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1. Introduction

Volume II provides supporting rationale for the DIS architecture which is
presented in Volume I. Some of the key technical problems inherent in DIS
technology are identified and discussed in Volume II, in addition to supporting
rationale for the proposed DIS Architecture as a suitable framework for
describing, designing, and specifying "DIS-compliant” systems. Volume II is
divided into two books, described below.

Book One addresses some of the issues surrounding the problem of
interoperability and time/space coherence. This problem is central to DIS, and
sharply differentiates the DIS environment from that of more traditional stand-
alone simulation.

Book Two focuses on some of the major system components that must be
considered in a DIS implementation—the network, Computer Generated Forces
(CGF), and Higher-Order Models (HOM). Book Two also examines the software
considerations that cut across all of these system components.

Taken as a whole, Volume II should be viewed as a collection of DIS position
papers which provide supporting rationale for the architecture described in
Volume I. In the two Books one will find in depth discussions of some of the
relevant problems and in many cases potential solutions. One will also find
minority opinions which shed light on the nature of the tradeoffs intrinsic to the
world of Distributed Interactive Simulation.

The DIS architecture work draws heavily from the body of work in process by
the DIS Conference for the Interoperability of Defense Simulation, which is jointly
sponsored by the Army Program Manager for Training Devices (PM TRADE) and
the Defense Advanced Research Project Agency (DARPA). Under the auspices of
the DIS Conference, representatives of the military services, industry, and
associated research organizations have been working toward definition of an
industry standard for Protocol Data Unit (PDU) messages. These PDU messages
provide the basic means of interaction between DIS simulation entities. The
architecture described by the two volumes of this document is generally consistent
with the work underway by the conference, but attempts to provide a capstone
document which defines the context for the work underway. In some areas the
strawman architecture extends beyond the work of the conference by proposing
establishment of a specific reference model context for the PDU Standard,
definition of some standard terminology for the components of the reference
model, and creation of an additional standard governing the set of databases
required to support DIS exercises.

Comments and recommendations for changes and improvements are
welcome and encouraged. Comments may be submitted to:

Loral ADST Program Office
12443 Research Parkway
"March 31,1902 1 ADST/WDL/TR--82-003010
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Suite 303
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attn: DIS Architecture

Comments may also be submitted via the ADST Bulletin Board System. Post

comments in the DIS Architecture Comments area of the BBS. This area is found
within the following structure:

ADST Bulletin Board System
System Description and Technical Information
DIS Architecture
DIS Architecture Comments

If you are not already a registered user of the ADST BBS, send a registration
request to:

Loral ADST Program Office
12443 Research Parkway
Suite 303

Orlando FL 32826

attn: BBS Administration

March 31, 1982 2 ADST/WDL/TR--92-003010
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2. Interoperability and Time and Space Coherence in DIS
2.1 Introduction

This section defines the relationships between interoperability, time and space
coherence, and DIS technology. We explore the nature of these relationships by
describing the following: perception and cueing in simulation, the core principles
of DIS technology (the operating paradigm), and manifestations of time/space
disruption in DIS applications. We end this section by describing a correlation
construct that promises to offer a consistent framework for discussing and
ultimately measuring correlation between DIS entities. The later sections explore
different dimensions of the interoperability problem.

For the purpose of discourse, we define our usage of the following three terms:
actual battlefield, virtual battlefield, and physical realization. The Actual
Battlefield is the combat reality that simulation technology attempts to replicate.
Successful simulation will cause its participants to believe that they are
immersed in the Actual Battlefield. The Virtual Battlefield (also referred to as
the Electronic Battlefield) is the simulation illusion itself. The Physical
Realization refers to the details and mechanics of the underlying networked
simulation system which supports the illusion of the Virtual Battlefield.

Against the backdrop of these definitions, interoperability refers to the working
together of the components of the Physical Realization to produce a harmonious
and useful simulation exercise. To see this more clearly, one needs to reexamine
the controlling vision for the the DIS architecture:

The DIS architecture defines a time and space coherent
representation of a Virtual Battlefield environment, measured in
terms of the human perception and behaviors of warfighters
interacting in free play.

Three key points are made concerning the vision.

First, we must decouple the notions of fidelity and time/space coherence.
Fidelity describes how well the Virtual Battlefield maps to the Actual Battlefield.
The degree of fidelity can be objectively measured in such things as weapon
ranges, vehicle dynamic performance, and terrain database correlation to actual
terrain. Time/space coherence is concerned with preserving intact the
simulation illusion. The degree of time/space coherence is also subject to objective
measures—such as correct sequencing of discrete events (missile launch, missile
flyout, missile impact), and correlation of a vehicle's position as perceived by
different entities on the Virtual Battlefield. However, one can have a highly
coherent, logically consistent Virtual Battlefield, and yet have low fidelity.

Second, time/space coherence must be evaluated in terms of human
perception and behaviors. Time/space coherence becomes a quality of the

March 31, 1982 3 ADST/WDL/TR--92-003010
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representation of the Virtual Battlefield, found only in this end-product depiction
and its associated impact on the warfighter participants. This means that
measurements of time/space coherence in the Physical Realization of DIS
technology—computers, devices, networks, CIG systems, etc—must be tempered
with considerations of human perception. Attempted measurements of
time/space coherence, based on analysis of these implementation mechanics—
measurements such as network delay time, database correlation degree, CIG
transport delay time—serve only as approximations of the true degree of
time/space coherence, and one must weigh these numbers against warfighter
participant acceptance of the simulation system and its intended application.

Third, while time/space coherence has an objectively measureable aspect, the
degree required for a simulation task is application dependent. The DIS user, in
the context of his intended application, determines his required degree of
time/space coherence. This coherence requirement defines the threshold for
interoperability. If the components of the Physical Realization support the
time/space coherence requirement, we say the implementation is interoperable.

22 Perception and Cueing in Simulation

To explore further, we must illuminate the role of perception (subject
response) and cueing (system stimulus) in simulation. One finds that acceptable
quality perception and cueing is application dependent. Acceptable cueing is

shaped by the expectations of the training session, combat doctrinal experiment,
or weapon test.

e D7
A

y mll{!lllm,..

<

s .lullllmfﬁ”,.m“'

Visual

Fig 2.1: Simulator Cueing System
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Fig. 2.1 depicts the components of the cueing system of a simulator.
Establishment of acceptable time/space coherence means that the various cueing
components collectively present an accurate picture of the state of the ownship
simulator, as well as of the state of the Virtual Battlefield. "Accuracy” is defined
by the simulation application and its objectives.

2.2.1 General Cueing Requirements

Within this wide range of potential expectations, the perception and cueing
capabilities of any simulation implementation must demonstrate the following
three capabilities:

¢ Suspension of Disbelief. The perception/cueing system must make the
intended application "work". The simulated environment must present
a rich variety of realistic cues to support the participant's total
immersion into the Virtual Battlefield.

* Selective Fidelity. In any environment characterized by limited
resources, successful systems are those optimized to meet their
performance requirements while not dissipating resources on less
important goals. The same holds true in simulation. The
perception/cueing system must concentrate on faithfully rendering
those aspects of reality which bear directly on the outcome of the
intended application. These aspects must be enhanced, while other
extraneous aspects, must be sacrificed.

* Elimination of Erroneous Cues and Anomalies. The cueing system
must suppress erroneous cues and distracting anomalies. Intrusion of
erroneous cues degrades the outcome of the simulation session,
contributing to negative training and poor experimental results.

The last requirement, the elimination of erroneous cues, is where the onus of
time/space coherence really comes home. This requirement can be further
refined into the following:

¢ Non-contradictory cue set. The cue stimulations must be physically
non-contradictory. The set of cues generated by an event in Virtual
Reality must comply with the semantics of the event. For example,
pulling back on the stick of a fighter-aircraft simulator should cause the
following three cues to simultaneously occur: (1) visual scene rolls
downward (to simulate upward pitch) (2) motion base tilts backwards (to
simulate the cab pitch motion), and (3) the back and seat panels of the G-
seat inflate (to simulate the increased g-loading experienced by the
pilot). Failure of these three cues to respond as expected will cause pilot
disorientation—distracting him from the simulation task of intent.

* Correlated in time. The cue stimulations must be acceptably sequenced
and correlated in time. For example, a missile firing event in the same
fighter-aircraft simulator should be accompanied by the following

March 31, 1992 5 ADST/WDL/TR--92-003010
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sequence of cues: (1) motion platform/G-seat/G-suit stimulation to
simulate the reaction forces of the missile leaving the airframe, (2)
visual cues representing the missile flyout, (3) visual cues representing
the missile's detonation.

22.2 Time/Space Coherence in Stand-Alone Simulation

Establishment of acceptable time/space coherence in a stand-alone simulator
(not connected to an outside network) depends on faithful rendering of the cues
corresponding to events caused only by the stand-alone host. One of the main
obstacles to cue correlation in the stand-alone setting is the visual transport delay,
the time that must elapse from when the visual scene is computationally
determined--with its targets, terrain, cultural features, etc.--to when it is
displayed. This time delay stems from the processing lags inherent in the CIG
hardware. Typically, the lag ranges from about 200 ms for ground combat
applications to 50 ms for high performance fixed wing applications.

Another obstacle to cue correlation is the use of high resolution sensors with
Out The Window (OTW) Visuals. For example, Synthetic Aperture Radar (SAR)
may have a range well beyond visual range, and yet exhibit a ground resolution
measured in feet. Similarly, narrow field-of-view EO sensors such as FLIR's and
LLLTV's may be able to see well beyond visual range under poor OTW visibility
conditions (smoke, darkness) with very high resolution. More discussion is
provided on this topic in paragrah 4.1.3.

2.3 DIS Paradigm

To understand the additional ramifications for time/space coherence to DIS
technology, one must clearly understand the fundamentals of DIS. This
subsection puts forth an axiomatic definition of DIS, and then highlights the time
and space coherence problem in the light of this new paradigm.

The following four principles characterize DIS technology.

Distributed Autonomous Simulation Entities The Physical Realization of the
Virtual Battlefield is distributed among disparate system components, disparate
communication systems, and physically-separated sites. The collection of entities
forming a DIS implementation are supported by a network of processing
resources bundled into autonomous nodes—each node supporting one or several
entities. Here, autonomy means that each host processor assumes sole
responsibility to register its (battlefield) entity interactions with the Virtual
Battlefield, and that it does so without depending on any higher level of
coordination, synchronization, or control. A node processor may utilize network
services and common servers to accomplish its tasks, but it does so on a demand
basis, deciding for itself when to access the network.

"Ground Truth” Communication Protocol Each battlefield entity registers its
interaction with the Virtual Battlefield by means of a common communication
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protocol. Each entity transmits "ground truth", or an absolute frame-of-reference
description of its current state and its combat operations with respect to the

Virtual Battlefield.

Receiving Simulation Entity Determines Perception As events unfold on the
Virtual Battlefield, perceptual cues are generated solely by the receiving
simulation node. No network service or device participates in cue generation or
display. Network resources function solely to maintain "ground truth.”
Depiction of that "ground truth” to the human subjects belongs solely to the host
simulation node.

Deviation Reporting Simulation entities communicate only significant
changes in their own state. This behavior carries two implications. First, entities
communicate only about themselves: what they are doing and what s happening
to them. Entities do not communicate their perceptions about the Virtual
Battlefield or their perceptions about other players. Second, entities only
communicate when appreciable changes have occurred to their state variables.
Both of these points are slanted to ease the network communication burden. Point
one has the additional impact of logically decoupling the interlocking pieces
(entities) of the simulation, thus contributing to a cleaner object-oriented
structure.

2.4 Time/Space Coherence in DIS—the '"Fair Fight"

Time/space coherence for stand-alone simulators means primarily cue
correlation. The consequences of poor cue correlation are negative training for
training applications, and false experimental results for engineering design
applications. In the realm of DIS technology however, additional causes for
time/space disruption can occur, and the consequences of these disruptions can
be more insidious-—undermining the validity of the application.

DIS technology is vulnerable to time/space disruption from additional causes
such as: network communication and processing latency, non-correlation of
databases, and differences in Computer Image Generator (CIG) scene-rendering
algorithms. Besides faulty cue correlation, the consequences of time/space
disruption in DIS applications now include the specter of the "unfair fight"—a
case in which each individual participant perceives a cohesive, plausible Virtual
Battlefield, while time/space disruptions insidiously undermine the usefulness of
the exercise. Assurance of a "fair fight" demands appropriately matching both
fidelity and time/space coherence among the participating entities. The problem
has corrupting dimensions because seemingly successful simulation exercises—
characterized by consistent cue correlation for each of the participating entities—
could have covertly tainted results for the intended application.

Successful attainment of the "fair fight" is an important aspect of
interoperability.

March 31, 1992 7 ADST/WDL/TR--92-003010
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2.4.1 Latency and Simultaneity Between Observers

Latency is one of the basic and most persistent causes of time/space
disruption—persistent because it will always exist as a cause, given the
distributed nature of the DIS paradigm.

On the Actual Battlefield, the occurrence of an event (plane crash, weapon
release, bomb burst, etc.) is immediately and simultaneously apparent to all who
possess the perceptual/sensor apparatus to observe it. There is an absolute
battlefield frame of reference which defines ground truth. Each warfighter
strains to perceive the absolute frame of reference, for accurate perception is a
determinant of success or failure. However, on the Virtual Battlefield,
observation of an event is dependent upon network communication.

S

A A A

Fig 2.2: Simultaneity between observers

Figure 2.2 shows a virtual DIS network with human warfighters at several
remote sites. The network exhibits "simultaneity” when all of the observers
experience a given Virtual Battlefield event at the same time. However, due to the
fact of network latency, simultaneity can only be approximated, never achieved.
Clearly, an absolute frame of reference, common to all observers, can not exist
since information takes time to flow through the network. While perfect
simultaneity is not required for an effective simulation, reasonably good
approximations of simultaneity are required. 300 and 700 ms have been suggested
as upper bounds for air and ground applications, respectively.

242 Scene Integrity

Latency can be manifested as a loss of scene integrity.

The Virtual Battlefield is presented to the warfighter primarily through a
sequence of visual frames. To understand how time/space disruption can affect
the "fair fight", we need to examine the scene integrity of the presentation. We
define "scene integrity” to be the logical consistency:

¢ Between components that make up a given "still" image frame, and

March 31, 1992 8 ADST/WDL/TR--82-003010
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® Across a sequence of frames.

2.4.2.1 Scene Integrity Within a "Still' Frame

Figure 2.3 depicts a scene presented to the warfighter. This scene is a
composite of several different items:

¢ Ownship kinematic state

¢ Othership kinematic states

¢ Othership events (fire, detonation, etc.)
¢ Ownship events

_ _.Othership state (tn-4)

- = _Othership state (tn-5)

o .

y  _Othership event (tn-4)
- _.Othership event (tn-4)
7 - —
_-Ownship orientation (tn-3)
\ ﬁ L~ _.Ownship position (tn-3)

O -~

—————— -~ ~ —Ownship events (in-3)

Fig 2.3: Scene integrity within a frame.

Each of these items has a "time" attached, relative to the current time (tn). For
instance, the positions of the other vehicles might be older (have lesser time value)
than the ownship position because they were computed before the ownship
position, and communicated to the ownship host node under conditions of
network delay.
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2422 Scene Integrity Across Frames

X X
+
+
+X X
+X
X
+
X = Displayed Position
+ = Actual Reported Position

Fig 2.4: Sequential frames of display

Figure 2.4 depicts the sequence of positions ("track”) of a given entity over
successive frames. Several conditions which will be discussed in the following
sections will cause the displayed and actual tracks to differ. In the worst case
these displayed tracks may not reflect kinematic realities, destroying the
simulation's illusion for the warfighter.

2.4.3 Contributions to Inequity

The consequences resulting from these latency-caused time/space disruptions
may include a skewing of results or a tainting of the outcome from a DIS
application. When warfighters are behaving according to their perceptions, and
yet each warfighter's perspective is shifted from one another's because of
time/space disruption on the Virtual Battlefield, then a recording of their
aggregate actions may be confusing and inconsistent.

If the level of required time/space coherence is neither specified nor
implemented to a stringent enough level, results from the experiment, exercise,
or application cannot be trusted. An example best illustrates what can go wrong.
Suppose one wishes to test the effectiveness of a new high-performance missile. A
DIS application is designed to perform the test. The dynamic performance of the
new missile is faithfully simulated. An exercise is conducted in which the
friendly side, armed with the new missile, meets the enemy side, armed with
more conventional weapons. The exercise is recorded and the outcome evaluated.
However, suppose the record contains events such as friendly forces capitalizing
on illegitimate firing opportunities because they "saw" the enemy through
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conditions of network delay which lagged the enemy's successful and timely
search for cover. The enemy would perceive successful evasion, while the
friendly side would perceive successful missile impacts. What objective
evaluations could missile designers make from such data?

2.5 A Correlation Construct

Time and space coherence can be represented notionally as a two dimensional
correlation space, where the two axes are defined by time and space fidelity
vectors for a given application or exercise. Each axis can in turn be viewed as a
composite expression of the numerous factors that affect time and space
coherence - time coherence by factors such as update rates, latencies, vehicle
dynamics and network bandwidth, and space coherence by factors such as
location, attitude, geometry, and appearance. Figure 2-5 illustrates.

A

Correlation
Metrics

Space

Exercise
Validity
Space

| .—— Minimum Fidelity Levels

Time

Figure 2-5: Correlation Space

Within this correlation plane we define a minimum level of fidelity on each
axis that must be achieved for a given exercise (shown shaded in figure 2-5). The
simulation entity correlation metrics are then plotted in the time/space plane, and
tested to determine whether or not they. fall within an "Exercise Validity Space",
shown notionally in figure 2-5 as an ellipse. The notion is that the various entities
that make up an exercise must lie relatively close together in the time/space plane
for a valid exercise to take place. The location of the ellipse boundary will
ultimately be determined by warfighter-in-the-loop experiments to test the
correlation hypotheses for each application.
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This correlation construct introduces the concepts of relative and absolute
correlation. Relative correlation is defined as "closeness” in the time/space plane,
the tendency of the metrics to cluster. Relative correlation says something about
the similarity between two or more simulation entities, whereas absolute
correlation measures the simulation entity against a fixed reference, such as an
external source data base. In this sense absolute correlation describes the fidelity
of a simulation entity. Clearly it is necessary to consider both aspects of
correlation to determine interoperability for a given exercise.

Correlation Metrics

Interoperability between heterogeneous simulation systems requires that an
adequate level of correlation be achieved for the intended application. Correlation
in DIS is defined as time and space coherence of the simulation entities. It is our
contention that correlation can be quantified by measuring the degree of
coherence of the simulation Entity's Local Data Base and the Entity Processes.

Entity Local Data Bases are the private data bases associated with the
simulation devices; they are derived from public, common source data bases. For
example, terrain stored as a polygon mesh is typically proprietary to an IG vendor
(the private data base) that derives from DMA or Project 2851 elevation grid data
(the public data base). Entity Processes include the rendering algorithms, model
dynamics and appearance functions, and in general all of the processing that is
performed by a simulator from the retrieval of the local data base data to the
output of the processed scene. Figure 2-6 is a simplified diagram of a DIS Entity,
which is shown to consist of Entity Processing and a Local Data Base bounded by
message and data base standards. Clearly both standards are necessary to
permit a consistent and meaningful set of correlation metrics to be defined. The
concept of correlation metrics is discussed further in Section 4.

Network
|

Message Standard

[DiSEntity §__ |

Data Base Standard

]
Media

Figure 2-6: Correlation Metrics and DIS Entities
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3. Temporal Correlation
3.1 Overview

The lag between when an event happens on the Virtual Battlefield and when it
is presented to the warfighter by his simulator cueing systems can cause
interoperability problems in DIS applications. Synchronization and timely
delivery of messages are some of the most basic challenges in DIS technology.
Because the system is distributed, each entity is highly dependent on accurate and
reliable communication with external entities, so that it can maintain a current,
coherent picture of the Virtual Battlefield.

This section addresses the symptoms, causes, and solutions of temporal
disruption, and then discusses the means by which the new DIS architecture
supports the implementation and coordination of the temporal coherence
solutions.

3.2 Symptoms of Temporal Disruption
3.2.1 Tracking Error

Temporal disruption appears as tracking error when the images of external
entities, presented to the warfighter by his simulator cueing system, are lagged in
time and therefore differ in position from where the sending entities consider
themselves to be.

3.2.2 Image Oscillation (Jumps And Jitter)

Image oscillation is a symptom of temporal disruption perceived as jumps and
jitters. Jumps appear as entities blinking through space, from one position to the
next, without seeming to cover the intervening space. A rapid sequence of jumps
is perceived as jitter.

32.3 Out-Of-Sequence Events

Out-of-sequence events are occurrences on the Virtual Battlefield which defy
logic by improper sequencing of cause-and-effect actions—like a missile
destroying a target before it is even launched.

3.3 Latency—Cause of Temporal Disruption

The main source of temporal disruption in Distributed Simulation is latency—
network communication latency, internal processing latency, and the combined
end-to-end latency. Tracking error is an obvious symptom resulting from this
latency. In this section, we will explore the multiple facets of latency, and come to
understand how latency contributes to tracking error, as well as the other
symptoms of temporal disruption.
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3.3.1 Network Latency

(In order to focus on network issues, we will assume in this subsection that all
other time latencies in the system are zero. The validity of this assumption—that
network latency can be separately considered—will be be evaluated when
combined latency effects from multiple sources are examined.)

Network latency will always be with us, given the fact that information must
flow over media (softwired or hardwired) between geographically-dispersed sites
in a DIS networked implementation. This section will explore some of the
dimensions of network latency.

T o O-S-E
Legend;

/ T: tracking error
- O: oscillation
f O-S-E:
out-of-sequence

REA

events
VL
L: network latency

VL: variable network

L + REA latency

REA: Remote Entity
Approximation

quantization of time

Q:
J : sufficient cause

L+REA+Q

NN NS

J : combined cause

Fig 3.1: Table Of Network Latency Effects

The Table in Fig 3.1 indicates the different aspects of network latency and the
temporal disruption symptoms that are associated with them. A thick check
marks indicate "sufficient” causes of the indicated effects. The effects would
always be present in some degree due to the presence of the cause. The thin check
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marks indicate combined causes that work in conjunction with each other to
produce the indicated effects.

3.3.1.1 Different Frames of Reference

Primarily, network latency prohibits the existence of an absolute frame of
reference of the DIS virtual battlefield.

An observer's (entity's) frame of reference is defined by the sequence of packets
it receives. In this subsection, we will show that the packet sequence can be
different for each observer, and thus each observer has his own unique frame of
reference on the virtual battlefield.

Long-Haul

Observer Simulator Simulator Observer
# #2 2
LAN #1 LAN #2

Fig 3.2: Two Lans Connected By Satellite Long-haul Connection

Figure 3.2 shows a DIS network composed of two broadcast LANS connected
into a WAN. To heighten the effects of latency, the figure depicts a long-latency (=
100 ms. delay) satellite link to connect the two LANS.
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t0 / v / \ / \t6 t8
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// \ / \//
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PO P2 , P4 :fp:z
Observer #2

Packets sourced by Observer #1 at time tn

Pn ' Packets sourced by Observer #2 at time tn

Fig 3.3: Divergent Frames of Reference

Figure 3.3 shows the data streams seen by observers on each of the LANS. The
top sequence shows what observer #1 sees, and the bottom sequence shows what
observer #2 sees. Note that network latency causes remote traffic to be dislocated
in time with respect to local traffic. This causes the two network frames of

reference to be different, causing observers on each of the LANs to observe
different scenes.

3.3.1.2 Remote Entity Approximation (REA)

Network bandwidth is a scarce resource. The fact of this scarcity has been
enshrined in DIS by the principle that a battlefield entity only communicates
significant change of its state. In the intervening time, DIS entities must account
for each other (in an approximate fashion) by using a DIS-defined extrapolation
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technique (known here as Remote Entity Approximation, or REA) to project out a
consistent time/space view of the kinematic state of all pertinent external entities.

Much more will be said about REA, but at this point it suffices to describe REA
as a common approximation model which is shared by the host entity and all
external entities which need to account for the host's kinematic state. The REA is
characterized by a common extrapolation technique, and a host-entity-determined
error threshold. The host entity maintains its "true" kinematic state on the
Virtual Battlefield by means of a high-fidelity kinematic model. In addition, the
entity maintains an approximated kinematic state by means of the common
extrapolation technique. The host entity continuously compares these two states.
When they differ by more than the allowable error tolerance, the host entity
corrects its internal extrapolation state by updating with the true state, and
continues subsequent extrapolation from this updated state. In addition, the host
entity broadcasts its true state to all external entities, so that they in turn may
update their approximated state, and henceforth extrapolate from the new true
state

As the Table in Fig. 3.1 indicates, REA by itself can contribute to tracking error
and oscillation, even without the presence of network latency. Figure 3.4
illustrates how this can occur.
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f(t) A

Actual path of simulated

entity
I Error threshold exceeded, ) \

new packet issued. ’

time

Figure 3.4. - REA Tracking Error and Oscillation. Each double
arrow represents the time at which the REA position differs from

the entity's actual position by a value greater than the threshold.

A new packet is sent by the entity, and if the entity is instantly

placed at its updated position, a visible position jump the size of

the threshold will result. Also, between the times of the position

updates, the remotes entity's position model will differ from the

actual position model-—representing tracking error.

3.3.1.3 Fixed-Time Latency

Fixed-time latency, by itself, can cause both tracking error and out-of-sequence
events.

The occurrence of tracking error is due to the lagged information that the
receiving entity receives from the sending entity. Kinematic state updates do not
immediately reach their destination. Therefore receiving entities, by applying
just-received information to the time of reception, instead of to the time of
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transmission, must present a perspective that is lagged in time from the true
entity position.

Out-of-sequence events can occur, even under conditions of fixed-time latency,
when the path-traversal times associated with various entity-to-entity connections
vary per connection. This kind of variation depends on the network topology,
implementation, and the presence of switching devices. An example of this
phenomenon is the case of a missile attack by entity "A", against entity "B", as
viewed by entity "C". The missile entity is controlled by the node which supports
entity "A". Missile PDUs are broadcast which describe the missile's flight path.
At the terminus of the missile flight, "A" issues the detonation PDU which
described the hit. Entity "B" broadcasts a stream of PDUs which describe its
positional track. Assume these PDUs arrive at "C" such that the missile PDUs
are significantly delayed compared to the PDUs from "B". This case may result in
"C" perceiving the destruction of "B" (a "B"-issued PDU which describes damage
to "B") before the missile even hits "B", and before the consequent detonation.

3.3.14 Variable Latency

Another dimension of network latency is its variableness.

Receiver | g P - Sender
Receiver's Network Sender's
Input Queue(s) Output
Queus Queue

Fig 3.5: Variable Latency Due To Service Queues

Figure 3.5 illustrates one cause of this variableness. It shows a simple
queueing model of the path from sender to receiver. The latency for this path
traversal may vary because the service times for each of the queues may vary.
This is especially true in the case of long-haul networks, packet-switched
networks, and networks with "intelligent" gateways or "intermediaries.”

Variable latency by itself may cause the perception of out-of-sequence events
coming from a single entity. Individual PDUs emitted from a single entity may
experience different transit delay as they traverse the network. The potential
exists that the packets may arrive at a receiver out of order.
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To better understand this phenomena of incorrectly-sequenced events, refer to
Figure 3.6. The figure shows the stream of PDUs from one transmitting entity out
to all receiving entities. This stream (when received) will define the receiver's
frame of reference about the sending entity.

Fire PDU (corresponding to t0)
/P\osition Updates, Entity State PDUS (ESPDUs)

I
|
' / 1\  Detonation PDU (corresponding to t2)

/ \ /
ro| / \ D2
/
PO P1 P2 P3 P4
I I I I I )
] ] I 1 B

Fig 3.6: Sender's Frame of Refersnce

Note that the packet stream is composed of two different types of PDUs:

e Entity state PDUs (ESPDUs), which define a kinematic state as a
snapshot in time, and

e "Event" PDUs, such as the firing event and subsequent detonation event.

The crux of the problem is that:

* The correct sequence of arrival of ESPDUs and event PDUs cannot be
guaranteed,

e Event PDUs and ESPDUs are related in time. (In the figure, the fire
PDU "F0" occurs when the entity attains the firing position/orientation
described in ESPDU "P0" at time t0. The consequent detonation occurs

at time t2, when the entity attains the position/orientation described by
ESPDU "P2".)

3.3.1.5 Fixed-Time Latency with REA

We now begin to investigate some of the combined causes.
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Fig 3.7 illustrates how latency and dead reckoning contribute to jumps and

tracking error that is substantially greater than what would be present under
each of the conditions separately.

] Area of greater tracking Packet P1 arrives
Paccket PO arrives to error due to packet arrival P
establish initial trajectory latency \ 7
7
| \ ~
Xa=i(t) | Packet P1 broadcast \
|  because REA threshold
|  exceeded N | N
| | N _ Greater jump
| | /7 because P1
| | 7  arrives late
| | 7
\ course change
| Y

actual course

_______ dead reckoned course
Fig 3.7: Latency And REA On X=F(T)

At time tn, a kinematic state update (in the form of packet P0) establishes the
REA trajectory shown by the solid line from tn to tn+1. At time tn+1, a change in
course by the simulated entity causes a new course update to be required.
Because of network latency, the new course information, contained in packet P1,
does not arrive immediately, but is instead delayed. When packet P1 does arrive,
the old course has been extrapolated ahead. The sudden correction from the dead
reckoned position back to the correct position is perceived as a jump—greater
than what would have occurred under REA without delay. And the tracking
error that occurs between the time of P1's transmission and its reception is also
greater than what would have occurred under REA without delay.

3.3.1.6 Quantization Of Time

Real-time computer simulations mark time by discrete steps, or "frames".
The "frame rate” (number of frames processed per second) of a simulation may be
constant or may vary, depending on design and instantaneous computational
load. The Distributed Simulation paradigm allows simulations with different
frame rates to run unsynchronized in networked exercises. This means that
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sending entities compute and transmit information according to an internal
frame structure which may not be synchronized with that of receiving entities.
Alsgo, the information arrives at the receiving entity after a duration of network

traversal that again may be unsynchronized with the frame structure of the
receiver.

Taken as a whole, these characteristics (discrete marking of time,
unsynchronized frame rates, and unsynchronized network traversal time) may
cause temporal disruption, or may exacerbate disruption due to latency-related
problems. To illustrate, we examine two cases for simulated vechicles in which
there exists positional discrepancy between their host entity and remote entities.
Both cases concern REA.

e
Point at which threshold P
X=f(t) actually exceeded P
Jump discontinuity
larger than threshold
-
— -
- -
- —_—
-
t1 t2 3 4 t
e _—— = —
Sending simulator's base frame time Simulated Position

Dead Reckoned Position

Fig 3.8: Exacerbated Position Error Due To Time Quantization

Figure 3.8 illustrates the greater error that can result when a continuous
phenomenon like vehicle position is digitally simulated by marking time in
discrete steps. The figure shows the position of the simulated entity as a function
of time (x-position only to simplify the analysis). ESPDUs are issued at t1 (to start)
and at t4. The t4 communication is necessary because the threshold has been
exceeded. Note however that the threshold was actually exceeded earlier,
sometime in the middle of the previous simulation frame. The resultant jump
discontinuity between dead-reckoned position and actual position exceeds the
threshold by a substantial amount because the initial threshold departure
occurred in the middle of the frame and was consequently not processed
immediately upon occurrence.
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“Jump"” Discontinuities

Xwf(t)

o -

. -
-
t1 T1 t2 T2 13 4 T3 t
- 4 e am e e - "Sent" track
Sending simulator's base frame time
-
Dead Reckoned track

Receiving simulator's base frame time

Fig 3.9: Exacerbated Error Due to Time Quantization

Figure 3.9 shows the effects of different base frame rates between sender and
receiver. The inherent latency between when the sender transmits the true track
data to when it is received is exaggerated by the differences in frame rate (lack of
synchfll"onization). The receiver cannot process the data until the beginning of his
next frame.

3.3.1.7 Algorithmic Differences

Another source of disruption of time/space correlation comes from the use of
different algorithms by disparate simulation entities to process network
information for rendering. Section 3.4 describes many algorithms and methods
applied to DIS network messages to help provide a coherent view of the Virtual
Battlefield. Though the algorithms are effective in the local simulation node, a
visual scene will diverge from the visual scene of another simulation node if the
other node is using different algorithms. Figure 3-10 shows how the viewed
trajectory of an airplane can differ depending on what kind of smoothing is used
on the incoming appearance packets.
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X(t) f

New Packet
Arrives

oW
Trajectory

Trajectory

time

Figure 3.10 -  Algorithmic Differences Cause Time/Space
Inconsistencies . The above picture shows how two different
simulation nodes can view the same plane in two different places
because of different smootning algorithms. If one node uses a "fast”
smoothing algorithm, and the other uses a "slow" algorithm, the
position of the plane will be different for a short time after a packet
is received.

The Entity Appearance packet in the DIS protocol provides a data field for
describing the dead reckoning algorithm being used by the transmitting entity.
Standardization of other algorithms such as smoothing, forward reckoning, etc.,
can be accomplished by use of a similar mechanism, or, algorithm specification
can become part of the session database. In either case, it is important to
minimize the inconsistencies caused by mismatched algorithms to the greatest
extent possible.

3.3.2 Internal Processing Latency

In this section, we will examine the visual anomalies that arise due to
latencies within a given simulation host.
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Network — Simulation - Graphics - Pipeline - Pipeline
Interface Host Front-end Stage 1 Stage 2

Fig 3.11: Internal Pipeline For CIG Display

Figure 3.11 shows a subsystem architecture of a networked simulator. From
left to right:

¢ A network interface.
¢ A simulation host, usually running ownship dynamics.

e A graphics front-end, which may perform scene management and
ballistics.

* Graphic pipeline stages (here we show 2).
There are latencies between each of the subsystems. We will show that there

will be anomalies, however minor, in the network's frame of reference due solely
to these intra-simulator latencies, not due to any network latencies.

a(to), hit(t0)
displayed

hit(t0) bcast
at n/'w tap

a(to) revd
at n/w tap

Figure 3-12: Causality Diagram

Figure 3-12 is a "causality" diagram of the events that occur when a simulator
so structured simulates direct fire upon another simulated entity. In the Figure
and the following explanation,

* a(t0) means the "appearance packet. corresponding to time t0"
* hit(t0) means the "detonation packet computed using a(Z0) as input”
e L1-3 means the "latency from subsystem #1 to subsystem #3"
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At left, a(t0) is received. It takes L1-3 time to arrive where ballistics are
performed. It takes Lb time to compute ballistics against a(t0). After a hit is
determined, it takes L3-1 time to get the detonation onto the network.

L1-3+Lb+L31 )
a(to) -t ] hit(t0)

Figure 3-13: Network Frame of Reference

The network's frame of reference is pictured in figure 3-13. Note how the
entity appearance packet a(Z0) and the hit packet hit(t0) are displaced in time (L1-
3) + Lb + (L3-1), independent of and unrelated to any network latencies.

Using (L1-3) = Lb = (L3-1) = 67ms, the hit and the entity appearance are

displaced in time approximately 200ms, For a fast-moving A-10, 200ms = 1/5sec,
at 400m/sec = 80m dislocation.

3.3.3 End-to-end Latency
In this section, we will use our direct fire example again, this time with a

network between shooter and victim. We will superimpose the external network
latency effects on top of the internal processing latency effects.

a(t0)
a(10) traverses
sourced network
Ln

hiy(10) = 1(a(10))

computed at
ballistics stage

Figure 3-14: Causality Diagram with Network Latencies
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The causality diagram is updated to include network latencies; see figure 3-14.
The network frame of reference on the victim's net thus looks like figure 3-15.

a(t0)  |egg 2*'tn+L1-3+Lb+L3-1 o hit(t0)

Figure 3-15: Network Frame of Reference on Victim's Net

For a fast LAN (Ln=2ms), total displacement = 204ms, and the extra 4ms
causes only 1.6 m additional dislocation. However, with a long-latency satellite
delay (Ln=250ms), total displacement = 700 ms. For a fast moving A-10, the
additional 500ms latency causes 200m additional dislocation.

3.4 Correlation solutions

In this section, we will examine several algorithms that purport to solve some
of the problems we have examined above. Each has advantages and
disadvantages, in some cases introducing different, and perhaps less
objectionable anomalies.

3.4.1 Timestamping

The DIS Protocol specifies the use of a timestamp field in most DIS packets.
There are two types of timestamp values, relative and absolute. Both timestamps
indicate the time that the data in the packet is valid.

Absolute timestamps are used when all simulators are synchronized. This
can be accomplished through a variety of mechanisms such as common radio
reception of a synchronizing signal by simulation nodes, hardwiring a timing
signal between nodes (only useful in Local Area Networks), etc. Absolute
timestamps in DIS are represented by Universal Time Coordinates (UTC), with
an accuracy of 32 bits. By placing an absolute timestamp in a network packet,
receiving nodes can determine the time at which the data is valid relative to the
time at which the effects will be painted. This technique is described in detail in
[Katz, 1992). There are limitations on the use of absolute timestamps to correct for
network and processing latencies. These are discussed in detail in section 3.4.5,
Forward Reckoning Algorithms.

Relative timestamps are used when the simulation nodes are unsynchronized,
and indicates the time, relative to a particular node's internal clock, that data is
valid. It can be used to determine the time correction necessary to account for
unsynchronized frames. By relating a remote node's relative timestamp to a local
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node's internal clock, a reference point is obtained. When the next packet arrives
from that remote node, the relative timestamp can be subtracted from the stored
relative timestamp of the previous packet, arriving at the time delay between
remote node packet transmissions. This delay can then be added to the reference
point, which yields a time, relative to the local simulator, at which the remote
information is valid. This mechanism will alleviate much of the jitter associated
with observing simulations at non-harmonic frame rates. See the section on
Timebase Correction for further details.

Timestamps may be used to correct some of the symptoms of temporal
disruption described in section 3.2. The following sections - Dead Reckoning
Algorithms, Smoothing, Timebase Correction, and Forward Reckoning - all
allude to the use of timestamps. The Entity State PDU, which is the packet of
primary concern, contains a timestamp field.

34.2 Remote Entity Approximation Algorithms (REAs)

Insufficient network bandwidth can be a problem in networked simulations.
The following sections will show how REAs (better known as Dead Reckoning

Algorithms, DRAs) can alleviate this problem by trading off computation load for
bandwidth.

3.4.2.1 Distributed Interactive Simulation Background Information

Figure 3-16: Entity States

Figure 3-16 shows a sequence of an observed entity's entity states PO through
P10. ("P0" means "the entity state that corresponds to time tQ.") These are
transmitted on the network, and are received at the observer. For simplicity's
sake in the following discussions, we will assume:

¢ Both observer and observed run at the same basic frame rate,
which is indicated by the time markings in the Figure,

¢ Both observer and observed are synchronized, and
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¢ The network has zero latency.

Each position update must contain sufficient information to render the
observed entity, including:

¢ Model Description (entity type),

* Position,

¢ Orientation, and

¢ Position and Orientation of articulated parts.

These state variabies must be expressed in a data representation expected by
the particular CIG. Such a representation is usually optimized for computation
efficiency, not size. In general, modern CIGs use silicon which expects:

¢ Consistent coordinate systems (e.g., right-handed)
¢ IEEE floating point numbers
¢ Direction Cosine Matrices for rotational transformations of

points (e.g., world to screen coordinate transformations).

3.42.1.1. Trade-Off Between Potential Bottlenecks

Want to Minimize Want to Minimize
Bandwidth on this Compute Expense
Link \ in this Pilpolino

\

Network

Sources |

Packets
#Vehs = N Cost per #Vehs = n Cost per
Frame Rate = F Packet = Cn Packet = Cc

Figure 3-17: Processing at the Observer

Figure 3-17 shows a highly simplified model of the processing at the observer.
Briefly, the N entities on the network source packets, each at the basic frame rate
R. Each update is expressed in a specific representation R, , the External Data
Representation (XDR) for entity state updates on the network. The Network
Interface services each update, and as a performance optimizsation, reduces the
number of "interesting” entities (perhaps those within visible range) to n. The n
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entity updates are translated to the preferred CIG representation R., and are
then displayed.

There are two bottlenecks. One is the network bandwidth, and the other is the
local computation power available to perform the processing. Next, we quantify
those bottlenecks.

B= Network Bandwidth
M-= available MIPS'MFLOPS

N= number entities

P= packets per second. For our example, equal to the basic frame
rate.

R,, =representation of entity state update on network (XDR)

R, =representation of entity state information necessary to display
entity on CIG

S= size of each entity state update = f(Rp )
Cn= Cost of entity state update service time = f1(Rp, )

C.= Cost of conversion from entity state format to CIG format =
f2(Rp , Re)

Thus, bandwidth on the network is:
B = NPS = NPf)(Ry,)

Here, we can see that bandwidth on the network is a linear function of the size
of R, . Thus itis an overriding desire to make R, as compact as possible.

The computation cost without the filtering optimization is:
M = NPC, + NPC,
If we have the network interface filter out "uninteresting” entities,we reduce

the number of CIG format conversions, but arguably we increase the per-packet
processing slightly.!

1 CIGs typically have a maximum number of moving models and effects they can display.

Processing updates from any more entities is thus pointless. Those systems without CIGs, such as
SAFOR, do not have the luxury of such an optimation.
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M = NP Cn' + nPCc
Since the costs are functions of the network representations...
M= NPﬁ(Rn )+ nPﬂ(Rn ,Rc)

Here, we see that the computation cost is an increasing function of C,, the cost
of conversion from R, toR,.. Thus the desire to make this conversion as
painless as possible. 2

In summary, one trades off two potential bottlenecks in choosing an external
data representation R, for the state variables in the entity state updates;

bandwidth, and computation cost.
3.4.2.12. Bandwidth Not Sufficient to Support Large Exercises

As an example, the SIMNET Semi-Automated Forces Proof of Principle
(SAFPOP) exercise consisted of over a thousand vehicles. The minimum
information necessary to describe the state of one of those vehicles for one frame is
approximately 320 bits (assuming 32 bits for each of X, Y, Z, roll, pitch, yaw, entity
type, entity id, and each of 2 articulated parts). Assuming each 320-bit entity state
is preceded by a 96-bit Ethernet header: we have

S =416 bits, P = 15Hz, N = 1000, thus
B =(416 bits)X15 HzX1000 entities) = 6.24 Mbits/sec.
SAFPOP should have consumed over 6Mbit/sec. However, it was conducted

over a 10Mbit/sec Ethernet, with an actual effective bandwidth of no more than
3Mbit/sec, and over a handful of 56kbit data links. How was this accomplished?

2 Por this reason, early versions of SIMNET had Ry, = R, using Direction Cosine Matrices for 3D
rotations, and sin/cos pairs for 2D rotations. Later versions used BAMs for 2D rotations.
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3422 DRAs Trade-off Bandwidth vs. MIPS

These are broadcast updates. These are dead-reckoned extrapolations.
/\ - -
/ _ -
- - - =~

- - ~
P1T P2 P3 P4 P5 P6 P8 P9 P10
| | ] | | ] i | | | |
T T 1T | -
10 t1 2 3 14 5 6 t7 8 19 110

Figure 3-18: Dead Reckoning
3.4.2.2.1. How DRAs Work

In order to employ DRAs to save network bandwidth, the observed entity and
its observer agree upon:

* New state variables and their XDRs. These are time-derivatives
of the previous state variables (e.g., %

* A set of state equations (e.g., X' =X + %—'At)

* A set of "thresholds” for selected state variables. (e.g., 1 meter)
The observed entity:

1. Uses its internal kinematics and dynamics models to compute
the "actual” values of the state variables.

2. Runs the simple state equations to compute the"lower fidelity"
values of the state variables.

3. Computes the discrepancy between the "actual” state variable
values and the "lower fidelity" state variable values. The observed
entity guarantees that it will send out an entity state update only if
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the discrepancy exceeds the agreed-upon threshold.3 (PO and P7 in
Figure (above).)

The observers make a decision each frame:
1. If an update is received, use its state variable values.
2. If no update is received, run the simple state equations and use

the resultant state variable values. (P1-P6, and P8, etc. in the Figure
are such extrapolations.)

In SIMNET, this cut the number of updates from 15Hz, to 1Hz to 3Hz.
3.42.22. DRAsin a Manned Simulator

Figure 3-19 is a version of our previous data flow diagram, updated to include
Dead Reckoning Algorithms. Briefly, entity state packets update DRA data
structures. In the absence of network updates, the DRAs update the data
structures each frame. Also each frame, the CIG interface reads the DRA data
structures to provide the CIG with display information.

#Vehs = N
Pkt Rate = Pn

Cost per
Entity =

Figure 3-19: DRA Data Flow Diagram

3 Entity state updates are also sent out periodically for several other reasons. 1, so that late-
arriving observers learn of the sending entity. 2, so that errors due to missed or dropped updates
are eventually corrected. Hence, the "self-healing” nature of the protocol.
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Next, we quantify the effects of DRAs:

R j=representation of entity state information in DRA data
structures

Cy= Cost of conversion from entity state format to DRA format =

f3(Rn, Rqg)

Cc= Cost of conversion from DRA format to CIG format =
f4(Rq,Rc)

Cq= Cost of DRA application = f5(Rg)*

P,= entity state update rate per entity
Thus,

B = NP,S' = NP,fO(Ry")

Because Ry’ now contains time-derivative state variable parameters, S' is now
larger, by 32 bits for each of:

e first and possibly second order position updates
e first order rotation roll, pitch, and yaw

¢ first order rotation and position rates for, say, 2 articulated
parts

13 * 32 bits = 416 bits. Thus, although S’ has doubled in size, P,, has dropped by

a factor of at least 6. Thus, total bandwidth is cut by at least one-third. What is
the computation cost of such a bandwidth-savings?5

M = NPLCp, + NPL,Cy + NPCq4 + NPC,
Making the same optimization we did before:
M = NP,C,,' + nP,,Cy + nPCq4 + nPC,
M = NPjpf1l(Rp") + nPpf3(Rp,Rq) + nPf5(Rq) + nPf4(R4,R¢)

4 Includes smoothing, etc.

5 We ignore the cost of DRA computation by the sender because it does not grow with either N orn
except in CAUs or CIUs. It is extremely important not to concentrate on O(1) processing instead of
O(N) and O(n) processing.
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3423 CostisaFunction of Data Type Representations
In summary, we have established relationships between network bandwidth
and size of entity state update. We have established computation cost as a
function of representations and algorithms.
B = NP,S' = NPLfO(R,,")
M = NP,f1(R,") + nPrf3(Rp,Rq) + nPf5(Rg) + nPf4(Rq,R¢)
Where

* fO(R),) = Bandwidth Cost of size of network representation

* f1(Rp) = Cost of rejecting Ry -formatted packets at network
interface

* f3(Rp, Rq) = Cost of translation from network representation to
DRA internal preferred format.

* f4(Rq,R,) = Cost of translation from DRA format to CIG format.
* f5(Rq) = Cost of DRA applications, including smoothing.

An example will help develop a feel for the O(n) and O(N) processing
requirements:

N = 1000 entities

n = 200 entities

P =15Hz

Pn =2Hz

B = (1000X2)0(Rp)= 2000(f0(Rp,))

M = (1000X2)f1(Rp) + (200X2)3(Rp, Rg) + (200(15)5(Rq) +
(200X(15)f4(Rg,Re)

= 2000(f1(Rp)) + 400(f3(Ry, Rq)) + 3000(f5(Rq)) + 3000(f4(R4,R¢)

Note how the large coefficients make the required compute power extremely
sensitive to changes in the cost functions. Note also that system compute
performance can be much more sensitive to Rq than Rp. It is impossible to

overemphasize how critical the data type representations are to system
performance.
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For example, SIMNET used R = R4 = R, so f3 was 0, and f4 was zero.6 f5

consisted of 3 floating point adds (first-order position DRA, no orientation DRA,
limited smoothing). fl was a simple range-check.” Thus, SIMNET was able to
achieve a high level of performance for minimal compute power (usually a 25Mhz
68020/68881).

Even with ever-increasing performance of hardware, injudicious choices will
doom the system to less-than-SIMNET performance.

Functions f1 deserves special attention because it grows O(N). Function f1 is
the cost of rejecting Rp-formatted packets from the network. It may contain:

¢ Cost of DMA of packet.

* Cost of network protocol processing/routing/addressing (e.g.,
IP/UDP protocol processing).

* Cost of any DIS-level checksum, CRC, or ECC of packet.

® Cost of DIS-level rejection of packet (e.g., range-check to weed
out entities that are beyond the visible horizon, entity type-check for
more complex rejection function).

Functions f3 and f4 are straightforward transformations of date type
representations. However, note that even

Function 5 is the per-entity processing associated with DRAs. It is the topic of
the next section.

3424 DRAs, Smoothing
3.4.2.4.1. State Variables

DRASs require the following state variables, and zero or more time-derivatives
and thresholds for each:

* Position of entity in 3-space
¢ 3D orientation of the entity
* 2D orientation and position of each articulated part

6 3D orientation was transmitted as a Direction Cosine Matrix. Later versions of SIMNET used
BAMs for 2D rotations instead of sin/cos pairs, necessitating some f4 processing.

T Later version of SIMNET compensated for a small n by making f1 more expensive and
checking for vehicle type as well as range. For example, an ADATS vehicle ignored closer-in
ground vehicles in favor of tracking further-away air vehicles.
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3.424.2  State Equations

The DRA state equations and thresholds are important in that they indirectly
determine Pn, the frequency at which entities will broadcast updates, using up
network bandwidth and simulator compute power. Examples of DRA state
equations can be found in a number of DIS position papers.

3.424.3. Required Data Types

We require a network data type to represent position and its time-derivatives.
There is not much debate over using (X,Y,Z) 3-tuples or vectors.

For 2D orientations and rates, options include:

¢ Direction Cosine Matrices (DCMs). Ideal for 3D -otations of
vectors, overkill for 2D, and very large (9 floating point numbers).

¢ Sin/Cos pairs. Can do transformation in a plane with 2
multiplies. Requires 2 floating-point numbers.

* Radian angular measures. Compact (1 floating-point number),
but requires 2 transcendental functions (or table lookup and
interpolations) to get to Sin/Cos pair.

¢ Binary Angle Measures (BAMs). Typically fixed-point fractions
of a circle. Requires 1 fixed-point number. Advantages include
conciseness and maximal precision per bit. Same cost as radians
(except arguably faster table lookup), and any extra precision is lost
in the translation.

For 3D orientations and rates, options include:
¢ Direction Cosine Matrices (DCMs). Ideal, but large.

¢ Quaternions. 4-tuple defining a vector and a rotation about it.
Compact 4 floating-point number representation.

¢ True Euler Angles. Compact 3-tuple.
* Tait-Bryan Angles. Compact 3-tuple, roll, pitch, and yaw.
3.4.24.4. Required Operations
L add/subtract multiply/divide
. rotate vector / transform coordinate

o scale by constant
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34.25 Evaluating Different Data Type Representations
3.4.2.5.1. Candidate Representations

. position: (coordinates systems: Z up vs. Z down)
| dp/dt d2p/dt2 (world vs body coordinates)
. 2D: BAMs, radians, sin/cos

o 3D: Tait-Bryan, True Euler, Quaternions, Direction Cosine
Matrices

There has been vigorous discussion of these decisions:
° Quaternions (Burchfiel, Saunders)
o Fixed vs Floating (Smith)
. BAMs
3.4.2.5.2. Cost of Operations

In order to determine the optimal representation at each point in the system,
we need to quantify the cost functions. Each row of tables 3-1,3-2, and 3-3, when
they are complete, can be plugged into the bandwidth and computation-cost
equations above. The minimal bandwidth and minimal compute-cost
representations are the optimal choices.

The tables assume that Direction Cosine Matrices and World Coordinates are
the preferred input formats to most CIGs.8

8 Even those CIGs that accept other representations must convert them to DCMs in order to
transform points from world coordinates to screen coordinates. IS THIS TRUE???
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Table 3-1: Cost Contribution of Various 2D Orientation Representations

Rn Rd fa 5
BAM BAM
BAM Radians
BAM Sin/Cos
pair
Radians BAM
Radians Radians
Radians Sin/Cos
pair
Sin/Cos BAM
pair
Sin/Cos Radians
pair
Sin/Cos Sin/Cos
pair pair
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Table 3-2: Cost Contribution of Various 3D Orientation Representations

Rn Rd f4

True True
Euler Euler

True Tait-
Euler Bryan

True Quaternio
Euler ns

Tait- True
Bryan Euler

Tait- Tait-
Bryan Bryan

Tait- Quaternio
Bryan ns

Quaternio True
ns Euler

Quaternio Tait-
ns Bryan

Quaternio Quaternio
ns ns

Orientation representations have a "hidden" cost beyond that in the tables
above if body coordinates are selected for position rate changes. The orientation
representation can affect the cost of the position calculation.
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Table 3-3: Cost Contribution of Various Position Rate Representations

Rn Rd 3 f4 5
World World
Coords Coords
World Body
Coords Coords
Body World
Coords Coords
Body Body 0
Coords Coords

3426 Dead Reckoning Fundamental Relationships

We now examine some fundamental relationships or rules of thumb that have
use in evaluating Dead Reckoning requirements. For illustrative purposes, we
will restrict the following analysis to the case of the single x-coordinate only.

3.4.2.6.1. Dead Reckoning Types

We begin by reviewing the mechanics of the two DR types: first-order DR and
second-order DR.

As background, we describe the details of positional update in the entity vehicle
math models. Typically, the entity positional math model computes, on a frame-
by-frame basis, the x-forces acting on the vehicle. By means of Newton's Second
Law (f=ma), x-acceleration for simulation frame n, a, , is computed based on
these forces. x-velocity v, and x-position xp for frame n are then computed by
numerical (digital) integration over the time-step interval ¢,. The equations are

Vn =Vna + (tg) ap

Xn = Xn-1 + (tg) vn

where tg = tn-lt.,.l is the (assumed to be constant, but not necessarily so) time-
step interval. This system of equations simplifies to

xn = Xn-1 + (tg) [Vn.1 + (tg) an]

First-order DR is merely replication of this numerical integration process,
with the the simplifying assumption that x-acceleration is zero. This process
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becomes mere linear extrapolation of the last-received positional information
according to the last-received velocity information. At time t;, the correct x-
position xp and x-velocity v, are received. Until the next correcting update
arrives, the DR model position %p4m for time tn.m i8 computed as

*n+m =Xpn +m t'Vn .

Second-order DR is linear extrapolation of the received velocity Vn according to
the received acceleration a,. The relevant equations at time tn,m are

®nem = Vn + (mtg) vp
2
204m = Xn + (Mt )00+ (HL%E Nts)2an

where ¥n+m is the DR velocity.
3.4.2.6.2. Required Update Frequency

DIS users and developers must specify the Battlefield Database parameter
values that will shape the fidelity of the intended exercise. Dead Reckoning error
thresholds (the position update criteria) stand as key parameters of interest in
this specification process. While it is tempting to set arbitrarily tight error
thresholds to amply ensure entity positional accuracy throughout the conduct of
the exercise, developers must guard against the side effects of greater network
traffic which will necessarily occur because of greater amount of entity state
PDUs required to support the stricter error thresholds.

Let I represent the time interval between two successive required updates
under dead reckoning. The cognizant user/developer, having specified the DR
error threshold T, and having some knowledge of the the maximum acceleration
capability of the combat platform, should be able to derive an estimate for the
minimum (worst-case) possible value of I, and thereby estimate the maximum
posgil;le (worst-case) transient update frequency F required by the DR update
model.

We now derive the worst-case estimate for I and F.

For the first-order DR case, assume time t, represents the time of the last
positional update. A new positional update will be required at time tnsm for which
| n4m - Xn+m | > T (for smallest possible integral value of m). The shortest time
interval between two consecutive updates must occur when the absolute value of
acceleration is at a sustained maximum, ag. For acceleration at this sustained
extreme value, the x-position at time tn.m is equal to

2+
Xn+m = Xn + MitgVp+ (%E)(t.)zan-
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Therefore, the positional error at time t,,m is equal to | #,4m- Xn+m | and can be
computed by

2+m
12n4m - Xnsm! = 1xp 4 mtgvp+ (m 2 Xts)28H - Xp - mtyvy |

= 1Sy a1,

Therefore, an update is required whenever

m(m+1)

| ——2—(t.)2a1.1 I>T.

When the above equation is solved for m, the resulting answer becomes

14,1 8T 1
m>2° N1t tRang ~ 2

for smallest integral value of m .When m is found, then the worst case

(transient) update frequency F that can result is F= 7'11-

For the second-order case, the analysis becomes a bit more difficult. For this
case, the DR model position at time t,.;n (for the most recent update occurring at
time t,) is equal to

2
fnem = Xn + Mtgvp+ (g;;_m)(t')zan-
Therefore the positional error at time t,,n will be equal to

2
| %n4m - Xnem! = '%(t‘)z(aH - ap) |.

Proceeding as in the first-order case, the minimum integral value of m that
will cause an update to be required will be

Ny
m>3 Yt 2an- a3) 2

3.4.26.3. Worst Case Positional Error Under Latency

We now bring latency into the analysis. We ask the question: what is the
worst-case positional error that can occur for dead reckoned positions when faced
with latency? Again, we assume that this worst case error will occur when the
subject vehicle is undergoing maximum acceleration ay. We will again examine
both types of dead reckoning.
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As we saw above, under Type 1 dead reckoning, the maximum amount that
the DR model position can depart from the actual position (under digital
simulation) in m simulation frames is equal to

2
| B (2 anl.

The maximum amount of departure under Type 2 DR (given the same
assumptions) will be

m2+m

| T3 ()2 (@ - an) |

Under digital simulation, latency must be measured in integral frames.
Thus, m frames of latency will produce a positional displacement error of
magnitude

2
ml o ;m(tu)z agl
and
m2+m

m | 9 (ts)z (aH - an) |

respectively under Type 1 and Type 2 DR.
3.4.3 Smoothing

As previously discussed, distributed simulation network traffic can be reduced
through the use of dead reckoning. By providing time derivatives of position
(velocity, acceleration, angular velocity, etc.) in the appearance packet broadcast
by an entity onto the network, remote entities can extrapolate the broadcasting
entity's kinematic state into the future. When the error between an entity's
internally simulated position, and the perceived position as extrapolated by
remote entities, exceeds a predetermined threshold, the entity broadcasts an
update with new position and time derivative information. When remote entities
receive this update they have to somehow correlate their current dead reckoned
position of the broadcasting entity, and the updated information just received over
the network. The simplest approach is to place the entity at its new location and
continue to dead reckon from there. Though this method requires no
computational power, it leads to a disconcerting jump in the position of the remote
entity. An observer will perceive the entity instantly blinking from one position to
another. This effect jeopardizes the believablility of the simulation, distracting the
user from his tasks. It also may produce negative training. Figure 3-20 shows
how a "jump discontinuity” is produced.

It is clearly desirable to eliminate these "jump discontinuities” to insure that
the effectiveness and believability of the simulation is not compromised.
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X = f(t)
ﬁ Actual path of simulated entity

I Error threshold exceeded, \

new packet issued. ’

>
time

Figure 3-20. - Jump discontinuities resulting from exceeding the

dead reckoning threshold . Each double arrow represents the time at which
the dead reckoned position differs from the entity's actual position by a value
greater than the threshold. A new packet is sent by the entity, and if the

entity is instantly placed at its updated position, a visible position jump the

size of the threshold will result. This assumes negligible network delay.

3.4.3.1 Prior Attempts at Smoothing

An early attempt to provide a so called "smoothing”" function in distributed
simulation was embarked upon in the SIMNET Stealth Vehicle. The Stealth has
the unique capability to "tether" on to another entity, providing the Stealth
operator an easy way to observe the battlefield with respect to the tethered entity.
Since the position and orientation of the Stealth is dependent on the position and
orientation of the tethered entity, the effects of jump discontinuities were greatly
exaggerated. When a tethered entity jumped in position, instead of just observing
a disconcerting position change in the remote entity, the entire Stealth platform
underwent the same jump. The Stealth operator saw his whole world lurch in an
extremely disorienting way. For this reason it became necessary to "smooth" out
the effects of these position jumps between network updates.

The first smoothing algorithm developed for the Stealth Vehicle is graphically
depicted in Figure 3-21. Upon receipt of a network update from a remote entity,
the receiving entity selects a time in the future, tsm, at which the remote entity
position will coincide with the kinematic state dead reckoned from the newly
received appearance packet. This time period is the time over which the
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smoothing algorithm operates, hence is called the smooth time. By extrapolating
the newly received kinematic information over the smooth time, the position in
space at the end of the smooth time, which would have resulted if the entity was
dead reckoned with the new dead reckoning parameters, is computed. For
SII:J‘IIIE'ET first order dead reckoning, this intercept position, in one dimension,
would be:

Xint = Xnew + Vnew * tsm 1)
Where:
Xint = Intercept position at desired time tgm.
Xnew = Updated position of remote entity from packet.

Vnew = Updated velocity of remote entity from packet.

Using the last dead reckoned position of the remote entity, and knowing the
target position in space, Xjn¢, at which the two kinematic states will coincide, and
knowing the time, ¢{gm, over which that distance has to be traversed , a smoothing
velocity is computed:

2)

Where:
Vsm = Velocity during smoothing.
Xold = Last dead reckoned position of remote entity.

This velocity, Vsm, is used to dead reckon (1st order) the entity over the smooth
time, from the position Xp]d, to the position Xjn¢, where the entity intercepts the
trajectory from the packet. Upon interception, normal dead reckoning using the
parameters from the packet takes over from the smoothing algorithm. This
smoothing algorithm is used on orientation as well as position.
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Figure 3-21 - First "smoothing" algorithm in SIMNET . A smooth time,
tsm, is selected, and the newly received position and dead reckoning
parameters are exptrapolated into the future to the "intercept" position, Xint .

"Smooth" dead reckoning velocity is computed and substituted in the entity's
dead reckoning equations. When the entity "intercepts” its new course, the
new dead reckoning parameters take over from the smoothing parameters.

In the first iteration of this algorithm, a constant smooth time, tsm, of seven
frames, or about half a second was selected. Upon analysis, the constant smooth
time appeared to cause two undesirable side effects. Firstly, if appearance
packets are typically received before the smoothing is finished, a steady state
position error will accumulate. Though the entity will look smooth, it could build
up a positional error much greater than the discrepancy threshold. Secondly, if
new appearance packets are not required until long after the smoothing is
finished, such as in straight line, non-accelerating ground traversal, or straight-
and-level flight, the termination of the smoothing algorithm can be visibly
discerned because of its relatively large deviation from the otherwise uniform
trajectory of the entity. To solve these problems the smooth time was made
variable, and was set equal to the time delay between the last two received
appearance packets. It was found in SIMNET that the difference in packet rate
with respect to time was fairly small, meaning that one could approximately
predict when the next packet would arrive based upon the delay between the two
most recently received packets. This improvement solved the aforementioned
problems and is currently the algorithm in use in SIMNET today. Smoothing of
turrets on tanks was also implemented using this same basic algorithm.
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Though the SIMNET smoothing algorithm works very well in most cases, it
does still produce some visible anomalies. Figure 3-22 shows the smoothing
trajectory from Figure 3-21, as well as the time derivatives of that trajectory. The
figure shows that the velocity of the entity changes as a step function while the
acceleration consists of two impulses. An impulse in acceleration implies that an
infinite force was applied to the entity for an infinitessimally small time, the
product of the two being the magnitude of the impulse. Infinite forces don't occur
very often in nature. When observing the SIMNET smoothing algorithm in
action, the instantaneous step change in velocity is actually noticeable, and
distracting on occasion.

X = (%) Cheeee...

A ; \

Smoothing trajectory  VeW trajectory

\

Original trajectory

dx time

Original Velocity New Velocity
[0 38 SO IR R ./J. -

Smoothing Velocity
- -
time
-
ﬁ dt
° w
Negative acceleration impulses.
S
time
Figure 3-22. - Time Derivatives of SIMNET Smoothing Algorithm. The

top graph shows the change in position due to smoothing (from Figure 3-21).
The second graph shows the first derivative of position (velocity), and the
third graph shows acceleration. The acceleration profile indicates that two
impulses are generated by the smoothing algorithm. This is an unrealistic
dynamical event for entities and can be visually disconcerting.
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3432 Optimized Smoothing Algorithms

In the quest for an "optimal" smoothing algorithm, there are three main
requirements which may be traded off against each other:

* The smoothing should look realistic, should not be visually noticeable,
and should not distract the user.

* The position error between the smoothed entity and the straight dead
reckoned entity should be minimized.

e The computational load of the smoothing algorithm should be
minimized.

Section 5.0 discusses in detail the issue of overload management as it relates to
computational burdens in DIS simulators. Clearly, if an entity is too far away to
benefit from smoothing, or dead reckoning for that matter, the simulator should
switch to a less computationally intensive algorithm. For the purpose of this
discussion we will assume that an overload management policy will degrade our
"optimal” smoothing algorithm to another algorithm when convenient. The first
two requirements, visual realism and minimized position error, then become our
primary concerns.

3.4.3.2.1. Visual Realism in Smoothing

Visual realism in smoothing is achieved when a dead reckoned entity switches
from one kinematic state to an updated one in a natural enough way such that the
user is not alerted to the transition. In order to design an algorithm to
accomplish this task we must first analyze human perception as it pertains to
visual understanding of dynamic scenes. There are three key visual mechanisms
developed over millions of years of evolution to cope with the tracking of objects in
motion: saccade, smooth pursuit, and optokinetic nystagmus. There is also the
intellectual process of determining that the visual scene is a plausible reality.

The saccade is a rapid eye movement which corresponds to jumping from one
object to another over a relatively large distance. When the eye performs a
saccade, the acuity threshold of the visual system drops an order of magnitude so
as not to overload the brain with too much information. This is called saccadic
suppression. When the eye comes to rest in the area of interest, visual acuity
returns to normal after a small delay. This is usually followed by a corrective
saccade to account for any error in targeting. Saccades are both voluntary and
involuntary. The saccade, in and of itself, does not participate in tracking of
objects in motion, but is used by smooth pursuit and optokinetic nystagmus.

Smooth pursuit is the motion of the eyes when tracking a moving object.
Pursuit is initiated when an object of interest begins to move out of the fovea
region (highest acuity) of the eye. The brain, detecting the error in position of the
object, initiates a saccade which jumps the eye just ahead of the moving object.
The eye then smoothly tracks the object, remaining just ahead of it, during its
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travel. If the object begins to accelerate, the brain compensates for the change in
velocity such that the object remains in the desired view spot. If the object
accelerates too quickly such that it successfully departs the foveal region, the
brain initiates another saccade to correct for the displacement, then compensates
for the new velocity as best it can. These corrective saccades are very noticeable,
such as when a person is trying to track a rapidly moving fly and can't "maintain
lock" on the target..

Optokinetic nystagmus is a phenomena which occurs when a person watches
a rapidly moving pattern. Since the brain cannot process all the information
associated with a rapidly moving pattern within its visual field, it forces the eye to
track a fixed point on the moving object, then performs a saccade to return to the
original position in space, where it acquired the original fixed point, to acquire
another fixed point. This repetitive motion resembles that of a mechanical
typewriter carriage return. Examples of optokinetic nystagmus are: watching a
picket fence while driving in a car, watching the turbine of a jet engine spin up, or
watching a merry-go-round.

Intellectual verification of scene plausibility is the comparison of a viewed
scene with memories of similar scenes and behaviors, and authenticating or
dismissing the comparison. Many optical illusions can be created to illustrate
this point. Figure 3-23 is a commonly known optical illusion that violates spatial
relations. Other violations of scene plausibility occur when objects in motion
violate the laws of Newtonian physics, such as an object moving from one place to
another in an unreasonably short period of time, or a cartoon character running
off a cliff but not falling until he looks down.

NS

SN
Figure 3-23 - Optical lllusion . The human brain can reason that this object
cannot exist based on past experience in spatial relations.

These three visual mechanisms, coupled with reasoning ability, dictate some
basic requirements that an acceptable smoothing algorithm must address:

¢ Entities must not instantaneously change position. This comes from the
need to avoid saccadic corrections during smooth pursuit, and avoid
violating scene plausibility.
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¢ Entities must not instantaneously change velocity. Instant velocity
changes can induce saccades in smooth pursuit if the velocity change is
large. Instantaneous velocity changes dont usually occur in nature,
making such changes violate scene plausibility. Magnitudes of
accelerations should be kept to a minimum to avoid saccades during
pursuit.

e To accommodate scene plausibility, accelerations on entities should
correspond to realistic forces.

The above requirements indicate that visual realism of a transition from one
position/velocity kinematic state to another is primarily dependent on the
acceleration profile. Figure 3-24 shows the same smoothing situation of Figure 3-
22. Instead of computing a linear smoothing velocity to get from the last dead
reckoned entity location to the intercept point, we form an acceleration function as
shown. This acceleration function consists of a positive acceleration step of
magnitude a, time duration ¢, and a negative step of magnitude -a, time duration
tsm - t1. A profile of two steps in acceleration corresponds to the onset of a
constant force in one direction, followed by an equal force in the opposite direction.
The magnitude a, and the variable time duration of the two steps relative to each
other permit the entity to intercept its new trajectory in both position and velocity.
For a given smooth time, ¢,,, this function yields the lowest possible acceleration
magnitude that can still solve both position and velocity interception.

This algorithm works even better for second order dead reckoning models than
for first order. A second order model would have non-zero accelerations on either
side of the step proefile in Figure 3-24. This would look very natural to the eye
because the velocity would be a sawtooth form instead of a constant velocity profile
interrupted by an individual tooth.

To solve for the smoothing step time ¢7, and the acceleration magnitude a, we
use the basic equations of motion:

X=Xo+{V*t+(3a* ) ®
and,
V=Vo+{a*t} 4)

Using the same kinematic parameters from the SIMNET smoothing example,
with g, having been chosen and Xjn: having been computed, our acceleration
profile yields:

1
Xint = Xold + (Vold*t1} + (5 a‘tﬁl + [{a*t1} + Vold]*{tsm - t1]
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- 3 a[tem - t112 ®)
and,

Vnew = Vold + {a*t1} - (a*[tgm - t1]} (6)

For convenience we define:

AX = Xint - Xold

AV = Vnew - Vold

M = AX - {Vnew*tgm!}
Solving for a in equation (6):

___av
2= 2% - tam @

and substituting for it in (5), we can solve for 5 :

tsm?
M +- \] M2 - AV[{Vnew + Vold}* g - AX*tgm

t1= AV 8)

Once t; is known, it can be substituted back into (7) to solve for a.

Equation (8) has a singularity at AV = 0. This is not a problem for two reasons.

First, as AV approaches 0 in equation(8), {7 approaches {gm/2. Secondly, AV =0

implies that the updated velocity is the same as the old velocity. We can

immediately assume that ¢; = t5,,./2 because the the positive acceleration step

must have the same duration as the negative acceleration step if the end velocity

zg )to be equal to the start velocity. This simplification allows us to rewrite equation
as:

tarms
Xint = Xold + Vold*tsm) + (a*~4 ) ©

We can then solve direcﬂy for a:
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4+[AX-(Vold*t1)]
- 10)
2 tsm? (
X = f(t) LF--e....

\

Desired intercept New trajectory

\ point.
Original trajectory
—
time
a= d_Y_ ! ty ' tsm™ by '
P —————
‘ dt - ] ] [ ]
:
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O ]
-aI
—
t
v X ime
dt
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O_d ----------------------------------------------
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Figure 3-24 - An Optimized Smoothing Algorithm . By designing an
acceleration profile as shown, both position and velocity can be intercepted.
The eye will not see any instant position changes, or instant velocity
changes. Step changes in acceleration correspond to the onset of a constant
force, something the eye and brain are accustomed to. Keeping the
acceleration magnitude the same for both positive and negative steps,

yields the lowest possible acceleration magnitude for a given smooth time.
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3.4.3.2.2. Minimizing Position Error While Smoothing

The original SIMNET smoothing algorithm, and the newly proposed optimized
smoothing algorithm, both reduce the error between smoothed position and dead
reckoned position to zero over time. Figure 3-25 shows the SIMNET smoothing
position trajectory and the error in position during smoothing. Assuming no
network delay, the maximum error is the threshold at which a packet is issued,
and the minimum error is zero.

X = f(t) Cheeeee

A
/ \

Smoothing trajectory New trajectory

\

Original trajectory

—-’
Smooth Time, tm time
4 Error IL
Threshold '
Ol .
—
time
Figure 3-25 - Error Beatween Smoothed Trajectory and Dead
Reckoned Trajectory for SIMNET Smoothing. Because the smoothing
velocity is linear, and the dead reckoned velocity is linear, the distance
between the two trajectories converges linearly over tsm. After the
smoothing is finished, the error is zero until the next appearance packet is
received.

As alluded to earlier, this situation is aggravated by appearance packets
arriving before the smoothing algorithm is completed. Figure 3-26 shows the
effect of packets arriving earlier than expected for the SIMNET smoothing
algorithm. When the first packet is received, the smooth time, ¢3m, is chosen, and
the vehicle traverses the first smoothing trajectory. The second packet arrives
before the first smoothing trajectory intercepts the dead reckoning path. From its
current position in the middle of the first smoothing trajectory, the vehicle must
intercept the second packet's dead reckoning trajectory. Since the error between
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the first dead reckoning trajectory and the second packet position is, by definition,
the threshold, there is an additional position error, X, which now separates the
vehicle from the first dead reckoning trajectory. The total error is then Threshold
+ X. The second graph in Figure 3-26 shows position error as a function of time.

To guarantee that position error never exceeds the threshold, ¢s;;; must be
selected such that the smoothing algorithm always finishes before the next packet
arrives. Since SIMNET uses a first order dead reckoning algorithm, the packet
rate was a function of the acceleration of the vehicle. It was found that the time
between two packets did not vary very much from the time between the two most
recently received packets. A second order dead reckoning algorithm will be
somewhat harder to predict since the difference in acceleration with respect to
time (jerk) may not vary as smoothly as acceleration.

There is a tradeoff between selecting a very short ¢;,, and the perceived
"smoothness" of the trajectory. Figure 3-26 shows the "optimized" smoothing
acceleration profile, presented in the previous section, for two different values of
tsm. As tgm decreases, acceleration increases (refer to equation (7)). At a certain
value of ¢gp,, acceleration will exceed a level which is believable by a human
observer. This maximum level should not be exceeded, since it will result in an
unreal looking dynamic situation. It is better to suffer some additional position
error than to present an unreal picture to the user. Since the remote simulation
is unable to exceed the performance envelope of the vehicle, maintaining a cap on
the smoothing acceleration will not result in accumulated position error after
several packets.

Any smoothing algorithm will have the tradeoff of smoothing time versus
vehicle acceleration. Intuitively, if the vehicle gets there sooner it must move
there faster. On a case-by-case basis, acceleration must be balanced with
requirements for guaranteed maximum position error.
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Packet 2
Interceot

Second Smoothing Trajectory

First Smoothing Trajectory

time

M >~

Threshold

Threshold

Packet 2 time
Arrived Early

Figure 3-26 - Error Between Smoothed Trajectory and Dead
Reckoned Trajectory for SIMNET Smoothing When Packet Arrives
Early. Packet 2 arrived before the smoothing trajectory could reach the
intercept point. The position erroris  Threshold + X . |f this happens
repeatedly, the error will continue to grow. For this reason it is very
important to choose tsm sufficiently small such that the smoothing has a
chance to finish before the arrival of the next packet.
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Figure 3-27 - Tradeoff between acceleration and Smooth Time . To

insure that position error does not accumulate due to prolonged smooth

time, it is desireable to shorten the smooth time such that smoothing is
finished before the next packet arrives. Equation (7) shows that if tsm is
reduced, acceleration will increase. Acceleration can increase until it

reaches a believability threshold, which is exceeded in the second graph.

3433 Conclusions and Recommendations

Smoothing is a mechanism by which dead reckoned entities transition from a
previous position,velocity, and acceleration, to an updated set, eliminating error
between the two states over time. There are many algorithms which can reduce
error in systems. Typically these algorithms, such as optimal feedback control
systems, are designed to reduce error as quickly and accurately as possible. In
Distributed Simulation systems a more overriding concern is the believability of
the system and its effect on the goals of the simulation. In light of this
observation, the main requirements for smoothing algorithms are:
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* The smoothing should look realistic, should not be visually noticeable,
and should not distract the user.

¢ The position error between the smoothed entity and the straight dead
reckoned entity should be minimized.

Guidelines for evaluating potential smoothing algorithms are:
* Accelerations on an entity should be minimized during smoothing.

¢ Unpredictable packet arrival time should not induce cumulative position
error.

With these guidelines, smoothing algorithms may be quantitatively, as well as
qualitatively evaluated.

3.4.4 Timebase Correction

This algorithm corrects the visual anomalies caused by different quantizations
of time, due to different base frame rates at sender and receiver. See figure 3-28.

A

Xaf(t)
Interpolated display points

Sending simulator's base frame time

%—»
Recsiving simulator's base frame time

Figure 3-28: Timestamping
Relative timestamping, defined in later versions of SIMNET and in DIS, is

sufficient to define the track as a function of time, and thus allow the receiving
simulation to determine where to display the entity.
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3.4.5 Forward Reckoning Algorithms

As stated earlier in this section, latencies associated with network delay and
internal processing, cause events to be displayed to the user which are outdated by
some small period of time. Some simulator makers have proposed a concept
known as "forward reckoning" to compensate for this delay. Entity states are
extrapolated into the future, and display devices are primed with this predicted
image, such that the events are presented to the user at approximately the same
time as they occur. Figure 3-29 shows the problem that forward reckoning tries to
solve, and Figure 3-30 shows the forward reckoning algorithm. At first glance
this seems to be a clever way to compensate for network and processing latency.
There are some artifacts created by this paradigm, however, which make it less
appealing.

A good way to analyze the effects of forward reckoning is to take a sample case,
and compare the actual trajectory of an entity to a normal dead reckoned display
and to a forward reckoned display. By plotting position as a function of time for
each of these cases, the time and position errors can be compared. For this
example we will examine a missile, initially at rest, fired at a stationary tank 50
meters away. The missile undergoes a constant acceleration of 100 m/s2 for a
period of 1 second before it hits the target. The dead reckoning model will be
second order, and the threshold at which a new packet is sent is 1 meter. Figure
3-31 shows the actual trajectory of the missile as simulated in its host computer.
We will assume a total latency, ¢3, of 250 milliseconds. We will also assume, for
this analysis, that the simulation frame time is small compared to the latency, so
that effects of a discrete frame will not be a factor.

The first task in the analysis is to determine at what times appearance packets
are issued by the missile simulator. At time 0, the missile begins to accelerate.
The time at which the threshold is exceaded can be computed with the equation:

s=2at &)

Where s is the threshold (1 meter), a is the acceleration (100 m/s2), and ¢ is the
time at which the threshold is reached, computed to be 0.14142 seconds. The first
packet, which is transmitted at time ¢, contains:
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Figure 3-29 - Effect of Network and Processing Latency on Correlation

of Events in Time . The top figure shows events as they occur, or rather as the
events are reported on the network by transmitting entities at time t0. The
bottom figure shows the scene as an observer would see it from an observing
entity. The information in the observed scene is not the information currently

on the network, but the information that appeared on the network some time ago
that finally propagated its way through the system. The double arrows indicate
the position error between the displayed scene and the actual position of the
entities at time t0. Note that the explosion event has not yet been displayed by
the observer.
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Normal Processing and Display of Remote Entities

Packet Transmitted Packet Received Information Information
on Network bv Observer ~ sent to CIG Displaved
D ™ 1 D
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Dead Information Information
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L 1 ] | >
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Figure 3-30 - Forward Reckoning.

The top timeline shows that by the time

entity position information is displayed to the user, it has been delayed by t3
seconds from the time it was put out on the network. The bottom timeline shows
the forward reckoning paradigm. Upon receipt of a packet, the entity is dead
reckoned t3 seconds into the future before being sent to the CIG. When the entity
is displayed it should be closer in space to its actual position. The entity is dead

reckoned in the normal way from that point onward.
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distance = S0 m
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Figure 3-31 - Actual Trajectory of Test Case Missile. This is the

trajectory of a missile, as it is perceived by the computer simulating it. The
missile, initially at rest, accelerates at 100 m/s/s, for 1 second, when it hits a
stationary tank. Its velocity goes to O after the hit.

position = 1 meter

velocity = 14.142 m/s
acceleration = 100m/s2

Since the acceleration is constant, the second order dead reckoning model will
match the actual trajectory exactly, up until the time the tank is hit. When the

tank is hit, the missile state is:
position = 50 meters

velocity = 100 m/s
acceleration = 100 m/s2

The missile velocity goes to 0 after the hit, so the second packet will be
transmitted when the dead reckoned model puts the missile at the 51 meter mark.
Using equation (1) with a value of 51 for the distance, the time is computed to be
1.00995 seconds. The parameters in the second packet will be:
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position = 50 meters
velocity = 0 m/s
acceleration = 0 m/s2

Knowing what the network packets contain, and knowing when they are
transmitted, the dead reckoned and forward reckoned trajectories can be
constructed. Figure 3-32 shows the actual trajectory of the vehicle alongside the
computed position at the receiver's host, and the final displayed trajectory, for
normal dead reckoning. The first packet is transmitted at 0.1414 seconds and is
received at 1 + 0.1414. This causes a 1 meter jump in the position of the missile.
The computed missile trajectory then follows the actual trajectory with a lag of ¢1.
The displayed trajectory is exactly the same as the computed trajectory, with an
additional lag of t3 - t1, or 150ms. The total effect of latency and dead reckoning is
a time lag of 250 ms and two 1 meter jump discontinuities in the.displayed
trajectory. This solution represents the worst case with respect to time lag, but

the best case as far as position accuracy. The largest position error that will occur
is the threshold.
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Figure 3-32 - Displayed Position of Missile as Compared to Actual

Trajectory for Normal Dead Reckoning . The computed trajectory has a
latency of t7, which is the network latency, with respect to the actual

trajectory. The first packet is sent at 0.1414 seconds, so it does not arrive

until t7 + 0.1414, causing the sharp 1 meter correction in the computed
trajectory. The displayed trajectory is exactly the same as the computed
trajectory, with a time lagof  t3 - t7, or 150ms in this case. The total time lag
from the actual trajectory to the displayed trajectory is t3, or 250 ms. The
positional error, however, is never more than the threshold, which is 1 meter.
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Figure 3-33 shows the displayed forward reckoning trajectory next to actual and
computed trajectories. When the first packet arrives at t1 + 0.1414 (241.14ms), the
simulation host attempts to compensate for the network and processing latency of
250ms by extrapolating the kinematic information in the packet. The packet
information is 100ms old due to the network, and there is another 150ms delay
before the image is displayed. By using the equations:

s=so+Vt+%at2 2

V=at 3)

and the packet parameters:

sQ = 1 meter
V= 14.142 m/s
a = 100 m/s2

the predicted position and velocity, computed for display at 391ms (241 + 150),
are:

8 = 7.66 meters
V =39.14 m/s

Instead of a 1 meter threshold jump discontinuity as experienced in normal
dead reckoning, the forward reckoning has exaggerated it to 7.66 meters. From
the 391ms mark to the 1 second point the forward reckoning trajectory faithfully
follows the actual trajectory of the missile in both space and time. When the 1
second point is reached, however, the actual model diverges from the forward
reckoned model. The forward reckoning algorithm will not hear about the
divergence until the 1 meter threshold is exceed, and after a 100ms network delay.
This total delay is 109ms after the impact, at the 1109ms mark. By this time, the
image generator has been primed with the state of the missile as it was predicted
for the 1250ms mark. Using equation (1), with a time of 1250ms, we find that the
image generator was primed with a distance of:

8(1250ms) = 78.125 meters

This is an error of over 28m, or 28 times the dead reckoning threshold.
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Figure 3-33 - Position and Time Error in Forward Reckoning. When the
first packet arrives, the receiving host computer extrapolates the kinematic
information 250ms into the future to compensate for network delay and
processing delay. For our missile, the initial position jump is 7.66m. The bulk

of the displayed trajectory does coincide with the actual trajectory in both

time and space. By the time the second packet arrives, however, the CIG has

been primed with a very inaccurate position. The missile will be displayed

28m beyond the impact point.

Another artifact of forward reckoning is the discorrelation of discrete events
with forward reckoned entities. Figure 3-33 shows that just before the second
missile appearance packet is issued, an impact packet is issued. Being that
impact packets are discrete events, they cannot be predicted in advance, nor can
they be easily attached to the entity that caused it. The explosion will be painted at
the 50 meter impact point just before the missile is painted at the 78 meter point.
Figure 3-34 shows what the simulated picture might look like from above if both
the missile and tank were in motion and the observer was forward reckoning both
entities.
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Figure 3-34 - Discorrelation of Events and Entities Due to Forward
Reckoning . An observer forward reckoning the missile and the tank will see
the missile pass through the tank at the impact point, fly an additional 28
meters, then see the explosion at the point in space where the two entities
collided. The tank and missile will then have to be pulled back to their
collision point.

The missile example is an extreme case of undesirable behavior due to forward
reckoning. In general, the error between a forward reckoned position and a
straight dead reckoned position, as measured when a new packet arrives, is given
by:

As=so+AVtﬁ-+%Aatﬁ-2 @)

Where s( is the dead reckoning threshold, AV is the velocity difference between
the standard dead reckoned velocity at the time of packet receipt, and new velocity
from the packet, Aa is the acceleration difference between previous acceleration
and new acceleration from the packet, and tfy is forward reckoning time (250ms

in this case). Note that when tfr = 0 (no forward reckoning), As becomes the
threshold.
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Forward reckoning provides a mechanism for displaying events to a user in a
remote distributed simulation node that more closely correlate to their actual
occurrence in time. This prediction mechanism, however, causes two artifacts
which degrade the simulation. Forward reckoned entities can deviate from their
true trajectory by a distance much greater than their threshold, and forward
reckoned entities become discorrelated in space and time with discrete events and
other forward reckoned entities. These two artifacts jeopardize the believability of
the simulation and degrade the effectiveness of the system.

3.4.6 Object Handover

Network delays and processing delays create latencies between the time when
events actually occur, and the time when they are displayed to a user in a remote
simulation node. The importance of the correlation of these displayed events with
the time and position of actual occurrence is a function of the simulation task.
For Distributed Simulation, we assert that it is more important, in general, for a
user to see a cohesive, plausible view of the world, than it is for displayed events to
correlate in time with their occurrence. In other words, we'd rather the user see
a well coordinated picture of what happened a fraction of a second ago, than for
him to see an uncoordinated, disjoint view of what's happening at this very
moment.

There are times, however, when an activity must be presented to the user in a
more timely fashion for accomplishment of the simulation task. One example of
this situation is the terminal guidance of weapons.

Figure 3-35 shows the problematic situation of terminal guidance for a missile
being simulated by a launching node, and a target simulated by a remote node.
From the standpoint of the airplane node, the missile is seen at a distance which
is not current. The most recent information from the missile node has been
delayed by the network and processing, so it appears at a position it occupied
sometime in the recent past. The airplane, however, sees itself at its current
location. The apparent distance between the two is larger than it actually is. The
missile has the same problem. It sees itself at its current correct position, but the
airplane is occupying a position in its recent past. The net effect is that the
missile will decide on its impact with the plane long before the plane needs to
make its final maneuver to escape. This is unfair to the pilot and jeopardizes the
simulation's credibility.

A solution to this problem is to "migrate” the missile from the firing node to
the airplane node. This entails packaging up the missile's state, and sending it to
the airplane so the airplane node can simulate it with much greater accuracy.
This operation is graphically depicted in Figure 3-36.

There are many other reasons to transfer ownership of objects from one node
to another. A general paradigm for the transfer of objects in Distributed
Simulation is warranted.
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Figure 3-35 - Latency Problem in Terminal Guidance. The top picture shows

the impression of the state of both entities from the airplane’s point of view. The
airplane sees itself in its actual position, while the missile is rendered further
away due to network and processing delays. The second picture, however, shows
that the missile sees itself in the correct position but sees an old version of the
airplane position. The missile will decide it has hit the airplane before the

airplane has a chance to make a succeful final avoidance maneuver.
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Figure 3-36 - Object Migration Solves Terminal Guidance Problem. By

packaging up the missile state and sending it to the airplane node across the
network, the airplane node can simulate the airplane as well as the missile. All
problems associated with network and processing latency disappear when both
entities are simulated on the same node. This is a general solution for many
problems which require a tighter coupling between two remote entities.
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4. Visual/Sensor Correlation

The ability to correlate visual and sensor simulations is a primary factor in
determining the value of the simulation for its intended application. For example,
in training aircrews, high fidelity Weapon System Trainers (WSTs) are required
to correlate the Visual scene with Radar displays, the Electronic Warfare (EW)
environment, Electro-Optical (EO) sensors, and auditory cues. Each of these
sensory inputs is typically provided by an independent simulation operating on a
unique local database. Figure 4-1 is a top level diagram illustrating the major
visual/sensor components in a typical WST and the corresponding data base
generation processing that is performed for the WST.
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ELECTRO-OPTICAL SYSTEMS
oA, iz || [PoLyaones, svaTeM
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Figure 4-1: Typical WST Configuration and DBGS Processing

In the case of WSTs, correlation is usually considered in the specification and
design of the overall system. Thus the individual simulations are designed from
the outset to provide a high degree of correlation with each other and are tested to
insure that the necessary degree of correlation exists.

For the general DIS application, however, that will not be the case. DIS is
required to address issues associated with determining the level of correlation
between systems that are specified and built independently of each other. Further,
the systems will be built with incomplete knowledge of the capabilities of the other
systems potentially involved in large-scale simulation exercises. In fact DIS
exercises may involve multiple implementations for the same type of cue. For
example, different visual systems using different databases and display systems
may be involved. Thus DIS will not only have to address correlation across
different visual and sensor systems, but also correlation between different
implementations of the same simulation system.

As suggested by the referenced figure, sensor data correlation is a function of
the correlation of the local databases and the sensory processing/rendering
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systems. The databases are dependent on the source data, modeling tools,
modeling fidelity and accuracy, transformation algorithms, and transformation
parameters. The sensory processing/rendering systems are dependent on the
processing/rendering models or algorithms implemented in the various
simulation devices. Note that this fits the correlation model introduced in
paragraph 2.5.

The following sections discuss some of the problems caused by visual/sensor
inconsistencies. A major focus is given to the terrain aspects of the problem, both
from a data base standpoint and a processing standpoint, since terrain is central
to visual and sensor simulation systems. We then describe a correlation
measurement methodology using the terrain example. Finally, we show the
relationship of the visual/sensor correlation problem to other correlation issues in
the context of the proposed DIS Data Base Standard that is described in Section 4 of
Volume I of this document.

4.1 Effects of Visual/Sensor Inconsistencies

Lack of correlation between visual and sensor simulations can cause several
effects that can be observed by the exercise participants and may affect the
outcome of the exercise. The following sections address several of the anomalies
that can occur as the result of uncorrelated visual/sensor cues. We discuss the
problems caused by terrain representation differences, visual scene
processing/rendering differences, high resolution sensor simulation, electronic
warfare simulation, and environmental effect simulation.

4.1.1 Terrain

Terrain representation and rendering has been one of the more intractable
challenges to visual simulation system designers. The problem, simply stated, is
the reduction of terrain detail with increasing range without the introduction of
artifacts in the displayed scene. Early solutions bypassed the problem entirely by
requiring fixed terrain data bases with no changes allowed in real-time (the
SIMNET solution). Later solutions introduced the concept of multiple, discrete
terrain Levels of Detail (LOD) controlled by real-time load management
algorithms. The problems these latter approaches introduced were sometimes
less than desirable - e.g., terrain transition zones where two LOD's of the terrain
would co-exist, creating an ambiguity in the representation of the world, and
other visual artifacts. However, load managed terrain rendering was (and is)
considered essential in the world of finite and very expensive IG resources.

In recent years, with the advent of the real-time depth buffer and lower cost
visual systems, it has become feasible to develop methods to continuously vary the
terrain representation in real time. The continuous adaptation of the terrain
results in no terrain ambiguities (no more overlap) and, if implemented correctly,
virtually no visual artifacts. However, even with this level of control over the
terrain surface we are left with the problem of a dynamically changing
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environment, which is difficult enough to cope with in a single simulator, let
alone a network of heterogeneous simulators.

Some of the more significant problems caused by terrain differences (both
static and dynamic) between linked simulators are intervisibility, ground vehicles
detached from the terrain surface, collision and weapon impact, as discussed
below. In the discussion that follows terrain refers to the mathematical
representation of the Earth's surface, including the ground and the fixed objects
that reside on the Earth's surface, such as roads, trees and buildings.

Intervisibility Different representations of the terrain can result in the ability
of player one to see player two when player two can't see player one, and vice
versa. For example, a trench or ravine may exist in player one's data base where
flat ground appears in player two's data base. Player one believes he is obscured
from view, but player two sees him fully exposed.

Ground Vehicles Detached from Terrain Player one moves across the terrain
surface correctly in his data base, but in player two's data base player one
occasionally detaches from the terrain surface, and appears to float above and/or
sink below the terrain surface. Of course, this can be avoided if player two
overrides player one's vertical position data and forces it to follow his terrain
surface, but it does not solve the intervisibility problem.

Collision Player one collides with a fixed structure in his data base, but in
player two's data base the structure is slightly misplaced and therefore player one
appears to not collide with the structure from player two's viewpoint.

Weapon Impact Player one fires his weapon at player two and the round
appears to impact player two's vehicle because he has an unobstructed view.
Player two observes the muzzle blast of player one, but because he has positioned
himself behind a large boulder in his data base, player two believes that he has not
been hit.

4.12 Visuals

Differences in the performance of visual systems that may be interacting in a
DIS environment can compound the terrain data base inconsistencies described
earlier. Examples of error sources induced by different visual systems are feature

position errors, scene management induced errors, and weather/atmospheric
effects.

Feature Positioning The positioning of features (buildings, trees) on the
Earth's surface is a function of the precision of the calculations, the Earth
reference model, and the strategy used to block the simulator data base into
manageable pieces, among other things. Double precision floating point
calculations are needed to achieve sub-foot positioning accuracy on the surface of
a geocentric Earth. A spherical Earth model will induce significant positioning
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errors compared to a WGS-84 ellipsoidal Earth model.4 A data base blocking
strategy that approximates the curved Earth with contiguous flat "plates” will
induce significant feature positional errors proportional to the distance from the
center of each plate.

Scene Management Scene management controls are used by visual
simulators to manage the processing load such that channel polygon loading
obeys prescribed min and max tolerances, to emphasize one feature type over
another (e.g., terrain fidelity may be more important than cultural feature fidelity
in a given situation), and in general to maximize the utility of a finite set of
resources for a given application. Level of detail controls, model/polygon blending,
and range limits are some of the mechanisms that are employed.

The algorithms and control strategies used to manage scene loading can have
a significant effect on the relative appearance of two otherwise identical data
bases - and for that matter two otherwise identical simulators. Consider the case
where player one's simulator switches terrain detail on a range basis, such that
terrain polygon density reduces with increasing range. Player two's simulator,
on the other hand, may force terrain density to be constant at all ranges, thus
sacrificing cultural feature density and/or terrain range for a given polygon
budget. The rendered scene in these two cases would be quite different, even
though the simulators and the data bases were identical.

Atmospheric Effects The algorithms used to simulate weather and other
atmospheric effects such as fog, rain and battlefield smoke can vary from
simulator to simulator. This can result in the ability to observe a given target in
the weather in one simulator but not the other. See paragraph 4.1.5.

4.1.3 High Resolution Sensors

A common problem in simulation today with stand-alone WST's is the
correlation of high resolution sensors with OTW Visuals. For example, Synthetic
Aperture Radar (SAR) may have a range well beyond visual range, and yet exhibit
a ground resolution measured in feet. Similarly, narrow field-of-view EO sensors
such as FLIR's and LLLTV's may be able to see well beyond visual range under
poor OTW visibility conditions (smoke, darkness) with very high resolution. Often
these types of simulations are implemented by extending the OTW Visual system
with sensor simulation hardware. This often mitigates the correlation problem,
but it does not completely eliminate it because of the data base update rates
irlwolved with high resolution sensors, which is often exacerbated by fast sensor
slew rates.

The typical work-around with today's simulators is the restriction of high
resolution data to small patches of high detail. Also, significant features are
tagged for inclusion in all views of the simulation system. These strategems have
the undesirable effect of cueing the participant to "look for the high resolution
patches". As technology advances it will be possible to increase the size of these
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patches in a gradual fashion, and reduce false cueing. The off-line and real-time
management of these data sets of varying size and resolution presents a
significant correlation challenge.

4.14 Electronic Warfare

The outcome of modern battlefield engagements is becoming increasingly
reliant on effective use of the electromagnetic spectrum. For this reason extensive
use of ECM and ECCM techniques have become an integral part of any
comprehensive battle plan. Consequently the EW (Electronic Warfare) portion of
simulation efforts has also increased in scope and in priority. Four aspects of the
EW simulation problem are mentioned below. Additional information is provided
in section 7.2.

First, in considering electronic warfare systems, it must be recognized that
faint signals must be considered and that a very significant amount of data on the
signal structure and the spatial/temporal characteristics of the beam are
required. Hence antenna patterns and signatures must cover a sizeable fraction
of 4 pi space. At the same time, many radiations exist, including numerous ones
from highly complex emitters (jammers, advanced radars, etc.).

Second, regardless of the update rate on information between linked
simulators, there are always processes in EW which are significantly faster than
any update rate (up to 10 KHz rates would be required if a brute force approach
were used). At the same time there are long, complex actions which can
adequately be described by defining action, initiation time, and electronic dead
reckoning.

Further, EW simulation does not permit an approach in which a sensor
communicates only with its target entity. Every entity with an intercept receiver is
a potential receiver of every signal. The path from every emitter to every
appropriate receive entity must be considered to determine whether the received
signals are above the thresholds of the equipment when considering weather and
such terrain effects as ducting and diffraction (if these are part of the simulator).

Still a third part of the problem lies in the effect of weather and natural
environment effects on the electromagnetic elements. Advanced simulators will
contain a complex weather model, varying in three dimensions and time. This
weather produces an appreciable effect on electromagnetic propagation which
can be unique between each pair of entities even if they are at the same range (so
that the r-squared losses are identical).

This imposes a coherence problem between classes of simulators similar to
that between simulators with different terrain fidelities. In the terrain case,
visibility (radar or optic) is different for the two entities in different simulators
because one simulator recognizes a level of detail which includes an occulting
feature. In the weather effects case, the problem is that of differential visibility in
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the RF, IR, or EO area due to intervening weather which is considered in only one

of the simulators.

Finally the fourth part of the electromagnetic problem lies in the coherence
problem to be found in linking high fidelity simulators with electromagnetic
effects such as ducting and diffraction with simulators which either do not
consider such effects, or which use a different level of fidelity in their terrain

simulations. In either case, a similar occulting/obscuration problem exists.
4.1.5 Environment

Environment effects include weather, changes to the terrain (dynamic
terrain), and weapon effects, such as smoke, dust, chaff, and flares. Table 4-1
tabulates some of the major environmental effects on visual and sensor
simulation systems.

ENVIRONMENTAL OTW EO RF INFRARED
EFFECT VISUALS (FLIR, LLLTV, | (Radar, Elint, (Sensors,
. NVG) Jammers, Jammers,
Chafl) Flares)
TEMPERATURE, v
HUMIDITY, SALINITY (ducting)
PRECIPITATION 4 v "4 v
(Reflection and
Attenuation)
HAZE, FOG, CLOUDS, v v v v
DUST, SMOKE, ETC.
SUN, AMBIENT LIGHT v v v
RF JAMMING & CHAFF v ['4 v
‘ (chaff flash) (chaff flash)
IR JAMMING & FLARES 4 4 4
WEATHER CELLS v v v v
(4 dimensional)
BLAST/FRAG v v v
TERRAIN v v v v
(intervisibility) (diffraction)

Table 4-1 Environmental Effects on Simulation

Weather Complex weather is a reality in modern simulators and has a
significant impact on DIS. The basic problem resides with the data base. The
problem is significant since most gaming areas are large and a complex weather
model is four dimensional. Weather not only varies from point to point in three
dimensions but will have weather cells which move in or across the gaming area.
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A secondary problem lies in retaining temporal and spatial coherence,
particularly for violent, moving weather cells which can have major impacts on
IR, EO, and RF.

Weapon Effects Weapon effects are similar to weather effects, the primary
difference being that they are man-made. Weapon effects include dust, smoke,
flares, chaff, flame, explosion, tracers, rotor wash, sea state, and dynamic
shadows. They exhibit many of the same properties as weather effects. The
simulation of these effects can vary widely from simulator to simulator.

Dynamic Terrain When a weapon detonates on the ground it changes the
terrain - craters are formed, buildings are destroyed, and dams burst. Berms
may be erected or trenches dug for defensive purposes. The occurrence of these
transient changes in the environment during an exercise is referred to as
dynamic terrain. Within the DIS environment we will be faced with the task of
determining how differing approaches to implementing dynamic terrain can be
integrated into the same exercise. This topic is discussed further in section 7.1.

4.2 Terrain Data Processing

Terrain data processing from off-line data preparation to real-time processing
and rendering is now discussed, primarily in the context of visual systems. This
will lead to a description of a proposed correlation measurement methodology.

Figure 4-2 illustrates the processing flow experienced by terrain data from the
acquisition of source data in grid form to the intermediate polygonal mesh form of
the Local Data Base and finally to the rendered result as viewed by the warfighter
on the simulator display. The gridded terrain data is similar to Project 2851 SSDB
terrain data; in DIS terminology it is referred to as the BATTLEFIELD Data Base.
The processing that is performed on this gridded terrain data by the Off-line Data
Base Processing and Real-time Simulator Processing devices is controlled by
standardized specifications, called SIMWORLD data, for the off-line and real-time
systems. The intermediate form of the terrain data, the polygon mesh in IG
specific format, is referred to as the simulator Local Data Base.
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Figure 4-2: Terrain Data Processing
42.1 Off-line Data Base Processing

The processing that occurs during the off-line data base generation process is
illustrated in figure 4-3. The terrain data flow is a horizontal slice through the
overall data base generation process; this is shown as a shaded area in figure 4-3.
A terrain grid constrained by topographic features such as water bodies or ridge
lines is proposed as the public, standardized form of the terrain data. The terrain
grid is then processed, resulting in a polygon mesh that approximates the grid
constrained by topographic features.

|mDATAIA!
(SBMILAR TO P245 1 GTOR)

CORRECTED BOURCE
DATA BASE
(SAHLAR TO PaISt $A08)

Figure 4-3: Typical Data Base Generation Processing Flow
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422 Real-time Simulator Processing

Figure 4-4 illustrates a typical real-time visual system processing flow.
Terrain polygons are culled based on field of view and range, discarded based on
projected size, orientation, or occlusion by another feature, and transitioned from
higher to lower detail representations by Level Of Detail (LOD) and range controls.
The net result is that the terrain surface dynamically changes in real-time; the
number of terrain polygons that survive to the display continuously varies under
the control of the real-time load management controls. Therefore, the load
management algorithm will bear heavily on the ultimate interoperability of a
given visual system.

HOST
COMPUTER
LOCAL SCENE POLYGON PIXEL
DATA CONTROL [~™] PROCESSING [™] PROCESSING
BASE
+ POLYGON « DATA BASE « CULLING *OCCULTING « RESOLUTION
MESH UPDATE +LEVEL OF DETAL  *FADING « CONTRAST
* TEXTURE - PROCESSING <BLEND DISCARD  +SHADING + BRIGHTNESS
CONTROLS « BACK-FACE « TEXTURING «COLOR
«LOAD DISCARD * ANTFALIASING
MANAGEMENT + COLOR ASSGT * SENSOR POST

* PROJECTION PROCESSING
Figure 4-4: Typical Real-time Visual System Processing Flow
4.3 Correlation Metrics and Interoperability

The overall framework for developing and testing terrain correlation metrics
and for determining interoperability is now presented; see figure 4-5. Data is
captured at three points: source data in grid form, local data base data in polygon
form, and the end result of the rendering process in pixel form. Correlation
metrics are required to compare the local data base with the source data, and to
compare the processing results with the local data base. These metrics are then
used to determine interoperability by comparing them with "exercise validity”
criteria which are derived from consideration of the application and the types of
simulation devices that are planned for the exercise. It is expected that exercise
validity criteria will need to be developed empirically, and then tested and refined
based on subsequent warfighter-in-the-loop experiments.
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Figure 4-5: Correlation And Interoperability Framework

In this section we have been focusing on terrain/visual correlation. It is
important to keep in mind that there are many dimensions to the correlation
problem when viewed in the context of a Distributed Interactive Simulation
environment. A strawman organization for a data base structure was presented
in Volume I of this document, and is repeated here as table 4-2. This data base,
consisting of SIMWORLD, BATTLEFIELD and SESSION components, is intended
to characterize all of the data and entities that comprise the electronic battlefield.
The task before us is to develop correlation metrics and ultimately interoperability
criteria for all of the data types and entities listed for each of the intended
applications - e.g., ground, air-to-ground, air-to-air, low-level flight, air defense,
and so on.
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DATA BASE ELEMENT TYPE/CHARACTERISTIC
Cartographic Data Static Data

Terrain Gridded terrain data
Culture Points, lineals, areals
| Models Geometry, attributes
Texture - Imagery

Platform Data Entities
Vehicles Geometry, appearance,
| Lifeforms dynamics, articulation,
Sites (relocatable) kinematics

Munition Data Entities
'Guided Geometry, appearance,
Non-Guided dynamics, kinematics

Environment Data ~Entities

Weather Fog, lighting, TPH, wind

Atmospheric Effects

Smoke, dust, chaff, flares

Dznamic Terrain a

Eraters, berms_:, buildin

Electromagnetic Da _ Components
| Visuals Rendering, load management
| Electro-Optical FLIR, NVG, LLLTV ]
([Radar Ground mapping, SAR, TFR
Electronic Warfare Elint, jammers, C31
Radio Nets _ - Digital Voice Communications
Session Data Control Data

Network Initialization

ﬁpolw

Entity Initialization

Position, attitude, stores, etc.

Table 4-2: Strawman DIS Data Base Organization
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5. Overload Management
5.1 Network Overload Management

5.1.1 DIS Systems Are Queueing Systems

DIS is a network. Like any network, it can be thought of as a system of queues.
Both communications links (e.g., T-1, 56Kbit) and communications processors
(e.g., routers, CIUs/CAUSs, simulation nodes) can be modeled as queues. Each
queue has a maximum number of elements (a length), and a service time for each
element.

This Section examines what queues can be overloaded in a DIS system, what
anomalies are manifest to the warfighters as a result, and what techniques can
be used to minimize these anomalies.

5.1.2 What Queues Can be Overloaded?

Two types of queues can become overloaded. Communications link queues
have limited bandwidth with which to transmit packets, and communications

processor queues have limited compute power with which to route or otherwise
process packets.

In order to better separate the effects of these overloads, we first examine the
effects of limited bandwidth while ignoring any effects of limited compute power.
Next, wae examine the effects of limited compute power while ignoring limited
bandwidth.

5.1.2.1 Communications Link Queues

DIS traffic is routed over an Internet of WANs and LANs. If the packet arrival
rate at a given communications link queue exceeds its capacity for any length of
time, the size of the queue will tend towards infinity. This means that packets
may sit on the queue for different lengths of time, thus experiencing varying
latencizs. Further, since the queue is necessarily of finite size, packets will be
dropped.

Such will happen, however temporarily, when the underlying network is not
sized for the maximum burst rate of traffic. This may be likely if either dynamic
multicasting or dynamic CIU-to-CIU routing is used, because then the traffic
pattern over any given link in the network may be very hard to estimate a-priori.

Varying latency is manifest to the warfighter as discontinuous battlefield
entity trajectories on the out-the-window display (See Section 3.) Smoothing may
make the trajectory appear more continuous, but it may be computationally
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expensive than, and will not ensure that the trajectory is physically realistic to the
warfighter. (See Section 3.)

Dropped packets may cause even more discontinuous trajectories, because the
"correcting” update does not arrive at all. Further, events such as direct fire
impacts may be dropped, causing an anomaly to the shooter. For instance, a
105mm HEAT impact on an M2 should result in a catastrophic kill, and the
shooter's tank will indeed paint the impact, but if the detonation packet is
dropped, the M2 will never run its damage model and hence will not explode.
This is sure to be disconcerting to the tank's crew.

5.12.2 Communications Processor Queues

The effects of communications processor queue overload are the same as those
for communications links, but some of the causes are different.

The maximum per-packet arrival rate the communications processor can
support is inversely proportional to its per-packet service time. This service time
is a function of the processing required for each packet. Different processors
perform different types of processing,

For example, network routing can be arbitrarily complicated, and its execution
time may vary (e.g., the number of multicast groups in use, the number of
source/destination network pairs).9 For simulation nodes, the DIS per-packet
processing time may be a function of the number of entities in the exercisel0, and
a function of how much link-layer hardware support is available. For

CIUs/CAUSs, the per-packet processing time may be a function of the content-
based compression that is in use.

5.1.3 Techniques for Overload Management

Several techniques promise to help work around bottlenecks and eliminate
their visual effects. However, each technique exacerbates another bottleneck or
introduces more potential anomalies.

5.1.3.1 Conserve Bandwidth With Content-based Compression

CIUs (and CAUs) can minimize WAN bandwidth by compressing DIS packets
based on their content. For instance, the DIS Entity State Update arguably
constitutes the bulk of DIS traffic, and a significant fraction of update contents
does not change from update to update (3 padding fields, markings, entity type,
etc.). CIUs could conserve WAN bandwidth by defining a CIU-to-CIU protocol
which contains multiple, highly compressed Entity State Update packets, and

9 Multicast Extensions to OSPF. J. Moy, Proteon, Inc. November, 1991.
10 The entity-identifier lookup time may be a function of the number of entities.
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which transmits only changes. Such a scheme trades off network bandwidth at
the cost of increased computation at the CIUs, and some additional latency. This
cost increases linearly with the number of entities.

CIUs could arguably conserve WAN and LAN bandwidths by performing DIS
Protocol-level routing, forwarding only those packets that "need to be" forwarded.
This probably necessitates a CIU-to-CIU protocol in order to perform the time-
varying routing.

Again, this scheme trades off bandwidth for computation which increases
linearly with the number of entities.

5.1.3.2 Conserve CPU Power With Geographical Multicast
Addressing

Geographically-based multicast groups have been proposed as a technique to
minimize the CPU power needed to filter packets received at simulation nodes. In
such a scheme, network layer multicast identifiers (MCIDs) would be assigned to
regions of the terrain (e.g., grid squares). Individual simulations would then
subscribe to the MCIDs of the region that they occupy, and also surrounding
regions. This would assure that they received only "interesting” entity state
updates.

The assumption underlying this scheme is that filtering on MCIDs is
computationally cheaper than filtering on DIS contents. This may not be true.
Secondly, the much larger number of MCIDs may add to the cost of routing and

receiving packets, because the list of MCIDs may be much longer than without
such a scheme.

5.1.3.3 Apply Parallel Processing

This is the brute-force approach to coping with increased computation
requirements of the communications processors. Per-packet routing and
processing is an inherently parallelizable.

CIUs/CAUs and local simulation nodes are candidates for this approach.
Unfortunately, it results in increased recurring cost.

5.1.3.4 Prioritize Traffic

It is important to note that there really are no packets that are unnecessary.
Entity State Updates, the most obviously expendable packets, are generated only
when absolutely necessary to maintain space-time coherence (see Section 3).

However, in the event that traffic exceeds either bandwidth or CPU capacity,
prioritized traffic allows a graceful degradation. Packets that are lower priority
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can be dropped. Again, entity state updates, which constitute the bulk of traffic,
can be sent at a lower priority than combat events.

A drawback is that if combat events are sent at a higher priority than entity
states, and if the network in fact delivers higher priority traffic more quickly than
lower priority traffic, then the events can become dislocated in time with respect to
the state updates.

Again, any dropped packets can disrupt space-time coherence.

5.1.4 Architecture Support for Network Overload Management

The two-tier network architecture provides separation and localization of DIS
Cells to enable content based compression and filtering in the CIUs.
Geographical multicast addressing can be supported in the top tier network,
alleviating CIU/CAU loading. Parallel processing can be implemented in the
CIU/CAU or in individual nodes, as can prioritization schemes.

52 CPU

Distributed simulation host CPUs are typically sized to meet their own needs
as far as vehicle simulation, plus, they maintain a certain computational budget
for dead reckoning and processing remote entities. There are two main
mechanisms for managing computational overload on the host CPU; filtration,
and dynamic algorithm switching.

When a packet arrives at a simulation node, several levels of filtration can be
applied to the packet to determine whether it should be rejected or not. The very
last rejection tests are the most intelligent. These might correspond to rejecting
entities which are out of range, or not of primary interest. The remaining packets
are placed on target priority lists as described in section 5§.2.2.1. The priority lists
define a pecking order for the importance of remote entities to the host entity. The
primary use of priority lists is to prioritize the entities sent to the CIG for
rendering. Most CIGs have a limited number of moving models that they can
paint each frame. Each entity individually decides which remote entities are
most important for it to see. This process of filtration and prioritization results in
less CPU power being spent on remote entities.

Though filtration reduces CPU computational load by eliminating
uninteresting entities, it is still possible for the CPU to be overloaded by the
remaining entities. Because entities are sorted into priority lists, a simulation
host can selectively downgrade the processing requirements for individual
entities based on their priority and other aspects of their state. Table 5.3.1 shows
some of the downgrades that a CPU might make if its computational budget were
exceeded.
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Table 5.3.1

Dynamic Algorithm Switching
(In order of degradation)

Algorithm

When to Switch

Rationale

Rotational Smoothing
(Computational load
mostly occurs upon
receipt of packet)

Tum off, beginning with
low priority vehicles,

up until rotations
become visible.

Rotational smoothing can only
be discerned very close up.
Position jumps can be seen
at a much greater distance.

Rotational Dead
Reckoning

(Heavy computational
load each frame)

Turn off after rotational
smoothing is eliminated,
low priority vehicles
first, up until noticeable
range.

At great distances, rotation
is still less perceptable than
position jumps. Positional
smoothing still takes priority.

Positional Smoothing
(Computational load
mostly occurs up