Delp et al., 1979), texture boundary detec-

tion (Kashyap and Eom, 1985a), and texture analysis (Kashyap and Khotanzad, 1984).

For the application of image models to such image processing tasks, we need to esti-
mate the parameters in the image models. There are many different estimation algorithms
for different image models, but most of these methods are based on the assumption of Gaus-
sian image intensity distribution. However, the actual distribution of image intensity

Supported by U.S. Army Research Office
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deviates from the Gaussian assumption, and traditional estimation methods are very sensitive
to minor deviations from the Gaussian assumption. During the past few decades, many esti-
mators which are robust to the deviations from the Gaussian assumption have been proposed
(Huber, 1981), but they are rarely applied to image modelling.

Robust estimation procedures for several different image models are developed and
applied to some important image processing problems such as image segmentation and
image restoration in this study.

A. Robust Statistical Procedures

There has been considerable interest in robust methods in statistics in recent years. This
is because most statistical inference methods are based on rather restrictive assumptions
about the observations and models, such as independence of observations, distribution of
observations, etc. However, these assumptions do not always hold, and many statistical pro-
cedures are very sensitive to minor deviations from the given assumptions. For example, it
is well known that least squares methods are excessively sensitive to a small number of
outliers.

The term robust was introduced by G.E.P. Box in 1953, and a procedure is called robust
if it is reasonably good (optimal or near optimal) if the assumption holds, and it is not sensi-
tive to small deviations from the assumption. Primarily robustness implies distribution
robustness, i.e., the robustness about the small deviations from the assumed distribution (usu-
ally Gaussian). The resistance to outliers is considered equivalent to the distribution robust-
ness (Huber, 1981).

There are several types of robust procedures: M-estimators, L-estimators, and R-
estimators. Among these, M-estimators have an advantage over other procedures because
they can be extended to the parameter estimation problems in image models. In contrast,
either L-estimators or R-estimators are difficult to generalize well beyond one parameter
location or scale problems. The robust M-estimators are applied to the parameter estimation
problem of causal autoregressive models. Two different outlier processes are considered,
and iterative robust estimation algorithms for both of the outlier processes are developed.
Theoretical properties of the proposed robust estimators are investigated.

B. Image Models

Image models characterize the image intensity surface with a small number of parame-
ters. Image models can be divided into two groups, namely, descriptive and generative
models. A descriptive model for an image summarizes the intensity distribution into a finite
number of statistics. An example is the cooccurrence matrix (Haralick, 1973) used in texture
analysis. The generative model, on the other hand, allows one to synthesize an image obey-
ing the given model by using the model description and a set of random numbers. We will
restrict ourselves to generative models since they can be used for many varieties of
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applications.

We can further divide the generative models into two large classes. In the first class,
the observed intensity function y(ij) is assumed to be the sum of a deterministic function -
usually polynomial or sinusoid - and an additive noise. In the second class, the image inten-
sity function is generated as the output of a transfer function whose input is a sequence of
independent random variables. The transfer function represents the known structural infor-
mation on the image surface; the independent random sequence accounts for the unknown
part. Note that the neighboring pixels are highly correlated, unlike in the earlier case, and
the transfer function accounts for the covariance.

C. Applications

Image restoration and image segmentation are two important branches of image pro-
cessing. Image restoration is needed to recover the original image from the image corrupted
by noise (including impulse noise), and image segmentation procedure, especially edge
detection or boundary detection, is involved in most high level image processing problems.
Robust image models are developed and applied to the above image proces.rng problems in
this study.

1. Image Restoration

An image may be subject to noise and interference from many different sources, and
image restoration is used to remove noise from the given image. Traditionally, noise distri-
bution is assumed as a Gaussian distribution, and many different restoration algorithms based
on Gaussian assumption have been introduced (Pratt, 1978; Rosenfeld and Kak, 1982).

Recently, image models have been used in image restoration applications. For exam-
ple, Chellappa and Kashyap (1982) used a simultaneous autoregressive model and condi-
tional Markov model, Wu (1985) used a nonsymmetric half plane autoregressive model and
two-dimensional Kalman filtering approach, and Geman and Geman (1984) used a family of
Markov models. Even though the above examples show some successful applications of
image models in the image restoration problem, all of the above methods are designed to
remove Gaussian noise, and are not very effective to remove impulse noise (Pratt, 1978).

Traditionally, median filter and its generalizations (Kassam and Poor, 1985) are used to
remove impulse noise (also called salt-and-pepper noise) from the noisy image. These
methods are simple applications of robust location parameter estimators, such as median or
a-trimmed mean, where image intensity is assumed constant over a small size window.
However, the restored images by these methods are blurred (Pratt, 1978).

Robust image model approaches are applied to the image restoration problem in our

study. The original image intensity is assumed to follow an image model, and parameters
are estimated by a robust estimation algorithm. The image is restored by applying a data
cleaning algorithm with the robustly estimated parameters. The robust model-based method
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performs better than any other traditional method in the experiment.

2. Edge and Segment Boundary Detection

Edge detection or boundary detection is a fundamental step in scene analysis. Tradi-
tionally, an edge is defined as a boundary between two uniform regions, where the intensity
of each region is uniform and the intensity difference between two regions is large. Most
edge detection algorithms are based on the gradient operator or the Laplacian operator
(Robinson, 1977), which is sensitive to a change of intensity. Recently, some model-based
edge detection approaches are proposed (Haralick, 1984; Zhou and Chellappa, 1986), but
they are also based on the derivatives methods using decision rules with estimated model
parameters.

For the higher level processing, the edges should be able to distinguish the shape of
each object from the background of an i nage. However, intensity edges are sometimes not
satisfactory to represent an object and distinguish it from the background, because the inten-
sity of an object or a background is not uniform. For instance, a grass lawn in an outdoor
scene is homogeneous by its texture property, but it has many intensity edges within the
region. The above example suggests the necessity of detecting boundaries (or edges) by its
texture property.

Image models are already used in synthesizing textures which are very similar to real
textures, and the estimated parameters which are obtained by fitting an image model to the
given image can be used as texture features. The texture features derived from image model
or from other methods can be used to segment an image by a statistical classification method,
if the number and types of textures in the given image are known in advance. However, the
above prior information is generally not available.

A composite edge detection algorithm is developed in this study. The composite edge
detection algorithm combines the model-based texture boundary detection method and a con-
ventional intensity edge detection method. This algorithm detects all potential edges by a
directional derivatives method, and final edges are confirmed whether they are texture edges
or intensity edges. This algorithm is also compared with other conventional edge detection
methods in the experiment. The composite edge detection algorithm performs better than
other conventional methods which detect only intensity edges in the experiment.

II. AR AND ARMA MODELS.

A. Introduction

It is claimed traditionally that a complete stochastic description of an MxM array of
pixel intensities y(s) is given by the joint probability density of the M2 intensity variables
y('). Even writing down the expression is horrendous considering that the typical value of M
is 128 or 256 or 512. As a consequence, it was often conjectured that probabilistic models
may not be of much use in solving interesting problems in image processing. The purpose of
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this paper is to draw attention to the existence of a large class of image models which can be
characterized completely in terms of the second order properties of the image sequence, i.e.,
the correlations E[y(s)y(s+r)] or the corresponding spectral density. Consequently these
models are relatively easy to analyze. It must be emphasized that the joint probability den-
sity of all the intensities is not assumed to be Gaussian.

In the beginning, we will focus our attention on the two-dimensional generalization of
the autoregressive (AR) models and autoregressive moving average (ARMA) models popu-
lar in the time series analysis. Basically all these two dimensional models can handle
rational spectral densities, i.e., the ratio of two linear combinations of sinusoids in the two
frequency variables in the direction, just as in the one dimensional case. However, there are
many differences between the ID and 2D cases which will be highlighted in this section. For
example, in the ID case, the correlation function is an exponentially decaying function of the
lag variable. But in the 2D case, one rarely encounters the exponential correlation function.
Similarly in the ID case, the driving input random sequence is both statistically independent
and uncorrelated with the dependent variables in the past. In the general 2D case, the input
sequence cannot possess both these properties simultaneously.

Secondly, we will consider the various possible ways of defining the weak Markov pro-
perty in the 2D case. By weak, we mean that the corresponding Markov property can be
described completely in terms of the second order properties like correlation or spectral den-
sity. The traditional Markov property defined in terms of the probability densities is termed
as the strong Markov property. A sequence cannot be strong Markov without being weak
Markov. We will characterize the various subclasses of 2D AR and ARMA models which
possess various types of weak Markov property.

We recall that the general AR or ARMA models mentioned above are not recursive, in
general. Still these models are generative in principle, i.e., it is possible to give an algorithm
which generates a sequence which obeys a prespecified model. However, the amount of
computation involved may be considerable. We will consider modifications or approxima-
tions of the AR or ARMA models so that it is relatively easy to synthesize an image obeying
a given model.

Preliminaries:

We will consider a covariance stationary array of the real numbers (y(ij). -- , < ij <
co), i,j being integers. i,j,k stand for integers. s,t,r stand for two dimensional vectors specify-
ing the grid points. Often we are given a finite MxM image {y(ij), (i,j) e fl), a = ((ij): 0<
i,j 5 M-1 ). y(s) is the intensity at the grid point s. Typically if s = (ij), i stands for the row
number, numbered increasingly from top to bottom, and j is the column number, numbered
from left to right. The corresponding vector of real frequencies is denoted by
X = (XL ,X2 ), X being the row frequency, and .2 being the column frequency. Similarly zl
and z2 are the unit lead operators in the row and column directions, respectively.
Specifically, zIy(i,j)=y(i+l,j), z2 y(i,j) = y(ij+l). We will also interpret zi as complex
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variables by the relation zi = exp[4-71 -], i = 1,2. ).,z,r,s,t, etc., will be considered to be
row vectors. The vectors composed of image intensities y(.) or the input primitive random
variables v(.), w(.) will usually be column vectors. An image is said to have a trend if
E[y(ij)] is a deterministic function of i and j. An image is said to be covariance stationary if
the covariance function defined below is a function of i and j alone and not a function of s,
and hence is denoted by R(ij)

E[(y(s) - y-)(y(s + (ij)) - y))] = R(ij)

where Y = E[y(s)].

A covariance stationary random field in which 3" is a constant is called as weak stationary. A
random field (y(s)) is said to be isotropic if R(ij) = R(Iii,bJ) = R(j,i). For a covariance sta-
tionary RF, we can define a spectral density.

S(W = R(s)exp[f-s" -.]

= ~ R(sl,s 2)exp[Nf1T(sx 1 +s2 x2 )]

Another important second order measure of an RF model is the variogran
V1 (s) = E[(y(s) - y(s+r))2] = function of r only if y(.) is weak stationary. The covariance
function R(-) can be recovered from S(X,) by the usual Fourier integral

R(r) = f S(X)exp[f 1 X" r] I XI

X = (X1,X2), r = (ij) I d) = IdX1 I Id)-2 I

Another important concept is the neighbor set. A neighbor set is a set of grid points
whose coordinates are near 0, but 0 itself is not a member of a neighbor set. N is said to be
symmetric if r e N--r e N.

Popular neighbor sets are the ones having 4 nearest neighbors and 8 nearest neighbors.

x x x x

X x x * x

x x x x

4 neighbor N 8 neighbor N
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A neighbor set N is said to be semicausal if the row coordinates (or column) of all
members are the same sign. Some examples of the semicausal neighbor sets are given
below.

X x x X X x x " x x
X x * x X x x x x x

X x x X
X * x

X X x X

where- stands for origin.

B. 2D AR Processes

Consider a real valued stationary process possessing a spectral density of the form

S(.) = 1/[positive linear combination of sinusoids in X1,X2]

Our first step is to enquire whether y(.) can be expressed as the output of a system character-
ized by a two dimensional rational transfer function of finite order, the input being some ele-
mentary stochastic process, say v(.). Toward this end, consider the system described by the
difference equation where v(.) is the elementary input

y(s) = I Oy(s+r) + v(s), or = 0-r, (1)

reN

where N, a so-called neighbor set is a set of grid points possessing symmetry, i.e., if s e N,
then -s e N. All No neighbor sets can have the origin 0 for its member. However, not all
neighbor sets may be symmetric. Define the two dimensional polynomial A(z ,z2) in terms
of the coefficients Or

A(zl ,z2) = A(z) = 1 - J;J 0jzZ Z

i j
(ij)e N

The coefficients (Or) in (1) obey the following condition defined in terms of the polynomial
A:

A(z1 ,z2 )>O -IzjI = 1 and Iz2 1 = 1 . (2)

In addition, the input v(-) in (1) is assumed to have zero mean and be orthogonal to all y('),
i.e.,
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E[v(s)y(s+r)] = 0 -Y r 0, (3)

We also assume E[v 2 (s)] = 1. The parameter p in (1) can specify the relative power of the
input term.

We can also rewrite Eq. (1) compactly in terms of the polynomial A:

A(z)y(s) = i4Fp v(s). (4)

In defining (4), zi are interpreted as the unit lead operators in the two directions.

Equation (3) defines the process v(.) only indirectly. The precise structure of the pro-

cess v(.) is not obvious. We will derive later an expression for the spectral density of v(')

using (1)-(3).

Equation (3) can be thought of as defining a v(') process given a y(-) process. It is not

obvious here how to generate a y(.) and a v(-) sequence obeying simultaneously (1)-(3). We
will later show constructively that there do exist infinite sequences y(') and v(.) obeying (1)-

(3).

Structure of v(-) process

The following theorem gives the spectral densities of the processes y(.) and v(.) which

obey (1)-(3).

Theorem 1: The spectral density of y and v obeying (1)-(3) are given below:

Sn() =A(X)5)

S,, (k) A I (X) ,(6)

where Aj(X)=A(z1 ,z2 ), zi =exp[471-i].

Proof..

We will obtain a difference equation for the covariance function of y. Note E(y(-)) = 0.

Let R(t) = E[y(s)y(s+t)]. Multiply (I) by v(s), take expectation on both sides, and use (3).

E[y(s)v(s)] = Fp E[v2(s)]

= rP - (7)

Next multiply (1) by y(s+t) on both sides and take expectation
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R(t) = O erR(r-t) + F E(v(s)y(s+t))
re N

= 7 OrR(r-t) + Vp_ 8 ,0 (8)
re N

by using (3) and (7), where

ko=1 if t=O

=0 otherwise

Take Fourier transform of (8)

(1- Y ,rexp[ I X-r])Syy(x)= p,
reN

i.e., or Syy 0) P
A, (X)"

To prove (6), take spectral density of both sides of (4).

p S,(X) = IIA(zj=exp(4'IX), z2=exp(.-4''X 2))112Syy(.)

= IIA, (.)12S ,(X),

Using (5) for Sy(X), the above equation yields the required expression for S, () in (6).

The proof is given in some detail because it gives the difference equation for Ry(t). In
addition, the above proof indicates the existence of a process y(-) obeying (1)-(3) by demon-
strating its spectral density.

The v(') process is an analog of a one-dimensional moving average process. Its covari-
an'ce function is

E[v(s)v(s+r)] = -0r if r r Ni

=1 if r=O (9)
=0 ,elsewhereJ

However, one important distinction between ID and 2D cases lies in the fact that it cannot
have a 2D version of moving average representation, i.e., it cannot be represented as a finite
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linear combination of independent random variables. The reason is that the symmetric poly-
nomial A(z ,z2 ) cannot be factored, i.e., it cannot be expressed, in general, as a product of 2
finite polynomials.

Converse of Theorem 1:

This section started with the assumption (3) on v(-). What would be the structure of the
process y(-) if v(-) is assumed to be white? We will prove the converse of Theorem 1 and
show that a process with inverse sinusoidal spectral density does not in general have any
representation other than (1). The exceptions will be handled later.

Theorem 2: Consider a zero mean stationary process y(.) having a spectral density as shown
below

Syy(k) = p/[a positive linear combination of sinusoids in XI,X2]

i.e., Syy(X) = p/A(z ,z2), zj = exp(4'i"X), (10)

and A(zl, 2)= 1- 1 Orzr

re N

where N is symmetric, 0,=0r and A(-) obeys (3). Then define v(.) as:

v(s)A-(y(s) - Y y(s+r))/FP,
rr N

Then

E[v(s)y(s+r)] = 0, 1 r * 0.

Proof: By definition

v(s) = A(z)y(s)/ p

Multiply both sides by y(s+t) and take expectation

Rvy(-t) = A(z)Ryy(t)/;p

Take Fourier transform of both sides

s y(%)4_A(z ,z2)Syy(X)/No-o, =exp(V'Xi)
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=p' by (10),

Hence E[v(s)y(s+r)] = 0 if r o 0.

Expression for the Correlation

In the one dimensional case, the correlation function is a linear combination of the
exponentially decaying function of the lag term given that the spectral density is a ratio of
linear combinations of sinusoids. Such a result is not true in the 2D case. Exponential corre-
lation functions are rare. We can evaluate the correlations from the spectral density by
numerical integration. We will give one example below.

Example: Consider the 4 member symmetric neighbor set.

Let y(s) = 1 y(s+r) + Vpv(s)
reN

N = [(ij), IiI = 1 or Ij I = 1, not both]

The spectral density is

SW ) P

1-20(cosk1 +cosX.2)

Here y(-) is isotropic.

For discussion of other models, see (Kashyap, Eom, 1988).

ff1. ROBUST ESTIMAI iON IN CAUSAL AUTOREGRESSIVE MODELS.

A. Introduction

The importance of model-based techniques for image processing tasks such as edge
detection, image synthesis, image coding, image restoration, etc., has been well documented.
However, in all of these models, the image intensity array is assumed to be a multivariate
Gaussian distribution. The Gaussian assumption is used primarily in estimating the parame-
ters of the image model fitted to the image. The corresponding estimation procedure is rela-
tively easy; for example, for the causal autoregressive model, the maximum likelihood
method is the same as the least squares method. However in many applications, it is well
known that the Gaussian assumption is not appropriate.

A more realistic assumption is a contaminated Gaussian noise,
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fwii~i), with probability 1-(
Sw(i,j), with probability P3

where w(ij) is a regular white Gaussian noise and v(ij) is an outlier process and the ratio of

outlier P is assumed small (less than 5%).

Unfortunately, least squares estimators or maximum likelihood estimators under the
Gaussian assumption are very sensitive to minor deviations from the Gaussian noise assump-
tion. Even a single bad data (outlier) among 1000 observations can cause a large error in the
estimator. Because of this excessive sensitivity of least squares estimators, a robust estima-
tor is needed in image models. A robust estimator should possess the following properties:

(1) It should have a reasonably good (optimal or nearly optimal) efficiency at the assumed
noise distribution.

(2) It should be robust in the sense that a small number of outliers impair the performance
only slightly.

(3) Somewhat larger deviations from the assumed distribution should not cause a catas-
trophe.

The resistance to outliers (e.g., impulse noise) is equivalent to the distribution robust-
ness by Hampel's theorem (Huber, 1981). Many different robust estimation algorithms have
been developed in the last twenty years, mostly on the location parameter estimation. These
robust estimation algorithms can be classified into three large types of estimators: M-
estimator, L-estimator, and R-estimator. M-estimator is a maximum likelihood type estima-
tor and it is obtained by solving a minimization problem. L-estimator is a linear combination
of ordered statistics. R-estimator is derived from the rank tests. We are mostly interested in
M-estimator for the application on the image models. M-estimator is easy to extend to the
problems of image models, but other types of estimators are difficult to use in problems other
than simple location parameter estimation.

M-estimator is defined by the following minimization problem:

Minimize 1 p(xi;O) (12)

or solve the following implicit function:

1V(xi;6) = 0 (13)

where p is a continuous and differentiable convex function possessing bounded and continu-

ous derivative W(x)=-x), and p is symmetric about the origin with p(O)=O. The convexity
ax

of the p function ensures the equivalence of (12) and (13). The boundedness and continuity
of the Vi function is essential in obtaining robustness of the M-estimator. If XV is not
bounded, then a single gross outlier can completely upset the estimator. If Vg is not
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continuous, then small changes in the observation x, may produce a large change in the esti-
mator.

There are several different definitions of robustness of an estimator (Huber, 1981).
Qualitative robustness is defined by weak continuity of the estimator. M-estimator is quali-
tatively robust if and only if the corresponding xp is bounded and continuous. Minimax
robust estimator minimizes the maximum degradation over e deviations. The M-estimator of
location is optimal in the sense of minimax robustness. Quantitative robustness is defined by
the property of small change in asymptotic bias and asymptotic variance in the contaminated
neighborhood.

Even though a robust procedure is necessary in most image processing applications,
very little research has been done on the use of a robust procedure in image processing. In
this section, we develop estimation algorithms for the causal autoregressive image model.

B. Causal Autoregressive Model

It is well known that a large class of images can be effectively represented by various
types of image models involving a small number of parameters (Kashyap, 1981). Image
models are already used in image coding (Delp et al., 1979), image synthesis, texture
analysis, and edge detection (Kashyap and Eom, 1985a). Of course, there are many different
types of image models and these can be classified into two large classes of image models by
their second order statistical structures: classical short correlation models and long correla-
tion models. These different image models and their general properties are discussed by
Kashyap (1981).

The causal autoregressive model is a generalization of the one dimensional autoregres-
sive model. This model is simple but has good modelling performance as shown in previous
studies. Consider the following mxn image (Figure 1).

-4 -4 -1- t- - + - + -

I I 1 I I L
] -(il,-1) (i,1I

Lj L_-_
m < 6 I jlI) 00 Ijl -

S_L_i-, j) 00(ij) L rT
I i I I I I T T_T-1 - -- t-I1-I-T-t

-+ -4 -1I-I -1--I- -I- I- -

n
Figure 1. An mxn image and three causal neighbors
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Assume that the image intensity in this image follows the three neighbor causal autore-
gressive model. Let (ij) be an index for the coordinate location and y(ij) be the intensity at
the coordinate (ij). Then the causal three neighbors of this pixel are
{y(i-l,j),y(i,j-1),y(i-l,j-l)). This causality is from the convention of raster scanning, and
because of the causality, the resulting two dimensional model has all the convenience of the
one dimensional model.

Suppose that ({(ij)} is a two dimensional white noise sequence with outliers as
assumed in (11). The variance of the regular part of noise is c"2. Then the three neighbor
causal autoregressive model is represented by the following equation:

y(ij) = OTz(i,j) + (ij) (14)

where 0 is a parameter vector and z(i,j) is a vector consisting of intensities of three causal
neighbors and unity. The last element of the vector z(ij) is used to represent the constant
grey level in the image.

y(i,j-1)|y(i-l ,j)

z(i,j) = y(il,J) (15)
y(i-l,j-l)

It is assumed that every pixel has all of its neighbors, i.e., for each pixel at (ij), pixels at (i j-
1), (i-lj) and (i-l,j-1) are available.

We consider the robust parameter estimation of the causal autoregressive model for two
cases of outliers. First case, we assume that the process y(ij) given in (14) can be perfectly
observed. In this case, the outlier process is involved only in the noise process (ij) to gen-
erate y(ij). Second case, we assume that the observation x(ij) of the process y(ij) is cor-
rupted by noise 4(ij). It is given by the following equation:

x(i,j) = y(i,j) + 4(i,j) . (16)

The noise process 4 is assumed to contain outliers. In this case, the outliers are not only
involved in generating y(ij) but are also involved in observation. In the next section, robust
parameter estimation will be discussed for these two different cases of outliers.

C. Robust Parameter Estimation with Perfect Observations

The parameters of the image model given in (14) can be estimated by robust M-
estimator. The M-estimator of the parameters in (14) is a generalization of location M-
estimator. Define the following function Q(0, a).
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Q(0o) = , .OTZ(i,) + aQ(')m r -I- r(17)

where p is a continuous, differentiable and convex function possessing a bounded derivative,
and it is symmetric about the origin with p(O) = 0. Then M-estimator of the causal autore-
gressive model is defined by the following minimization problem:

Minimize Q(, o). (18)

The M-estimator can also be obtained by solving the following two equations simultane-
ously.

VeQ(O) -1 Y(ij)-OTz(i'j) zT(i,j) =0 (19)
mn G

Q(°'o) 1 1 [y(ij ) - Tz(ij)] 0o 2(0
2 mn n = 0 (20)

where N(x)= ap(x) and X(x) = xw(x)-p(x), function Nf is continuous and bounded.
ax

The following p, 4f, and X functions satisfy the above conditions on these functions. In
this section, it is assumed that the following functions are used in our robust estimation algo-
rithm.

1 2_-x , I <c
p(x) = 12 (21)

2

dpx -c, Il>

C, x>-c
Nf(x) = dp(x) = x, __c:5 x:5 c (22)

dx

X(x) = xv(x) - p(x) = I[V(x)]2 (23)
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Asymptotic Property

The asymptotic property of the robust M-estimator for autoregression is investigated by
Nasburg and Kashyap (1975). The asymptotic property of one dimensional autoregression is
also applicable to two dimensional causal autoregressive model. First the following condi-
tions are assumed:

(i) {y(ij)) is a weakly stationary random sequence.

(ii) V(.) is an odd, monotone increasing function satisfying a Lipshitz condition.

(iii) The noise process C has finite moments up to third order.

(iv) E[V/( (ij)+c)] = N/(c) for all c.

Now define 6N as an M-estimator which satisfies (18) and is computed with sample size
N. The following Theorem 6 and Theorem 7 are from Nasburg and Kashyap (1975).

Theorem 6 (consistency): Under the above assumptions,

6N --- 0 as N---+ - w.p.1

Theorem 7 (Asymptotic Normality): Under the above assumptions, VN(0N- ) con-
Vi

verges in distribution to a normal distribution with zero mean and variance - , where

V1 = 12E[2((ij))]

and

V2 =10

Choice of xV function

A good choice of V function is not only important for the robustness of the estimator
but is also important for the fast convergence of me iterative procedure. The theoretical
results in Section ILf.C are developed with the following monotone W function ''HL.

C, x>c

VHL(X)= x, -c x c (24)
"-C, X <-"C

Typical values for c are between 1.5 and 2.
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Figure 2. Hard limiter type -q function

Even before the theoretical work on robust estimation, the 3-; edit rule was used for
data cleaning for many years. The 3-a rule i! a simple implementation of hard rejection rule
and corresponds to the following choice of xV function.

fx, ix <3 (25)

xx

-3 // x

3

Figure 3. V function for 3-a rule

The above Vi function is obviously not continuous. The discontinuity of the Wj function

is not desirable for robust estimation as discussed before.
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Another interesting W-function is the following Hampel's 4-function. The Hampel's
function is also continuous but returns to zero outside of some interval. It is known that the
redescending V function yields higher efficiencies than monotone V function for extremely
heavy tailed distributions (Huber, 1981; Rey, 1983). This advantage of the redescending W
function is also confirmed in our experiment: The procedure converges much faster with
Hampel's redescending xV function (26) than with Huber's monotone xV function (24). This
function performed best with parameters a=2, b=2.5, c=4.5 in our experiment.

x, IxI_<a
a

(b-a)
Aa(x) =  (26)

T
ba) (b+x), -b:5 x <-a

0, IxI >b

;b(x)

-e~~ Cb-

Figure 4. Hampel's W' function

These three different W functions are compared in the experiment, and the best perform-
ing function is chosen in our algorithm. The Hampel's function performed better than other
functions in our experiment with the parameter values given above.

IV. IMAGE RESTORATION WITH ROBUST IMAGE MODELLING TECHNIQUES.

A. Introduction

Restoration of an image in the presence of noise is one of the fundamental problems in
image processing. Let x(ij) be the observed image intensity of the original (uncorrupted)
image intensity y(ij) at the location (ij) and is assumed corrupted by additive white noise
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(i,j).

x(i,j) = y(i,j) + (i,j) (27)

To restore image intensity (y(ij)) from the observation {x(ij)), we generally make assump-
tions on the noise process {(ij)} and the original image intensity y(ij). A common
assumption on the noise process is that the noise distribution is Gaussian. However, the
assumption of Gaussian noise has been seriously questioned, as we discussed in the previous
section. A more realistic assumption is that the noise is a mixture of Gaussian and impulse
noise.

iD ' w(i,j), with probability 1-13 (28)lv(i,j), with probability 1(

where w(ij) is regular Gaussian noise and v(i,j) is an outlier, 13 is the fraction of outliers and
it is usually less than 5%.

There are many image restoration methods based on the Gaussian noise assumption.
Chellappa and Kashyap (1982) used a spatial interaction model to represent image intensity
array and restored images with minimum mean square error criterion. Geman and Geman
(1984) used the equivalence of Markov random field and Gibbs distribution and restored
images by a stochastic relaxation method with maximum aposteriori criterion. Bovick et al.
(1985) used an order constrained least squares method. Wu (1985) used a multidimensional
Kalman filtering approach and nonsymmetric half plane autoregressive model. Chan and
Lim (1985) used a cascade of four 1D adaptive filters in four different directions.

Unfortunately, most image restoration methods based on the Gaussian noise assumption
are not effective for impulse noise (Rosenfeld and Kak, 1982). The impulsive component of
the noise, which is also called as salt-and-pepper noise, is only a small portion (usually less
than 5%) of the total image but difficult to remove by the methods based on the Gaussian
noise assumption, because its amplitude is much higher than the signal amplitude. The
importance of this problem has been recognized for a long period of time. Traditionally,
nonlinear filtering methods such as median filter (Pratt, 1978) or a-trimmed mean filter
(Bovick, et al., 1983) are used to remove impulse noise from the image. These methods use
a sliding window and the grey level of the center pixel of the window is estimated by the
median or a-trimmed mean of the samples in the window. The grey level of the center pixel
is replaced by this estimate.

These traditional nonlinear filtering methods such as median filter or a-trimmed mean
filters are based on the robust location estimator which uses a linear combination of ordered
statistics (robust L-estimator) (Huber, 1981). These methods based on the ordered statistics
are used in robust estimation of the location parameter from the 18th century (Rey, 1983).
The median or generalized median (linear combination of ordered statistics) are resistant to
the contamination of outliers. However, it is based on the assumption of constant grey level
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in the window applied to the image. Obviously, this constant intensity assumption is inaccu-
rate. The image intensity in a window is continuously changing, especially near the edges or
comers. Because of this constant grey level assumption, the methods based on the linear
combination of ordered statistics, such as median filter or a-trimmed mean filter, have the
disadvantage of blurry results. The blurring effect is more severe on the a-trimmed mean
filter than median filter, because of its averaging effect even if the mean square error of the
a-trimmed mean filter is smaller than that of median filter. Median filter generally does
better in preserving edges and comers, but the well known examples (Pratt, 1978) show that
it also blurs the image.

There are two difficulties in solving the blurring problem in the traditional methods
such as median filter or a-trimmed mean filter. First, the intensity function in the window
applied to the image is unknown and difficult to be represented by a simple function.
Second, the linear combination or ordered statistics method used in traditional methods have
difficulty in accommodating the effect of changing intensity. Even though there has been a
facet model-based approach (Yasuoka and Haralick, 1983) to reduce the blurring effect after
removing impulse noise, it is based on the least squares estimator which is not robust to
impulse noise. We propose a restoration method which uses a statistical image model for the
representation of changing intensity and which uses a type of robust method, the so-callcd
M-estimator.

We can use one of the image models mentioned earlier to represent intensity change in

a window of the original image. The parameters of the image model can be estimated by
robust M-estimator as shown in Section III. The robust M-estimator of the causal autore-

gressive model can be obtained by the iterative algorithm given in Section III. This estima-
tion algorithm includes a data cleaning procedure at each iteration, and it reduces the outliers
in the observed data. The convergence property of the robust parameter estimation algo-
rithm is also discussed in Section III. The image data become noise free as the number of
iterations increases, because the parameter estimates converge as the number of iterations
increases by the convergence of M-estimator of the causal autoregressive model. By this
data cleaning procedure, we can obtain the image from which most of the impulse noise has
been removed, and the original sharpness of the edges is preserved. The iterative data clean-
ing procedure converges relatively fast in our experiment. In most of our experiments, the
data cleaning procedure converges only after three iterations with almost noise free results.
The restoration algorithm based on the x ,)ust estimation algorithm has many advantages
over the traditional methods such as median filter or a-trimmed mean filter. The comparison
with other methods will be discussed later.

40



B. Intensity Representation for Restoration

The objective of the restoration problem is to estimate the original image intensity y(i,j)
from the given sequence of x(i,j). We will fit a causal autoregressive model for the original
(noise free) image y(.).

Let (ij) be an index for the coordinate location and y(i,j) be the intensity at the location
(ij). Then the three neighbor causal autoregressive model is represented by the following
equation:

y(i,j) = OTz(ij) + (i,j) (29)

where 0 is a parameter vector, f (i,j)) is a two dimensional white noise sequence with
outliers as in (28), and z(i,j) is a vector consisting of intensities of three causal neighbors and
unity. The last element of the vector z(i,j) is used to represent constant grey level in the
image.

y(i,j-1)

z(i,j) - y(i-lj-) (30)
y(i-1,j-l)

I

It is assumed that every pixel has all of its neighbors, i.e., for each pixel at (ij), pixels at (ij-
1), (i-1j) and (i-l,j-l) are available.

We assume that the observation x(i,j) of the process y(i,j) is corrupted by noise 4(i,j).
It is given by the following equation:

x(i,j) = y(i,j) + (i,j) . (31)

The noise process 4 is assumed to contain outliers.

C. Image Restoration Algorithm

The purpose of image restoration is to remove noise, including impulse noise, from the
image. The image degradation process can be represented by the following equation:

x(i,j) = y(i,j) + 4(i,j)

where x is the observation, y is the original image intensity, and 4 is the noise process with
outlier. Image restoration involves estimation of the original intensity y from the observa-
tion x. For a small sized image, original image intensity can be modelled by a causal autore-
gressive model. If the original image intensity indeed obeys a causal autoregressive model,
then the original image intensity can be recovered by the robust estimation algorithm for the
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noisy observation case (Eom, Kashyap, 1988). The data cleaning procedure removes outliers
at each iteration without degrading the original signal.

The restoration method based on Ehe robust image model has an advantage over con-
ventional methods such as median filter or a-trimmed mean filter. The robust image model-
based method does not blur images after restoration. Conventional methods, such as median
filter or a-trimmed mean filter, replace every pixel by its location estimates. Because these
methods are based on the constant intensity assumption, the details of the original image are
significantly blurred.

This procedure at each iteration is described in the following block diagram (Figure 5)
and the algorithm is also summarized below.

Image Restoration Algorithm

1. Divide the image into small sized (8x8) windows. The following procedures in steps
2-6 are applied for each window.

2. Let {x(ij)} represent the given noisy data in the window and {y(k)(ij)} represent the
cleaned data at the k-th iteration. Initially, y(°)(ij) = x(ij) for all (ij). Compute initial
estimators 0(°) and o) by the least squares method.

0(0) = [jz (° ) ( i
' j ) z (° T (i,j)]-1 [Yz (° )(i'j )y (° )(i'j)] (32)

i~j i~j

and

G =. -I-[y(°)(i,j) - o(O)T z(O)(i,j)12 (33)

where m and n are row and column dimensions of the image and z(k)(ij) is the follow-

ing state vector.

.x (k)(i,j-1)

z(k)(ij) - x(k)(i-lj) (34)x (k)(i--l,j--1)

1

3. Consider k-th iteration, k>O. Compute residuals r(k)(ij) and modified residuals i(k)(ij)
by the following formula with the estimated parameters computed in step 2 for all pix-
els in the window.

r(k) (i j) = y(k) (ij) - 0 (k)T z(k) (ij) (35)
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where 4t is a bounded and continuous functions as discussed in Section III (e.g.,
Hampel's redescending v-function).

4. Restore image by the following rule (data cleaning)

y(k+)(ij) = O(k r)Tz(k)(ij) + r(k)(ij) (37)

5. Update estimators of parameter 0 and scale parameter oy by the following formula.

O(k+1) = 9 (k) + [jZzO (i 'j )z  k t (i,j)]- ' [Yz(k)(i,j)( ) (ij)] (38)
i~j i.j

and

_ -r (k) (i,j)]2  (39)

6. Repeat steps 3-5 until the difference between estimates in successive iterations becomes
small.

The properties of the algorithm are discussed in (Eom and Kashyap, 1988).

Iterate

Wk)
yk) Parameter Computempute Data I (

Estimation (k) Residual CleaningI I ........ .

Figure 5. Block diagram of image restoration method at each iteration. y'() and y(+l)

are cleaned data at k-th and (k+l)-th iterations, respectively, 0 and o ) are
parameter estimates obtained by algorithm 1, and r(k) is the residual.
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D. Experimental Results

The restoration algorithm based on the robust modelling approach is applied to five dif-
ferent pictures as shown in Figure 6. Figure 6.a is a 256x256 picture of a bridge. Figure 6.b
is a 256x256 picture of the face of a monkey. Figure 6.c is a 256x256 picture of a girl. Fig-
ure 6.d is a 256x256 picture of an outdoor scene. Figure 6.e is a 512x512 aerial picture of
Purdue University campus. All of these pictures are digitized into 256 grey levels. To meas-
ure the performance of different algorithms on the noisy pictures, contaminated images are
constructed by adding both Gaussian (0,100) noise and 5% of impulse noise to the originals
given in Figure 6. The generated impulse noise has only 2 grey levels, 0 (black) and 255
(white), both with the same probability. In the robust model-based algorithm, Hampel's xV-
function is used in all experiments. Experiments are designed to clarify three different
aspects of the restoration process. First, the convergence of the restoration algorithm is
shown with these noisy pictures and the rate of convergence is measured experimentally.
Second, the mean square error of three different restoration algorithms, namely, model-based
algorithm, median filter, and a-trimmed mean filter, are compared for different window sizes
and different images. Third, the overall performance of three different restoration algorithms
are compared qualitatively for different noisy images.

Convergence of Image Restoration Algorithm

The robust model-based restoration algorithm is applied to the contaminated images.
Mean square error of the cleaned image is computed at each iteration.

Figures 7.a, 7.b, and 7.c are plots of mean square errors versus the number of iterations
for the outdoor scene (Figure 6.d), the girl's image (Figure 6.c) and the bridge scene (Figure
6.a), respectively. Contaminated pictures are made by adding Gaussian (0,100) noise and
5% of impulse noise to the images in Figure 6. Initial mean square errors in all cases are very
large because of the additive noise, but they decrease considerably fast in the first two itera-
tions. The mean square error stabilizes in less than three iterations. The convergence of the
data cleaning method is also fast (less than three iterations).

Mean Square Error Comparison of Image Restoration Methods

Four different types of image restoration methods with different sizes of windows, 3x3,
5x5, and 7x7, are used in this experiment. These are the mean filter, median filter, ax-
trimmed mean filter with the trimming ratio a=O. 15, and the robust model-based method.
Note that the popular choice of t is in the range from 0.1 to 0.15, and the method performed
best with choice a=0.15 in our experiment. In the case of robust model-based method, the
fixed window size of 8x8 is used. The choice of 8x8 is from convenience and a small change
of window size would not adversely affect the performance, because the fitted image model
will not change significantly.

Four contaminated images are obtained from the originals in Figure 6 by the same pro-
cedure explained in the above section. Different restoration methods which we discussed in
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the above are applied to these contaminated images, and mean square error of restored
images are computed. In the case of median filter, mean filter, and a-trimmed mean filter,
the mean square error is computed for different window sizes, but in the case of robust
model-based method, the plotted mean square error is for the fixed window size 8x8. The
computed mean square error is plotted with respect to window size.

Figures 8.a, 8.b, 8.c, 8.d are plots of mean square error computed by different methods
for the originals of the outdoor scene (Figure 6.d), girl's images (Figures 6.c), bridge scene
(Figure 6.a), and aerial picture of Purdue University campus (Figure 6.e), respectively. The
results are consistent for all different types of images. All traditional methods result in rela-
tively large values of mean square error on most of images, especially on the images having
many edges. For example, in the outdoor scene, minimum values of mean square error of
mean filter, median filter, and a-trimmed mean filter are 690.1441, 651.1638, and 220.2222,
respectively. In contrast, the mean square error of the robust model-based method is
103.9669. The difference, which is significant, corresponds to the fact that the intensity in a
window cannot be approximated by a constant because of the edges and comers. Traditional
methods have small values of mean square error at window sizes 3x3 or 5x5 depending on
the types of images. Mean filter performs worst on all images tested, as expected, and
median filter has slightly lower mean square error than that of mean filter. a-trimmed mean
filter performs better than median filter or mean filter but its mean square error is always
larger than that of robust model-based method on all images tested. The mean square error
comparison shows that the robust model-based method performs better than any other con-
ventional methods on tested images. The minimum values of mean square error in conven-
tional methods are 220.2222 for outdoor scene, 80.6720 for girl, 92.1115 for bridge, and
253.7658 for Purdue campus, respectively. Mean square errors of our approach are 103.9669
for outdoor scene, 52.5648 for girl, 47.3367 for bridge, and 189.1443 for Purdue campus.
The level of mean square error of conventional methods are always higher than that of robust
model-based method. The detailed comparison is summarized in Table III.

Table III. Mean square error comparison of different restoration methods on four
different types of images.

MSE of MSE of MSE of MSE of
Image robust model method mean filter median filter a-TM filter

Outdoor 103.9669 690.1441 651.1638 220.2222
Girl 52.5648 318.9122 300.3172 80.6720

Bridge 47.3367 264.6290 216.3370 92.1115
Campus 189.1433 453.9291 401.6255 253.7658
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Qualitative Comparison of Image Restoration Methods

The noisy images and images restored by different restoration algorithms are shown in
Figures 9-10. Figures 9-10 are results on the originals of Figure 6.a-b in the same order. The
upper left corner of the each picture of Figures 9-10 is the noisy picture contaminated by
noise and is generated by adding white Gaussian (0,100) noise and 5% of impulse noise to
the original. This image shows a typical salt-and-pepper noise pattern as well as Gaussian
noise degradation. This noisy picture is used to obtain restored images by different methods.

The upper right corner of each picture in Figures 9-10 is the restored image by robust
model-based method. This image is obtained after three iterations of data cleaning process.
The impulsive noise is almost completely absent and residual Gaussian noise is hardly
noticeable. The fine details of the restored image are well preserved. As a matter of fact,
almost all details of the original in Figure 6 are still well shown in this picture. For example,
guy wire of the bridge (Figure 9), hair of the monkey's face (Figure 10), etc., have sharp
edges as in the original. This result shows the important ability of the image model-based
approach: it can preserve the edges and corners even with superior performance of noise
removal.

The lower left corner of each picture of Figures 9-10 is the image restored by median
filter with a 5x5 window. Note that the 5x5 window gives lowest mean square error as well
as the 3x3 window in the experiment of the former section. Most of the impulse noise are
removed in this picture, but it is much more blurred than the result of robust model-based
method. This blurring effect can be more easily observed in the images with many edges
and corners than in the images with large areas with constant grey levels. Guy wire and
details of the bridge frame (Figure 9) and hairs and eyes of monkey's face (Figure 10) are
blurred and cannot be observed in these median filtered images. The regions with small
intensity variations are replaced by constant grey level and the transitions between different
regions are rather abrupt. This effect is typical in the median filter, and it is because the
median filter fails in smoothing images. These effects can be observed in the tower region of
the bridge (Figure 9).

The lower right corner of each picture of Figures 9-10 is the image restored by ac-
trimmed mean filter with a 5x5 window and c=0.15. Note that the choice of a-=0.15 is con-
sidered a good choice in previous studies (Rey, 1983; Bickel, 1977). Even though the a-
trimmed mean filter has lower mean square error than the median filter, the image restored
by the a-trimmed mean filter is more blurred than the median filter. Edges and corners of
the image convey more information to human perception and because of this, the image
restored by a-trimmed mean filter is worse than median filter in the visual comparison even
though it has smaller mean square error. For example, tower and guy wire in the bridge (Fig-
ure 9) and hairs and eyes of monkey's face (Figure 10) are blurred. It is also not successful
in removing impulse noise and has considerable residual noise caused by impulse noise.
These residual noise can be observed in all images (Figures 9-10).
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Figure 6. Originals
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Figure 9. Qualitative comparison for Bridge picture. Most of details, such as guy wire,
are clearly shown in the result of model-based approach, but are not clear in
others. (a) Comtaminated image. (b) Robust model approach. (c) Median
filter. (d) a-trimmed mean filter.
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Figure 10. Qualitative comparison for Monkey picture. Most of details, such as hair,
eyes, etc., are clearly shown in the result of model-based approach, but are
not clear in other,. (a) Comtaminated image. (b) Robust model approach. (c)
Median filter. (d) a-trimmed mean filter.
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V. COMPOSITE EDGE DETECTION.

A. Introduction

Edge detection is not only an important topic in image processing in its own right, but

also as a tool for the important problem of image segmentation. The traditional methods of

edge detection based on the windows of Robert, Prewitt or Sobel (Rosenfeld and Kak, 1982)

are based on the fact that there is a sharp change in the intensity on either side of an edge

pixel. We can call these types of edges as step edges. Instead of using the step function, we

can employ other types of functions like the roof function (Brady, 1982) to characterize the

local intensity behavior near the edge. In recent times there have been attempts at character-

izing and detecting edges by considering the intensity density over a broad area around the

edge pixels. Examples of these methods are the Laplacian on Gaussian operator (Marr and

Hildreth, 1980), or difference of Gaussians (DOG) (Wilson and Bergen, 1979), the facet

model-based methods (Haralick, 1984), and the causal autoregressive model-based methods
(Zhou and Chellappa, 1986).

However, there is another mechanism of creation of an edge which has recently
received some attention. Consider the pixels which are at the boundary of two textures, say

cotton canvas and raffia. There is no sharp intensity change at the boundary, yet everyone
will perceive the existence of a sharp edge at the boundary of the two textures. We can

characterize these edge pixels as texture edges. Recently there has been considerable interest
in developing methods which can detect all the texture boundaries in a scene involving

several textures (Kashyap and Eom, 1985a). These algorithms effectively locate most of the

boundaries between the textures which are perceived by a human observer. Of course, any
real life images such as an outdoor scene or airport scene will have both intensity edges and

texture edges.

When we apply the methods mentioned earlier for detecting edges on outdoor scenes,

the final result is not satisfactory for several reasons. For instance, the result given by the

Laplacian on Gaussian approach or the facet model approach yields a lot of micro edges

corresponding to the leaves of a tree or the inside of a shrub in the house image. These
micro edges do not convey much information and only add to the confusion. Even the edges

due to runways or highways are often smeared. The texture boundaries are never sharply
delineated. These methods cannot distinguish between the edges within a texture like the
wood texture and the boundary between the two textures, say wood and cork.

The texture based algorithms also have their limitations. Since the size of the windows
or masks needed to detect or discriminate between textures is much bigger than that used in

the other methods, sharp edges like highways or runways in the airport are missed by these
images.

The purpose of this section is to develop a composite edge detection approach which

can detect all types of edges including intensity edges and texture edges. We employ a two

stage approach. In the first stage, we use an algorithm which determines all the possible
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pixels in an image which are potential edges (either intensity edge or texture edge). In addi-
tion, the algorithm gives the direction of the potential edge. In the second stage, we submit
each candidate edge pixel to two procedures, one of which is designed to test whether the
candidate edge pixel is a texture edge or not, and the other is designed to test whether the
candidate edge is an intensity edge. We accept only those edges which pass at least one of
the two tests. The procedure for testing for the texture edge is a likelihood approach based
on a causal autoregressive model. The procedure for testing for a step edge is fairly conven-
tional.

The comprehensive algorithm (Eom, Kashyap, 1987, 1989a, 1989b) presented here was
applied to several images, both synthetic as well as real life images. The synthetic images
are checkerboard images involving two different textures alternately. Each texture has its
own internal structure. The other two images are the outdoor scene and the airport image.
We give the results of our algorithm. To bring out the highlights of our approach, we also
give the results of the two popular edge detection approaches in recent literature, namely the
Laplacian on Gaussian method and the facet model approach, for all four images. The
overall approach is given in Figure 11.

_ Texture Edge
S Test

Original Edge Hypothesis Potential Final- -OR Detected
Image Generation Edges Edges

_ Intensity

Edge Test

Figure 11. Block diagram of the composite edge detection algorithm

B. Edge Hypothesis Generation (Algorithm 1)

As indicated in Figure 11, the first step in the composite edge detection algorithm is
identifying all pixels which are potential edge pixels. In this process, all potential edge pix-
els should be detected whether they are step edges, roof edges, or texture edges. Intensity
edges, such as step edges or roof edges have abrupt changes of intensity at the edge pixels
and these can be detected by a derivative operator. Intensity transition is also involved at the

53



texture boundary as well as at microedges inside of each texture and it can be detected by a

derivative operator. The algorithm used here is based on directional derivatives. We use
3x3 masks so that the edge pixels deleted here are relatively sharp. Large mask operators are
not adequate because they yield potential edge pixels which are situated away from the
actual or true edge pixels.

Let g(x,y) be the image intensity at position (x,y). The first order directional derivative
is given by the following equation.

ag ag ag .
5- - cosa + - sina (40)
gx ay

where a and A are partial derivatives of g in x and y directions and can be obtained by
ax ay

convolving with the following differencing operators Dx and Dy.

4 11
Dx -1 0 1 Dy= 0 0 0 (41)

o 1 01

i.e.,

(i,j)= g(i+k,j+l)Dx(k,l) (42.a)ax k.l=-l

g I --. 1
(ij)= g(i+k,j+l)Dy(k,l) (42.b)

a11-1

The angle of gradient direction is

a = tan-  g ay. (43)
ag/ax

Likewise, the second order directional derivative is given by the following.

a2g  2g cos2a+ 2 -xay cosotsina + 2 sin2cc, (44)

a2g9 a2g9 a2 g aeotie ycnovnwhere second order partial derivatives g a~g and - are obtained by convolving g
x2 '  xay ay 2

with the following second ordcr differencing operators Dxx, Dxy and Dyy.
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1 -21
D - 3[1 -2 1 DYY- =[ -2-2-2

1-2 1 111

DXY = 0 0 (45)

i.e.,

a2 g
(i,j)= Y g(i+k,j+l)Dx (k, l) (46.a)

ax kl=-I

- (i,j)-= g(i+k,j+l)Dxy(k,l) (46.b)
Nxay

(i,j)= Y g(i+k,j+l)Dy,(k,l) (46.c)
y k,1=-1

An edge hypothesis is made at the pixel whose first directional derivative has a magni-
tude larger than a threshold t1 and the corresponding second order directional derivative is
negative, i.e.,

O~2g

> tj, and < 0 (47)

Note that the Prewitt operator is a special case of this directional derivatives method and the
Prewitt operator does not involve second order directional derivatives.

The angle of the first derivative is given by ot = tan- it can be any value
T agotandgittfitdiaviginb -tne

between 0 to 360 degrees. The angle of edge direction is quantized into 4 directions as
defined in Table IV so that a horizontal or vertical directional strips can be applied. Around
each potential edge pixel, a mx2n strip (5x16 is used in this experiment) is constructed so
that the strip is perpendicular to the approximated edge direction (Figure 12). For each
potential edge pixel at the center of the strip, the following null hypothesis H0 is assigned.

H0 = An edge exists in the given direction

The above hypothesis is tested by applying decision rules to the image strip. The details of
the tests are given later.
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Table IV. Quantization rule for estimated edge direction

gradient angle(degrees) approximated direction type of strip

315-45 0 horizontal
45- 135 2 vertical

135 - 225 4 horizontal

225-315 6 vertical

potential edge pixeln n estimated

______.____edge direction

mf2 estimated

gradient direction

Figure 12. m x 2n strip of image with potential edge pixel at center

C. Confirming the Presence of Edges (Algorithm 2)

The potential edge pixels selected by the edge hypothesis generation process given in

Section V.B are not the final edge pixels. Each potential edge can be either an intensity
edge, a texture edge, or a spurious edge (micro-edge) caused by intensity changes inside of a
texture. We want to detect only valid edges such as intensity edges or texture edges, but
microedges (spurious edges) need be deleted from the potential edge map. We need to
confirm valid edges at each potential edge pixel. This confirmation process involves two dif-

ferent types of confirmation processes. Intensity edges and texture edges have different gen-
eration mechanisms, and these need to be confirmed by separate decision processes.

Therefore, two different types of decision rules are needed to detect both texture edges
and intensity edges. The first decision rule tests the existence of a texture edge at the given
position and edge direction, and it is based on the likelihood ratio test with statistical texture
modelling method. The second decision rule tests the existence of an intensity edge, and it is
based on the differencing operator with weighted differencing. The pixels which fail in both
of these tests will be deleted from the final edge mp.
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1. Confirming a Texture Edge

A texture edge in an image can be modelled as a boundary between two different tex-
ture regions. This is analogous to the intensity edge which is modelled by a boundary
between two different grey levels. Detection of a texture edge is much more difficult than
detection of intensity edges, because each texture region contains many microedges. The
texture edges cannot be detected by the strength of gradient or Laplacian operators, and we
need a method to characterize textures before detecting texture edges. Textures can be
characterized by a small number of parameters after fitting the image by an image model
such as causal autoregressive model.

Consider a horizontal strip of an image intensity array which is sufficiently small, so
that the strip can have at most two different textures. If it has two textures, the boundary
between textures can be assumed as vertical. In this strip, a texture edge is defined as the
boundary between two different textures.

Consider the strip around the candidate pixel defined earlier. Let the null and alterna-
tive hypothesis be

Ho = texture edge exists at the given pixel and direction
H, = no texture edge exists at the given pixel and direction.

Under the hypothesis H0 , texture in the left of the potential edge (this region will be
called Ql) and texture in the right of the potential edge (this region will be called 02) are
different from each other. These two different textures are modeled by causal autoregressive
models. The models in the regions f~l and K22 are defined below.

g(ij) = 0Tz(i,j) + V " (i,j), if 0_<i.m,0_j5n (region 01) (48)

g(i j) - OTz(i,j) + c]'7o(ij), if 05im,n<j!_2n (region 02) (49)

where {co(i.j)} is a standard 2D white noise sequence, 01 and 02 are parameter vectors for
the regions 01 and 02, respectively, and z(ij) is a 4-vector.

- g(i-l ,j)
g(i-lj-1)

I

The parameters of the autoregressive model in the 2 regions Ql and 2 will be different
under the null hypothesis Ho.

On the other hand, under the hypothesis Hl , the strip has only one type of texture,

which is also assumed to follow a causal autoregressive model.
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g(ij) = OTz(i,j) + \0 oi,j), if O<i_.m,05j 2n (region Q, U02) (50)

where 00 is the parameter vector and z(i,j) is previously defined.

The decision rule based on the likelihood ratio test has the following form:

ccept H0 if logp(gJH 0 )-logp(g H1 2) > K

reject H0 if logp(gJHo)-logp(gIH 1 ) <K (*)

where K is a constant. The likelihood functions logp(g I H0) and logp(g I H1 ) for autoregres-
sive model are given in (Kashyap, Eom, 1988; Eom, Kashyap, 1989b). The proof can be
found in the reference (Kashyap, 1982).

The texture edge detection by applying the decision rule (*) on the pixels with edge
hypothesis has several advantages over the texture boundary detection algorithms given in
(Kashyap, 1985a). First, the texture edge direction is estimated in new method, and this
gives more accuracy in detecting edges than applying both horizontal and vertical strips.
Second, the new method tests only the existence of a texture edge, and it provides much fas-
ter processing.

2. Confirming an Intensity Edge

This decision rule tests the existence of an intensity edge at the pixel having edge
hypothesis. The intensity edge is modeled by a step edge and the decision is made on the
output of the differencing operator with weighted averaging. Briefly speaking, with the strip
applied at the given pixel, the difference of the weighted average of grey levels in both sides
from the potential edge pixel is computed. If this difference exceeds a threshold, the pixel is
accepted. This decision rule also can be extended to detect the local maximum instead of
detecting the strength of the weighted differencing operator output. Let W(ij) be a weight
function. This weight function should be asymmetric with respect to the hypothetical edge
pixel and direction. Then the output of the weighted differencing operator is given by the
following equation.

m2n
- YYW(i,j)g(i,j) (51)

i=0j=0

All edge detection window operators can be considered as a member of this weighted dif-
ferencing operators. For example, Prewitt, Robert and Sobel operators (Rosenfeld and Kak,
1982) are weighted differencing operators with appropriate weight functions detecting large
output as edges, Laplacian on Gaussian (Marr and Hildreth, 1980) operator is also a
weighted differencing operator with a derivative of Gaussian weight function detecting local
maximum of output. Many variations of weight functions are possible, but we will restrict
our attention to the simple operator which can detect the step edges. Probably the simplest
weighted differencing operator is the one with uniform weight function. This operator is
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defined for the given strip as follows.

W(i,j)= I if0:j<2n (52)

The above operator is used to decide the existence of an intensity edge at the potential edge
pixel in our experiment. The decision is based on the strength of the operator output, i.e.,

accept edge if > t (53)
reject edge otherwise

where t is a constant.

Experimental results (Figures 13-15) show good performance with this simple decision
rule.

D. Experimental Results

The composite edge detection algorithm is tested with the following four different
images (Figure 13). Figure 13.a is a 128x128 image generated from two textures chosen
from Brodatz's photo album (Brodatz, 1966), grass and wood grain textures. This image has
only major edges at the boundary of two textures but each square has many weak edges
caused by textures.

Figure 13.b is a 128x128 original test image generated by rotating a checker board
image generated similarly as Figure 13.a. Textures in this image are the same as in Figure
13.a. The major edges of this image are sloped in a 45-degree direction and each diamond
pattern has many weak edges caused by intensity changes within a texture. This image is
given to demonstrate that our method can detect edges which are neither horizontal nor verti-
cal. Figure 13.c is a 256x256 monkey image.

Experiment 1: Checker Board Image

Figure 14.a is the final result. of composite edge detection algorithm with a low thres-
hold in the decision rule for the intensity edge. It shows the detected major edges at the
boundary of two different textures as well as weak edges inside of each texture. The edges
detected inside of textures are close to the actual edge locations. Figure 14.b is the result of
composite edge detection algorithm with a high threshold in the decision rule for the inten-
sity edge. It shows only major edges between two differeait textures and most of the weak
edges inside the textures are eliminated. Thus an investigator can get an idea of the texture
edges (corresponding to the boundaries between textures) and the intensity edges separately.

Figure 14.c is the result of Laplacian on Gaussian approach with ; = 0.5. Even if we
alter the parameters, the final edge map is still similar to the one before. Thus, if we use this
approach, we cannot distinguish the edges which are caused by the boundaries of textures
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and the microedges within each texture.

Figure 14.d is a result of facet model approach. It shows detected major edges and weak
edges. Even if the parameters are changed, the final edge map is similar to the Figure 14.d.
Thus if we use this approach, the texture edges and intensity edges are not distinguished.
Another noticeable distortion is at the comer of the square. The detected edges around the
comer are distorted.

Experiment 2: Rotated Checker Board Image

Figure 15.a is the final result of composite edge detection algorithm with a low thres-
hold in the decision rule for the intensity edge. It shows all major edges between texture
regions and weak edges inside of each texture region. The location of detected edges
correspond to actual edge locations of the original image. Figure 15.b is the final result of
composite edge detection algorithm with a high threshold in the decision rule for the inten-
sity edge. It shows all major edges between different texture regions, but most of the weak
edges inside of a texture region are removed without weakening major edges.

Figure 15.c is the result of Laplacian on Gaussian operator. It shows both major edges
and weak edges. The final edge map does not change even if the parameters are changed.
Therefore if we use this approach, texture edges and intensity edges are not distinguished.
Figure 15.d is the result of facet model approach. It shows severely distorted detected edges.
It contains major edges between texture regions and weak edges inside of each texture
region, but weak edges cannot be separated from the major edges by changing parameters.

Experiment 3: Monkey Image

Figure 16.a is the image of pixels having edge hypothesis which is obtained by the edge
hypothesis generation process which is described in Section V.B. It shows sharp edges, and
the location of these potential edge pixels are very close to actual edge location. For exam-
ple, eyes of the monkey, lines in the center of the image, etc., are well detected and show
good performance of this algorithm as an edge detection method. The performance as an
edge detection method is superior than other edge detection methods.

Figure 16.b is the final result of the composite edge detection algorithm. Notice that
most of microedges in the texture region in the cheeks of the monkey's face are removed, but
most of important edges, such as eyes and nose of the monkey, lines in the center of the pic-
ture, are well preserved.

Figure 16.c is the result of Laplacian on Gaussian operator. It shows distorted major
edges, and many unwanted edges caused by textures in the cheeks of the monkey's face.
This picture not only includes many unwanted microedges but also shows distorted major
edges. The edges in the eyes and nose region are distorted and barely distinguishable.

Figure 16.d is the result of facet model approach. Detected edges are distorted and con-
tain many false (spurious) edges. The location of detected edges are relatively far from the
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actual edge location.

E. Discussions and Conclusions

Edges are generated in at least two different ways, namely by the difference in intensity
(intensity edge) and by the difference in textures (texture edge). The importance of the tex-
ture edge is demonstrated by the examples. Conventional edge detection algorithms cannot
distinguish between texture edges and intensity edges. A new edge detection algorithm
which can detect both intensity and texture edges is developed.

The performance of the composite edge detection algorithm shown in this experiment
can be summarized into the following two points.

1. Edge hypothesis generation procedure developed in this research can be used as an edge
detection method, and the performance as an edge detection algorithm is better than
other edge detection methods.

2. Our composite edge detection algorithm is flexible enough to detect both major and
weak edges by changing threshold. In other words, it can detect only major edges
without detecting microedges which are caused by texture for high threshold and can
detect both major edges and microedges for lower threshold.
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Figure 13. Original images, (a) checker board, (b) rotated checker board, (c) outdoor

scene, (d) monkey
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Figure 15. Comparison with rotated checker board image, (a) edges detected by compo-
site edge detection algorithm with low threshold, (b) edges detected by com-
posite edge detection algorithm with high threshold, (c) result of Laplacian on
Gaussian method, (d) result of facet model method
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VI. SUMMARY AND CONCLUSIONS. Robust image models are investigated, and

applied to several important image processing problems in this study. Robust image models
have potential applications in many problems arising in image processing and computer
vision. Image models are already used in image synthesis, texture analysis, image coding,

and image segmentation, but they are generally nonrobust to outliers. We applied the robust
image models to two important problems in image processing, namely image restoration and

edge detection. The robust model-based methods are compared experimentally with conven-
tional methods. The advantage of robust model-based methods over conventional methods
in some of image processing problems has been shown in Sections IV and V.
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ABSTRACT. The Stroh formalism for arusotropic elastic materials has contributed
mnuch to the determination of solutions of anisotropic elasticity problems. In most cases,
however, the solutions are in a complex form and it is desirable to have the solutions in a
real form for practical applications. This requires new identities or sum rules which relate
eigenvalues and eigenvectors of anisotropic elastic constants to real quantities. The identi-
ties serve two important purposes. Firstly, with the identities the problem of repeated
eigenvalues disappears. Secondly, the identities enable us to express the final solutions to
anisotropic elasticity problems in a real form. The identities and the structural property of
certain real matrices in the solution are the keys in solving heretofore unsolved problems
and in simplifying existing complex solutions to a real form solution. As a result, some
interesting phenomena unnoticed before have been revealed. For instance, it was discov-
ered only recently that the surface traction on any radial plane in the arisotropic elastic
material due to a concentrated force and a line dislocation applied at the origin is indepen-
dent of the choice of the radial plane.

INTRODUCTION. Following the work of Eshelby, et al. [1], Stroh in 1958 L21 and
1962 13) developed a powerful and elegant formalism for treating a certain class of two-
dimensional problems involving dislocations, line forces and steady state waves in aniso-
tropic elastic solids. The formalism is well-known in the physics and materials science
community (see [4-101, for example). Unlike the two-dimensional anisotropic solutions
developed by Green and Zerna [ill which are restricted to plane strain, deformations and
hence to monoclinic materials, the Stroh formalism applies to general anisotropic elastic
materials for which all three displacement components are necessarily coupled. Also,
unlike the Lekhnitskii's formalism [121 which breaks down for orthotropic materials J131
and requires a special treatment [14J, the Stroh formalism has no restrictions. An excellent
review on the Stroh formalism can be found in [8].

The basic elements of Stroh formalism are the eigenvalue p and the eigenvectors

of anisotropic elastic constants. The solution to an anisotropic elasticity problem is, in
general, expressed in terms of p's and 's which are complex. There are identities or

sum rules which express certain combinations of p's and ('s in terms of real matrices

Ni, i=1,2,3, S, H and L to be defined later. The identities enable us to rewrite the com-

plex solutions into a real form. The structures of N. S, H, L tell us in depth information

on the physical property of the final solution.

We outline in Section 2 Stroh formalism. The eigenvaiues p and eigenvectors

are defined. Problems arise when p has a repeated root and the modifications required
aie given in Section 3. The orthogonality relations between the eigenvectors are presented
in Section 4. Basic identities between p, ( and the real matrices S, H, L are derived. In
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Section 5, an alternative expression for S, H, L due to Barnett and Lothe is presented.

Also presented are the structure of S, H, L and NV N3. In the last section, we show new

identities which are useful in solving certain problems in anisotropic elastic materials and
composites.

STROH FORMALISM. In a fixed rectangular coordinate system x., i=1,2,3, let

u and o- be the displacement of a particle and the stress, respectively. The equations of

equilibrium and stress-strain laws can be written as

(1) i-.. = 0,

(2) Ci =Cijksuk,s

in which repeated indices imply summation, a comma stands for partial differentiation and
Cijks are the elastic constants which possess the normal symmetry property

Cijks = Cjiks = Cksij *

Consider a two-dimensional deformation in which uk, k=1,2,3, depend on x1 and x2

only. The general solution has the form

(3) uk = akf(z),

(4) z = x1 + px 2 ,

where f is an arbitrary function of z and p, ak are constants. In matrix notation, they

are determined by

(5) Q + p(R + RT) + p'T Ia =0,

in which the superscript T stands for the transpose and

Qik =Cilkl,

(6) Rik = ilk2

T ik = i2k2

Equation (5) is obtained by substituting (3) into (2) and (1). We note that Q and T are

symmetric and, subject to positiveness of strain energy, positive definite.
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Introducing the new vector

7) b = (RT + pT)a + _I.

-~~ -

in which the second equality comes from (5), the stress obtained by substituting (3) into
(2) can be written as

L) il = -0i,2, I i2 = Oij b f(z)

Thus 0 is the stress function.

The two equations in (7) can be rewritten in the following standard eigenrelation

(9) N = p,

N N 3, N 
b

N 3 NIb

(10) N = -T-1RT, N2 = T NT

= RT-RT QN T

We see that N2 and N3 are symmetnic and N2 is positive definite. It is shown in [15]

that -N 3 is positive semi-definite. Equation (9) provides six eigenvalues pa' a=1,2,...6,

and six associated eigenvectors -a" Since pa cannot be real if the strain energy is positive
[1], we let

Pa+3 =Pa Impa > 0

a+3 = a' a = 1,2,3,

where an overbar denotes the complex conjugate and Im stands for the imaginary part.
The general solution for the displacement and stress function given by (3) and (8) can be
written as

3

u= I a afa(za) + a a ' -a)'

a=1

3

I bafa(za) + -afa+3(a)
0=i
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za = + PaX2 ,

where flif 2,...f6 are arbitrary complex functions of their arguments.

For u and $ to be real, we let

fa+3 =a a = 1,2,3,

and write the general solution as

3

u=2 Re{Ia afa(za)
a=1

(11)

[3
S= 2 Re bafa(Z a)

or

(12) w =2 Re { afa(za)J

a

- = - a ae

where Re stands for the real part. We observe that w satisfies the differential equation
(81

w, = NWl

DEGENERATE MATERIALS. Equations (11) or (12) are complete when the 6x6
matrix N in (9) is simple, i.e., when the eigenvalues pa of N are distinct. It remains

complete when N is semisimple, i.e., when pa have a repeated eigenvalue and the asso-

ciated eigenvectors are independent. If N is non-semisimple, i.e., if pa have a repeated

eigenvalue but the eigenvectors (, are not all independent, the solution given by (12) is

not complete. Anisotropic elastic materials for which N is non-semisimple are called

degenerate materials. Isotropic materials are a special class of degenerate materials. For
isotropic materials, we have P1 = P2 = i and P= 2 In fact, P3 = i also but 3

For degenerate materials for which - = 21 (12) is replaced by [16,171

w=2 Re {~f1 (z1 ) + { lf 2 (z2 ) + (3fs(z 3 )}
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:n which - satisfies the following equation which is obtained by differentiating (9) with

respect to p and setting p = Pl:

N- = pj- i +

We see that the solution for degenerate materials destroys the regular expression of the
solution given by (12) for general anisotropic materials. This happens not only for the
feneral solution, it also occurs in applications in which the final solution has a nice simple
orm for general anisotropic materials but has a complicated expression for degenerate
materials.

It is desirable, therefore, to have an expression which holds regardless of whether
the material is degenerate or not. This means that we need the solution in a form which
does not contain the eigenvalues p and the eigenvectors of the 6x6 matrix N. We

could achieve this if we have identities which relate p and ( to real quantities repre-

sented by N, or by quantities derivable from N. This is the main subject in the follow-

ing sections.

THE ORTHOGONALITY RELATIONS. The left eigenvectors r] of N is
T N  T

or

(13) NT, =p.

The left eigenvectors i/ and the right eigenvectors ( associated with different eigenvalues

p are biorthogonal to each other [181. If N is simple, we can normalize the eigenvectors

such that

(14) T

where 6. is the Kronecker delta. If N is sernisimple, (14) remains valid because it is

possible to choose the eigenvectors associated with the repeated eigenvalue in such a way
that (14) holds. If N is non-semisimple, (14) is not valid for the repeated eigenvalue. A

modified relation can be found in [81. If we introduce the 6x6 matrices U and V by

Y =
(14) can be written as

vTu = I
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where I is the 6x6 identity matrix. This implies VT and U are inverse of each other
and hence the product commutes, i.e.,

(15) uvT= I.

Denoting the 6x6 matrix J by

[01]
- I 0

I in this context being the 3x3 identity matrix, it can be shown that

JN = (JN)T - NTj.

It follows from (9) and (13) that we may set without loss of generality,

(16) V --Jf.

If we define the 3x3 matrices. A and B by

A = [al,a2'3I,

B = [blb2b3

we have

U= A "A , V=JU.- B S

Equation (15) leads to, after carrying out the matrix multiplications,

(17) AAT + AAT = 0 = BBT + BI3 T ,

(18) ABT+Af3 T = I =BAT+ I3 AT.

Equations (17) imply that AAT and BBT are purely imaginary while (18) tells us that

the real part of ABT is 1/2. Hence we let
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S = i(2AB - I

(19) H=2iAAT = HT

L =-2iBBT - LT,

where S, H, L are 3x3 real matrices first introduced by Barnett and Lothe [6]. H and L

are symmetric and can be shown to be positive definite [8,15,19]. Noting that 19) can be
written as

and using the following relation which is deduced from (14) and (16),

[BT AT] = [

we have [81

This leads to
-HL-SS = I

(21) SH+HST -0

LS + STL =0.

We see that S, H, L are not independent of each other. We also see from (21)2,3 and

their counterparts

H- 1S + sTH- 0 ,

SL - 1 + L-1ST 0,

that SH, LS, H-1S and SL - 1 are antisynmetric.

THE STRUCTURE OF S, H, L AND NJ, N3 . The three real matrices S, H,

L, which are the Barnett-Lothe tensors, appear very often in the solutions to anisotropic

elasticity problems (see 17,8,20,211, for example). The expressions given by (19) are based
on the assumption that the eigenvectors span a six-dimensional space. When N is

non-senisimple, we do not have six independent eigenvectors and (19) are not valid. In
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fact, one encounters problems also when N is almost non-sernisimple. A modified expres-
sion in place of (19) when N is non-sermisimple or almost non-semisimple was presented
in [22]. The modified expression applies to simple N as well.

An alternate approach which avoids the determination of eigenvectors is the integral
formalism introduced by Barnett and Lothe. We generalize the matrices Q, R, T defined
in (6) to

Qik(O) Cijks n sn,

(22) R k(O) = Cijks n jms,

Tik(O) = Cijksmjm s

in which 9 is a real parameter and

n. =(cos9, sin , 0)

mi = (-sinG, cos9, 0)

When 0 = 0, (22) reduce to (6). With Q, R, T, defined by (22), the three 3x3 matrices
Ni and the 6x6 matrix N of (10) also depend on 0. Equation (9) now becomes

(23) N(9) = p(O)( .

It can be shown that when pa(9) are distinct, -a are independent of 9. It can also be
shown that p(9) is related to p(0) = p of (9) by [8,17

p(8) p cos9 - sinO
p sind + cosP

(24) =d {In (cos9 + p sind)}

We now consider the integrals

0 0
S(O)_ NI(o ) do, If(O). N2 d,

0 0

(25)
9

QO) N3( w) do .

0
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When 9 = r, the integrals in (25) are called complete integrals. Barnett and Lothe [6]
proved that S, H, L of (19) are identical to the complete integrals

(26) S = s(r), H = H(,), L = L(r).

This provides an alternate to the determination of the three real matrices S, H, L. In (26)

the need of determining the eigenvectors are circumvented and hence the problem of re-
peated eigenvalue disappears.

Equations (25) can be integrated explicitly for isotropic materials. For 9 = T, we
have

0 -s 0 (1-s2)/7 0 0

S 0 0 0 H0 0ls2/ 1
(27) 0J

7 00

L= 0 7 0
0 0 1

_ 1-2,v 1
=7 7 ,1- 7 =--,I

in which u and v are the shear modulus and Poisson's ratio, respectively. Complete
integrals of (25) for transversely isotropic materials can '-.. found in [8] but that for more
general anisotropic materials have not been available.

For general anisotropic materials, Chadwick and Ting [231 have shown that S, H, L

have the same structure as (27) for isotropic materials if a proper basis and proper tensor
components are chosen for the tensors S, H and L. They showed that the eigenvalues of

S are 0, is where s is real and positive. Let the associated eigenvectors be e3 , e1

ie 2 where el, i=1,2,3 are real vectors and let the reciprocal eigenvectors e' be defined

by
ei. •e j  i-1 - = i]

If we choose the following tensor components for S, H, L,

S - S e j

H H'.e e.- -i-i

L L..e 1 e
- I- - 7
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it can be shown that

0 ]0 iJ =

(28) = [0s;= [(1(I-ss)/7 o ,/0 0 0 H 0 (1S)0

(28) 
0

7 0 0

Lij = 0 7 0
0 0 1

where A , 7, s are constants. The identical structure between this and (27) is strildng. It
should be noted that (28) for general anisotropic materials has only three constants 0 < s
<1, u>0 and 7>0.

The three matrices Ni defined in (10) depend on the elastic constants in a compli-
cated way, particularly so for N1 and N3 . It is shown in [151 that -N 3 is positive semi-

definite and N1, N3 have the structure

*-1 *' * 0

N =  *0 N N3 =  0 0 0
0 ** 0 *

in which the * elements can be expressed in terms of the elastic compliances which are the
reciprocal of Cijks. The fact that N3 has the property shown above was crucial in solv-
ing the problem of the elastic wedge subject to uniform tractions on the sides of the wedge
[24]. Clearly, the property of N1 and N3 will be useful also in solving other anisotropic

elasticity problems.

While N1 (8), N3 () do not have the same structure as N1 , N3 except at 0 = 0,
if we write

* TN~i(9) = .Q(9)Ni(9)fl (9),

T n(0), m(8), e T= (0'0'1)( 3 T3

N1 (9) and N3 (9) have the same structure as N, and N3. This is not surprising be-

cause Ni(O) are Ni referred to the rotated coordinate system x = 11x [25]. It is clear

that -N 3 (0) as well as -N 3(a) are also positive semi-definite.

NEW IDENTITIES. In many applications, the arbitrary functions fa(za) in (11)

or (12) assume the same function form for all a. The simplest ones are power of z., i.e.,
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fz A (a not summed),fa(z a) =_ qaza,

where A and q., a=1,2,3, are arbitrary complex constants. If we define the diagonal

matrix

ZA diag (z I A

we may write (11) as

u 2Re {AZ q1

=2 Re { BZ q} ,

in which the elements of q are q1, q2, q3 - Replacing the complex constant q by two

real constants g and h through

q = ATg + BTh,

we have i;:2Re A{ AB T} h + 2 Re { A T}

(29 = e {Z'B T}I h + 2 Re {BZ'AAT }

This form of solution can be used for analyzing stress singularities in a composite. In [21],
the order of stress singularities A at an interface crack was obtained in closed form for
general anisotropic elastic materials. With A obtained explicitly in closed form, one can
look at the imaginary part of A and study under what combination of materials the oscil-
lations in displacement near the crack tip disappears.

When A is an integer, positive or negative, the quantities in the brackets in (29)

can be expressed explicitly in real form. Using (4) and (9), we have

,( = (x1 + px 2 )( = (xl1 + x2N),

or

[AZA 1
BZ B

If we post-multiply both sides by [BT ATI and use (20), we have the identity

AZABT AZ AT 1

(30) 2 Re .A.TT. = (x J + x2N)A
BZ BT BZA
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which provides a real expression for the quantities in (29) without determining the eigen-
values p and the eigenvectors .

Although (30) applies also for negative integer A, the right-hand side of (30) is not
a very useful form since it requires an inverse of 6x6 matrix. However, if we use the polar
coordinate system

x1 =rcosS , x2 =rsinO

and employ the following identity proved in [251,

{cosO I + sinO N} - = {cosO - sine N(O)}.

the right-hand side of (30) becomes

r {cosO - sin# N(G)} -

which is a useful form for a negative integer A.

For the wedge problems [24,251, A = 1 is used for uniform tractions applied on the
sides of the wedge while A = -1 is used for a concentrated couple applied at the wedge
apex.

Another function form for f(z) which appears in the problem of a concentrated
force and a line dislocation in anisotropic elastic materials is

fa(za) = q. In za , (a not summed)

Defining the diagonal matrix

In Z = diag [In z1 , In z2 , In z31,
we have

(3)u 2 :: {A(lni Z)B T} h + 2 Re {A(ln Z)A T} g(31)....

{B R J(ln Z)B T} 2 Re {B(ln Z)AT} g

To find the real expression for the quantities in brackets, we first notice that

z = r(cosG + p sinG)

and, using (24),

In z = In r + In (cos8 + p sinG)

= In r + f p(m) dio.
0
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Next, from (23) we have

-(In r)I + rN(O)}

or

(32) - - = ] (ln r)I + 4r(9)1 ~

where, following (25),

(33) N = N(u) do=I -L(O) S T(0 )

Finally, we post-multiply both sides of (32) by [BT AT] and use (20) to obtain the iden-

tity 
A(ln Z)BT A(ln Z)AT 1

(34) 2 Re [ Z)B T T {(In r)I + .R(8)}

With (34), (31) can be written as

(35) 11

l--rL()h + I(In r)I + ST(9)jg

The surface traction t 8 on any radial plane 9 = constant is determined by differ-

entiating 0 with respect to r. We have

(36) t8=r -1g,

which is independent of 0. In [261, (36) i, derived from equations of equilibrium without
employing the stress-strain laws. Theref -, t M) applies also to composite spaces [27] and
to angularly inhomogeneous anisotropic m, - -Is [26,281. It should be pointed out that,
although # in (35) is not valid for angularly .. homogeneous materials, u in (35) remains

valid in such materials. The only modification required is in (33) where the integrand
N(0) contains C ijk which depend on 0.

CONCLUDING REMARKS. The Stroh formalism is elegant and powerful. The
formalism is also very effective in treating the surface waves [3,8,29], Stoneley waves
[30,311 and waves in layered composites [321. The real matrices Ni(Y), the incomplete
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integrals .(9), H(), L(9) and the complete integrals S, H, L, which are the

Barnett-Lothe tensors, appear often in the solutions to anusotropic elasticity problems.
The striking simplicity in the structure of S, H, L for general anisotropic elastic materials

as shown in (28) is puzzling. It is believed that S(9), ft(9), L(O), as well as S, H, L have

physical interpretations. For L(O), it is shown in [241 that if the stress in the anisotropic

elastic material depends on 0 only, the stress tensor is, with the exception of the a-33

component, proportional to L(9).
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TOTAL ABSORPTION IN ELASTIC MEDIA*
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ABSTRACT. We examine the problem of designing a homogeneous, isotropic elastic

slab that totally absorbs an incident plane wave.

INTRODUCTION. In [I] we present a systematic method to analyze the interaction of

steady-state, harmonic plane waves with a stratified elastic media. In this paper we apply our

analysis to design a homogeneous, isotropic elastic slab that totally absorbs an incident plane

wave propagating through an adjacent fluid half-space. To begin, let us consider a

homogeneous, isotropic elastic solid half-space in contact with a fluid half-space. When a

harmonic plane wave travels through the fluid and strikes the solid-fluid interface, the

propagation directions of the reflected and refracted waves are determined by Snell's Laws,

while the amplitudes of the reflected and refracted waves are determined from the continuity of

displacements and tractions at the interface. For a solid-fluid interface, we have no control

over the reflected and refracted waves; the outcomes are governed by the fundamental laws of

physics. But when an elastic slab is inserted between the fluid and the solid half-spaces, we

show that the mechanical properties of the slab can be chosen so that the amplitude of the

reflected wave vanishes. The choice of the mechanical properties depends on the frequency

and the angle of incidence for the incoming wave.

'This research was supported by U.S. Army Research Office Contract DAAL03-89-G-0082.
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NORMAL INCIDENCE. In this section, we consider the case where the incident wave

is normal to the fluid-slab interface. This particular case can be treated directly, without

reference to our earlier analysis. On the other hand, the results provide insight into the

analysis of oblique incidence. Suppose that the x-axis is oriented perpendicular to the slab and

the slab occupies the region 0 < x 5 T, where x = T is the slab-fluid interface. The equation of

motion is

P(X) '2

~2 ax ax

where v = v(x, t) is the displacement at position x and at time t. We assume that

) =(x) = K, and p(x) = P, for x>T,

K(x) = Kc and p(x) = p for 0<_.x_<T,

x) = Ko and p(x) = po for x<0.

Assuming harmonic time dependence and a unit amplitude for the incident wave, the general

solution of the equation of motion has the form v(x, t) = u(x)ei ol where (o is the wave

frequency,

u(x) = e ims ,(. - T) + re- iw l(z- T) for x > T,

u(x) = c+eiw= + "re - iW= for 0 < x5 ST,

u(x) = -zei0s  for x < 0.

Here the slowness parameters sj, s, and so are defined by

s = p /K , s = 4pl, and so = pW"0 .

(The slowness is the reciprocal of the wave speed.) The amplitudes r, t, T . and T_ can be

determined from the continuity of displacement v and stress av/alx at the interfaces x = 0 and

x = T. Altogether, there are four equations of continuity:

86



t = t.+t_

1 + r = T+ei 7T + Te-icasT

s o0 O = KY (. - '_)
S I K(1 - r ) = VS (-T+em -' _ e -i°ol)

Solving these equations for r and setting r = 0 yields the relation

1 - a0 - GYe_2iw.T,(1) - =

where

a,1 = aTcl y 4)c-p and a0o = FW4 .

Since the mechanical parameters arc all rcal, equation (1) only holds ,hen Wh exponcnial :,m

is +I or- 1. Hence, there are two cases to consider.

Case 1. e-2iw sT = -1.

In this case, the exponent 2osT is an odd multiple of z. In other words, osT = (m+Ih)X

for some integer m, or, equivalently,

(2) (oTslPI = (m +'A).

Substituting -1 for the exponential term in (1) gives o = coal, or, equivalently,

(3) KP =

Thus the impedance 4 of the slab is the geometric mean of the impedances of the half-

spaces it separates. Together, equations (2) and (3) determine the ratio p/K and the product

pK. Therefore, they determine a unique p and K for each choice of the integer m in (2).
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Case 2. e- i T = +1.

In this case, the exponent 2wosT is an even multiple of ar, which implies that

(4) CosT = oT4ip- = mIC

for some integer m. Again, this equation restricts the slowness to a countable set of discrete

values. However, when we substitute +1 for the exponential term in (1), we see that ao = a,.

That is, this case occurs only when the materials in the two half-spaces have the same

impedance. On the other hand, if the impedances match, then for each integer m, there is a I-

parameter family of slab materials, with slowness given by (4), that totally absorbs the

incoming wave.

OBLIQUE INCIDENCE. Now let us consider a piane wave Uiat strikes tdle ,o, -,iUld

interface at an oblique angle, generating reflected and transmitted (refracted) waves. Again, we

will show that the material in the slab can be chosen to annihilate the reflected wave.

To begin, we briefly review wave propagation in homogeneous, isotropic materials. Let

p denote the density, and I and X denote the Lamd moduli of a homogeneous, isotropic

linearly elastic material. If g± > 0 and 2i + X > 0, then exactly two types of waves propagate in

the elastic media: dilatational waves, in which the directions of displacement and propagation

coincide, and shear waves, in which the directions of displacement and propagation are

orthogonal to each other. Let cd and c, denote the dilatational and shear wave speeds defined

by

Cd = and c, = .1 ,

and let D and S denote the dilatational and shear slowness given by

D = IlCd and S = 11c,.
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For any unit vector d, the expression v(x,t) = df(t-Dx.d) defines a plane dilatational wave

which formally satisfies the equation of motion. Similarly, given two unit vectors s and p

where s-p = 0, the expression v(x,t) = pg(t-Sx-s) defines a plane shear wave which formally

satisfies the equation of motion. The functions f and g are called the wave profiles, the vectors

d and s are the propagation vectors, and the shear wave is said to be polarized in the direction

p. Throughout this paper, we consider harmonic waves; in principle. waves of more general

form can be synthesized by the superposition of harmonic waves. The motion of harmonic

waves is described by the real or the imaginary parts of the expressions

v(x,t) = 5dei81Ddx) and v(x,t) = apei tss' )

Consider a plane interface I separating two distinct half-spaces of homogeneous, isotropic

elastic materials. A dilatational wave striking the interface typically generates a reflected

dilatational wave, a reflected shear wave, a refracted dilatational wave, and a refracted shear

wave. Similarly, a shear wave striking the interface typically generates waves of all four types.

Therefore, when a combination of dilatational and shear waves impinges upon the interface,

eight different waves are generated altogether. The plane formed by the propagation vector of

an incident wave and the normal to the interface / is called the plane of incidence for the wave.

The propagation vectors of the outgoing waves are determined by a set of equations known as

Snell's Laws which we state as follows:

The propagation vectors d, and sr for a reflected wave and the propagation

vectors d, and st for the transmitted wave lie in the plane of incidence for the

incoming wave. Moreover, if m is a unit vector in the intersection of the

interface and the plane of incidence, then for an incident dilatational wave with

propagation vector d, we have

(5) Dd.m = Ddr.m = Ssr.m = Dd[.m = Stst.m,
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and, for an incident shear wave with propagation vector s, we have

(6) Ss-m = Ddr.m = Ss,-m = Dtdt-m = Sts.m.

Given the unit propagation vectors d and s of the incident waves, equations (5) and (6)

determine the propagation vectors of the corresponding scattered waves. Note that if a pair of

incident dilatational and shear waves share a common plane of incidence and if they satisfy the

relation Dd-m = Ss-m, then the two reflected waves have the same direction as do the two

refracted waves. In other words, there are four rather than eight outgoing waves. A pair (d, s)

of incident waves which lie in the same plane of incidence and which satisfy the relation

Dd-m = Ss-m will be called a conjugate pair of waves. Note that, when a wave strikes an

interface between two homogeneous materials, both the reflected and the transmitted waves

form conjugate pairs.

Let us now consider a homogeneous elastic slab of thickness T separating an isotropic

fluid to the right of the slab from a homogeneous, isotropic elastic material to the left of the

slab. The ratio of the amplitudes of the reflected and incident waves is the reflectivity of the

slab. In the paper [1], we obtain a formula for the reflectivity in terms of a local impedance

tensor. Suppose that a conjugate pair of waves have propagation directions d and s and

polarization direction p contained in the plane of incidence for an elastic material. Viewing d

and p as 2-dimensional vectors in the plane of incidence, we define 2 x 2 matrices

A = [dip] and B = [D{2i(d-n)d+ n ISg((s.n)p+(p.n)s}].

Then the local impedance tensor H is given by H = BA - 1.

Let H denote the local impedance tensor of the slab, Ho the local impedance tensor of the

left half-space, n the normal to the slab-fluid interface (pointing into the slab) and d, and D,

the propagation direction and slowness of the incident wave. We regard the fluid as a

degenerate elastic solid with Lami moduli p, = 0 and X, > 0. By Lemmas 4.1 and 5.1 in [11,
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the reflectivity r of the slab can be expressed as

nTd, - X1D InTrn

nTd, + X.D In rn

where

(7) IF = [I + L][H - PHPL - ', L = PAAA-IP[PHP+Ho]-'[H - Ho]AAA- ',

P=l-2nnT, and A = 0 e2 i- soTS' ]
Again, T denotes the thickness of the slab, D and S are the dilatational slowness and shear

slowness of the slab, and (o is the frequency of the incident wave.

Now consider the problem of choosing the slab material in order to annihilate the

reflected wave. Observe that the reflectivity is zero if and only if

(8) nTrn = n d,

Since the right side of this equation is real, the left side must be real, also. The only way that

complex numbers enter F is through the diagonal matrix A, which appears as two factors of L.

Let a = oDTd, n and b = (oSTs-n be the parameters that appear in the exponents on the

diagonal of A. In order to ensure that L is real, we must choose a and b such that

e- 2ia = ±1, e- 2ib ±1, and e i(a+b ) = ±1.

Hence, either a = mit and b = nit, or a = (m+ l)x and b = (n+,6)x for integers m and n.

Defining the matrix J by

9[-0 0
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there are essentially 4 distinct A, corresponding to different choices of m and n, that we need

to consider

A = I. a =m x, b = n x, mandneven,
A = J, a =mx, b =n x, m odd and n even, or m even and n odd,
A = iI, a = (m + 1A)it, b = (n+ 1,6)%, m and n even,
A = U, a = (m + )t, b = (n+ IA)xt, m odd and n even, or m even and n odd.

Each of these cases will be analyzed in the following sections. When studying normal

incidence, we saw that there was one "degenerate" case in which total absorption was only

possible if the impedances of the left and right half-spaces were identical. For oblique

incidence, the degenerate case is A = I.

THE CASE A = I.

LEWMA 1. If A = 1, then r = 0 if and only if

T- nrdnrHEIn = nrd.I.DI"

Proof. Observe that L = [PHP+Ho]1 I[H-Ho] when A = I. Hence, the second factor in

the definition of r can be written

H - PHPL = H - PHP[PHP+Ho]-t[H-Ho]

= H - (PHP+H 0-H 0)[PHP+H 0 -'[H-H 0]

= E0(I + [PHP+HIf[H-H 0 ])

= Ho(I +L).

Referring to the definition of r, we see that r = Ho- . Equation (8) completes the proof. U

When A = I, the incoming wave is absorbed only if the elastic material in the left half-

space satisfies the special condition given in Lemma 1. On the other hand, if the condition of

Lemma 1 is satisfied, there is a 1-parameter family of slab materials that annihilates the
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reflected wave. In particular, any material that satisfies the conditions

woDTd-n = mi and o*5Ts-n = nx

where m and n are even integers annihilates the reflected wave. Given the angle of the

incident wave, the expressions d-n and s-n can be evaluated using Snell's Laws. Omitting the

algebra, it follows that the incident wave is absorbed totally when

(9) . pgR, X = P(gm-2g,), g,0 = 2'

n 2%2
"+ (CoTD 1 sin a,) 2 '

where a, is the angle of the incident wave relative to the normal to the slab interface and m

and n are even integers. Treating the wave frequency (o, the slab thickness T, and the angle of

incidence cc as constants, there is a I-parameter family of perfect absorbers, with Lame

moduli g and X given by (9) in terms of the parameter p, corresponding to each pair of even

integers m and n.

THE STRUCTURE OF 1. In order to analyze the other choices of A, it helps to see

how H depends on p. From the definition of a and b,

woTd-n o)Ts-nc= - and cs =
a b

Also, by Snell's Laws, we have

cdzdm CdtS'm

Cd = d. m and c, = d1*M
d I .m d I .m

Hence, the tangent of the angles a and P (relative to the interface normal n) of the dilatational

and shear waves transmitted in the slab am determined:
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d-m (Tdm sm afTd1 *.n
(10) tanel= = and tan = -=

dn a cd1  s*n b cd,

Finally, the wave speeds are given by

Cd1sif CX Cd1 lfin 1
C c ds -- and c, =

di .m d1*m

In [1] we present an explicit formula for H relative to a rectangular coordinate system

with n pointing along the positive x1 axis and with x2 in the interface between the fluid and

the slab. Relative to the geometry of Figure 1, we have H = pH where

cS _ _ cos -sin (a-20)]
cos (a1 Lsin ((x-25) Cos at

and a and 13 are given by (10). In summary, for fixed a and b, H is a linear function of the

X2

d

a
S

X1
n

Figure 1. Propagation and polarization vectors.
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density p of the slab. Observe that H is invertible whenever cd > 0 and c, > 0. Moreover,

H-= p'H-1i where

i -Co (a-0[ cos a sin (a - 2P)1
cdcos cos a + C sin2 (a-2P) [-sin (a-20) ocos 0 J

and =Cd/Cs.

LARGE p. Let us now determine the limiting behavior of r as p tends to infinity. Since

H depends linearly on p, we see from (7) that each element of r is a rational function of p;

that is, each element of r is the ratio of two polynomials. Recall that a rational function is

either constant (independent of p), or it has a finite number of zeros and poles. We already

discovered one case where this rational function is completely constant -- when A = I , =

Ho-1 independent of p. However, in general F depends on p. Since H-'H approaches zero

as p tends to infinity, the limit of L as p tends to infinity is easily evaluated:

lir L = E where E = PAAA- 1H-PHAAA -1 .
p ... -=

Referring to (7), r has the following asymptotic form as p tends to infinity:

(11) r = p-T + O(p - 2) where r = (I + L)(-H - PP--'-.

Note that the formula (11) only makes sense when the quantity H - PHPL is

nonsingular. In particular, for the special case A = I, we have

11- PHPE = 0,

which explains why the asymptotic limit (11) is incorrect when A = I. However, for the other

choices of A, the quantity R - PHPL is generally nonsingular. In particular, in the case A =

il, it is readily verified that
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H-PHPL = 2H,

which is nonsingular since H is nonsingular. For the case A = J, let us employ the coordinate

system depicted in Figure 1. In this coordinate system, P is equal to J and the matrix

H - PHPL is a nonsingular multiple of the expression

BjB- ' - JBJB-'J,

where B is the matrix that appears in the definition of the impedance tensor H = BA - 1.

Similarly, taking A = iJ, it follows that H - PHPL is a nonsingular multiple of the expression

BJB- ' + JBJB-'J.

Focusing on BJB- 1  JBJB-'J, we have

LEMMA 2. Given a nonsingular matrix

B Lbd]

the expression BJB- 1 - JBJB-'J is nonsingular if and only if a, b, c, and d are nonzero. The

expression BJB- 1 + JBJB-1j is nonsingular if and only if bc * ad.

Proof. This is verified by evaluating the determinants:

det (BJB- ' - JBJB-1J) = 16abcd
det B

and

det (BJB-' + JBJB-J) = -4(ad - bc) 2det B •0c

In [1] we provide the following representation of B for the geometry depicted in Figure

1
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2g + X)cos 23 Wsin 23]
Cd L -~I sin 2c O. cos 23]

where c - c/oC First let us consider the case A = J so that H - PHPL is nonsingular if and

only if every element of B is nonzero. Assuming the angle of incidence is not normal to the

slab (normal incidence was studied earlier), the (1,2) and (2, 1) elements of B are nonzero.

Although the (1, 1) and (2,2) elements of B are zero if 13 = x/4, an infinitesimal perturbation in

the thickness or the frequency yields 13 * r/4 and R - PHPE invertible. In the case A = iJ, it

follows from Lemma 2 that Hf - PHPL is singular if and only if

(2P + X.)cos 2 2S = gI.sin 2asin 213.

Utilizing (10), this relation is equivalent to

(12) 1 = arc tan "+l1'hiF + 2W where W =2a/b.

Referring to (10), we see that there are special values for the frequency and thickness that lead

to singularity; but again, an infinitesimal perturbation of T or a) restores invertibility. We say

that the slab is singular if either A = I, A = J and 13 = x/4, or A = iJ and 3 satisfies (12).

In summary, when the slab is nonsingular, r approaches (asymptotically) r/p as p

increases. In particular, F tends to zero as p increases.

SMALL p. Let us consider a nonsingular slab and the geometry depicted in Figure 1. In

this case, n rn equals the (1, 1) element of r which we denote y. Since r is a rational

function of p, y is a rational function of p that tends to zero as p increases. In a separate

paper, we will show that y > 0 for every choice of the density. Consequently, y has no poles

along the positive real axis, and we can satisfy (8) for some p whenever
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0 5nT d,

where yo denotes the limit of y as p tends to zero (y approaches zero as p becomes large, y

approaches yo as p tends to zero, and y depends continuously on p). Thus the value of yo

provides insight concerning the incident waves that can be absorbed.

We have evaluated yo for each of the choices A = J, A = iI, and A = U. It turns out that

the evaluation of *to is quite difficult since very complicated trigonometric matrices must be

multiplied together and simplified. With the assistance of a symbolic manipulation package,

we found that for p near 0 and for each choice of A, F has an expansion of the form:

F = Tp-1 + STHOIS + O(p)

where che T and S corresponding Lo the various choiccs ol A appear in Tablk 1.

Observe that in each case, the (1, 1) element of T is zero. Thus for each choice of A, yo

is the (1, 1) element of STH5'IS, which is easily evaluated:

LEMMA 3.

70 (1 )2 when A =
(I - )cos 2 a

to = sin22 when A = iI,
sin 2 (a- 20)

f = (Wo 1)2 cos 2 a cos 2 (a- when A = U.
(sin acos (a+3) + cos 0 sin 2) w

For a nonsingular slab and for each choice of A. there exists a value of p that absorbs the

incident wave whenever

(13) 0 S T di

Finally, let us verify the claim made at the beginning of this paper concerning the

existence of a material that totally absorbs any given incident wave.
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A=J

T2sin 0 [o1]c,(1 - 2cos 20) O

I -2 cos 20 [-]

A=il

T cos (a - [0 11 ari S [0 cos
csin (a-2p3) -1 0 sin (a- 2J3) - cos a 0

A =iJ

T=cos 2a +cos 20 0 i112c, (sin acos (c+J) + cos P sin 20) 0

= cos (a-1) - 0 os

sincacos(a+p)+cospsin2p cosa 0

Table I. T and S for various choices of A.
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THEOREM 1. For any given incident wave, the mechanical properties of the slab can be

chosen so that the amplitude of the reflected wave is zero.

Proof. By equation (10), the angles a and 03 can be made arbitrarily close to zero by

taking m and n sufficiently large. By Lemma 3, yo tends to infinity as a and 03 tend to zero if

A = iI. Also, by (11) y tends to zero as p increases when A = iI. Since the inequality (13)

holds for m and n sufficiently large, there exists a density for which the slab totally absorbs the

incident wave.

NUMERICAL EXPERIMENTS. The inequality (13) provides a lower bound on the

range of incident angles and frequencies that can be absorbed. Although the range of y as a

function of p contains the interval [0,yoI, potentially the range extends outside the interval.

Experimentally, we find that y is nearly a monotone function of p so that the interval [0, yoJ

accurately predicts the incident waves that can be absorbed. Figures 2, 3, and 4 show typical

plots of y as a function of p for various choices of A. These graphs correspond to a material

like steel in the left half-space and the fluid water in the right half-space. In particular, the

following mechanical parameters were employed:

Right half-space: P, = 1 gm/cm 3, c t = 140000 cm/sec, Xj = picda.

Left half-space: Po = 7 gm/cm 3, X0 = g I o = X43.
Slab: T= 5 cm.
Incident wave: a, = 30 degrees, o = 600x rad/sec.

Since the graphs in Figures 2, 3, and 4 appear monotone, the range of y is accurately

estimated by the interval [0,yo]. (Note though that the numerical values of y in Figure 4

deviate from monotonicity in the fourth significant digit near p = 0, a deviation that is

imperceptible to the eye, but which is large enough to undermine any proof of monotonicity

for y.) In Figure 5 we plot the density of the material that totally absorbs the incoming wave

versus the angle of incidence. Observe that as the angle of incidence approaches 90 degrees

(with the wave speed fixed), the density tends to infinity. In Figure 6 we plot the density of

the material that totally absorbs the incoming wave versus the wave frequency. Observe that
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as frequency tends to zero (with the wave speed fixed), density tends to infinity, and as

frequency tends to infinity, density tends to zero.

Numerically. we investigated singular slabs associated with A = J and A = iJ. We found

that y was equal to yo, independent of p (for fixed wave speed).
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ABSTRACT

A shear block approach has been used to model the transient shear response of a rigid block-flexible support system

subjected to a nonpenetrating side-on hypervelocity projectile impact. The initial velocity imparted to the shear

block due to impact has been calculated using a momentum balance between the projectile and the rigid block and

has been imposed as an initial condition for the transverse dynamic equation of motion of the block-support assembly.

The spring constant of the support has been evaluated based on the support height and the shear area. The forcing

function has been computed assuming that the entire projectile '- h is consumed at a constant rate in a finite length

of time and a triangular force-time relationship is impose,' on 'he system. The nonhomogeneous transverse equation

of motion for the assembly is solved for trar- verse displacement, velocity and acceleration and the constants for the

complimentary and the particular part of the solution are evaluated using a set of initial and boundary conditions.

The displacement solution is optimi-ed by setting the velocity equal to zero and obtaining a peak response time

at which the displacement is an optimum. The acceleration at this time is found to be negative ensuring that the

solution for displacement is a global maximum. Once the peak transverse displacement of the block-support system

is known, peak shear stress and strain can be easily calculated and compared to the shear yield stregth of the parent

material in order to ensure the structural integrity of the system from a shear strength standpoint or predict the

occurrence of dynamic shear failure of the assembly at the interface between the block and the support

INTRODUCTION

The capability to predict the effect of hypervelocity impact of a missile upon a rigid or
deformable structure is a necessity as a first step towards the design and safe operation of
nuclear reactors (1,2) as well as defense systems subjected to extreme environments. This
problem is also of considerable interest to the Ballistic Research Laboratory (BRL) due to
possibility of sustaining severe damage at a vulnerable location of the target structure when
impacted by a projectile at a specific angle of obliquity.

A number of studies have been performed and damage data gathered (3-7) over the years.
However, most data available are in the form of impulse correlation curves and crater shapes
in plates due to slender rods while relatively little has been reported in terms of dynamic
stress-strain response of multibody systems consisting of interconnected rigid and deformable
bodies subjected to impact and sudden change in the structure.
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Recently, computation using hydrodynamic codes (8-10) has been reported. Unfortu-
nately, setting up an accurate computational model, code computation and assimilation as
well as correct interpretation of the results are expensive and time consuming and require
considerable expertise for the project leader. Because of limited time and cost constraints
it was decided early on to resort to a feasible analytical approach in lieu of a numerical
approach which will eliminate undue complexities of the real problem while retaining the
essential features of the loading process and giving an insight into the impact phenomena,
the dominating stress and failure mechanisms.

IMPACT CONDITION

Let us assume that a large projectile of mass M, travelling with an initial velocity, V1,
in a horizontal direction collides with a stationary massive object of mass I2 supported
underneath by a series of plates which in turn are connected to an even larger mass by
means of continuous double seam welding. Because of the nature of these masses and type of
construction, shear phenomena appears to dominate stresses and failure in such structures
rather than bending which is the governing mechanism in mass-beam coupled systems.

Assuning the target to be rigid and a constant average deceleration rate upon impact
based upon a linear decay of velocity from V to a zero velocity as well as an average duration
time to consume the total length of the impactor, it is possible to calculate a linearly decaying
forcing function with a triangular equivalent impulse which can be imposed upon the rigid
mass in a side-on horizontal direction such that

Fp = MVI1(V - 0) /(Ti - T2) = MV V,/ T(1

where T is the duration time and Fp is the decelerating force.

Invoking a momentum balance between the impactor and the target mass which is now
allowed to move in a horizontal direction, it is possible to compute the imparted final velocity
of the taiget as follows:

M1V = V2(M 1 + M 2)

or, V2 = MV 1 /(MI + M 2) (2)

where, 111 is the impacting mass with an initial velocity of V1 and M12 is the target mass.
Once the imparted velocity of the target mass is known it can be imposed as a constraint
condition for the equation of motion to solve the boundary value problem.

PROBLEM FORMULATION

Prior to shear stress computation it is necessary to obtain the dynamic equation of motion
of the target-support assembly in the form:

M2"*" + K - F(t) (3)
where F(t) is the externally applied force upon the target, K is the support stiffness and
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x is the horizontal displacement of the target as shown in Figure 1. From this figure shear
strain, y, at the block interface and shear stress, T, can be given as

y = x/h
T = Gy (4)

where h is the height of the shear block support and G is the shear modulus.

The spring constant for the support is evaluated by referring to the free body diagram as
shown in Figure 2 where Fh is the shear force at the interface given as

Fh = 2TA = 2GyA = 2GA(x/h) = kx

k = 2GA/h (5)

where A is the shear area at the interface between the block and the plate. The equation
of motion of the block support system could be rewritten as

M2"+ 2C. x/h = F(t) (6)

METHOD OF SOLUTION

The dynamic equation of motion of the block support assembly subjected to a horizontal
side-on impact load as given in the previous section, needs to be solved for the time dependent
displacement, x, subjected to the constraint conditions that initial displacement is zero at
time t = 0 when initial velocity is V2 which is the initial target velocity obtained earlier from
invoking the momentum balance.

The forcing function, F, could now be assumed to be a triangular force-time curve with
linear decay in the form

F = fp,[1- t/tp] (7)

where F. is the peak impact force and tp is the positive phase duration. At t = 0, F
reduces to Fp and at t = tp, F vanishes which satisfies the initial constraint conditions.

The equation of motion could now be rewritten as

M2 '+ 2GAx/h = Fp[1 - t/tv] (8)

The solution of above equation of motion can be expressed as a sum

X(t) = Xt) + XP(t) (9)

where x,(t) is the complimentary solution satisfying the homogeneous equation

x+ 2GAx/(M 2 h) = 0 (10)

and zp(t) is the particular solution satisfying the nonhomogeneous equation
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-+ 2GAx/(Mh) = Fp[l - t/t,]/M (11)

A complimentary solution for the standard homogeneous equation above can be given as

Xo(t) = Acos(wt) + Bsin(wt) (12)

where A and B are constants to be evaluated from the initial and boundary conditions and
w is calculated as

w = 2GA/(M 2h) (13)

Similarly, following the procedures outlined above with some modification for the non-
homogeneous part of the equation of motion, a particular solution could be obtained as a
function of the peak load, target mass, plate stiffness, positive phase duration and the elapsed
time as shown below :

x,(t) = [Fp/(w2 M 2)I[1 - t/t,] (14)

Hence the total solution for displacement of the shear block in a horizontal direction is
given as

x(t) = Acos(wt) + Bsin(wt) + [Fp(l - (t/tp))/(w2 M)] (15)

Once displacement-time history of the impacted structure is known it is possible to obtain
velocity of the block in a horizontal direction by differentiating the above equation with
respcct to time which results in

1(t) = Bwcos(wt) - [Awsin(wt) + Fpl(w2 M2%tp)] (16)

where A and B are constants evaluated from initial and boundary conditions for the
problem.

Accelaration-time relationship for the target-support assembly can be easily obtained by
differentiating the velocity in equation above with respect to time which yields

Y(t) =-(B w2 sin(wt) + Aw 2cos(wt)) (17)

The minus sign on the right hand side of the equation indicates negative acceleration or
deceleration of the block with time which is to be expected due to the restraining action of
the welded supporting plates underneath the block.

OPTIMIZATION PROCEDURE

In order to predict the magnitude of peak displacement and peak shear stresses as well
as strains realized by the shear block at the interface between the block and the beam, it is
necessary to determine the specific time of occurrence of the peak response. Optimization
of the peak response by some means is essential to arrive at an optimum occurrence time.
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A standard mathematical approach to optimization is adopted in lieu of a trial and error
mininization scheme. In order to maximize the displacement the derivative of the displace-
ment with respect to time or the velocity can be set to zero such that

Bwcos(wtn,) - [Awsin(wto,) + Fp/(w2 M2t,)] = 0 (18)

where to,,p is the optimum time at which the peak displacement response occurs. The
above equation is required to be solved for the unknown optimum time. In the particular
case where wt,, is small the above equation simplifies to a form:

Bw - Aw 2 tp + F,/(w2M2 tp) = 0 (19)

or, to, = (1/Aw)[(B + F,/(M2t,w 3)] (20)

Peak displacement could now be easily computed by substituting the expression for the
optimum time given above in the equation for displacement time relationship obtained earlier
which can be reduced to a simpler form

' = A + Bwt, + F[1- t-,tp]lM2W2  (21)
where xP is the peak displacement of the block assembly at time t.,. Now substituting the

value of the optimum occurrence time in the above equation one can arrive at an algebraic
expression for the peak displacement of the block in the form

P = ((A 2 + B 2 )/A) + /f /(w 2M 2)1(1-

Fp/(AM 2 tw 4)] (22)

where Fp,w, M2 and t. are previously defined known quantities with specific values for a
particular problem and A, B are constants evaluated from initial and boundary conditions.

The displacement is guarenteed to be a global maximum provided the double derivative of
the displacement with respect to time or the acceleration at the optimum time of occurrence
is negative such that

- (Bw 2sin(wtp) + Aw 2 cos(wtp)) < 0 (23)

or, tan(wt,.) >-(A/B ) (24)

For each optimum time, top, the above inequality must be checked out for the specific
problem in order to ensure that the peak displacement is indeed a global maximum. Similarly
the optimum response time at which the velocity of the shear block attains a peak could
be determined by setting the right hand expression of the acceleration equation equal to
zero and verifying that the derivative of the acceleration with respect to time at this time of
occurrence is negative which ensures that the peak velocity is a global maximum.
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RESULTS AND DISCUSSION

Although it may be possible to solve exactly for the optimum time from the equations
resulting from the optimization procedure described in the previous section, it is sufficient
for most problems to adopt a trial and error approach where various suitable values of
the optimum time are substituted in the left hand side expression of the velocity equation.
The difference between the calculated velocity and zero which is the right hand side of the
equation is treated as an error which is minimized by adjusting the optimum time until it
nearly vanishes.

Once the peak shear displacement is obtained as outlined, it is fairly easy to calculate
the peak shear strain as a ratio of the peak transverse displacement and the height of the
support plates. The peak shear stress at the interface between the block and the beam can
be easily obtained by multiplying the shear strain with the shear modulus of the material
for the block-support assembly. The shear stress could be compared with the ultimate or
yield shear strength of the parent material in order to determine the structural integrity of
the assembly. A factor of safety can be worked out by taking a ratio of the ultimate or yield
strength of the material for the support plates to the actual shear stress developed at the
interface. If the factor of safety is less than or equal to 1.0, structural failure in shear is
indicated at the interface requiring redesign of the block-support assembly. However, if the
factor of safety is greater than 1.0 a margin of safety can be given as a measure of structural
integrity.

Although the analysis resorts to several simplifying assumptions regarding the loading
function and the details of the assembly, it gives a valuable insight into the dynamic shear
response behavior of a class of structures subjected to side-on impact loading. The analysis
could be extended to side-on overpressure loading due to a blast by modifying the forcing
function and reformulating the equation of motion resulting in a somewhat different type
of solution appropriate for explosive loading. The procedure outlined above is a quick and
inexpensive method of solution of response of structures dominated by shear phenomena
occurring at interfaces.
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ON THE CONTINUUM MECHANICS OF
THE MOTION OF A PHASE INTERFACE 1

Morton E. Gurtin
Department of Mathematics
Carnegie-Mellon University

Pittsburgh, PA 15213

ABSTRACT. A recent series of papers [G,AGGS] began an
investigation whose goal is a thermomechanics of two-phase
continua based on Gibbs's notion of a sharp phase-interface
endowed with thermomechanical structure. In [G] a new balance
law, balance of capillary forces, was introduced and then applied in
conjunction with suitable statements of the first two laws of
thermodynamics; the chief results are thermodynamic restrictions
on constitutive equations, exact and approximate free-boundary
conditions at the interface, and a heirarchy of free-boundary
problems. (AG] applied this theory to perfect conductors, in which
the underlying equations reduce to a single evolution equation for
the interface. [G] and (AG] were limited to rigid systems; GS]
extends the theory to include bodies that deform as they solidify
or melt. These theories involve several new concepts, examples
being: the creation of new material points; work intrinsic to a
moving interface; the formulation of conservation laws for a
moving interface. Here I shall discuss some of the new ideas
involved in [GSJ.

MECHANICS AND ENERGETICS OF DEFORMING, ACCRETING
CRYSTALS. In [GS], 2 the body, ostensibly a crystal, is allowed:
1Supported by the U. S. Army Research Office.
2 16S1 was motivated by studies of Leo and Sekerka (LS], Alexander and Johnson

(AJ.JA]. and Larche and Cahn [LC], which derive equilibrium relations for the crystal

surface as Euler-Lagrange equations corresponding to a stationary global Gibbs

function. Such derivations are appropriate to statics but tend to obscure the

fundamental nature of balance laws as basic axioms In any dynamical framework

which includes inertia and dissipation.
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(I) to crystallize through the addition or deletion of material
points at the crystal surface, a process termed accretion;

(ii) to deform.
In conjunction with these kinematical processes, two distinct
force systems are introduced:
(i) a system of accretive forces which acts within the crystal

lattice to drive the crystallization process;
(ii) a system of deformational forces to be identified with the

more or less standard forces that act in response to the local
motion of material points.

Because of the nonclassical nature of accretive forces, it is
not at all clear that there should be an accompanying balance law,
let alone what it should be and how it should relate to the
deformational system. For that reason the underlying mechanical
balance laws are derived from the requirement that the
mechanical production - the rate of kinetic energy minus the rate
of working - be independent of the observer. Here it is necessary
to introduce a new idea, that of a lattice observer: in addition to
the standard observer who measures the gross velocities of the

continuum, there is a second observer,3 who studies the lattice
and measures the velocity of the accreting crystal surface. This
proceedure leads, not only to the "standard" balance laws for linear
and angular momentum, but to new laws expressing balance of
(micro)forces and (micro)moments within the crystal lattice at the
crystal surface.

One of the chief differences between theories involving phase
transitions and the more classical theories of continuum mechanics
is the creation and deletion of material points as the phase
interface moves relative to the underlying material. We associate
with this process internal forces whose working provides an
outflow of "mechanical energy" associated with the attachment and
release of atoms as they are exchanged between phases. We write
an energy balance relating these Internal forces, the forces
3The use of more than one observer might be useful in other continuum theories,

such as theories of liquid crystals, of structured continua, or of mixtures, in which

"force'-balance laws over and above the standard laws arise.
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described previously, and the bulk energy of the two phases at the
crystal surface.

COHERENT CRYSTAL-CRYSTAL INTERACTIONS. To
illustrate the results of the general theory,4 consider an
isothermal crystal-crystal interaction,5 in which the environment
consists of a second solid phase of the crystal material, and in
which the reference lattices can be chosen to match exactly at the
interface, even though the states of stress and deformation will
generally differ across the interface. For such an interface
balance of linear momentum has the form

div,&8 + (So - Sl) n - pv(v - v,), (LM)

while the accretive laws for force and energy may be combined to
form a single accretive balance law

IUD- V = (Sn),(Fn) - (S. n)'(F. n) +

TPV2 {IFOn12 - IFjnI2) + (AB)

- OiK - div,,C + (FTS).L.

Here % and JP identify the two phases; S. v, I, and F
(appropriately labelled) designate the bulk Piola-Kirchhoff stress,
the bulk velocity, the bulk free energy, and the bulk deformation
gradient; p Is the common referential density of the two phases;

a'. 6. C and 1T are the surface tension, the interfacial Piola-
Kirchhoff stress, the accretive shear, and the normal attachment
force; n is the outward unit normal to phase m; v, L, K. and

divA are the normal velocity, the curvature tensor, twice the mean
curvature, and the surface divergence for the interface.

The balance laws (LM) and (AB) are general relations,
independent of the particular material under consideration. [GS]
gives a thermodynamic argument in support of the interfacial

4(GS] also derives equations for a solid crystal In a liquid melt.
5 Cf. Larche and Cahn [LC].
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constitutive equations

a - q(Fn)

S - aFp(F,n), (CE)

C =-On'P(F,n),

IT j(F,n) v,

where ip"(F,n) is a constitutive function for the interfacial free
energy, F is the tangential deformation gradient, Dn is the
derivative with respect to n following the interface, and
P3(F,n) _ 0 is a material function.
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NONLINEARITY OF INVERSE PROBLEMS

T. Kura and Z. Gao
Department of Civil Engineering

Northwestern University
Evanston, IL 60208

ABSTRACT

In this paper, we analyze the inverse problem in which residual surface
displacements are used to evaluate nonelastic deformation in a domain, which
is called the damage domain, of a solid. The problem is taken as an example
to elucidate the nonlinearity of a class of inverse problems.

The problem can be formulated as a system of multi-dimensional Fredholm
integral equations of the first kind. It is a complicated nonlinear problem
since both damage domain (which appears as the domain of integration in the
integral equation) and the nonelastic strains are unknown. The surface data
are not sufficient to determine the shape of the damage domain and the exact
distribution of the nonelastic strains. However, these data can be used to
obtain some important characteristic quantities associated -i:h :he non-
elastic deformation of the solid, such as elastic energy, stresses in
certain region of the solid or the fracture toughness enhancement due to
localized nonelastic deformation.

The research shows an interesting example of conversions between
nonlinear and linear problems. By introducing the concept of equivalent
damage domain, the general nonlinear problem is first converted into a
linear one which is more tractable, but still ill-posed. A variational
problem is then imposed. This leads to a new linear problem with a
parameter determined by a nonlinear algebraic function. The payoff of the
second conversion is the well-poseness (uniqueness and stability) of the new
problem. This new problem is essentially a nonlinear problem again, but a
much easier one compared with the original nonlinear problem. A numerical
scheme is easily constructed due to the monotonic property of the nonlirear
algebraic function.
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1. Introduction

In recent years, inverse problems are becoming increasingly important
in many scientific fields. Inverse scattering problems deal with the
determination of the existence, locations and sizes of defects in mechanical
structures by measurements of scattered ultrasonic wave. Increasing numbers
of results, especially experimental ones, have been reported (e.g., Ogura,
1983). In the inverse problems of vibration, natural frequencies are used
to reconstruct mass distribution of the structure (e.g., Gladwell, 1986).
Intensive work has been done in this area, particularly for in-line discrete
systems and one dimensional continuous systems, in which the corresponding
mathematical problems are relatively simple and analytical results can be
derived. Backus and Gilbert (1967, 1970, 1980) have studied the problem of
determining the density distribution in the earth as well as wave velocities
from observed travel time data, together with the known mass and moment of
inertia of the earth, and the frequencies of certain normal modes of
vibration.

This is a paper dealing with inverse problems in solid mechanics. Our
objective is to characterize nonelastic deformation in bulk after a series
of loadings by using only the residual surface displacements instead of the
entire loading history. The residual surface displacements are relative and
are defined as the difference of the initial and final values of :he
displacements.

aD

n

Fig. 1. - A traction free body D with a sub-region where
residual nonelastic strains are accumulated.
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Suppose chat nonelastic strains e. are caused in a subdomain 0 (damage

domain) of a given body D after a series of unknown loadings (Fig. 1). The

integral equation relating E. to the residual displacements u. is written

as (Gao and ura, 1989).

Cij Gm, (x - X') e (x) dx

- £ ik2( ') ui (x) n. ds + I u (W')

aD

x' e 8D

where aD is the boundary of D; nj is the outer normal of aD; C is the

elastic modulus tensor of the material and Gkm(x - x') is the Green's

function for an infinite elastic medium, i.e., Gkm(x - x') is the

displacement at point x in the xk direction due to a unit force a: point '

in the x' direction. G,(x - x') represents (a/x )Gn(x - x').

Equation (1) can be obtained by using the Betti's reciprocal theorem.
We refer readers to Gao and Mura (1989) for detailed derivation.

2. Uniaueness

Our objective is to determine nonelastic strains e. and the domain 0
U]

(a nonlinear problem). However, neither of these two quantities can be
obtained from equation (1).

Let Q be a domain inside the body D. When a distribution of
* *

nonelastic strains is compatible in 0 , the remainder D - 0 is not

disturbed. Hence, the displacements and stresses in D - 0 vanish. This

implies that the homogeneous equation of (I) has nonzero solution e? (W) for

arbitrarily chosen domain Q*. It is then clear that j and C1 cannot be
determined uniquely from equation (1).
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z

3DI

n

S -

Fig. 2. - A two-dimensional body with a line defect
(or dislocation loop).

Consider a two-dimensional case. Equation (1) has the unique solution
when 0 is a contour C (Fig. 2). One interpretation of this case is that C
is a dislocation loop. The Somigliano's dislocation density b yields

nonelastic strains, defined on C,

6? - (b i n + b n.)

Iij 2 i J i

Let the equation of the closed contour C be r - r(O). Equation (1) is
then changed to

C;" (x - X') P.(8) r(9) dd

J Cijkl Gkm,l x - r(O)sin e r d

X2 - r(C)COS(

j ijkl Gkm,l(x - x') ui~) nj ds + 2 U() (2)

3D

x' e 8D.

eP (9), as well as function r(8) (shape of contour C) are determined

uniquely from the surface displacements. The reason for the uniqueness is
as follows.
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We have shown (Gao and Mura, 1989) that the displacement field, of the
points not belonging to Q, are uniquely determined from residual surface
displacements. Therefore, if rigid body motion is properly excluded, the

displacements inside and outside contour C, denoted by u!I ) and u(0)
1 1

respectively, are determined by the su;face displacements. e? (0) is then
13

deduced from the mismatch of u.I ) and u.0 ) on the contour C. Hence,
3. 1

equation (2) has the unique solution for e?.(9) and r(O).13

90

0 Actual curve C
180 6-2- -0- 2-3 0 Initial guess

, Final result

270

Fig. 3. The intial and final configurations of iterations
compared to the actual shape of contour C. The

actual values of nonelastic strains are e?. - I
1J

while the computed values are -" 0.97,

22 - 0.97, e12 - 0.9.
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An example is shown in Fig. 3, in which we expand r - r(O) by Fourier
series

r(O) - (an sin ni + bn cosnO)

n-0

b0 + a sind + bi cose. (3)

If we assume ep are constants, equation (2) becomes a nonlinear equation

L, 2, ,,22 bo, a and b,. Choosing an initial configuration of

r(g), the nonlinear equation is solved by an optimization algrithom
(Subroutine ZMIN in IMSL Library) which minimizes the difference between
the right and left hand sides of (2). The initial and final configurations
of r - r(g) are compared to the actual shape of r(O) (Fig. 3). The actual

values of nonelastic strains are e?. - I while the computed ones are P1]

0.97, 2 - 0.97 and ,2 - 0.9, respectively.

n

Fig. 4. - A body with a point defect Q. x - x' - x- x'

for x e n and x' e aD.
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Another interesting case is as follows. When domain 0 is small and far
away from surface aD, 0 can be treated as a point defect (Fig. 4). Note x -

x' =  x - x' for x' e aD, x e 0 and a fixed point x0 inside Q. Equation (1)

can be simplified as

C JkU G k 1 ~ (x - x?) f ep (x) dx

0r k o, (x - x') ui (x) n. ds + 1 u (x') ()

aD

X' f 6D.

The location of the defect x , as well as the quantity e p (x) dx can be

obtained by employing a proper algorithm for the nonlinear problem (4).

3. From the Nonlinear Problem to a Linear Problem

As we have mentioned, in general, the nonlinear problem (1) to
determine C and J. cannot be solved uniquely. Even for certain specific

Li
problems (e.g., equations (2) and (4)), where the uniqueness is guaranteed,
the construction of a proper algorithm is still a difficult task. On the
other hand, the degree of difficulty will be greatly reduced if the
nonlinear problem is converted into a linear one.

Problem (1) becomes a linear problem when domain 0 is specified. The
question is how to specify Q since we really do not know its shape and
location.

Choose a domain Q (equivalent damage domain) such that 0 is contained

inside Q . Equation (1) is changed to

.* ij P 0 (x -" ') C? (x) dx

r Cjk Gk (x - x') ui (x) n- d- + 2 um (x') (5)

aD

x' e aD

123



which is a linear problem to determine e?. Now we discuss the relationship
ibetween the solutions of nonlinear problem (1) and linear problem (5).

Conclusion 1. The stress field caused by both solutions are identical

in the region outside Q

Conclusion 2. The minimum elastic energy (or any other quadratic

function of e? ) of all the ep satisfying (5) is a lower bound of that of
i ii

actual nonelastic strains satisfying (1).
The above conclusions are based on the fact that if surface

displacements and traction forces are zero on a part of the boundary of an
elastic body, the displacements and stresses are identically zero in the
whole elastic body. The details of the discussion can be found in Gao and
Mura (1989). The same idea applies to the problem of calculating the
shielding effects due to an unknown distribution of micro-defects in an
unknown domain Q by measuring the crack opening displacements (Gao and Kura,
L990; also see Fig. 5).

tj

Fig. 5. -An infinite medium with a crack. The shielding
effects of the mirco-defects can be calculated from
measurements of crack opening displacements.
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4. From the Linear Problem to a New Nonlinear Problem

*

By specifying domain a as 0 , we have changed the nonlinear problem (i)
to a linear equation (5). The solution of the linear problem (5) perserves
important characteristics of the actual nonelastic strains. However,
equation (5) is still an ill-posed problem (nonunique and unstable), which
cannot be solved directly.

Let's write equation (5) as

U(X') K(f,')v(x)d for x' on 3D (6)

where U(x') is known since ui(x) is given on aD. K(,x') - Cijk, Gkm,

(x-x') and V(W) is an unknown vector whose components are p..

Now consider a variational problem

iiH n (~ 112

subjected to H J K (x,x') V (x) dx " U (x') 112 "

where e is a small number chosen from the accuracy of measurement and

i y (x) 112 -2 VT(x) V ( ) dx (8)
n

vT is the transpose vector of V.

The use of a Lagrange multiplier A transforms (7) to

M 1 (x ) 112 + A(,, [ U(x°)112 -,> <
xin 2 K(xx')V(x)dx (9)

The Euler equation of (9) becomes

(x,y) V (W) dx + a V () -U () for e (10)
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where

a- 1/A

* (XX) - f (Xx)K(x,x')dx' (Il)

aD

U*(X) -rjQx)U(xI)dxl.-

aD

The integral equation (10) is solved for V(x) with parameter a. The value

of a is determined from

f(s) - K(x,')V(x)dx - U(x') 112 6 - O. (12)

Equation (10) is a well-posed Fredholm integral equation of the second
kind with a self-adjoint kernel. For any chosen parameter a, equation (10)
can be solved by employing conventional :echniques such as fini-ta elan:
method. However, the parameter a must satisfy zhe nonear a
equation (12). Therefore, the new problem is essentially a nonlinear
problem again, but a much easier one compared with the original nonlinear
problem (I).

The nonlinear function f(a) is an increasing function of a and has only
one root (Gao and Kura, 1989). Therefore, the root can be solved by the
bisection algorithm. The algorithm converges rather fast since in each
iteration, the interval containing the root of f(a) is reduced by half.

0o. aD X,

0.

Fig. 6. Even though 0 (where nonelastic strains are distributed)
is unknown, it is always possible to cover 0 with a chosen

domain 0 . The original nonlinear problem is, therfore,
changed into a linear problem.
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Let us consider the example shown in Fig. 6. Two dimensional half
space is given by x2 a 0 and the nonelastic strains distributed inside 1 are

Y12 - 2 c12 - 28 (xl - 0.6) (x2 - 10)

d2- -el - 20 (x2 - 1.7) cos 2x,. (13)

Table I

*IlvII Element Element
Number Length

O.x,:0 5; 7 :x - 0.i

0.55x2 :51. 8.34 1.0 25 L(x 2 1 0.1

0sx,s0.54; L[xl] 0.09

0.48Sx251.02 8.10 1.17 36 L(x2] 0.09

0x,0.616; L[xl] 0.088

0.485x2s1.096 7.98 1.52 49 L(x2 ] 0.088

0sx1 0.744; L[x1 ] 0.093

0.47'x 2 51.27 7.44 2.38 64 L[x2 ] 0.1

S- (0sx,:s0.5; 0.5Sx2;1). The exact value of JIV]I is 8.33.

1 - area of 0 /area of 0
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Table I lists some characteristic quantities for the calculations of
,

different choices of domain Q . For instance, from the second row of Table

i we know ( is taken as 0 s x, s 0.54, 0.48 : X2 : 1.02 to cover i. 36

elements are used and the element lengths in both directions are 0.09. The
computed value of (IV(x) ( is 8.1 which is a lower bound of the actual value

8.33.

It should be mentioned that if we replace IIV(X) 112 in equation
(7) by the elastic strain energy and change (10) properly, we can obtain a
lower bound of the elastic strain energy.

Xl

2.0

X
2

Fig. 7. - 0 is the circular domain in a half-space
.

X2 Z 0. Q covers Q.

Another example is shown in Fig. 7. The nonelastic strains

12 E2 2 - - - 1(14)
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occur in domain Q (r 5 0.2). Domain Q* is chosen co include 0 inside. By

solving equations (10) and (12), we obcain a distribution of J. in *
2.J

which is different from that in (14). However, as indicated by Fig. 8, in

the region outside a the stress field induced by the computed J?. in Q is
Uj

the same as the one by (14).

0.6

/ "

0.4 /

rO -

0

-0.2

-0.4 y r r- r.-..

-0.6

Fig. 8. The residual stresses art and are at r/a* - 1.5

caused by (14) are identical to those by the

computed J. in Q*. The solid lines are theLj
computed results and the dsahed lines are

induced by e. in (14).
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Abstract

Phase-plane techniques are used to analyze a quadratic system of ordinary dif-
ferential equations that approximates a single relaxation-time system of partial
differential equations used to model transient behavior of highly elastic non-
Newtonian liquids in shear flow through slit dies. The latter one-dimensional
model is derived from three-dimensional balance laws coupled with differential
constitutive relations well-known by rheologists. The resulting initial-boundary-
value problem is globally well-posed and possesses the key feature: the steady
shear stress is a non-monotone function of the strain rate. Results of the global
analysis of the quadratic system of ode's lead to the same qualitative features as
those obtained recently by numerical simulation of the governing pde's for realis-
tic data for polymer melts used in rheological experiments. The analytical results
provide an explanation of the experimentally observed phenomenon called spurt;
they also predict new phenomena discovered in the numerical simulation; these
phenomena should also be observable in experiments.
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1. Introduction

The purpose of this paper is to analyze novel phenomena in dynamic shearing flows
of non-Newtonian fluids that are important in polymer processing [17]. One striking phe-
nomenon, called "spurt," was apparently first observed by Vinogradov et al. [19] in ex-
periments concerning quasi static flow of monodispersive polyisoprenes through capillaries
or equivalently through slit dies. They found that the volumetric flow rate increased dra-
matically at a critical stress that was independent of molecular wei!L. until recently,
spurt has been associated with the failure of the flowing polymer to adhere to the wall [5].
The focus of our current research is to offer an alternate explanation of spurt and reia~ed
phenomena.

Understanding these phenomena has proved to be of sign,7 > ant physical, mathemati-
cal, and computational interest. In our recent work (12], we found that satisfactory expla-
nation and modeling of the spurt phenomenon requires studying the full dynamics of the
equations of motion and constitutive equations. The common and key feature of constitu-
tive models that exhibit spurt and related phenomena is a non-monotonic relation between
the steady shear stress and strain rate. This allows jumps in the steady strain rate to form
when the driving pressure gradient exceeds a critical value; such jumps correspond to the
sudden increase in volumetric flow rate observed in the experiments of Vinogradov et al.
The governing systems used to model such one-dimensional flows are analyzed in [12]
by numerical techniques and simulation, and in the present work by analytical methods.
The systems derive from fully three-dimensional differential constitutive relations with m-
relaxation times (based on work of Johnson and Segalman [8] and Oldroyd [16]). They
are evolutionary, globally well posed in a sense described below, and they possess discon-
tinuous steady states of the type mentioned above that lead to an explanation of spurt.
The governing systems for shear flows through slit-dies are formulated from balance laws
in Sec. 2.

Specifically, we model these flows by decomposing the total shear stress into a polymer
contribution, evolving in accordance with a differential constitutive relation with a single
relaxation time and a Newtonian viscosity contribution (see system (JSO) in Sec. 2.). The
flows can also be modelled by a system based on a differential constitutive law with two
widely spaced relaxation times (see system (JS02 ) in (13].) but no Newtonian viscosity
contribution. Numerical simulation [9, 12] of transient flows at high Weissenberg (Debo-
rah) number and very low Reynolds number using the model (JSO) exhibited spurt, shape
memory, and hysteresis; furthermore, it predicted other effects, such as latency, normal
stress oscillations, and molecular weight dependence of hysteresis, that should be analysed
further and tested in rheological experiment.

In earlier work, Hunter and Slemrod [7] used techniques of conservation laws to study
the qualitative behavior of discontinuous steady states in a simple one-dimensional vis-
coelastic model of rate type with viscous damping. They predicted shape memory and
hysteresis effects related to spurt. A salient feature of their model is linear instability and
loss of evolutionarity in a certain region of state space.

The objective of the present paper is to develop analytical techniques, the results of
which verify these rather dramatic implications of numerical simulation. Based on scaling
introduced in [12], appropriate for the highly elastic and very viscous polyisoprenes used in
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the spurt-experiment, we are led to study the following pair of quadratic autonomous ordi-
nary differential equations that approximates the governing system (JSO) in the relevant
range of physical parameters for each fixed position in the channel:

(Z+1),(1.1)

Here the dot denotes the derivative d/dt, T is a parameter that depends on the driving
pressure gradient as well as position x in the channel, and c > 0 is a ratio of viscosities.
System (1.1) is obtained by setting a = 0 in the momentum equation in system (J50); this
approximation is reasonable because a is at least several orders of magnitude smaller than
e. We show that steady states of system (JSO), some of which are discontinuous for non-
monotone constitutive relations, correspond to to critical points of the quadratic system.
We deduce the local characters of the critical points, and we prove that system (1.1) has
no periodic orbits or closed separatrix cycles. Moreover, this system is endowed with
a natural Lyapunov-like function with the aid of which we are able to determine the
global dynamics of the approximating quadratic system completely and thus identify its
globally asymptotically stable crical points (i.e. steady states) for each position x. This
analysis is carried out in Sec. 3 When a, the ratio of Reynolds to Deborah numbers, is
strictly positive, the stability of discontinuous steady states of system (JSO) remains to
be settled. Recently, Nohel, Pego and Tzavaras [151 established such a result for simple
model in which the polymer 7ontribution to the shear stress satisfies a single differential
constitutive relation; for a particular choice, their model and system (JSO) with a > 0
have the same behavior in steady shear. Their asymptotic stability result, combined with
numerical experiments and research in progress, suggest that the same result holds for the
full system (JSO), at least when a is sufficiently small.

In Sec. 4.,the analysis of Sec. 3. is appiied to each point x in the channel, allowing
us to explain spurt, shape memory, hysteresis, and other effects originally observed in the
numerical simulations in terms of a continuum of phase portraits. We discuss asymptotic
expansions of solutions of systems (JSO) and (JS02 ) of Ref. [131 in powers of e that enable
us to explain latency (a pseudo-steady state that precedes spurt). The asymptotic analysis
also permits a more quantitative comparison of the dynamics of the two models when 6 is
sufficiently small. In Sec. 5., we discuss physical implications of the analysis, particularly
those that suggest new experiments. In Sec. 6., we draw certain conclusions. Although the
analysis in this paper applies only to the special constitutive models we have studied, we
expect that the qualitative features of our results appear in a broad class of non-Newtonian
fluids. Indeed, numerical simulation by Kolkka and lerley [10] using another model with a
single relaxation time and Newtonian viscosity exhibits very similar character.

133

V



2. A Johnson-Segalman-Oldroyd Model for Shear Flow
The motion of a fluid under incompressible and isothermal conditions is governed by

the balance of mass and linear momentum. The response characteristics of the fluid are
embodied in the constitutive relation for the stress. For viscoelastic fluids with fading
memory, these relations specify the stress as a functional of the deformation history of the
fluid. Many sophisticated constitutive models have been devised; see Ref. [21 for a survey.
Of particular interest is a class of differential models with m-relaxation times, derived in a
three-dimensional setting in Refs. [12] and [13]; these models can be regarded as a special
cases of the Johnson-Segalman model [S]when the memory function is a linear combina-
tion of m-decaying exponentials with positive coefficients or of the Oldroyd differential
constitutive equation [16].

Essential properties of constitutive relations are exhibited in simple planar Poiseuille
shear flow. We study shear flow of a non-Newtonian fluid between parallel plates, located
at x - ±h/2, with the flow aligned along the y-axis, symmetric about the center line, and
driven by a constant pressure gradient f. We restrict attention to the simplest model of a
single relaxation-time differential model that possesses steady state solutions exhibiting a
non-monotone relation between the total steady shear stress and strain rate, and thereby
reproduces spurt and related phenomena discussed below. The total shear stress T is
decomposed into a polymer contribution and a Newtonian viscosity contribution. When
restricted to one space dimension the initial-boundary value problem, in non-dimensional
units with distance scaled by h, governing the flow can be written in the form (see Refs. [9,
121):

a - Or = vzz + f
- (Z + 1)V. = -, (JSO)

zt + Oav. = -Z

on the interval [-1/2, 01, with boundary conditions

v(-1/2,t) = 0 and v.(O,t) = 0 (BC)

and initial conditions

v(x, 0) = vo(x) , a(x, 0) = o(x) and Z(z, 0) = Zo(x) , on - 1/2 < x <0; (IC)

symmetry of the flow and compatibility with the boundary conditions requires that
vo(-1/2) = 0, v'(0) = 0 and o(0) = 0.

The evolution of a, the polymer contribution to the shear stress, and of Z, a quantity
proportional to the normal stress difference, are governed by the second and third equations
in system (JSO). As a result of scaling motivated by numerical simulation and introduced
in Ref. [12], there are only three essential parameters: a is a ratio of Reynolds number to
Deborah number, e is a ratio of viscosities, and f is the constant pressure gradient.

When e = 0, and Z + 1 > 0, system (JSO) is hyperbolic, with characteristics speeds
±((Z + 1)/a]'/ 2 and 0. Moreover, for smooth intial data in the hyperbolic region and
compatible with the boundary conditions, techniques in [181 can be used to establish
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global well-posedness (in terms of classical solutions) if the data are small, and finite-
time blow-up of classical solutions if the data are large. If C > 0, system (JSO) for any
smooth or piece-wise smooth data; indeed, general theory developed in [15] (see Sec. 3
and particularly Appendix A) yields global existence of classical solutions for smooth
initial data of arbitrary size, and also existence of almost classical, strong solutions with
discontinuities in the initial velocity gradient and in stress components; the latter result
allows one to prescribe discontinuous initial data of the same type as the discontinuous
steady states studied in this paper.

The steady-state solutions of system (JSO) play an important role in our discussion.
Such a solution, denoted by V, F, and Z, can be described as follows. The stress components
7 and Z are related to the strain rate U_ through the relations

'7- 
(2.1)I+-2 ' l+'=T =

Therefore, the steady total shear stress T:= F + eV, is given by T = w(V,,), where

+S2
w :)=-~ + ~s.(2.2)

The properties of w, the steady-state relation between shear stress and shear strain
rate, are crucial to the behavior of the flow. By symmetry, it suffices to consider s > 0.
For all e > 0, the function w has inflection points at s - 0 and s = v3. When c > 1/8,
the function w is strictly increasing, but when e < 1/8, the function w is not monotone.
Lack of monotonicity is the fundamental cause of the non-Newtonian behavior studied in
this paper; hereafter we assume that e < 1/8.

The graph of w is shown in Fig. 1. Specifically, w has a maximum at s = sM
and a minimum at s = s,,, where it takes the values TM := w(sM) and Tm w(sm)
respectively. As e --+ 1/8, the two critical points coalesce at a = v3_.

The momentum equation, together with the boundary condition at the centerline,
implies that the steady total shear stress satisfies = -fx for every x E [- i, 0]. Therefore,
the steady velocity gradient can be determined as a function of x by solving

w(g,) = -fz . (2.3)

Equivalently, a steady state solution U. satisfies the cubic equation P(Uz) = 0, where

P(S):=s 3 -TS +(1 + )s- T. (2.4)

The steady velocity profile in Fig. 2 is obtained by integrating " and using the boundary
condition at the wall. However, because the function w is not monotone, there might
be up to three distinct values of U, that satisfy Eq. (2.3) for any particular x on the
interval [-1/2, 01. Consequently, U. can suffer jump discontinuities, resulting in kinks in
the velocity profile (as at the point x. in Fig. 2). Indeed, a steady solution must contain
such a jump if the total stress T,,,l = f/2 at the wall exceeds the total stress TM at the
local maximum M in Fig. 1.

Finally, we remark that the flow problem discussed here can also be modelled by a
system based on a differential constitutive law with two widely spaced relaxation times
but no Newtonian viscosity contribution (see system (JS02) in Sec. 2. of [13]); with an
appropriate choice of relevant parameters, the resulting problem exhibits the same steady
states and the same characteristics as (JSO).
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Fig. 1: Total steady shear stress T vs. shear strain rate V. for
steady flow. The case of three critical points is illustrated; other
possibilities are discussed in Sec. 3.

3. Phase Plane Analysis for System (JSO) When a = 0

When a is not zero, numerical simulation developed in (9, 11, 12] discovered striking
phenomena in shear flow and suggested the analysis that follows. A great deal of infor-
mation about the structure of solutions of system (JSO) can be garnered by studying
a quadratic system of ordinary differential equations that approximates it in a certain
parameter range, the dynamics of which is determined completely. Motivation for this ap-
proximation comes from the following observation: in experiments of Vinogradov et al. [19],
a is of the order 1012; thus the term avt in the momentum equation of system (JSO)
is negligible even when vt is moderately large. This led us to the approximation to sys-
tem (JSO) obtained when a = 0.

When a = 0, the momentum equation in system (JSO) can be integrated to show
that the total shear stress T :- o + v, coincides with the steady value T(x) = -fx. Thus
T = T(x) is a function of x only, even though a and v, are functions of both x and t. The
remaining equations of system (JSO) yield, for each fixed x, the autonomous, quadratic,
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Fig. 2: Velocity profile for steady flow.

planar system of ordinary differential equations

(3.1)

Here the dot denotes the derivative d/dt. We emphasize that for each 7, a different
dynamical system is obta,,aed at each x on the interval [-1/2, ]in the channel because
T= -fx. By symmetry, we may focus attention on the case T > 0; also recall from Sec. 2
that e < 1/8; these are assumed throughout. The dynamical system (3.1) can be analyzed
completely by a phase-plane analysis outlined below; the reader is referred to Sec. 3 in [13]
for further details. Here we state the main results.

The critical points of system (3.1) satisfy the algebraic system

(Z + 1+ 1 + CI = 0 ,
+2( 1 a a(3.2)

(T ) 7
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These equations define, respectively, a hyperbola and a parabola in the a-Z plane; these
curves are drawn in Fig. 3, which corresponds to the most comprehensive case of three
critical points. The critical points are intersections of these curves. In particular, critical
points lie in the strip 0 < a < T.

A

Fig. 3: The phase plane in the case of three critical points.

Eliminating Z in these equations shows that the a-coordinates of the critical points
satisfy the cubic equation Q(a/T) = 0, where

Q() := ( - 1) + 1 + 6 (C - 1) + 6 (3.3)

A straightforward calculation using Eq. (2.4) shows that

(T..ro. == (3.4)

Thus each critical point of the system (3.1) defines a steady-state solution of system (JSO):
such a solution corresponds to a point on the steady total-stress curve (see Fig. 1) at which
the total stress is T(x). Consequently, we have:
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Proposition 3 1:
For each position z in the channel and for each c > 0, there are three possibilities:
(1) there is a single critical point A when T < T,,;
(2) there is also a single critical point C if T > TM;
(3) there are three critical points A, B, and C when T% < T < TM.

For simplicity, we ignore the degenerate cases, where T = TM or T = T,, in which
two critical points coalesce.

To determine the qualitative structure of the dynamical system (3.1), we first study
the nature of the critical points. The behavior of orbits near a critical point depends
on the linearization of system (3.1) at this point, i.e., on the eigenvalues of the Jacobian
matrix J associated with Eq. (3.1), evaluated at the critical point. To avoid solving the
cubic equation Q(a/T) = 0, the character of the eigenvalues of J can be determined from
the signs of the trace of J denoted by Tr J, the determinant of J denoted by Det J, and
the discriminant of J denoted by Discrm J at the critical points. We omit these tedious
calculations, a result of which is a useful fact: at a critical point, - Det J = Q'(a/T). This
relation is important because Q' is positive at A and C and negative at B. To assist the
reader, Fig. 3 shows the hyperbola on which & = 0, the parabola on which 2 = 0 [see
Eqs. (3.2)), and the hyperbola on which DiscrmJ vanishes. As a result of the analysis
above, we draw the following conclusions:
(1) TrJ < 0 at all critical points;
(2) DetJ > 0 at A and C, while Det J < 0 at B; and
(3) Discrm J > 0 at A and B, whereas Discrm J can be of either sign at C. (For typical

values of c and T, Discrm J < 0 at C; in particular, Discrm J < 0 if C is the only
critical point. But it is possible for Discrm J to be positive if T is sufficiently close to

Standard theory of nonlinear planar dynamical systems (see, e.g., Ref. [3, Chap. 151) now
establishes the local characters of the critical points A, B, C in Proposition 3.1:

Proposition 3.2:
(1) A is an attracting node (called the classical attractor);
(2) B is a saddle point;
(3) C is either an attracting spiral point or an attracting node (called the spurt attractor).

The next task is to determine the global structure of the orbits of system (3.1). In
this direction, we modify an argument suggested by A. Coppel [4] and establish the cru-
cial result, the proof of which involves a change in the time scale and an application of
Bendixson's theorem:

Proposition 3.3:
System (3.1) has neither periodic orbits nor separatrix cycles.

To understand the global qualitative behavior of orbits, we construct suitable invariant
sets. In this regard, a crucial tool is that system (3.1) is endowed with the identity (3.5)

da 2 + (Z + 1)2 1 = -2 [a2+ (Z + 1)2 _] (3.5)
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Thus the function V(o, Z) := a 2 +(Z+1)2 serves as a Lyapunov function for the dynamical
system. Notice that identity (3.5) is independent of T and e.

Let r denote the circle on which the right side of Eq. (3.5) vanishes, and let C,. denote
the circle of radius r centered at a = 0 and Z = -1, i.e. C,. := {(o-, Z) : V(u, Z) = r, r > 0};
each C,. is a level set of V. The circles r and C1 are shown in Fig. 4, which corresponds
to the case of a single critical point, the spiral point C. Eq. (3.5) also implies the critical
points of system (3.1) lie on r. If r > 1, r lies strictly inside C,.. Consequently, Eq. (3.5)
shows that the dynamical system (3.1) flows inward at points along C,.. Thus the interior
of C, is a positively invariant set for each r > 1. Furthermore, the closed disk bounded by
C1, which is the intersection of these sets, is also positively invariant. Therefore the above
argument establishes:

Proposition 3.4: Each dosed disk bounded by the circle C,, r > 1 is a positively
invariant set for the system (3.1).

The above results combined with identification of suitable invariant sets were used to
determine the global structure of the orbits of system (3.1) in the cases of one and three
critical points, and to analyze the stable and unstable manifolds of the saddle point at B.
These results are shown in Figs. 5 and 6 and suxnmerized in the following result.

Proposition 3.5:
The basin of attraction of A, i.e., the set of points that flow toward A as t --+ oo, comprises
those points on the same side of the stable manifold of B as is A; points on the other side
are in the basin of attraction of C. Moreover, the arc of the circle F through the origin,
between B and its reflection B' is contained in the basin of attraction of A. In particular,
the stable manifold for B cannot cross its boundary, so that it cannot cross F between B
and B'.

All qualitative features of the dynamics of system (3.1) (except possibly whether C is a
node or a focus) carry over to one that approximates the system (JS02) in the case of two
widely separated relaxation times (see system (4.3) in [13!).
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Fig. 4: The phase plane when the spurt attractor C is the only
critical point.

4. Qualitative Features of (JSO) Based on Phase Plane Analysis

The discussion that follows sketches an explanation of recent numerical simulations of
(JSO) described in Refs. [9, 121. These exhibited several effects related to spurt: latency,
shape memory, and hysteresis. Fig. 7 shows the result of simulating a "quasi-static"
loading sequence in which the pressure gradient 7 is increased in small steps, allowing
sufficient time between steps to achieve steady flow [91. The loading sequence is followed
by a similar quasi-static unloading sequence, in which the driving pressure gradient is
decreased in steps. The initial step used zero initial data, and succeeding steps used the
results of the previous step as initial data. The resulting hysteresis loop includes the shape
memory predicted by Hunter and Slemrod (7] for a simpler model by a different approach.
The width of the hysteresis loop at the bottom can be related directly to the molecular
weight of the sample [9].

We explain spurt, shape memory, hysteresis and latency. We consider experiments
of the following type: the flow is initially in a steady state corresponding to a forcing
f0, and the forcing is suddenly changed to f =f0 + Af We call this process "loading"
(resp. "unloading") if Afhas the same (resp. opposite) sign asf 0 . The initial flow can
be described by specifying, for each channel position x, whether the flow is at a classical
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Fig. 5: The orbit through origin when the spurt attractor C is the
only critical point.

attractor A (x is a "classical point") or a spurt attractor C (x is a "spurt point") for the
system (3.1) with T= -fox. We shall say that any point lying on the same side of the
stable manifold of B as is A lies on the "classical side"; points lying on the other side are
said to be on the "spurt side." The outcome of the experiment depends on the character of
the phase portrait with T = -fx. To determine this outcome, we need only decide when
a classical point becomes a spurt point or vice versa.

The principle mathematical properties of the dynamical system (3.1) that determine
the outcome of loading and unloading experiments are embodied in the following conse-
quence of the phase plane analysis.

Proposition 4.1:
(1) A classical point Ao for the initial forcing f o lies in the domain of attraction of the

classical attractor A for 7, provided that A exists (i.e., 1fxI < TM);
(2) A spurt point Co for the initial forcing '0 lies in the domain of attraction of the spurt

attractor C for 7 unless (a) C does not exist (i.e., 17xl <T m); or (b) C lies on the
classical side of the stable manifold of the saddle point B for f.

Consider starting with 7f = 0 and loading to 7> 0. Thus the initial state for each z
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Fig. 6: Phase portrait in the case of three critical points, with C
being a spiral.

lies at the origin o, = 0, Z = 0. Then according to 4.1(1) above, each x E [-1/2, 0] such
that fixi < TM is a classical point, while the x for which flxI > TM are spurt points
(because there is no classical attractor). Consequently, we draw two conclusions:

Proposition 4.2:
(a) If the forcing is subcritical (i.e., f < f7 it := 2TM), the asymptotic steady flow is

entirely classical.

(b) If the forcing is supercritical (f_> fsj), there is a single kink in the velocity profile
(see Fig. 2), located at x. = -TM/f; those x E [-1/2, x.), near the wall, are spurt
points, whereas x E (x., 0], near the centerline, are classical.

The solution in case (b) can be described as "top jumping" because the stress T. = TM
at the kink is as large as possible, and the the kink is located as close as possible to the
wall.

Next, consider increasingthe load from 70 > 0 to 7 > 70. A point x that is classical
for fo remains classical for f unless there is no classical attractor for T = -7:, i.e.,
f7Ix > TM. A spurt point x for f 0, on the other hand, is always a spurt point for f. As
a result, a point in x in the channel can change only from a classical attractor to a spurt
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Fig. 7: Hysteresis under cyclic load: normalized throughput 6Q
vs. wall shear stress Tw..1 [9.

attractor, and then only if 71xI exceeds TM. When 7 is chosen to be supercritical, loading
causes the position x. of the kink in Fig. 2 to move away from the wall, but only to the
extent that it must: a single jump in strain rate occurs at zX = -TM/7, where the total
stress is T. = TM. These conclusions are valid, in particular, for a quasi-static process of
gradually increasing the load from f0 = 0 to f7> fu,.

Now consider unloading from f0 > 0 to 7 < f 0; assume, for the moment, that f is
positive. Here, the initial steady solution need not correspond to top jumping. For this
type of unloading, a point x that is classical for f0 always remains classical for f: the
classical attractor for 7 exists because 7[x I < 70xJ. By contrast, a spurt point x for 70
can become classical at 7. This occurs if: (a) the total stress T = -7z falls below T,,; or
(b) the spurt attractor C0 for T = -f 0x lies on the classical side of the stable manifold of
the saddle point B for T = -7x (see Proposition 4.1(2b)).

Combining the analysis of loading and unloading leads to the following summary of
quasi-static cycles and the resulting flow hysteresis.

Kinks move oway from the wall under top jumping loading; they move toward the wall
under bottom "',mping unloading; otherwise they remain fized. The hysteresis loop opens
from the point at which unloading commences; no part of the unloading path retraces the
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loading path until point d in Fig. 7.
To explain the latency effect that occurs during loading, assume that C is small. It is

readily seen that the total stress TM at the the local maximum M is 1/2 + O(e), while
the local minimum m corresponds to a total stress Tn of 2v [1 + O(e)]. Furthermore,
for x such that T(x) = 0(1), a = T + 0(c) at an attracting node at A, while a = O(e)
at a spurt attractor C (which is a spiral). Consider a point along the channel for which
T(x) > TM, so that the only critical point of the system (3.1) is C, and suppose that that
T < 1. Then the evolution of the system exhibits three distinct phases, as indicated in
Fig. 6: an initial "Newtonian" phase (0 to N); an intermediate "latency" phase (N to 5);
and a final "spurt" phase (S to C).

The Newtonian phase occurs on a time scale of order e, during which the system
approximately follows an arc of a circle centered at o- 0 and Z = -1. Having assumed
that T < 1, Z approaches

ZN = (1 - Y2)L - (4.1)

as a rises to the value T. (If, on the other hand, T >_ 1, the circular arc does not extend
as far as T, and o never attains the value T; rather, the system slowly spirals toward the
spurt attractor. Thus the dynamical behavior does not exhibit distinct phases.)

The latency phase is characterized by having a- = T+O(e), so that o, is nearly constant
and Z evolves approximately according to the differential equation

2. (4.2)

Therefore, the shear stress and velocity profiles closely resemble those for a steady solution
with no spurt, but the solution is not truly steady because the normal stress difference
Z still changes. Integrating Eq. (4.2) from Z = ZN to Z = -1 determines the latency
period. This period becomes indefinitely long when the forcing decreases to its critical
value; thus the persistence of the near-steady solution with no spurt can be very dramatic.
The solution remains longest near point L where Z = - 1 + T. This point may be regarded
as the remnant of the attracting node A and the saddle point B. Eventually the solution
enters the spurt phase and tends to the critical point C. Because C is an attracting spiral,
the stress oscillates between the shear and normal components while it approaches the
steady state.

Asymptotic analysis carried out in Sec. 6 of [13] shows that when e is sufficiently
small, system (JS02 ) of [13] has the same asymptotic properties as system (JSO). Thus
system (JSO) approximates (JS02 ) quantitatively as well as qualitatively.
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5. Physical Implications

One of the widely accepted explanations of spurt and similar observations is that the
presence of the wall affects the dynamics of the polymer system near the wall. Conceivably,
there could be a variety of "wall effects," the most obvious is the loss of chemical bond
between wall and fluid, or wall slip [5]. Perhaps the most distinguishing feature of our
alternative approach is: it predicts that spurt stems from a material property of the
polymer and is not related to any external interaction. The spurt layer forms at the wall
in situations such as top jumping because the stresses are higher there; for the same reason,
of course, is chemical bonds would break at the wall;however, our approach predicts that
the layer of spurt points spreads into the interior of the channel on continued loading.
Layer thickness is predicted to grow continuously in loading to a thickness that should be
observable, provided secondary (two-dimensional) instabilities do not develop.

Our analysis suggests other ways in which experiments might be devised to verify
the dependence of spurt on material properties: (i) produce multiple kinks with spurt
layer separated from the wall, (ii) produce hysteresis in flow reversal (Fig. 9). Our model
predicts circumstances under which a different path can be followed in sudden reversal of
the flow than would be followed by a sequence of solutions in which the pressure gradient
is reduced to zero and reloaded again (with the opposite sign) to a value of somewhat
smaller magnitude. Such behavior does not seem likely to be explainable by a wall effect.

The most important and perhaps the easiest experiment to perform to verify our the-
ory is to produce latency. Our analysis predicts long latency times for data corresponding
to realistic material data; no sophisticated timing device would be required, nor would the
onset of the instability be hard to identify. The increase in throughput is predicted to be
so dramatic that simple visual inspection of the exit flow would probably be sufficient.

6. Conclusions

Although our analysis applies only to the special constitutive models we have studied,
we expect that the qualitative features of our results appear in a broad class of non-
Newtonian fluids. Our analysis has identified certain universal mathematical features in
the shear flow of viscoelastic fluids described by differential constitutive relations that
give rise to spurt and related phenomena. The key feature is that there are three widely
separated time scales, each associated with an important non-dimensional number (a, e,
and 1, respectively), when scaled by the dominant relaxation time, A 1 . Each of these
time scales can be associated with a particular equation in system (JSO) [13]. The key
to understanding the dynamics of such systems is fixing the location of the discontinuity
in the strain rate induced by the non-monotone character of the steady shear stress vs.
strain rate.
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Abstract

Some recent results obtained using adaptive finite element methods and so-called smart algorithms

in two- and three-dimensional problems in fluid mechanics are discussed. These include applica-

tions of h- and h-p-adaptive methods on unstructured meshes.
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held at M.I.T., March 1989, in honor of Professor T.H.H. Pian on the occasion of his seventieth birthday.
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1 Introduction

The significant challenges of numerical simulation of complex phenomena in fluid dynamics
have encouraged the development of new and innovative methods for producing good compu-
tational results as efficiently as possible with existing computing capabilities. Chief among
these are adaptive methods, which attempt to adapt the mesh size and topology or the spec-
tral order of the approximation so as to yield acceptable results with minimum numbers of
grid points or degrees of freedom. In this paper, some recent results are surveyed. Some of
the results described are also discussed in the conference paper [1,21; others are new results
obtained using recently completed three-dimensional adaptive h-codes and h-p codes.

2 Brief Review of Adaptive Methods

Adaptive methods in computational mechanics are generally based on a simple idea: when
the error ina computation is too large, change the structure of the- approximation (the mesh
size, the location of grid points, the order of the approximation, etc.) to reduce it. Interest
in such procedures has grown gradually in recent years with the realization that they may
embody ways to optimize computations - to deliver the best answers in some sense for the
least effort. However, implementation of the adaptive idea constitutes a significant departure
from conventional methods in CFD and involves many open problems. For instance, the very
notion that one attempts to reduce error implies that the error is known or can be estimated
in some sense. Thus, the first step in adaptivity is to develop measures of "goodness" of
solutions, and such measures may range from ad hoc checks of solution gradients to rigorous
a posteriori error estimates. While progress in a posteriori error estimation has been made
in recent months, this subject remains an area of active research.

Having an estimate of the error in the solution at a grid cell, what can one do to sys-
tematically reduce it below some preset level? In general, one can refine the mesh size h
(h-methods of adaptivity), increase the density of grid points by relocating nodes (r-methods
of adaptivity), increase the local spectral order p of the approximation (p-methods of adap-
tivity), or use combinations of these techniques (e.g., h-p techniques). Each of these choices
puts new demands on the overall approach to the computational problem. In particular,
adaptive techniques (1) must generally function on unstructured meshes, (2) require elab-
orate and complicated data structures, (3) employ explicit or iterative solution techniques
since direct solvers are of limited value on dynamically evolving unstructured meshes, (4)
cope with special issues of stability of numerical schemes that must function with continually
changing structures and orders, and (5) attempt to minimize the computational overhead
of the error estimation and of implementation of the adaptive process itself. These are the
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major challenges of adaptive methods in computational fluid dynamics.

In recent months, we have attempted to meet these challenges through a series of studies
on each of the above issues. Some of our results have been implemented in a collection of
Navier-Stokes solvers that we refer to as the ADAPT T ' code; other results deal with new
data structures and adaptive methods and require further work before they represent effective
tools for complex flow simulations. Some of our results on special issues of adaptivity and
on selected applications are briefly summarized.

3 Local Approximation of the Navier Stokes Equa-
tions on Unstructured Meshes

Most of the applications discussed here pertain to numerical solutions of the compressible
Navier-Stokes equations. In three dimensions, without body forces or external heat sources,
these can be written,

OU OE OF OG
6j-+-j + -57 + -7 = iv S (3.1)

where U, E, F, and G are vectors and S is a matrix of stresses, power, and heat flux,

P
Pu

U= pv (3.2)
Pw
pe -

Pu PV pw
pu 2 + p puty puw

E= puv F= pv 2 + p G= pvw (3.3)
puw pvw pw 2 + p
(pe + p)u (pe + p)v (pe + p)w

0.

Tzz,:X + 7XY,', + 7xzz

dit'S = Tx+ 7'Y~Y' + Tyz,z (3.4)
T,rx + 'T~zj + 2z',z

E=, + ru,,j + rq,,,
i=l j=1 i=1

Here p is the total mass density, u, v and w are the velocity components, p is the fluid
pressure, -r-, are the components of the viscous stresses, e is the total energy defined by
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e + j(U 2 + V2 + w2) where i is the thermodynamic internal energy per unit mass, and q
is the heat flux vector.

The constitutive relation used to evaluate the viscous stress rij is given by

Tj = p[ut, + ui,,] + AUkk&,j

where p and A are the first and second coefficients of viscosity, uij are the components of the
velocity gradient (uij = aui/azj, z1 = X, z 2 = y, z3 = z), and 6ij is the Kronecker delta.

In addition to the partial differential equations above, two thermodynamic relations are
also needed to close the system of equations. These relations are the ideal-gas state equation

p = (t - 1)pe (3.5)

and an equation which relates the temperature to the internal energy

e = cT (3.6)

Here -t is the specific heat ratio and c, is the specific heat at constant volume. With these
two additional equations we now have a complete system which can be solved for the vector
of unknown quantities (p, u, v, w, e) and for p and T.

For the class of problems considered here, a weak formulation is defined in terms of two
classes of functions: V, the class of trial functions, to which the solution U belongs, and
W, the class of test (or weight) functions which are integrated against the residual of the
governing equations. The resulting weak form is:

Find U in a class V such that
I .(UT - E FT4o - G T 4,)dfldt

(3.7)

0 jT a(U) : V4dfdt +11 a aT4ds dt

for all test functions 4' = [1, 0'2, -.. , 05s in W: where [0, T] is the time interval of interest,
f0 is the region through which the fluid moves, &fl is the boundary of the flow region fl, and
a is the vector of boundary fluxes. It is understood that the viscous stress terms on the
right-hand side of (3.7) may also appear in the integrated form,

fT (f -7',14,.jdn + f rnik n ds) dt

so that differentiability of T'i, in L' is not necessarily required.

Our numerical approximation of the flow problem will begin with a discrete approxima-
tion of the alternate weak form for a time interval [, t 2]:
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Find U = U(x, t) E V such that
-Jti2 ( UT4tdfldt

+ f() UT(', t2 )0(Z, t2)df - f( UT(Z, tl)(Z, t2)dQ

= Ii 1l(,)Q(U): V4ddt t i8(t) ( (3.8)
j2f(, S(U) : Vodfldt + J,;2 I, T Odsdt

for all 4 E W
Here, -0 = 01, 02, -.. ",5}I

T , dnl = dx = dxl dX2dX3, Oa = 0,(z, t), x E Q (t), a =1, 2,..., ,5,

Ot = a94,/Ot, and n is an outward unit normal vector to the boundary. Also, here Q is the
convective flux Q(U) = (E, F, G). It is easily verified that (3.8) is equivalent to the entire
system of Navier-Stokes equations, Rankine-Hugoniot jump conditions (when S = 0), and
initial conditions on U (at t = ti) whenever U is a C°-function everywhere except at surfaces
of discontinuity where the jump conditions hold.

In a strictly formal way, the finite element approximation of the flow is obtained from
the weak statement of the conservation laws, by interpreting fQ as a quadrilateral or brick
element, replacing U by the discrete approximation U h and replacing the test functions
by t he discrete functions Oh.

4 Various Adaptive Methods and Data Structures

Various Adaptive Strategies. As is well known, several distinctly different adaptive
str; tegies for CFD problems have emerged over the last several years. We classify them as
follows:

r-methods (or moving finite element methods. These methods "relocate" grid
points in a mesh so that the grid density is large in regions of high error. Here, in
general, a fixed number of elements and nodes is used. These classes of methods include
those designed to merely enhance orthogonality and smoothness of grids, reduce the
L' - error in residuals, or to equidistribute the error.

h-methods. These m,-thods involve automatic refinement of mesh sizes h. Data
structures for h-refinement vary in detail; a critique and survey of such data structures
was given by Demkowicz and Oden [3].
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p-methods. The p-methods involve the adaptive enrichment of the spectral order
of the approximations over subdomains in a fixed grid. The p-methods are closely
related to the spectral element methods of Patera (e.g. [4]) and have been extensively
developed in the solid mechanics literature by Szabo and his collaborations (e.g. [5]).
Adaptive p-methods for two dimensional Navier-Stokes equations were first presented
in [6].

Combined methods. The most effective techniques generally involve a combination
of h and r or h and p techniques. However, the complexity of data structures for some
combined adaptive methods can be substantial [7].

The h-r adaptive strategy is regarded here as primarily a preprocessing technique, wherein
nodes are positioned in an initial mesh to align gridlines with special flow features such as
shocks, boundary-layers, etc. Then, we superimpose on a pre-processed r-grid a full h or
h-p adaptive scheme. We describe in the next section a simple r-adaptive strategy adequate
for preprocessing and a general h-p scheme for two-dimensional problems.

4.1 An h-Refinement/Unreflnement Strategy.

One h-procedure involves the following steps:

1. For a given domain fl, a coarse finite element mesh is constructed which contains only
a number of elements sufficient to model basic geometrical features of the flow domain.

2. As our adaptive process will be designed to handle groups of four elements at a time
(for the two-dimensional case), we may generate a finer starting grid by a bisection
process to obtain an initial set of element groups.

3. We initiate the numerical solution procedures o.. this initial coarse grid, and compute
error indicators 0, over all M elements in the grid. Let

OMAX = max 0,
I<e<M

4. Next, we scan groups of a fixed number P of elements and compute

P
0GROUP 0 e,

k= 1

where ek is the element for group k. We take P = 4 in our current code.
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5. Error tolerances are defined by two real numbers, 0 < a, 3 < 1. If

0, _> POMAX

we refine element 0,. This is done by bisecting 9, into four new subelements. If

OGROUP <_ a#MAX

we unrefine the group k by replacing this group with a single new element with nodes
coincident with the corner nodes of the group.

This general process can be followed for any choice of an error indicator. Moreover, it can also
be implemented at each time step. Three-dimensional generalizations are straightforward
with eight brick elements constituting a group.

One possible adaptive scheme for time-dependent problems is:

1. Advance the solution N time steps At using an appropriate time-marching scheme.

2. Calculate error estimates.

3. Refine the mesh.

4. Redo the N time-step calculations using the new refined mesh.

5. Redo the error estimation.

6. Unrefine the mesh.

7. Go to 1.

There are several rather obvious alternative versions of this algorithm, but this is the ap-
proach used in the sample calculations presented later in this paper.

The h-methods used in all calculations reported here use 1-irregular refined meshes. Full
details of these types of h-refinement strategies are discussed in [3].

A p-Method

The idea of increasing the order of an approximation while keeping mesh sizes fixed is a
natural one in the case of problems with thin boundary layers or singularities. In results to
be outlined later, we employ a hierarchical p-version of the finite element method. The idea
is to choose element shape functions of the form

1,J
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where
Xi = polynomial of degree < p in E [-1, 1]

These polynomials have hierarchical structure, which ensures the property that the el-
ement matrices corresponding to an approximation of degree p contain as proper subma-
trices all of those element matrices corresponding to approximations of degree less than p.
For a two-dimensional quadrilateral element, the degrees of freedom are the nodal values
ui,i = 1,2,3,4 at the vertices, the tangential derivatives aku/ark, k = 1,2,... ,p at the

midsides, and mixed derivatives o9u/,9to9l7, t + r = m = 1,2,... ,p at the centroid.

To fix ideas, consider first the one-dimensional case. In the classical FEM (e.g., La-
grange interpolation), shape functions for various order of approximation are constructed
independently. For example, passing from a linear element with two linear shape functions
to a quadratic element, we construct the three quadratic shape functions independently of
the shape functions for the linear element. An alternative way to construct the same second
order approximation is to complete the set of two linear shape functions by including a third,
quadratic shape function. At the moment the definition of this third shape function and a
corresponding degree of freedom is somewhat arbitrary, the only restriction being that the
set of shape functions must form a dual basis to the set of degrees of freedom, i.e.,

p = 6 i,j = 0, 1, 2

where Wi, i = 0, 1,2 denote the degrees of freedom and Xj, j = 0, 1,2 the corresponding
shape functions. Since the two degrees of freedom associated with the linear shape functions
are function values at the endpoints, this implies that the added quadratic shape function
must vanish at both endpoints. The remaining hierarchical functions for p > 2 also vanish
at the vertices.

An r-Method

If the mesh size h and the polynomial degree p are fixed, one can show that the optimal
mesh is that for which the nodes are positioned so that the error is equidistributed over the
mesh; i.e., the error over each element is the same. Diaz, Kikuchi, and Taylor [8] have used
this fact to produce a simple algorithm for r-adaptivity:

1. For fixed h and p on a mesh of quadrilateral elements, compute error estimators 0, for
all elements in a mesh fbh C R 2.

2. For each 4-element group calculate the error per unit area O,/A, of each element in
the group.
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3. Compute the "centroid of error"

T X=  , k = group no.

4 0

j=1 A

where rj is the position vector of the centroid of element j in group k.

4. Relocate the central node in the group at yh so as to (approximately) equidistribute
error over the 4-element group.

5. Continue this process over ail groups until the error is equidistributed over the entire
mesh.

This simple procedure is easy to implement and is effective in many classes of problems.

A General h-p Data Structure

Space does not permit the discussion of a general h-p data structure recently developed by
the author and his colleagues [71; however, some h-p results will be mentioned later in this
paper.

5 Some Sample Results

We next cite some representative results obtained recently on adaptive finite element methods
in CFD. Additional details are given in earlier papers on this subject (e.g., [9-30]).

A. h-Adaptive Schemes for Unsteady Compressible Navier-Stokes Codes for Rotor-Stator
Interaction. Our ADAPTr2D and ADAPT"F3D codes were originally built around an h-
adaptive data structure for transient, subsonic, transonic, and supersonic flows in turbines.
These flow simulators employ an algebraic turbulence model and a sliding mesh technique to
model the motion of rotor blades relative to stator blades in turbomachinery. A Euler code
for these problems, which was reported in [14, 19], was a predecessor of these programs.

Typical results of a two-dimensional rotor-stator calculation are shown in Figs. 1-4.
There one sees a dynamically changing mesh generated after each of a specified number of
time steps in such a way to reduce computed errors below a preset error tolerance. Note the
continuity of density (and pressure) contours across mesh interfaces and the interaction of
shocks on the moving turbine blades. The code also computes the time history of stresses
in the blade due to fluid pressure and shear. It is also interesting to note that flows during
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Figure 1: Dynamically evolving adaptive grid at one time instant for Navier-Stokes solution

of rotor-stator interaction. Mesh for rotor blades on right is moving relative to fixed stator

blade mesh along sliding interface.
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Figure 2: Computed instantaneous Mach number contours at 3.5 cycles for rotor-stator flow
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Figure 4: Computed instantaneous pressure contours at 3.5 cycles of viscous rotor-stator
flow interaction.
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multiple cycles of the blade rows have been computed from a start-up uniform flow to flow
with periodic structure which exists after the turbine is in operation. Such calculations
simulate as many as 21 complete blade revolutions and 100,000 time steps. Note also that
the adaptive process, which consumes only 1 percent of the total calculation, uses around
3,500 elements to deliver the desired accuracy at any particular time during the computation,
while a uniform mesh needed for the same accuracy consists of around 14,000 elements. This
version of ADAPTTM 2D employs bilinear quadrilateral elements; the 3D code uses trilinear
brick elements.

New results on three-dimensional calculations are shown in Figs. 5-10. A three-
dimensional, three-level adapted mesh around a pair of stationary blades is shown in Fig.
5. Pressure contours on planes normal to the blade are shown in Fig. 6 with the adapted
grid on the leading blade shown again in Fig. 7. Results for moving blades are in Figs. 8,
9, and 10 with the computed adaptive grid for a rotor blade moving with respect to a fixed
stator shown in Figs. 9 and 10 after 1.5 and 6 cycles, respectively.

B. Low-Mach Number Flow Around a Cylinder. Figures 11 and 12 show the versatility of
the 2D h-adaptive strategy for subsonic flow around a cylinder. Note the dynamically chang-
ing mesh and the resolution of vortices spinning off the cylinder at M = 0.65. Fully implicit
schemes which function on unstructured meshes are being developed for these problems, but
the results shown were obtained with an explicit flow solver, the effectiveness of which was
made possible by the use of a near-optimal mesh at the end of each of a designated collection
of time steps.

Three-dimensional results for the cylinder are shown in Figs. 13 and 14.

C. Supersonic Flow Over a Ramp. Adapted meshes and density contours for flow over a
three-dimensional ramp are shown in Figs. 15 and 16.

D. An h-r Adaptive Calculation of Shocks Structure on a Blunt Body. A moving node
technique (an r-method) is used to condition mesh structures prior to an h-adaptive calcula-

tion. Figures 17 and 18 show a typ;-di calculation. There we observe an h-r adaptive mesh

and density contours of an inviscid gas impinging on a blunt body. Our results indicate
that r-method preprocessing can be beneficial in aligning the initial mesh with shocks in

steady supersonic flow problems with the result that a given level of h-refinements produces
better solutions than a pure h-process which is initiated on an unaIgned mesh.

E. A New h-p Scheme for Optimal Computations. Both two- and three-dimensional

h-p adaptive codes are operational for the analysis of general linear boundary-value prob-
lems. Extensions to steady-state Euler equations are under study. These codes employ an
optimization algorithm which chooses the optimal distribution of h (mesh size) and p (poly-

nomial degree/spectral order) to produce a solution with a given level of local accuracy with
a minimum number of unknowns.
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Example 2: 3D Rotor-Stator Interaction?
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Figure 6: Supersonic flow past a rotor blade. Pressure contours on surfaces through blade
cross sections.
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Figure 7: Supersonic flow over a rigid blade in motion, adapted grid at 300 steps.
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(b)

Figure 8: Supersonic flow over a rigid blade in motion. (a) Pressure cuntours after 300 time
steps, (b) density contours after 300 time steps.
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(a)

(b)

Figure 9: Rotor-stator interaction simulation. (a) Density contours after 1 cycle, (b) density
contours after -, 1.5 cycles.
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Figure 10: Rotor-stator interaction simulation, density contours for 6 cycles.
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(a)

Figure 11: Viscous cylinder problem with M =0.64, flow perturbed after 2000 time steps.
Vortices are generated and shed; (a) instantaneous grid and (b) density contours.
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(a) Cton&t 024 1 ".1f -a2 M .I .41 IYvenn .. 40 -0,

Figure 12: (a) Computed Mach number contours and (b) velocity vectors for viscous cylinder
problem.
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(a)

(b)

Figure 13: Subsonic flow past a rigid cylinder, Mach 0.41. (a) Initial grid, (b) density
contours.
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(b)

Figure 14: Subsonic flow past a rigid cylinder. (a) Pressure contours, (b) Mach contours.
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(a)

(b)

Figure 15: Supersonic flow over a 15' ramp. (a) Density contours at 60 steps, (b) density
contours at 120 steps.
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(b)

Figure 16: Supersonic flow over a 15' ramp. (a) Final adapted grid, (b) density contours at
160 steps.
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Figure 17: An h-r adaptive mesh with combined node relocation and mesh refinement.
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//

Figure 18: Computed density contours for supersonic flow calculation of bow shocks on a
blunt body.
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Figure 19: An instantaneous adapted h-p mesh with overlayed density contours for viscous
compressible flow over a deforming elastic plate; high-order spectral elements are used to
model the viscous boundary layer while h-adaptive refinement is used to capture the shock.
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Figure 19 contains an optimal h-p mesh and density contours over a flexible elastic plate
deformed by the action of a viscous incompressible fluid. Low-order elements are used to
capture the shock while higher-order elements are used to model the viscous boundary layer.
The flow is quasi-steady and a fully implicit solver with a multigrid iterative solver is used
to compute successive optimal meshes as the plate deforms.
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ABSTRACT. We model the viscoplastic response of a HY-100 steel by a Power
law, and flow rules proposed by Litonski, Bodner and Partom, and Johnson and
Cook. Each of these flow rules is first calibrated by using the torsional
test data at a strain-rate of 3,300 sec- . These material models are then
used to study the thermomechanical deformations of a block made of the HY-100
steel and undergoing simple shearing deformations at a nominal strain-rate of
5000 sec "I . A material defect is simulated by assuming a non-uniform initial
temperature distribution within the block. Whereas all of the flow rules used
predict a rapid drop of the shear stress as a shear band forms, only for the
Litonski Law for nonpolar materials, does an unloading elastic wave emanate
outwards from the shear band.

INTRODUCTION. Noting that Batra (1987) has briefly reviewed the work done
on shear bands till 1986, we discuss below some of the work done since then.
For strain-rate hardening but thermally softening materials Wright and Walter
(1987) found that the shear stress within a band collapses rapidly as the band
grows. Batra and Kim (1989a) accounted also for material elasticity and work
hardening effects and found that if the rate of collapse of the shear stress
is large, then an unloading elastic wave emanates outwards from the shear band
and propagates towards the boundaries of the specimen. The development of
shear bands in plane strain problems have been studied, among others, by Anand

et al. (1988), Needleman (1989), LeMonds and Needleman (1986a,1986b), Batra
and Liu (1989a,1989b). These works have employed different flow rules and
have modeled a material defect by introducing either a temperature perturba-
tion or assuming the existence of a weak material at the site of the defect.
Batra and Kim (1989b) have recently studied the development of a shear band in
a block of HY-100 steel undergoing overall simple shearing adiabatic deforma-
tions and compared computed results with the experimental observations of Mar-

chand and Duffy (1988). They found that the dipolar theory due to Wright and
Batra (1987) and Batra (1987, 1989) and the Bodner-Partom (1975) law predict
most of the features of the shear band.

We note that Molinari and Clifton (1987), Tzavaras (1987) and Wright

(1989) have studied the problem analytically. For rigid/perfectly plastic
materials, Wright (1989) has developed a criterion that ranks materials
according to their tendency to form adiabatic shear bands. Hartley et al.

(1987), Giovanola (1987), and Marchand and Duffy (1988) have reported the
observed histories of the temperature and strain within a band as it develops.

Here we presume that the torsional experiments on thin-walled steel tubes
can be analyzed by studying the thermomechanical deformations of a viscoplas-

*Supported by the U.S. Army Research Office Contract DAAL 03-88-K-0184 to the

University of Missouri-Rolla.

183



tic block undergoing overall adiabatic simple shearing deformations. We find
the values of the material parameters appearing in different flow rules by
solving an initial-boundary-value problem and comparing computed results with
the experimental stress-strain curve at a nominal strain-rate of 3,300 sec " .
These flow rules are then used to compute the initiation and growth of a shear
band when the applied nominal strain-rate is 5,000 sec - Il It is found that
the rate of stress drop during the growth of a shear band as predicted by the
Bodner-Partom law and the dipolar theory due to Wright and Batra (1987) is
similar to that observed experimentally.

GOVERNING EQUATIONS. In terms of non-dimensional variables, equations
governing the thermomechanical deformations of a viscoplastic block undergoing
overall adiabatic deformations are (e.g. see Batra and Kim (1989a))

pv - (s - 2a, y),y 0< y < 1, (2.1)

-k 0,yy + s 7p + la%, 0 < y < 1, (2.2)

s - iU(vy - yp), (2.3)

a - (Vyy - ap), (2.4)

7p- g(s,a,p,dp,0,1), (2.5)

- 1h(s,a,7p,dp, 0,1) . (2.6)

These equations, written for dipolar materials, reduce to those for non-
polar materials when £ is set equal to zero. Here p is the mass density, -
the velocity of a material particle in the direction of shearing, a superim-
posed dot indicates the material time derivative, s is the shearing stress, f
a material characteristic length, a the dipolar stress, and a comma followed
by y signifies partial differentiation with respect to y. Furthermore, k is
the thermal conductivity, 7p the plastic strain-rate, dp the dipolar plastic
strain-rate, A the shear modulus, and 6 is the temperature change from that in
the reference configuration. Equation (2.1) expresses the balance of linear
momentum and (2.2) the balance of internal energy, equations (2.3)-(2.6) are
constitutive relations. The different viscoplastic flow rules differ in the
functional forms of g and h and are given below in the next section.

For the initial conditions we take

v(yO) - O,s(yO) - O,a(y,0) - 0, 8(y,O) - e(l-y 2 )9 e-5 y 2 (2.7)

That is, in the initial rest state of the block, it is taken to be stress
free. Tbe initial temperature distribution simulates the defect or inhomoge-
neity in the block assumed to be present near the point y - 0 and the value of
e represents the strength of the defect.

We presume that the overall deformations of the block are adiabatic and
the lower surface is at rest while the upper surface is assigned a velocity
that increases linearly from 0 to 1 in time tr and then stays at the constant
value of 1.0. Thus,

O,y(0,t) - 0, O,y(l,t) - 0, v(O,t) - 0, (2.8)

v(lt) - t/tr, 0 < t < tr, (2.9)
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- 1, t > tr,

and for dipolar materials, we also assume that

a(0,t) - O,a(l,t) - 0. (2.10)

Computations for the domain -1 < y 1 1 and with boundary conditions a(-l,t) =

O,a(l,t) - 0 have given a(0,t) = 0.

3. VISCOPLASTIC FLOW RULES. In order to calibrate the various flow rules
against the shear stress-shear strain curve given by Marchand and Duffy (1988)
for a strain-rate of 3,300 sec "1 , we solved numerically, the initial-
boundary-value problem outlined above with

s(y,o) - l.0,7p(y,o) - 0.012, v(y,o) - y,e(y,o) - 00 c, e - 0,

tr - 0.033, p - 7,860 kg/m 3 ,c - 473 J/kgoc, k - 49.73 w/m 2 °c, H - 2.5 mm,

o - 3,300 sec- .

Here H is the height of the block and o is the average applied strain-rate.
With no initial temperature perturbation, the block deforms uniformly and
homogeneously and the dipolar effects vanish identically. As far as possible
we kept the values of the strain-hardening exponent and the strain-rate-
hardening Pxponent equal to those given by Marchand and Duffy (1988), and
adjusted the values of other parameters till the computed stress-strain
curve came out close to that given by Marchand and Duffy.

3.1 Litonski's Law for Nonpolar and Dipolar Materials. Wright and Batra
(1987) generalized the constitutive relation proposed by Litonski (1977) to be
applicable to nonpolar and dipolar materials. Batra and his co-workers
(1987, 1988, 1989) have used it to study the initiation and growth of shear
bands. It may be written as:

A
- As, d - - a, (3.1)

1/m

A- max 0, { 5
e - 1)/bse , (3.2)

(1-a_)(1+ ..)n
Po

se - (s2 + a2)112 , (3.3)

2 2
V_ ASe/(l + _)n (3.4)

0
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Here V can be viewed as an internal variable that describes the work hardening
of the material. Its evolution is given by equation (3.4). In equation
(3.2), (1-:9) describes the softening of the material due to its heating, b

and m characterize its strain-rate hardening, and qo and n its work hardening.
The following values of material parameters resulted in a stress-strain curve
that was close to the one observed experimentally.

- 0.00185/°c, go - 0.012, n - 0.107, m - 0.0117, b = 104 sec, I - 0.005

3.2 Power Law. For nonpolar materials and assuming that there is no
loading surface, this flow rule for the HY-100 steel can be written as

9.145 -64.103

Yp - (10-4) S85.47 -- ]00 (3.5)

Here 9 is the current temperature in degrees Kelvin and 7 is the total strain
at a material particle.

3.3 Bodner-Partom Law. For t' MY-100 steel, the constitutive relation
proposed by Bodner and Partom (19-, can be written as

n

108 exp - - - ] , n = 10 K = 1600 - 300 exp (-5 Wp) (3.6)~2 3s2

Here 9 is the absolute temperature of a material particle and pis the

plastic work done.

3.4. Johnson-Cook Law. The constitutive relation proposed by John-
son and Cook (1983) takes the following form for the HY-100 steel.

p - exp 1 (1.0 /0.0277,
e (0.45 + 1.433 7p0 10 7 ) (l-T0 7) J

(3.7)

T - (0 - 0o)/1200.

Here 00 equals the ambient temperature.

4. DETERMINATION OF THE SIZE OF THE PERTURBATION. Here we model the
cumulative effect of the change in the thickness of the specimen and possibly
the slight variation in the material properties by assuming a nonuniform ini-
tial temperature distribution as given by Eqn. (2.7). For different flow
laws, the value of e was determined so as to initiate a shear band, as sig-
nified by a rapid drop in the shear stress, at a value of the average strain
close to that found experimentally. The initial-boundary-value problem out-

lined in Section 2 with tr - 0.033 was solved by the finite element method.
Values of e equal to 10 c, 20 c, 50 c and 90 c for the Litonski Law for

nonpolar and dipolar materials, Power Law, and the Bodner-Partom Law and the
Johnson-Cook Law, respectively, result in stress-strain curves shown in Fig.

.
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Fig. 1. Shear stress-shear strain curves computed with different flow
rules and with different initial temperature perturbations.

experimental, .. . Bodner-Partom ....... Litonski (non-

polar), Litonski (dipolar) Power,

Johnson-Cook.

These curves vividly reveal that until the time the shear stress begins to
drop rapidly, all of the flow rules considered predict material behavior in
reasonable agreement with the experimental observations. For nonpolar mate-
rials Litonski's Law, the Power Law and the Johnson-Cook Law give essentially
a catastrophic drop in the shear stress with virtually no increase in the
nominal shear strain. This does not agree with the experimental data since
Marchand and Duffy observed that during the drop of the shear stress, the
nominal strain increases by approximately 5 percent. The Litonski Law for
dipolar materials and the Bodner-Partom Law for nonpolar materials do predict
the gradual drop in the shear stress in agreement with the experimental data.
However, for the Bodner-Partom Law the shear stress does not drop as much as
it does during the tests and it reaches a plateau.
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5. RESULTS FOR A NOMINAL STRAIN-RATE OF 5,000 SEC. " . With the values of
material parameters and the size of the temperature pertvtrbation found above
kept fixed, we increased the prescribed velocity on the upper boundary so as
to deform the block at a nominal strain-rate of 5,000 secT. Note that the
values of some of the non-dimensional variables appearing in the governing
equations will change. For each one of the flow rules used, the shear stress
attained a maximum value when the average shear strain was approximately equal
to 0.30. For subsequent deformations, we have plotted in Figs. 2 and 3 the
evolution of the shear stress and the particle velocity within the specimen.
The value of the nominal shear strain at which the shear stress drops and the
shear band initiates depends upon the flow rule used. However, in each case,
the value of the nominal shear strain when a band initiates is noticeably more
than the value at which the shear stress attains a maximum value.

For nonpolar materials, the rate of drop of the shear stress is highest
for the Litonski law as compared to that for the other three flow rules used.
For the Bodner-Partom law, the shear stress drops initially, but then seems to
reach a plateau. For the Power law, the shear stress oscillates both in space
and time and there was no unloading wave observed. With the Johnson-Cook law,
the shear stress drops almost as rapidly as with the Litonski law, but seems
to stay uniform throughout the specimen. For the Litonski law, as the shear
stress drops, an unloading elastic wave emanates out of the shear band and
travels towards the other end of the specimen. Batra and Kim (1989a) found
this unloading wave and their computed wave speed was very close to the ana-
lytical value of (A/#)i/2 . The propagation of the wave is more clear from the
;arzicle velocity plot depicted in Fig. 3. We note that we assumed the
ex'stence of a yield surface only for the Litonski law. For otner flow rules.
plastic deformations are assumed to occur at all times.

For nonpolar materials, only Litonski's law as generalized by Wright and
Batra was used. In this case, even though the shear stress drop was larger
near the center as compared to that for nonpolar materials, no wave phenomenon
was noticed. This becomes transparent from the velocity plot in Fig. 3.

For nonpolar materials, the velocity plots indicate that the particle
velocity increases rapidly from zero at y - 0 to as high as 2 at a point close
to y - 0 and then decreases to the prescribed value of 1 at y - 1.0. The
overshoot in the particle velocity is highest for the Litonski law. The flow
rule used affects the evolution of the particle velocity significantly. With
the Johnson-Cook law, no oscillations in the particle velocity are observed.
With the Bodner-Partom flow rule, no spatial oscillations in the particle
velocity are seen but after a shear band has initiated, the velocity of a
material particle oscillates in time. The spatial and temporal variation in
the particle velocity with the Power law is noticeably different from that
computed with the other three flow rules. A glance at the velocity and the
shear stress plot seems to indicate that there is no unloading wave emanating
out of the shear band in this case.

6. CONCLUSIONS. For overall adiabatic simple shearing thermomechanical
deformations of a viscoplastic block, we first calibrated the four different
flow rules so as to give essentially identical shear stress-shear strain
curves at a nominal strain-rate of 3,300 sec " . Then, the size of the initial
temperature perturbation was adjusted to yield the initiation of the shear
band, as indicated by a significant drop in the shear stress for very little
change in the nominal shear strain, at almost the same value of the nominal
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strain. These flow rules when used to compute the initiation and growth of
shear bands at a nominal strain-rate of 5,000 sec-l gave noticeably different
values of the nominal strain at which a shear band initiates. Also, the rate
of drop of the shear stress as predicted by the Bodner-Partom law and the
dipolar theory of Wright and Batra was closer to that observed experimentally.
For nonpolar materials, the Litonski law predicts the emanation of an unload-
ing elastic wave out of the shear band as it grows. The other three flow
rules do give the overshoot in the particle velocity at the edges of the band
as also given by the Litonski law, but do not predict the propagation of the
unloading elastic wave. This could possibly be due to the use of a yield
criterion for the Litonski law and not using any such criterion for the other
flow rules.

Acknowledgements: We thank Mr. Ko for his help in plotting Figs. 2 and 3.
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I. INTRODUCTION

Modern high-speed communication demands high-speed techniques to generate random-

like sequences. One of the simplest and most efficient devices for generating deterministic,

random looking binary sequences is the shift register. In a sense, no sequence which depends

on a few parameters, such as the feedback connections of a linear feedback shift register, can

be considered truly random. Solomon W. Golomb introduced the name "pseudo-random" for

periodic binary maximum length linear sequences (m-sequences) because they satisfied the

three randomness properties of balance, runs, and correlation. These "pseudo-random"

sequences have a tremendous amount of combinatorial and algebraic structure. Their

suitability derives chiefly from their efficiency of generation and, more importantly, their

randomness properties. The applications for linear feedback shift register sequences of

maximum length (LFSRS) include secure data transmission, multiple address coding, error

correcting codes, radar range measuring and random number generation. Their ideal

correlation property and other randomness properties can be derived from the shift-and-add

(SAA) property. The ultimate goal of completely understanding the theoretical behavior of

LFSR has not yet been achieved. A better understanding of LFSRS would provide

improvements for the design and analysis of communication systems.

In this note we analyze the SAA property of the LFSRS. An algebraic approach is used

in the analysis of the "unknown shift" of the sum of two shifted versions of the LFSRS.

193



II. SHIFT - AND - ADD PROPERTY

A LFSRS of span n is a sequence of length N = 2n- 1 containing all non-zero binary

strings of length n. The LFSRS is specifically generated by an n stage shift register whose

feedback polynomial is a primitive polynomial f(x) of degree n over the Galois field of two

elements, GF(2). The computations in this note are performed modulo 2n
- 1 where n is the

degree of f(x), and modulo 2 and modulo the generating polynomial f(x).

The SAA property states that if two shifted versions of the same LFSRS are added

termwise modulo 2, the resulting sequence is also a shifted version of the same sequence.

DEFINITION: Let n, i and j be positive integers with both i and j ! 2n - 2. The

ordered pair (i , j) is a shift-and-add pair if and only if the modulo 2 sum sequence:

{sk} + Isk + i  + s {k +-j I= {.0 1 , the zero sequence.

Here, {ak+t I is the cyclic shift by t of the original sequence {skI.

The existence of SAA pairs for m-sequences follows from the shift-and-add property

of m-sequences. In fact, for every given shift i of the sequence S, the shift j of the sequence

S is a unique function of i. That is j = -(i). The function 3,(i) to compute j from i exists

but is difficult to determine. Four properties of -y are as follows:

1. -t(i) is a unique function of i,

Proof: This follows directly from the definition of SAA pairs. Otherwise,

{sk} would not be of maximal period and thus would be generated by a

polynomial of a smaller degree than n.

2. y(7 (i)) = i,

Proof: xi = 1 + -7(i)= x-f(7, (i)) follows from the definition of -,

i.e., -y is idempotent.

3. y(-i) = -t(i) - i.

Proof: +x- = (1-+-xi) x = x (i)xi =xy(i) ' i
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NOTE: For small values of n, the SAA pairs (i, 7 (i)) for the respective polynomial f(x) are

easily determined by analysis of the multiplicative group of the corresponding finite field.

Alternate procedures to determine the SAA pairs, relative to a respective generating

polynomial f(x), also include long division of (1 + x') by f(x) to determine the remainder
x7 (i).

x

Thus we see that, either by our original definition of SAA pairs or by the procedure just

described, the sequence S generated by a minimal polynomial generator f(x) satisfies the

relation

S + Si + S7(i) - {} the zero sequence or,

f(x) I (I +- x i -- x 7 ( i ) )

The symbol " f I g denotes that g is a polynomial multiple of f with coefficients in

GF (2).

4. If 7 (i) = j , then y(2i) = 2j. Thus, (2i, 2j) is also a SAA pair for f(x).

Proof: Suppose f(x) I (1 + xi+ x7 ( i ) ) , then

(1 + xi+ XTf(i))2 =  l+x2i+x27(i) in GF 2.

Hence, if i and j = 7 (i) belong to a pair of cyclotomic cosets of size n, then (n-i)

additional SAA pairs can be computed easily through squaring the polynomial relation.

Multiplication of the relation (1 + x i + xj ) by x-' and by x-j will generate the SAA

pairs (-i, j-i) and (-j, i-j), respectively. Therefore, from one SAA pair it is possible to

generate a total of (3n) pairs by only O(n) work.

III. GENERATING ADDITIONAL SAA PAIRS:

In the previous section we show how to find 3n SAA pairs when one SAA pair is known.

Here we show how to find additional SAA pairs.
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EXAMPLE: Let f(x) = 1 + x + x7 . Thus, (1,7) is a SAA pair and we determine that:

SET R - Under squaring

(1,7) (2,14) (4,28) (8,56) (16,112) (32,97) (64,67)

are SAA pairs by squaring. Multiplying f(x) by x- i we get:

SET S - Under multiplication by x- i and squaring

(6, 126) (12,125) (24,123) (48,119) (96,111) (65,95) (3,63).

Multiplying f(x) by x-j we get:

SET T - Under multiplication by x-j and squaring

(120,121) (113,115) (99,103) (71,79) (15,31) (30,62) (60,124).

The operations above are sufficient to determine only 21 of the 63 SAA pairs for the generator

f(x) = 1 + x + x . The SAA mate for i = 5 has not yet been determined. By the following

algebraic manipulations we can determine another SAA pair:

1 +x 5 =
(1 + x5)x = x +

x x+l
x+(l+ x126 )

(x+1)+ x1 2 6  -

(x)+ x 12 6

x7(1+x 1 1 9 ) _ xJ+ 1

x7(x48

x5 5  = x~

x54  = x

Hence, (5,54) is a SAA pair. With this SAA pair we determine an additional 21 pairs by

following the previous methods.
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SET R SETS SETT

(5,54) (49,122) (73,78)

(10,108) (98,117) (19,29)

(20,89) (69,107) (38,58)

(40,51) (11,87) (76,116)

(80,102) (22,47) (25,105)

(33,77) (44,94) (50,83)

(66,27) (88,61) (100,39)

Finally, we find the last "family" of SAA pairs. The SAA mate for i = 9 can be found in the

same manner as i = 5 as follows:

1 +x xj

(1 + x9 )x7  = 7 + j

x7 + x16 = x7+j

x7 +(1+ x1 12) x7j

(x 7 +1)+ x1 1 2  
- x7 J

(x)+ x11
2  = 7 j

x(1+ x11
1) = 7+j

x(x96 = 7+j
x97  = x7+ j

x90 =

SET R SET S SET T

(9,90) (81,118) (37,46)

(18,53) (35,109) (74,92)

(36,106) (70,91) (21,57)

(72,85) (13,55) (42,114)

(17,43) (26,110) (84,101)

(34,86) (52,93) (41,75)

(68,45) (104,59) (82,23)

Knowing only the initial SAA pair (1,7), all 63 SAA pairs are derived. The above procedure

has thus been used to compute all the SAA pairs for f(x) in a relatively efficient manner.
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IV. STRUCTURAL PROPERTIES OF SAA PAIRS:

Here we generalize the previous example and state and prove propositions that can be used

to efficiently solve for the unknown families of SAA pairs.

Proposition I: Let j and -(j) be a SAA pair. Then

-t(-7U)+j) = t(-t(i) - 2j) + 2j.

Proof 1 + x-7)+L 1 + x-(j)x,
= + (1 +,,-J) ,
= + xj+ x2j,

= x +0) x2J

= (xJ' 2 + 1) x2j

-(-(j)-2j) 2j
-- X x

-(-(j)-2j) + 2j

from which the result follows easily.

EXAMPLE: For n = 7 assume that the SAA pair (1,7) and the family of 21 SAA

pairs associated with it are known. Let j=1 and -7(j ) = 7. Substitution into Eq (1) yields

-(7+ 1)-=y(7-2) +2. Then, y(8) = -f(5) +2 and y(5) = 56-2=54.

It is only necessary to check one SAA pair from a given family to determine if a

previously unknown family can be generated using proposition I. This is shown as follows:

Let (i1 , J) be a SAA pair and let I = {(ih, J&) IL=1 be the set of SAA pairs formed under

squaring. The set L = {(ik + J.) In 1 forms a cyclotomic coset. Similarly,

M = {(iL - 2j.) 1n=1} and Q = {(Jt -2i.) 1 =1} form cyclotomic cosets. As previously

shown, if (i1 ,j 1 ) is a SAA pair then (-i, ,J 1 - ij) and (-j , i1-j1 ) are SAA pairs. It

follows that
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{(-ih + (k- ik) I= = Q, {(J- h) - 2(-ik) 1"=1 = L, {(-i - 2(j;- k) 1} = M,

{-Jk + (ih'J) 1'=1} = M, {(k- Jh) -2(-jk) 1'=1} = L, and {(-jk - 2(it-jk) in=1} = Q.

Proposition U1: Let (i, 7 (i)) and (J,,(J)) be SAA pairs. Then

7(7(i) + = /(J + i -7 (i)) + -1o).

Proof. 1 + x 0 ) + i =1 + ( + 1) xi ,

=1 +xJ+i+xi,

= 7(i) + x + i ,

= (e+i-' f (i) + 1) x7(i)

= x(J+i - 7 (i)) xt(i)

from which the results follows easily.

EXAMPLE: For n = 7 let the SAA pair (1,7) and the family of 21 SAA pairs associated
with it be given. Hence, (1,7) and (4, 28) are known SAA pairs. Let i=1 and j = 4.

Substitution into Eq (2) yields 7(28+1) = -t(5 - 7) + 7. Then, 7(29) = 7(125) +7 and

7(29) = 12 + 7 = 19.

A family and the associated SAA pairs are defined to be "generators" if the SAA pairs within

this family generate at least one SAA pair from another family using proposition II.

NOTE: The application of Propositon II requires the input of two ordered SAA pairs where

the order of the input is important and repetition of a SAA pair is allowed. If (i, j) is a SAA

pair, then the four inputs of (i, j), (j, i); (i, j), (i, j); (j, i), (j, i); and (j, i), (i, j) into

proposition II provide unique relationships. Therefore, within a given family of SAA pairs

their are 36n 2 possible combinations to substitute into proposition II. However, it is only

necessary to consider the input of 18n combinations to determine if a previously unknown

family can be generated using proposition II. This is shown as follows:
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Let J = {(ip, 7(i)p) '1 and I = {(jk, y(j)k) I'-j be sets of SAA pairs formed under

squaring. The sets {(ip+ Jk), (1'(i)p+ TCj)k) 1,k=1} and {(ip+ ji), (7(i)p+ -0) 1 ) } are equal.

Hence, only 36n of the possible 36n 2 combinations need to be considered when applying

proposition II. Furthermore, the input of (i, t(i) and (7 (i), i) generates the same

relationships as the input (i-,(i), -7 (i)) and (i, 7 (i)). It follows that there remains only 18n

combinations that are unique.

The effect of 18n combinations as input to proposition II is to produce relations that

develop new SAA pairs. We shall see, that on some ocassions no new SAA pairs are derived

from the original SAA pair by applying proposition II.

To return to the previous example, the initial condition for the application of proposition

11 was that exactly one SAA pair is known along with its 3n relatives from procedures R, S

and T. From the SAA pair (1,7) and its relatives, we saw it is possible by proposition II to

find all 63 SAA pairs for the polynomial f(x) = x7 + x + 1. In fact, it is the case that no

matter which irreducible polynomial is chosen for degree n = 7, proposition II is sufficient to

find all of the 63 SAA pairs. However, this is not the case for every value of n. For larger

values of the degree n we sometimes are not able to find all SAA pairs by application of

proposition II to a given SAA pair and its relatives. In the sequel we discuss the probability

with which it is possible to complete the table of SAA pairs from a given SAA pair.

Proposition IM: Let (i, 7 (i)), (J,7(i)) and (k, -,(k)) be SAA pairs. Then

7(()+ -1(j) + y(k)) = -yi+ -yj) + -y(k) -7y(70) + 7 (k))} + 7r(70) + -~

Proof- 1 + xy(i) + 70(i) + 7 (k) = 1 + xY(i)x(j) xy(k),

=1 -+ (1 + xi)x-t(J)x-t ( k ) ,

= 1 xj) + , ( k ) +x i +j'y()+(k)

=1+(x + x

( + x i+ 7y(j)+ ' y (k) '7(7( j ) + 7 (k))) t(T(j)+ 7 (k)).

Sx{i-y-(j)+(k)-7(-y(J) + -(k)))x y(t(j)-,y(k))

from which the result follow directly.
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EXAMPLE: For n - 7 allow the SAA pair (1,7) and the family of 21 SAA pairs associated with

it to be known. Hence, (99,103), (65,95) and (15,31) are known SAA pairs. Let j=99, i = 65

and k = 15. Substitution into Equation (3) yields 7(103 + 95 + 31) = 7(65 + 103 + 31 -

7(103+31)) + 7(103 + 31). Then, 7(102) = 7(71) + 1 and 7(102) = 79 + 1 = 80.

If we let -y(j) + 7 (k) = K where K is an element in a family, then substituting K into

proposition III tranforms it into proposition II. Hence, proposition III and proposition II are

equivalent. As additional terms are included in the right hand side of proposition II,

equivalent relationships are created which do not provide further information.

V. RESULTS:

Proposition II has been used to generate SAA pairs for every PN sequences up to n=14.

Not every SAA pair from a PN sequence possesses the necessary structure to generate all the

remaining SAA pairs. At this time, it cannot be determined a priori which initial SAA pairs

will be complete generators of all SAA pairs. However, for a SA.A pair to be a generator the

following conditions must be satisfied:

Let (i, j) be a SAA pair that forms the family {(l t , hk) 11=1}, where q is the size of the

family and (1k , hL) is a SAA pair. Generate the following set of 2-tuples:

{((l,+i)., (h,+ (i-j))) , ((lj +j). (h,+(j-i))) , ((lk+(-i)). (hk+(-j))).

If one and only one element from any 2-tuple is a member of the family then every SAA pair

in this family is a generator. If for every 2-tuple, one and only one element is not a member

of the family, then every SAA pair in the family is not a generator. This follows from

proposition II. Upon closer examination, these 2-tuples are created by adding i, j, (i-j), (-i), -i,

and -j to the each member of {(k , hk) 11=1}. These transformations map each element of the

pair from one cyclotomic coset to another cyclotomic coset. It is this mapping that determines

which SAA pairs will be generators. The function to compute this mapping exists. However,

it is difficult to determine.

If a SAA pair is a generator, proposition I provides a tremendous reduction in the

calculations needed to find the set of SAA pairs for a given LFSR. An analysis and

determination of which SAA pairs are generators has be carried out for values of n up to 14.

The number of cyclotomic cosets, SAA pairs, and families (including their sizes) have been

tabulated below:
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Number Number Number

of of of Number of Families by size

n Cosets SAA pairs Families

7 18 63 3 3-21

8 34 127 8 4-24 2-12 1-6 1-1

9 58 255 11 9-27 1-9 1-3

0 106 511 20 15-30 4-15 1-1

11 186 1023 31 31-33

12 350 2047 63 53-36 1-9 6-18 1-3 1-1 1-12

13 630 4095 105 105-39

14 1180 8191 202 189-42 12-21 1-1

The number and percentage of SAA pairs that generate SAA pairs of families other than their

own axe:

n=7: 63 - 100% n=11: 462 - 45%

n=8: 72 - 61% n=12: 720 - 35%

n=9: 162 - 64% n=13: 819 - 20%

n=10: 285 - 56% n=14: 1071 - 13%

These numbers are identical for every LFSRS of the same degree. However, as n -- o the

probability that a randomly selected SAA pair generates all families of SAA pairs should

approach zero.

We note that more can be gleamed from proposition II if two independent SAA pairs are

given. If two or more SAA pairs from different families are known, then the new family

becomes the union of the families from each of the separate SAA pairs. Thus, when non-

generator families are combined, the structure can be sufficient to generate additional SAA

pairs when each SAA pair alone is not a generator.
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EXAMPLE: Let f(x) = x9 + x4 + 1. Assume that the SAA pairs (30, 66) and (105, 248)

have been selected at random. Using proposition II, no additional SAA pairs can be

generated by using each SAA pair alone. However, when the two individual families are

combined into one larger family, the entire set of SAA pairs for f(x) can be generated using

proposition II.

For f(x) of degree n, assume that two SAA pairs, (i, j) and (I, k) of different families

have been randomly selected. Then, the probabilities that these SAA pairs will generate the

remaining SAA pairs for the associated LFSRS are:

n=7: 100% n=11: 100%

n=8: 99% a=12: 100%

n=9: 99% n=13: 93%

n=10: 99% n=14: 70%

The probabilities have not been calculated when three or more SAA pairs of different

families are used to generate the remainig SAA pairs for the associated LFSRS.

Additional research is needed to discover the further structure of SAA pairs. Ultimately

we would like to determine the entire nature of the function -: i -- j.

UNANSWERED QUESTION

Can it be determined a priori which cyclotomic coset each member of the set

{2Pi + k [I=1} will belong to for a given i or k?
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A multi-stage pseudo-continuous-time state-space method is developed for designing

large-scale discrete systems, which do not exhibit a two- or multi-time scale structure

explicitly. The designed pseudo-continuous-time regulator places the eigenvalues of the

closed-loop discrete system near the common region of a circle (concentric within the unit

circle) and a logarithmic spiral in the complex z-plane, without explicitly utilizing the

open-loop eigenvalues of the given system. The proposed method requires the solutions of

small order Riccati equations only at each stage of the design. Based on matching all the

states at all the sampling instants, a new digital redesign technique is presented for finding

the pseudo-continuous-time quadratic regulator. An illustrative example is presented to

demonstrate the effectiveness of the proposed procedures.
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1. Introduction

Physical realizations of engineering systems result, in general, large-scale models. In

most cases, it is quite impractical to consider the analysis and design of the large-scale

system model itself. Therefore, a necessity arises for decomposing the original system into

decoupled subsystems, each with their own distinct characteristics, so that the resulting

model has a completely decoupled multi-time scale structure. Some of the existing ap-

proaches for decomposition of large-scale systems are aggregation [3j, multi-time scales [9J

and modal analysis [15]. However, most of these appear to be restricted to the continuous-

time systems. The corresponding problem for large-scale discrete-time systems has received

very little attention (11,12,14]. Mahmoud et a]. [1 derived a matrix norm condition for

separating large-scale discrete-time systems into two-time scales without originally assum-

ing the availability of such a structure. However, computationally, it might not always be

feasible to satisfy this condition. Shieh et a]. [18) have developed an algebraic method

based on the matrix sign function [16] for separating the slow (dominant) modes from the

fast (non-dominant) modes (two-time scale structure) of a large-scale multivariable system

(continuous and discrete). The matrix sign function algorithm has been used for the fol-

lowing: block-diagonalization and block-triangularization [171 of a large-scale system. i.e..

decomposing the system into parallel and cascaded structures; for solving non-linear Ric-

cati equations, which often appear in feedback design of systems based on linear quadratic

theory; and for model conversions of systems via the computation of the principal qth root

of the system matrix [21,24]. Recently, fast and stable algorithms have been developed for

the computation of the matrix sign function [21] and for the computation of the principal

qth root of a complex matrix [24] which in turn can be used for discrete-to-continuous

model conversion. These algorithms will be utilized in the development of our multi-stage

design procedure for designing suboptimal discrete controllers with pole assignment near

a specified region of the complex z-plane.

The optimal linear quadratic (LQ) design method has several good properties. For

instance, the closed-loop system is stable and has good robustness properties provided

the weighting matrices satisfy certain positivity conditions [2]. The transient behavior of

the closed-loop system is, however, difficult to determine since there is a complex relation
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between the weighting matrices and the closed-loop poles. This implies that the weighting

matrices have to be determined through trial and error. Pole placement methods have the

advantage that the closed-loop poles can be specified. The drawback is the non-uniqueness

of choice of feedback for multivariable systems. Further, it is too restrictive to place the

poles in pre-determined locations [1], since for non-linear systems the exact locations of

the closed-loop poles might be difficult to attain for each operational condition. Hence,

in general, it would suffice to have the poles placed within a specified region. Also, the

regional pole assignment method is suited for tradeoffs between eigenvalue locations, actu-

ator signal magnitudes and requirements of robustness against large parameter variations,

sensor failures, implementation accuracies, gain reduction, etc. 11]. In this paper, we con-

sider the common region of a circle and a logarithmic spiral in the z-plane (Fig. 2) for pole

assignment. This is equivalent to the sector region (hatched) in Fig. 1 in the a-plane. It

is well-known that if the poles of a system lie within the above mentioned region(s), then

the system responses converge at appropriate speed and any existing vibrating modes are

well-damped.

The problem of designing feedback gains to optimally place all the poles of a closed-

loop system within a specified region was first studied by Anderson and Moore [2J, who used

a shifted system matrix to obtain an optimal closed-loop system with its eigenvalues lying

in the open left-hand side of a vertical line on the negative real axis. Shieh et al. [19,22]

extended this idea to optimally place the poles within a vertical strip as well as a horizontal

strip in the left-half plane. Kawasaki and Shimemura [8] propsed an iterative procedure to

place the poles inside a hyperbola in the left-half plane, which is actually an approximation

of the sector region shown in Fig. 1. In [23], a pseudo-continuous-time method has been

developed to place the eigenvalues of a discrete system (having a sufficiently small sampling

period) within the hatched region of Fig. 2. However, it involves the solution of full order

Riccati equations, which could be computationally difficult for large-scale systems. The

Luenbeger transformation, sometimes numerically unstable, is utilized to transform the

full order discrete-time system to its equivalent canonical form so as to determine the

pole-placement discrete feedback gain. In this paper, at each stage of the design, only

reduced order Riccati equations need to be solved and also, the transformation to the
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general canonical forms is avoided.

For digital implementation of the designed continuous-time controller, the continuous-

time controller (analog controller) ne-us to be converted into an equivalent discrete-time

controller (digital controller). This is a digital redesign problem [10]. Based on a bilinear

transform method, a new digital redesign technique is presented for finding the equivalent

digital controller from the designed analog controller.

The material in this paper is organized as follows: Section 2 contains a review of the

results associated with the design of a linear quadratic regulator which would optimally

place the closed-loop eigenvalues of a continuous-time system on or within the hatched

region of Fig. 1. In Section 3, a new digital redesign technique is presented for converting

the continuous-time control law to an equivalent discrete-time control law. In Section 4, a

method, using the matrix sign function, for block-decomposing the equivalent large scale

continuous-time system into a multi-time scale structure is introduced. Then, a pseudo-

continuous-time multi-stage design procedure is presented for designing large-scale discrete

systems with pole placement near the hatched region of Fig. 2. An illustrative example is

given in Section 5 to demonstrate the effectiveness of the proposed design procedure and

the conclusions are summarized in Section 6. Some computational algorithms are given in

an appendix.

2. Continuous-time optimal quadratic regulators with pole placement

Consider the linear controllable continuous-time system described by

i,(t = Ac(t) + B (t); ,(0) (1)

where x,(t) and uc(t) are the n X 1 state vector and the m x 1 input vector, respectively,

and A and B are constant matrices of appropriate dimensions. Let the quadratic cost

function for the system in (1) be

1 ((t)QX(t) +uj(t)Ru,(t)) dt (2)

where the weighting matrices Q and R are n x n non-negative definite and m x m positive

definite symmetric matrices, respectively. The feedback control law that minimizes the

performance index in (2) is given by [2J

uc(t) = -Kczx(t) + Ecr(t) E -R-'BTp_'(t) + Ejr() (3)
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where K, is an m x n feedback gain, E, is an m x m forward gain, r(t) is a reference input,

and F, -n n x n non-negative definite symmetric matrix, is the solution of the Riccati

equation,

PBR-IBTp- PA - ATp Q = On (4)

with (Q,A) detectable. The superscript T and the matrix On denote the transpose and

the n x n null matrix, respectively. Thus the resulting closed-loop system becomes

i,(t) = (A - BKc)x,(t) + BE(i) (5)

The eigenvalues of A - BK,, denoted by a(A - BKe), lie in the open left-half plane of

the complex s-plane. Our objective is to determine Q, R and K, so that the closed-loop

system in (5) has its eigenvalues on or within the hatched region of Fig. 1. The important

results along with the design procedure to achieve the desired design are presented in the

following.

Lemma 1 [2,23): Let (A,B) be the pair of the given open-loop system in (1). Also, let

h > 0 represent the prescribed degree of relative stability. Then, the eigenvalues of the

closed-loop system A - BR - 'BTP lie to the left of the -h vertical line with the matrix

P being the solution of the Riccati equation,

PBR-BTp - P(A + hi,) - (A + hI,,)Tp = 0, (6)

where the matrix In is an n x n identity matrix. U

Theorem 1: [23] Let the given stable system matrix A E IZnlXf have eigenvalues A- (i

1,...,n-) lying in the open sector of Fig. I and the eigenvalues A+ (i = 1,...,n + ) outside

that sector, with n = n- + n + . Now, consider the two Riccati equations,

QBR-'BTQ - 0(-A 2 ) - (-A2)TQ = On" (7a)

and

PBR-'BTp _ PA - ATp Q=0 On (7b)

Then, the closed-loop system,

A, = A - 7BK, = A - yBR-BTp, (8)
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will enclose the invariant eigenvalues 1, (i .,... ,n-) and at least one additional pair

of complex conjugz. e eigenvalues lying in the open sector of Fig. 1, for the constant gain

y in (8) satisfying

" _ max{ , b + + c

where a = tr[(BR-'B T p)], b = tr[BR-'B T PA] and c = tr[BR-'B T ]. U

Remark 1: The matrix 9, the solution of the Riccati equation in (7a), contains the

eigenvectors associated with the eigenvalues )" (i = 1,..., ni-) of A lying in the open sector

of Fig. 1. This matrix is used as a state weighting matrix in the Riccati equation in (7b)

for solving the matrix P. As a result, the asymptotically stable closed-loop system matrix

Ac in (8) contains the invariant eigenvectors and associated eigenvalues A (i = 1,... n-)

of A. The steady state solutions of the Riccati equations in (6) and (7) can be found using

the matrix sign function techniques [4,17 and the eigenvalue-eigenvector approach [7). A

brief review of this is given in the Appendix.

Continuous-time Design Procedure

Step 1: Let the given continuous-time system be as in (1). Specify h so that the -h vertical

line on the negative real axis would represent the line beyond which the eigenvalues have

to be placed in the sector of Fig. 1. Also, assign A 0 = A and the positive definite matrix

R. Set i = 1. If the system is unstable, then solve (6) to obtain the closed-loop system

Al = A- yOBR-'BTpo = A-oBKo, with -yo = 1; else (stable system) go to Step 2 with

A = A, PO = 0,, and -yo = 0.

Step 2: Solve (7a) for 9i with A := Ai. Check if tr[BR-B TQj] is zero. If it is equal

to zero, go to Step 4 with j = i; else, continue and go to Step 3. Note that, when

tr[BR-'B T O]j = 0, all eigenvalues of the matrix Ai lie on or within the open sector of

Fig. 1.

Step 3: Solve (7b) for Pi with A := A, and Q . Then, the constant gain yj can be

evaluated using (9). The closed-loop system matrix is

A, j = Ai - -yBR-IBTp, = Ai - 7iBKj (lOa)

Set i := i + 1 and go to Step 2.
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Step 4: Check if tr[(Aj + hl,,)] + (sum of the eigenvalues to the right of the vertical line at

-h) is zero. If it is equal to zcro, go to Step 5 with P.+ 1 = 0,, and "yj+l = 0; else, solve

(6) for P+ 2 with A := Aj and obtain the closed-loer. system A, - -rj+,BR-'BrPj+=

Aj - "y,+1BK.,. 1 , with yj+l = 1 and Kj+j = R-IBTPj+I.

Step 5: The designed closed-loop system is

j+1

A o - BR-BTZ YkPk (10b)
k=0

and its eigenvalues lie in the hatched region of Fig. 1. Note that the above system matrix

in (10b) is equal to the system matrix in (5), A - BR-'BTP, where P is the solution of

the Riccati equation in (4) with

3

Q = 2h(P0 + Pi,) + L(Qj + A-yjP 1BR-1 B T Pj)yj (l0c)
i=1

In the above equation, A -- = -= - 1 and the matrix R is as originally assigned. Also, the

optimal continuous-time regulator can be given as

U,(t) = -(z 1 +KizC(1) 4 Ej(t) = -Kxoz ) + Er(t) (I od)
"i=v

where r(f) is any reference input, E, is any forward gain, and K, is the desired state

feedback gain.

3. Model Conversions and Digital Redesign

For digital implementation of the obtained optimal continuous-time regulator in (I Od),

we need to convert the continuous-time system in (1) and continuous-time control law in

(lOd) into an equivalent discrete-time model and discrete-time control law, respectively.

3.1 Model Conversions

Let the state equation of the digital system which approximates the continuous-time

system in (1) be represented by

id(i) = Axd(t) + Bud(t); Xd(O) (ha)

where ud(t) is a piecewise input function,

Ud(t) = Ud(kT) for kT < t < (k + l)T (Ilb)
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where T is the sampling period, then we can write the equivalent discrete-time model as

r4(kT + T) = GCd(kT) -+ HUd(kT); Xd(O) (12a)

where

G = exp(AT) and H = [G - I,]A- 1 B (12b)

In general, the matrices G and H can be determined exactly from the matrices A and B,

and the input function ud(i) in (llb) using the eigenvalue and eigenvector approach [13].

However, for computational purposes, approximations are required for obtaining G and

H matrices without involving the eigenvalues explicitly. There are a number of methods

available [13] to evaluate approximately G and H given in (12), the simplest of them is

the truncation of the infinite series of exp(AT) [13] which results in good approximation

when T is sufficiently small. A popular method for determining G and H approximately is

the Pade approximation method [13,20]. Some of the approximations obtained using this

method are listed below:

1 -IT (T1 (3bG 1,,- 1 ATI -(I,,-4 ATI = G3  (I13a)
2 2

iIn - -AT + (AT)']-'[I, - -AT + -(AT) .= G (I3b)
2 1-2 2 12

and

H T[In - -AT]-'B A- H, (14a)
2

T(I,, - 2AT + 12(AT)2]-B !_ Hq (14b)

It can be noted that the matrices G3 in (13a) and H3 in (14a) correspond to the popular

Tustin approximation (bilinear transformation) (6]. The matrices G5 and Hs, when used

with even large sampling periods, provide good approximations. The use of scaling and

squaring method (13] as shown below, along with one of the above approximations, would

result in better approximations:

C _ [eAT/]m , m is a power of two (15)
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Now, given a discrete-time model as in (12), an equivalent continuous-time model in (11)

can be obtained by using

1

A- ln(G) and B=A[G-Inf-'H (16)
T

As before, the matrix A can be obtained from its discrete equivalent G exactly by using the

eigenvalue and eigenvector approach. It can also be obtained approximately by truncating

the infinite power series of the matrix logarithmic function, In (G), subject to certain

convergence conditions. Shieh et a]. [20] have proposed a direct truncation method and

a matrix continued fraction method for determining A from G. The commonly used

approximation for + In (G), obtained using the matrix continued fraction method is

1n (G) 2 R R[I, -4R'][I, -R2] (17)

where R = [G- I,,][G + IJ] - . The matrix series approximations obtained from truncation

or continued fractions converge when Re (o,(G)) > 0, where v,(G) represents the eigenvalues

of G. In general, the eigenvalues of the matrix G are not available, and they do not always

lie in the right half of the complex z-plane. In order to satisfy the convergence condition.

the principal qth root of the matrix G [20,21.24] can be made use of. Shieh et al. '211

and Tsai et al. [24] have recently developed a fast and stable algorithm for computing

the principal qth root of a general complex matrix. This is listed in Appendix, A-1. The

eigenvalues of VZG/ lie in the right half of the complex z-plane, i.e., Re (C(. "G)) > 0, for

q > 2. Therefore, instead of G the principal qth root of G can be used in determining an

approximation for A. In this case, the matrix equation (16) becomes

1q

A lIn (G)= In(') (18)
T T

As a result, the matrix R in equation (17) would become R := [ - I,,J['G + I,] - and

the constant factor 2/T would be replaced by 2q/T. The condition for the convergence of

the power series of In (sI/'G) becomes arg (,(G)) - 7r and det (G) g 0, which is a much

less restrictive condition.

3.2 Digital Redesign by Matching of States
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Let the digital control law for the discrete-time open-loop system in (12) be

ud(kT) = -Kdzd(kT) + Edr(kT) (19)

The designed hybrid closed-loop system in (11) becomes

id(t) = Azd(t)- BKdzd(kT) + BEdr(kT) ; Zd(O) (20)

for kT < t < (k + 1)T, where Kd E R"rn ' and Ed E R"x ' are the digital state-feedback

and forward gains, respectively. A zero-order hold is utilized in (20). Now, the digital

redesign problem is reduced to finding the digital state-feedback gain Kd and forward

gain Ed in (19) from the continuous state-feedback gain K, and forward gian E, in (3) so

that the states of the digital system in (20) are approximately equal to the states of the

continuous-time system in (5) at the sampling instants, for a given -(t).

Assuming r(t) - r(kT) over one sampling period, we have the respective discrete

models of (5) and (20) as follows:

xc(kT T) = Gx,(kT) -i- H'Er(kT) x,(O) (21)

and

Zd(kT + T) = (G - HKd)Xd(kT) + HEdr(kT) ; zd(0) (22)

where = e(A - Ke)T , [- f - )BdA [C - I,,](A - BK)-'B, G = eAT and

H= fT CABdA = [G - I,A-iB. To match all n states of the digital system, xd(kT) in

(22), and those of the continuous-time system, zx(kT) in (21), at each sampling instant,

it is sufficient that the following equations are satisfied:

G - HKd (23a)

and

I!E< = HEd (23b)

where the m x n (non-square) feedback gain Kd and the m x m forward gain Ed are

unknown matrices to be solved.
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Alternative representation of (23) is

e(A-BKe)T e AT - [(eAT - ,)A-3 B]Kd (24a)

and

[(e(A- BK.)T - - BK,) - BIE, - [(eAT - I,,)A - 'BIEd (24b)

In the existing digital redesign technique [10], the Kd and Ed in (24) are considered as the

functions of sampling period, i.e., Kd(T) and Ed(T), respectively, and they are expanded

into a Taylor series about T = 0 as
k-i

Kd(T) = lim ("K') (T)T (25a)
-.o r0 "7

where K(d)(T) = n dT) a
----D' T- 0, n

k-1
Ed(T) i n(= 4 " (T)T (25b)

where E~')(T)= 6T= ._

In a similar manner, the exponential matrix-valued functions in (24) are expanded into a

Taylor series about T = 0. As a result, (24), together with (25), can be written as

0_ [A - BKCT' AT A)T+)(T)Tk (26a)
J! , ( + k!

and
(A - BKC)!T j + '  A 00+ E(k)(T)Tk

(j + ! - B ±1)-- - -+ B d (2 6 b )
= j-11-0O k---O

To match all the states of the continuous and the digital systems with a sufficiently small

sampling period, the approximated digital feedback gain (defined as Kd) and the approx-

imated digital forward gain (defined as td) are determined [10) by taking the first two

terms of all associated matrix series expansions in (26) as

K- Kc + I Kc(A - BKC)T (27a)

215



and

Ed= [Im- 1KBT]E, (27b)
2(

In this paper, we propose a bilinear transform method to solve explicitly for the

desired m x n (non-square) feedback gain Kd and m x m forward gain Ed in (24) by taking

infinite terms of the modified Taylor series expansions of e(A - BK.)T and eAT in (24) in

the following.

The matrix-valued function of eXT with X E R" ' and a sampling period T can be

represented by an infinite series [61 as

e XT = I, +~ XT + 1 (XT)2 + ~ (XT)' (28)

i=3

The infinite series in (28) can be approximated by a geometric series as

XT1

2 i=3 (XT)' (29a)

ters1 d(ie n)2 +- (29a)3 Also tth pl1, + XT[4, + (XT) + 2I 2T-T2b

Io + XT[ - -XT ' for III,-XTII < 1 i (29c)
2 2

[I,, - 2Tm I, + 1XT] for on - -XTII < 1 (29d)2 2

Note that the first three dominant terms of (28) are equal to those of (29a), while other

terms differ in weighting factors Ili! in (28) and 1/2"~ in (29a). Also that the sampling

period T in (29) can be chosen to satisfy the sufficient condition, I11 - 1XTII < 1, in (29).

When the matrix X in (28) is a continuous-time system matrix, eXT becomes the

equivalent discrete-time system matrix. Then the model conversion in (29d) corresponds to

the popular Tustin approximation (bilinear transformation). The selection of the suitable

sampling period T for the Tustin approximation method and its applications to digital

control system design in the frequency domain have been investigated in [5]. Also, complete

analysis, design and implementation of pseudo- continuous-time controllers, developed ,ia

the frequency-domain bilinear transformation, for discrete-time systems can be found in

16).
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With the use of the bilinear transformation as shown in (29d), we express the matrices

G, H. G and H in (23) as follows:

"- e(A - BK)T [In - (A - BK )T]- I + I(A-BK,)TI Ua)
2 21

J - [e(A-BK,)T - In](A - BKc)-'B -: [In- -(A - BKc)T]-IBT (30b)
2

G=eAT1AT [I + 1AT] (30c)
2 2

and

H = [eAT - I,]A-'B :: [I, - 2AT]-'BT (30d)

To solve explicitly for the desired m x n (non-square) feedback gain Kd and m x rn forward

gain Ed in (23), we make use of the following matrix inversion formula [7]:

(A + BC-'D)- = A-' - A-'B(C + DA-'B)-'DA - ' (31)

Thus., the matrix [In - !(A - BKc)T]- ' in (30a) can be represented as

1 1 1l-
(I,, - -AT) + -BKcT]l' = [(I, - -AT) + BT(2I,)-Kc] 1

2 2 2
1.4 + fT) "I -T BT-'K!(I,- -AT)- (32)=(I= 2.4T)' -(I,-AT)-'BTi2I, K(,- IT - ,

Substituting (30) and (32) into (23) and utilizing the inverse bilinear transformation in

(30c) and (30d), we have

1 1_ ,T_

S=(I,- 1 AT)-(1, + 1 AT) - (In - 1 AT) ' BT[21,m + Kc(I, - 1 AT)BT]'
2 2 2 211AT 1 1 A)_

>< Kc(In - -AT)-1(I, + AT) -(I, - AT)BTK
2 2 2 21 (, 1 1 -1 A) BK

(in- AT) - 'BT[21m + Kc(I, - 1AT) - 'BT ] Kc(I,, - -AT B
2 2 2 2

:=G H121, + KcH-'KcG - HK 4- H[21, + KcH]-'KcHKc
2 2

=G-H1 (I,, + 1KcH)- l K,(I,, + G)] (33a)
2 2

and

Ec ={ (In - IAT)-'BT
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- (I- IAT)-'BT[2I,, + K,(1,- AT)-'BT]-' x KX(I - AT)-'BT EC

H(2h, + KrH)-KcHEc

=H(im + I KH)- 1 Ec (33b)
2

Note that the exact system matrix G and input matrix H in (33) are approximations of

the respective bilinear transformed system matrix, (I, - AT) +UAT), and input

matrix, (I,, - !AT)- BT. These inverse approximations can be justified by the same

reason shown in (28) and (29). Comparing (33) with (23), we obtain the desired digital

state-feedback gain Kd and forward gain Ed as

JKd + IKcH)- 'K(I,, + G) (34a)

and

Ed = (In + - KcH)-E, (34b)
2

If the exact system matrix G in (34a) and input matrix H in (34b) are replaced by the

bilinear transformed models G 3 and H3 in (13a) and (14a), respectively, the resulting

digital redesign gains in (34a) and (34b) reduce to

-d K, I,- !(A- BK,)T (34c)
2

and

-d (Im - I kdBT)E (34d)

Since the matrix exponential formulation G 3 in (13a) is equivalent to a w-plane matrix

representation (bilinear transformation) 16], the obtained controller in (19), which utilizes

the digital gains in (34c) and (34d), is equivaleni to a w-plane pseudo-continuous controller

161.

To compare the digital redesign gains [10] in (27), we represent the matrices (I, 4-

'KcH)' and G(= eAT) in (34a) and (34b) by a respective infinite series as

('in + 2KcH)-' = . - 2 KH+ 2KH"(5)
22
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and
00

G =e AT=I,+ AT+ E '(ATyi (35b)

When the sampling period T is sufficiently small, we can approximate the respective infinite

series in (35) by taking the first two terms only and then solving for the desired gains, i.e.,

1 1
Kd [4. - K KH]K,(21. + AT)

2 21

Kc + K,(A - BK,)T -KBKAT'
2 4

K, + 1-K(A - BKc)T= Kd (36a)
2

and

Ed ; [In -- IKeBT]Ee A Ed (36b)
.2

The approximate gains (Kd and Ed) in (36) are those obtained in (27).

Thus, we conclude that the digital redesign gains in (27) are the approximations of

the proposed digital redesign gains in (34).

4. Pseudo-continuous-time Suboptimal Quadratic Regulators

4.! Biock-diagonalization via matrix sign function

In the following, the results leading to the decomposition of a continuous system into

a multi-time scale structure are presented.

Definition 1 [181: Let the eigenvalues of a continuous-time stable system matrix, A E

R"Z'" , be Ai,i = 1,... ,n. The non-dominant modes of this system are the modes with

Re(A ) < -h, where h is a positive real number, while the dominant modes are those

having Re(A,) > -h, where Re(.) represents the real part of (.).

Theorem 2 (17]: Let A E 7 '1Z and {Re(o,(A))} n f hi,i = 0,1,... ,k} = 0, where 0-(.4)

represents the eigenspectrum of A, hi E TR, i = 0,1,...,k. Let a set of matrix sign

functions (see Appendix A-2) be

sign(h,) (h(A)) = sign (A - h,I,) for i = 0,1,... ,k (37a)
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Define

Si 4 ind [sign+_,h) (h(A))] e 7,nxnl, 1 < i < k (37b)

where ind(.) repre.,-its the collection of the linearly independent column vectors of (.) and
sign+h_~, (hA) -1sgn

= [sign(, _,) (h(A)) - sign(h ,) (h(A))] (37c)

with ho = 0 and sign(o) (h(A)) = 4,. Assume that ni 0 0 for 1 < i < k. Then

AR = M,-'AM, = block diag [ARk,AR(k-1),... ,ARI] (38a)

where M, is the right block modal matrix given by

A-s = [(38b)

and

AR -" S+AS E " n for 1 < i < k (38c)

where S- E R'i x' is the left inverse of Si and is defined as St (STS t)-IS;1 .

4.2 Pseudo-continuous-time multi-stage design procedure

Let the given large-scale discrete-time system with appropriate sampling period T be

Xd(kT + T) = GzCd(kT) + Hlud(kT); Zd(O) (39a)

Also, let the dimension of the system be n and the number of inputs be m. The procedure

is to first transform the discrete-time system to an equivalent continuous-time model. Next

decompose the continuous-time model into a multi-time scale structure, using techniques

based on the matrix sign function, then design each decomposed subsystem via the design

technique shown in Section 2, and finally determine the suboptimal digital regulator for

the whole large-scale system via the new digital redesign technique shown in Section 3.2.

Step 1: Transform the give discrete-time system to an equivalent continuous-time system

using the technique shown in Section 3.1 as

Aa(t) = AXC(t) + PUo(t) ; X, (0) (39b)
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Step 2: Set i = 1, A :=A, B := 0, Q := 0,, and the feedback gain k, =

Step 3: N-,w, specify a positive real scalar hi (see Definition 1) and find a transformation

matrix Al' such that the matrix A can be block-diagonalized into the following form:

A := (Mi))- A I) = block diag [A,, Ai,,IA] (40a)

where A, E T( ' n- ) (, ,, represents a block, which has already been designed or does not

need to be designed, and the matrices Ai E R " i ×nxf and Ai E .R'iXft, with ni = iii + f.,,

contain eigenvalues with real parts less than and greater than -hi, respectively. The

transformation matrix All' ) is given by

All')= block diag [I,.-n,,(S2,SI)] (40b)

where S1 E RX ' and S2 E IV"' are as defined in (37) with respect to the matrix sign

function of the matrix Ai, where Ai := block diag [Ai,Ai], i > 1, and Ai := A, i = 1.

Using All' ) , transform B as

B := (WM"')-B = tBP .Tg.T TIT (40c)

The dimensions of the matrices B , Bi and Bi are (n - ni) x m, fti x m and fii x m,(i()- I(i

respectively. Accumulate the transformations in Ml1 :="

Step 4: The subsystem considered for design at this stage is (Ai, A1). Let the immmediate

optimal closed-loop continuous-time system be ( f. , Ai).

Step 5: Update

k := k + 10m (nft,), Ri(i))- ' (41)

A : A- B[Omx(._f,,,),'i]= 0 A. .. , (42)

and

Q := Q + [(M ) ))-fIT[block diag[O,_.f,,Qi]I(MA') - ' (43)

where Ai = block diag [A,,Ai], 1i= -[B T,!bT]TR and the dimensions of the matrices

ii and IF,, and Qi are (n - fii) x (n - fii), (n - fii) x fi and fii x fii, respectively.
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Step 6: Block-diagonalize the partially designed system A and-move the last block of A in

(42) (viz.. -t,) to the first block, via a transformation matrix M'4 which is given as

[u -Li '-fti 2 -Orx ti-fti) Ifti 4a
-) I Ift Ox(n-ft ] (CA-I) In-ft -Li(

The matrix Li (E R(n -,)xf,) can be solved from the following Lyapunov equation

[11,12,14,17),
AiLi - LiAj, + i'ft = 0(n,-ft)xft (44b)

The transformed system is

'A (.AI())IAAJ() rAci Ofti X(f-ft1 ) 14aA:=( 1O)_... f)2)xt, , j (45a)

B (A(')-B = [BT, (b, - L B1 )T]T (45b)

where [B = IBT, !T]T. Accumulate the transformations in Mt(' ) 2

Step 7: Set i := i + 1. If i > k (k is the number of time-scales), then go to Step 8; else, go

to Step 3.

Step 8: Compute the desired digital state-feedback gain Ed and forvard gain Ed as

A-d I !(J I + Ik 1 + 0)(46a)

and

Ed = (I, + .kcR)-E e (46b)
2

The digital regulator,

Ud(kT) = -Rd-d(kT) + Edr(kT) (47)

with r(k) as any reference input, would place the eigenvalues of the system in (39a) near the

hatched region of Fig. 2. Also, the digital regulator is a suboptimal discrete-time regulator

because of the approximations involved in the inputs and the various model conversions,

although the equivalent continuous-time regulator is optimal. Note that, although some

numerically stable algorithms have been suggested in the Appendix for computing some

special matrices and functions, the proposed multi-stage design process does not guarantee

numerical stability.
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S. Illustrative Example

Consider an unstable discreteptime system in (39a) with

0.822 -0.440 0.008 0.074 0.0621
1.244 0.725 0.249 0.000 0.124

= -0.157 0.098 0.752 -0.371 -0.014
0.037 0.176 0.284 0.724 -0.025

-0.655 -0.275 -0.131 0.000 0.1361

0.271 0.017' (48a)
-0.175 -0.305

= -0.099 0.196
0.068 0.010
0.092 0.213 J

where o,(O) = {0.7252 j j0.7466, 0.7537 ± j0.3190, 0.2013} and T = 0.2.

The location of the poles of 0 in the discrete z-plane is shown in Fig. 2 and it is

seen that except for the one at 0.2013, which is to be kept invariant, the rest of the poles

lie outside the region of interest. The objective is to find the pseudo-continuous-time

suboptimal regulators for the discrete-time system in (48a) with pole assignment near the

specified region in the z-plane. The pseudo-continuous-time design proccdurc given in

Section 4.2 will be used to achieve the desired design.

We utilize the matrix continued fraction approximation in (17) with q = 4 in (1E) to

obtain the equivalent continuous-time system in (39b) as

0.80993 -2.05956 0.32673 0.46503 0.89827"
6.66468 0.19703 1.33276 0.00065 0.66065

= 29339 0.45801 -1.07402 -2.32838 -0.20294
-0.32191 0.82377 1.67148 -1.18838 -0.36133
-3.51498 -4.31738 -0.70176 0.00000 -8.36346 (48b)

0.95385 -0.38170'(86
-1.66643 -1.66699

= -0.21358 1.19415
0.61711 0.05240
0.87785 1.40500.J

where a(A) = {0.19984 ± j3.99969, -1.00180 ± 32.00218, -8.01498}.

Since the given system is unstable, the first step is to block-decompose the continuous

-time system into its stable and unstable parts. Assign hi = 0. The transformation
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matrix All 1 , found using the matrix sign function technique given in Section 4.1 to block-

diagonalize A, is given by

/-0.0469 -0.0550 -0.2096\ / 1.0469 0.0550\1
J-0.0001 0.0004 0.0008 0.0001 0.9996

.All' ) = [52, S] 0.2331 0.0121 1.0467| -0.2331 -0.0121 (49a)
0.4191 0.0217 0.0839] -0.4191 -0.0217

\0.0012 0.5259 -0.0002) (-0.0012 -0.52,59)

where S2 E sx3 and S E Rsx 2 can be found from (37). The transformed matrices are

A A=

= block diag [AAA,]
r 0.00005 -0.00913 4.50053 (49b)

-0.01599 -8.01497 -0.00994) 03x2
-1.11375 0.00050 -2.00366 ]02x3(0.19949 -2.39917)j

02 x3 (6.66793 0.20019

2.49670 -0.24850)
: 0.00073 1.00378

:((1)' -0.55700 1.16477 (49c)
0.99896 -0.00210)

-1.66645 -1.66889
Th egenspectra of the diagonal lochs in (49,r = {-1.002 ±j.,, -. O5}

and c-(A) = {0.200 j4.000}. The unstable subsystem (A, 1 ),

A= 0.19949 -2.399171 = 0.99896 -0.00210 (49d)

16.66793 0.20019 1 -1.66645 -1.668891

with o(A,) = {0.200 ± j4.000}, is to be designed at this stage. Assign h = 1.1 (i.e., the

eigenvalues of the closed-loop system should lie to the left of the vertical line at -1.1 on

the negative real axis in the s-plane) and R = 12. To achieve the design, we follow the

steps of the continuous-time design procedure in Section 2.1. Let A = 41 and B = r.

Solving the Riccati equation in (6) with (A + h12 . B), we have

= 2.246 -0.038] =2.308 -0.88610
P- =-0.038 0.509 ' 0.059 -0.849]

The resulting closed-loop system is

A, = A - BK0 = [-2.106 -1.5161 (50b)
10.612 -2.6941
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,wvhere cr(AI) = {-2.400 ±j4.000}. Note that I(Re o(A]))l > 1.1. Now, solving the Riccati

equation in (7a) with (-A2,B), we have

r31 .350 1.258]1
= 1.350 28 and Itr[BR-'z T 01 ]-- 20.48 0 0 (50c)

11.258 2.489] n 2

Solving the Riccati equation in (7b) with (A,B) and 01, we obtain

[4.078 0.070] [ 3.957 -0.473] (50d)P= 0.070 0.326J ' 1=R-BP -0.126 -0.544

From (9), the constant gain is chosen as t = 0.6382. Therefore, the closed-loop system is

A 2 = A1 -rBKI = r-4.628 -1.215 1 ' 020 (50e)14.686 -3.776]

where a(A 2 ) = {-4.2024 ± j4.2024}. Note that all the eigenvalues lie on the boundary of

the hatched region in Fig. 1. Also, note that tr[(A2 +hI2 )
+ ] = 0 and tr[BR-1 B T 0 2] = 0,

where Q2 is solved from (7a) with respect to (-A', B). This verifies that the design goal

has been achieved for the subsystem in (49d). Let us denote this closed-loop subsystem

by A , = A 1 - BI(K0 -- ' K 1 ). The continuous-time feedback gain at this stage is

K 1 =K0 + Kl = 4.833 -1.1881 (51a)t-0.021 -1.197J

and it is optimal with respect to the performance index in (2) having R =12 and

,= 2hPo + -7- [01 + (7y - 1)PI 1 R-'r3P 1]

[21.332 1.1351 (51b)

= 1.135 2.588 J

Using this feedback gain, the updated system is given by

A = A - B[0 2 1 3 ,KI

02X T4V1 1S0 2A3 AclJ
0.0000 -0.0091 4.5005) -12.0720 2.6690 (51ic)
-. 160 -8.0150 -0.0099 j( 0.0251 1.2002
-. 137 0.0005 -2.0037/ 2.7169 0.7320

02X( - 4.6284 -1.2149
14.6859 -3.7764/]
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The updated feedback gain RC and weighting matrix Q are
-Kc :-= ffc + [O2x ,R,](.A'1)) -1 4.833 -1.188 0.969 0.00C o.484](1d

I = -0.021 -1.137 -0.003 -0.001 -0.001

: +=( + [block diag[09, 0.0)- ,8

-21.332 1.135 4.271 0.006 2.1311
1.135 2.588 0.225 0.002 0.112 (51e)

= 4.271 0.225 0.855 0.001 0.427
0.006 0.002 0.001 0.000 0.001
2.131 1.112 0.427 0.001 0.213]

The solution of the Lyapunov equation in (44b) for i = 1 and fij = 2 is

0.998 -0.891]
L= -0.552 0.129 (51f)-1.252 -0.114

and thus the transformation matrix A.12l ) that block-diagonalizes A in (51c) and swaps the

blocks A, and A1 is given by

A'= 12 02x] (51g)

The transformed matrices are now given by

A (M~)'AAI'( -) Acl 02X31(5a: 03.2 A11 j

and

(0.9990 -0.00211
-1.6665 -1.6689

B := (M') ' = (0.0153 -1.7332) (52b)
0.7648 1.2174

\0.5031 0.9711/
(,)(:) MO()

The accumulated transformation matrix becomes M, ) :- k •

Now, we proceed to the second stage of design. Choose h 2 = 1.1. The transformation

matrix MI which block-diagonalizes the block .Al in (51c) while preserving the block .4c

is given by (as in (40b))

IA2) [o12 02X3 ] (52c)
k312 (S2 S)

where
[(0.0011) 1.0000 0.00001

[S2,S, 1.0000 -0.0020 -0.0001 (52d)
o.oool) ( ooo .oo/

0.0001 0.0000 1.0000
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The submatrices S2 E I7 3 XI and S1 E 7Z3x2 can be found from (37) with respect to A1

and h2. The transformed matrices A and B are

A:= (MI 2 ) AM( 2 )

= block diag [A,, 1 A 2 ,A 2

(-4.6284 -1.2149\ 02X 02X2 (53a)

14.6859 -3.7764
=1 01x2 (-8.0150) 01 x2

02X2 02x 0.0001 4.5005)0-1.1137 -2.0040

0.9990 -0.0021)1

2))i 3 (1.6665 -1.6689I
B := (M))-B = B2 0.7649 1.2140) (53b)

B2. 0.0145 -1.7346)
0.5030 0.9709 J

Again, the accumulated transformation matrix becomes l2) := The subsys-

tem to be designed at this stage is (A 2 ,BD2). Following the same procedures as in the first

stage, we obtain the designed continuous-time subsystem as

[-20.1156 7.08171(5c

1.2639 -4.2294 (53c)

with c'(A,2) = '-2.1725 ±j2.1725). Note that these eigenvalues are within the hatched

region of Fig. 1. The continuous-time feedback gain K 2 and weighting matrix Q2 at this

stage are

2= [0.4205 1.5278] (53d)-0.0632 1.5008

and

Q2 = [2.0109 3.3163] (53e)
3.3163 9.2675 J

The updated feedback gain /, and weighting matrix Q are given below:

RA : = +k 02.3, 2](I) - I

[6.74659 -0.63902 2.79527 0.20152 0.63200]
= 1.85769 -1.08109 1.88639 -0.99297 0.19219J (53f)[35.87594 6.16143 17.95729 3.93400 3.160161

6.16143 4.97772 4.80710 3.19066 0.39323
Q:= 17.95729 4.80710 13.76777 3.28138 1.41166 (53g)

3.93400 3.19066 3.28138 6.20283 0.07071

3.16016 3.93227 1.41166 0.07071 0.29412J
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where ar(Q) = {48.298, 7.506, 3.368, 0.000, 1.947} and 0 > .

The eigenvalues of A-B[0 2 . 3 ,k 2 1] with A and B as in (53a) and (53b) .. re {-4.2024:

j4.2024, -2.1725±j2.1725, -8.0150}. Note that all of them are within tht Katched region

of Fig. 1, and the non-dominant eigenvalue of the open-loop system at -8.0150 is keep

invariant. Therefore, the closed-loop continuous-time system is

-4.91622 -1.86269 -1.61950 -0.10620 0.368801
21.00416 -2.67002 9.13548 -1.31880 2.03420 (54a)
-2.07080 1.61251 -2.72963 -1.09959 -0.29746
-4.58264 1.27476 -0.15235 -1.26071 -0.76142

-12.04750 -2.23749 -5.80596 1.21822 -9.188281

The continuous-time optimal regulator is given by

u'(t) = -fKf:x(f) + Ec(t) (54b)

where c' is the total feedback gain as in (53f), Ec = 12, and r(t) is any reference input.

The digital redesigned closed-loop system will be of the form as shown in (22) with

the digital state-feedback gain Rd and forward gain Ed in (47) to be determined. With G

and H as in (46a), 12 = , and R, as in (53f), the gains Rd in (34a) and Ed in (34b) can

be evaluated as follows:

K,d 1 (12 + I f)-I c(Is + 0)
2 2 5aE 2.82346 -0.82731 1.05826 0.17590 0.263671

0.10625 -0.85000 0.81854 -0.85244 0.02810J

and

Ed = (12 + 1 RcR)-C [ 0.56005 -0.201571 (55b)
2 1 -0.09247 0.75738j

The designed closed-loop digital'system matrix in (22) with the gains in (55) is

0.05504 -0.20135 -0.29270 0.04082 -0.009931
1.77051 0.32097 0.68385 -0.22921 0.17871 (56)

- 0.10170 0.18270 0.69633 -0.18651 0.00660
-0.15606 0.24076 0.20385 0.72056 -0.04321
-0.93739 -0.01784 -0.40271 0.16539 0.10576J
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where o-(G) = {0.2582±jO.4070, 0.5905:jO.2718, 0.2013}. These eigenvalues close to the

digitized continuous-time optimal eigenvalues, {O.2879±jO.3215, 0.5874±jO.2726, 0.2013},

of the system matrix A - DRTC.

The simulations of the closed-loop systems in (5) and (22) with r(t) as a unit-step

vector are shown in Fig. 3. It can be seen that all the discrete states Zd(kT) closely match

the continuous-time states xc(t) at t = kT. Also, the simulations of the continuous-time

quadratic regulator in (3) with Bc = I2 and Rc as in (53f) and the discrete-time control

law in (47) with Rd and Ed as in (55) are shown in Fig. 5. The continuous function

uc(t) in (3) closely matches the discrete function ud(kT) in (47). The same simulation

results have been obtained by using the approximated digital gains kd in (34c) and Ed

in (34d) The simulations were also carried out with the approximated digital feedback

gain /d and forward gain Ed as given in (36) and shown in Fig. 4. For this case, a

rather large discrepancy occurs in the transient region due to the utilization of the roughly

approximated digital gains in (36). It might be interesting to note that the direct use of

the digitized uc(t) in (54b) with k, in (53f) and Pc = 12 to the system in (48a) results in

an unstable response.

Since all the designed digital states closely match the continuous-time optimal states

and the designed digital regulator closely matches the continuous-time quadratic regulator.,

the designed digital regulator in (47) with Rd and Ed as in (55) can be termed as a pseudo-

continuous-time quadratic regulator.

6. Conclusion

The design of large-scale discrete-time systems, which do not exhibit a two- or multi-

time scale structure explicitly, has been considered in this paper. It has been shown that

a large-scale pseudo-continuous-time system can be decomposed into a completely decou-

pled multi-time scale structure (block-diagonalization) using the techniques based on the

matrix sign function, without explicitly utilizing the open-loop eigenvalues of the given sys-

tem. A pseudo-continuous-time state-space method, based on model conversions, has been

developed for methodically designing each subsystem (corresponding to one time-scale),

with eigenvalue placement near a desired region of the complex z-plane. The model con-

versions and various other computations can be achieved using fast and stable algorithms
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based on the principal qth root of the system matrix and the matrix sign functions. A

new- digital redesign technique based on matching all the states at all the sampling instants

has been develop td for finding the pseudo-continuous-time regulator with appropriate pole

assignment. With an appropriately sampling period T, the designed discrete controller is

suboptimal while its associated continuous-time controller is optimal with respect to cer-

tain weighting matrices. The proposed method requires the solution of Riccati equations

of small order only at each stage of the design. Transformation to general canonical form

so as to determine the discrete feedback gain can be avoided. The developed state-space

method can be used to design multivariable digital control systems, for determining the

state-feedback pole-placement controllers; whereas, the existing pseudo-continuous-time

frequency-domain method [6) can only be applied to design single variable digital control

systems for obtaining the cascaded controllers.
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Appendix

A-1 Principal nth root of a matrix [21,24]

Definition A.I: Let a matrix A E Cmx have an eigenspectrum er(A) = { =

1,...,m}, A, # 0 and arg (Ai) # 7r. Then, the principal nth root of A is defined as

;'A E C" ' , where n is a positive integer, and

(a) (VA-)- = A

(b) arg(a.( VA)) E (-7r/n,+7r/n).

A generalized fast and stable algorithm with kth order convergence has been derived

in [21,24] for computing the principal nth root of a given complex matrix A E C" Xm . The

algorithm corresponding to quadratic convergence (k = 2) is listed below.

G(k + 1) = G(k) ([21 + (n - 2)G(k)] [Im + (n - 1)G(k)]-' ,

G (0) : A. 1rm G(k) = ,(Al.a)
k-o

s R ni~~~ f - 2}G(k 1,i' + (n -1Gk~

R(0) : I,, lir R(k) = /A (A.l.b)

A-2 Matrix sign function [16]

The matrix sign function of a matrix A E C' × " [16,18,21] is defined as

sign (A) = A(v'A) - ' = A-'(v/A) (A.2)

where the matrix V/A2 denotes the principal square root of A 2 . A fast and stable algorithm

[21] to compute the matrix sign function is listed below. For k = 0.1 .... ,

P (k) = Pj-.(k) + S- 2(k)Qj-,(k), P1 (k) = I,, and

Qj(k) = P,(k) + Qj_.(k),Ql(k) = I,, with j = 2,...,r (A.3.a)

S(k + 1) = S(k)Q'l(k)P,(k), S(O) = A. lim S(k) = sign (A) (A.3.b)
r k-cc

where r is the order of the desired rate of convergence.
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A-3 Solving Riccati equation via matrix sign function

The Ric. ati equation for the controllable continuous-time system (A, B) with weight-

ing matrices Q(_> 0) and R(> 0) is given by

PBR-'BTp - ATp - PA - Q = 0 (A.4.a)

The steady state solution of this Riccati equation, P(> 0) with (Q, A) detectable, can be

easily computed using the properties of the matrix sign function [4,17], and the eignvalue-

eignvector approach [7]. Consider the Hamiltonian associated with the given system

H=[A -A T jB7 (A.4.b)

The following algorithm can be utilized to obtain the solution P.
1

Hk+I = -[Hk + Hk ], Ho = H, and
2

lim Hk = sign(H) (A.5.a)
k-c

Let

sign+ (H) [1,, + sign(H)] (A.5.b)
2

Construct a block modal matrix X as

-T = [ind (sign 4 (H)), ind (2., - sign' (H))] - [11 X2i] (A.6.a)

where ind(.) represents the collection of the linearly independent column vectors of (.).

Then, we have

P = X 22(X, 2)- ' (A.6.b)

To alleviate the problems of computing H -j , the Hamiltonian can be transformed into a

symmetric form as follows [4]

=jH=0 - HA (A.7.a)11-I =1 JA=I, O -BR-IB r

Then, the algorithm in (A.5) becomes

Hk+I = [Hk + JiIA KJ. Ho = JH, and
2

lira (-J/Ik)= sign(H) (A.7b)
k- oo

The computation of the inverse of the symmetric matrix H2k is much simpler than com-

puting the inverse of Hk. The Riccati solution P is again given by (A.6).
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Fig.3. Comparison of the state trajectories of X,(t) and Xd(i) with Kd and Ed in

equ. (34).
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Fig.4. Comparison of the state trajectories of X,(t) and Xd(t) with Kd and td in

equ. (27).
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4.)

Fig.5. Control signals u,(t) in equ. (54b) and tUd(kT) in equ. (47).
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NEW METHODOLOGIES IN RENEWAL THEORY

B. D. Sivazlian
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ABSTRACT

The derivation of the probability law (joint distribution function)

of a renewal counting process, and the analysis of the filtered renewal

process, form the theoretical basis 1) to study the prediction problem

associated with systems regulated by these processes, and 2) to

formulate and solve a number of applied problems arising in reliability,

replacement, maintenance, queueing, production and other pertinent areas

of interest to engineering, operations research and military systems.

The research addresses itself to both theory and applications.

I. INTRODUCTION

As an important branch of stochastic processes, renewal theory has

found many useful applications in statistics and in the mathematical

modeling of natural and man-created phenomena, particularly in solving

complex problems in operations research such as inventory, queueing,

reliability and replacement. As a process generalizing the Poisson

process and all its ramifications, renewal theory has found applications

in such fields as actuarial sciences, astronomy, astrophysics, ecology,

economics, engineering, meteorology and physics.

239



The literature on renewal process is at least 50 years old.

Lotka's paper (1939) on "... self-renewing aggregates ..." contains a

list of 74 papers on the subject of renewal equation and its

applications dating as far back as 1909 when Herbelot encountered the

equation while investigating an actuarial problem. In his fundamental

work, Feller (1941) is the first to study formally the integral equation

of renewal theory. Smith (1958) provides a thorough review of renewal

theory. Cox (1962) discusses many theoretical and applied problems in

the area. Daley and Vere-Jones (1988) and Wolff (1988) present a more

modern approach to the theory. Without elaborating further on the

existing literature, it suffices to say that renewal theory is a

standard topic covered by most textbooks on stochastic processes and

their applications.

Renewal theory has found a very fruitful area of application in

modeling complex systems in reliability, maintainability and

availability. Renewal theory has been used for example (see Barlow and

Proschan, 1965): 1) to define the operating characteristics of

maintenance policies, 2) to solve the age and block replacement problem,

3) to formulate repair problems of single- and multi-units, and 4) to

derive optimum inspection and maintenance polices. The theory has also

been applied to solve problems in reliability arising from shock

processes, cumulative damages and redundancies.

Other areas of applications in operations research where renewal

theory has been utilized have been: single and multi-commodity inventory

systems, queueing systems, maintenance and replacement systems. More

recently, in using diffusion approximation to solve complex queueing

systems, such as the machine repair problem with standbys, renewal
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theory has been used to generate the infinetesimal means and variances

to the diffusion equation.

This research proposes the development of a unifying methodology to

bring forth a new perspective to the analysis of renewal processes. The

proposed research aims at: 1) obtaining new results in the field such as

the characteristics of the probability law of a renewal counting

process; 2) studying the theory of filtered renewal process; 3)

developing efficient procedures to predict the behavior of systems

governed by renewal processes for short-term and medium-term purposes,

and 4) using the results obtained in a variety of applied problems

arising in engineering, operations research and military systems.

II. THE THEORY OF RENEWAL PROCESSES

1. The Probability Law of a Renewal Counting Process

The study of a stochastic process is not complete until one has

characterized its probability law, that is, in our case, the joint

distribution function of the number of renewals at distinct time epochs

tl, t2 ,.... tn, where 0 < tl < t2 < ... < tn (n being an arbitrary

positive integer). The probability law provides all the necessary

information to describe the properties of the process. Unfortunately,

despite its early inception and its many usage, the probability law of a

renewal counting process has been considered so far to be too difficult

a task to tackle, and thus remains an unsolved problem. Only in the

special case of the Poisson process defined as a renewal process, has

this law been derived, leading to important characterization of the

process itself. For example, it may be shown that the Poisson process

has stationary independent increments, two properties that form the
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basis for many important applications in statistics and operations

research (see e.g. Cohen, 1982).

Let (Ti), i - 1,2,..., be the sequence of interarrival times in an

ordinary renewal process, assumed to be i.i.d. random variables with

probability density function f(x), 0 < x < w, and distribution function

F(x). Let (N(t),t a 0) be the total number of renewals in [O,t] where

N(O)-O. Consider distinct time epochs tl,t 2, .. , tm, where 0 < tl < t2 <

.... tm and m is any positive integer.

The probability law of the renewal counting process may be defined

by

P(N(tl)-n I , N(t2)-n 2 ... N(tm)-n m ) (i)

where 0 : nI : n2 : ... : nm. Other representations of the probability

law of the process, such as the joint characteristic function, may be

appropriate depending on the nature of the intended results.

We propose a new methodology to formulate mathematically the

probability law of a renewal counting process and to obtain closed form

expressions in terms of the distribution of the interarrival times.

This new methodology is based on the properties of certain classes of

multiple integrals. In addition, basic properties of the process can be

identified and structured such as the distribution of renewal increments

N(t2)-N(tl), the joint distribution of the number of renewals N(t) and

the forward recurrence time V(t), etc. The results obtained will be of

particular use in developing mathematical models for prediction.
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2. Methodology

a. Introduction

The objective of the present section is to show that a class of

multiple integrals may be used as a novel mathematical methodology to

solve problems arising in renewal counting processes. Multiple

integrals provide a natural vehicle to approach these complex problems

as one is essentially dealing with sums of independent random variables

in the context of interarrival times. The class of multiple integrals

typically arising in these problems is of the generalized Liouville type

(Sivazlian, 1971). For example, we use this methodology to provide a

new derivation to the distribution of the number of renewals in an

ordinary renewal process. The primary emphasis is to demonstrate the

use of multiple integrals as a method of analysis and solution, rather

than to derive the specific intended result in the shortest number of

steps. The available method for obtaining this result in the existing

literature is much shorter; it relies however, on event arguments

relating waiting times to number of renewals, which are restrictive (see

e.g. Cox, 1962). The present derivation is based on the joint

distribution of the number of renewals and the interarrival times.

Moreover, the intent is to suggest a methodology which could be used to

solve more complex problems in renewal theory such as 1) deriving the

probability law of a renewal counting process 2) characterizing the

statistical properties of the filtered renewal process and 3) providing

a basis for predicting systems behavior which are of the renewal type.

We first state a result in multiple integrals.
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b. A Result in Multiole Intejral

Theorem

Define for x > 0, the function g(x)E e(i.e. continuous) and the

function Oi(x)E X(i.e. with at most a finite number of points of

discontinuity in every finite interval and such that the integral

J I0i(u)Idu has a finite value for every x > 0), i-1,2,..., n where n

is a positive integer (Mikusinski, 1959). Then

... f f (xl+x2 +4 *.. + xn) 0l(xl)02(x2) .. Onx)dl dX2 ... dxn

R

- g(u)[0 1 (u)*0 2 (u) * .. *n(u)] du (2)
0

where R - (x: 0 < xl+x2 + .. + Xn t, x i 2 0) and where the integrand

on the right hand single integral is a function of class &. Here the

notation * refers to the usual convolution operation. (For a proof see

Sivazlian, 1971.)

c. The Distribution of the Number of Renewals

Let (Ti), i-1,2,..., be the sequence of interarrival times in an

ordinary, renewal process, assumed to be independently and identically

distributed random variables with probability density function f(x),

0 < x < -, and distribution function F(x). Let (N(t),t O) be the total

number of renewals in [0,t] where N(O)-0. The joint distribution of

N(t) and TI, T2 0 . . .. . TN(t) is:

a. For N(t)-O, t z 0:
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P(N(t)-O, T I > t) - 1- F(t) (3)

b. For N(t)-n z 1, 0 < xl+X2 + .... + x n : t:

P(N(t)-n, x, < T, : xl+dxl, x2 < T2 S x2+dx2,

xn < Tn : ,xn+dxn , Tn+l > t-(xl+x2 + ... + Xn)}

- f(xl)-f(x2 ) ... f(xn ) (1- F[t-(xl+x 2 + ... + xn)] dxl dx2 .. dx n

(4)
Thus, the probability mass function of N(t) is:

For N(t)-O:

P(N(t)-O)-l-F(t)

For N(t)-n -& 1:

P(I) n -j I .... I f x )f 2 ...  xn
0<xl+x2+.'' •+x~nt

(1 - F[t-(xl+x2 + '.. + Xn)]) dx1 dx2 ... dxn

- J f*(n)(u) [l-F(t-u)] du

0

- F(n) (t ) - F(n+l)(t) (5)

which is a well-known result.

d, The Joint Distribution Function of the Number of Renewals

Consider two time epochs tI and t, where 0 < tj < t, and suppose

that it is required to determine P(N(tl)-nl, N(t)-n). Here, it is

necessary to consider several cases depending on the values taken by nI

and n (0 S n, s n).
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For example, if we consider the case n1 a 1, n a n1 + 2, then

P(N(t)-n, N(t)-n) will be given by:

P(N(t)-n I , N(t)-n)

- J . . f(xl) f(x2).. xn

R

(1- F[t-(xl+x 2 + '.. + xn)]) dxl dX2 ... dxn (6)

where R - (x : 0 < xl+x2 + -. + xn < tl < xl+2 + "-- + xn +1
- 1 1

< Xl+x 2 + -. + xn < t) (7)

Clearly the problem reduces to one involving the evaluation of an n-

tuple integral. The development of an appropriate methodology to reduce

this multiple integral to a simpler expression which is more amenable to

analysis and which can be more useful in characterizing a renewal

counting process appears in Sivazlian (1989).

e. The Prediction Problem in Renewal Processes

Traditionally, research in renewal theory has delved into either

finding solutions to the time-dependent problem, or the derivation of

limit theorems. The lr:ter has constituted the majority of work in the

more recent years. This is quite understandable since often the

solution to a time-dependent problem is not easily obtainable. Although

limit theorems may sometimes be used to arrive at desired solutions,

nevertheless they are often inadequate for solving certain problems

particularly for short term and medium term predictive purposes. It is

evident that for this particular area of research many of the answers
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would be obtained directly from the formulas expressing the probability

law of the.process, which provide the solution to the time-dependent

problem.

Consider a system whose behavior is regulated by a renewal counting

process. Let N(t) be the number of counts up to time t. Consider time

epochs 0 < tl < t2 < t , and suppose that the system has been operating

till time tI . For predictive purposes, one may be interested in

computing several probability expressions given that some type of

information is available about the process at a given time tI . These

probability expressions provide mathematical models for predicting the

statistical behavior of the process at some future time t2 > tl, given

some level of knowledge concerning the state of the process at time tl.

Depending on the circumstances, we consider three cases:

Case 1: At time tl, only the number of renewal counts N(tl) - n, is

known;

Case 2: At time tI the time at which the last renewal count has

occurred, is known;

Case 3: At time tl, no information is available

Case 1:

When at time tI the number of renewal counts N(tl)-nl is known, the

expressions of interest for predictive purpose would be the conditional

probabilities:

P(N(t)-n I N(tl)-nl) (8)

P(N(t+dt)-n I N(tl)-nl) (9)
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P(N(t2)-n2 , N(t)-n I N(tl)-nl) (10)

P(N(t)-N(tl)-m I N(tl)-nl) (11)

Note in particular that an expression for (9) would yield

transition rates for the renewal counting process. Similarly, one may

be interested in obtaining the covariance function Coy [N(tl), N(t2)],

the conditional expectation E[N(t)-N(tl)-m IN(tl)-nl], the joint

distribution function of the backward and forward recurrence times

conditional on N(tl)-n I , etc.

Case 2:

Suppose that at time ti , it is known that the last renewal count

has occurred at time r, 0 < r < tl. Let U1 be the random variable

defining the time elapsed from tI until the next renewal occurs. It is

evident that the probability density function of U1 , gu (u) is
1

gu (u) - f(u) { f(u) du, tl-r < u < (12)
1 12

i

Consider now the modified (or delayed) renewal counting process in

which the arrival time till the first renewal is U1 , while the

interarrival times for the next renewals is still given by the sequence

of i.i.d. random variables (Ti), i - 2, 3 .... One thus is lead to study

the probability law of a modified renewal process. Clearly, the same

methodology used in Section II-I would still be applicable here except

that instead of using fx ( .) in the final expressions obtained, one
1

would substitute gU (.). Time tI would then be considered as the origin
1
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of the process. Expressions for the conditional probability.

P(N(t2-tl )-nl, N(t-tl)-n I last renewal occurred at r), (13)

0 < r < tl < t2 < t

or other probabilities could then be straightforwardly obtained.

Case 3:

In this case, no information is available about the state of the

process at time tl. This case is clearly of the same type as Case 2

except that the time till the first renewal is the forward recurrence

time V(tl). Let

HV(tl) - distribution function of V(tl);

M(y) - the renewal function for the original ordinary renewal

counting process;

Then HV(t I is given by the expression:

It

1 t1  lx- F(t1 -y)] dM(y) (14)

HV(t I (x) - F(tl+x) - F(tI) - [F(t 1+x-y)

The method of analysis would be similar to Case 2.

3. A Birth Eguation for the Ordinary Renewal Counting Process

Transition rates fr the renewal counting process (N(t), t ? 0) may

be derived (Sivazlian, 1989). As a result, the process can be "viewed"

as a non-homogeneous state-dependent birth type process. Thus, although

(N(t), t ! 0) does not in general, satisfy the Chapman-Kolmogorov

equations, the unconditional distribution of N(t) satisfies the well

known differential - difference equations of the birth type. It is
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shown that indeed the solution of these equations yield the well-known

results

P(N(t)-O) - 1- F(t)

P(N(t)-n) - F(n)(t) - F~n+1 )(t). (15)

Here we define

rt
F(n)(t) _ J0 f(x) F(nl1) (t-x) dx , n - 1, 2, (16)

rt
with F(t) - F(O 0) - 10f(x) dx. (17)

The results may be summarized as follows:

f* (n+l)(tl)
P(N(ti+dt)-n+lIN(tl)-n) - dt + o (dt)

F~n)tl)- F(n+l)(tl)

n-0,1,2.... (18)

PIN(t14-dt)-nIN(tl)-n) - 1- F~)dt + o (dt) (19)

(t)- F(n+l)(tl)

n-0, 1,2 2..

P(N(tl-edt)-niN(tl)-nl) - o(dt) n 2: n, + 2 (20)

It is then evident that we can write for 0 5 m < n, expressions

for:

P(N(t+dt)-n) - EZ P(N(t+dt)-n, N(t)-m)
M

- E P(N(t+dt)-n I N(t)-m) *P(N(t)-m) (21)
m

Let P(n,t) - P(Nkt) - n). We find

dP(0,t) f(t)
-P(Q,t) (22)

dt 1- F(t)

with the initial condition

P(0,0)-l (23)
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Also

dP(n,t) f*(n+l)(t) f*(n)(t)
+- P(n,t) - P(n-l,t) (24)

dt +F(n) (t)-F(n+l) (t) P~~)-F(n-l) (t)-F(n) (t) n-t (4

with the initial condition

P(n,O)-O (25)

The solution of these equations may be verified to yield (15).

III. THE THEORY OF FILTERED RENEWAL PROCESS

1. I

The filtered renewal process is a stochastic process which is a

generalization and a natural extension of the concept of the filtered

Poisson process (in the sense of Parzen, 1962), in which the underlying

process generator is modified to be a renewal counting process rather

than a Poisson process. The filtered Poisson process (sometimes loosely

called the compound Poisson process) is extensively discussed in Blanc-

Lapierre et Fortet (1953), Parzen (1962) and Karlin and Taylor (1981).

Filtered renewal processes provide models for a large variety of random

phenomena in such areas as queueing theory, physics, economics,

astrophysics, and population immigration. They can be regarded as

arising by means of linear operations on a renewal process, in which

additionally a response function must be specified. Many problems in

simple and compound renewal processes, such as the renewal reward

process or the cumulative process may be shown to be special cases of

the filtered renewal process by judiciously selecting the form of the

response function. Note that this response function will remain the

same both for the filtered renewal process and the filtered Poisson
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process. We now formally define the filtered renewal process following

Parzen:

A stochastic process (X(t),t t 0) is said to be a filtered renewal

process, if it can be represented, for t a 0, by

N(t)
X(t) - Z w(t,Wm,Ym) 0 < WI < W2 <... < WN(t) < t (26)

M-i

where

i) (N(t),t 2 0) is an ordinary renewal counting process with known

i.i.d. interarrival time distribution (Ti), and waiting times {Wi),

i

Wi - Z Tj, i - 1,2,J-1

ii) {Yn) is a sequence of i.i.d. random variables, and independent of

{N(t),t 2 0), with distribution function Gy .);
n

iii) w(t,r,y) is a function of three variables called the response

function.

For example, if Wm - rm is the time at which an event took place,

then Ym y represents the magnitude of a signal associated with the

event, w(t,rm,y) represents the value at time t of a signal of magnitude

y originating at time rm, 0< rm< t, and X(t) represents the value at

time t of the sum of the signals arising from the events occurring in

[0,t].

The primary reason for being unable to extend the theory of

filtered Poisson process to the filtered renewal process has been the

unavailability of mathematical techniques to handle the complex multiple
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integral expressions arising in obtaining, for example, the joint

characteristic function of X(tl), X(t2),..., X(tm), 0 < ti < t2 < ... <

tm (m a positive integer).

The theory of filtered renewal processes may be studied by

exploiting the properties of multiple integrals developed by the present

author (1971), (1983), and extending the methodology to analyze a larger

class of integrals, in order to obtain reduction formulas for evaluating

these integrals. As a result, expressions for the various statistical

characteristics of the process such as the probability law of the

process, the joint characteristic function at distinct time epochs, the

covariance function, E[(X(t)], Var [X(t)] and limiting values (as t 4 ®)

could conceivably be obtained. One could also establish asymptotic

normality of the filtered renewal process for given response functions.

2. Methodology

For the filtered renewal process (X(t),t a 0), the characteristic

function is given by E(eiSX(t)]. Using the definition of X(t), this is

given by

N(t)
E[e isX(t)l - E[exp(is Z w(t,Wm, Ym)}]

m-1

N(t) m
- E[exp(is E w(t, E Ti, Ym))] (27)

M-i i-l

.J .... 1.... expUisw(t, Z xi , ym))
J 0  m-1 i-I

O<xl+x2+..-+xngt

f(xl ).f(x 2) .... f(xn) F[t-(xl+x 2 + ... + Xn)]

dxl dx2 ... dxn * dG(yl) dG(y 2) ... dG(yn) (28)
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If we define

i
h(xl+x2 + .. + xi) - Ey (exp[isw(t, Z xj, Ym)])

m J-l

expisw(t, E xi , Y)] dG(y) (29)
0 J-I

Then clearly, the integral (17) has the form.

E[eisx(t)] . .f . J h( Z xj) f(xi)•i-1 j-1

O<xl+X2+.• +xn:st

n n
F(t- E xi) 11 dxi  (30)

i-i i-l

Although there is a similarity between the multiple integrals (30) and

(2), in general the integrand is not the same. It thus becomes

necessary to use and extend the methodologies available (Sivazlian,

1971, 1983) to obtain new reduction formulas for evaluating integrals of

the type (30). Again, here also, the reduced and simplified formulas

thus derived, would be of particular significance in characterizing the

filtered renewal process and in obtaining various statistical properties

related to the process

IV. APPLICATIONS

With a better understanding of the theoretical basis of a process,

a better appreciation is gained in characterizing the process as well as
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in gaining insight into its various properties. A direct consequence is

that the process may become more amenable to a wider variety of

application, or may be used to better approximate the behavior of a

system. Shortcomings in the theory invariably produce limitations in

its applicability. It is hoped that the new results will open new

vistas of applications by solving many complex problems in renewal

theory and in filtered renewal theory.

Among some of the application areas we consider the following:

i. The Cumulative Damage Problem -

Consider a component subject to wear, where the number of wearout

occurrences is regulated by a renewal process, and where in addition,

the amount of wear is also regulated by a renewal process. Suppose that

the component has been operating for some time. Given the present

wearout state of the component, the problem of predicting the future

wearout condition, that is the level of degradation of the component, as

well as its ultimate failure (first passage time) may be addressed.

ii. The Takacs' Sojourn Problem for an Alternating Renewal Process -

This problem (see Takacs, 1957) has a variety of applications such

as: i) the cumulative damage problem previously described; 2) the

problem of a component subject to failure and repair; 3) the traffic

delay problem; and 4) other problems in statistics and operations

research. It addresses itself to determining the cumulative effect of a

certain condition (such as the total amount of repair time since time

origin) for a system which can only be in two states rather than the

total number of events related to that condition (such as the total

number of repairs since time origin). Predictive models associated with

this class of problem may be formulated.
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iii. The Time-Dependent G/G/a Queueing System -

The variety of applications to the GIGI- queueing system are well

established. This problem can be formulated as a filtered renewal

process through a judicious choice of the response function, and the

time-dependent characteristics of this system may be studied as well as

its steady state behavior.

iv. A Production Problem -

Consider a manufacturing system which has unlimited capacity to

produce an item. Assume that items arrive for production according to a

renewal process and that the production times are i.i.d. random

variables with known distribution function. One may be interested in

determining for any give time t since production start the following:

a) the number of items in production;

b) the backlog of production time on the items which are in the

production process;

c) the probability of an empty production system.

Clearly, this is a variant of the G/G/c queueing system where the

above quantities can be determined by the selection of an appropriate

response function.

v. Other Problems -

Some of the other problems that may be formulated are:

a) Predictive models for reliability systems such as systems with

standby components;

b) Predictive models for replacement and maintenance systems,

including individual replacement, group replacement and age

replacement;

c) Predictive models for systems described by the superposition of
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renewal processes;

vi. A Military Application -

An important potential area in applying renewal theory is the

formulation of generalized stochastic Lanchester equations for models of

military combats. It is well-known that these models are of the deach

or attrition type. The existing models could conceivably be extended

based on the results presented in this paper.

For an ordinary renewal counting process (N(t), t 2 0), we have

shown that a transition rate for the process can be generated which is

both non-homogeneous and time-dependent taking the form

f*(n+l) (t)
An(t) - F(n)(t) - F(n+l)(t) 0, 1, 2 ....

As a result, the unconditional distribution of N(t), namely, P(n,t) -

P(N(t)-n) satisfies the birth equations

dP(O,t)
-O(t) P(O,t)

dt

dP(n,t)
- - -An(t) P(n,t) + An l(t) P(n-l,t) n-l,2,...

dt

with initial conditions given by P(0,0)-l and P(n,0)-O, otherwise.

For a death process involving an initial population size N, we

have:

P(N,O) - I and P(n,O) - 0 n o N

We may write for example the following equations involving "linear"

death rates n An(t):

dP(N,t)
- - N AN (t) P(N,t), n - N

dt
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dP (n, t)
- n An(t)P(n,t) + (n-1) An+, (t) P(n + 1, t), 1 : n : N - 1

dt

dP(O, t)
d - A (t) P(l,t), n - 0
dt

This is a natural extension of existing death models. It is evident

that this provides a framework of analysis for combat models by

generalizing the Markovian models while retaining the structural

properties for obtaining closed form solutions. The reader is referred

to Sivazlian (1989) for a recent application of combat modeling.

V. CONCLUSIONS

The derivation of the probability law (joint distribution function)

of a renewal counting process, and the analysis of the filtered renewil

process, form the theoretical basis I) to study the prediction problem

associated with systems regulated by these processes, and 2) to apply

the results to several useful problems in reliability, replacement,

maintenance, queueing, production, combat analysis and other areas of

operations research.

The theoretical knowledge acquired by this research should advance

the level of knowledge in the statistical characterization of renewal

processes and filtered renewal processes. Novel insight into the

properties of these processes and a better understanding of their

behavior should be gained. The theoretical results derived can be used

immediately

i) to solve a number of stochastic problems in operations research and
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other applied areas;

2) to assess the performance characteristics of systems which can be

modeled as a renewal process or as a filtered renewal process or as

a process based on or related to the two previous ones;

3) to develop models for predicting the behavior and effectiveness of

systems represented by any of the above processes. Typical measures

of effectiveness could include for example, system reliability,

system maintainability and system availability.

On a long term basis, it is hoped that these processes may become,

through an improved knowledge of their behavior, more amenable to a

wider variety of applications.
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STEPWISE CLOSED FORM TECHNIQUES
FOR COMPUTER SIMULATION OF GUIDED PROJECTILES

M. J. Amoruso H. Cohen
R. Campbell AMSAA

ARDEC

Sponsored by: U. S. Army Armament Research Development and Engineering Center
Picatinny, New Jersey 07806-5000

The Army's Armament Research Development and Engineering Center (ARDEC) has
been formulating methods for computationally efficient computer simulation for smart
munitions. Time constants associated with autopilot components are often small com-.
pared with their driving terms. The integration time step Is consequently driven to very
small values to achieve stable numerical Integration, which results increased computer
run time. An innovative technique was developed in which exact analytic solutions to
differential equations and transfer functions are applied in a piecewise manner within a
larger but lower frequency problem that is solved numerically. Closed form analytical
solutions were obtained for the following. the first-order lag, the first-order lag with
differentiation, the first-order lead/lag, the first-order lag with integrator, the second-
order lag/oscillator, a two-axis gimbaled gyro, and an Impulse thruster. In addition to
formulating piecewise analytic solutions to smart munition components, serial configura-
tions of transfer functions should be replaced by equivalent parallel configurations.
This approach avoids difficulties arising from propagation of the signal through a se-
quential network of widely varying natural frequencies when using a relatively large piece-
wise integration time step, and produces a decomposition that leads to terms that can be
readily Integrated analytically. In some cases, considerable time savings were obtained.
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STEPWISE CLOSED FORM TECHNIQUES
FOR COMPUTER SIMULATION OF GUIDED PROJECTILES

When modeling guided projectiles in 6 DOF (six degree of freedom)
simulations, differential equations are obtained that describe the various
component subsystems. These are then typically iitegrated numerically
within the framework of the 6 DOF simulation. The largest allowable time
step to perform the integration is bounded by two constraints. The driving
term or input must not vary appreciably during a time step and the time step
must be sufficiently small to insure a stable integration.

Since the driving term rates are commensurate with the airframe motion
rates, inherently slower processes than those associated with the autopilot,
stable integration is a lower bound to integration step size than the
requirement for driving terms that remain essentially constant during the
integration time step. By using analytic closed-form solutions for the
differential equations for the autopilot, the second constraint appears to be
eliminated. An innovative technique was developed by which exact analytical
solutions to the required transfer functions are applied in a piecewise manner
within a larger but lower frequency problem which must be solved
numerically. The use of these piecewise analytical solutions to the transfer
functions guarantees valid integration of the autopilot transfer functions
regardless of the integration time step.

The overall system is usually analyzed into simpler terms in sequential
order that are separately solved by numerical integration techniques,
assuming that the input or driving term is essentially constant or linear during
the integration time step. These factors are concatenated with the output of
one factor or block becoming the input to the next block. Since the integration
time step is generally quite small to achieve stable numerical integration,
negligible errors are introduced as the signal propagates through the usually
modest number of transfer function blocks down to the output.

The new approach consists in introducing analytical closed-form solutions
for the transfer function factors that were previously treated numerically.
Since these are exact closed-form solutions for constant (or linear) driving
terms, the solutions bridge the time step perfectly as long as the driving term
is essentially constant (or linear) during the time step. See Figure 1.

<_ At-->

t t t + 2

Figure 1. Iterative propagation of the solution
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The result of the integration from the previous or n-1t h time step is used as
th.; initial condition for the current time step. A value for the driving term
during the current or n th time step along with the initial condition are put into
the analytic closed-form solution to propagate the solution from the beginning
of the nth time step to its end, where the resulting solution becomes the initial
condition for the next or n+ 1th time step, and so forth. This approach
guarantees stable intergration contingent only upon the input remaining
essentially constant or linear during the integration time step.

Table I
Typical Autopilot and Actuator Transfer Functions

TYFE LAPLACE DIFFERENTIAL
OPERATOR EQUATION

1 dy
First Order Lag T + y = T

rs +1 dt

s dy dT
First Order Lag with y =
Differentiator T + dt dt

T s + 1 dt dt

2
1 d dy

First Order Lag with T_ + - = T
Integrator s[Ts + 1] dt 2  dt

2
1 d y dy

Second order Lag/ I -+ D"-+ Ky =T
Oscillator Is 2+ Ds + K dt 2  dt

s d 2y dy dT
Second order Lag/ I - +D-+Ky= -
Oscillator with Is 2 + Ds + K dt2 dt dt
Differentiator

Closed form solutions have been obtained for the typical transfer functions
indicated in Table 1. Note that zero initial conditions are assumed for the
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Laplace operators in this table. Non-zero initial conditions will be described
below.

Savings in computer time vary from case to case with savings typically up
to an order of magnitude. An impulsive thruster that consisted of rapidly
burning material in a grove on the side of a spin stabilized projectile was
modeled with great savings in execution time. The results in Tables 2 were
obtained. Note that three different time step6S were used for the numerical
integration. With the coarsest time step (10 " sec), agreement was to only 3
significant digits. For this case the analytical approach ran 23 times faster.
Agreement between the analytical and numerical approaches could be
increased by two more significant digits by decreasing the integration time
step by an order of magnitude, with corresponding increase in run time for
the numerical approach.

Table 2
Impulsive Thruster Modeling

APPROACH TIME STEP CPU TIME W W
y z

(sec) (sec) (rad) (rad)

Analytical N/A 0.0106 0.53275603 -0.41630908

Numerical 10-  22.096 0.53275601' -0.41630910

-7
Numerical 10 2.278 0.53275061 -0.41631581

-6
Numerical 10 0.246 0.53234719 -0.41681537

However, using this approach, an unexpected complication was discovered.
If several factors are concatenated to represent a more complex transfer
function, the final output can be found to depend on the order of the transfer
function factors. This difficulty arises because, although the input of a block
might be essentially constant during an integration time step, the output might
not be if the frequency response of the block is relatively high. This output
becomes the input to the next transfer function block. The requirement that
the input to this next block be essentially constant can break down unless the
sampling rate is high. This requires a smaller integration time step and
longer computer execution time. This dilemma does not arise in the former
numerical integration approach because the very fine time step required
avoided difficulties assoc'ated with incompatibilities of bandwidth and
frequency content as the signal propagated from block to block.
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The solution adopted was the conversion of a complex transfer function to
a parallel representation instead of a serial representation. The obvious
advantage to an equivalent parallel representation is that each block receives
the same input at the same time and each block produces its output at the end
of the same single time step. These outputs do not become inputs to other
autopilot transfer function blocks, but are instead summed to produce the
overall output for the overall transfer function. Generally, this technique not
only avoids simulation errors arising from time step size incompatibilities
with bandwidth, internal lag, and frequency content of the signal propagating
through the sequence of transfer function blocks but also has additional
benefits. In addition to producing an algorithm that is considerably faster
than previous numerical integration approaches, parallel decomposition
generally leads to a combination of elementary expressions, whose Laplace
inverse and analytical integration are well known.

The general treatment to implement this technique is outlined as follows:

(1) Writing down the Laplace operator expression including
non-zero initial conditions from the differential equation
description or from the block diagram (which usually will not
show the initial conditions)

(2) Factoring

(3) Making a formal partial fraction expansion

(4) Finding the expansion coefficients

(5) Writing down the expanded Laplace transform.

The latter can then be inverted from standard tables of inverse Laplace
transforms to obtain the analytic solutions in parallel decomposition or
calculated using the residue theorem of complex variables.

It is worthwhile to emphasize the first of the steps enumerated above.
Autopilots, seekers, control actuators, and other components of guided
projectiles are conventionally described in block diagrams in terms of the
Laplace operator s. Typically, these block diagrams represent the underlying
differential equations only if the initial conditions vanish. This is a
convenient shorthand notation but can also be a source of confusion. Recall

dy

that for initial conditions yo = y(t= 0), Y = (t= 0), etc., the Laplace
'h 

dt

transform of the n derivative of a time domain function is given by

L[y (n) = snL[y(t)] - sn'l YO - sn-2 0 YO (1 
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where y(n) represents the n derivative of y(t) with respect to t, and L and
s represent the Laplace operator and variable respectively.

There are two methods for implementing this procedure. The first
involves the taking of limits and derivatives and requires the factoring of the
transfer functions into first-order systems. The second requires the solution
of sets of simultaneous equations and does not involve limits or derivatives.
Factoring the transfer function into first-order terms is optional in the second
method. These techniques are well-known from partial fraction expansions of
algebraic expressions.

A concrete illustration follows. Consider an autopilot component
represented by the following block diagram in Figure 2. The differential
equation corresponding to this block diagram is

'(t) + y (t) - 2 y(t) = Driving term

= K(t-to)+Ko = Kt+L (2)

I

s2 + - 2

Figure 2. Example of block diagram

K, K . and L are constants and t is time. This has the Laplace transform
2

K/s + Lis. Let L{y(t)} = Y(s). The Laplace transform of the differential
equation is

2 K + sL
s + s - 2 )Y(s) - y 0( 1 +s Y 2 ; (3)

2
s

where the additional terms are due to the initial conditions defined by
dy

Y0= Yt- t, and y 0
= - t This may be written (factoring the

dt 1t= t
denominator)

2 3
K + sL + s (y 0+Y 0 ) + s Y0

Y(s) = (4)
2

s (s+2)(s-1)
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This may be formally expanded as follows:

A B C D
Y(s) = - + - + - + (5)

2 s+2 s-1

If there are no multiple roots, the partial fraction expansion coefficients
can be evaluated one at a time by taking the corresponding factors of the
denominator of (5) one at a time and multiplying the right sides of (4) and
(5) by that factor and then equating right sides. The resulting expression is
taken to the limit as the factor goes to zero. This causes all expansion
coefficients but one to drop out. Note that this technique fails when trying to
find A or B because of the multiple root. The expression lim sY(s) does not

2 s-.
exist. If instead one tries lim s Y(s), A = -K/2 is obtained. To obtain B,d [S-0

take lim I[s Y(s)] and B=-(K+2L)14 results. In this way, using one
s-O

ds
factor at a time, all the expansion coefficients may be obtained.

The result of a partial fraction decomposition is

K (K +2L) (4y 0-4Yo-K+2L) (K+L+2y0 +Y0 )

Y(s)= - + + (6)2

2s 4s 12(s+2) 3(s-1)

This transition to parallel decomposition or expansion is shown in Figure 3
for this simple case. T. is a simple matter to invert this expression into the
time domain.

Kt (K +2L) + 4y-4i0 -K +2L 1 ~ + [K+L+2y 0 +YO 1~ 7
yQ) = -- - I e I e (7)

2 4 12 3

An alternate approach is algebraic. The first step in the algebraic approach
is always the same as above. Factoring the denominator of the transfer
function into monomials and expanding in terms of these monomials is done
as before. Write the right side of the formal partial fraction decomposition
with a least common denominator and equate to the Laplace expression for
the autopilot transfer function.

K + sL + s (y 0+) 0 ) + s Y0

Y(s) = (8)
2 2

s (s +s-2)
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A B C D

2 (s+2) s-1

A(s2+s-2) + Bs(s 2+s-2) + Cs 2(s-1) + Ds 2(s+2)

2 2
s (s +s-2)

The denominators and numerators are equal. Making use of the linear
independence of powers of s, a set of equations is obtained for the expansion
coefficient which must be solved simultaneously. This yields the same result
as before.

Alternatively, the investigator may wish to retain some higher order terms
rather than reduce all the denominators to monomials, perhaps to retain a
physical interpretation of terms.

In summary, by giving up the generality of numerical integration and
using closed form solutions to particular differential equations in stepwise
fashion, significant savings in computer run time can be obtained. Care must
be taken when concatenating several such solutions in sequence. If the
product of several sequential transfer functions can be recast into an
equivalent network of transfer functions in parallel, difficulties arising from
propagation of the signal through a sequential network can be eliminated even
when relatively large integration time steps are used. This can be done by
making a partial fraction decomposition of the Laplace operator
representation. This technique produces a decomposition that leads to terms
that can be readily integrated.
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(a) Step 1
2 3

K + sL + s (y 0 +)0o) + s Yo

2 2
s (s + s - 2)

(b) Step 2
2 3

K + sL + s (yo+y~) + s Yo _ >

2
s s + 2)(s - 1)

(c) Steps 3 - 4

4yo-4Yo-K+2L I

12(s + 2)

K +L +2y+);I

3(s - 1)

IK
-> 2s2

-(K +2L)

4s

Figure 3. Example of transition to parallel representation
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ABSTRACT: A number of possible optimizations for Gr6bner Basis con-
struction are presented. Currently we are developing a system which per-
mits easy experimentation with these and other optimizations. Perhaps
as important as the hoped for optimizations, a conceptual framework is
discussed, within which these and other possible optimizations are easily
presented. The framework should be elaborated by others, as needed to
support their own optimization experiments.

INTRODUCTION: Here are several related potential optimizations for
finding Gr6bner bases within k[X] = k[Xi,... , X], where k is a field. The
main idea is to precipitate internal reduction by finding elements whose
lead monomials divide other (lead) monomials. This obviates some S-pairs
and may cut down storage requirements. We also use a generalization of:
discarding the S-pair of f and g when the lead monomials of f and g are
relatively prime. Our optimizations are supported by a novel approach
to Gr6bner basis construction. Typically, Gr6bner basis construction is
formulated in terms of two sets G and P. G is the forming Gr6bner basis
and P is a set of particular S-pairs from G x G which remain to be reduced. If
all of the S-pairs in P reduce to zero over G, then G is a Gr6bner basis. Onc
traditional optimization question is avoiding unnecessary S-pair reductions.
I.e. how to keep P small. Unnecessary reductions waste computation. An
unnecessarily large set P is a waste of memory.

The underlying idea of our approach is formulated in terms of three
sets, G, J and P. P is a set of particular S-pairs from G x G. (G, J, P) has
the following property:
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if all of the S-pairs in P reduce to zero over G U J and if all of the
* S-pairs from G x J and J x J reduce to zero over G U J then G U J is

a Grhbner basis

By dividing the forming Gr6bner basis into two sets G and J, it is only
necessary to explicitly keep track of S-pairs from G x G. The S-pairs from
G x J and J x J are known implicitly because G and J are known. This
saves memory. Part of our approach is the notion of allowable moves. An
allowable move might remove an element from P at the expense of adding
an element to J. Reduction of an element of P over G U J is such an
example. An allowable move might move an element from J to G and add
elements to P. An allowable move might move a number of elements from
G to J and discard elements of P. Allowable moves preserve (*). The
objective is to use allowable moves to reach a stage where P and J are
empty. When P becomes empty there axe no longer explicit S-pairs from
G x G which need to be reduced, and when J becomes empty there are no
longer implicit S-pairs from G x J and J x J to reduce and G is a Gr6bner
basis by (*).

(G, J, P) satisfying (*) is the underlying idea of our approach to opti-
mization, but we have added two refinements:

J is subdivided into two sets H and R
two properties are added to (*) which are preserved by the allowable moves

Our prospective optimizations are untested and other refinements of the
underlying idea of (G, .1, P) satisfying (*) may prove to be more effective.
We encourage researchers in the area of Gr6bner basis optimization to ex-
periment with their own refinements to (G, J, P) satisfying (*).

At the present time we are developing a system to test these and related
potential optimizations. The system MACAULAY by Bayer and Stillman
is a Gr6bner Basis based computer algebra system but is not designed for
experimenting with variations on the fundamental algorithms. A selection
of papers addressing Gr6bner basis optimization can be found in the refer-
ences.

THE SETTING: Suppose we have an implicit term ordering which allows
us to form/find LM(f) - the lead monomial of f. Let: MLCM(f,g)
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the Monomial LCM of f and g - denote LCM(LM(f),LM(g)). Define the
NT order on k[X] in terms of the original implicit order, as follows: for
f, g E k[X], f < g in the NT order if

total degree f < total degree g

or

total degree f = total degree g
and LM(f) > LM(g) in the original implicit order

Here is the promised generalization of: discarding the S-pair of f and
g when the lead monomials of f and g are relatively prime. For p = (f, g) E
k[X] x k[X], S(p) = S(f,g) = S-polynomial for the pair (f,g), formed as
follows:

Let m be the monomial MLCM(f, g). Write f = qlm + r and
g = q2m + s, where m does not divide any of the monomials of r
or s. For S(f, g) use:

q2f - qig = q2r - qjs

For P C k[X] x k[XJ, S(P) = {S(p)jp E P}.

We assume there is an appropriate notion of reduction of a given ele-
ment over a set. Typically this is repeated reduction of the lead term of the
given element over the set or repeated reduction of all terms of the given
element over the set. We are experimenting with both. Whichever notion
of reduction is used, if a given element is fully reduced over a set. then
the lead monomial of the given element must not be divisible by the lead
monomial of any element of the set.

THE FRAMEWORK: The approach we are about to describe involves
several stages of Gr6bner basis construction. Frequently Gr6bner basis
construction is described in terms of one set - the forming Gr6bner basis
- and another set - the S-pairs which remain to be checked. The easiest
way to describe our ideas is to split the forming Gr6bner basis into three
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parts and explicitly keep track of the remaining S-pairs for the first of the
three sets.

A Gr6bner frame' is the following:

Three sets G, H, RC k[X] and a set P C G x G, where

1. G U H U R is a Gr6bner basis if every element in

S(P) US((GUHUR) x (GU HUR) \G x G)

reduces to zero over G U H U R.

2. For every (f, g) E P, LM(f) and LM(g) are NOT relatively
prime.

3. Every element of G U H U R is fully reduced with respect
to GUH.

EXAMPLE: GETTING STARTED. Given a subset of k[X], call the set
R. Let P, G and H be empty sets.

Given a Gr6bner frame, the object is to use only the ALLOWABLE
MOVES, described below, to decrease P, H and R to the empty set. When
this is achieved, G is a Gr6bner basis. Staxting with three sets G, H, R C
k[X] and a set P C G x G, forming a Grdbner frame, they still form a
Gr6bner frame after an allowable move.

ALLOWABLE MOVES:

MOVE P: If P is not empty, choose p E P, set P = P \ {p},
form S(p), fully reduce S(p) over G U H U R. If the final
reductum r is not zero, set R = R U {r}.

MOVE H: If H is not empty, choose h E H, set H = H\{h}.
Let M be the ideal in the monoid of monomials generated
by MLCM(g, h) as g runs over G. Let G' C G be chosen
such that {MLCM(g, h) g E G'} generates 1M. When the
MLCM(g, h)'s are being computed, make note of those

1 One frame in the movie of the forming Gr6bner basis.
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g such that LM(g) and LM(h) are relatively prime. Let
G" be the elements of G' where LM(g) and LM(h) are
not relatively prime. Set P = P U (G" x {h}) and set
G=Gu{h}.

MOVE R: If R is not empty, choose s E R, set R = R \ {s}. Let R'
start as the empty set. For each m E R, reduce m with respect
to {s} U G U H, starting with {s}. If the final reductum r is
not zero, set R' = R' U {r}. When done considering all m E R,
set R = R'. Let H' start as the empty set. For each h E H,
reduce h with respect to {s} U G U (H \ {h}), starting with {s}.
If the final reductum r has the same lead monomial as h, set
H' = H' U {r}. Otherwise, if r is non-zero, set R = R U {r}.
When done considering all h E H, set H - H' U {s}. Let G'
start as the empty set. For each g E G, reduce g with respect to
{s} U (G \ {g}) U H, starting with {s}. If the final reductum r has
the same lead monomial as g, then set G' = G'U {r}. Replace each
(f, g) E P by (f, r). Replace each (g, f) E P by (r, f). Otherwise
if r is non=zero but has lead monomial less than that of g, set
R = RU{r}. Delete each (f, g) E P from P. Delete each (g, f) E P
from P. When done considering all g E G, set G = G'.

MOVE's R, H and P involve choosing elements from R, H and P.
Among others, we are experimenting with the following priorities:

1. When R is not empty do MOVE R.

2. When R is empty but H is not empty, do MOVE H.

3. When R and H are empty, do MOVE P.

Our goal is to precipitate internal reduction by finding elements whose lead
monomial divides many other lead monomials. These priorities are expected
to precipitate internal reduction at relatively little computational expense.
We elaborate on this theme when discussing MOVE R.

For MOVE R. Here one chooses an element r E R and reduces el-
ements of G U H U R over {r}. One could tentatively pick each
element r E R and count how many elements of G U H U R would
reduce over that {r}. Then use the r which causes the most reduc-
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tion as the actual choice. This would be computationally expen-
sive. There might be something along this line using clever data
structures and updating information cleverly which achieves this.
At present we are investigating: choose the element of R whose
lead monomial is as small as possible in the NT order. The hope
is this will pick elements r E R which tend to cause reduction.

For MOVE H. We have no particular best guess at this point.

For MOVE P. Ideally, one would choose (f, g) E P where the lead
monomial of the final reductum of S(f, g) causes as much internal
reduction as possible. Or, following the simplification for MOVE
R, choose (f, g) E P where the lead monomial of the final reduc-
turn of S(f, g) is as small as possible in the NT order. Even this
simplification seems much too computationally expensive. A fur-
ther simplification is: choose (f, g) E P where MLCM(f, g) is as
small as possible in the NT order. MLCM(f, g) gets computed
(and can be saved) for each pair (f, g) when building up P. Po-
tential optimization aside, S(f, g) need only be computed when
the pair (f, g) is selected in MOVE P. Pairs may be discarded
from P without ever computing (or reducing) S(f, g). Thus the
question: for purposes of optimization, how much work should be
done with S(f, g) for pairs (f, g) E P which have not been selected
in MOVE P?

When the minimal guidelines, based on small lead monornials in the
NT order, together with our other prospective optimizations, are followed
for small hand computations, we have been pleased with how few S-pairs
ever are computed.
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The Relationship Between Linear and Nonlinear Variational
Models of Coherent Phase Transitions*

Robert V. Kohn

Courant Institute
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ABSTRACT

Variational models of phase transitions seek to explain the observed

fine scale structures of phase mixtures as being due to bulk energy minimi-

zation. One theory of this type, geometrically linear in character, has been

developed in the metallurgical literature by Khachaturyan and others. A

second, apparently different, geometrically nonlinear theory has been

developed in the mathematical literature by Ball, James, and others. We

show that Khachaturyan's theory is roughly the linearization of Ball and

James' approach. We also discuss how Khachaturyan's method permits the

explicit relaxation of certain double-well energies in the linear setting. The

corresponding calculation for triple-well energies remains incomplete.

1. Introduction

Coherent mixtures of crystalline solids have long been studied using elasticity. The

metallurgical literature has primarily been based on linear theory, see e.g. [25,26,31-

33,41,45,48,51-56,60,61]. Recent mathematical work, on the other hand, has taken a

geometrically nonlinear viewpoint, see e.g. [4-6,8,11-15,18-22,27-30,34]. There is naturally

a connection between these two approaches, and indeed the link is much stronger than has

heretofore been recognized. The purpose of this article is to explore that connection in

some detail, focussing particularly on the nonlinear variational model of Ball and James

(4,27] and on work done in the linearized context by Roitburd, Khachaturyan, and Shatalov

*Supported by ARO contract DAAL03.89.K-0039, DARPA contract F49620-87-C-0065, ONR grant N00014-88-K-0279
and NSF gant DMS-870189S
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(31,33,51].

Coherent phase mixtures arise, for example, from martensitic phase transitions and in

the early stages of decomposition processes. They have rather characteristic fine scale

structures, often involving laminar arrangements of phases or distributions of like-shaped

inclusions. A central goal of the variational theory is to explain the origin of these micros-

tructures. A comprehensive survey is beyond the scope of this article, due to the vastness

of the literature and also the limitations of the author's expertise. Nevertheless, we

attempt a brief introduction.

It is precisely the condition of coherence that permits an analysis based on elasticity.

Briefly, this condition assures that the atoms' actual positions are related to their locations

in a reference lattice by a continuous elastic deformation. More detailed discussions of this

point will be found in [42-44], where the central notion is the "network constraint," and in

[11,12], where the discussion is based on the "Born rule."

One well-known approach in the linear context has its origins in the work of Eshelby

[16,17], which gives the elastic field due to an elliptical inclusion of one phase in an other-

wise uniform second phase. This leads to an approximate formula for the elastic energy of

a multi-phase mixture, either through a mean field theory or by taking a dilute distribution

of ellipsoids as the phase geometry. One can try to predict the inclusion shape by minimiz-

ing this approximate energy, see e.g. [45,56]. Here we will not deal with such approximate

theories, but rather with calculations that are (mathematically, if not physically) exact.

A different approach was developed independently by Khachaturyan [31] and Roit-

burd (51] for the two-component case, and subsequently generalized to more than two com-

ponents by Khachaturyan and Shatalov (33]. Their theory is geometrically exact, in the

sense that it makes no hypotheses about the phase geometry, and it computes the elastic

fields exactly. One pays a price for this generality, however: their method requires that

the phases all have the same elastic moduli. For mixtures of two such phases, this work

gives a formula for the extremal elastic energy as a function of the stress-free strains, the

volume fraction of each phase, and the elastic moduli [32]. It shows moreover that this

extremal energy is always achieved by a layered microstructure. Subsequent work has

noted that other microgeometries may also be extremal, depending on the symmetry of the

individual phases. For three or more phases the analysis is less complete: the treatment of
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[31-33] does not yield a formula for the extremal energy of a general three-phase mixture.

The preceding work is all linear in character. Recently, a number of authors have

explored models based on nonlinear elasticity. One approach leads to an elastic energy

density with infinitely many local minima [14,15]; the associated "relaxed" energy is unfor-

tunately rather degenerate (6,18-20,22]. We prefer the viewpoint of Ball and James

[4,5,27], in which the elastic energy density has one "well" for each phase or phase variant.

The relaxation of such an energy has yet to be computed; rather, attention has been

focussed on determining where it achieves its minimum value. This is sufficient for study-

ing transformations that do not involve internal stress, a class which includes many marten-

sitic phase transitions.

The linear theory of Khachaturyan at aL and the nonlinear one of Ball and James are

superficially quite different: the former deals with phase microgeometry directly, while the

latter lets it enter through the structure of energy minimizing sequences. Both approache-

involve the minimization of an elastic energy, however, and each provides a rationale for

the more phenomenological "crystallographic theory of martensitic" (7,591. Thus it is

natural to look for a relationship between them.

The connection is in fact quite close. Roughly speaking, Khachaturyan's calculation is

equivalent to the relaxation of a linearized version of the energy studied by Ball and James.

Our goal is to explain this relationship, and hopefully to bridge the language barrier which

currently separates the two theories.

We begin, in Section 2, with the linearization of the Ball-James theory. The linear

analogue of their energy turns out to be a minimum of paraboloids, differing as to their

shape, height, and the locations of their minima. Each paraboloid is the graph of the

linearly elastic energy for a separate phase or phase variant.

In Section 3 we explain what one means by the "relaxed" or "macroscopic" energy

QW associated to a given energy density W. The functions that emerge from Section 2

have the special form W = min (W 1, . . . , Wv}. For such functions we introduce a new

concept, the "relaxation at fixed volume fraction" Q 0 W. It gives the macroscopic energy of

the system when both the average strain and the volume fractions of the phases are fixed.

The standard relaxation QW is just info QW , in which 0 varies over all possible volume
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fractions (see Proposition 3.1); thus knowledge of QOW for all 0 effectively determines

QW.

For a system consisting of two linear phases with the same elastic moduli, the calcula-

tion of Roitburd and Khachaturyan amounts to the determination of QqW. This is the cen-

tral link between the linear and nonlinear viewpoints, and it is discussed in Section 4. A

more complete discussion concerning the relaxation of double-well energy functions will be

found in [36].

The corresponding analysis for three or more linear phases is presented in Section 5.

Our approach is essentially the same as that of Khachaturyan and Shatalov [33], and we get

no further than they do. In selected cases, when the stress-free strains are related

appropriately, one can determine the minimum value of Q 9W; this is the linear analogue of

work by Ball and James [4]. In general, however, the calculation of Q@W(g) remains

open. The new notion of H-measures, recently introduced independently by Tartar [58]

and Gerard [24], may be useful in this context: as we shall explain, calculating Q9W is

equivalent to minimizing a certain functional over the H-measures associated to certain

characteristic functions.

In its use of Fourier analysis, Khachaturyan's calculation of QW bears a strong

resemblance to recent work in homogenization [2,38,50]; thus we are in essence using

homogenization to compute the relaxations of certain energy integrands. This link between

relaxation and homogenization has in fact been noted before [39,40]. The main difference

between those discussions and the present one is that here the phases have different stress-

free strains and the same elastic moduli.

Our attention is concentrated entirely on the minimization of bulk energy; one expects

such an analysis to be qualitatively correct if the effects of surface energy are sufficiently

small. The latter are presumably important for determining the length scale and periodicity

of the microstructure; they are also thought to be the reason for the appearance of plate-

like inclusions when the theory predicts fine-scale layering. Formal treatments of these

effects will be found in [4,32]; there has been little rigorous analysis, but see [21,35] for

some preliminary steps in that direction. In addition, surface energy is presumably respon-

sible for selecting between distinct microstructures with the same bulk energy (see Remark

4.4).
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Taken together, Proposition 3.1 and Theorem 4.1 determine the relaxation of a "two-

well" energy describing a system of two linearly elastic phases with the same elastic

moduli. For the special cases of an isotropic elastic law in two space dimensions, that

relaxation was previously computed by Lurie and Cherkaev [47]. Their analysis is quite dif-

ferent from ours, being based on the method of "polyconvexification" rather than Fourier

analysis.

The hypothesis of equal elastic moduli is apparently a good approximation for many

two-phase systems: microstructures consistent with Khachaturyan's theory are observed in

a wide variety of systems [32]. However, this approximation is certainly not always valid.

We have recently extended Khachaturyan's calculation to the case of two phases with dif-

ferent elastic moduli, provided that the elasticity tensors are in a certain sense well-ordered

[371. This extension is based on the Hashin-Shtrikman variational principle; it is similar to

[2,38,50] except that the phases have different stress-free strains.

2. Linearization of the Ball-James Theory

Ball and James have developed a model for martensitic phase transitions based on fin-

ite elasticity [4]. Their idea is to minimize a non-elliptic energy function which has a

separate "well" for each phase or phase variant. We focus on the case of a cubic-tetragonal

phase transition such as that of InTI, following [4].

The elastic energy has the form

E[u] = WT (Vu)dx, (2.1)

where fl C R3 is a reference domain, u:l --R3 is an elastic deformation, and T represents

temperature. The temperature could vary from point to point, i.e. T = T(x); but it is con-

sidered given, not to be varied in the minimization of E. For simplicity, we shall assume

for the duration of this discussion that T is constant. The energy density satisfies the con-

dition of frame indifference:

WT (RF) = WT(F) for RE SO(3). (2.2)

(SO(3) is the group of orientation preserving rotations of R3 .) As a consequence, the local

minima of WT must occur on orbits of SO(3).
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For a cubic-tetragonal phase transition, Wr has four "wells," one corresponding to the

austenite (cubic) phase and the others to the three symmetry-related variants of martensite

(the tetragonal phase). There is an exchange of stability at the transformation temperature

T.: for T > T, the absolute minimum is in the austenite well, whereas for T < T, it is in

the martensite wells. We take austenite at T = T, as the reference configuration, with spa-

tial axes aligned with the axes of symmetry. Then the minima of WT at T = T, are the

orbits {R}, {RA }, (RA 2}, and (RA3} where R ranges over S0(3) and

1 + 0 0 0 1j 0 0)
A 1 0 1- a A2  0 1 +- 0 A 3  1 - 8 0

0 0 - 0 -J 0 1+

(2.3)

are the three symmetry-related transformation strains. According to [4], "q = .026 and

8 = .013 for InTl.

The main quantities one can measure are the transformation strains and the linear

elastic moduli of each phase. These determine the locations of the relative mimima of WT

and its behavior near those minima. One might also impose the condition that W(F) -0

as det F - 0 , but basically the form of WT is open when F is far from a natural state. One

approach is to. use a simple polynomial function for WT , see e.g. [8,13]. However, we

prefer to view each phase as having "its own" energy function, with WT being the minimum

of the lot:

W(F) = min{W.(F) , j = 0, 1,2,3}. (2.4)

Here WTO corresponds to austenite, and W'. ,i = 1,2,3, to martensite. At T = Tc, W is

minimized at the orbit of the identity and W'- at that of A3. Since the martensite phases are

symmetry-related, their energies satisfy

WJ(F) - WJ(FRi 2 ) , W'(F) = W4.(FR13 ) (2.5)

for some rotations R 2 and R 13 in the symmetry group of the cube but not in that of the
tetragon. It follows from (2.5) that Rf. A2 R12 = A1 = Rr3 A3 R13 .

By frame indifference, each of these energies should depend only on (FrF)112 . It is a

natural approximation to assume that they are quadratic functions of (FrF) 1 2. If we sup-

pose for simplicity that the stress-free strains and elastic moduli are independent of T, this
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leads to

W (F) - < cto[(FTF)1 2 - I] , (FTF) 1 12 - I> + ¢D(T)

for the austenite, and

W(F) = <czi((FTF)1 2 - A], (FTF)112 - Ai > + (Dm(T)

for the martensite. Here (Da(T) and 'Zm(T) are the energies of the stress-free states as a
function of temperature; otj(j = 0,..,3) is a symmetric linear map acting on symmetric ten-

sors; and <A,B > = Tr(AB) is the standard inner product of symmetric tensors. We shall

see presently that otj is precisely the Hooke's law of the jth phase. The symmetry relations
(2.5) imply that oX2 and C4 arise from at, through the action of R12 and R 13 respectively,

acting in the usual way on symmetric tensors; for example,

< (X1 RfAR12 , R.R 12 > = < L29, >

for every symmetric tensor 4.

Now let us linearize WT. This is done by taking

F = I + ef ,A = I + .ai,

0Dm(T) - e24,(T) , 'Da(T) = e24,ar),

and expanding to principal order in e. Since (FTF)112 = I + !-(f + fT) + 0(e 2 ), one
2

easily obtains

T < CO ( 2 >+ 16a(T)} + O(e)

______e f+ r f +fT -a>+ .()+ 0(e3).T(F= t f. ), 2 -a,> + ,

Writing k = L(f + fl) for the linear strain tensor, we see that the linearization of (2.4) is

.- m {WJs(g) j -0,1.2,3 (2.6)

with

-oWT(4) - <cK9-9> + 4)a(T)
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Tir( ) = < xi(t - ai), g - a, > + '),n(T), i = 1,2,3.

Thus the graph of the linearized energy WT- is the minimum of a family of parabololds,

each having its vertex at a different linear strain.

The preceding argument is easily extended to allow the transformation strains and

Hooke's law to depend on temperature, and a similar analysis can clearly be done for other

types of phase transitions. Notice that the linearization process requires Ai - I as well as

F - I to be small; thus it is only reasonable to use a linearized theory when the lattice

parameters of the phases are close to one another.

The linearization just performed is of course only formal. It is not at all clear that the

original elastic energy (2.1) behaves like its linearized analogue (2.6). However, the

known results are indicative of a very strong connection. For example, it is conjectured in

the nonlinear context that if a Young-measure limit of gradients is supported on two wells,

then those wells must be rank-one related (30]. We shall prove a very similar result for

the linearized setting in Section 4 (see Proposition 4.4).

3. Relaxation of multiple-well energy fumctions

This section explains the idea of relaxation in the context of linear elasticity; the cen-

tral notion is the quasiconvexification QW associated to an energy density W. For ener-

gies of the form W = min {W', . . . , W"} we introduce the related notion of the quasicon-

vexification at fixed volume fractions, Q eW.

To explain why relaxation is of interest, consider a system of two linearly elastic

phases with Hooke's laws ti and stress-free strains ai , i = 1,2:

WT(g) = min{WJ-(9), Wi,(g)

W'-()= <ai(k - a1) , 9 - a1 > + *1(T). (3.1)

Here g is the linear elastic strain, T is temperature, and (O1 (T) is the minimum energy of

the ith phase at temperature T. We assume that the phases exchange stability at T = T>,

say 1  < 402 for T < T, and ibl > (02 for T > T,.

Suppose that such a system is held in a variable temperature field T = T(x), with no

body loads or surface tractions. The elastic energy is then

286



E[u] - fn Wr(,) (e(u))dx, (3.2)

with e(u) - -(Vu + Vut). At first glance the minimization of E might seem trivial:

phase I is preferred for T < T. and phase 2 for T > T., so it is tempting to look for a

solution of the form

e(u) = al T < T
(a2 T > Tc"

This does not work, however: for such a deformation to exist, a1 - a 2 must here the form

n & m + m ® n, and the surface {T T } must consist of hyperplanes normal to either n

or m. A second idea would be to consider the optimality conditions for (3.2); but this, too,

is ill-conceived, since it is based on the assumption that a solution exists. In fact, it is not

clear that the minimum of (3.2) is achieved; rather, it is possible for a minimizing sequence

to develop oscillatory spatial gradients. Physically, this arises because a fine-scale mixture

of both phases may lead to a lower energy than either pure phase. (We view the set where

Wj(e(u)) < Wj(e(u)) as being occupied by phase 1, and its complement by phase 2.)

Indeed, E[u] is most interesting when its minimum is ant achieved: that is the case when

energy minimization requires a mixture of the two phases. The minimizing sequences for

E[u] determine the preferred microstructures for phase mixtures.

The technique of relaxation is, in essence, a method for constructing minimizing

sequences of nonconvex variational problems such as (3.2). The relaxed problem has a

similar form, with WT replaced by its "quasiconvexification" QWT:

r W(x) (e(u))dx. (3.3)

Though the relaxed problem need not be convex, its minimum is achieved; indeed, its

minimizers are precisely the weak limits of minimizing sequences of the original problem.

The relaxed integrand is defined, for each T, by

QWT(e) - inf 1lu ' U-[ f W7-(e(v))dx. (3.4)

We need not specify the domain U, since the value of the infimum is the same for all

domains with reasonably regular boundaries (3,9,10].
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The introduction of the relaxed energy is physically quite natural. We think of W7 as

the "microscopic" energy function, and view QWT as an associated "macroscopic" energy: it

gives, in essence, the minimum average energy when the average strain is k. Given

knowledge of the minimizing sequences for (3.4) and a minimizer of (3.3), one easily con-

structs a minimizing sequence for the original energy E: this is done, roughly speaking, by

superimposing the oscillations prescribed by (3.4) upon the slowly-varying strain of the

solution to (3.3). In particular, the preferred phase microstructures associated to a given

strain 4 at temperature T are determined by minimizing sequences for (3.4). We refer to

Section 2 of [40] for an expository discussion of the basic facts about relaxation, and to

[1,3,9,10] for more comprehensive treatments including proofs. (These references discuss
1

functions of Vu rather than functions of e(u) - -L(Vu + Vut). But they require no coer-

civity hypotheses, so the results apply & pzaizi in the context of linear elasticity.)

The definition of QWT, (3.4), applies generally, whatever the form of the energy WT.

From Section 2, however, we see that for modelling phase transitions it is natural to con-

sider energies of the special form

W(M = min{W(e), .... ,WN(w). (3.5)

(We suppress the parameter T for simplicity of notation; the particular form of W' will not

matter for what follows). For such W, we now define the quasiconvexification with fixed

volume fractions, Q@W.

Let V denote the set of all possible volume fractions:

V - {6 - (01, ON): 01 >- O,, , fi =11.

Fixing a region U of R3 , we say a partition U = UjU U UN has volume fraction 0 if

IUj I = I uI0j, 1 S j S N. It is convenient to represent such a partition by its "marker

functions"

IiW xEUj
X(x) -{ otherwise;

note that XiXj = 8 fj, ,Xj = I, and

_ j f X. 1 l j SN.
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For 0 E V, we set

QqW(k) - in i (3.6)

where {Xj}IY- 1 ranges over marker functions associated to partitions of U with volume

fraction 0. As was the case for (3.4), we need not specify the domain U: the value of the

infimum is independent of U. (The proof is parallel to that for QW, see for example Pro-

position 2.3 of [3].)

The following proposition asserts that if Q e W is known for every 0 E V, then the deter-

mination of QW requires only a finite-dimensional optimization.

Proposition 3.1:

QW() = inIfQOW(9).

Proof: Clearly

in Q*W(9) % nf. xjWj(e(v)), (3.7)

where {xj} now range over the marker functions associated to all partitions, regardless of

volume fraction. The right side of (3.7) is not altered if we intercharge the order of the

two minimizations. But for fixed v,

1 f1Xj)I U U l U

with W given by (3.5): the optimal partition has

Xj - 1 where WJ(e(v)) - min ,W'(e(v))}.

Thus

41f - in T fW(e(v)) - QW().OE -aU t- lu l

We require one more lemma concerning the general notion of quasiconvexification.

The integrands QW and Q@W were defined above using the Dirichlet boundary condition

v I au x on an arbitrary domain U (see (3.4) and (3.6)). However there is an
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equivalent characterization involving the averaging of periodic functions. This will be con-

venient in Section 4, where we will use Fourier analysis to calculate QeW for certain two-

well energies. We choose C - [0,21r] the unit cell in R3;f F denotes the average

value of a C-periodic function f.

Lemma 3.2: The quaslconvexificaton has the alternate characterization

QW() - inf fW(j + e(4,))dx, (3.8)+ par

In which -0 ranges over all C- periodic maps from R3 to R3 . Similarly,

QoW(j) inf in f ,xjWJ(Q + e(,O))dx, (3.9)

fX, - 9 O

where (.Xj} range over periodic marker fbnctions associated with partitions of C, and (0

ranges over C- periodic maps from R3 to R3 .

Proof (sketch): We assume that W is continuous with LP growth. It is easy to see that

(3.8) 5 (3.4): we may take U = Cin (3.4) and write v - 4 + 4 with ')Iac - 0, then

extend 4) periodicially to get an admissible test field for (3.8). Conversely, if 46 is any

periodic test field, then 43N(X) = -L4(Nx) is again periodic for any integer N, and it gives
N

the same value as 0 when substituted into (3.8). If N is large then we can modify 4)N on a

thin transition layer to make it vanish at 8C, while leaving its energy (the right side of

(3.8)) virtually unchanged; therefore' (3.4) S (3.8). The argument that (3.6) = (3.9) is

essentially the same.

A complete proof of Lemma 3.2 will be found in (36]. The fact that periodic test

fields are sufficient to test for quasiconvexity was previously noted in (3].
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4. Calculation of Q@ W for two linear phases with the same elastic moduli.

In this section we present the calculation of Q *W, when W is the energy associated to

a system of two linear phases with distinct stress-free strains al,a2 but the same tensor of

elastic moduli i:

W(g) = min(W 1(g),W 2 (g)}

W2(g) = < (k- a), J - ai> -- ,.(4.1)

Our method is basically the same as used by Khachaturyan in [31,32]; however we

emphasize the role of certain projection operators rather than that of the Green's function

associated to c.

We begin with some notation. Let S be the 6-dimensional space of symmetric tensors.

For any k ER 3 , let

V(k) - {k&v + v &k:v E R 3}, (4.2)

which is a 3-dimensional subspace of S. For any subspace V of S we write 7rvt for the

orthogonal projection of 4 onto V.

Theorem 4.1: Let W be given by (4.1), and let 0 = (91,02) E V. Then

QW(9) = 81W1(4) + 02W2 (g) - 0102g (4.3)

with

g = max &J'rMv(,) 1 '/2 (al - a2) 12. (4.4)
jul M 1

Whenever n Is extremal for (4.3), a laminar microstructure with n' as the layer normal

gives an optimal phase arrangement.

Proof: In view of Lemma 3.2, we must minimize

f [XlWl(g + e((O)) + X2W 2(g + e(,O))]dX (4.5)

over periodic marker functions X1,X2 - 1 - X1 and over periodic deformation fields 4*.

Elementary manipulation using (4.1) transforms the integrand of (4.5) into

X1W 1(0) + X2W 2 (4) + <ae(,6),e(4) >
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+ 2 < 4,ae(4i) > - 2 < Xla, + X2a2,t e(40) >

Since fXi - O the integrals of the first two terms are determined:

f X1WI(9) + X2 W2(g) - 91W1(j) + 02 W2(g).

Since io is periodic and xl + X2 = 1 we can integrate by parts in the last two terms to get

2 f < J,Qe(,) > - < Xiai + X2a2,(Xe(*) > = -2f X1 < al - a2,cte(O) >

Thus to prove (4.3) we must establish that

inf inf f < ce(4)),e(4)) > - 2 < Xj(aj - a2),me(*o) > - -6109, (4.6)

f XI - of

with g defined by (4.4).

Fixing X, we shall compute the minimum over 4) in (4.6) using Fourier analysis. Since

our functions are periodic with period 21r in each variable, their Fourier transforms are

supported on the lattice of integers Z3 , e.g.

x5(x) = 4 ji(k)e 'z.
kEZ 3

The integral in (4.6) can be rewritten as

f cl112e(O) 12 - 2 X1 < cx" 2 (al - a2) , al/2e(O) >

where ,ti/2 is the square root of cx, itself a positive definite symmetric map on the space S

of symmetric tensors. By Plancherel's formula, this is equal to

lt/2 e(4)12 - 2 Re < ct'/2(aI - a2) '1, M1/2 e( ) > , (4.7)

kEZ 3

in which 4 j 1 (k), etc., and <.,. > is the symmetric inner product on complex

matrices. Choosing 4) to minimize (4.6) is the same as choosing , to minimize (4.7),

which may be done separately at each k. Frequency 0 is special: it contributes nothing to

(4.7), since e(o)(0) - 0 for any periodic (0. When k :,0, the optimal value of

- xl2e(;)(k) is obtained by minimizing

1,112 - 2 Re < ~ ,(k) , a1/2(a 1 - a2 ) > (4.8)
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over the space of all possible values of Ot1l 2e(q)(k), which is the complexification of

91/2 V(k). The necessary linear algebra is presented as Lemma 4.2 below; the optimal 'q

turns out to be

- j(k) lrcy2V(k) C 1 12 (al - a2),

and substitution into (4.8) gives the value

- lij(k) 12 1I V(k) 1'zl2 (al - a2) 12.

Thus for given Xl,

bf(4.5) 1- Ij(k) 121 l-.2V(k) Q1/ 2(al - a2) [2.
10 k*O0

Next we must minimize this expression over X1. Since the subspace V(k) depends

only on k1Ik I, it is immediate from (4.4) that

IN./2V(k) C9"/ 2 (al - a2) [2 S g,

with equality if and only if n k1[kI is extremal for (4.4). Since f xi = 01, another

application of Plancherel's formula gives

1Z Ii(k)[2 1 2f(x1 - 01)2 = 9182.
k*O0

It follows that

- il(k) 12 1 T12V(k) X1/2(a1 - a2) 12 -- -0 1 02g, (4.9)

k*O

with equality if k/I1k I is extremal for (4.4) whenever j(k) 0 0.

To complete the proof of (4.6), we must show that equality can be approached in

(4.9). To this end, note that a layered geometry has its Fourier transform concentrated on

the line parallel to the layer normal; in other words, if Xl(x) = f(x-k) with f periodic, then

xi is supported on the line through k. For k E Z 3 this X, is C-periodic provided that f has

period 2w, and f X,- 01 provided that ff- 81. As k1 [k. approaches an extremal for

(4.4), this layered phase arrangement establishes the optimality of the lower bound (4.9),

completing the proof.
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In minimizing (4.8), we made use of the following lemma from linear algebra:

Lemma 4.2. Let V be a subspace of a finite dimensional real vector space S, and let

VC C Sc be their complexifications. For any 4 E S and any complex number c,
mi Iii 12 - 2Re < c-q,e > - Ic 121vVl 12, (4.10)

q(Vc

The extremal q being q - - Frv.

Proof: The function f(i) - 112 - 2 Re <c-q. > is convex, and

a11j -ii

The proposed extremal q* belongs to VC , and the directional derivative of f at q* vanishes

in directions E Vc:

O~f(') " aft l + af 'l-
Dia'qj a~wj'q

= < c(v - 9),. > + < F(wv4 - 4),'1 >

= <rv- 9,Re(ci) > - 0

since Re(cl) EV. It follows that the minimum of f on Vc is achieved at q', and substitu-

tion yields (4.10).

H

Theorem 4.1 gives a formula for QeW in terms of a single real constant g, which must

be determined through an optimization over S2 (see (4.4)). If a1 - a2 is dyadic, i.e. if

al-a2=p 9q + q9p (4.11)

for some p,q E R3 , then clearly g - IQ"12(al - a 2) 12, and the extremals for (4.3) are

n = -t p/[p I and n - ± q/ Iq I. This is the case when the two phases can coexist in their

stress-free states, separated by hyperplanes orthogonal to p or q. If (4.11) does not hold

then g < jaz"2 (a t - a2) 12, and the optimization (4.4) is more subtle. It has been
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examined, and the extremal choices of n have been identified, under various symmetry

hypotheses on at [26,41,48,55,60,61]; the most complete such study is [41].

We have observed that there is always an extremal geometry which is layered. The

extremal geometry is generally not unique, however. The proof of Theorem 4.1 shows

that a geometry is optimalexactly if 41 is concentrated on the extremals of (4.4). Similarly,

a sequence of microstructures is asymptotically optimal if the associated marker functions

X4 , X4 = 1 - X4 "have their Fourier transforms concentrated at the extremals of (4.4),

asymptotically as j -=. " This is best made precise by using the notion of an H-measure,

recently introduced and explored in a much more general setting by Tartar [58] and Gerard

[24]. In our periodic setting, the H-measure associated to a periodic marker function X1 is

the measure IL on S2 defined by

IL I(k) 12 k1Iki, (4.12)

where k ranges over Z3 and B, is the Dirac measure concentrated at n. With this terminol-

ogy, we can assert:

Proposition 4.3. Consider a sequence of microstructures corresponding to marker fumc-

tions ; x, X = 1 - X4,j = 1,2,.., and let &j be the H-measure associated to x4 as in

(4.12). Then the sequence {X4} is asymptotically optimal for (4.5) if and only if every

weak limit of the sequence {pj} is supported on the set of extremals for (4.4).

The proof is an easy extension of that given for Theorem 4. 1, so it is omitted.

Remark 4.4. In the homogenization literature, many composites with extremal characteris-

tics have been found in the class of "sequentially laminated" microstructures, see e.g.

[2,23,38,46,49,50,57]. The relevance of such microstructures to coherent phase mixtures

was noted long ago by Roitburd, who called them "polydomain structures of second or

higher order" (51-54]. Using this construction, one can construct a large variety of optimal

phase microgeometries if (4.4) has at least two linearly independent extremals. See [36]

for details.

The relaxation of (4.1) is entirely determined by Proposition 3.1 and Theorem 4.1.

We refer to [36] for a detailed discussion of the properties of QW. As an application of
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Theorem 4.1, however, let us show here that QW still has double-well structure if the

stress-free strains al and a2 are incompatible.

Proposition 4.1. Let W be given by (4.1), and assume that a, - a2 does not have the

form pDq + q~p. Then QW(a1 ) = QW(a 2 ) - 0 and

QW(e) > 0 for , aj,a2. (4.13)

Proof: As a first step, we claim that the formula for Q8 W can be expressed as

Q6 W() t) i/2[ -I(1)] j2 + e1 2 h (4.14)

with

3(8) - Ojai + 82a2

h - aI"2 (al - a 2) 12 - g.

Indeed, the equivalence of (4.3) and (4.14) is a matter of elementary manipulation, making

use of the identity

Jct/2(k - ;i) j2 = 81 I~tJ2(g - al) 12 + 02 IC&112(g - a2) 12 - e912 kaz12(al - a2) 12.

Notice that h > 0 as a consequence of our hypothesis on a j - a 2.

Next, we apply Proposition 3.1 to obtain that

QW(e) - min{ k1,2[g - i(o)] 12 + O192h}. (4.15)

The minimum in (4.15) is achieved, since 9 = (eie2) varies over the compact set

{01 2t , 02 0, 01 + 02 - 11.

Now the assertions of the theorem follow easily. It is obvious that QW z 0. If, for

some g, QW(e) 0, then the optimal 9 for (4.15) would give

I L2[(4- a(e)] 1 2 + 01 02h = 0.

Both terms are non negative, so they must both vanish. We conclude that = i(8) and

0102 - 0. Therefore either 0 = (1,0), = al, or else 0 - (0,1), = a2. Thus QW is

strictly positive except at a, and a2.
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S. Toward the calculation of Q 9W for a system of many phases, all with the same elastic

moduli.

It is natural to ask whether the method of Section 4 might be applied to an energy

function describing more than two phases. The answer at present is no. One can certainly

begin the same way, but it is not clear how to minimize the resulting expression in Fourier

space over the class of all microstructures. The calculation given here is equivalent to that

of Khachaturyan and Shatalov in [32,331. We present it to clarify the relation between the

linear and nonlinear variational theories, and to focus attention on this as a significant open

problem.

We consider a system of N phases, with stress-free strains (aO}f- i and the same elas-

tic law L:

W(9) = min{W 1(9), . W. ,wN()}

WI(j)-<c(g- a), 9- a> 1<i SN. (5.1)

Our starting point is once again Lemma 3.2: for any vector 0 = (9i, ... ,eN) of volume frac-

tions,

N
QOW() - inff Z xjWJ(t + e(*)) dr. (5.2)

Here ib ranges over periodic deformations, and {Xj} are the periodic marker functions asso-

ciated to any subdivision of the unit cell with the specified volume fractions. Expanding

the integrand of (5.2) gives

Xj WJ(J) + , 2Xj < 4-aj, ae(4) > + < >e(),e(4b)>,

since x, - 1. The average of this expression is

Z, 9j WJ(e) + < t(),e() > - 2, Xj < aj , cte(,) > 1,

since the part of the middle term involving e integrates by parts to zero. Thus the essential

problem in calculating Q W is the evaluation of

inf inff[<ze(,O), e(,O) > - 27 Xj< ai, ae(dO) > ]dx. (5.3)
f Xi = e1j # -

As before, we may evaluate the minimum over 4) by Fourier analysis: fixing {Xj}, we seek
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i ff Ic1"2e(S) 12 - 2<a" 2/2 Xjaj, CI/2e(4) > dx. (5.4)

Taking the Fourier transform then minimizing at each frequency as in (4.6)-(4.7) shows

that (5.4) equals

- Z IT.mv(k) ( 2 j ji(k) a) 12 (5.5)
k 00

This can be written in terms of H-measures as follows: for 1 S i, j S N, let = (Piq) be

the Hermitian matrix valued measure on S2 with components
= j(k) ^(k) 8 Ik

k¢0O

Then (5.5) can be rearranged to give

N
- , f < IrjaV(k) 11 2ai, 1TLnV(k) oX1/2aj > dpj. (5.6)
i,j - 1 S2

Thus calculating Q@W is equivalent to minimizing (5.5) over all marker functions {Xj} with

the specified volume fractions; alternatively, it is equivalent to minimizing a certain linear

functional over the class of all H-measures associated to such marker functions. For the

case of two phases (N-2) this is precisely what we did in Section 4; for three or more

phases we are presently unable to give a formula (or a finite-dimensional optimization) for

(5.5)-(5.6).

There is one special case when the calculation can be completed: that is when L is iso-

tropic and each ay is a multiple of the identity, say aj = XjI. It is well-known that under

these circumstances the elastic energy is independent of phase geometry. To recover this

result, we observe that (5.5) becomes

- Z X_, ., j~../(k) ' (k) I l,."v(k) (,z/21 ) 12. (5.7)

k 0 i,j

Since (x is isotropic ir.vzv()(cL&/2I) cannot depend on k, and

i >j(k) ^j(k) M f X,(X, - 12,
k ,00 i,J

which obviously depends only on 0 = (0 1, . . . , @,V). Thus (5.5) depends only on 0, not

on the phase geometry.

298



Even when Q9W cannot be computed explicitly, it still makes sense to ask where

Q9W - 0. The point is that Q@W(g) - 0 for all 4 (since W(g) : 0); so one can establish

that Q*W(ke) = 0 for some to by displaying a microstructure which achieves this. In

other words, to show that QeW( e) - 0 it suffices to preSribe test fields 4 and {xj} for

use in (5.2) which have jXj WJ(99 + e(O)) = 0. The class of sequentially laminated

microstructures provides a powerful tool for such constructions; it has been used in [32,33]

(in the linearized setting) and in [4,5] (in the geometrically nonlinear context) to show that

QqW(g*) = 0 for certain e, when W models a cubic-tetragonal phase transition such as

that discussed in Section 2.

An intriguing open question is whether the extremum of (5.7) can always be found

within the class of sequentially layered microstructures. We hope that the answer is affir-

mative. Such a result seems, however, beyond the power of the existing mathematical

methods.
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Relation Between Microscopic and Macroscopic Properties in Crystals
Undergoing Phase Transformation*

R. D. James
Department of Aerospace Engineering and Mechanics

University of Minnesota
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Army Conference on Applied Mathematics and Computing
1989

Abstract. When cooled below a certain critical temperature Oc, many crystals undergo a
structural phase transformation marked by the appearance of microstructure. In the simplest case,
this microstructure consists of fine parallel bands, ranging in thickness from a few atomic spacings
in NiMn (termed microtwinning by Baele, van Tendeloo and Amelinckx [2]), to a few microns in
InTl. In some of these materials the application of limited displacements to the boundary of the
crystal causes a rearrangement of the microstructure. In this talk I describe recent attempts to
understand why such microstructures form and how imposed deformations are accommodated by
rearrangements of the microstructure. The ideas suggest a new approach to micromagnetics
described in Section 5.

1. Introduction

The great usefulness of the classical field theories of elasticity, hydrodynamics,
thermodynamics and electromagnetism arises from their ability to accurately predict, from a
knowledge only of boundary and initial conditions and a few material parameters, the complex
fields of deformation, stress, temperature and electromagnetic fields in a deforming material. On
the whole, these theories have failed to make similar predictions about materials containing
domains or defects. Alternatively, the historical practice has been to make rather restrictive
assumptions about the geometry and arrangement of defects and then to calculate something about
them using linear theory. This has led to a hodgepodge of special theories of defects having the
inherent limitation that they are unable to deal with any situation not envisaged by the severe
geometric restrictions assumed at the outset. In particular, they are generally unable to explore
conditions that might ive rise to new and unusual microstructures important to the development of
advanced materials. They are also extremely limited in coping with dynamic situations.

The point of view adopted in the research described here is that the domain structure itself
should be predicted from some equations without a priori geometric restrictions. This point of
view is not new and was expressed nicely by L.M. Brown [8, 9] in his books on the domain
structure of magnetic materials; he termed this approach micromagnerics. In the magnetic case, the
competing theory involving geometric (and other) restrictions is called domain theory. Similarly,
in the area of martensitic transformations the crystallographic theory of martensire has served the
subject well, but primarily as a way to understand only a rather special microstructure among many
that are actually observed. A new theory, in some ways analogous to micromagnetics, developed
by J.M. Ball and the author ([3, 4], see also Chipot and Kinderlehrer [7]), is designed to avoid the
geometric restrictions adopted by the crystallographic theory and to offer possibilities for prediction

Sponsored by the U.S. Army Research Office. Section 5 of this paper was presented at the "Elasticity Retreat",
South Pomfret, Vermont, August 23, 1989.
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of complex microstructures. In this talk I describe recent predictions of this theory and a plan for
an experimental test of the theory.

These recent predictions all concern unloaded crystals. In a companion paper in this
volume, R. Kohn (13] discusses recent results on the microstructure of loaded crystals and relates
these results to the metallurgical literature.

I return to micromagnetics in Section 5. Despite the attractiveness of Brown's philosophy,
his calculations met with limited success. The reason for this has been explored recently by D.
Kinderlehrer and the author [10] and seems to arise from the fact that the free energy he adopts
does not have a minimum in the conventional sense.

2. Austenite/Martensite Interface

The crystallographic theory of martensite, due to Wechsler, Lieberman and Read [19] and
Bowles and Mackenzie [6], is a theory for the description of a special microstructure known as the
austenite/martensite interface. This is a microstructure pictured in Figure 1 consisting of fine bands
of martensite (twins) on one side of the interface and homogeneous austenite on the other side of
the interface. It predicts the normal to the interface (the so-called habit plane), the proportion of
volume occupied by one twin relative to the other, the relative orientation of the twinned martensite
lattice relative to the austenite lattice, and the macroscopic deformation of the twinned martensite
relative to the austenite. By "macroscopic deformation" is meant the homogeneous deformation
which takes the austenite lattice to the twinned martensite lattice, neglecting the small zig-zags
produced by the twins themselves. Figure I shows a picture of the atoms in a typical
austenite/martensite interface. This picture was generated using lattice parameters appropriate to
the alloy Ni6 2AI38 , and only Ni atoms are shown. Recent high resolution electron micrographs of
Schryvers [16] show many of the features of Figure 1 including accurate atomic periodicity of the
twins.

The crystallographic theory of martensite is based on the following assumptions. A certain
twin system is presumed given; this means that orthogonal vectors a and n are given where
l+a®n is the shear that maps the transformed lattice into its twin. It is recognized that the
martensite (to the left of the interface in Figure 1) is finely twinned so that its macroscopic
deformation is in fact

P%:=1+Xa&n,

where e (0, 1) represents the volume fraction of one variant of martensite relative to its twin. A
positive-definite symmetric matrix U is given which represents the pure stretch, or Bain strain,
associated with the transformation from austenite to untwinned martensite. The average
deformation of the twinned martensite body is assumed to have the form E=1+bDm, m being the
normal to the austenite/martensite interface. The basic equation of the crystallographic theory is
then written [see, e.g., 191

E = RUPx, (2.1)

or, using the definitions given above,

1 + b ® m = RU (I+ka®n). (2.2)
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for O>Oc O(ci(0)1, 8) < O(F, 8) V F
(2.3)

for 0:50c (Ui(0), 8) : (F, 0) V F

where Ui(O):--TI(O)I + (Tl2(0)-ll(0))eiei (no sum).

Thus 0 has "potential wells" and, after accounting for the condition of frame-indifference

(O(RF, 0)=O(F, 0) V F and V Re SO(3)) we are led to adopt the terminology,

CO(0)SO(3) .................................................. Austenite well

SO(3)UI(0) u SO(3)U 2 (0) u SO(3)U 3() ........... Martensite wells

Microstructures in stable equilibrium at the temperature 8 are minimizers y(x) of the total energy

EO[y] = J 4(Dy(x), 8)dx. (2.4)

This formulation does not involve the geometric restrictions mentioned in the Introduction.

The energy E0['] fails the condition of weak lower semicontinuity in WI,'*(Q, j 3). The

effect of this is that there are minimizing sequences y(k) *- y in WI,* with

EO[y] > inf Ee [y(k)] .

k

These sequences involve finer and finer oscillations which model the phenomenon of
microtwinning as pictured in Figure 1.

How does the austenite/martensite interface emerge as a minimizing sequence? There is a
huge variety of minimizing sequences to the problem, just as there is a huge variety of
microstructures observed in transformed crystals. To discuss the austenite/martensite interface we
gather from Figure 1 that essentially three deformation gradients participate in this microstructure.
As a way of quantifying this restriction, the concept of a Young measure is useful. The basic

theorem on Young measures states that to every sequence y(k) * 'y(in W 1,* ) we can assign a

family of probability measures vx, xc C, such that for every continuous function f:M 3x3-- [R,

f(Dy(k)) -* M 3'(G)dvx(G) .

A version of this theorem which is ideally suited to these problems of microstructure is
given by Ball [5]. An easy consequence of this theorem is that (with mild growth assumptions on

0) for any minimizing sequence of E0['], the support of the Young measure lies on the potential

wells of 0(-, 0). This support may be thought of as the set of deformation gradients that
"participate" in the microstructure.

308



Relation Between Microscopic and Macroscopic Properties ... R. D. James

Hence, the austenite-martensite interface should be modeled by a minimizing sequence y(k)
A

whose Young measure Vx is supported on three matrices F +, F', I where F+-F-=a&n for some

ae p3, ne p 3, and F + and F- belong to the martensite wells (it is easily calculated that the
martensite wells have such rank-1 connections). In the spirit of "no geometric restrictions," we
prefer to say nothing about how the sets on which Dyk takes on (approximately) the values 1, F
and F- are arranged. Under the condition only that vx is supported on (1, F +, F-), James and

Kinderlehrer [11] prove that there is k.- (0, 1) and vectors b and m such that

XF++(I-%)F - = 1+ b®m

But (2.5) is precisely the equation of the crystallographic theory of martensite when we recognize
that

A

XF++(l-X)F- = F- + Xa®n
= RUi(1+Xa~n)

where i=l, 2 or 3 and a=(RUi)-la. It is found that this vector a is exactly the one used as input to
the crystallographic theory. Further information on the geometry of this microstructure (still
obtained from the same assumption) is given by James and Kinderlehrer [11], and this information
is in complete agreement with Figure 1 when the calculation is specialized to the measured lattice
parameters T I(0c) and T12(0c) appropriate to Ni62A138.

Note that in the analysis above, it was assumed that two of the matrices (F+ and F-) differ
by a rank-I matrix. It is still not know whether there exists a microstructure for three matrices with
no rank-1 connections, but an example of James and Kohn [12] shows that there exist
microstructures with Young measure supported on four matrices having no rank- I connections.

3. The Two-Well Problem

From the point of view of "no geometric restrictions," the crystallographic theory of
martensite provides only a weak test of theory. With this in mind Ball and James [4] consider the
problem of what are all possible macroscopic deformations that can be realized by microstructures
involving just two variants. Physically, these deformations should be associated with flat regions
on stress-strain curves, common in materials that undergo reversible martensitic transformations
and thought to be associated with rearrangements of the variants. Shape-memory materials are
interesting materials which easily rearrange their variants in response to imposed distortions, and it
is hoped that such calculations may reveal the reason for this. However, presently only two
variants have been considered, while most of the good shape-memory materials have six or twelve
variants.

The simplest version of the problem is as follows. The two variants are defined by the set
of matrices

1. = SO(3)U I u SO(3)U 2
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where UIUT>0 and U2=UT>0 are distinct 3x3 matrices. We assume that detU2=detUI and that

there is an Re SO(3) such that

RU 2 --U1 = agn (3.2)

These assumptions are satisfied in the typical case of two variants of the less symmetric phase (in
A

which case there is an R belonging to the point group of the more symmetric phase such that
A A
RU 2 RT=U1).

To be definite, we assume that

U1 -- jil + ( 2-Tl)e®el,

U2 --- 11 + (112-- 1l)e2®e2, (3.3)

as in the cubic-to-tetragonal base, although the analysis of (4] operates under the more general
assumptions listed above. Consider the problem

inf f O(Dy(x))dx, (3.4)

where 0 has strict potential-well minima on "1. Under mild restriction on 0, any minimizing

sequence y(k) *-y in Wl,**(2 R3) has the property that its Young measure vX is supported on

*1L. Some of these seque" -e will also satisfy the linear boundary conditions*

y(k)(x) = Fx, &E . (3.5)

The two-well problem is the problem of finding all matrices F such that suppvx C 1 a.e.. That is,
what are A possible macroscopic deformations F that can be achieved by mixtures of the two
variants SO(3)U 1 and SO(3)U 2 ?

The answer to this question is as follows. Let

A 1 -1 -2 -2i~
el = (TIe2 + T12 el)/(11 + 1 1/2 ,
A 2 2 36e3 = (TI le2 - r12el) / (T1 + Tj )1/2, (3.6)

A A A
e2 = e3 x el

= 1 TI2_ 2 )(71 2 2)-1/2 (1"n-2 +T- 1

Then, F can be achieved by a mixture of two variants if and only if

The analysis of [4] is not restricted to linear boundary conditions.
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(+SA 18A +A OA

FTF = U1 (1 + 8e1@e3) C(1 + 5e3®el) U1 , (3.7)

where C-CT satisfies

detC= 1,A A

Ce2 e2, (3.8)

A A A A
and Cll=el-CeI and C33=e3-Ce3 lie in the hatched region shown in Figure 2.

Cj

0333 11

1++2

1 1+8

Figure 2. Deformations achievable by mixing two variants.

The proof of this result consists of two parts. The first part makes use of the weakly
continuous functions, those functions f having the property that

F(Dy(k)) -*" -f('Dy) (3.9)

whenever y(k) *y in WI,*(Q2, 1R3). It is known that the weakly continuous functions for

sequences y(k).. IR 3 are

G, cofG, detG . (3.10)

Here, cofG denotes the matrix of cofactors of G. The weakly continuous functions give
restrictions on a Young measure with support on 'T of the form

311



Relation Between Microscopic and Macroscopic Properties ... R. D. James

Dy = fGdvx(G),

cofDy = 4cofGdvx(G), (3.11)

detDy = JdetGdvx(G),

which in turn lead to restrictions on the Young measure like

co{JfGdvx(G)] = JcofGdvx(G). (3.12)

The first part of the proof exploits (3.12) and the analogous restriction for det to yield the result
summarized by Figure 2.

The second half of the proof consists of showing that each point in the domain of Figure 2
is achievable by some microstructure. This follows from an explicit calculation of a family of
sequences. The construction proceeds by selecting suitable matrices A, B, C from ', with the
properties

rank (A-B) = I,
rank [%.A + (l-X~)B -C] =1, (3.13)

for some r.e (0, 1). The conditions (3.13) are sufficient that there be a sequence y(k), which
essentially describes the "layers within layers" microstructure shown in Figure 3a and satisfies the
boundary conditions (3.5).

There is, however, great nonuniqueness in this calculation, and, for example, the
microstructures shown in Figure 3b also suffice'. In Figure 3 we have also shown typical
macroscopic deformations associated with these microstructures. Of course, the angles between
the layer groups and the relative volume fractions change with F.

4. Micromagnetics

Ferromagnetic materials often exhibit fine microstructures consisting of magnetic domains.
Furthermore, it is of interest in such materials to have methods of relating microscopic to
macroscopic properties, both in the case of atomic/ microstructural and
microstructural/macroscopic properties. Since Maxwell's equations are linear, there is no difficulty
averaging solutions unless it is necessary to average nonlinear functions of the solutions, such as
the electromagnetic energy. The div-curl lemma and the method of compensated compactness
(e.g., Tartar [18]) show which nonlinear functions can be meaningfully averaged. Here, our
interest is not in nonlinear functions of the fields, but rather in the nonlinearity introduced by the

Remark due to D. Kinderlehrer.
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Figure 3. Microstructures; which suffice to achieve all possible linear boundary conditions that
can be achieved by mixing two variants compatibly.

constitutive properties of ferromagnetic materials. This nonlinearity is responsible for domain
structure.

The results of this section are from recent work of James and Ki nderlehrer [10]. These
results provide an example of the phenomenon of frustration (the only rigorous example we know
of), this being the phenomenon whereby a material has a defective ground state. Mathematically,
'dhe defects arise from the failure of weak convergence to preserve the constraint.

Usually, the total free energy of a ferromagnetic material [14] is given as a sum of
exchange energy, anisotropy energy and magnetostatic energy:

E[M]= JcIDMI2 dX+ JO(M)dx + f IDuI2 dx, (4.1)
of 2 2

where M:!Ql-*c46)S 2, and the magnetostatic potential u and M are related by

div (-Du + MypJ=O0on [R n (4.2)
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We hold the temperature constant and therefore put a(0)=1 (so IMI= 1), without loss of generality.

It is usually assumed that the anisotropy energy 0 is even and quadratic in the direction cosines of

M and that 0 exhibits crystallographic symmetry; we discuss the two cases:

1. Uniaxial O(MO)=O(-MO)<O(M) V M Mo,
2. Cubic 0(±Mi)<O(M)V M Mj

i, j=l, ... , n,
({Mi i is an orthonormal basis).

The exchange energy can be thought of as giving rise to a surface energy on domain
boundaries. The associated calculation is very similar to the calculation of the surface energy on an
interface between fluid phases using the van der Waals theory. Anzellotti, Baldo and Visitin [ 1 ]
give a modem treatment of this calculation; the correct asymptotic scaling can either be obtained
from treatments of the van der Waals theory (e.g., Sternberg [17]) or from the famous 1935 paper
of Landau and Lifshitz [14]. Typical domain patterns in large bodies reveal a huge surface area of
domain walls so we shall temporarily put c=O.

Hence, we consider the problem

MGLOI [ (M(x))dx + !,,f IDuI2 dx] (4.3)Me L-* n'2I

MI=I

subject to

div(-Du + M ".) =0, uHl(IRn, [R) . (4.4)

Does (4.3) have an attained absolute minimum? In the uniaxial case, the answer is no if _Q
is a smooth bounded domain. Intuitively, this can be seen from the following argument. To make
both the magnetostaic and anisotropy energies small, we would like to put

Du(x)= 0 a.e. xE [Rn ,

M(x) = ±M0 a.e. xe 02. (4.5)

Equation (4.5)1 shows that M should be a divergence-free field in the weak sense. We can
construct divergence-free fields M-±M on S2 by constructing columnar domains with boundaries
everywhere parallel to M0 , but these will not be divergence-free on [Rn since the boundary
condition

TMI - n =OonaQ (4.6)

is not satisfied at points where the tops of the columns meet U2. However, if we consider finer
and finer columns of equal volume (that fill 2), then the average value of M will be nearly zero on
2 and therefore will approximately satisfy (4.6). Minimizing sequence M(k) can be constructed
using exactly this idea, and for such sequences
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W k) ---o in L-(p , IRn),

U(k) 0 in L2(IRn, JR).

The weak limit of M(k) is zero which does not satisfy the constraint IMI=I. This minimizing
sequence serves to show that the value of the infimum in (4.3) is zero, so any minimizer would
have to satisfy (4.4) and (4.5); as might be anticipated from (4.6), the equations (4.4) and (4.5)
have no solution ue H1 , Me L*.

The typical microstructure of uniaxial ferromagnets (of mm size or greater) consists of fine
columnar domains parallel to the easy axis (i.e., parallel to M 0 ). A huge variety of the cross-
sectional shapes is observed.

The cubic case is quite different, as might be anticipated from the textbook picture (Figure
4a) of domains in an iron crystal whose boundaries are (100) planes. Clearly, this picture
embodies a minimizer since M minimizes both the anisotropy energy and is divergence-free on
IP3. At first, this suggests that the minimum is attained only on special domains 92 but Figure 4b

suggests otherwise. Figure 4b shows a portion of aQ and a divergence-free unit vector field M on
a. This field gets finer and finer at aQ as indicated in the figure. Note that M averages to zero as
a is approached from inside L-, and it can be shown that for such a vector field,

u(x)= 0 a.e. x e IR2 .

a

Figure 4. Minimizing domain structures for cubic ferromagnets with exchange energy
omitted.
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Hence, this vector field Me L(Q, R 2) represents an attained absolute minimum. A more refined
argument [10] based on Vitali's Covering Theorem and the domain structure of Figure 4a suffices
to prove attainment for any bounded open set Q2 with meas (aQ)=O.

Domain splitting near the boundary of cubic magnets is common, making the interpretation
of observations of domain patterns on JQ extremely difficult. However, the phenomenon of often
explained from a different perspective by an analysis of Lifshitz [15] which has origins in the
magnetostrictive contribution to energy. A discussion of this point can be found in reference [10].
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CONCURRENT SPECIFICATIONS AND THEIR
GUREVICH-HARRINGTON GAMES AND REPRESENTATION OF

PROGRAMS AS STRATEGIES
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ABSTRACr. We suggest a novel way to view concurrent (possibly perpetually executing)
programs. Non-deterministic choice is allowed. We regard program execution as a play of a game of
two players, which we call a computational game. One player (Prog, which stands for
"programmer") submits sets of instructions for another player (Comp, which stands for "computer")
to execute. A program is represented by a strategy of Prog, a program specification is represented by a
winning condition. Our approach stems from the work of Rabin, Gurevich and Harrington on 52S,
and Buchi on game determinacy. We relate to a progrmming language a computational game and
give two examples of the simplest programs viewed as strategies in such a game. Programming
language constructs (including concurrent connection), correspond to operations over strategies
producing new strategies. These operations permit to easily relate to each program a strategy that is
denoted by it. The operations are defined informally here and more accurately in the sequel to this
paper. Here we list properties of such operations over strategies. The properties of the operations
allow to do program verification proofs if the program specification is represented as a winning
condition for a computational game. We illustrate the program verification by using Park's example.
The concurrent program specification requirements of mutual exclusion and absence of lockouts are
represented by Gurevich-Harington winning conditions. These requirements can be verified for any
given program using the above properties. The idea of using techniques from the decidability results
belongs to Prof. Anil Nerode who also was the first to my knowledge to clearly state that the
programs could be understood as strategies in certain games. He also suggested many other valuable
ideas.

The sequel to this work, "Extraction of Concurrent Programs from Gurevich-Harrington
Strategies," is written by Vladimir Yakhni4 and is included in this collection.

INTRODUCTION.

Game theory is a traditional branch of Mathematics, Logic and, more recently, Computer
Science. Von Neumann and Morgenstem in 1930's and 1940's developed finite mathematical games
for several players. Games for two players have been put in their present form as "infinite games with
perfect information" in the work of Gale and Stewart (1953). Such games have been extensively used
in descriptive set theory [M], model theory and mathematical logic. The connection between
decidability of certain theories, determinacy of games and automata was explored by Rabin [R],
Gurevich and Harrington [GH], and Buchi [B).

The words "strategy" and "program behavior" are often used in the context of computer
programming. But this terms also have precise game-theoretic meaning. We systematically interpret
such computer programming terms as computer program, execution sequence and program
specification, game-theoretically. Then program development and program verification become
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precise game theoretical notions of finding a winning strategy or proving that a strategy is winning.
It appears to us that game theoretical meaning of a program as a strategy is more natural than the

meanings supplied by other approaches. Interestingly, this does not mean that matters become easy
immediately. This is because the relevant game theoretical problems are different than the ones
typically considered in the theory of Gale-Stewart games. For example, instead of finding out
whether the game is determinate (i.e. whether one of the players wins) we not only want to know who
exactly wins and what is the winning strategy, but we also like to know whether it is possible to find
a winning strategy in the designated class of strategies.

There are some examples of such theorems in game theory. They are [BLI 1967 and [B] 1983.
But the winning strategies, that are described there, are so complex that we were unable to use them in
order to produce concrete programs.

In 1982 Gurevich and Harrington published a proof of game determinacy theorem for a class of
games which we shall call GH games. This theorem served as a toot in their celebrated short proof of
Rabin's theorem. Their proof contains ingenious descriptions of winning strategies, but the strategies
are not explicitly given. Using their methods, we developed a sufficient conditions for a given player
to win which also gives a wide class of explicit winning strategies. Our purpose is to use these
strategies in constructing concurrent programs

We briefly compare our game-theoretical meaning of programs to that of tempo/ Logic
(Manna& Wolper [MWI, Lamport [LI1, Gabbay et al [GA], Manna & Pnueli iMP2]), autmat
(Manna & Pnueli [MPI ], Alpern & Schneider [ASD, GAie--Owicki (Owicki &Gries [OG], Lamport
[L21), and dmaotwal semanics (de Bakker& Zucker [BZI).

We regard any program specification given informally or formally as a winning condition in a
game that we associate with a given programming language.

Unlike Manna & Wolper [MWI, we do not extract a program from a model of its (temporal)
specification. Instead we rely on a theorem yielding

I. Sufficient conditions for a given player to win;
2. A large class of winning strategies in case the conditions hold. A program is then designed

from a winning strategy.
Following Buchi [B], we employ automata with output to represent strategies, while Manna &

Pnueti [MPI] and Alpern & Sneider [AS] use accepting automata to define execution sequences
satisfying the program specification. Automata are not absolutely essential for our present approach
and could be replaced by non-deterministic partial strategies.

In the temporal logic, Gries-Owicki and Manna-Pnueli-Alpem-Sneider approaches the
meaning of a program is the set of its execution sequences. These approaches provide formalisms for
specifying properties of execution sequences and for program verification on that basis.

In contrast, we think that our notions of program as denoting a strategy and an execution
sequence of a program as representing a play consistent with the strategy more naturally reflect
programming practice and with full mathematical precision. Our notion of play contains more
information than that of execution sequence, for example information about computer delaying the
execution of submitted instructions. This information permits us to define interleaving naturally, and
to specify a wider variety of properties for the program execution process. The essential ingredient of
our approach is the use of theorems for finding winning strategies in classes of games that arise from
program specifications.

Denotational semantics views a program as a function over a mathematical structure designed for
a given programming language. Our approach shares this feature. A program is represented by a
function (i.e. a strategy) over a game tree, which is a mathematical structure encapsulating rules of the
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game corresponding to a programming language. In the denotational semantics we have seen thus far
the mathematical structures which give the meaning to concurrency are so complex that even
reasonably simple programs and proofs have cumbersome denotations. We think that our approach
gives a simple and very intuitive denotation.

1. PROGRAMS AS STRATEGIES

Gale-Stuart games are played by two plaJW We consider in the present paper the following
version of their games which we call etrputatim *mes. The plays of a game can be either

infinitely long or finite. We shall call the players Piog and Comp. They alternate in making

moves. Prog plays first. A move of a player is to choose and append a letter aGe of a given

alphabet I to a sequence obtained from previous moves. The resulting sequence of moves is a play

of a same.

a0 , al, a2, ... an

A finite initial segment of a play is called a padicw of the game. The set T of all positions is

called the game tree. Positions where Prog (Comp) makes a move are called Pos(P) (Pos(C)).

They are the positions with even (odd) length. The game must specify rules restricting possible

moves of players and a winning condition. We introduce the rules gradually in subsequent examples.

A winmuig cao& or a wiinset for a given player is a collection of plays satisfying all the

restrictions on moves. We say that a player win a play if it lies in the winning set of the player. A
play isfinite if Prog made a special move Snd,. This is the last move of a play. If a play does not
include the move snd, it is infinite.

The usual intuition describes a program as some orderly way of submission of instructions for a
computer to execute. In our framework each of the submissions constitute a move of Prog and each
execution of an instruction is a move of Comp. Informally, a Prog's move is a set of instructions (as
opposed to a singleton in deterministic systems). An empty set of instructions is called skiv. A
Comp's move indicates which instruction (if any) has just been executed. The move corresponding to
the absence of executions is called wait. In contrast to a Prog's move, only execution of at most one
instruction is allowed. Multiple executions are simulated by all possible orderings of the respective
consecutive moves.

However apart from the instructions, each program contains a number of directives governing
the order in which the instructions are executed. In the case of a sequential program these directives
are the actual order of the instructions, go to's, the structured statements like if...then...else,
whle...do and so on. In the case of a concurrent program they are cobegin...coend's, par's, fork's,
implicit directives contained in semaphores and so on. In our framework these directives govern the
behavior of Prog in the course of a play and therefore constitute a strategy for Prog.

A stwategy for a given player is a function from all positions of the player, into the set of
moves allowed for the player. We say that a player uses a strategy f from some position p on, if
at any later position q of a play, where the player has to make his move, the player chooses a move
from the set f(q). We also say that a play, where a player uses a strategy f from some position p
on, is camistwa with the strategy at p. We consider the "slte-stmtegies" developed by Buchi
and the "strateges with resicd memory" developed by Gurevich and Harrington.

We shall show how to find for each program a finite state-strategy for Prog which represents
precisely the directives for the order of computations prescribed by the program. We think of this
finite state-strategy as the meanibg of the program.

We relate to every program building construct an operation over state-strategies. This is
illustrated by examples.
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Suppose that we are given a PASCAL-like programming language L. Every program which
we consider consists of assignments, constructors if ... then ... else's, while ... do's, and a
concurrent constructor. Concurrent constructs have the form cobegin PI ;... ;P coend, where

PI"".Pn are programming blocks, i.e.either subroutines, blocks begin ... end or single

assignments. In distinction to the other approaches, we do not make any assumption about the
appearance or nesting of the concurrent constructs in the programs. They may appear anywhere and
may be nested in any possible way.

Let A be a finite set of instructions from L including x:=l.
EXAMPLE 1. Suppose that the program begin x:=I end is being executed. We define the

following computational game. The Prog's moves constitute the set V(A)u{endJ, called Prog

alphabet ZP. We shall often use the notation ft for the empty move of Prog. The Comp moves

constitute the set Au[wvai, called Comp alphabet 1C. The (disjoint) sum ZPuZC is called the
pealplmgbet 1. The following sequence is an example of a play.{x:=t} sk .Wmt. sin, x:= 1, end

The following two rules are restricting the moves of players.
(Rule I) Each Comp move other than y has to be a member of some previous Prog

move, s.t. Comp has not yet used in his previous moves. We call the set of all such permissible
Comp moves at a position p by Avail(p).

(Rule 2) Any move of Prog at a position p must be disjoint with Avail(p). Le. Prog may
not include an instruction in his move if he has submitted this instruction previously and Comp has not
executed it yet.

For the play above the function Avail(p) assumes the following values at positions of the play
(beginning with the root).

0, (x:=I1, [x:=11, fx:=I}, 1x:=1}, (x:=1}, 0, 0
Prog and Comp moves may be defined by means of a special Moore automaton called Exec,

which models the states of an operational system and a computer memory. The automaton alphabet is
X. A state of Exec has two components. The first component, called a machinestateis an
assignment of values to all variables occurring in A. We may assume for example that the values are

rational numbers. The set of all machine states we designate SE . The second component is a subset

of A. It is intended to represent Avail(p). So the set of Exec states is sEx F(A). The set of initial

states is sEx[o). The transition table M is described as follows. If (s,U)6SEx1(A) and

ae P , then M((s,U),a)=(s,UUoa), where end is identified with 0. If 6r:C, then
M((s,U),6)=(s',U-(6}), where (wait) is identified with 0 and s' is a machine state that results
from the execution of the instruction 6 in the machine state s.

There are two output functions defined on states of Exec. fP(s,U)=(A-U)u{end} and
fC(s,U)=Uu(wait} which represent vacuous strategies for Prog and Comp respectively. The value

of the vacuous strategy for a player (VacP for Prog and VacC for Comp) at a position p is the
set of all possible moves the player can make according to the game rules. If (s,U) is the last state

of the Exec's run on p, then VacP(p)=fP(s,U) and VacC(p)=fC(s,U), depending on whether

pePos(P) or pePos(C). In fact tC is somewhat more complicated than we just described. We
shall give more precise explanations later (Section 2).
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If s is a machine state, y is a variable and v is some value then s[y/v] is the state which
assigns to all distinct from y variables the same value as does s and which assigns v to y.

Let (s,O) be an initial Exec's state. Then the (s,0)-run of Exec over the above play is
(S,0), (s,[X:=l}), (S,{X:=l}), (3,{X:-l}), (S,{X=) X:=l :=l), (.s[X/l],O), (S[X/1],0).

Call an Exec's run over a position (or a play) an Exec run over the position (or the play) as a
word in the game alphabet.

Now we shall explain the notion of a non-deterministic state-strategy for a player C2. Let Ct
be a Moore automaton with input over the game alphabet X, with the set of states S, set of initial

states Sin, a deterministic transition table M and the output function F:S-#'"(zn). If soeSin then

Ci and so induce the following strategy f. Let pePos(n). Run Qt on p from so . If s is the

last state of the run, take f(p)=F(s). It is easy to see that VacP and VacC above are non-
deterministic state-strategies.

For a deterministic state-strategies the above is simplified since it is sufficient for C1 in this case
to take as an input only the moves of the opponent.

Informally, the program begin x:= end represents the following Prog's behavior in the
computational game:

I. Submit the set of of instructions {x:=I);
2. Wait until the instruction is completed, by making ski move;
3. Finish the play by submitting ed move.
We shall describe a deterministic state-strategy corresponding to begin x=1I end by giving its

state diagram.

wait

vait for a

FIG 1.
On Fig. I a represents begin x:=1 end, ovals represent states, thin arrows represent the input

and thick arrows represent the output.
Let W be a collection of plays and T be the game tree. r"=<T,n,W> designates a game

where Q2 wins a play p iff peW and, conversely, 1-C2 wins a play p iff pqtW. W is called

the winningcondition for n2. If the complement of W is designated WC=Pay(T)-W then we can

also write r=<T,l-Ql,Wc>.
Now we shall reduce a program specification for the example to the notion of a winning

condition. Let (s,0) be an initial Exec's state. The program specification "the program terminates
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with x=l" is translated as "the set of all finite (i.e.terminated by 4) plays P s.t. the last machine
state on p resulting from the (s,O)-run of Exec on p is s[x/l]." Let us call this set of plays

Wa , where a stands for begin x:=l end.
We adopt the following convention, unless we say otherwise. In all computational games

Comp looses every infinite play, where he refuses to execute an instruction, submitted by Prog. More
precisely, Comp looses every infinite play, for which there is an instruction which is contained in the

set Avail(q) for all q after some position p. Let Wr be the set of all such plays. Here r stands
for Comp refusal to complete some submitted instruction.

Therefore we represent the program specification above by the game r=<T,Prog,WauWr>.
Let f be an f2-strategy. We say that f is papefta at p if for any nonterminal position

qePos(f2) consistent from p with f we have f(q)s0. We say that f is conditio//y winning at
p a game r, if every play, containing p and consistent after p with f is in W. Finally, we say

that f is wim* ] at p, if f is perpetual at p and f is conditionally winning r at p. If p is
the root e, then we omit references to positions in the above definitions. Lachlan in [LAC] 1970 also
used the notion of a perpetual strategy, though he named it differently.

It is easy to see that the strategy begin x:=l end wins r.
EXAMPLE 2. We begin with the program cobegin x:=l, x:=2 coend. We assume that x:=1

and x:=2 are in A, and so Prog's and Comp's alphabets are the same as in the example 1.
We shall use abbreviations a for x:=I, b for x:=2.
The program represents the following Programmer behavior in the computational game.
1. Submit the the set of of instructions (x:=l, x:=2}.
2. Wait until each submitted instruction is completed, by making ski2 move.
3. Finish the play by submitting end move.
Below is its state diagram.
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b

a aait

0outta vait a '- -finish a
outp b vait b finishb

b a

vat a

finish b

FIG. 2

On the diagram above, big arrows correspond to the output (i.e. moves of Prog) and small
arrows correspond to the input (i.e. moves of Comp).

Now, let Wb be defimed by replacing s[x/l] with s[x/21 in the definition of Wa in example
1. Then the program specification "the program terminates with x=I or x=2" corresponds to the

game <T,Prog,WauWbuWr>. It is easy to see that the above strategy wins this game.
The consideration of the last example is based on the notion of a mutual atomicity. Suppose that

Al ...,An are respectively the collections of assignments from the blocks PV ...,P from the

concurrent construct above. We assume here, as in other models of concurrency, that A I""An

must be mutually atomic. In the simplest case, the assignments a and a2 are called mutualy

atomic if the result of a concurrent execution of aI and a2 is always the same as that of the

sequential execution of either aI; a2 or a2; a, .

Assume that x=0 and that cobegin x:=x+l; x:=x+i coend is being executed. Suppose that there
are two processors each of which independently computes x:=x+I. Assume that any assignment
consists of two separate steps, i.e. (1) computing of the right-hand part and (2) putting the result into
the location which corresponds to the left-hand part. Then the following scenario is feasible. At
moment tI both processors compute x+1 (which is equal to 1), at moment t2 the first processor

puts the result in x and at moment t3 the second processor puts the result in x. It is easy to see that

after all these operations are finished, we have x=. Since begin x:=x+I; x:=x+ l end gives us
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x=2, we must conclude that xr=x+l and x:=x+l are not mutually atomic.
Our game-theoretical approach allows us to deal with programs without the assumption of

mutual atomicity as above. However, the model in this case is more complicated and we shall not

consider it here.

2. VERIFICATION OF THE PARK'S EXAMPLE.

This section is intended to give an informal example of a direct verification proof based on
game-theoretic notions. This proof ultimately rests on the material of the next section, providing

basis for any proofs of this sort. But there are other possibilities to do game-theoretic verification.

Since the Park's example involves a predicate x=O, we extend a computational game alphabet to
account for predicates. We often use the term instruction for either a predicate or true instruction. Let
(D be a collection of predicates admissible by the programming language. The Prog's moves

constitute the set ZP= F(Au c)u(eMdM. The notation §ki2 is still used for the empty move of Prog.

The Comp moves constitute the set XC=Au(Cbx{t,f)u{wait, based on the set {t,f} of truth

vaiues. The game alphabet is Z=ZPuI C . The Rules I and 2 of Section I are easily applicable in

the present context, if the references there to Comp's moves, which include predicates, are understood

as referring only to the predicate component of the move. The Exec's alphabet and transition table are
extended to account for the larger game alphabet as follows. If 6=<q0,b> is a Comp's move, then

M((s,U),6)=(s,U-{cpl), where cp holds in a machine state s iff b=t. I.e. a Comp's move,
containing a predicate, also contains its truth value at an Exec's machine state s at which the move

has been made.
The program of the form while qp do d, where d is an instruction, is used in the example. The

following state-diagram describes the respective state-strategy.

Wa~it

wait d A
d

output Cp? output d

cp T

cp F cdF
32T

fiihlowait cp? 7
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Note that with each state-strategy u there is an naturally associated alphabet Zu, which is a

union of its input and output alphabets. This permits us to say that a move occurs in u meaning that it

occurs in the above alphabet of u.
We consider the program g=begin x:=O; y:= 0; paz(begin x:=l Ad, while x=O do y:=y+l)

end. It is required to show that g terminates in an Exec's state s satisfying (x=l and 3new y=n).

Call the latter predicate qi(xy). We shall restate this as the winning condition of the computational

game. The computational game alphabet can be restricted only to be based on
A=(x:=O,x:=l,y.=y+l} and -={x=0). Let s(p) denote the Executive state arising after the last

Comp's move of a position p. Let p- denote a position obtained from p by removing its last move.

Let W=[p: p is a terminal play and s(pi-) = tp(x,y)). Let Wr be the Computer refusal set for the

game. This is the set of all infinite plays satisfying the condition, that for every play from some

position of it there is an item always occurring in a set Avail and never occurring in all subsequent

Computer moves. Computer always looses the set Wr. So we are to show that g wins the set

WrUW.

PROPOSITION 2.1. The strategy g wins the set WruW.
bro Note that g is a perpetual strategy, because the strategy submits only instructions defined

on all Exec's machine states. It remains to show that g is conditionally winning. It is sufficient to

show that if p is a play, where Prog uses g, and is not in Wr then p is in W. The use of g
involves first the use of the strategy h=begin x:=O; y.=O end, it follows that there is a position p of
p where h is used last and s(p) J= (x=O and y=O). We may write p=p-r, where r is a play that

begins at p.
(PI) The initial Exec's state s0 (r) for a play r is s(p). Hence it satisfies

s 0(r) J= (x=O and y=O).

We shall show that a play rn has a position q satisfying

(P2) all positions r of r following (and including) q satisfy s(r) J= (x=l) and
(P3) all positions r of rn (strictly) preceding q satisfy s(r) J= (x=O).
These will be used to show that r is a finite play. It then immediately follows from (P2) that

the terminating Exec's state satisfies the first conjunct of qt(x,y). Then we shall show that this Exec's

state satisfy the remaining conjunct also.
Since immediately after the use of h has been completed, g submits the instruction x:=l and

pqiWr, it follows that Comp makes a move 6=(x:=l) in p after p, i.e. 6 occurs in r. It
immediately follows that (P2) and (P3) hold at a position q of n arising after this move, because
there are no other moves involved in g, that can affect the variable x.

Observe that Prog uses the strategy par(, ) along n. Denote u=begin x:=l end and v=while
x=0 do y:=y+l. It can be noticed that all Prog's moves in r occur either in u or in v. If
Comp's moves from u are replaced by wait and Prog's moves from u are deleted from r, the
resulting play is such that Prog uses u in it. It follows from (Pt) that this play is terminating.
Hence rl is terminating. So is p.

It remains to show that s(n-) J= (yewo). We'll show by induction that this holds for all prefixes

of r-. The induction base holds due to (Pt). Every Comp's move in r either does not effect the
variable y or is an instruction y:=y+1, which preserves the desired property. This completes the
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induction and the proof.

3. PROPERTIES OF OPERATIONS OVER SrATE-STRATEGIES.

The operations over state-strategies corresponding to program connecting constructs: sequential
connection of programs, concurrent connection of programs, conditional connection ,f programs and
conditional repetition of a program are defined in the sequel to this paper. iere we state the properties
of the operations over state-strategies. The operations over strategies are named similar to respective
program connecting constructs.

We need less restrictive notion of a game than a computational game, ,o state the properties of
concurrent connection of strategies. We call such a game a hbe cp=&taiom/ame. It differs from
computational game in omitting all references to the automaton Exec in the game rules. Note that Rule
I and 2 are still valid for a free computational game.

We fist define a split of any position of a free game in respect to (Prog's) strategies g and h

and an arbitrary position q of the game. Let 1 g and "h be the alphabets associated with the
strategies as explained in Section 2. We assume these alphabets to be disjoint. A split of a letter 6

from the Computer alphabet IC are two unique letters: Spg(6)--(if 6E"g then 6 else wait) and

Sph(6)=(if 6&eh then 6 else wai). A split of a letter a from the Programmer alphabet "P are

two unique letters: Spg(a)=anlg and Sph()=onZh. If r is any word let Spg(r) be a word

obtained from r by replacing any its letter by Spg of it. If rq-r' call Spg(r)=q-Spg(r') and

Sph(r)=q.Sph(r').
For any play p and its position r call Pr a play arising by deleting the prefix r from p. For

any natural number n let Pn be a play obtained by deleting a prefix of length n from p.

PROPOSITION 3.1
A. If a play p of a free computational game is consistent with concurrent connection of two

strategies g and h then there are two plays p' and p" consistent with g and h respectively and
in the respective free games and such that

I. a play p is terminal if and only if p' and p" are terminal.

2. p' and p" are both not terminal :* for every nEw p'(n)=Sp9(p(n)),

p"(n)=Sph(p(n)).

3. p' is terminal, p" is not * there is a prefix r of p s.t. (p')-=Spg(r),

P length(r)-Pr for every n<length(r) p"(n)=Sph(p(n)).

4. p" is terminal, p' is not * there is a prefix r of p s.t. (p")-=Spg(r),

Plength(r)=p r for every n<tength(r) p'(n)=Spg(p(n)).

Below p' and p" are both terminal. TheIn one of the following three possibilities holds.
5. (p')--Spg(p-), (p")--Sph(P-).

6. (p')-=Spg(r), (p")- ength(r)=(p-)r for some proper prefix r of p- and for every

n<tength(r) p"(n)=Sph(p(n)).
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7. (p")-=Sph(r), (p')- ength(r)=(l-)r for some proper prefix r of p - and for every

nlengthhr))
n~length(r) p '(n)=Sp(p(n)).

B. For every state-strategies g, h, u (gjjh)ju is equivalent to giI(hiu) in a free computational
game

Sequential connection of two strategies. The sequential use of two strategies h and and g,

written h; g, is defined when for any fina state of h if any state that can shift into a final state it can

shift only into final states. The strategy h; g is a strategy whose use consists in the use of the first

strategy until this strategy reaches (if ever) its final state in a course of a play, at this position of a play
the final state is forgotten and Programmer uses the second strategy from its initial state.

PROPOSITION 3.2
A. If a play p of a free computational game is consistent with a sequential connection of

strategies h; g at a position p then either

1. p is infinite and is consistent with h from p or

2. p=-.. for some finite play n consistent with h from p and some play t consistent

with g from the root. Also the initial Executive state for a play t has to coincide with an

element of s(r-).
B. For any state-strategies g, h, u (g-h)-u is equivalent to g.(h.u). a
The conditional connection of two strategies. The strategy p? evaluates the predicate rp and

memorizes the obtained truth values by terminating in two distinct states.

It is convenient to consider two related strategies. The first strategy is denoted qPt ? It differs

from the strategy (p? by being undefined whenever a Comp's move is not < p,t) or wait. The

second strategy is denoted q(f ? It differs from the strategy (P? by being undefined whenever a

Comp's move is not <(p,f> or wait.

Conditional use of strategies g, h depending on the predicate y beginning from a given position

p consists of the following. Use the strategy Vp? from p. If the final state, reached by (p? in the

course of its use, corresponds to true outcome, use g from this position on, if the final state

corresponds to the outcome false use h. We denote this strategy by if (P then g else h.

The following property characterizes the conditional use of state-strategies.

PROPOSITION 3.3 A play p of a free computational game is consistent with the state-strategy
if cp then g else h from a positic-i q iff

P=n-'x'P , where q is terminal and is consistent with cp? from q, x is a Comp's move and
x=<(p,t> or <(p,f> and either

a. P is consistent with g at root and x=<(p,t> or

b. is consistent with h at root and x=<(p,f>. a

Use of a strategy while certain condition holds. The strategy which uses a given strategy g while
a predicate qp holds is denoted by while (p do g. Its use in a play consists in a use of (P? and

termination, if the final state of p? is reached, corresponding Comp's evaluation of the predicate to

false. Otherwise, g is used sequentially after (p?. If g reaches one of its final states, tp? is used

again and the preceding part of the description applies.

The characteristic property of a repetitive use of a strategy follows.

PROPOSITION 3.4 A play p of a free computational game is consistent with the strategy while
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T dogfromqiff

1. there is nal and plays lA2, ...tn such that p=t '2--...tnnl-.n and for i<n each

L is consistent with qt ?-g and is terminal, and t is either consistent with qff ? or with
1 n

99-g and in the latter case . is infinite orn

2. there is infinite sequence of fimite plays tlt2,....n... such that each ki=6-.K- for some

finite play 6 consistent with t ? from the root and some finite play K consistent with g

from the root (both 6 and K depend on ti) and p= l-*-t2-....*n-.*** 0

4. GUREVICH-HARRINGTON GAMES AND THE MUIUAL EXCLUSION PROBLEM

Gurevich and Harrington (GH) considered winning conditions in the form of a Boolean
combination of the sets [C1],...,[Cn], where Ci is a subset of the game tree and [Ci] is the set of

plays with infinitely many intersections with Ci.They proved that one of the players has a winning

strategy with restricted memory. In many cases their strategies with restricted memory are non-
deterministic finite state-strategies and as such they could be simulated by (concurrent) programs.

However, since GH determinacy result neither include a criterion for a winning player nor
explicit description of the winning strategy, it is not by itself sufficient for our purpose to find a
concurrent program corresponding to a specification. By analysing their proof we have found a
sufficient condition for a given player to win and an explicit description of a winning strategy. This
would be given in the second part of the talk. We have found that this condition encompass the
specification of the Mutual Exclusion Problem if stated in game-theoretic terms. We shall now
convert the specification for a mutual exclusion problem into a Gurevich-Harrington winning
condition.

Suppose that we are given n parallel processes of the form
repeat

crit.;

rem.;

until false
and assume that each critical section crit requires a use of a resource t while the remainder rem

does not have such a requirement. Further assume that we have only ksn units of the resource t.
The classical mutual exclusion problem is to modify the processes so as to insure the following.
I. No more then k processes can be in their critical sections at the same time. ("The absence of

clashes" requirement.)
2. No process can wait for indefinitely long in order to be allowed to enter its critical section.

("The absence of lockouts or deadlocks" requirement.)
3. There is mew such that if a process is waiting for the permission to enter its critical section

then during this period of time no more then m other processes are allowed to enter their
respective critical zones. ("The bound" requirement.)

4. If some of the processes would stay in the respective remainder sections for indefinitely
long, this should not effect the execution of the other processes. (The requirement on
tolerance to failure.)

In order for the solution to be possible , the following precondition is required.
5. k processes must not occupy the respective critical zones indefinitely long. (An assumption
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of absence of failure while at least k processes are in their critical sections.)
In order to represent the above requirements in the form of a winning condition we first assume

that in addition to assignments the set A (see section 2) also includes elements [crit., rem.:
1 I

i=0,...,n-1}. Let the alphabet I be as above. For the convenience, we shall not distinguish
between subsets aCA and their characteristic functions. So, for example, for aCA we shall write
a(criti)=1 if critiea and a(criti)=0 if critia.

For the simplicity we shall formalize the first two most important requirements omitting the rest.
Then there is the following correspondence between the subsets of the game tree and these
requirements.

1. MutExcl={p: for eachprefix q of p s.t. 7.i nAvail(pXcriti)sk} corresponds to the

positions never violating the first requirement;
2. NoLocj={p: if p contains a Comp's move 6 s.t. 6=rem i then p contains a Prog's

move a after 6 s.t. a(criti)=l and if p contains a Comp's move 6 s.t. 6=crit i then p

contains a Prog's move a after 6 s.t. a(remi)=l} corresponds to the second

requirement;
The winning set corresponding to the requirements 1, 2 and disregarding all others is the

following Gurevich-Harrington set. W=([M jn(nien NoLocki)).
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EXTRACTION OF CONCURRENT PROGRAMS FROM
GUREVICH-HARRINGTON GAMES

Vladimir Yakhnis
Mathematical Sciences Institute

Caldwell Halt
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Ithaca, NY 14853

ABSTRACT. To a programming language we assign a class of two player games called
computational games. In each game the first player, called Prog, gives sets of instructions for another
player, called Comp, who executes them. Programs are strategies of Prog, and program
specifications are winning conditions. We construct an algebra of strategies which constitute all
meanings of the programs (including concurrent programs) in the language. As winning conditions
we consider the ones used by Gurevich and Harrington (GH) in their celebrated short proof of Rabin's
Theorem. We give a new Theorem providing a sufficient condition for a given player to win a GH
game and a wide class of explicit winning strategies. To create the class of winning strategies, we are
using a new notion of Priority Automata, generalizing GH's notion of Latest Appearance Record
(LAR). This sufficient condition is applicable to Mutual Exclusion Problem formulated as a GH
game. So, using the Theorem, we can find a class of winning strategies for Prog in a corresponding
computational game. Using the above algebra of strategies it is then possible to find such strategy
from the class of winning strategies which corresponds to a concurrent program. The idea of using
techniques from the decidability results belongs to Prof. Anil Nerode who also was the first to my
knowledge to clearly state that the programs could be understood as strategies in certain games. He
also suggested many other valuable ideas.

This work is a sequel to "Concurrent specifications and their Gurevich-Harrington games and
representation of programs as strategies," written by Alexander Yakhnis, which is included in this
collection. We assume familiarity with this paper which we call Part 1.

1. NON-DETERMINISTIC STATE-STRATEGIES

We shall show how to associate with every program from the language, introduced in Part I of
the sequel, a statef for the first player in the game environment defined above. Though it is
possible to consider on- ! non-deterministic strategies (in the usual sense), it appeared to be
convenient to deal with state-strategies similar to those used by Buchi. We modified the Buchi's
notion of a state-strategy by making it non-deterministic.
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A un of a state-strategy

Dstrategic states

an initial state

(3 04 0 a move of Prog

( a move of Comp

transition table

\ utput function

FIG. I
A nee-dtae && sWe--sratqy for Prog in our game environment is the following finite

state Moor automaton F=<SM,S,P,f>, where

I. S is a set of strategic states;

2. M:Sx -F(S) is the transition table(1), where M(s,a)nP*e0 * M(s,a)P;
3. S. #0 is the set of initial states;

4. P is the (possibly empty) set of final states;

5. A function f:S-*1 0 is the strategic function, where for every state seS (seP**f(s)=OM ).
Intuitively, a state-strategy F for Prog works as follows. The automaton F moves along the

play changing states accepting only moves of Comp, thereby changing its states according to the
transition table and producing a run. With every state s we connect the output f(s). Whenever a

position p of Prog with the resultant state s of the run is reached, Prog uses f(s) as its current
move. This is illustrated on Fig.l. Since, however, a state-strategy may be non-deterministic and
therefore could have more than one run on p , we make an agreement that if we are using F in a play
then shall use a unique run of F on this play. This is clarified by the definitions of consistency and
perpetuality.

Let a0...an e* and seSin. We say that a 0 ... an is s- mW t with F if there an s-n

so 51 5s.n a 0O..an-I s.t. s0 =s, f(s 0)=a 0 and for all ie[ln-i] if a0 ... afePos(Prog) then

f(s i+)=a i+l. In this case we call s 0 "'3n a strategic run of F on a0..a n I . It is easy to see

that the empty string X is s-consistent with F and t1a any initial state constitute a strategic run on
X. We saythat a0...a n is consitent with F if a0...an is s-consistent with F forsome

seSin. Similarly we define s-consistency and consistency on infinite strings. Note that if cx is is a

finite string and there is a strategic nn of F on x then cx is consistent with F , but that the

(/) We sometimes shall write M(s,a)-+s' instead of s'eM(s,o).
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converse may not be true. For infinite strings the consistency and the existence of a strategic run are
equivalent notions.

We say that the state-strategy F is perpetud if for every position p and every strategic run r

of F on p (if any) the following is true. If pePos(Comp) then for any legal move a of Comp
from the position p, the run r can be continued on p'a. If pE=Pos(Prog) and s is the resultant

state of r then f(s) is defined, f(s) is a legal move of Prog from the position p and if f(s)*Md then

the run r can be continued on p.f(s).

Suppose we have a game r=<x,T,Prog,W> which is a part of the game environment. We say

that the state-strategy F is conditimily winmog over/ if for every consistent with F play p we
have peW. Wesaythat thestate-strategy F is wimningovcr/if F is perpetual and is

conditionally winning over r.
Let F=<S,M,Sin,P,f>, F'=<S',M',S'in,P',f> be state-strategies and suppose that all the states

from S and S' are reachable. An injection (p:S-iS' is called a homomworph from F into F if
there is a relabelling g s.t. g-f=frop (in the sense that gof is defined iff f'op is defined),

P(Sin)S'in, p(P)QP' and for all s,teS and ae" (M(s,a)-et * M'(rP(s),g(a))-(p(t)) A (a is a

move of Comp and M'(Cp(s),g(a))*O * M(s,a)*O) A (M'(CP(s),g(f(s)))$0 * M(s,f(s))*0). If
there is a homomorphism from F into F' we say that F is a nfibement of F'. Since the set of

strategic states is finite, it is easy to see that cp:F-+F' is an isomorphism if and only if (p:S-oS' is a

bijection.
PROPOSITION 1. Let F be a refinement of F'. Then if F' is perpetual (conditionally

winning) then so is F.
M

2. AN ALGEBRA OF STATE-SRATEGIES

Now we can build a calculus of strategies. In the definitions below F 0=<S0,M0,S inP0,f0>

and F I=<S I,M Si,P If I> are arbitrary non-deterministic state strategies for Prog and

F=<S,M,Sin,P,f) are the ones being defined, unless specified otherwise. We assume that S0 is

disjoint with S (which could be achieved by renaming of the states) and that so and s, are

respectively elements of S and SI, unless specified otherwise. We also assume that f0 (S0) is

disjoint with f (S), which could be achieved by relabelling of the instructions.

Atomic Sttmees.

Let aGA. The automaton [a] consists of the following components.

1. S= ((output a), (wait for a), (a is finished));
2. M((output a), wit)=(wait for a),

M((output a), a)=(a is finished),
M((wait for a), wlij=(wait for a),

M((wait for a), a)(a is finished),
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3. S ={(output a));

4. P:(flnish);
5. f((output a))=(al, f(wait for a)=skin, f(a is fmished)=-u.

ourofdon F oF 1 .

1 S=(S0-P 0)uS, ;

2. if PonMo(so,a)=0- then M(soa)=Mo(soa),

if PonMo(So,aa)* then M(soa)=Sln,

M(sla)=M(sla);

3. S. =S
4. P=PI ;

5. f(s 0)=fo(S O) and f(st)=f(s ).

The following propositions shows that the result of composition behaves as a sequential
application of strategies.

PROPOSITION 2. Suppose F0 FI=F and VGV. Then a position p associated with a machine

state v is consistent with F iff p is non-terminaL and is consistent with F0 or there are positions

q0 and q, associated respectively with machine states v0 and v, s.t. vfv0, vl is the resultant

state of the v0 -nzn of Exec on q0, q0 *e d is consistent with F0 , ql is consistent with F and

PROPOSITION 3. The composition is associative up to an isomorphism.

Canawumt cabncmx F 0hF.I

1 S=S0xS 1 ;

2. Suppose that a is a non-empty move of Comp. Then if M 0(0,a)-t then

M(<s 0,11,a)-*<t,s I>and if MI (Sa)-et then

M((s 0,s >a)-'<s0,t>.

If 3 and sI are not final, then

M(s os 1 > ,a=M (s0 , jjxM I (s I,WR

else if so is not final, then
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M(<So,3 l > ,NA = M O( s Oa3 x [s l 
}

else if sI is not final, then

M(<sO >,AO-{ so) xM l(s aw);

3. S in=SoinxSlin;

4. P=PoXPI ;

5. If at least one of s and sI is not final then f(<soSl>)=f 0(s )ufI (s) where at most

one of the functions is undefined. In this case we treat the undefined function (if any) as

if it gives Also in this case we treat end as .If s and s are both final
0 1

then f(<sosl>)=nd.

The following definitions and propositions shows the intuitive behavior of the concurrent

connection.
Suppose 0, and P are strings. We say that p is an itedeavi of q0 and q if there

are order preserving maps hi:L-'p for ie{ 0,11 s.t. h.( ki )=ski2 , h. (w_3)=wait , p=h0 (q0)uhl(ql)

andif a. is an occurrence of a non-empty character in q, for ie{0,11 then h 0(a0 )h I(a).

PROPOSITION 4. Suppose p=a 0 "0 -0 3...'a n-2*_"wait' n-l'On-1 where for all

ien a eXO and oc is a string in 1l-{wait is a non-terminal position consistent with F0 1F!.1 1 0

Then there are non-executable positions qo-a 0 *x',0wait ... a' n-2 oa n-2 awaitd n-1 x n-I

qIa .0 .o. n-2w A 1 o 0 s.t. n=max(k,m), for all iEn a.=a' .na"

and o. is an interleaving of o' .and (x"., where if i>k-I (or i>m-1) then a'. (or a".) is
1I 1 1 1

identified with 0 and o&0 (or (x 0) is identified with X, q0 is consistent with F0 and ql is

consistent with F1 . Moreover, if p-end is consistent with F0lJF 1 then q"nd is consistent with

F0 and qlend is consistent with F1.

PROPOSITION 5. The concurrent connection is commutative and associative up to an

isomorphism of state-strategies.

Cwndianl if exp then F0 else F1

Let e be a Boolean expression.
I S=S 0US u((output e), (wait for e)};

2. If sE{(output e), (wait for e)I then

M(s, &9i0)=(wait for e),

M(s, (e, tme))=SOin ,
M(s, (e, falw>)=Slin , 337



M(sopa)=Mo(Soa),

M(sl a)=M(s a);

3. S ={(output a));

4. P=PoUPI ;

5. f(output e)=[e), f(wait for e)=skio, f(s )=f (s ) and

f(s )=f (sl) -
1 I1

The following proposition shows that the conditional behaves as intuitively expected.
PROPOSITION 6. Suppose if e then F0 else F I=F, veV and ev (i.e. evaluation of e in v) is

defined. Then a position p associated with a machine state v is consistent with F iff p is not

terminal and it is consistent with [el or the following is true. If ev--true then there are positions p'
and q0 associated with machine state v s.t. p'-nd is consistent with [e] and q0 is consistent with

F0. If cv=-fase then there are positions p' and % associated with machine state v s.t. p'.d is

consistent with [e] and q is consistent with F.

Loop while e do F0

I S=S U{(output e), (wait for e), finish);

2. If se ((output e), (wait for e))uP0 then

M(s, -w-A=(wait for e),
M(s, (e, tMe))=Soin,

M(s, (e, false>)=finish
If soeSo-P 0 then
M(so'C)=Mo(so,a);

3. Si ={(output a));

4. P= (flnish);
5. For se((output e)}uP0 f(s)=e, f(wait for e)=Iki, for s0 eS0-P 0 f(s0)=f 0(s0 ) and

f(f'mish)= eL.

The following proposition shows that the loop behaves as intuitively expected.
PROPOSITION 7. Suppose whilee do F 0=F and v0 is a machine state Then a position p

with a v -run of r of Exec is consistent with F iff there are positions p0, q0 ,..., Pn-l' qn-I
where Pn-I is not empty and qn-I may be empty, and the states v0 , ..., vn1 S.t. P,, q. are

associated with vi which is the resultant state of r on p0, q0,., p, and p0. q,..., p, , qi also

Pi is consistent with [e] and q, is consistent with F. for ien and p=p0"q0".Pnl'qn_1
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Moreover, p is terminal iff Pn-I is terminal and q,_, is empty.

3. HOW TO LOOK FOR WINNING STRATEGIES

Priorities and the Strategies Based on Thea.

Let I be a finite alphabet and Tgl*. The sets C1,...,CnQT are called basic GH sets. We

define a function which extracts from a position the history of meeting the basic GH sets. Let

1={O,1) n. Define the coding function Code:T-+l by Code(p)--l if peCi and Code(p) i=O

otherwise. This map is converted into Code':T-,Z* by putting Code'(e)=Code(e) and
Code'(p-a)=Code'(p)-Code(p-a).

We'll explain one of the ways we combine several strategies into one. Let C=<S,S 0 ,M) be a

finite non-deterministic automaton over the alphabet 1. A run of CL on I* is a function rX. *-+S

s.t. r(e)eS0 and for all oxel* and aCe, r(ox-a)eM(r(ot),a). We combine a given finite

collection [fs : seSI of strategies into a strategy f using 1*-runs of Ct as follows. Suppose r

is a run of Ct. For any pePos(f) let f(p)=f(Code'(p))(p). We shall call f a strategy induced by
a. Such strategies are also called iducad byautomata (relaztve to C,...,C,). Thus for any CL

and [fs : seSI as above we have a class of strategies parametrized by runs of Ca.
There is a special class of automata which we are going to use in constructing the strategies. The

purpose of such automata is to construct a strategy which allows us to meet every CI infinitely often.

While making moves, we are building a run r of Ct over the Code'-image of the play. At any
position p of the play our immediate goal is to reach Ch(j(Code,(p))). First, we wish to guarantee

that the goal is not changed until it is fulfilled. Second, we wish to guarantee that if for the run r the
goal is reached infinitely often, then the play meets every Ci, ie(,...,n), infinitely often.

Moreover, we would like to insure a "fair"(2) treatment of any Ci in the sense that for some fixed

mew, we should not be able to reach all the other sets more then m times in a row without reaching
Ci in between. The following definition satisfies these requirements.

Let Ci be a finite non-deterministic Moore automata with the set of states S, the output

function h:S-+(l,...,n} and the transition table M, accepting all words in the alphabet (0,I}n. If r

isarunof Ci, cx isawordin (0,I)n, be{O,l)n and bh(r(cX))=l, wesaythat r redcbte

god on otcb.
We call Ct a priotym maton if its output function, called the pdority facio of Ca,

satisfies the following two properties.

1. For any state s and anyletter be(O,In, if bh(s)=O then forany s'eM(s,b) h(s)=h(s');

2. There is some man (which we call a bound) s.t. for any run r of CI and words cX:SP, if
r reaches its goal at least m times on (P' : m:s',) then h takes all the values from {l,...,n)
on :

(2)Thi is similar to "fair" treatment of concurrent processes in Computer Science.
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There 1. Let QCT, Ct be a priority automata with an output function h, Fi=Dec i(C-Q,n)

and (pj(q) fiqeDom(Ci-Q,92). for i(1,...n) and GI,...,Gn be such 92-strategies that

1. eqQ;
2. For ien and any position q*QuDom1(ci-Q,fl), G wins r' against Avoid(Ci-Q,-).i

Then for any run r of Ct, the following strategy f wins r from every position pf.Q.
Let pj q and i=h(r(Code'(p))). If peDoml(Ci-Q,92), define f(p)=Fi(p) and otherwise

define f(p)--Gjp). See the Appendix for the notions of Dom I , Decr and Avoid.

Gurvich-Harrington's LAR and enimples of priority automata

The notion of priority automata is a generalization of GH's Latest Appearence Record (LAR).
Our version of LAR is a somewhat modified form of LAR from [GHI.

The alphabet of LAR(n) and all other priority automata in this section is 1 ={0 ,1}n . Let

Order(n)={se({1,...,n}*: forall i{1,...,n}, i occurs in s at most once). Note that Order(n)
includes the empty word e. Order(n) is going to be the set of states of LAR(n). Let us define the
transition table M.

Let aCe and seOrder(n). Let X={i: ai=l}, s'e{l,...,n} be an increasing sequence of
elements of X and s" be the result of crossing out of s of all elements of X. We define
M(s,a)=s".s'. The output function h is defined by h(e)=O and h(s)=First(s) if ste.

PROPOSITION 3.1. LAR(n) is bounded by n.

LAR(n) is a deterministic priority automaton.
The following priority automata are non-deterministic and both have been discovered by game

theoretic analysis of well known concurrent programs. MOD(n) stems from Eisenberg and
McGuire's algorithm (see [PSI) and SUB(n) stems from Morris' algorithm (see [MOR]).

Our next priority automaton is designated MOD(n) from "modulo n". Its set of states is

(1,...,n}. The transition table is defined as follows. For se(l,...,n} and ae{o,lPn , M(s,a)={i}
if ai=O, M(s,a)=f1,...,nI if forall jefl,...,n} a =l, and M(s,a)=fjj, where -i (mod n)=
min{k-i (mod n) : kef1,...,n) }, otherwise. The output function is the identity function on
(1l,...,n}.

PROPOSITION 3.2. MOD(n) is bounded by n.

The last example of a priority automaton is designated SUB(n) from "subset of n". Its set of
states is S=(<X,i>: ieXQ{1,...,nJ). The transition table is defined as follows. For s=<X,i>GS

and ae(o,l)n, let X'=tjeX: aj=0}. Then M(s,a)={<X',i>} if ai=O, M(s,o)=((X'j>:

jeX') if X'*0 and aj=l, and M(s,a)=((1,...,n}j> : je{l,...,nJ otherwise. The output
function is h(<X,i>)=i.

PROPOSITION 3.3. SUB(n) is bounded by 2*n.
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4. THE MUIUAL EXCLUSION PROBLEM

In Part I of the sequel (see the abstract), the winning condition is represented by
W(I[MtmIn(nirn ]))-

Since this set is exactly of the form used in Theorem 1, it is easy to see that the theorem provides
a class of winning strategies for this problem.

Appendix. RANKS, DOMAINS AND STRATEGIES BASED ON THEM

Let A be a finite alphabet and TQA* be a tree without leaves. We call T a ame t and its
elements poitions. If a position p is a prcfix of a position q we shall write p:sq.

We shall consider games with the following rules. 0 and I are respectively first and second
players. If p is a position with even (odd) length then 0 (1) chooses a letter aeA s.t. p.aeT. We
designate the set of all even (odd) positions as Pos(0) (Pos(1)). A play is an infinite sequence
produced by the above rles. The collection of all plays is designated Play(T).

Let XQT and 92 be a player. A position q is a child of p if q=p-a for some aeA.
Denote by pT the st ofci/idre of p. A no&-etemnisdc stmtcgy for C2 is a function

f:Pos(2)-* F(T) s.t. for any peT f(p) is a subset of the set of children of p. From now on a
'strategy' means a 'non-deterministic strategy', unless we say otherwise. The two most simple
strategies are called vauous they are defined by Vac(G2)(p)=-pT and Vac(l-nXq)=qT. We say

that a strategy f is deaned on XQT if forany p in X f(p)* 0 and forany p outside X
f(p)=0. For example Vac(fG) is defined on Pos(G) and Vac(l-G) is defined on Pos(1-). We
say that a strategy f is defildatlmwton XQT if forany p in X f(p)* 0 withoutany
supposition for the behavior of f outside X. We say that an n-strategy ' is a refinment of f if
for all pePos(Q) f(p)Qf(p). Informally, we shall write f'f. The set of constent with f
positions is defined as follows. The empty word e is consistent with f. For any consistent with f
position p if pePos(l-2) then any child of p is consistent with f and if pePos(n) then any
qef(p) is consistent with f. Consistency after position P0 is defined by replacing e above by Po"

Consistency of plays is defined similarly. Sometimes we shall informally use words 'reach', 'meet'
and so on instead of speaking in terms of consistency.

All the strategies considered here are based on the following concept of "Q-rank inside an n-
strategy and against a (1-2)-strategy". Let f be an C2-strategy and g be a (1--2)-strategy and
XQT. We shall inductively define a partial function Rank(X,f,f/g):T-w * as follows.

1. For all peX, Rank(X,2,f/g)(p)=0;
2. If pePos(Q), Rank(X,G2,f/g) is defined on at least one child of p from f(p), and n is

the minimal value of Rank(X,f2,f/g) on f(p), then Rank(X,1,f/g)(p)=n+1;
3. If pePos(I-C2), g(p)*0, Rank(X,1,f/g) is defined on all children of p which are in

g(p), and n is the maximal value of Rank(X,92,f/g) on g(p), then Rank(X,f2,f/g)(p)=n+I.
PROPOSITION !.1. For any XQT, peT and n>0 Rank(X,2,f/g)(p)=n iff there is a

strategy for Q which is a refinement of f and which allows to reach X starting from p with at
most n moves while I-12 uses g after p.
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GI's original notion of "rank" can be represented in our notation in the form
Rank(X,C2,Vac(C)/Vac(l-f)). The idea of piaying against a fixed strategy of the opponent, they
explored in their "Sewing Lemma". In contrast, we do not use the "Sewing Lemma", but rely on
modified GH's "domains" based on "rank for n' inside an n-strategy and against a (1-n2)-
strategy".

It may appear at first that introduction of f and g into ranks and the subsequent notions is
redundant since f and g may form a subtree of T and, in this subtree, our rank is just the GH's
rank. However closer observation shows that since f and g are not necessarily everywhere defined,
i. e. we allow f(p)=O or g(p)=0, f and g may not necessarily form a subtree. Rather, they may
form many disjoint subtrees and finite parts of subtrees. Since we would like to define uniform
strategies in areas where f and g are defined, the notion of rank in full generality appears to be
useful.

We designate Dom(X,f2,f/g)={peT: Rank(X,f2,f/g)(p)zO} and Doml(X,1,f/g)={pET:
Rank(X-{p) ,f/gXp);tl).

PROPOSITION 1.2. Dom1(X,f2,f/g)QDom(X,92,f/g),

Doml(X,f2,f/g)uX=Dom(X,2,f/g), Dom(Dom(X,2,f/g),f2,f/g)=Dom(X, ,flg) and

Dom(Doml(X,C2',f/g),92,f/g)=Dom l(X, ' ,f/g).

The following strategies are used as building blocks for all the strategies considered here.
Decr(X,n,f/g)(p)=(q: qEf(p) and Rank(X-{p1, 2,f/g)(q):Rank(X-{p,2,f/g)(p)I is an n-
strategy. Note that if q descends from p then Rank(X-{p),f2,f/g)(q)=Rank(X,n2,f/g)(q).
Avoid(X,l-C2,g/f)(p)=fq: qeg(p) and and q0Dom(X,f2,f/g)) is a (l-C2)-strategy.

PROPOSITION 1.3. If peDom1 (X,92,f/g) then Decr(X,f2,f/g) allows to reach X after p
if l-C2 uses g after p. Moreover while C2 is using Decr(X, 2,f/g) and I-n is using g, the

play stays inside Doml(X,,f/g) at least until it reaches X first time after p. If

p!Doml(X,f2,f/g) then Avoid(X,1-n2,g/f) allows to never reach Dom(X,,f/g) (and hence
also X) after p if n uses f after p.
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UNSTABLE INTERFACES AND ANOMALOUS WAVES

. IN COMPRESSIBLE FLUIDS

JOHN W. GROVEt, RALPH MENIKOFFt QIANG ZHANG§

Abstract. The gravitational acceleration of a heavier fluid into a lighter fluid causes
unstable modes to grow in the interface between the two fluids and leads to their
eventual chaotic mixing. This phenomena is known as the Rayleigh-Taylor instability.
We discuss the development and validation of a model for the long term dynamics of
the mixing boundary layer. The model uses a simplied description of the dynamics
of the bubbles of lighter fluid rising in the heavier fluid. Validation of the model is
achieved by comparison with experiments and full scale two dimensional simulations
of the mixing process.

We also discuss the production of anomalous waves during the interaction of shock
waves with fluid interfaces. The focus here is on the case when the shock passes from
a medium of high to low acoustic impedance. Curvature of either of the interacting
waves causes the diffraction patterns produced during the collision to bifurcate from
locally self-similar pseudo-stationary configurations to unsteady anomalous reflec-
tions. This process is analogous to the transition from a regular to a Mach reflection
where the reflected wave is a rarefaction instead of a shock. These bifurcations are
incorporated into a front tracking code that gives an accurate description of the wave
interactions. Numerical results for two illustrative cases are described; a planar shock
passing over a bubble, and an expanding shock impacting a planar contact.

1. Introduction.
This report treats two aspects of computational fluid dynamics, the unstable

behavior of gravity driven mixing, and the diffraction of shock waves through fluid
interfaces. The latter process is itself associated with a related instability, known
as the Richtmyer-Meshkov instability, that occurs in shock accelerated interfaces.

The Rayleigh-Taylor instability is a fingering instability between two fluids with
different densities. If the interface between the two fluids is planar and perpen-
dicular to the direction of the applied external forces, then such a system is in a
state of unstable equilibrium when the light fluid supports the heavier. Any small
perturbation of the fluid interface will upset this unstable equilibrium leading to
the formation of rising bubbles of the light fluid and falling spikes of the heavier.
As the mixing process develops, spikes can pinch off to form droplets.

tDepartment of Applied Mathematics and Statistics, State University of New York at Stony Brook,
Stony Brook, NY 11794. Supported in part by the U. S. Army Research Office, grant no. DAAL03-
89-hN-0017.
tTheoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545. Supported by
the U. S. Department of Energy.
jCourant Institute of Mathematical Sciences, New York University, New York, NY 10012. Sup-
ported in part by NSF Grant DMS-8619856
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The mixing of two fluids under the influence of gravity was first investigated by
Rayleigh [261 and later by Taylor [31]. Since then a variety of computational and
analytic methods have been used to study this classical problem. These include;
nonlinear integral equations [4], [ 71 boundary integral techniques [33] conformal
mapping [21], dynamical modeling [12], [ 30], vortex-in-cel methods [32], [ 36]
higher order Godunov methods [34], and front tracking [8], [ 11], [ 13]. Most of this
work has been carried out for incompressible fluids or in the limit of a single fluid
in a vacuum. For a review of the Rayleigh-Taylor instability and its applications
to science and engineering, see reference [29]. We will present here results on the
behavior of a single unstable mode (one bubble), as well as the interaction of multiple
bubbles.

The front tracking method was used for the direct simulation of the mixing pro-
cess. We conducted a series of computational experiments for periodic arrays of
single bubbles (the single mode case) as well as for multiple bubble interactions.
Tracking the fluid interface offered several advantages, it eliminated numerical dif-
fusion at the interface, and it allowed an accurate measurement to be made of the
interface velocity.

Our analysis consisted of modeling the motion of the tip of a spike or bubble
in a single mode system by an ordinary differential equation, and applying these
results to the interaction of multiple bubbles. We found that in a chaotic flow
the interaction between the different bubbles causes the magnitude of the terminal
velocity of a large bubble to be greater than that predicted by the single bubble
theory. This led us to formulate a superposition model in which larger bubbles
"capture" the velocity of nearby smaller bubbles. We found agreement between the
velocities predicted by this simplified model and those obtained by direct numerical
simulations, although the agreement is better for large Atwood numbers and low
compressibility than in the opposite case.

The second part of this report treats the diffraction patterns produced by the
collision of a shock wave with a fluid interface. This process produces a variety of
complicated wave diffractions [1], [ 2], [ 18]. In the simpliest case these consist of
pseudo-stationary self-similar waves that can be described by solutions to Riemann
problems for the supersonic steady-state Euler equations. In more complicated
cases and in particular when one or both of the colliding waves is curved, these
regular diffraction patterns can bifurcate into complex composites of individual
wave interactions between the scattered waves.

The goal here is to understand the particular bifurcation behavior of the collision
of a shock in a dense fluid with an interface between the dense fluid and a much
lighter one. Two basic cases are considered. The collision of a shock in water with
a bubble of air, and the diffraction of a cylindrically expanding underwater shock
wave with the water's surface. It will be seen that initially these interactions pro-
duce regular shock diffractions with reflected Prandtl-Meyer waves. Subsequently
these regular waves bifurcated to form anomalous waves that are analogous to non-
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centered Mach reflections whose reflected waves are rarefactions. We will describe a
method to include this analysis into a front tracking numerical method that allows
enhanced resolution computations of these interactions.

2. The Equations of Motion.
In the absence of heat conduction and viscosity, fluid flow is governed by the Euler

equations that describe the laws of conservation of mass, momentum and energy
respectively.

(2.1a) Otp + V. (pq) = 0,
(2.1b) t(pq) + V. (pq 9 q) + VP = pg,
(2.1c) 9t(pS) + V pq(E + VP) = pq g.

Here, p is the mass density, q is the particle velocity, g is the gravitational acceler-
ation, E = jqj2 + E is the total specific energy, E is the specific internal energy,
and P is the pressure. The equilibrium thermodynamic pressure P(V, E), where
V = i/p is the specific volume, is referred to as the equation of state and describes
the fluid properties. The numerical examples below used either the polytropic equa-
tion of state,

(2.2) P(V, E) = (y- 1)pE,

or the stiffened polytropic equation of state, [16], [ 251

(2.3) P(V, E) = rp(E - E) - (ro + 1)P.,

where /, l0, 1E,0, and P are positive constants. In particular, all of the Rayleigh-
Taylor simulations used a polytropic equation of state with -f = 1.4.

System (2.1) is hyperbolic with characteristic modes corresponding to the prop-
agation of sound waves and fluid particles through the medium. The sound waves
propagate in all directions from their source with a sound speed c with respect to
the fluid, where c2 = OP/8p at constant entropy. Another important measure of
sound propagation is the Lagrangian sound speed or acoustic impedance given by
PC.

3. Motion of single mode bubbles and spikes.
For a given equation of state, the two fluid mixing problem is characterized by

two dimensionless quantities. The first of these is a relative measure of the dif-
ference in densities between the two fluids, the Atwood number A = ' The
second measures the compressibility of the heavy fluid. If A is the wavelength of the
perturbation and ch is the speed of sound in the heavy fluid. we define the dimen-
sionless compressibility to be C2 =4. Our goal is to study the overall behaviorC3
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a b c

Fig. 1 Plots of the interface position, and density and pressure con-
tours for A = 1/5, C2 = 0.5, and - = 1.4 in a 1 x 6 computation
domain with a 40 x 240 grid. Only the upper two thirds of the
computational region is shown in the plot because nothing of in-
terest occurs in the remainder of the computation. The interface
position for successive time steps is shown in (a) while. (b) and
(c) show contours of density and pressure respectively. Gravity is
directed downward.

of the unstable mixing between the two fluids for a range of Atwood numbers and
compressibilities.

For a polytropic equation of state, the equilibrium solution of the Euler equations
is an exponentially stratified distribution of density and pressure along the direction
of gravity. We used the solution to a linearized perturbation of this equilibrium
solution [3], [ 8] to provide the Cauchy data for a full Euler simulation. Here we
consider the single mode system, which is a periodic array of bubbles and spikes.
The top and bottom of the computational domain are reflecting boundaries.

Figs. 1 and 2 show computational results for two different simulations with C2

0.5 and A = -1 and 2 respectively. If the Atwood number is small (Fig. 1), two
interpenetrating fingers of similar shape are formed with secondary instabilities
appearing along the side of the spike. As A --* 0, the pattern of the two fluids
becomes symmetric with a phase difference 7r. For larger Atwood numbers (Fig. 2),
the spike is thinner with less roll up shed off the edge of its tip. If the compressibility
is high, the velocity of the bubble or spike will eventually become supersonic relative
to the heavy material but will remain subsonic in the light material. We refer to
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Fig. 2 Plots of the interface position, density and pressure contours
for A = 0.01, C2 = 0.5, and -f = 1.4 in a 1 x 10 computation domain
with a 20 x 200 grid. Only the upper four fifths of the computational
region is shown in the plot because nothing of interest occurs in the
remainder of the computation. The interface position for successive
time steps is shown in (a) while. (b) and (c) show contours of
density and pressure respectively. Gravity is directed downward.

[8] for the details of these studies.
A bubble or spike that arises from a small amplitude disturbance goes through

three regimes; an initial stage governed by the linearized equations, a period of free
fall, and a final terminal velocity phase. During the linear stage, the velocity grows
exponentially with time. We denote this growth rate by a. In the free fall regime the
velocity varies linearly with time and the acceleration reaches a maximum absolute
value called the renormalized gravity gR. Finally the velocity approaches a limiting
value (terminal velocity v,,) with a decay rate b. These three regimes are illustrated
in Fig. 3 which shows plots of the spike velocity and acceleration verses time.

By using curve fitting through the three growth regimes of the spike or bubble,
it is possible to describe its motion the ordinary differential equation

dv aTv(1 - "
(3.1) -- 0=__ _ _______________ _____

dt 2 1 + (1- v )+0- -- 1+ Vb21 (1 -6 V o VOO 9 R 00 V00
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Fig. 3 The comparison of the spike velocity and the spike acceler-
ation obtained numerically with the asymptotic behavior in each
regime. A = 1/3, 0.5 ad ti = 1.4. The solid lines are
the numerical results obtained by using a 80 x 640 grid in a 1 x 8
computational do[]i.

which has solution

(3.2) t o t o dimensiona E eao a the c gven b ()

The first term in (3.2) is the contribution from the linear regime the second is
that of the free fall regime, and the third comes from the asymptot ic terminal
velocity. Extensive validation of this model has been performed for a range of
Atwood numbers and compressibilities. The dependency of a, gR, b and v,, on
A and C is described in [35. Fig. 4 shows a comparison between a numerical
sirlation of the full two dimensional Eler equations and the e ofgiven by (3.2).
From a dimensional argument, the terminal velocity of the bubble should be

proportional to Vth, where the constant of proportionality cs only depends on the
db-bnsionless parameters A, C and 7. Fig. 5 shows a plot of cl for a range of
Atwood numbers and compressibilities. We see that cl depends strongly on C and
for small fixed values of C is approximately v/A. We did not explore tl~e dependence

of :, on -y in this study.

4. Interaction between bubbles.
'Aultiple bubble interactions are initialized with an ensemble of bubbles of dif-

fe, -nt wavelengths. When started at small amplitudes, shorter wavelength bubbles
ha r-e higher growth rates than the larger bubbles. However the short wavelength
btu ,bles saturate out at smaller terminal velocities than the larger ones. Thus while
the small bubbles initially runi faster, the larger ones catch up and overtake them

emerging on the outer envelope of the interface between the fluids. It was discov-
ered that bubble interaction causes the terminal velocity of the large bubbles to
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Fig. 4 Plots of spike velocity and bubble velocity versus time su-
perimposed over the best three parameter fit to the solution of the
ODE model. The parameter values are A = 1/3, C2 = 0.5, and
y = 1.4. The numerical results are obtained by using a 80 x 640
grid in a 1 x 8 computational domain.

Cl
0.4

+C 2 =0.5
o C2 -02 +OC 2 =0.0

++

+

0.0 1 1__ __ _ __ _ __ _ _

0.0 1.0

Fig. 5 The dependence of cl on A and C. Note that ci has a strong
dependence on C. For a given value of C' the dependence on A is
approximately v/ in systems of low compressibility. The value of
cl for an incompressible fluid (C 2 - 0) is taken from reference (21I.

exceed the prediction based on the single bubble theory for a bubble of comparable
wavelength. As a large bubble overtakes a smaller one, it absorbs the velocity of
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gt/ch = 0.0 gt/ch = 4.7

Fig. 6 Plots of interfaces in a random disturbance simulation of
the Rayleigh-Taylor instability. The density ratio is A = 1/3 and
the compressibility is C2 = 0.1. The acceleration of the bubble
envelope is in good agreement with the experiment of Read for 1.5
generations of bubble merger. The acceleration decreases after this
time due to the multiphase connectivity, which is different in the
exactly two dimensional computation from the approximately two
dimensional experiments. Gravity is directed downward.

that bubble which in turn is washed away downstream. We call this process bubble
merger since it reduces the number of bubbles in the outer envelope. This number is
reduced by a factor of 2" after n generations of bubble merger, a phenomenon that
was observed in the experiments of Read [27] as well as in our numerical simulations
[11]. The interface configuration of a random multiple bubble system is shown in
Fig. 6. We see that the small structures (bubbles) merge into large structures.

We propose a simple superposition model for the bubble velocity in the chaotic
regime. The basic idea is to treat the envelope of the bubbles as a single bubble of
long wavelength. The velocity of individual bubbles as well as the bubble envelope
are first computed based on the single bubble theory, the hypothesis is that to
leading order the total velocity of each bubble is the sum of its single bubble theory
velocity and the velocity of the envelope. More advanced bubbles are in phase with
this envelope so the superposition is constructive and their velocity is increased.
On the other hand a less advanced bubble is out of phase with the envelope causing
its net velocity to be decreased. During the initial small amplitude regime, the
envelope's longer wavelength causes its velocity to be dominated by the individual
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0.0 0.5 0.75 1.0 1.25

Fig. 7 Successive times in a two bubble merger process. The com-
pressibility and Atwood number for this case are C'2 - 0.1 and
A = 2/3 respectively. It can be seen that the large bubble over-
takes the smaller one at gt/ci = 1.0. The velocity of the large
bubble is accelerated during the merger while the velocity of the
small bubble is reversed, see Fig. 8.

bubbles, but at later times the envelope velocity is the main contribution to the
bubble velocity.

We compared the results of this superposition model with the experimental results
of Read [27] and our numerical simulations of the full Euler equations. The relative
error between the superposition theory and the experimental or computational data
was less than 20% for systems with A > 1 and C2 < .1, and about 30% for systems
with small Atwood numbers or large compressibility. In the latter case, the density
stratification of the fluids cause the superposition principle to break down in finite
time [11].

Fig. 7 shows the interface between two fluids at successive times in a two bubble
merger process and Fig. 8 shows a comparison of the velocities of these bubbles and
the predictions obtained from the superposition model. The behavior of the small
bubble velocity clearly indicates the rontribution from the envelope. At first the
single mode bubble velocity dominates since the envelope has a small growth rate.
The bubble stops accelerating when the small bubble and the envelope have equal
but opposite velocities. After that, the envelope velocity dominates and the small
bubble de-accelerates and is washed away downstream.

It would be expected from the existence of a terminal velocity in the single bubble
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Fig. 8 A plot of bubble velocities vs. time for the two bubble merger
simulation. The small bubble is accelerated at the beginning and
is then decelerated after about gt/c = 0.42. The small bubble is
washed downstream after its velocity is reversed, while the large
bubble is under constant acceleration. The smooth curves represent
the bubble motion as predicted by the superposition model.

theory that the asymptotic position of a bubble would be proportional to time.
However for a chaotic flow interactions cause the radius of a large bubble to increase,
consequently raising its terminal velocity. This led to the prediction that position
of the tip of a large bubble is proportional to t2 , z = aAgt2 . In his experiments.
Read [27] reported a range of values for a, a typical value being a = .06. Youngs
[34] and Zufuria [36] reported values of a ranging from 0.04 - 0.05 and 0.05 - 0.06
respectively, based on their numerical simulations. Our simulations indicated that
a is not a constant. Rather it varies during the interaction from an early value of
0.055 ,-, 0.065 to 0.038 - 0.044 at late stages of the interaction [11]. The reduction
of a from about .06 to about .04 is due to the multi-connectivity of the interface
in the deep chaotic regime. In Young's numerical simulations [341, the interface
between two fluids was not tracked so that effective multi-connectivity occurred in
the early stages of his simulations. This may explain the small values of a which
be observed. The discrepancy between the value of a at late times in our numerical
simulations and the value observed in Read's experiments results from the difference
between an exact two dimensional numerical simulation and an approximately two
dimensional experiment. In Read's experiments the ratio of width to thickness was
six to one, and the isolated segments of fluids in the x - z plane for the computations
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might be connected in the third dimension (y direction). Such discrepancies may
be resolved in three dimensional calculations which will provide a more realistic
approximation of the experimental conditions.

When compressibility effects are significant, the stratification of the density in
the unperturbed fluid causes the effective Atwood number at the tip of a bubble
to decrease as the bubble moves into the heavy fluid. The bubble velocity is non-
monotone and may even reverse directions. Since this factor was not taken into
account in the single mode theory, our superposition theory breaks down when the
effective Atwood number has been substantially reduced. To get a better under-
standing of the phenomenon of velocity turnover in a single mode system and the
failure of the superposition hypothesis in a multi-mode system, we use the initial
density distribution of light and heavy fluid to approximate the effective dynamic
Atwood number Ae. For a flat interface, the density distribution is

(4.1) pj(z) = pj(0)exp(-gz), i = 1, h

When a bubble reaches the position z, we approximate the effective Atwood number
as

(4.2) A.(z) = ph(z) - p(z) = (1 + A)ezp(7C 2 +A) - (1 - A)
ph(z) + p1(z) (1 + A)exp(yC2 2A I) + (1 - A)

For a single mode system, the turnover phenomenon should occur before the effective
Atwood number A, vanishes. For a multi-mode system, the superposition model
is applicable as long as A, ; A - A,(z = 0). In Fig. 9, we plot the approximate
effective Atwood number verses . Since A, decreases more rapidly in a system
with a small Atwood number or large compressibility, the superposition model fails
at a small value of 7 in these systems.

One should not confuse the turnover of the bubble velocity in a single mode system
with the turnover of the velocity of a small bubble in the multi-mode system . The
former is due the stratified density distribution and latter is due to the interactions
between bubbles, i.e., the contributioh of the envelope velocity to the total velocity
of the small bubble.

5. Elementary Wave Nodes and the Supersonic Steady State Riemann
Problem.

We now turn our attention to an investigation of wave interactions between shock
waves and fluid interfaces. An elementary wave node is a point of interaction
between two waves that is both stationary and self-similar [14]. Gravity will be
neglected here since the interactions considered occur on short time-scales. It can
be shown [101, [ 19 405-409] that there are four basic elementary nodes. These are
the crossing of two shocks moving in opposite directions (cross node), the overtaking
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Fig. 9 The plot of approximate effective Atwood number as the
bubble reaches position z. Ae decreases more rapidly in the system
with small initial Atwood number or large compressibility than in
the system with large initial Atwood number and small compress-
ibility. The decreasing of the effective Atwood number is the source
the turnover phenomenon in single mode system and the failure of
the superposition model in multi-mode systems.

of one shock by another moving in the same direction (overtake node), the collision
of a shock with a fluid interface (diffraction node), and the splitting of a shock wave
due to interaction with other waves or boundaries to produce a Mach reflection
(lach node). All of these waves are characterized by the solution of a Riemann
problem for a steady state flow, where the data is provided by the states behind the
interacting waves. We will primarily be concerned with the diffraction node, but
bifurcations in this node will lead to the production of all of the other elementary
nodes.

For a stationary planar flow, system (2.1) reduces to a 4 x 4 system that is
hyperbolic in the restricted variables provided the Mach number M = jqj/c is
greater than one, i.e., the flow is supersonic. The streamlines or particle trajectories
define the time-like direction. The hyperbolic modes in this case are associated
with two families of sound waves, and a linearly degenerate double characteristic
family. If 9 and q are the polar coordinates of the particle velocity q, then the sonic
waves have characteristic directions with polar angles 9 ± A, where A is the Mach
angle, sin A = M -1. Waves of these families are either stationary shock waves
or steady state centered rarefaction waves called Prandtl-Meyer waves. Waves of
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the degenerate family are a combination of a contact discontinuity and a vortex
sheet across which the pressure and flow direction 9 axe continuous while the other
variables may experience jumps.

Following the general analysis of systems of hyperbolic conservation laws [20],
we see that the wave curve for a sonic wave family consists of two branches cor-
responding to either a shock or a simple wave. The shock branch is commonly
called a shock polar [6 294-317] and forms a closed and bounded loop where the
two sonic families meet at the point where the stationary shock is normal to the
incoming flow. If we let the state ahead of the wave be denoted by the subscript
0, a straightforward derivation of the Rankine-Hugoniot equations for the system
(2.1) shows that the thermodynamics of the states on either side of the shock are
related by the Hugoniot equation

(5.1)P+Po E51 =- Eo + 2 (Vo - V).

A similar derivation applied to the steady state Euler equations shows that the flow
velocities on either side of a stationary oblique shock satisfy

(5.2) 2 22q +H=lq + HO

where H = E + PV is the specific enthalpy. The jump in the flow direction is given
by

(5.3) tan(9-o) -poq P Po) cot/I.

Here /I is the angle between the incoming streamline and the shock wave, and is
given by sin/ = o'/qo, where o = Vom is the wave speed of the shock wave with
respect to the fluid ahead and m is the mass flux across the shock. rn 2 = -,.P/\V.

The difference between the flow direction on either side of the shock is called the
turning angle of thE wave.

The same analysis when applied to the simple wave curves shows that the entropy
is constant inside a Prandtl-Meyer wave. The flow speed and flow direction are
related by (5.2) where H = H(P, SO) and

f r cos A
(5.4) 8 = go f dP - I

JP0O pcq S

In analogy to the shock polar defined by (5.1)-(5.3) we will call this locus of states
the rarefactio polar.

It is easily checked that the two branchs of (5.4) are respectively associated with
the 0 ± A characteristic directions in the sense of Lax [20]. Similarly it can be shown
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[15] that for most equations of state, the two branches of (5.3) are also associated
with the O±A characteristics in the sense of Lax provided the state downstream from
the shock is supersonic. Since 0 and P are constant across waves of the degenerate
middle family, the Riemann problem for a stationary two-dimensional flow can be
solved by finding the intersection of the projections of the wave curves in the 9 - P
phase plane.

The are two major differences between the solution to the Riemann problem for
a stationary flow and that of a one-dimensional unsteady flow. The Mach number
behind the shock wave is given by

M P2 1/2

(5.5) M = 2 ( + °cot2

For most equations of state [22] m < pc and is a monotone function of the pressure
along the shock Hugoniot. Thus if # is sufficiently close to - the flow behind the2
shock will be subsonic and the steady Euler equations ceases to be hyperbolic. The
second reason is that for an normal angle of incidence, the turning angle through
the shock is zero. This means that the two branches of the shock polar meet at
this point forming a closed and bounded loop. These two issues together imply a
loss of existence and uniqueness for the solution to the two dimensional staticuary
Riemann problem. This means that that a bifurcation must occur from a stationary
solution to a time dependent solution of the full two dimensional Euler equations.

The actual shape and properties of the shock and rarefaction polars depends
on the equation of state. We will make no use of a specific choice of equation of
state in our analysis, but we will need to assume that the equation of state satisfies
appropriate conditions to guarantee that the shock polar has a unique point at
which the state behind the shock becomes sonic, and a unique local extremum in
the turning angle. These conditions are satisfied by most ordinary equations of
state, and in particular by the polytropic and stiffened polytropic equations of state
used in the numerical examples.

6. Anomalous Reflection.
As was mentioned above, the simpliest case of shock diffraction is that in which

the flow near a point of diffraction is scale invariant and pseudo-stationary. This
will be the case provided the flow is sufficiently supe . ,nic when measured in a
frame that moves with the point [151. Then the data behind the incoming waves
define Riemann data for the downstream scattering of the interacting waves. A rep-
resentative shock polar diagram for a regular shock diffraction producing a reflected
Prandtl-Meyer wave is shown in Fig. 10.

Diffractions of these types have been studied experimentally by several investiga-
tors [1], [ 2], [ 17], [ 18], as well as numerically [5], [ 15]. Longer time simulations
of the resulting surface instabilities in the fluid interface (called the Richtmyer-
Meshkov instability [23], [ 28]) are found in [15], [ 24], [ 34]. One of the interfero-
grames, Fig. 14 of [18] shows an irregular wave pattern that corresponds to what we
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Fig. 10 A sketch of the wave pattern and polar diagrams for a reg-
ular shock-contact diffraction that produces a reflected rarefaction
wave.

call an anomalous reflection. In this wave the angle between the incident shock and
the material interface is such that the state behind the shock has become subsonic.

We consider the perturbation of a regular shock diffraction that produces a re-
flected Prandtl-Meyer wave. Suppose that initially the state behind the incident
shock is close to but slightly below the sonic point on the incident shock polar.
We allow the incident angle to increase while keeping the other variables constant
so that the state behind the incident shock passes above the sonic point. Such a
situation might occur as a shock diffracts through a bubble as illustrated in Fig. 11.
When this happens, the solution can no longer be self-similar since a Prandtl-Meyer
wave can only o, supersonic flow. Instead the reflected wave begins to over-
take and interact with the incident- shock, Fig. lc. This interaction dampens and
curves the incident shock near its base on the fluid interface allowing the flow im-
mediately behind the node to ret,,.,a to a supersonic condition. The single point of
interaction bifurcates into a degenerate overtake node where the leading edge of the
reflected rarefaction overtakes the incident shock, and a sonic diffraction node at the
fluid interface. This interaction is a two-dimensional version of the one-dimensional
overtaking of a shock by a rarefaction. The composite configi'ration is in many
ways analogous to a regular Mach reflection. In this case the reflected wave is a
Prandlt-Mleyer wave and instead of a single point of NMach reflection the interaction
is spread over the region where the rarefaction interacts with the incident shock.
The "Mach" stem can be regarded as the entire region from the point where the
incident shock is overtaken by the rarefaction to its base on the fluid interface.
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air buble

regular diffraction
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10 x '0 Ay

Fig. 11 The collision of a shock wave in water with an air bubble.
The fluids ahead of the shock are at normal conditions of 1 atm.
pressure, with the density of water 1 g/cc and air 0.0012 g/cc. The
pressure behind the incident shock is 10 Kbar with a shocked water
density of 1.195 g/cc. The grid is 60 x 60.

If we allow the incident angle to increase further we will eventually see a second
bifurcation in the solution, Fig. lid. As the material interface continues to diverge
from the incident shock, the Mach number near the trailing edge of the reflected
rarefaction continues to decrease. The characteristics behind the incident shock are
almost parallel to the shock interface near the base of the anomalous reflection.
The flow there becomes nearly one-dimension and the rarefaction wave eventually
ovitmes the incident shock. If there is a great difference in the acoustic impedance
between the two materials as in the numerical cases studied here, this second bifur-
cation will occur as the strength of the incident shock at the fluid interface reduces
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to zero. The now non-centered rarefaction breaks loose from the fluid interface and
begins to propagate away. This second configuration is also analogous to a Mach
reflection. Here the Mach node corresponds to the interaction region between the
rarefaction and incident shock, while the Mach stem is the degenerate wave portion
from the trailing edge of the rarefaction to the fluid interface.

7. The Tracking of the Anomalous Reflection Wave.
The qualitative discussion of the anomalous reflection in the previous section can

be incorporated into a front tracking code to give an enhanced resolution of the
interaction.

The tracking of a regular shock diffraction was described in [15]. The first step
in the propagation is the computation of the velocity of the diffraction node with
respect to the computational (lab) reference frame. Suppose at time t the node is
located at point Poo. The node position at time t + dt is found by computing the
intersection between the two propagated segments of the incident waves. If this new
node position is P0, then the node velocity is given by (p0 - poo)/dt. This velocity
defines the Galilean transformation into a frame where the node is at rest. When
the state behind the incident shock is supersonic in this frame, it together with
the state on the opposite side of the fluid interface provide data for a supersonic
steady state Riemann problem whose solution determines the outgoing waves. The
outgoing tracked waves are then modified to incorporate this solution.

A bifurcation will occur if the calculated node velocity is such that the state
behind the incident shock is subsonic in the frame of the node. If the reflected
wave is a Prandtl-Meyer wave this will result in an anomalous reflection. The front
tracking implementation of this bifurcation is a straightforward application of the
analysis described in the previous section.

First the leading edge of the reflected rarefaction is allowed to break loose from
the diffraction node. The intersection pi between the propagated rarefaction leading
edge and the incident shock is computed and a new overtake node is installed at
P, by disconnecting the rarefaction leading edge from the diffraction node ani
connecting it to Pl.

If this reflected rarefaction edge is untracked, then p, is found by calculating
the characteristic through the old node position corresponding to the state behind
the incident shock and computing the intersection of its propagated position with
the propagated incident shock. This characteristic makes the Mach angle A with
the streamline through the node. Since the bifurcation occurs between times t and
t + dt, 11 > 1 at time t and A is real. This wave moves with sound speed in its
normal direction. In this case no new overtake node is tracked.

We are now ready to compute the states and position of the point of shock
diffraction after the bifurcation. As was mention previously, the rarefaction expands
onto the incident shock causing it weaken. This in turn slows down the node causing
the incident shock to curve into the fluid interface. The diffraction node will slow
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Fig. 12 A diffraction node initially at p00 bifurcates into an anoma-
lous reflection. The predicted new node position at p0 yields a
Mach number of 0.984 behind the incident shock. The leading
edge of the reflected Prandtl-Meyer wave breaks away from the
diffraction node to form an overtake node at pl. The propagated
position of the diffraction node is adjusted to return the flow to
sonic behind the node.

down to the point where the state immediately behind the node becomes sonic.
After this the configuration near the node can be computed using the regular case
analysis.

The adjusted propagated node position is computed as follows, see Fig. 12. For
each number s sufficiently small, let p(s) be the point on the propagated material
interface that is located a distance s from Pa when measured along the curve, the
positive direction being oriented away from the node into the region ahead of the
incident shock. Let .3(s) be the angle between the tangent vector to the material
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interface at p(s) and the directed line segment between the points p(s) and pi. Let
v(s) be the node velocity found by moving the diffraction node to position p(s),
and let q(s) be the velocity of the flow ahead of the incident shock in the frame
that moves with velocity v(s) with respect to the lab frame. The mass flux across
this shock is given by

(7.1) m()= poq(s) Isin (s).

Given r(s) and the state ahead of the incident shock, the state behind the shock
and hence its Mach number M(s) can be found. The new node position is given by
p(s*), where s* is the root of the equation M(s*) = 1. Finally, the state behind the
incident shock with mass flux m(s*) together with the state on the opposite side
of the contact are used as data for a steady state Riemann problem whose solution
supplies the states and angles of the transmitted shock, the trailing edge of the
reflected rarefaction, and the downstream material interface.

The subsequent propagation of the anomalous reflection node is performed in
the same way. The bifurcation repeats itself as more of the reflected rarefaction
propagates up the incident shock. The leading edge of the reflected rarefaction
wave that connects to the diffraction node is not tracked after the first bifurcation.

The secondary bifurcations that occur when the trailing edge of the rarefaction
overtakes the incident shock are detected in a couple of ways. If the incident shock
is sufficiently weak, i.e., the normal shock Mach number is close to 1, then it is
possible for the numerically calculated upstream Mach number to be less than
one. This is a purely numerical effect since physically the upstream state is always
supersonic. However in nearly sonic cases such numerical undershoot can occur.
If such a situation is detected the trailing edge of the reflected rarefaction wave
is disengaged from the anomalous reflection node and installed at a new overtake
node on the incident shock. The residual shock strength for the portion of the
incident shock behind the rarefaction wave is small and the diffraction node at the
material interface reduces to the degenerate case of a sonic signal diffracting through1
a material interface.

The second way in which the secondary bifurcation is detected occurs when the
trailing edge of the rarefaction overtakes the shock. Here a new intersection between
the incident shock and the trailing edge characteristic is produced. As before the
tracked characteristic is disengaged from the diffraction node and a new overtake
node is installed at the point of intersection. The residual shock strength at the
node is non-zero so the diffraction at the material interface produces an additional
expansion wave behind the original one. This new expansion wave is not tracked.

It is possible to make a few remarks about the amount of tracking required for
these problems. Since the front tracking method is coupled to a finite difference
method for the solution away from the tracked interface (the interior solver), there
is always an option between tracking a wave or allowing it to be captured. Of course
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capturing can result in a considerable loss in resolution in the waves as compared
to tracking [9], but it will also simplify the resolution of the interactions. The
secondary bifurcations described above are only tracked when the trailing edge of
the reflected Prandtl-Meyer wave is tracked. The current algorithm is structured so
that at a minimum the two interacting incoming waves are tracked. At this extreme
none of the outgoing waves are tracked and no explicit bifurcations in the tracked
interface occur. More commonly, the material interface separates different fluids
and so must be tracked on both sides of the interaction. Also, instabilities in the
finite difference approximation can affect the accuracy of the solution near the node,
especially for stiff materials such as water. Tracking the additional waves seems to
considerably reduce these problems. Tracking also allows the use of a much coarser
grid, which is important when the diffraction occurs in a small but important zone
of a larger simulation. It allows the entire region of diffraction to extend only over
only a fraction of a grid block. These remarks show that the amount of tracking is
problem dependent, and a compromise can be made between the increased accuracy
and stability of front tracking, and the simplicity of a capturing algorithm.

8. Numerical Examples.
Fig. 13 shows a series of frames documenting the collision of a 10 Kbar shock wave

with a bubble of air in water. Note in this case the trailing edge of the reflected
Prandtl-Meyer wave is not tracked. The states ahead of the incident shock are at
one atmosphere pressure and standard temperature. Under these conditions, water
is about a thousand times as dense as air. During the initial stage of the interaction
regular diffraction patterns are produced.

In less than half of a microsecond an anomalous reflection has formed, and by
one microsecond the trailing edge of the rarefaction has also overtaken the incident
shock. It is interesting to note that this interaction causes the bubble to collapse
into itself. Long time simulations are expected to show the initial bubble split.
and the resulting bubbles going into oscillation as they are overcompressed and
rhen expand. This process is important in the transfer of energy as a shock pas,- s
through a bubbly fluid. The first diffraction considerably dampens the shock, and
much of this energy will eventually be returned to the shock wave in the form of
compression waves generated by the expanding bubbles.

Fig. 14 shows the diffraction of an expanding underwater shock wave through
the water's surface. Initially a ten Kbar cylindrically expanding shock wave with a
radius of one meter is placed two meters below the water's surface. The interior of
the shock wave contains a bubble of hot dense gas. The states exterior to the shock
are ambient at one atmosphere pressure and normal temperature. A gravitational
acceleration of one g has been added in this case, but due to the rapid time scale
on which the diffractions occur the effect of gravity is negligible. Here the entire
reflected Prandtl-Meyer wave is captured rather than tracked. The pressure con-
tour plots show that by six milliseconds an anomalous reflection has developed as
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(a) time 0.0 (b) time 0.15 __ec

incident shock wave

air buble

regular diffraction

(c) time 0.6 psec (d) time 1.3 psec

anomalous reflection, "

l0 Ax -0 Ay
Fig. 13 Log(l + pressure) contours for the collision of a shock wave
in water with an air bubble. The fluids ahead of the shock are at
normal conditions of I atm. pressure, with the density of water 1
g/cc and air 0.0012 g/cc. The pressure behind the incident shock
is 10 Kbar with a shocked water density of 1.195 g/cc. The tracked
interface is shown in a dark line. The grid is 60 x 60.

indicated in the blowup of Fig. 14b shown in Fig. 15. Another interesting feature of
this problem is the acceleration of the bubble inside the shock wave by the reflected
rarefaction wave. This causes the bubble to rise much faster than it would under
just gravity. When the bubble reaches the surface it expand, into the atmosphere
leading to the formatior of a kink in the transmitted shock wave between the region
ahead of the surfacing bubble, and the rest of the wave. This kink is an untracked
example of the elementary wave called the cross node where two oblique shocks
collide.
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(a) dm 0.0 msec (b) firm 6.0 msec

(c) time 20.0 Msec (d) d=_ 40.0 msec

25 Ax =25 Ay
Fig. 14 An underwater expanding shock wave diffracting through
the water's surface. An expanding shock wave with an internal
pressure of 10 Kbars and initiaJ radius of 1 meter is installed at
a depth of 2 meters below the water's surface. The external con-
ditions are ambient at one atmosphere pressure and normal densi-
ties for the air and water. The boundary conditions are constant
Dirichlet at the initial ambient values. The grid is 150 x 150.

The water in the simulations described above is modeled by the stiffened poly-
tropic equation of state with 'o = 6, E, = 0, and P, = 3000 atm. The air is
treated as a polytropic gas with -y = 1.4.

9. Summary.
We have seen *hat the process of bubble growth and interaction in gravity driven

mixing can be modeled using a simplified description of the bubble dynamics at
least in the small compressibility regime. In this regime, the model agrees with

366



25 Ax = 25 Ay
Fig. 15 A blowup of Fig. 14.1b showing pressure contours scaled
from 0.001 - 10 Kbars. The tracked interface is shown superim-
posed in a dark line over the pressure contours.

experiments and computer simulations well into the chaotic regime. It should be
possible to include results of this simplified model in statistical models that can
study the interaction of large numbers of bodies.

We also studied the diffraction of a shock through a material interface from a
medium of high to low acoustic impedance. The bifurcations that occur during
the diffraction were analyzed in terms of polar diagrams for steady supersonic flow.
This analysis was incorporated into a front tracking code to allow enhanced reso-
lution computations of the interactions. T"e particular simulations studied were
the diffraction of a planar shock in water through an air bubble, and the diffrac-
tion of an expanding shock in water through the water's surface. In both cases the
anomalous reflection bifurcation plays an important role in correctly computing the
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Abstract

The characteristics of a single streamwise vortex embedded in Poiseuille flow have been
analyzed both numerically and analytically. On short time scales, velocity profiles are found to
evolve similarly to those previously derived in unbounded Couette flow. As wall effects begin to
be felt at later times, a perturbation solution is derived whose profiles and decay rates are found
to agree with calculations. Both solutions are used to answer questions about the strength and
motion of the vortex, the presence and strength of any counter-rotating vortices induced at the
viscous wall, and the possible (or impossible) role of such induced vortices in transition. Time
scale arguments are used to make inferences about the stability of various initial distributions
of streamwise vorticity, and in particular to derive a neutral curve (critical Reynolds number vs
vertical position in flow) with a minimum critical Reynolds number dose to 1000.
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1 INTRODUCTION

Laminar-turbulent transition is still an incompletely understood phenomenon. Observations disprove
the conjecture that transition is. governed by the Reynolds number, R. Linear stability theory
correctly explains phenomena within its regime (eg, instability of plane parabolic flow to infinitesimal
perturbations above a critical Reynolds number R, = 5772 based on surface velocity and flow depth),
but it turns out that Tollmein-Schlicting waves are neither necessary nor sufficient for transition; not
necessary since subcritical transition is observed at R down to about 1000, and not sufficient in the
sense that, when present, their most unstable mode grows on a diffusive time scale, and in the absence
of a secondary three-dimensional perturbation, these modes do not become significant until very
large times (eg, Nishioka et al, 1975). 2-D finite amplitude perturbations predict R, 2800 in plane
parabolic flow, but fail to account for observed transition down to R, z 1000, and produce profiles
that always saturate in amplitude before decaying back to laminar (Herbert, 1977). Additionally,
some other flows (eg, plane Couette) exhibit no 2-D finite amplitude growing modes. 2-D finite
amplitude waves have been found to have a strong secondary instability in the presence of a small
3-D disturbance at R > 1200 in rough agreement with observations (Orszag and Patera. 1983).
but there is no rational mechanism to'generate these finite amplitude waves in a subcritical flow
Statistical methods have the problem of closure from a theoretical standpoint; empirically, they
perform well in known regimes, but extrapolate poorly to new ones, and tell us little of the physics
of transition. AL a very practical level, an understanding of the physical processes involved is
desirable for use when, for example, designing for reduced drag or designing for increased mixing.

Much attention has been devoted recently to investigating the role of streamwise vorticity in
shear flow transition. The experiments of Klebanoff et al (1962) showed that 2-D waves developed a
spanwise waviness that generated 3-D streamwise vortices, which in turn broke down as part of the
transition cycle. Taylor vortices, G6rtler vortices, the trailing vortices from a boundary roughness
element, sweeps from the outer flow that pull up spanwise vortex tubes which are subsequently
stretched by the shear to form hairpin vortices - all these are observed to be possible precursors to
transition. The common element in all is the presence of the streamwise vortex in shear flow (eg,
Figure 1).

As the simplest abstraction, Pearson and Abernathy (1984) investigated a single infinitely long
vortex aligned in the flow direction in an unbounded uniform shear flow (Figure 2) They found th-A,
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the full 3-D incompressible Navier-Stokes equations reduced to one ODE in a similarity variable.
This solution depends on the vortex Reynolds number (R_ -'- - a measure of the vortex strength;
specifically, the ratio of the circulation rate to diffusion rate) and not on the flow Reynolds number,
R. The flow Reynolds number sets the local shear, which in turn sets the time scale of the instability.
Figure 3 shows the perturbed streanwise velocity profiles as caused by vortices of different strengths.
The effect of the vortex is to rotate low velocity fluid from bottom to top and high velocity fluid
from top to bottom. The resulting inflectional profiles are reminiscent of those treated in inviscid
stability theory. A linear stability analysis of these profiles in a viscous fluid shows them to be
unstable for &1 > 2 - 3 (and for any R). Yang and Abernathy (1987) generated what they believed
to be a single vortex in plane parabolic flow and produced similar velocity profiles, but observed
additional structure near the bottom viscous wall. Suri and Abernathy (1988) investigated the effect
of a diffuse array of vortices above a viscous wall, but found profiles that took much longer to develop
and were less inflectional.

These results raise additional questions. Do Pearson's inflectional profiles generalize to more
realistic (eg, bounded, non-Oseen vortex) flows? Or are these profiles just peculiar artifacts of
starting with a delta function of vorticity, with more realistic initial conditions yielding much less
perturbation of the streamwise flow field? Even if more realistic initial conditions yield similar
profiles, does the viscous wall reduce circulation enough to make the vortices (and thus their reduced
inflectional profiles) just innocuous observers during the transition sequence? How do Suri's velocity
profiles tie in with those of Pearson? Does a single streamwise vortex kick up enough added structure.
at the viscous wall so as to not remain a single vortex, and thereby cast doubt on Yang's conclusions
about the role of the single vortex in transition? If R is not the controlling factor in transition, what
is its role? This paper attempts to answer these questions.

Figure 1: Boundary layer transition on a flat plate (Werl6 1980). Note the initially counter-rotating
vortex pair at left, as evidenced by the contracting flow near the plate and the upflow region at the
center.
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Figure 2: Pearson and Abernathy's (1984) undisturbed flow configuration. Flow is an unbounded
uniform shear. A line vortex of strength R. is inserted, coincident with the z axis, at time zero.
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Figure 3: Dimensionless vertical profiles of the streamwise velocity after being perturbed by stream-
wise vortices of various strengths R,. Profiles are calculated after a constant time interval. From
Pearson and Abernathy (1984).
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2 PROBLEM FORMULATION

2.1 GEOMETRY

We begin by adding another layer of realism to Pearson: we consider a bounded region with a viscous
wall, a parabolic mean profile, and initial distributions of vorticity other than potential. Specifically,
we consider Poiseuille flow of infinite extent in the streamwise (z) and spanwise (z) directions over
a viscous plane. A free surface is located at height h with streamwise velocity u0 . The wall (and
z axis) are at an angle 6 from horizontal, and it is the body force due to the component of gravity
in the z direction that generates the mean velocity profile. Embedded in the mean flow is a periodic
array of vortex pairs aligned in the streamwise direction, each of initial circulation ro. The ratio of
the average vortex spacing to flow depth is the aspect ratio, a. (See Figure 4). The case of a single
streamwise vortex in an infinitely wide box is obtained in the limit a -* oo. Since we will often be
interested in this limit, we plot the independent variable . rather than a in order to put this limit
at the origin. Vertical streamlines dividing a vortex from its images on the left and right are located
at z = ±-1. These streamlines can equivalently be thought of as slippery walls - slippery in the sense
that boundary conditions (Section 2.4 below) require no shear stress on them. For later reference,
we denote the left wall as ).ft, the free surface as tkp, the right wall as Oright, and the bottom wall
as abottom.

2.2 ASSUMPTIONS

1. Like Pearson, Yang, and Suri, we assume no z dependence in the flow at t = 0. This is based
on the observation that the flow variables change slowly in the z direction compared to changes
in the y and z directions (eg, Figure 1).

2. We assume that the free surface is constrained by a normal force to a horizontal plane. This
assumption allows us to eliminate one variable (free surface position) from the equations, but
also means that additional circulation is lost through the constrained free surface (which is
now essentially another slippery boundary caused by an image vortex). This assumption seems
warranted based on experimental observations; in Appendix B, we demonstrate its consistency.

3. At t = 0 we are capable of using any initial distribution of vorticity. but for simplicity of
analysis we choose to use either a delta function of vorticity (like Pearson and Yang). a fully
diffused (in a sense to be explained later) vortex (like Suri), or a cylindrical tophat function
of vorticity as a new intermediate case.

2.3 EQUATIONS

We begin with the 3-D incompressible Navier-Stokes equations. We nondimensionalize with re-
spect to the characteristic variables listed in Table 1. We choose these characteristic quantities on
the purely pragmatic grounds that they result in the greatest simplification in the appearance of
subsequent formulas. All variables throughout this paper are dimensionless, except where noted.

The lack of z dependence at t = 0 implies that there will be no z dependence at any later
time. This eliminates the streamwise velocity u from the crossflow equations, resulting in a partial
decoupling first noticed by Mitchner (1952) and by Stuart (1965). This allows a stream function-
vorticity formulation in the crossflow directions. The equations become:
Crossflow:

Wt + VWj + WW'= - L(Wy + ,75)
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Crossflow Streamwise Streamwise
(R_ 96#o) (R. 0) (R, = 0)

Time - A

Length h h h

Velocity RUO uO UO

Acceleration U-R - -R

Stream Function v&

Potential * uoh -

Vorticity R 9h-

Circulation uoh u0 h

Pressure/Stress 2 h
2

Nondimensional parameters are:

R, = .. (ratio of spanwise convective effects to diffusive effects)21b,

R ---- " (ratio of streamwise convective effects to diffusive effects)

Table 1: Characteristic variables and nondimensional parameters
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ovy + 4', = -w (2)

V = -

Streamwise:
2 1u, + VUV + wuZ -+ T(Upp+ U,-) (3)

The body force term - in the streanwise direction is the component of gravity in the z direction
that establishes and works to maintain the original parabolic profile.

2.4 BOUNDARY CONDITIONS

On 8 1eft, 49t., and Org#ht(slippery walls): Z = 0. On Ob.,,., (viscous wall): u = v = w = 0. These
yield the boundary conditions:

Equation 1: w = 0 On Oi , p,. ight

w = 0 On 4otom

Equation 2: @ 0 On o.p, atop, Orght, abottom

Equation 3: u. = 0 On 8t.,
U,= 0 On alft, Orsght
U = 0 On abouo

2.5 INITIAL CONDITIONS

We initialize in both the streamwise and crosafiow directions:

Equation 1: w = w0(z, y) (for any specified distribution w0)

Equation 3: u =2y -y2
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Figure 4: Geometry adopted for this investigation. We consider an initially parabolic flow .f infinite

extent in x and z above a plane viscous wall. At time zero, an array of counter-rotating vortex pairs

is begun, aligned in the x direction. Similar to previous flow table experiments, except the free

surface is constrained to a flat plane.
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3 COMPUTATIONAL SOLUTION

At this point, there is no obvious way to attack the problem analytically. Unlike Pearson's exploita-
tion of the Oseen vortex, we have no expression for the evolving bounded vortex, and because of
the boundaries there does not seem to be much likelihood of finding a similarity solution for the
streamwise velocity. Therefore we turn to a computational solution of the above equations. The
methodology chosen is:

" Initialize

" Step forward w on interior (Equation 1)

" Step forward u (Equation 3)

" Solve for 0 (Equation 2)

" Calculate w on viscous boundary (Thom's Method)

We loop through as many time steps as desired.

4 BENCHMARKS

An exact solution by Taylor (1923) and Suri (1988) for the spanwise flowfield of a certain vortex
will serve as a useful point of reference in places to come, so we present it here. The problem is
similar to the crossflow part of our problem listed above (Equations 1 and 2), except for the bottom
boundary condition and the initial condition:

W, + vwY + WW, = -- w-(w1  + WZ) (4)

V0yy + OZZ = -W (5)

w = Wy

V = V

BOUNDARY CONDITIONS:
Boundary conditions differ in that the bottom is another slippery plane, like the top:

Equation 4: w = 0 On 01eft, (9top, 8 righs, Oatoom

Equation 5: 0 = 0 On (O1et, O9top, right, 19botom

INITIAL CONDITIONS:
T 
3

0= w cos . cos 7ry (6)

Once the above problem has been solved, the pressure P is obtained to within an additive constant
from:

P= -wt - Vw, - ww. + w yy + wzZ
R

Py = -Vt - ,vI.J - WV. + vyy + V..
R7
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The solution to the above problem is:

I (1 + -)~W= - Cos racos7rxp-(T
2a+ (7)

1P= V O S cos co ep ( _ryext 8

2a( co cosep- ( l + ---- (8)

w = - 2- -co(+ s) cos snvyexp (1+ )r 2 t (9)

72__ (1 + ()9r2 t)V = 2a(1+'r) sin cos ye p-l R .  (10)

_______ 2rz 1 2(1 + )T2 t
P = 16a(l + -) )co+( cos21)exp- M R

This is an exact solution for the given initial condition, and our computations show that it is
asymptotically correct for others (above a non-viscous bottom surface); for example, Figure 5 shows
the residual between Suri's solution and our computational 'solution for an initially potential vortex.
Suri's solution becomes an increasingly better approximation as time increases.

By making the computational bottom wall slippery, we can compare the results of the above
numerical procedure with Suri's exact solution. Figure 6 shows the evolution of w at z = 0 for a = 1
and R. = 5 as given by our numerical solution; there is no visible difference (except discretization)
between this and a plot of Suri's solution. The same holds true for plots of other flow variables.

In Appendix A, we derive a solution for a vortex above a viscous wall which is analogous to
Equations 7 through 11 above. For example, the zero'th order expression for the vorticity is:

7.2 kt
S- M, cos - sin k- (y - )exp- t

1 - cos - "

where k is determined from

tan k-. tanh

This solution is similar to Equation 7 in that both share a cosine in z and both have a trigonometric
function in y that goes to zero at 8ktp. Suri's function (a cosine) goes to zero on 8 bottm, yielding
a slippery bottom surface, whereas our function (a sine with displaced argument) has a shorter
period, introducing just enough negative vorticity near Notto, so as to enforce the viscous boundary
condition. This solution above a viscous boundary serves as another benchmark; the residual between
it and our computational solution is presented in Appendix A. Again, agreement is very good.

Another test against an analytic result can be made by making the computational bottom wall
viscous and starting a potential vortex at the center of a square (a = 1) box. Since r = f 6 dl and
the crossfiow component of the velocity i is symmetric on the four walls, we know that turning on
the viscous wall at t = 0 will instantaneously decrease the circulation to exactly 75% of its initialized
value. Numerically, we measure the circulation via Green's Theorem: F = ffadA, and find the
predicted drop to occur to a high degree of accuracy (eg, Figure 33). The circulation is immediately
decreased by 25% due to the vortex sheet of opposite-signed vorticity generated when the viscous
wall is activated.
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Figure 5: Residual between Suri's solution (Equation 7) beginning from a fully diffused vortex
and our computational solution for flow above a slippery wall beginning from an initially potential
vortex. After sufficient time the actual initial condition is irrelevant, and Suri's solution is a good
approximation. Dotted line is the circulation of an initially potential vortex for comparison.
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Figure 6: Vorticity of a fully diffused vortex above a slippery wall at different times as calculated
by our computational procedure, superimposed on Suri's exact solution (Equation 7). Agreement is
good enough to make the two sets of curves coincident.
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5 STREAMWISE VELOCITY PROFILES

At short times, our numerical solution produces streamwise velocity profiles that, locally, are quali-
tatively and quantitatively the same as Pearson and Yang (Figures 7 to 10). At a vortex strength of
R. g 6.5, we calculate a vertical slope of zero (" = 0), in agreement with Pearson. Velocity profiles
become more inflectional at higher R,. The streamwise velocity profiles are slightly asymmetric (the
magnitude of the perturbation on the upflow/low speed side is greater than that of the perturbation
on the downflow/high speed side) due to the parabolic profile, just as observed by Yang. These

areas of agreement occur in the range t < 0 (here, t and y are dimensional). This is a diffusive
time, corresponding to the diffusion of the vortex core to the boundary.

At longer times, the velocity gradient at the vortex center rotates back to its original orientation
and value, and the original undisturbed flow is restored (Figure 11). This is because circulation is
lost at the boundaries (both viscous and slippery). Since Pearson and Yang worked in unbounded
domains, their circulation remained constant (even though they eventually had a finite amount of
vorticity of vanishingly small density spread over an infinite area), so their undisturbed flows were
never restored. In our present bounded domain, we see the gradient at the center of the vortex begin
to be restored soon after the core hits the wall (eg, Figure 20).

Suri's solution (Equations 7 to 11) yields a decay rate of exp - for a vortex above a

slippery wall. How much faster does the vortex decay when above a viscous wall? In Appendix A,
we show that the asymptotic decay rate is exp - where k is determined from

tan tanh-L a th

This yields the same decay rate in an infinitely skinny box (a = 0) where the viscous wall is negligible,
but yields a decay rate almost twice that of Suri's when in a semi-infinite domain (a - o). This
means that the flow variables decay like exp -5t/sec (t is dimensional here) in typical transition
experiments.
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Figure 7: Streamwise velocity profiles at successive times. Total elapsed time is small. Flow is
initially parabolic above a viscous wall, vortex is initially potential. Note the greater magnitude of
the low-speed perturbation, due to the parabolic mean flow.

r/

Figure 8: Vertical streamwise velocity profiles at successive times for the low in Figure 7. Vertical
profile is initially parabolic; greater perturbations occur after longer times. Note how ' ' z 0 at this
vortex strength of R, = 6.5, in agreement with Pearson and Abernathy ( 1984).
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Figure 9: Vertical streamwise velocity profiles at successive times for a vortex of strength R, 4.
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Figure 10: Vertical streamwise velocity profiles at successive times Cor a vortex ,>f strength R. - 10.
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Figure 11: Streamwise velocity profiles at later Limes for an initily potential vortex, R,.5 in
initially parabolic Hlow. Note the decay back toward the initial profile.
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6 COUNTER-ROTATING VORTEX

One of the primary motivations for undertaking this investigation was to look into the ramifications
of Yang's secondary structure: is it a counter-rotating vortex induced by the main vortex above
the viscous wall? Does it affect the stability of the flow, and thereby reopen questions about the
existence and stability of single streamwise vortices in real flows?

At a = 1, no counter-rotating vortex is observed below some threshold R, (resolution-dependent:
10 on an 81x81 grid), whereas at higher R, a small counter-rotating vortex is induced in the

lower right corner (for a counterclockwise main vortex). At larger aspect ratios (eg, a = 4), the
secondary vortex is much more prominent; it rises from the wall to the same height as the main
vortex. Another counter-rotating vortex (much weaker than the first) is also induced in the lower
left corner (Figure 12). If the main vortex is started close to the wall, then this left vortex is initially
stronger than the right, but the right vortex becomes the stronger as the main vortex lifts away
from the wall (Figure 13). At higher R,, the left vortex appears later, and the right vortex develops
from a point on the bottom wall closer to the main vortex (Figure 14).

There are two alternative explanations for this induced counter-rotating vortex on the right side:

1. Negative vorticity is generated at the viscous wall on the bottom and is convected to the
right. The counter-rotating vortex begins at the wall on the right when this region of negative
vorticity has become sufficiently concentrated with respect to the crossflow velocity of the main
vortex.

2. The pressure is high on the right and left sides where the velocity is low, and low between
the vortex and the bottom wall where the velocity is higher. This constitutes an unfavorable
pressure gradient on the right side, resulting in separation.

In Appendix A, we indicate that this counter-rotating vortex will always be induced for main
vortices above a threshold strength that is dependent on the aspect ratio. At a = oo, this threshold
is small, but non-zero. We find these induced vortices to vanish after a finite time Also, since we
are comparing results with experiments conducted at a = oo, it is a potential concern that the side
walls sometimes seem to play a part in the development of these induced vortices (eg, Figures 12
and 13). In Appendix C. we show that there is no practical difference between the strengths of the
vortex induced in a box of aspect ratio a 4 and the strength of the induced vortex in a semi-infinite
domain (a = -).

At high R,, the peak circulation of the induced vortex is one order of magnitude smaller than
that of the main vortex (Figures 15 and 16). This small circulation has no observable effect on the
streamwise velocity profile (Figures 17 and 18). At more moderate R,, the counter-rotating vortex
is at least two orders of magnitude weaker than the main vortex in circulation: within these ranges,
the induced vortex is insignificant and has no effect on the streamwise velocity profile.
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Figure 12: Development of the induced vortex over time for an initially potential vortex of strength
R.= 5. Box is of aspect ratio a = 4.

i 7\1--'

Figure 13: Development of the induced vortex over time for an initially potential vortex of strength
R, -- 5 started near the wall. The left induced vortex develops first, then the right induced vortex
overtakes it in strength as the main vortex moves away from the wall. a = 4.
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Figure 14: Motion of tLn- centers of the main and induced vortices for main vortices of different
strengths, R,. In this figure, all vortices begin at the lowest vertical position shown and rise over
time. a = 4.

Figure 15: Development of the induced counter- rotating vortex over time. The main vortex is
initially potential, R,,=25, rotating counterclockwise, a = 4
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Figure 16: Strength of the main (R c = 25) a td induced vortices of Figure 15. Even for a main
vortex of this large strength, the induced vortex is at leat one order of magnitude weaker.
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Figure 1: Vertical velocity u through the center of the induced vortex shown in Figure 15. Noteth~e insignificance of this velocity in the induced vortex (the neative values near .- 3.2) and the

dominant vertical velocities underneath the main vortex (: ;z 1.5 - 2.2).
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Figure 18: Streamwie velocity profles through the center of the induced vortex shown in Figure 15.

%\°elocities are reater t successive times since ve folow the induced vortex as it rises. Tle lare

perturbations near 2 a > re due to he main vorte. Note he absence of ny -.ffect due to he

induced vortex (near z ;t 3.2).
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7 FINITE DISK OF VORTICITY

We have previously used both a delta function and a fully diffused distribution of vorticity as our
initial condition. However, we suspect that streamwise vortices in real flows begin with a finite size
on the order of the originating disturbance. For small initial disturbances, we expect that finite size
to be closer to a delta function than to being fully diffused, but what significant differences are there
in subjecting the initially undisturbed flow to a vortex of small but finite structure as opposed to a
delta function?

For simplicity, we assume a vortex that begins with constant vorticity inside a cylinder of radius
r0 and with zero vorticity outside. This seems a reasonably more accurate initial view of the vortex,
yet simple enough for clear analysis. For this finite-sized vortex, we see that the streamwise velocity
profiles are established more slowly over a larger core (Figure 19), rather than instantaneously at
the center and then at immediately following moments at the edge of the growing core, as for the
Oseen vortex.

The streamwise velocity gradients in the core have not finished growing in this figure. If we plot
the slope at the vortex center, we see that the delta function of vorticity sets the slope immediately
(first time step) to a constant value. Vortices with successively larger radii (but the same R,) take
successively longer times to set the slope at the center, but they all eventually set the slope at the
vortex center to the same constant value (Figure 20). After the core senses the walls, the slope
decays back to the undisturbed value in the same fashion for all cases. Note that it is possible for
the slope to begin decaying before its maximum value has been reached, eg, if a finite-sized vortex
is placed with its core edge sufficiently close to a wall.

Do larger finite-sized vortices generate stronger induced vortices than smaller vortices (or even
delta functions) of the same strength? We have always observed the larger vortices to be weaker,
although they may be asymptotically equal, barring interference from the walls.

How does the time to set the gradient inside the core depend on the vortex strength R,? Figure 21
shows that the time to set the gradient is independent of R,, except when the vortex is so strong
that the gradient is rotated by more than 900, ie, when R' > 6.5.

Summarizing, the diffusion time across the initial vortex radius sets another time scale (in ad-
dition to the shear) on the growth of the instability, with delta functions setting the fastest time
scales and larger radii structures setting slower time scales. This time required to set the gradient is
independent of R, for R,, < 6.5. For walls that are sufficiently far removed, vortices of all different
radii (but at the same R,) eventually (on their respective time scales) achieve the same core slopes
and velocity profiles, decay at the same time and rate, and therefore affect the flow equivalently. For
vortices sufficiently close to a wall, decay may stabilize a large-radius vortex while allowing a smaller
one (of the same R. and whose edge is the same distance from the wall) to go unstable (Figure 22).

Therefore, sufficiently far from walls, the initial distribution of vorticity does not matter in the
long run. Near walls, the initially-potential vortex is potentially the most destabilizing since its
profiles develop the quickest and stand the best chance of going unstable before wal'damping comes
into play, and so represents a worst case.
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Figure 19: Streamwise velocity profiles for a vortex which begins with finite radius ., R, = 6.5.
Note how slowly the profile develops at the center of the core.

a

Ca .-, as

L. .2 .3 .4 .5
NTE

Figure 20: Perturbation of the streamwise velocity at the vortex center for vortices of different
initial radii (ro), but the same strength (R. = 6.5). Larger radii vortices develop more slowly, but
all achieve the same eventual profile. Note how the original velocity gradient begins to be restored
after the vortex core diffuses to the wall at t z 2.
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vortex develops on a slower time scale, it may be stabilized by the wail while the smaller one goes
unstable.
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8 DUPLICATING YANG'S SECONDARY STRUCTURE

Since the appearance of Yang's secondary structure was one of the main motivations of this work, it is
reasonable to attempt to duplicate it in order to find some clues as to its nature. From our preceding
results, we know it is not an induced vortex above a plane viscous wall. We try to duplicate Yang's
structure by artificially adding another vortex of opposite sign to the flow. After trials with many
initial sizes, strengths, and locations, we make two observations: the difference in the observed core
sizes of the two vortices necessitates at least one of them starting at finite size in order to achieve
this size differential, and also that the second vortex can only exist for a very short time when very
near the wall - either the adjacent velocity field must permit it to grow away from the wall (which it
generaly does not for an artificially introduced vortex), or the second vortex must be started away
from the wall.

The configuration which finally comes closest to duplicating Yang's structure is a large finite
disk of vorticity (corresponding to his single vortex), and a weak (20% as strong as the main)
counter-rotating delta function of vorticity at the edge of the main vortex core (Figure 23). This
yields streamwise velocity profiles similar to Yang's data, with effects of the secondary structure
undetected far from the wall and more pronounced closer (but not at) the viscous wall (Figure 24).

To be this strong and to appear 'in this location, it seems a reasonable guess that this secondary
structure is induced in the 90* angle between the bottom wall and the vortex generator, rather than
above just a plane viscous boundary (Figure 25). This secondary structure might be reduced by
softening the sharp corner between the generator and the table. In any case, this second vortex
seems to be only about 20% as strong as the main vortex, and therefore should have negligible effect
on stability for vortex strengths within our typical range of interest.

0

Figure 23: Streamlines of an unequal counter-rotating vortex pair !it = 0 And at a later time The
main vortex is more diffuse and five times itronger than the induced vortex.
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Figure 24: Streamwise velocity profiles at various vertical posiions, but at the same fixed time, for
the vortices of Figure 23. These profiles are qualitatively the same as Yang's.

0

Figure 25: A possible geometry for generating the vortices and profiles of Figures 23 and 24. This
counter-rotating vortex induced in the viscous corner of Yang's vortex generator may be the source
of his observed secondary structure.
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9 STABILITY IMPLICATIONS

We can combine previous empirical and analytic data with some hypotheses to yield some simple-
minded implications about the stability of our flow.

Yang (as reported by Pearson (1985)) observes transition of streamwise vortices to typically
occur at a dimensional time of tuntable Pearson's eigenvalue calculations show that the most
unstable mode:

R, = 8 R. = 5 R,= = 3
A=.115 A-.096 A=.073

grows 1OX by t = a $2

grows 10OX by t "- R 73

This confirms that tunsMtbg. $ - may be close. Another piece of supporting evidence comes from
Suri's observations of the growth of an instability in a low speed streak. The instability grows over
a dimensional distance z = 15- 10 = 5cm (his p.139). His observations are taken at y = .095cm, at
which u = 701= (his p.138). At u = 70s-- :Ou = (94-O), = 600= . Therefore the nondimensionalse a 14cm see
time for transition is: t+ = u. 70 o - 42.9. Again, this supports the notion that

... 
see

tunstable S. Another observation that we will use is derived from our previous computations: for
a vortex located at y = .5, we observe wall damping affect the vortex center at a dimensional time
of tdamp ., V

Assume that an unbounded flow with an embedded streamwise vortex undergoes transition (due
to linear instability) for R, greater than some critical value (- 3 according to Pearson) at time
tunatable. Also assume that wall damping prevents this and stabilizes the flow if and only if the
vortex center feels the wall before time tdamp. Since we have previously shown that flow variables
decay like - exp(-5t/sec) (for typical values of the flow parameters) after tdamp, this seems a
reasonable assumption. These assumptions yield three cases:

I. tunstable > tdamp : stable

2. tunstable = tdam.p marginally stable

3. tunstable < tdamp * unstable

For the marginally stable case of tunatable = tdamp:

40 40h2  .04h21
=-;F = - = R- = 1000

Of course, changes in the empirical data or in the ylocation will change this value of R, We
can look at an arbitrary y location in a parallel shear flow:

tunstable - Lf (12)

UY UO

(where f was 40 above).

tdamp = - yo) 2 h2  (13)
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where there is a single damping wall at yo (and where g was .04 above).
The neutral curve is again located at t unatabe - tdamp = 0:

(y - yo) uy = _L (14)
4gR

For a given velocity profile, we can take either R, or y and solve for the other via this expression.
To maximize or minimize the instability, we would place the vortex at the location where

(tunstable - tdamp)y = 0, ie, where the time to damp the disturbance most exceeds the time re-
quired for the disturbance to succomb to linear instability, or vice-versa. Therefore:

(Y - ya)t4 + = 0 (15)

Again, knowledge of either Ror the most/least stable yposition in a given parallel shear flow
allows us to solve for the other. These equations were derived for a single damping wall at y = yo.
A similar analysis could be done for more complicated geometries.

In the case of our usual Poiseuille flow above a single damping surface at y = 0 and an uncon-
strained free surface at y % 1, a neutral curve of Rvs vertical position is found from Equation 14 to
be:

Using the data -  = 1000:

3_ 2 125 0 (16)

The discriminant vanishes when 125 125 1)i
R 4R )2 0

* R, - 843.75

Similarly, the locations at which a disturbance is most/least stable are found from Equation 15:

y3 . 2 f

16gR

or with empirical values for L:9
y3 2 25 17)-2y+y--0= (7

2R
This discriminant vanishes at R = 421.875

These curves are sketched in Figure 26. .The curve T = tunstable - tdamp = 0 is the neutral curve;
a disturbance on this curve will be neutrally stable. Unstable disturbances fall to the right of this
curve, stable disturbances fall to the left. R,, the minimum possible flow Reynolds number that can
sustain instability, is 843.75 for sufficiently strong disturbances located at a dimensional height of
y i th. The upper part of the curve T. = 0 denotes, for a given R, the most destabilizing position

]for a disturbance. Likewise, the lower part denotes the (locally) most stable position. The "mob
unstable" curve passes through Re, as it must. The most unstable position is always in the upper
third of the flow (when R > R,). R, - c at y = 0 (cannot go unstable right against the viscous
bottom wall) and at y = I (the local shear is zero. so it takes infinitely long to go unstable). It is
interesting that when near the wall. the most stable position is not right at the wall. but slightly
above it.
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Note from Equation 14 that the empirical number ' is just a multiplicative constant that sets
the scale of the abscissa. Therefore if its value is actually somewhat different from what we have
inferred, the only change to Figure 26 would be to re-scale the numbers along the R axis - all else
would remain unchanged.
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Figure 26: Neutral curve of the neutrally stable lReynolds number (for the most destabilizing mode
of a disturbance) at a given distance from the viscous wall. Reoccurs at S43.75. The curve on which
a disturbance is most stable/most unstable passes through this point, and bifurcates at I? = 421.S75.
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10 STABILITY OF CORE VS UPFLOW REGION

Many researchers have been preoccupied with identifying and monitoring the development of insta-
bility in the upflow region between a counter-rotating vortex pair (such as between the two legs of a
hairpin vortex). Yet we have already seen the highly inflectional profiles that can develop within the
core of a single vortex. Applying the same time scale assumptions and arguments used in deriving
the previous neutral curve (Section 9), we can investigate which vortex geometry permits the middle
upflow region to go unstable first, and which geometry permits the two vortex cores to be the first
to go unstable.

We consider a typical vortex pair, each leg of strength R, = 5, as shown in Figure 32. Over
time, the two legs lift each other and push each other away (Figure 27). Figure 28 shows how the
inflectional velocity profiles develop at the vortex center for different initial distributions of vorticity;
as we have seen before, more diffuse initial distributions of vorticity (at the same total circulation)
perturb the streamwise velocity profiles more slowly so that the maximum perturbation occurs at a
later time. For boundaries that are sufficiently far removed, this maximum value is the same for all
initial distributions of vorticity. Since boundaries are close at hand here (ie, the virtual boundary
caused by the companion vortex), viscous damping may set in before the maximum streamnwise
perturbation is achieved, and thus more diffuse vorticity distributions create smaller maximum
perturbations in the streamwise velocity.

Inflectional profiles also develop in the upflow region at the z location exactly between the vortex
cores. There may be zero, one, or two inflection points at this z location, and they may vary
in vertical location over time (Figure 29). For analysis, we assume that any instability at this
zlocation will occur at that y where = is a minimum (if a2  0 for all y), or at that ywhere

-0 (if that occurs at a unique y), or at the minimum y at which =0 (if there are two such
y locations). This last criterion is selected because the inflection at minimum y is located at or near
the vertical location of the vortex centers where the shear has been perturbed the most. Figure 30
shows how this most unstable y location (defined via the above criteria) moves as a function of time
for different initial distributions of vorticity. The dips in y that appear from just after t = 0 to
near t ; .2 are where the flow goes from L > 0 at all y to a < 0 near the middle (yielding two
inflection points) - we then follow the development and eventual disappearance of the lower (in y)82 u

point where = 0. Note that very diffuse vortex pairs (radius = .5) never develop an inflection
point in the upflow region. When observing how )- develops over time at the y locations shown in
Figure 30 we find, as expected, that more concentrated vortices produce the greatest perturbations
in slope from equilibrium.

The time required for the core to go unstable is:

40
t
eore = &U2 40, U2

V 3Y core r 3 Z core

(as in the previous neutral curve derivation, Equation 12). The time required for the upflow region
to go unstable is:

40
tupf low 2a

ay upf low

(since ' = 0). Figure 31 shows how At tcore - tupf ow develops over time. At > 0 means
0Z Pf low =- P o

that the upflow region will go unstable first, and At < 0 means that the vortex cores will go unstable
first. Fortunately, the curves are fairly horizontal (ie, time independent), and we can identify the
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dividing case At = 0 as being roughly at vortex radius a .25 (Figure 32). Initial distributions
of vorticity more diffuse than this will cause the upflow region to go unstable first. Distributions
more concentrated than this will cause the vortex cores to go unstable first. This is consistent with
experimental results; Suri's diffuse array of vortices experiences its initial rms increases in the low
speed streak (his p.139), whereas Yang's single vortex begins as a more compact structure with no
apparent twin, and goes unstable first at the core.
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Figure 27: Motion of the center of one of a pair of equal counter-rotating vortices over time. The
vortex shown is rotating counterclockwise, resulting in an upflow region in the neighborhood of

= 2. The motion of he other vortex is obtained by reflecting about the line z = 2.
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Figure 28: Perturbation of the streamrwise velocity field at the center of the vortex core due to
vortices of different radii. Note that larger radii vortices have less effect before the original profile
begins to be restored.
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Figure 29: Vertical streamnwise velocity profile in the uptlo'v region between two counter- rotating
vortices soon after f= 0. 'Note the presence of two intlection points, with the lower one closer to the
two vortex centers where the flow has been most perturbe~d.
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Figure 32: Three counter-rotating vortex pairs of constant separation and strength. Figure 31 shows
that the small concentrated pair on the left will go unstable in the cores first. the large diffuse pair
at right will go unstable in the middle ipflow region first. and tie :enter pair is Iie intermediate
case where cores and upflow region go unstable together.
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11 CONCLUSIONS

Before the vortex core hits the wall (t < -- ! we find that the crossflow and streamwise velocity
profiles are locally the same as those derived by Pearson. After hitting the wall, we find that flow
variables decay back to their undisturbed values, typically - exp (-5t/sec). It is wall influence
that is responsible for restoring the original profile. We find a perturbation solution, analogous to a
previous analytic solution, that describes the flow well after this time.

Sufficiently far from walls, any initial distribution of vorticity has the same long-term effect on
stability. Close to a wall, smaller (more concentrated) vortices may be more destabilizing than larger
(more diffuse) ones of the same circulation.

Pearson's velocity profiles are quite remarkable in that they show how just a tiny bit of streamwise

vorticity (eg, a circulation of - .40 for liquid water) can destabilize a shear flow. The fact that
we achieve these same velocity profiles above a viscous wall and the fact that we find them to be
relatively insensitive to initial vortex structure allows us to conclude that the single streamwise vortex
is a promising model for describing laminar-turbulent transition in real flows and for investigating
(in a very idealized fashion) one of the most commonly recurrent structures in the self-sustenance
cycle of turbulence.

A streamwise vortex above a plane viscous wall whose strength is greater than some small (but
non-zero) threshold induces a counter-rotating vortex. This counter-rotating vortex exists for a finite
time, and is insignificant to stability within our typical parameter range of interest. So once a single
streamwise vortex is created, the secondary structure is irrelevant to the stability of the flow (within
the parameter range for which the main vortices are normally observed), and can be safely omitted
from analysis.

Yang's structure seems to be a second counter-rotating vortex of smaller size and - 20% strength
of the main vortex, possibly induced in the 900 corner between the bottom viscous wall and the side
of the vortex generator. There is no effect on the streamwise velocity profiles or stability, so he
really does seem to have generated, investigated, and drawn conclusions about an essentially single
streamwise vortex.

The role of the Reynolds number in transition seems to be to set the local shear, and thus the
time scale of the instability, as a disturbance grows toward instability in a race against viscous
damping. At the critical Reynolds number, the time to go unstable is the same as the time required
for wall damping to be felt. Above R,, the Reynolds number sets the local shear in the vicinity of
a disturbance high enough so that the disturbance goes unstable on a time scale shorter than the
viscous time scale required for wall damping, so the local instability -beats" wall damping. Coupled
with some empirical data, this interpretation yields a critical Reynolds number for Poiseuille flow of
Rc - 844.

In situations with a pair of equal counter-rotating vortices, the initial instability may develop
either in the common upflow region (diffuse vortices) or in the core centers (more concentrated vor-
tices), depending on the initial vortex structure.

The first author gratefully acknowledges the support provided by the Department of the Army
and the West Point Education Center through the Tuition Assistance Program.
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A PERTURBATION SOLUTION

Suri found a solution for the croeflow variables for a vortex above a slippery wall (Equations 7-11);
his solution is exact for a vortex that begins fully diffused in a specified way (Equation 6), and is
asymptotically accurate for other initial distributions of vorticity. It is desirable to have an analogous
expression for a vortex above a viscous wall, both for further simple analytic modeling, and to see
what such a solution can tell us about our current counter-rotating vortex concerns.

A.1 CROSSFLOW SOLUTION

As shown in Figure 33, for a non-viscous bottom wall, the vortex circulation is constant until the
core hits the wall. The circulation then decays exponentially. For a viscous bottom, the circulation
instantaneously drops due to the vortex sheet generated at t = 0, then decreases as negative vorticity
continues to be generated at the wall. When the core reaches the wall, the circulation again appears
to assume an exponential decay (albeit at a different rate). A semilog plot of circulation vs time
confirms this exponential decay.

With this additional clue, analytic progress is possible. Under our two original assumptions
(concerning z independence and the free surface shape), the analytic crossflow problem is as in
Equations 1 and 2:

Uit + zwy + UJWX = WYV + los)

Boundary Conditions: w = 0 On Otq/t, 8 top, right

w = 0 On 8 bo.om.

0YiY + V)z =-

Boundary Conditions: 4(b = 0 On 6t~f, Otp, ,-ight, botom

w- =

V =

Since the circulation and other flow variables decay approximately exponentially after the core
reaches the wall: kt

,(z,y,t) = w'(z,y)exp- - (18)

and similarly for the other flow variables. Substitution yields:

(72 + k)w' = e& exp -' y, + w'V') (19)

where k(t - to)

where to is the time at which the exponential decay sets in (ie. soon after wall effects begin to be
felt), and where we use the 2-D Laplacian:

0 2  02
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Adopting a regular perturbation expansion:

W' =WO+CWI +EC2 W 2 +" (20)

and similarly for the other flow variables. Note that assuming an expansion of this form makes our
previous time derivative (Equation 19) only approximately correct since our expansion parameter
e is also a function of time, but computations tell us to expect that after a sufficient time, the
time dependence will be carried mainly in the first few modes of this (essentially) weakly nonlinear
expansion; therefore we anticipate only a small error (to be checked shortly) and proceed. This
yields a sequence of coupled (through the boundary conditions) elliptic problems:

(72 + k)WO = 0

V =- 0 (21)
(V2 + k)WI = R exp -.. (V0W0,F + wOWO,) (22)

Vl2+  = -eWI

- ((72 + k)W2 = R. exp (VWI,y + wOwI,z + VtWo,y + wIwO,z) (23)

Boundary conditions for each w, and iki component are all individually the same as given above
for w and 0. Note that these boundary-value problems do not allow the specification of an initial
condition. Sur's solution (Equations 7 to 11) shares this feature. Soon after the core has reached
the boundaries, information about initial conditions has been diffused away.

These equations are linear and separable. The solution to the zero'th order equations (21) is:

w0 = Acos1- sin V_ - r2(y- ) (24)

, 1 . ) s in X s n ( - )( 5
t'o = Acos-( sin k - (y - ksinh(

Acos( k cos

ak - cosh r(y - )) (26)
ak sinh -

vo = 4"sin ( sin k - ) sinh (y-1)) (27)

i n " k sinh "

Pn = A sin- (28)
k sinhM a a- h28)

where k is determined from the eigenvalue relationship:

tan tanh (29)
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For an initially fully diffused (in the sense that it starts with the same form as w0 above) vortex
above a viscous wall:

a (I -cosfr-IT)

The solution to the first order equations (22) is:

w= A R.exp- - sinL rz (Bsin I  - )(y -

R a2

sin V'- (1-) cosh .(y - 1)) (30)4k= sinh 22
2p kto s f,

, &eXp-_in-z-sin k Ik---(y -4)R, --(

sinr ' sin V. " h r

sin V (y- -)cosh m(y- 1)
4k2(k + ) sinh. 2

a

2ak2(k+ ) sinh a4  2 a

") sinh B s -"n(V- )/ohT( -

+ 4L( + )sinh sin z- snh__ (31)
8k2(k + I) sinh2 w ksinhj2 a

w, A Rexp--sn-( "a cos !.R, a -k

si sih~ k- -Z4(y)sn
4ak 2(k + -) s

4k 2(k + L-r sinh~ Cz a2 2

2(k + Sin2. fiC B sinVTk - h 2 r(
a- 8k 2(k+ L2) sinh2! k sinh~ )2 o a (32

2 kto 27r 2os1rz i B -(y

I'sin k-4 -- ; k 72,

4k2(ksin k-nh r (y- I)coshl(y- 1)
sinh/C

co k-'(y- a)in 2-
2ak2 (k + U7) sinh~ 2
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. a k (Numerical) k (Analytic)
5 1 (slippery wall) 19.7550 19.7390
5 1 (viscous wall) 26.2775 26.2798
5 2 21.2513 21.2702
3 3 20.2251 20.6118
8 3 19.8104 20.6118
5 4 20.1585 20.4145
- co - 20.1907

Table 2: Computed vs analytic decay coefficients (k)

(k + ly) sin2 k/ IT2 BiVT3 2 -

8k2 (k+&) k ih 2 h - 2- )sn a (33)

B si'F (34)
2 Vk _2 2 Vp-2(k + co. -Co's

Note the turning point at/k = , ie, at a ; 1.301.
Given the geometrically increasing effort required and the exponentially decreasing importance of

the higher order modes, the first order solution seems a good stopping point. Note that up through
the first order solution, to (the time at which e becomes small) cancels out of the solution.

Note the similarity of Equation 24 to Suri's solution (Equation 7) for a diffused vortex above
a slippery wall. Both solutions for w share a cosine term in the z direction which goes to zero at
the slippery side walls, and a trigonometric term in y that goes to zero at the top surface. In the
y direction, the half-period of Suri's cosine is equal to the flow depth in order to enforce the slippery
boundary condition on the bottom wall. Our function (a sine with displaced argument) has a shorter
period, introducing just enough negative vorticity in the region near the viscous wall so as to enforce
the no-slip boundary condit.on.

We verify the accuracy of this approximate solution by calculating the residual between the
zero'th and first order solutions (Equations 24 and 30 substituted into Equations 18 and 20) and
the numerical solution (Figure 34). We see that the residual of this approximate solution quickly
becomes small (compared to the vortex circulation). Now that we have demonstrated its accuracy,
it is appropriate to determine the implications of this analytic solution.

Flow variables decay like - exp - k where k is determined from Equation 29. Table 2 shows
values of the nondimensional decay rate coefficient (k) as found from numerical simulation and as
calculated analytically. Agreement is good. Discrepancies are attributable to the fact that we are
calculating the decay rate at a finite time, and are not extrapolating to the asymptotic limit. This
is why, for example, the vortex at R, = 8 inside a box of aspect ratio a = 3 is off by more than
a vortex at R, = 3 at the same aspect ratio:, the stronger vortex is reaching the asymptotic decay
rate more slowly, but both share the same limit. For a single vortex in a box of infinite aspect ratio,
we find the decay rate to be t (:20 ( , - dimensionally). (Actually at this aspect ratio, the

2
nondimensional decay rate = .- , where c is defined in Equation 35 below). In typical transition
experiments, such as Yang's and Suri's flow table experiments, this means that flow variables decay
like - exp(-Ut/sec) (t is dimensional here). We can put bounds on k. k > !. else Equation 29

408



has the unique solution k = 0, ie, the trivial solution. Now k > 2 implies that we must use the
second or higher branch of the tan function. (Our relation actually admits a countably infinite
number of eigenvalues k, one for each positive branch of the tan function). But solutions on higher
branches will decay faster (each branch at least 4Z 2 faster than the next lower one), so the lowest
possible branch will dominate in observations. Therefore, we should use the second branch of the
tan function. As Equation 29 is written, it equates the slope of the secant line through the origin
and a oint on the tanh curve to the corresponding secant line for the tan function. The argument
k must equal the value of the independent variable at the point of intersection, and so must

take on a value in the range [r, c], where c is determined from

tanc = c (35)

on the second branch (meaning that c - 4.49). Therefore bounds on k are + ir 2 < k < 4 + c2.
The actual solution k, along with its upper and lower bounds, is plotted in Figure 35. Note that the
lower bound is just Suri's decay rate (Equations 7 to 11) for a slippery bottom boundary. k achieves
this lower bound as a -- 0 (ie, in an infinitely skinny box) which makes sense: we would expect the
bottom viscous wall to have negligible effect as it is made infinitely small. From the figure, we also
observe that k is almost constant for a > 4; when the side walls are sufficiently far away, decay is
dominated by the viscous wall.

Decay rates comprise an interesting additional benchmark. Figure 36 shows how the decay rate
of the circulation quickly approaches the theoretical value of Equation 7.1.12. Suri's decay rate for
a fully diffused vortex above a slippery wall (Equations 7 to 11) is roughly only half this value. A
strearnwise analysis (see section A.2 following) similar to that performed above for the crossfiow
shows that streamwise flow variables should have an asymptotic decay rate of k, I- + ').

Figure 36 also shows the agreement between this rate and the calculated decay; convergence is
slower because decay is ultimately driven through spanwise processes which act via coupling in the
convective terms. Again, agreement in both of these cases lends another degree of confidence to
both the computational and analytic solutions.

Analysis of Equations 24 to 29 shows that the vortex moves (asymptotically) to z = 0 and to a
y location determined from:

cos - 12(y - cos k-j-

cosh (Y -) cosh

This y position is plotted in Figure 37. When a = 0 (infinitely skinny box), then y = .5 as for a
slippery bottom, which again seems consistent. When a - oo (infinitely long box), then y = 2 - 2"

(2 .6). Therefore if a vortex is started nearly centered in y (which Yang does), then it will raise only
slightly, explaining why he detects no movement.

To investigate the induced vortex, we check for separation at the viscous wall: limY-0()0 wi) -
0, or after reducing several indeterminate forms: limy-o(wo + ewl) = 0. In other words, a point of
separation is also a point with zero vorticity. We deduce that separation point(s) is(are) located at:

o exp t sin k-a =_sin-i ___4___ "_ _-

2AR(Bin k -
in kw2.4R 1(B sin U' ' 4 tanh

This induced vortex is present at t = 0; this sc~ution does not model its beginning well, but does
better at later times.
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The induced vortex disappears into the lower right corner at

2AR(-Bsinh - I
t lsin /k- !,2

The induced vortex appears only if the main vortex is above a threshold strength:

sin k-
R, > a(37)

2A(-B sin+ Vk - a ;2 4k tanh

This threshold strength is graphed in Figure 38. Note that a = 0 (infinitely skinny box) yields
a threshold of R, - oo, which again seems consistent. It is interesting that there exists a small
but nonzero threshold R. for a - co. However, the threshold is low enough (-- 1.2) that we will
generate a counter-rotating vortex for any interesting main vortex.

The preceding expressions simplify for the case a - oo: Separation point(s):

2k exp R

AR, sin Vf

Conditions for separation:
R, > 2 (1 - sec VIT)

2 1

t n 7r R,, p
- 2(l - sec VI)

Here, p is an empirical phase factor that extrapolates the exponential decay back to t = 0. In
this case the separating streamline between the two vortices is a vertical line through the above
:position. The induced vortex moves to the same yposition as the main ( .6) before receding
exponentially to the right.

A.2 STREAMWISE SOLUTION

Still under the assumption that the crossflow variables decay mostly like exp we have:

kt kt 2 1
v, + Vu, exp-- + wu, exp +  -(" + Utz)

Assuming that the streamwise velocity has the same type of exponential decay after a certain
time (but at a possibly different rate):

u = 2y - y2 + u exp -kst

Substituting and retaining zero'th order terms yields:

(V 2 + Rk-,)u' = 0
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Boundary Conditions: u'(z, 0) = 0
u'_(:, I) = 0=o0

The solution is:
U=2y-y +Asin'sin exp -kt (38)

where
k 2 1 1 (39)

Agreement with computations is shown in Figure 36.
In terms of dimensional variables, the transient part of Equation 38 decays like exp - (4 + - h r )

Note that this zero'th order solution is independent of R; ic, the asymptotic strearnwise decay rate
is fully driven by the crossfiow geometry. Also note that the streamwise decay rate is essentially
independent (related only through a) of the crossflow decay rate.

df6I

LaB .5 :A . .30 ~.za

m-D-E

Figure 33: Circulation of an initially potential vortex above both a slippery and a viscous bottomn
wall. Above a .viscous wall, note how the circulation instantaneously drops from 2-.r to 1.5,r (since
this box is of aspect ratio a = 1) due to the vortex sheet generated at the wall. Decay quickly
becomes exponential.
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Figure 34: Residual between our computational solution for an initially potential vortex above a
viscous wall and the zero'th and first order perturbation solutions. The circulation of the initially
potential vortex is included for reference.

/

7/

~ /

SPACIN . .111A

Figure :35: Asymptotic decay rate for spanwise variables above a viscous wal as a function of the
aspect ratio of the vortex array (Equation 29), along with upper and lower bounds. The lower bound
is just Sui's decay rate for spanwise variables above a slippery wall.
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Figure 36: Convergence of streawise ( and spanwise (r) decay rates to the asymptotic values
(dashed lines) of Equation 29 and Equation 39. R. = 3. a = 2.

.3 2 .3 Z. Il a 9 .2 :A .:

Figure 37: Asymptotic vertical position of re vortex *:enicer -t 'uncrioii ,)[" ,.ispect ratio. j. as gIven
by Equation 36.
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Figure~ :8: Minimum main vortex strength required to induce -i counter-rotating vortex at the viscous
wail as a function of aspect ratio, from Equation 37.
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B EFFECT OF FREE SURFACE
To make the numerical problem more tractable, we previously assumed that the free surface was
constrained by a normal force to a flat slippery surface. This allowed us to remove one variable
(free surface position) from the problem, but at the price of violating the rijnj = 0 (no normal
stress) boundary condition. This assumption seems to be well-justified by experiment; however, at
this point, we will test the consistency of this assumption with the calculated solution. We do this
during the flow evolution by periodically calculating what the shape of the free surface would be
if we were to let it deform to satisfy the above no-normal-stress boundary condition. The shapes
we obtain are not fed back into the flow evolution calculation; rather, if the shapes we find are
always negligibly different from a fiat surface, then we will have justified the flat-surface assumption
throughout the computation.

First we calculate the pressure throughout the flow from:

V2 P = 2(w~v, - wY1 v2) (40)

Boundary Conditions: P, = 0 on alqt and 8 ,ght

Py = 0 on 8at,(and on aboo,,if slippery)
Py = on a o,, (if viscous)

This determines P to within an additive constant (which may be time dependent). Then we
calculate the normal stress on all boundaries from:

rii = -P6i + .- (ui,, + uj,,) (41)

At this point, we choose the additive constant for P such that

Iatop r;dnj = 0 (42)

This condition is necessary to satisfy continuity; rationale will be given shortly. Note that our
previous slippery boundary condition on the flat plane 80to(ie, L = 0 coupled with i = j) ensures that
there is no shear stress on Otop. We now relieve the normal stress on 8opthrough two mechanisms.

A first mechanism for relieving normal stress is to remove an appropriate mass of fluid from
positions with downward normal stress and to add an appropriate mass of fluid to positions with
upward normal stress such that the weight of the fluid removed/added balances the excess/deficient
normal stress. Therefore:

RIr = -- AhgcosO (43)

where Ah is the nondimensional position of the free surface relative to the constrained surface, g
is the nondimensional acceleration due to gravity, and 0 is the angle of abo.tom(ie, the x axis) from
horizontal. This angle is the source of fluid motion in the x direction; the component of gravity in
the x direction is the body force that works to maintain the parabolic profile. We previously found
this body force to be ' (Equation 3), so we find that:

2
R, sin 0

We can now solve for our nondimensional change in free surface height:

Ah = rR.2 tan0 (44)
2R
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This is a first approximation to the curvature of the free surface. We can pause here and make
a crude order estimate as to its magnitude. Substituting Equations 28 and 27 into Equation 41,
Equation 41 into Equation 44, and evaluating at &0tpin the neighborhood of a - 0(1) yields Aha. ,
.8 . So within our typical range of interest we have Ah - O(.001). This crude estimate indicates
that curvature effects at the free surface are negligible.

Equation 44 is a first approximation to the position of the free surface, yet there is another effect
that should be considered. By adding and subtracting fluid at the upper surface, we have necessarily
stretched the streamlines in some locations and compressed them in others, thus changing the
velocities and ultimately both the pressure and the stress. This will further change the free surface
height. We can account for this effect by appropriately perturbing our first approximation. The
calculation begins by finding the point on 8t0pwhere:

20=-P+ - 1- = 0
R,,

(from Equation 41); in other words, we first find the point on the free surface where there is no
deformation. The existence of at least one such point is guaranteed by applying the mean value
theorem to our condition used to find the additive constant for the pressure (Equation 42). The
normal stress at a nearby point on atpis:

_P _p, 2! ' 2RAh

-P0 - - p.Az+ + R ,2  (45)Rv R tan 0

where P0 is the pressure at our starting point, tildes denote derivatives to be evaluated by centered

differences between the previous and current points, and primes denote quantities evaluated after the
free surface has been perturbed to relieve the normal stress due to streamline stretching. Note that
by construction, we would have r, = 0 at all points on Otopif we were to omit the primes (ie, neglect
the stretching of streamlines). For small variation in the free surface height (our original conjecture,
to be verified through consistency), we can accurately assume the distance between streamlines to
be modified by a factor '+', therefore the spanwise velocity w will be modified by jA. and the1 1+,Ih

transverse velocity v will be similarly modified through continuity. Spatial derivatives are unaffected.
Equation 45 can now be expressed in terms of quantities that are more easily computed:

2R

2o R tan 0
1 2v Ah

+ +Ah (R, zG'+P) + +/i R,

+ 1 (Az l" ) (46)
(G + Ah)-

In deriving this equation, we have neglected vertical velocities introduced by free surface curva-
ture. We find our final free surface height by setting ri, = 0 in the above equation and iteratively
solving for Ah. Then using .the newly calculated point, we repeat for the following point, and so on
for all points on 9,op.

We calculate stresses preliminary to calculating the free surface position, and it is interesting to
note in passing the total stress and torque acting on the box of fluid. Figure 39 shows the total
stress acting in the z (spanwise) direction. Initially, the vortex applies a large jerking force to the
right as the vortex-induced flow pushes on the viscous wall, then the force changes direction as the
vortex applies increased stress against the left wall. and the net effect is then a small and decaying
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force to the left. The stress in the y direction is a tiny downward force, but this is practically zero.
The net torque on the box grows quickly in the counterclockwise direction, then decays (Figure 40).
In order to hold the box steady, equal and opposite forces and torques would have to be applied to
the box, ie, a large leftward force as the box jerks to the right and then a small decaying force to
the left, along with a decaying clockwise torque. Of course, when considering an array of vortices,
the torques and horizontal forces are all balanced by those of the images; the very small downward
force is the only resultant force.

Figure 41 shows the height of the free surface in a box with an aspect ratio of one, and Figure 42
shows the free surface in a box of aspect ratio equal to eight. In all computations at R" within our
range of interest (< 15), the contribution due to streamline stretching is tctally insignificant and
the gravity effect dominates. We retain both in the computation, but the gravity effect expression
for the free surface height is accurate to a high degree of accuracy. Therefore Ah is proportional
to r (Equation 44). To preserve continuity we need f Ahdz = 0, and so this is the reason (as

previously promised at Equation 42) that we used the condition f.! ri,(z, 1)dz = 0 to choose the
additive constant for the pressure. The error in not including the streamline stretching effect in the
additive constant (via iteration) is negligible.

The free surface in Figure 41 is similar to a sine curve slightly displaced from center. This
is consistent with the analytic solution found previously; substituting Equation 28 (at Otop) into
Equation 41, Equation 41 into Equation 44, and using Equation 27 to evaluate v, we have:

.,
A R 2 tanG 2( r -" a2 2 r sin - e- kt

2R (akR - akR, sinh )sn exp - (47)

We have used just the zero'th order terms here; they should suffice since the vortex diffuses to all
four boundaries relatively quickly in a square box. So the perturbation solution predicts exactly
this centered sinusoid for the free surface shape. This is slightly different from the shape of the free
surface derived from Suri's expression (Equations 10 and 11) for the pressure distribution above a
slippery bottom:

- 2(1 A_~
R7, tan9 0 r 2 : 1 + I ),xr-2

= 4a 2 R(l + -L)2 8(cos a -R

(1+ ±)r 2 t
R sin -4- exp- I ) (48)

Note that his pressure distribution is symmetric rather than asymmetric. It also decays twice as fast
as the convective stress term. Both expressions for the free surface height (Equations 47 and 48.) share
the same shape as a -- 0 and t becomes large (for both expressions: Ah -- tan 0 sin 1- exp"a

The free surface in Figure 42 is derived from a box of large aspect ratio. The dip centered above
the vortex at z = 4 is due mainly to the low pressure caused by the relatively high velocities at the
core edge, and is aided by the downward normal stress from the convective term. The raised lip to
the right of this low pressure dip is totally due to the upward normal stress from the convective term.
We have essentially Stokes flow in the two extreme ends of the box, therefore the free surface height
is governed by the pressure. In this case, pressure is high on the left. raising the surface, and low on
the right, lowering it. One crude way of understanding this pressure behavior is to consider a two-
compartment box (Figure 43), with the vortex at the center acting to pump fluid from right to left
at the top, and from left to right at the bottom. The viscous wall impedes the flow at the bottom by
exerting a force to the left. At the top there is no such restriction, and the vortex continues to pump
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fluid to the left unimpeded. This pressurizes the left compartment and depressurizes the right. As
the vortex has not yet reached the side walls, we would have to take more terms of the perturbation
solution in order to derive an acceptable analytic expression to describe the figure, though one might
convince oneself that the region above the core is qualitatively described by Equation 47.

Figure 44 shows the free surface above a very strong vortex (R, = 25). Here, the shape of the free
surface is totally dominated by the very high velocities, and thus very low pressures, inside the core.
The shape is almost a symmetric cosine, centered over the core. This is consistent with Equation 48
(which should also be the form of Equation 47 when higher order terms are included); the high REin
the denominator of the asymmetric stress term makes it negligible, leaving the symmetric part of
the pressure. In this case, the stress distribution above the viscous wall is actually well-described
by the solution above a slippery wall, because the very great strength of the vortex renders viscous
wall effects relatively unimportant. As circulation decreases, the slippery wall solution becomes
increasingly less applicable.

Our ultimate purpose was to see whether or not the deformation of the free surface was a large
effect. We can see now that it is not. At Rwithin our range of interest, the maximum deformation
is less than .3%. This is why free surface deformation in laminar flow has not been detected in the
course of Yang's or Suri's experiments - they estimate their observational threshold to be - 5%,
Therefore they may be able to detect deformations due to vortices of strength R,, - 50 (providing
the flow remained laminar), but not much weaker. If these deformations later come within our
observational grasp, the above work predicts that increases in height will be detected above the
downflow region (high speed streak), and decreases in height above the upflow region (low speed

streak). This small value of the deformation is the result of the factor R- in Equation 47. In
our range of interest for observed laminar flows (R, - 5, R - 2500), the deformation is then
'Ah~-0-1)

We conclude that the deviation of the free surface from a slippery flat plane is indeed negligible
for values of Rand Rwithin our range of interest, and that our previous assumption of such a
slippery flat plane for afpis well justified.
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Figure 39: Horizontal stress on a vortex cell, a =4, due to an initially potential vortex above a
plane viscous wall.
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Figure 40: Torque about center of vortex .-ell due to iiormal forces on .),p rorque due to normal
and tangential forces on otton and the total torue due to tn initially potential vortex .above a
plane viscous wail. Positive torque is counterclockwise.
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Figure 41: Free surface height at successive times due to an initially potential vortex above a plane
viscous wall, a =1, R., 5.
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Figure 42: Free surface height over time lue to -i :nitiaily pote-nai vortex -ibove -i plane viscous
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Figure 43: Development of high and low pressure regions in the Stokes flow regions near a vortex
above a viscous wall.
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Figure 44: Free surface height at successive . ils iue ro ..1 'Mitiaikv potential vortex above a plane
viscous wall. ,a 4 R "- 25.
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C COMPARISON WITH SEMI-INFINITE DOMAIN

Previous computations have all involved flow inside a box of some finite aspect ratio. When studying
the induced vortex, it has often seemed that the side walls played some part in its development,
particularly at small R. (eg, Figures 12 and 13). It is now desirable to remove the side walls and
consider the flow in a semi-infinite domain (bounded in y, unbounded in both z and z) which is more
representative of Yang's water table flow. Specifically, we want to see if our previous conclusions
about the induced vortex (existence, strength, effect on the streamwise flowfield) still hold.

To do this, we map the unbounded coordinate z E (-oo, oo) onto E [-1, 1] via the mapping
= tan- ' z. Equations 1 to 3 then transform as:

Crossflow:

Wt + tuy + UW (-. Ir = -(WV + I -Ce'w -lWEco.
2  n  ) (49)

kv + Of co.2 _ _ k, o. wf sin2n =2_i (50)

w = y 51)

C_2 _f (52)

Streamnwise:

Ut + vu, + wU = R-- + -L (u' + U - - U CO 1 2WE) (53)

Boundary conditions and initial conditions are unchanged.
At an initial vortex strength of R, = 5, we see that a major induced vortex appears on the

right and a minor one appears on the left (Figure 45). (Note that machine resolution stops short
of ±oo). Now the major induced vortex initially forms very far to the right (as close to z = oc as
machine resolution allows), the center moves to within a distance of two flow-depths of the main
vortex, and then rises (Figure 46). However, the circulation of this induced vortex is still negligible
- three orders of magnitude smaller than that of the main vortex (Figure 47). Despite its presence.
vorticity contours remain almost symmetric in :(Figure 48). It has no noticeable impact on the
streamwise velocity field (Figure 49).

At stronger R1, (eg, R,. = 15) the major induced vortex is stronger. but remains two orders ot"
magnitude weaker than the main vortex (Figure 50). Vorticity contours are more asymmetric due
to increased convection of negative vorticity generated at the viscous wall (Figure 51). The effect of
the induced vortex on the strearnwise velocity field is still negligible (Figure 52). At this higher Rv,
it is interesting to note the highly inflectional profiles produced in the vortex core. This rotation of
the shear angle by a little more than 1800 is as predicted by Pearson for this R,.
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Figure 47: Circulations of te main vortex (left graph) and right induced vortex (right graph) of
Figure 45. The circulation of the induced vortex has a small 'noisy' component because of uncertainty
in the location of the separating streamline between it and the main vortex.
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Figure 49: Streamwise velocity contours for the vortices of Figure 45. Note that the induced vortex
causes no noticeable perturbation (= 1.8).
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Figure 50: Development of the naiii and induced vortex - rr'arninies ovr time at R,=15.
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Generalized Rewriting in Type Theory*
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Abstract
While type theories such as Nupri are expressive logics for theorem

proving, they present difficulties for designers of term rewriting systems.
The two most serious difficulties are: 1) Nuprl does not provide a global
equality. Instead user rewrite over arbitrary user-defined relations. 2)
Each rewrite step must be proved valid. In general, these proofs cannot
be recursively generated.

We have overcome these difficulties and designed a package that works
well in practice. Our solution is an extensible system for directing and
validating relational inferences. The heart of our package is a set of opera-
tors that use a user-supplied lemma database to create new rewrites from
old ones. These routines place no restrictions on relations; a rewrite's suc-
cess depends on the strength of the database. Overall, the package allows
rewrites to be pieced together in numerous ways, providing the user with
a tool to-construct sophisticated rewrite strategies.

1 Introduction

Our research addresses rewriting ia Nuprl, a sequent calculus formulation of
a constructive type theory similar to Martin-Lf's[13]. While most systems
assume that their rewrite functions are reliable, in Nuprl, every rewrite must be
proven correct.. This is difficult as Nuprl's expressive power yields undecidable
typing problems: There is no effective procedure that determines if a term
belongs to a given type, or determines the type of a given term. As a result it
is undecidable whether even simple rewrites are valid. For example, each type
comes with its own equality and a proof of t =T t'" necessitates a proof that both
t and t' are members of T. Furthermore, the validity of standard congruence
(substitutability) reasoning must be proven. If t =T t' then to substitute t'

*This work was supported, in part, by an IBM Fellowship.
I We shall follow the following syntactic conventions: T, A, B. ... shall represent types; Q, R.

and S relations; t, r, s,... terms and z, y, z, ... variables.
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for t in B[t] one must show that for every z and y equal in T, B[z] and B[y]
are equal types. This too is undecidable. We explore these problems and their
implications for rewriting in Section 2.

Despite these difficulties, we have implemented a rewrite package that works
well in practice. Our approach provides operators that construct relational
conversion. Given a seouent p and a term t, a conversion yields a triple: a
relation R, a term t', and an ML program called a tactic, which should prove
t R t' under the assumptions in p. As with tactics, a conversion may fail; but if
it succeeds, then t R t' may be used as an assumption.

Basic conversions are generally constructed from lemmas of the appropriate
form (which is roughly that of a universally quantified chain of implications that
ends in a relation t R t'). We provide an operator that takes a lemma and a
relation and constructs a conversion which, if it succeeds, rewrites an instance
of the left-hand side of the relation in the lemma into a corresponding instance
of the right hand side. Conversions themselves are data-values, and higher order
combinators provide a means to compose them and form new conversions. For
example, THENC is a combinator that sequentially composes two conversions
and S bCon, applies a conversion to the immediate subterms of a term. A
user-supplied lemma database is used in the construction of tactics that prove
these rewrites valid. SubConte, for example, uses this database to produce a
tactic that generates congruence proofs. No restrictions are placed on relations;
they need not even be equivalence relations. However, whether a conversion
succeeds depends on the strength of the database. The overall package is highly
modular; conversions can be put together in numerous ways, allowing the user to
construct sophisticated rewrite strategies. Section 3 details our implementation
and illustrates the power of our approach with examples.

Our package is similar to Paulson's14]2 . Both are collections of ML pro-
grams that can be applied in a modular higher-order style and many of the
combinators are functionally identical. However, our package differs in two
important respects. First, Paulson's package allows rewriting only over two re-
lations: term equality and formula equivalence. These are special cases of our
general relational approach. Second, he provides separate notions of conver-
sions (cons and fcony) for each relation, each with its own fixed strategy for
proving rewrites valid. Our implementation allows the user to extend relational
inference simply by expanding the lemma database. Of course, such extensibil-
ity is necessary in light of undecidable typing, but we have found the resulting
generality useful in practice.

Our package is currently used by the author and other researchers at Cor-
nell working- in hardware verification. We have successfully constructed a vari-
ety of rewrite procedures including a predicate calculus simplifier and associa-
tive/commutative term normalizers. We have also explored rewriting in con-

2 1t also beas similarities to ideas of Howe and Steeg(9) who implemented rewriting in
Nuprl over the (type parametrized) equality relation.
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structive set theory. In this domain, set equality is a user defined predicate.
Congruence reasoning requires proofs that each set theoretic operator respects
this predicate, and these proofs must be composed to justify each rewrite. With-
out a package such as ours, the burden of constructing such justifications by
hand would be unmanageable.

Our approach to rewriting has applications outside of Nuprl and the related
theories of Martin-Lf. Logics with decidable typing but weak equality, such
as the Calculus of Constructions(4], also require that users define their own
equalities and prove their rewrites valid. We believe that as such logics become
more popular, extensible rewrite systems such as ours will become integrated
into their use.

2 Nuprl.
In this section, we highlight those aspects of Nuprl relevant to rewriting. The
interested reader may consult [3] for a more complete account.

The basic objects of reasoning in Nuprl are types and members of types.
The rules of Nuprl deal with sequents, objects of the form

zl: H, X2: H2, ..., x.: H, >> G.

To judge a sequent true essentially means that when given members zi of Hi,
one can construct an inhabitant of the goal G. Nuprl's rules are applied in a
top-down fashion. That is, they allow us to refine a goal, such that a proof
of the goal may be constructed from proofs of the subgoals. Nuprl provides
two kinds of inference rules: primitive rules and ML programs called tactics.
Nuprl tactics are similar to those in LCF[6]: Given a sequent as input, they
apply primitive inference rules and other tactics to the sequent. Tactics serve
as derived inference rules; their correctness is justified by the way the type
structure of ML is used.

Nuprl's type theory is expressive- its intent is to facilitate the formalization
of constructive mathematics. Types are stratified into a cumulative hierarchy of
universes. A term is a well-formed type if and only if it inhabits some universe
Ui. Type constructors include dependent function space, dependent product,
disjoint union, equality, set type, and quotient type. Each type comes with its
own equality relation. The equality type is a three place relation t =r t2 that
is inhabited exactly when t, and t2 are equal members of T. Propositions are
represented via the propositions-as-types correspondence: A proposition is true
if and only if the type associated with it is inhabited.

A special case of type checking in Nuprl is deciding if a program meets its
specification. As a result, a number of typing problems are undecidable. These
include: type membership (t E T); type inference; and type well-formedness
(T E Ui). The first two problems imply that there is no uniform way of proving
the identity rewrite valid. Given a term t, we cannot infer a type T it inhabits-
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even if we are given a T, we cannot prove t =T t as that requires a proof oft E T.
Type well-formedness is a semantic property as there are syntactically legitimate
yet meaningless terms. As we shall see in the next section, proofs of certain well-
formedness goals may be thought of as proofs of relational congruence.

3 Generalized Rewriting

Rewriting is the process of finding a term t' that is somehow simpler than a
given term t. Moreover, the terms must stand in some relation. Our rewrite
functions are called conversions. Given a sequent p and a term t, a conversion
returns a reunite triple- a relation R, a term t", and a tactic tac that proves the
assertion t R t' under the assumptions in p. We call R the reunite relation. We
take an abstract view of relations. A relation is specified by a constructor that
maps sequent. and pairs of terms to terms, and a destructor that breaks down
terms into pairs. Aside from the ability to construct and destruct relations, no
other properties are assumed. Conversions are applied with Nuprl's cut rule: If
c is a conversion, and c(p)(t) returns the triple <A, t', tac>, then t R t' may be
proved with tac and used as an assumption.

In the remainder of this section we describe how conversions are constructed
and composed. Our approach provides operators that construct conversions
using primitive inference rules and lemmas and provides combinators that build
conversions from simpler ones. This modular higher-order approach to rewriting
originated with Paulson who provides an account in [14]. Rather than duplicate
Paulson's account, we shall instead focus on what is novel about our approach:
how we coordinate rewrites over arbitrary relations and our use of lemmas to
direct inference and validation in a theory with undecidable typing problems.

3.1 Basic Conversions

Basic conversions are of two types: primitive and lemma-based. Primitive con-
versions, such as the identity conversion IdConv and (values of) IdConv WithR.
prove their rewrites valid with primitive inference rules. IdConvWiihR takes
a relation R as an argument and returns the conversion Ap.At.<R, t, tac>. A
Nuprl library, an ordered collection of definitions, theorems, and other objects,
is used to construct a database of lemmas expressing relational properties. For
the identity rewrite, IdCon|1-'hR searches this database for a lemma of the
form

>> t R t.

If no such lemma is found, the relation is assumed irreflexive and the conversion
fails. Otherwise the conversion succeeds and tac proves t R t with the found
lemma. IdConv is similar to IdConv WithR. But instead of taking a relational
argument, type inference routines described in [71 infer a T for the relation'=T
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The conversion fails when T cannot be inferred, but this has not been a problem
in our experience.

Other primitive conversions include FailConv, the always failing conversion,
ReduceConv, which replaces redices by their contracta, and Simplify which per-
forms arithmetic simplification.

Lemma-driven conversions construct rewrite triples from lemmas in a user's
library. These lemmas take the form

Vzi : T1.Vz 2 : T2 .... Vz : T. A, => A2 => ... > Am R s.

The function LemmaToConv takes two arguments, a lemma l, in which m, the
number of assumptions, is zero, and a relation R, and returns a conversion
Ap.At.<R, t, tac>. Lemma ToCon, matches t against the left operand of the
relation s R 81 in 1. If the match fails, the conversion fails. Otherwise, the
variables zt, ..., z,, are bound by the match and used to instantiate s' which is
returned as t. When executed the tactic tac applies 1 to prove t R t'.

Conditional rewrites are constructed similarly. ImpLemmaToConv takes as
inputs a lemma i, which may have assumptions, a relation R, and a tactic.
Before constructing its rewrite triple, ImpLemmaToConvapplies the input tactic
to the instantiated assumptions A1 , ..., An and fails if this application fails. Tac
appropriately combines both the lemma 1 and the input tactic.

Both Lemma ToConv and ImpLemmaToCon axe driven by first order match-
ing. We have also implemented powerful versions that are driven by second order
matching. As second order matches are not necessarily unique, these functions
take an additional argument, a match discriminator function that chooses an
appropriate match from a set of matches.

3.2 Composing Conversions

Given functions that construct basic conversions, the next step is to provide
operators that combine them. The two basic combinators are ORELSEC and
THENC. The former provides selective composition and the latter a method of
sequentially composing conversions.

ORELSEC is based on ML failure. In ML, the expression el ? e2 computes
the value of el and if that fails it computes the value of e2. Thus, we define
(cl ORELSEC c2)(p)(i) as

C1(P)(t) ? C2(P)(t).

THENC uses a generalized kind of transitivity reasoning to sequentially com-
pose conversions. Unlike selective composition, this requires use of the lemma

3There re functions RevLemm To Con. and ReulmpLemrm To Cony. which match against
the right operand.
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database. Given conversions cl and c2, (c THENC c2)(p)(t) computes the
triples

<Ri, ti, tact> = c(p)(t) and
<R2,t2, taC2> = c2(p)(tl).

If either conversion fails, then THENC fails. Otherwise, THENC uses R, and
R2 as keys and searches the database for a sequencing lemma of the form

t R, s, s R2 r >> t R3 r.

If such a lemma is found, the triple <R3 , t2 , tac> is returned, where tact, tac2 ,
and the lemma are appropriately combined into tac.

There is no need for the relations to be identical. For example,

t<8, 8 r >> t<r

is a valid sequencing lemma. Our implementation insists that there is at most
one sequencing lemma for any pair of relations; more general approaches al-
lowing multiple sequencing lemmas are possible. Such approaches would be
implemented analogously to the congruence reasoning routines described in Sec-
tion 3.3.2.

ORELSEC and THENC, along with FailConv and IdCon, provide the
basis for multi-way choice and repetition. The operator FirsC returns the first
successful conversion from its argument list [ci; ...; c,,]. It is equivalent to

ct ORELSEC ... ORELSEC cn

and is defined recursively in terms of ORELSEC and FailConv. RepeatC(c)
repeatedly applies the conversion c until failure. It is defined recursively as

(c THENC (RepeatC(c))) ORELSEC IdConv.

With FirstC and RepeatC it is easy to construct a general chaining procedure
where relational inferences are combined to the extent justifications are provided
in the database.

3.3 Congruence Conversions

3.3.1 Congruence Proofs

Subterm rewriting requires the construction of tactics that generate congruence
proofs. These proofs can be subtle and in practice more difficult to construct
than reflexivity and transitivity proofs. We shall first examine these proofs in
the simplest possible setting, equality congruence, and then consider general
relational congruence.
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Given t =T e, to conclude rft/z] =T, r[t'/z, we must prove that equal
members z in T yield equal members r in Tr (z may be free in r), i.e.,

>>t=Tt' ::T>>rET'
>> r[t/Z] =To r[t'/__]

The extra premise, that r is functional in z, takes the form of a membership
goal and, as discussed in Section 2, is in general undecidable.

Congruence proofs are by induction on the structure of Nuprl terms. A term
is a tree. It is specified by an n-ary term constructor and its n subterms. If the
subterms t, of a term T are rewritten via equality to t , congruence is proven by
decomposing T into its immediate subterms and proving that T is functional in
the types of these terms. The ti are then either proved equal to ej by reflexivity
(eqaity), proved equal by assumption (hypothesis), or recursively decomposed.
We illustrate this with the following example. Given r =A s, we prove

>> f(g(r)) -c (g(s))

under the assumptionsf: B -. C, and g: A - B as follows.

1 ... f(g(r)) =c f(g(s)) by intro wuing B -. C
1.1 .-- >> f =-c f by equality
1.2 ... >> g(r) =B g(s) by intro uing A - B
1.2.1 ... >> g -A-8 g by equality
1.2.2 ... >> r =A 3 by hypothesis

In the above example, observe that each step in the congruence proof can
be viewed as justifying a rewrite with respect to some (different) equality rela-
tion. As we "peel" through the various term constructors, our rewrite relation
changes.

This approach of proving functionality by recursive decomposition general-
izes to congruence proofs for arbitrary relational rewrites. Suppose T is a term
containing n > 1 subterms ti that are rewritten with respect to n (possibly
distinct) relations. Viewing T as a term tree, for each term constructor 0 in
the path from each t1 to the root of T we must prove that 9 is functional in
the relations used to rewrite its immediate subterms. Formally, 0 is said to be
Ro-functional in the relations R,, ..., R, whenever

t,,) R o(e, .t,(1)

is provable under the assumptions

ti R1  t',

tn (2)

Cm,
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The C1 , ..., C,,, are additional auxiliary conditions which may be required of the
ti. We call the lemma that proves that Equation I follows from the assumptions
in 2, a congruence lemma. A congruence proof consists of recursively decom-
posing a term by applying congruence lemmas until the relations among the
resulting subterms follow by reflexivity or from a given conversion.

As a simple example, suppose we are given the term VzI : T. ...Vz : T". tI
and the conversion c where c(p)(ti) - <0, t', tacj>. Then n applications of the
congruence lemma

>>YT:/U1.VPQ:T --U1. (Vz:T. (P(z) 4 Q(z))

= (V:T.P(z) *Vz:T.Q(z)),

which proves that the relation V is .*-functional in the relation €*, reduces
proving

to proving t, * t', which is proved by the tacl.

3.3.2 Inferring Rewrite Relations

In our implementation, the function SubConv provides the basis for subterm
rewriting. Sub Conv(c) is a conversion that applies the conversion c to the im-
mediate subterms of a term. The tactic it produces justifies the subterm rewrite.
Repeated application of SubConv allows rewriting of arbitrary subterms.

To construct a rewrite triple, SubConv use the lemma database as a source
for congruence lemmas. However, there may be more than one choice of Ro
for a given 9 and Rl, ... , &,. For example, suppose that 0 is the multiplication
operator *, and R1 and R 2 are = and <. Then with an additional inequality
condition, the rewrite relation Ro may be either < or :. That is, both

a-c, b<d, a>O>>a*b< c.d (3)

and
a=c, b<d, a>O>>a*bioc*d (4)

are valid congruence lemmas. Moreover, in the proper proof context, each of
these lemmas could find application.

How one determines which congruence lemma is applicable is an important
question. If SubConv chooses an improper rewrite relation, then a rewrite may
either eventually fall, as it will be unable to create a tactic that constructs a
congruence proof, or the relation chosen may be too weak, rendering the rewrite
useless. Hence, it is important to have an effective strategy for selecting rewrite
relations. In this section we outline two methods for controlling relational in-
ference: a powerful but computationally expensive method, and a simplified
heuristic method that works well in practice. Our implementation is based on
the latter.
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The most general method of subterm rewriting is to construct all possible
rewrites as permitted by the congruence lemmas contained in the database.
Such a method necessitates a generalized type of conversion that returns not a
single rewrite triple, but rather a set of triples. In such a setting, if a term t's
outer most operator is the n-ary constructor 0, then SubConv(c)(p)(t) would:

1. Associate with each of the n immediate subterms ti of t either the set
of rewrite triples returned by c(p)(t), or if this fails, the singleton triple
returned by IdConv(p)(tj). If all n subterm rewrites fail, then SubConv
fails.

2. Form all possible n-tuples where the ith element of the tuple comes from
the triple set associated with the term ti. For each such tuple, search the
lemma database for a congruence lemma which states that for some R, 0
is Ro-functional in the tuple's n rewrite relations. If such a lemma exists,
use it to construct a new rewrite <R 0 (t, ..., t,), tac> where tac applies
I and the taci.

3. Return the set of new triples or fail if the set is empty.

The effect of the above construction is that SubConv generates, bottom-
up, all possible congruence proofs. The resulting set of triples can be used to
selectively add new facts to the hypothesis list of the sequent and for subsequent
inference.

While this approach makes the fullest use of the lemma database, its time
complexity is exponential in the depth of the rewritten subterms. Our solution
to this combinatorial explosion rests on the observation that in most cases, when
there is a choice among rewrite relations, it suffices to pick the strongest relation.
For example, it is preferable to know that two types are equal instead related
by bi-implication (if and only if). Similarly, bi-implication is a stronger relation
than implication, and less-than is stronger than less-than-or-equal. So, for ex-
ample, one generally prefers to use the congruence lemma given by Equation 3
over Equation 4.

Our approach, which is linear in the depth of the rewritten subterms, always
returns the strongest possible rewrite relation. We use a user provided table
to determine relative relational strength. StbCont(c)(p)(t) produces a single
rewrite triple as follows:

1. The function c(p) is applied to each subterm ti. For each subterm this
yields the triple <R,, t , tac,>, or, failing that, the triple IdConv(p)(t1 ). If
all n conversions fail, then SubConv fails.

2. The operator 8 and the relations R, are used to index into the library for
congruence lemmas that specify relations Ro such that 0 is Ro-functional
in the R. When more than one such lemma is found, the one with the
strongest Ro is chosen. If no such lemma is found, SubConv fails.
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3. A tactic te is constructed that applies the lemma found in the previous
step. This reduces the proof of t R0 t' (where t' = O(tl,..., t1)) to the
subgoals ti A- t . Tac then proves each such subgoal by tac,.

4. The rewrite triple <R0 , t', tac> is returned.

3.3.3 Subterm Traversal

SubConv provides the basis for traversing terms recursively. It is now easy to
write an operator Depth(c) that recursively rewrites all subterms of a term in
depth-first order. Its recursive definition is

((SbCoxv (Depth(c))) THENC RepeatC(c)) ORELSEC (RepeatC(c)).

Similarly, top-down rewriting is accomplished by Top(c) whose recursive defini-
tion is

ProgreuC(RepeatC(c)) ORELSEC (SubConv (Top(c))). 4

3.3.4 An Example

Let c be a conversion that rewrites t to t" under the less-than relation <. Sup-
pose m is non-negative, the sequent p contains appropriate well-formedness
hypotheses, and the database contains the congruence lemmas given by

a=c, b<d>>a < b=*c < d (5)

and Equation 3. Then
Top(c)(p)(n < n * t)

returns the triple
<:c-, n < m * t' , tac>. (6)

Tracing Top's recursive execution, we find that after two calls to SubContv c(p)(t)
returns the triple <<, t', tacl>. The second SubConv uses Equation 3 and the
previous triple (as well as the triple where m is rewritten by the identity conver-
sion) and returns the triple <<, m * t', tac2>. Finally, the first call to SubConv
uses Equation 5 and returns the final triple, Equation 6.

The end result of the above rewrite is that n < m * t =* n < m • t' may
be added to the hypothesis list and this new hypothesis can be used for other
rewrites or forward and backchain deductions. This example demonstrates how
SubConv uses the lemma database to reason about inequalities. It also proves
that our approach is strictly stronger than Paulson's.

4 ProgresC(c) is & combinator that fail when c behaves like IdConv.
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4 Conclusion

Our system is a practical solution to an important theorem proving problem. It
dramatically raises the level of user/system interaction; moreover, it provides a
foundation for building high-level proof procedures such as decision procedures
based on equational reasoning and term normalization. Examples are given in
[1,2].

One area for future research is rewrite efficiency. Our approach essentially
justifies rewrites twice: once when using the lemma database to construct
rewrites, and again when the tactics are executed. An alternative is to build
proofs directly; however, this approach is wasteful when conversions fail and
ORELSEC uses failure as selective composition. Another possibility is to reflect
Nuprl's meta-language into the object language and prove conversions correct.
Such an approach would obviate the need to construct tactics as the rewrite is
formally proved valid. Howe(8] has had some success building a partial-reflection
library and verifying basic rewrite strategies. Unfortunately his library is lim-
ited in scope and has its own efficiency problems which stem from inefficiencies
in Nuprl's evaluator. There is a research effort at Cornell to design a reflected
object language that will better support this style of rewriting.
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ABSTRACT. We use an adaptive mesh moving and refinement finite volume method to
solve the transient Euler equations of compressible flow in one and two space dimensions.
Numerical solutions are generated by a MacCormack scheme with Davis's artificial viscos-
ity model. Richardson's extrapolation is used to calculate estimates of the local discretiz-
rion error which can be used to control mesh motion and refinement. Questions regarding
the optimal combination of adaptive strategies and the characterization of the initial mesh
are investigated. Results indicate that local mesh refinement with and without mesh mov-
ing provide dramatic improvements in accuracy over uniform mesh solutions; that mesh
motion provides. good results on relatively fine initial meshes; that each problem has an
optimal initial mesh and that it is more efficient to begin with a coarser than optimal mesh
and refine rather than starting with too fine a mesh; and that a combination of both the
adaptive strategies produced the most accurate solutions.
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L INTRODUCTION. Our goal is to develop reliable, robust, and efficient software for
solving hyperbolic partial differential equations. With this in mind, Arney and Flaherty
(4] developed an adaptive procedure combining mesh motion and mesh refinement for
solving one- and two-dimensional vector systems of time-dependent partial differential
equations. The solution, mesh motion, and local refinement procedures were explicit and
independent of each other, thus, modules can easily be replaced.

Arney and Flaherty's (4] method solves vector systems of hyperbolic conservation
laws having the form

ut + fX(x, Y, r, U) + gy(X, y, t, U) = 0, (la)

with initial conditions

u(x, y, 0) = uo(x, y), (Ib)

and with appropriate well-posed boundary conditions on a one- or two-dimensional
domain il Their adaptive approach consists of moving a coarse "base" mesh of quadrila-
teral cells to follow fronts and reduce dispersive errors. Recursive refinement of mesh
cells is performed when necessary to satisfy a prescribed local error tolerance. Solutions
are generated using MacCormack's (10] finite volume scheme coupled with Davis's (8]
artificial viscosity model to make the scheme total variation dirinishing (TVD). Local
motion and refinement indicators on each cell of the mesh are used to control mesh
motion and refinement, respectively. They used an estimate of the local discretzanon
error obtained by Richardson's extrapolation (2,11] as the mesh refinement indicator. For
the examples presented in this paper, we used a normalized solution gradient as the mesh
movement indicator, although other choices are possible as long as the indicator is large
where additional resolution is required and small where less resolution is desired. An
automatic time step adjustment feature, based on maximizing the Courant stability condi-
tion, is also provided in our algorithm.

The generation of a proper initial mesh is important for the efficiency of any adaptive
algorithm. Initially we create a uniform mesh on Q1 having a specified number of nodes
without considering the possibility of any high-error regions. A global mesh refinement is
performed on the first time step to estimate the discretization error of the initial data. The
nodes of the mesh are then placed to equidistribute this error estimate. As time evolves,
these nodes are dynamically moved to reduce dispersive errors.

Arney and Flaherty [4,5] perform mesh motion based on an intuitive approach by
identifying computational cells having large motion indicators and clustering them into
isolated regions that are presumed to contain similar solution characteristics. The center
of motion indicators of each clustered region is moved so as to follow the dynamics of the
solution. Remaining portions of the mesh are moved according to an algebraic function so
as to produce a smooth grid having minimal distortion. Most mesh points cannot move
independently but must be coupled to their immediate neighbors. The amount of move-
ment is determined by a function which ensures that the center rm (t) of error clusters
moves according to the differential equation

im + =0, (2)
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used by Coyle et al. [7. Clustered regions created at one time step can subsequently be
destroyed when a dynamic phenomena subsides. Similarly, two or more clusters can be
united when structures of the solution intersect.

Results obtained by using Arney and Flaherty's (1,3,4,5] adaptive algorithm in one
and two dimensions indicated that, in some instances, proper mesh motion was capable of
dramatically reducing errors for a modest increase in the cost of computation. In general,
however, mesh motion alone cannot produce solutions that satisfy arbimarily prescribed
accuracy requirements. They, therefore, combined mesh motion with a local temporal and
spatial cellular mesh refinement strategy (4,6]. The space-time cells of a mesh that
violated the prescribed error tolerance were gathered into clusters and were recursively
bisected in space and time. The problem was solved locally on the successively smaller
domains created by the clustering and refinement. Initial and boundary data for any
refined mesh were determined by interpolation from their "parent" coarser mesh. Error
tolerances involved control of the local error per unit time step and were, thus, halved at
each refinement to account for the binary temporal refinement.

A dynamic ree suwture, where fine grids are regarded as offspring of coarser ones,
is used to manage the data associated with the motion and refinement stategies. Solutions
were generated by a preorder traversal of the tree; thus, solutions on all fine meshes pre-
ceded those on coarser ones.

Our results on solving shock problems for the one- and two-dimensional Euler equa-
tions are presented in Section 2. We explore the relationship of the base mesh to the level
of refinement. We found, for example, that it is more effective to begin with a come
mesh and perform more refinement than to create a finer mesh which needs less
refinement. Effective mesh motion, on the other hand, required a finer base mesh rather
than a coarser one. The combination of mesh motion and refinement produced the best
results. Local refinement with and without mesh moving provide substantial improve-
ments in accuracy per unit cost relative to computations on uniform stationary mesh solu-
tions.

2. NUMERICAL EXPERIMENTS. Computer codes for one- and two-dimensional prob-
lems based on Arney and Flaherty's [4] algorithm have been implemented in FORTRAN
on an IBM 3090-200S computer and tested on several problems [1,4]. In this paper, we
consider examples involving solutions of the Euler equations for a one-dimensional shock
rube and a two-dimensional piston problem. The Euler equations for a perfect compressi-
ble fluid are studied in the 'r conservative form

ut + f, (u) + gy (u) = O, (3a)

where

P Pu PIP

P1 PU2 +p Pvu
U " f(u) g(u) = (3bcd)

e u(e +p) v(e +p)
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Here, p is the fluid density; u and v are the Cartesian components of the velocity vector,
e is the total internal energy per unit volume; and the subscripts x, y, and t denote partial
differentiation with respect to the spatial coordinates and time, respectively. The pressure
p is evaluated according to the ideal gas equation of state as

p = (,y- Z)[ e - P(U 2 + V2)1/2], (4)

where y is the specific heat ratio of the fluid. Computational experiments were conducted
with y = 1.4. Solution accuracy is appraised in the L norm

lie(-, -, t)II1 = max f lej(x, y, t)l dx dy, (5)

where e,(x, y, t) is a piecewise constant approximation of uy (x, y, t) - Uj obtained by
using values at cell centers.

Example 1. Consider Sod's [12] one-dimensional shock tube problem which consists
of solving (3,4) with v = 0 and d( )/ay = 0 subject to the initial conditionsEp(x, )lr[ 1.0, 1.0, O.O1T, if - 0.2 :5 x :5 0.5p (X, 0) = (0.125, 0.1, 0.0fr , if0.5 < x 51.5 (6)

U(x, 0).

A diaphragm at x = 0.5 separates two regions of a tube that contain gases at different
densities and pressures. The two regions are in a constant state and both fluids are ini-
tially at rest. At time t = 0 the diaphragm is ruptured and three waves are generated. a
shock moving with velocity 1.7522, a contact discontinuity moving with velocity 0.9275,
and an expansion wave centered between 0.5 - 1.1832t <x S 0.5 - 0.0703t. The exact
solution [13] of this problem is

[0.0, 1.0, 1.0]r , if ' :- 1.1832
U(x, t), [0.9860 + i / 1.2, (1- u/ 5.9161) 5, p1.4]T, if - 1. 1832 5 T1 !5 - 0.0703

p(x, ) = [0.9275, 0.4263, 0 .3 0 3 11T, if -0.0703 <: Tl < 0.9275 ,(7)

P(x, ). [0.9275, 0.2656, 0.3031] T , if 0.9275 < l1 < 1.7522

[0.0, 0.125, 0 .1]T, if 1.7522 < iI

where il = (x -0.5) / t.

The "base" mesh is the coarsest mesh used to solve a problem. It reflects the scale
on which dominant temporal and spatial changes in the solution occur. Selecting too
coarse a base mesh will result in excessive refinement. Selecting too fine a base mesh
will be inefficient. At present, selection of the base mesh is at the discretion of the user
and in this first experiment we hope to provide guidance for this choice as well as for
future automated base mesh selection procedures. Six cases having base meshes of
N =2 t , k = 3,4...,8, cells were solved on 0< t 0.35. The maximum number of
refinement levels, the initial time step, and the local discretization error were set at 8-k,
3 x 26"- x 1074, and 2-- ' x 10- 5, k = 3,4,...,8, respectively, so that the finest allowable
discretization and local error tolerance were constant for all six cases.
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Error Max. No. Normalized No. Space- Effort per
N Tolerance Refinement CPU TIne TIme Unit Accuracy

(x 10) Levels (Effort) Cells (x 101)

8 4.0 5 1.295 28162 3.71
16 2.0 4 1.066 23026 2.17
32 1.0 3 1.000 21006 2.24
64 0.5 2 1.104 21396 2.67

128 0.25 1 1.533 25996 3.89
256 0.125 0 4.104 63744 6.70

Table 1. Normalized CPU time, number of space-tme cells, and effort per unit
accuracy at t = 0.35 with different initial base meshes for Example 1. The
parameters are adjusted so that the finest discretizadon and the corresponding lo-
cal error tolerance are constant for all cases.

Results for the normalized CPU time, the number of space-time cells, and the effort
per unit accuracy are reported in Table 1 for each of the six cases. Effort per unit accu-
racy is the product of the normalized CPU time and the L I error at terminal time (0.35 in
this case). In Figure 1, we show how the effort per unit accuracy varies with the loga-
rithm of the number of cells in the base mesh. It is preferable to select a coarser base
mesh than a finer one since, with our procedures, refinement of a coarse mesh will
decrease the effort/accuracy ratio. The number of space-time cells vary in approximately
the same ratio as the CPU time suggesting that the overhead associated with data manage-
ment is minimal-

Error Toler- Normalized No. of Space-
ance (x 10) CPU Time TIme Cells lie III (x 103)

128.0 1.000 910 25.7
32.0 4.473 7532 12.7

8.0 9.370 19322 6.20
2.0 15.610 34562 3.03

Table 2. Normalized CPU time, number of space-time cells, and global L I error
at r = 0.35 as a function of the local error tolerance for Example 1 using local
mesh refinement.

We continued our experiments by solving this problem on -0.2 5 x : 1.5 for
0 < r :5 0.35 using local mesh refinement on 16-element base meshes, an initial time step
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Figure 1. Effort per unit accuracy vs. number of elements in the base mesh for
Example 1.

of 0.0035, and with varying error tolerances. Refinement was restricted to a maximum of
four levels to avoid excessive refinement near shocks. The normalized CPU time, the
number of space-time cells used to solve the problem, and the errors in L1 at t = 0.35 are
presented in Table 2 as functions of the local discretization error tolerance. For small
tolerances, the CPU times and the number of space-time cells increase at approximately
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the same rate as the L 1 error decreases, again indicating a minimal overhead associated
with refinement. The decrease in the local pointwise error tolerance is quadratic when
compared with the actual global L I error, which is what one would expect for problems
having smooth solutions. The result apparently carries over to this shock problem.

Normalized No. of Space-
Strategy CPU Time Time Cells Ile II (X 103)

Uniform Mesh 1.000 576 30.7
Coarse Mesh Motion 2.026 1152 16.9
Refinement 19.009 34562 3.03
Motion & Refinement 26.532 44602 1.88

Fine Mesh Motion 8.584 12690 4.37

Table 3. Normalized CPU time, number of space-time cells, and global L 1 error
at t = 0.35 for adaptive and standard solutions of Example 1.

The third experiment involves comparing adaptive solutions obtained using mesh
motion, local mesh refinement, and mesh motion plus local refinement with one obtained
on a uniform mesh. In each case, a 16-element base mesh and an initial time step of
0.0035 was selected. An error tolerance of 0.00002 was used for those solutions that
involved refinement. A fifth solution involving motion of a finer 50-element mesh was
also generated. Data similar to that presented in Table 2 is displayed in Table 3 compar-
ing the results of different adaptive strategies with those on a stationary uniform mesh. In
Figures 2 to 6 we display the calculated density as a function of x at t = 0, 0.09, 0.18,
0.27, and 0.35, the meshes used, and the time steps selected for each of the solutions
shown in Table 3. The uniform mesh solution shown in Figure 2 exhibits excessive
diffusion at the shock, at the contact surface, and in the expansion region. However, the
time step increases rapidly in accordance with the Courant condition. A larger initial time
step could clearly have been used; however, we wanted to use the same initial time step
for all the cases. In Figure 3 we show that the moving mesh procedure follows the dom-
inant features of the solution. Results are clearly superior to those in Figure 2, but the

esh is too coarse to obtain good resolution everywhere. The results in Figure 6 demon-
strate that far better resolution is obtained when a finer mesh consisting of 50 elements is
used; however, this mesh did not move correctly in the expansion region because the mesh
movement indicator is too small there. The initial mesh generator distributes a specified
number of nodes N based on the initial data. In this case, the initial data has a jump
discontinuity at x = 0.5, so nodes were clustered around that point and then gradually
spread across the domain. There are too many nodes in the expansion region in relation
to the small magnitude of the movement indicator to produce adequate motion there. A
static rezone of the mesh could alleviate this problem. The time steps of both solutions
with mesh moving (Figures 3 and 6) are erratic for small times while the mesh is
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adjusting itself to the three breaking waves. Time steps increase at the same rate as those
for the uniform mesh solution of Figure 2 when a coarser mesh is used. Incorrect motion
of the fine mesh in the expansion region (Figure 6) prevented a similar increase of the
time step. The results depicted in Figure 4 show that refinement was correctly performed
at all critical points of the calculation. In each case, shocks are captured sharply with the
correct speed. As expected with Davis's [8] artificial viscosity model, diffusive effects are
more pronounced near the contact surface than at the shock. Results obtained using both
mesh motion and refinement are depicted in Figure 5. The results have improved some-
what but at the cost of a significantly higher computational effort relative to the solution
of Figure 4. This suggests that mesh motion, with or without refinement, is not competi-
tive with refinement alone. Additional experimentation is needed to determine a better
combination of mesh moving and refinement.

Exanple 2. Consider the solution of the Euler equations (3,4) in a region exterior to
an infinite cylindrical piston that is expanding radially creating a radially expanding shock
wave. We ignore the cylindrical symmeny and solve this problem in one quadrant of the
two-dimensional rectangular domain -0.05 S x, y < 0.05 with the two-dimensional algo-
rithm of Arney and Flaherty [4]. Self-similar solutions of this test problem are obtained
by solving a pair of ordinary differential equations (by numerical integration) for the radial
velocity and acoustic speed [9].

We solved this problem for 0 < t S 0.0096 with the piston initially positioned at a
radius of 0.016023 and having a velocity of 1.6185. Numerical solutions were calculated
on a 26 x 26 spatial mesh (i) without adaptation, (ii) with one level of local refinement,
and (iii) with mesh motion and one level of refinement. Contours of the density at
t = 0.0096 are presented for the exact and three numerical solutions in Figure 7. The spa-
tial meshes produced by the two adaptive strategies at t = 0.0096 are shown in Figure 8.

Clearly one level of refinement is not sufficient to adequately resolve the structre of
this solution. We were forced to limit our computations to this level because of memory
restrictions on our computing system. Nevertheless, local refinement with and without
mesh moving provide improvements in accuracy over uniform stationary mesh solutions.
Detailed quantitative comparisons have yet to be performed- however, qualitatively, the
expanding shock is sharper in both adaptive solutions. The combination of mesh motion
and refinement provides additional improvement.

3. CONCLUSIONS. We have applied an adaptive mesh motion and refinement method
for time-dependent partial differential equations to the one- and two-dimensional Euler
equations. Our method can be used with several numerical methods and local error indi-
cators to produce solutions that satisfy prescribed local tolerances. Mesh motion is global
and is performed at every time step. Mesh refinement is cellular and can be used on
irregular or moving meshes of quadrilateral cells.

Our results indicate that mesh refinement can be used to achieve prescribed levels of
accuracy. Refinement is easy, recursive, and ,-vorks well. It appears to be computationaly
efficient for a given accuracy level. Proper mesh movement improved the computed
results. Refinement has a definite advantage over mesh motion in that it is inferred in an
a posteriori manner from a preliminary solution whereas our mesh motion is applied in an
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Figure 3. Solutions, mesh trajectories, anid time step profile for computations
performed with adaptive mesh motion on a mesh of 16 cells for Example 1.
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Figure 4. Solutions, mesh trajectories, and time step profile for computations
performed with adaptive local mesh refincmera for Example 1.
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Figure 5. Solutions, mesh trajectories, and time step profile for computations
performed with both adaptive mesh motion and local mesh refinement for Exam-
ple 1.
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Figure 6. Solutions, mesh trajectories, and time step profile for computations
performed with adaptive mesh motion on a mesh of 50 cells for Example 1.
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Figure 7. Density contours for Example 2 at t = 0.0096 obtained from the exact
solution (upper left) and by computed solutions on a uniform stationary mesh
(upper right), a uniform stationary base mesh with one level of refinement
(lower left), and a moving base mesh with one level of refinement (lower right).

a priori fashion by extrapolating the mesh behavior of the previous two base time stepa.
As a result, mesh refinement may be inefficient but it never leads to anomolous behavior.
On the other hand, incorrect mesh motion can easily mess a local nonuniformity in the
solution chat evolves suddenly. Such incorrect motion resticts the size of the time steps
and diminishes the overall efficiency of the adaptive method. These difficulties can
largely be overcome by combining mesh motion with mesh refinement and static mesh
redistribution. Further experimentation and analysis are needed in order to determine
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Figure 8. Spatial meshes at r = 0.0096 for Example 2 using one level of local
mesh refinement on a uniform stationary base mesh (left) and a moving base
mesh (right).

optimal combinations of these strategies.

We used the first example to demonstrate that each problem has an opcr Al initial
base mesh size and that it is always computationally efficient to adaptively refine begin-
ning with a less than optimal mesh rather than startng with too fine a mesh. This exam-
ple also showed that for mesh motion to be effective, a fine base mesh is absolutely neces-
sary. A combination of both the adaptive strategies of mesh motion and refinement pro-
duced the best results but at the cost of a significantly higher computational effort. The
second example demonstrates that our adaptive mesh procedures extend to two-
dimensional problems.

We are currently developing higher-order explicit finite volume methods to replace
the second-order MacCormack scheme. The present Richardson's extrapolation-based error
indicator is expensive and we are seeking ways of replacing it by using p-refinement tech-
niques. Such methods have been shown to have an excellent cost performance ratio when
used in conjunction with finite element mehods. We are also working on a modification
of our algorithm which allows a variety of geometries. Our adaptive techniques must be
able to take advantage of the Latest advances in vector and parallel computing hardware.
The tree is a highly parallel structure and we are developing solution procedures that
exploit this in a variety of shared and distributed memory parallel computing environ-
ments; however, it is difficult to parallelize mesh motion because of its global natur.
Cells assigned to a particular processor may migrate to the domain of other neighboring
processors and cause non-trivial bookkeeping problems. Mesh motion is also difficult to
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perform in higher dimensions. We are, therefore, actively considering hp-type techniques

in parallel environments.
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Abstract

We present the results of a study of line iterative methods for solving linear systems
arising from finite difference discretizations of non-self-adjoint elliptic partial differential
equations on two-dimensional domains. The methods consist of performing one step of
cyclic reduction, followed by solution of the resulting reduced system by line relaxation.
We consider both one-line and two-line relaxation methods, and we present analytic and
experimental results showing that these classes of methods are highly effective for solving
the convection-diffusion equation. The paper summarizes results from [2] and [3], where
further details can be found.

1. Introduction.

We consider iterative methods for solving linear systems of the type that arise from
two-cyclic discretizations of two-dimensional elliptic partial differential equations. Such
systems can be ordered using ' "ack ordering so that they have the form

( E F u ( )  "- 
(b )

where D and F are diagonal matrices. If bloci elimination is used to decouple the "red"
points u(') from the "black" points u(b), the result is a reduced system

(1.2) [F - ED-1C]u(b) = V(b) - ED-lv( r ).

Let

(1.3) S = F- ED-'C, s = v(b) - ED-l(r).

In this paper, we describe a study of relaxation methods for solving (1.2) when (1.1)
comes from a finite-difference discretization of the constant coefficient convection-diffusion
equation

(1.4) Au = -Au + au, + ru= f

*Supported by the U. S. Army Research Office.
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with Dirichlet boundary conditions. We consider several orderings of the rows and columns
of S, based on either a one-line ordering or a two-line ordering of the reduced grid. Line
methods of these types have been considered for solving the original problem (1.1) in [1],
[8], and for the reduced system in [41, [7], [8]. For the ordering strategies considered, the
reduced matrices have block Property A so that Young's analysis of iterative methods
[11] is applicable. We use this analysis to determine the convergence properties of block
Jacobi, Gauss-Seidel and successive overrelaxation (SOR) metlods for solving the discrete
convection-diffusion equation, in terms of discrete cell Reynolds numbers orh/2 and rh/2.
In addition, we present the results of numerical experiments showing convergence behavior
not revealed by the analysis. Together, the analytic and numerical results show that the
two ty p s of orderings lead to very effective methods for solving (1.4).

An outline of the paper is as follows. In §2, we describe two discretization schemes
for (1.4), and we examine the truncation error associated with taking the reduced system
as an approximation of (1.4). In §3, we present the one-line and two-line orderings for the
unknowns of (1.2), including variants based on block red-black groupings of unknowns,
and we outline the convergence analysis for line relaxation methods. In §4, we describe
some numerical experiments that confirm and supplement the convergence results.

2. The convection-diffusion equation and the reduced system.

Consider the two-dimensional convection-diffusion equation (1.4), posed on the unit
square 2 E (0, 1) x (0, 1) with Dirichlet boundary conditions u = g on c 2. Discretization
by a five-point finite difference operator leads to a linear system

Au = v

where u now denotes a vector in a finite dimensional space. We discretize on a uniform
n x n grid using standard second order differences for the Laplacian [10], [11]. and either
centered or upwind differences for the first derivatives. With ?L ordered lexico-raphically
In rte natural ordering as (U1 1. 2 .1 .... U.r )T. the coefficient matrix has the form

(2.1) A = tri [ Aj,j 1 , Aj, Aj,j+ J.

Here, tri [ Xj,_.1, Xjj, Xj,j+l ] is the (block) tridiagonal matrix whose j'th row contains
Xj,j- 1 Xj3 and Xj,j+I on its subdiagonal, diagonal and superdiagonal. respectively. We
omit the subscripts when there is no ambiguity. The entries of (2.1) are

A =,-- b= , Aj, = tri [c, a, d], Aj,j+1 = eI,

where I is the identity matrix, a, b. c, d and e depend on the discretization. and all blocks
are of order n. Let h = 1/(n + 1). After scaling by h2 , tle matrix entries are given by

a=4. b =-(1 46). c =-(I -+ :)

d= -(1-y), e--(1-6),
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for the centered difference scheme, where 7 = ah/2 and 6 = rh/2; and

a=4+2(-y+b), b=-(1+26), c--(1+2-y),

d=-l, e=-19

for the upwind scheme. At the (i, j) grid point, the right hand side satisfies vij = h2fi,
where fij E f(ih, jh).

In [21, we showed that the reduced matrix S is a skewed nine-point operator. At all
grid points except those bordering &Q2, the computational molecule has the form (after
scaling by a) given in Fig. 2.1.

-e 2

-2ce -2de
2\/

-c-- 2 - 2be - 2¢d-- -d2

-26c -2bd

-b2

-2(1 +7) -2(1 -7) -(+7
(1- -2(1 + 2) -2

- + -)---12 + y2 + 62 ---- )(1-2t -(1 + 2-f)2 12 + 12(-f + 6)_- 1+4(7+) -1

-217' ~ 2(1 - ) -2(1+ 2-y) /2 +26
(1 +6s) (I + 6) (1+26) -2(1+26)

-(1 +6)2 -(1 + :)2

Fig. 2.1: Computational molecules for the reduced system. Top: general case. Bottom
left: centered differences. Bottom right: upwind differences.

Suppose centered differences are used to discretize the first derivative terms. At
the (i,j) grid point, the discrete operator satisfies I[AuJi, = [Au],j + 0(h 2 ), i.e. the
truncation error of the discretization is of order h2 . The following result shows that the
reduced system (1.2) can also be viewed as a discretization of (1.4) with truncation error
of order h2 . The proof is based on Taylor series, see (3]. A similar analysis shows that the
reduced system for the upwind scheme approximates (1.4) with truncation error O(h).

THEOREM 1. For the centered difference discretization of(1.4), let S and . denote the
reduced matrix and right hand side obtained by multiplying the reduced system by a ( 4).
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Then for 2: <i,j < n - 1, satisfies

1 + ah2 ) + rh 2

-[su]ii =-[ +T)u==+(i + T8 )U 1 +au, + u + O(h),

and j satijfiej
I i = f+ O(h 2 ).

3. Convergence of line relaxation relaxation methods.

The performance of iterative methods for solving (1.2) depends on the ordering ot the
underlying grid. In this section, we define the one-line orderings and two.line orderings,
and outline the convergence analysis of the resulting iterative methods.

For the one-line orderings, grid points are grouped by diagonal lines oriented at a
45* angle with the horizontal and vertical axes. For the purpose of discussion, we fix
the orientation to be along the NW-SE direction. In the natural one-line ordering, the
n - 1 diagonal lines are numbered starting from one corner (e.g. the SW) from 1 to n - 1,
and individual points are numbered from bottom to top along the lines. An example for
n = 7 is shown in the left side of Fig. 3.1, where the line indices are shown outside 02.
In the red-black variant, the lines with odd indices from the natural ordering are ordered
first, followed by those with even indices. The individual grid points are renumbered to
be consistent with this reordering. An example for n = 7 is shown in the right side of Fig.
3.1.

X 18 X" X 2 4  6X2 X12 X2 46 6
X 12 X 17 X21 - X'23 X 8  X21)- X11 X 23

X11l X16 *X20 -X7 X20 X10

X6 -Xl0 X 15 -X 19 5 X 16 -X6 -X19 -X9 3
X5 X9 X14 X15 X 5  X18

X2 X4 -X8 -X13 X2 -X14 -X4 .X17-

X1 X3 X7 4X1 X 13 X 3

1 2 3 1 4 2

Fig. 3.1: The reduced grid derived from a 7 x 7 grid, with natural one-line (left) and
red-black one-line (right) orderings.

In the two-line orderings, points in the reduced grid are grouped by pairs of horizontal
or vertical lines. Examples with horizontal lines, for n = 6, are shown in Fig. 3.2. The left
side of the figure shows a natural two-line ordering, and the right side shows a red-black
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X13 X 1 5  X 1 7  XT Xg X11

X14 X16 X 1 8 XS X 40 X312

X7 X9 X11 X 1 3 X15 X17

X8 X O X 12  X 1 4  X16 X 18

Xl X3 X 5  XI X3 X5

X 2  X4 X6 X2 X4 X6

Fig. 3.2: The reduced grid derived from a 6 x 6 grid, with natural two-line (left) and
red-black two-line (right) orderings.

two-line ordering. We restrict our attention to two-line orderings with horizontal lines;
generalization to vertical lines is straightforward.

For all these orderings, we use a splitting of the reduced matrix,

S=D-C,

where D is a block diagonal matrix whose individual blocks come from the underlying
lines. Thus, D contains tridiagonal blocks for the one-line orderings and pentadiagonal
blocks for the two-line orderings. Consider the block Jacobi iterative method

Uk(b)= Bu,) + D- 1 s,

where B = D 1 C is the block Jacobi iteration matrix. The standard measure of the
effectiveness of this method is the spectral radius p(B); the iteration is convergent provided
p(B) < 1, and convergence tends to be more rppid if p(B) is closer to 0 [10]. The following
results determine bounds on p(B) for both the centered difference and upwind difference
schemes, and each of the four orderings defined above, see [2], [3] for proofs.

THEOREM 2. For the centered difference scheme, if I[t < 1 and 161 < 1, then the
spectral radii of the one-line block Jacobi iteration matrices for the reduced system are
bounded by

(f - - + VI-,/7- )2
8 - (V/1-  ___2  + V l---b )2 + 2V/(1 -- 72)(1 - 62) (1 - cos(rh))"

For the upwind difference scheme, the spectral radii are bounded by

( VT-7-W + Vl 2

2(2 + -, +6)2 (V TT + .r/T2)2 + 2/(I + 2-y)(1 + TT6)(1 - cos(7rh))

THEOREM 3. For the centered difference scheme, if I-'i < 1 and 161 < 1. then the
spectral radii of the two-line block Jacobi iteration matrices for the reduced system are
bounded by

(1 - 62) cos 2rh + 2/(1 - _2)(1 - b) cos ,rh
+ 

-r 
+h

2/(1 - -2)(1 - 62)(1 - cos,rh) + 2(1 - _Y
2 ) (1 -cos 2 ,rh)
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For the upwind difference scheme, the spectral radii are bounded by

(1 + 26) cos2rh + 2 (1 + 2)(1 + 26) cos rh

2(2 +V +6)2 -(/+ 2f+ v/T'W'b)2 -(1 + 2-y) +
2,/(1 + 2-t)(1 + 26)(1 - cos wh) + 2(1 + 2-y)(1 -cos2 rh)

Note that these results apply for both the natural and red-black variants of the line or-
derings. The bounds of Theorem 3 are smaller than those of Theorem 2. For the centered
difference schemes, the restrictions on -y and 6 coincide with the conditions guaranteeing
that the discrete solution is nonoscillatory. Some bounds applicable when both 1-(l > 1
and 161 > 1 can be found in [2], [3].

For all orderings considered, the reduced matrices S have block Property A, so that
Young's analysis of relaxation methods applies. In particular, let C = L + U where
L and U are strictly lower triangular and upper triangular, respectively, and let C,, =
(D -wL) - 1 [(1 -w)D + wU] denote the block SOR iteration matrix. Then p(£Ci) = p(B) 2 ,

and for all of the cases handled by Theorems 2 and 3, the choice

2
(3.1) W=

1 + V1- p(B)2

minimizes p(,,) with respect to w, with p(,C,.) = w* - 1.

4. Numerical experiments.

In this section, we present the results of numerical experiments that confirm and
supplement the convergence analysis. We compare the bounds on spectral radii of iteration
matrices with computed spectral radii, and we examine the performance of the Gauss-Seidel
and SOR. methods for solving the reduced system arising from the centered difference
rliscretization of the convection-diffusion equation. All computations were performed on
a VAX-.SOO in double precision Fortran. The reduced matrices were computed using
PCGPAK [9]. All spectral radii were computed using the QZ algorithm in EISPACx [5].
[6].

Table 4.1 ihows the computed spectral radii of the one-line Gauss-Seidel iteration
matrices for h = 1/32 and various choices of the parameters -t and 6. Tabie 4.2 shows
analogous data for the two-line Gauss-Seidel iteration matrices. For the one-line ordering.
the results under the heading 6 = 0 in Table 4.1 are identical to those occurring when

= 0 and 6 has the values in the first column of the table. It is evident from the tables
that the analytic bounds are very close to the computed values (except for the case of large
-, = 6, where the analytic bounds come from [2], [3]), and that the computed spectral radii
are considerably smaller than one.

Figs. 4.1 - 4.3 summarize the performance of the block iterative methods for solving
various examples of the discrete convection-diffusion equation (1.4) with Dirichlet bound-
an - aditions. In all cases, centered differences were used to discretize the first derivative
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6-=0 'Y=

y Computed Bound Computed Bound

.2 .89 .92 .85 .85

.4 .69 .72 .52 .52
.6 .45 .46 .22 .22
.8 .21 .22 .05 .05

1.0 .051 0 0 0
1.2 .04 - .03 .05
1.4 .06 - .10 .23
1.6 .08 - .19 .61
1.8 .11 - .27 1.25
2.0 .15 - .35 2.25

Table 4.1: Spectral radii and bounds for the one-line Gauss-Seidel iteration matrices,
centered differences, h = 1/32.

-Y= C6 =0 0=, 6"

Computed Bound Computed Bound Computed Bound

.2 .86 .90 .85 .90 .77 .81

.4 .63 .66 .62 .65 .42 .44

.6 .38 .40 .34 .36 .16 .16

.8 .18 .19 .12 .12 .03 .03
1.0 .062 .02 0 0 0 0
1.2 .04 - .04 - .02 .03
1.4 .06 - .09 - .05 .13
1.6 .07 - .13 - .09 .34
1.8 .07 - .18 - .12 .71
2.0 .07 - .2 .16 1.27

Table 4.2: Spectral radii and bounds for the two-line Gauss-Seidel iteration matrices.
centered differences, h = 1/32.

terms, and the mesh size was h = 1/32, so that the order of the linear system was N = 961.
The curves in the figures represent the average iteration counts for three test problems, de-
termined by three initial guesses with random values in the interval [-1, 1]. In all cases, the
right hand side s was identically zero. The convergence criterion was IjriII2/jjrotI2 _ 10- 3 ,

where r, = s - Su(b) = -SU(b) is the residual at the i'th iteration.
The left side of each of these figures contains results for the one-line orderings, and

the right side contains results for the two-line orderings. Fig. 4.1 corresponds to the case
6 = 0 (i.e. only the u, first order term was present in (1.4)), Fig. 4.2 to y = 0 (only u).

1.2 We believe that these eigenvalue computations are affected by ill-conditioning, and that this is why

the computed spectral radii exceed the asymptotic bouri's.
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and Fig. 4.3 to -r = 6 (u. and ul). The reults ame for the block Gauss-Seidel method with
the natural, and red-black orderings. In addition, results for the block SOR method with
the natural ordering are shown for some choices of -t and 6. For SOR, we used the optimal
value of w determined by (3.1), where p(B) 2 is taken from the computed values of Tables
4.1 -4.2.

Gin.- Got'1 3.1 70-Ca.Sd..sr
. .... ... . W -Sld.. v/b

45 - CGWAS-861dsk. T/b USM., mat' I

-0 30. ~g
3 3

Fig. 4.1: Average iteratioL counts, h 1/32, 6 =0.

70. - ma*-54ld.1. a"11 70- Cauas-set.. sa'l
- - .G-------le- r/b

45 ma.-seldel. r/b 40. Solt. a,l

410
30.

................. . ..................... ...-.--------........................................-

. . . . . . . . . . . . . .... 
.. 

. . . . . . .

10. M

Fig. 4.2: Average iteration counts, h~ = 1/32, -y= 0.

We make the following observations on these results. In most cases, the Gauss-Seidel
method requires thirty or fewer iterations to reach the stopping criterion. The best results
are obtained when -f or 6 are near one, and performance typically improves as 1-1I or
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76 Gma-Seldel. not'L 70 Caa-SitI, uat'I

CMas-Sede.l, r/b

Cm - - Grn-Sidael. r/b Go. SO, mt L
- o. matII

j40 0

30 ,,30

to- 10-

0, 1 t.$ 2 r-$ 3 0.j I tLS 2 3$

Fig. 4.3: Average iterau ,n counts, h = 1/32, y = 6.

161 -- 1. For all values of - and 6 tested, the self-adjoint case (-f = 6 = 0) required the
largest number of Gauss-Seidel iterations. In these cases, for which the results are not
shown on the figures, the stopping criterion was typically not reached after 150 iterations.
The best results for large -y or 6 are for the two-line orderings with 6 = 0 (Table 44, and
Fig. 4.1). This is because as 1I grows, S essentially consists of its block diagonal D plus
a small perturbation. For large 6 and -f = 0, a vertical two-line splitting would give better
results than the horizontal splitting used. SOR was much more effective than Gauss-Seidel
when the latter was slow. We examined SOR only in cases where the spectrum of the block
Jacobi iteration matrix is real, i.e. where either 1-f I 1 and 161 < 1 or (for the one-line
ordering [2]) 1-, > 1 and 161 > 1. Thus, (3.1) applies. In variable coefficient problems of a
similar character, it would be realistic to use an adaptive method to estimate the optimal
value of w (see e.g. (11]).
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A COMPUTER SIMULATION OF THE FREELY-ASSOCIATING NEOCORTEX

M. Johnson, R. Scanlon, and M. Cipollo
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ABSTRACT. It is hypothesized that when signal energy is blocked by the
thalamic reticular nucleus, the neocortex, being dynamically unstable, continues
to turn on codons. Successive codons have the characteristic that they share
some neurons. A computer simulation with video output gives us a grasp of the
implications of this hypothesis.

STATEMENT OF THE PROBLEM. The investigation of the application of neural
nets to machine intelligence involves the examination of patterns of activity.
These patterns of activity are most difficult to comprehend. Quantification
does not lead to insight. This paper describes a technique that allows subjec-
tive decisions about the effectiveness of a given configuration.

BACKGROUND. This paper had its genesis in a series of programs called
GROWER [1] that were implemented on a coarse-grained parallel computer made up
of 40 transputers. These programs investigated the mechanics by which a neocor-
tical net could be interconnected solely by the effects of the incoming signal
energy. The more active neurons were under pressure to extend their axons, and
the less active were receptive to the acquisition of synapses. Following a
period of growth, there was selective stabilization of synapses depending on
sensory experience. The patterns of activity were compared with one another by
computing a scalar, the cosine between the patterns when each was characterized
as a vector. While these scalars allow one to see whether a given strategy is
successful, there is a feeling that one would like to get a more direct
intuition of the resemblance between patterns.

When GROWER is running and we give our attention to one inout, we are aware
that a unique pattern of activity results, yet lo qualify the relationshio oy
eye is beyond us. Furthermore, if we attend to a given oattern of activity, we
can not say how much or in what way it is related to other patterns we have
seen. One solution is to use recognizable patterns for the cortical activity
... patterns that we can recognize after intervening activity ... patterns for
which we can form a subjective opinion about their correspondence with one
another.

Human faces make up such a set. We have a specific mental faculty that
allows us to recognize faces. Prosopagnosia is the loss of this ability.
Patients can exhibit this highly specific form of visual agnosia following
injury to the underside of the occipital lobe extending forward to the inner
side of the temporal lobes of either or both cerebral hemispheres [2]. Such an
unfortunate said, "I clearly see the details of your face, your mouth, your
nose, but it is like a blur .... I am no longer able to see a f cp a. a whole"
[3]. The peculiar specificity of this ability led Prof. Kohonen to choose faces
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for his patterns [4], as is done in this investigation. Not for one second do
we think that such little faces float about on the human cortex. We use them so
that anyone can form his own opinion, at a glance, about how one pattern
resembles another. "It has to be made completely clear in the beginning that
this is not an attempt to model the visual system of animals; optical images are

only used because their quality can easily be esteemed visually" [4, p. 9].

Thinking is the subjective aspect of a freely-associating neocortex. There
is always activity in the living cerebrum, such as pulses flowing along the
axons. If the thalamus is relaying incoming sensory signals to the cortex, then
the activity is this energy coursing through the cortex. If the thalamus blocks
the sensor input, then the cortical activity is originally traceable to the last
signal input, but because of the unstable nature of the cortex, the following
activity becomes less and less predictable, but still logical after the act.

If we look at fluctuating transmembrane voltages, then all the neurons are
active all the time. If we look at discrete events, such as axonal pulses,
their asynchronous nature is mind-boggling. However, if we count the pulses
during a time period, we have a number, and we can say that some neurons are
more active than others during that period. Those neurons that are more active
make up a codon. Of course this is a relative condition; still it does exist,

and we can always set a level that distinguishes more from less. A codon is the
material aspect of what the mind is subjectively aware of as a thought or a men-

tal image. Unfortunately, if the cortex were exposed and the activity made
visible, we could not perceive the relationship of the activity to the environ-
ment. It would appear as a coruscating, twinkling of a myriad of lights,
transposed ve-yond any human insight. This is exactly the problem we have with
GROWER but on a much, much larger scale.

Kohoneq quotes Aristole:

"Mental items (ideas, perceptions, sensations, or
feelings) are connected in memory under the following
conditions:

(i) if they occur simultaneously, ' caa :-nal ct'
(2) If they occur in close succession ('temoral contact'S.

(3) If they are similar.
(4) If they are contrary." (4, p. 3]

Our aim is to show how simply association, and therefore thinking can be
implemented. We use only (1) and (3). The extension to (2)' and (4) is imme-
diate. The life's experience of our simulated cortex consists of a series of
faces. All the pixels of one face are presented simultaneously. This is how we
make use of (1). The faces have areas, large and small, in which they share a
pixel configuration with one or more other faces. In this connection it should

be noted that the background is just as much a part of the "face" as the eyes
and nose. If two faces have a large white or black area in the same part of the
background, then this group of pixels constitutes a "similarity" in the sense of
(3).
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It is held that our imaginings are composed soley of past experiences, but
in possible novel combinations. We can imagine an animal with a lion's head, a
goat's body, and a snake's tail. We have experienced all these separately, but
not in this combination. This is called a chimera. On the other hand, it is
impossible to visualize any object as it might appear to an organism sensitive
to ultraviolet radiation. The congenitally blind can not visualize; they can,
however, conceive a spatial extension of the ability to touch. So we hope that
we will find our machine cortex displaying a chimera.

When all the neurons in a column are off, and some or all the neighboring
columns contain a firing neuron, then the most likely neuron to turn on is the
one that shares a history with most of these firing neurons. This means that if
most of the locally firing neurons share a "face," then this face will most
likely be continued in the activated column. However, if this majority is
shared by two or more "faces," then it is not at all clear what will ensue. It
is our hypothesis that this is exactly what happens in the neocortex when we say
we are thinking. The program is a successful simulation in the sense that chi-
meras do occur.

This completes the logic of the simulation. At any time, we could simulate
the thalamus passing through new sensory input or chopping it off.

At this point, it is traditional to mathematically demonstrate the relative
likelihood of various scenarios. This is exactly where we suggest that investi-

gations of intelligent machines have gone astray in the past. A mathematical
demonstration is substituted for laboratory experience with such machines, and
as a result we have statements such as "We also must study the brain at a
theoretical level that investigates the computations that are necessary to per-
form its functions" (5].

The brain does not compute. The incoming signal energy flows through the
brain, but there is no computation--and no need of computation.

APPROACH TO THE PROBLEM. We imolemented a computer program called THNKER
that models a selection of the necortex as a 64- by 64-array of columns. These
3re neural columns, not matrix columns. Each column contains eight Drincioal
neurons that are mutually inhibitory so that they form a competitive group 4-th
one being dominant during a jiffy. Brain jiffies come eight to ten a second.

THNKER consists of a main module and 14 subroutines written in Fortran, and
organized around named common statements. It is best explained by analyzing the
common statements:

LOGICAL*1 CORTEX,ON,SMALON,SAVE,EOF
COMMON/SLAB/ CORTEX(8,7,7,8,64,64)
COMMON/INPUT/ IPIX,KPIX(64,64),EOF
COMMON/WRKNG/ CONINC,CONDEC,CONCHK,CONDX(8,64,64),
1 ON(8,64,64)
COMMON/FRAME/ SMALON(64,64).KSGCNT(8,8),BGCNOX(8,8),
1 KACTIV(2,3)
COMMON/OUTPUT/ SAVE(64,64,
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Enough programming maturity is assumed in the reader so that he knows that
LOGICAL and CHARACTER bytes can be manipulated as eight-bit integers.

Sensory input is provided by a TV camera via a frame grabber with 256 by
256 pixels of 256 gray levels. To match the computational space available (16
Mbytes), this is reduced to 64 by 64 pixels of gray levels. At this resolution,
faces can be recognized. NEXT furnishes these frames, one at a time, by placing
the pixels in KPIX and incrementing IPIX. EOF is returned as false as long as
input frames are available.

The primary visual cortex (area 17) is simulated as 64 by 64 columns
(barrels) containing 32,768 neurons. A column contains eight 'computer'
neurons, each of which represents a group of biological neurons. A group has a
gray level as its output. Each neuron has an efferent inhibitory synapse on the
other seven neurons in its column and efferent excitatory synapses on the 384
neurons closest to it, except the neurons in its own column. The array,
CORTEX(I,J,K,L,M,N), contains (implicitly and explicitly) all the necessary
working information. M and N locate the efferent column, and L the efferent
neuron within the column. J and K identify the afferent column, and I the
afferent neuron. The byte pointed to contains the potentiation of the corre-
sponding synapse, and thus the facilitation may have 256 values. A zero value
implicitly represents a missing (discarded or never form-d) synapse. The inhib-
itory synapses are left implicit, as the output is based on the winner-take-all
scheme.

During the experiential phase (the life experience of the simulated organ-
ism), faces are presented to the cortex by PRESNT. A face causes one neuron in
each column to be excited according to the gray level of the corresponding
pixel. The 4096 neurons that are excited have any mutual synapses potentiated.
This is called Hebbian learning after a hypothesis of A.O. Hebb. We see that
there is a limit of 255 faces that could be experienced before there is a possi-
bility that some synapse has reached its limit of potentiation. This is not
unreal; we should recall the trouble we have with twins. In real practice, many
thousands of faces could be distinguished, but the reality of time available
limited us to at most a couple of dozen. The only effect on the organism of
this life exoerience is the ootentiated synapses. There 3re no reoresentat4cns,
-o computations that the brain 'must perform,' and no need of them. Ae hodA
this potentiation to be equivalent to all that occurs during experience in the
mammalian brain.

Now for free-running association. The signal energy is cut off. The
activity of the cortex drops. The inactive neurons replenish their molecules.
As the activity drops almost to nothing, those fully-replenished neurons in the
vicinity of the last active neurons are triggered by the afferents they have
from this dying activity. They, in turn, excite neurons in their vicinity. For
easy viewing, we arrange things so that this activity spreads from a point
(wavelike). This is an artifice, solely for academic reasons. If the pattern
came on in dispersed points, as it would when the corpus callosum is involved,
it would be impossible to "see" in the same way as random patterns can not be
"seen."

Following the experiential phase, there is a period of random association.
This follows the hypothesis that in the mammalian brain the thalamus
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periodically (8 to 10 times a second) interrupts the flow of sensory input to
the cortex, and during this period the cortex associates freely. If motor out-
put does not ensue, this period is extended and the process called thinking
arises.

In DEPLET a concept of "molecular depletion" is introduced. We speculate
that neurons are always more or less active. A period of greater activity "uses
up" certain molecules faster than they can be replenished. After such a period,
a neuron becomes refractory and enters a period of lesser activity. As long as
signal energy is coming in, a neuron can be exercised to the point of exhaus-
tion. But when the signal energy is interdicted by the thalamus, the internal
condition of a cortical neuron becomes more important, and it is not likely to
fire if the store of needed molecules is mostly depleted.

The condition of each neuron is kept in CONDX(I,J,K). Initially it is set
to 1.0. During each cycle, DEPLET is called and CONDX(I,J,K) adjusted. The
status of the neuron is kept in ON(I,J,K). This logical variable is set to true
if the neuron is on, and false otherwise. If the neuron is on, then CONOX is
decremented by CONDEC. If CONDX falls to zero, then the neuron is turned off.
If the neuron is off at entrance to DEPLET, CONDX is incremented by CONINC. The
end of the refractory period is signaled by the rise of CONDX above a check
point, CONCHK. Satisfactory values are

CONDEC=0.05
CONINC=0.1
CONCHK=0.4

If a neuron is turned off, a special check is made to see if this neuron is
the center of an association. If it is, its indices are removed from KACTIV.
The effects of this action are noted under 'major branch' below. Next, a call
is made to ANLSYS. The cortex is divided into 8 by 8 subregions, each con-
taining 8 by 8 columns, or 512 neurons. ANLSYS analyzes the condition of this
subdivided cortex. If at least one neuron in a column is on, the corresponding
SMALON(J,K) is set true, otherwise false. Because of the mutual inhibition
involved in a column and the winner-take-all approach, the specifications of the
34mulation are that no more than one neuron in a column can be on at any g~ven
--me. A tally of the number of neurons in a subregion that are on is placed in
KBGCNT(JA,KA). A summation of the condition of all the neurons in the subregion
(on or off) is placed in BGCNDX(JA,KA). If BGCNOX should be divided by KBGCNT,
it would give the average condition of the neurons in that subregion.

At this point, a major branch in the association cycle occurs--the status
of KACTIV(1,1) is checked. This array contains the indices of neurons that are
the center of active associations. Initially the array is set to zero. It can
become nonzero in FRAMER and be reset to zero in DEPLET. If KACTIV(1,1) is
zero, the program branches to FRAMER. If it is nonzero, the branch is to THINK.
We start with the branch to FRAMER.

It is hypothesized that the cortex maintains a level of activity that fluc-
tuates within limits (unless in a pathological state). The governance of this
condition is unknown, but biologically reasonable. We simulated this governance
by monitoring the activity of our cortex. It is divided into 64 regions.

471



When the activity in each region is found to be at or below 20 active neurons, a
new wave of activity is started by choosing the region that showed the most
activity. If there is a tie, a random choice is made.

FRAMER checks KBGCNT. If at least one subregion has more than 20 neurons
on in its 64 columns, a return is made. Otherwise, the subregion that has the
most active neurons is selected. If no subregion has a single neuron on, then
one column of the entire cortex is selected at random. A random neuron of this
column is turned on, and SMALON of the column made true. Otherwise, a nonactive
column in the identified subregion is selected at random. In either case the
indices of the selected column are placed in KACTIV. At this point, if FRAMER
has selected a nonactive column, a call is made to ASSOC.

ASSOC analyzes the selected column. The excitation afferent on each neuron
of the column with CONDX greater than, or equal to, CONDEC is summed. This is
taken to be the product of CORTEX and CONOX of the afferent neuron. The neuron
that has the greatest excitation is turned on (ON is made true), and SMALON of
the column is made true. If no neuron meets these tests, a return is made to
FRAMER and then to CYCLE. Eventually a neuron is selected in ASSOC or randomly
chosen in FRAMER.

Now we see that the next time we come to the major branch, KACTIV(1,1) is
nonzero, and the path to THINK is taken. In THINK, the column recorded in
KACTIV is taken as a center and a radius is set to one. A call is made to ASSOC
for each column that is within this radius. This process is continued with the
radius incremented by one until ASSOC has turned on 64 neurons. This arbitrary
number was chosen because of viewer requirements in the final output.
Alternatively, a return is made if the entire cortex has been swept with less
than 64 neurons turned on.

This completes the logic of the association cycle. A TV frame is saved by
recording a pixel for each column with the gray scale value of the active neuron
(if there is one). Thirty frames are required for each second of the final
videotape. The program is run long enough to give enough frames to make an
acceptable viewing period.

We should note that the action of various minor routines -nat prov-.:e
housekeeping functions have been skipped over as extraneous to the logical flow
of the simulation.

RESULTS. THNKER was run many times with various selections of faces. The
output was viewed on a video monitor. During the association phase, portions of
various faces could be seen. Blending of the features on one face with those of
another could be seen. The consensus of viewers is that the action of the net-
work can be followed subjectively. The hoped-for chimeras appeared. The
linking of one activity to another could sometimes be seen. A videotape of a
typical run was made and presented at the conference.

CONCLUSIONS. This technique is an excellent way to judge the performance
of a complicated neural net. The ability of the human eye and brain to recog-
nize a portion of a face, even if presented fleetingly, goes far beyond any
practical numerical description of a pattern.

472



The faces presented constitute the life history of the simulated organism.
The extension of time-dependent sequences and moving objects is sraightforward,
but computationally expensive.
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On topological complexity of solving polynomial equations of special type.

A.Libgober *
Department of Mathematics
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Abstract. The notion of Smale's topological comiplezity is reviewed. Topological and
algebro-geometrical problems arising from finding topological complezity for solving polyno-
mial equations with several vanishing coefficients formulated. Partial results toward their
solutions are stated with an outline of proofs.

In [S] S.Smale introduced the notion of topological complexity of an algorithm which
provides an information on the structure of possible algorithms for solving a given problem
rather then on their implementation time. Roughly speaking one as-lmes that the compu-
tation tree consists of nodes and connecting edges and that the nodes are either input nodes
(having no incoming edges), or computation nodes (having one incoming and one outcoming
edge), or branching nodes(having one incoming and two outcoming edges) or leaves (halts
with no outcoming edges). The topological complexity of an algorithm is the number of
branching nodes in its computation tree (or the number of leaves minus one).

In the same work S.Smale shows how the low bound for the topological complexity can
be reduced to purely topological problems. For an algorithm for finding with accuracy 6
the roots of a polynomial from a family of polynomials F one can state that the topological
complexity is greater or equal than the Schwartz genus of the covering map which relates to
an ordered collection of roots of a polynomial from F without multiple roots the collection
of its coefficients. Here by the Schwartz genus of a map f : X - Y one means the minimal
number k such that Y affords a cover with k open sets U1 , ...Uk, (Y = = . such that
f has a section over each Ui, i.e. for each i there exist a continuous map gi : Ut - X such
that f o gi = id).

The Schwartz genus can be estimated from below as the maximal length of a non zero cup
product of elements in Ker(H'(Y, Z2 )) - H(X, Z2 )). One can use here twisted coefficients
instead Z2 (cf.Schj). Using this method S. Smale ([S]) obtained (log2n)213 as the lower
bound for the topological complexity for finding with accuracy c the roots of the polynomial
equation with cue unknown. On the other hand in the case when Y is a quotient of X by
a free action of a discrete group G one can use the homological genus of any G-module A
as a lower bound for the Schwartz genus of the quotient map. The A-homological genus
of a principal G-bundle f : X -- Y with the fibre a discrete group G with corresponding
classifying map c : Y -. K(G, l)(K(G, 1) is the Eilenberg MacLane space of the group G)
is the minimal integer i such that the canonical map HI(K(G, I), A)) -- H(Yc(A)) is
trivial for j > i ([Sch]). Using this V.Vasiljev [V] obtained as a lower bound for the Smale's
problem n - minp(Dp(,)) where Dp(,) is the sum of the digits in p-adic expansion of n and
the minimum is taken over all primes p. He used as A the group of integers Z with the
action of the symmetric group corresponding to the sign representation.

Supported by NSF and U.S. Army grants.
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It seems it would be interesting to estimate the topological complexity of the solving
some special classes of polynomial equations, for example polynomial equations with several
vanishing coefficients, or answer similar questions for systems of polynomial equations (the
latter was addressed in [LI). The application of the Smale's theory requires rather detailed
information on the topology of the. complements to discriminants in the space of special
types of polynomials which seems is not available at the moment. This is the problem which
we begin to address here. Specifically the following should be answered.

Problem 1. What is the fundamental group of the space of polynomials with several
vanishing coefficients? Do the cohomology of this space depend only on this fundamental
group? i.e. is the space of polynomials with vanishing coefficients is the Eilenberg MacLane
space.

Problem 2. What are the cohomology with various (twisted) coefficients of the space of
polynomials with several vanishing coefficients? What is their relationship with the coho-
mology of symmetric group?

If one considers the space of all monic polynomials then the answer to problem I goes
back to E.Artin ([A]) and Fadell and Neuwirth [FN]: the fundamental group of the space of
monic polynomials without multiple roots is the braid group B, on n strings and this space
is the Eilenberg MacLane space of B,. The cohomology of the symmetric group surjects on
the cohomology of the braid group in the case of cohomology with Z2 coefficients ([S]) or
coefficients in sign representation of symmetric group ([VI).

Here we shall only indicate a solution for trinomials. First note that in the case of
polynomials with several vanishing coefficients of the form

z n + ailz il + a'2i2... + ai)

the discriminant hypersurface is rather different than the discriminant of the space of all
monic polynomials of degree n: in may become reducible and have different than in generic
case degree (when the degree is 2n - 2).

Examples of discrimMants:
1) For

5-, 2 - bx - c

the discriminant is

-27a 4 b + 2250a 2 bc2 - 1600ab3C + 3125c 4 -4- 256b 5 - 108ca 5

2) For
z 6 -hd 3 -bX-c

the discriminant is

27000b3 ac2 - 1350b 3 ca3 - 108a'b 3 + 3125b' -- 34992a 2c 4 - 87483 - 729c'a' - 46656c5

3) For
6 - ax 3 - bz 2 - c

the discriminant is

c' - 1024b6 - 13824b'c 2 , 108a 4b3 - 46656c 4 + 729a 6c + 34992a2c3 - -8748a 4c - 8640a2 b~c
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More generally one has the following:

Theorem A. The discriminant of the family of polynomials of the form (1) has at most
two irreducible components. The number of irreducible components is two if and only if
ik-, # 1 and in this case one of components is the linear subspace aj, = 0. The degree of
the discriminant is n + il - ik-1.

(The first part of this theorem is obtained in [FS]).In the case of trinomials

z + azxk + b (2)

one can give complete answer to the problem I above.

Theorem B. The fundamental group of the space of polynomials of form (2) with no
multiple roots is the group of an algebraic link of the type ezplicitly determined by n and k. In
particular if k = 1 then the fundamental group of the space of polynomials of form (2) without
multiple roots is the group of the torus knot of type (n, n - 1) i.e. admits a presentation with
two generators gl,g2 and one relator g' = g' - 1. This space is the Eilenber MacLane space
for any n and k.

Remark: For k = 1 by virtue of having so simple presentation for the fundamental
group one can easily describe the homomorphism of it into the braid group induced by
embedding space of polynomials of form (2) into the space of all polynomials of degree
n. If s1, ...,s,-i are the standard generators of Bn then this homomorphism is given by
g1 -" -s -192 - s1...s,,-1s1. In particular this map is surjective. This in turn implies
that the Galois group of generic trinomial equation in characteristic zero is the full symmetric
group. (cf. [Sm] with much milder restrictions on characteristic of the ground field). This
argument can be carried out in the case k > 1 as well.

Sketch of the proof First notice that the equation of the reduced discrirnminant of the
polynomial (2) is

b((-1)' -- lkk(n - k)a n  -b"-k ) = 03

if k > 1 (cf. 'Sl). This follows from the fact that a polynomial has multiple root if and
only if it and its derivative have common root. One can eliminate z from z" + azk + b =
0, nz' - i + kaz k - l = 0 by replacing last equation by x' - k = -ka/n (this is possible assuming
x $ 0 which is the case provided b # 0. b = 0 clearly belongs to support of discriminant
if and only if k > 1 which accounts for the first factor in (3)), substituting this in the first
equation and replacing it by expression for z < k in terms of a and b after which elimination
of x gives the second factor in (3). Now the complex curve D defined by (3) is invariant under
C action on C2 which implies that the complement to D in C2 is equivalent to complement
in 3-sphere to the link of the only singularity of the curve D namely the singularity at the
origin. The Milnor fibration of the link of singularity of D exhibits the complement to the
link of the singularity of D as a fibration over the circle with the real punctured surface as a
fibre which implies that the complement to the curve D is the Eilenberg-MacLane space. In
the case k = 1 the equation of the discriminant is given by the vanishing of the second factor
in (3). This equation after change of variables looks like u" = v - 1. The link of singularity of
this curve is the torus knot of type (in, n - 1) and the description of the fundamental group of
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the torus knot cited above is the well known one. The details of the proof of both theorems
above and the cohomology calculations involved in the problem 2 will appear elsewhere.

Acknoledgment. The author thanks prof. S.Smale for introducing him to this subject
and to Department of Mathematics of Columbia University for its hospitality which made it
possible.
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ABSTRACT

A general method is presented for symbolically uncoupling a special class of augmented
linear equations with tree topology defined by sparse nonsingular incidence or connectivity
matrices. These equations, expressed in terms of excess and shared generalized state variables,
are characteristic of p-element open loop systems. This paper presents an algorithm based on
optimal block matrix permutation and factorization to precisely follow system topology and
recursively generate a symbolic set of fully uncoupled equations yielding all variables in order
p (O(p)) operations. However, the operations coefficient can be relatively large for many
problems, and recursion may inhibit full exploitation of vector and parallel processors. Thus
an equivalent, compact and highly coupled set of generalized equations is obtained by
eliminating the excess variables. The generalized matrix of this set of equations is symbolically
manipulated into its natural factors using the previous recursive algorithm to get a new O(p) to
O(p 2) solution. This algorithm has a much smaller operations coefficient and can more
effectively exploit vector and parallel processing. Iterative refinement is also added to avoid
many of the recursive decomposition steps required at each function evaluation. This allows
even greater exploitation of vector and parallel processors. The algorithms are also modified to
allow any number of the generalized states to be specified and to account for any degree of
singularity or redundancy in the system equations.

1. INTRODUCTION

The increase in digital computer capacity and the development of advanced numerical
methods has stimulated the desire to model and analyze large scale systems. When the
equations must be solved thousands of times, direct numerical methods are unsuitable because
of the excessive computer processing required to manipulate the resulting matrices. The
extensive computational overhead and limited computer speed has prompted new searches for
more efficient algorithms.

In general, formulations which incorporate the maximum number of variables yield the
largest, least coupled augmented equation systems. Open-loop or tree-structured equations of
this type can be solved recursively in O(p) operations (in many cases the minimum possible)
with careful algorithm implementation [1-3]. However, the constant in front of O(p) can be
relatively large, making recursion less effective than direct decomposition as the degree of
system parallelism increases. A combined algorithm exploiting the sparsity of highly
uncoupled augmented equations, compactness of generalized equations, iterative refinement,
and vector and parallel processing can offer substantial computational advantages for many
applications.

This paper presents a brief overview of a method for symbolically representing system
topology by two sparse connectivity matrices. It is shown how these matrices loosely couple
the augmented system equations and how they can be used to direct the recursive elimination
and back substitution process. The connectivity matrix inverses can be used to transform these
augmented equations into a maximally coupled generalized set of equations. A recursive
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algorithm can then be employed to generate symbolic nonsingular natural factors of the
resulting generalized coefficient matrix. The algorithms are also modified so any number of the
generalized states can be routinely specified, and singularities and redundant equations can be
handled. An iterative refinement algorithm is combined with the natural factors to exploit
vector and parallel processors, yielding even more efficient solutions for many applications.

2. THE RECURSIVE ALGORITHM

Consider the following loosely coupled augmented equations

Aml - I C22 0 X.b2]
Ci 1 Xi bi

0 H2 0b J (1)

or the equivalent highly coupled generalized equations

HQPRn Am Rii H13 X3 . b + H R(b - A R,, bi] (2)

where

,, - e;', (3)

F6 - CL (4)

x,- R, [b, + H, x,] (5)

and

x 2 - R2,(b 2 - he, xi] (6)

(Throughout this paper the symbols o and I will be used to indicate respective zero and identity
matrices whose dimensions are implied by the accompanying matrices and vectors.) Equation
2 may be obtained directly from Eq. 1 by eliminating the excess vectors x, and X2 using Eqs. 5
and 6. Both Eqs. 1 and 2 represent the same system in terms of generalized state vector x3.
The remaining vectors x1, X2, bi, b2 and b4 evolve according to the basic system definitions.
Subscripts 1 and 2 associate vectors and matrices with dual spaces where the dimensions may
be different. Vectors x3 and b4 are dual subspaces of the respective spaces 1 and 2. The
dimensions of spaces 1 and 2 are generally equal, as are their respective subspaces 3 and 4.
Matrix A21 may be symmetric and semidefinite, positive semidefinite or even positive definite.
If this is true and C22 - cT and H, - H.R, then the overall generalized coefficient matrix in Eq. 2
will be symmetric and will have one of the above properties.

The big challenge is to represent the governing equations for coupled systems in the
augmented form of Eq. 1 or factored generalized form of Eq. 2. Intuitively one strives to
formulate equations in terms of the minimum possible number of variables. This approach
results in equations similar to Eq. 2, but unfortunately in the form Ax-b where the internal
structure of Eqs. 1 or 2 have been lost. Thus it is important to change one's viewpoint of the
problem and first represent individual components of coupled systems as separate entities in
terms of the maximum number of state variables. These excess variables are obviously not
required for successful formulation of the problem as indicated by the generalized equations,
however, they are essential for identification and formulation of the augmented equations.
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With these thoughts in mind, it may be possible to convert many different formulations into
augmented form to take advantage of the algorithms presented in this paper.

Let the topology of a p-element system be defined by two sparse p by p matrices C, and
c2 containing only ±1's and O's (see Fig. 1 and Eqs. B8 and B9 of Appendix B). Matrix C,
defines a tree representing forward communication or coupling from parent element to child
and matrix .2 defines a tree representing backward communication or coupling from children to
parent elements. By special orientation of the communicating element interfaces (all oriented
positively outward from the tree roots) and element naming convention (all named
consecutively outward from the roots), row * of C, (* = a, b, ... p) specifies that child *
receives communication from parent *-1. Since child - always appears after parent *-I in the
naming sequence, this convention causes C, to be lower triangular with a unity determinant.
Any row of C, corresponding to a child not influenced by a parent will have a single 1 at its
diagonal. In reality, this element forms the root of a new tree in C1 . The remaining rows will
have exactly one 1 at the diagonal and one -I to the left of the diagonal.

Figure 1. Forward and backward communicating trees of a six-element system

Similar to matrix c,, row * of C2 (* = a, b, ... p) specifies which children *+ 1
communicate back to parent * (there may be none, one or many). Since *+I is always greater
than *, C2 wil always be upper triangular with l's on the diagonal. If parent - receives no
communication from any child, the corresponding row * of C2 will have only a single I at its

diagonal. This is a terminal or leaf element in C2. The introduction of C2 # c' allows
unidirectional communication which may be useful in many applications.

Since the system is composed of p elements, there is a natural partitioning of vectors x,,
X2, X3, b,, b2 and b4 into p corresponding subvectors. Likewise block diagonal matrices A21 , H13

and H2 are partitioned into p submatrices consistent with the subvector dimensions. Block
lower triangular matrix C11 has the same block sparsity pattern as C1 and its submatrix
dimensions are compatible with the components of x,. In a similar manner, block upper
triangular matrix C2 has the same block sparsity pattern as C2 and its submatrix dimensions are
compatible with the components of x2. If c 1. C, the generalized coefficient matrix in Eq. 2
will be block-symmetric and this matrix is represented by an undirected graph or simply graph.
Otherwise it is represented by a directed graph or digraph [4]. In either case, all of the
algorithms developed in this paper apply. A given subvector of a vector, or submatrix of a
block diagonal matrix is referenced by appending an additional subscript to the corresponding
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symbol. For example x,. refers to the -th subvector of x, and A. refers to the -th block
diagonal submatrix of Av.

With this convention, Eq. 1 can be described in more detail as follows. A typical
submatrix equation in the first set of equations in Eq. 1 is

*.I

A21.. , X,,., - X2 ., + : E2 x2 ,. -b2*.

*'a (7)

where submatrices E2 are transformations or projections (not necessarily orthogonal or

invertible) which take x2, into x2,. coordinates. The dimensions of vectors x2, and x2,. may be
different. These matrices depend on the individual coordinates selected to represent the system
being modeled. The - E-, block submatrices fall into the off-diagonal block locations of C22 in
accordance with the location of off-diagonal -l's in C2. The summation in Eq. 7 results
because parent '-1 may receive communication from none, one or many children, hence the
notation "* on '-1". The corresponding block row --1 of - C22 in Eq. 1 has just the right

number of E2.2's to pick up and transform the subvectors of children influencing '-1.

In a similar manner a typical submatrix equation in the second set of equations in Eq. 1
is

x.- Ell x1,.. - H1, 3  x- - bl. (8)

where submatrix E.* is a transformation or projection (again not necessarily orthogonal or

invertible) which takes x,.., into x, coordinates. The - E,.'s fall into the off-diagonal block
locations of C,, in accordance with the location of off-diagonal -l's in C1 .

Finally, a typical submatrix equation in the last set of equations in Eq. I is simply

H 42 x2*, - b,. (9)

For Eq. 1 to have a solution, Eqs. 2 to 6 indicate that it is necessary and sufficient for
the generalized matrix H2 R22 A21 R,1 H3 to be nonsingular so X3 can be evaluated. This implies
that it is necessary for matrix H42 to at least have full row rank, for matrix H13 to have full
column rank and for the subspace dimensions 3 and 4 to be the same, but this is not sufficient.
Situations in which the coefficient matrix in Eq. I or 2 is singular will be addressed later. Thus
Eqs. 2 to 6 and Eq. 1 are equivalent and this paper is concerned with the symbolic generation
of the natural factors of the generalized matrix in Eq. 2 using a recursive algorithm for solving
Eq. 1.
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Using the topological information stored in matrices Ci1 and Ca, the following natural

symbolic factors

"Du U'-[H42 R22A2I R1, Ha,]" (10)

and

u,4o Lu.. H2 R2aAi Rii H13 (11)

will be obtained in a later section. Matrices L33 and U" and their inverses are block lower and
upper triangular with l's on the diagonal and have respective block sparsity patterns identical to
R1, and Ru, and Dx is block diagonal. This presumes that matrix D6 exists, which may not be
true in many cases, such as when subspaces 3 and 4 have different dimensions. Such
singularity problems will be addressed later. However, in the following development, assume
that there are no singularities and that all matrices can be evaluated.

The basic recursive algorithm for solving Eq. 1 was developed in [1] and is repeated
here with modifications. The labels in the following algorithm, e.g. ROLl stand for
"Recursive Qpen Loop step 1", etc. Recall that special ordering and orientation of the joints
and elements made ci1 block lower triangular and Ca block upper triangular with all I's on the
diagonal. Thus, solving equations of the form Cn, x, - b, is best done by evaluating the first
subvector of x, and successively evaluating adjacent subvectors in forward order, in this case
from a to p. Likewise ca x2 - b2 is solved from last subvector to first or in reverse order from p
to a. The first situation amounts to optimal traversal of the c, tree from root toward leaves and
the second from leaves toward root in the C. tree. The sequence in step ROL4 of the following
algorithm is executed in forward order and steps ROL2, ROL3 and ROL5 in reverse order.
Because of the special ordering of element names, decrementing or incrementing * in the
algorithm means "move to the adjacent symbol and the corresponding adjacent row and column
in c1i or Ca." Since adjacent elements may not have adjacent symbols, as noted earlier,
reference to -- 1 means "select the adjacent or parent element closer to the root of the c tree and
the corresponding parent row or column of cii, not necessarily the previous element, row or
column in the sequence." The symbol (-- in steps ROL2, ROL3 and ROL5 means "assign the
quantity in the right expression to the left expression." This is equivalent to summing projected
quantities from the one or more communicating children onto their parent and it does not
disturb the natural sequence of the recursive algorithm. If the system should have more than
one tree, then each can be processed independent of the others by repeating the following
algorithm with a different set of matrices. As an aid to understanding this and the following
algorithms, a comprehensive example is developed in Appendix B.

RECURSIVE OPEN LOOP ALGORITHM

ROLl Evaluate the components of A21, H13, Ha. bi, b2 , b, C,1 and Ca

ROL2.0 Initialize 4- Am
ROL2.1 For - = p to a repeat

( 4, - H42, A1,.
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B= L.H,3*

PM. n [841* H, 3 ,]
"1

F31. =D34 B4, *

F24. - B-" D34.

4 #. , -4 , , + 2 2 .1 1A , - b 2 2 - 3 1 -I E l l *umC 2Skip the last equation when * corresponds to any row of ci or column of c= with

only an I since the corresponding submatrix Ell* or E3, is zero

ROL3.0 Initialize b; - b2

ROL3.1 For * = p to b repeat

(x;, - %6* b4 . + H492. b2-] - F31* b1.

b4,1 +- b.., + EM. [bL -A;,[ b1. + 113,4

Skip the second equation when * corresponds to any column of C22 with only an I
ROL3.2 x a - Dua[W, + Ht .b . - N&, b,.

ROL4 X,. - b, + Hi3 x3a,

ROL4.1 For * = b to p repeat

-x ,, - F31* [El, ,. 1 ]

-l [Ell* Xl*.i] + bl* + H,3, 13,

The vector El* Xu,., - 0 when * corresponds to any row of Ci1 with only an I

ROL5.0 Initialize x2 --b 2 + A,, x,
ROL5.1 For * = p to b repeat

.(X2.. +- x,*., + 8=, x2 )

Skip this equation when - corresponds to any column of cg2 with only an I

3. NATURAL FACTORS OF THE GENERALIZED MATRIX

Optimal block permutation and U-L factorization applied to the coefficient matrices of
tree-structured systems result in an absolute minimum block fill pattern in the U and L matrices
[4]. This is achieved by selecting forward elimination and back substitution sequences which
precisely follow tree topology and never jump across (from branch to branch) unprocessed
elements. Elimination and back substitution each require p sets of the recursive operations in
the above algorithm. Instructions for completing recursive forward sweep step * in ROL4.1

come from cell row - of C,1 and can be represented by an elementary matrix C, which

corresponds to matrix Ci, with all off-diagonal cell entries zeroed except in cell row - (leaving
exactly one (or none in case of a root or non communicating parent) off-diagonal block matrix

496



- E.. in cell row *) [5]. Matrix c, is a factor of C., and not a submatrix, and thus has the
same dimension as C,,. It follows that the p sequential instructions for the complete recursive
process can be factored into the product

P

C11 - f C11*

-" (12)

Further inspection of each elementary matrix c,. reveals that its inverse can be obtained simply
by reversing the single off-diagonal block matrix sign. Thus from Eq. 3 it follows that

R11 - H C11"-

a(13)

In a similar manner

C22- fi c.1

a.. (14)

and

Pim -rCi .
(15)

As above, elementary matrix C22. corresponds to c- with all off-diagonal entries zeroed except
in cell column * (which again leaves exactly one (or none in case of a root or

noncommunicating child) off-diagonal block matrix - E22. in cell column -). Again, C2. is not

a submatrix but a factor of Ca.

Matrix C,, can be envisioned as selecting and coupling subvectors x, and x,.., into the

sum x,. - E,,* x,,., in the composite arrays of subvectors. Matrix C,, couples the entire set of
subvector sums where the components are either equal to or added to other subvectors with a

subscripts (see Eqs. 8 and 1). For example, suppose x, - E,,. x,.., - b,' +... then C,, xi - b, +

represents the coupled system of subvectors. Reverse order of products in Eq. 13 still yields a
nonsingular, lower triangular matrix with l's on the diagonal, but the degree of sparsity in Rii,

relative to C,,, is a function of the degree of parallelism, whereas c,, sparsity is a function only
of the number of trees and elements in the system. The minimum fill pattern in C,, compared to
R,, is what makes recursive algorithms so attractive for solving highly sequential problems on
serial processors.
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In a sirnilar manner cg2 couples a set of equations with subvector sums of the form

xj.-,- Z En2 x2. which are equal to or added to other subvectors with --1 subscripts (see
Sm

Eqs. 1 and 7).

The following matrices are assumed to operate on subvectors whose topology is
defined by c1. Let

A, - diag f Ba, ib, ... , Di~p] (i - 1, 3) (16)

and consider a set of subvectors of the form - B.. E,, xl*., which are equal to or added to other

subvectors with * subscripts. The product S= [C11 - I] x, represents the coupled system of
subvectors. Likewise the product [I + B, [c11 - If Xl represents the coupled system of subvectors

of the form x1. -BS* Eiii x,,, which are equal to or added to other subvectors with * subscripts.
In the latter case with i = 1 the submatrices in Eq. 16 must all be square, but not necessarily
nonsingular.

In a similar manner the following matrices

N-diag [., p, ... ,JU - 1. 2. 4) (17)

operate on subvectors whose topology is defined by C2. The product [C2 -i] N b, j -1,4

couples subvectors - : E.2 B.o b1., j- 1, 4 and [I * [C2 - I] %2] b2 couples subvectors

b2*- - E2.* B.* b2 , both which are equal to or added to other subvectors with t- 1 subscripts.

As above, with j = 2, the submatrices in Eq. 17 must all be square, but not necessarily
nonsingular.

In summary, the matrix identities are:

For x, - E,,. x,., -+ (*), use c, x, (18)

For x2., - Z E . x2 2-- (* -1), use C2aX2 (19)

For - %I. E,, x,., ---+ (*), use B31 [C- 1 I] x, (20)
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For xi.- B. E. xi.., -- (*), use (l+ all [l, -i XI (21)

For- Z E22, N . tb , j- 1.4 - 1), Use [C- 1] B4 4. j - 1.4 (22)

*-1

For b2 1 - -. E2 .* t.0(" -1), use ([+C22-i] Oa]b 2  (23)

These special shifting matrix structures insure that all subvectors are placed into the

correct locations in the composite vector arrays. Subvector products such as sq. xj. -+ (-) or

,., 14*., - (* -1) are not shifted and the corresponding matrix product Bq) applies in both

cases. Matrix Ss, [C11 - I] is block lower triangular with zero matrices on the block diagonal, is
generally rectangular and always singular. Matrix I + Oil [cm - i] is always nonsingular and
lower triangular with I's on the diagonal In a similar manner matrix [C-i] .j-1,4 is block
upper triangular with zero matrices on the block diagonal, is generally rectangular and always
singular. Matrix I+[Ca-I] an is always nonsingular and upper triangular with l's on the
diagonal. Again, these simplifications are due to the special preordering and orientation of the
elements.

With these tools, steps ROL3.1 and ROL.41 of the previously developed recursive
algorithm will now be used to obtain the natural factors. First write the equation in step
ROL3.1 as

*a "(24)

where

P n* I - O- . D . H Q - I- F . H (25)

is a projection matrix and

A , - A4. - F24., Ai*,. P22. A* (26)

is a projected coefficient matrix [1]. A second set of equations similar to Eqs. 25 and 26,
which will be useful later are

P,,.. I , H. OD . 41* I- n1,1 F31* (27)

and

A -. A;, - A; , H,. F1 . A;, P11* (28)
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Now use the above identities to obtain

ECI c,- 1] P.] ;-b, [n-1][a.b.., A& bi] (29)

or

b;-( +[C u- 11 pn'o[N[C- b1 .A& bi] (30)

where the submatrices of

B.- diqr fB2B B .... W4J (31)

a- diqfF2 a. Fm ..... F2J (32)

N - diag fF3a. Nb. .... NpJ (33)

Pm- di [D3a i....D g 03J (34)

Pi -dia rp, a. P, ... P -Q (35)

P22 - diag rP .Pw... P j (36)I

and

Al-dingA . ,b .. , (37)

used in the above equations are obtained from the recursive equations in step ROL2.1 of the

above algorithm and Eqs. 25 to 28.

From step ROL4.1 with

• - D 3$* [b . . .b ] - 3 1 b,, + Ell x,*.,] (38)

it follows that

x. w[b4b+ iHe b;]-N [,- .[c,. 1] xi] (39)

This equation cannot be evaluated directly because xi also depends on X3. However, one can
substitute Eq. 5 to eliminate x, and rearrange to obtain

[I + F [Ri, -1] H3] X3 - D,. .. He b;]'- N3, R,, b, (40)

In light of the earlier discussions, the matrix in front of x3 in Eq. 40 is nonsingular and
lower triangular with l's on the diagonal and Eqs. 2, 30 and 40 can now be used to find a
symbolic representation of the natural factors of the generalized coefficient matrix in Eq. 2.
First invert the left matrix in Eq. 40, substitute Eq. 30 and set the arbitrary quantities b, and b2
to zero giving

X3 - [I + F (Ri.-1] H]" [ Dj[I + H&2(I + [ ] P2]"[C= -] Fa] b, (41)
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Do likewise for Eq. 2 giving

xa -(He Ra Am RI Hiaj' b, (42)

Since b4 is also arbitrary it follows by equating coefficients in Eqs. 41 and 42 that

[He Fi Ag, R11 .,31,-(l + N [R,, -1] Htj]" om[ + Kt2r1 + [O e- 1] P 1'[ Ca- 1] Fx] (43)

Equation 43 is the desired factored representation for Eq. 10 since the matrix to the left of D3 , is
lower triangular with l's in the diagonal and the matrix to the right is upper triangular and also
has l's on the diagonal Thus it follows that

Lu I+ F31[RII -1] K3 (44)

and

U- [I + i. [I + [Cg - I] P z' [C - I] F2,]" (45)

Equation 45 is inconvenient to evaluate, but the results from [2] suggest the following
alternative expressions

La3 .[ I + F(C,, - ][1, PC,,. Il ' H1,1' (46)

and

U - I + I.a[R22- I] N (47)

Equations 46 and 47 are verified in Appendix A. The matrices in Eqs. 44 and 47 will be used
to provide the optimal solution algorithm for Eq. 2.

While Eqs. 44 and 47 represent the most effective implementation of the natural factors,
an interesting different view of these factors can be obtained by first noting that

631 K43 - B, Ow 13

a I (48)

and

412 F24 = H O D34

= I (49)

Then these equations can be used to express the factors as

L3 a F31 R1 H1,3
. Qm[14 2 , R,, 1,13]

[,,24 - i 3}'[ 12 A;, R,,, 13] (50)

and
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U6 - N42 %Fag

-.[H2 R A& H13][H42 4 Hi31 (51)
where

" - [Hs24H131' (52)

Finally, substitute these equations into Eq. 11 to give

LW D;L.. -[Hw Ru 4 H,.] [Hq 4 Hu3] [H 4 Ri1 H,3]

-. (He R] Am [R HQ2] (53)

4. THE GENERALIZED SOLUTION ALGORITHM

The first step in determining x in Eq. 2, given all the necessary matrices and vectors is
to find y4 from

U 4 y4 - b + H4ab Aman ,bi] (54)

Since u is upper triangular, evaluate the subvectors of y, from bottom to top. Next evaluate
the subvectors of xs from top to bottom by solving

LW x3 - D Y4 (55)

Matrix Lts always has the same block fill pattern as Ri, and it was noted earlier that the degree of
fill is strictly a function of system topology. Thus the overhead in Eqs. 54 and 55 can vary
from 0(p2) for serial trees where R1i and Ln have maximum fill below the diagonal, to 0(p) for
completely parallel systems in which case Ri, and L have minimum fill below the diagonal.

The revised computational algorithm is now presented where the symbol POL stands

for "Parallel Qpen Loop".

PARALLEL OPEN LOOP ALGORITHM

POLl Evaluate the components of At. H,2. H~z b,. b2.N, c,, and C2

POL2.0 Initialize 4- Am
POL2.1 For - = p to a repeat

( - A,, H13,
D0.4* W[B41* H13*.

1

F31 %* .3 B,,.

F2*- B-* Du.
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-. + E92- [A;. -. 8M F3 1 1 l)

Skip the last equation when * corresponds to any row of c11 or column of ca with

only an I since the corresponding submatrix E,,. or E22. is zero

POW3 Evaluate
L33 .I+I4sa LRI2 -1] H13

POL4 Solve
UY 4 - b + Ha RP4b2 -A21 R, bi] for y4

L33 X3 = Da Y4 for X3

POL5 If desired, evaluate
x, - R11 [bi + H13 xa]

5. SYMBOLIC FACTORS OF PARTITIONED AND SINGULAR

MATRICES

Inspection of the matrix in Eq. I reveals that the submatrix

rA21 - C22 0 R1 1 l
c11 o -[ R RAu1 R11 (56)

is nonsingular, independent of the rank of A21 (see more discussion in Appendix B). Thus x,
and x2 can be determined, regardless of the rank deficiency of the coefficient matrix in Eq. 1 or
2. Rank deficiency in these matrices is reflected in the rank deficiency of the individual
matrices

03,. = H4 A;. H,3. (57)

in the recursive steps ROL2. 1 or POL2. 1. If a given D. is singular, the corresponding Eq. 38

must be returned to the form

D4. x3 . = Ha4. A: 1. H 1 3* X3.

. b...* H. b; - 81. [b. + E,, x,..,] (58)

Equation 58 indicates that components of x, equal in number to the column rank deficiency of

0)1, . cannot be computed and must be supplied and/or a number of equations equal the row rank

deficiency of 03,, are dependent and must be checked for consistency and/or eliminated. In the

first situation, the undetermined components of x3. are assumed to be specified or the problem

will be ill posed. In addition, one may wish to specify or drive one or more of the components
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of x,. even though O o may have full column rank. In either situation, these known quantities

can be moved to the right hand side of the equations and eliminated from the recursive solution

process. With this knowledge x,., b,., H,3. and H,. can be partitioned according to free and

specified variables, and independent and redundant equations as

13

x3"] (59)

b4"
db 4 * (60)

H13 [- H'. ,.] (61)

and

H42-
Ha. J

H42. 
(62)

In a similar manner, Eq. 1 can be partitioned as

Aei -C22 0 0 Xi 2[Cii 0 -*13 % 2 b
0 -X 0 X0 x,' b,

m a t i JL xJ [b+b4] (63)

The dimensions of x' and b, will always be the same, matrix H', will have full column rank and

matrix H2 will have full row rank. The slack variables in vector b, are introduced to insure
equality in the last set of dependent redundant equations.

The first three sets of equations may be rewritten as

A1- C220 I b2

0 0 o ]x]. b 4 (64)

and the last set of equations as

b:- b + X.2 (65)
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By construction, the coefficient matrix in Eq. 64 is now nonsingular and the general equation

equivalent to Eq. 2 with nonsingular coefficient matrix is

H inAeiRn 4H3x-b 1'+k. R[b, -A.. Rii[b+Hs, xJ] (66)

The "Recursive _Qpen Loop algorithm for Singular" (ROLS) matrices may now be
stated. For simplicity, the following algorithm assumes that all singularities are known in
advance and that the partitioning into free and specified variables is known. A more general

algorithm would detect rank deficiencies in submatrices D, at each step and take appropriate
action as necessary.

RECURSIVE OPEN LOOP ALGORITHM FOR SINGULAR MATRICES

ROLS1 Evaluate the components of A21 Hi. Hz bi, b2 , b4, C11, C2 and xs

ROLS2.0 Initialize .- Am

ROLS2.1 For - = p to a repeat

I ii I

F41, - HDA;,*

B23* -A* H'2 .

D34 44i' H3*1

Skip the last equation when * corresponds to any row of C,, or column of C- with

only an I since the corresponding submatrix E., or E2,, is zero

ROLS3.0 Initialize b2. b2
ROLS3.l For= p to b repeat

(X3* - d4*.[b'* + 4., b2*] - ,.[* + 1?13* x;*]

"- b+ Ez [b2 . -A 1 . bl. + H 1 , X 3.

Skip the second equation when * corresponds to any column of C2 with only an I

ROLS3.2 x3, -.=O&[bi, + Hg bL]- F3,[b,,+ H,31 x,]

ROLS4 xi, - bia + Hi. x;,
ROLS4.1 For - = b to p repeat

SX, 1 - , E,1* Xj*ol

f t

x,* , xj*.1 + b. + H"3, X3*)

The vector E1 . x,*., - o when 'corresponds to any row of C,, with only an I
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ROLS5.0 Initiaize x a -b2 + ,x,
ROLS5.1 For -=p to b repeat

(2- * - 2-I + E~22.

Skip this equation when * corresponds to any column of C2 with only an I

b: -- 14. + 14hx2. )
d

Skip this equation when H42 is null

Following the same procedures as above, the revised "Parallel Open Loop algorithm for
Singular" (POLS) matrices becomes:

PARALLEL OPEN LOOP ALGORITHM FOR SINGULAR MATRICES

POLS1 Evaluate the components of Aei. Hn. He, b,, b,. b4, Ci, Cm and x3

POLS2.0 nitialize 4 -A,
POLS2.1 For- =p to a repeat

a .4* H13*

i I
F821 - 8 * Auf*

*. A;., +. [-1 - B3 F1,]El)

Skip the last equation when * corresponds to any row of ci or column of C2.with

only an I since the corresponding submatrix E,,* or E.2 is zero

POLS3 Evaluate

U" I + R4C2 - 1] FO

POLS4 Solve
U y b,+ 2R2b 2 -A i R1 4b, +HW1 forY1

Solve yfor X

POLS5 If desired, evaluate
x, - R,, b1 + H13 Xa]
x2 -- ,[b2 -Ae, x,]
b:--b +WX2
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These algorithms show that the recursive process makes it a simple matter to efficiently
eliminate any number of embedded singularities and redundant equations, and to find symbolic
factors for the largest nonsingular submatrix.

6. ITERATIVE REFINEMENT

Consider the linear system of equations Ax-b and suppose the product of lower
triangular matrix IL and upper triangular matrix uL approximates A. Then solve the equivalent

system of equations jkjLx (1)-b for x(1), the first approximation to x. The residual vector for
this first iteration is

r(1)-b-Ax (1)  (67)

Inverting A in Eq. 67 yields A'- r ( -x (1) and implies that a correction a x to x may be
approximated by solving

(1) (1) (68)

giving a second approximation for x

(2) (1) (1)69)X .X +AX (9

In general the iterative process repeats to the (k)th step as

r (k). b-Ax (k) (70)

JIILAX (k). r (k) (71)

and

(k+l) (k) (k) (72)
X -X +AX (2

One can show by induction at the kth iteration that

r (k).[1 -A [L M ]-'] kb (73)

which implies that the spectral radius of I -A ([L12 should be less than 1 [4]. Clearly if ILU - A

then r (1). 0. As the product I.U deviates from A, the rate of convergence decreases and the
number of iterations to an acceptable solution increases. An excessive number of iterations
indicates the need to update . and U.

Iterative refinement is useful in the above algorithms especially for slowly varying
systems because the costly steps in ROL2, POL2 and POL3 can be avoided most of the time.
If the iterations converge quickly, this can yield substantial savings in computer time.
Furthermore iterative refinement allows the POL algorithm to more effectively exploit vector
and parallel processors since less time is spent in the serial operations necessary to evaluate the
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matrices in steps POE2 and POL3. The problem is to find equations to inexpensively evaluate
the residuals for the above algorithms and to incorporate them. Residual calculations are
always based on updated quantities, not approximations, since the residuals must go to zero as
the iteration converges to the correct solution. The residuals for the first algorithm are easily
obtained with the help of Eq. 1. Let xs" be the kth approximation to the solution and compute
x 1 , x2andro) from

Ci1 x, - b, + H,3 x (74)

C X - -(b- A, x,] (75)

and

r -b4 - x2 (76)

To see that this is the correct residual, these equations may be combined with the help of Eqs. 5
and 6 to obtain

r4" - b + Ia2 R.b 2 - Am Ribi]- He Az RI, Hi 3 x )  (77)

Which is simply the residual of Eq. 2. Thus the residual in Eq. 76 or 77 is appropriate for both
of the algorithms. According to Eq. 71, Eq. 77 implies that

Ha1 A R , H13 MV - r'0 (78)

which from Eqs. 1 and 2 leads toi+ *+03 [ Alt [o
Cit 0 -H 3  4X2 0
0 Ha2  0 AXJ Lr~mJ (79)

and

3 XV +4X (80)

The quantities ax, and AX2 from Eq. 79 cannot be used to update x, and X2 because there are no
residuals associated with them and one cannot be sure that they will satisfy Eqs. 74 and 75.
Therefore, they must be computed directly from Eqs. 74 and 75 for evaluating the residual in
Eq. 76. Thus Eqs. 74 to 76 and 78 to 80 provide the information necessary to add iterative
refinement to the above two algorithms. The modified "Recursive Open Loop algorithm with
Iterative refinement" (ROL) follows as:

RECURSIVE OPEN LOOP ALGORITHM WITH ITERATIVE REFINEMENT

ROLII Evaluate the components of A21. H13. H-2, bi, b2 , b4, Ci and Cz

ROLI2.0 Bypass steps ROLl2. 1 and ROLl2.2 unless convergence rate is slow

ROLI2.1 Initialize A- A=
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ROLI2.2 For -= p to a repeat

(B 41. " H*, A;,*

B22.- [e,. H,3.]

F31. -DOy. B41*

F24, - BW3 D , ,

A;. - A;,*_, + En. [A;,* - B2. F31.] Ell*)

Skip the last equation when -corresponds to any row of c1, or column of C2 with

only an I since the corresponding submatrix Ell* or E2, is zero

ROLI3.0 Initialize b2 - b2

ROLI3.1 For * = p to b repeat

(*- D!M* b4* +~ H42. b;.]- F3l* b1,
J

b l - 4,*1 + E22. b2** - A4.* b1, + H13 , Q~11
Skip the second equation when - corresponds to any column of C2 with only an I

ROLI3.2 xJ Da % ft[b. + l a b ] - F3,. bia

ROLI4 Xia - bia + Hiu. X4
ROLI4.1 For b to p repeat

(x* -. - F31, [Ell* xl. 1

The vector E,1 x,., - 0 when * corresponds to any row of C,1 with only an I

LOOP For k = O, 1,... do to LOOP End

ROLI5.0 Initialize x2 -- b 2 + A2 , x,

ROLI5.1 For * = p to b repeat

(x .l '(-- x2,-, + EM. x2.)

Skip this equation when * corresponds to any column of C2 with only an I

ROLI6 Evaluate

r,) - N HQ x2 and exit if small
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ROLIT.O Initialize rb; -

ROLI7.1 For= p to brepeat

(A&x;. - D..r + H. rbL]

r b . - r b . 2 -I ~ . - B ) .

Skip the second equation when * corresponds to any column of c2 with only an i

ROLI7.2 (Ax. - D (r + Ha rb;.]

ROLI8 (Ax.i- Hi,3.A4

xi - bia + H,.X ')

ROLI8.1 For -=b to p repeat

Ax*- [Ell* ilxi*.i] + H,3A4:.)

The vector El.* Axi.i - 0 when * corresponds to any row of C,1 with only an I
1~) 10 0

-X* .:+ AX3,

,*-[Ell*,.,] + bl H3 )
The vector Ell* x,.. - a when * corresponds to any row of Cii with only an I

LOOP End

The modified "Paralel Qpen Loop algorithm with Iterative refinement" (POLl) follows
as:

PARALLEL OPEN LOOP ALGORITHM WITH ITERATIVE REFINEMENT

POLIl Evaluate the components of k, , H13, H, b, b2. b4, C, and C2

POLI2.O Bypass steps POLI2. 1, POLI2.2 and POLI3 unless convergence rate is slow
POLI2.1 Initialize .-A
POLL2.2 For * = p to a repeat

(1 41, - H,. A2,.

Sm. - A;, H, 3*

DU* oBdl. H,3 .]

F31* -D.1 841.
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F"- B22- 034

4- 4 + En.[A;. -B2.M 1El
Skip the last equation when * corresponds to any row of ci1 or column of C2 with

only an I since the corresponding submatrix El,* or E22* is zero

POI3 Evaluate
Li33-I+H [Rtii -1)

POL14 Solve
UY4 . + H42 R [Ib2 - Aei R11 bi for y4

L33 xf - D3 y4 for xP

LOOP For k = 0, I ... do to LOOP End

POLl5 Evaluate
x, - R, [b, + Ha xV]

POL6 Evaluate
r4- N - He x2 and exit if smi

PO7 Solve
d,, Ay4 . r ) for Aiy,

I '&' .- D y, for Ax

POLI8 Evaluate

X3  X 43

LOOP End

7. CONCLUSIONS

Solving the coupled equations of large, multiply connected systems involves many
numerical computations which must be carried out efficiently when the equations are solved
many times. Until recently, most general purpose programs have assembled the necessary
coefficient matrices and relied on well developed external programs to numerically manipulate
and solve the resulting linear equation systems. The need for fast or possibly real time
solutions has prompted development of recursive strategies to symbolically uncouple the
equations. These recursive algorithms are ideally suited for long sequential systems but not for
parallel structures. Furthermore their highly recursive nature precludes effective use of parallel
or vector processors. To address the above problems, this paper first showed how these basic
methodologies could be obtained from an optimal symbolic block matrix factorization, and it
presented a recursive algorithm. From this algorithm, symbolic natural factors of an equivalent
generalized coefficient matrix were obtained. It was suggested that iterative refinement would
allow some of the more computationally intensive recursive operations to be bypassed or
transferred to other computers for parallel processing. In this development, some of the
recursive steps were eliminated by using others to generate a natural factorization of the
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generalized matrix. The resulting algorithm has computational overhead which can vary from
O(p) for highly parallel to O(p2) for serial systems. Exploiting iterative refinement and taking
advantage of vectorization and parallel processing can effectively reduce many O(p2) problems
to O(p).
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APPENDIX A

Prove Eqs. 46 and 47. Since the matrices in Eqs. 44 to 47 are nonsingular, it is
sufficient to show that

La L-[I + F31 [R, i- 1413] [+ F31 [c,, -][I Pii[ci- Iq[ 1,1] -I (Al)

and

U U u.[t. +14[ +[Cm. -] P22]1'[C 22 - I] F24] [I + H.[R- I] F24] -I (A2)

The following identities

Rii C1 .- Ci Ri, -I (3)

Re .- C,= R=-I (4)

His F -I - Pi (25)

and

F , Ha -I -P2 (27)

will be useful when proving Eqs. Al and A2. Since the expansion and simplification of
Eqs. A1 and A2 requires some tricks and juggling of terms, several intermediate steps have
been shown to assist the reader in following the proofs. Keep in mind, as throughout this
paper, that the identity matrices appearing in these equations will have different dimensions
according to the matrices they appear with. Thus

L= "-[I + 1 [Ri, - 1] 1,3] [I + F [C 1 - 1][I + P11 [c,, - Ifl' H13]

- I + F3, 1 .,,- 1 413 + Ni,(I +[Ri- 1][1 - Pi,,l[C1] ][I + Pi, [C 1 - ID' 1
- I + F3 [RII - ] HIn + F3 [R11 - R11 P11 . P11][c 11 - I][I . P11 [C 1 - I]]1 H13
- I + N1 [R11 -1] H13- F, 1 [R 1 - 1][[ + P11 [CII - [l[I . P11 [OI1 - ITU H13

- I + F ,[Ri,. 1 H13 - FN [RII - 1] H13
- I (A3)

and

u, u,[ + I-2[i .+[c22-I] P]'[C22.I] F24] [I H4[R22 -I] F2,]

- I + ,. [R 22 - 1] F24 + H42[I 4[C22 - 1] P]' [C- - 1] F2] [I H42[R 22 - 1] F24]

-. + H42R 22 - ] F2 + H42[i +[C22 - 1] P22
1 [CU - i][P22 .P + R2] F24

= I .. H 12[Ra- 1] F24- H42(1 +[C2 - 1] P- 1 [I +[C22 - 1] P22][R22 - 1] F2,
-. + H4[R22 - ] F2,, - 4[R22 - 1] F24

. I (A4)

which completes the proof.
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APPENDIX B

Consider the requrements for the coefficient natrix of Eq. 1 repeated below to be nonsingular.

Cl 1 -Kh X2 bi[A -Cm03 Xi]_[b2]
0 LbJ (1)

Let

X -Y Am1 -C22 01
Z 0 -Cii 0 - Hu

0 2 014 (B1)

where X.[ Am -C22
C11 0 (B2)

.H1 ](B3)

Z-( 0 H4 ] (B4)

x Y~ ]%-' - ' 'C"Yzx'Yi'zx' ry~zx*'yl'
z 0 0[z r, 'y"z rz' z x,' - (B5)

and

V 0 B11

%R R2 AmR 1 .1 (B6)

Substituting Eqs. BI to B4 and B6 into Eq. B5 gives[A21 -CU 0 ]-'
CI 1 0.I, -H1

0 HM 0

Rii H1 AIH 42 RE Rii- Rii H13 A H42 F6Am1 R" Rii H13 A~

R+R2A, R,, Hu AH F6 a A,,- R2A,, B,, Hs1A3AH4R2A i R 2 Am A , , H13 A"

A'" Ha R22 A43 Ha Ra A, Ri Ai (B7)

where A is the generalized coefficient matrix Re a A, I,, H,3 in Eq. 2. For this inverse to
exist, it is necessary and sufficient for Aa to be invertible.

While the inverse in Eq. B7 is of theoretical interest, it has no immediate value.
However, block diagonal inverses of the above matrix are the basis for the algorithms
developed in this paper. A rather simple, yet extensive, six-element example shown in Fig. 1
is given to illustrate and help explain the algorithms. Note that this example contains no closed
loops and illustrates both serial and parallel tree structure. Also, the system is described by a
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graph since Ca - c and thus all connected elements communicate in both directions. And
finally, the coefficient matrix is assumed to be nonsingular. The following matrices for this
example are included to illustrate the structure of Eq. 1

F 1000001
-1 1 0 0 0 0

0 -1 1 0 0 0j
0-1 0 1 0 0

-1 0 0 0 1 0j
L 0 0 0-11 (B8)

1 -1 0 0 -1 01
0 1 -1 -1 0 0

Cl 0a10001
0 0 0 1 0 0t
00001.1

L o 0 o 1 (B9)

Eii)1 0 000 010 -Eli I 0 0 0 0r , 0 -Ev, I 0 0 0

0 -Eld 01 0 0
'Ei. 0 0 0 1 0

0 0 0 0 -El Ij (BIO)

FI - Ezb 0 0 -*EM 01

C-2 0 0 1 0 0 00 0 0 I 0 0

0 0 0 0 1 -Ez

1 0 0 0 0 (BII

1 1000 00

RCI 1l1O10O0jc1 - 1 1 1 00

1 00010
L1 00011 (B12)

0111001
0100R=.C1;. 000 1]
00011

00000(B13)

I 1 10 0
ElPa I 000

.E 110 E 1c I 00 0

0E, 0,, 0 1 0 0
|E0 0 0 0

I a1* 0 0E1 l 0 0

LEi,.0 0 0 Em,, I (B14)
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I Ezb Ema E23d Ezb Endj
0 1 EM End0 0

0 0
00 0 10 0 .

0 0 0 0 0
(B15)

E,11 - Ce Eiib, CtC (B 16)

.,, - Eb Enc etc. (B 17)

FA21a 0 0 0 0 01
0 A21b 0 0 0 0

A1 0 0 Ave 0
A,, ,, 0 0 0 A21 0 0

0 0 0 0 Akl, 0

L0 0 0 080 Av0 (B18)

Ha 0 0 0 0 0
0 Hub 0 0 0 0

Han 0 0 0 0 0
0 0 Him 0 00 0 0 0 W1o 0

0 0 0 0 0 H,1, (B19)

a 0 0 0 0 1
0 Ka 0 0 0 0

0 0 0 0 0

L 0 0 o o 0 H6. (B20)

(B21)

X2_[ XT XT T T]2a 2) Xf X~ x~eX~f(B22)

Xa_[ XT  Xb XT XT XT. XT ]T

U. b b 3d8  39 3 ](B24)

[ bl bb ble bid b. bi ](B24)
2 2b 2 2d 2 21(B25)

b4 .[ 4a b:b b b b4. b T (B26)
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Combining the above equations gives the composite representation of Eq. 1 as

DAe 0 0 0 0 -IEm0 0 EM0 0 0 0 0 0 0 xa ba
0 Ant 0 0 0 0 0 -I Eab Em 0 0 0 0 0 0 0 0 xi bob
0 0 Alm 0 0 0 0 0 -I 0 0 0 0 0 0 0 0 0 X% ba
0 0 0 Am, 0 0 0 0 0 -I 0 0 0 0 0 0 0 0 xv bN
0 0 0 0 A. 0 0 0 0 0 .I Es 0 0 0 0 0 0 Sig ba
0 0 0 0 0 As 0 0 0 0 0 -I 0 0 0 0 0 0 Xl b2
I 0 0 0 0 0 0 0 0 O -aa 0 0 0 00 ia b

-Elb I 0 0 0 0 0 0 0 0 0 0 0 -Hl, 0 0 0 0 xP bi
0 -EW 1  0 0 0 0 0 0 0 0 0 0 0 - Him 0 0 0 X a b,
0 -Era 0 I 0 0 0 0 0 0 0 0 0 0 0 -Ha 0 0 x, bu

-EI. 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 H. 0 X b.
0 0 0 0 -E, I 0 0 0 0 0 0 0 0 0 0 0 -H X2 bi
0 0 0 0 0 0 H4 0 0 0 0 0 0 0 0 0 0 0 x.. ba,
0 0 0 0 0 0 0 Hb 0 0 0 0 0 0 0 0 0 7a b,
0 0 0 0 0 0 0 0 Hat 0 0 0 0 0 0 0 0 0 b.
0 0 0 0 0 0 0 0 0 H4 0 0 0 0 0 0 0 0 x- ba
0 0 0 0 0 0 0 0 0 0 HIN 0 0 0 0 0 0 0 X39 ba
0 0 0 0 0 0 0 0 0 0 0 He 0 0 0 0 0 0 L x2 be _

(B27)

which could be symbolically inverted using Eq. B7 (and efficiently too if one takes maximum
advantage of recursion). However an optimal block U-L factorization (the element symbols
can be kept in naturally occurring order) of Eq. B27 is being sought, so first permute it into the
following form

Am -I 0 0 am 0 0 0 0 0 0 0 0 Eo 0 0 0 0 ax ba 
I 0 Hai 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sal bin

0 I4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NI ba
0 0 OA, -I 0 0 Eno 0  a Em 0 a 0 0 0 0 0 xi ba

-E,.b 0 0 I 0 -Hi 0 0 0 0 0 0 0 0 0 0 0 0 SIa b%
0 0 0 0 H4 0 0 0 0 0 0 0 0 0 0 0 0 0 x.. bb
0 0 0 0 0 0 Axe -I 0 0 0 0 0 0 0 0 0 0 SIC ba
0 0 0- E. 0 0 1 0 -Hu 0 0 0 0 0 0 0 0 0 xa big
0 0 0 0 0 0 0 H410 0 0 0 0 0 0 0 0 0 x3- b.
0 0 0 0 0 0 0 0 0 Am - 1 0 0 0 0 0 0 0 Zia bN
0 0 0 -E,, 0 0 0 0 0 I 0 -Him 0 0 0 0 0 0 X21 bl,
0 0 0 0 0 0 0 0 0 0 H40 0 0 0 0 0 0bl
0 0 0 0 0 0 0 0 0 0 0 0 Am. -I 0 0 ED 0 Xoi ba

-E,. 0 0 0 0 0 0 0 0 0 0 0 I 0 Hus 0 0 0 Xa bi.
0 0 0 0 0 0 0 0 0 0 0 0 0 Hl. 0 0 0 0 x3- bi.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As - I 0 X V b,
0 0 0 0 0 0 0 0 0 0 0 0 -Eis 0. 0 I 0 12 x2 b2

L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 He 0 JL x3 L bie _

(B28)
Note the six block matrices

A21- -1 0a

I 0 H13. (* a, b, ... , f) (B29)

0 H42- 0

on the diagonal and that each has the same block structure as Eq. 1 itself. In general, if any
pair of block matrices is coupled, that pair will be coupled by either one block matrix above the
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diagonal, or one block matrix below the diagonal or both. In this example, each will be
coupled by both because the system is represented by a graph. Furthermore, every coupling
matrix above the diagonal has the same block structure and every coupling matrix below has
the same structure. The reader is encouraged to carefully study the structure of Eq. B28
because it is the key to the successful implementation of all highly efficient recursive solution
algorithms. For block U-L factorization, the matrices in Eq. B29 (or at least one equivalent
block matrix at each stage of the elimination process) become the pivotal matrices and must be
invertible.

Before inverting a typical matrix in Eq. B29 it will be instructive to illustrate the
standard elimination process in block U-L factorization. Let the matrix equations

Mx-b (B30)

be partitioned into

[ ", lrl',
MM AAM I~ z IX2 - J (B3 1)

where block matrix Ma is small, nonsingular and invertible. Thus it follows that

X - M[b2 -Mx] (B32)

and

[%1,- %2N W t] Xi -[in-I Wt NQ ] (B33)

Generating the coefficient matrix and the right-hand side of Eq. B33 represents the first step of
block U-L factorization. The second step treats Eq. B33 as a new matrix equation where it, in
turn, is partitioned similar to Eq. B31 and the process continues until the remaining coefficient
matrix in Eq. B33 is easily invertible. At this point, the preprocessing for elimination is
complete and the equations generated by Eq. B32 can be used for back substitution.

In this example, the first matrix in Eq. B29 which must be inverted is for element f.
Since this matrix has the same block structure as the matrix in Eq. 1, it follows by using the
same approach as in Eq. B7 that

tv - I1, a

0 Ht 0

F H,3 (Ha Ar H,]" Ha I- H 1x HaAv, Hi:] " HaA v . H,[H4 [A1 Hij S]

I + A2,f His [Ha~ AE? Hi 2] H*2 Agif - A21, Him [Ha~ Ag, Hix]" He Aetf A21i Hi~fi K A21f Hm2

L [HaA ,I]" H -[H.e A,, Hx]-i Ha A, [H z2, ,Him]' (B34)

The matrix in Eq. B34 can be further simplified to

A21, - 1 I .1 H1Diu H42j I -Hot F3i, HiiD
I a - 1 -[1 - F24 H.x] A211 - B- F31, F24f
0 H40 0 I - 31, D3, (B35)

518



by introducing the identities from step ROL2.1 as

IL - N Ae, (B36)

"n 14" (B37)

g--[ HIL, (B38)

-, D" I. (B39)

and

P2 . - BmD6 (B40)

The matrices in Eq. B35 can be expressed in various ways in terms of the above submatrices,
and the particular choices were made either to reduce computational overhead, for use in other
parts of the paper, or arbitrarily.

Now the first computation of block matrix products from the matrix in Eq. B28
corresponding to the tem - %2M W in Eq. B33 is

0 0 0
a 0 0

0 0 0
0 0 a
0 0 a

0 0 0 w"' , um a I - H1 Fjf HID, 0I[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "

0 0 0 L Dml'bz -F3,t3 0 00 00 00 00 0 00 0 0 0

0 0 0
0 a 0
0 0 0

L0 0 0
0 0 0

0 00 000 0 00 0 00 0 O00

0 00 0 000 0 00 00 0 O00

0 0 00 00 00 00 00 0 O00
0 00 00 00 00 0 00 0 O00

0 00 000 00 O0 00 0 0 0
0O 0 00 00 0 0 00 0 0 0
0 00 00 00 0 00 00 0 O00

00 0 00 00 00 00 0 0 O00

0 00 00 00 0 00 00 0 O00
000000000000 0 0

00 00 00 0000O

0000 a000 000 0 0 00

0 0 0 0 0 0 0 a 0 0 0 0E;[:.-0F,.E 0

0 0 0 000000000000 0 001
L00 0 A0 0 000 00 000 0 00 _0

(B41)
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This enormous product generated exactly one nonzero submatrix E= [A ,- sex FN] Eit.
When added to the remaining submani of Eq. B28 to form the equivalent of W, -142NQ W in
Eq. B33, it falls directly.on top of the submatrix Am. of the parent element e. This is a
consequence of optimal ordering or pivotal strategy and results in a minimal block matrix fill
pattern (in this case zero block fills). Thus the entire operation can be described by the single
equation from step ROL2.1

A;,.- e. + En [Amf -Ba F#] E,,, (B42)

The differences between Eq. B42 and the last equation in step ROL2.1 are due to the

initialization of all A,. to A.. in step ROL2.0 and the fact that a given parent A,. may
eventually accumulate quantities from more than one child, such as elements a and b in this
example. Equation B42 can be read as "this step of the elimination process is equivalent to
projecting ., from child f onto parent e across the interface between the two elements." The
quantity A," -anF, makes it across the interface and then undergoes a transformation
En(At-iotiw]s, to match the coordinates of element e. The remaining quantity
I- Oa P-w K - H 41A i - D gets projected onto the element interface subspace 3 as the
coefficient of xx (see Eq. 58). The superscript e is used on the left matrix in Eq. B42 to denote
it as an effective quantity because the original was modified by the projection process.

Now the equivalent of computing the quantity - 112 M b2 on the right hand side of
Eq. B28 follows as

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0[ Hi D3aHKa I-His F1 ,, HD [b~j1 0

-~~~~[ 0 0u 0 r-P41*] A2 f -B=sP 3 1 24  bitj 0
0 0 0 L DswHa - 6i 4 D 1 JLb4,J 0
0 0 0 0
0 0 0 0
0 0 0 0
0 EMw 0 Ent I -Fm Hat[a -Aif bif] -P2..b.w
a 0 0 0
0 00 L 0

(B43)

As above, this enormous product also generates exactly one nonzero subvector,
E2z EI - No. H][2i - A, bi] - F2 . ba]. When added to the remaining subvector of Eq. B28 to
form the equivalent of b, -112 hl N in Eq. B33, the single term falls directly on top of the
subvector b,. of the parent e. This again is a consequence of the optimal ordering strategy and
the entire operation is described by the following two equations from step ROL3.1
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3,- 6 [*+ Ha ba] - Fmb (B44)

and

4-bo+ Fwba- mt[ v+ Rx; (B45)

The reader can verify by substitution that these two equations are equivalent to the right hand
side of Eq. B33. The intermediate step was introduced to reduce the computations necessary
for step ROL4.1 of the algorithm. Again, the differences between Eq. B45 and the second
equation in step ROL3.1 are due to the initialization b; - b2 in step ROL3.0 and the need to

accumulate projected quantities from children into parent b2,,. As above, Eqs. B44 and B45
can be read as "this step of the elimination process is equivalent to projecting the right hand
side quantities from child f onto parent e across the communicating interface between the two
elements." The quantity [I- Fm H4][W - Am bit] - No bw makes it across the interface and then
undergoes a transformation E2, [[ - F-a H42 ] [ -Am, b ,] - Fm ba] to match the coordinates of
element e. And as above, the e superscripts in Eqs. B44 and B45 denote these terms as
effective quantities.

Now that these computations have been completed, the reduced matrix corresponding
to Eq. B33 which fits the mold of Eq. B30, can again be partitioned according to Eq. B31 as

A2% -I 0 0 E22 , 0 0 0 0 0 0 0 0 E2 0

I 0 -H13 0 0 0 0 0 0 0 0 0 0 0 0 13.

oH1i 0 0 0 0 0 0 0 0 0 0 0 0 0 - t

0 0 0 Am -I 0 0 Eft 0 0 Em 0 0 0 0 12a | ,

.Em 0 0 1 0 -His 0 0 0 0 0 0 0 0 0 X3a i
lib

o 0 0 0 H -H a 0 0 0 0 0 0 0 0 0 X-. be

0 0 0 0 0 0 Am0 0 0 0 0 0 0 0 0 xmb b I

0 0 0 -Etic 0 0 I 0.Ii 30 0 0 0 0 0 X - i
0 0 0 0 0 0 0 Han 0 0 0 0 0 0 0 x3 bra

hid

o 0 0 0 0 . 0 0 0 Am -I 0 0 0 0 Xd b
o 0 0 - Em 0 0 0 0 0 1 0 H 10 0 0 0 X3d the

X14
0 0 0 0 0 0 0 0 0 0 H-W 0 0 0 0 X26 bid

0 0 0 0 0 0 0 0 0 0 0 0 0 1  0 X3. bL
0E,1 0 0 0 0 0 0 0 0 0 0 0 I 0 H 13. bI.

0 0 0 0 0 0 0 0 0 0 0 0 0 Hf 0 Ia

(B46)

Element f and all quantities associated with it have been completely eliminated from the reduced
system of equations with the introduction of the two modified terms A% and b, in Eq. B46.
This new equation indicates that child e is connected to parent a so the next elimination step will
project the modified child e onto its parent a. These steps are summarized as follows
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B,,. - Hg. * (B47)

Bm - A;, K 3, (B48)

DmJ - [B4 . Hs2] 1  (B49)
p1. - Due B,1. (B50)

N - B6.% D, (B51)

1 0 H, . -(I .1 ,,,] : ,,.-B ,F3 ,. F24.

0 H 0 o I-a -F3 1. D3 D (B52)
0 En. 0
0 0 0
0 0 0
0 0 0

0 o o -- 4. oHu, ] A;,. - B ooF o F 24* - e . 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 000000000001
0 0 0 D F2 .- Ds

0 a 0
0 0 0
0 0 0

00000000 0 0a

- . .0 0 0 -B..F,.00 0 0 00 0 0 00

0 000 000000 00000

0 000000 0 0O00

0 00000000000

00000000

0 0 0 0 0 0 0 0 0 0 0 0

0 00000000 000

0 0 00 0000000

0 0000 000 000

0 O00000000000

A;,,. A,. + Ez ,.* : (A; ,, -BS6.1E e (B54)
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E. [[I - F. Ha.] [b;. - b,. Fa4, b"

0

0 E2u 0- 0
0 0 0

0 0 0 0
0 0 0 0

0 0 0 rH -. H. ,] H I-H i3 . HihD. J b* 0
00 0 0

0 0 0 D .H4 " F310  D 3 N O 0
0 00 0
0 00 0
0 0 0

0 0 0 0

0

0

(B55)
x. -.OI [1 .+ I u bL] -F. bi. (B56)

and

.- + Eas[b; - A.[ bu + H,3. ]] (B57)

Now the new reduced matrix corresponding to Eq. B33 takes the following form

4,. - 0 0 Eno 0 0 0 0 0 0 0

I 0 Him 0 0 0 0 0 0 0 0 0| bi

0 1t4a 0 0 0 0 0 0 0 0 0 0 xi, a
X2

0 0 0 Ae% -I 0 0 Em 0 0 Ezm 0 X3- ba

Eb 0 0 I 0 -H1m 0 0 0 0 0 0 X1 b bib
x ,

0 0 0 0 Hw 0 0 0 0 0 0 0 x = bin

0 0 0 0 0 0 A21 -I 0 0 0 0 XIC b20X20
0 0 0 -E.. 0 0 I 0-HK,,,O 0 0 xo b1,0
0 0 0 0 0 0 0 H 0 0 0 0 X3d b,

0 0 0 0 0 0 0 0 0 Ad- I 0b

0 0 0 - Eid 0 0 0 0 0 I 0 -Hi, bid

0 0 0 0 0 0 0 0 0 0 HW 0 b 4 (B58)

Elements e and f have been completely eliminated and only the two new terms A;,. and
b, were generated. For reference, the remaining reduced matrices are shown without the
intermediate symbolic steps
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4, 1 I 0 0 Em 0 0 0

I 0 Hn 0 0 0 0 0 0 x bia

o Hm 0 0 0 0 0 0 0 xis b,

o 0 0 A2, b-1 0 0 EM, o X b,
Xlb

-Eilb 0 0 I 0 -Ha 0 0 0 xa bib

o 0 0 0 Ha 0 0 0 0 b
XIc

0 0 0 0 0 0 Am, -I 0 x2C b a

0 0 0 -Elie 0 0 I 0 -1H13 _X bic

o 0 0 0 0 0 0 Ha 0 _ b, (B59)

A. -1 0 0 EM 0

I 0 Hiis 0 0 0 X- bi,

0 K, 0 0 0 0 xj , No

0 0 0 Ab -I 0 xlb Ij

- El.b 0 0 I 0 -HM x.b . bib

0 0 0 0 Ka0 J L b,, (B60)

o0 - Hb
3. Xis' bia

0 IH,& 0 X3 b4, (B61)

At this point, one might envision, as each additional element is eliminated, that the
recursive block elimination process is like folding or collapsing one leaf or child element at a
time onto its parent to form new equivalent leaves or to completely eliminate branches.
Eventually only a single equivalent leaf (or the equivalent root) remains, namely Eq. B61 in
this example. Now the matrix in Eq. B61 can be inverted yielding

E l ai Hiisa 3"Ha 1 -Hl3a F31a Hi3. Du. i b~ 1
x~a -[I- F 4. H42a] A;,. - 3'1 Fm1  F24a i

x3a DL Ha .- F- 31  b,, J (B62)

If one looks back to Eq. 1 or Eqs. 5 and 6, it will be apparent that the components of x,. and X2.

can be more efficiently obtained from

C,, Xi - bi + 143X .(la)

and

C22- - [b2 - A21 xI] (lb)

or

x, - R [bi + H13 X3] (5)
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and

x2-.R=(b2- Am xi] (6)

Thus only the last equation from Eq. B62 is required from this step giving

3- Ds.[W. + H ]a bL - FPw. h (B63)

which is just the final step ROL3.2 of the recursive algorithm. Now, substituting this result
into the first equation of Eq. la gives the first step in ROL4 of the recursive algorithm

Xi - bi, + Hi3aXs, (B64)

To solve for the remaining unknowns requires a visit to Eq. B32, that is
x2- MF[b2. Mr xi], for the back (forward in this example) substitution step of the block U-L
factorization algorithn. The first step is complete with Eqs. B63 and B64. The next step uses
the partitioned Eq. B60 to form, according to Eq. B32

r H m b H 4a I-H iF 3 b H i mD ub b L 0 0 0 x 2
Xbb -[ I -F2 H b] A ; I -B - F 3 1b F 2 41 b i b E ,lb 0 0 X 2 aX3b . 0I.I: H2b -61b Du b~b 0 0 0 x3, ]

which yields the necessary equation

x* - 3 [4bI + Ka b!]- .b. ibb- 6,b Ei,b XI. (B66)

However, if one refers back, for example, to Eq. B44 with b substituted for f, it follows that

the term

x;,- D .b+ b4 bL] .F3mbib (B67)

was computed earlier in the recursive elimination steps so Eq. B66 can be modified as

Xam - X; - F1b(Elb Xi.] (B68)

Now, the second block equation from Eq. la yields

Xlb - bib + [Eilb Xi.] + HiabX3  (B69)

Equation B66 defines the first step ROL4 and Eqs. B68 and B69 define the equations for
recursive steps ROL4.1. One more step will be developed to more clearly illustrate this part of
the algorithm. Starting with the reduced equation, Eq. B59, the next substitution step based on
Eq. 32 is

i c 03ftHa I -Hi,F 3 c Hiu Duec bt J_0 00 0 0 01 X2 2

xm -2 -[I- F24 Ht] Av-B F31C F244  bi - 0 0 0- Eib 00 X3

x2b

b 0 00 L _ (B70)
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which yields

.. x-- N. (E,, Xb] (B71)

where

x:,- C[bt + Ha ba]- F3,.b,. (B72)

was evaluated during the elimination step. Finally, the remaining equation

Xic - bic + (E,1 xib] + Hucxm3 (B73)

comes from the third block equation of Eq. la. This process essentially repeats in the reverse
order of the elimination steps until all of the leaves have been visited. Analogous to the earlier
discussions and noting that the matrix equations at each step of the substitution expand to
include one additional element, one can envision substitution as equivalent to unfolding the
previously collapsed tree one leaf at a time in the reverse order of its folding until the tree has
been completely returned to its original configuration.

Note that the above steps did not evaluate the unknown quantities x2. If they are
desired, the remaining step ROL5 based on Eq. lb or Eq. 6 can be used to compute them.

Finally, the natural symbolic factors of the generalized matrix in step POL3 are
evaluated to give a better understanding of the equation structure in the POL algorithm.

L=, I + F3, [Ril- 1] Hj3

1 0 0 0 0 01
F1b Eib H1a I 0 0 0 0
F31c E1 b His F31e E1 ii Himi 1 0 0 0
F3d Eljlb His F31d Elid Hia 0 I 0 0

F s a El H-, 0 0 0 I 0

F3f Eif* Hu 0 0 0 F3.t Ei. H13. I

(B74)

and

U. I + HR(Ra - 1] FP

I H2&E2taF 24b H42a E22be F24c H42& Em F2" Ha E22* P24* H42& E22m F24t
0 1 H42bEc F24c HaEndF24d 0 0

,0 0 0 0 I
a 0 0 0 0
0 a 0 0 1 H42@ E F24,

0 0 0 0 0

(B75)
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ABSTRACT

A general symbolic-based method is presented for solving equations of motion for
open-loop kinematic chains consisting of interconnected rigid and deformable bodies. The
method utilizes matrix partitioning, recursive projection based on optimal block U-L
factorization and generalized Newton-Euler equations to obtain an order n solution for the
constrained equations of motion. Kinematic relationships between the absolute reference, joint
and elastic coordinates are used with the generalized Newton-Euler equations for deformable
bodies to obtain a large, loosely coupled system of equations. Taking advantage of the inertia
matrix structure associated with elastic coordinates yields a recursive solution algorithm whose
dimension is independent of the elastic degrees of freedom The above solution techniques
applied to this system of equations yield a much smaller operations count and can more
effectively exploit vectorization and parallel processing. The algorithms presented in this paper
are illustrated with the aid of cylindrical joints which are easily extended to revolute, prismatic,
rigid and other joint types.

1. INTRODUCTION

Various techniques for the dynamic analysis of constrained mechanical systems
consisting of interconnected rigid and deformable bodies have been reported in the literature.
The resulting algorithms can be roughly divided into two main categories depending on the set
of coordinates used to derive the kinematic and dynamic equations. The first category employs
relative joint coordinates, eliminates constraint reaction forces and yields the smallest, most
strongly coupled system of equations. Absolute coordinates and joint reaction forces are used
to formulate the dynamic equations of motion in the second category. This approach yields
relatively large, moderately coupled systems of equations. However, the exclusive use of
absolute coordinates introduces complexities in implementing control algorithms, because the
joint variables are not readily available when solving the equations of motion. Furthermore,
many of the algorithms implementing this approach require the use of Newton-Raphson
iteration to correct for constraint violations.

Multibody mechanical system algorithms generally employ joint models defining
topological networks of coupled equations which must be solved by matrix and numerical
methods. Featherstone [I] presented a method for calculating the acceleration of a robot in
response to given actuator forces. His method is applicable to open-loop chains containing
rigid bodies, and revolute and prismatic joints. In this work, he developed an algorithm based
on recursive formulas involving quantities called articulated-body inertias which represent the
effective inertia properties of multiple rigid bodies. Wehage [2-4] extended and generalized
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Featherstone's algorithm by developing a general method for obtaining an order n solution for
arbitrary constrained equations of motion by applying matrix partitioning and recursive
projection techniques. He also showed that the recursive algorithms are essentially the result of
optimal block U-L factorization applied to the composite inertia coefficient matrix. The joint
kinematics, equations of motion and topology of a mechanical system are represented in
factored matrix form resulting in a large system of loosely coupled equations amenable to
sparse matrix manipulation. Optimal matrix permutation, partitioning and recursive projection
techniques are then applied to symbolically unravel and lay out an order n solution strategy
which follows the natural topological profile of the system. The method can be applied to
arbitrary open and closed-loop systems in order to generate the necessary uncoupled equations
[4].

In an earlier work, Armstrong [51 developed a recursive inertia projection algorithm for
robotic systems composed of spherical joint. Stepanenko and Vukobratovic [6] gave explicit
procedures for computer generation and integration of the equations of motion using Newton-
Euler equations. Orin [7] proposed a number of improvements on the scheme of Stepanenko.
The success of Newton-Euler equations applied to recursive robotic manipulator dynamics is
attributed to their simplicity, and the ability to express them in closed form. A typical set of
recursive kinematic equations can be obtained by starting at an arbitrary link at the end of the
kinematic tree and moving inward toward the base. These kinematic relationships along with
the Newton-Euler equations yield, by simple matrix products, a compact set of symbolic
equations in terms of the joint variables.

In this paper, a general symbolic-based method is developed for solving the equations
of motion for mechanical systems consisting of interconnected rigid and deformable bodies.
The method utilizes matrix partitioning, recursive projection [2-4] and generalized Newton-
Euler equations [8]. The absolute or reference coordinates of each deformable body in the
system are expressed in terms of body joint and elastic coordinates. The resulting equations of
motion employing absolute coordinates and based on the above-mentioned generalized
Newton-Euler equations, contain the nonlinear inertia coupling between the so-called rigid
body or reference motion and the small elastic deformations. A significant portion of these
equations can be expressed in terms of time-invariant quantities which depend on the assumed
displacement field. The kinematic relationships and generalized Newton-Euler equations yield
a large system of loosely coupled equations amenable to sparse matrix manipulation. Direct
methods employing optimal numerical block U-L factorization for manipulating sparse matrices
[9, 10] have been successfully applied to equations of this type, but the overhead of numerical
matrix structure analysis can be excessive. This problem is circumvented here by employing
optimal symbolic U-L factorization to develop equations which recursively yield the absolute
and relative accelerations, and the joint reaction forces. This method requires the inversion or
decomposition of relatively small matrices and the numerical integration of a minimum number
of coordinates. In those algorithms which use absolute coordinates exclusively, Newton-
Raphson iteration is often employed to correct for constraint violations. This technique
generally leads to numerical and convergence problems. The method in this paper avoids the
use of Newton-Raphson iteration and can easily be implemented on the digital computer.

2. RECURSIVE KINEMATIC EQUATIONS

Figure 1 shows two deformable bodies labeled i- 1 and i, and connected by a cylindrical
joint. Reference coordinate systems Xi'1Yi-1Zi ' 1 and XiyiZi with origins 01"1 and O are
introduced to define absolute displacement relative to a global frame. Let global reference
position vectors Ri'I and Ri locate the respective origins. For convenience in describing the
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connecting joint, introduce intermediate body-fixed joint coordinate systems Xd Yd Zd and

XpY'p7 at the joint definition points as also shown in Fig. 1. These intermediate joint
coordinate systems are assumed to experience small displacements (due to body deformation)
with respect to the reference and other coordinate systems fixed on the same body. Large
relative displacements between coordinate systems on different bodies (due to joint

displacements) are allowed and are described using joint variables 0 i '' (rotation) and T ij1'

(translation).

Fnc syst em

Xi-1 X

Figure 1. Intermediate coordinate systems

Vectors and matrices can be represented in any coordinate system and throughout this
paper, it will be convenient to express them in body reference and global coordinates.
Symbols with overbar will denote quantities expressed in global coordinates, otherwise body

reference. Let orthonormal matrix A i relate global and body reference coordinate systems and

vector coordinates as ai = A a' and ai - AiTai. In this paper, a given vector or matrix
associated with body i will only be expressed in the above two coordinate systems, so
additional notation will not be required. The kinematic equations are initially derived in global
coordinates and then transformed to body reference coordinates. In general, bold lower and
upper case letters denote respective algebraic representation of vectors and matrices. The
symbols co, a and y also denote algebraic vector quantities.
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Angular Velocity The absolute angular velocity of body i reference coordinate system can
be expressed in terms of body i- I as [8]

-i -i-I -4-1 - * ii- -4
CO0--) + Cd V+dp +C (1)

where CO and o are the respective angular velocity vectors of body i and i-1 reference

-4-1.
coordinate systems relative to a global inertial frame, (o is the intermediate angular velocity of

joint coordinate system Xi-l'Y-1'Z- with respect to body i- I reference coordinate system, 5o

is the intermediate angular velocity of body i reference coordinate system X1YiZ i with respect
t- and ; Av is a unit vector lying along the joint

axis of rotation/translation. The angular velocity vectors w 1 and o' are the result of small
joint coordinate system rotations with respect to the corresponding body reference coordinate
systems due to body deformations. It is more efficient to work in body reference coordinate
systems because many of the vector and matrix quantities will be constant. In addition,
quantities in the body i-I and i reference coordinate systems can be related by the matrix
Ai 'i' l = AiTAi 'I or through the basic identity

A i' i- 1 1 +dp sin 0 i -i + 2 Vdp s 0 i'i l /2)] A"

where A1'- is a constant transformation matrix corresponding to the condition 0i 0 8].

A skew-symmetric matrix a equivalent of a vector cross product operator is associated with a
[8]. Thus Eq. 1 may be expressed in body i-I and i reference coordinates as

i-I i-i *1.1-)iAi' [oi + O V) p 0 + Opo (2)

The intermediate angular velocity vectors written in terms of body i- I and i elastic coordinates
are simply

i-I si-I .i-I
ffiO S od qf(3

and

O i =S i  .
po . qf (4)

• i-Ii

Constant matrices Sood and S' as defined by Changizi and Shabana [11], depend only on the

body shape functions and the relative location of points p and d on the bodies. Vectors qf
iand qf are the respective body i- 1 and i elastic coordinate derivatives. Throughout this paper,

subscripts r, j and f will denote respective reference, joint and flexible or elastic coordinates.
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An, ular Acceleration Similar to the above development, one can write the body i reference

angular acceleration vector in terms of body i- 1 as
i= i-+ A"--i- S'-1 +.- Aii ..ia -i

Vdp God qf +A 1 S8 poqf+ (5)

-4where CE1 and a are the respective angular acceleration vectors of body reference coordinate

systems X'Yi'Z i' and XiYiZi. In addition

" i, i-I =i-1 I W - - i
9i =VdP + ( A Gdqf + (0 Ai S Op o qf(6*ii- od f+ )A pq (6)

absorbs components of angular acceleration which are quadratic in first derivatives. The
reference accelerations are with respect to the global inertial frame. Equations 5 and 6 may be
expressed in body i- 1 and i reference coordinates as

( ii- I +,,i-t .. i-tl + "''ii o.
a = A'i' [ai'l + 5 od qf] + V 0i- + +70 (7)

iAi~iti-I i-1i- Si (qii- 9i +6S
ye= S 0oqf + Vdp + o (8)

or more compactly as

A i-I i-I Hi i 1i(XiA~i1(I + Sod f Opo + e (9)

where

Pi iii [jp r 1TT (10)

and

H i  [ 0 vi Si 0]
0po Vd P (11 )

Matrix H 0  is often called an influence coefficient matrix. Symbols I and 0 used in various
matrix expressions refer to respective identity and zero matrices whose dimensions are implied
by the accompanying matrices and vectors.
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Linear acceleration of body reference origin The linear acceleration of body i

reference origin O) can be written in matrix form as

&i_ = t- -I 41Zi i + coi- .I-o = -w W c~' -Ud -.
+001 +a p °  +2o U+Up

+d +) CO UP+ o o+20O U po+Upo (12)

where uio is the position vector of joint coordinate system Xd -- Zd with respect to U1 and

Upo is the position vector of reference coordinate system XiY!Zi with respect to intermediate
i * * i-I a i

joint coordinate system X' Y . Vectors U and u can be expressed in terms of respective
body i-I and i elastic coordinates. In body reference coordinates, Eq. 12 becomes

U +0) Ci) U +20) u 1Aii. 1  i- od od Uod +od

+Vdp + up Po uPo +Po (13)

With this knowledge and using Eqs. I and 9, Eq. 13 can be written more compactly and in
body i reference coordinates as

[.kiI + ii-1 .i-l + HR + P
i z U A i-Aii "uo + od qf + po (14)

where

Hopo dp O po} (15)

is also an influence coefficient matrix and Y absorbs acceleration components which are

quadratic in first derivatives.

3. KINEMATIC MATRIX EQUATIONS

The first step toward developing recursive kinematic relationships is to express the
second derivatives of body i coordinates explicitly in terms of those of body i-1. To do this,
first combine Eqs. 9 and 14 in matrix form as

I Up "Ai'i'l -Ai-i'l A'° Ai'i' SRd iI]:l '
Po tj UF Rod 1 RO Y

I-- -
1  A j-i1 i +- H oi  R

0 0Aii' A'iiod .-- ' L O° LYO]
qf L (16)
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Then multiply by the coefficient matrix inverse

0 1 0 1(17)

and append the identity
4 i = i i

f =f (18)

to yield

Ai i-i' "IAi'i'- o+Io i' '  R"Iodi'l li - Rpo 1  .

Uo 0 Rod

(X - 0 A i'i-l H i'1o { i 'l ] H i u o i+ ,,i
%od aH O

.4e
• .i 0 0 0 f fH i 0

L~1=A~ilIL i~i1H~'(19)

where

0R Qo 0 o Rod

I @ad Od (20)
Hi[-1 = Ai. - i-

Rod ASod - Upo A od (21)

H ili-I _A i,i. 1  i-1

Ood SOod (22)

R = ,' i  i
=RP HRpo - UpOlepO (23)

IR u P (24)

and

Hf=[0 0 I] (25)

Finally, Eq. 19 may be written more compactly as

a'= Hi.i-I ail i i (i +a p (26)
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where

ai=[ei aiT 41" J[ a7 4f (27)

(28)

A ii1 -[A ii -1 '  + po A 'i'  l od H J- iii-

H ili- 1 0 A i -i - 1  H i i '1 --f ar A f

0 0

0 0 0 J (29)

rFH'T H'1
= Gpo Ho 9f0 I (30)

Vdp -Upo Vdp

vdp (31)

and

S po - UPepo

Hprf= s p

Gpo (32)

Revolute. Prismatic and Rigid Joints Formulations for revolute, prismatic and rigid
joint kinematic equations, as well as more sophisticated joint types [12] can be obtained as
special cases of the cylindrical joint equations. For respective revolute, prismatic or rigid

joints, "T i 1 , @ 1 or both i''' z and &i'1 are constant.

4. GENERALIZED NEWTON-EULER EQUATIONS OF MOTION

Recently, several formulations have been developed for the dynamic analysis of
deformable bodies undergoing large rotations. In this paper, the generalized Newton-Euler
equations accounting for all inertia coupling between the reference motion and elastic
deformations are used. The generalized Newton-Euler equations presented by [8] in terms of
absolute reference and deformation coordinates are given for deformable body i in its reference
frame as
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14R Nt M6 ]RI gR'
i gR

KR 00O ff
wh R Nt M M ,[: gJ (33)

where

M =m iI (34)

M~0 = 35)Re MC(35)

M=JL 1 sdVi (36)

=L. i uiT ui dv i  (7

Sf dV1

L i J si Sdvi (38)

N4 pifST S i dVi

(39)

and mi, p, Vi and Sf are, respectively, body i total mass, mass density, volume and shape

function. Vector ui =u + u' defines the position of any arbitrary point on the deformable

body where ui represents the undeformed position of that point and uf = S f qf gives the
displacement of the point from its undeformed position. The effective mass moment relative to
the body reference frame is

m' p= u ~ + Mf q'

m~=~iu~oV1+Miq~(40)

The coefficient matrix in Eq. 33 is symmetric and assumed positive definite. The right hand

side vectors gR, go and gf contain externally applied forces and moments, internal elastic and
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damping forces and components of inertia forces which are quadratic in first derivatives of the
coordinates [8, 13].

Using Eq. 33 and assuming for this discussion that body i is at the end of a chain of
elements so that it contains only one joint common to it and body i- I, the generalized Newton-
Euler equations can be written as

Mi aif= gi + f (41)

where

gi=[gR giT gr~~ g,~r(2

and the vector

fi[R r~ f f .. ri (43)

contains the internal reaction forces at the joint interface between the two bodies [2, 8, 13].

Using matrix H' from Eq. 30, one can write the following equation

H f=QiH P (44)

where

Q'[ Q7 OT (45
contains the vector of joint generalized forces acting parallel or tangent to the constraint surface.
The second equation resulting from Eqs. 44 and 45 yields the dynamic force balance relation

prfr +f (46)

Note that the last part of Qi corresponding to elastic generalized coordinates q' is zero because

all elastic generalized forces were included in g' This arbitrary choice was made to simplify
Eq. 46 and will yield the same result as is evident from Eq. 41. Examples of joint generalized
forces are actuator forces in prismatic joints, motor torques in revolute joints and friction forces
and torques in joints.

5. SPARSE MATRIX FORMULATION

In this section, a sparse matrix oriented technique for solving the kinematic and force
relationships of the preceding sections is developed. For example, Duff, et al. [10] have
shown that optimal block permutation can minimize block matrix fill in U-L factorization which
is equivalent to minimizing computational overhead. The purpose of the remaining sections in
this paper is to establish patterns which will be applicable to recursive solution of multibody
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systems with arbitrary number of bodies. Fist, Eqs. 26, 41 and 44 can be combined in matrix
form to obtain a large, sparse system of equations in terms of the absolute and joint coordinates
as

M i  -I giI 0 Hi.,l
I a'1 - i_- i Hij~- I ai-1

0 Hi Q
L 0 H Q(47)

If the matrix has full column rank (which it will have if H' has full column rank, seeIf th mtixH

Eq. 30) then Eq. 47 can be solved by block partitioning and using the following basic identities
which can be verified by direct matrix multiplication

BT 0 [- g D (48)

D = [BT A-1 B]-' (49)

E=A' BD (50)

ff= D BTA -l (51)

and

P = I -E BT (52)

where P is a projection matrix such that P2 _ p.

Setting

A-Mi -I

and , 0i
B=[

H'

in Eq. 47 and noting that
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I 0 -I Mi (53)

it follows that

M1  -I1 0 G1 G P'" E~

0- HIT 0V' iT DiP (54)

where

Di =[HP MiHp]' (55)

E i= Di

E p(56)

Fi=MiEi (57)

G i=-Ei HiT
P (58)

pi _I -Fi H pI
P (59)

(60)

and

GpiT E1
a'] °9

i .piM'p Fi y'+ H'i-' ai.1

ElQi ](61)

Matrix Pi is a projection matrix and MiP is a projected inertia.

Assuming that a'' is known, then Eq. 61 will yield ai, fi and pi. However, the first
two equations from Eq. 61 are not required because it is less expensive to obtain ai and f

directly from Eqs. 26 and 41 once i is known.
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6. ALTERNATE MATRIX REPRESENTATION

As pointed out earlier, Eq. 47 yields the largest and least coupled system of equations,
where advantage is taken of the identities in Eqs. 48-60. However, some of the intermediate
matrix operations involved in evaluating the inverse in Eq. 54 are still quite large. It is possible

to obtain a smaller, less sparse equation system by eliminating the second appearance of qf

from ' on the left side of Eq. 47 (see Eqs. 10, 18, 25, 30-32, 47 and 61). To this end, write
the projection

.40I r

qf 
( 

0 0 0 06
fi 0 1 0 I00 4

fi- Ir o00 fi
fi fi 0 0 00i .

P .4
.. L _Pj _

-_q (62)

Substituting Eq. 62 into Eq. 47, premultiplying by the transpose of the coefficient matrix in
Eq. 62, eliminating the resulting null block row and column and permuting gives the following
reduced set of equations

-I 0 M ar  gr

i -i i +Hii-1 a-i +Hi'i-1 .. i-"prj " Prf f Yr +--a + arf qf

0 HiT .p0
Pr' pi qiT • .

M HPrf 0 M f J L f (63)

where

MR MeR 1

MOR MOO (64)

M 1
OfM (65)
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Observe that the upper left 3 by 3 block of matrices in Eq. 63 has dimension 12 plus the degree
of freedom in the joint connecting bodies i-I and i, and is nonsingular for well posed
problems. This matrix is easily inverted following the steps outlined in Eqs. 48-60.

Furthermore the lower matrix M? is constant, positive definite and thus all quantities can be

evaluated when a ' is known. In addition, note that the unknown constraint deformation force

vector fr has been eliminated from Eq. 63 but can be evaluated, if desired, from Eq. 46 once f,
has been determined. Use the last equation in Eq. 63 to solve for

q1= M-')g 4. -H' 'IPd] (66)

Note that the symbol (-1) used above denotes matrix inverse to avoid confusion with the
symbol denoting body i-i. Now substitute into the remaining equations of Eq. 63 and
rearrange to get

Mrr0 Mrff-I "HPrj f r = r + H-- a + "'-' q + Hpr gM
0 0iT 1.

Pr 0 -QI (67)

where

M I = MVE- Mfl rf (68)

M °=I +HP f M j' I M  (69)

-i Mi(-l) iT

r-I =p f prf (70)

Let

F iT
Irr -MrA=

Mrr Mrr1

and

0
B=
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Then with matrix M i positive definite and with full column rank in Hp' , it can be shown [14]

that matrices M , and M. are positive definite which guarantees nonsingularity of A. With
this, it is straight forward to evaluate a set of matrices similar to Eqs. 55-60 which represent
the inverse of the coefficient matrix in Eq. 67 as

01pr 0 Gr - Flrj El (1

M"I -M 0r f f

M M~ffl - H1 . -

0 HiT j iT FIDii
HpT] 0i r B (71)

Similar to Eq. 61, it follows that
a; Gi El" "

a Gin P E g! -M'WfM 'q gf

ir l P1 "~f i F i + Hi- ai. ii Hj-.4i-1 + • Mf " rr M dz Fr r U -- " + f qf +  prf M ) g

pwe Ea[ F r+ DQ + (72)

where all thrde equations must be used here because the first two in Eq. 63 depend on qf

i iwhich, according to Eq. 66 also depends on ar and f,. One might suggest that this problem

could have been avoided by first eliminating a, f, and from Eq. 63. However, this idea
was discarded because it requires the repetitive inversion of a much larger matrix the size of

M in order to evaluate qf (recall that matrix M ' " is constant and must be evaluated only

once).

7. CONNECTIVITY CONDITIONS AND PROJECTION METHODS

Let body i-I be located between bodies i-2 and i in a chain of elements. Then a
dynamic equilibrium equation similar to Eq. 41 can be written as

Mi-I ai-1 =f gi- a-f- ~-Tf (73)

where the transformation H i 'IT brings the reaction forces at the joint between bodies i-1 and i
to the common reference coordinates and origin of body i-1. The dynamic equilibrium of
bodies i and i-I taken together is described by Eqs 41 and 73 combined in matrix form as

0 Mi ai J[ gi]=[
(74)
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Likewise one may extend Eqs. 26 and 44 to obtain[a4 [ 0p ][ .i..1 7*a,, a: -2 + p P -
ai  0 H'I' l a' 0 Hi (75)

and

P (76)

Now Eqs. 74-76 may be combined and permuted into

M i  - I 0 0 Hi IT 0a

I 0 - Hp 0 0 0 ai-1
P +-1 +Ha a'

0 HpWT 0 0 0 0 *W Qi.1

0 0 0 -I 0 ai  gi
ili-I ift i-H" 0 0 I 0 -H'

0 0 0 0 H, 0

(77)

Following the steps leading to Eqs. 62 and 63, Eq. 77 can also be reduced to

M~' -1 0 MW1  0 HI' '.IT 0 0 " i-I i-
--=ra. g ,

.[ 0 " H' 1  "HW 0 0 0 fri i'I H.Ii.2 8-2 -Ii-2 -4-2

-HprIT 0 0 0 0 0 0

Hi-IT i-I 0 H I

Wq a. gr

Ut.

o 0 0 0 1 0 -[ 0 a',

0 0 0 0 0 " 1  0 0

0 0 0 0 N4 HT

(78)
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The reader is encouraged to carefuly study the structure of Eqs. 77 and 78 to identify
the minimal coupling between the two major blocks. These equations may be extended to any
number of bodies by adding blocks along the major diagonal and corresponding coupling
matrices at the row/column intersections corresponding to their joint adjacency. For serial
mechanisms, the overall matrix bandwidth will always be the same as in Eqs. 77 and 78.
Regardless of the matrix bandwidth (the degree of system serialism or parallelism), the
computational overhead per body for open-loop systems will always be the same when the
matrix equations have been permuted for optimal U-L factorization. That is, elimination starts
in the lower right hand comer and back substitution starts in the upper left hand corner of the
composite matrix. To further comprehend the recursive elimination procedure, Eq. 78 is
solved for all unknown quantities. This procedure can then be extended to any number of
bodies.

Since matrices Mff and Mff' are constant and assumed nonsingular, the accelerations
• i- •-

qf and qf are first eliminated non recursively, as in Eq. 66, leaving a system of equations
with structure similar to those involving only rigid bodies (refer to Eq. 67). To this end,

eliminate 4q-' and 4' giving

0 0i- i-IIo 0 O 0 0 ar g= Q- gf

M ,.' MNf, H't0 Yr + H ,, ai + Hg cf + H'-1 gf

i 1T 0 0 0 0 .41 Q M - i

' a0 0 i -MO 0 g(8M'0)Nq g,

0iMi-I Mi,0-I i-I

M - HI H ~I(-1) M (80)
and

*1li ii- ii i-1 iuT

rr-I arf f prf (81)

The remaining submatrices are obtained from Eqs. 68-70 with i replaced by i- 1.
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Eliminating the unknowns ar. f and p following the procedures outlined earlier yields
the reduced system of equations

Mi I _ NVT 0 g'' - Mi- Mi-'('I I~
tr 0- if f pd

i-l I 1 i-2 ai-2 + i-j-2 -- i-2 _liILc-(-l)W

NI: N1I - H- [ + H"a' 2' + H'4- 2 qj + H'-1 M'- ~ (2

WT iII0 Hi'> 0 • (82)

where
I JI " i Mii-I

NfIB = M= + M+ MwMoJ 1 W  (83)

e.i- i_- 1 ii-T u i

""'"ffiro r(86)

ei-1 i-i M -'T ¢i
Yr =  MYr r-I (87)

and

i=[-Pr L F I H f  j. Uarf gf

L (88)

The superscript "e" used in the above equations means equivalent quantity. Compare the
structure of Eqs. 67 and 82. Equations 83-88 clearly show that the elimination process
generates equivalent matrix ani vector replacement quantities only for the body which holds the
eliminated element. That .is, properties of the eliminated body are projected across the joint
onto its parent. For open kinematic-loop systems and as a consequence of optimal block U-L
factorization, each stage of elimination generates a further reduced system of equations whose
structure is identical to that of an equivalent system with the corresponding body removed.

Using the procedures developed in this paper, one may generalize Eqs. 66-88 to
systems composed of any number of rigid and deformable bodies interconnected by joints.
Space limitations do not allow a comprehensive development of recursive solution algorithms
for arbitrary systems of interconnected rigid and flexible bodies and this paper does not address
the steps required to handle closed kinematic-loop systems [2, 4]. While the coefficient
submatrix dimensions in Eqs. 63, 77 and 78 depend on the individual body elastic degrees of
freedom, the matrix dimensions in Eqs. 67, 79 and 82 are the same whether bodies are
deformable or not. Only the submatrix structures and thus the underlying recursive solution
algorithms differ.
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8. SUMMARY

A method is presented for effective solution of equations of motion for systems of
interconnected rigid and deformable bodies. The equations of motion of each body in the
system are formulated in terms of the absolute coordinates using generalized Newton-Euler
equations. These equations which contain the nonlinear inertia coupling between the rigid
body motion and the small elastic deformation are expressed in terms of a set of invariants
which depend on the assumed displacement field. Recursive kinematic relationships in which
the absolute variables of body i are expressed in terms of those of body i- I and joint variables
are also developed. The matrix relating absolute and relative coordinates is used to define joint
forces which act tangent or parallel to the constraint surfaces. These forces are the generalized
forces associated with the joint generalized coordinates. By combining the generalized
Newton-Euler equations, the kinematic relationships and the generalized joint force equations,
a large system of loosely coupled equations is obtained. Matrix partitioning, optimal block
factorization and recursive projection methods can then be employed to obtain an order n
solution for the constrained system equations of motion. The formulation presented in this
paper can be applied to arbitrary systems with rigid and flexible elements, and numerous
kinematic joint types.
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Abstract

Object-oriented symbolic computation methods are developed in this paper for
describing and analyzing multibody systems, particularly vehicles. Computer data
objects are defined for symbolically representing (1) vector/dyadic algebraic expressions,
(2) physical components in a multibody system, and (3) program structures needed in a
simulation code. With more powerful symbolic manipulation capabilities, all techniques
normally employed by human analysts and programmers can be mimicked to obtain
efficient numerical simulation codes. These include: selecting "natural" coordinates,
dropping negligible terms, and introducing intermediate variables to avoid redundant
computations. Also, the description of unusual forces and moments is straightforward
when the analysis software can deal with general vector notation. The methods are
demonstrated for an example three-dimensional vehicle handling model.

Introduction
The job of simulating a multibody mechanical system breaks down into two tasks: (1)

formulate equations of motion and (2) solve them numerically. The automated numerical
solution of differential equations is a well developed area in engineering, and a great deal
of software is available for performing this work. It is accomplished by a simulation
code-a computer program written to numerically simulate a multibody system by
integrating nonlinear ordinary differential equations over a small time step hundreds or
thousands of times in a "run."

The efficiency of the simulation code is mainly determined by the number of
arithmetic operations employed to compute derivatives of state variables at each time
step-the equations of motion.

Approaches that are taken to simulate a system can be organized into three categories:

1. Equations of motion of the multibody system are derived by an analyst and
translated by a programmer into a specialized simulation code that pertains to one
particular multibody system.
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2. A generalized simulation code is used in which the equations have been
formulated and programmed once and for all in a generalized fashion.

3. Symbolic analysis software is used to aid the analyst and programmer in the
formulation of equations and the development of a specialized simulation code.

The manual derivation of the equations of motion for even a modestly complex
system (say, five or more degrees of freedom) is a tedious undertaking that involves
considerable algebra, a nagging uncertainty of the correctness of the equations, and a
considerable programming and debugging effort. To avoid these problems, numerous
multibody computer programs exist which build the equations of motion for a particular
system automatically, freeing the engineer to concentrate on modelling considerations
and parameter values. As indicated by the above categories, some multibody analysis
programs operate numerically while other operate symbolically.

Generalized Simulation Codes

The (numerical) generalized simulation codes begin by building a set of equations
based on a multibody formulation that has been derived for once and for all, and then
they proceed to numerically integrate the equations to simulate the system [ 1, 2]. These
generalized codes are appealing to many engineers because they offer a "complete
solution" that handles the entire simulation effort, from model formulation to the
numerical integration of equations. Of course, there are some trade-offs made to achieve
the generality.

One trade-off is that the generalized codes run slowly relative to specialized
simulation codes. A human dynamicist usually tries to obtain equations of motion that
are as simple as possible, using a number of techniques that will be detailed later.
Further, good programmers can improve computational efficiency when the equations are
incorporated into the simulation code. Because the general-purpose simulation code was
written for once and for all for all multibody systems, most of the simplification
techniques cannot be used. For vehicle simulations, the eventual difference in simulation
speed between a special-purpose code and a generalized code can be more than an order
of magnitude (preliminary work shows a factor ranging from 10 to over 100). The
inefficiency of the general-purpose software precludes its use for highly repetitive design
studies and real-time, hardware-in-the-loop operations.

Another trade-off is that the generalized codes are not completely generalized when it
comes to introducing force- and moment-producing components. This can be a problem
with multibody systems that include elements characterized by semi-empirical models
that are not likely to have been fully anticipated by the programmer. E.g., ground
vehicles include tires, nonlinear springs, complex shock absorbers, etc. that are modelled
differently based on the intended use of the simulation. Assuming that an engineer is
able to develop a computer representation of such an element as an external subroutine,
the subroutine must be incorporated into the multibody simulation. If the simulation
program is written by hand, it is a simple matter to incorporate external subroutines.
However, for a generalized simulation codes, external subroutines are limited to cases
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that were anticipated by the original programmer. Variables needed as inputs to the
external subroutine (positions, angles, speeds, etc.) are not always readily available.

Symbolic Analysis by Computer

Symbolic computation offers the potential to combine the high reliability of a
general-purpose code with the efficiency and modeling flexibility associated with the
development of a new special-purpose code. In this approach, a simulation code is
generated by the computer that is similar in structure and efficiency to one written by a
human programmer.

There are two approaches that have been taken for performing the symbolic
computation needed for analyzing multibody systems:

1. A generic symbolic manipulation language is used by a dynamicist who performs
the analysis in the same manner as would be done "by hand," except that the
computer aids in performing the algebra.

2.. A complete, self-contained multibody analysis program is used to formulate
equations automatically, based on a description of how bodies in the multibody
system are connected to each other.

Generic symbolic mathematics software (e.g., MACSYMA, REDUCE, Mathematica)
have been employed to develop equations of motion for multibody systems [3, 4]. These
languages include capabilities far beyond the basic "high-school algebra" needed for
analyzing multibody systems, and powerful computers are required for acceptable
performance. However, these languages do not include provisions for optimizing
numerical analysis computer code.

With a sufficiently detailed multibody formalism, equations of motion can be
developed automatically using only rudimentary computer algebra. Self-contained
symbolic multibody codes have been written to formulate equations that can be merged
into a simulation program (e.g., NEWEUL, SD/FAST) [5, 6, 7, 8]. However, if the
symbolic manipulation is too limited, some important simplification methods cannot be
applied. Simplification techniques that are not included in the computer algebra can still
be applied by including them in the multibody formalism, but there is a loss of modeling
flexibility because the formalism must include specific "plans" for dealing with all types
of systems being modeled.

This paper describes a new approach to automating the symbolic analysis of
multibody systems. A symbolic mathematics language is designed specifically for
analyzing multibody systems and generating numerical simulation codes. The language
directly represents three aspects of the overall system in symbolic form:

1. vector and dyadic algebra expressions,

2. components of the multibody system (bodies, forces, etc.), and

3. pieces of computer code that goes into the numerical simulation code being
generated.
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Techniques are presented for representing and manipulating these components as
computer data objects. A software package called AUTOSIM has been developed in Lisp
at The University of Michigan to apply these techniques and automatically generate
simulation codes. AUTOSIM is used to illustrate some of the techniques for an example
three-dimensional vehicle handling model.

To provide a background for the symbolic analysis methods, considerations of
numerical efficiency are presented. More background is provided by a summary of the
multibody dynamics formalism that is automated to derive equations of motion.

Numerical Efficiency

A simulation code is a computer program that simulates a physical system by
numerically integrating differential equations of motion for the system of interest. The
integration is performed by using a numerical approximation to integrate the equations
over a very small increment of time, which is "stepped" from a start time to a stop time in
a simulation run. Numerical efficiency is quantified by the number of arithmetic
operations needed to compute derivatives of the state variables of the multibody system at
each time step. This efficiency derives from (1) the formulation of the differential
equations, and (2) the programming style of the simulation code.

Formulation Options

Choices made by the analyst deriving equations of motion have a direct impact on the
complexity of the resulting equations. Some of the techniques that are typically
employed to simplify equations are the following:

1. State variables are introduced that are "natural" to the system being analyzed
(joint displacements, speeds oriented in body-based directions, Euler angles, etc.),
avoiding transformations to a predefined choice (e.g., Cartesian global
coordinates).

2. Terms which are known to be zero for the specific system (but which could be

non-zero for a more general formulation) are omitted from the equations.

3. Forces and moments that cancel due to symmetry or because they involve no
work are eliminated when possible.'

4. Equations are written in "factored form," involving products and ratios of sums of
terms. For example, the expression (A + B + C)2 requires two additions and one

1 It should be noted that this technique is not always effective at simplifying equations. By eliminating
non-working forces and moments, the number of equations is reduced but the complexity of the equations
is increased. The question of whether large sets of simple equations are better or worse than small sets of
complicated equations has not been resolved, and is a topic of current research. However, multibody
formalisms that that include the constraint forces and moments are much more complicated than the one
presented in the next section, aia have not been yet shown to be effective when implemented symbolically.
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integer power, the.expanded form (A2 + 2AB + B2 + 2AC + 2BC + C2) requires
five additions, six multiplications, and three integer powers.

5. Terms involving products or powers of quantities known to be "small" are
dropped if they are of order 2 or higher. In many mechanical systems, some of
the motions are limited such that variables associated with those motions are
much smaller than other expressions arising in the equations of motion.

6. Trigonometric functions of small quantities are replaced with truncated Taylor
series expansions.

Technique no. 2 (removing zero terms) can only be partially implemented (via the use
of sparse matrix operations) for generalized numerical multibody simulation methods.
However, virtually all symbolic multibody programs employ it. Techniques 1 - 4 have
been used by some programs, and techniques 5 and 6 have not been used in a generalized
sense until the implementation described in this paper. (In past work, "small" variables,
when used, are built into the multibody formalism. The analyst cannot utilize knowledge
that some variables and parameters are small and that others are not.)

Programming Options

A given set of equations can be programmed into a simulation code so as to minimize
computation. Techniques routinely employed by human programmers are the following:

7. Complicated expressions that occur in several places are replaced with
intermediate variables. This technique is particularly important for multibody
systems because the equations of motion are inherently redundant. Some of the
redundancy is eliminated by using a recursive dynamics analysis method. Even
so, inspection of the the equations of motion usually reveals that some
subexpressions appear more than once. A human programmer, concerned with
numerical efficiency, will try to avoid performing the same computation more
than once by saving the results the first time and then using the result when the
same computation is called for again.

8. Constant expressions are "precomputed" to avoid performing identical
computations over and over with each time step. In previously developed
symbolic analysis methodologies, simpler equations are obtained by specifying
numerical values, rather than symbols, for parameters. During the manipulation
of the symbolic expressions, the numbers are combined and the complexity of the
equations is reduced [6, 81. However, this approach results in a simulation code
that is "hard-wired" for one set of parameter values, and which cannot be used for
parameter sensitivity studies.

A more general approach is to identify expressions involving constants and
introduce intermediate constants. In a simulation code, these constants can be
precomputed as part of the program initialization.

9. A human programmer will (hopefully) not introduce code that serves no purpose.
This obvious technique can be difficult to implement in an automated analysis
method. For example, details of the dynamics analysis are often recursive.
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Consequently, some expressions are developed so that they can be referenced in a
later stage of the recursion. However, if the recursion stops, they may not be
needed. As another example, an expression might be developed which is later
multiplied by zero. Determining if a particular expression will be needed later can
be very difficult at the time the expression is formulated, although it is trivial to
do after all equations are formulated.

10. Large matrices are partitioned into smaller matrices, based on the topology of the
system, before general numeric matrix solution methods are invoked.

Equations of Motion for a Multibody System

To provide an idea of the sorts of mathematical operations that must be included in
the computer algebra, a dynamics formalism is summarized. I

The multibody formalism presently used in AUTOSIM is based on the analysis
method of Kane and Levinson [9]. For a holonomic system, or a nonholonomic system in
which some speeds are constant, the following four steps are performed:

1. Position analysis. For each body in the system, except the inertial reference,
develop a direction cosine matrix relating the body to its parent. Also, introduce a
generalized coordinate for each degree of freedom of the joint connecting the
body to its parent For the entire system there are n generalized coordinates, qi
(i= 1, n).

2. Velocity analysis. For each body, introduce a generalized speed to account for
each degree of freedom. For a nonholonomic system, there are p generalized
speeds, ui, (i= 1, p), whcre p < n, and m constant speeds, ui (m = n - p, i=p, n).

For each body B, derive an expression for the derivatives of the generalized
coordinates in terms of the generalized speeds. Altogether, there are n such
kinematical equations.

Then, for each body B, formulate expressions for the following quantities:

a. n partial velocities for the mass center, B*, defined as

Vi = - , (i=l,n) (1)
aui

b. n partial angular velocities, defined as

-B aO'
ON= -, (i=l, n) (2)aui

I This summary does not cover all of the details of how expressions are introduced for a specific
system. Rules are applied, based on the topology of the system. A summary of the rules is beyond the
scope of this paper.
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c. central acceleration remainder, defined as

ag 0=1' .u(3)
i-I

d. angular acceleration remainder, defined as

i-1

3. Implicit Equations. The implicit equations of motion are written in matrix form
as:

M = f (5)

where M is the p x p mass matrix, d is a column array of the p derivatives of the
generalized speeds, and f is a column array called the generalized force array.

a. The elements of the mass matrix are defined as

Nsoi

mij = "' v °-1 (6)
B-1

where mB is the mass of body B andiB is the inertia dyadic of B.

b. The elements of the generalized force array are defined as:sT
Ndin .. ! B -B 9-B X B - B1

B-1 +t B )a(7)
Nlf..

where I -B designates the sum of all torques applied to body B about its
t-1

Nap
center of mass by force- and moment-producing components and f

f--I

designates the sum of all forces acting on the body. Forces and moments
arising from the kinematical constraints need not be included, because
they drop out when the dot-product is taken with the partial velocities.

4. Explicit equations. The p implicit equations in eq. 5 are solved to obtain values of
the accelerations in ii.

The above analysis method immediately applies several of the simplification methods
described earlier. First, it permits the introduction of "natural" state variables, including
generalized speeds that are not derivatives of the generalized coordinates (technique no.
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1). If there is reason to think that a certain set of variables is in fact optimal, the analyst is
free to use that set. (In contrast, some other multibody formalisms are built upon a pre-
defined set of state variables.)

A second potential simplification occurs because non-working forces and moments
are never introduced (technique no. 3).

To some extent, the efficient performance of matrix operations (technique no. 10) is
also supported. When intermediate variables are introduced appropriately, the symbolic
solution of the acceleration equations in step 4 results in an efficiency at least as good as
can be obtained from a carefully partitioned formulation. However, it should be noted
that a potential drawback of this approach is that the structure of the system is "lost" in
the building of a mass matrix which is later decomposed. Recently, a number of
recursive "Order-n" formulations have been published that offer greater efficiency for
systems with a "chain" topology when the length of the chain exceeds a certain number,
generally around n=6 [10, 11, 12]. For models of ground vehicles, the formulation
presented here is usually better. However, for systems with chain topologies, a recursive
order-n formulation should be considered.

Representing Symbolic Data
The methods required to manipulate symbolic expressions are derived from the

design of the computer data types that are used to represent algebraic expressions and
other entities. The AUTOSIM implementation was written in the language Common
Lisp (13], called simply "Lisp" in the remainder of the paper.

Overview of Data Objects

New data types are implemented in Lisp as structures, with slots assigned to various
entities associated with the data. In AUTOSIM, structures are used as objects to support
object-oriented programming. 1 Objects facilitate data abstraction by allowing programs
to manipulate them without knowledge of the details of their internal representation.
Further, generic operators work by obtaining procedures for manipulating objects based
on the types of the operands. For example, the generic function add works for two
arguments by looking at the types of the two arguments, and looking up that pair in a
dispatch table of installed specialized functions. The specialized function from the table
is then invoked. The specialized function can be very specific in terms of the types of
objects it understands, since it need not understand when it should be invoked or what to
do with other types of data. To modify the way a generic function operates on a
particular type of object, one or more new specialized functions are "installed" in the
system. This style of programming allows new types of objects and new operations to be
incorporated into to the system without modifying existing software.

I Extensive object-oriented versions of Lisp are readily available, but are not standardized. To ensure
portability, AUTOSIM is written completely in standard Common Lisp. The object-oriented extensions are
a part of AUTOSIM.
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- -moment
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Multibody System

eqs
outvar Numerical Simulation

declaration Program
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array vector simple-vector

- sequence ist

- symbol

Figure 1. Hierarchy of AUTOSIM and Lisp data objects.

Lisp includes over 40 types of data objects. In addition, new types are included by
the use of structurr.-s. Expressions in AUTOSIM can represent scalars, vector, or dyadics.
They are composed of two data types: numbers and expres s ions. Figure 1 shows a
hierarchy of data types used in AUTOSIM, as they relate to data types already in Lisp.
Each type of object "inherits" from the type to its immediate left in the figure. For
example, an object of type cos is also of types trig, func, and expression.
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Characteristics of the types trig, func, and expression are "inherited" by objects of
type cos, and functions that work with objects of type trig, func, and expression
also work with objects of type cos.

The data objects in the figure are shown in four groups, related to (1) computer
algebra, (2) the multibody system, (3) the numerical simulation program, and (4)
additional native Lisp objects. All native Lisp forms are shown in italics, and those used
extensively in AUTOSIM are shown in bold italics. The multibody analyses and
simplification techniques are applied by manipulating these objects.

Computer Algebra

Algebraic expressions are built from number and expression objects, whose
characteristics are listed in Table 1.

Of the expressions defined above, four are elementary types from which the other
compound types are built The elementary types are the number, the sym, the
indexed-sym, and the uv. When printed as Fortran source code, the sym designates a
variable and an indexed-sym usually designates an array element. Unit-vectors are
never written in the final Fortran output, but can be entered and read by the analyst.
(They are printed with enclosing square brackets.)

Recall that most of the quantities appearing in the dynamics equations are vectors and
dyadics. Virtually all previously developed automated multibody analysis methods
define directions ahead of time, so that vectors can be described in terms of arrays of
scalar quantities with predefined directions. This approach works fine for the rigid body
motions, because expressions can generally be formulated in terms of unit-vectors fixed
in the body with which they are associated. However, active forces and moments can
assume arbitrary orientations. Introducing arbitrary forces has not been been possible
with symbolic analysis programs in the past for this reason, limiting the levels of
automation that are possible in the modeling. This limit is averted by including unit-
vectors as a primitive entity in the computer algebra representation. Vector and dyadic
expressions can be introduced using simple mathematics notation, and then manipulated
automatically. Also, vector velocities and accelerations can be projected in any direction
(via the dot-product operation) to define scalar output variables.

Nested expressions (simplification technique no. 4) are supported in the designs of the
compound types. For example, the expressions in the list of factors of a prod can be
sums, powers, funcs, etc. There are no limits to the level of nesting allowed (other
than computer memory).

The meta-type expression defines a repertoire of qualities associated with all
expression types. For example, the units of any expression (if known) are kept in the
units slot; the name of the expression (if there is one) is kept in the name slot; the
derivative with respect to time, if known, is kept in the slot dxdt.
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_ _Table 1. Summar of AUTOSIM expression types.

Type Primary Mots Definition Examples

number number 2, 1/3,-.3333
expression rype, small-order,, meta-type for all

sort-code, d&dt, expression objects
sym-value, const-or-

var, units, name
dyad uvl, uv2 dyad ([Al]. [A2])
func function, args function that will be TIRE(FZ, SLIP)

written into numerical
_____ _______program_ _ _ _

as in arc-sine ASIN(X)

atan arc-tangent ATAN2(X, Y)
tria symbol sin or cos

cos cos COS(Q(2))
sin sin SIN(Q(2))

power base, exponent base expression raised to U(I)**2
power

prod coeffac:ors product of numerical 2.0*M*SIN(Q(1))
coefficient and list of

expressions
sum terms sum of expressions I + M'L**2

sym symbol, default, symbol for a scalar M
hide, exp parameter or variable

indexed- i indexed symbol for a Q(2)
var scalar parameter or

variable

uv symbol, body, unit-vector [Al]
dot-products,
cross-products

Expressions are classified in several ways besides their object type. The type slot tells
whether an expression is a scalar, vector, or dyadic. Powers, syms, and
inde xed-syms always have their type slot set to the value scalar. Also, all numbers
are b- definition scalar. A uv has its slot set to vector, and a dyad is set to
dyadic. The prod and sum objects can be any one of the three types, depending on the
types ,f their components.

The const-or-var slot tells whether an expression is a constant or a variable. It is
mainly used for scalar expressions. to identify expressions that can be precomputed. The
value of this slot is set for a sym or an indexed-sym when it is created. When
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compound expressions are examined, the const-or-var slot is set to c o n s t if all
expressions contained in the compound object are constants; otherwise it is set to var.

Some of the other slots are described later, in the context of the algebraic operations
used on expressions.

Muldbody System

A multibody system is composed of bodies influenced by forces and moments and
connected to each other by joints. Points are fixed locations in bodies used to define joint
attachments, force attachments, and points of interest needed to define output variables.

body - A data structure called a body is used to represent each body in the system,
together with the kinematics of one joint and a complete coordinate system fixed in the
body. Some of the slots in a body are shown in Table 2. The right-most column
indicates whether the slot is mainly associated with the body, the joint, or the coordinate
system. Massless bodies (with the mass and inertia slots set to zero) can be used to
introduce compound joints or intermediate reference frames. Also, bodies with zero
degrees of freedom can be used to add (or subtract) mass or inertia to an existing body.

By imposing a one-to-one relationship between bodies and joints, this design for
describing a body organizes the multibody system into a tree topology. In general, a tree
topology consists of abstract entities called nodes. One node is the "root node" that starts
the tree, and which has no "parent node." Every other node in the tree is defined as a
"child" of a previously defined node. An example tree is shown in Figure 2, for 8 nodes
labeled by capital letters. Parent-child relations are shown with lines, with the parent
node above the child node(s). The root node is N; nodes A and B have N as their
"parent." Thus, A and B are the "children" of N. B has three children. Nodes G, C, D,
and E all have no children, and are called "leaves" of the tree.

For a multibody system, the nodes are rigid bodies, and the connecting lines are joints
between the bodies. The body object describes the tree topology simply by including
slots for the parent and children. For example, if the tree in Figure 2 represents a
multibody system, the body labelled B would identify N in its parent slot, and the list (C
D E) in its children slot. The body N-the root node-would contain NIL in its parent
slot and the list (A B) in its children slot.

N Methods used previously to represent multibody
Asystems have involved arrays that indicate relationshipsA B

between bodies. As a minimum, a body-connection
C D E matrix is needed to indicate which bodies are connected

Gby joints [8, 14]. Other matrices are needed to indicate

Figure 2. Example Tree. parent-child relationships and applications of constraint
equations. The representation presented here is much

simpler and permits reconstruction of the entire tree starting from any body in the tree,
using only body objects. It also facilitates analyses that require that the bodies be
processed in a certain sequence. For example, lisp code is shown below to apply a
function func to each body in an order such that the parent is always processed before
the child.
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Table 2. Some of the slots in a body.
Slot Name Definition Describes...

Ss L.... symbol for usertoreference body body, joint
name descriptive name (string) written in body, joint

output friles of simulation code
uvs array of 3 unit-vectors that define 1-2-3 coordinate system

axis directions of coordinate system
parent parent body (body) joint
children list of bodies that have this body as their joint

parent (list)
cos-matrix 3x3 direction cosine matrix that relates coordinate system

unit-vectors of this body to the unit-vectors
of the parent body (array)

mass expression for mass of body body
inertia expression for the inertia dyadic of the body

body
0-point Origin of coordinate system (also, joint coordinate system,

attachment point in this body) (point) joint
cm-poin center-of-mass location (point) body

joint-point Joint attachment in parent body (point) joint
new-rot-vars rotational generalized coordinates joint

introduced for this body (list)
new-rot-speeds rotational generalized speeds introduced joint

I for this body (list)
new-trans-vars translational generalized coordinates joint

introduced for this body (list)
new-trans-speeds translational generalized speeds introduced joint

for this body (list)
abs-w absolute rotational velocity of this body coordinate system
abs-vj absolute velocity of the joint-point coordinate system

worksheet another structure used to keep various dynamics formalism
expressions used for the dynamics analysis
method used. For Kane's method, a
structure called a kane is used which
includes partial velocities, acceleration
remainders, etc.
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;;; apply function func to each body from the root down

(defun apply-func-to-tree-top-down (func body)
(funcall func body)
(dolist (b (body-children body))

(apply-func-to-tree-top-down func b)))

The order of processing occurs from parent to child because the function is first applied
to the body, and then the apply- func-to-tree-top-down function is recursively
applied to the children of the body. By reversing two operations in the above function, so
that the recursion occurs before the body is processed, the children are always processed
frut:

;;; apply function func to each body from the leaves up

(defun apply-func-to-tree-bottom-up (func body)
(dolist (b (body-children body))

(apply-func-to-tree-bottom-up func b))
(funcall func body))

When bodies are constrained in their motions due to joints, the vector expressions
developed for the body motions can be defined recursively, based on the motions of
another body and the relative motion between bodies. The above function apply-
func-to-tree-top-down is representative of the functions employed in AUTOSIM
to the dynamics formalism shown earlier.

Point - Points are used to define locations of interest in bodies, such as origins of the
coordinate systems, centers of mass, attachment points, etc. Each body contains at least
three points, as shown before in in Table 2. Additional points can be defined as
needed to identify attachment points for forces or as points of interest for output
variables. Table 3 shows how a point is defined in the system.

_ Table 3. Some of the slots in a point.
Slot Name Definition

symbol Symbolic name (symbol) for user to identify point
name descriptive name (string) of point
body body that cohtains point

coords array of 3 coordinates of point in coordinate system of body

forcem - Force-producing elements are represented by objects called forces and
moment-producing elements are represented by moments. Both types, which inherit
from the meta-type forcem, are summarized in Table 4.

As each force is introduced by the analyst, it is put into a list of all forces of the
multibody system. Similarly, all of the moments are kept in a list. The summations of
forces and moments, needed for eq. 7 in the dynamics analysis, are obtained for each
body by going through the lists of forces and moments and checking to see if the current
body is one of the two bodies contained in the two body slots of the forcem. If the
body being analyzed is the one contained in the bodyl slot, the forcem is applied with
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Table 4. Some of the slots in a force=.
Slot Name Definition

symbol Syrmbolic name for user to identify f orcem
nae descriptive name of f orcem used when writing documentation
dir expression that gives direction in which forcem acts

eap expression that gives scalar magnitude of forcem
badyl first body on which forcem acts
body2 second body from which forcem acts
point1 point on line of action of force on body 1 (force only)
point2 point on line of action of force on body 2 (force only)

positive magnitude. When the body is matched with the body2 slot, the forcem is
applied with negative magnitude.

The pointl and point2 slots in a force are used to obtain expressions for the torque
applied to a body if the force acts on that body and its line of action does not pass through
the center of mass. That is, torque is defined as

T = r x f (8)
where - is the position vector going from the center of mass to the point on the body
through which the force passes, and f is the force (the product of the expressions in the
dir and exp slots of the force object).

Numerical Simulation Program

In addition to expressions and the multibody system, the numerical simulation
program produced as output by AUTOSIM is represented with objects. Three that are the
most significant are the types eqs, outvar, and declaration.

eqs - a sequence of assignment statements is represented by an object called an eqs.
Some of the sequences that are generated and manipulated are the kinematical equations,
the dynamical equations, the trigonometric functions used in other equations, and the
output variables.

outvar - information about a variable that will be produced as output by the
simulation code is represented by the outvar object. It includes a short name, a long
name, a generic name, an expression, and units. Before the simulation code is written,
the list of outvars is processed to ensure that statements are generated to compute all
dependent variables defined by the analyst. The labeling information is written by the
simulation in such a way that output files can be handled automatically by post-
processing software for graphics and analysis.
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declaration - a list of all variables of a certain type (REAL, INTEGER, etc.) that
must be declared in a specific subroutine module of the simulation code is represented in
a declaration object.

In its present form, all output source code is written in the Fortran language.
However, the representation of the simulation program in eqs, out var, and
declaration objects is not dependent on the language. Generating simulation code in
a different language (e.g., C) is mainly a matter of telling these objects to print
themselves differently, according to the syntax of the target language.

Computer Algebra Operations
The mathematical operations needed to derive equations of motion for a multibody

system and generate source code for a numerical simulation program can be deduced
from the material presented so far. From the point of view of a software implementation,
there are four levels of mathematics operations used: (1) operations are implicitly
performed when a compound expression object is created (e.g., a power object
represents an expression raised to a power, a prod object represents the multiplication of
expressions, etc.), (2) several primitive algebra operations are defined that use
information obtained from the expression objects to create a new expression object, (3)
higher-level algebra operations are defined in terms of primitive operations, and (4) some
operations are performed on computer code that has already been generated. This last
category of operations is analogous to a human programmer "looking over" the code he
or she has written, to possibly make improvements.

Making Expression Objects

Each definition of a compound expression object implies an operation. The functions
that make objects check their arguments and create simpler objects when possible. In
fact, significant algebraic simplifications are performed in these operations. Table 5
summarizes simplifications that are performed by creator functions.

The "small". quantity simplifications all occur in the make-sum operation. The term
with the minimum order of "smallness" is used as a reference and all other terms are
compared to it. Terms whose order is more than the reference by some threshold are
dropped. Normally, the threshold for dropping small terms is 2. However, this value can
be modified if needed to perform alternate analyses that require higher order terms. For
example, AUTOSIM has been used to generate equations needed for a bifurcation
stability analysis in which all state variables are "small" and terms are kept up to the fifth
order [ 15].

Pains are taken to ensure that equivalent occurrences of a compound expression
always are created the same way. Sums nested within sums and prods within prods are
removed. E.g., the sum (A + B) + C yields (A + B + C), rather than ((A + B) + C).
Terms and factors are sorted in the make-prod and make-sum functions. E.g., the
product of B and A*C is A*B*C rather than B*A*C. A sign convention for sums is used
that results in a repeatable formulation for a given sum, regardless of how it is obtained.

562



Table 5. Simplifications performed by creator functions.
Creator Function Simplifications

make-cos argument
make-sin (e.g. sin(sinIx) -+ x)

- if argument is a number, evaluate
- if argument is small, return truncated Taylor expansion

make-atan * same simplifications as for make-as in
- if there are two arguments, divide both by GCF

[e.g., tan-l(A*X, A*Y) -+ ATAN2(X,Y)]
make-power - if base is a power, change exponent

• if base is number, evaluate
- if base includes small terms, drop if possible

make-prod * if the coefficient is 0, return 0
• if the coefficient is 1 and there is one factor, return the factor
- if any numbers are included as factors, multiply them and
include with the coefficient and remove the numbers from the list
of factors

if any factors are prods, multiply coefficients and combine
lists of factors (i.e., expand nested prods)
- if any factors can be combined into a power, make the
substitution
- else, sort factors and create prod object

make-sum .- compare "small-order" values of terms and remove those
which are negligible
- check for trig identities: sin 2x + cos2x 1 ; 1 - sin 2x -4

cos 2x;
1 - cos 2x -+ sin2 x

- if any terms are sums, remove them and append terms from
nested sums to existing list (i.e., expand nested sums)

if sym-value of sum would be negative, negate all terms and
return negative sum (prod with coefficient of-1)
, else, sort terms and create sum object

Note: simplifications marked with - mean that after the simplification
is performed, the make- operation is called again recursively
using updated arguments.

The expression (-A - B - C) would never be generated: instead, that result is always
represented as -(A + B + C).

Primirive Algebra Operations

Table 6 summarizes the primitive mathematical operations. These operations involve
one or two arguments. In the object-oriented environment, each operator has an

563



Table 6. Sumary of primitive AUTOSIM mathematics operations.
Operation Argument(s) Description

add exp1, exp2 add two expressions
const-or-var exp is expression constant or variable?

cross vexpl, vexp2 dot product between two vectors
dot vexp1, vexp2 dot product between two vectors
dxdt exp derivative of expression with respect to

time, in the inertial reference frame

gcf exp 1, exp2 find symbolic greatest common factor
mul exp1,exp2 multiply two expressions

neg .... exp negate expression

partial exp, symbol partial derivative of expression with
respect to symbol, in the inertial reference

frame

associated dispatch table which is used to find a function for dealing with a specific type
of expression (for unary functions) or combination of types (for binary operations). For
example, to add a sum and a prod, the combination (sum prod) is looked up in the
appropriate table, and the function found from the table is applied to the two arguments.
Generally, the dispatch functions are small, simple, and specific to one combination of
expression types. Hence, they are easy to modify and debug. Also, new types of
expression objects and new functions are "installed" in the system without modifying any
of the existing software.

Most of the operators in the table work as might be expected. Exceptions and special
notes are provided below.

mul - When developing expressions through multiplication, products are not expanded,
in order to keep factored forms.' Further simplifications are attempted-numbers are
combined, multiple appearances of an expression are combined into a power, multiple
powers with the same base expression are combined, etc.

gcf - The symbcic "greatest common factor" (GCF) between X and Y is determined.
(If X and Y have no factors in common, or one of them is a number, then the GCF is 1.)

add - The general method for adding two expressions X and Y is with the formula

X + Y = GCF(X, Y) * (X / (GCF(X, Y) + Y / GCF(X, Y))

After the GCF is factored out, the results are combined with make-sum. For example,
when the expressions A*X and B*X**2 are added, the result is X*(A + B*X).

I There are applications in which expanded forms are preferred. For example, stability analyses can

require coefficients of state variables and their products and powers. The AUTOSIM software does include
an option to expand expressions, although this option is not used when the objective is to automatically
generate simulation codes.
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dot - The dot product operation is valid for two vectors, a vector and a dyad, or two
dyads. The method used for applying the operation is to recursively expand expressions
into multiplications and additions of subexpressions, and dot products of uv/dyad pairs.
This approach eventually expands the original dot product to an expression involving
operations defined for scalar algebra, together with dot products between unit-vectors.
Thus, the only new primitive operation needed is the dot product between two uvs.

Recall that the uv contains a slot called dot-products. This contains a table with all
pairs of uvs whose dot product is known. Initially, each table contains three entries for
the three uvs in the body in which the uv is defined. (The values are I for the dot
product of the uv with itself and 0 for the other two uvs of the triad.) If the table
contains the answer, it is used. Otherwise, the dot product is between two uvs associated
with different bodies that have not yet been analyzed, so an analysis is performed.

Each body has a slot with a direction cosine matrix relating the uvs for that body
with the uvs of the parent The uv whose body is furthest "down" the topology tree is
transformed into an expression involving the three uvs of its parent body. The dot
product is then taken between the new expression and the uv that was "up" the tree.

This method is recursive-the dot operator is defined in terms of itself. It works,
because with each recursion, the expressions being considered are simpler, and/or the uvs
are closer in the tree. Eventually, the process is guaranteed to stop when both arguments
are uvs associated with the same body.

The results of the process are sored in the table of dot-products for one of the original
uvs, so that the "tree-climbing" and transformations (via the direction cosine matrices)
are not required the next time the dot product is needed.

The method of "tree climbing" ensures that the minimum number of direction
transformations is performed for each dot product operation. Thus, trigonometric
simplifications are not required for this operation.

Note that the dot-product operator makes use of information from both the uv object
from the computer algebra part of the system, and also the body object from the
multibody part of the system.

cross - The cross product operation is performed using the same recursive approach as
described above for the dot product. A uv crossed with a uv is obtained from the table of
values in the cross-product slot of either uv if available (with a multiplication by -I if the
table of the second uv is used). Otherwise, the cross-produc" s formulated using the
expansion:

where a is the first uv, b is the second, and bl, b2 , and b3 are the unit-vectors for the
body containing b. As was the case for the dot product, some of the information needed
to perform the operation is obtained from the body object from the body slot of the uv
object.
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dxdt - The derivative of an arbitrary expression is determined using elementary rules
of calculus to recursively expand the expression into products and sums of simpler
expressions and their derivatives. The expansion stops when a sym, indexed-sym,
number, or uv is reached. The time derivative of a sym or indexed-sym is zero if
the expression is a constant, otherwise it is obtained from the & slot.

The time derivative of a uv Mi) is defined as

-AD

U XU (10)

where o, is the absolute rotational velocity of the body containing ir, obtained from the
abs-w slot of the body found from the body slot of the uv.

There are other ways in which the time derivative might be defined. For example,
one could project the uv into the coordinate system of the fixed inertial reference and
then take derivatives of the scalar components. However, eq. 10 has two strong
advantages:

1. it leads to simple expressions, matching the conventional definition of the
derivative of a vector fixed in a rotating reference frame.

2. the cross-product operation remains valid after small terms have been dropped
and trigonometric functions have been replaced with truncated Taylor series.
Thus, simplifications from small angles and small speeds can be made as soon as
the small quantities appear in the analysis without causing errors in derivatives
taken later.

After the absolute time derivative of an expression is derived, the result is put into the
drxdt slot for further reference.

partial - Partial derivatives are obtained using the same basic process as used for
dxdt, except that results are not saved and partial derivatives of unit-vectors are zero.

Table Summary of higher level mathematics operations.

Operation Argument(s) Description

sub expl, exp- negate exp2 and add to exp2
inv exp make-power with exponent of -I

square exp multiply expression with itself
div expI, exp2 invert exp2, then multiply with exp I

dot-plane vexp1, vexp2 project vexpl onto plane normal to vexp2
mag vexp scalar magnitude of vector, I VJ -4 fv -v

dir vexp direction of vector, i.e., -Vi

angle vexpl, vexp2, angle between vexpl and vexp2, with sign
(vexp3) determined by optional vexp3
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Higher Level Operations

Table 7 lists mathematics operations that are derived from the above primitive
functions.

Most of the above operators have standard meanings and are implemented according
to their definitions. However, two are introduced to aid in describing quantities
associated with vehicles and deserve further explanation.

dot-plane - This operator describes a short procedure in which a vector is projected
onto a plane. Consider vectors I and b. The new vector is defined as a • (-c F1 + 2 E2)

where

- xb -. _ b= c2 x

angle - The angle between two vectors V1 and V2 is determined by defining three unit-
vectors and projecting one onto the other two to obtain an expression for the arctangent of
the angle. The steps are described below and illustrated in Figure 3:

1. The directions of the two vectors are obtained:

V2 -(12)l =IvLL - I=

2. A third direction is defined that is orthogonal to V:

U3= (-U X)U (13)

3. The angle, 0, is defined as

0 = tat- (is*:~ ignV3  *[ii X U2])(4

This method is valid for angles of
any size. Results are expressed using

the Fortran ATAN2 function, which
accepts two arguments and is valid for
the range of-180* < 0  < +1800. The
make-at.an function is used to create 1'2 r3-

the resulting expression, with the "I2

possible simplifications noted earlier in
Table 5. Note that an optional third
vector, v3 , is used to establish the sign IT-
of the a,,le. (le sign function in eq. "' • it2 02

14 has a value of ±1, with a sign that
matches that of its argument.) Figure 3. Angle calculation.
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Mulibody Operations

A few operations for dealing with points and bodies are useful for specifying forces,
moments, and dependent variables of interest. These are summarized in Table 8.

Table 8. Summary of AUTOSIM operations for bodies and points.
O0eration Argurnent(s) IDescription

rot body rotational velocity of body
pos point position vector from origin of inertial

reference to point

pos pointl, point2 position vector from point2 to pointi
ve 1 point velocity vector from origin of inertial

reference to point
vel pointl, point2 velocity vector going from point2 to pointl

The effect of vel can'be obtained using the pos operator together with dxdt.
However, the result usually involves derivatives of generalized coordinates, whereas the
vel function provides the result as an expression involving generalized speeds.

Accelerations are obtained by combining the dxdt function with rot and/or vel.

Operations on Program Code

The equation simplifications noted earlier (simplification techniques 8, 9, and 10) are
easy to implement after the simulation code has been generated and can be inspected.
This means that equations are not written as they are derived, but are kept in computer
memory as eqs objects.

Introduction of Intermediate Variables and Constants

The simulation code generated by AUTOSIM includes two sets of intermediate
symbols used to replace expressions. One set is for constant expressions and the other is
for variables. (Both are called intermediate variables below, since that is how they are
implemented in a Fortran program.) A function called intro-var-i f-new is used to
process expressions and introduce new variables as needed. The method is for doing this
involves a table that is maintained by the system of all expressions that have been
replaced by intermediate variables. The replacements are inciexed-sym objects, which
prints as elements of a Fortran array PC (for precomputed constants) or Z (for variables).
A simplified version of the algorithm in intro-var-if-new is as follows:

* If the expression is an indexed-sym, a sym, or a number, it is returned.

Else, if the expression is in the table of existing intermediate variables, the
corresponding indexed-sym is returned.

Else, if the expression is a constant, define a new indexed-sym, put it at the end
of the list in the eqs object for intermediate constants, put the expression and
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symbol into the table of intermediate variables, and return the new indexed-
syi.

* Else, if any constant expressions can be factored out, do so. Apply intro-var-
if-new to the constant part and the variable part, then apply intro-var-if-
new to the product.

* Else, apply intro-var-if-new to all components of the compound expression
(arguments in a func, factors in a prod, etc.), then continue.

- If the expression is a prod, process the scalar factors two at a time. If the
prod included a factor that is a uv or dyad, skip over it (intermediate
variables are only used to represent scalar expressions). Multiply the first
two scalar factors and apply intro-var-if-new to the result. Multiply
the result with the next scalar factor and apply intro-var-if-new to
that result. Proceed until all scalar factors have been processed. The
definitions of the new indexed-syms are variables, and are placed at the
end of an eqs object used for the intermediate variables.

- Else, introduce a new indexed-sym, put its definition at the end of the
appropriate eqs object, update the table, and return the new indexed-
sym.

This algorithm is recursive, and results in a number of intermediate expressions being
introduced for a single compound expression. For example, consider the expression
A*(B*X + C*Y), where A, B, and C are constants and X and Y are variables. Processing
this expression with the intro-var-i f-new function leads to the following eqs
object for intermediate constants,

PC (1) = A*B

PC (2) = A*C

and the following object for intermediate variables:

Z(1) = PC(1)*X
Z(2) = PC(2)*Y
Z(3) = Z(1) + Z(2)

Note that the number of multiplications needed to compute the full expression has
been increased from 3 in the original, to 4 with the intermediate variables. However, two
of the new multiplications involve constants, leaving only two multiplications that must
be performed at each time step during a numerical simulation run.

For the above algorithm to be effective, it is essential that expressions are uniquely
identified in the table. For example, if the product A*(l + COS(Q(1))) occurs in one
place, we don't want an equivalent expressions such as (-COS(Q(1)) -I)*A to occur in
another, because the search of the look-up table will not find the second occurrence. This
is why the make-prod and make-sum functions described earlier ensure that a given
product or sum always has the same structure.

569



The above algorithm always introduces a new intermediate variable whenever an
arithmetic operation or function evaluation occurs. For simple multibody systems, this
can sometimes degrade computational efficiency, by eliminating possible simplifications
that occur by factoring. For example, consider an expression A*U(l) which is later
added to A*U(2). If both expressions are replaced by intermediate variables, say Z(5)
and Z(15), the sum is (Z(5) + Z(15). It requires 2 multiplications, which occur when Z(5)
and Z(15) are computed. If the intermediate variables were not introduced, the result of
the addition would be A*(U(1) + U(2))-an expression with only one multiplication.

There are some reasons not to introduce a new intermediate variable if that variable
will only be used once. First, the equations become almost unreadable by humans. The
equations are usually complicated to begin with, and introducing intermediate variables
that only appear once compounds the difficulty. Second, some Fortran compilers
optimize machine instructions for large expressions, putting temporary intermedite
results directly into working registers. For machines with vector processing or other
parallel computing capabilities, other techniques are available for the compiler. If an
intermediate variable is defined in the source code, the compiler is obliged to save its
value by moving it into a RAM location. For these reasons, the method described below
for removing unused code is extended to also eliminate any intermediate variables that
would only be used once.

Removal of Unused Code

Before the equations are written as output into a Fortran program, they are inspected
for intermediate variables that are never used, or used only once. Only equations that
contribute to the computation of the accelerations or to the computation of output
variables are actually written into the simulation code that is generated by AUTOSIM.

An important part of the design of AUTOSIM is that the three symbolic elements-
the sym, the indexed-sym, and the uv-are stored in memory such that there are no
copies. for example, the object called "Q(2)" exists in only one place, even though it
appears in more than one expression.' Recall that one of the slots in the sym object is
called hide. The hide slot is used for removing unused code by keeping count of how
many times the sym actually appears. The eqs object only prints equations involving
syms whose hide slots are not set to 0. For example, if an eqs contains 100 equations,;
but only 10 involve syms with hide counts greater than 0, then only 10 equations are
printed. The other 90 equations are still in memory, but are hidden.

To count occurrences, the hide slots in all intermediate variables in an eqs are set to
0, and then equations used to compute derivatives and output variables are processed with
a function called validate-exp. The validate-exp function operates recursively
to "validate" syms. If its argument is a sym or indexed-sym, it increments the count
in the hide slot, and then applies itself recursively to the expression on the right-hand side

1 Lisp uses pointers to reference such objects when they are "contained" in other oojects. Thus, when
an elementary object is changed, all expressions "containing" tiUat element are updated since their pointers
continue to point at the changed object.
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of the equation (available from the exp slot). If the argument is a compound expression,
validate-exp applies itself to all of the parts of the expression (arguments in a
func, factors in a prod, etc.)

After the hide values have been established for all indexed-syms that appear on the
left-hand side of an equation, a second pass is made in which all intermediate variables
that are used only once (hide = 1) are expanded back into the original expressions.

Example Vehicle System

A three dimensional vehicle example will now be used to illustrate some of the above
methods. The vehicle is shown conceptually as a multibody system in Figure 4.
Although the model is relatively simple, it has been shown to predict steering responses
that ciosely match measurements from the test track [16].

CCenter of mass, rolling body

w[RB2]to [1]] poits
._y [NRB3] F

I N1 r Mz2 F! Mzl

[N3]1 -

Figure 4. Example vehicle model.

The coordinate system of the inertial reference has its origin in the plane of the road,
with axes along directions [NI1], [N2], and [N3], wh,;re the unit-vector I-N3] points

downl.

The vehicle is modelled as two rigid bodies. One is body NRB that is free to translate
and yaw in the plane of the road. The second is body RB, which rolls relative to NRB
about a roll axis tilted as shown. This model nominally has four degrees of freedom.
However, the forward speed is set constant, limiting the dynamical degrees of freedom to
three. The vehicle responds to two applied side forces from the tires (Fyl and Fy2), two

aligning moments (Mzl and Mz2), gravity, and a roll moment generated by the suspension
springs and dampers.

1 In AUTOSIM unit-vectors are written enclosed with square brackets.
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All of the ingredients of the model can be represented using the computer data objects
presented earlier. To generate the objects automatically, some Lisp macros and functions
are included in AUTOSIM to build the description of the multibody system on the
computer. These are summarized in Table 9.

Table 9. Summary of AUTOSIM commands for building a multibody system
description.

Lisp form Purpose

add-body describe one body completely, including its position in the
system topology, the kinematics of its joint, and the mass and
inertial properties of its rigid body.

add-qcravity apply gravitational force to each body with mass
add-line-force describe force-producing component (direction of force is

known)
add-moment describe moment-producing component
add-point identify point of interest on a body
add-strut describe force-producing component (end points are known)
reset initialize AUTOSIM and clear previous results

set-speed- specify that a generalized speed is a constant (and thus remove a
constant dynamical degree of freedom)

small declare syms to have a small-order of 1

The example system is described using these macros in the listing shown in Figure 5.
Note that most of the information provided in this paper is not needed to prepare the
inputs shown in the listing. The inputs needed to model the example system involve just
eight different macros with a fairly simple syntax. The entries are Lisp forms, as
described in all Lisp textbooks. The types of Lisp data used in the macros are the
symbol, string, array, number, and the F-string -a Fortran-style expression entered as
string preceded by an exclamation mark, e.g., !"-krol1*q(4) - croll*u(3)"
Advanced users can use the programming power of Lisp to define additional variables,
use DO loops. etc. However, a knowledge of Lisp is not required to use AUTOSIM.

The specific lines of input shown in the listing of Figure 5 are now described briefly.
Every multibody system begins with the inertial reference (N), which in turn contains one
point, 0, the origin. These objects are established with the form (reset), which also
initializes many of the global objects used in AUTOISIM.

The first add-body macro in Figure 5 tells several things about the new body to
AUTOSIM: (1) the new body has the inertial reference N as its "parent," (2) the symbolic
name for the new body is NRB, (3) a more descriptive name to use in documentation is
"non-rolling body," (4) NRB has two translational degrees of freedom relative to the
inertial reference, in the directions of axes I and 2 ([N1] and [N2]), (5) the center of mass
of NRB is a distance HRA above the ground, and (6) NRB has a single rotational degree
of freedom about axis 3 ([N3]).
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(reset) (add-line-force fyl
"Side force, front axle"

(small thetar ixz) !"cal*(angle([nrbl],
vel(front), [nrb3])

(add-body n nrb steer)
:name "non-rolling body" - cgl*ccoefl*q(4)"
:translate (1 2) front [nrb2] o :no-forcem t)
:cm-coords #O 0 !"-hra")
:parent-rot-axis 3) (add-line-force fy2

"Side force, rear axle"
(add-body nrb rb !"ca2*(angle([nrbl], vel(nrbO),
:name "rolling body" [nrb3]) - krs2*q(4)"
:body-rot-axes (1) nrbO [nrb2l o :no-forcem t)
:parent-rot-axis
#(!"cos(thetar)" 0 (add-moment mzl

!"sin(thetar)") "Aligning moment, front axle"
:small-angles (t) [n3]
:joint-coorda #(0 0 !"-hra") !"caml*(angle([nrbl],
:cm-coords (ce 0 !"-h") vel(front), tnrb3))
:inertia-matrix - steer)"
#2a((Ixx 0 Ixz) nrb r :no-forcem t)

(0 lyy 0)
(IXz 0 Izzr))) (add-moment mz2

"Aligning moment, rear axle"
(add-point front In3]
"the front axle point" nrb !"cam2*(angle( [nrbl] ,vel(nrbO),
#(L 0 0)) [nrb3]) - krs2*q(4))"

nrb n :no-forcem t)
(small (dot (rot nrb) '[n3])

(dot (vel nrbO) '[nrb2])) (add-moment rollm
"roll moment from suspension"

(set-speed-constant Erbl]
(dot (vel nrb0) '[nrbl]) speed) !"-Kroll*q(4) - Croll*u(3)"

rb nrb :no-forcem t)
(Aadd-gravity) I

Figure 5. Description of car model in AUTOSIM.

The second add-body macro designates NRB as the parent body and names the new
body RB. Further, it indicates that (1) the descriptive name of RB is "rolling body," (2)
there is a single rotational degree of freedom, aligned with axis 1 of the coordinate system
of RB, [RB 1], (3) the rotation axis is oriented in the direction whose coordinates (in the
frame of the parent NRB) are (COS(THETAR), 0, SIN(THETAR)) (that is, the axis is
inclined down from axis I by an angle THETAR towards axis 3), (4) the rotation
involves a small angle, (5) the origin of the coordinate system of RB is located at
coordinates (0, 0, -HRA) in the coordinate system of NRB, (6) the center of mass is
located at coordinates (CE, 0, -H) in the coordinate system of RB, and (7) the inertia

matrix for RB is 0 IYY 0
DCZ 0

The AUTOSIM design permits both variables and parameters to be "small." In this
example, the parameters THETAR and IXZ were declared to be "small" before the add-
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body macros are applied.1 Thus, when ]XZ is multiplied with a "small" variable and the
product is added to another parameter, the product is recognized as being numerically
negligible and is dropped from the sum.

The body objects created to represent these two bodies are printed in Figure 6 to
show the values associated with some of the slots.

Summary of body: NRB Summary of body: RB

parent: N parent: NRB
level: I level: 2
children: (RB) children: NIL
Name: Non-Rolling Body Name: Rolling Body
mass: NRBM mass: RBM
inertia: IZZNR*([N3].[N3]) inertia: (DCX*([RB1].[RB1])
unit-vectors: #([NRB1] [NRB2] [N3]) + DCZ*([RB3].[RB 1])
new-trans-vars: (Q(t) Q(2)) + DXZ*([R 1.[RB3])
new-trans-speeds: (U(1) U(2)) + IYY*([RB2].[RB2])
new-rot-vars: (Q(3)) + IZZR*([RB3].[RB3]))
new-rot-speeds: (U(3)) unit-vectors: #([RB1] [RB2] [RB3])
rot-dir-list: ([N3]) new-rot-vars: (Q(4))
trans-dir-list: ([Ni] CN2]) new-rot-speeds: (U(4))
joint-pos: (Point NRBJ: Body N: rot-dir-list: ([RB 1])

#(0 0 0): attachment point for the joint-pos: (Point RBJ: Body NRB:
non-rolling body) #(0 0 -HRA): attachment point for

cm-pos: (Point NRBCM: Body NRB: the rolling body)
#(0 0 -HRA): center of mass of the cm-pos: (Point RBCM: Body RB:
non-rolling body) #(CE 0 -H): center of mass of the

abs-w: U(3)*[N3] rolling body)
abs-vj: (U(1)*[NRB1I] + U(2)*[NRB2]) abs-w: (U(3)*[N3] + U(4)*[RB1])
cos matrix: #(COS(Q(3)) SIN(Q(3)) 0) abs-vj: (U(1)*[NRB I] + U(2)*[NRB2])

#(-SIN(Q(3)) COS(Q(3)) 0) cos matrix: #(1.0 0 THETAR)
#(0 0 1.0) #(-THETAR*Q(4) 1.0 Q(4))

___ #(-THETAR -Q(4) 1.0)
Figure 6. Description of body structures for example vehicle.

The macros introduced point objects, generalized coordinates, generalized speeds,
and a direction cosine matrix based on the degrees of freedom. Because the parameter
THETAR and the roll rotation angle are both "small" angles, the direction cosine matrix
of RB does not include any trigonometric functions.

Note that the matrix includes the product -THETAR*Q(4), which is of order 2. The
reason this is included (rather than the number 0) is that a small expression is not set to

I The macro operates by finding the syms with the names THETAR and IXZ (or creating them if they
don't already exist), and then setting the small-order slot of each to a value of 1.
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zero unless it added to another expression of an order that is lower by two or more. For
example, if THETAR*Q(4) (order2) is added to the number 1 (order=O), the result is 1.

The definitions of the state variables can also be printed (the add-body macro
creates a name for every symbol it introduces, and also sets the units). The summaries
printed by AUTOSIM are shown in Figure 7.

Generalized Coordinates

Q(1): Translation of NRB relative to the attachment point for the non-rolling body along
[nl. (in)

Q(2): Translation of NRB relative to the attachment point for the non-rolling body along
[n2l. (in)

Q(3): Rotation of the non-rolling body relative to the inertial reference about axis #3.
(deg)

Q(4): Rotation of the rolling body relative to the non-rolling body about axis #1. (deg)

Generalized Speeds (before set-speed-constant macro is used)

U(1): Abs. trans. speed of NRB along axis 1. (in/s)
U(2): Abs. trans. speed of NRB along axis 2. (in/s)
U(3): Abs. rotation of NRB, axis 3. (deg/s)
U (4): Rotation of RB relative to NRB, axis 1. (deg/s)

Figure 7. Printed summary of state variables.

Note that generalized speeds for translational velocity are defined that are not
derivatives of the generalized coordinates.

The macro set-speed-constant removes a dynamical degree of freedom by
changing slot values in the indexed-sym object that represents a generalized speed,
and then renumbering the remaining speeds. The renumbering is performed b" ;nanging
the i slot in all indexed-sym objects that represent generalized speeds. In th"' example,
the forward vehicle speed, initially printed as "U(1)" is declared to be a constant called
SPEED. The macro changes the const-or-var slot to const, the dxdt slot to 0, the exp
slot to SPEED, and the i slot to 0.

Printing of expressions is performed recursively, with every type of object having an
associated print function. If an object is changed such that it prints differently, all
expressions containing that object will also print with the "updated" form. The print-
function associated with indexed-sym objects prints the expression in the exp slot if
the i value is 0. Thus, all expressions that contain the generalized speed originally named
U(1) will now print that object as "SPEED." The generalized speeds have been
renumbered and appear as shown in Figure 8.

Because AUTOSIM will freely rename objects, the analyst must be careful when
referring to state variables by name. For example, the speed that was originally called
U(2) is now U(1). The possibility of erroneously naming the wrong variable can be
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Generalized Speeds (After set-speed-constant macro is used)

SPEED: Abs. trans. speed of NRB along axis 1. (mi/s)
U(1): Abs. trans. speed of NRB along axis 2. (mIs)
U(2): Abs. rotation of NRB, axis 3. (deg/s)
U(3): Rotation of RB relative to NRB, axis 1. (deg/s)

Figure & Printed summary of generalized speeds after speed is set constant.

eliminated by referring to speeds generically as scalar projections (dot products) of
velocities. The small and set-speed-constant macros near the bottom of the
left column in Figure 5 illustrate this. The small macro is applied to two expressions:
the first is the rotational velocity of NRB dotted with the unit-vector [N3] (i.e., the yaw
rate), and the second is the velocity of the origin of NRB dotted with the unit-vector
[NRB2] (i.e., the lateral component of the velocity). The set-speed-constant
macro is applied to the speed defined as the velocity of the origin of NRB dotted with the
unit-vector [NRB1] (i.e., the the forward component of the velocity). These expressions
are always valid and do not require knowledge of how the speeds are currently named.
For example, if we were to add more degrees of freedom to the model, such that the
generalized speeds would be numbered differently, the generic descriptions in the listing
of Figure 5 would still be correct.

The macro add-point is used to define a point called front at which the front tire
force is applied. The macros add-line-force and add-moment are used to define
tire forces and moments.

The arguments to the add-line-force macro are: (1) a symbol for the force
object (to go in the symbol slot), (2) a name for the force (to go in the name slot), (3) an
expression for the magnitude of the force (to go in the exp slot), (4) a point upon which
the force acts (to go in the point] slot), (5) a direction associated with the force (to go in
the dir slot), and (5) a point associated with a body from which the force is reacted (the
point itself is not saved, however the body associated with the point goes into the
body2 slot). The bodyl slot is assigned the body associated with the point in point], and
the point2 slot is NIL.

The most complicated of the above arguments is the one for the force magnitude.
The expression involves the slip angle for a point, defined as the angle between the
forward direction of the point, and the velocity vector of the point. The slip angle angle
is defined for the front tires with the F-string

!"angle([nrbl], vel(front), [nrb3]) - steer"

The F-string is parsed (interpreted) by AUTOSIM as: derive an expression for the angle
between the forward direction [n rb 1 ] and the velocity of the point named front,
vel (front), with a sign defined by a positive angle corresponding to a clockwise
sweep when viewed from an observer looking in the direction [nrb3] , and then subtract
stper from that angle. The expression obtained by AUTOSIM is

(STEER -(U(.) + L*U(2))/SPEED)
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Once the system is described to AUTOSIM, the equations of motion are derived by a
function named dynamics, and the simulation code is generated with a function
write-sim. Sections of Fortran code generated by AUTOSIM are shown in some
following figures. Before the code removal, the equations of motion include 83
intermediate variables. A portion of the code is shown in Figure 9 as it appears before
unused intermediate variables are removed.

C Equations of Motion C
C --- C Dynamical equations
C C

C(3) - COS(Q(3)) Z(5) - Q(4)*U(2)
S(3) - SIN(Q(3)) Z(6) - THETAR*U(2)

C Z(7) - (U(3) + Z(6))
C Kinematical equations Z(8) - U(3)*Z(5)
C Z(9) - U(3)*U(2)

Z(1) - SPEED*C(3) Z(10) - CE*Q(4)
Z(2) - U(1)*S(3) ...
QP(1) - (Z(1) -Z(2)) Z(80) - PC(26)*Z(76)
Z(3) - U(1)*C(3) Z(81) - PC(39)*Z(79)
Z(4) - SPEED*S(3) Z(82) - (-Z(70) + Z(80) + Z(81))
QP(2) - (Z(3) + Z(4)) Z(83) - PC(56)*Z(82)
QP(3) - U(2) UP(l) - -Z(76)
QP(4) - U(3) UP(2) - -Z(79)

UP(3) - Z(83)

Figure 9. Portions of simulation code before code removal.

After unused code is removed and intermediate variables that appear but once are
eliminated, only five intermediate variables are retained. The listing of the Fortran
assignment statements actually written into the simulation code are shown in Figure 10.
The indexed-sym objects that are printed as the Fortran arrays PC and Z are
renumbered, so the specific array elements in the listing of Figure 10 are not the same as
those in Figure 9.

The listing in Figure 10 requires 24 multiply/divides, 18 add/subtracts, and 2 function
evaluations to compute the derivatives. 37 constant expressions were identified and are
precomputed. The code to compute them is listed in Figure 11.

Details of this analysis and the computational efficiency of AUTOSIM havMe been
presented elsewhere, and the simplification techniques were shown to influence the
computational efficiency by almost a factor of 50: Using only the simplification
techniques numbered 1,2,3, and 10, a total of 878 multiplies, divides, and function
evaluations are needed to compute the derivatives at each time step. The best efficiency
occurred using all techniques except no. 7, in which case the number of multiplies,
divides, and function evaluations was reduced to 19 [17].

Summary
Automated modeling of multibody systems has usually offered convenience over the

alternative of formulating equations of motion by hand and writing a specialized
simulation code to solve them. However, there have been trade-offs. Numerical
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C Equations of Motion
C
C

C(3) - COS(Q(3))
S(3) - SIN(Q(3))

C
C Kinematical equations
C

QP(1) - (SPEED*C(3) -U(1)*S(3))
QP(2) -CU(l)*C(3) + SPEED*S (3))
QP (3) - U (2)
QP(4) - U(3)

C
C Dynamical equations

Z (1) - PC(3 4) *U(2)
Z(2) - (PC(16)*Q(4) + CROLL*U(3) + H*Z(1))
Z(3) - (PC(14) + PC(38)*Q(4) -PC(13)*U(l) -PC(12)*U(2) +

& PC(1)*Z(l) -PC(19)*Z(2))
Z(4) - PC(31)*(PC(2) -PC(8)*Q(4) -PC(9)*U(I) + PC(35)*U(2) + Z(1)

& -PC(20)*Z(2) -PC(25)*Z(3))
Z (5) - PC (32) *(Z (3) -PC (27) *Z (4))
TJP(l) - -Z(4)
UP(2) - -Z(5)
tYP(3) - (-PC 33)*Z2 + PC(39)*Z4) + PC(40)*Z(5))

Figure 10. Listing of code generated to compute derivatives of state variables for

example vehicle model.

PC(l) - (CE + H*THETAR) pC(19) - PC(17)/PC(18)PC(20)
PC(2) - CA1*STEER PC(7)/PC(18)
PC(3) - L*CAl/SPEED PC(21) - PC(17)*PC(19)
PC(4) - RBM*GEES PC(22) - (PC(15) -PC(21))
PC(5) - NRBM*SPEED PC(23) - PC(17)*PC(20)
PC(6) - RBM*(CE + H*THETAR) PC(24) - (PC(6) -PC(23))
PC(7 - H*RBM PC(25) - PC(24)/PC(22)
PC(8) = (-CA2*KRS2 + CG1*CCOEF1) PC(26) = PC (7) *PC (19)
PC(9) - (CAl + CA2)/'SPEED PC(27) - (PC (6) -PC (2 6)
PC(10) - (RBM + NRBM) PC(28) = PC (7) *PC (2 0)
PC(11) - (CAM2*KRS2 - PC(29) - PC (2 5)*PC(2 7)

L*CG1*CCOEFI) PC(30) - (PC(l0) -PC(28) -PC(29))
PC(12) - L*(CAM1 + L*CA1)/SPEED PC(31) = 1.OIPC(30)
PC (13) - (CAMI + CAM2 + PC(32) - 1.0/PC(22)

L*CAl)/SPEED PC(33) - 1.0/PC(18)
PC(14) - STEER*(CAM1 + L*CA1) PC(34) - RBM*SPEED
PC(15) - (IZZR + IZZNR + RBM*(CE PC(35) - (NRBM*SPEED -L*CAl/SPEED)

+ H*THETAR)**2) PC(36) - H*RBM/PC(18)
PC(16) - (KROLL -H*RBM*GEES) PC(37) - (IXZ + IXX*THETAR +
PC(17) - (IXZ + IXX*THETAR + H*RBM*(CE +

H*RBM*(CE + H*TI{ETAR)) H*THETA) ) /PC (18)
PC(18) - (IXX + RBM*H**2) ________________

Figure 11. Listing of code generated to precompute constants for example
vehicle model.
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generalized simulation codes have been much less efficient, because many of the
simplification methods routinely used by a human analyst are so specific to the system
being analyzed that they cannot be incorporated into a generalized formulation. Also,
some types of subcomponent models are difficult or impossible to include in the system
description. Symbolic multibody programs have offered better efficiency then the
generalized numerical codes, but they have not been capable of providing "complete"
solutions. The user must still develop expressions for many active forces and moments
by hand, and incorporate them correctly into the portion of the code generated
automatically.

Methods have been presented for representing all of the components of a simulated
multibody system in symbolic form on the computer. Data objects are defined for
representing (1) symbolic algebraic expressions for vector/dyadic analyses, (2) physical
components in a multibody system, and (3) program structures needed in a simulation
code. A language called AUTOSIM has been written in Lisp to implement these
methods. When all of these objects are available for computer manipulation, the same
modeling and programming strategies employed by humans can be mimicked in
computer software. An example vehicle handling model is used to illustrate how forces
and moments basic to vehicle simulations are described in this language, and how the
symbolic computation is combined with Kane's dynamics analysis formalism to generate
a working simulation code for that model.

With these methods, an automated modeling capability now exists that combines the
convenience of a "complete" solution (associated with a generalized simulation code)
with the efficiency and specialization possible when simulation codes are developed by
hand.
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EFFECT OF THERMAL SOFTENING ON THE RESPONSE

OF SHEARING MOTIONS

Athanasios E. Tzavaras
Department of Mathematics

University of Wisconsin-Madison
Madison, WI 53706

ABTRACT. Shear instabilities in the form of shear bands are often observed when
metals are deformed at high strain rates. According to one theory, shear band formation is
attributed to a destabilizing feedback mechanism induced by thermal softening properties
of materials. In this note we review some mathematical results on simple model problems,
with the goal of assessing the effect of various contributing factors (like thermal softening,
strain hardening and strain-rate sensitivity) on the response of shear motions.

1. INTRODUCTION.
One of the most striking manifestations of instability in solid mechanics is the localiza-

tion of plastic deformation and the consequent formation of shear bands, observed during
torsional tests, at high strain rates, on steels (e.g. [1], [6], [9], [101, [17]). According to
one popular theory formation of shear bands is attributed to a thermoplastic instability
mechanism that is induced by thermal softening properties of materials (i.e., the property
that plastic flow is enhanced with temperature increase). The argument goes as follows:
Non-uniform straining induces non-uniform heating, which, in turn, enhances the plastic
flow at hotter regions and reduces it a colder regions. This creates a destabilizing feedback
mechanism which tends to create localization of plastic deformation and formation of shear
bands. To the above destabilizing mechanism there is opposition from internal dissipation
and, possibly, from strain hardening properties of the material. Whether localization will
occur depends on the relative weight of thermal softening, strain hardening and strain-
rate sensitivity. The intent of this work is to elucidate the interplay of thermal softening
and strain hardening in shearing deformations of strain-rate dependent materials and to
provide quantitative criteria for stability as well as instability.

As a test problem we consider the adiabatic, plastic shearing of an infinite plate of unit
thickness. The plate is subjected to either steady shearing or prescribed tractions at the
boundaries. In a Cartesian coordinate system the infinite plate occupies the region between
the planes z = 0 and x = 1. The thermomechanical process is described by the velocity
field in the shearing direction v(x, t), the shear strain -y(x, t), the shear stress a(x, t), the
temperature O(x, t) and the heat flux q(x, t). We assume that the referential density and
the specific heat are constants, taken equal to one and that the elastic effects are negligible.
Then the balance laws of momentum, energy and the kinematic compatibility relation read

-" = T (1.1)

= q , 1.2 )
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7t =V (1.3)

The above equations are supplemented with constitutive laws for the heat flux,

q = 0, (1.4)

corresponding to the assumptiton that the process is adiabatic, and for the stress,

0, = f(0, 7, Yt). (1.5)

The constitutive assumption (1.5) is appropriate for a solid in the plastic region exhibiting
thermal softening (fq(8,7, yt) < 0), strain hardening (fy(0,7,-e) > 0) and strain rate
sensitivity (fm,(O,7, -yt) > 0). At the present time there is not sufficient theoretical or
experimental evidence to indicate precisely the form of the function f(8, 7, jt). Several
choices have been used in the literature. An example is the empirical power law (e.g. [6])

a.= 9 ' ' , v<0,m>0,n>0. (1.6)

Several studies of (1.1) - (1.5) under various types of loading have appeared recently
in the mathematical literature [2-41, [81, [13-151. They mainly deal with special instances
of the constitutive law (1.6). In this note we present a survey of these results with two
objectives:
(a) To lay out the stabilizing or destabilizing influence of the various factors associated

with the problem (like thermal softening, strain hardening and strain-rate sensitivity)
by studying completely the special case of the power law. This is done in Section 2.

(b) To give some preliminary answers to the question: "How to define mathematically a
shear band?" This question is undertaken in Section 3.

2. THE POWER LAW
We consider the system of partial differential equations

t= (VmVnl)(2.1)

= 8 f 'MI,, jl+1 (2.2)

7t = VZ (2.3)

a = 8m7"1,1-y,, v < 0, n > 0, mnR, (2.4)

where 0 <x : 1, t > 0, together with boundary conditions

v(O,t) = 0, v(1 -i (BCV).

or
a(O, t) = 0, a(1,t) = 1 (BCS)

and initial conditions

v(x.O) = vo(X), 8(xO) = 0o(X), Y(X,0) = yo(X), 0 < X < 1. (2.5)
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The system (2.1) - (2.3) consists of the degenerate parabolic equation (2.1) in v, cou-
pled through the diffusion coefficient 8'7m with the hyperbolic equations (2.2) and (2.3).
Equations (2.1) - (2.3) are based on the power law (2.4), which is appropriate for a material
exhibiting thermal softening (v < 0), strain hardening (m > 0) or strain softening (m < 0),
and strain rate sensitivity. The shearing is caused by steady shearing at the boundary or
by prescribed tractions at the boundaries in case (BCV) or (BCS) hold, respectively.

The relevant question is to study the behavior of solutions of the equations (2.1) -
(2.3) together with (BCV) (or (BCS)) and (2.5) for different values of the parameters
v, m and n. From the point of view of analysis, the key question is whether the diffusion
coefficient in equation (2.1) tends to zero relatively slowly and in an "orderly" fashion, or
whether nonuniformities develop and the material exhibits unstable response. A goal of
the analysis is to provide quantitative criteria for stability and instability in terms of the
parameters v, m and n and in the case of instability to determine whether shear bands
form.

The system (2.1) - (2.3) is invariant under a group of scaling transformations (cf. [121).
If {v(z,t), O(x,t), -y(x,t)} is a solution of (2.1) - (2.3) on R x (0, oo), then the rescaled
functions {v(\)(x, t), 0(\)(, t), y(\)(x, t)} defined by

) = Atv(AxA t) (2.6)

9(\)(xt) = A I(A, A t) (2.7)

-y(\)(xt) = A I y(Ax, A t) (2.8)

where A > 0 and 6, a are any constants with

2v +m(a +6 + 1) +n(a + 6) + a- 6 + 1 = 0 (2.9)

is again a solution. It is shown in [121 that the scaling invariance induces self-similar
solutions which blow up when v + m + n < 0. Although these self-similar solutions blow
up at the boundary, they indicate the existence of a destabilizing mechanism induced by
the variable diffusion coefficient in (2.1).

In what follows we describe some recent results towards studying the asymptotic
behavior of (2.1) - (2.5).

(a) Velocity Boundary Conditions (BCV)
The system of equations (2.1) - (2.3) together with boundary conditions (BCV) admits

the class of solutions
F(x, t) = X ,2.10)

zt(x, t) = t + r0 (2.11)
1 - V r0). +e( (.t!={e1-Y + m-[(t + ro)m  - rm+, -  (2.12)

where 1 0 and 0o are positive constants. These solutions represent uniform sheazing. The
relevant question is whether as t increases v,(x, t), O(x, t) and -Y(x, ) develop substantial
nonuniformities or else, they approach the uniform shearing solutious as t -+ nc.
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This question remains open in the general case. However, some answers have been
given in the special cases m = 0 and v = 0; in each of these, one of the equations decouples
from the rest. Specifically, it is known that if (i) v < 0, v + n < 0, m = 0, or if (ii)
m < 0, m + n > 0, v = 0, the uniform the uniform shearing solutions are asymptotically
stable ([8], (131, [14], (161).

(b) Strea. boundary conditions (BCS)
The main difficulty in the general case (i.e. both v and m nonzero) is that the diffusion

coefficient 0zf in the parabolic equation (2.1), governing the asymptotic distribution of
v., does not have an a-priori trend of growth or decay, as was the situation in the special
cases rm = 0 or v = 0. However, this difficulty can be circumvented in the case of stress
boundary conditions.

For technical simplicity, we restrict attention to the case n = 1. System (2.1) - (2.3)
is equivalent (cf. [15]) to the system of reaction diffusion equations:

+vtO 0"2 (v7")'
Olt= azz + ( + M) (2.13)

-2

, = -(2.14)

= (2.15)

with boundary conditions (BCS) and initial conditions

a(x,'0)=O0 (x) 0, 8(x'0)= 9O(x) >0, Y(X,0) = 0 (x) >0. (2.16)

For these initial conditions, it turns out that or(x, t) > 0, O(x, t) > 80(x) > 0, Y(x, t) >
7/0 (x) > 0, 0 :< x < 1, t > 0, and the above initial-boundary value problem is well posed
locally in time (in Schauder spaces).

Moreover, viewing (2.13) as a parabolic equation in a, with coefficients governed
by (2.14), (2.15), one can use comparison principles for (2.13) and obtain a-priori bounds
for a(x, t) provided v+m < 0. These estimates open the way to showing that the parameter
space can be separated into three distinct regions, namely, V + m < -1, -1 <v + m < -12and -- < v + m < 0 across which the behavior of solutions changes drastically (cf. [15]).

1) In. the region v + m < -1 smooth solutions break down in finite time T*, for any initial
data. As t --+ T*, supo<< 1,y(x,t), sup 0 <.f<i v (x,t) and supo<r<i 0(z, t) (the latter in
case m > - 1) tend to c, in such a way that a -- 0rmv, remains bounded.
2) In the region -1 < v + m < 0 smooth solutions exist globally in time for any initial
data.
3) If in addition -I < v + m < 0, solutions stabilize as t --1 o and asymptotically they
behave as follows:

a(x, t) = x + O(t-+-, ) (2.17

O(z, t) = xyI(X, t) + O(t- VMT) .

V(x t) = t + O(t.+"+) (2.19)
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4) In the special case m = 0, in the in-between region -1 < V < -. t, (3.17) - (3.19)
are in general no longer satisfied. More precisely, given any e > 0, there are initial data
o0(x), Go(x) and 7o() such that lao(x) - xI < e, 0 < x < 1, but a(x, t) does not converge
to z as t --+ oo.

Finally, for m = 0, v < -1 there are solutions that blow up only at the boundary
x = 1 and look like shear bands. Currently, the above results are being extended to cover
the general case n arbitrary [16].

(c) Other boundary. conditionj
Charalambakis [2], [3] and Charalambaskis and Houstis [41 consider (2.1) - (2.4), in the

special case z = 0 or m = 0 in situations when the shearing is caused by other boundary
conditions or by body forces; they establish asymptotic stability results in these cases,
under restrictions on the range where the parameters vary.

3. SHEAR BANDS
In this Section we discuss the following question: "How to approach shear bands

from an analysis viewpoint?" Traditionally, the formation of shear bands is associated
with some type of development of nonuniformities in the field variables of the problem
(e.g. [6], [9], [17]). It is however debatable whether a "slowly" evolving nonuniformity
should be termed as a shear band. Thus we think that the aforementioned question has
also interesting practical implications.

As a point of reference for this discussion we will use the simple model

Vt = (kt(9)v)- (3.1)

e, = JA(9)Vz (3.2)

with boundary conditions (B CV) or (BCS) and initial conditions

9(X,0) = 90o(X), v(X,0) = vo(X), 0 < X < 1 (3.3)

with 0
0(x) > 0, vo.(x) > 0, 0 < x < 1. Recall that

a"= (O)v (3.4)

with I(0) > 0, jI'(9) < 0.
For this system in the case of stress boundary conditions (BCS), it turns out [151 that

there is a unique classical solution defined on a maximal interval of existence [0, 11 x [0, T*).
Moreover, if T* < 0o

lim sup 9(X, t) = 0c (3.5)
tTT* o<r<l

and
limsup sup v (,t) = 0o (3.6)

tTT* O<z<1

In case f" ( = oo then T* = +o, while, in case f7° IA( )dl < _c then T' < +c.
In the special case

= 0 (3.7)
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the parameter space v < 0 is decomposed into three regions: (a) v < -I a region of
blowup, (b) -1 < v < -- a region of global existence but where nonuniformities of the
initial data persist and (c) - < v <5 0 a region where dissipation is predominant and2
leads to stable response (cf. Section 2).

It can be seen by the relevant analysis [15] that the region v < -1 is clearly associ-
ated with development of shear bands; also the region -1 < v < -L is associated with
nonuniform response.

Further than the above type of response, there is a different more subtle type of
response which may be associated with localization and formation of shear bands. This
possibility was pointed out to the author by Dr. T. Wright. Namely, it is conceivable
that large time results describe the predominance of dissipation as t --+ oo; but, maybe at
intermediate times large structures develop and then they get washed out because of the
dissipation. This is another possible scenario that needs to be investigated.

To pursue the subtleties of this question one step further, consider the system (3.1) -
(3.4) with velocity boundary conditions (BCV) in the special case p(O) = 0', v < 0. In
this case the uniform shearing solutions ('9(x), 1((t)) are

v(x) = x, e(t) = [61"+ (1 - v)t]

corresponding to initial data (vo(x), o(x)) = (x, E9o). It is shown in [8] that if [v(x,t),
O(x,t)] is any solution of (3.1) - (3.4) and (BCV) then

V+1

V(Xt) = 1 + O(t--- V) (3.8)

11
-"(xt) = t + O(t'--) (3.9)

as t -- oo. Moreover, if (vo(x), Oo(z)) is a small perturbation of (x, Go), for some eo > 0,
one obtains in [161 that

19(x, t) - 8(t)l < 6(l + t)7 -- 7 (3.10)

where 6 is of the order of magnitude of the initial perturbation. In other words the distance
of the solution O(x, t) from the uniform shearing solution 19(t) is controlled by the rate of
growth of 8(t) and the initial perturbation. Nevertheless, it is still possible that this
difference grows but at a slower rate. The relevant question here is when do we call a
time dependent solution asymptotically stable, if the perturbation grows at a slower rate
than the basic solution or if the perturbation decays. Both answers are legitimate as far
as mathematical definitions are concerned but they have different implications on when
to call a process stable and, for this particular problem, on what to define as nonuniform
response and shear band. Further analysis, as well as numerical experimentation on simple
models, are needed in order to answer this question.
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ELASTIC-PLASTIC ANALYSIS OF A THICK-WALLED COMPOSITE TUBE

SUBJECTED TO INTERNAL PRESSURE

Peter C. T. Chen
U.S. Army Armament Research, Development, and Engineering Center

Close Combat Armaments Center
Benet Laboratories

Watervliet, NY 12189-4050

ABSTRACT. This paper presents an elastic-plastic analysis of a thick-
walled composite tube subjected to internal pressure. The composite tube is
constructed of a steel liner and a graphite-bismaleimide outer shell.
Analytical expressions for stresses, strains, and displacements are derived for
all cases where the structure is subjected to internal pressure. The loading
ranges include elastic, elastic-plastic, and fully-plastic up to failure.
Numerical results for the hoop strains in several composite tubes are presented.

INTRODUCTION. Organic composites have become familiar structural com-
ponents in many applications that require high stiffness and low weight. A
current problem in Army cannon design is to replace a portion of the steel wall
thickness with an organic composite. The steel liner maintains the tube projec-
tile interface and shields the composite from the extremely hot gases. The
steel also has elastic properties in the radial direction that are better than
the composites for transferring loads. The theoretical and experimental results
for an organic composite-jacketed steel tube subjected to internal pressure in
the elastic range were reported in a recent paper Cl]. This paper presents an
elastic-plastic analysis of the composite tube problem. The composite tube is
constructed of a steel liner and a graphite-bismaleimide outer shell.
Analytical expressions for stresses, strains, and displacements are derived for
loading within and beyond the elastic range up to failure.

ELASTIC RANGE. Figure 1 shows a schematic of the composite tube problem.
The composite tube consists of an inner steel "liner" and an outer composite
"jacket." The steel liner of inside radius a and outer radius b is wrapped in
the circumferential direction with a graphite-bismaleimide organic composite of
outside radius c. The elastic material constants for the composite and the
steel are given in Table 1.

TABLE 1. ELASTIC CONSTANTS OF COMPOSITE JACKET AND STEEL LINER

Elastic Constants for :M6/Bismaleimide, 55% F.V.R.

Er = 1.126 Mpsi Ure = 0.01524 Ver = 0.3155
Ee = 23.31 Mpsi Vgz = 0.3155 VzO = 0.01524
Ez = 1.126 Mpsi Uzr = 0.3991 Vrz = 0.3911

Elastic Constants for Steel

E = 30.0 Mpsi v = 0.3
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Ub (c/b)2k + 1
= q[ka22 (c/b) 2 k--- a 12 ] (11)

Uc 2qkQ 2 2 (c/b)k-I
= (cb)2k - (12)

ELASTIC-PLASTIC RANGE. When the internal pressure p is large enough, part
of the steel liner will become plastic. Using Tresca's yield criterion, the
associated flow rule, and assuming linear strain-hardening, the elastic-plastic
solution based on Bland can be used [2,3]. Let p be the elastic-plastic inter-
face. The solution can be written in the elastic portion (p 4 r 4 b) as

E u + p 2 - (13)__- = --- .- + l U 2 z 1- (13
ao r 2 r 2 b2  ao

=ro _ + p2 (14)

r2  b 2  
O (

-8  (15)

az/ 0 = u p2/b2 - 2v q/aO  (16)

and in the plastic portion (a 4 r 4 p)

E- Y = (1-v-20) + (I-V2) 2.. (17)aO r aorz

arlao = T 1 2 -2-) + I (18)

,/a0  2 2 b2 r ao  (19)

zl = V P2/b2 - 2v(l-qA)in 2v qla o  (20)

= (p2/r2-l) , -
=  (-r (21)

r+
m 14 (I-v2)

T7 E m Et qal& P) (2--3 ,O 1- = ao (1 qn 
p  (22 )

1/ a -r E

where ao is the initial tensile yield stress and Et is the tangent modulus in
the plastic range of the stress-strain curve.

Using Eqs. (11) and (13) and the requirement of displacement continuity at
the interface, i.e., ub_ (liner) = ub (jacket), we obtain the expression for
the interface pressure q as
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g - (l-Oz)p 2 ib2  (23)

(c/b)2k + iS(1l')(1-2U) + E[cz2 2k (c/b)2k - I 12

Given any value of p in a 4 p 4 b, we can now determine q, u, and all the
stresses and strains in the tube. In particular, the expressions for the inter-
nal pressure the displacements at the bore and the interface are

2. = g.. +q1( e2 +,.(-~)ne~ r (2--1)(4
aa o  2 b3) + a 2 a (24)

E Ua - (1-u-2 2 ) 2- + (1-uz)pz/a2  (25)
ao a aO

E Ub
- b = (1-Vz) 2 - (1-u-2v;2) 9- (26)
%o bi b2

By letting p = a and b, we can determine the lower limits p*, q*, ua*, Ub*,
uc*, and the upper limits p**, q**, Ua**, ub**, Uc**, respectively.

FULLY-PLASTIC RANGE. When the internal pressure p is further increased,
i.e., p > p**, the steel liner will become fully-plastic. The composite jacket
remains elastic as long as the failure pressure is not reached. In this sec-
tion, a fully-plastic solution is derived here.

Subject to aq > az ) ar, Tresca's criterion states that yielding occurs
when

aq - ar = a (27)

where a is the yield stress. For a linear strain-hardening material,

a = ao(1+1c p ) (28)

where o, r?, CP, are the initial yield stress, hardening parameter, and equiva-
lent plastic- strain, respectively. The associated flow rule states that, sub-
ject to a0 > az > ar,

de6
p = -dCrP ) 0 and dz P = 0 (29)

de p is an increment of plastic strain and is defined by dczP = dez - d e

Since dcz p = 0, dez = deze, and therefore

IZ= CZe = (az-var- ae)lE (30)

In the plane-strain case (cz = 0) and using the equation of equilibrium,

a@ = ar + -a-' and ar' = dar-/dr (31)
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we have

z = 2Jpr + vra r ' 32)

Since the dilatation is purely elastic

u, + u/r + ez = E-
1 (1-2v)(ar+Oag+z) (33)

Substituting from Eqs. (31) and (32)

u' + u/r = E-1(1-v)(l+v)(2ar+rar') (34)

On integration,

ru = E-1(1-2v)(l+v)rzar + 0 bz  (35)

where

= Ub/b + (1-2v)(+v)E-'q (36)

Using Hooke's law and Eqs. (27), (28), (31), and (32), we obtain

Ee9
e = (1-2v)(l+v)ar + (1-v2)ao(l+n p ) (37)

Substituting from Eq. (35) for Eq and from Eq. (37) for qe

e= Ce - ee = 0 ba/rz - E-1(1-v2)ao(+p) (38)

By Eq. (29) and the definition of equivalent plastic strain,

P= fdP = f {(dcgP)2 + (dcrP)P}O = _ pE fd / (39)

Combining Eqs. (38) and (39) leads to

CP= _[ ba/r - (1-0a)Oo/E]/ l + - (1.z)nao/E] (40)

Substituting Eqs. (27) and (28) into Eq. (31) and integrating, we have

r

or = -p + ao In(r/a) + ao q J Pr.- dr (41)
a

Now using Eq. (40), an explicit expression for the radial stress is obtained

ar = -p + ao(1-na)In(-) + 2 (1-A') - - ]EP (42)
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Using Eqs. (11) and (36) and the requirement of displacement continuity at the
interface, i.e., ub_ (liner) = ub+ (jacket), we get

= [Ea 2 2k (c/b)2k + 1 - EL12 + (1-2v)(1+u)]q/E (43)
(c/b)2k - 1

Evaluating ar at the interface from Eq. (42) and using Eq. (43), we obtain the
relation between p and q

p = ao(1-qA)n b + q{1 + qg(b - 1)[Ak (c/b)2k + 1 + B + 1]} (44)
a 2 (c/b)2k - 1

It is interesting to point out that p is a linear function of q. Similarly,
when evaluating u at the bore from Eq. (35), we obtain

ua/a = -(1-2vM)(1+)P/E + 0 ba/az (45)

which can also be expressed as a linear function of q with the aid of Eqs. (43)
and (44). Since the relation between q and ub is linear from Eq. (11), p and
ua, given by Eqs. (44) and (45), respectively, can be expressed as linear func-
tions of ub.

NUMERICAL RESULTS. Given any value of internal pressure, we can obtain
numerical results for the stresses and strains in the radial and tangential
directions and also for the displacement at any radial position in a composite
tube. However, only those values at the bore, interface, and outside surface
have been calculated. The organic composite material is considered to be
elastic until brittle failure occurs at a maximum strain of 1.3 percent. The
steel is assumed to be elastic-plastic, linear strain-hardening with ao = 120
Ksi, Et = 0.04 E, and au (ultimate stress) = 140 Ksi.

The relations between bore hoop strain and internal pressure are presented
in Figures 2 and 3. Figure 2 shows the relations for four tubes of wall ratio
1.321 and Figure 3 for three tubes of wall ratio 1.546. The percentage of com-
posite in each tube is defined by (c-b)/(c-a) x 100 percent. The relation
between hoop strain and internal pressure is nonlinear in the elastic-plastic
range and the two limits are indicated in the figures. The nonlinear range
becomes smaller as the percentage of composite increases. For a given strain in
the elastic range, the steel tube can resist larger pressure than the composite
tube. However, for a large strain in the fully-plastic range, the composite
tube can support larger pressure than the steel tube. This advantage in con-
taining higher pressure seems very attractive for using composite tubes. It
is also interesting to note that the nonlinear elastic-plastic range becomes
larger as the wall ratio increases as shown in these two figures.

The numerical results for the hoop strains at the bore, interface, and out-
side surface of three composite tubes are shown in Figures 4, 5, and 6 as func-
tions of internal pressure. The actual specimens were constructed £13 using
steel liners with two thicknesses and the appropriate thickness of the composite
circumferentially wound on the liner. The geometric dimensions (a,b,c) for the
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three composite tubes are (0.9, 1.0, 1.189), (0.9, 1.07, 1,189), (0.9, 1.07,
1.391). Figures 4, 5, and 6 show the numerical results for these tubes, respec-
tively. The complete (including elastic, elastic-plastic, and fully-plastic)
ranges of loadings up to failure pressure have been considered. Brittle failure
of the composite material occurs at a maximum strain of 1.3 percent. The maxi-
mum values of internal pressure these three tubes can contain without failure
are 56.9, 53.1, and 78.0 Ksi, respectively. In these figures we also show the
limits of internal pressure in the elastic-plastic range, i.e., (p*, P**) =
(20.48, 23.93), (23.06, 28.75), (27.47, 34.98 Ksi), respectively.
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ULTRAFAST THERMODYNAMIC PROCESSES

Richard A. Weiss
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ABSTRACT. The conventional thermodynamic description of a rapid revers-
ible process assumes that the process is adiabatic and no heat is exchanged
between the thermodynamic system and the environment so that the entropy of the
system remains constant. This paper suggests the possibility of processes that
occur so fast that the magnitudes of both the entropy and internal energy of the
system remain constant. For such a system there is an exchange of heat with the
environment in the form of a change of the internal phases of the thermodynamic
system. The thermodynamic equations for internal phase changing processes are
developed, and a general procedure is developed for relating the temperature and
density for a system undergoing an ultrafast process. The magnitude and inter-
nal phase angle of the pressure associated with an ultrafast thermodynamic pro-
cess are calculated. The rapid processes that occur in supernovae may possibly
be described by these calculations. Applications to the early stages of chem-
ical reactions are suggested.

1. INTRODUCTION. Processes that occur very fast appear in both astrophy-
sical and laboratory situations. For example, rapid nuclear processes occur in
stars before and during supernova explosions. These include electron capture
by protons and the rapid capture of neutrons by atomic nuclei. In addition there
are the processes associated with the core bounce and the subsequent generation
of shock waves. Finally, associated with stellar core collapse is the generation
of neutrinos which interact with the stellar atmosphere and often produce pres-
sures that are sufficient to blow off the atmosphere. -  These processes occur
on very short time scales and the question of the adequacy of the adiabatic as-
sumption of ordinary thermodynamics arises because the adiabatic process re-
quires the internal energy to change and this may occur on a slower time scale
than the short time scale of the physical process itself.

The description of the interaction of gravity waves with matter, as in the
case of a laboratory gravitational wave detector, needs to account for the rapid
distortion of atoms and molecules due to the rapid change of the curvature of
spacetime. ' A description of these ultrafast gravity wave interactions re-
quires a description of a state equation for matter which includes parameters
that determine the effects of gravity waves on the atomic structure of matter.
Such a state equation has been developed for the real gases. 8 Again the ques-
tion arises as to whether the adiabatic assumption is a valid description of the
interaction of gravity waves with matter or whether something more sophisticated
is required to describe this extremely fast process.

Rapid processes also occur in more conventional laboratory experiments.
Consider the actual processes that occur during chemical reactions such as chem-
ical bond breaking and formation which may occur on the femtosecond time scale.

9-
11

Another example of an ultrafast process that may require reinterpretation is the
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case of subpicosecond laser pulses interacting with matter. 12-14 A better un-
derstanding of the state equations of matter and of ultrafast thermodynamic pro-
cesses are needed to describe these physical processes.

A theory of relativistic thermodynamic state equations has been developed
in order to account for a difficulty with the state equation of matter at high
densities, namely the fact that the state equation is not nearly as stiff as is
predicted by conventional calculations.1 5 The four dimensional Minkowski space-
time of special relativity was introduced through the development of a relativ-
istic trace equation, and specific solutions of this equation were developed for
solids, quantum liquids and the real classical gases.'" 6 In order to have the
Lie group e±J (and e±O) as the gauge group of relativistic thermodynamics, the
concept of thermodynamic variables with internal phase angles was introduced.

1 7'1 8

The trace equation for completely symmetric matter is given by
15

U + T(dU/dT) - 3Vd/dV(PV) u - Ua + T(dUa/dT)pav (i)

where U and P relativistic internal energy and pressure respectively, Ua and

pa - unrenormalized energy and pressure respectively, and T and V = temperature

and volume respectively. The trace equation for matter whose thermodynamic
functions have broken symmetries is given by

U + T(dU/dT)-v - 3Vd/dV(PV) U a + T(dUa/dT)pav (2)

where U and P complex number representations of the renormalized internal en-
ergy and pressure respectively. Equation (2) can be further simplified by using
the following form of the Gibbs-Helmholtz-Maxwell equation'

8

3/3v = T(aP/3T)v - T (3)

The complex numbers U and P that appear in equations (2) and (3) are written as18

=Ue j U (4)

= Pe j P  (5)

where U P , 6U and 6p are obtained from a solution of equations (2) and (3).
In a similar fashion the complex number entropy is written as

18

S = Se j eS (6)

As an illustrative example of the use of equations (I) and (2) they can be ap-
plied to real gases.

The pressure of an ordinary real gas is written as1 9

Pa = nRaT(l + Ban + Can 2 + ...) (7)

where n = reciprocal volume, and Ra , Ba and Ca = ordinary gas constant, second
virial coefficient and third virial coefficient respectively. The corresponding
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pressure for a symmetric relativistic real gas is written as 8
,
1 5

P - nRT( + Bn + Cn2 + ... ) (8)

where R, B and C - corresponding relativistic gas constant, second virial coef-
ficient and third virial coefficient respectively which are given by

8'1 5

R -Ra (9)

B - Ba (10)

C C Ca _ 3B 2 Zn a (

a

where

a T Ba(T) 2/3
- (12)

TR B a(TR)

where TR - species dependent relativity temperature constant. For the case of a
relativistic real gas with broken internal symmetry the pressure is written as1 7

P -nRT(1 + Bn + Cn 2 + ... ) (13)

where C is obtained from a solution of equation (2) and is given by1 7

E C - 3B2 en a ejef (14)a a

where ef is given by the solution of a set of coupled differential equations.
Ultrafast thermodynamic processes, for which both the entropy and the magnitude
of the internal energy are fixed, are only possible in systems like the real
gases that have a parameter TR which varies during the process. The parameter
TR depends on the species of atoms in the gas and therefore TR changes for pro-
cesses that alter the composition of the gas.

This paper considers thermodynamic processes that are sufficiently rapid
to keep both the entropy and the magnitude or the internal energy cotstant or to
keep the magnitudes of both the entropy and the internal energy fixed. Such pro-
cesses change the internal phases of the entropy and internal energy, and the
entropy and internal energy vectors essentially rotate (in internal space) but
do not stretch. This is a special case of the general situation where the com-
plex number thermodynamic functions rotate and stretch during thermedynamic18
processes. A theory of ultrafast thermodynamic processes is developed and an
expression for the pressure associated with these processes is derived.

2. ULTRAFAST THERMODYNAMIC PROCESSES. This section considers the thermo-
dynamic equations that describe ultrafast processes occuring in matter that has
internal phase angles associated with the thermodynamic functions. The general
thermodynamic equations of matter and radiation with internal phase have already
been developed in the literature. 1 7 " 8  The expression for the first law of
thermodynamics for matter with internal phase is written as1 8

601



dQ - TdS - dU + PdV + R da (15)

where Q - complex number heat, M. - set of generalized complex number forces and
a - set of generalized extensive variables.

For the special case where the change in entropy and internal energy are of
the form of rotations it follows from equations (4) and (6) that'8

dQ - TdS - jTSdOS  (16)

dU - jUdeU (17)

which combined with equation (15) gives the following result for an ultrafast
process where S and U are both constant

jTSdeS - jUd0U + PdV + Mada (18)

The generalized force R. can be written as

R M ej 8M  (19)

The real and imaginary parts of equation (18) can be written as

- TS sin 6S dOS = - U sin 6U deU + P cos 9p dV + I Ma cos eMa da (20)

+ TS cos O S dOS = + U cos 8U de U + P sin ep dV + M sin 6Ma dc (21)

For the special case of the relativistic real gas the generalized extensive
variable is a - TR and the generalized force is Ma = SR , where R is the complex
number generalization of the scalar parameter SR that appears in Reference 8.
For the real gas equation (18) becomes

jTid6S - jUde U + PdV + SR dTR (22)

where

S = S ReJeSR (23)

is the following complex number generalization of the scalar result in Reference 8
9-

S = - 1/2NRTn-(DC/TR)T (24)

where

SR -1/2NRTn[(aC/aTR)2 + (CaeC/3 2] 2  (25)

and
G3Oc/aTR

tan 6SR 3 3C/3TR (26)
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and where N - number of moles. The real and imaginary parts of equation (22)
can be written as

-TS sinO S des M - U sinO U deU + P cose p dV + SR cos eSR dTR  (27)

+ TS cos e S des M + U cos OU deU + P sin %p dV + SR sin 0SR dTR (28)

which are the thermodynamic equations for an ultrafast process in a real gas
with both S and U held constant. If the process is truly adiabatic with S =

constant and dS = 0 and deS - 0 then the left hand sides of equations (27) and
(28) must be set equal to zero. Note that in general U = U(T,V,TR)
8U - OU(T,V,TR) S = S(T,V,TR) and 8S - 6s(T,V,TR)

In order to utilize equations (20) and (21) it is necessary to evaluate the
differentials deS and deU for the case of an ultrafast process with both U and S
held constant. These are obtained from the following total derivatives

(dOs/da)us 36 s/3a + 36sO/V(dV/da) u,s + Os /T(dT/da)u,s (29)

(de u/da)u 5 = 3 u/3a + 3Ou/3V(dV/da)U'S + aeu/3T(dT/da)u's (30)

where (dV/da)u,S and (dT/da)u,s are obtained from the following two conditions
which state that S and U are constant

DS/a + 3S/3V(dV/da)U'S + 9S/aT(dT/da)U' S = 0 (31)

3U/a + 3U/3V(dV/da)u's + DU/3T(dT/da)U' S = 0 (32)

In general S = S(a,V,T) , 6S - 6S(a,V,T) , U = U(a,V,T) and 6U = 6U(a,V,T) . From
equations (31) and (32) it follows that

(dVlda) (3U/T)(3S/3) - (3S/;T)(3U/3a) (33)
Us (DS/hT)(3U/3V) - (3U/3T)(3S/9V)

(dT/da) (aSI/V)(aU/Ia) - (;U/aV)(0S/3a) (34)
us (3S/3T)(.3U/@V) - (3U/T)(3S/V)

Eliminating do from equations (33) and (34) gives

(-S/3V)(U/3a) - (3U/3V) (S/a) (35)
(dT/dV)us (3U/3T)(3S/3a) - (3S/3T)(aU/3a)

Equation (35) relates T and V for the case of constant U and S . Only if
3U/3a $ 0 and 3S/3a 0 0 are T and V related. The derivative of the temperature
with respect to the reciprocal volume at constant U and S is given by

n(dT/dn)u 5 = - V(dT/dV)u's (36)
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If a - a(VT) is calculated from the condition U(a,T,V) - constant then the con-
stant S condition can be written as

DS/3V + DS/3T(dT/dV)u'S - 0 (37)

aS/3T + aS/aV(dV/dT)us - 0 (38)

Similarly if a - a(V,T) is eliminated by the condition S(a,V,T) constant then
the constant U condition can be written as

alU/V + aU/3T(dT/dV)u s = 0 (39)

aU/aT + aU/aV(dV/dT)u'S = 0 (40)

Neglecting the da term in equations (20) and (21) gives

- TS sin 8S d6 - U sin eU dOU + P cos ep dV (41)

+ TS cos 85 d S S + U cos 8U d6U + P sin ep dV (42)

Then

- P cos %p TS sin 6S (d6s/dV)u's - U sin O U (d6u/dV)u,s (43)

P sin 9 p TS cos 8S (dS /dV)U'S - U cos 8U (d u/dV)U' (44)

N ow assume that 8S \ OU in the trigonometric terms

- P cos 8p sin 6U LTS(dSs/dV)U'S - U(d u/dV) (45)

P sin e p cos U [TS(de S /dV)u's - U(dO u/dV) u,s] (46)

From equations (45) and (46) it follows that

tan ep " - tan eU  (47)

a 9 U + ,r/2 (48)

Cos 8p 6 - sin u  (49)

sin Op p cos 6U  (50)

Combining equations (45) through (50) gives

P \ TS(dOs/dV)u's - U(deu/dV)u's (51)
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where

(dOs/dV)u's - 3/8aiV + DoS/aT(dT/dV) u,s + aeS/aa(da/dV)u'S (52)

(d6u/dV)u'S - 38u/aV + aeu/aT(dT/dV)U'S + 86U/aa(dc/dV)u S  (53)

where (dT/dV)u,S is given by equation (35) and (dc/dV)u,S is given by equation
(33). Equations (48) and (51) give the pressure associated with an ultrafast
thermodynamic process that has both U and S held constant.

The magnitude of the pressure given by equation (51) can be written in
terms of the reciprocal volume n = 1/V as follows

P n 2 (d6u/dn)U'S - TSn 2 (d6s/dn)u's (54)

= En(du/dn)US - T~n(dSs/dn)us

where the energy density E and the entropy density $ are given by

E = U/V - nU (55)

5 = S/V = nS (56)

where U and S are constants in this paper. A further approximation for the pres-
sure can be obtained by taking OS I- 6U in equations (51) and (54) with the re-
sult

P % (TS - U)(deu/dV)u'S (57)

= (E - TS)n(d8u/dn)U'S

Equation (57) has a proper T - 0 limit.

Equation (54) is not an equation of state but rather gives the pressure for
a thermodynamic process for which U and S are constants. Therefore P = P(T) or
P - P(n) because V and T are related by equation (35). The total derivative
dP/dn can be calculated from equation (54) as follows

(dP/dn)u's = U[2n(d ~u/dn) US + n 2(d 2u/dn2)U's]  (58)

2 2 2
- TS[2n(dSs/dn) US + n (d 2s/dn )U S ]

- S(dT/dn)u S n
2 (d6u/dn)U'S

Similarly

(dP/dT)u's = (dP/dn)u's(dn/dT)U'S (59)
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where (dn/dT)us is given by equations (35) and (36).

Consider now the case of an ultrafast adiabatic process in which the en-
tropy S and U remains fixed. For this case dS - 0 , d6S - 0 and dU = 0 . Then
equation (18) gives

jUd0U + PdV + M da - 0 (60)

U a

Neglecting da gives

= _ U(deu/dV)u , e j (/2+U) (61)

P - U(dOu/dV)u,§ (62)

OP /2 + 0 U  (63)

For this case 8U  
0S because 6s = constant. The derivative in equation (62) is

obtained from equations (33), (35) and (53). For this case two parameters a and
8 are required in equation (60) to evaluate the derivative in equation (62).

For the case of broken symmetry of space the first law of thermodynamics is

written as

dQ - dU + PidVI (64)

where

IdVI = sec aV V dV (65)

tan BV V = VOv /3V (66)

From equations (64) and (65) it follows that in order to obtain the basic equa-
tions of thermodynamics for broken symmetry space the substitution P- P sec 6V V
is made in the basic thermodynamics equations such as those given in Reference
18. For instance, the trace equation (2) becomes

5 + T(dU/dT)PVse - 3Vd/dV(PV sec aVV) = Ua + T(dUa /dT) (67)Psec 8V V  Pav

while equation (3) becomes

U/V - T3/aT(P sec v ) -P sec aV'V  (68)

- (T3P/aT - P)sec BV V + PT3/3T(sec B V V )

For a v/3T = 0 equation (68) becomes

cos B aU/IV - T3P/3T - P (69)
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For T = 0 equation (68) or (69) gives

P - cos a au/av (70)

In general the broken symmetry of space lowers the calculated thermodynamic pres-
sure. For example the broken internal symmetry of space requires equation (13)
for the pressure of real gases with broken internal symmetry to be written as

P- nRT cos V v (1 + Bn + Cn2 + ---) (71)

For the case of an ultrafast thermodynamic process equation (64) becomes

jTSde8S = jUdeU + P sec 8 V,V dV (72)

and equations (57) and (62) become respectively

P " cos aV,V (E - T$)n(du/Idn)u's (73)

P - cos aV, V U(deu/dV) u,§ (74)

For radial symmetry aV.V - 8 r,r where r = radial coordinate. Because Br,r is
related to the internal phase angle Or of the radial coordinate it follows that
the laws of thermodynamics such as equations (67) through (74) depend on the in-
ternal phase structure of space. But the value of er on a macroscopic scale
depends on gravity. For instance for the earth's surface Or X - 5.7 ° . There-

fore the calculations of thermodynamics must include the effects of gravity.

3. CONCLUSION. For systems, such as the real gas, with broken internal
symmetries in the pressure, internal energy and entropy it is possible to have a
thermodynamic process that occurs so fast as to keep the magnitudes of the en-

tropy and internal energy constant. This is possible only for systems like the
real gases which have a parameter (like the relativity temperature TR) that

changes during the process. Such a process involves a change of structure of
the molecules or atoms of the system as in the case of chemical or nuUlear
reactions.
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THE INTERNAL PHASE STRUCTURE OF ATOMS

Richard A. Weiss
U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. The three dimensional Schrjdinger equation for hydrogen-like at-
oms under pressure is solved and the spectra and eigenfunctions are calculated
using the fact that in a pressure field the coordinates have internal phase an-
gles. Because the coordinates have broken internal symmetries the energy eigen-
values are complex numbers whose real parts yield the measurable quantities that
can be experimentally tested by examining the spectra of one-electron atoms under
pressure. The magnetic, azimuthal and principal quantum numbers must be repre-
sented as complex numbers for hydrogen-like atoms under pressure. It is found
that under pressure hydrogen-like atoms will exhibit a pressure dependent fine
structure in which the energy levels of the valence electron depend on the mag-
netic quantum number as well as on the principal quantum number. The pressure
dependence of the spectra of hydrogen-like atoms is determined. This research
will have applications to stellar atmospheres and to gases at high pressures as-
sociated with conventional and nuclear explosions.

1. INTRODUCTION. The early development of atomic and nuclear physics made
minimal use of gauge field theory because the only gauge field known was electro-
magnetism.' The importance of gauge fields was only fully realized in the past
twenty-five years from a search for a unifying principle behind the four funda-
mental interactions.2  Gaufe theories are now important in many scientific and
mathematics disciplines. 3 , Recently a gauge theory of relativistic thermodyn-
amics has been developed which suggests that the pressure in a bulk matter sys-
tem has a broken internal symmetry and must be represented by a complex number.5, s,

A set of renormalization group equations has been developed which gives the rec-
ipe for calculating the magnitude and internal phase angle of the pressure as a
function of temperature and density for an interacting bulk matter system.S, S6
This can be applied to gases, liquids or solids.

If the pressure has a broken internal synmetry then Euler's equations of
motion suggest that space and time coordinates must also have broken internal
symmetries and be treated as complex numbers. 7 Arguments from string theory al-
so predict a complex number coordinate representation.a The complex number val-
ues of the space and time coordinates imply that the basic wave equations of
classical and quantum physics must also contain these broken internal coordinate
symmetries. For instance the Schrddinger and Dirac equations must be written as
complex number coordinate equations whose eigenvalues and eigenfunctions have
broken internal symmetries. Therefore, indirectly, a gauge theory of relativis-
tic thermodynamics predicts microscopic effects which affect the basic calcula-
tions of atomic physics and the structure of atoms. In fact, atoms located in
a pressure field should exhibit an internal phase structure which depends on the
magnitude of the ambient pressure.

The Bohr atom under zero external forces does not exhibit an internal phase
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structure. This can be seen by writing the complex number generalization of the
Bohr atom equations as follows 10

11

-2-
or w = nh (1)

-2 2 2
Uw r - Ze /Y (2)

where the complex number radius and frequency are given by
7

F - rej Or (3)

Z -e J ew (4)

and where V - reduced mass of the electron, n - integer, 11 - h/(2w), e electron
charge and Z - atomic number. Equations (1) and (2) can be written as

2
or w - nh (5)

2  Ze2 /r2  (6)

20 + e - 0 (7)

36 + 26 0 (8)

The solution of equations (5) and (6) yield the standard expressions for the ra-
dius and total energy of the Bohr hydrogen atom

r nA22/(IZe2  (9)

E n -iZ2e4/(2h2n 2) (10)

while equations (7) and (8) give

6r 0

e -0 (12)

Thus the internal phase structure vanishes for an isolated Bohr atom, and the
Bohr radius and energy levels are real numbers. Because all of the quantities
on the right hand side of the energy equation (10) are constants it is not pos-
sible for the energy levels to be pressure dependent.

Atoms subjected to pressure or other external forces have an internal
phase structure. This can be seen in a simple fashion by noting that for the
case of a Bohr electron under the influence of an external radial force equation
(2) can be written as

-2 2 2
Uw r - Ze /f + F (13)

where F - FejaF - complex number external force acting on the electron. The
external force can be transmitted to the electron by electrical forces from ad-
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jacent atoms and is utlimately related to the complex number pressure which can

be written as

F - Pe j P  (14)

where 8p - internal phase angle of the pressure. A more sophisticated approach
to the problem of the Bohr atom in a pressure field is to solve Schrdinger's
equation for this case. When this is done it is found that the presence of a
broken symmetry pressure requires that the principal quantum number that appears
in the Bohr quantization equation (1) must be a complex number so that

Pf 2 - fi (15)

- ne j 8  (16)

where 5 - complex number principal quantum number which is related to the broken
symmetry of the azimuthal angle and ultimately to the complex number pressure
(Section 5). For a hydrogen-like atom under pressure the quantization condition
in equation (15) yields

2
ir 2 = nh (17)
2e +e -e (18)

while the force balance equation (13) gives
2 2

piw r cos(28 + r) Ze 2/r2 cos(2 r) + F cos 6F (19)
222

uW r sin(28 + r) - - Ze /r sin(28 r) + F sin eF (20)

Equations (17) through (20) are four scalar equations which can be solved for r
er , w and 6w in terms of n , e1 , F and OF or ultimately in terms of P and ep
For F # 0 the solution of the Schrddinger equation becomes extremely difficult
and therefore this is not considered in this paper. Instead it is assumed that

% 0 so that er and 6w are obtained from equations (8) and (18) to be

S r\ 26 n - 36 (20A)r w fl

and the corresponding Schrdinger equation can also be solved.

This paper considers the solution of Schrddinger's equation for hydrogen-
like atoms in a three dimensional space that exhibits broken internal symmetry.
Section 2 gives the general form of Schrddinger's equation for a spherically sym-
metric potential with broken internal symmetries. Section 3 considers the azi-
muthal angle equation and introduces the complex magnetic quantum number. Section
4 treats the zenith angle equation which introduces the complex azimuthal quan-
tum number, while Section 5 solves the radial equation which has a complex value
of the principal quantum number. Section 6 presents the complex number wave
functions for hydrogen-like atoms under pressure and Section 7 determines the
complex number energy eigenvalues. Only bound states are considered in this pa-
per.
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2. SCHRODINGER'S EQUATION FOR HYDROGEN WITH BROKEN INTERNAL SYMMETRIES.
The three dimensional Schrddinger equation in spherical polar coordinates for an
electron in a central force field in an atom whose space and time coordinates
have broken internal symmetries is written as a generalization. of the standard
form of this equation as follows12-14

2+ 'V + 1 a -+ [ -T) ]8 " 0 (21)
a-2 +- f 2-2- 1 _ +
rr sin r sin h

where the complex number spherical polar coordinates are written as

- re j er (22)

- eje* (23)

e ¢e j e  (24)

where = complex number wave function, F - complex number radial coordinate,
- complex number zenith angle and i - complex number azimuthal angle. The bro-

ken symmetry of the coordinates are described by the internal phase angles er ,
6* and 6 which are pressure dependent. 7 The measured values of the coordinates
are given by the real parts of the complex number coordinates given in equations
(22) through (24) and are written as

7

r = r cos r (25)m r

= q cos a (26)

om 0 cos 8 (27)

The complex number potential is written as

= Vej6v  (28)

which for the Coulomb potential becomes

V = - Ze2 /i (29)

V = - Ze2 /r (30)

V - r (31)

If the potential were directly measurable the measured value would be given by'

Vm V cos 6V  (32)

- Ze 2/r cos 8r

Note the effect of the external pressure is assumed only to make the coordinates
complex numbers and not to change the basic form of the Coulomb potential. The
complex number total energy is written as
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- EeJGE (33)

while its measured value is given by

Em - E cos 8E (34)

Both E and Em are determined in Section 7. The complex number wave function is
written as

SVe j 8-f(35)

and will be determined in Section 5. The measured wave function is given by

m =  Cos ae (36)

The complex number Schrddinger equation (21) can be separated into three
component equations by following the standard recipe of writing the wave func-
tion as a product of three independent functions as follows1

2 - 14

= ()W( ( )(37)

where

- ReJ OR - radial wave function (38)

WeJOW - zenith angle wave function (39)

V 4eJol - azimuthal angle wave function (40)

Combining equations (37) through (40) gives

T RWD (41)

9,V M 6R + eW + 6D (42)

Placing equation (37) into equation (21) yields the following generalizations
of the standard azimuthal angle equation, zenith angle equation and radial equa-
tion respectively

12- 14

d2i/do2 + 2i . 0 (43)

I/sin W d/d (sin dW/d) + (3 _ M2/sin2 j) 0 (44)

2r d2 2 R/dr +2fd/di + (Z2 ) 0 (45)

where

k2 2u /A2(E - ) (46)

R Me jM (47)

- 3ea (-"8)
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where M - complex magnetic quantum number which will be determined in Section 3,
and - complex number constant that will be determined in Section 4. The so-
lution of the complex number Schrddinger equation for a hydrogen-like atom re-
quires first the solution of equations (43) through (45) and the determination
of the six functions R(r) , eR(r) , W(*) , ew(*) , O(D) and 8O(O) , and second-
ly the determination of the values of E and eE which give the complex number
energy eigenvalues.

3. THE AZIMUTHAL ANGLE EQUATION FOR A HYDROGEN-LIKE ATOM WITH BROKEN INT-
ERNAL SYMMETRY. This section determines the solution of the complex number azi-
muthal equation and gives the magnitude and internal phase angle of the complex
magnetic quantum number R. The formal solution of equation (43) is written as 1 - 1 4

*A - if +- (49)

It will now be shown that MR must be a real number if i is to be symmetrical (un-
changed) under a 21r change of the value of *m . In other words, because *m giv-
en by equation (27) is the measured azimuthal angle, the wave function in equa-
tion (49) must be unchanged under m - om + 2w , and this implies the reality of

M The reality condition for M can be written as

Mo - Mo (50)

eM + eo = 0 (51)

where equations (24) and (47) were used. In order to verify this conclusion the
complex numbers R and are written in terms of their real and imaginary parts
as follows

R - MR + JM - M(cos 6M + j sin eM) (52)

= 0 R + Jol = o(cos 80 + j sin 8 ) (53)

Using equations (52) and (53) allow M to be written as

M - MOR - MI + j (MIOR + MRol) (54)

If the imaginary part of equation (54) is zero, then

0- - M1O"R/MR (55)

and substituting equation (55) into equation (54) gives

R-0 - (M , ~OIM 2  M 1 20 /MP (56)

which shows that if M; is real it is also linear in *m the measured value of 0
given by equation (27).

The linearity in ' shown by equation (56) allows the possibility of having
the azimuthal wave function given in equation (49) unchanged under tin -m + 2T,
by requiring
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M21MR a m (57)

where m - standard magnetic quantum number which is a positive or negative inte-
ger. Combining equations (51), (52) and (57) gives

M- m cos 0M (58)

Smcos a

as the condition for syimmetry under m + 2w . The exponent terms in equa-
tion (49) can be written as

M -M - mo cos 8 = - R = m*M (59)

and therefore

i ieilmi + ge-iImim (60)

The magnitude and internal phase angle of the complex magnetic quantum number
aregiven by equations (58) and (51) respectively. The real and imaginary parts
of M are given by

MR - m Cos 2 (61)

M, = - m sin e cos e (62)

- m cos e e-ce8  (63)

The interesting thing about equation (58) is that M is not an integer but reduces
to an integer for the symmetrical case of e - 0 .

4. THE ZENITH ANGLE EQUATION FOR A HYDROGEN-LIKE ATOM WITH BROKEN INTERNAL
SYMMETRY. This section solves the complex number zenith angle equation (44) and
determines the complex number parameter 8 that appears in this equation. This
equation will be solved by a simple generalization of the standard technique
used to solve the corresponding scalar form of this equation. I Z- 14  Define the
complex number by

- cos &e -eje C e-jec (64)

so that 7

& = C (65)

6 e ci'  (66)

C = [cos 2(P cos e) + sinh 2(* sin e )lI12 (67)

tan c, - tan(* cos 8 ) tanh(* sin 8 ) (68)

Then equation (44) can be written as
-2 + 2/( -2)

d/dZ[(l - )dW/d ] +[3-M/(1 - )]WO (69)
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where H is given by equation (63).

The solution of equation (69) follows from the standard procedure for the
solution of the corresponding scalar equation by writing

1 2- 1
4

• , (I - 2)M'/2 ( ) (70)

where

R' - Iml cos 8 - H' jmj cos (70A)

- Imi cos -- Iml sin c Cos 6 (70B)

which gives 1-14

(1 _ 2 )d2G/d 2 - 2(M' + 1) dG/dZ + [ - M'(i' + 1)]d - 0 (71)

The solution of equation (71) is obtained by a power series expansion and gives
the following generalization of the standard results for real numbers

12 - 1 4

a +2 /a C (a + RI)(a + 1) - ]/[(a + 1)(a + 2)) (72)

where i. and a+2 - coefficients in a power series expansion of G , and a - in-
teger. Equation (72) shows that the only way the power series breaks off at
term v is to have

- Z(Z + 1) (73)

where

1= R' + v (74)

where v - integer. Equations (73) and (74) are recognized as complex number
generalizations of the standard scalar results. 12-14 The important thing about
equations (72) through (74) is that B , M' and Z are complex numbers and not in-
tegers as in the standart case. The only integerrequirement is that Z and M'
differ by an integer as shown in equation (74). C is a complex number general-
ization of the standard integer azimuthal quantum number t .

The solution to equation (69) can then be written using equations (70), (72)
and (73)

_ ( - Z2)M/2 Co{1 + 1/2[R'(F' + 1) - t( + 1)]Z2 (75)

+ 1/24[M'(M' + 1) - Z(Z + 1)][(F' + 2)(M' + 3) - E(E + 1)]Z 4 +

+ ( - Z2)R'/2 c{ + 1/2[(M' + 1)(M' + 2) - rC + 1)]Z 3

+ 1/120[(R' + 1)(R' + 2) - E(C + 1)3[(F' + 3)(A' + 4)-!(E + 1)]Z5+.._I

which clearly breaks off when equation (74) is satisfied for a series of integers
v - 0 , 1 , 2 , ..- . The solutions given in equation (75) are simple general-
izations of the standard associated Legendre functions, so that formally
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- -) (76)
C

Consider now the specific solutions corresponding to v .- 1 , , 2, ..

For v - 0 , Imi , C - H'

PZ' (  I _ -2) R'/ sin' (77)

For v 1 , Iml + 1 , -R'+ 1
-1- - 2)4'/2- H-'78

N,+1() = (I-_2 ) sin Mt cos (78)

For v - 2 , - Iml + 2 , -' + 2

-2+2 _ (1 -2)R'/2[(2, + 3)-2 _ 1 (79)

- sin'' ; [(2k + 3)cos ' - 11

For v 3 , - Imi + 3 , R = H' + 3

P' -2 1 2'/ 2[(2A' + 5)9 - 3&] (80)

- sinR' i C(2R' + 5)cos 3 ; - 3 cos ;]

The value of R' that appears in equations (75) through (80) is given by equation
(70A). In this way the solutions of the azimuthal equation for a hydrogen-like
atom with broken internal symmetry are obtained. The solution given in equations
(75) through (80) are given in Section 6 for specific atomic shells.

It is clear that the integer v in equation (74) must be given by v I - ml
because equation (74) is also valid for the case of zero internal phase, and
therefore

= 14' + Z - iml (81)

- ml cos e e-ja4 + Z - Iml

- t - m sin 2 a - jiml sin 0 cos 0

where H' is given by equation (70A).

The complex azimuthal angular momentum quantum number can be written as

Z - ce j ec (82)

Combining equations (74), (81) and (82) gives

C Cos 6cs .M , + Z -+ mi (83)

C sin 9 C M' sin OMf (84)
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where M' and 8M , are given by equations (70A) and (51) respectively. Combining

equations (51), (58), (83) and (84) gives

tan - (M' sin M,)/(M Cos + - Im() (85)

- (Iml sin o cos aI)/(Z- (ml sin2 e,)

e6 1 - 1 6m0 /Y (85A)

C2 = z 2 [l- ml/Z(2- lm,/Z)sin2 a (86)

M t 2 _ Iml(2Z - 1m1)sin2 0

Note that if -0 thenBC-0and C . Also if m-0 thenC -0 andC -Z.
From equation (86) it follows that in general C 4 Z . The interesting point is
that equation (86) shows that C is not an integer and depends on the values of
I ml as follows:

V -0 , Z - Iml

C - cos 6 = Im( cos o (87)

v-I, Z - (ml + 1

c2 -(1m + 1) 2 [l _ 1m1(11 + 2)/(ml + 1)2 sin2 0 (88)

- 1+ m (m1 + 2)cos 2 0e

Z2 - (Z 2 1)sin2 a

v 2 , Z - Iml + 2

C2 = (m1 1 - ml (Iml + 4)/(1m1 + 2) 2 sin 2 8] (89)

-4 + I(w (Iml + 4)cos2 o

= z2 _ (Z2 - 4) sin2 6

-3 , Z - ml + 3

C 2. (1m + 3)2[1- (ml(m1 + 6)/(1m1 + 3) 2 sin2 a (90)

- 9 + (ml (ImI + 6)cos2 0

a Z2 _ (?2 _ 9)sin2 a

5. THE RADIAL EQUATION FOR HYDROGEN-LIKE ATOMS WITH BROKEN INTERNAL SYM1-
METRIES. In this section the complex number radial equation (45) is solved and
the complex principal quantum number is introduced. Combining equations (45)
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and (73) gives

2 d2R/dj2 + 2idR/d + [22 _(+ 1)]R - 0 (91)

where Z is given by equations (74) or (81) and i is given by

k2 - 2u /f2( + Ze2/j) (92)

The solution to equation (91) can be found by a generalization of the standard
method developed for the -eal number form of the radial equation. 12- 1 4 A change
of dependent and independent variables is made by writing

- 29 - pe j p (93)

= ei/2L(') - Rei0R (94)

where

F2 -_2uE/ 2 a 2e2jO (95)

Substituting equations (93) through (95) into equation (91) gives

5d 2/d 2 + [2(1 + 1) - 6]dL/d5 + ( Z - 1)f= 0 (96)

where

n ef n "uZe 2 /(/ 2) ( Z/(a o) (97)

a A 2/(e 2)o

where - complex principal quantum number and ao Bohr radius. From equation
(95) it follows that

a2 = - 2uE/A 2  
(99)

20a - eE (100)

while from equation (97) it follows that

n - uZe 2/(A 2 ) - Z/(a a) (101)

0 - - CL - - O 12 (102)

Finally from equations (93) and (97) it follows that

5 2ZF/(ao0 ) (103)

z 2Zr/(a 0) (104)

S-ea + 0 - 9 - - + 6-/2 (105)
r a r r
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Thus 6e introduces the radial coordinate internal phase angle e r The values
of n and e. will be determined later in this section.

The solution of equation (96) can be obtained by a power series whose terms
have the form av,v " where a., are determined by the following generalization of
the standard recursion formula

1 2

(7 - E - I - v')j , + [2(v' + 1)(E + i) + v'(v' + I)]! ,V+i 0 (106)

where v' - integer. The condition that aNPN be the last non-zero term is that
aN+l - 0 so that the break off condition is

- I + i +N (107)

where N - integer. Equation (107) is the complex number generalization of the
standard scalar result.12  For a hydrogen-like atom with broken internal symme-
tries the principal quantum number is a complex number related to Z by equation
(107). Equations (106) and (107) show that a break off solution to equation (96)
is possible for complex principal and azimuthal quantum numbers provided that

- C - integer. Because equation (107) is also valid for zero internal phase
angles it follows that

n - Z + 1 +N (108)

where n and t - standard integer principal and azimuthal quantum numbers respec-
tively.

Combining equations (107) and (108) gives

- r+n -Z (109)

where C is given by equations (74) or (81). The real and imaginary parts of
equation (109) give

n cos 8 = C cos +n - (110)

n ain e - C sin e (111)

Combining equations (110) and (111) gives

tan e (C sin C)/(C cos +n - ) (112)

2 C2 + 2(n - Z)cos 6 + (n - Z)2 (113)

where eC and C are given by equations (85) and (86) respectively. Alternatively,
equation (109) can be rewritten using equation (81) with the result

F' + n- Imi (114)

l ml cos a e- jeg ' + n - 'ml
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where M' is given by equation (70A). Taking the real and imaginary parts of
equation (114) gives

n cos e n M M' Cos em, + n - Iml (115)

• Iml cos 2 a + n- Iml

- n - ImI sin 2

n sin 8 - M' sin 0., (116)

= - Iml sin e cos e

Combining equations (115) and (116) gives

tan n - - (Iml sin e cos 8 )/(n - Iml sin2 a) (117)

n2 . n2 -ml /n(2 - lml/n)sin2 o%] (118)

=-n 2 _ (2n- =lm)sin 2 6

Equations (117) and (118) give the internal phase angle and magnitude respective-
ly of the complex principal quantum number for a hydrogen-like atom with broken
internal symmetries. The values of 6n and q depend on both n and Iml For
m - 0 it follows that 6. - 0 and n - n . For the symmetric case with 6 M 0 it
follows that 8. 0 and n n . From equation (118) it follows that for small 6

n n[i - 1/21ml/n(2 - Iml/n)sin2 8 ] (119)

Equation (118) shows that n 4 n . Also, from equation (117) it follows that for
small ao

6 n - ImI/ne0  (120)

while equations (102) and (105) show that

0 21mJ/n O0  (121)

8% r + Iml/no (122)80 r

Equation (96) is a complex number generalization of the standard different-
ial equation satisfied by associated Laguerre polynomials. 1 In fact the solu-
tion of equation (96) is a comlex number associated Laguerre polynomial of de-
gree - Z - I - N and order 2C + 1 . Thus the degree is a real number (integer)
but the order is a complex number. The solution of equation (96) can be written
formally as

1 2

L () (123)

The argument 5 is a complex number given by equation (93). The series solution
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to equation (96) is obtained from the recursion relations in equation (106),
so that

2++ N N(N - 1) -2
L (P) - 1 + P (124)

2(Z + 1) 2(Z + 1)[4(Z + 1) + 2]

N(N - 1)(N - 2) -3
-~~ 0 +"'

2(Z + 1)[4(Z + 1) + 2][6(Z + 1) + 6]
_N

out to P Because the order of the polynomial 2 Z + I is a complex number it
does not make sense to derive the complex number associated Laguerre polynomials
in terms of derivatives of the Laguerre polynomials. 12 For the case of complex
number order, equation (96) must be considered as the fundamental defining rela-
tion, and equation (124) is the basic solution. Also, the complex number asso-
ciated Laguerre polynomials cannot be derived from a generating function as this
requires the order to be an integer.1 2  Finally, the complex number associated
Laguerre polynomials can always be written as

_ (p) - L (p, 11,O8)ejeL (125)

where 6L - internal phase angle of the complex associated Laguerre polynomial.

The first few complex number associated Laguerre polynomials are obtained
from equation (124) to be:

N O, 0 - +1 ,n-Z+I

L _ =1 (126)2 £+ 1

N= 1 , = Z + 2 , n - Z + 2

_2Z+1 l 2(Z + 1) - (
L - - I -- (127)

21+2 2(Z + 1) 2(Z + 1)

N-2 , -Z+3 , n=Z+3

_2Z+1 25 2 -2
L2E+3 - - + (128)

2(C + 1) 2(Z + 1)[4(Z + 1) + 2]

2(C + )(2E + 3) - 2(2Z + 3) + -2

2(Z + 1)(2Z + 3)
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N-3, n+4 , n +4

2C+1 3 6 2

1- + 6 i(129)

2Z+4 2(Z + 1) 2(C + 1)[4(C + 1) + 2]

65 
3

2(E + 1)[4(Z + 1) + 2][6(t + 1) + 6]

~2 -3
4(Z + 1)(2Z + 3)(Z + 2) - 6(2Z + 3)(T + 2)5 + 6(Z + 2)5 - 3

4(Z + 1)(2Z + 3)(Z + 2)

The solution of the radial equation for hydrogen-like atoms with broken
internal symmetries is then obtained from equations (94) and (123) to be

CT e" L..+- (p) (130)

which is a complex number generalization of the standard result.
2  The term p

can be written explicitly as follows

p e (131)

where

Zn = Z p + j0 (132)

Using equation (81) for Z gives
-. A+3jB
5 L e (133)

where
A = (Z - Iml sin2 8)YZn p + (mI6P sin e cos 6 (134)

B - mj sin B6 cos 8 Zn p + 6 (t - m ( sin 2 a) (135)

Note also that

e-a/2 . e-Q/2(cos e0 + j sin 0 )  (136)

The quantities P and Op that appear in equations (134) through (136) depend on
n and O, through equations (104) and (105), and in turn n and On depend on n
imi and 6 through equations (118) and (117) respectively. Combining equations
i25), (130), (133) and (136) gives

S e (A-o/2 cos 90)ej(B-c/2 sin 0+6oL) 2 J+I P , a (137
623 0 (137)
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The interesting thing about the complex number broken symmetry radial solution
in equation (137) is that it depends on the magnetic quantum number fml an well
as on the principal quantum number n . In fact equations (104) and (119) show
that

P 2Zr/(a on) (138)

22Zr/(a n)[ + 1/2lm1/n(2 - lml/n)sin 6 1

where the approximation is for small 0 . Also from equation (122) Op intro-
duces both Or and 6o . Therefore for m # 0 both Or and 86 appear in the solu-
tion of the complex number radial equation. As the simplest case consider
n - I, Z 0 and m - 0 . Then A - 0 , B - 0 and n 1 and

P - 2Zr/a (139)

e - e (140)p r

- C e - Z F/ao (141)

R - C e-Zr/ao cos Or cos(Zr/a sin 0r) (142)m oo r

The wave functions for hydrogen-like atoms with broken internal symmetries are
listed by atomic shells in Section 6.

6. WAVE FUNCTIONS FOR A HYDROGEN-LIKE ATOM WITH BROKEN INTENKAL SYMMETRIES.
This section consists of a table of wave functions for the atomic shells of hy-
drogen-like atoms with broken internal symmetries. The broken internal symmetry
is due basically to the broken internal symmetries of the coordinates which are
described by Or v 8* and 6o as discussed in Sections 3 through 5. The complex
magnetic quantum number given by equation (70A) appears frequently in the atomic
wave functions and will be written as

FA- m1 M. I lmy (143)

where

cos 6 e -jO = cos2 0- j Cos 0 sin e (144)

y -cos -- (145)

The following is a table of complete wave functions for the K , L , M and N
shells. This table is a generalization of the standard scalar results.1 2
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K shell: n - 1

Z o , 0 -O , 0 '-0 ,. M' , -0 , C-0 , - 1 , n - I
2Z + 1 - 1 F + Z 1 2ZF/ao S N - 0

o

-/is " Cs (146)

0 0

L shell: n - 2

t - 0 , m -0 , 0'O , -0 , 0 -0 , 2 , n 2

2Z + 1 - 1 , 5 + Z -2 5 - 2Zi/(2ao) , N uI
0

2So = C2s 1/2(2 - 5)e - /2 (147)
0

C m ,i 0 ,M 0 M, b 0 , -1 C -1 , 2 ,r-2

2Z + 1 3 , 7 + Z -3 , 5 2ZF/(2a o) , N -0

T 2p 0  C2po e-a/ 2 cosiP (148)

Z - 1 , = - 1 , W -,M'.y , - . , C - y , " y + I2 1/2 ,2 +IE+ 2
- 2(1 - 3/4 sin 2 e ) 12, + 1 2j + 1 + 2 + 1

a - 2ZUI[(7 + 1)ao , N - 0

- c p, sin ; cos(y) (149)2pI "2p I

- 1 , m - - 1 , same as for equation (149)

F2p- 1  c 2p-1  /2 py sin 4' sin(yO) (150)
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M shell: n - 3

Z 0 , m- 0 , R'0 , M'- 0 , 0 - , 0 3 , n 3

2T + 1 , 1 , I + Z - 3 , 2Z /(3a) , N - 2

4 -/22

3s C 2e 1/6(6- 6 + F2) (151)
o o

ZI 1 , m 0 , M'O M, - , I , C , , 3 , n 3

2T + 1 - 3 , + Z - 4 , U- 2Z/(3ao) , N 1

3p 0 C3Po e- / 2 '/4(4 -)cosip (152)

m- I , m- I , , M'-y , C- C -y , . + 2

n - 3(1 - 5/9 sin 2 8) 1/2, 2Z + 1 2+ , + 2 + 2

- 2Zij(g + 2)a 0 N - 1

C e-./2 [ 2( + 1) - F] sinY cos(yO) (153)
3p 3p, 2(y + 1)

- -- -- --- -- -- --- -- -- --- -- - -

Z - I , m - I , same as for equation (153)

I-1 . e- p 2( + I) siny P sin(yO) (154)

- 2 , m- 0 , M'-0 , M'-0 , I - 2 , C - 2 , 5 - 3 , n - 3

2Z + 1 5 - 5 a - 2Zi/(3ao ) , N -0

- -/2 2 2
3d C3d e' (3 cos -) (55)

0 0

------------------------ ---------------- -
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Z 2 , m = 1 , M' =  , M' - y , C , + 1 , C - 2(1 - 3/4 sin2 e )1/2
S + 2, n -3(l 5/9 sin2  1/2 , 2Z + 1 25 +3, + - 2 + 3,

2ZFI[(5 + 2)ao0 , N - 0

3d 3d sin ' cos ' cos(y4) (156)

Z - 2 , m - 1 , same as for equation (156)

' 3d_ 5e/2 py+l sing cos 4 sin(y) (157)

,- 2 , m - 2 , R'- 2 , - , 2 y 27 , C - 2y , , 2 + 1,
n - 3(l - 8/9 sin2 6 ) i'Z 2Z + 1 - 4 + 1 5 + - 47 + I

- 2ZF/[(2 + 1)a] , N - 0

= - e-O/2~2 j 18

T3d 2  3d2 e 22 sin'2y cos(2y$) (158)

Z - 2 , - -2 , same as for equation (158)

3d_ 2 3d-2 e 2y sin2Y sin(2yo) (159)

N shell: n - 4

Z - 0 m 0 , 1' 0 , '- 0 , - 4 , n - 4

2Z + I - , j + Z -4, - 2Z/(4ao) , N 3

-- - 4 /2 1/24(24 - 366 + L22 a53) (160)4s " 4s
0 0

627



Z - M , - 0 , '0 - , M'=0 , - I , £- . , -4 , n- 4
2Z + 1 3, T + 5, 2Z /(4a ) , N 2

4p 0 c4p°e 
2  /20(20 - i0+ 2)Cos 4 (161)

t- 1 , i - I , i Y , M' y , + , - y , - ± 3

2 1/
- 4(1 - 7/16 sin e)l/2 2Z + 1 - 2 + 1 , + Z = 27 + 3
- 2Zi/[(y + 3)a] , N - 2

- e-612 [2(7 + 1)(2y + 3) - 2(25 + 3)a + 2

4p . 4p 2(y + 1)(2y + 3) Sin ' cos(YO) (162)

S- 1 , nM - - 1 , same as for equation (162)

4p_- I 2  + 1) 2( + 1)(2 + 3) sin sin(yO (163)

- 2 , m-0 , ' , M' 0 , C -2 , C -2 , -4 , n 4

2E + 1 5 , +C -6 , 7 - 2ZF/(4a o ) , N 1

- -/2 2 2
4d c -4d e 1I/6(6 -)(3 cos -1) (164)
0 0

Z-2 , m-I, M'=7 , M'-y , r- + 1 , 1 - 2(1 - 3/4 sin )2

+ 3 , n - 4(1- 7/16 sin ) /  , 2Z + 1 - 27 + 3 , + E - 27 + 4

- 2ZFI[(Y + 3)a] , N - 1

- - 6/2 j+1 [2(j + 2) - -(6
I  c2 +2) e sinY ; Cos cos(yO) (165)

--------------------------- -------------------------
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Z - 2 , m - - 1 , same as for equation (165)

-- e /2 p+1 [2( + 2) - sin cos sin(yO) (166)
4d_ 4d- 1  2(7 + 2)

- 2, m - 2 , M'-2 , M'-2y , Z- 2 , L 2y +- 2+2

n - 4(1 - 3/4 sin 2 e )1/2, 2C + 1 - 47 + 1 + E 47 + 2

- 2Z/((2y + 2)a] , N - 1

e-5/2 - [2(2y + 1) - ] n2 q cos(2y ) (167)
I4d2 , 4d2 . 2(2y + 1)

Z - 2 , m - - 2 , same as for equation (167)

- j3/2 -2 [2(29 + -1) - i 2
F C4d 2 e p2(27 + 1) -sin sin(2yo) (168)-~d2 " -2 2 ( +1

Z = 3 , m - 0 , M'=0 , M'0 , 3 , - 3 , 4 , n =4

2T + 1 - 7 , + 7 , 2Z /(4a) , N 0

-4 f c 4 f e-/2 3(5 cos 3  - 3 cos) (169)
o 0

Z 3 , m - 1 , - , M'- , Z + 2 , C - 3(1 - 5/9 sin 2 e 1/2

- + 3 , n = 4(1 - 7/16 sin e ) 1/ 2  2Z + 1 - 2 + 5 , + 2= + 5,

5 2Zi/[( + 3)a0] , N - 0

-Yf - e- / 2  +2  ~ Csiny (2F + 3)co, 2  
- 1)cos(y,) (170)
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Z 3 , m - - 1 , same as for equation (170)

- f c e -/2 1+2 siny [(2 + 3)cos 2  - 1]sin(yo) (171)?4f- I f_-I

Z - 3 , m - 2 , H'-2y , M"-2y , 2y + i , - 3( - 8/9 sin2 e )112
2 1/2

- 2Y +2, - 4(1 - 3/4 sin 6) / , 2E +1 - 4T + 3, + Z - 4y + 3,

- 2ZF/[(2y + 2)ao] , N - 0

- . -3/2 -2y+1 2

IF c4f 2 e P sin 2y  cos cos(2yo) (172)

- 3 , m - - 2 , same as for equation (172)

- - 5/2 -29+1 2y
S c4f e P sin * cos i sin(2yO) (173)-4f2 -~f2

C-3 , m- 3 , R'-3j , H'3y , M - 3 , C 3y . - 3 + I ,

n 4(1 - 15/16 sin2 8e)1/2 , 2E + I - 67 + 1 , f + Z - 6 + 1 ,

- 2Zi/[(39 + )a] , N - 0

- - e- /2-3 ~

4f3 C4 f3 e P3y sin 3 cos(3yo) (174)

Z - 3 , m - - 3 , same as for equation (174)

S4f C4f e p sin sin(3yO) (175)-4f3 -3

The reader should be aware that the value of 5 that appears in the above table
depends on and is thus dependent on n and IMl
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7. ENERGY LEVELS AND RADII OF HYDROGEN-LIKE ATOMS WITH BROKEN INTERNAL
SYMMETRY. This section calculates the measurable values of the energy levels
and atomic radii of hydrogen-like atoms with broken internal symmetries. The
complex number energy levels are obtained from equations (95) and (97) to be

- E -e
j E n  -e2/(2u)52 " 2 e4/(2h 2 ) (176)

where K is given by equations (109) or (114). From equation (176) it follows

that

E - - uZ2e4/(2h 2n2) (177)

S- uz2e4/(2)k2n2)[1 + lml/n(2 - jml/n)sin2 e]

0 -E - 20n  (178)

where n and On are given by equations (118) and (117) respectively. The mea-
sured energy levels are given by

7

E -E cos (179)rm n eEn

- z2e4 /(2f n2 2)cos(28 )

From equation (116) it follows that

sin en -" - Imi/I cos 6 sin e (180)

cos(26 ) = I - 2 sin en (181)
9 2 2

I - 2(jmj/n) cos 8 sin 2 0

I - 2(jmj/n) 2 cos 2 8 sin2 8

Combining equations (177), (179) and (181) gives

E nm - Z e 4/(22 n 2)(1 + F sin 2 S) (182)

where

F - jm/n[2 - Iml/n(1 + 2 cos 2 S(183)

, jm/n(2 - 31mi/n)

The values of F are given approximately for small a as follows
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F - 0 m - 0 or Imln - 2/3 (184)

F > 0 Iml/n < 2/3 (185)

F < 0 Imi/n > 2/3 (186)

Equations (177), (179) and (182) reduce to the standard Bohr result in equation
(10) for the case 80 - 0 .

For the K and L shells Iml/n < 1/2 so that F > 0 . For the M and P shells,
etc, it is possible to have the situation Imi/n - 2/3 and F - 0 . For the N ,0 ,
P , .-* shells it is possible to have Iml/n > 2/3 and F - < 0 . In any case it
is clear from equations (182) and (183) that the measured energy eigenvalues of
hydrogen-like atoms with broken internal symmetry should depend on I ml as well
as on the principal quantum number n . In addition, the asymmetry factor in
equation (182) is F sin2 e0 where 60 depends on the pressure acting on the sys-
tem of atoms. Thus the broken symmetry of the azimuthal angle destroys the de-
generacy associated with the energy eigenvalues given by equation (10). The en-
ergy eigenvalues do not depend explicitly on - and therefore some remaining de-
generacy still exists.

A transition from a state n' , m' to the state n , m is according to equa-
tion (182) associated with the energy difference

w Er am I Z2e4 /(2 2)[1/n 2 - 1/n'2 + (F/n2 - F'/n'2)sin 2 e ] (187)

where

F/n2 - Im1/n 3 [2 - Iml/n(1 + 2 cos 2 60] (188)

F'/n'2 . Im'l/n'3 12 - Im'l/n'(L + 2 cos 2 e )] (189)

F/n2 - F'/n' 2 = 2(ImI/n 3 - Im'I/n' 3) -(Iml2 /n - m' I/n' 4)(1 + 2 cos 2 e) (190)

2( l/n -3 _ Im'l/n' 3) 3(jm12 /n4 -  Im,!2/n'4)

It is the internal phase angle 60 of the azimuthal angle that introduces the
magnetic quantum number into the energy eigenvalues given in equation (177) and
in the formula for the transition energy given in equation (187).

The pressure variation of the energy eigenvalues will now be calculated.
From equation (179) it follows that

2 e4 /A2 2
,E /3P - UZ e /(f )[cos(2l)1/r nn/3P + sin(28n )e / P] (191)

The derivatives on the right hand side of equation (191) are easily evaluated.
The value of 3n/3P is obtained from equation (118) to be
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I/nan/aP - - a6 /aP (192)

where

im(/n(2 - ImI/n)sin 69 cos 6,

1 - (mj/n(2 - Imil/n)sin'
2  (

jmjln(2 - Iml/n)sin e cos o

The value of ael/P can be obtained from equation (117) with the result

ae /aP - - 2 ae,/aP (194)

where

K nlmlcos(26%) + li 2 sin2 a1<2 " 2(195)

~2 n 2 - Iml(2n - Iml)si 2 a

Iml/n

Placing equations (192) and (194) into equation (191) gives

3E nm/ P - uZ2e4/(F22 )[K1 cos(20 ) + K 2 sin(2 )]ae /P (196)

where from equations (115) and (116)

cos(2 n ) 1 2(lml/n) 2 Cos sin 2 (197)

sin(20n ) - 2ml/n2 (n - Irasin2 9 )sin e cos 8 (198)

- 21ml/n sin a cos 9

e -Imlin a0 (199)

for small Oo Therefore combining equations (193) and (195) through (198) gives

3E nm/3P -iZ e 4/(P2 n )Iml/n(2 - 31mI/n)sin 09 cos e ae /;P (200)

The rate of change of the energy eigenstates with pressure can be positive or
negative according to the value of Iml/n . In particular if 3*,/3P > 0 equa-
tion (200) gives
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3Enm/3P < 0 ml/n 4 2/3 (201)

aE nm/P > 0 1 2/3 < Iml/n < 1 (202)

For jmj/n < 2/3 an increase in pressure will lead to a greater binding energy
per electron while for Imi/n > 2/3 an increase in pressure will produce less
binding energy for the valence electron. These conclusions also follow direct-
ly from equations (182) and (183).

Finally, the simplest generalization of equation (9) for the radii of the
Bohr orbits is given by

S2 2 /(uZe 2) (203)

and therefore combining equations (97), (118) and (203) gives

r - n2A2 /(PZe 2 n 2 A2/(iZe 2)[ - jml/n(2 - ImI/n)sin2 0J (204)

8 r 20 n  21mi/no (205)

where On is given by equations (117) and (120). The radii of the Bohr orbits
of an atom with broken internal symmetry are pressure dependent through 60(P)
The measured Bohr radii are given by

r - r cos 8  (206)

n2 h2 /(pZe 2 )(1 - G sin2 a )

where

0 - mI/nC2 + Il/n cos(28 )] (207)

°m1/n(2 + mi/n)

where G ) 0 From equations (206) and (207) it follows that the measured Bohr
radii are pressure dependent and

3r rm/P '-2n2 I2/(jZe2 )Iml/n(2 + jml/n)sin 8 cos 86 38 /P (208)

Therefore if 38e/P > 0 it follows that 'r.,/aP < 0 . The analysis leading to
equations (203) through (208) is simplistic because higher order terms associ-
ated with the azimuthal angular momentum Z need to be inserted into equation
(203).2 The results for the energy levels and atomic radii may possibly be
tested using circular atoms for which ml n - I s
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8. CONCLUSION. The pressure dependence of the energy levels and radii of
hydrogen-like atoms can be determined by taking into account the broken symme-

tries of the coordinates of the electron and the nucleus. The broken symmetries

of the azimuthal and zenith angles are due essentially to a broken symmetry pres-

sure field. But the vacuum state also exhibits this broken symmetry. 16 The

broken internal symmetries of the coordinates requires the magnetic, azimuthal
and principal quantum numbers to be complex numbers which are associated with

internal phase angles. The internal phase angles of the three quantum numbers
are expected to be pressure dependent. Schrddinger's equation for a hydrogen-

like atom can be solved with complex quantum numbers, and break off solutions
to the azimuthal angle, zenith angle and radial equations can be obtained.

The broken symmetry of the azimuthal angle may be associated with a vector
boson which can be called the "muthon". The muthon may have important physical

effects in systems having large scale broken azimuthal symmetry such as perhaps

in the layered copper oxide structures of high temperature superconductors where
it may serve as the intermediary particle for the formation of Cooper pairs of

electrons or holes. Alternatively, the muthon could also play a role as the
component of dark matter in galaxies where large scale broken azimuthal symmetry

may occur due to the broken internal symmetry of the gravitational field.
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NEWTONIAN GRAVITY IN MATTER
WITH BROKEN INTERNAL SYMMETRY

Richard A. Weiss
U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. The pressure field in matter is associated with a broken int-
ernal symmetry which manisfests itself through the broken internal symmetry of
space and time coordinates. This introduces an apparent non-Newtonian behav-
iour of gravity in matter. The effective Newtonian gravitational constant for
a spherical body composed of matter with broken internal symmetry is calculat-
ed and determined to be a function of radial distance from the center of a
planet or star. The gravity field of a rotating geometrically asymmetric plan-
et composed of matter with broken internal symmetries is investigated. A theo-
retical analysis of Edtvds, mine shaft, borehole and tower gravity variation
experiments is presented in terms of Newtonian gravity in matter with broken
internal symmetry. It is found that the discrepancies from Newtonian gravity
can be described by ordinary Newtonian gravity in matter with broken internal
symmetry combined with the variation of atmospheric pressure down a mine shaft
or borehole and up a tower. This research will affect the calculation of tra-
jectories of missiles and projectiles in the earth's atmosphere, and will have
applications to geophysics and astrophysics.

1. INTRODUCTION. Discrepancies between Newton's law of gravitation and
the measured variation of gravity with distance and composition of ti; attract-
ing bodies have been observed. These discrepancies appeared first in the mea-
surements of the variation of the gravity force with depth in mine shafts.' - "
These measurements indicate a larger value of the gravitational constant than
is found from laboratory Ebtvds experiments.1 -  On the other hand, recent ex-
periments on the variation of gravity up the length of a tower suggest a value
of the gravitational constant which is less than that measured in the laborato-
ry by Edtvds experiments. Differences in behaviour from Newtonian gravity
have also been reported for the Edtvbs type of experiments and with beam bal-
ance experiments. Other evidence for non-Newtonian behaviour has been pre-
sented from solar system and stellar system measurements.

1 6 - 1 8

Attempts to explain these measured results by the introduction of new
types of gravitational forces (the "fifth" and "sixth" forces) that have finite
ranges of the order of hundreds or thousands of meters have been suggested. 23

These new forces would represent the effects of massive spin 0 and spin 1 su-
persymmetric partners to the ordinary massless spin 2 graviton that mediates
Newtonian gravitation with its infinite range. 19 - 2  Much criticism of the re-
ality of these finite range forces has been presented. 2 4 ,zs This is due in
part to the difficulties of separating extraneous effects due to geological
structure from the possible intrinsic non-Newtonian behaviour of gravity. In
fact recent data from a borehole in the ice of a glacier in Greenland suggests
that the gravitation constant is less than that measured by laboratory Edtvds
experiments, and this disagrees with the results given in Reference 1-4 but
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agrees with the observations in Reference 5. The state of both the experimen-
tal and theoretical situation is therefore uncertain.

This paper suggests an alternative explanation for the apparent non-New-
tonian behaviour of gravity in the earth which is based on ordinary Newtonian
gravitation and the broken symmetry of the thermodynamic and mechanical para-
meters of bulk matter such as pressure and internal energy.2 6 p2 7 Some results
have already been obtained toward describing the apparent non-Newtonian behav-
iour of gravity in terms of the ordinary Newtonian gravity field in matter with
broken internal symmetries.2 a This was done by showing that the space and time
coordinates exhibit broken symmetries in matter where the pressure has a broken
internal symmetry. Section 2 introduces the relationship between Newtonian
gravity and the broken internal symmetries of space and time, Section 3 deals
with complex number coordinates and the measurement of space and time, Section
4 considers Newtonian gravity for rotating non-spherical masses composed of
matter that induces broken symmetries in the pressure and coordinates, Section
5 presents a theory for the description of the Ebtv6s, mine shaft, borehole
and tower experiments, and finally Section 6 gives a numerical calculation of
the expected values of the internal phase angles of the radial and. angular co-
ordinates due to the earth's gravity field.

2. NEWTONIAN GRAVITY AND BROKEN INTERNAL SYMMETRIES. A gauge theory of
relativistic thermodynamics has been developed which is based on a trace equa-
tion which for completely symmetrical matter or radiation is given by

2 9

U+T dU 3V -(PV) U  Ua + Td-p (I)/ dV TpayPV

where U = relativistic internal energy, P = relativistic pressure, T = abso-
lute temperature, V = volume of substance, and Ua and pa = corresponding non-
relativistic internal energy and pressure. Throughout this paper the index
"a" will refer to nonrelativistic calculations. The temperature and volume
are parameters for both the renormalized and unrenormalized systems. The trace
equation for matter whose thermodynamic functions have broken internal symme-
tries is given by

2 7

+ dU 3V -L(PV) Ua + dU (2)
+ d dV U dT -pav

where U and P are complex number representations of the renormalized internal.
energy and pressure respectively, and where T and V are the magnitudes of the
complex number temperature and volume respectively. Equation (2) can be fur-
ther simplified by using the following complex number form of the Gibbs-Helm-
holtz-Maxwell equation

T-- T P (3)
3V T

The complex numbers U and P that appear in equation (2) are written as'
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U UeJeU (4)

" PejeP (5)

where U, P, eU and Op can be obtained from a solution of equations (2) and (3).
The temperature and volume parameters that appear in equation (2) are real num-
bers. However the temperature and volume themselves are complex numbers that
are written as

T= Tei8T(6 Te JOT(6)

V VeJ6V (7)

where T and V are the magnitudes of the temperature and volume and it is these
quantities that appear in the trace equation (2). The measured thermodynamic
quantities are given by

z8

Un U cos 0U (8)

Pm P Cos 6P (9)

V V cos 8 V  (10)

T T cos BT (1I)

The phase angles OU and 6p are obtained from equations (2) and (3), while ev
and 6T are related to coordinate and velocity internal phase angles as will be
shown later.

The determination of the space and time coordinate internal phase angles
follows from the complex number Euler equations2 8

ode/dt = - cos 6 r P/Dr + PT (12)r,r r

where the complex number external force (such as gravity) is written as

F = F ej eFr = _-4/3 (13)rr

and where 7 = complex number velocity, t = complex number time and F = complex
number radial coordinate. The complex number velocity and space and time co-
ordinates are written as

28

F reJer (14)

- tej e t (15)

- vejev (16)
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The measured values of the space and time coordinates and the particle velocity
are given by"e

r - r cos e (17)m r

tm - t cos et  (18)

v = v cos e (19)

For matter in equilibrium equation (12) becomes

pd/dE -- cos 8r,r 'P/3r + pfr - 0 (20)

where
28

d /di [(dv/dt) 2 + (Vdev/dt)2 ]/2 8st y  (21)

cOs 8 r,r - a3r [(aP/ar) 2 + ( far)2]1/ 2 cos 8 r,r  (22)

Se 8 - -8 t  (23)

v v +v,t t t,t

0 r + 8r,r + Bv,t - 2(6t + t,t

tp_= p + 8p,r  (24)

vde /dt
tan8 $ - V (25)v,t dv/dt

tan 8t t - tae /t (26)

tan a _P___/Dr (27)
P,r aP/ar

tan 8r, r  rae rar (28)

To obtain the second relation in equation (23) the following relationship is
used

28

ev - er + arr - 8t - at,t (29)

Combining equations (21) through (29) shows that the equilibrium condi-
tion given by equation (20) is equivalent to
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-0 (30)
v

dv/dt - 0 (31)

do v/dt - 0 (32)

and
28

0p M aFr (33A)

(pe r2]1/2 -Q 3B
[(WP/ar) 2 +(Pao/r) 2 cos ar,r - r  (33B)

From equations (23) and (30) it follows that for equilibrium

0 - 8 + a - e - at, (34)

M e + a + -2(0 +0 )
r r,r Vt t + t,t

Neglecting the 's in equation (34) gives the following approximation

6 v ,. 6 t 8 /2 (35)
v t r

The relationship between Or and 6P is obtained from equations (33A) and (33B).
For gravity, equations (33A) and (33B) yield a set of coupled differential equa-
tions for P, Op and 8r .28 An approximate solution of equation (33A) gives the
following equation for matter in a gravity field28

Or - - ep (36)

Then equations (35) and (36) give for a gravitating system

ov "- ' - ep/2 (37)

For a general system one has

a - p (38)rP

where a - index that describes the state equation for matter. Equations (30)
through (33) give the general conditions of equilibrium. For photons 6t - Or
and the light speed has a zero internal phase angle.

From equation (36) and the relation V 4/3T? 3 it follows that the phase
angle for the volume is given by

v "\ 3 r  -
3 6p (40)
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for a gravitating system. For a uniform system the volume is given by

S jeOV 4/3wr 3 
- e•J v 4/3wr3  (41)

a

so that

V -V (42)

The renormalized and unrenormalized scalar coordinates are parameters related
by 28

r - ra (43)

- ,a (44)

- *a (45)

where r - magnitude of radial coordinate, p - magnitude of the complex number
zenith angle and * - magnitude of the complex number azimuthal angle. Thus V
and Va are simply equivalent parameters in the trace equations (1) and (2).

The determination of the broken symmetry phase angle of the temperature 6T
is determined from the energy equipartition theorem which can be written for a
complex number particle velocity as

- <1/2m > kT (46)

where -1 complex number average kinetic energy per particle and where m - par-
ticle mass and k - Boltzmann constant. The real and imaginary parts of equation
(46) can be written as

CR M m/2 f v2cos(20 v)g(v)dv = kT cos eT (47)
0

:I - m/2 f v2sin(2 v)g(v)dv - kT sin eT (48)
0

where g(v) - renormalized molecular velocity distribution function. Then

tan 8T e I /CR (49)

- 2 2 1/2
kT - (eR + eL) (50)

which are the equations of OT and T . For a gravitating system 6v is given by
equation (37), and for this case Ov is independent of the molecular speeds.
Therefore for this case it follows from equation (37) and equations (46) through

(48) that

aT = 2 - 8p (51)
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Because the magnitude of the temperature T must appear on both sides of the ba-
sic trace equation (1) and (2) it follows that

T - Ta (52)

where

kTa . m/2v 2ga a )a (53)
a

In fact equation (52) implies the validity of equation (51) and the relation
g = ga . Therefore T and Ta simply play the roles of equivalent parameters in
the trace equations (1) and (2). The measured temperature is obtained from equa-
tions (11), (51) and (52) to be

Tm - T cos cT  T cos Op M Ta Cos 8p (54)

In view of the complex number values of the volume and temperature it might
be thought that the trace equation (2) should be written in the following com-
pletely asymmetric form

-dU 3 d() U  Ua + Ta a(55)
U+ TV-) -3V dT( a-

"U:)/aVa

but this is not correct as can be seen by applying equation (55) to the real
classical gases. The experimental fact that the first term of the virial expan-
sion (the ideal gas) and che second virial coefficient must be unaffected by
equation (55) requires that the temperature and volume terms that appear as com-
plex numbers in the left hand side of equation (55) must in fact actually appear
as real numbers equal to the magnitudes of the complex number volume and temper-
ature as shown correctly in equations (2), (42) and (52).27 The trace equation
corresponds to a uniform pressure and energy density system So that equations
(42) and (52) are implicitly assumed in equations (1) and (2).

For systems with nonuniform pressure fields, the determination of the in-
ternal phase angles of the coordinates generally involves the solution of cou-
pled differential equations." Thus for gravitating stars or planets- the deter-
mination of 8r involves the solution of the following two equations

2 8

Cos r Cos I + P 2( 41- (56)

r, r2 3r 7 r o r,r P/-ar

6P + tan- IP aP/3r ) 2 0r + (57)

combined with the solution of the relativistic trace equation (2) which links

643



ep and P to density and temperature for gases, solids or Fermi liquids with in-
ternal phase. Equation (56) is the combined equation that arises from the fol-
lowing equilibrium equation

28

Fi 2 1aeP/ar 2 1/2
P/3r cos L + P P-r - - GMp/r 2  (58)

and the relationship of mass and density (which will be treated in Section 3)
given by

28

cos a aM/Dr - 4wr 2p (59)r,r

When the internal phase angles are set to zero the equilibrium equation (58) re-
duces to the standard result

3 0

P/r - GMl/r 2  (60)

The small gradient approximation to equation (57) is

aep/ar

2 + P P 2e (61)
P aP/3r r

which will be used in Section 5 for approximate solutions for r.

Newton's gravitational law can be written for spatial coordinates with bro-
ken internal symmetry as

2 8

= - GM/ 2  (62)

where g - complex number acceleration of gravity. The measured acceleration of
gravity is given by the real value of equation (62) as follows-8

gm - GM/r2 cos(28r) (63)

Written in terms of the measured radial coordinate given by equation (17) gives 28

2 2

gm - GM/r2 cos(2 r) cos 0 (64)
m r

These formulas are valid for spherical masses. The conventional value of the.
acceleration of gravity is expressed in terms of the measured radial distance
as

2 8

gc -GM/r =- GM/r2 cos-2 r (65)m r

and therefore
2 8
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g - 9c GM/r 2[ - cos( 2 er) cos 2 er] (66)

3e 2 GM/r
2

r m

The derivatives of gm and gc with respect to r are given by 
8

agm/ar - 2GM/r3 [cos(28r) + raer/ar sin(2 r)] - 47Gp cos(2 r ) (67)

agc/ar - 2GM/(r 3 cos 2 0 r)(1 - tan er raO r/ar) - 41Gp/cos2 0r (68)

Then a parameter D can be defined given by
z8

D = agm/arm - agc/ar m  agm/ar - agc/ar (69)

ag c/ar M agc/ar
c m

A + B
C

where

A - [cos(20r) Cos 2 e - 1](i - 2rpr 3/M) (70)

2

B raer /ar [sin(2 r) cos
2 er + tan r] (71)

C I - tan 6 rae r/ar - 21rpr 3/M (72)r r

For small 9r the parameter D can be written as's

D - 302(1 - ) (73)
r

rioraer/ar
r r (74)

I - 2-rpr 3/M

From equation (64) it follows that for spherical bodies the Newtonian law
of gravitation in space with broken internal symmetry requires a coordinate de-
pendent effective gravitational constant given by

Gr - G cos(2e r) cos 8r  (75)

For small values of Or equation (75) becomes
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G - G(I - 362 + '-) (76)
r r

Therefore for space with broken internal symmetry Gr < G , and G represents the
ideal case of gravitation in totally symmetric space (Or - 0) . For a homoge-
neous spherical planet or star the internal phase angle of the radial coordinate
will be a function of the radial coordinate magnitude Or - Or(r) and is obtained
as a solution to the coupled gravitational equilibrium (56) and (57). In gener-
al however Or - er(r,*,O) for an inhomogeneous body such as the earth, and there-
fore Gr will depend on latitude and longitude. Equations (64) and (75) are valid
for both the interior and exterior of a spherical planet.

From equation (75) it follows that

3G /Dr - - GE6O ar (77)

3Gr / - - GE6r /alp (78)

3G ra - - GE6 r/30 (79)

where

2
E - sin(26 r)(4 cos ar - 1) (80)

For small Or , E . 6 6
r . In Section 5 it is shown that Or < 0 and 3er/Dr > 0

for idealized planets so that aGr/ar > 0 . From equations (77) through (79) it

follows- that

r/G rG /3r = - 2HrOr /3r (81)

,P/G rG /aw = - 2Htpaer/9 (82)

D/Gr 3G /30 - 2HOMr /34

where

H - tan(2 8r) + tan 8r (84)

For small 8 H 38rr r

It is the variation of the acceleration of gravity of the earth that is de-

termined in gravity measurements, and it is important to have a measure of the

difference between the rates of change of gm and gc with respect to radial dis-

tance. One such measure is given in equation (69). Another measure might con-

sider the difference of the normalized rates of change of the acceleration of

gravity as follows
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rg magm/ar - rg cagc /ar
2  r/g c gar (85)

rm/gmagm/arm - rm/g cagc/arm

rm/g cagcarm

From equation (63) it follows that

r/gm agm/ar - - 2[1 + tan(2 r)ra ra/r - 21rr 3p/M] (86)

while from equation (65) it follows that

r/gcagc/ar = - 2[1 - tan 8r r36r/Dr - 2wr 3P/M] (87)

Then

Hrar /3r

2 - tan er r3r /ar - 27r 3P/M (88)

where H is given by equation (84). For small values of Or

D n + 3 2 n (89)

2-r

where n is given by equation (74).

3. MEASUREMENT AND GEOMETRY OF SPACE AND TIME. It has been assumed that
the complex number space and time coordinates are Euclidian and that 2s

2 2 _2
S+ y r (90)

sin 2  + cos 2  (91)

tan =  (92)

where

R -xeJex (93)

ye Jy (94)

- oe Je (95)

sin = ejaso (96)
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cos -Cejeco (97)

where complex number azimuthal angle, and where
28

So [sin2(0 C 6) + sinh 2  sin )]1/2 (98)

CO [cos2 (0 C 5) + sinh2 ( sin 6 )]1/2 (99)

tan 6o = cot(O cos e ) tanh(O sin 6 ) (100)

tan 6co = tan(O cos 6 ) tanh(O sin ) (101)

The component equations of equation (90) determine r and 6r and are written as

2 2 2
x cos(2e ) + y cos(26 y) = r cos( 26r) (102)

2 2 2
x sin(20X) + y sin(2 y) = r sin(26 r)  (103)

while the component equations of equation (91) are

52 cos(26 ) + C2 cos(2e ) = 1 (104)

S2 sin(26 ) - C 2 sin(2E6 ) = 0 (105)

Equations (90) through (105) also give

S /C = y/x (106)

6SO + 6co = a - e (107)s*c~y x

2S , sin(2e C)/sin[2(6CO + 6 s)] (108)

C sin(26 )/sin[2(6 + 6s)] (109)

The measured coordinates and angles are given by
2 8

x -x cos 6 (110)m x

Y y cos 6 (111)

r = r cos 6 (112)
mr

* cos 6e (113)
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Substituting equations (110) through (112) into equations (102) and (103) shows
that

2 + y 2 r2 (114)
m m m

which indicates that in a broken symmetry system the measured coordinates are
non-Euclidian.

A. Length of Curves

The length of a curve in complex number space is given by

f - LeJoL = f[F2 + (df/d,)2]I/2 dT (115)

where

d- er sec Br,r dr (116)e sec B dO

(r er + Br,r - e (117)

sec 6 = [I + (r3r/30 2 1/2 (118)

sec B = [i + (e6 / l)]/ 2  (119)

The measured length is given by

L =L cos 8L  (120

For a circle with 3r/}€ = 0 the complex number length is

(r f sec , dp (121)
0

If in addition eb and 6r are independent of (p equation (121) becomes

= 21reJ(or+P) (122)

L - 27r (123)

eL  r + e (124)

The measured circumference is

L = L cos 9 = 27r cos(r + 93) (125)
m L r 4
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Note that if -W 0

L - 2nr (1.26)

eL -6er  (127)

L - 2wr cos 8r - 2ir (128)
mr

which is the result obtained in Reference 28.

B. Area of a Plane Curve.

The area enclosed by a plane curve in complex number space is

I fv2d 1f2e (2Or+O0 )
A J f r ej (do + jOdO) (129)

= -I fr2eJ(2 Or+O+60,0) sec 5, do

For a circle with r = constant

A=L- feJ( 2 r+eo+80,0) sec dO (130)

If 0r and 60 are constants

Aej 6A = -r 2ej( 26r+oP (131)

and therefore

A = iT2r (132)

A = 20 + 0 (133)

m r m r r

where Am  measured area. Finally, if 6= 0

2
A T r2  (135)

O = 20 (136)

Am ir cos(20 r  2 c2s(20)/2 (137)

which is the result obtained in Reference 28.
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C. Area of Surface.

The area of a surface is given in complex number spherical coordinates as

-f 2 sin T dT dT (138)

fr 2S ei (2 6r+esP+8 P+6 )(d* + jid8 *)(dO + JidS¢)

- 2S sec 0 , , sec , d* d

where t - complex number zenith angle given by

- je (139)

and where

sec 8, [I + ( /)2 1/2 (140)

sec [i + (ia0 /0) 2]1 /2  (141)

PS 2 0 r + 0 +a +0 +6 (142)

S = [sin2(ip cos e6) + sinh2 (ip sin 6 )]i/2 (143)

tan e,, = cot(* Cos 80) tanh(p sin e) (144)

If 09 and e are constants then

s = eJ(Osp+el +e )fr2S eJ2er dip d' (145)

For r and 6r independent of angles

= ej (26r+esq,+6$+6 ) 27r 2 fS, dw (146)

Directly from equation (138) it follows that if r, 6r' 0 and e are independent
of angles (a crude approximation)

S 2reJ j(26r+0)[ - cos(ireJ p)] (147)

It is easy to show that equations (146) and (147) are equivalent. If 8 = 0
it follows that

= 4r2ej(26r+eb )  (148)
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Finally, if - 0

- 4wr2ej 28r (149)

S - 4wr2  (150)

es M 2er (151)

Sm - 4rr 2 cos(28r) (152)

M 47r2 cos(2e )/Cos2 e
m r r

From equations (62) and (147) it follows that Gauss's law for spatial coordi-
nates with broken internal symmetry is given by

fgdS " - 2rGMe jeq[ - cos(ne 8 ')] (153)

assuming 8¢ and e* are constants (which can only be a crude approximation).

D. Volume

The volume contained within a closed surface is written in complex number
spherical polar coordinates as

=f2 sin T d d di (154)

= 2 sec a ,4 sec $ ,S sec a r,re dpdbdr

where

I V 3 6r + 6r,r + Gsi + % + % , + 8e + , (155)

If 8* and a are constants

V ej(6sp+OW+E)fr 2S sec ej( 3 8r+Srr) dipdCdr (156)

For 6, and 6 = 0

Jr2 sin sec ar,r ej (3 8r+8 r,r) # dodr (157)

For r and 8r independent of p and c (a sphere)

= 47fr2 sec a ej (36r + 6r ,r ) dr (158)

652



The component parts of equation (158) are

Vcos 8V M 4wfr 2 sec 8rr cos(3 r + 8rr)dr (159)

V sin 6v - 41rfr 2 sec 8r, r sin(30r + 8 r,r)dr (160)

which determines V and Ov for a sphere in a gravitational field. For 8 - con-
stant r

V eJ30r 4ir/3r 3 fi 4l/3 3  (161)

V 4n/3r 3  
(162)

aV- 38r (163)

4ff/3r 3 cos(36) = 4n/3r 3 cos(38 )/Cos3 6 (164)m m r r

E. Density

The rest mass of a body does not have an internal phase because it is in-
variant under the effects of the basic trace equation (2).29 The instantaneous
density is given by

= pej 6 = dM/dV cos V,V dM/dV e- j ('V + 'V,V) (165)

where

tan 3VV = Vde /dV (166)

Therefore

P i cos 3 V,V dMdV (167)

0 -8 - V (168)

Combining equations (165) and (154) gives the following results for the density

P (r2S sec 6 sec , sec 6 Lr -  dMdP *'4 o rr d do dr (169)

6P - v (170)

where V is given by equation (155). For radial symmetry equations (158) and
(165) give
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s r r M(171)41tr 2 ar

e P 3r - 8 (172)ep r Br,r

Equation (171) combined with the following stellar equilibrium equation
for broken symmetry matter

2e

r,2rap/ar cos r  [I+ (Pp/ r 211/
M - - G r,r [P/ar )  (173)

GP Cos $r,r sec 0P,r

gives the combined stellar equilibrium (56) for ordinary stars. The angle BP, r

that appears in equation (173) is defined by

tan 8p,r = P War (174)

The measured density is given by

Pm = p cos 8p (175)

For a relativistic interacting system having a complex number internal en-

ergy U , the mass is given by M = U/c2 and the instantaneous density is1
7

-2 dU/IdVl - dR/jdgj (176)

r

Combining equations (158) and (176) gives

Cos ,r [(aM/r) 2 + (Mae /ar) 2 1/2 (177)

r 2

8 Pr U +8 (178)
pr U U,r

where 8M 6U and 8U,r is given by

aU aU M

tan 8 r -U - M -r / -M (179)
U, r U r 7F/7r '5 ar 3r

If special relativity is included the pressure adds to the internal energy

density, and the inertial mass density becomes
3 1 - 3 3

Pi. Pr + P/c2  (180)
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while the gravitational mass density is

G " Pr + 3f/ c 2  (181)

Equations (180) and (181) can be simplified by combining them with equation (158).
It should be pointed out that the complex number values for coordinates is also
suggested by string theory.

3 4

4. NEWTONIAN GRAVITY FOR NONSPHERICAL MASSES WITH BROKEN INTERNAL SYMMETRY.

A. Complex Number Gravitational Potential.

By analogy to the standard scalar form of the gravitational potential for a
nonspherical body, the following expression for the complex number gravitational
potential for a nonspherical body existing in space with broken internal symme-
tries is postulated

a
3

- 39

= - GIM/[ - - (cos )](182)

where V complex number potential, a complex number equatorial radius, r =
complex number radial coordinate of a point outside of the body, in = complex
number coefficients, and Pn(cOs q) - complex number Legendre polynomials corre-
sponding to the complex number zenith angle p . The complex number quantities
appearing in equation (182) can be written as

= Vej 9 V (183)

= ae j a (184)

n = I ej In (185)

= P ej OPn (186)

where, for instance, Pn and 8Pn - magnitude and phase angle of the complex num-
ber Legendre polynomials. The real and imaginary parts of equations (182) are
given by

V cos 9V = -G [cos r - 12P2 (a/r)
2 cos(o 12 + aP2 + 20 - 3r) ... ] (187)r r 221 2 a r

V sin 6v =M [sin r + 12P2 (a/r) 2 sin(612 + 6p2 + 2 e - 38) + ..- (188)r r 221 P2 a r

Equations (187) and (188) can be used to determine V and 6V • For instance

tan 6 -sin 0r + 12P 2(a/r)2 sin( 12 + 8P2 
+ 20a - 36r) +  (189)

Cos 8r - 12P2(a/r) cos( 12 + OP2 + 20a - 3)-
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while squaring and adding equations (187) and (188) gives V2 . In the limit
a/r -* 0 equations (187) and (188) become

Vm  VR -V cos Ov - -GM/r cos 6 r  - GM/rm cos2

V, - V sin 0V M GM/r sin er - GM/rm sin er cos Or  (191)

which corresponds to a point mass whose complex number potential is given by

- - GM/F (192)

The various terms in the gravitational potential will now be considered.

B. Complex Number Legendre Polynomials.

The appearance of Pn(cos ;) in equation (182) needs some explanation. Fol-
lowing the standard prescription for obtaining Legendre polynomials for scalar
angles, the following generalizations to complex angles are given 

°

P - (193)0

P1 M cos (194)

P2 1 /2(3 cos 2  - 1) (195)

P3 
= 1/2(5 cos t - 3 cos i) (196)

P4 = 1/8(35 cos - 30 cos + 3) (197)

P5 i 1/8(63 cos p - 70 cos 3 + 15 cos i) (i98)
P6Pffi 1/16(231 cos - - 31 -o + 105 2o - - 5 199)

where Z

- teJol (200)

cos C C ¢e-j ci (201)

[cos 2 (l cos 8) + sinh 2 (P sin 9 ]/2 (202)

tan 0c, M tan(W cos 60) tanh(j sin ) (203)

From equations (186) and (194) it follows that

P I . C (204)

0Pi =- 0 (205)
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Equations (186) and (195) give

P2 C eP2 - 1/2[3C2 cos(2O6c) - 1] (206)

P sin eP' -3/2 C sin(2ec) (207)
2 P2 -- 2

which gives

P 1/29C4 - 6C2 cos(26 ) + i]1/2  (208)

- 3C 2sin(28 )
tan eP2 - 2 c (209)

3C T cos(2e C ) - I

From equation (186) a7d (196) it follows that

P3 Cos 0OR 1/215C3 cos(3e 6) - 3C cos a (210)

P3 sin e8 1/2[-5C sin(30 ) + 3C sin '*e6 (211)3 P3 'pP c0

which gives
1/2r2C6  3C 4  9 2 I/2

P3 - 1/2[25C - 30C4 cos(2c,) + 9C (212)

- 5C3 sin(30) + 3C sin9
tan C4 ) ' (2113)
P3 5C cos(38e ) - 3C cos c

and so on for Pn and ePn

The complex number Legendre polynomials can also be written in terms of the
complimentary angle 7 which is defined by

sin - cos (214)

cos - sin ' (215)

where R complex number latitude and
2 s

sin - S ejesX (216)x

cos - C e- j ecX (217)

and where
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Sx W (sin
2 (X Cos e ) + sinh2 ( sin 8 )]1/2 (218)x x x.

CX W [cos 2(x Cos ) + sinh2 (x sin 8X)]I/2 (219)

tan sx cot(x cos 0 ) tanh(x sin 6 ) (220)

tancx - tan(x cos X) tanh(x sin 8 ) (221)

The defining relations given by equations (214) and (215) can be written as

SX M C (222)
x iJi

Cx M S (223)
esx -8c (224)

8 - -8 (224)
sx ctp

6sip = 6cx (225)

which relate X and to and 8.

Combining equation (214) with equations (193) through (199) gives

P 1 (226)0

P1 M sin (227)

5 - 1/20 2 1) (228)

P3 1/2(5 sin x - 3 sin ) (229)
P 4 = I / ( 5 i 4  -2 -

= 1/8(35 sin 30 sin X + 3) (230)

.5 3P5 = 1/8(63 sin x - 70 sin + 15 sin ) (231)P6=1/623 i 6  4 2-

P 1/16(231 sin 6  315 si + 105 sin .. 5) (232)

Note also that

P = S (233)

9 -e aS (234)

P2 = 1/2[9S4 - 6S2 cos(28 ) + 1 11/2 (235)
2x x sx

tan3 sin(28sx) (236)
3P2 35 cos(26 s) - I
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P3 " 1/2[25S6- 30S cos(2e ) + 9S2l/ (237)
3x x sX X

553 sin(3 sX) - 3Sx sin 8

P3 5S cos(3e ) - 3S cos 6sx

Consider now the special case of the equator and the north pole. At the

equator equations (193) through (238) give

X M 0 * = r/2 nOr/2) , 0 (239)

0 cx(0) 0 sx (0) = 0x(0) s* (i/2) -0 (240)

ec (r/2) -- 0 (0) (241)

Sx(O) , 0 Cx(0 ) ,1 (242)

S(T/2) = 1 C(/2) = 0 (243)

P 0 1 P 0 00 =1Po Oo 0 Po o

P, 0 0 =0 x(0) ~ 0P1 " P1 -- o×ol-

P2-= 1/2 9P2 7T P 2 -1/2 (244)

P = 0 a =P0x(0) P3 =0

P = 3/8 P = 0 P = 3/8

where 9 X(0) = value of 9 at the equator.

At the north pole the following relationships are obtained from equations
(193) through (238)

x = r/2 0 x (Tr/2) 0 (245)

9C (0) = 0 s (0) = a (0) esxOT/ 2 ) = 0 (246)

ScX(7/2) - - e (0) (247)

S (0) - 0 C (0) - 1 (248)

Sx(Tr/2) - 1 Cx (7/2) = 0 (249)
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Po= 8o - 0 PPt 0 1 6 PO 0 0I=

P-i1 P1 019

PP2 1 OP2 0 P2 1 (250)

P3 -1 8P3 0 P3 1

P 4  1 P4 0 P4 1

where 8*(0) - value of 0* at the north pole.

Equations (214) and (215) are valid for complimentary angles. Combining
these conditions with equations (218) through (221) shows that if X = 0 then

- 7r/2 and if * - 0 then X - n/2 so that

8 (Tr/2) - 0 (251)

8 X (7/2) - 0 (252)

as indicated in equations (239) and (245). This shows that for complementary
angles

+ / = /2 (253)

and the right angle 7r/2 is not associated with an internal phase angle. The
component parts of equation (253) are given by

cos 6 + X cos ex = 7r/2 (254)

,p sin 9 + X sin 8X = 0 (255)

Equation (254) states that

m Xm =7r/2 (256)

which states that the sum of the measured complementary angles is equal to 7/2.

The angle 7/2 apparently is the only angle whose internal phase angle is
zero, all other angles exhibit an internal-phase. Consider an angle p which
is composed of two component parts ip, and 12 so that

= i + '2 (257)

cos % = I' cos 6 + '2 cos %p2  (258)

sin , - I sin e6l + 2 sin 9 2 (259)
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Equation (258) states that

*m " *1m + *2m (260)

which agrees with reality in that the measured total angle is the sum of each
measured part. For the special case of w/2 , equations (254) and (255) give

- r/2 sin e0 /(cos e0 sin eX - sin 0 cos ex) (261)

X -it/2 sin 6 /(cos e sin e× - sin e cks 0) (262)

Alternatively equations (254) and (255) can be written as

cos 6. - (1 - X 2/*2 sin 2 e ) 1/2 (263)

S(l - X2/ 2 sin 2 6X) 1/ 2 + X cos ex = 7/2 (264)

Figure 1 shows the variation of B. and S.

C. Complex Number Gravity Potential Coefficients In

The dimensionless complex number coefficients In that appear in equation
(182) describe the distribution of mass within a planet. Equation (182) shows
that 10= 1 and 11 = 0 because the origin of coordinates can be located at the
center of mass of the planet. For practical calculations only the second or-
der coefficient 12 is retained. The value of 12 is obtained as an obvious gen-
eralization of the standard scalar form for this coefficient as follows35

12 = I,,eJI12 - )/(M2) (265)

where C - complex number moment of inertia about the polar axis, and A = com-
plex number moment of inertia about one of the transverse axes. If the z axis
is taken to be the polar axis

35

C CeJ 0C = f(R2 + 72)dM (266)

A AeJ0A = f( 2 + j2)dM = f(72 + j2)dM (267)

The real and imaginary parts of equation (265) are

12 cos 012 = 1/(Ma 2)[C cos( C - 2 a ) - A cos(0 A - 2 a)] (268)

12 sin 012 = 1/(Ma2 )C sin(e C - 2 a) - A sin(eA - 28a)] (269)

From equations (172) and (173) it follows that
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2 . I/(M2a4)[C2 + A2 - 2AC cos(e - 6 (270)
12 C A

C sin( C - 20) - A sin(6A - 26 a )tanO -1 A (271)
C cos(e C - 26a) - A cos(6A - 2 a)

The measured values of 12f C and A are given by

I2m 12 cos O12 (272)

Cm = C cos 6C (273)

Am - A cos 8A (274)

D. Rotational Effects of a Gravitating Planet for Space and Time
with Broken Internal Symmetries.

For a rotating planet (or star) the total potential also includes a rota-
tional term, and is written as an obvious generalization to the standard scalar
form as follows

3
5
- 3 9

GM/F + GM/ri2P2 (9/f)
2 _ 1/2 2 2 2 (275)

where U total complex number potential and 0 = complex number angular speed.
The complex number angular speed has already been considered in mechanical pro-
blems.2 Combining equation (275) with equations (216), (217) and (228) gives

2 22j 2-22 2jecx
GM / + GM/I 2 (g/ ) 1/2(3S e sX - 1) - 1/2 r W C Xe c (276)

The total potential can be evaluated at the equator ( = 0 and at the north
pole X = r/2 as follows

Uo - GM/a - GMI2/(21) - 1/2 a M equator (277)

Uo - GM/F + GMi2Y2/E3 north pole (278)

where S (0) = 0 was used to obtain equation (277), and S,(-T/ 2 ) = I and
X je0es(i/2) = 0 were used to obtain aquation (278), and where E = ce = complex

number radius at the poles. The potentials in equations (277) and (278) must
have the same value for the geoid so that the complex number flattening is given
by the following generalization of the standard scplar result

3 5

f = fejef - (i - E)/ 3/21 2 + 12 3/(2GM) (279)

where it is assumed that a c c to obtain this equation. From equation (279)
it follows that
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f cos af O 3/2 12 Cos 812 + W 2a3/(2GM) cos(286 + 3ea)  (280)

f sin Of 3/2 12 sin 012 + W a /(2GM) sin(26 + 3a ) (281)

These equations determine f and 0f , The measured value of the flattening is
fm M f cos Of .

The real and imaginary parts of equation (275) are

U cos 8U - - GM/r cos 8 + GMI P a 2/r3 cos(8 + 6 + 2e - 36r) (282)
Ur 2 2 12 P2 a r

22^2
- 1/2 r 2w 2 cos(28 + 20W - 206)

X r cx

U sin OU U GM/r sin 8r + GMI2P2a2/r3 sin(6 1 2 + 6p2 + 26a - 36r) (283)

22_2
- 1/2 r w C sin(20 + 20 - 28)

X r W cx

Equivalently equation (276) can be used to write

U ccr3 6 = - GM/r cos 8 + 3/2 GMI2 a2 S2 /r
3 cos(8 +2e +28 -30 ) (284)

U r 2 X 12 sX a r

- 1/2 GMI2a 2/r
3 cos(e +26 -30r) - 1/2 r 2 C cos(28 +26 - 26)

212 a r x r W cX

U sin eU 
= GM/r sin 6r + 3/2 GMI2a

2S2/r 3 sin(9T9 +
20  +29 -3e) (285)

1/2 GMloa'/r sin( 12+29a-38 ) - 1/2 r-_jCX sin(26 r +26-29 c

E. Acceleration of Gravity

The acceleration of gravity of a rotating planet is obtined from equa-
tion (275) by

= geJe = - 39/3r (286)

9 9 7_ _ 9 9

- - GM/?- + 3GM/F2(a/F)-2 P2 + FM cos

The real and imaginary parts of equation (286) are

g Cos e - GM/r 2 cos(2e r) + 3GMa 2/r 4IIP2 cos( 2+P2+28 a-4r) (287)g - s6 1 +~

22
+ rw2 C2 cos(O +29 -26 )

r CX
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g sin 0 M GM/r2 sin(20 r ) + 3GMa 2/r 412P2 sin(e1 2+P2 +2 ea-40 ) (288)

22
+ rw2 C sin(0r+2e -206)

X r W cx

Equation (286) can also be written as
2 +3~,...2 2 -1 +--2 2 -2jx

GM/P2 + 3GM/2 (I/P)2i2 1/2(3S2e 
2 J Ss X _ 1) + rC e jecx (289)

and therefore
g cos e = - GM/r2 cos(26r) + 9/2 GMa2/r412 S2 cos(12+26 +26 -40r) (290)

gr 2 2 sX a r

- 3/2 GMa 2/r 412 cos(01 2 +2e -40 ) + r2 C2 cos(Or+26 -26 )2 2 a r X X

g sin 0g = GM/r2 sin(20 ) + 9/2 GMa2/r 41 2 sin(0i2 +20 +2e0-40r) (291)
gr 2 2 sX a r

- 3/2 GMa2/r412 sin(01 2 +26 -40 ) + rw2 C sin(e +20 -2e )2 2 a r x r Wca X

The measured acceleration of gravity is given by g cos 6g Equations (287)
and (288) or (290) and (291) can be used to determine g and 0 . These equations
can be written in terms of measured quantities by making the substitutions

r = rm /cos (292)m r

a = a /cos e (293)m a

c c lm/Cos a (294)

X = Xm/COS 9x  (195)

= W'm/Cos 9 (296)

12 = 2m /Cos e 2 (297)

f = f /Cos e (298)
m

where rm = measured radial coordinate, a, = measured equatorial radius, c =

measured polar radius, Xm = measured latitude, wm = measured rotational speed,
12m = measured mass distribution coefficients and fm = measured fldttening.
Substituting equations (292) through (298) into equation (287) gives

g - GM/r2 cos(26 ) cos 2 0 (299)gnM r r

+ (3GMa2 1P Cos 4 a )/(r4 Cos 2 cos 12) cos(2p2+20 a-4e)
m 2m 2 r m a) 12 12P2 a r

" (r rj2 C 2)/(cos 0 Cos 2 ) cos(a +2 -29 )
mm X r r w cX
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Equivalently, substituting equations (292) through (298) into equation (290)
gives the measured acceleration of gravity as

- GM/r2 cos(26 ) cos 2  r (300)
gmm r r

+ (9GMa2 12 S2 cos4 e )/(2r4 Cos2 a cos el) cos(0 1 2 +2 sX+ 2 6 a- 4 r )

(3GMa2I1 cos e )/(2r 4 cos2 e cos 0) cos( +2ea-4)
m m r M a 12 12 ar

+ (r w2 C 2)/(cos 0 cos 2  ) cos(O +2e -20
mX r W r W X

From equations (218) and (219) it follows that SX and CX can be expressed in
terms of the measured latitude by

SX = [sin 2 xm + sinh 2 (Xm tan 6X)]i/ 2  (301)

CX = [cos
2 Xm + sinh 2(Xm tan 1X)]i/2 (302)

For small 6X it follows that

S X sin Xm (303)

C× cos Xm (304)

Frcm equations (220) and (221) it follows that

tan es6 = cot ×m tanh(Xm tane ) (305)

tan ec = tanx m tanh(Xm tan a) (306)

F. Acceleration of Gravity on the Geoid

The approximate shape of the geoid for a planet with broken internal sym-
metries is written as a simple generalization of the standard scalar expression
as follows

3 5

2-
r= (i - T sin X) (307)

From equation (307) it follows that

-2 +-2 2F sin2 + (308)

Using equation (308) in the first term of equation (286) gives for the accel-
eration on the geoid

2 2 2 2 2
GM/ (I + 2T sin 7) + 3GMI9 j P + w cos ' (309)

The real and imaginary parts of equation (309) are written as
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g cos e g - GM/a2 cos(20a ) - 2GMfS2/a2 cos(6 +26 -2) (310)
g x fsx a

+ 3GMI2 P2 /a2 cos(Oe2+ep2-2ea) + a2 CX cos(6a+28 -28x

2 21 22 ax ac

- - GM/a2 cos(2ea) - 2GMfS /a2 cos(ef+28 -28 a )a x f sx a

+ 9/2GMIS 2 /a2 cos(e2+28s-28) - 2 )
2 x 1''2 sX 2 a 3/'2GMI 2 /a cos(8 12-2e a

22
+ a2 C2 cos(Oa+2O -28X

g sin 8 = GM/a2 sin(28a) - 2GMfS /a2 sin(ef+26s-2 a) (311)ga X fsx a

+ 3GMI2P2/a2 sin(6i+6p-2ea ) + aw2 sin(S +2e -2e)
2 2 12 P2a x a hi cx

- GM/a2 sin(2a) - 2GMfS /a2 sin(Of+2 sX-2 a)

+ 9/2GMI2S/a
2 sin(el2+2 >s-2e a) - 3/2GMI2 /a

2 sin(i 2 -28a)

22
+ aw C sin(ea+ 26 -2e )

Equations (310) and (311) can be written in terms of measured quantities by using
equations (292) through (298). The measured acceleration on the geoid is given
by equation (310).

The acceleration of gravity at the equator is obtained by using equation
(309) with equations (239) through (244) that describe the equator, with the
result that

ge =-GM/ 2 - 2 + a.2 (312)

The real and imaginary parts of equation (312) give

g cos 9ge = - GM/a2 cos(2 a) - /a2 cos(9 -2ea) + aw coS(a+2e (313)

eine aMa 12 a a

g e sin ge - GM/a 2 sin(2 a) -3/2GMI2/a2 sin(e12-29a) + aw sin( a+26 ) (314)

from which ge and ege can be determined. Combining equations (279), (309) and
(312) and neglectirg higher order terms gives

- ge[I + (5/2E - f)sin 2 7] (315)

where
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me Jem . Z2a3 /(GM) (316)

and where i is related to the complex number flattening f by equation (279) which
can be rewritten as

- 3/212 + f/2 (317)

Equation (315) is the complex number generalization of Clairut's equation. 3 5

Equation (315) can be written as

g cos 9g - g cos g + 5/2gemS coSOge+6 +28 ) - g fS2  e f s (
g e ge e cXs(8 m aX e X cose f8 +2 (38

g sin 0. W g sine + 5/2gemS2 sin(ege+e +28 ) - gefS2 sin(g +8f+28 ) (319)
g e ge e em ax ex ge f SX

G. Apparent Non-Newtonian Effects

The measured acceleration of gravity given by equation (299) has to be com-
pared to the conventionally calculated acceleration of gravity in order to esti-
mate the magnitude of the discrepancy. The conventionally calculated accelera-
tion of gravity is just the scalar form of equation (286) in which the measured
distances and angles appear as follows 35

c22 2
gC = GM/r + 3GMa2/r4 1 P  + rm W2 cos Xm (320)

m mrm 2c 2c m m

m m m2c m
242 2

3/2GMa2/r4 1 + r w cos X
m m2c mm m

where the conventionally calculated second order Legendre polynomial is written
29as

P2c 1/2(3 sin 2 Xm - 1) (321)

The conventionally calculated mass distribution coefficient 12c is similar to
equation (265) in that 3 5

1 2c = (C - Ac)/(Ma ) (322)

where the conventional moments of inertia are given by3 5

Cc f(x2 + Y2)dM (323)

Ac - f(x2 + z2)dM - f(y2 + z 2)dM (324)

Thus the conventional calculations are done using the measured coordinates of
geodesy rm , xm , Ym , Zm and Xm

Comparing equation (320) with equation (299) gives
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gm - gc - GM/rm[I - cos(28r) cos2 er] (325)

24  4o2 83MGa 2 cos 4
" r4 Cs 9r 1 2P cos(e 1 +8 P +26 -46~ r- c

L a2 C 21P2 a r

C2
Sr w2 CX - coS(er+ 2  -2cx) 2cos x+ m m Cos 6 r Cos 2 6 2 XM

where P2 and 6p2 are expressed in terms of the measured latitude xm by using
equations (235), (236), (301), (302) and (306). In a similar fashion combining
equation (300) and (320) gives

S-c GM/r2 [l - cos(28r) Cos 2  ] (326)

9GMa 2 Cos 49m r 1s 2 cos(8 +26 +2 -4e sin 2

2r4  cos 2 X a r 2c X
m a J

3GMa2 Icos4 e mi r 1 o~1+8_8)_1

2r4  J cos 2  81 2 cos 12+2ea4e r 
12cI

m a

C 2 -72 CX r2 2c
+ r 2 cos(r +2e -29 ) - cos X

r W

The first term in equations (325) )r (326) gives the dominant effect of the bro-
ken symmetry of space on the discrepancy between the measured and conventional!-:

calculated values of the Newtonian acceleration of gravity. From these two equa-
tions the parameters D given by equation (69) and D2 given by equation k35) can

be calculated.

5. MINE SHAFT, BOREHOLE, TOWER AND EOTVOS EXPERIMENTS. This section con-
siders the apparent deviations from Newtonian gravity that have recently been

reported in the literature. 1- S These discrepancies have been found in labora-
tory Ebtvds experiments where the validity of Newton's gravitation law is exam-
ined over short ranges for deviations from the inverse square law and to detect

a possible dependence on the composition (baryon number) of the attracting

masses. 6- 15 Deviations from the inverse square law have also been found in the

measurement of the acceleration of gravity over vertical distances of hundreds

of meters in mine shatt, borehole and tower experiments.1-S ,2L', 25 An analysis
of these apparent discrepaacies is given in this section which is based on the

broken symmetry of space t'iat is induced by a pressure field. ' A spherical
earth assumption is made for the calculations done here so that the acceleration
of gravity and the effective radial gravitational constant are given by equations
(64) and (75) respectively in terms of the internal phase angle 9r of the radial

coordinates.
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A. Small Argument Approximation to the Equilibrium Equation
for the Internal Phase Angles of the Radial Coordinates.

For the case where Op varies slowly with radial distance, the following
approximations can be written for equation (57)

6p + P P/ 26r (327)P 30 /3rr

The solution of equation (327) determines 6r(r) in terms of P(r) and 6p(r) and
hence by equations (64) and (75) the acceleration of gravity and the effective
gravitational-constant are also obtained. As a simple example consider the case

P - P(O)e -a r  (328)

ep 6 p (O)e- $r (329)

where P(0) and 8p(O) - pressure and its internal phase angle at the center of
the earth. Combining equations (327) through (329) gives

= - 1/2(a + 8)/a6p(0)e - r (330)

- /2(a + W)/ p

For the center of the earth r = 0 and equation (330) gives

8 r(0) = - 1/2(a + B)/1p (0) (331)

At the earth's surface r = R and

r(R) = - 1/2(a + 3)/a6p(0)e (332)

- 1/2(a + 3)/LOp(R)

where 3p(R) internal phase angle of pressure at the earth's surface given by

Y1)= 8p(0)e - R (333)

Note also that the pressure at the earth's surface is given by

P(R) = P(O)e - R (334)

Equations (333) and (334) can be used to evaluate a and 3

For thi case of a linear variation of the pressure and its internal phase

angle of the form

P P(O) - ar (335)

3p= %p(O) - Sr (336)

c follows from equation (027) that
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e - - 1/2[6p(0) + 0/aP(O)] + fr (337)

The values of a and B can be obtained by evaluating equations (335) and (336)
at the earth's surface as follows

P(R) - P(O) - aR (338)

p - eP(0) - BR (339)

At the center of the earth equation (337) gives

r (0) = - 1/2[op(o) + B/aP(o)] (340)

while for the surface of the earth

r (R) - - 1/28 p(0) + /aP(O)] + BR (341)

Equations (330) and (337) show that in general e < 0 within a gravitating body.r

B. Theory of the Apparent Non-Newtonian Behaviour of Gravity
in'Mine Shaft, Borehole and Tower Experiments.

Measurements of the variation of the acceleration of gravity up the heights
of a tower and down the depths of a mine shaft or borehole have indicated dis-
crepancies with the inverse square law of Newtonian gravity. A possible expla-
nation of these discrepancies has been given by assuming the validity of Newton-
ian gravitation in matter with broken internal symmetries. 8 The result is that
the acceleration of gravity for a spherical earth is given by equation (64). In
order to apply this equation to an analysis of mine shaft, borehole and tower
gravity measurements it is first necessary to calculate the internal phase angle
ar from equation (327). Let the coordinates measured up a tower from the earth's
surface be designated by h , so that the distance from the center of the earth
to a point on the tower is given by

r R + h (342)

where R = magnitude of the earth's radius at the base of the tower. Equation
(342) applies to a mine shaft or borehole if h < 0 . Combining equations (327)

and (342) gives

3e /3h
p+ P _7/h = - 2e (343)
P ~P/3h r

as the equation for determining 6r

The magnitude of the atmos-oheric pressure at points on a tower, mine shaft
or borehole can be written in its simplest form by the following linear equation

P - P(R) - P(R)g(R)h - P(R)g(R)(h a - h) (344)

where the equivalent height of the atmosphere is given by

ha , P(R)/[p(R)g(R)] (345)
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and where P(R) , p(R) and g(R) - magnitudes of the pressure, air density and
acceleration of gravity respectively at the earth's surface. The measured values
of these quantities are given by Pm(R) - P(R) cos Op(R) , pm(R) - p(R) cos ep(R)
and gm(R) - g(R) cos Og(R) respectively. The measured pressure is given by
Pm W P cos p. The internal phase angle of the pressure will be written in a
form similar to equation (344) as follows

Op - 8p(R) - nh (346)

Equations (344) and (346) are the simplest equations that can be chosen to de-
scribe the variation with height (or depth) of the atmospheric pressure and its
internal phase angle. Strictly speaking P , 6p and Or should be determined si-
multaneously from equations (56) and (57) and the renormalized state equation
which is given by a solution of the complex number relativistic trace equation
(2). Such a simultaneous solution is difficult to obtain. Equations (344) and
(346) represent a crude solution to equations (2), (56) and (57). These assumed
solutions will now be used to obtain Or from equation (343). Combining equations
(343), (344) and (346) gives

r = - 1/2 p(R) - 1/2n(ha - 2h) (347)

- 1/2[6e(R) + nha ] + nh

At the earth's surface

e r(R) = - 1/2[e p(R) + nha] (348)

Consider now the case where the pressure and its internal phase vary ac-
cording to the following exponential forms

P P(R)e'f (349)

= " (R)e-' (350)

Combining equations (343), (349) and (350) gives

r - 1/2(6 + <)/69p(R)e (351)

and the value at the earth's surface is

Jr(R) = - 1/2(6 + <)/66 (R) (352)

The values of Or determine the apparent deviation of the acceleration of
gravity from Newton's law of gravity as is shown in equations (64) and (75).
Figures 2 and 3 show sketches of the variation of P and ep for the solid earth,
ocean and for the atmosphere in an air-filled mine shaft or borehole or adja-
cent to a tower. The expected variation of Or in the solid earth, ocean and
atmosphere is shown in Figure 4, while Figure 5 shows the corresponding varia-
tion of Gr as given by equation ( 77). Figure 5 shows that local measurements
of the acceleration of gravity will yield values of Gr which are less than the
value of G. The value of G is associated with the complete symmetry of time
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and space, and as such it cannot be measured directly. The result Gr < G is due
to the effects of the complex number atmospheric pressure in the case of mine
shaft, borehole and tower experiments, and to the complex number water pressure
for measurements of Gr carried out in the depths of the ocean. For measurements
of the variation of Gr in a mine shaft, borehole or up a tower the characteristic
range for the variation of Gr should be about 7 km because the atmospheric pres-
sure decrease with height has a characteristic attenuation distance of about
7 km. 

3

Equation (75) and Figure 5 also show that were it possible to measure the
variation of the acceleration of gravity with depth in solid rock the values for
Gr would be less than those meaaured in an air-filled mine shaft or in the ocean.
This is because P , Op and f6rI are larger in rock than in the ocean or in an
air-filled mine shaft at a corresponding depth. Measurements of Gr in the ocean
should yield weaker gravity (smaller Gr) than corresponding measurements in an
air-filled mine shaft or borehole because values of I rI in the ocean are larger
than their corresponding values in an air-filled mine shaft or borehole at the
same depth (see equation (75 ) and Figure 4).

C. Internal Phase Theory of the Edtvds Experiment and its
Relationship to Mine Shaft, Borehole and Tower Experiments.

This part of the paper describes a theoretical analysis of the Ebtv6s ex-
periment in terms of Newtonian gravity and the broken symmetry internal phase
angles of the relevant coordinates of the experiment. The Edtvds experiment has
been thoroughly described in the literature and only the briefest review is giv-
en in this paragraph.6 - 15  This experiment measures the horizontal force of grav-
ity between two spheres of material that are suspended in close proximity to
each other. Conventional Newtonian theory predicts the measured gravity force
to be dependent on the inverse square of the separation distance and on the pro-
duct of the masses of the two spheres, but recent experiments suggest the pos-
sibility of composition dependent effects and deviations from the inverse square
law. -

Consider now the Ebtvds experiment from the perspective of the internal
phase theory of coordinates. The two spheres can be oriented in any direction
between the north-south direction (whose separation is described by a decrement
of the zenith angle) or in the east-west direction (whose separation is then de-
scribed by a decrement of the azimuthal angle). For the north-south orientation
the complex number distance between the two spheres is written as

d _. = d1 ej G  = d.= 7 e) '(dW + jsde ) (353)

which gives

df_ = r sec dl dp (354)

9a = 9 + a + 8 (355)

where F - R + h - complex number distance of the two spheres from the center of
the earth, R = complex number earth's radius at the position of the two spheres,
h complex number distance above (or below) the earth's surface at which the
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Etvds experiment is conducted, d - complex number zenith angle separation of
the two spheres situated in the north-south direction (longitudinal plane) and
6*,* is given by equation (140). The measured distance between the two spheres
situated in the north-south orientation is given by

dLm M dt cos 6 (356)

For the east-west orientation the complex number distance between the two spheres
is

dt = d 0eJeZt - F sin 'p de (357)
'(357)

where dj - complex number azimuthal angle separation of the two spheres that are
situated in a plane of latitude = /2- ' and therefore

dt¢ = rS sec 0€, do (358)

et -8 0r + 8s + 8o + 8,€ (359)

where Si and 86s are given by equations (143) and (144) respectively, and where
3 , is given by equation (141). The measured distance between the two spheres
situated in the east-west direction is given by

dtom = dto cos 6 (360)

The gravitational force between the two spheres situated in the north-south
direction is

F - Gm2 /(dZ )2 = _m 2/(dt )2e-2j 8Zi (361)

where m = mass of one sphere. The measured gravitational force between the two
spheres in the north-south direction is

F'm  Gm2/(dt )2 cos( 2e8 ) (3u)

= - Gm2 /(dt pm)
2 cos( 28z )ip cos 2

The conventional calculation of the Newtonian gravitational force between the
two Edtvds spheres is given by

F.c = - Gm2/(dZ m)2  (363)

Therefore the difference between the measured and conventionally predicted forces
in the north-South direction is

AF = F M - F c (364)

GM2 /(dZtm) 2 [I - cos2 8Z, cos(286Z)]

3, 38 Gm 2/(dZm
)2
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In a similar fashion the complex number gravitational force and the mea-
sured force between the two spheres situated in the east-west orientation are
given respectively by

Po M - Gm2 /(d 2  - Gm2/(dt 2 e- 2j 81o (365)

F - Gm2/(dt) 2 cos( 28et) (366)

Gm2/(d m) 2 cos(2 ) cos 2 81t

The conventionally calculated gravitational force is given by

Fc M - Gm2 (d m) 2 (367)

and the difference between equations (366) and (367) is

AF -F m - F c (368)

= Gm2 /(d m) 2[l - cos2 al4 cos(210)]

36 2Gm 2/(dt) 2

A measurement of the discrepancies between the measured and predicted values of
the gravity force for the north-south and east-west orientations of the Ebtvds
experiment will give values of 61 and 04o .

From equations (75), (362) and (366) it follows that there are three effec-
tive gravitational constants each associated with a direction C , 4 or 0) of
measurement of the gravitational force, so that

G G cos(28r) cos 2  A, G(I - 36- + --- ) (369)r r r r

G = G cos(2%4' ) cos
2 16 G(I - 36 2 + -) (370)

Go M G cos6 Cos02  ' G(I - 3 + ') (371)

Due to the internal phase structure of the coordinates the effedtive Newtonian
gravitational constant has three distinct values along the three orthogonal
directions at a point on the earth's surface. Because 10\D and jatj are expect-
ed to be smaller than 16ri it follows from equations (355) and (359) that for
the same height (or depth)

16 tol < 16z*1 < larl

Gr < 0 , > 0 , el > 0 (372)
G >G6 >G
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G <G G r < 0 , 0 < 0 ,0 < 0 (373)

where for both cases Oyo < 0 and 01* < 0 . According to this theory, depending
on the signs of 60 and 8 the values of Gp and Go measured by the Et5tvds experi-
ment can be greater or less than the value of Gr determined by gravimeter mea-
surements in a mine shaft,.borehole or tower experiment. References 1 through
3 suggest that equation (373) are the correct conditions while references 5 and

25 suggest that equation (372) gives the correct relationship between G , Gip
and Gr - The experimental results are not yet clear enough to decide between
eo > 0 and 8* > 0 or 0 < 0 and e* < 0 .

On account of equations (369) through (371) it follows that G* and GO mea-
sured by an Edtvds experiment should have a similar variation with depth (or
height) as does Gr . This is shown in Figure 5. The validity of equations (370)
and (371) can possibly be tested by conducting Ebtvds experiments in the depths
of the ocean, down mine shafts, or up a tower in order to see if Gp and G vary
in the same sense as Gr . For a tower or air-filled mine shaft E~tvds experi-

ment the characteristic length over which GV and Go change should be about 7 km
because this is the characteristic variation distance of the atmospheric pres-
sure in the vertical direction.4 3 The characteristic distance for the decrease
of Gp and Go with depth in the ocean (or solid earth if such experiments were

possible) should be much larger than 7 km because the pressure changes in these
cases afe over hundreds and thousands of kilometers. 35 -

40,
4 3 -

45 Another possible
test would be to perform the EStvds experiment in a pressure chamber and measure

the pressure dependence of G and Go in order to verify that G* and G are de-
creasing functions of the ambient pressure as suggested by equations (370) and

(371). In any case, equations (369) through (3l) show that the local measure-
ments of gravity do not directly determine the Newtonian gravitational constant
G . Approximate values of G can be determined directly from satellite or solar
system measurements where the effects of ambient pressure are negligible, but
in tli~s case the values 3v , S and 3v of the broken symmetry vacuum must be
taken into consideration. Thus even for measurements in the vacuum G cannot be
directly measured.

Consider the variation of the gravitational constant Gr given by equation
(369) from which it follows that

G (R-h) - G (R) 3G[ 2 (R) - 82 (R-h)] (374)
r r r r

G (R+h) - G (R) 3 3G[9 (R) - 92(R+h)] (375)
r r r r

A Taylor series expansion of 6r gives

Sr(R-h) - 8 (R) - haer /3h + ... (376)

9 r(R+h) = r(R) + har /3h + '' (377)

Combining equations (374) through (377) gives for small h
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[Gr(R-h) - Gr (R)J/G - Srh (378)

[Gr(R+h) - G r(R)]/G r Srh (379)

where

sr - 616r(R)l 3er/3rIR > 0 (380)

remembering that 8r < 0 . Combining equations (378) and (379) gives

G r(R-h) < G r(R) < G r(R+h) (381)

as shown in Figure 5. Note that G_(R) is not the value of the gravitational
constant that is measured at the earth's surface by the Edtvds experiment. The
value of the gravitational constant measured by the Ebtv6s experiment is given
by Gp(R) or GO(R)

The Etvds experiment can be done at various depths and heights. From
equations (370) and (371) it follows that

G (Rh) - G (R) -- 3G[f2(R) - e2(Rth)] (382)

G (R±h) - G (R) 3G[e 2(R) - 6 2(Rth)] (383)

A Taylor series is used to obtain

e Z (RP.h) = 6 8 1 (R) ± h36 Z /rIR + (384)

ao(Rh) = e €(R) ± h3aeZ/9rIR + (385)

Combining equations (382) through (385) gives for small h

[G ,(R±h) - G (R)]/G ' ± s..h (386)

[G (R±h) - G (R)]/G ' ± s h (387)

where

sip- 6e Zip(R)[ 8Z i/rlR > 0 (388)

s¢ = 61 (R)l 3eZ/Dr! R > 0 (389)

because 9Z < 0 and ae4 < 0 . Therefore

G (R-h) < G (R) < G (R+h) (390)

G (R-h) < G (R) < G (R+h) (391)

Thus G, and G, are increasing funtions of height.

The Edtvds experiments done at the same height but in the east-west and
north-south directions give the following difference obtained from equations
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(370) and (371)

(G - )/G 3(0 2 02) (392)

- 3[(6 r + 0s* + 0 + 8 ,)2 - ( r + 0 + a )2]

6Or(Os* + 0 + - 0 - )

Therefore

G > G 0 > 0 (393)

G < G 0) < 0 394)

The measurement of the east-west/north-south asymmetry will give the sign (and
approximate magnitude if 6r is known) of the internal phase angle of the angular
coordinates.

In general the Ebtvds experiment is done at the earth's surface and deter-
mines GV(R) and G0(R), while the vertical gravity measurements using gravimeters
are done down mine shafts and boreholes or up towers and determine Gr(Rth) . Con-
sider a comparison of Gr(R±h) and GV(R) which can be obtained using equations
(355), (369) and (370)

Gr (Rzh) - G (-)]/G n 3 02 (R) - 02 (R±h)] (395)3{[a(R) + 0 (R) + (R)]2 
- 02 (R±h)l

Combining equations (376), (377) and (395) gives

[Gt(R±h) - h(R)/G s r h + 60r (R) (R) + a (R)] + 3[ (R) + (

± srh + 60 (R)[6 (R) + 61 (R)] (396)

From equation (396) it follows that

[Gr(R) - G (R)]/G - 6 r(R)[0 (R) + 8 (R)] + 3[6 (R) + S (R)]2 (397)

6 r(R): (R) + B (R)]

It follows from equations (381), (396) and (397) that

G r(R-h) < G r(R) < G r(R+h) < G (R) < G 6 (R) > 0 (398)

G (R) < G r(R-h) < G r(R) < G r(R+h) < GJ a(R) < 0 (399)

The inequalities in equations (398) and (399) hold only for small h.
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Now consider the case of the east-west oriented Ebtvbs experiment. Com-
bining equations (359), (369) and (371) gives

[Gr(R±h) - G (R)]/G " 3[e2(R) - 02(R±h)] (400)

-3{[e (R) + R) + e,(R) + 8,(R)] - 2(R±h)l}

Combining equations (376), (377) and (400) gives

[Gr(R-h) - G (R)]/G s ± Srh + 60 (R)[e (R) + 0 (R) + a (R)] (401)r r r s* 0

+ 3[eSI(R) + 6t(R) + a ,o(R)]
2

n ± s rh + 6 r(R)[es (R) + e0 (R) + 8 (R)]

From equation (401) it follows that

[Gr(R) - G (R)]/G n 6 r(R)[si (R) + e(R) + B C,0(R)] (402)

+ 3[6 s(R) + e (R) + $ Ol(R)] 2

6 r(R)[6si(R ) + %o(R) + C ,o(R)]

From equations (381), (401) and (402) it follows that

Gr (R-h) < Gr(R) < Gr(R+h) < Go(R) < G 0 (R) > 0 , 0 (R) > 0 (403)

G0(R) < G r(R-h) < G r(R) < G r(R+h) < GJ 0e(R) < 0 , 6 (R) < 0 (404)

The inequalities in equations (403) and (4.04) hold only for small h.

Inequalities (398) and (403) are supported by the experimental data in Ref-
erences 5, 25 and 49 and suggest that mine shaft, borehole and tower determina-
tions of the gravitational constant will be less than the gravitational constant
determined by an Edtvds experiment performed at the earth's surface. On the
other hand, the inequalities (399) and (404) are supported by the experimental
data given in References I through 3 and indicate that the gravitational constant
determined from a mine shaft, borehole or -tower experiment will be larger than
the value of the gravitational constant obtained by an Edtvds experiment con-
ducted at the earth's surface. only one set of data can be correct. When the
correct set of experimental data is finally determined the proper signs and ap-
proximate magnitudes of 60 and e* will be fixed. Neither mine shaft, borehole,
tower or EVtvds experiments directly measure the constant G .

If it is possible to conduct an Edtvds experiment at various depths in a
mine shaft or at different heights up a tower, it becomes important to compare
Gr with tG and Go at the same depth or height. From equations (369) through
(371) it follows that
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(Gr  G G)IG 3(0 2 02

r G) r) (405)

=3[(0 + + S,,) 2 e2

6(r(e + a 2)

12er

In a similar fashion

(G - G )/G N 3(e6 -2 ) (406)

- 3[(r + e + 0 + 8 )2 - e21]
Lr s * *, r

-3[28 r (e SIP + e + ) + (Os0 + 0 + 01 )2]

6er (6s* + 0 + 8,)

180 0

The inequalities (372) and (373) can also be deduced from equations (405) and
(406).

The variation of Gr , G and G p with depth in a mine shaft and borehole or
with height up a tower is due to Newtonian gravity in broken symmetry space com-
bined with the variation of the broken symmetry atmospheric pressure. The vari-
ation oaf the broken symmetry atmospheric pressure with radial distance induces a
variation of 6r , e¢ and 6q) with radial distance (Figure 4) and this determines
the non-Newtonian variation of Gr P G¢ and Gi according to equations (369)
through (371). This apparent non-Newtonian behaviour of gravity has been inter-
preted as being due to the existence of graviscalar (spin 0) and graviphoton
(spin 1) component forces of gravity (the "fifth" and "sixth" forces). 

-',l - 2
5

The hypothetical graviscalar is an attractive force while the hypothetical gravi-
photon mediates a repulsive force, and both are described by finite range Yukawa
terms that are added to the ordinary Newtonian potential. But in fact these hy-
pothetical forces are not required to describe the experimental results. The
apparent non-Newtonian behaviour is due to ordinary Newtonian gravity in matter
and space whose pressure and coordinate fields exhibit broken internal symme-
tries. The relative magnitudes of Gr(R±h) and Gq(R) or Gb(R) are not related
to new gravitation forces but rather to the broken symmetry of pressure and
spatial coordinates.

6. NUMERICAL VALUES OF THE INTERNAL PHASE ANGLES. This section determines
numerical values of 0r , e* , 6, and ep within the atmosphere in the vicinity of
the earth's surface. Two methods are used. The discrepancy between the measured
and predicted values of the gravitational red shift of y-rays in the Pound-
Rebka-Sniderfexperiment.32 ,

3  - The second method is based on the measure-
ment of the apparent departure of the force of gravity from Newtonian behaviour
in mine shaft, borehole and tower experiments. 1

-
,5,25,49
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A. Measurement of the Gravitational Red Shift

The experiments of Pound, Rebka and Snider measured the gravitational red
shift of a y-ray falling in the earth's gravitational field. The conventional
expression for the red shift in frequency is given by

32 ,33

zc = (AV/V) c = [V(r 2 ) - V(rlm)]/C (407)

where the conventionally calculated gravitational potential is written as
28

V(r m) - - GM/r (408)

and therefore

zc = GM/c2 (/r1m - 1/r2m )  (409)

In this paper the theory of coordinates with internal phase requires a com-
plex number red shift given by

- ze j e z 
- o/ - [ v(r2) - V(F)]i/c 2  (410)

- GM/c2 (1/fI - i/t2)

The measured gravitational red shift is given by the real part of equation (410)

zm = zR = z cos 8z - GM/c2 (/r1 cos erl - c/r2 Cos 8r2) (411)

while the imaginary part of equation (430) is

z, = z sine - GM/c2 (1/r sin 8rl - i/r. sin 8r2)  (412)

where

= r ejerl ('13)

= r eJ0 r2 (414)
- 2

Because rim - r, cos Brj and r2m = r2 cos 
8r2 it follows from equation (411) that

222

zm - GM/c2 (/r m cos 2rl - 1/r2m cos 2r2) (415)

The difference between the measured and entionally calculated gravitational
red shift is obtained from equations (409i and (415) to be

z c - zm = GM/c2 (/rlm sin 2 e rl - 1/r2m sin 2 0r2) (416)
n m 222 /r 2mr

GM/c2(rI/rm r2r2m

e2zr c

Therefore approximately
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2 -. (z - z ) Z . 0.01 (417)

r c m c

where according to References 47 and 48 the fractional difference between the
calculated and measured gravitational red shift is 1%. From equation (417) it
follows that

er m - 0.1 rad- - 5.7* (418)

In this way a value of 8r is obtained from the measurement of the gravitational
red shift. This laboratory value of 8r is probably more accurate than the cor-
responding values of 8r that may possibly be obtained from measurements of the
apparent non-Newtonian variation of gravity in mine shafts, boreholes and tow-
ers. The value of er given in equation (418) will be used to obtain values 00
and e in section B.

B. Analysis of the Apparent Non-Newtonian Gravity Measurements.

Conflicting experimental data have been presented for the values of the
gravitational constant derived from measurements of the variation of the force
of gravity with distance in mine shafts, boreholes and towers. According to
References I through 3, the values of the gravitational constant derived from
mine shaft gravity variations are larger than those derived from Ebtvds experi-
ments conducted at the earth's surface. On the other hand, References 25 and 49
indicates that borehole measurements in the ice of a glacier produce values of
the gravitational constant that are smaller than the values of the gravitational
constant derived from Edtvds experiments performed at the surface of the earth.
In addition, Reference 5 indicates that the gravitational constant derived from
gravity measurements on a tower is smaller than that measured by the Ebtvds ex-
periments at the earth's surface. The experimental results given in References
I through 3 are in conflict with the experimental results of References 5, 25
and 49. Therefore the numerical calculations in this section are done for each
situation. According to the theory of Newtonian gravity in matter and vacuum
with broken internal symmetries the discrepancies between the measured and con-
ventionally predicted values of the force of gravity in mine shaft, borehole,
tower and Edtvds experiments are related to the values of r 0 e, and 60

Two cases will be examined in this section according to the relative mag-
nitudes of the internal phase angles 1eri, 184p and 16Ie

Case 1: 18r(R)l >> 1e(R)l and er (R)j >> 1e(R)I

Combining equations (392), (396) and (401) gives for small h/R

[G (R) - G (R)]/G \ 6xy (419)

[Gr(R±h) - G (R)]/G 1 12xy (420)

[Gr(R±h) - G (R)]/G 1 18xy (421)

where
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x -8r(R) < 0 (422)

y M 8 (R) n (R) R) (R) ^- a 8,, (R) (423)

so that IxI >> jyj. Because x < 0 it is the sign of y that determines the signs
of the expressions in equations (419) through (421). The expressions in equa-
tions (420) and (421) can be either positive or negative, so that they can de-
scribe either the experimental results of References 1 through 3 (which requires
y < 0) or the experimental results of References 5, 25 and 49 (which requires
y > 0). Because the value of x - Or(R) is known from equation (418) the deter-
mination of any one of the three differences in equations (419) through (421)
would immediately determine the value for y.

Consider first the determination of the gravitational constant from mine
shafts which is about 0.6% larger than the value obtained from Edtvds experi-
ments performed at the earth's surface. 1- 3 Using the average of equations (420)
and (421) (because of the unspecified orientation of the Ebtvbs experiments)
yields

15xy = 15(-O.I)y - 0.006 (424)

where x -0.1 was obtained from equation (418). Equation (424) gives

X= (R) = - 0.1 rad - 5.70
r (425)

y = 8P(R) - = - 0.004 rad = - 0.230

From equation (419) the north-south/east-west asymmetry of the E6tvbs experiment
is given by

[G (R) - G (R)]/G - + 0.0024 (426)

Borehole data from a.Greenland glacier shows that the derived gravitation-
al constant is about 2.8% smaller than the value of the gravitational constant
derived from Edtv6s experiments done at the earth's surface. 25 , 9 Also, mea-
surements of the variation of the gravity force up a tower gives results for the
gravitational constant that are 2.0% smaller than that obtained from Eitvds ex-
periments at the surface of the earth. s Therefore using the average of the re-
sults of References 5 and 49 with the average of equations (420) and (421) gives

L5xy = 15(-0.i)y = - 0.024 (427)

where again x -0.1 was obtained from equation (418). Then equation k 27) yields

x M 8 (R) - - 0.1 rad -- 5.70r (428)

y W a (R) - (R) - + 0.016 rad = + 0.920

Equation (419) gives the north-south/east-west asymmetry of the Edtv6s experi-
ment to be

[G (R) - G (R)]/G - 0.0096 (429)
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An independent determination of the north-south/east-west asymmetry of the Edtvds

experiment would immediately determine the signs and values of e* (and 60).

Case 2: er (R) - e (R) - 60 (R) - es* (R) - B ,4(R) - B ,0(R)

Combining equations (392), (395) and (400) gives for small h/R

[G*(R) - G0(R)]/G - 3[(4w)2 - (3w)2] - 21w2 (430)

[Gr (R+h) - G (R)]/G 3[(3w)2 - w2 ] - 24w 2  (431)

[Gr(R-h) - G(R)]/G 3[(4w)2 - w2] 2 45w z  (432)

where w - 8r (R) - R C (R) - ) B 4,(R ) - ,0(R) < 0 (433)

Thus w < 0 because r(R) < 0 . The expressions in equations (431) and (432)
are always positive and therefore Case 2 agrees only with the experimental data
given in References I through 3. Using the average of equations (431) and (432)
(because of the unspecified orientation of the Ebtvds experiments) and the 0.006
positive fractional difference between the values of the gravitational constant
measured in a mine shaft and by an Etvbs experiment performed at the surface of
the earth given by References 1 through 3 yields

234.5w = 0.006
(434)

w = 8r(R) = 6 (R) - 8 (R) = - 0.760

where w is given by equation (433). Equation (430) gives the north-south/east-
west asymmetry of the EZ5tvds experiment as

[G (R) - G (R)]/G -- 0.0037 (435)

The predicted value 6r(R) - -0.76' is much less in magnitude than the value
3r(R) = -5.7° predicted by the Pound-Rebka-Snider experiment. Therefore Case 2
as represented in the assumption given in equation (433) may not be physically
realistic.

7. CONCLUSION. Newtonian gravity in space and time with broken internal
symmetries produces an apparent non-Newtonian behaviour of the acceleration of
gravity, and the gravitational constant varies with the radial distance from the
center of a planet. This is due to the fact that the pressure and coordinates
in matter (and vacuum) exhibit broken symmetries that are represented by inter-
nal phase angles which vary with radial distance. The measured apparent non-
Newtonian gravity effects are therefore due to the variation of the atmospheric
pressure in mine shafts and boreholes and on towers, and this introduces an ap-
parent 7 km finite range force component. New forces in addition to Newtonian
gravitation are not required to explain the experimental observations. The
values of the internal phase angles of the coordinates can be obtained from the
Pound-Rebka-Snider gravitational red shift experiment, the measurements of the
apparent non-Newtonian gravity field, and the Ebtvds experiments. The internal
phase angles of space and time will influence the basic calculations of astro-
physics and geophysics.
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ERRATA: Reference 28

equation (384) - cos $r (P/;r + dt/dr aP/ t) - PA/3r

equation (385) - cos $ ,+ (1/r 3P/ + /r dt/do 3P/Dt) - Q/FW/

equation (389) - cos Bx,x (3P/3x + dt/dx 3P/3t) - p3W/;T

equation (393) cos r,r 3P/r = D

equation (396) Dp = ep + ap, r

eqain 48 9 9 =9W+~ -e - + r
equation (408) 8p + 8P,r W W,r r r,r

equation (425) 8p + Sp, r = - 2r +

equation (426) p + tan - P = - 26 + 7

equation (428) ep + 8' = - 28P,r r

2
equation (431) cos 3P/73r = - GNo/o 2

r,r

equation (451) cos 8 3P/3r - - Go2M/(r 2 GPM/(;2 )
r,r S

equation (456) 8vS - r
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WAVE PROPAGATION IN ASYMMETRIC MEDIA

Richard A. Weiss
U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. The coordinates of space and time have broken internal symme-
tries for a region of spacetime located in a pressure field and perhaps even
for the vacuum. Geometrical angles themselves have internal phase angles. A
wave propagating in matter or the vacuum with broken internal symmetries will
exhibit internal phase angles in its amplitude and dispersion characteristics.
Cylindrical and spherical wave propagation in asymmetric matter is treated
and the solution of the wave equation with broken internal symmetries is ob-
tained. The observed periodicities of waves in measured time and measured
space requires the propagation constants to be complex numbers but the phase
must be a real number. A pressure field is associated with a broken internal
symmetry, and therefore waves propagating-in matter under pressure are expected
to exhibit broken symmetry effects in the propagation parameters. Applications
to acoustic and seismic waves are suggested.

1. INTRODUCTION. Matter and radiation exists within the continuum of
spacetime, and it has been suggested that spacetime imprints measurable effects-
on the properties of bulk matter and radiation. These effects have been calcu-
lated by the development of a gauge theory of relativistic thermodynamics.' The
effects of spacetime structure on matter and radiation occur in two ways, the
first is by the effects of the Grilneisen parameter and bulk modulus which enter
the relativistic trace equation as a requirement of gauge invariance.1 The sec-
ond way the metric of spacetime affects the state equation of matter and radia-
tion is by requiring the thermodynamic functions such as pressure and internal
energy to exhibit broken internal symmetries. At the same time the coordi-
nates of points located within matter, radiation or the vacuum also have broken
internal symmetries and the internal phase angles of the coordinates must be
determined simultaneously with the internal phase angles of the thermodynamic
functions.

All physical phenomena occuring within matter, radiation or the vacuum are
affected by the broken symmetries of space and time. Electromagnetic and me-
chanical waves are expected to exhibit the effects of broken spacetime symme-
try in both the wave amplitude and dispersion equation. The wave amplitude,
wavelength and frequency are characterized by internal phase angles and there-
fore must be represented as complex numbers. The speed of sound and electro-
magnetic waves in matter must be represented as complex numbers, but the light
speed in vacuum is a real number.

1he broken symmetry of the pressure in matter or vacuum is derived from
a relativistic trace equation. 2 In bulk matter or vacuum the space and time
coordinates are complex numbers and are written as follows

3
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S= tej e t  (1)

for the time, while the cartesian space coordinates are

5 -xe JiX -yeie y i ze J z (2)

the cylindrical coordinates are

Srejar j -* e °je ze j °  (3)

and for spherical coordinates

= re j r  Oej 8  -q*e JS (4)

The measured time coordinate is just the real part of the complex number time
3

t t cos Ot  (5)

while the measured space coordinates are given by

xm M x cos ex Ym M y cos 6y zm z cos ez (6)

rm = r cos r m = Cos P *m = 'Pos a (7)

where tm = measured time and xm , Ym , zm , rm v *m and 'pm - measured space co-
ordinates.

This paper considers the solution of a complex number wave equation whose
space and time coordinates have broken internal symmetries. Section 2 consid-
ers the time dependence of periodic waves in broken symmetry matter where the
periodicity occurs in the real part (the measured part) of the complex number
time coordinate. Section 3 considers cylindrical waves with broken internal
symmetry and it is shown that the azimuthal angle equation has a complex number
separation constant. The real part of the complex number azimuthal angle has
the 0 - 2n symmetry. The remaining coordinate equations also have complex num-
ber separation constants which are determined by the requirement that the wave
periodicity occurs in the real parts of the complex number radial and z coordi-
nates. Section 4 considers spherical wave propagation in asymmetric matter,
and develops the equations describing the conditions of periodicity in the real
parts of the radial, azimuthal and zenith angle coordinates.

2. PERIODIC VIBRATIONS IN SPACETIME WITH BROKEN INTERNAL SYMMETRIES. This
section determines the relationship between the measured period and frequency
from the experimental observation that waves and vibrations are periodic in mea-
sured space and time coordinates. The equation describing the time dependence
of a periodic phenomena in space and time with broken internal symmetries is
written as a generalization of the standard scalar equation4

-7
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d 2/dE2 + 2 i 0 (8)

whose solution is

- ? e -  (9)0

where E is given by equation (1) and where

- e w - 2w/T - 2n/Te- J OT (10)

and therefore

w 2rf - 2/T O -8 T (11)

where G - complex number angular frequency whose magnitude and phase are w and
8, respectively, and T - complex number period whose magnitude and phase are T
and OT respectively.

The requirement that equation (9) represents a periodic wave in measured
time implies that Zt is a real number. This can be seen by first writing a and

as complex numbers as follows

w R + Jw = W(cos 6 + j sin 8 ) (12)

E c tR + jt - t(cos at + j sin 8t)  (13)

then

-w RtR - Itl + j (WIt + R+Rtl) (14)

The reality condition gives

t i = - wItR/wR (15)

and therefore

/w tw/w = wt (16)
tR R in i

where (m M wR = measured angular speed. Therefore the reality of the phase wt
requires that the phase be linear in both the measured time tm and the time mag-
nitude t . The fact that the phase is linear in the measured time agrees with
the experimental fact that vibrating systems are periodic in the measured time
coordinate.

The measured period Tm - TR - T cos eT is obtained from equations (12) and
(16) to be

w21w - T W/cos 8 M wT - 2n (17)
R R R w9
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and therefore

2 2
TR =2wI cos 6W M 21IwR Cos 2 = a1fR Cos 2 (18)

where fR =  R/(2v) - real part of the frequency. Therefore the relationship be-
tween the measured period and the measured angular frequency is

Tm - 2w/w Cos 2 O M 2/w cos 0 M 1/f cos 0 (19)

or for the measured frequency and the measured period

f - l/Tm Cos 2 O 1/T m Cos
2 eT  (20)

Note that fm 1 I/Tm From equations (10)., (11) and (16) it follows that

6 - - T  -0 (21)

Periodicity requires the internal phase of the frequency to adjust itself so as

to satisfy equation (21). Combining equations (11), (16), (19) and (21) gives

T - 1/f (22)

c/f t /f (23)m m

tf t/T- t /T (24)m m

Thus the phase in equation (16) can be written as

(H wt - 2wt IT -w t /cos 2 0 (25)m m mmw

and

fR/TR = f /T - f2  (26)

t /(f T t 2 (27)
m m m

The phase 7 has a period T when expressed in terms of t , and a period Tm
when expressed in terms of the measured time tm . The general solution of equa-
tion (8) is

- 1ei2itm/Tm + Be- 12wtm/Tm (28)

- i2rt/T + ie-i2t/T

The conclusions for broken symmetry space and time that fm and Tm are related by
equation (20) and that fm 0 I/Tm may possibly be experimentally verified if fm
and Tm can be independently measured for the same periodic phenomenon. Finally,
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the conclusions of this section are based on the observed fact that periodic
physical systems have definite periods in measured time.

3. CYLINDRICAL WAVES IN ASYMMETRIC MATTER. The wave equation for cylin-
drical waves in matter with broken internal symmetry is written as a generaliza-
tion of the standard scalar wave equation as follows4

- 7

a 2/af2 + I/Tab/aT + -/2a2U/3 2 + a2U/aj2 1/122E-/aE2 (29)

where 6 - wave amplitude with internal phase, and complex number phase ve-
locity. Equation (29) can be solved by the standard technique of separation of
variables4

- 7

(30)

which gives the following simple complex number generalization of the standard
equations for cylindrical waves4

-7

d 2/d$2 + R2 . 0 (31)

d2 /dE2 + j2 0 (32)
z

-2 d2R/dr 2 + EdR/d + (2 )2 _R-2) . 0 (33)
r

d2 /dE2 + 02t- 0 (34)

where R- constant, and kz and kr are constants that are related by4
- 7

-2 -2 (35)
z r

where k is defined by

k = j / (36)

Using

7 vejev k - kej k  (37)

gives

k - ev  (38)

which determines k and Ok Writing iz and ir as

kz kzeJ 6kz - kzR + jk (39)

k r ei~krmk + jk (40)r kr "rR
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where kzR - k cos , k k k sin ek kR k cos ekr and

krI - kr sin k , allows equation (35) to be written as

k2 cos( 26kz) 2 cos(2ek) - k2 cos(2ek) (41)z z k r

k2 sin(2kz) 2 sin(20k) - k2 sin( 20kr) (42)z z k r

Corresponding to the phase velocity given by equation (36) the complex num-
ber group velocity is given by

, v eB -Jevg d/dk (43)g g

Therefore

Vg -cos 8k,k C(dw/dk)2 + (wde /dk)2]1 / 2  (44)

evg -e +8 - k k= e v + - (45)vg - k,k v w,w Okk (

wdO /dk
tan8 W  d/dk dO /dw (46)

tan 8k,k - kdek/dk (47)

The solution to equations (31) through (33) will now be considered.

A. Solution of * Equation.

Consider now the solution of equation (31) and the determination of the com-
plex number constant . The solution of equation (31) can be written as

= -e R + Be - R (48)

It will now be shown that M must be a real number if V is to be a periodic
function of the measured azimuthal angle m - cos e Writing the complex
number M as

M MejM - MR + JMI  (49)

allows the phase R; in equation (48) to be written as

R- ROR - Y1 + J(MI' R + MRPI) (50)

The reality of M gives

I R + MR'I - 0 (Si)

and
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mMo mo0RM /MR mO /MR (52)

For a periodicity of the form i(-R ) =(OR + 2v) it is required that

M21R - m (53)

where m - positive integer. From equation (49) it follows that

- H cos aM W M cos 6 (54)

because 9M - - 8 from equation (52). Combining equations (53) and (54) gives

M - m cos 8 (55A)

2R m Cos 2 (55B)

M - m cos a6 sin 8 (55C)

as the condition for the function i to be periodic in OR with period 2r . There-
fore M is not an integer and equations (48) and (52) show that the wave ampli-
tude is not periodic in the variable 0 . Equation (45) can be written as

= Ae moR + Be - i mOR (56)

which is periodic in *R . Note that MO - mOR , and that M is a complex number
in equation (31). Traditionally equation (31) accepts only integer values of
the separation constant, but for waves in asymmetric space and time the sepa-
ration constant is the complex number M . The reality condition on the phase
M is

am  -a (57)

which is the equation for evaluating the phase angle 8 M . The internal phase
angle of the magnetic quantum number must adjust itself in such a way that equa-
tion (57) is valid for periodic waves.

B. Solution of the Z Equation.

Equation (32) has the following formal solution

2 -e ikz  + Be-ikzi (58)

The exponent term in equation (58) can be written as

kzu = kzRR - kzZ I1 + J(kzIZR + kz1) (59)

and the reality requirement for the exponent term in internal space gives

k kz- -zk2 /k zos (60)z z Rz zR R z kz

and which also gives 8kz - - . If the waves propagate in the z direction
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with a measured spatial wavelength Lzm a LzR - Lz cos 6z then equation (60) gives

LzRkz/cos kz - 21r (61)

for periodicity with wavelength LzR . Therefore

k - 2n/LzR cos ekz - 2w/Lz (62)
2

kzR 2w/LzR Cos 2kz ' 21/Lz cos kz z cos 6kz (63)

The reality condition on k z shows that

e - -- 06 (64)kz z Lz

Equation (63) shows that kzR 0 2w/LzR .

The solution given in equation (58) can be rewritten as

Z - deikzz + De-ikzz (65)

- ei2 rzR/LzR + 5e-i2rzR/LzR

The internal phase angle of the wave number must adjust itself to the local bro-
ken symmetry of spacetime such that equation (64) is satisfied for periodic
waves. Equations (58) or (65) are the general solutions for plane waves in the
z direction and equation (64) holds for - - < z < = . It is possible that kz is
an imaginary number in real space so that k - i z , then the solution to equa-
tion (32) is attenuating in nature and given by

Z - Ce Zzz + De-<zz (66)

and apparently Wz need not be a real number in internal space because there is
no periodicity requirement in the z direction for this case.

C. Solution of the A Equation.

The radial equation (33) is similar to the standard radial equation of vi-
bration theory except that R , , kr and M are complex numbers. The formal so-
lution to equation (33) can be written as a generalization of the standard re-
sult for scalar coordinates as follows

4 '7

A--qk )+ BN1R(kr) (67)

which represent standing waves, where JR- complex number Bessel function and
Nq - Neumann function of complex order M . The progressive wave solutions to
equation (33) are4' 7

-+ BN 2 (k r) (68)

where (,) and -.(- complex number Hankel functions of the first and second
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kind of order M The asymptotic values of the Hankel functions are given by
the following generalization of the standard resuls'

7

)(ir r) [ £2/(fkrf)]I/2 ei(rr - / 2 - ir/4) (69)

-21() [21(r j] 1/2 e - ' i r i - R'r2 - ir14 )  (0
-(2) r r (70)

If equations (69) and (70) represent in-going and out-going waves which have a
periodicity in the measured radial coordinate rR - r cos er it follows that the
phase kr must be a real number in the far field, with r - , so that

ikr - krr - r k2/k r kr/cOS 8 (71)
r R Rr rR R r oskr

ekr - - r(r = w) (72)

where krR kr cos ekr .

Let the waves in the far field propagate in the r direction with a measured
spatial wavelength LrR - Lr cos Or where Lr - intrinsic spatial wavelength in
the r direction. Then from equation (71)

L rRkr/cos k - 2t (73)

k = 2r/LrR cos 8kr ' 2r/Lr  (74)

2
krR 2 /LrR cos 2kr ' 2 /Lr cos kr r cos 6kr (75)

so that krR # 21/LrR . Equations (71) through (75) hold only in the far field
because only in this region is the concept of the wavelengths Lr and LrR de-
fined. The presence of periodic waves requires the broken symmetry of the wave-
length to adjust itself so as to satisfy equation (72) at large distances from
the source of the waves. In the far field of asymmetric waves equations (69)
and (70) can be rewritten as

-) (k r)" [2/(k r)]1/2 eikrr e-i /2(R&) (76)

These solutions represent progressive waves.

As a special case consider the solution of standing waves in a vibrating
membrane located in space and time with broken internal symmetries. The solu-
tion of the wave equation for this case is an obvious generalization of the
standard results for scalar quantities'

irt
- CJ(kr ) cos(Mj + S) e (78)

2

- CJR(krr) cos(mO, + a) e iWmtm/cos 8
A (79)

where for a membrane kr - k . The small argument expansion of the Bessel func-
tion of order M is given by the following generalization of the standard scalar
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results

R( = ( M1, -E22/[4(R + 1)] + k4r4/[32(R + I)(R + 2)] ... } (80)

Using equations (49) and (80) gives
J- (k r)Xe-Y+JW{l _ 22 ] + + F(

r k)2 r)[4( ) k44/[32(F + 1)(R + 2))H rr r

where

x - M cos e a m Cos2 e (82)H H

y - M(ekr + er)sin 8 M  (83)

M m(ekr + e )sin 8M cos 6M

w - m(ekr + er)Cos2 8 + m Yn(krr) cos e sin 6 (84)
kr r H r H M 84

The case R - 0 gives

J- 1- 1/4j2r 2 + 1/64v44 4 (85)0 r r

In equation (78) and (79) F is not a real number because the vibrations are
not periodic in the radial direction.

4. SPHERICAL WAVES IN ASYMMETRIC MATTER. A simple generalization of the
standard wave equation for spherical waves gives the following equation that de-
scribes spherical waves in space and time with broken internal symmetries4

- 7

a2 la32 + 2/f aUlaf + I/(F2 sin ) Dl (sin (86)

+ 1/(F2 sin 2 pa2U/3 2 - / 2 2 /; 2

Separating the complex number wave amplitude as

a R( )w(p)i($) ( ) (87)

gives

(1 - 2)d2k/d52 - 25d/dU + [E(Z + 1) - R2/(, 52)]j4, 0 (88)

-2d 2/d; + 2 dR/d2 + [j2j2 _ (Z + t)]I 2 0 (89)

2- -/2 -2-d '/d 2 +2. 0 (90)

d 2i/d j2 + :2T _ 0 (91N,

where cos ; and k .
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A. Solution of the W Equation.

The solution of equation (88) can be obtained as a complex number general-
ization of the associated Legendre polynomials. 7 The complex number associated
Legendre polynomials can be obtained from equation (88) by writing

7

W G - 2 )M/ 2 f(,M,) (92)

where

- Z 5S (93)
SMO

by direct substitution one finds4
- 7

a2 
= 1/2[M(M + 1) -+(L + 1)] °2 (94)

C 3 - 1/6[(F + 1)(R + 2) -E( + 1)]IJ (95)

a4 - 1/12[(R + 2)(M + 3) - C(C+ i)]Z2  (96)

E5 - 1/20((M + 3)(R + 4) - Z(E + 1)]F 3  (97)

The following is the complex number generalization of the standard scalar re-

sults4
- 7

cv+2 /E [(v + M)(v + R + 1) - !(Z + 1)]/[(v + 1)(v + 2)] (98)

where v - integer. Break off polynomial solutions can exist even when M and Z
are complex numbers provided that they are related by

Z -R + V (99)

where the integer v must have the value

V- t - m (100)

where Z and m - integer separation constants. Combining equations (99) and
(100) gives

Z- R-Z + -z (101)

Equation (99) reduces to equation (100) for symmetric spacetime.

From equation (Oi) it follows that

C cos 9 C M cos + - m (102)

C sin 9 L M sin 9% (103)

From equations (102) and (103) it follows that
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tan 8 - (M sin 6 )/(M cosO M + -m) (104)

C - IZ - m/Z(2 - m/)sin2 eM]I/ 2  (105)

where from the analysis of the I equation given in Section 3 it follows that

M - m cos eM (106)

9M - (107)

The complex number associated Legendre polynomial solutions can then be
written as

(1 - 52)M/2 r - M (108)

(_ - 2)M/2 R + 1 ('109)

- (I _ 52)M/2[( 2R + 3 ) 52 - ] -M + 2 (110)

a- (I - 52)/2[(2M +5)53 - - R + 3 (111)

Note that formally W is given by the following associated Legendre polynomials

-M (112)

B. Solution of the R Equation

The solution of the complex number radial equation (89) can be obtained
by forqial analogy to the solution of the real number version of equation (89)
and the result for standing waves in asymmetric matter is4 - 7

- eif + ~~~)(113)

while for progressive waves is asymmetric matter
4- 7

. + (114)

where -() - complex number spherical Bessel function of order C , r(ki) - com-
plex number spherical Neumann function of order W , i)(k) - complex number

spherical Hankel function of first kind of order and 2)(F) - complex num-

ber spherical Hankel function of the second kind of order E These functions
are defined as generalizations of the corresponding real valued functions as
follows 

- 7
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(k) - [r(2ki)]1/2 3 () (115)

ii Ck/) - [1(2ki)] 1 /2 NT+J(k) (116)

- ( it/(2i)] 1 /2cj. (ii ) + if +l(ip) (117)

-(2)--1 2 -
h (kF) - [7r/(22E)] [J+ (kr) - iN]12(k)] (118)

The asymptotic expansions derived from equations (115) through (118) are4- 7

(kI) * 1l(k )sin(k - r12) (119)

+() 1/(i)cos(i - Zr/2) (120)

() ll(ki)ei[- (Ml)k1 2I (121)

)() - 1/(kr)ei [kt - ( +1)f/ 2  (122)

In order for equations (119) through (122) to describe periodic waves in the
far field the following conditions must hold

k~kr
r r - (123)

Thus for instance the replacement kf - kr can be made in the right hand sides
of equations (119) through (122). Therefore the internal phase angle of spher-
ical waves in the far field must adjust itself to the local broken symmetry or
space such that

Ok  - e r(r = ) (124)

5. CONCLUSION. Waves propagating in matter or spacetime with broken sym-
metries will have complex number separation constants R and Z . For spherical
waves the separation constants must be related by Z - R - integer. The ob-
sered periodicities of the waves in measured time and measured space requires
complex number separation constants, wave numbers, frequencies and coordinates.
However the quantities wi , M and k must be real numbers for periodic waves.
Applications to seismic and acoustic waves are possible because the earth's
gravity induces a broken symmetry in the coordinates.
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ABSTRACT

Two applications of the Front Tracking method form the basis of this paper.

A formulation of the small anisotropy hypothesis for nonlinear elastic

deformation is given which is fully rotationally covariant and which is thermo-

dynamically consistent in the sense that it is derived from a specific internal

energy. An algorithm for the solution of the Riemann problem for nonlinear

elasticity is presented. This algorithm uses Godunov type iterations. For the

uniaxial deformations of an isotropic material, the Godunov iterations occur in

one dimensional spaces, while in the general case, the iterations are at most in a

two dimensional space.

Slug flow is studied in the context of Hele-Shaw cells. The transition from

laminar to slug flow is the main object of study.
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1. Introduction.

The nonlinear deformations of an elastic body are described by a hyperbolic system of

quasilinear equations. The constitutive relations close the system and can be characterized

through the dependence of the specific internal energy W on the strain tensor E = -(F'F - 1).
2

For hyperelastic materials these relations are the stress-strain relations: in Eulerian coordinates,

p f k. [8,9], where (&AJ) is the Cauchy stress tensor, fPj = po-'Fi. the Eulerian defor-

mation gradient and Po the material density.

For deformations small in shear, we model the specific internal energy in terms of the strain

tensor E (or the deformation gradient F) by a third order approximation on the effective shear

strain e [3],

W(FS) = W(E,S) = W(yS) + Go(yS) (1.1)
Po

where S is the entropy, ya (1/3) tr E is the mean compressive strain and

e2 a (dev E)0j (dev E)ij. Go(y, S) is the shear modulus at e = 0 for the corresponding hydrostatic

strain y and W, is a hydrostatic energy. Here, y, E2 and w3 a det(dev E) form a complete set of

invariants for the strain tensor E, with the third invariant 0 satisfying o)3 - 0(E3) [3].

The solution waves in elasticity are of three types: predominately longitudinal (or pressure),

predominately transverse (or shear) and a thermo-contact. In the non-linear case, the shear waves

split in two modes: radial and angular shear, while in the linear case the two shear waves speeds

coincide. The elastic system expressed in Eulerian conserved variables, for a uniaxial deforma-

tion, is given in terms'of the fundamental variables p (dersity), V (velocity), a (Cauchy stress

vector), 7(Eulerian deformation vector) and e = W(j, S) (specific internal energy) (91,

-tp + +(pv )  ] 0, (1.2a)

-(pv+L(pvv) --- (7if0) i = 23 (1.2b)
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Here I and a are defined by f =.r and a= . The density satisfies the relation

p =J-'po =(f')-', with J = det F.

I 3-right w e

-left wave 2-right way
2-left wave

time ,

-left waveI

h1-night w ye

position

Fig. 1.1 The elastic Riemann solution

The elastic state is written as U-( , S), withl=(u, v, w) and -=(,, 0t), where

C=al, a2 = cosO and 3 = t sinO. The elastic Riemann solution consists of eight constant states

aU, a = 1, r, i = 0, 1, 2, 3 separated by seven waves (see Figure 1). Of these waves, the mid-

dle one is a.slip line of speed X = = u,3 and the remaining waves come in pairs. The fast

waves are mainly longitudinal, in the sense that the change in the deformation vectorloccurs

mainly in the direction of propagation of the waves. The other two pairs are mainly transverse.

The slower of the transverse waves correspond to necking while the faster of the transverse waves

are linearly degenerate and correspond to torque [4].
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2. Numerical Solution

We relate the Riemann problem in elasticity to gas dynamics, where the longitudinal waves

are pressure waves and the shear wave is a contact of zero speed. Using this perspective we

employ a Godunov-type iteration [2, 61 to solve the Riemann problem. Each step of the iteration

is divided in two blocks: in the first block there are only pressure waves and in the second we

solve both shear modes simultaneously. The importance of this decomposition is that it allows a

reduction in the dimension of the space in which the Godunov iteration operates; in the most

favorable case, each iteration occurs in a one dimensional space, while the general case (non iso-

tropic or non uniaxial intermediate deformation) involves at most a two dimensional iteration.

This is in contrast to the seven dimensions of the state space (4].

The first block consists of the I-waves. In analogy to gas dynamics, we consider the shear

and thermal waves as a "wide" slip line with "surface tensinn" that causes a prescribed jump in a

and u. This slip line lies between the two pressure waves. We solve the 1-waves for a and u,

while 't, 0, v and w are left free. The change of a and u across this line (shear waves) is given by

two parameters Aa = art -all and Au = u - ui. The Riemann problem, formulated in this

manner, consists only of two waves. We use a Godunov iteration method to evaluate al and u.

Finally the values of a' determine the complete states U1 , for a = lr.

The second block consists of shear and thermal waves. We solve these waves for the vari-

ables -r, 0, v and w, with the conditions

93 = 03 , W3 = , V3 = V , = r3

while a and u are free variables. For isotropic materials and uniaxial left and right states, the

degeneracy of the 2-waves allows us to solve these waves explicitly. We use a Godunov type

iteration method for the remaining shear waves.

Proceeding in this fashion, a and u will have a jump across the slip line and the difference

will depend on the initial parameters Aa and Au. Thus, we define the lunction

F[ U 3  3
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A solution to the Riemann problem will be given by the parameters Aa and Au such that

F[ " ] =0. Ifwewrite

J Aa [~ F[ A]. (2.2)

we can construct the iteration. Given A , let

AU AuI ~ [ ] i) for n 0 .(2.)

From equation (2.3), the zeros of F correspond to fixed points of Q.

3. Front Tracking in Elasticity.

left torque wave tracked left torque wave tracked

50 A~X 100 AX

no wave tracked no wave tracked

500 Ax 100 AX

Fig. 3.1

In Figure 3.1 we compare four computational solutions for the same elastic Riemann prob-

lem. The main point of this comparison is to illustrate the advantage (or necessity) of tracking

the torque wave. The variable shown is the conserved quantity pf 3, plotted at approximately the
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same physical time t = 3.17. We use the Riemann solver described in the previous section in

conjunction with a higher order Godunov scheme (7] in a form proposed and designed by I-L.

Chem (i]. The top two frames used grids of 50 and 100 points respectively, and an algorithm

which tracked the left 2-wave (torque). The bottom frames correspond to runs with grids of 500

and 100 points, where no waves are tracked. We observe that the stiffness of the material pro-

duces two shear waves of similar and slightly different speeds. This, together with numerical dif-

fusion on the linear wave, "hides" the intermediate state between the shear waves producing a

single shear wave in the untracked computation. For finer grids (500 points) we observe a "rip-

pie", where the torque wave should appear, which is still negligible compared with the size of the

actual discontinuity (see Figure 3.2). Note that in Fig 3.2, 15 mesh cells are used within the rip-

ple region, but the waves are still under resolved. Tracking of the linearly degenerate wave, on

the other hand, forces the resolution of the shear waves independently, thus preserving the wave

structure of the solution, regardless of the size of the grid.

Tracked Coarse Grid

4 "15 Ax

Untracked Fine Grid

75 z x

Fig. 3.2

710



4. Umbilic Points

For isotropic materials, the dependence of W on'is through f =f1 and g2 = (2)2 +

In the previous section, for these materials, we have assumed that the eigenvalues associated to

the nonlinear pressure and necking waves (XI and X3 resp., near the reference state) and the

linearly degenerate torque waves (X2) are ordered as XI X2  3. A potential difficulty arises at

states for which the two shear waves cross over or the eigenvalues associated to the nonlinear

waves (pressure and necking) coincide. These states are called umbilic points. It follows from

the symmetry of W(f, g2) on g, that the line g = 0 is a locus of umbilic points; X2 = X, or X3..

These points are double (either X2 = X, or X2 = X3) or triple (XI = X = X3). We refer to the dou-

ble points as shear umbilic points and to the triple points as nonlinear umbilic points or simply

umbilic points. Near the undeformed state, the pressure waves are always faster than the shear

waves, but this ordering is reversed when crossing an umbilic point. Therefore the double points

on the umbilic line g = 0 correspond always to the two shear waves speeds coinciding, thus the

name shear umbilic points. The shear umbilic points have a fairly simple mathematical structure.

This is reflected, for example in the fact that the torque waves are linearly degenerate waves (con-

tact discontinuities) across which only the angle 0 changes.

To study the occurrence of umbilic points, we have studied the small shear model of the

specific internal energy for several common materials (aluminum, copper, lead, platinum, ...) and

searched for the coinciding eigenvalues. We observe that the umbilic points occur only on the

line g = 0, the ordering of the waves prevails and, furthermore, the points for which Xl = 
3 is

satisfied, lie outside of the elastic region. They lie in the region of plastic compression, and are

well within experimentally accessible limits.

We now describe the small shear constitutive law. In the formulation

W(F, S) = W,(y, S) + !G(y, S) e2, (4.1)

Po

the hydrostatic energy Wt is given by a stiffened gamma law,

W,(V, S) = v ' " exp( - S) + P, V, (4.2)
17-i R

where V and y are related by = (2y + 1)1. The shear modulus is taken from Steinberg-
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Cochran-Guinan's formulation

G(V, S) = Go I I +APl-"3 + B(T-300)] (4.3)

(GO, A and B are tabulated constants and fl is the compression, ii = p/po). Here, the pressure P

and temperature T are considered to be hydrostatic quantities; i.e., P = --a(W) aV and

T = a(Wt)/aS.

To describe the elastic region, we consider Steinberg-Cochran-Guinan's expression [101 for

the yield strength Y, in the Von Mises sense,

Y(V,S) = -o Yo [ +P( .+eji (4.4)

with the constraint Yo 1 + f3(e +ei 1- Ymax

The coefficients Go, A, B, Yo, Yma, 3, n and r are obtained from Steinberg-Cochran-

Guinan [101. (See Table 1.)

We calculate the simple uniaxial compression needed to reach the umbilic point (X3 = XI) at

constant entropy. For the materials we consider (see Table 2), the umbilical points lie on the line

g = 0 and the compression values vary from 8% to 14.5%.

At the same time, the elastic region is determined by the effective shear stress 'e, from the

inequality (Von Mises) 3 (,r,) 2 < 2 y 2. From the expression for the internal energy (1.1), we have

(t.) o2 p2 2 =4G 2 2

and therefore e2 1 1 . This relation provides bounds for the elastic
12 G 12  Go J

uniaxial compression TI = J = (detF)-l. We see that the bounds are less than 1.3% in compres-

sion for a number of common metals (see Table 2). This shows that the umbilical point is outside

the elastic region.
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Material Al Au C" Pb Pt W

Po (gr/cc) 2.702 18.88 8.92 11.3437 21.45 19.35

M (gr/(gr moles)) 26.98 196.967 63.546 207.19 195.09 183.85

P. (kbar) 2.4970 2.3901 3.5005 1.36474 2.7417 2.6316

Go (Mbar) .276 .28 .477 .086 .637 1.6

A (Mbar-') 6.5 3.8 2.8 11.6 2.5 .94

-B (kK- ') .62 .31 .38 1.16 .14 .14

r 2.97 3.99 3.02 3.74 3.74 2.67

Yo (Mbar) .0029 .0002 .0012 .00008 .0003 .022

Y. (Mbar) .0068 .00225 .0064 .001 .0034 .04

Table 1. Material constants used to define the constitutive law for a number of common metals.

Material Aluminum Gold Copper Lead Platinum Tungsten

min. compr. .987904 .996006 .993358 .994236 .997342 .987730

max. compr. 1.012551 1.004042 1.006777 1.005865 1.002679 1.012739

umbilic compr. 1.117324 1.127150 1.130208 1.080368 1.145728 1.144691

press. (kbars) .8944 .3245 1.4207 .43235 1.621 1.0278

Table 2. The minimum and maximum uniaxial compression for the elastic region is tabulated
for common metals along with the compression and pressure at the umbilic point. The main

point of this table is that the urnbilic point occurs in uniaxial compression at experimentally at-

tainable pressures, within the plastic range, for a number of common metals.
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5. Slug Flow

The instability of the interface of two viscous fluids has been extensively studied. The

Taylor-Saffman problem is the most well known example, which concerns a finger growing on an

interface between two fluids in a narrow, two dimensional channel; i.e., a Hele-Shaw cell. The

equations for a two fluid Hele-Shaw flow can be written as

V= VP , i=1,2, (5.1)

V-v=O,

where v, ti and P are velocity, viscosities and pressure. The indices i = 1, 2 refer to the two

fluids. In contrast to the classical Taylor-Saffman problem, we have studied the reversal of

fingering stability caused by a strong transverse flow field, see Figure 5.1. Fingers growing into a

strong transverse flow have qualitative features not present in the classical Taylor-Saffman insta-

bility, namely narrow fingers are produced in the Taylor-Saffman stable case, while wide fingers

or nonfingering behavior occius in the Taylor-Saffman unstable case see Figure 5.2.

We consider a gometry defined by a rectangle with no flow boundary conditions at

the top and bottom and prescribed inflow boundary through the left edge, in the form of

distinct hannels of two distinct fluids, see Figure 5. la.

The basic physical properties of Hele-Shaw flow, in the flow geometry of Figure 5. Ia, are

Jctermined by three dimensionless parameters, namely the ratio of the inflow velocities

V=v 2 /vl, mobility ratio M=gt2/±1 and width ratio W=1 2 /(11 +12) of the two channels.

When MV # I in the two channels, the flow depicted in Figure 5. Ia is not in equilibrium and

fingering may result. To better understand the initiation of fingering, we write v = v' + (v - v')

where uniform field v' satisfies MV' = I and v - v' has zero outflow right boundary conditions.

See Figure 5. lb. Two time scales are essentially important to flow patterns: the time t,, which

characterizes the transport of the finger down stream, and the pinch off time t,, which is the

characteristic time for a single finger growing to the height of the channel width. The ratio 3. of

the two time scales, is a function of V, M and W. (3 can be used as an order parameter to classify

the distinct flow regimes and the transition between them. When P3 x 1, pinch off occurs repeat-

edly, and turns a laminar flow to slug flow, see Figure 5.3.a. Even if the inflow boundary condi-

tion for Hele-Shaw flow is set to its equilibrium value, in a variable flow channel the instability
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.. . .

/ I

(a) (b)

Figure .1. The central channel is solvent located between two layers of oil. (a) The
velocity field of the total flow v. The injection rate on the right boundary satisfies
MV = 1. The left boundary velocity ratio V is larger than the equilibrium value, i.e.
MV > 1, which results in excess in flow of oil. (b) The velocity field of the nonuniform
flow v - Vi. There is no flow across the right boundary. The excess oil in flow produces
the transverse field which drives the solvent flow backward at the inlet.

develops locally, which also can produce a laminar to slug flow transition, see Figure 5.3.b.

A detailed presentation of the results of this section will be given separately [5].
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(a)

(b)

Figure 5.2. Finger growing on the interface of two viscous fluids, where H2 > pLj. (a) Ex-
cess flow of fluid of 92. Here V = 1, M = 5 and W = 0.4. (b) Excess flow of fluid of ..
Here V = 1, M = 40 and W = 0.5. The mesh size for cases (a) and (b) are 30 x 10 and
41 x 17 for the hyperbolic equation, 60 x 30 and 70 x 30 for the elliptic equation.

(a)

(b)

Figure 5.3. (a) Consecutive pinch off turns a laminar flow into slug flow. Here V = 1,
M = 5 and W = 0.92. The mesh size is 42 x 14 for the hyperbolic equation, 84 x 30 and
for the elliptic equation. (b) The transition of laminar to slug flow in a channel of vari-
able width.
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NUMERICAL SOLUTION OF AN
APERTURE ANTENNA INTEGRAL EQUATION

M.A. Hussain, Ben Noble, Wen-Tai Lin, and B. Becker
General Electric Research and Development Center

Schenectady, New York

ABSTRACT

Synthesis of linear antenna arrays can be formulated in terms of an integral equation of the
first kind by considering a linear array as radiation from a line source. This integral equation is
a Fredholm equation of the first kind which is difficult to solve numerically by straightforward
methods. The difficulty is overcome by exploiting the pattern theorem of T.T. Taylor, using an
iterative procedure to refine Taylor's analytical solution. This numerical method can be used
to tailor the beam so that a number of small sidelobes are of equal size and a few isolated nulls
can be forced over certain regions. The method is illustrated for one and two dimensional
apertures.

INTRODUCTION
One definition of an optimum antenna is a design in which all the sidelobes are of equal

level. However this is impossible since it would involve infinite energy, because of Parsval's
theorem. The best one can hope for is a design in which a finite number of sidelobes are of
equal level, and the level of the side sidelobes tend to zero at infinity.

Dolph [11 has derived the optimum current distribution for linear arrays with a finite
number of elements using the properties of Tchebycheff polynomials. Van Der Maas [2] has
obtained a simple asymptotic formula for the space factor when the number of radiating ele-
ments becomes very large. Using this formula and analytic properties of the space factor, Tay-
lor [31 has shown that this optimum or ideal space factor is not realizable due to the singular
behavior of the current distribution near the ends of the aperture. Taylor then gave a practical
method to avoid such singularities, and obtain what are termed Taylor weights. This widely
used method, provides practical weights for linear arrays.

The basic idea behind Taylor's method is that of bringing a selected number of zeros in the
space factor closer to the center of the visible region and preserve the zeros in the far region at
integer values. This is accomplished through the use of Woodwards synthesis procedure [4].
The one-dimensional space factor is then given analytically in the compact form. When this
method is used, the sidelobes are no longer of equal magnitudes, as is the case with the
Dolph-Tchebycheff method. Instead, they decay slowly from the designed sidelobe ratio.

In this paper, rather than use an analytical method, the solution of the integral equation is
reduced to a set of algebraic equations, using the Woodward synthesis techniques. The illumi-
nation function (i.e. current distribution), as well as the pattern, is easily computed. The results
are identical to those of Taylor. As in Taylor's result, however, the sidelobes are not of equal
magnitude. We then iterate around the zeros to correct the problem. After only a few itcra-
ioss the desired zeros, and sidelobes of equal amplitude, are obtained.

The problem is then formulated for specified levels of sidelobes, and the method illustrated
by some numerical examples. The generalization to an arbitrary set of nulls or near nulls i.e.
low sidelobes) then becomes clear.

The integral equation approach to antenna synthesis assumes a continuous distribution of
radiators. In practice this will be discretized. The method illustrated here will help understand-
ing of the discretization procedure for periodic as well as aperiodic (unequally spaced) arrays,
array thinning, and sub-arraying of large array synthesis
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APERTURE INTEGRAL EQUATION

In this section we formulate the problem of the one dimensional aperture problem using
the Hertzian vector potential [5]. Although the method is quite general, a few simplifying
assumptions are made, namely:, the one-dimensional approximation, the usual antenna approx-
imation neglecting higher order terms, and finally considering a monopole rather than dipole
or any other elemental characteristics of the antenna involved. The method can be extended to
more general cases as desired.

Consider a linear oscillator source of dimensions as shown in figure 1. The Hertzian vector
7'is given by [51 (note ir. - r,, 0 ).

2

i e"' t u()eikr
irdr,t) = 4 e w f r

where u () is the current distribution (illumination function) along the one-dimensional ele-

ment. Using the antenna approximation, the above reduces to:*

I

e .i t +i kR 2 (1)

Using equation (1) the field can be computed as follows:

E V (V --7) +k 1 7

H=-i W S V X 7 (2)

One term approximation of pertinent quantities are then given by:

i po w ei Wf sin(O) 2
Ee 4 4 R f eik U(0)d

(3)

H',

Equation (3) illustrates the well-known principle of multiplication of elemental patterns and

array factors [6]. We further simplify equation (3) to a monopole case.

I

E o =- e k Ri w 2e'4k( u()d (4)

For a desired asymptotic electrical field, the above equation, (4), gives the integral equation
for the current distribution on the line source. After normalization the integral equation

- This procedure is similar to Huvgen's source approamauion.
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becomes:

S(M)=k fe ekI G(x)dx Y=cos0,-a<x<a (5)
-a

where a=1/2, k=2 ir / A, and

i mo c e i k r-i wt

E- - 42rr S(-)

Equation (5) is the main integral equation to be worked with. It has been derived here in a
simple manner. Alternatively, it may be derived by considering discrete isotropic elements and
approaching the continuum limit [7].

NUMERICAL PROCEDURE -

Consider a symmetric function, G(x). Equation (5) then reduces to:

2 k fG (x) cos( 2 'r 's 1) d = S(cosP), For 0 < 0 <5 " (6)a A

where G(x) is related to the excitation or illumination function in the aperture and k= 2r / A,
with A being the wavelength. Introducing p=1o/a, u = 2a cos 9/A , g(p)=G(x),

A

F(u) = -i-S(Y), with the visible range -2a / A < u 5 2a/A, equation (6) becomes:
T Fuu

fg(p) cos(p u) dp - u > 0 (7)
02

Once g(p) is known, F(u) is defined for all u by equation (7). In our case, however, we have
to solve for g(p). The only information we have is asymptotic zeros of F(u). These are derived
by Taylor [4],[81 and obtained by the asymptotic method in appendix AL It is clear from
appendix equation (Al) that to avoid singularities in the unknown function, we should place
the asymptotic zeros at the integer points, i.e. a - 0 for the form of g(p) near the end points of
the aperture, corresponding to a pedestal illumination. We further assume g(p) is infinitely
differentiable, finite, and non-zero at p-r.

Following Woodward's synthesis (31 let g(p) have the Fourier expansion

(P) -a + ED. cos(m p) (8)2 -

for 0 < p < i otherwise g(p) - 0 for p > r

Substituting equation (8) into equation (7) we have:

F(u) 2 r ( Do sinir u) sin(r (u + m)) + sin(u (u -M))(+ U ( * M) r ((9)

From (9) we have:

D. flm) (10)
272
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Denoting F(m) by F., we have from equation (8) and (10):

1g(p). - 1(Fo + 2 &F cos(M p)) (1

Suppose that we decide that our far field pattern F(u) should have zeros at u=m for m > M,
then :*

g(p) = -(Fo + 2 F. cos(m p)) (12)

This givew

F(u) = ao(u) F0 + EFm am,(u) (13)
rn-I

where ao(u) = sinwu) / x

a.(u)= sin(w (u + m)) + sm(i (u-M)) (14)
ir (u + m) l (u-m)

From (13) and (14) we have F(n) =0 for n > M, and hence the Taylor's synthesis theorem is
satisfied for finite value of the illumination function.*

We normalize so that F(O)=Fo = 1. Then we have M unknowns, Fl. F2, ...,FM at our
disposal to control the size of the sidelobes and the null points. Also the knowledge of F, gives
g(p) from equation (12). We now set up M simultaneous linear algebraic equations for the
determination of the Fi. It is convenient to discuss this in three stages.

1. M nulls are prescribed. Then the sidelobes will be completely determined.

2. The maximum sidelobe size is prescribed. We will determine the solution by assuming
that the maximum value of each sidelobe equals this value, for the first M sidelobes.
Then the position of the first M nulls will be determined.

3. The general case when we prescribe the position of k near-nulls and the maximum
(equal) size of the M-k sidelobes. Then the remaining M-k near-nulls and the other k
(maximum) sidelobe sites will be determined.

Case I

M nulls u are prescribed. The advantage of starting with this case is that we can check
whether the proposed method is going to work by solving the Taylor problem illustrated in this
paper. From (13), recalling that Fo -1, and setting u-ui (knowu) for i l,...,M we find.

M

E a,,,(u) Fm -ao uj (15)
on-I

These are M simultaneous linear equations for F.,. Now see how we can solve the Taylor

M corresponds to T- I in Taylor's paper.
From here on our method differs considerably ftrom that ofT. T. Taylor. Taylor introduces a single stretching parameter for shifting

M + I zeros. On the other hand. we use these M degrees of fireedom m the desired panern.
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examples by this method, assuming that all we know are the positions of the nulls, u,, i= i....M.

These are given by [41:

U , (CyN/(,-2)+A i -,...,M (16)

where cosh(wA) is the sidelobe ratio, and a, the dilatational factor is given by:.

M+1 (17)
.V (M + -1)2 +A 2

2A

The procedure is to substitute (16) into (15) for the solution of F. and recover F(u) and g(u)
from equations (13) and (12), respectively.

The results are plotted in figures 2 and 3. From the figures it can be seen that these results
agree with Taylor's results. It should be noted that we have used only the values of ui, and
none of the machinery of Taylor to obtain a closed-form expression. The method will work for
any prescribed ui ; however the success or accuracy will depend on how the uj are spaced. The
condition number of the matrix involved in (15) was of the order one and as can be seen, the
sidelobes decay and are not of equal magnitudes.

We next describe how to insert a double null at some point ut. To do this we use series
expansion, form equation (15):

M

a,,,(uk) Fm = -ao(uk) (18)

Aml

( .a(uk + A)) Fm -ao(uk + A) (19)

am(uk + ) a.(Uk) + A a;,(uk) (20)

Inserting equation (20) into (19) and using (18), we have:

M

Ea; (uk) Fm aj (ut) (21)
Mn-1

We now have two equations (18) and (21) and we can delete two u in the neighborhood of Uk.
The results of such an example are shown in figures 4 and 5. As should be noted, the pro-
cedure leads to a disturbance in the sidelobes in the neighborhood. The null is quite broad,
however, which may be a good feature if signal from a broad source has to be eliminated.

Case 2.
Make the first M sidelobes all the same size. The success of Dolph-Tchebycheff synthesis

was due to equal sidelobe design. Taylor's modification, the stretching of the nulls, to reduce
the singularities at the aperture edges, leads to unequal sidelobes. The following procedure is
suggested by Taylor's example shown in figure 2. The maxima for the sidelobes occur approxi-
mately at the half-way points in between the nulls. A more exact analysis may not be neccssary
because of the iteration procedure. Suppose the Taylor nulls are at uj,. .,.. Iterate as fol-
lows:

Step 1. Compute the following approximation to the position of the mamma:

vf - 1/2(u +u. 1), iul,...,M (2)
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Step 2. Suppose that the sidelobe level required is k. Solve the following equation derived
from equation (13).

M
ak - FO aoQ.j) + E .LjF (23)

rn-1

where a- 1 for i even, and a--1 for i odd.

Step 3. Reconstruct the radiation pattern and compute the new nulls, .

Repeat step 2 with uJ in place of ui and continue until convergence of u,( )

For the cases considered it was found that the convergence was extremely fast. The results
for the radiation pattern and the illumination function are given in figure 6 and 7. Table 1
gives some results after about the fifth iteration, for design purposes. The diagrams show that
the beam is a little sharper than that given by Taylor. This table gives the location of the first
zero for the values of sidelobe levels. It can be seen that the beam width is narrower since the
zeros have shifted to the center.

Case 3:
We now present general cae. It should be clear how to generalize. The k near-nulls give us

k equations in a straightforward way. The other nulls will be determined by the iteration pro-
cedure of case 2, but one will only be able to make M-k sidelobes equal to a prescribed max-
imum value. Figure 8, 9, 10 show how regions can be made very close to zero by placing
several consecutive near nulls.

EXTENSION OF THE METHOD TO CERTAIN TWO-DIMENSIONAL CASES.

The Taylor pattern for the axially symmetric problem has been derived in [81 and [19]. The
numerical method described above can be easily extended to this case.

The remainder of this section is devoted to a two dimensional problem with a rectangular
aperture. Using spherical coordinates 9, 0 and a rectangular illumination region of area
A = 4ab, consider the following generalization of equation (1):

r'(x,y) = ---.ff 1(,7)e " k (( Sw CC+0,? S0 sIaddn (24)
'RA

where x - R sin kos , y R sin in # We assume that the current distribution can be
represented in the product form as:

1I(x,y) - 4i(x) JA(Y) (25)
so that x#,,) must also be of product form. Using the same symmetrical case as before, we
have:

4I a cos(kx- b1 cos( A) dn7 (26)

R 0 R 0R

Let r - aa, xl b#, 2a/A=N/-N 2b/A -M/2. Equation (26) becomes:

I(xy) _ 4em a f f(a) cos(ua)daf 12(8) cos )d#(27)

where u-N/2 sin 4 cos 4 , v-M/2 sin 0 sin 0. The above equation (27) compares with
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equation (7) and we use the same procedure to solve this equation. Some of the results of the
iteration procedure for the two dimensional cases are illustrated in figure 11 and 12.

As mentioned in the introduction array thinning and subarraying will require the discretiza-
tion of the illumination function. For adaptive beamforming, of a very large array, the numeri-
cal computation of each element may become prohibitive and sub-arraying may become neces-
sary. A simple method called product integration can be illustrated as follows. Consider the
space factor, f (u), with illumination function i (x) as:

I

f(u) - fe i(x),x (28)

For discretization, approximate i(x) by a constant I, in the r* interval Equation (28) then
becomes:

R 4 + 47&. R

f(u) E f I, e ikAdu = FIfr(U (29)

where

fr(U) 2e iL.. sin(1/2/u) (30)

Using special values of I, it can be easily shown that the above method gives some well
known solutions (see for example [101). In our case we use the solution to the illumination
function given by equation (11) for the above procedure.

CONCLUSION

To the best of our knowledge the method given in this paper has not been investigated in
the literature. The literature of radiation pattern synthesis is extensive. A partial review of
various methods can be found in a recent reference [1], where a least square approximation
has been investigated. The method given in our paper, due to its simplicity, will have a wide
application in large array synthesis as well as for adaptive beamforming problems.

APPENDIX A

T.T. Taylor obtained the asymptotic behavior of zeros from a rigorous discussion of the
behavior of an integral of the following form for large t

F(t) = f((.r- u' ) ag(u) cos(t u)) du (Al)
0

where g(u) is a perfectly smooth function. His result can be obtained by evaluating the above
integral exactly for g (u) =1 and then taking the asymptotic value of the integral. The point is
that only the behavior at u =w- is important in determining the distribution of zeros.

Lemma: If we take: g (u) I 1 then the pattern function F(t) has the asymptotic form:

lira F(z)= rll+c,)z- cos(# (z't/2(1 a)))
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for real(z) > 0.

Proof Consider

W

f Cos(u t)(Xru 2)adu -F(t) (A3)
0

Using Poisson's integral formula [12]:

2/2

2(X) - - 2) f cos(xco so)sin(o')dZ (A4)
V *r(V+1/2) 0

we have

(a + ,oi.)F(z) -c (2 OA2+a . n(Z (AS)

Using the one term asymptotic formula we get

11(z) L cos(z- 1(1 + 2v)) (A6)

Then we have:

F(z) r (l+a) za cos(r(Z-l/2(1+))) (A7)9r Z l~a

Equation (A7) shows the asymptotic zeros.

APPENDIX B

The integral equation for the determination of the illumination function can also be derived
from an energy point of view using Poynting vectors. Energy methods are useful for incor-
porating effects due to various design requirements for large array synthesis. In this appendix
we derive the form of the integral equation that would arise due to energy methods directly
from the one given in this paper.

a
SQ)-k feskux g(x)dx u-cos(9), -a <x< a (Bi)

Multiplying (Bi) with e ' and integrating with respect to Y from -1 to 1 and changing the
order of integration we get:

a sin(k(x - t)) dx (B2)1/2.F I(t ) "f g (k) s(x- x B2

where

F-t f S(&-) e""va
.1

Even though (B2) has a symmetric kernel, having quite a different form from the one in equa-
tion (7), the eigenvalues are the same, as discussed by Slepin and Pollack [13]. The method
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of synthesis using the analysis of reference [13] are extensively analysed in [14].
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OPTIMIZED TAYLOR ZEROES (Only Ist Show )

a_ (TAYLO0)

10 20 40

.81sss 1.13733 1.8149
S(.84294) (1.16962), (1.8302)

680656 1.12748 1.8133
(,82983) (1.15659) (1.8347)

7 .80021 1.12016 1.8097
(.82047) (1.14651) (1.8337)

8 .79551 1.114537 1.8058
(.81345) (1.138582) (1.8306)

9 .79187 1.110093 1.8020
(.80800) (1.132203) (L8269)

10 .788993 1.1065 1.7986
(.803647) (1.1270) (1.8231)

Table 1. Values of frst zeros obtained by numerical analysis

with uniform sidelobes and compared wi thwos of Taylor zros.
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Computation of Leading Eigenspaces for
Generalized Eigenvalue Problems

Abraham Kribus
Sibley School of Mechanical and Aerospace Engineering

Comell University
Ithaca, NY 14853.

Abstract

A method for computing leading eigenvalues (having the largest real part) and their

eigenvectors for large generalized eigenvalue problems is presented. A linear fractional

transformation is used to map a group of leading eigenvalues into dominant eigenvalues

(having the largest modulus). The Dominant eigenvalues of the transformed problem are

computed by Stewart's (1976) Simultaneous Iteration. Each iteration involves matrix-

vector multiplication and the solution of a linear system, which can be done efficiently if the

matrices involved are sparse or have some special structure. Convergence properties are

similar to those of the inverse power iteration: the method requires an estimate for the

region in the complex plane containing the desired eigenvalues, and converges rapidly
when a good estimate is available. The amount of work is also comparable to that of the

basic inverse iteration, which is significantly less than that required for full eigensolution.

Examples from hydrodynamic stability demonstrate convergence rates, computation time

and the ability to resolve simultaneously groups of leading eigenvalues.

1I.ntrodMt

A generalized eigenvalue problem has the form:

Axf=aB x (I.I)

where A, B e V'n Xn are general complex matrices. In many applications these matrices

will have some useful structure, such as symmetry or sparsity.

Let the Leading Eigenvalues of (1.1) be those having the largest real part ; the more

common term, Dominant Eigenvalues, refers to those having the largest modulus . In

some applications, only a few leading eigenvalues of (1.1) are sought; for example, in
linear stability problems, the real part of a is the growth rate, and the eigenvectors of the

leading eigenvalues represent the most unstable modes.

Traditional methods for solving (1. 1) usually involve finding all the eigenvalues, using

the Q-Z algorithm (see IMSL or other numerical analysis libraries) and then sorting by the
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real part. This involves O(n 3) work, where n is the order of the matrices, and becomes
expensive or impractical for large n ; little or no advantage can be taken of sparsity or other
structure of A and B.

Several methods exist for extracting selected eigenvalues and eigenvectors of standard
eigenvalue problems, i.e. when B is invertible (see, for example, Golub and Van Loan,
1983.) Power and Lanczos methods compute the dominant eigenvalues; inverse iteration
can find the eigenvalues closest to a given point in the complex plane and their
eigenvectors. These are not directly applicable to the problem of computing the leading

eigenvalues.

Recently, an integration method was proposed (Goldhirsch et al. 1987) for the leading
eigenvalues of a standard eigenvalue problem. This method is simple and elegant; however,
its convergence may become very slow (or, alternatively, the size of the reduced problem

may become very large) if the separation of the eigenvalues is small Another problem may
arise if the problem is defective, i.e. a leading eigenvalue has generalized eigenvectors; in
this case, the integration method may return inconclusive or inconsistent results.

2. The Dominance Manning Method
This method attempts to address the problems of the form (1.1) which are not solved

efficiently by the other methods mentioned above. It will work for singular A and B; for
defective problems; it will take full advantage of the structure of the matrices; and it allows
some control over convergence rates. There are a few restrictions, however, which will be

discussed below.
The eigenvalues in the complex o-plane can be mapped to a X-plane by the linear

fractional transformation:

a -1 (2.1)

X+1

where a is a real positive, and 0 a complex, constant. The important effect of this linear

fractional mapping is to map the half-plane to the left of a=-3 to the inside of the unit circle
in the X plane, as seen in fig. 1. If m leading eigenvalues are required, and we select 13
such that:

Rea • Re(1P) 1=1... m

< Re(P3) i=m +1...n
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then the corresponding m eigenvalues will be dominant in the . plane:

1> i=1...mf il< 1 i=m +1 ... n

Figure 1: The Dominance Mapping (2.1)

The eigenvalue problem for X is of standard form:

C u -Cf "1 C2 u=- u (2.2)

where:

C1 =-[A-(x +0 )B]

C2 = [A+( -3) B]

The problem of computing the leading eigenvalues of (1. 1) becomes that of computing

the dominant eigenvalues of (2.2); the methods mentioned in § I can now be applied. We

used Stewart's (1976) versio-- of Simultaneous Iteration, which finds dominant invariant

spaces of a general, non-hermitian, possibly defective C.
A transformation similar to (2. 1) was proposed by Jennings (1977), in the context of

converting a quadratic eigenvalue problem to standard form. Jennings (and no one else, to

the best of the author's knowledge) has not made the second step of applying a dominant

eigenvalue method to a transformed problem equivalent to (2.2).
The mapping constants 0x and 3 allow the user some control over the rate of

convergence and the order in which the leading eigenvalues emerge during the iteration.

The user must have an estimate of where in the complex plane the leading eigenvalues
reside; 03 is set to the left of this region. The point c = 3+a is a singular point of (2.1)
which maps to infinity in the X plane; eigenvalues close to c will map to very large
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modulus in the A. plane, and will converge rapidly during the iteration of (2.2). a should be

set, therefore, so that c is near the center of the leading region or near the most important

eigenvalue.

The following algorithm computes m leading eigenvalues and eigenvectors of (1.1),

using the Dominance Mapping and Simultaneous Iterations:

1. estimate leading region; select a, 3

2. perform L-U decomposition of Cj = - [A-(a +() B];

(use the structure of A and B )

3. select m initial vectors u(0) e Cnxm

4. Simultaneous Iteration on C u = u:

for each multiplication uk + 1) = C u00 do:

4.1 multiply: v = C2 u
(k )

4.2 solve the system: C1 u (k+ l) = v

5. map converged Xi -+ ai.

3. Singularities in the Dominance Maping

The algorithm of §2 may fail in two cases, corresponding to the two singularities of the
mapping (2.1): the point a=c, which maps to infinity in X, and X=-l which maps to
infinity in a.

When Ic -ai I < e for some i 5m, for a small (machine-dependent) e, then the matrix C
will be ill-conditioned or numerically singular. This is easily remedied by a small change in

a, which does not significantly affect any other properties of the mapping.

When iIm(ai - c ) I 3 1 for some i 5m, the corresponding X-eigenvalue is close to the

singular point X=-I. This implies that its separation from the subdominant eigenvalues

inside the unit circle is small, often so small that convergence is impractical. Some

improvement may result if we increase a; but this may decrease the modulus of other

dominant X-eigenvalues and slow down their convergence. In a case where leading

eigenvalues are widely separated in the imaginary direction, it may be necessary therefore

to restart the iteration with different 3 values to resolve separate clusters of leading a-

eigenvalues. An example of this situation appears in §5 below.

The performance of the DM method can be demonstrated by observing the amount of
work needed to resolve a fixed subset of leading eigenvalues, as the order of the problem
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increases. The following example includes tridiagonal matrices of increasing size n, all

having two leading eigenvalues:

al = 1.2 (4.1)

a2 = 1.1

Re() . 1 for i = 2...n.

Selecting a = 0.3, 3 = 1.0 isolates al, a2 . The problem was solved first using the

traditional QZ routines (IMSL), then using the DM method but treating the matrices as
dense, and finally taking full advantage of the structure. The results are shown in Figure 2.

The savings in computing time relative to the full eigensolution can be significant: at

n =100, only I of the work is necessary even without exploiting the band structure; then5

work is reduced by more than an order of magnitude when the structure is used.

1000

time 2.7

100 2.1

1 13--- DM, dense

0 
1 .3 D M , ban ded

10 100 n 1000

Figure 2: Work to resolve the two leading eigenvalues (4. 1), using

three solution algorithms

5. Application to the Orr-Sommerfeld Equation

The Orr-Sommerfeld equation:

(D2 _ a2)2 W = JaR [(U-c)(D2-a2) - U"V ] (5.1)

describes the hydrodynamic stability of parallel shear flow (see, for example, Drazin and
Reid 1981.) High accuracy eigenvalues were computed by Orszag (1971) for plane
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Poiseuile flow with R=1O000 (Reynolds number) and af=1 (streamwise wavenumber.)

The location of the twelve least stable cigenvalues are shown in figure 3.

0

12 +

78 9,101

Figure 3: Poiseuille flow eigenvalues. R=10000, ot=1.0

Equation (5. 1) is discretized using central differences (a spectral method may be more

appropriate in this specific case, as in Orszag (1971), but the banded finite-difference

matix is a good example of candidate problems for the DM method.) The eigenvalue c is
replaced by ar.-ic , to conform with the definitions of (1.1).

When Im(p3)-Im(aj) (the upper dashed lines in fig. 3), eigenvalues I and 4 were the

first to converge; 2, 3, 5 and 6 rook longer to converge, since the imaginary part separation
brought their . counterparts close to the singular point X=-l. For Im(3)=Im(a2) (the lower

dashed lines in fig. 3), the order was reversed: first eigenvalues 2, 3, 5 and 6 and then I

and 4. In both cases, the first group converged within 10 to 15 iterations, regardless of the

number of grid points; the second group took much longer to converge.

The error associated with convergence of the X-ireration was not significant in our

computations. Using a stopping criterion of ICu-Xull <5 10-3 , the leading a-eigenvalues

were converged to at least 5 digits. The discretization error of the finite-differencing

(compared to Orszag's results) is proportional to Ax2 , as expected. The time to resolve the

most unstable eigenvalue and its discretization error vs. the grid resolution are plotted in

figure 4.
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time Relative Error
inma

100 .01

.001
10

.0001 2.0

100 n 1000 .001 .01

(a) (b)

Figure 4: (a) the time to compute the most unstable eigenvalue of (5.1)
(b) discretization error vs. the grid interval Ax

6. Conlj~g

Using the Dominance Mapping and a Power Iteration method we can compute leading

eigenvalues and eigenvectors of large generalized eigenvalue problems. This method can be

more efficient than a full eigensolution even for general matrices, but is especially attractive

when the matrices have a structure that can save work in the Gaussian elimination and

matrix multiplication steps. The DM method can be applied to singular and defective

problems that may cause failure or slow convergence in other methods.

Use of the DM method is restricted, however, to cases where an estimate for the

leading eigenvalues is available. When this estimate shows a wide distribution of leading

eigenvalues along the imaginary direction, several passes may be necessary with different

mapping parameters to properly resolve all leading eigenvalues, as demonstrated for the

Orr-Sommerfeld problem.
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APPLICATIONS OF FIBONACCI SEQUENCES AND TIUNG

Joseph Arkin, David C. Arney, Lee S. Dewald, and Charles Kennedy
Department of Mathematics

United States Military Academy
West Point, NY 10996-1786

AQIflAI In the first part of this paper we develop some results

for the recurring sequence

B(n) = a B(n-1) + b B(n-2),

with a and b -0, B(0) = 1, and B(1) = 1,

and show a relationship between this sequence and the simple network of
resistors known as a ladder network. Then, using certain values for the
coefficients a and b, we show tiling of the plane using this general
recurring sequence.

In the second part of the paper, using the Fibonacci recurring
sequence and Fibonacci polynomials, we investigate the paths of light rays
incident upon two stacked glass plates. We model the number of distinct
paths of light rays, number of reflections of light rays, and number of
crossings of the interface between the glass plates using both
homogeneous and nonhomogeneous recurrence relations. Once again, we are
able to tile the plane using these sequences.

1. Int rutio

The Fibonacci numbers are a sequence of real numbers in which each
successive value in the sequence is defined to be the sum of the previous
two values. The first Fibonacci number is zero and the second is 1. The
recurring sequence of Fibonacci numbers, then, can be described as

F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1. (1)

The Fibonacci sequence exhibits many interesting mathematical
properties. Some of these are:

i) Every third Fibonacci number is even,
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ii) No two consecutive Fibonacci numbers have a common factor,

iii) The sum of any ten consecutive Fibonacci numbers is always
divisible by 11 (11].

Over the years, many physical and natural phenomena have been
identified to exhibit properties which can be modeled with the Fibonacci
sequence. One of the classic applications is a population model. Assume
that a pair of a species is isolated and allowed to breed. Assume further
that for each time period the original pair gives birth to a new pair. Each
new pair matures and two time periods after birth gives birth to yet
another new pair. If we assume no deaths, the number of pairs of the
species at the beginning of each time period is a Fibonacci number.

Plant life exhibits many properties which can be modeled by Fibonacci
numbers. The number of petals in the flowers of many plants are Fibonacci
numbers. The number of spirals in the scale patterns of pine cones is
usually a Fibonacci number [12].

The applications of the Fibonacci sequence are extensive in many
diverse fields of mathematics. One area which is especially rich in the use
of Fibonacci numbers is number theory. Fibonacci numbers are widely used
in solutions to the problem of Diophantus [6,8]. Fibonacci numbers appear in
the analysis of Aitken Acceleration; a numerical analysis procedure which
speeds up the convergence of some sequences [13].

One of the better known applications of Fibonacci numbers is in the
field of optimization of functions of a single variable. One very popular
method for resolving the associated line search problem is the Fibonacci
search method. Assuming only that a function g(x) is unimodal on an
interval, the Fibonacci search is a method to successively select N < W
measurement points so that one can determine the smallest possible region
of uncertainty in which the modal value must lie. If d, is the initial width
of the interval of uncertainty, then after k :% N measurements

(F(N-k 1
k F(N) (2)
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is the width of the interval where the integers; F(m), are the Fibonacci
numbers generated from the recursion in (1).

A practical use of the Fibonacci search was reported by Braverman
(10] to locate the sample size that maximized the expected net gain from
sampling in a Bayesian decision problem.

Some extensions of Fibonacci numbers and Fibonacci polynomials are
related to certain classes of discrete probability distributions which have
important applications in reliability theory. The Fibonacci numbers of
order-k are defined as

(k) F(k)(n.I) + + IFk)(1) 2 sn sk+(
[F(k) + ...++ F(k) nZ k+2

with F(k) (0) = 0 and F (k)(1) = 1

Fibonacci polynomials of order-k are likewise defined as

n1, (k)

Sxk-
' Fni (x) 2 s ns k+1

F(k) f(4
Fn(x)= k(4

(k) (k)
with F (x)=O and F1 (x)=1.

The Fibonacci polynomials are obtained from (4) by setting k = 2. In order to
obtain the Fibonacci numbers of order k, set x = 1 in (4).

Now the Fibonacci polynomials of order-k have been generalized to a
Fibonacci-Type polynomial of order-k [1 5] as follows
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X 1 ...(X +/+i,(X) ] 2 :S kn I

L ( +k

It is polynomials of the form in (5) that occur in certain discrete
density functions [15]. For example, let X be the random variable with the

geometric distribution of order-k and parameter p 8 (0,1). We have

P(X = n+k) = pf+k 1 ( naO (6)

Likewise, let Ln be the random variable representing the length of the
longest string of numbers in n a 1 Bernoulli trials. We have

p.0s k) 0 s'~ Oks (7)1p ",,+2 P

The reliability of a system may be increased without duplicating the
system by using a "consecutive-k-out-of-n : F system." [16]. This is a
system that fails if and only if 1 s k s n consecutive components fail. This
system was first introduced in connection with telecommunications and oil
pipeline systems.

One simple result is cited. If the system consists of n components
arrayed linearly, operate independently and identically with probability p,
then the probability of failure is one minus the probability that in n trials
there is no occurrence of a string of k failures:

P(F) = I - P(L,. s k-1 ) M=1 - flp" l f(k) t'-LOs-"n()I' 0 f,)f= Ok ,=n. (8)
P n+2 P
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The Fibonacci numbers and polynomials also occur in the models and
their solutions in the fields of engineering and applied physical science. In
this paper we discuss two such applications.

For the first application we use the recurring sequence

B(n) = a B(n-1) + b B(n-2), (9)

with a and b o0, B(O) = 1, and B(1) = 1,

to model the simple network of resistors known as a ladder network. Then,
using certain values for the coefficients a and b, we show a tiling of the
plane using this general recurring sequence.

For the second application we use a recurring sequence similar to (1)
and Fibonacci polynomials to investigate the paths of light rays incident
upon two stacked glass plates. We model the number of distinct paths of
light rays, number of reflections of light rays, and number of crossings of
the interface between the glass plates using homogeneous and
nonhomogeneous recurrence relations. Once again, we are able to tile the
plane using these sequences to demonstrate a geometric interpretation.
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2. Ladder-Network of Resistors

The ladder-network of resistors shown in Figure 1 is an important network
in communication systems (2,9]. The following definitions are provided:

a) The resistance through the resistor = R1,

b) Voltage across the resistor = el,

c) The attenuation (input voltage/output voltage) = A,

d) the output impedance = zO,

e) the input impedance = zl.

R, R, R, RI

0 0

-IR R R2 - z

0f 0

Figure 1: Schematic showing location of resistors in a ladder network.

A model of ladder-networks obtained from Kirchhoff's & Ohm's Laws
was developed in [2,9,14 ]. The model for the attenuation is the generalized
Fibonacci sequence

Bn = k1 Bn. 1 + k2 Bn. 2  with B0 = 1 and B1 =kj. (10)

The coefficients k1 and k2 depend on resistances R1 and R2 .

In this model, B2 n is the attenuation of the circuit with n pairs of R1

and R2 resistors.

First, we develop a useful result for solving our model.
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The following relationship always holds for (10).

2B,- n,+ ,. -) .(

where

B0 = 1, B, = kl, B2 = k + k2 , ... (cf[2,5]).

Proof
Another way of stating (10) is

1 =B +B x+B 2 
+  (12)

(1-1lx-k 2 X2) 0I

where x2 - kx-k2  is the auxiliary polynomial of the 2nd order

homogeneous difference equation and therefore

X=k x+k 7 " (13)

Now, multiplying (13) through by x, we have

x3 =k1 X2 + k, x

and replacing-x 2 with the values in (13) leads to

X3= k +k 2 ) x +kk 2 or x3 = B2 x+kk. (14)

Then, continuing in the same way that we obtained (14), we have

x +1 = B. x + K (where K is some constan). (1 5)

Solving for (13), we have the following two roots:
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1 k, + + 4k2(1 Ba)

and

Tl k. -( (16b)

In (15), we write

lei+1 = Ba xi + K ( a
z (1 7a)

and

X2n+I = B. x2 + K (1 7b)

Subtracting (17b) from (17a) and combining terms, we have

(xn+ . +l)
B8  = 1 (18)

Substitution into (11) completes the proof for the cases x, Pe x2 .

-2
When x1 = x2 , then k= For this case we find Bn by inspection to be

Bn = (n+1)( (19)

Substitution of (19) into the left-hand side of (11) yields k

and completes the proof for that case.

750



Now, using (16a), (16b), and (18) or (19) the attenuation for any ladder-
network circuit like that in Figure 1 can be explicitly determined.

The result in (11) for the generalized Fibonacci formula of (10) can be
extended to higher-order recursive equations.

We now consider the generalized Tribonacci formula

T = ki T.1 + k2 Tn2 + L3 T 3  (20)

where k1 , k2 , and k3 are arbitrary constants,

TO= T=kT2=' +k2 ,  and T3 =k,+2kk2+k 3 .

.. (cf[ ]).

Using the same methods that we used to find (17a) and (17b) it is not
difficult to show that

+~2 =T x2 axbz 1 1+ax 1 +b (21a)

x2"n2 = Tn X 2 + ax2 + b (21 b)

x3n+Z = T x32 + a x3 + b (21 c)

where x1 , x2 , and x3 are the three distinct roots of the auxiliary equation
belonging to (20) and a and b are constants.

Now, subtracting (21b) from (21a) and (21c) from (21a) , we are left with
two equations. Solving the two equations we get:

T=E G
F H (22)

where
n 2 n 2

E= 2 1 3 (23a)
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F = (x - x3X x3 - X2) (23b)

G - ( Xn , (23c)

H = (xl-x,)( x3 -) (23d)

The following solutions for the three roots of the auxiliary polynomial

X3 =k x2 +k 2 x+k 3  (24)

of the third order homogeneous difference equation in (19) are found to be:

XI=A+B , (25a)

X2 2A2B 3 (25b)

X3 F3 i(25c)

with

2= ,2 (26a)
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B= CD 3  (26b)

C= (* -29klk2 + 27k.), (26c)

D=j-(3k'2 "k) (26d)

where

i=.FT, and n=0,1,2, .......

Therefore, an explicit formula can be obtained for the generalized
Tribonacci equation using (26), (25), (23), and (22). Note when ki = 1 for
i = 1, 2, 3, the value of (23) is the nth Tribonacci number.

Higher-order generalized formulas can also be solved explicitly when
the roots of the equations ( like (13) and (24) ) are solved.

In order to demonstrate the geometry of this model in (10) with the
simple values of k, = k2 = 1, the values of Bn can be used to tile the plane
by he arrangement in Figure 2. [3]. Note that each tile is a square. This
method of arrangement is simple to follow. In each case, as each new tile is
ad( ed to the region, a full rectangle results.
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3
2

8

5

Figure 2 Simple tiling of the plane using the Fibonacci sequence.

3. Paths of Light Rays

3.1 Number of Distinct Paths with n Reflections

The model for the number of distinct paths for light rays incident
upon two stacked glass plates which have n reflections is the familiar
Fibonacci sequence [7]. Several such possibilities of reflections are shown
in Figure 3.
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0 1 2 3 number of
I reflections
I V

II

I I
II

I I I

I I I
I I I
I I

Figure 3: Portrayal of the possible

scenarios with the given number of reflections

This model can be easily explained. Let Pn be the number of paths having n
reflections. Clearly Po = I and P1 = 2.

Now, assume bundle A has Pn-1 rays each with exactly n-1 reflections
while bundle B has Pn rays with exactly n reflections as shown in Figure 3
for n = 0, 1, 2, 3. There is no loss of generality regarding the parity of n as
the following argument is valid if the diagram in Figure 4 is turned over top
to bottom.

n- 1 n reflIections
reflrectieonsl

YA B

Figure 4: Portrayal of two bundles of rays with n-1 and n reflections

755



Pn+1 is the number of distinct paths yielding n+l reflections. These
all must come out of the glass plates in the opposite direction to those in
bundle B and in the same direction as those in bundle A. Thus the rays of
bundle B are reflected at their exit surface to get bundle B' while those of
bundle A are reflected at their exit surface and then again at the interface
in order to exit in the same direction to get bundle A'.

nI n

- \ \

sB'

A'

Figure 5: New reflections needed from bundles
A and B to achieve n+l reflections

Since A contained all the distinct paths with n-1 reflections and B
contained all distinct paths with n reflections, the total number of paths
with n+1 reflections is determined by

Pn+1 - P n +P n -1 .

They are all distinct since each ray of bundle A' has a last reflection from
the interface while each ray of bundle B' has a last reflection from an
outside surface. Since the rays of A' and B' are each distinct within their
bundles and are now distinct from paths in the other bundle, it follows that
there is no duplication in bundle A' + B'.

3.2 The Crossing Numbers

Suppose as a further investigation we ask how many times, Cn , did
the rays in the bundle with n reflections cross the interface between the
two plates. Clearly, from Figure 3, Co = 1, C1 = 2, C2 = 5,.... From the
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mechanics of propagation, shown in Figure 5, the crossings by bundle A is
Cn-1 and the crossings by bundle B is Cn. Bundle A' has the same number of
crossings as bundle A, while bundle B' has all the crossings of B plus one
extra crossing for each path in bundle B. Thus

c,41 =(C + P) +C (27)

where

CO=1, c1=2, C2 =5.

This sequence is related to the c of the Fibonacci sequence with
itself or a higher order generating function. In performing this analysis we
denote Pn using the familiar Fibonacci notation Fn, where Pn = Fn+2 .

The recurrence relation for the Fibonacci numbers is written

F0+2 -Fa+ 1 - FO = 0

which is homogeneous, while the recurrence relation for the crossing
numbers Cn is written as

Ca - Cn1 -C n2 = F,,+1

which is nonhomogeneous.

The generating function for our model in equation (27) is

1

2

which can also be used to tile the plane. Using the method from [4] to tile
this sequence, the resulting tiling for the crossing numbers is shown in
Figure 6.
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NOT TO 134

SCALE J13

5

2I

1 5" 20 71 235

10

21 38

S55 130

Figure 6: Tiling the plane using the values of Cn and Fn.

Under this construction, the tiling sequence starts with Co=1, C1 =2,
and F3 =2 and then continues in the manner shown in Figure 6.

Filler rectangles used to fill in the gaps left after placing the square
tiles can also be determined. We redraw the tiling in Figure 6 using
sequential notation rather than actual numbers to show these gap filling
rectangles. We use the notation H and V to denote these filler rectangles
that appear to be oriented horizontally and vertically, respectively.
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H2 , 2  F 9

H1,2  F 7

Ho2  F3

C
F6  C3

F8  Cs

F1o C7

NOT TO SCALE

Figure 7: Tiling of the plane showing filler rectangles.

One can see the following rectangle sizes from Figure 7 above:

H0 , 2 is (C3 - FS) by FS

H1 ,2 is (C5 - F7 ) by F7 .

H2 , 2 is (C7 - F9) by F9 .

VO, 2 is F4 by (C2  F4 )

V1 .2 is F6 by (C4 " F6 ).

V2 ,2 is F8 by (C6 - Fa).

V 3 ,2 is Flo by (C8 - Flo).

In general,
Hl,n is (C2 n+ 3 - F2 n+5 ) by F2 n+5

and

V 1 ,n is F2 n+4 by (C 2 n+2 F2n+4 ) .
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3.3 Number of Reflections at the Interface

The model for the number of reflections at the interface, In, is also easily
formed from a recursive sequence. Clearly, from Figure 3, 1o = 0, 1. = 1,
12 = 2. In this case, this number of reflections is determined by

I= I. + I,.2 + Fn, with 10 =0 and 11= 1.

This number pattern is generated from

x

.(i Xx2)2

and the tiling using I n is shown in Figure 8.

NOT TO
SCALE

3 L2 HI 20

10

Figure 8: Tiling of the plane using values for In
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3.4 Number of Reflections at the Upper Surface

Many other reflection counts for this problem can b3 modeled with the
recursive sequences and the plane tiled in similar ways. Our last example is
the number of reflections at the upper surface, Un. Here, the recurrence is
mixed for odd and even numbers of n and is written as

U 2 = U2 n-1 + U .2 +F 2 n+1

or

U =U2 + U1 + F with U0 = 0, U, = 0.
2n+1 '2 Zn 2n-1 2n+10 ' 1-

The tiling of the plane using the Un is shown in Figure 9.

NOT 170 113
SCALE

5

5 2 4 20 77

13
11

34 44

155

Figure 9: Tiling of the plane using values for Un.
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While the Fibonacci-related sequences have been used to model
numerous applications, their use in engineering and science has been
limited. We have tried to show a few of the types of applications from
science and engineering where their use is appropriate. We have also used
the technique of tiling to provide a geometric flavor to these sequences and
appl'cations.
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APPROXIMATION AND INTERPOLATION FORMULAS
FOR REAL-TIME APPLICATIONS
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ABSTRACT. A general scheme for constructing a compactly supported function that
only requires finite (and relatively small) storage for the purpose of processing gridded
discrete data in (near) real-time is presented. The attractive features are incoming data
are used directly as filtering coefficients without matrix inversion and the optimal order of
approximation is achieved while the data are being interpolated.

1. INTRODUCTION. Recently, there has been much interest in the problem of con-
structing univariate and multivariate approximation schemes by utilizing a single function
0. The main ingredient in such construction processes consists of dilation (which we will
also call scaling) and translation of the function 0. Problems such as spline approxima-
tion and interpolation, realization of neural nodes in neural network structural analysis,
synthesis via wavelets, and representation of surfaces by radial basis functions all fall into
this category. In this paper, we are concerned with the problem of the construction of
(near) real-time approximation and interpolation formulas by using 0. More precisely, a
compactly supported function 0 that can be evaluated at any time instant and space po-
sition efficiently will be constructed from scaling and translation of k, such that incoming
discrete data samples can be used readily together with translates of 4' to give complete
analog information with a minimal number of multiplications and additions, and that the
representation guarantees optimal order of approximation provided by 6. Since we seek a
compactly supported wp, we must start with a compactly supported function p which will
be assumed to be piecewise continuous for the sake of convenience and feasibility in appli-
cations. Typically, in one variable, 0 is a B-spline, and in the multidimensional setting,
€ may be chosen as an appropriate linear combination of box splines in order to achievc
the highest order of approximation and computational efficiency. By setting 0 to be the
average of O(x) and 0(-x), if necessary, we may always assume that € is s-ymmetric with
respect to the origin.

We will call n - n(O) E Z+ the local order of approximation of if it is the largest

Supported by SDIO/IST managed by the U.S. Army Research Office under Contract

No. DAAL03-87-K-0025
2 Supported by DARPA under Contract No. MDA 972-SS-C-0047
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integer such that

inf f - Z ak(I(. - ih)) =0(h") h > 0, for all f C(W).
I

Here, Co = C"(R') denotes the class of all compactly supported n times continuously
differentiable functions in s variables. We are given a set of discrete data {f, }, i E I, I C Z"
(e.g. fi = f(ih) or some partial derivatives, etc., oi f at ih, f E C'(R')). rhe objective of
this paper is to derive a real-time approximation-interpolation scheme to yield

sh(f) = aiO(( ih))
iGZ"

that satisfies:
(i) If - sh(f)ll = 0(h"), and

(ii) (s1(f) - f)(ih) = 0, i E I,

(or partial derivative versions, etc.) for all f E Col(Rs).

2. RESULTS. For convenience, we only state results on interpolation of function
values. Our approach is to construct k which has compact support and can be easily
"stored", such that

(a) ,(ih) = 6 io, and

(b) ~ f(ih) (.!(. - ih))II = 0(h-m )
iEI

for all f E Con(R'); consequently, the above objectives (i) and (ii) are achieved. The index
set I is assumed to contain 0 and to be homogeneous, in the sense that for any i E I, we
have I - i = I. In this regard we note that the following are equivalent conditions:

(a) I- i = I for all i E I.
(b) I is a subgroup of Z
(c) I is closed under addition and multiplication by -1.

We will assume as well that the quotient group Zs/I, the group of cosets generated by I,
is finite; this will be the case if the elements of I, considered as elements of R', span RS.

If I is not quite 'full", then i can be constructed by using (scaled) translates of 0;
but if I is quite "full" then a super space containing 0 has to be introduced.

For convenience, we will set h = 1 and write s(f) = sl (f). Since the procedure is
linear, the general result for arbitrary h > 0 is attained by simply scaling. The first step is
to construct an appropriate quasi-interpolation formula based on the given data. Details
can be found in CD [2.3].
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(1) Quasi-interpolation. We must construct an approximation of the form:

(Qf)(x) = Z Ajf(. + j)4(x - j)
jEI

where each Ai is a linear functional, such that Aj f(. +j) involves only values of f(k), k E I.
Thus, Aj must be expressed in terms of the values of f on the coset I - j. We must also
choose Aj such that Qp - p for all p E 7r-- 1 (the space of all polynomials in s variables
and with total degree at most n - 1). Consequently, by scaling Qf, we have achieved ,i).

We then define a function 'k by rewriting Qf as:

(Qf)(z) = 1 f(k)(x - k).
kEI

The basic technique to achieve our goal was introduced in our earlier work CD [3]:

Choose any A such that

E Af(. + j)(x - j)
jEZ°

preserves r-. Our favorite is A is the one obtained by what we called the Neumann
series approach in CD [1]. With this A, we may now compute A(p). Then we may solve
for Ai by using

Aj(P) = (P), P E rn -l.

We show now that in general, we need to construct a A, for each element of the
quotient space Z'/I, by picking a j from each coset. Consider the construction of a quasi-
interpolant in the form

(Qf)(x) f f(k)O(x - k),
kEI

where rb is a linear combination of translates of 6, i.e. O(x) = c, (x - k). Substituting

into the expression for (Qf)(x), we obtain

kEI kEI jEZ' kEI

Y': ECjk ( - j) + j)O(x - j).
jEZ" hE

If we identify the coefficient of O(z -j) as Ajf(. + j) then A, is given by

Ajf =Zc-kf(k -j)= ckf(k)
kE! kEI-j
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Now the index sets I - j, for j E Z, are precisely the cosets of I and hence for two different
j are either identical or disjoint. We can therefore independently choose the ck for k in each
coset I - j, so as to satisfy the requirement that Aj(p) = A(p),p E 7rn_, . More precisely,
we can now furnish the following algorithm for constructing Vk(x) E ckO(X - k) such

kEZ'

that (Qf)(x) = F f(k)i,(z - k) is a quasi-interpolant:

kEI

1) For each coset I-j calculate a Aj in the form Ajf = f bOf(k).
kEI-i

2) Define ck = '-, where the sum is over a set of coset representatives.
jEZ- /I

3) Define O(x) = E Ck(X - k).
kEZ"

(2) Choice of a basic cardinal interpolator. Our second step is to construct 7, by
only using 0 if possible, or else by using a reasonable super space containing 0 such that

(c) t7(j) = io, j E I, and
(d) support (r7) is small.

It is clear from our assumption on the index set I that if 77(j) = 6j0, J E I, then
r(k - j) = 6kj for j, k E . One simple way of achieving (c) is for the support of 7 not to
overlap with the other sample points j E I. (We are not concerned with the approximation
order at this stage.)

(3) Construction of . From 0 and r, we may now construct our compactly supported
cardinal interpolation function:

W(z) = Z(io - (i))t7(z - 0 + VI(z)
iE I

= 77(x) + x(x) - E 0(i)7(x -).

iEI

Clearly, 4(j) = 6,o. Note that since the index set I satisfies I - i I " for all i E 1, we may
write

k

EZ [fCk) - f f(jWO(k - i)] q7(z - ))
kj

+ E f(k)O(z - k),
k

which is a noncommutative "blending operator", namely:

J(f- Qf) + Qf = (J i Qf
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where e denotes the Boolean sum of 3 followed by Q. It is clear that J Q j4 Q 3 T since
Jf has lost too much information on f and Q is not an interpolation operator. Nonetheless,
it is not difficult to show that , e Q not only preserves polynomials of highest degrees as
Q does, it also provides the desirable interpolation property of J (cf. CD [3]).

3. EXAMPLES. To illustrate our construction procedure, it is best to give several
examples. In the following, we give three examples: the first reconstructs an old example
due to Jenkin's, the second completes an example considered by DGM [4], and the third
example utilizes a C2 quartic box spline to give a real-time interpolation formula that gives
the fourth order of approximation, which is optimal.

(1) C 2-quartic cardinal spline interpolation at Z. (Jenkins [5], cf. Schoenberg [61.)

Our procedure to construct Jenkins' basic cardinal interpolation function w, is very
simple:

Let 0 be the centered cubic B-spline with knots at Z. Since I = Z, we may choose

Ai = A, JiEZ,

where Af(.) = -- f(-1) + 4f(O) - lf(l). This gives

0(X) =-( + 1) + 4(X) - 1(X - 1).

The function P can now be constructed if we can find a C2-quartic r such that

{70(o)=1 and

support(7) = [-1, 1].

To do so, we simply set 7(x) = (I + 31lx)(I - IX)3, otr _ 1
0 0, otherwise.

(2) Ccubic cardinal spline interpolation at I = 2Z. (Partially worked out using a
different method by Dahman, Goodman, Micchelli [4].)

Again, let 0 be the centered cubic B-spline with knots at Z. Since the sample points
are chosen to be 2Z, we may now choose r7(x) = 10(x), so that

)(j)=so, j E 2Z, and
support(r/) = (-2, 2].

Use any A that induces a quasi-interpolant. Then

Ml x z2 X 31= [1 0 0 ]

Since only f(2k), k E Z, are used, we must construct at least two different \j. We consider
even and odd integers; so
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1 9)26 1 2_f(2),
-\'(f) - -f(-2) + -f()- T4

A(f) = - 2f(-3)+ 7 f(-1) + f(1) - 1f(3).

With A = A. for even j, and Aj = A, for odd j, we have

26 7 1
+ L60(x) + 7€, O( )_1z-2).. . ~ -.

Hence, we have

=(x 17(x) + V)(x) - E iVb(i)77(x - i)
iE2Z

3 1{O(x + 4)_ 2) + 2 2

+ 72-(x - 4) + *( ).

(3) Cardinal interpolation at 2Z2 by bivariate C 2-quartic spline on the
3-direction mesh.

In the example, we let 0 be the box spline M 222. The order of approximation is n = 4.
Since 0(2k) = 0 for all 0 # k E Z2 and support (0) is contained in (-2,212, we may use

7(x) = 20(x)

Using the -'Neumann series" to produce A cf. CD [11, we have

A[l x Y X 2 XY y2 x3 X2 y y 2 y3]

r1 1 1
1.1 00 - -300 0 0 .

Since only data at I - 2Z 2 are to be used, we must have four different Aj's. We use
A', A', A3, A' as described in Figure 1 with supports in I, = I = {(even, even)}, 12 = I-
(1,0) = {(odd, even)},1 3 = -(0, 1) = {(even, odd)}, and 14 =1-(1,1) = {(odd, odd)},
respectively; so that

7 Ajf(. + j)4(x - j)
jEZ

4

k=l jEb

where for each k = 1. 4, and j E Ik, A;'f(. + j) only involves evaluation at the even
integers. The functions 0, and , an given in Figures 2 and 3, respectively, wlere the
coefficients cj of o(x -j) = /.22(x -j) are shown.
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even integers denoted by Li
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INTRODUCTION

The problem of fitting a surface to small sets of given data

has been addressed in many different ways and several computer

programs are currently available which enable one to deal with

the problem effectively. Many of the methods available involve a

global interpolation or approximation scheme and often involves

solving a system of equations with an equivalent number of un-

knowns. For very large sets of data, the problem is computation-

ally intractable. This consideration provides the motivation

behind the development of a way to pare the problem down to a

more manageable size.

We wish to construct a function F which approximately fits

the data since we assume the data collection is subject to measure-

ment error. We propose to use approximation by least squares

Thin Plate Splines (TPS), where the surface function is constructed

so as to minimize an error function subject to certain constraints.

Solving the approximation problem will also involve as many equa-

tions as there are data points, but the number of unknowns will be

significantly fewer. Part of the appeal of TPS approximation lies

in the fact that it minimizes a certain linear functional, and in-
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volves a linear combination of functions with no greater complexity

than the natural logarithm of the distance function.

Approximation by least squares TPS is straightforward, once the

coordinates (xi,yi) and (xjyj) are known. We employ the TPS function

K
F(xy) F Ajdj2log(dj) + ax + by + c

J-1
where d j2 = (xi-xj)2 + (yiyj)2 , and the coefficients Aj, a, b and c

are chosen to minimize the error function

N
Z {(F(xj,yi) - fi1/8i1 2

i,1

The ordinates, fi, may be subject to random errors, say with

standard deviation, si, at the ith data point. We model the

plate under the point loads at the knot points (as opposed to the

data points); therefore the constraint equations for the least

squares TPS method, which may be thought of as 'equilibrium

conditions' on the plate should be satisfied. Thus, the error

function is minimized subject to the constraint equations:

K K X

We use LINPACK [1] subroutines to do the actual calculations.

Interpolation of scattered data by the method of TPS was

developed from engineering considerations by Harder and Desmarais

[2]. It can be thought of as a two dimensional generalization of

the cubic spline, which models a thin beam under point loads

subject to equilibrium constraints. The TPS function is derived

from a differential equation which gives the deformation of an

infinite, thin plate under the influence of point loads. A point

load is applied at each data point so that the interpolating
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surface can be constructed as a sum of fundamental solutions of

the TPS equation.

In using the least squares TPS approximation method to fit

the surface, a fewer number of basis functions than the number of

given data points is employed. These basis functions are cen-

tered at a different, smaller set of points, which in analogy

with the univariate case, we call the knots. Therefore, the

problem at hand is one of selecting the knot points, and hence

the basis functions.

Given a 'large' set of data points, (xi,yi,fi), i = 1,...,N,

we wish to find a smaller set of knot points, (xj,yj), j =1,...,K,

which will 'represent' the former reasonably well. This could be accom-

plished by choosing a subset of the original set, or by some process

which produces a representative set. The ultimate goal is to approxi-

mate the surface from which the original data arose using the represen-

tative set. Hence, a surface fit to the large set and one fit to the

representative set should be essentially the same.

ORIGINAL ALGORITHM

The original algorithm for solving the knot selection problem

was developed based on the optimization of one function subject to a

constraint formulated in terms of another function. Specifically, we

sought to achieve an equal or as near-to-equal distribution of the data

points amongst the knots. To do this, we move the knots around the do-

main of the fixed data points in search of an optimal configuration of

knots which minimized the quantity

K
DSUM = , (N/X - N-)
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where N is the number of data points, K is the number of knot points

and Nj is the actual number of data points belonging to the jth knot.

This objective function is the subject of later discussion.

A key advantage of this optimization is the natural heuristic which

precipitates from it for moving the knots around the domain in search of

a better configuration. This natural heuristic follows from the fact

that for most configurations of knots, some knots will own more data

points than others so that a simple mechanism for moving the knots

around is realized by moving the knots owning the fewest points toward

the knots owning the most.

We also sought to position each knot in such a way that the

distances between the data points and their closest knot point was

minimized. This was accomplished by minimizing the constraint function
N

GN2  = MIN [(xi-xj) 2 + (yi-Yj) 2 ]

i=1 j

Thus our original algorithm would propose a certain configuration of

knots, determine which data points belonged to which knot, move the

knots to minimize the distances, and check the distribution of data

points as a result of this movement. Then, based on how bad the distri-

bution turned out, certain knots would be moved in accordance with

the searching scheme, and the process would begin all over again.

However, the particular scheme we developed to search for the

optimal configuration of knots left alot to be desired in terms of the

excessive computation time required. Hence, one objective of the

research effort was to reduce the time spent searching for an optimal

configuration of knots using a better searching scheme and any other

means available. These two topics are also developed within this paper.

The constraint function GN2 leads naturally to a default Dirichlet
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Tesselation, a partitioning of the plane with respect to the knot points

(See figure 1). Thus, we say each data point belongs to some knot point

according to the Dirichlet tile in which it lies. Differentiation of

GN2 with respect to the xj and yj show that at the minimum, each knot

point will occupy the centroid with respect to the data points inside

that tile. The following theorem applies to this constraining algorithm.

Theor: The function GN2 decreases with each iteration which

involves movement of a knot point. See [3] for a proof.

OBJECTIVE FUNCTION

Previous work on this problem lacked sufficient consideration of

the objective function upon which the optimization in the knot selection

algorithm is based. Recall the function DSUM above defined as

K
DSUM - Z (N/K - Nj) 2

i=i

where Nj is now the actual number of data points found in the jth

Dirichlet tile. It is a measure of the evenness of the distribution of

the data points amongst the knot points; a smaller value is indicative

of a better distribution. The minimization is justified in terms of

the desire to have the Dirichlet tile for each knot contain the same

or nearly the same number of data points. It is a continuous function

in the sense that there is an infinite number of possible knot configur-

ations, each corresponding to a value of the function. An analysis of

the function is motivated by several factors, summarized in the

following questions. What is the minimum value the function can assume?

Under what circumstances can the minimum value be obtained and how

feasible is obtaining the minimum value?

First, we consider the minimum value of the objective function.
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Let N, the number of data points, be written as N - K m + n, where K

is the number of knot points to be used and m and n are integers.

Two cases must be investigated: I) For n = 0, and II) for n # 0. We

shall refer to these even and nearly even distributions of data points

as the Ideal distribution for the respective case of n.

Case I occurs when all K knots own the same number of data points;

hence Nj - N/K. Thus, for n - 0, we have m - N/K, corresponding to an

exactly even distribution of the data points, so that DSUX - 0. Case II

occurs when K.- n knots own a dAta points and n knots own a + 1 data

points. It is easy to verify that we are working with K - n + n = K

knot points. Thus for n # 0, N -K m + n or N/K - m + n/K so that

DSUM - (K - n)(N/K - NJ) 2 + n (N/K - NJ) 2

But the first K - n knots own Nj - m data points and the other n knots

own Nj = m + 1 data points so that with the substitution above, we have

DSUM = (K - n)(m + n/K - m)2 + n (m + n/K - m - 1)2

Simplifying this expression yields DSUK - n - n2 /K.

Thus for the case where N - 5000, K - 250, the minimum value of DSUM

is 0; for the case where N - 1776, K - 100, the minimum value of DSUM

is 76 - (5776/100) - 18.24.

In order to obtain some indication as to the feasibility of

achieving the minimum value of DSUM, we look at the value of DSUM after

an ever-so-slight perturbation as follows. Consider case I (n - 0);

the slightest perturbation from the ideal distribution occurs when there

is one knot with a + 1 data points, K - 2 knots with a data points and

one knot with m - 1 data points. A quick check of the total number of

knot points reveals K - 1 + K - 2 + 1 and the total number data points

N - m + 1 + m (K - 2) + m - 1 - m K

Thus,
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DSUM = 1 [N/K - (m + 1)12 + (K - 2)(N/K - M)2 + 1 [N/K - (m - 1)]2

Substituting for m = N/K, since n = 0, we have

DSUM - (m - m - 1)2 + 0 + (M - m + 1)2 : 2.

Thus the slightest perturbation from the ideal distribution of data

points yields a DSUM value slightly larger than the optimal value.

Other slight perturbations for the example of N - 100, K - 10, (n - 0),

such as 2 knots with 9 points, 6 knots with 10 points, and 2 knots with

11 points, or 2 knots with 9 points, 7 knots with 10 points, and 1 knot

with 12 points, or 1 knot with 8 points, 8 knots with 10 points, and 1

knot with 12 points yield DSUM values of 4, 6, and 8, respectively.

Case II where n # 0 is a bit more interesting since the slightest

perturbation can take on several forms, each leading to the same DSUM

value. We previously described the ideal distribution of this case as

occuring with K - n knots owning m data points and n knots owning m + 1

data points. A quick check of the number of data points reveals there

are N - (K - n) m + n (m + 1) - K i + n data points. One of the

slightest perturbations occurs when there is one knot with m + 2 data

points, n - 1 knots with m + 1 data points, K - n - 1 knots with m data

points, and one knot with m - 1 data points. Thus,

DSUM = 1 (N/K - m - 2)2 + (n- 1)(N/K -m - 1)2 +

(K - n - 1)(N/K - m) 2 + 1 (N/K - m + 1)2

Substituting for N/K - m + n/K, we have

DSUM - (n/K - 2)2 + (n - 1)(n/K - 1)2 +(K - n - 1)(n/K)2 + (n/K + 1)2

- 4 + n - n 2 /K upon simpliti-s- ion.

The same result is obtained for other slight perturbations such as

one knot with m - 1 data points, K - n - 2 knots with m data points,

and n + 1 knots with m + 1 data points, OR one knot with m + 2 data
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points, n - 2 knots with m + 1 data points, and K - n + 1 knots with

m data points. We will take advantage of this knowledge about the

objective function, DSUX, later as part of integrating some other

techniques into the algorithm for speeding things up.

ALTERNATIVE KNOT MOVEMENT SCHEMES

Recall the natural heuristic mentioned earlier for moving the knots

around the domain of the fixed data points in search of the optimal

knot configuration. An essential task in exploiting it lies in identi-

fication of the knots owning the most and fewest number of data points.

The knot movement schemes developed to search for an optimal knot confi-

guration were based primarily on the idea of spreading the wealth of the

knots owning the most data points by moving the knots owning the fewest

data points toward the former. In developing these various schemes, we

considered both ease of implementation and computational costs to be

paramount.

As before in the Original scheme, the rationale for moving the

knots around the plane is to tweak the current configuration to a

sufficient degree so as to cause the Dirichlet tile boundaries to move

in such a way that some of the data points will belong to a different

knot point(s). This is followed by the usual settlement of the knots

into the centroid locations of their respective tiles, such that the

settlement will lead to a better configuration of knots in terms of the

evenness of the distribution of the data points amongst them.

The original algorithm employs a symtric scheme to conduct a con-

fined but exhaustive (and correspondingly expensive) searcn for the

optimal configuration of knots. As seen in the figure 2, the so-called

low knot (that is, the one owning the fewest data points) is moved to-

ward the high knot (the one owning the most data points). The movement
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is done along the line which connects them and alternates between the

low-towards-high and high-towards-low modes in a symmetrical fashion.

The distance moved along this line connecting the two knots is a

function of the iteration of the movement, up to a total of ten

moves each, or until a better knot configuration is found. When no

better configuration is found, the next pair of high-low knots is

considered, if available. Once all possible combinations of high-low

pairs have been considered, and no better configuration has been found,

the search is ended.

The Outward Bound scheme (figure 3) is charaterized by a move of a

high knot away from the low knot along the line between the two extended

beyond the high knot. Such a move is justified by the obvious vacuum

created by such a move in the vicinity of the previous location of the

high knot point. When such a move fails to lead to a better configura-

tion, the distance moved along the same line is decreased as a function

of the iteration number until the high knot settles back to its original

location. Note that because this second and successive bounds are

made closer to the concentration of data points, it is more likely that

the new knot location will absorb some of the extra data points in the

local vicinity. This is followed by a move of the low knot toward the

high knot along the line connecting them in an effort to relieve some of

the pressure near the high knot point. As before, when these moves fail

to lead to a better configuration, the distance moved is decreased as a

function of the iteration number until the low knot returns back to its

original location.

An even better scheme evolved from the last one wherein the low

knot is moved to coincide with the high knot (figure 4). This approach
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takes advantage of the inherent subroutine contingency for handling the

case wherein knots begin to coalesce. In order to preclude such coales-

cence, the one knot is immediately moved on top of the nearest DATA

point, wherever it may be located. This method has the added advantage

of moving a knot in a totally different direction from the line connect-

ing the high-low pair of knots being considered. As seen in the figure

4, once splitting the monopoly of the high knot fails to lead to a

better configuration, the low point is moved along the line connecting

the two knots some decreasing distance between them. The high knot is

also moved out along the same line extending beyond its current location

in the direction opposite the low point location.

Finally, we considered the situation wherein the movement desired

is ever-so-slight enough to nudge the Dirichlet tesselation into one of

its neighboring configurations, one containing the optimal solution

(figure 5). Thus, the distance moved or trial distance, became a func-

tion of the area of the domain of the data and the number of knots being

used. This trial distance is increased as a function of the iteration

up to a set amount until no better configuration was found. This tack

was also used in conjunction with the monopoly-splitting approach

mentioned above.

What we settled on after much testing with several different test

data sets was a combination of several of these approaches as we shall

see. It became apparent that more combinations of high-low pairs needed

to be considered in any schema employed. Thus, whenever fewer than five

high-low pairs of knots were found to exist, more were generated by

identifying the knot owning the second most data points and so on until

at least five such combinations could be considered. We note that we

could have also considered the knot(s) owning the second fewest number
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of data points; however, such consideration is unwarranted since the

best results are obtained by breaking up the monopoly of the knots

owning the most (or second most, and so on, as the case may be) data

points.

CELL METHOD

All of these approaches to the knot movement schemes involve the

identification of the knots owning the most data points and those

owning the fewest. This task follows from having determined which knot

is closest to which data point. One obvious improvement needed to speed

up any of the schemes is a way for determining the closest knot point

for each data point without considering each pair of possibilities again

and again. In other words, we needed to take advantage of the fact that

not all points needed to be checked every time. The Cell Method was dev-

eloped in a general sense for locating the closest knot point to a given

data point by Renka [4]. Its employment involves the use of two subrou-

tines, STORE2 and GETNP2. We will describe the general idea of the al-

gorithm in terms of its application to the problem of knot selection.

The motivation behind the use of the cell method was simply to

find a better, faster means of identifying the closest knot point for

each of the data points. The original program took a brute force

approach wherein the Euclidean distance between each of K knots and

N data points pair was computed and compared to the others one at a

time until the closest knot was found for each data point. Thus, a

minimum of N*K computations had to be made each time the subroutine

was invoked to determine which data points belonged to which knot and

move the knots to minimize the distances.

A simple example and sketch of the a situation offer the best
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explanation of the method (figure 6). First consider the K knots which

have variable locations while the N data points are fixed. The smallest

rectangle containing the knots is found and partitioned into a 3 x 3

uniform grid of cells (by the STORE2 subroutine). Since not all the

cells will contain knots, the indices of the knots contained in each

cell are recorded. Now, for a given single data point, a call to

GETNP2 is made to find the nearest data point. A search is begun in

the cell containing the data point or in the cell to which it is

closest. If a cell is empty with respect to the knots, it is not

considered for obvious reasons. The distance between the data point

and the first knot encountered in one of the cells is calculated and

the search is confined to those cells within that distance of the data

point under consideration. Thus, only the knots within those cells

can be considered thereby reducing the scope of the search for the

closest knot point.

This proceedure must be followed for each data point in turn but

the scope of the proceedure is much reduced compared to the brute force

approach; we estimate a savings of around 25% from the original

computational effort required is achieved. The task of locating the

closest knot point for each data point is performed by the MINORM

subroutine which is called twice by the search subroutine, TWEEK. That

is, each time a different configuration of knots is proposed within the

TWEEK subroutine, MINORM is invoked twice, so that it is easy to

appreciate the scope of the savings enjoyed by the use of the Renka Cell

Method.

Additionally, the MINOM subroutine was enhanced in the sense that

it could be applied in a more general setting wherein a prospective user

could specify weights for each of the data points. One could think of
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the weight as being the reciprocal of the standard deviation of the

_ror associated with the data measurement at a given data point.

Hence, instead of summing the number of data points in each Dirichlet

tile, the weights associated with each of the data points within the

tile are summed. With a relatively large weight at a given data point,

one would be able to force the knot to be at, or very near, that data

point. The rest of the knot selection algorithm works as before. How-

ever, before solving the least squares system, each equation must be

scaled by the value of the corresponding weight.

SIMULATED ANNEALING

Besides incorporation of the cell method and improvement of the

tweaking scheme for speeding up the knot selection process, it became

apparent that another approach in the form of Simulated Annealing (SA)

would prove useful. SA which is also known by other names such as Monte

Carlo annealing, statistical cooling, probabilistic hill climbing,

stochastic relaxation and probabilistic exchange algorithm, was indepen-

dently developed and introduced by Kirkpatrick et al in 1982 and Cerny

in 1985. The name comes from an analogy to the slow cooling of a solid

until it reaches its low energy ground state as developed by Metropolis

et al in 1953 [5]. Here, a Cost function assumes the role of energy,

a control parameter is substituted for temperature, and knot configura-

tions are analogous to states of the solid. The SA algorithm is a

general approximation algorithm for solving a wide variety of

combinatorial optimization problems such as the knot selection problem.

It obtains near-optimal solutions based on some randomization

techniques incorporated into an iterative improvement algorithm.

The application of an iterative improvement algorithm presupposes
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the definition of configurations, a cost function and a mechanism for

generating transistions from one configuration to another, all of which

are present in the knot selection problem. The solutions obtained using

SA have the additional advantage of being independent of the initial

configuration of knots and usually lead to a solution near the minimum.

The similarities between the original knot selection algorithm and the

SA algorithm extend beyond the necessary overhead. As with the original

knot selection algorithm, a configuration is given, followed by the

generation of a sequence of configurations which are compared to the

current configuration in terms of the evenness of the distribution of

data points. When a neighb ig configuration has a lower cost, the

current configuration is replaced by the better one.

The randomization technique comes to bear in the event a better

configuration is not found; here, small increases are permitted to occur

in the cost function with a non-zero but decreasing probability. This

Metropolis criterion, as it is called, is implemented by drawing random

numbers from a uniform distribution on [0,1) and comparing them in turn

to an exponentially decreasing probabilty of acceptance function defined

as exp(delta Cij/c) where delta Cij is the difference in the costs

between the two competing configurations and c is the control parameter.

Initially, the control parameter is given a high value so that as the

algorithm is invoked, the values of c become smaller until virtually no

deteriorations in the cost occurs and the algorithm terminates. Thus,

the key ingredient of the SA algorithm lies in its occasional acceptance

of a worse configuration early on in the search effort.

For our particular application of the SA algorithm, we were again

concerned about ease of implementation and additional computational

costs. As we shall see, neither of these concerns were warranted. As
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a point of embarkation, say that after 20 iterations of the SA algorithm

we wish to have the probability of accepting a worse configuration down

to around .01. We can determine the value of the control parameter c

using the Metropolis criterion; that is, for what value of c will the

probability of acceptance approach .01 given an average difference in

the cost function analyzed earlier for case I to be 5, after some 20

iterations. Thus, we solve for c in exp(-5/c) = .01, which yields

c - .92; we approximate our control parameter value after 20 or so

iterations to be around 1.0.

We continue with a determination of the initial value of the con-

trol parameter. Consider the simple 100 point/10 knot case (n - 0)

wherein we are initially willing to accept a worse configuration whose

average cost is not greater than 1U (as compared to 2 for the slightest

perturbation) with a probability of 0.5 in the first iteration. Thus,

using the Metropolis criterion again, we solve for c in exp(-10/c) = 0.5

which yields c = 14. Using the same probability of acceptance for a 500

data point set where the average cost is no greater than 50 in the first

iteration yields a control parameter value of 70. In general, we could

express the initial value of the control parameter c as -NI[10 log(.5)]

where N is the number of data points and the probability of acceptance

is initially 0.5.

Having bracketed the initial and final values of the control para-

meter using initial and final probabilities of acceptance of 0.5 and .01

respectively, we are now in a position to develop an expression to

describe how the control parameter decreases as a function of the number

of iterations through the SA algorithm. Let the recursive formula

ci+j - alpha ci describe the behavior of the control parameter. For
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the 500 data point case, we have c20 - 1 = 1/70 co and cl = alpha co .

Since c2 = alpha cI, c3 - alpha C2 - alpha2 cl, and

c4 - alpha c3 - alpha3 cl,..., we have c20 = alpha1 9 cl - alpha2 0 co .

Thus, since c2 0 - 1 - 1/70 c o  alpha20 co , we have alpha20 . 1/70 or

alpha - 0.80. Therefore the recursive formula is ci+ 1 = .8 ci for

the 500 point case. We can apply this recursive formula approach to our

application of the SA algorithm as follows. Since c, - alphaI co, we

have alphaI - ci/c 0 - 1/c0 for I - 20 where I is the number of itera-

tions. Thus, upon simplification, we have I log(alpha) - -log(c0 ) or,

following exponentiation, alpha - exp[-log(c0 )/I].

We attempted one other modification to the SA method as part of its

implementation in our knot selection application. Instead of decreasing

the probability of acceptance as an exponential function of the control

parameter and the difference in costs between the best current config-

uration and the proposed configuration, we made it a linear function

of the same. We found that we obtained more earlier acceptances of

worse configurations in this way which increased the likelihood that

a better overall configuration would be found.

THE ENHANCED ALGORITHM AND ITS APPLICATION

We are now ready to outline the enhanced knot selection algorithm

which is the subject of this paper. As before, we first identify the

knots owning the most and fewest number of data points, making use of

the cell method to accomplish the task efficiently. When less than 5

pairs of high-low combinations are found, the knot(s) owning the second

most number of data points is identified and added to the search scheme.

The knot moving scheme is then invoked tuned to the user's requirement

for the degree of search to be carried out. As a minimum, the low knot

is moved to coincide with the high knot, necessitating an immediate move
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of one knot on top of the nearest data point. This is the monopoly

splitting manuever mentioned earlier. A greater degree of search

involves subsequent moves of the low knot toward the high knot along the

line connecting them once the monopoly splitting fails. Additional

moves of the high point away from the low point along the line connect-

ing them follow in accordance with the outward bound scheme. As part of

any of these moves involving a worse configuration than the best one

found to date, the simulated annealing method is triggered as previously

described.

Another question that usually comes to mind has to do with how one

might put this knot selection algorithm to use in conjunction with the

surface evaluation using least squares thin plate splines. The program

which we wrote for use here at the Academy and will publish for use by

the scientific community in general incorporates several different op-

tions depending on what a prospective user might wish to do. The basic

thrust of our effort has been to write a compact and efficient program

to be used inside a larger user generated program written for some spe-

cific purpose. One call is made to a manager subroutine which identi-

fies which option the user requires and which then sets up the neces-

sary workspaces for efficient computation. As such, we envision the

brunt of the computation time in search of an optimal knot configuration

being accomplished as part of some preprocessing done by the user before

any actual surface evaluation inside the user's program. Once the opti-

mized knot locations have been identified, they can be used again and

again within the larger code unless, of course the user generates more

data as part of his particular methodology.

The first option sets the knot selection problem up, optimizes
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the knot point locations, and solves for the least squares coefficients

using the thin plate spline function. A user may provide his own

initial guess for the knots or they can be generated in a quasi-gridded

fashion automatically. Alternatively, the user may skip the knot point

optimization altogether and provide his own optimized knots. This

constitutes the extent of any pre-processing the user may wish to

perform. However, given the parameters in the knot selection problem

including the seed for the random number generator used with SA and the

extent of search indicator, the user may wish to conduct further tests

during the pre-processing phase in order to determine the best values of

these parameters for his particular application. A user specified uni-

form grid of points is then used to construct a surface from the least

squares coefficients found earlier. At this point, the user may wish to

invoke the manager subroutine at regular or irregular time intervals in

order to evaluate the surface using the least squares thin plate spline

approximation method.
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Introduction

There are several goodness-of-fit tests based on the empirical distribution

function, e.d.f., for example the Kolmogorov-Smirnov, the Cramer-von Mises, the

Anderson Darling, and Watson's test. The e.d.f. is defined by

0 , x < x( ) I

(x) = I N < X x(i)

1 Xc(n ) < X

where x(i) is the ith order statistic from a sample of n observations, or

simply stated as the proportion of observations less than or equal to x. If

the hypothesis is simple, that is F0(x) is fully specified, then we have from

the Strong Law of Large Numbers lim P{Fn(x) - F0(x)} - 1. In a sense this

is the prosyllogism for all statistical theory. The well known distribution

free univariate Cramer-von Mises test statistic

W2 = n J [F n(x) - Fo(x)]2d Fo(x) (2.1)

where n is the sample size is based on a measure of divergence from this

fundamental relationship. With the introduction of nuisance parameters, the

composite w2 statistic is no longer distribution free, thus creating

difficulties. Additionally, the extension of this test of fit to the

multivariate arena compounds the difficulty. It is our intent to extend the

composite Cramer-von Mises goodness-of-fit test statistic to p-dimensions.

All results and power studies against alternatives are obtained through

Monte-Carlo simulation.
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Historical Remarks

Cramer (1928) approached the basic problem of testing the hypothesis that

a sample of n independent observations comes from a fully specified distribu-

tion by measuring the discrepancy between the e.d.f., Fn(x) and the

hypothesized d;f., F0 (x) with the statistic

Jn J* [Fn(x) - Fo(x)] 2dx

This was generalized by von Mises (1931) to

2 J 2 g(x)[Fn(x) - FO(x)] 2dx

where g(x) is a suitable weight function. Smirnov (1936) modified this to

W2 = n *[Fo(x)][Fn(X) - Fo(x)]2 d Fo(x)

to yield a distribution free statistic. The special case when i 1, (2.1),

is commonly called the Cramer-von Mises best statistic.

Little is known about the exact distribution of the Cramer-von Mises

test statistic, even in the univariate fully specified case. Several authors

including Anderson and Darling (1952), Durbin and Knott (1972), and Knott

(1974), have studied the distribution of the statistic in the simple

univariate setting. These univariate results have been extended to include the

composite hypothesis by Neuhaus (1973), Durbin, Knott and Taylor (1975), and

Stephens (1976). Percentage points are given by Pearson and Hartley (1972).

Multivariate extensions of the test statistic have been studied by Rosenblatt

(1952), Dugue (1969), Durbin (1970), Kriuyakov, Martynov and Tyurm (1977), and

Cotterill and Csorgo (1982) for the simple hypothesis. The multivariate

composite setting has been investigated by Pettitt (1979) and Koziol (1982).
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The most common technique used in these studies

...is to first find the decomposition of the integral
operator associated with the covariance kernal of the
process in terms of its eigenvalues and eigenvectors.
Since the characteristic function of the functional
may be expressed in terms of these eigenvalues, the
requisite distribution may then be calculated by
numerical inversion of the characteristic function

Koziol (1982)

The Methodology.

The univariate Cramer-von Mises statistic (2.1) integrates to
1 1-2x]}(22

n{ + - F x - L Z (2i - )F(2.2)
n 3 n 0On2

where xi is the ith order statistic of n independent obserations and summations

are from i - 1 to n. It can be shown that

2 1 2i - 12
Wn 12n + 2F a(x i 2n

the usual computational form of the statistic. If one considers the multi-

variate case we have,

2 nJ [ 3 F (x.) - P F0 j(xo)] dF .(x.)
n,p Rp jiml nj jL - jWL (2.3)

n2 n
=p L iinL n l-___. F (2i - 1)F 0 (xi)]2 j-L n i, j-L n2i=L'O

This is a direct extension of (2.2); if the Fj, j - 1,2,...,p, are orthogonal.

Thus let xL,.-..,x n be independent random p-dimensional vectors drawn from

a gaussian population with d.f. F8, 0 - (v,D), where w is an arbitrary

p-dimensional vector and D is an arbitrary pxp positive definite matrix.

-L/2
Define '(xO) - (x - u)D- . If 8 - 00, then the transformation

XijY i - (x,B) yields a random sample of p-dimensional standard gaussian

observations, i.e., Y - Np(OI).
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In most situations, e0 is not known, and must be estimated from the

sample. It is therefore of interest to determine critical values for

assessing multivariate gaussianity with goodness-of-fit criteria when the

parameter 8 is estimated. Let in denote the maximum likelihood estimate of

0 based on x±,...,xn, that is, 8 - (XnDnJ where = n " £ X. and

- n-L r 1/

Dn X ' i n )(X I n )'. Under the null hypothesis, Y' - (X - X)D" /

is spherically normal, where D-1/2 PA- /2pZ, A is a diagonal matrix having

as its entries the eigenvalues of D and P is a matrix of the associated

eigenvectors of D. Thus F( ,y = F0, -F1 (y ), and

F#X- I YL ... # Yp , a directn(L .. l nLYd n'p(p n n

extension of the univariate e.d.f., and (2.3) holds.

Monte Carlo simulations of (2.3) for gaussianity were performed. For all

dimensions and sample sizes, 10,000 replications of the simulation were

performed. While it is believed (2.3) approaches its asymptotic distribution

very rapidly, the large number of replications insured convergence.

An alternative approach investigated is to orthogonalize the p-dimensional

sample of size n as aboe and then consider these transformed observations as

np univariate-standard normal variates. This method was also studied through

2
Monte-Carlo simulation and the associated statistic is denoted as w . Anxp
final approach investigated is to consider the maximum of w2  over the

n,1

margins. This statistic is noted as max w2 .
p n

All simulations were performed on a Prime 850 minicomputer using double

precision. The random gaussian variates were obtained using NAG subroutines

(Non-Linear Algorithms Group, Chapter G-05, 1983).
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Simulation. Results.

Critical values from initial simulations for w2  of sample sizes 8,10,
n,p

12,15,20,24,30,40,60, and 120 for dimensions 1 through 6 are presented in

Table 2.1.

Our univariate results are not in consonance with Pearson and Hartley

(1972) who have for the composite case the following critical values where C

is the probability in the right tail. They indicate a relationship dependent
W2(l+!0) a .10 a a .05 = .01

n 0.104 0.126 0.178

upon sample size. Our critical values do not follow the smooth curve as

suggested by the above formula for n < 40. For larger sample sizes, our

critical values are slightly smaller as shown in Figure 2.1. This may be due

to the initialization of each simulation with the same value thus causing

repetitive random numbers for differing sample sizes. For example, the first

5,000 samples of n - 30 represent the 10,000 samples of n - 15.

Simulations of sample size 600 were not affected by various simultaion

initialization values and these percentage points were in close agreement with

Pearson and Hartley. Thus n - 600 was chosen as the sample size for the

simulation producing the critical values for dimensions I through 12. Various

percentage points and moments are given in Tables 2.2 and 2.3. From the close

U3

agreement of the statistics' coefficients of skewness, a3 - )3/2' and

U3
Kurtosis, a. -i where i is the ith moment about the mean, we can see the

statistics are identically distributed with dimension acting as a scale

parameter. This is exemplified in Figure 2.2a through c showing frequency

graphs for p - 1,2, and 3. Figure 2.3 depicts the statics' frequencies for

p 1 1 through 5 plotted against a common abscissa. From resultant moments and
2

graphs, the statistic w appears to be distributed as a non-central
n,p

Chi-Square random variable, as expected from the left hand side of (2.3).
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2
The statistic w was also investigated through simulations of dimension

nxp
2 2

2,10, and 20. As expected, the distribution of w matches that of ,
nxp

The statistic max w2 was investigated for sample size 600 for p - 1,...,12.
p n

Results are given in Tables 2.4 and 2.5. Thus we've three approaches based

upon the Cramer-von Mises statistic to test for multivariate gaussianity.

Comparison with Previous Investigations.

The results of our univariate simulations for sample size 600 match those

of other investigators as given in Table 2.6. This validates our results

for the univariate case.

In the case of the multivariate composite hypothesis, little has been

achieved. Koziol (1982) considers the empirical process (2.3) as we do but

uses the transformation Y' - (X - X)D'CX - K) Thus the Y' are asymptotic

chi-squared random variables with p degrees of freedom.

Pettitt (1979) again uses the empirical process (2.7) but differs with

the transformation Y' AD)(X - 1) where A(D) - A' /2P t , A and P defined

above. He, as Kosiol, numerically inverts the characteristic function to

obtain results. As Pettitt's transformation is different from ours a

simulation of 20,000 replications of 600 bivariate samples was run using his

methodology. A comparison of results is given in Table 2.5. The results are

in agreement and thus validates our source code for our simulation for

dimension p > 2.

Powers of the Tests, W2 and w , for Gaussianity.n~p nxp

The powers of the tests for gaussianity were computed by Monte-Carlo

simulation and are compared with several tests for multivariate Gaussianity.

The power study included the multivariate skewness statistic of Mardia (1974)

n I I-n.
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the multivariate Kurtosis statistic of Mardia (1974)

b2p -a ) "x ix-

Uja

the Shapiro-Wilk statistic of Malkovich and Afifi (1973)

2 i u U ]2

and the Anderson-Darling statistic of Paulson, et.al. (1986)

.2 n 21 -
A --- 1ogG(q )+ log[I- G- n,n,p i=L n p (1) Gp' (n+L-L)"

where G (x) is the distribution function of a chi-squared variate on p degreesP
A A

of freedom; the q(,) are the in-ascending order qj given by

q j a (xZ - DO' (X -

I is the index for which q. achieves its maximum, i.e.,

max
qm <jn j

the u. are the in-ascending order

and the a. are the Shapiro Wilk constats tabulated in Shapiro (1980).

Table 2.8 provides powers (in percent) for the composite test of p-dimensional

gaussianity for p - 1,2, and 5, n = 20 and 50, and size of test a 0.10, for

W2 and max w2. All powers are based on 1,000 independent replications of the
n,p p n

test for gaussianity under the alternative listed. The powers of the

competitive tests are taken from Paulson (1973). For p > i we have provided

the powers of six statistics for testing the hypothesis of gaussianity against

the alternatives that the true distributions are p-variate chi-squared,

p-variate t, p-variate Dirichlet, p-variate log normal, and p-variate mixtures

of gaussians. The definitions of these alternative distributions follow.
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Let (xLXtx2tP...,PpA) , t 1,2p...,r, be distributed as N p(O,D) where R
r2

is a postivie definite covariance matrix. If y j -L x.1 j - l,2,...,p ,

then (yOy2, ...,yp)t are distributed as a p-variate chi-squared with

correlation matrix D on r degrees of freedon. If W2 is independent of the

Ijs gapand tjA - 1L xjA/W, j - 1,2,...,p, then (t,1 t2 g...t p 1 ) follows a

p-variate t distribution on r degrees of freedom. If Yi - exp(x t

j - 1,2,...,p, then (ylty2,...,ypt are distributed as a p-variate

lognormal. The vector y has the mixture of gaussian distributions

bN (p,D) + (1 - b)N (P',D') if in the random sample of n y's, b of the X'sp p n

have distribution N p(p,D) and (I - b) of they's have distribution N p(p',D'),

where 0 < b < 1 and b is an integer. Following Wilks (1962) let

x 1,x2 ,..., p+t, be independent random variables having gammA distribution

G(v),G(v ),G(Vp) ,  xt xi I i - 1,2,...,p, whereL 2' p+L i x L + Z ... + Xp h

V-I -x
f(x;V) =x •ep

f v_ ) , x 0 0, then (y ,y2,... ,  has the p-variate Dirichlet

distribution D(uu2,..., p;Up+t). When p 1 1 we have the Beta distribution.

Table 2.8 provides evidence that both w2  and mx w are excellent

omnibus tests except for sample size n small and short tailed alternatives.

The statistic w2  was the least powerful of the three statistics comaidered
nxp

and results are omitted. The performance of all tests improves with incresing
2

samples size. The test w as a rule dominates max w2 because of the
n,p p n

inherent loss of information concerning the p-dimensional structure in the

formulation of max w2 . This is offset by the ability of max 2 o

p n p n

indicate which margin(s) are in fact causing the non-gaussianity. Thus there

statistics would be used in tandom. However, little is known about the nature

of non-gaussianity upon rejection of the null hypothesis so we recommend the

use of Mardia's bI and b in conjunction with the proposed statistics.

p 2
p
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While the Shapiro-Wilk statistic is a somewhat better omnibus statistic

than btp or b2p, btp is naturally better for skewed alternatives such as the

chi-squared family and b2 p is inherently better for the more peaked and longer

tailed distributions such as the t-family. These results are consistent with

the univariate case. Our results also indicate that the Anderson-Darling

tests to have a marked loss of power as p increases while our proposed

2statistics, especially Wnp, do not.
n,p

Some Examples and Discussions.

EXAMPLE 1. The length and breadth of 9,440 beans as measured by W. Johnnsen

and studied by Wicksell taken from Pretorius (1930) is given in Table 2.9

and contour graph in Figure 2.4. The data is considered in 4 manners.

Let X = length and Y - breadth. Taken independently, the margin of X

yields a w2 statistic of 34.9934 and the margin of Y yields a9440,1

W2 statistic of 42.8855.
9440,

Taken as 9440 bivariate observations, w2  = 897.5406 and9440,2

w2  2103.6814. All observed statistics are much greater than
9440X2

max(w2 600) 0.3302 and max(w2 600) 0.1485. Clearly the margins and

bivariate obserations are non-gaussian.

EXAMPLE 2. Mardia (1970) gives the number of Mullerian glands as the right

and left farelegs of 2,000 male pigs where x a the number of glands on

the right legs and y - the number of glands on the left legs. The data

is presented in Table 2.10 and contour graph in Figure 2.5. Proceeding

as above, the margin of X yields a w2 statistic of 5.727 and the2000,L

margin of Y yields 5.5918. Taken as a bivariate sample, w , = 2.24802000,2

and w 2 47.9995. Again, the data is clearly non-gaussian.

In the above two examples the obvious non-gaussianity of the

observations does not allow other statistic, w2  , to be better than then,p
other.
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EXAMPLE 3. Granadesiken (1977, pp50-52 ) gives and discusses a set of 61

bivariate observations which are constructed by systematically taking

points from the surface of a paraboloid and adding spherical gaussian

noise to each. The date is given in Table 2.11 and a graph of X, Y, and Z

versus observation number, 1-61, is presented in Figure 2.6. From

Figure 2.6 we see no non-linearity and may be led to believe the data is

in fact 3 dimensional gaussian. The margins of X,Y, and Z yield w26 1

statistics of 0.0239,0.0833, and 0.1092 indicating X and Y are gaussian

while Z is not with p-value 0.0845. Taken as trivariate observations,

W2 " 2.2875 with associated p value of 0, max(02  , .0624), and6L,3 600,3
W2 n 0.0654 with associated p value of 0.3287. We see here an example
61x3

where the w2  statistic outperforms the statistic w2  . As in then,p nxp

power-study above, we have lost the 3-dimensional structure of the data

and allowed the gaussian margins, X and Y to influence the statistic

2 The performance of these statistics is compared with the

competitors in Table 2.14. We see w2 outperforms all others.
n,p

EXAMPLE 4. The Iris data, Table 2.12, of Fisher (1936) has been extensively

studied and is used to evaluate clustering algorithms (Nicholson, 1982).

In particular, the iris versicolor and iris virginice groups are very

difficult to separate. The reason for this difficulty is indicated by the

results listed in Table 2.13. The margins of sepal and petal length, SL

and PL, for iris versicolor and iris virginice are shown to be gaussian

with the same p-values for each margin. For these two varieties, the

margins sepal and petal width, SW and PW, are shown to be non-gaussian.

The extent of the departures from gaussianity is nearly the same for the

two vericty's margins. The ability to separate iris setosa from the other
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tvo varieties is due to the non-gaussianity of iris setosa's margins of

PL and SW and the acceptance of gaussanity of the margins SL and SW.

Gamadeslom (1977, (pp218-22 2) finds observation numbers 16 and 42 to be

unusual in the iris sefosa data set. This explains the large observed

statistics for iris setosa's margins PL and specifically PW.

While we cannot conclude directly that there are two populations

represented by the combined sets we are able to conclude that a 4 variate

gaussian model is not adequate for the data sets taken independently not

as a whole.
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SAMPLE SIZE

P 8 10 12 15 20 24 30 40 60 120

1 .10 0.972 0.994 0.985 1.007 1.020 1.015 1.022 1.026 1.015 1.019
XlO .05 1.181 1.191 1.194 1.226 1.236 1.224 1.216 1.240 1.236 1.223

.01 1.672 1.649 1.707 1.713 1.705 1.753 1.767 1.727 1.747 1.798

2 .10 5.932 5.933 5.957 5.971 6.084 6.009 6.147 6.076 6.099 6.141
xlOO .05 6.829 6.862 6.937 6.874 6.974 6.956 7.103 7.103 6.990 7.047

.01 8.814 9.176 9.150 9.131 9.136 9.124 9.322 9.302 9.339 9.124

3 .10 2.819 2.847 2.838 2.871 2.861 2.857 2.900 2.898 2.876 2.863
xlOO .05 3.186 3.243 3.208 3.255 3.277 3.259 3.244 3.276 3.272 3.218

.01 4.153 4.170 4.192 4.164 4.132 4.095 4.096 4.089 4.072 4.103

4 .10 1.235 1.240 1.242 1.244 1.246 1.251 1.234 1.230 1.226 1.229
xlOO .05 1.403 1.398 1.397 1.399 1.406 1.414 1.378 1.367 1.362 1.369

.01 1.789 1.787 1.783 1.778 1.737 1.734 1.701 1.705 1.701 1.680

5 .10 5.143 5.186 5.092 5.049 5.093 5.012 5.023 5.010 4.996 5.005
x1000 .05 5.839 5.792 5.784 5.719 5.682 5.589 5.578 5.553 5.559 5.540

.01 7.641 7.390 7.633 7.219 7.000 6.930 6.795 6.784 6.764 6.822

6 .10 2.076 2.045 2.047 2.020 1.997 1.990 1.995 1.980 1.978 1.951
xlO00 .05 2.348 2.104 2.317 2.256 2.227 2.228 2.208 2.208 2.195 2.159

.01 3.078 2.980 3.005 2.890 2.791 2.771 2.743 2.699 2.659 2.601

TABLE 2.1 Critical Values of w2  • p = 1,...,6; u - 8,...,120
np
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ALPHA

DIMENSION .20 .15 .10 .05 .025 .01 .001

i (xo1) 0.8197 0.9111 1.0406 1.2555 1.4895 1.7984 2.0319

2 (xl0L) 0.5138 0.5563 0.6099 0.6997 0.8054 0.9215 1.0105

3 (xl02 ) 2.4726 2.6642 2.8982 3.2456 3.6272 4.0366 4.4276

4 (xl02 ) 1.0815 1.1484 1.2366 1.3806 1.5243 1.7115 1.8329

5 (x03) 4.4361 4.6809 5.0047 5.5123 6.0138 6.5131 6.8977

6 (xl03) 1.7547 1.8388 1.9599 2.1637 2.3519 2.5731 2.7378

7 (X×03) 0.6771 0.7092 0.7526 0.8205 0.8949 0.9837 1.0284

8 (x104) 2.5490 2.6700 2.8200 3.0672 3.3050 3.6115 3.8463

9 (Xl0 4 ) 0.9514 0.9911 1.0399 1.1259 1.2078 1.3060 1.3848

10 (xO 5 ) 3.4812 3.6211 3.8172 4.1167 4.4562 4.8273 5.1069

11 (x105 ) 1.2718 1.3226 1.3867 1.4903 1.5909 1.7311 1.8343

12 (xl06) 4.5909 4.7583 4.9943 5.4018 5.7826 6.2861 6.5937

TABLE 2.2 Critical Values of w2 ; p 1,...,12; n - 600
np
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MOMENTS

DIMENSION MEAN VARIANCE SKEWNESS KURTOSIS

1 5.9772(x102 ) 1.1764(x10 3) 1.7410 7.7783

2 3.9730(x102) 2.6254(x104) 1.2546 5.3986

3 1.9819(x102) 4.5358(x105) 1.0597 4.6504

4 8.8850(x10 3 ) 6.9824(x10 6 ) 0.9942 4.5859

5 3.6752(x103) 9.8374(x10 7 ) 0.9095 4.5397

6 1.4759(x10 3 ) 1.3755(x107). 0.9979 5.0131

7 5.7300(xjO ' ) 1.8452(x10 8) 0.3758 4.3227

8 2.1786(x104) 2.3771(x10 9 ) 0.8592 4.4465

9 8.1670(xi05) 2.9314(xi0 0 ) 0.7513 4.1196

10 3.0218(x105) 3 .72 24 (xlQi0) 0.8196 4.2651

11 1.1089(x10 5 ) 4.5496(xlo2) 0.8138 4.5588

12 4.0240(x106) 5.7521(x013 ) 0.9013 4.8506

TABLE 2.3 Koments of w2  ; p 1 ,...,12; n , 600
81p
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ALPHA

DIMENSION .20 .15 .10 .05 .025 .01 .005

1 .08196 .09110 .10405 .12555 .14894 .17983 .20319

2 .10180 .11183 .12555 .14799 .17321 .20212 .22654

3 .11499 .12505 .13840 .16161 .18494 .21204 .23462

4 .12299 .13350 .14674 .16986 .19156 .22948 .25401

5 .13123 .14181 .15638 .17833 .20025 .23273 .25500

6 .13641 .14668 .16175 .18599 .20688 .24088 .26610

7 .14053 .15081 .16511 .18740 .21220 .24385 .26815

8 .14609 .15598 .17195 .19474 .21934 .24812 .27404

9 .15011 .16027 .17397 .19823 .22126 .25107 .27147

10 .15280 .16295 .17754 .20038 .22291 .25119 .27394

11 .15587 .16643 .18014 .20390 .22637 .25679 .27577

12 .15719 .16723 .18201 .20572 .22999 .25864 .27739

TABLE 2.4 Critical Values of max 2; p - 1,...,12; n - 600
p n
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MOMENTS

DIMENSION MEAN VARIANCE SKEWNESS KURTOSIS

1 0.05977 0.00117 1.74100 7.77820

2 0.07731 0.00138 1.58188 7.07833

3 0.08820 0.00146 1.39058 5.98084

4 0.09684 0.00150 1.43042 6.52263

5 0.10344 0.00158 1.30936 5.79542

6 0.10881 0.00162 1.39810 6.57393

7 0.11269 0.00159 1.31411 5.87041

8 0.11752 0.00168 1.32513 5.99709

9 0.12123 0.00169 1.32798 6.28711

10 0.12354 0.00164 1.21282 5.31291

11 0.12732 0.00164 1.28152 6.09602

12 0.12880 0.00163 1.18409 5.05303

TABLE 2.5 Moments of max w2 ; p 1,...,12; n - 600
p n
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W2
601DK&T P&H S

(1 - a) - .01 .01669 .01651

.05 .02231 .02228

.10 .02647 .02638

.20 .03277 .03269

.50 .05125 .05087

.80 .08197 .08114

.85 .09111 .091

.90 .10406 .10354 .104

.95 .12555 .12602 .126

.975 .14894 .148

.99 .17990 .17878 .178

S.05977 .0595

32 .001176 .00117

1034 3  .07025 .0709

10 U .10764 .1116

a3  1.7140 1.780

a 7.7783 8.186

D,K&T: Durbin, Knott and Taylor (1975)

S: Stephens (1976)

P&H: Pearson and Hartley (1972)

2

TABLE 2.6 Univariate w Comparisonsn,p
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Pettitt Monte Carlo

.20 .075 .068

.15 .080 .076

.10 .088 .087

.05 .100 .106

.025 .11.2 .1.27

.01 .1.28 .1.57

.005 .140 .1.84

TABLE 2.7 Comparison of w2  Using Pettitt's Transformation
n , 

2
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Powers of w2  , ma W2, Mardia's b and b , Shapiro Wilk (SW),
n,p p n Lp 2

Anderson Darling (AD), and Kolmogorov-Smirnov (KS) tests for

gaussianity at significance level a - .10; p a 1,2,5; and n - 20,50

(a) p 1 1, n - 20

STATISTIC

ALTERNATIVE w2 b b SW AD KS
nI Lp 2p

X2 (l) 96.4 90.0 6.0 99.2 99.2 92.5

X2 (2) 82.5 69.1 44.4 91.4 90.3 73.5

X2(4) 54.7 47.6 31.7 65.8 64.0 41.5

X2 (6) 40.7 36.8 25.2 50.9 52.0 34.0

x2 (10) 27.5 25.2 20.6 36.6 38.0 25.5

X2 (14) 21.4 20.1 16.8 28.9 29.0 19.0

C(1) 89.9 78.7 89.3 87.7 94.4 90.6

t(3) 36.9 36.7 41.8 41.8 44.0 33.5
t(5) 21.6 21.4 26.2 24.8 29.5 21.0
t(7) 16.8 17.9 18.1 20.0 22.5 15.0
t(9) 13.9 16.9 16.8 17.4 19.7 14.5

Lognormal 93.2 87.1 66.5 96.5 96.0 85.7
Logistic 13.9 17.4 19.5 17.7 19.5 15.0

Beta(l,l) 28.6 6.5 46.5 34.3 37.0 13.5

(1,3) 52.6 31.5 22.4 63.7 63.0 38.0

(1,5) 61.0 48.6 29.1 76.1 75.5 53.5
(2,1) 38.8 12.0 20.9 48.8 45.3 30.0

(5,1) 63.0 50.1 27.6 80.1 73.8 52.5

.8N(0,1)+.2N(0,4) 9.6 25.9 26.0 22.7 30.0 16.5

.9N(0,1)+.lN(0,4) 8.7 19.7 19.9 19.1 25.5 13.0

.7N(0,1)+.3N(1,4) 7.9 28.3 23.8 28.8 35.0 24.0

TABLE 2.8 Power Study Table
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(b) p- 1, o-50

STATISTIC

ALTERNATIVE 2 b SW AD KS
nl bp 2 p

x2 (1) 100 99.9 92.9 100 100 100
x2 (2) 99.4 98.3 72.6 100 100 98.8
x2 (4) 89.7 89.5 52.8 97.3 93.9 80.2
X2 (6) 74.9 77.6 43.3 88.9 85.0 65.5
x (10) 54.3 57.5 28.8 72.4 66.0 48.0
x2 (14) 41.3 45.1 26.5 58.2 50.0 34.7

t(1) 100 91.2 99.3 99.7 99.8 99.6
t(3) 65.7 57.3 73.2 65.3 70.0 59.7
t(5) 34.6 32.9 46.6 36.1 42.5 31.0
t(7) 21.9 29.2 34.9 23.6 29.5 20.0
t(9) 18.5 21.6 25.1 18.2 23.5 15.0

Lognormal 100 99.9 96.1 100 100 99.3
Logistic 21.8 18.8 25.8 20.4 22.6 15.1
Beta(l,l) 61.4 9.1 92.2 94.4 77.0 42.0

(1,3) 90.0 71.6 19.4 99.8 95.2 80.0

(1,5) 96.4 92.0 37.7 99.9 98.7 91.1
(2,1) 73.6 31.2 33.1 96.4 85.5 58.5
(5,1) 96.4 91.3 36.7 99.8 99.0 89.7

.8N(0,1)+.2N(0,4) 91.2 28.8 42.9 24.5 34.3 23.0

.9N(0,1)+.lN(0,4) 73.0 29.3 34.7 22.4 26.8 16.0

.7N(0,1)+.3N(1,4) 94.6 46.1 42.4 48.7 54.0 39.5

TABLE 2.8 Power Scudy Table (Cont)
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(c) p - 2,5 and n - 20

STATISTICS

ALTERNATIVE W2 max w2  b b SW AD
np p n bp 2p

p 2 x2 (1) 96.9 95.2 95.0 77.1 96.8 72.9
X2 (2) 85.3 77.6 77.2 53.9 83.6 46.7
X2 (4) 61.9 52.5 52.4 35.8 60.4 21.8
-(6) 46.0 40.4 35.6 26.8 46.0 15.3
X (10) 34.7 28.1 25.3 21.6 34.3 14.6
X2 (14) 28.5 25.5 20.9 18.6 26.0 11.1

n(l) 100 100 94.8 97.5 95.6 96.8
t(3) 93.3 92.1 52.2 58.1 60.3 51.3
( (5) 73.9 70.3 33.7 35.8 37.0 28.1
t(7) 56.3 53.6 22.7 24.8 32.0 18.3
t(, ) 41.1 36.8 17.6 13.2 24.8 16.5

Lognormal 95.7 100 94.6 79.1 95.3 74.5
Dirichle 2(2,1,l) 26.2 22.3 77.4 55.3 82.8 45.3

(1,2,3) 32.4 31.5 65.9 42.3 75.1 34.3
(2,1,2) 35.8 33.0 63.9 44.0 74.5 33.4
(5,1,5) 61.4 49.3 57.3 38.5 69.1 24.3
(5,1,1) 32.6 35.0 54.9 36.6 64.3 25.4

p 5 x2r() 82.6 71.9 98.2 89.3 92.4 67.6
X2 (2) 56.0 42.3 81.3 63.7 74.2 35.3
X2 (4) 34.1 23.8 49.2 39.0 48.8 12.3
X2(6) 24.4 16.1 34.0 25.4 38.6 9.4
X2(10) 16.0 13.3 20.7 17.4 26.0 8.0
XD(14) 15.7 11.5 17.6 16.7 24.7 8.5

( (1 ) 100 100 99.9 99.9 99.2 99.3
t(3) 100 86.5 79.4 84.3 76.6 56.6
t(5) 64.6 55.1 53.9 58.7 54.1 29.9
t(7 42.8 36.1 38.7 43.2 40.9 15.6
t(9) 34.4 80.9 31.2 34.5 34.7 12.6

Lognormal 87.6 80.4 98.8 94.3 95.3 77.1
Dirichlet(1,1,1,1,1,1) 18.9 15.6 82.6 64.9 72.8 35.2

(1,2,1,2,1,2) 19.3 15.9 71.6 54.9 62.1 23.8
(5,1,1,5,1,5) 22.1 19.0 62.4 48.8 57.4 18.6
(2,1,1,2,1,1) 19.0 14.8 72.3 54.9 67.9 28.7

TABLE 2.8 Power Study Table (Cont)
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(d) p i2,5 and a - 50

STATISTICS

ALTERNATIVE W2p max 2 b b SW AD
n,p p 11 Lp Zp

p 2 X2 (1) 100 99.8 100 97.7 100 99.8
X2 (2) 98.9 98.7 99.8 88.5 99.5 88.3
X2 (4) 92.5 88.0 97.0 64.8 93.8 56.2
X)2 (6) 82.7 76.7 86.8 51.9 88.2 37.3
x2 (10) 64.7 55.6 64.5 34.3 70.9 20.1
x2 (14) 57.4 46.8 54.1 30.9 55.9 17.7

t(I) 100 100 99.5 100 100 100
t(3) 100 100 77.2 92.5 82.5 91.7
t(5) 97.5 95.7 50.3 68.6 57.1 64.1
t(7) 88.5 84.6 34.4 50.2 42.4 42.6
t(9) 75.7 71.4 27.4 40.3 34.9 17.7

Lognormal 100 100 100 99.1 100 99.5
Dirichlet(1,1,1) 59.1 52.0 100 89.0 99.6 87.9

(1,2,3) 52.0 50.0 94.4 79.8 98.0 72.0
(2,1,2) 74.8 73.0 99.2 78.0 98.6 73.9
(5,1,5) 96.8 93.6 98.1 70.6 93.5 53.8
(5,1,1) 71.5 74.4 97.1 69.1 94.4 57.0

p 5 X2 (1) 99.8 98.9 100 100 99.9 99.8
x2(2) 94.2 87.7 100 98.0 98.7 94.4
x2 (4) 74.5 62.1 98.5 77.7 88.6 66.0
X2 (6) 56.2 43.9 92.0 63.9 76.2 42.1
x2 (lO) 33.8 26.7 71.1 42.8 55.8 24.5
x2 (14) 28.3 21.8 54.4 31.4 45.2 15.3

t(I) 100 100 100 100 100 100
t(3) 100 100 98.4 99.7 97.5 99.5
t(5) 96.2 92.6 86.1 95.4 85.4 91.3
t(7) 85.4 74.7 70.1 85.5 71.6 73.0
t(9) 66.7 54.2 61.4 73.6 58.3 54.7

Lognormal 99.9 99.5 100 100 100 100
Dirichlet(1,1,1,1,1,1) 38.4 34.4 100 97.0 98.7 95.6

(1,2,1,2,1,2) 37.4 33.7 100 92.4 96.9 87.2
(5,1,1,5,1,5) 49.5 45.2 99.7 88.7 94.7 76.5
(2,1,1,2,1,1) 42.0 38.2 100 93.0 96.3 87.9

TABLE 2.8 Power Study Table (Cont)
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Payers of a axn 0  and Mardia's b and tests
pLp

for guassianity on various mixtures.

(e) p - 2,5 and n - 50

STATISTICS

ALTERNATIVE w2  max 2 b b
a,p p n Lp Zp

pm 2

.8N(0,I) + .2N(0,41) 33.1 30.1 46.9 64.1

.9N(0,1) + .IN(0,41) 24.7 21.5 47.9 38.9

.7N(0,1) + .3N(114t) 64.9 54.0 67.1 69.4

.7N(0,I) + .3N(2,41) 85.3 79.5 88.1 71.6

.7N(0,1) + .3N(3,41) 92.1 88.5 95.2 66.4

.5N(0,A) + .5N(0,B) 14.4 13.4 17.3 21.3

where

Aai[ 1 . and Bu[

p= 5

.8N(0,I) + .2N(0,41) 45.4 32.7 87.8 95.3

.9N(0,1) + .IN(0,41) 27.8 21.1 73.9 81.1

.7N(0,1) + .3N(1,41) 75.3 58.6 97.1 98.6

.7N(0,1) + .3N(2,41) 88.5 77.0 98.6 98.4

.7N(0,1) + .3N(3,4I) 91.2 83.6 99.3 98.8
•5N(0,C) + .5N(0,D) 11.1 8.6 26.8 33.5

where

1 .5 .5 . 5 .5 1 -.5 .5 -. ".

C . .5 1 .5 .5 and D .5 -.5 1 -.5 .
.5 .5 .5 1 .5-5 .5 -.5 1 -.5
5 5 .5 .5 5 -.5 .5 -.5

TABLE 2.8 Power Study Table (Cont)
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Observed frequencies of the mumber of beaus of length X and

breadth Y measured in ainlimeters.

I
Y 17 16.5 16 15.5 15 14.5 14 13.5 13 12.5 12 11.5 11 10.5 10 9.5 TOTALS

9.123 0 2 0 0 3 0 0 0 0 0 0 0 0 0 0 0 5

8.875 4 8 17 19 0 0 0 0 0 0 0 0 0 0 0 0 48

8.625 2 23 101 156 93 23 2 0 0 0 0 0 0 0 0 0 400

8.375 0 18 105 494 574 227 56 9 0 0 0 0 0 0 0 0 1483

8.125 0 4 4 375 956 913 362 73 12 3 0 0 0 0 0 0 2742

7.875 0 0 7 81 385 871 794, 330 89 19 3 0 0 0 0 0 2579

7.625 0 0 1 4 65 26 469 361 175 55 27 4 0 0 0 0 1397

7.375 0 0 0 0 6 .23 91 137 124 78 37 22 11 0 1 0 530

7.125 0 0 0 0 0 1 13 18 28 35 25 32 IL 6 1 0 170

6.875 0 0 0 0 .0 0 0 1 9 8 21 12 13 7 1 0 72

6.625 0 0 0 0 0 0 0 0 0 0 2 0 1 4 3 0 10

6.375 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 4

TOTALS 6 55 275 1129 2082 2294 1787 929 437 199 115 70 36 18 7 1 940

TABLE 2.9 Johannsen's Bean Daca
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Observed frequencies of Mullerian glands on the right (1)

and left (Y) forelegs of 2,000 male pigs.

x
y 0 1 2 3 4 5 6 7 8 9 10 TOTALS

8 4 2 0 0 0 0 0 0 0 0 14

0 5 151 65 14 5 1 0 0 0 0 0 241

1 2 58 154 88 27 7 0 0 0 0 0 336

2 0 9 96 173 119 24 8 1 0 0 0 430

3 0 3 28 128 153 92 16 8 1 0 0 429

4 0 0 7 28 77 101. 58 20 3 1 0 295

5 0 0 1 6 26 52 48 18 5 3 0 1159

6 0 0 0 0 3 11 16 17 3 3 0 53

7 0 0 0 0 1 9 7 9 2 2 0 30

8 0 0 0 0 0 0 0 5 2 2 1 10

9 0 0 0 0 0 0 2 0 0 1 0 3

10 15 225 353 437 411 297 155 78 16 12 1 2000

TOTALS 30 450 706 874. 822 594 310 156 32 24 2 4000

TABLE 2.1.0 Pig Data
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61 points taken from a paraboloid with added spherical guassian noise

X Y Z x y

-2.732 6.557 25.507 -3.452 2.948 25.591
-5.264 5.253 24.200 -7.261 6.959 26.789
-5.103 5.986 26.446 -2.370 3.617 25.510
-3.335 5.888 23.947 -4.181 4.530 29.118
-5.420 5.607 25.321 -2.360 3.916 24.879
-3.261 7.697 27.479 -5.297 5.802 29.073
-4.607 6.651 26.518 -1.585 2.524 26.954
-4.236 4.220 24.416 -3.267 4.402 28.899
-4.947 5.363 26.918 -1.187 3.257 26.100
-2.189 5.881 26.282 -2.095 6.931 27.269
-2.193 5.953 26.962 -4.800 3.339 27.011
-4.838 5.909 25.196 -5.602 5.322 28.759
-3.448 5.610 27.489 -1.478 1.644 26.057
-0.990 5.391 25.667 -5.151 4.481 27.583
-6.116 6.326 30.189 -0.694 3.408 24.997
-2.175 4.645 25.613 -5.687 4.766 29.640
-5.849 6.876 26.070 -1.733 3.932 26.198
0.162 5.521 25.027 -6.154 4.932 29.631

-5.360 5.494 28.675 -3.823 3.784 25.123
-1.740 4.070 27.311 -2.588 4.923 28.343
-2.975 6.716 27.999 -3.237 3.648 26.249
-4.220 3.853 26.396 -5.740 4.537 30.277
-6.306 4.573 25.715 -0.709 1.542 27.240
-1.972 5.615 24.900 -6.568 5.335 29.631
-4.497 5.314 27.978 -1.669 1.501 25.413
-2.005 3.352 24.599 -7.690 4.578 30.863
-3.809 5.421 28.794 0.837 1.271 25.303
-2.081 3.795 25.542 -5.832 7.020 28.915
-4.907 7.120 27.449 -0.405 3.669 27•587
-0.742 2.800 26.394 -3.019 3.752 29.665
-2.750 2.233 27.669

TABLE 2.11 Gnanedesikan Data Set
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Iris Setosa Iris Versicolor Iris Virginica

Sepa10Sepal0Petal IPetal Sepal ISepalrPecal aPetal Sepal ISepallPecal OPetal

Length1WidthlLeugth1Width LenithlWidthiLenghtlWidth LengthOWidthlLengthlWidth
5.1 1 3.5 1 1.4 1 0.2 7.0 I 3.2 1 4.7 1 1.4 6.3 1 3.3 a 6.0 1 2.5

4.9 1 3.0 1 .4 1 0.2 6.4 1 3.2 1 4.5 A 1.5 5.8 1 2.7 1 5.1 1.9
4.7 1 3.2 1 1.3 1 0.2 6.9 1 3.1 1 4.9 1 1.5 7.1 1 3.0 1 5.9 1 2.1
4.6 1 3.1 1 1.5 1 0.2 5.5 0 2.3 1 4.0 1 1.3 6.3 1 2.9 9 5.6 1.8
5.0 I 3.6 I 1.4 a 0.2 6.5 A 2.8 a 4.6. 9 1.5 6.5 a 3.0 I 5.8 4 2.2

5.4 1 3.9 1 1.7 1 0.4 5.7 1 2.8 1 4.5 1 1.3 7.6 3 3.0 3 6.6 12.1
4.6 1 3.4 1 1.4 1 0.3 6.3 1 3.3 1 4.7 1 1.6 4.9 1 2.5 1 4.5 01.7
5.0 1 3.4 1 1.5 0 0.2 4.9 1 2.4 1 3.3 0 1.0 7.3 1 2.9 1 6.3 11.8
4.4 11 2.9 II 1.4 0 0.2 6.6 0 2.9 II 4.6 11 1.3 6.7 R 2.5 I1 5.8 1 1.8
4.9 0 3.1 1 1.5 0 0.1 5.2 9 2.7 11 3.9 1 1.4 7.2 II 3.6 11 6.1 9 2.5

5.4 1 3.7 1 1.5 0 0.2 5.0 1 2.0 1 3.5 0 1.0 6.5 3 3.2 1 5.1 2.0
4.8 I 3.4 I 1.6 0 0.2 5.9 Ii 3.0 0 4.2 II 1.5 6.4 II 2.7 I1 5.3 11 1.9
4.8 11 3.0 1 1.4 0 0.1 6.0 1 2.2 q 4.0 0 1.0 6.8 3 3.0:1 5.5 12.1
4.3 1 3.0 0 1.L It 0.1 6.1 II 2.9 4 4.7 ii 1.4 5.7 11 2.5 11 5.0 4 2.0
5.8 1 4.0 3 1.2 0 0.2 5.6 II 2.9 11 3.6 1 1.3 5.8 II 2.8 II 5.1 11 2.4
5.7 1 4.4 II 1.5 0 0.4 6.7 II 3.1 II 4.4 II 1.4 6.4 ii 3.2 1 5.3 11 2.3
5.4 0 3.9 II 1.3 II 0.4 5.6 II 3.0 II 4.5 II 1.5 6.5 II 3.0 ' 5.5 1 1.8
5.1 0 3.5 ii 1.4 II 0.3 5.8 1I 2.7 11 4.1 11 1.0 7.7 (1 3.8 3 6.7 I 2.2
5.7 It 3.8 11 1.7 1I 0.3 6.2 1 2.2 J 4.5 1 1.5 7.7 I 2.6 ' 6.9 . 2.3
5.1 it 3.8 1 1.5 it 0.3 5.6 II 2.5 I 3.9 1 1.1 6.0 1 2.2 1 5.0 1 1.5
5.4 1 3.4 0 1.7 I 0.2 5.9 11 3.2 11 4.8 II 1.8 6.9 1 3.2 ! 5.7 1 2.3
5.1 ii 3.7 0 1.5 3 0.4 6.1 II 2.8 4 4.0 1 1.3 5.6 !1 2.8 I 4.9 1 2.0
4.6 1 3.6 1l 1.0 0 0.2 6.3 0 2.5 1I 4.9 1I 1.5 7.7 It 2.8 3 6.7 11 2.0

5.1 1 3.3 0 1.7 0 0.5 6.1 1 2.8 .1 4.7 11 1.2 6.3 1 2.7 4.9 01.8
4.8 1 3.4 II 1.9 3 0.2 6.4 II 2.9 ! 4.3 1 1.3 6.7 !1 3.3 ' 5.7 ' 2.1

5.0 3 3.0 11 1.6 II 0.2 6.6 II 3.0 1I 4.4 ii 1.4 7.2 :1 3.2 3 6.0 3 1.8
5.0 II 3.4 11 1.6 0 0.4 6.8 ii 2.8 11 4.8 0 1.4 6.2 11 2.8 11 4.8 3 1.8
5.2 It 3.5 0 1.5 0 0.2 6.7 3 3.0 II 5.0 0 1.7 6.1 II 3.0 - 4.9 1 1.8
5.2 4 3.4 0 1.4 II 0.2 6.0 11 2.9 11 4.5 0 1.5 6.4 II 2.8 11 5.6 it 2.1
4.7 II 3.2 0 1.6 0 0.2 5.7 11 2.6 1 3.5 II 1.0 7.2 1 3.0 ; 5.8 I 1.6
4.8 II 3.1 0 1.6 I 0.2 5.5 It 2.4 ;I 3.8 :I 1.1. 7.4 1 2.8 1 6.1 1 1.9
5.4 J 3.4 :1 1.5 1 0.4 5.5 It 2.4 1 3.7 :I 1.0 7.? 1 3.8 6.4 2.0
5.2 II 4.1 II 1.5 I 0.1 5.8 II 2.7 :1 3.9 if 1.2 6.4 .1 2.8 J 5.6 2.2
5.5 1 4.2 11 1.4 11 0.2 6.0 01 2.'7 11 5.1 01 1.6 6.3 i1 2.3 1 5.1 ' 1.5

4.9 3 3.1 0 1.5 II 0.2 5.4 II 3.0 II 4.5 11 1.5 6.1. 1 2.6 il 5.6 3 1.4

5.0 0 3.2 U 1.2 4 0.2 6.0 II 3.4 II 4.5 0 1.6 7.7 1 3.0 11 6.1 1 2.3
5.5 0 3.5 3 1.3 0 0.2 6.7 I1 3.1 3 4.7 II 1.5 6.3 0 3.4 11 5.6 11 2.4
4.9 II 3.6 If 1.4 0 0.1 6.3 1 2.3 II 4.4 II 1.3 6.4 11 3.1 11 5.5 0 1.8

4.4 :1 3.0 II 1.3 II 0.2 5.6 II 3.0 "I 4.1 :I 1.3 6.0 I 3.0 ' 4.3 J 1.8
5.1 II 3.4 I1 1.5 I 0.2 5.5 II 2.5 I 4.0 I 1.3 6.9 'I 3.1 1 5.4 1 2.1
5.0 II 3.5 0 1.3 It 0.3 5.5 II 2.6 II 4.4 it 1.2 6.7 11 3.1 1 5.6 11 2.4
4.5 If 2.3 0 1.3 II 0.3 6.1 0 3.0 :1 4.6 11 1.4 6.9 It 3.1 11 5.1 3 2.3
4.4 0 3.2 1 1.3 II 0.2 5.8 0 2.6 II 4.0 I1 1.2 5.8 1 2.7 It 5.1 II 1.9
5.0 0 3.5 1 1.6 II 0.6 5.0 3I 2.3 11 3.3 if 1.0 6.8 11 3.2 11 5.9 11 2.3

5.1 II 3.8 1 1.9 II 0.4 5.6 It 2.7 11 4.2 II 1.3 6.7 11 3.3 0 5.7 11 2.5
4.8 0 3.0 11 1.4 0 0.3 5.7 0 3.0 01 4.2 0 1.2 6.7 I 3.0 R 5.2 II 2.3

5.1 0 3.8 11 1.6 It 0.2 5.7 1 2.9 II 4.2 11 1.3 6.3 It 2.5 1 5.0 0 1.9
4.6 0 3.2 1.4 R 0.2 6.2 1 2.9 0 4.3 (1 1.3 6.5 U 3.0 115.2 1 2.0

5.3 3 3.7 1 1.5 n 0.2 5.1 0 2.5 3I 3.0 1I 1.1 6.2 I 3.4 '1 5.4 0 2.3
5.0 0 3.3 0 1.4 1 0.2 5.7 0 2.8 11 4.1 0 1.3 5.9 1 3.0 115.1 1 1.8

TABLE 2.12 Iris Data
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a. Gnanedesikan Data Set

W2 max w2 W2
n,p p-value p p-value nxp p-value

margin X .083 >.15 ---...... ..

Y .051 >.15 --- --- --- ---

Z .109 .08 .--- --- ---

trivariate .024 >.15 .136 .11 .065 >.15

b. Iris Data

setosa margin SL .072 >.15 --- ......

SW .075 >.15 ---...

PL .190 .07 ---......

PW .977 0 --- --- --- ---

quadrivariate .008 >.15 .124 >.15 .059 >.15

versicolor margin SL .057 >.15 --- ......

SW .103 .10 ---......

PL .010 >.15 ---...

PW .152 .02 ---......

quadrivariate .016 .01 .191 .03 .081 >.15

virginica margin SL .089 >.15 --- ......

SW .108 .08 ---......

PL .086 >.15 ---......

PW .118 .06 ---......

quadrivariate .006 >.15 .060 >.15 .050 >.15

all iris margin SL .127 .05 --- ......

SW .181 .01 ---

PL 1.222 0 ---......

PW .722 0 ---......

quadrivariate .019 0 .210 .02 .088 >.15

versicolor margin SL .066 >.15 ... ...... ...

plus SW .158 .02 ---...

vicginica PL .047 >.15 ---......

PW .243 0 ---......

quadrivariate .018 0 .198 .02 .078 >.15

TABLE 2.13. Behavior of w2  max and w2  in Examples 3 and 4

n,p p n nxp
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a. Gnanedesikan Data Set

Statistic Value p-value

W2 0.024 >.15
np

max 02 0.14 .11p n

btp 1.19 >.15

b2  12.15 >.15
P

Sw 0.98 .02

AD 1.46 .07

b. Iris Data

setosa W2 0.008 >.15
n,p

max w2 0.124 >.15
pn

bLp 3.08 .12

b2 p 0.97 .03

SW 1.08 >.15

AD 0.17 .08

versicolor w2  0.16 .01
n,p

max w2 0.191 .03
p n

bLp 2.91 >.15

b2  22.60 >.15
p

Sw 0.95 >.15

AD 0.36 >.15

virginica w2  0.006 >.15
n,p

max , 0.060 >.15
p n

b 3.15 .11Lp

b2 p 24.30 >.15

SW 0.94 >.15

AD 0.42 >.15

Table 2.14. Behavior of w2  2 max W2 w 2  and Competitive
p,n p pxn

Statisics in Examples 3 and 4

828



30

Id

C;

-- -4-

-44m;

ii i U

r-
Sv

~fl1YA YDI±1m

FIGURE ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ c 2. oprsno CiMc1Vle;n ,. 1;pa1
* .1O,05,.O

829CL



31
Goa

0.16

0.04-

so0. V8 .

0.8

0.05

0.044Cow08 ~ "

0 1

1.0

0.6

-0.4

02253 . :811

*?A?t*Tt@ C a 10~ -4

FIGURE 2.2 Frequency Graph of wJ0 ,; p 1,2,3

830



32

0.

CYz

0.0 0.04 0.06 0.01 0.1
STATISTC

FIGURE 2.3 Frequence Graph of wjooap; P 1,...

831



33

3.12

8.57

8.3

8.02

c 7.175

7.47

7.2

6.92

6.65

6.37117.5 16.7 15.9 15.1 14.3 13.5 12.7 11.9 11.1 10.3 9.5
LENOTH

FIGURE 2.4 Contour Graph of Johannsen's Bean Data

832



34

LB

4.0

~5.0

6.0

7.0

8.8

10.0
1.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

RIGHT

FIGURE 2.5 Contour Graph of Pig Data

833



35

C

CD

V.:

z.

P

>-

4~4

C I) C If C I) 40 C2

Z-A-X
FIGURE 2.6 Graph of Paraboloid Data

834



36

BIBLIOGRAPHY

Anderson, T. W., and D. A. Darling. "Asymptotic Theory of Certain

Goodness-of-Fit Criteria Based on Stochastic Processes." Annals of

Mathematical Statistics, Vol. 23, 1952, ppl93- 2 1 2 .

Cotterill, D. S. and M. Csorgo. "On the Limiting Distribution of and Critical

Values for the Multivariate Cramer-von Mises Statistic" The Annals of

Statistics, Vol. 10, 1982, pp2 3 3-24 4 .

Cramer, Harold. "On the Composition of Elementary Errors. Second Paper:

Statistical Applications," Skand. Aktuartidskr, Vol. I, 1928, ppl 4 1-180.

Dugue, D. "Characteristic Functions of Random Variables Connected with

Browian Motion and of the von Mises Multidimensional w211 Multivariate

a

Analysis, ed. P. R. Krishnaiah, Academic Press, New York, 1969, pp28 9 -301.

Durbin, J. "Asymptotic Distributions of Some Statistics Based on the

Bivariate Sample Distribution Function" Nonparametric Techniques in

Statistical Inference" ed. N. L. Puri, Cambridge Univeristy Press,

Cambridge, 1970, pp4 35- 4 51.

Durbin, J. and M. Knott. "Components of Cramer-von Mises Statistic I".

J. R. Statist. Soc. B, Vol 34, 1972, pp290-307.

Durbin, J., M. Knott, and C. C. Taylor. "Comonents of Cramer-von Mises

Statistics II". J. B. Statist. Soc., Ser B, Vol. 37, 1975, pp216-237.

Knott, M. "The Distribution of the Cramer-von Mises Statistic for Small

Sample Sizes" J. R. Statist. Soc, B, Vol. 36, 1974, pp4 30- 4 38 .

835



37

Koziol, James A. "A Class of Invariant Procedures for Assessing Multivariate

Normality" Biometric, Vol. 69, pp423-427.

Krlvyakov, E. N., G.V. Martynov, and Yu. N. Tyurin (translated by

Richard A. Silverman). "On the Distribution of the w2 Statistics in the

Multidimensional Case" Theory of Probability and its Applications,

Vol. 22, 1977, pp4 0 6-4 10.

Mardia, K. V. "Applications of Some Measures of Multivariate Skewness and

Kurtosis in Testing Normality and Robustness Studies" The Indian Journal

of Statistics, Vol. 36, Series B, Pt 2, 1974, ppll5-128.

Malkovich, J. F. and Afifi. "On Tests for Multivariate Normality" Journal of

the American Statistical Association, Vol 68, No. 34, 1973, pi846-872.

Neuhaus, G. "Asymptotic Properties of the Cramer-von Mises-Statistic When

Parameters are Estimated." Proceedings of the Prague Symposium of

Asymptotic Statistic, Vol II, ed. J. Jajek, Prague, 1973, pp257-297.

Pearson, E. S., and H. D. Hartley, ed. Biometrika Tables for Statisticians,

Vol 2, 2nd ed. Cambridge University Press, New York, 1972.

Pettitt, A. N. "Testing for Bivariate Normality Using the Empirical

Distribution Function" Coinnications in Statistics, Theory and

Methodology, Vol A8, 1979, pp699-712.

Rosenblatt, M. "Limit Theorems Associated with Variats of the von Mises

Statistics" Annals of Mathematical Statistics, Vol. 23, 1952, pp6l7-623.

Smirnov, N. V. "Sur la distribution de w2 (Criterium de M.R.v.Mises)," C. R.

Acad. Sci., Paris, Vol 202, 1936, pp449-452.

Stephens, M. A. "Asymptotic Results for Goodness-of-Fit Statistics with

Unknown Parameters." The Annals of Statistics, Vol. 4, 1976, pp357-369.

von Mises, M. R. Wahrschemlichkeitsrechnung, Wein, Leipzig, 1931.

836
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ABSTRACT

This paper deals with numerical solution formulations in
conjunction with a generalized harmonic balance method, and,
computational results of several specific examples in forced
nonlinear vibrations. In a previous paper, approximate equations
were derived using this harmonic balance method. Main results
obtained in that earlier paper will be summarized here. An
efficient formulation for numerical solutions is then described.
The initial conditions needed in the generalized harmonic balance
method can be derived from given initial conditions and such a
relation is also derived here. Finally, several specific examples
have been worked out. The numerical results include phase
diagrams, evolution of various harmonics and comparisons between
the present harmonic balarce solutions and those obtained by
integrating the original differential equation. Although only
subharmonic cases are treated in the present paper, the
formulation should apply also to superharmonic solutions.
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1. INTRODUCTION

This paper is a sequel to one published in the Proceedings
of the 1988 Army Conference on Applied Mathematics and
Computing[l]. In that paper, equations were derived using a
generalized harmonic balance method (G.H.B.) for problems
associated with forced nonlinear oscillations where the
nonlinearity has a polynomial form with depedence on a small
parameter e. The method of harmonic balance proceeds by
substituting a series of periodic functions into the given
equation and then equate appropriate coefficients of same
harmonics to zero. This approach may lead to erroneous results if
carried out simply in a staightforward fashion, as noted by Nayfeh
(see reference (2], for example). Unfortunately, the main
alternative method, namely, multiple scaling, involves
considerably laborous algebra, elimination of secular terms and
solutions of differential equations at intermediate steps, and
then reconstitutions of the multiple scaling results to obtain the
equation governing the evolution of the amplitude and phase
relation of the oscillation problem. We have shown in [1],
however, that, by using only the simple part of the multiple
scaling method to give the form of the solution, and then, using a
generalized harmonic balance method, we can obtain the desired
end-equation directly, avoiding much of the laborous algebra
involved in multiple scaling, e.g., solving the intermediate
differential equations and reconstitution.

The present paper deals with the numerical solution of the
equations derived in [1]. In Section 2, main results derived in
(i will be summarized. An efficient formulation for numerical
solutions is presented in Section 3. The initial conditions needed
in the generalized harmonic balance method can be derived from
given initial conditions. This relation is derived in Section 4.
Finally in Section 5, several specific examples have been worked
out. The numerical results include phase diagrams, evolution of
various harmonics and comparisons between the G.H.B. solutions and
those obtained by integrating the original differential equation.
Although only subharmonic cases are treated in the present paper,
the formulation should apply also to superharmonic solutions.

2. A BRIEF SUMMARY OF PREVIOUS RESULTS

Some of the key equations and results from the previous
paper(l] are given here for easy reference. The nonlinear ordinary
differential equation of interest is

d2 u/dt2 +u+2cu(du/dt)+ctz 2u
2 +C21x 3u

3 +Ea, (du/dt)2

+c2 ,u(du/dt)2-2fcos(2t) (1)
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where u(t) is the unknow function y and m., k-2,3,4 and 5, are
given constants, c is the small parameter mentioned earlier; and,
f and o pertain to the magnitude and frequency of the forcing
function. This equation has been treated previously by Nayfeh
using the method of multiple scales(3,4].

In the subharmonic case,

9-2+€ e c (2)

where a is a given detuning parameter.

It was shown in (1) that the solution of u(t) in (1) can be
written in the following form,

u - cU0 +[(U 1 A+U2A2 )+C(U 3A3+U4A4 )+c.c.] (3)

where the terms of order higher than one in c have been neglected,

A - eit (4)

and c.c. stands for the complex conjugate; also, Uk, k-0,1,..,4,
are slowly varying functions compared with A of (4) in the sense
that, while dA/dt is of order unity, dUk/dt is of O(s).

The equations needed to obtain Uk's were derived in (1] and
they are,

2i (dU 1 /dt+ cU, )-(2/3) C( M2 +2 4 ) fSU1

+ 2  [-y2+ (2/9 )f 3C3 + 4 as - ( 1 / 1 8 ) f 
2 ( 5 %  2 + 1 2 (X (4 - 12  4 2 ) ] U 1

+ (1/3 (Z3 + 3as -10 (22 -10 C2a4 -4 =4 2 )U, 2U

-( 4/9 ) ij( 2(x +(4 ) fSUI +( 1/9 )cr( Ii= +16C4 ) fSU1 }-0 (5 )

U2 =-(1/3)fS+( 1/3)e[ (x2-a4)U,
2 -(4/3)(iu-a)fS] (6)

U0 -- 2(C 2 +Z4 )UU 1 -2(C 2 +4a4 )U2 U2  (7)

U3 (/4)(M 2 -244 )U1LU2  (8)

U4 - ( 1 / 1 5 ) ( ( 2 - 4 M4 ) U2 2 (9)

where a bar above a variable denotes its complex conjugate, and,

S - e''a t  (10)
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3. SOLUTION FORMULATION FOR THE GENERALIZED

HARMONIC BALACE METHOD

We first simplify (5) by introducing the following constants,

c, - -2f(= 2 +20 4 )/3

C2 = 2f 2 (3a 3 +4m,)/9

-f2 ( 5x2 2 +12% 4 -120 4 2 )/18

(11)
c 3 - (903+3Sl002 _10% 04 -4M4 2)/3

c 4 - -4puf(2a 2 +M4 )/9

c5 - af(ll 2+l6M 4 )/9

Equation (5) can now be written as

2i(dU1 /dt + epU1 ) + cciSU1
(12)

+ 2 [c 2 U1  + 3U2 U + +C4 + c, )SU,] - 0

It is observed that (12) is an unsatisfactory form for numerical
work since the variable S in the equation, defined in (10), is
time-dependent. Due to the fact that the form of the equation

involve only terms of the form U,, SU - and U12U, linearly, we can
convert (12) into a differential equation with constant
coefficient by setting

Uk .Vk Sk / 2 (13)
Then

dUk/dt-(dVk/dt+ikeCVk/2)Sk/ 2  (14)

and (12) becomes

2i(dV1 /dt + icVl/2 + c#Vj) + cciSv i
(15)

+ C2 c2 V1 + c3 V1 2V + (ic 4 + c S ) sV1  - 0

In terms of V., equation (6)-(9) become

V2 -- ( 1 /3)fS+( 1 /3)c[ (=2-a4)V. 2 -(4/3)(ip-)fS] (16)
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V - - 2 a 2 +a4 )VV I - 2 (( x2 +4 M4 ) V2 V2 (17)

V3 -(1/4) ( o2 -2C 4 )V1 V2  (18)

V4 -(1/15)(M 2 -4X4 )V2 2  (19)

Also equation (3) becomes

u(t) - cV0+[(V1 B+V2B2 )+C(V3 8 3+V4 B4 )+c.c. ]  (20)

where

B-e'*-cosf+isin#, 4-(l+ea/2)t (21)

It will be convenient to use real functions to carry out

computations. To do this, introduce

V -k k +iV k  (22)

Equations (15)-(19) become

2dVlR/dt - e[-2MVR+( +cl )V1I
+C2 -C2 +V, 2 )Vll

+ct[-c 4 V1R-(c 2 -cS )V1 I-c 3 (VIV R )
(23)

2dV11 /dt - c[-2/V,, - ( c - c )Vl.

+C2 [+c4V1+(c2+c5)VI +c3 (VlR2+V 1 I I )VR

3V 2 R-f+f -4( aV2+V 2 )+( 2- 4 )( VIR 2-V 1 
2 ))

(24)
3V21- +c(-4( V2 I-uV2R)+2(Cg2 -a 4 )(V1 3 V11 ) ]

V0 -2 ( 012+C )(VI z 2 V Z 2)_2(cL+4L 4 ) ( v z it +V r ) (25)

V 3 R ( 2-2 4 ) (V 1 V 2 -V L V 2 )/4 ( 6(26)
V3 -(2-24 ) (V1RV2I VIV2R8)4/4
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V 4 Rm(Z 2 -4C 4 )(V 2 ' -V2 1)/15(

V4 1 -2(a 2 -4a 4 )V2 RV2 1 /15

The procedure now is to solve (23). Then substitute Lhe
resulting VI R, Vi in (24), using the fact that on the right hand
side we need only a zero order approximation to V2 . and V2 .,
namely V2,--f/3, V21 -0. This gives a first order approximation for
V2R, V21 . These values can then be substituted in (25)-(27) to
give V o , V3R, V3 1, V41 and V4 ,.

This procedure requires values for V1 R, Vil at t-0 as initial
conditions to start the numerical integration of (23). This
process is considered in the next section.

To recover the solution u(t) of the original equation (1),
we substitute (21), (22) in (20) to obtain

u(t) - eVo+2[VlRcos( f)-V 11 sin( *)+V2Rcos(2#)-V 21 sin(2#)]

+ 2c(V 3Rcos(3$)-V 31 sin(34)+V 4 Rcos(44)-V 4Isin(4t) ] (28)

v(t) - du(t)/dt

- -2[ (1+ca/2)[V 11 sin( f)-V 11 cos( 4)]

+2(i+ea/2)(V 2Rsin(29)-v 2 cos(2$) I

+ 3e[V 3Rsin(3)-V 31 cos(3§)]

+ 4s[V4Rsin(4f)-V4 Zcos(4I)I]

+2[(dVIR/dt)cos( I)-(dV,,/dt)sin( )] (29)

4. INITIAL CONDITIONS FOR VIR(t), V1 X(t)

In this section, the symbols V0, VR, V11 0 . . . .., etc. will
refer to the values of these quantities at t-0. The initial
conditions for the original equation (1) are given as

u(0)-u o, v(O)-v 0  (30)

At t-0, 4-0 in (28), (29). On solving the resulting equations for
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VI R, V1 1, we obtain

Vl R(uo-2 V2 R-
2C(Vo/ 2 +V3 R+V 4 R

Vlim(-[v,+4cV2T+2c(3V3 1 +4V4 I)]+dVlR/dtl/c (31)

where c-i+ca/2. We then use the following iterative procedure:

STEP 1: Drop terms of first order in e in the right hand
side of (24) and (31) and obtain

V2 R--f/3, V21' 0.

VI u0 /2+2f/3, Vl'-vo/2

STEP 2: Using these values in the right hand side of (23)
and dropping terms of second order in c gives

dV1 t/ d t - e[- 2# (u 0 / 2 + 2 f/ 3 )- v 0 (a+c)]

STEP 3: Using (25)-(27), calculate Vo , V3 and V4 with V1 and
V2 obtained in STEP 1.

STEP 4: Subsitute in the right hand side of (24) the values
of V, and V2 obtained in STEP 1 to obtain a new value of V2 which
now is of first order in s.

STEP 5: Finally, in (31), substitute V2 obtained in STEP 4,
V0 , V3 and V4 obtained in STEP 3, and dV,/dt obtained in STEP 2 to
calculate the new initial value of VI , which is now of first order
in e.

Obviously the above method for obtaining initial conditions
for VIR(t), VI1 (t), correct to order e, is not unique. The
question of obtaining the "best" choice of initial conditions
requires further investigation.
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5. NUMERICAL EXAMPLES

Following the procedure described in Section4 3 and 4,
several examples have been worked out. The three sets of
parameters selected are:

DATA SET I:

M2 0 .i1; 0:3-0 .I; OC4 -0. 1; M5-0 .1;

F.-0.1 ; jj-0.i ; f-1. 0; a-1.0

DATA SET II:

a2=l.0; CX3=0.5; M4=i.0; M5=0.5;

E=0.01 ; 0=0.5 ; f-1. 0; a=i. 0

and,

DATA SET III:

a2-1.0; a3-0-5; N4-1.0; M5-0.5;

C-0.1; Y-0.5; f-l.0; a=i.0

The initial conditions for all the examples are taken as

u(0)-u 0 ; (du/dt)t. 0=v0

Note that the only difference between DATA SET II and DATA SET III
is in the value of e which is 0.01 for SET II but is increased to
0.1 for SET III.

For DATA SET I, Figure I(a) is the evolution curve for V0 ,
which varies from its minimum value of -0.444 and settles down to
a constant of about -0.083 for large t (greater than t-500., say).
Since V0 is real, the phase angle i-s always zero. Figure I(b-l)
shows the magnitude 1V1I of V, (which is complex, as are all other
Vk, k-2,3 and 4) and it varies from a maximun value of 0.949 and
diminishes to about 0.003 at t-600. Since V1 represents a
subharmonic motion to the problem, the fact that jV1 I diminshes to
zero for large t indicates that there is no subharmonic vibrations
in the steady state solution of the problem. Figure I(b-2) shows
the phase angle 8 of V, and it varies almost linearly with
respect of time. The discontinuities simply reflect the fact that
0, changes sign, from -m to n, at those preselected angles so that
03 remains within the range of (-nn). Figures I(c-l,2) show the
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magnitude IV3 1 and the phase angle 03 of V3 respectively. It is
noted that IV3 1 is much smaller than JV1 , with IV3 1,, - 0.007,
but, 03 behaves very much in the same way as 01. The magnitudes
and phase angles of V2 and V4 turn out to be constants, as can be
observed also from equations (24) and (27) in Section 4, with

iV2j - 0.289, 02 - -3.126 rads.

IV41 - 0.002, 04 - -3.111 rads.

Figures I(d-1,2) show phase diagrams, i.e., v(t) vs. u(t) as the
parameter t varies from 0 to a value sufficiently large so that a
steady state has almost been reached. In the case of Data Set I,
this corresponds to a time t of about 600. The left hand side,
Figure I(d-1), is the result by a reconstitution, using equations
(28) and (29), from the Vk's as given above, and, on the right
hand side, Figure I(d-2), by integrating directly the equation
(1). Figures I(e-l,2) show time evolutions of u(t) for a
relatively short period from t-0 to t-100. Again, on the left hand
side, Figure I(e-l) shows the result by G.H.B. and reconstitution;
and on the right hand side, by integrating directly the original
differential equation. A comparison between Figures I(d-1) and
I(d-2) and that between Figure I(e-l) and Figure I(e-2) indicate
excellent agreement of results by using G.H.B. and by integrating
the original differential equation directly.

Similar results are presented in figures II(a)-II(e) and
III(a)-III(e) for Data Sets II and III. It is observed, however,
that subharmonic vibrations exist in these two data sets as
V 1 -3.406 for Set II and V1 1-0.818 and for Set III (Figures
II(b-l) and III(b-l) respectively) and both stay constant as t
becomes quite large.

Comparing Figure III(d-l) with III(d-2), also III(e-l) with
III(e-2), it is observed that the difference of results between
the two methods is more pronounced for Data Set III than for the
other cases.

ACKNOWLEDGEMENTS: The original differential equation (1) was
solved numerically by using a Runge-Katta-Fehlberg schemer5J. The
solution curves were made using a plotter routine in the Dynamical
Software packager6].
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Optimized Annulus-based Point-in-Region Inclusion Testing ford Dimensions

T. M. Cronin
CECOM Center for Signals Warfare

Warrenton, VA 22186-5100

ABSTRACT. Previous research into metrical inclusion testing for closed planar boundaries of general
complexity resulted in a data structure called the inner annulus, which in this paper is shown to be the
union of the set of unit normal vectors which point into the interior of a boundary The annulus
approach to the point-in-region problem circumvents the infinite precision requirement of the winding
number approach, and also avoids the counting dilemma which has plagued a general implementation
of the parity algorithm. The inner annulus, together with the boundary itself, serve as arguments to a
function which compares distance from a query point. If the query point is nearer the annulus, the
query point is inside the boundary; otherwise it is outside. Although the previous research presented
the annulus as a declarative data structure, the resultant memory requirements were prohibitive for
asymptotic boundaries. This paper presents an optimized algorithm which minimally encodes the
inclusion information at each coordinate of a boundary. The inclusion information is independent of a
query point, and position-insensitive to boundary translation. A preprocessing algorithm assures that
the boundary is oriented in a counterclockwise fashion (so that by convention the interior is always to
the left). The inward-pointing unit normal vector attached to a boundary element may be computed
during preprocessing, or alternatively computed at run time with a procedural query. If preprocessed, it
is shown that for each boundary coordinate, three bits are necessary and sufficient to represent the
instruction to attach the vector; it is suggested that these three bits may be represented with an opcode
at the coordinate itself. Hence, at run time, when the closest boundary element is computed, the
opcode inclusion instruction is fetched and decoded along with it. This approach achieves a
performance of O[log ni query time for simultaneous closest point testing and metrical inclusion testing,
with a storage requirement of 0(n], and preprocessing complexity Of n *log n]. in the planar case, the
storage constant multiplier of n is a negligible 1.09, using a standard word size of 32 bits. The technique
is shown to be extensible to closed three dimensional surfaces, which are compositely defined as stacks
of planar boundaries. The problem then becomes one of locating the nearest boundary in the stack, at
which time planar logic is applicable. The final portion of the paper introduces an inductive argument
to extend the technique into an arbitrary number of dimensions, and it is proven that the annulus
attachment opcode consumes log2 (3d - 1) bits, where d is the number of dimensions.
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1.0 INTRODUCTION.

The point inclusion problem (i.e., deciding whether point p is contained within boundary 0) is
well-studied. One recent text contends that "The problem of locating a point in a subdivision of the
plane or in a cell complex in a higher-dimensional space is one of the oldest and best understood
problems in computational geometry"[E2]. Nevertheless, a fast deterministic algorithm has continued
to evade a fully successful implementation. Although several elegant theoretical techniques are
described in the literature, none has been successfully implemented for boundaries of general
complexity. Previous attempts at fully successful implementations of inclusion testing have failed, due
chiefly to one of two oversights: a) a digital computer is limited by finite precision arithmetic; b) the
process of detecting boundary crossings is a non-trivial process.

1.1 Statement of the Problem.'

Given a point and a closet digital boundary containing n coordinates, implement a
deterministic, fast algorithm to discern whether or not the point is inside the boundary. By
deterministic, it is meant that the solution is always correct, and not subject to round-off error due to
finite precision arithmetic. By fast, it is meant that the technique's query time is a polynomial function
of n, preferably convergent upon O(log n]. In addition, the following problematic conditions must be
accommodated by the inclusion testing process: 1) areal collapse due to low resolution of the digitizing
process; 2) self-intersecting (non-simple) boundaries; 3) multiply-connected sets (Fig. 1).

1 B

Figure 1. Planar boundaries may exhibit a variety of problematic conditions.

1.2 Previous Approaches to the Point Inclusion Problem.

It is not the intention of this paper to provide a historical perspective of the ooundary inclusion
testing problem, or for that matter, the point-in-polygon problem, as the planar case is called. Suffice it
to say that for boundaries of general complexity, no fast deterministic implementation is documented in
the literature. Three popular techniques are briefly discussed here; they are the parity algorithm, the
winding number, and refined trdngulation.

1.2.1 The Parity Algorithm.

Description. The technique approaches the problem topologically, using the Jordan Curve
Theorem. It proceeds by drawing a line from a query point through a boundary, while counting the
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number of "crossings". The query point is inside the boundary if the count is odd; otherwise it is
outside.

Barriers to Implementation. The technique may be deceived by degenerate tangent conditions
which are perceived as crossings, and vice versa. Corrective measures such as vertex perturbation cause a
prohibitive lag on algorithm performance, and still do not guarantee a deterministic decision [Ell. One
researcher is dubious that a fully successful implementation can ever exist, due to the inherent sensitivity
of line intersection algorithms to finite precision floating point arithmetic [Fl].

1.2.2 The Winding Number Approach.

Description. The technique is analytic in nature. Based on Cauchy's Theorem, the integral of an
analytic function about a query point is computed, and if zero, the point is judged to be outside the
boundary; otherwise the integral must be a multiple of 2n, and the point is judged to be inside [G 1].

Barriers to Implementation. Roundoff error occasionally results in an incorrect inclusion
decision, because a zero-sum integral, although theoretically possible, is not feasible on finite precision
machines. Also, the technique exhibits inferior runtime complexity for two reasons: it uses
floating-point trigonometric functions which are compute-intensive, and it must access each boundary
element when accumulating the integral.

1.2.3 The Method of Refined Triangulation.

Description. This method, due to Kirkpatrick [K1], proceeds by triangulating a planar
subdivision incrementally into bounded regions of finer granularity. A search is performed to
determine if the query point resides in one of the triangulated subdivisions.

Barriers to Implementation. Although the algorithm is of O(log n] time complexity, the question
of whether the constants suffice for real time repetitive queries remains open [E2]. The best constants
achieved to date are based on results obtained by analysis of the Four Color Theorem, and it is not clear
that they facilitate a fast implementation.

P" Aikqai wwn Nur mbe Retined Trarulguha

q
A

q

-r ooQ- y w '-M=W r- r r -

K. .N.. 7- 7 #ow _ _ _

7 E~ 7 3ft. S~M

Table 1. Point-in-polygon algorithms.
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2. THE INNER ANNULUS: A PROXIMITY-BASED APPROACH TO INCLUSION TESTING.

In a digital domain, a boundary may be represented as a linked list of coordinates, with the head
contiguous with the tail. if the boundary is oriented counterclockwise, then the left-handed limit of the
boundary is on the interior. If a counterclockwise traversal of the list is performed, the set of discrete
points to the left may be collected into another list called the inner annulus (C21. Boundary inclusion
testing for a query point is performed by comparing the distance to the nearest boundary point with
that to the nearest annulus point; if the distance to the annulus is smaller, the query point is on the
interior. Since the technique is metrical, it provides distance and direction to the boundary along with
the inclusion decision. It is peculiar that inclusion testing thus reduces to a special kind of proximity
testing.

2.1 Adopting a Convention to Assure a Unilateral interior.

If the orientation of a boundary is assured prior to run time, an automated inclusion testing
process can exploit knowledge of a unilateral interior during boundary traversal. A left-handed
convention is adopted to achieve the search space reduction. By left-handed, it is meant that the
boundary is oriented counterclockwise, to assure the interior is to the left. However, if the boundary is
multiply-connected, the boundary of any hole it contains must be oriented in a clockwise direction,
because the interior of the hole is outside the boundary [R1]. In Figure 2, a continuous boundary is
represented by the solid line, and its inner annulus by the dashed line. The digital boundary is
represented by black squares, and the annul us by white squares.

Sound/ IIBoundary
- omdiny

-'-} I

Figure 2. Continuous and digital versions of the inner annulus.

2.2 Automated Counterclockwise Orientation of a Digital Boundary.

An algorithm which automates the counterclockwise orientation of a boundary is published
elsewhere [C31. It is described only in passing here. The logic is as follows: a boundary's list of
coordinates is searched sequentially and a coordinate with maximal abscissa is obtained, along with its
predecessor and successor coordinates. The difference between the ordinates of the maximal-abscissa
coordinate and its predecessor are computed, as well as the respective difference between the ordinates
of the successor and maximal-abscissa coordinate. If either difference is less than zero, the boundary is
oriented clockwise; otherwise it is counterclockwise. It is a simple matter to reverse the boundary list if
the orientation is opposite that desired
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2.3 The Inner Annulus Technique Accommodates Problematic Boundary Conditions.

2.3.1 Multiply-connected Sets.

If a multiply-connected boundary contains a single hole, then the hole's boundary may be
oriented in a clockwise fashion using the algorithm described above. This step is necessary because the
interior of the outer boundary is actually exterior to the boundary of the hole.

If the hole itself contains another, the inner hole must be oriented counterclockwise, since its
interior is also the interior of the outermost boundary. The general rule is as follows: let a boundary be
oriented counterclockwise. Orient any hole it directly contains in a clockwise fashion. If this hole is
multiply-connected, then any hole it contains must be oriented counterclockwise, etc. Continue until no
multiple connectedness remains.

2.3.2 Counterclockwise Orientation of Non-Simple Boundaries.

A self-intersecting boundary is called non-simple. In Figure 3, the boundary on the left is
non-simple. It may be oriented in a counterclockwise direction with the following retracing operation.
Find a point with maximum abscissa and assure that its predecessor and successor are in
counterclockwise order (if not then the boundary list must be reversed). Starting from that point,
traverse the boundary in the direction of the successor, and proceed to the right at self-crossing areas.
Continue collecting points until the predecessor is encountered. The points collected constitute a simple
boundary, which is ordered counterclockwise. This linear-time algorithm may be invoked offline in a
preprocessing step.

Figure 3. Retracing a non-simple boundary to obtain a simple one.

2.3.3 Areal Collapse due to Poor Digital Resolution.

If a boundary contains a region which possesses less width than the resolution of a digitizing
process, the area is collapsed into a linear stub during digitization. In Figure 4, the closed boundary on
the left exhibits a small convex region at its lower right. During digitization, resolution error causes the
region to collapse (points 2-3). When the boundary is traversed in a counterclockwise direction, the
ordered sequence of points (0-1-2-3-3-2-1-4} is visited. The problematic area may be detected with a
preprocessing step which traverses the boundary in counterclockwise order, while looking for strings of
duplicate boundary coordinates, where the second occurrence of the string is encountered in reverse
order. Such duplicate coordinates of the boundary may be tagged by turning on a parity bit in the
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upper portion of the word used to represent the coordinate. This concept is further developed in
section 2.8.

Continuous Case Oigtl Fesoktion Los

Figure 4. Area lost to digitization.

2.4 The Relationshi p of the Inner Annulus of a Boundary to the Set of Normals to the Boundary.

A point in the plane may be connected diagonally (d-connected) or non-diagonally
(4-connected) [R1. Therefore, in a planar application, there are eight ways for an annulus point to be
attached to a boundary point. This section demonstrates that the inner annulus is actually comprised of
the set of unit normal vectors which point into the interior of a boundary.

2.4.1 The Combinatorics of Local Boundary Behavior.

Since during preprocessing the annulus technique assures that a closed boundary does not
self-intersect, the behavior of any iocal boundary section may be explicitly described. A boundary
3-tuple is a set of three counterclockwise-oriented boundary points called respectively the predecessor,
the center, and the successor. The predecessor and center points of a 3-tuple may be connected in any
of eight ways, whereas the center and successor may subsequently be connected in only five ways,
producing a total of forty combinations. However, an annul us element can be attached to a point in the
plane in only eight ways, since any planar point has exactly eight neighbors. Therefore, it is necessary to
discover a many-to-one mapping which produces a range of eight states from a domain of forty. The
mapping is obtained by observing the magnitudes of the differences between the abscissas and
ordinates of contiguous elements of the 3-tuple.

An annulus element is actually a digital representation of the unit vector to the left of center.
The logic which produces the unit vector is a function of three arguments: the predecessor, the center,
and the successor coordinates. Since this 3-tuple is ordered counterclockwise, the inward-pointing unit
vector is to the left, and is orthogonal to the direction of the 3-tuple. Note that if the order of the
3-tuple is reversed (i.e., changed to successor, center, predecessor), the same function produces a unit
vector to the right. In fact, the fur..ion is utilized in this very manner to implement the algorithm for
non-simple boundaries descri:jed above in section 2.3.2.

For elaboration of the annulus element / inside unit vector equivalence, refer to Figure 5. The
black boxes represent boundary 3-tuple behaviors, and the associated white box is the annulus element
produced for that specific behavior. The arrows on the far right are a legend which depict the direction
of the predecessor to the center box, while the numbers in the far left column reflect the direction. For
example, the up arrow represents the vector "01 ", which corresponds to: no change in x; increment y by
1. The numbers to the left of each icon depict the direction from the middle box to the successor.
Referring to the upper left icon, the boundary's directional behavior is encoded by the string "0101 ",
which represents two consecutive northerly directions. The numbers at the top of each icon are the
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inner annulus attachment instruction. Therefore "-10" decodes to: "attach the annulus element by
decrementing the x-value by 1 and leaving the y-value alone".

10 10 11 .11 1 -

01i .1 11 .10 1

10 10 1.1
0.1 0-1 1.1 1, -1-1 11 -

1 111 11 1 1 1

- 01 -1.1 -.1

110 11 1 4--.1 0 .1.11 , , .Q .1.1

lie 11 10 10 11

a 1 31 11~~

Figure S. The annulus element is attached to the left of a boundary 3-tuple.

Eight of the forty behaviors are linear combinations of the other thirty-two. This set includes the
fourth elements of the first four rows, and the third elements of the last four rows. These eight may be
safely discarded because their conditions are duplicated by other behaviors. Thus we ar, required to
develop a 32-to-8 mapping. We proceed in a backward-chaining fashion, retrospe.Lvely looking
backwards from the eight output states to the various combinations of abscissa and ordir - te differences
which produce them.

Note that several behaviors produce the same output. For example, the instruction "-10" is
produced by the first and second boundary behaviors in the first row, and by the second and fourth
behaviors in the fifth row. Thus, four different boundary behaviors all generate the '-10" annulus
attachment instruction, which dictates that the annulus element be attached at the left of center of the
3-tuple. These behaviors may therefore be combined into the system of conditional clauses represented
in the table at the upper left of Figure 6. Note that the commonality for the conditional test lies in the
fact that the ordinate differences are both equal to one, for all four behaviors. In this spirit we continue,
and map the remaining twenty-eight behaviors of Figure 5 into the tables depicted in Figure 6. This
explicit mapping constitutes the formal design specification for an algorithm, which we now develop in
detail.
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Figure 6. The compact mapping which relates boundary behavior to annulus vector attachment.

2.5 The Formal Design Specification for Computing the Inner Annulus Vector.

A query point may be considered as a query vector, drawn from the origin to the query point.
When a normal vector N is drawn through a boundary from a query vector, it intersects the boundary
first at some point p. But also normal to the boundary at p is some annulus element a, as specified at
Figure 5. The vector drawn from the query point to the boundary is called the boundary vector, and the
vector from the query roint to the annulus element is called the annulus vector. The annulus vector is
collinear with the boundary vector; both lie on the normal, and the magnitude of the annulus vector
relative to the boundary vector may be used to perform an inclusion decision. This concept is formalized
below.

Let r be a query vector and q=(xq,yq) be the boundary vector nearest to r on closed,

counterclockwise-oriented boundary 3. Let p(q) = (xpyp) be the predecessor of q in 03, and s(q) = (xs,yS)
be the successor of q in.JP. Let (i, j) be a basis set of unit vectors as conventionally defined for the plane.
Then the following logic provides the equations for computing the annulus vector ap:

Let Axp = xq- Xp; AYp = Yq- Yp; 6Xs = Xs- Xp; Ys Ys -Yp.

IF cl. Ayp = I and AXs = 1 THEN ap= q -i + j

ELSE IF c2. Ayp =-1 and AXs =- 1  THEN ap q - - j
ELSE IF c3. Axp = 1 and Ays =-1 THEN ap= q + i + j
ELSE IF c4. Axp =-1 and AYs = 1 THEN ap= q - i - j
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ELSEIF c5. Ayp = 1 and Ays = 1 THEN ap = q - i
ELSE IF c6. Ayp = -1 and As = -1 THEN ap = q + i
ELSE IF c7. Ap = -1 and xs = -1 THEN ap = q - j
ELSE IF cS. AXp= 1 and Axs = 1 THEN ap= q +j

The ordering of the test is important. Note that conditions (c) - (c4) are heterogeneous; i.e., a
mix of abscissa and ordinate differences are involved. It is crucial that these conditional clauses be
tested before homogeneous tests (c5) - (c8). This is because an injective mapping is not guaranteed
unless the heterogeneous tests are triggered first. For example, note that the homogeneous test which
generates an annulus element on the "right" specifies that respective ordinate differences be equal to
-1. Suppose that this test was performed before any of the others. Referring back to Figure 6, notice
that the heterogeneous tests for "upper right" and "upper left" contain two clauses which satisfy the
condition for "right", which would result in an erroneous annulus attachment. Thus, the
heterogeneous tests must be sequenced before the homogeneous tests to guarantee one-to-oneness.

2.6 The Distance to the Annulus Vector as a Measure of Inclusion.

The inner annulus technique relies on a comparison of proximity information to arrive at an
inclusion decision. For computational efficiency, the distance metric implemented is the d4 distance,
also variously known as the Manhattan distance, or the city-block distance [R1]. This distance metric
avoids the multiplication and radical operations inherent to the Euclidean metric, and may be efficiently
implemented with integer arithmetic.

Definition 2.6.1 The d4 distance.

Let p = (x, yi) and q = (xz, y2) be two points in the plane. Then the d4 distance from p to q, denoted
d4(P, q) is defined to be:

d4(p,q) = Ix,-x + lyi-yzl

Because the d4 distance between two points equals the Euclidean distance only when either the
respective ordinates or abscissas of the two points are themselves equal, one must take care to devise a
proximity test which producesthe same inclusion decision as the true Euclidean metric.

Definition 2.6.2 Trichotomy of Metrical Inclusion.

Let q be a query vector, 0 a closed boundary, and p the nearest boundary vector to q. Let ap be the
annulus vector attached to p.

Point q is said to be on boundary 3 if and only if d4(q, p) = 0
else Point q is said to be inside boundary 0 if and only if d4(q, ap) < d4(q , p)
else Point q is said to be outside boundary fp if and only if d4(q , ap) > d4(q, p).

Example. Is the coordinate q = (50, 50) inside a boundary with closest point p = (100, 100); where the
predecessor ofp is (101, 99), and the successor ofp is (101, 101)?

Solution. axp = 100-101 =-1;. Ayp = 100-99 = 1;Axs = 101-100 = 1; ys = 101-100 = 1.
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Since both Ayp and 4xs are equal to 1, clause cl is satisfied, producing the annulus element ap = (10 0 -
1, 100 o 1) = (99, 101). The d4 distance from q to ap is 100, as is the d4 distance from q to p. Since d 4

(q,ap) < d4 (q, p), q is inside the boundary.

P

/" impkis p3 in

q

impies q out

Figure 7. The magnitudes of the boundary and annulus vectors decide inclusion.

Theorem 2.6. The Boundary Vector and Corresponding Annulus Vector are Linearly Dependent.

Let q be a query point and 13 be the boundary of a closed simple curve. Let N = qp be the normal vector
drawn from q through the boundary, and let p be the point of intersection. Let T be the tangent
through p, and a be the annulus element attached to p. Let the annulus vector be denoted by qa, and
let the boundary vector be denoted by qp. Then qa and qp are linearly independent.

Proof: qp I T by definition, and qc. IT by construction. Since in the plane there is only one line drawn
through a point orthogonal to a given line, qp and qa are collinear. But coilinear vectors are linearly
dependent, which means that there exist p, and P2, not both zero, such that:

PI0qQ + pzqP = 0 

qa =-(P/P) * qp, P 0.

If q is on the interiorof 3, then bydefinition 11I a 11 < Iqp 1II= - P2t/P) <1 Pt > -PZ-
Conversely, if q is outside 03, a similar argument may be used to show that P, < - P2.

2.7 An Annulus Attachment Opcode.

In the last section it was demonstiated that in the plane there are eight ways in which to attach
an annulus vector to a boundary vector. Since eigh states may be minimally encoded with three bits, an
annulus encoding algorithm is optimized if ard only ii it utiliz-s three bits to store the annulus
attachment instruction. The figure below demonstrates a candidate opcode convention to store the
instruction. For example, the opcode "I II" decodes to the instruction "attach the annulus unit vector
at the upper left of the coordinate". At query time, the opcode is used to compute the abscissa and
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ordinate of the attached inner annulus vector. Respective distances from the query point to the nearest
boundary point and the annulus vector are then compared to arrive at the inclusion decision.

Annuka
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Figure 8. A three bit annulus opcode.

2.8 A Point-in-Polygon Computing Machine.

Since the planar annulus opcode consumes only three bits of information, it is feasible to embed
it within a boundary coordinate, with a small corresponding loss in the number of coordinates
expressible. One way to accomplish this within a computer word is depicted below. This scheme
accommodates 16000 possible abscissa values and 16000 possible ordinate values, packed in a 32-bit
word along with the annulus opcode.

.I Number

3130 2927 14 13 0

I 1 1000Oo0000000 10 10 0:9;0o0l0 1010 0100 1 a o0 1

IP1 --un abodwsa Iordimate

8oundarz Otum stored

Figure 9. Packing the inclusion information into a coordinate word.

The embedding process may be performed during preprocessing with a single pass over the
boundary. The ordinate of a boundary coordinate is stored in bits 0-13, and the abscissa in bits 14-27.
The annulus opcode is precomputed and written into bits 28-30. Bit 31 is used to handle boundaries
which have collapsed due to inferior resolution during the digitization process. A degeneracy exists at a
boundary point if and only if bit 31 is set to 1, which indicates that the annulus element should be set
equal to the boundary element at that point. In the example of Figure 9, the annulus opcode "1 1".
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instructs that an inner annulus element be attached at the upper left of boundary coordinate (I, 1), at
coordinate (0, 2).

At run time, masks may be used to decode the annulus opcode and coordinate information. In
octal notation the annulus opcode mask is 16000000000. It is feasible to dedicate a decoding register in
hardware for the unmasking process. This register could be coupled in a pipeline with another chip
possessing arithmetic logic which computes the respective distances from the query point to the annul us
element and the boundary element. The final pipeline stage might be a comparator register to render
the minimum.

2.9 The Computational Complexity of the Planar Annulus Encoding Technique.

For domains with modest real world complexity, linear search is adequate t6 find the closest
point (and encoded annulus element) to a query point. This is the case for most real world applications
which are displayed on a single CRT screen. However, when boundaries become asymptotic, or when
the map data becomes overwhelmingly dense, as on some topographic maps with extreme elevation
changes, more efficient data structures and algorithms are recommended. Under such conditions, the
author suggests the following approach.

Preprocessing. O[ n * log n 1. The annulus technique begins by locating the nearest boundary point to a
query point. The Voronoi diagram is an efficient representation scheme for proximity processing [El,
P11. The Voronoi diagram for a set of n points can be constructed in preprocessing time O[ n *log n ].

Storage. O[ n ]. Since the annulus opcode utilizes three bits, the constant multiplier of n is (w + 3) / w,
where w is the number of bits in the word used to encode a coordinate. In the plane, the storage
requirement is 1.09"n, assuming a 32-bit word size, with both abscissa and ordinate packed into the
same word. However, if the encoding scheme discussed in section 2.8 is utilized, the annulus opcode is
stored in the same word as a coordinate, which reduces the storage requirement to exactly n. Of course,
in this case, there is a corresponding loss in the number of coordinates expressible. Further
improvements to achieve superlinear stoage could be made if one elected to represent a boundary with
a polynomial or polygonal approximation. The annulus-based approach readily accommodates data
compression schemes, and the query time would improve due to a smaller search space; the price paid is
the error introduced by the approximation scheme.

Query Time. O( log n 1. The closest boundary point to a query point can be obtained in 0 log n I time,
using the preconstructed Voronoi diagram. Simultaneously, the annulus attachment opcode is fetched
along with it, packed in the upper portion of the coordinate. Negligible constant time is required to
compare the two distances from the query point. Thus the query time complexity is Of log n].

3. AN EXTENSION TO THREE DIMENSIONS.

rhe extension of the planar annulus technique to three dimensions ;s straightforward. A
three-dimensional object may be conceptualized as a stack of planar boundaries, each one pixel in
height. Testing for inclusion within the solid is equivalent to locating the (nearest point on) the nearest
planar boundary, along with the annulus element attached to it; the respective distances are then
compared to arrive at the inclusion decision.

Figure 10 illustates the annulus technique for a sphere and another oblect modeled as a stack of
planar boundaries. In the case of the sphere, query point p is nearest to some point on the equator of S.
But the equator is a planar object, so it has an inner annulus. The planar annulus logic is applied to
arrive at an inclusion decision. For the modeled object, query point p is nearest to q, which is an element
of the highest boundary in the stack. But q is attached to annulus element a, which has been
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precomputed as a function of local boundary behavior about q. Since the magnitude of q is less than
that of a, it is decided that point p is on the exterior.

-. - inne nukis

Figure 10. The extension of the annulus technique to three dimensional objects.

3.1 The Complexity of the Annulus Technique in Three Dimensions.

The closest point of a planar boundary to a query point can be found in Of log m I query time,
where m is the length of the boundary. This operation must be performed p times, where p is the
number of boundaries contained in the stack which comprise the solid. Therefore, the point inclusion
time complexity for a three-dimensional solid is log m, * log m 2 + ... + log mP =

p
logz [I mi

i=1

The optimal time complexity is an open research issue. If a three-dimensional solid is represented as a
cell bounded by a complex of n intersecting planes, then it has been shown independently by two
researchers [C1, E31 that the three-dimensional point inclusion problem can be solved in Of log 2n ] query
time, with a storage requirement of Of n3 1.

4.0 GENERALIZATION TO HIGHER DIMENSIONS.

In this section an attempt is made to generalize the annulus-based inclusion testing technique to
an arbitrary number of dimensions. Since the technique seeks to attach an annulus vector to the
boundary point nearest a query point, it is necessary to know how many neighbors a boundary point
possesses in d dimensions, to derive the number of bits required to encode the annulus attachment
instruction. With this goal in mind, we proceed to develop a set of five axioms which describe a
methodology to inductively construct a new dimension from a previous one. The first four axioms
closely parallel the Peano axioms for the natural numbers. The fifth axiom diverges from Peano when
we postulate the construction of a new dimension.

4.1 Axioms of Inductive Dimensionality.

Axiom D1. A point has dimension 0, and is without axis.

Axiom D2. Every dimension 0 has a unique successor dimension D + 1, which has a unique axis. D is said
to be the predecessor dimension of D + 1.
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Axiom D3. A point is not a successor dimension of any dimension.

Axiom D4. Distinct dimensions have distinct successor dimensions.

Axiom D5. Bilateral Dilation. Dimension D + 1 is constructed by interposing a hyperplane from
dimension D between two other hyperplanes from D, and dilating the structure along the axis of D + 1.

.. ,._;. ,,,.! Inductive
,, .I Construction of4 '- Digital n+1-Space

-d, - from n-Space
.,"0 .. 0 8ialgruiRepie,,lion

-0-0 0 .01611

Figure 11. Building higher dimensions.

The fifth axiom permits usto perform two operations (replication and dilation) on an object in a
lower dimension to produce an object in a new dimension. Figure 11 illustrates successive applications
of the operations to produce the first dimension from a point source; the plane from a line source; and
a cube from a planar source. We can conceive of the operation of bilateral replication inl the third
dimension to get to the fourth (a cube is interposed between two others), but we cannot visualize the
axis along which to dilate the composite, because our spatial world is restricted to three dimensions.
However, if we subscribe to the axioms, we derive the following results.

4.2 Neighbor Theorem (number of Digital Neighbors in d-Space). In d-space, the number of digital
points neighboring a reference point is 3d - 1.

Proof (induction):

Step 1. If d = 1, the space is linear, aod th~e number of neighbors to a point is 3 - 1 = 2.

Step?2. Assume that in k-sepa he ni~mber of neighbors of a reference point is Sk = 3k -1.

Step 3. Prove that in (k 1)-space, the. er of neighbors (k 1) = 3(k 1). .
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Since sk = 3k - 1, then 3k is the sum total of the reference point plus its neighbors.
Axiom DS (bilateral dilation) applied to this set creates 3"3k points in dimension k + 1, of
which one is a reference point and the remaining 3*3k - 1 are its neighbors. But 3*3k - 1
= 3(k+ 1).1. QED.

4.3 Inner Annulus Opcode Storage Theorem (bit length of the annulus opcode in d dimensions). The
inner annulus opcode to effect an inclusion decision concerning a query point in d dimensions may be

encoded in log 2[ 3d . 11 bits.

Proof. Theorem 4.2 asserts that a reference point in d-space has 3d - 1 neighbors. But
these are precisely the number of ways in which an inner annulus element may be

attached to a reference point. The number of bits necessary to encode 3d - 1 digital
neighbors is log 2 13d . 1]. QED.

4.4 Opcode Storage Approximation Corollary (annulus opcode bit length approximation). The number
of bits necessary to encode the inner annulus opcode in d dimensions is bounded from above by 1.6d.

Proof. From Theorem 4.3, the number of bits is exactly log 2[3 d

But log 2[3d- 11 < log2 [3d] = d* log 23 < 1.6d. QED.

4.5 The Storage Requirement of the Annulus Encoding Technique in Higher Dimensions.

Given a word length of w bits, with r bits used to encode the annulus opcode. The storage
requirement is n + (K/w) * n = ((w + ic) /w) * n, which is clearly O(n]. Application of Theorems 4.2 and
4.3 produce Table 2, which depicts the growth of the annulus opcode and storage constant in higher
dimensions.

d = dimension n = neighbors K opcode bits X = storage inclusion constant

1 * 2 1.00 1.03
2 8 3.00 1.09
3 26 4.63 1.14
4 80 6.24 1.20
5 242 7.89 1.25
6 728 9.42 1.29

d 3d- 1  m-1 + (3d 1)/( 2m ] ** (W+.1/W

* Inclusion is not an issue in one dimension. However, since the annulus is by convention to the left of a
boundary, the tecnnique is useful for deciding upon which side of a line a query point lies.
* r 2' 1 is a steD function, which is defined by the minimum m such that 2 ' > 3d - I But 2  > 3d -

m a min (i E I; 1 >log(3d. I)/log 2 ).

Table 2. The number of annulus opcode bits required to decide inclusion in higher dimensions.
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S.0 CONCLUSIONS.

An optimized point-in-polygon algorithm with a negligible query time constant multiplier of
log n has been presented for planar boundaries. As a bonus, the magnitude and direction of the normal
vector from the query point are returned along with the inclusion decision. The algorithm is based on a
topological structure called the inner annulus, which is demonstrated to be the union of the set of unit
normal vectors which point into the interior of a boundary. The algorithm operates by comparing the
respective distances of the query point from the boundary and annulus vectors; a smaller magnitude for
the annulus vector implies inclusion. The technique pointedly circumvents the finite precision problems
which plague implementation of other point-in-polygon algorithms such as the parity algorithm and
the winding number approach. It has been shown that for a planar subdivision, an opcode to attach the
annulus vector to a boundary coordinate may be precomputed and encoded in the upper three bits of
the coordinate. Hence, at run time, when the closest point on the boundary is computed, the
instruction to compute the annulus element is fetched along with it. It has been demonstrated that the
technique is extensible to higher dimensional objects. An axiomatic treatment of an inclusion decision
in d dimensions has been presented, and an inductive argument has demonstrated that the number of
opcode bits required to store the inclusion information is precisely log 2 (3d - 1) bits.
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