
Proceedings of the

IFIPWG11.3

Eighth Annual
WORKING CONFERENCE

on

DATABASE
SECURITY

Bad Salzdetfurth, Germany 23 - 26 August 1994

sponsored by

IFIP Working Group 11.3 University of Hildesheim

Editors

J. Biskup, M. Morgenstern, C. Landwehr

ISSN 0941-3014 Hildesheimer Informatik-Berichte 20/94, August 1994,
Universität Hildesheim, Institut für Informatik, 31141 Hildesheim, Germany

7pStTH8üi!SÖK'^ATÖfläS* &

19951027 015 » -S-fr-;--, * , - * „^^.^^ w "■■!"■ «fcff*W»H

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC

CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO

NOT REPRODUCE LEGIBLY.

Preface

These proceedings contain the papers presented at the Eighth Annual IFIP WG 11.3 Working
Conference on Database Security held in Bad Salzdetfurth near Hildesheim, Germany, August
23-26, 1994. The conference has been sponsored jointly by the International Federation for
Information Processsing (IFIP) Working Group 11.3 on Database Security and the University of
Hildesheim. Furthermore the U.S. Office of Naval Research supported travel of many U.S.
participants. As with its predecessors the purpose of the conference was to present original work
in database security research and practice, to enable participants to benefit from personal
scientific discussions and to expand their knowledge, to support the activities of the Working
Group, and to disseminate its results.

All submitted papers were reviewed by working group members and a small number of external
reviewers. Based on these evaluations 18 papers were finally accepted for presentation. In
addition the program included a session on status reports on current projects and a panel
discussion on perspectives on database security. These sessions are also documented in these
proceedings by short abstracts.

We highly appreciated two invited lectures that are also included in these proceedings. Ab
Bakker from BAZIS, Leiden, Netherlands, presents his deep insight into security in health care
systems, and thereby we were able to continue the discussion of security in this important field of
application. Klaus Dittrich from University of Zürich, Switzerland, challenges the security
community with current trends in database technology to which he himself has substantially
contributed.

A Working Conference is based on the joint efforts of many people. We thank all of them
sincerely: the authors of submitted papers, the reviewers, the participants, in particular the invited
speakers. We are also particularly grateful to Jimmy Brüggemann and Christian Eckert for local
organization.

Program Co-Chair Program Co-Chair IFIP WG11.3 Chair

Joachim Biskup
Institut für Informatik
Universität Hildesheim
Samelsonplatz 1
Postfach 101363
D-31113 Hildesheim
+49(5121)883-731 (voice)
+49(5121)883-732 (fax)
biskup@informatik.uni-hildesheim.de

Matthew Morgenstern
Design Research Institute
Cornell University
5144 Upson Hall
Ithaca, NY 14853
U.S.A.
+ 1(607)255-9899 (voice)
+ 1(607)254-4742 (fax)
morgenstern @ cs.cornell .edu

Carl E. Landwehr
Naval Research Laboratory
Code 5542
4555 Overlook Ave., SW
Washington, DC 20375-5000
U.S.A.
+ 1(202)767-3381 (voice)
+ 1(202)404-7942 (fax)
landwehr@itd.nrl.navy.mil

OFFICE OF THE UNDER SECRETARY OF DEFENSE (ACQUISITION)
DEFENSE TECHNICAL INFORMATION CENTER

CAMERON STATION
ALEXANDRIA, VIRGINIA 22304-6145

"KSRIO DTIC-OCC

SUBJECT: Distribution Statements on Technical Documents

OFqoE °!: NAVAL RESEARCH
CORPORATE PRQ^RA.viS DIVISION

ONR 353
T0: 800 NORTH OUINCY STREET

[n, ARLINGTON, VA 22217-56C0

[^ 1. Reference: DoD Directive 5230.24, Distribution Statements on Technical Documents,
£jS 18 Mar 87. /

X 2. The Defense Technical Information Center received the enclosed report (referenced
x ^ below) which is not marked in accordance with the above reference.
\4) CONFERENCE PROCEEDINGS

CV N00014-94-1-0830
fV^ TITLE: IFIG WG 11.3 WORKING
\S CONFERENCE ON DATABASE SECURITY

3.' We request the appropriate distribution statement be assigned and the report returned
to DTIC within 5 working days.

4 Approved distribution statements are listed on the reverse of this letter. If you have any
questions regarding'ihese statements, call DTIC's Cataloging Branch, (703) 274-6837.

FOR THE ADMINISTRATOR:

1 Enc, GOPALAKRISHNAN NAIR
Chief, Cataloging Branch

FL-171
Jul93

DISTRIBUTION STATEMENT A:

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

DISTRIBUTION STATEMENT B:

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES ONLY;
(Indicate Reason and Dale Below). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED
TO (Indicale Controlling DoD Oflice Below).

DISTRIBUTION STATEMENT C:

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND THEIR CONTRACTORS;
(Indicale Reason and Dale Below). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED
TO (Indicate Controlling DoD Office Below).

DISTRIBUTION STATEMENT D:

DISTRIBUTION AUTHORIZED TO DOD AND U.S. DOD CONTRACTORS ONLY; (Indicale Reason
and Dale Below). OTHER REQUESTS SHALL BE REFERRED TO (Indicale Controlling DoD Office Below).

DISTRIBUTION STATEMENT E:

DISTRIBUTION AUTHORIZED TO DOD COMPONENTS ONLY; (Indicate Reason and Dale Below).
OTHER REQUESTS SHALL BE REFERRED TO (Indicale Controlling DoD Olfice Below).

DISTRIBUTION STATEMENT F:

FURTHER DISSEMINATION ONLY AS DIRECTED BY (Indicale Controlling DoD Office and Date
Below) or HIGHER DOD AUTHORITY.

DISTRIBUTION STATEMENT X:

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND PRIVATE INDIVIDUALS
OR ENTERPRISES ELIGIBLE TO OBTAIN EXPORT-CONTROLLED TECHNICAL DATA IN ACCORDANCE
WITH DOD DIRECTIVE 5230.25, WITHHOLDING OF UNCLASSIFIED TECHNICAL DATA FROM PUBLIC
DISCLOSURE, 6 Nov 1984 (Indicale dale of determination). CONTROLLING DOD OFFICE IS (Indicate
Controlling DoD Office).' .

The cited documents has'been reviewed by competent authority and the following distribution statement is
hereby authorized.

ßL
(Slalemenl) -£npPM-°F NAVAL RESEARCH

*m™z PR°GMMS DIVISION

GOO NoRm QUINCY STR

ARUNüfON, VA 22217-5660

(Controlling DoD Office Name)

(Reason)

WM-
./{signature & Tyfied' Name)

DEBRA T. HUGHES' ""-"':'
D^RUTY DIRECTOR

(Assigning Ollice)

(Controlling DoD Office Address,
City, Stale, Zip)

Ü9 SEP fjc

(Dale Slalemenl Assigned)

Proceedings of the

IFIPWG11.3

Eighth Annual
WORKING CONFERENCE

on

DATABASE
SECURITY

Bad Salzdetfurth, Germany 23 - 26 August 1994

sponsored by

IFIP Working Group 11.3 University of Hildesheim

Editors

J. Biskup, M. Morgenstern, C. Landwehr

DTIC QUALITY ITZ?Z~"TD 4

ISSN 0941-3014 Hildesheimer Informatik-Berichte 20/94, August 1994,
Universität Hildesheim, Institut für Informatik, 31141 Hildesheim, Germany

Preface

These proceedings contain the papers presented at the Eighth Annual IFIP WG 11.3 Working
Conference on Database Security held in Bad Salzdetfurth near Hildesheim, Germany, August
23-26, 1994. The conference has been sponsored jointly by the International Federation for
Information Processsing (IFIP) Working Group 11.3 on Database Security and the University of
Hildesheim. Furthermore the U.S. Office of Naval Research supported travel of many U.S.
participants. As with its predecessors the purpose of the conference was to present original work
in database security research and practice, to enable participants to benefit from personal
scientific discussions and to expand their knowledge, to support the activities of the Working
Group, and to disseminate its results.

All submitted papers were reviewed by working group members and a small number of external
reviewers. Based on these evaluations 18 papers were finally accepted for presentation. In
addition the program included a session on status reports on current projects and a panel
discussion on perspectives on database security. These sessions are also documented in these
proceedings by short abstracts.

We highly appreciated two invited lectures that are also included in these proceedings. Ab
Bakker from BAZIS, Leiden, Netherlands, presents his deep insight into security in health care
systems, and thereby we were able to continue the discussion of security in this important field of
application. Klaus Dittrich from University of Zürich, Switzerland, challenges the security
community with current trends in database technology to which he himself has substantially
contributed.

A Working Conference is based on the joint efforts of many people. We thank all of them
sincerely: the authors of submitted papers, the reviewers, the participants, in particular the invited
speakers. We are also particularly grateful to Jimmy Brüggemann and Christian Eckert for local
organization.

Program Co-Chair Program Co-Chair IFIP WG11.3 Chair

Joachim Biskup
Institut für Informatik
Universität Hildesheim
Samelsonplatz 1
Postfach 101363
D-31113 Hildesheim
+49(5121)883-731 (voice)
+49(5121)883-732 (fax)
biskup@informatik.uni-hildesheim.de

Matthew Morgenstern
Design Research Institute
Cornell University
5144 Upson Hall
Ithaca, NY 14853
U.S.A.
+ 1(607)255-9899 (voice)
+ 1(607)254-4742 (fax)
morgenstern @ cs.cornell .edu

Carl E. Landwehr
Naval Research Laboratory
Code 5542
4555 Overlook Ave., SW
Washington, DC 20375-5000
U.S.A.
+ 1(202)767-3381 (voice)
+ 1(202)404-7942 (fax)
landwehr@itd.nrl.navy.mil

Reviewers for IFIP WG 11.3 Working Conference on Database Security, 1994

Bertino, Elisa

Burns, Rae K.

'.ox, Lawrence H.

!"-Vkert, Christian

Gudes, Ehud

Jajodia, Sushil

Kang, Iwen

Lin.T Y.

Martella. Giancarlo

Morgenstern, Matthew

Pernul, Guenther

Samarati, Pierangela

Sibley, Edgar H.

Steinke. Gerhard

Vaiadharajan, Vijay

Biskup, Joachim

Ciampichetti, Alessandro

Cuppens, Frederic

Fernandez, E.B.

Hosmer, Hilary H.

Jonscher, Dirk

Keefe, Thomas F

Lunt, Teresa F.

McDermott, John

Notargiacomo, LouAnna

Pfitzmann, Birgit

Sandhu, Ravi

Smith, Gary W.

Thomas. Roshan

Warner, Andrew C.

Brüggemann, H.H.

Costich, Oliver

Dittrich, Klaus R.

Gollmann, Dieter

Hu, Mei-Yu

Kang, Myong H.

Landwehr, Carl E.

MacEwen, Glenn

Michael, Bret

Pal, Shankar

Qian, Xiaolei

Schaefer, Marvin

Smith, Kenneth

Thuraisingham, Bhavani

Wiseman, Simon

i Aseessita for

mis QRA&I D*-""
DTIC TAB G
Unannounced □

By_
Distribution/

fEilabtiitf Codes

Bist
Avail &ad/op

SpsaisI

Table of Contents
Preface

Invited Lectures

Special care needed for the heart of medical information systems
A. Bakker

Current trends in database technology and their impact on security concepts
Klaus Dittrich

User groups and roles

Access rights administration in role-based security systems
M. Nyanchama / S. Osborn

User group structures in object-oriented database authorization
E.B. Fernandez / J. Wu / M.H. Fernandez

User-role based security in the ADAM object-oriented design and analyses
environment
M.-Y Hu/ S.A. Demurjian / T.C. Ting

Database architecture

The SINTRA data model: structure and operations
O. Costich / M.H. Kang / J.N. Froscher

The b2/c3 problem: how big buffers overcome covert channel cynicism in
trusted database systems
J. McDermott

Trusted RUBIX: a multilevel secure client-server dbms
J.P. O'Connor

Inference analysis and control

A practical formalism for imprecise inference control
J. Hale / J. Threet / S. Shenoi

Hypersemantic data modeling for inference analysis
D.G. Marks / L.J. Binns / B.M. Thuraisingham...'

Database models

A multilevel secure federated database
M.S.Olivier

A new authorization model for object-oriented databases
E. Bertino/F. Origgi/P. Samarati

The integration of security and integrity constraints in MOKUM
R. P. van de Riet / J. Beukering

Queries, updates, and transactions

Field level classification and SQL
S. Wiseman

Degrees of isolation, concurrency control protocols, and commit protocols
V Atluri / E. Bertino / S. Jajodia

Status reports on current projects

Trusted Ontos prototype
M. Schaefer / S.A. Wade

Panel: Perspectives on database security

Panel chair: M. Morgenstern
Panelists: J. Biskup, K. Dittrich, C. Landwehr, M. Schaefer

Policy modelling

Providing consistent views in a polyinstantiated database
L. Cholvy / F. Cuppens

Secure logic databases allowed to reveal indefinite information on secrets
A. Spalka

Access control and application design

A fine grained access control model for object-oriented dbms
A. Rosenthal / J. Williams / W. Herndon / B. Thursaisingham

Creating abstract discretionary modification policies with reconfigurable data
objects
T. Gross

Security guidelines for database systems development
G. Pangalos

Invited Lectures

SPECIAL CARE NEEDED FOR THE HEART OF MEDICAL INFORMATION
SYSTEMS

ALBERT R. BARKER
BÄZIS FOUNDATION
SCHIPHOLWEG 97 2316XA LEIDEN, THE NETHERLANDS

abstract
First characteristics of medical information systems are

described. Next the role of the database is considered in more
detail, the resulting requirements for security of medical
databases are considered.

Special attention is given to the requirements resulting
from use of the database for medical audit. It is concluded
that in databases holding patient care data strict time-stam-
ping is required. Even after expiration of the specified
storage period there has to be a certain period when the data
should be dormant, in that state they are accessible by the
auditor only.

1. INTRODUCTION

Data play an important role in modern health care. Data are
recorded for several purposes:
- supporting the own memory of the health care professional,
to allow him to do his diagnostic and therapeutic work,
- as a communication vehicle between members of the team that
is caring for the patient,
- as a communication vehicle with medical support departments,
like laboratories, radiology, pharmacy, etc.,
- as input to the financial administration, the reimbursement,
the budgetting process and the management of the care facili-
ty,
~ as potential input for (epidemiological) research and educa-
tion.

With the growth of medical knowledge and medical technology
the amount and diversity of data to be recorded is increasing
rapidly. Because also the need for medical specialisation is
increasing the need for communication with other specialists
(also those within specialised support departments) is increa-
sing. This lead to a situation where it is estimated that
handling of information in a broad sense (including images)
generates about 30% of the costs of a hospital.

For the provision of health care we find a wide range of
institutions and facilities (hospital, general practitioner,
pharmacy, community care, fysiotherapist, etc) . Until now the
amount of data exchanged between these different health care
providing organisations/persons is limited, the exchange of
information is now primarily within the walls of the institu-
tion. Both the emerging technical facilities for communication
(WANs) and the need to improve the efficiency in health care
will lead to more emphasis on external communication.

Medical data about patients often are of a rather sensitive
nature and deserve protection, the "medical secret" is a
worldwide principle and mentioned explicitly in the professio-
nal oath (Hyppocratic oath) [1]. As long as medical care was
supplied in a direct one-to-one patient-doctor relation the
application of the medical secret was almost unambiguous.

However, in modern health care many persons are involved like:
other members of the care team (doctors as well as nurses) ,
secretaries, laboratory technicians, medical records clerks,
administrators. In addition to that, insurance companies ask
for data as well as researchers. The practical rules for
access to patient data differ between countries and between
institutions albeit that the general principles as described
in the Council of Europe's Regulations for Automated Medical
Databanks R(81) [2] are rather well accepted and are the base
for most data protection laws.

2. CHARACTERISTICS OF MEDICAL INFORMATION SYSTEMS

When security is concerned we find in general special
attention for medical information systems. In this respect can
be mentioned ; the recommendation of the Council of Europe and
special clauses in many national laws and regulations refer-
ring to medical information systems. Furthermore we find
dedicated committees (e.g. CEN TC251 wg 6; IMIA wg4; EFMI
wg2), and dedicated (working) conferences [3],[4],[5],[6],[7].

What are the reasons for such special attention? Are there
special characteristics of medical information systems that
justify this special attention? In this paragraph this questi-
on is addressed as background for the security aspects of
medical databases. A general overview of security aspects of
medical information systems can be found in [8].

Although we find information systems in almost any type of
health care organisation we will focus here on the most com-
plex example of medical information systems, the systems that
support large hospitals. Such hospital information systems
(HIS) offer a wide range of functions to a wide range of users
(of different disciplines) [9]. Because of the interrelation
of activities in the hospital integration is a key characte-
ristic of successful hospital information systems. At present
the functions of such systems are, apart from some EDI facili-
ties to support communication with the outside world, serving
the internal information processes within the institution.

A central point of reference in such system is the patient.
Data about his health condition and treatment are needed by
many workers in the hospital. The data have to be available at
the workplace, at the moment they are needed, in a presentati-
on geared towards the needs of the specific user. However,
only those data have to be presented that the user is allowed
to see ("need to know principle").

The data are stored in a database. The collection of data
of one patient is often referred to as his "electronic medical
record", to indicate that the data are gradually becoming the
electronic equivalent of the paper file holding the patient
data. This electronic medical record until now covers only
alpha-numeric data. Images are only stored in information
systems in seldom cases, e.g. in Picture Archiving and commu-
nication Systems (PACS) [10]. In this paper special security
requirements for PACS will not be discussed.

Data in a HIS are intended to play a role in the care
process. This process goes on continuously, at least for
inpatients, so, by consequence the functions of the system and
the data about the patient have to be available round-the-
clock.

Because the data presented by the system play a direct role
in the care process their integrity is important. Wrong data
presented may harm the patient directly because they may
trigger wrong actions.

Although the principles for access rights to patient data
are the same in most institutions, the translation into rules
to be applied for checking these access rights may differ
significantly between institutions for internal access. For
access of external users the differences are often even lar-
ger. The question whether the patient has the right of access
to his own data is answered differently in different coun-
tries. In some countries the answer is a clear unconditional
"yes" while in other countries only access is allowed through
a physician as an intermediary.

Within an institution the right of access is not only
determined by the position/profession of the user, but also by
the answer to the question whether he is involved in the care
process and if so in what role. So a physician will have the
right to read diagnoses recorded in the system, but only for
"his patients". Whether a patient is "his patient" is determi-
ned by looking at logistic patient data (admission data,
appoinment data, waiting lists) . These data being recorded
within the database itself.

For access to patient data in case of medical emergencies
special provisions have to be made. In such situations it is
often impossible to check automatically whether the health
care professional has a care relation with the patient. A way
out can be found by assigning some users (doctors and nurses)
the special authority to bypass (in emergency situations) the
check on patient relation. When the system refuses access
because no such relation can be detected they can state that
the request is dealing with an emergency (supported by an
input message of a minimum length explaining the reason for
the request) after which the requested data are supplied. Of
this violation of the protection a message is sent by the
system to a supervising authority (e.g. the head of the medi-
cal records department, or the medical director) who checks
v/hether the emergency really occurred.

Sometimes it is attractive from a perspective of efficiency
that several hospitals share the same computer centre and run
the same hospital information system. As long as the databases
and the software are kept strictly separated this does not
lead to complications. However when the hardware facilities
are shared there will be a strong pressure to share also
certain categories of data like: general identification data,
patient identifier, patient insurance status. As soon as such
sharing is made possible there will be a demand to share more
data, e.g. results of laboratory tests. Such sharing of data
may complicate the database management.

The requirements for access to the HIS and its availability
are high. Nowadays for a mature HIS the number of terminals or
workstations exceeds the number of beds of the hospital. The
availability should be at least 99.7% round-the-clock.

3. THE MEDICAL DATABASE

In the database different categories of data will be sto-
red:

- patient data, both medical, administrative and logistic
data. Examples of medical data are: results of laboratory
tests, discharge letters, diagnoses, vital signs, diets, etc.
Examples of administrative data are: insurance data, (pending)
invoices;
- data on the resources of the institution and their utilisa-
tion, e.g. personnel data, budgets, stocks, bed occupancy,
etc;
- logistic data; waiting lists, appointment schedules, reser-
vations, etc
- reference data, like diagnosis codes, list of drugs, general
practitioners, treatment protocols, etc.

Although the variety of data is large and the volume of
transactions will be high, the database can in general logi-
cally be considered as relational, although often for effi-
ciency reasons a special structure is chosen. For most records
representing medical facts multi-occurencies are to be expec-
ted, e.g. the result of an ECG may occur several times in the
medical record of a patient.

When several institutions decide to share the computer
facilities the implementation of several incarnations of the
system on the same computer in principle does not lead to
special requirements. However, the demand will arise to flexi-
bly share data, this will lead to special requirements for the
database management system.

Some quantitative data on the database of a typical Europe-
an university hospital (1000 acute beds, 300,000 outpatient
visits per year) are given here as an illustration:
- number of patients registered > 800,000
- number of diagnoses recorded >500,000
- number of radiology reports > 500,000
- number of lab test results > 2,000,000
- number of terminals/workstations > 1,000
- number of database actions (read, write, delete, update) in
the dayshift 10 - 15 M per day, of which 3% additions
- total volume 6 Gbytes
- number of tables in database 6,000
- number of different attributes 20,000.

4. SECURITY REQUIREMENTS FOR MEDICAL DATABASES

The requirements for security are considered here for the
three CIA effects: Confidentiality, Integrity, Availability.

Confidentiality requirements
The facilities for access control should be refined and

flexible. Refinement because of the wide variety of data and
the wide range of roles of users. Flexible to allow each
institution to map its rules for access on the facilities of
the database management system. Access control should be based
on:
- access patterns for the different user roles to be distin-
guished,
- when access is requested to patient data, the existence of a
care-relation of the user with the patient concerned,
- the existence of an emergency situation,
- the entity accessed, and sometimes the specific attributes
of that entity. '

A special point of concern are queries that retrieve data
from the database, not directly through patient identificati-
on. Such search questions may nevertheless reveal sensitive
information, even if only the number of occurrences of speci-
fic situations are reported.

Integrity requirements
Because data from medical databases play a role in the

direct care process already now, and such use can be expected
to increase rapidly, special attention is needed for the
integrity of the data. Incorrect data might lead to wrong
diagnostic or therapeutic decisions, causing damage to the
health of the patient. Measures have to be taken to:
- avoid loss or destruction of data;
- unauthorized modifications in the programs;
- check data at entry on consistency and plausibility (taking
into consideration other data stored already (irrespective of
the access rights of the user);
- avoid inconsistent presentation of data because of limited
access rights.

The latter point is explored here slightly further. Polyin-
stantiation is not unusual for some categories of data, e.g.
results of laboratory tests. For other categories it is highly
undesirable (e.g. bloodgroup). It should be specified for
which categories such polyinstantiation is allowed. Undesira-
ble polyinstantiation could be avoided by applying the rule
that if someone is not allowed to read a certain record type
he is not allowed to create it either.

As a typical integrity problem in medical databases we
consider here the situation where data of a patient are stored
under two different patient identifications, that lateron turn
out to be dealing with the same patient. Such a situation may
e.g. occur in emergency admissions or when samples for labora-
tory tests are offered with a limited amount of patient iden-
tification data. If it can not be made sure that the patient
is the same as one already recorded in the databank, the only
option is to consider him as a new patient. Lateron it may
turn out that the patient was already in the database and the
medical (and administrative) records have to be merged. This
merging may lead to conflicts of consistency, that would
normally have been handled in an interactive way at the moment
of data entry. Now special provisions are necessary to cope
with such inconsistencies by e.g. the medical records officer.

Such consistency problems will occur on a large scale if
two institution would merge and by consequence would like to
merge their databases. The problem will also deserve attention
as soon as two institutions in a region decide to share some
categories of data.

Availability requirements
When medical information systems play an important role in

the care process, as is for instance the case for most hospi-
tal information systems, there is a need for high availabili-
ty. Typical requirements are availability > 99.7% round-the-
clock. Apart from the availability percentage also the time
needed to resume operations after an interruption is impor-
tant. Three situations can be distinguished:
- simple restart possible, restoring some system parameters

and checking vital system data; this typically should not take
more than 10 minutes;
- database damaged (either by hardware malfunction, software
problem or human error); recover necessary from safe-copies
plus logged mutations; this should not take more than 4-6
hours;
- computer centre (or most of the equipment located there)
destroyed by a disaster, e.g because of a large fire; in this
situation external back-up facilities will be necessary, e.g.
a mobile or a remote back-up computer centre. In the latter
case data communication facilities have to be available.
Although such disasters will only occur very seldom (less than
once in 50 years) the interruption of services in the hospital
should be no longer than 24 hours.

With the increasing role of the information systems in
direct patient care the requirements will become stricter.
Mirroring of the database is one of the techniques to reduce
the risk for loss of the database followed by a time-consuming
recover action. So-called "non-stop operation" should be
considered seriously. However, it should be realized that this
provides no protection against disasters, human failures and
incorrect new versions of software subsystems. Anyhow non-stop
facilities fall beyond the database software as such.

5. MEDICAL AUDIT ASPECTS

Although the introduction of information systems in the
direct patient care has proceeded slower than expected, we see
nowadays that they are at several places replacing parts of
the functions of the paper medical record.

Medical audit tries to answer the question whether a health
care professional acted in a specific situation in a responsi-
ble way in view of what he knew or ought to have known. This
both refers to professional knowledge and to patient data of
the case. The interest in medical audit can be expected to
increase in view of the tendency to more often raise the issue
of liability when the result of the medical treatment is not
what the patient expected. If an information system is availa-
ble to the health care professional he can be expected to use
it in his work. Responsible behaviour will also comprise use
of the data from the system.

This implies that in an audit procedure the auditor needs
to have the possibility to see what data (on a patient) a
certain health care professional could have seen at a certain
moment. Although it is easily recognized that such a require-
ment makes sense, there are no documented examples of its
fulfilment in operational systems. Let us consider the impli-
cations:
- all data in the database have to be time-stamped, to be able
to select those data that were available at a specified mo-
ment ;
- after commands for deletion or modification of data, the old
values have to be preserved in a way that they are not shown
in routine operation of the system, but are accessible for the
audit process;
- this even applies for data that have to be deleted after
expiration of the specified storage period; at least as long
as an audit should still be possible. This requires a reformu-

lation of the widely accepted principle in data protection
regulations that for the various types of data stored the
maximum storage period has to be specified after which they
must be destroyed;
- there has to be an audit mode, offering the auditor the
possibility to masquerade as a certain health care professio-
nal (taking on his rights) and giving as a result to requests
to the database the answers as they would have been at a
specified moment (in the past) . This implies that also the
history of those data that play a role in checking access
rights should be stored, which is not always current practice

Fulfilling these requirements will be far from trivial, it
would require a complete overhaul of existing medical informa-
tion systems. It might be considered to use as a vehicle for
the audit process the safe-copies of the database that are
made daily. This would still require an audit mode (for mas-
querading the health care professional), but would avoid the
strict time-stamping, the maintaining of historical data and
the dormant mode of deactivated data. However, medical audit
will often have to deal with critical health situations of
patients, in those situations the contents of the electronic
medical record will change rapidly. A snapshot frequency of
once per day is most probably far too low. This is underpinned
by the average length of stay of patients that is around 10
days or less in most hospitals in the western world.

It should be emphasized that the requirements of medical
audit as formulated here have not yet been raised by the
medical auditors, however it seems highly probable that we can
expect them in a few years. It is better not to wait until the
problem arises, the various disciplines involved should consi-
der now what the requirements are and how these can be met by
the technology. Use of daily safe-copies may be an interim
solution while a more fundamental solution is prepared.

6. CONCLUSION

In this paper database security for medical information
systems has been considered, especially for hospital informa-
tion systems. Such systems are found to be very complex, the
wide variety of data and users on one side, and on the other
side the types of the applications make them an interesting
case for security considerations,

Already now such systems play a role in the direct patient
care, such role can be expected to increase rapidly. This will
have as consequence that the facilities of the system will be
taken into consideration in medical audit. The question posed
being:"did the health care professional act in a responsible
manner, in view of the information that was available to him
?" Because the information system is an important source of
information, it will be necessary to be able to replay the
patient information that at a certain point in time would have
been available for the health care professional concerned. The
consequences of fulfilling such requirement seem to be drama-
tic, solutions to cope with this challenge deserve attention.

7. REFERENCES

[1] Roger France FH, Gaunt PN. The need for security, a clini-

cal view. International Journal of Bio-Medical Computing 35
(Suppl I),1994. pp 189-194.

[2] Council of Europe Regulations for Automated Medical Data
Banks. Recommendations R(81), Strasbourg,1981.

[3] Griesser GG,ed. Realization of Data Protection in Health
Information Systems. Amsterdam: North-Holland Publ Comp, 1977.

[4] Griesser GG, Bakker A, Danielsson , et al ,eds. Data
Protection in Health Information Systems, Considerations and
Guidelines. Amsterdam: North-Holland Publ Comp, 1980.

[5] Griesser GG, Jardel JP, Kenny DJ, Sauter K, eds. Data
Protection in Health Information Systems, Where do we Stand ?
Amsterdam: North-Holland Publ Comp, 1983.

[6] The Commission of the European Communities DG XIII/F AIM.
Data Protection and Confidentiality in Health Informatics.
Amsterdam: IOS Press, 1991.

[7] International Journal of Bio-Medical Computing 35 (Suppl
I), 1994.

[8] Bakker AR. Security in Medical Information Systems. Year-
book of Medical Informatics '93. Schattauer, Stuttgart,1993.

[9] Bakker AR, Bryant JR, Ehlers CTh, Hammond WE., eds. Hospi-
tal Information Systems; Scope-Design-Architecture. Amsterdam
Elsevier Science Publ, 1991.

[10] Huang HK, Ratib O, Bakker AR, Witte G. Picture Archiving
and Communication Systems (PACS) in Medicine. Berlin. Springer
Verlag, 1991.

[11] Bakker AR. Presentation of electronic patient data and
medical audit. International Journal of Bio-Medical Computing
35 (Suppl I),1994 pp 65-69.

Current Trends in Database Technology and
Impact on Security Concepts

— Summary —

Klaus R. Dittrich

Institut für Informatik der Universität Zürich
Winterthurerstrasse 190, CH-8057 Zürich

dittrich@ifi.unizh.ch

Since about a decade, a large part of research and development in the area of
database management systems (DBMS) is being devoted to the issue of extending
their functionality. The general goal behind these efforts is to efficiently provide ad-
vanced data and information management services within standard software, thus
avoiding the need for their repeated design and incorporation within individual
application programs. The basis of all such approaches is - compared to traditional
(e.g. relational) systems - a more comprehensive and precise representation of
real world semantics within the database itself. In consequence, new generation
DBMS are about to make database technology amenable to a much broader range
of applications than traditional products do.

From the viewpoint of security, advanced DBMS concepts present both, new oppor-
tunities and new challenges. We will look at three prominent examples, namely
object-oriented, active, and federated DBMS, and briefly sketch their impact on
some security issues, primarily (discretionary) access control. Furthermore, we will
touch the important issues of DBMS construction and security design.

Object-oriented DBMS

Object-oriented DBMS support an object-oriented data model, i.e. a data mode!
based on the notions of objects with values, definable behavior and identity,
encapsulation, classes, and class inheritance. Compared with the relational model,
object-orientation allows for a much more extensive and accurate modeling of real
world information. This is due to the support of complex values (using constructors
like tuple, set, list, etc., which may be applied recursively), object structures (to
express various foms of object associations), and user-defined operations on each
class (to express behavior beyond the simple retrieval and update of data).

As access control for databases obviously has to reflect the data units handled by
the respective data model, known database access control features at least have t>
be adjusted to the notion of "object". It shows that this is not that easy as might
seem at first glance, particularly due to object structures and their variety c"
semantics. On the other hand, if we can model the real world more precisely thank-
to object-orientation, we should also be able to fine-tune access control rules much
better than otherwise. In particular, we can now much more exactly differentiate
between the object operations to be allowed or denied for individual users, s";
those may carry much more real world semantics than mere "read", "write" and
similar ones.

Active DBMS

Active DBMS allow - beyond providing all regular DBMS-features - the recognition
of user-defined situations in the database and beyond, and the execution of user-
defined reactions when such a situation occurs. The popular specification
paradigm for active DBMS are so-called event/condition/action rules (ECA-rules)

on <event> if <condition> d_o_ <action>

which can be defined in addition to the regular database schema. When an event is
detected by the system, the condition is checked on the database and if it holds, the
specified action is executed. Many details have to be considered in such systems,
including e.g. the kinds of events, conditions and events that are supported and the
execution of rules within the given transaction model. In particular, the power of
active DBMS is highly dependent on the event model which may include the
occurrence of database operations, but also externally raised events, time events,
and various combinations thereof.

Obviously, active rules and their execution have to be subject to security, too. In this
respect, a rule and its constituent parts can be regarded as database elements, but
will most probably still require particular treatment with regard to access control.
Furthermore, it turns out that subtle points may arise as to which access rights have
to be applied when a reaction is executed as a consequence of an event triggered
by some other action (running on behalf of a particular user). On the other hand,
ECA-rules also allow for the flexible and dynamic specification of rather sophistica-
ted security policies, either by direct use or by acting as a target mechanism for
some sort of security specification language.

Federated DBMS

A federated DBMS provides for the interoperation of (probably heterogeneous)
component DBMS under one "common roof". Such federations are mainly concei-
ved to facilitate the integration of existing "information islands", but may also help to
allow the introduction of e.g. an object-oriented DBMS in an environment where a
more traditional DBMS is already in use (affectionately called "legacy systems")
and where both kinds of system have to interoperate. In this case, the autonomy of
component systems is an important issue.

Once again, there are two sides of the coin as far as security is concerned. Where-
as especially component autonomy raises various problems when it comes to
authorization and access control, we can - under a number of assumptions - even
hope to retrofit more elaborate security features to "poor" component DBMS provi-
ded they are operated through the federal layer of the system.

DBMS construction

Given the increasing number and complexity of DBMS that may be required, the
DBMS community gets more and more interested in how to efficiently build DBMS,
without having to start from scratch all the time. Obviously, this means to apply

state-of-the-art software engineering principles - an issue that by the way has beer
largely neglected in the past. As a result, extensible DBMS and DBMS construction
systems exploiting configuration and generation techniques have been suggested

In particular, it seems to be promising to regard a DBMS as a collection of resource
managers that cooperate under the control of some sort of "broker". In such a view,
it has to be determined where various security mechanisms fit in to meet ail require-
ments. Though work in this direction is still in its infancy, it can be expected that
some basic security functionality will be required in the broker, while most others
can be nicely organized into a variety of "security managers".

Security design

Allowing for more comprehensive modeling of the real world by means of data mo
dels, active rules etc. will improve the quality and maintainability of software
systems and also improve the efficiency of the software development process.
However, as real world systems we want to automate are usually rather complex,
the use of advanced modeling facilities is unfortunately complex, too. In
consequence, it is also often everything but straightforward to apply advanced
security features in the appropriate way. As a consequence, it is not sufficient
(though very important!) to provide the technical means for powerful and effective
security mechanisms. In addition, security administrators have to be helped in their
job by appropriate design methodologies and tools which allow them to formulate
their requirements and map these systematically to the relevant mechanisms.

In summary, current trends in database technology indeed do have considerable
impact on security concepts, in terms of both, better solutions that can be supported
and new problems that need to be solved. Unfortunately, commercial products in
this area are - once again! - very slow to incorporate security features that are as
advanced as the rest of the system from the very beginning. At best, they are going
to retrofit them to the system in later releases. The security community is thus
challenged not only to device and evaluate appropriate concepts, but also to push
for and foster the necessary technology transfer to DBMS builders and users.

User groups and roles:
Chair: D. Spooner

Rensselaer Polytec. Inst., NY

ACCESS RIGHTS ADMINISTRATION

IN
ROLE-BASED SECURITY SYSTEMS

1

Matunda Nyanchama & Sylvia Osborn
The Department of Computer Science

The University of Western Ontario
London Ontario N6A 5B7 Canada

FAX: (519) 661-3515
email:{matunda,sylvia}@csd.uwo.ca

Abstract

This paper examines the concept of role-based protection and, in particular, role
organization. From basic role relationships, a model for role organization is developed.
The role graph model, its operator semantics based on graph theory and algorithms for
role administration are proposed. The role graph model, in our view, presents a very
generalized form of role organization for access rights administration. It is shown how
the model simulates other organizational structures such as hierarchies [TDH92] and
privilege graphs [Bal90].
Keywords: Roles, role-based protection, access control, privilege graph, least privilege,
Role Graph.

1 Introduction

Role-based protection is a flexible means of administering large numbers of system privileges
especially for large databases. A privilege is a unit of access to system information. A role
is a named collection of such privileges [Bal90, KM92, N093b]. User authorization to a role
grants the user access to the privileges defined in the role.

The advantage of role-based protection is that it eases the administration of privileges
because of the flexibility with which roles may be configured and reconfigured [TDH92,
N093b]. System security is served further when the role configuration process is based on
the principle of least privilege in which a role is equipped only with sufficient privileges to
facilitate the intended duty requirements [Tho91].

In an organization with a large number of diverse duty requirements, the number of
roles can proliferate as new roles are defined to meet specific duty requirements. Some roles
can have overlapping functions (hence overlapping privileges) while others need not overlap.
The need to have some formal manner of tracking the distribution and administration of
privileges is important to ensure proper exercise of both responsibility and system security.
It is important to have a means of formally expressing role relationships - one which reflects
the manner of distribution of privileges in a. system.

This paper examines what we consider basic relationships that can exist among roles
in an organization and their application in modeling role organization. Using these basic
relationships as the foundation, a model for role organization is proposed. It is possible for
the privilege sets of two roles to completely overlap (one is a subset of the other), partially
overlap (have a common subset) or have a common superset. These relationships, along
with the concepts of maximum and minimum privilege sets form the basis of the role graph
model. To demonstrate the expressive power of this model, we illustrate how it simulates
organizational structures such as hierarchies [TDH92] and privilege graphs [Bal90].

'To Appear in Database Security VIII: Status & Prospects, August, 1994.

In the next section we discuss the concepts of privileges, roles and the advantages of
role-based protection. We formally define the term role, as used in this paper, and motivate
the need for formal role organization. In section 3 we discuss the basic relationships that
can exist among roles and introduce operators to model these relationships. We regard these
relationships as forming the basis of role organization modeling. Section 4 formally presents
the role graph model, and gives algorithms for role administration. Section 5 discusses
model simulation of other role organizational structures. Section 6 contains the summary
and conclusions.

2 Introduction to Roles

2.1 Basic Definitions

The idea of a role arises out of the need to provide duty functionality which is then autho-
rized as a single unit. A role can be seen as a job, office, set of actions of a role-holder,
a collection of responsibilities and functions or a collection of privileges pertaining to some
duty requirements [DM89, Bal90]. A role exists as an entity separate from the role holder or
role administrator. It should be equipped with sufficient functionality to enable an autho-
rized user to achieve the duty requirements associated with the role. Hence a clerical role
will be given sufficient access rights to enable an authorized user, or user group, to perform
clerical duties. Baldwin [Bal90] terms these Named Protection Domains (NPDs). Such
a role specification captures the responsibilities, rights and obligations associated with what
Dobson and McDermid [DM89] term a functional role.

The other important component of role definition is its structural [DM89] aspect which
captures a role's relationship with other roles. For purposes of this paper, we shall use the
term role to refer to the functional aspect while the structural aspect of role relationship;-
will be captured by the structure defining their relationships-in our case a role graph model.

A role is defined in terms of privileges. A privilege, on the other hand, is defined in terms
of access modes and can be viewed as a unit of access rights administration.

Definition 1 Privilege: A privilege is a pair (x, m) where x refers to an object and m is a
non-empty set of access modes for x. □

The object referred to by x can be a protected data item, an object-oriented (0-0) class
definition or extent, a complex object, a resource (e.g. printer), etc. x can be any name
or identifier which uniquely specifies the associated object, m, the set of access modes, is
composed of valid modes of access to x. Its specification and administration can be subjected
to a range of security policies. In systems with simple access modes such as reads, writes,
executes, etc. m. is a subset of these access modes. In complex systems, these access modes
can be composed of a series of or nested applications of reads, writes and executes. Where x is
an object in an 0-0 environment, m would be the execute mode of one or more methods. In
transactional systems, m would be a list.of transactions that facilitate access to x. The exact
nature of x and m is a matter of the application environment and the associated security
policy [N093a]. Since privileges are intended for security administration, the security policy
must specify how they are administered. In our case, the initialization and modification of a
privilege must be authorized.

Definition 2 Role: A role is a named set of privileges. It is a pair (rname, rpset) where
rname is the role name and rpset is the privilege set. □

A role's name rname uniquely identifies a role in a system. We use dot notation to
refer to a role's name and privilege set. Thus for a given role r, r.rname and r rpset refer

to the name of the role and its privilege set, respectively. Let W denote the universal set
of privileges in a given system, and 1Z the universal set of roles. We also define a function
$: TZ I-»- VV, which enumerates the privileges of a given role, so that for every r£K,$(r) =
{pv1,--- ,pvn} = r.rpset.

2.2 Strengths of Role-Based Protection

Role-based protection offers flexibility in system privilege administration [TDH92, N093b].
User access rights can be varied either by explicit authorization (or revocation of authoriza-
tion) of a user to a role or by indirectly varying the role privilege set. Further advantage
is gained if users are organized into groups such that authorizations are given to groups, as
opposed to individuals.

Given that system privileges can be very fine-grained, roles offer a means of managing
them incrementally. Considering the manner in which privileges can be assigned/revoked
to/from a given role, this method approaches a continuum in system privilege administration
[N09.3b]. A related advantage is that role-based protection can be used to enforce the
principle of least privilege where a role is defined to have only the necessary functionality
required for the associated duties [Tho91].

This approach offers a simplification of the complexity of system privilege management.
With a suitable organizational framework capturing role relationships, it is possible to analyze
the implications of given authorizations. Moreover, such a formal framework lends itself to
the development of analytical tools. It is also possible that management tools for access
rights administration can be used in role management.

Given that role-based protection is designed with a given application in mind, this method
provides a chance for incorporation of application level security constraints and semantics
[Tho91]. An associated advantage is that roles allow for multidirectional information flow
policies [Tho91] unlike such models as Denning's role graph model [Den76] and Bell and
LaPadula's [BL75] multilevel model. As well, unlike these traditional models which specify
what information flows should not, take place, role-based protection affirms which information
flows can take place [GMP92].

2.3 Roles & Access Rights Administration

Roles act as gateways to system information. The privilege set of a given role determines
what information is available via the role. One advantage of role-based protection mentioned
in the previous section is that access to system information is accomplished at two levels:
via explicit authorization to a role or via inclusion of some privilege in a role. We term
the former user-role authorization while the latter is termed role-privilege authorization (see
figure 1). A third form of authorization is role-role authorization [Bal90] in which one role is
authorized another's privileges. We address each of these in turn.

In user-role authorization, a user/group is authorized access to system privileges avail-
able via the role. Such authorization must be specified in a role's access control list. For
each role, such an access control list contains the user identifier for each user authorized to
the role.

Let UIV be the set of all user identifiers, and Q1V the set of all group identifiers;
iv = uiv u giv.

Definition 3 Access Control List: A role access control list (racl) is of the form: [id\, • • •, idn],
where idi £ ID. □

Users/Groups

o

o

o
-m—

O

Roles

liser-Röle
Authorization

Resources

Role-Role
Authorizatk

Role Privilege
Authorization

Figure 1: Throe Kinds of Authorizations

In a secure system all roles mnsi have access control lists, i.e. Vr £ 7?,, 3 r.racl =
[• - • ,id.:. ■ ■ ■]. A role with an associated access control list is called a secure role.

Definition 4 Secure Role: A secure role is a named collection of privileges along with its
access control list. It is a triple (rname.rpset,racl), where rname is the role name, rpset is
its privilege set and racl is its access control list. D

Role-privilege authorization involves role configuration in which a privilege is added to
the role's privilege set. Role-role authorization [Bal90] forms the third kind of authorization.
If a role A is authorized to access a role B. it means that all of B's access rights are available
via role A. In other words, B's privileges are a proper subset of the privileges of A. Role-role
authorization is an aspect of role structure.

Example 1 Suppose we have two roles: clerk and supervisor in which the supervisor
role has a role authorization to the clerk role. This means that the clerk's access rights are
available to the supervisor. A user authorized to the supervisor role can perform whatever a
user authorized to the clerk role can do.2 We can view the privilege relationships between the
two roles as ^(clerk) C ty (supervisor). □

This paper examines role-role authorizations which define role relationships. These have
implications on role organization and access rights administration. Role-role authorizations
can be complex. To capture the role-relationships completely and be able to carry out an
analysis of the implications of privilege assignment and distribution in a system can be very
complex without some formal organizational structure. Complexity of analysis of system
privilege distribution is one short-coming of role-based protection [TDH92, N093b].

Baldwin's approach to access rights administration uses privilege graphs (PG) which
capture functionality, structure and authorizations. A PG (figure 2) is an acyclic graph with
three types of nodes: functionality, role and user/group. A path from a given user node
to a functionality node means that the user is authorized to execute the functionality. The

Separation of duty [CW87], on the other hand, ensures that the supervisor does not perform both roles.

rs/Groups Roles Functionality

1 "S

1 ^\

Compile

Accounts >
Accounts
Supervisor

Accounts Clerk
Clerk

Make

Orders

Orders
Cl;erk

>
Receipts
Supervisor

Receipts
Clerk

Enter

Receipts

Figure 2: Baldwin's Privilege Graph

access rights available to such a user are all the privileges specified in roles on any such path.
Ting et., al.'s [TDH92] approach utilizes hierarchical ordering of roles in which for any given
roles in a path, those lower in the hierarchy have lower functionality than those high in the
hierarchy. In general, the path captures a subsetting relationship between the roles such that
for a given directed edge (v{,Vj), *(t>j) C *(u2). Both of these structures have what we term
the acyclicity property.

Definition 5 Acyclicity Property: A role organization structure is said to have the acyclicity
property if in a graph of the role relationships, with the roles as nodes, we have a directed
edge (rt.rj) whenever <P(r,) C *(r7) and the graph is acyclic. D

Property 1 Role Organization Structure Acyclicity: A role organization must preserve the
acyclicity property in order to offer differentiated access to system information via role-based
protection techniques. □

3 Modeling Role Organization

A role is a collection of privileges which facilitates the execution of some functionality for
an authorized user. Roles in a system can have different kinds of relationships among them
based on their associated functionalities and organizational constraints. Thus it is important
to develop some formal organizational framework which expresses desirable properties for an
enterprise whose security is being enforced and, in the process, captures the relationships
among roles. Such a framework will facilitate the analysis of privilege distribution and
sharing.

In this section, we discuss and model basic role relationships which form the basis of a
role organization framework. We start with relationships between two roles and introduce
the concepts of the minimum and maximum privilege sets in a role-based system and their
relationship with other roles. Finally, we combine these concepts to yield a framework for
role organization.

Partial Privileges Common Privileges Augmented Privileges

(a) (b) (c)

Figure 3: Three Kinds of Basic Role Relationships

3.1 Basic Role Relationships

We identify three kinds of basic relationships: junior-senior, common "junior" and common

"senior''. The junior-senior relationship, expressed as junior-^senior, captures the fact
that the senior role's privileges include those of the junior one. A role is a common junior

of two other roles if it shares some privileges with both of these senior roles. A role which
encompasses all of the privileges of two junior roles is called a common senior to these roles.
Figure 3 shows these three possibilities with Venn diagrams over the associated privileges.
In all cases, there is privilege and functionality sharing between two roles.

I. Partial Privileges

Willi partial privilege sharing, privileges defined in one role are a complete subset of
privileges in another role. This implies shared functionality via the shared privileges.
For instance, the clerk and supervisor roles in example 1 share the functionality
associated with the clerk role, i.e. a user authorized to the supervisor role can
execute the functionalities associated with both roles (figure 3a).

We model such direct functionality and privilege sharing using the is-junior relation-
ship denoted by "-^". In our example, clerk—supervisor. In general, given two roles
r,.r; f_ 7? with rt —> r3. we have the following interpretation:

r, and r, are "junior" (subservient) and "senior" (superior) roles, respectively.
Moreover. r% 's privileges and functionality are available to rr Hence *(r,;) C
V(rj). We say r, 's privileges are indirectly available to rr

Definition 6 is-junior relationship
roles r, and r
)■' An is-junior relationship exists between two
denoted r, — r7, if and only //"^(r,) C $ (r3). D

The is-junior relationship can be seen as a role-role authorization in which the superior
role is authorized to the privileges of the junior role.

If we consider relative authority as a measure of the privileges associated with a role,
then the is-junior relationship can be seen as specifying which of the two roles has ?

higher authority than the other. In our case the junior role exercises less authority
than the superior one. Moreover, the is-junior relationship can be seen as specifying
the flow of authority in which the senior role exercises more authority than the junior
one. Further, for this authority to be meaningful, this relationship must be acyclic; it
must preserve property 1.

2. Common Privileges

Another form of relationship between two roles is where there is privilege sharing in
which roles have a non-empty intersection of their privilege sets but with neither of
the sets being a subset nor a superset of the other. Such a relationship can be used to
express an overlap of responsibility (figure 3b).

If there exists a role defined whose privilege set is some or ail of this intersection, then
we say such a role is a common-junior of the other two roles. We denote the common-
junior relationship by "Q". In general, rl 0 r. is not unique. Suppose we have roles A,
B and C related as C G A 0 B. Suppose the privilege sets associated with A and B are
*(.4)={1,2,3,4} and 9(B) ={3.4,5,6,7}, respectively. 9(C) must be a common subset
of both vfU)and $(5), i.e. 9(C) C (9(A) n 9(B)) = {3,4}.

In general, given three roles r;.rj,rk G Ti and rk G r; © TJ, we have the following
interpretation:

both r, and r, are senior (superior) roles to rk. Moreover, rk 's privileges and
functionality are indirectly available to both r,- and TJ. Hence 9(rk) C $(r,-)
and 9(rk) C 9(rj).

Definition 7 common-junior relationship (0); Given roles Tiandrj, r» 0 Tj is all rk

such that 9(rk) C ($(r,-) D 9(rj)). D

3. Privilege Augmentation

Another important consideration is privilege augmentation. In analyzing privilege dis-
tribution it may be necessary to find a role that embodies the functionality and privi-
leges of two given roles. Such a, role's privileges will be a superset of both given roles
(figure 3c).

The relationship in such a case is termed common-senior and is denoted by "0". In
general, rt 0 r, is not unique. Suppose we have roles X, Y and Z related as Z G X® Y.
Let *(X) = { 1.2,3,4} and ty(Y')={6,7,8,9}. For Z's privileges to be a common superset
of those of X and Y, we must have (9(X) U 9(Y)) C 9(Z), i.e. {1,2,3,4,6,7,8,9}

Given three roles rl,r^rk G 11 and rk G r,; 0 r,, we have the following interpretation:

both r, and TJ are junior (subservient) roles to rk. Moreover, both rt's and
Tj s privileges and functionalities arc indirectly available to rk. Hence 9(r{) C
9(rk) and $(r,) C 9(rk).

Definition 8 common-senior relationship (0): Given roies r,- and r3, r2- 0 r2 is all rk

such that (9(ri) U 9(r3)) C 9(rk). G

The foregoing relationships can be extended to cater for more than two roles.

1. Partial Privilege Sharing

From the definition of the is-junior relationship, if (r,- -> rj) and (rj -»■ rk) then it must
also be true that n -> rk since (*(r,) C $(ri)) A (*(r,-) C <P(rjfc)) => (*(n) C $(rfc)).
This then captures the transitive property of the is-junior relationship. In general, if
we have a role relationship of the form: n ->■ ri+1 -> ► ri+n,n > 0, it follows that
$(r,) C $(ri+1) C • • • C $(r,-+n). This captures the monotonic increasing property of
the privilege function for roles related via the is-junior relationship.

Property 2 The privilege function <J increases monotonically with respect to the is-
junior (—>■) relationship. □

We denote r2 -► ri+l -> ► rl+n -*• Tj by r,- -►* r3 for n > 0 and rt ->+ ^ for n > 0.
This leads to the concept of a path:

Definition 9 Role Path: A role path, p, between two roles rt and rj is of the form
r, ^* rj. A trivial path exists between a role and itself. D

Other properties of the is-junior relationship include reflexivity and antisymmetry.
Civen roles rt and r,, we have rt — rv (reflexivity) since $(r,) C $(r,). As well,
((Ti -- rj) A (r, -*• n)) => r; = r^ This fellows from the observation that (rt -, Tj) =>
*(><) C $(?■,) and (7-, - r,) => ^(r,) C $(r,-). With *(rs) C $(r/) and $(r,) C $(r,-)
and by the acyclicity property, it follows that f (r,-) = $(rj), which implies rt = r}.
This is the basis of the following property:

Property 3 Role Privilege Set Uniqueness: A Role's privilege set must be unique. D

2. Common Privileges

From the common-junior (;•)) relationship above, observe that the common subset of
two roles need not be a.n immediate junior role of both roles in question. The fol-
lowing lemma expresses the relationship between the is-junior and the common-junior
operators. — and 0, respectively:

Lemma 1 Ifrk £ r{ 0 r,. then rk -*+ rt and rk -++ rj. u

The common-junior operator (0) is commutative, associative and reflexive: i.e. TIQTJ =
r, ,-' r, , r, :• (r, 0 rk) = (r; -. r,) (■) rk and r7; 0 r, is defined and includes r;.

T Privilege Augmentation

As with the common-junior relationship, the common-senior relationship need not in-
volve immediate superiors of the role under consideration. The following lemma cap-
tures the relationship between the two operators — and ©:

Lemma 2 If rk <E r{ 0 r:i. then r, —+ rk and r, —+ rk. a '.1

The operation 0 is commutative, associative and reflexive i.e. 1
r, 0 (r, 0 rk) = (Tl 0 r,) 0 rk and rt 0 r, is defined and includes r{.

Ti = r, 0 r. 11

3.2 The Concepts of Minimum and Maximum Privilege Sets

It is possible that an organization provides a minimum set of privileges available to every
user. Such a basic privilege set, for instance, can be things like the ability/permission to log
onto a computer system, the privilege to get into certain areas of an organization's premises,
etc. In general, this minimum privilege set represents the very minimum that any valid user
can be authorized to.

Since users are authorized to specific roles, it is possible to organize such a basic set
of privileges into a role such that they are available via explicit authorization or via role
relationships with other roles. We denote the role with the basic privilege set MinRole. In
general, depending on a particular organization, MinRole's privilege set can be empty.

ü/f'M- R 1 1 - / ^^i11111111 mandatory privilege set if defined
1 0 otherwise

For all r € 7?., MinRole ->+ r holds.

Property 4 Minimum Privilege Property: MinRole is always defined. D
With the introduction of MinRole, there is always at least one common-junior for all

roles, namely MinRole.

As with MinRole, we envisage MaxRole, some system "chief executive" role, which
embodies the collection of all privileges in a given system. Theoretically, a user authorized
to MaxRole can execute any functionality using the associated privileges in whatever role
they are specified. Unlike ^(MinRole) which can be empty, *(MaxRole) can never be empty
if the system is intended to accomplish anything at all.

$(MaxRole) = (J *(r)

For all r eTZ,r -^+MaxRole holds.

Property 5 Maximum Privilege Property: MaxRole is always defined. □
With the introduction of MaxRole, there is always at least one common-senior {or two

roles, namely MaxRole.
The is-junior, common-junior and common-senior relationships introduced in the previ-

ous section capture all manner of relationships that can be used to associate two or more
roles when there is need for analysis of their interaction. MinRole and MaxRole express
the concepts of minimum mandatory and maximum privilege sets, respectively, in a system.
Combining these yields representations such as those in figure 4.

For the purposes of security and the need for dispersion of powers, MaxRole may not
be authorized to any one individual in an organization. In an ideal situation, MaxRole
conceptually corresponds with the role of a Chief Executive in an organization. It is unlikely
that an administrative or a security policy would advocate such singular exercise of powers.
Moreover, there is a very realistic risk that allowing exercise of privileges of MaxRole can
compromise the system. However, such problems need not arise if we make the exception
that no single user can exercise the privileges of MaxRole. This will make MaxRole a non-
executable role. Other policies may choose a collective execution of the role, e.g. by a number
of votes of authorized users. Whatever the case, authorization to MaxRole with be a matter
of a specific security policy. MaxRole, in our modeling, is useful for purposes of completeness.
It ensures that every two roles in the system have a common-senior just as MinRole ensures
that every two roles have a common-junior.

Tvla3<K.c.l«
JV1 a >: K, o 1 <i

MinRole

IS/JÜr^cR-ole

2vlir\.iR.o:it

<G)

MaxRol<r

<cä)

MaxRole

• 13 ^m

TVIir\K.ole

Figure 4: Different Forms of Role Organization

4 A Role Graph Model for Role Organization

The basic role relationships discussed in section 3 point to an acyclic role graph organization
for roles. In this section we develop the modeling further using graph theory. We present a
role graph model for role organization and develop algorithms for the management of roles
and their relationships.

4.1 The Model: Informally

To minimize the task of enumerating the privileges of each role, we organize them using
the concepts introduced in section 3 which incorporate acyclicity of the role graph structure
and the monotonicity of role privileges for any path. Such a structure, along with rules for
role ordering and determining the privileges associated with a role, facilitate a simple, yet
elegant, organization of roles to reflect the authoritif attached to each role. Role ordering
and role inter-relationships, in turn, offer a means of distributing privileges among the roles.
The idea is that we explicitly assign a privilege at the lowest point in the role graph where it
is desirable. Since our formulation specifies that high order roles can execute the privileges
of the lower order ones with a connecting path, we can make the least number of explicit
privilege assignments that would facilitate the desired distribution.

From the ordering, we define authority paths t\ml are linear (total) orders of roles accord-
ing to increasing authority, connected by the is-junior (—) relationship which can be seen
to be specifying the flow of authority. In essence, the ordering asserts the fact that higher
authority roles have access to more privileges than lower ordered ones in any given path.
The effective privileges associated with a role result from those privileges directly associated
with the role and those indirectly associated with it. The former are those privileges explic-
itly specified in the role while the latter are those privileges specified in lower order roles
connected by a path to the role.

4.2 The Role Graph Model: Formally

This section presents the formal organization of roles into a role graph RG = (11, ->), as shown
in figure 5. The nodes of the graph correspond to the roles given, and include MaxRole and

Our use of this term will become clear as we advance.

10

Chief Executive
•MaxRele—

Level-:

Level-1

Ordinary Employee MinRole

Figure 5: Example of Role Graph

Level-0

MinRole. 11 = {n,r2, ■ ■ ■, r„, MaxRole, MinRole}. The edges are defined by the is-junior
relationship. Note that by the definition of privileges for MaxRole and MinRole and the
definition of is-junior, there is an edge from MinRole to every r2-, and an edge from every
Ti to MaxRole. The common-junior and common-senior relationships, (0 and ©) still have
the same meaning as previously.

Note that if a system administrator is specifying roles, it is possible that the privileges are
specified in a highly redundant fashion. In other words, rather than specifying the minimum
set of direct privileges for a role, some indirect privileges might be given as being direct
privileges. The function $(r) returns the set of all direct and indirect privileges of a role,
which we also call the effective privileges. The version of the graph which we will present to
the role administrator should neither have redundant privilege specifications nor redundant
is-junior relationships (i.e. redundant graph edges), in order to highlight the true nature of
the role relationships. We will further explain this reduced form of the graph shortly.

Paths in the role graph not involving MaxRole and MinRole are of more interest to
us. Consequently, we shall use the following role graph path definition in the subsequent
sections.

Definition 10 Role Graph Path: A role graph path, p, is of the form r; —> r,+] -»...—►
rt+n -^ Tj, n > 0 stich that rx ^ MinRole A r} ^ MaxRole. D

The quadruple (7£,-»,®,0) which includes MaxRole and MinRole, specifies an au-
thority structure for roles. For any role graph path of the form r,- -> • • • -> rn, n > 1 we have
an authority relation of the form ?-i < • • • < rn, with the authority embodied in the roles on
a path totally ordered. In general, given any two roles r\,r2£ll, r\ < r2, r2 < T*I or they are
incomparable. Where there is a path (call it an authority flow path), the roles in the path
form a total order.

Definition 11 Path Role Set: The role set of a given path, denoted by T(p), is the set of all
roles that compose the path. We say that a given role participates in a path if it belongs to
the path's role set. D

11

MaxRole

A {1}

{ }

MinRole

Figure 6: Role Graph with Privileges

Privilege Distribution Table
For Figure 6

Role Name Direct (D) Indirect (I) Effective (D U /)
A {1} {} {1}
B {2} {} {2}
C {3} {} {3}
D W {} {1}
E {5} {1,2} {1,2,5}
F {6} {3} {3,6}
G {7,8} K! {4,7,8}
H {9,10} {1,2,5} {1,2,5,9,10}
I {11,12} {1,2,3,4,5,6,7,8} {1,2,3,4,5,6,7,8,11,12}

Table 1: Table of Privileges

12

We extend the function $ to paths as follows: for a path p, 9(T(p)) = {Jr.e $(r8-).

Definition 12 Path Independence: Let pi and pj be two paths in a role graph. We say pi is
independent ofPj if 9(T(Pi)) n «(rfo)) = ^(MinRole). D

In other words, the two role sets are related only via MaxRole and MinRole. Such
independence can be exploited to prohibit privilege sharing by ensuring that the privilege
sets of two independent paths are disjoint.

Example 2 Consider figure 6 where we have distinct privileges numbered 1, • • •, 12 with priv-
ileges l,--,6 directly assigned to roles A,---,F and {7,8}, {9,10}, {11,12} assigned roles
G,HJ respectively. We have a role graph specification as follows: A -> E,B -*• E,C ->
F,D^G,E^ {H, /}, {F, G} -> I, MaxRole = H®I, and MinRole = AQB&C ®D with
*(MinRole) = 0.

From this we can compute the privileges of various roles and obtain the privileges distribution
as in table 1. Moreover, we have the following relationships relating to the ©,©,-► operators:

1. The common-junior operator, 0, defines a common subset of privileges for any two roles.
Consider E e H 0 I and note that 9(H © 7") = 9(E) = {1,2,5} = 9(H) n 9(1).

2. The common-senior operator, ©, defines the union of privileges of two roles and as such
is a common superset for any two roles. Consider I £ F ® G and note that 9(F © G) =
9(F)u9(G) = {3,4,6,7,8} C 9(1) = {3,4,6,7,8,11,12}.

3. The is-junior operator, ->, defines a proper subset relationship between two roles, e.g.
E^H. Note that 9(E) = {1,2,5} c {1,2,5,9,10}. This is true for all roles related via
the is-junior relationship.

4. Paths A — E -> H and C -+ F are independent paths since their roles sets {A,E,H} and
{C,F} are mutually exclusive and the two paths are related via only via MaxRole and
MinRole.

D
The role graph in figure 6 shows only direct (non-redundant) privileges for each node, and

has no redundant edges. Specifying a role's direct privileges and its is-junior relationships
with other roles completely specify its effective privileges.

Definition 13 Direct Privileges: Let Direct(r) denote the direct privileges of a role; i.e.
Direct(r) C 9(r) such that for all r% -> r, 9(r,)n Direct(r) = 0. D

For the purpose of the algorithms below, assume that for each role in a role graph, we keep
Direct(r) and is-junior relationships. By the definition of is-junior, the edge set in the role
graph will in fact be highly redundant. What we want to present to the role administrator,
and maintain, is the transitive reduction of the graph [AGU72]. The transitive reduction of
an acyclic graph is a graph in which there are no edges r, -»■ TJ whenever there is a path
r-j —+ r, in the graph. Inputs to and outputs of the algorithms assume well-formed graphs.

Definition 14 Role Graph Well-Formedness: A role graph is well-formed if it is a transitive
reduction and if the direct privilege set associated with each role r conforms to the definition
of Direct(r). Q

By the original definition of the edge set (based in turn on the is-junior relationship which
depends on the effective privilege sets of nodes), a path r{ -►+ rj exists in the well-formed
role graph whenever $(rt) C 9(rj). The following terms will be useful in the algorithms to
be presented below:

13

Definition 15 Juniors(r) The set of Junior roles for a given role r is all r,- such that

Definition 16 Seniors(r)The set of Senior roles for a given role r is all r, such that i r,.
c:

Constraint 1 Role Graph Privilege Set Invariant Constraint: The effective privilege set of
every role in a role graph remains invariant unless altered by the system security officer, SSO.

D
The SSO exercises privileges like any other system user by executing in an authorized

security administration role. This can be seen as the security information administration
role. However, care must be taken to ensure there is no conflict of interest. Hence no one
user, whether SSO or not, should be able to administer security information pertaining to
one's access rights.

4.3 Role Graph Maintenance Algorithms

We are now ready to introduce some algorithms to assist a role administrator in specifying and
modifying a collection of roles. These will ultimately be incorporated in a role maintenance
tool.

Our goal is to have all the operations map a well-formed role graph to another well-formed
role graph. We assume that the administrator begins with a graph containing only MaxRole
and MinRole. Any direct privileges defined for MinRole can be specified at this time.

The role graph can be expanded at any point by adding new roles as need may arise
while retaining the role graph structure. This strategy offers a flexible manner of introducing
new privileges into the role graph. Such privileges can be incorporated into an existing rob
graph by introduction of new roles or by increasing the privileges of existing ones. New roles
can be introduced by the addition of completely new roles, or by partitioning existing roles
either horizontally or vertically. We also consider role deletion. In all these cases, we can
have an increment or decrement in the overall privileges associated with paths in which the
affected role participates. Such privileges can remain invariant, be reduced or be increased
depending on the operation. Given the space constraints here, we address the cases where
(1) path privileges are introduced with the addition of a new role, (2) path privileges may
or may not remain invariant with the deletion of a role, (3) path privileges are partitioned
with the horizontal partition of a role and (4) privileges remain invariant with the vertical
partition of a role.

Consequently, after carrying out the operations on the graph, our procedures will confine
themselves with the immediate neighbourhood of the target, role. In other words we look
for redundant, arcs generated due to the operation in question. This involves the immediate
senior and immediate junior role sets of the roles affected by the operations.

4.3.1 Role Addition & Deletion

By role addition we mean the creation and incorporation of a totally new role into the role
graph. Such a role is defined (name and privilege set) before being integrated into the role
graph. While the integration process must preserve the role definition, it is important, to
ensure that if there are privileges defined in the new role that exist in junior roles in the
target paths, they must be removed to take away the redundancy. To introduce such a rob;
requires the specification of the target paths and the position in the paths. This involves th-
specification of the target superior and junior role(s) for the role to be added (set " fig 11T

14

Target Junior and Senior
V" v v *\ :\

Insert Role
""/ V i'

L2J
D

fo] ro] ro] I i foi foi [öi ..„..* ...,fy.lJ ; ; 1.-^.-1 t--«~» I--»--»

" -"-- i—'- \-
a

A ! / c

Figure 7: Role Addition

Eliminate Redundant Arcs

: \ '

\/ X

fö] 1

o

Ifof i
! A/ \

ol E^i i
/ '? / \c •

! / \ \ \ [

The role to be inserted is added to the node set of the graph, and the appropriate edges
are created to indicate the immediate junior and superior roles. It is possible that a node
already exists with the same effective privilege set. Once this possibility has been eliminated,
redundant paths are removed from the resulting structure. Finally, privilege resolution is
done to remove redundant privileges from Direct of the new node, and privileges in nodes in
Seniors of the the new node made redundant by this insertion. Note that for a node r, the
set Seniors(r) can be enumerated by a depth-first search in the role graph starting at node
r [CLR90, Man89]. Similarly, the set Juniors(r) can be computed by a depth-first search of
the graph formed by reversing the edges in the role graph, again starting the search at node
r. The details of these operations will not be given here.

Algorithm 1 in figure 8 and also figure 7 illustrate the role addition process.
The flip side of role addition is role deletion which involves the elimination of a role from

the role graph. This process requires specifying the target role and short-circuiting it by
making the target's immediate subservient role(s) the immediate subservient role(s) of the
target's immediate superior(s). In doing so, the privileges associated with the deleted role can
either be eliminated or distributed. Privilege elimination involves overall privilege reduction
of the path associated with the role so deleted.

Retaining the privileges of the deleted role, on the other hand, requires a specification of
how these privileges will be distributed among the existing roles. It is reasonable to assume
that such role deletion would not affect the effective privilege sets of any superior roles of
the deleted role. Hence such privileges must be transferred to the immediate superiors. This
would ensure path privilege invariance. This case is illustrated pictorially in figure 9. See
the associated algorithm 2 of figure 10.

Example 3 Suppose our target role for deletion is role D in figure 9a with the constraint that

all existing paths must keep their privilege sets invariant. For this purpose we choose to shift the
privilege set of the target role to its superiors.

To achieve this, first transfer the privileges from role D to both F and G which are both

superior to D. This results in roles roles FX and GX which we make immediate superiors of

both A and B. The previous edges incident to role D, i.e. A—>D-^F,A->D-^G,B->

15

Algorithm 1 Role_Addition(rg, target, 3. target, set,], target, set)

/" For the addition of a given role into a role graph */
Input: rg = (U, —) (the role graph), target role to be added (role name along with its proposed direct privilege set).

s torjct-set (immediate superior set for the target), j.target.set (immediate junior set for the target).
Output: The role graph with target added and overall privileges of other roles left intact.

Var r.r 1, re: roles;
Begin

If 3(r= — + r 3) for any rs g s.target set, ry g j. target .set
Then abort /* Must not violate a.cyclicity */

Else Begin
1 *(target):= (U_€j ,„_„,,, „,«(r|)U Direett target);

/* Compute the effective privileges of target role */
2 If *(r) = *(torget) for any r g TZ

Then target : = r, /* Role privilege = cts must be unique */
■V If 3(target -> + r j) for any r? g j.target.set

Then abort /« Must not violate acyclicity */
Else Begin

a 7Z :=z 7Z U target. j* Add target to system roles */
b. For all rs g s.target set do add the edge target — r„,
■:. For all r^ g j target set do add the edge - — target:

ti If for any r g R. *(r) c It(target) and KOTir —+ target)
Then add the edge - — target /" Add this inferred edge */

e If for any r g 7^, *(target} C *(ri and NOT(target —+ r)
Then add the edge target — r, /* Add this inferred edge */

f. Rem_Red_Arcs(rg, j target.set, s.target set, target);
g Red_Priv_Res(rg, j.target set, target);

end;
4 For all r, r,,rj € 7Z if *(rt) = *(rj) then /* Remove any duplicate roles */

Begin for all r; —. r do add the edge r1 — r
for all r —. r, do add the edge r —- r
Delete all edges rt —* r and r — rt:
Remove r^; end;

end,
"nd /* Role_Addit,on */

Procedure Rem_Rcd_Arcs(var rg: role graph; j,target set, s target set: role_set; target: role);
/" Removes redundant arcs in the immediate neighbourhood of target role */
Va r rj., r „ , r,„ roles;
Begin i For all r(g , target.set do /* Remove direct paths where there is another path */

if 3(r.j — r^. —* ■ ■ - — target) then
Delete the edge r} — target /• delete the direct edge*/

2 For all rs g s target.set do
if 3(target — rk — ■ ■ . — r.„) then

Delete the edge target — r„ /» delete the direct edge*/
-nd. /* Red_Red_Arrs */

I'ror-oduro Red_Pri v_Res' var rg: role graph t target set role_set target: role),
Var pv privilege, r : role;
Begin I For all r in Sentorslr) do /* remove redundant privileges from senior roles «/

For all pv g Direct!'target) do
if pv g Ptrect(r) then

Direct(r) ■= Dircrt(r) - pv
J For all r in ,.target.set do /* remove redundant privileges from Directftarget)

For all pv g <t(r) do 6

it pv g nvrect(target) then
Direet(target) := Direvli tar get)

end /* Hctl.Priv_R.es */

Figure 8: Algorithm for Role Addition

16

FX GX

-ß Q

FX GX

.Q P.

Figure 9: Role Deletion

D -- F. and B -+ D -» G are replaced by A — FX,A -»• GX,5 -► FX, and 5 -» GX,
respectively.

The next move is to do away with redundant alternative paths (marked X in the figure 9b)

and remove them. We notice that paths A -► C -» FX and B -> E -» GX contain the set

of privileges of paths A -*• FX and J9 -»• GX, respectively. This results in a new role graph
structure as shown in figure 9c. □

Both role addition and deletion correspond to real life situations where in creating a new
portfolio, a new role is added while in eliminating some "office", a role will be deleted. Role
deletion without privilege reduction entails elimination of some "office" in an organization
while retaining the total functionality. Privileges of the deleted role would be distributed to
other roles.

4.3.2 Role Partition

A role can be partitioned into two or more roles in our role graph. Essentially, the basic
partition operations are either vertical or horizontal, and can of course be combined. In both
cases it must be specified what the new roles and their corresponding privileges are. Where
the order of "seniority" is required, as in the case of vertical partition, it must be specified
as well.

In vertical role partition, a role is split into two or more roles and an ordering is
imposed on them with the is-junior relationship. In doing vertical partition, we must specify
the target role, the new roles to be created, their direct privileges and their ordering (ac-
cording to partial privilege criterion). For instance, a role X is not only partitioned into
roles X-i, • • ■. Xn but also, these roles must be ordered, e.g. Xx -> • • • -»• Xn (see figure lib
and algorithm 3 of figure 12). Privilege distribution among the new roles is constrained by
the privileges associated with the role being partitioned; there must not be an increment or
decrement of privileges, i.e.

Direct(X) = (J Direct(Xi)
t=l,...,n

Consequently, the privileges associated with the paths in which the role appears neither

17

Algorithm 2 Role.DeIetion(rg, target, inv)

/* Ue'etcs a. specified role retaining or discarding its privileges depending on inv */
Input: rg = (1Z , — } (the role graph structure), target ('the target role to be deleted).

:nv Boolean indicating whether or not to retain the role's privileges
Output: The role graph structure with target deleted

Var s.set. i set■ role set; r r r$: role;
Begin 1 s.set .= Superior_Set(target); /* Get the senior set */

2 j.set := Junior_Set(target), /* Get the junior set */
:>■ For all rs e s.set do /* Connect Junior and Senior Roles */

For all i-j £ j.set do add r — T,S,

A- If inv then do
For all r.s £ s.set do /* Transfer Privileges to superiors */

D*rert(rs) := Directtr.«) U Dtrrct(targct);
r> For al! rs e s.set do /* Rcmove all redundant arcs */

For all Tj e j.set do
If B(rj —- rk ■ ■ ■ — rfi) then delete r — r.«,

(> '«: = K ~ target; f* Take out target from system roles
rnd /* RolcDeletion */

Function .Superior_Set(var rg: role graph; target role): roie^et;
Var Tempset: ro!e_set; r: role;
Begin 1. Tempset := 0;

2 For al! ,- with target — r do
Tempset := Tempset U r;

■'•■ hupenor_Set. ■= Tempset
end. /* Superior_Set */

Function .luniot '_^et(var rg: role graph; target, role), role^et,
Var Tempset: role_set, r: role;
Begin 1. Tempset := 0:

2 For all r with r — target do
Tempset — Tempset U r:

:'■ .Iunior_Set — Tempset
r" /* J unior_Set */

Figure 10: Algorithm for Role Deletion

18

Xn

a b c

Figure 11: Vertical & Horizontal Role Partition

decrease nor increase. In general, vertical partition leaves the privilege set associated all
paths unaffected; only the path length increases.

Further constraints include the requirement for distinct direct privilege sets for the newly
created roles, i.e. for any

Xi,Xj E {Xu---,Xn},Direct(Xi)f]Direct(XJ) = 0

Suppose we have a target role for partition (call it X) with a relationship {J\, • ■ •, Jn} —► X —►
{Si,-- ■ ,Sn} which is partitioned vertically into roles {Xi,- ■ ■ ,Xn} such that {Jj, •• ■ ,Jn} ->
{Xx -> > Xn} -» {Si,---,5n}. It follows that {Xn C (Sx 0 S2 0 • • • 0 Sn)) A (Xx C
(Jl ® J2 © • • ■ ffi Jn))-

Horizontal role partition, on the other hand, involves partitioning a role into two or
more roles with none of them being subservient (superior) to another (see figure lie and
algorithm 4 of figure 13). Partition, as used here, merely distributes the direct privileges
of the target role among newly created roles that replace it. In partitioning a role, there
should be no effective increment or decrement of privileges. In other words, as with vertical
partitioning, if role X is partitioned into roles Xi, ■ ■ ■ ,Xn, we require that

Direct(X)= [j Direct(Xt)

The direct privilege sets of these newly created roles can have empty or non-empty intersec-
tions. However, none of them should have identical privilege sets. Note that, unlike vertical
partition, horizontal partition can cause a variation of privileges associated with a path when
the target role is the senior-most role in the path.

Suppose we have a target role for partition (call it X) with a relationship {Jl5 • • •, J„} ->
X — {Si,---,Sn} which is partitioned horizontally into roles {Xi,--- ,Xn} suchthat {Ji,-- • ,Jn]
{Xu---,Xn} - {Su---,Sn}. It follows that ({Ji,■••,./„} C (Xt 0 X2 0 • • • 0 Xn)) A
{{Su---,Sn} C (Xi ®X2®---® Xn))

Updates to the role graph include the reduction and addition of role privileges which
require the specification of the target role and privileges to be removed/added, but do not
alter the basic structure and relationships in the role graph structure. These may be addressed
within the context of role-privilege authorization.

19

Algorithm 3 VerticalJPartition(rg target, {((x,, -.), x, .rpset,)})

/* Partitions a given role vertically */

Input: rg = (U, -~) (the role organization structure),- target (the target role to be partitioned),
{(In,, —I, rpsett)} (the new role-direct privilege set pairs and their ordering)

Output. The role graph with target vertically partitioned into {((x. . _), rpset,)} and integrated
into the role graph structure.

Uses Superior_Set and Junior.Set of algorithm 2 in figure 10.

Ya: ...set. j.set; role set; r..rs: roles;

Begin

If Direct! target) ?! (J (.Direct! X,))

Then abort /* Must keep privilege set invariant */
Else Begin

1. -R := TZ u (i,); /* Add new roles to system */
2 s.set : = Superior.Set/ target), /» Generate superior set */
3. j set := Junior^et(target); /"* Generate Junior set */
4 Add edges it — x2 , x2 — x3 . ■ ■ . . xn_i — x„; /* Create a Path as specified */
h For all x, do Direct(x,) : = rpset, /* Assign the appropriate privileges */
6 bor all rs g s.set do add xn — r.«, /* join the Senior end */
7 For all r., gj.set do add r. — x, /» Join the Junior end */

77 := TC ~ target; ' /* Delete target from system */
end

/* VerticaLPartition */

Figure 12: Algorithm for Vertical Partition

Algorithm 4 Honzontal_Partition(rg, tar, get, l(x,,x,.rpsct,U

!" Partitions a given role horizontally */

Input: r<, := (7; _> j,,!,,. „),, organization structure), target (the target role to be partitioned), {(x, , rpset)}
(the new :olc-direct privilege pairs to replare target)

Output: The role structure with target horizontally partitioned into |(x,)} and integrated into rg.
Usris ^upenor_^c1 and ,hinior_Set of algorithm 2 in figure 10

Begin If D,rert(tar9et> 5* |J (ctrectl x,))

Then abort
Blse begin

/* Must keep privilege set invariant */

A' ._■ K U {x,}; I* Add new rol<>, to syslem Roles »/
.. s set := Superior.Set(target): /« Generate the superior set •/
■'• j set = Juniorj3et(larRct); /- Generate the junior set */
4 For all x, g {xj ■ ■ ,rn) do /« assign the privilege set to the new role */

/. irect(x,) :_ rpt-t,, /* Assign respective privilege sets */
.', h := U - target] /* Delete target */
6 For all x, g {xj , ■ . :rn } do

begin For all rs g s.ser do add i, -. r., /» Link New Roles to seniors */
For all r; g s set do add , } — x,, /* I,ink New Roles to juniors */

end;

■. For al! r, r. . r, £ 7C if >i>(7(, = *!,,, then /* Remove any duplicate roles */
Begin

for all r, — r Ho .idd the edge r — r

for all r -— r, do add the edge ;■ — r.

Delete al! edge> r, ■— ;■ and r —■ r
Remove r, :

/* Hori7.ontal_Partition */

Figure 13: Algorithm for Horizontal Partition

20

4.4 The Role Graph & Role Coupling

Considering our role graph model proposed in section 4.2, we term the extent of linkage
between roles a coupling which is related to the extent to which privileges are shared among
roles. We can have a variety of cases, e.g. where each role is independent of all others or
where some roles are coupled and hence dependent on each other.

Definition 17 Coupling: Coupling exists between two roles r; and TJ if3rk such that rk e
Ti 9 r, and rk ^ MinRole. We call rk a coupling role between r,- and TJ. D

Definition 18 Role Independence: Two roles r; and TJ are independent if and only if rt Q
r, = {MinRole}, i.e. their only coupling is the role common to all roles in the role graph. In
other words their only greatest lower bound is MinRole. D

Independent roles have no coupling between them.

5 Comparison with Hierarchies, Privilege Graphs & Others

The role graph model presented here can simulate a hierarchical organization. We can convert
a role graph into a tree (hierarchy) and vice versa. To obtain a tree from a given role graph, we
designate MaxRole as the root of the hierarchy and do a recursive bread-first or depth-first
traversal for every node with a relationship with MaxRole. A given path terminates when
MinRole is encountered which forms the leaves of all paths in the resulting tree (hierarchy).
This tree contains all paths present in the associated role graph. In going from a tree to a
role graph, we designate the root of the tree to be MaxRole, do a depth-first traversal of the
tree and equating nodes whenever equal privileges are encountered. The resulting role graph
can then be augmented with MinRole if necessary. The advantage with the role graph is
its compactness, i.e. shared nodes lower in the hierarchy, need not be duplicated. This is a
major advantage in that it reduces the extent to which shared privileges are scattered among
roles which makes the task of tracking their use easier.

To simulate privilege graphs [Bal90], attach to every role an associated functionality that
specifies the associated duty requirements/title/etc. With the role's access control list (racl)
acting as the user/group node (figure 2), it is possible to determine the authorized users
for any role. An authorized user's access rights are determined by the effective privilege set
#(r) of the associated role r to which the user is authorized. Further, remove MaxRole
and assign its explicit privileges to roles with direct partial privilege relationship with it. As
well, remove MinRole and assign its privileges to those roles with a direct partial privilege
relationship with it. The result is a privilege graph.

Finally, although this model is based on subsets with an acyclic graph, it is different
from the Bell and LaPadula Model (BLPM). Moreover, although both are meant for security
application, they have different approaches to realizing protection. The BLPM relies on
subsets, acyclicity and is static. However, it is based on the classification of information as
opposed to the execution of operations as is the case in our model. The BLPM specifies two
simple operations of either read or write access depending on object classification and subject
clearance. This approach realizes multilevel security. In our model, privileges represent pre-
defined executions designed in a manner intended to realize certain desired functionality in
a system. These operations are designed from considerations of desired system functionality.
Once defined, the operations are distributed among roles in the system in the manner that
suits organizational requirements. The executions can be simple reads and writes. They can

21

be a combination of simple reads and writes. But they can also be complex executions such
methods in object-oriented programming. These operations need not merely alter or return
the information relating to a given object but can also create other objects and invoke other
operations.

In the BLPM, once classification has been done, access to information is governed r
the simple security property and the *-property. Its specification is static. In our mode'.
execution of privileges can cause the assignment or revocation of privileges pertaining to
some role. In that respect, our model is dynamic.

6 Summary &; Conclusions

It is important to have a means for role organization that reduces the complexity of privilege
management in a, role-based security system. This paper has presented a model for role
organization derived from three basic role relationships, viz: partial, shared and augmented
privileges. These lead to a role graph formulation and use of role graph theory. The model
allows for the assignment of privileges in a particular role and through role relationships, we
determine the extent of privilege sharing. Given the acyclicity property, the role graph model
facilitates role partial ordering and privilege subsetting among roles. With an appropriate
assignment of privileges to roles and specification of role relationships, the role graph can
ease the task of access rights rights administration in a system. Our model has the expressive
power of both hierarchies [TDH92] and privilege graphs [Bal90].

The issue of role administration was addressed and algorithms for role management pre-
sented. These include algorithms for role addition, deletion and split (partition). Central to
role management is the concept of the change (or lack of change) of path privileges, because
path privilege changes have implications for roles with indirect access to these privileges.

The concept of paths in the role graph is important in that specific types of processing
can be associated with specific paths. Since there is privilege sharing among roles within
a path, one can impose constraints about the order of role participation in the processing
as well as separation of duty requirements. Role and path independence are important for
rases with conflict of interest. Two types of processing that conflict can be associated with
independent paths and by ensuring that no user is authorized for roles from both paths, we
can impose conflict of interest restriction to processing.

Currently, we are involved in the implementation of a role management tool which we
hope will give further insight into the applications of the role graph model in access rights
administration.

Acknowledgements

This work was supported in part by a grant from the Natural Science & Engineering Research
('ouncil. NSKRC. of Canada. We also thank Jim Mullin for his useful comments on an earlier
draft of this paper. The anonymous referees raised a number of issues that have been useful
in making clear some of our ideas. Sheila Lindsay, who worked on an implementation of the
role graph, pointed out some errors in the algorithms proposed earlier. We are grateful for
her comments.

References
[AGÜ72] A. V. Aho, M. R. Garey, and J. D. Ullman. The Transitive Reduction of a Directed

Graph. SIAM Journal of Computing, 1(2): 131-137, June 1972.

22

[Bal90] R. W. Baldwin. Naming & Grouping Privileges to Simplify Security Management in
Large Databases. In Proc. 1990 IEEE Symposium on Research in Security and Privacy,
pages 116-132. IEEE Computer Society Press, May 1990.

[BL75] D. E. Bell and L. J. LaPadula. Secure Computer Systems: Unified Exposition & Multics
Interpretation. Technical Report MTIS AD-A023588, MITRE Corporation, July 1975.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms MIT Presss
1990.

[CW87] D. D. Clark and D. R. Wilson. A Comparison of Commercial and Military Security
Policies. In Proc. 1987 IEEE Symposium on Research in Security and Privacy, pages
184-194. IEEE Computer Society Press, April 1987.

[Den76] D. E. Denning. A Lattice Model of Secure Information Flow. Communications of the
ACM, 19(5):236-243, May 1976.

[DM89] J. E. Dobson and J. A. McDermid. Security Models and Enterprise Models. In C. E.
Landwehr, editor, Database Security II: Status & Prospects, pages 1-39. North-Holland
1989.

[GMP92] J. Glasgow, G. MacEwen, and P. Panangaden. A Logic for Reasoning About Security.
ACM Transactions on Computer Systems, 10(3):226-264, August 1992.

[KM92] E. V. Knshnamurthy and A. McGuffin. On the Design & Administration of Secure
Database Transactions. ACM SIGSAC Review, pages 63-70, Spring/Summer 1992.

[Law93] L. G. Lawrence. The Role of Roles. Computers & Security, 12(1):15-21, Feb 1993.

[Man89] Udi Manber. Introduction to Algorithms: A Creative Approach. Addison-Wesley, 1989.

[N093a] M. Nyanchama and S. L. Osborn. Role-Based Security, Object Oriented Databases &
Separation of Duty. ACM SIGMOD RECORD, 22(4):45-51, Dec 1993.

[N093b] M. Nyanchama and S. L. Osborn. Role-Based Security: Pros, Cons & Some Research
Directions. ACM SIGSAC Review, 2(2):11-17, June 1993.

[N094] M. Nyanchama and S. L. Osborn. Information Flow Analysis in Role-Based Security
Systems. In Proc. 1994 International Conference on Computing & Information (ICCI)
May 1994.

[RBWK91] F. Rabitti, E. Bertino, D. Woelk, and W. Kim. A Model of Authorization for Next
Generation Databases Systems. ACM TODS, 16(1):88-131, March 1991.

[RWK88] F. Rabitti, D. Woelk, and W. Kim. A Model of Authorization for Object Oriented and
Semantic Databases. In Proc of Int'l Conference on Extending Database Technology
March 1988.

[TDH92] T. C. Ting, S. A. Demurjian, and M. Y. Hu. Requirements Capabilities and Functionali-
ties of User-Role Based Security for an Object-Oriented Design Model. In C. E. Landwehr
and S. Jajodia, editors, Database Security V: Status & Prospects, pages 275-296. North-
Holland, 1992.

[Tho91] I). J. Thomsen. Role-Based Application Design and Enforcement. In S. Jajodia and
C. E. Landwehr, editors, Database Security, IV: Status and Prospects, pages 151-168.
North-Holland, 1991.

23

User Group Structures in Object-Oriented Database Authorizatk:

Eduardo B. Fernandez, Jie Wu and Minjie H. Fernandez

Department of Computer Science and Engineering

Florida Atlantic University

Boca Raton, FL 33431

Abstract

When there are a large number and variety of users in a system, a large number of autho-

rization rules is required to define their access rights. Because of their number and variety these

rules become too difficult and cumbersome to maintain, the authorization evaluation algorithms

are not efficient and their storage takes up a large amount of memory. Also, it is hard for

security administrators to understand why a specific user is given a set of rights. The solution

is to have groups of users rather than individual users as subjects that receive access rights

from the authorization system. While several approaches to grouping users have been presented

they are not powerful enough to describe a wide range of logical groupings. In this paper we

develop a generalized approach to user group structures to solve these problems. We present

structurings and primitives for user groups based on object-oriented concepts which are more

powerful and general than those presented until now. Although formulated in the context of

an object-oriented database system, our approach is general and could be applied to other data

models, and even to operating systems.

Keywords: Access-matrix-based security, Authorization models, Data administration, Database

security, Discretionary access control, Security of computer systems.

1 Introduction

Computer installations keep increasing in complexity: the lower cost of equipment and the tendency

towards decentralization and distribution has increased the number of users that have some type of

access to the computing system. In this scenario, the control of security becomes a more difficult

problem and security administrators need ways to help their work. A large number of authorization

rules is required when access rights are defined using access-matrix-based models. These rules are

difficult to maintain and store and it is hard for a security administrator to understand the security

implication of each rule.

Groups as accessing entities instead of individual users allow administrators to place users with

similar functions in the same group and authorization rights can then be given with respect to the

group. This improves the efficiency of the system because the number of authorization rules to

be handled decreases dramatically. It also has the advantage of making possible the application

of institutional policies in the definition of the groups; for example, all secretaries have similar

functions and can be given a package of common rights. Because the number of distinct functions

in a typical institution is not very large the total number of groups is reasonably low. Most

authorization models include groups in one way or another. Groups are another application of

the concept of implied authorization [9], where an authorization rule defined with respect to some

composite structure (data or users) gives similar rights for/to each component.

We develop here a unified framework for groups. We first consider unstructured groups and

formulate an authorization model based on object-oriented concepts. We also define a set of pro-

cedures to create, destroy, and manipulate user groups. We then extend this analysis to groups of

groups and present an additional set of procedures. In particular, we propose three group structur-

ings in analogy with the possible associations used in object-oriented modeling. We also show how

to use these groups in evaluating access requests and to implement different security policies. Ex-

pressing the authorization system as a set of classes and associations in an object-oriented database

allows the system to protect the authorization rules in the same way as the rest of the data in the

database. If the database is of another type our approach is still useful as a design guideline.

Many authorization systems have used the concept of groups, e.g., [1], [2], [3], [5], [11], [12],

[13L I17]> [21]; our approach is more general in that all of these models can be shown to be special

cases of ours. Our approach thus provides a unifying framework for all those models. Some of the

most interesting earlier approaches are:

• The Inventory Control System (ICS), developed at IBM [12]. In their approach a group is an

entity with which users and/or groups may be associated to access resources. They defined

a set of special access types to handle groups, including run (use a resource in a group), use

(use resources and create files in the group), control (implies create and also allows a g.::n- 5

member to connect other users to the group), and join (implies control and permits a i :• :

to define new system users and new subgroups). Four data structures: group, user, conr

and file, define the data needed to describe the group structure.

• SQL/Oracle. R. Baldwin proposed the concept of Named Protection Domains (NPD's),

and applied it to manage security in SQL relational databases [2]. An NPD is a collection

of application-oriented rights given to a set of users with similar functions. NPD's can be

structured into trees of rights (the higher-level NPD's include the rights of the lower-level

NPD's).

• The IRIS database system. This is an object-oriented database developed at Hewlett Packard

[1]. Users are described by class user which includes operations to create and destroy user

objects, return valid user names, and match passwords. A class group describes sets of users

to which rights can be granted. Groups can be structured into trees similarly to the NPD's

described above. There are also special operations for groups, e.g. to list the members of a

group.

Kelter did a systematic study of group structure in [13] and [14]. Additionally to the concept

of tree-structured groups where supergroups include the rights of subgroups, he introdi

the concept of specialized subgroups that inherit the rights from their supergroups.

Bertino and Weigand [3] consider also inheritance from supergroups into their subgroups.

They consider also the effect of inheriting content-dependent predicates (which we don't

consider in this paper).

• Brüggemann [5] defines inheritance in subject groups and considers also the effect of negative

authorization rules.

Some authorization systems for object-oriented databases also use data grouping to reduce

the number of authorization rules, e.g. [5] and [15] use the granularity of the data as a criterion

for implied access: access to a class implies access to all the instances of that class, etc. Other

approaches, e.g. [7], take advantage of the semantic data structuring: access to a class implies

similar access to its subclasses. These groupings are orthogonal to the user groupings considered

here and could be combined with them for further reduction in the number of access rules. However,

user groupings do not require any data grouping to be effective and can be used with any data
model.

Several authors have proposed the concept of user roles, where a role is a group of users i'Lb,l

has specific functions [2], [21]. We can consider roles as defining policies and groups as mechanic r.:;

•

•

to apply these policies. Here we concentrate on mechanisms for group structuring regardless of

their use as specific roles. In fact, our study is complementary to that type of studies.

Section 2 reviews basic concepts of object-oriented systems and of the authorization model.

Section 3 discusses several issues related to groups. In Section 4 we propose policies and procedures

to handle unstructured groups. Section 5 considers structures consisting of groups of groups.

Section 6 considers access request validation while Section 7 provides a complete example of the

application of these structures. Section 8 provides conclusions and directions for future work.

2 Background

2.1 Object-oriented concepts

There is a variety of models that use object-oriented concepts to specify a system design. They can

be used as a semi-formal model that is relatively precise, that can be easily formalized, and can be

used as a basis for implementation. To be concrete we adopt one of these here; the Object Modeling

Technique (OMT) [19] which will be used throughout this paper. OMT is a methodology which

consists of three submodels: The object model represents the static, structural, "data" aspects of a

system. The dynamic model represents the temporal, behavioral, "control" aspects of a system. The

functional model represents the transformational, "function" aspects of a system. A typical software

application incorporates all three aspects: It uses data structures (object model), it sequences

operations in time (dynamic model), and it transforms values (functional model). Each submodel

contains references to entities in the other submodels.

The object model describes the structure of objects in a system — their identity, their relation-

ships to other objects, their attributes, and their operations. Objects with the same data structure

(attributes) and behavior (operations) are grouped into a class. A class is an abstraction that

describes common properties of some entity of interest to an application. Each class describes a

possible infinite set of individual objects. Each object is said to be an instance of its class. Each

instance of the class has its own value for each attribute but shares the attribute names and opera-

tions with other instances of the class. An attribute of an object may take on a single value or a set

of values [16]. An object may be an instance of only one class. An operation (method) is an action

or transformation that an object performs or to which it is subject. Attributes and operations are

referred collectively as features. Some features, denoted by $, are called class features and apply to
all the objects of a class.

Classes with common properties can be generalized into superclasses which factor out these

properties (generalization association). Conversely, subclasses can be said to be particularizations

of their superclasses. Generalization is denoted in this model by a small triangle (A).

Inheritance is the property of subclasses where they share attributes and operations based on

their hierarchical relationship. A class can be refined into successively more detailed subdc ■?■..-:.

Each subclass incorporates, or inherits, all of the features of its superclass and adds its own unique

features. A class may have any number of subclasses. A class may have any number of superclasses,

and inherits attributes and operations from all of them; this is called multiple inheritance.

Aggregation is a form of relationship in which an aggregate object is made of components. The

aggregate is semantically an extended object that is treated as a unit in many operations, although

physically it is made of several parts. In diagrams this concept is represented by a rhomboid or

diamond (o).

A relationship association represents the fact that instances in different classes participate in

common activities. For example, a student taking a course can be described in this way. Multiplicity

specifies how many instances of one class may relate to a single instance of a related class and

constrains the number of related objects. Multiplicity is often described as being "one" or "many",

but more generally it is a (possibly infinite) subset of the non-negative integers. In diagrams a

relationship is represented by a link at whose ends the corresponding multiplicities are defined (a

black dot (•) indicates "many".)

2.2 Security policies and authorization rules

In general, an authorization rule is a tuple (s,o,a,p,f), which defines that subject s has authoriza-

tion of type a (access type) to those data values of security object o for which predicate p is true.

Subject s can grant the access right (o, a) to other subjects if the copy flag f is true. Because these

rules can represent most security policies this model has been used as a basis to describe many of

the authorization systems for relational databases [9] and object-oriented databases [7].

If we are not concerned with the control of individual objects but with control at the class or

attribute level we do not need to consider predicates. For those cases an authorization rule is just

a triple (s,o,a) where s is a subject, a is an access type, and o is a class or a set of attributes. If

we do not allow subjects to grant rights to other subjects we do not need a copy flag either. For

space reasons we will not discuss here granting of rights.

As said earlier, in systems where subjects may be groups of users a right given to a group may

be implied as a right for all the users in the group. We assume here that all the rights granted to

a group are implicitly available to each group member.

Negative authorization rules are necessary to override implied access rights and are very useful

to specify precisely the required authorization of some objects. For example, the system described

in [18] uses positive and negative authorizations: a subject may be denied access to an object either

because it has no authorization for it or because it has a negative authorization on it. Negative

authorization constraints are also required by the Orange book (that defines standards for the

security of commercial systems) for security classes B3 and Al [6]. Again for space reasons we will

leave out the analysis of negative rights.

An important policy decision is the separation of ownership from administration. In the first case

users own and administer their data; in the second case the information belongs to the enterprise,

users are given access to it to perform their functions and special users (administrators) control the

structure and the use of the information. Again, for conciseness we do not discuss administrative

aspects, although clearly the user grouping operations would be used by administrators.

3 User Groups

As said earlier, user groups can be used for efficiency and as a way to define sets of rights based

on the organization of an institution [9], [21]. The authorization rules take now the basic form

(g,o,a,p), where g is a user group (remember that we left out the copy flag). However, these

groupings bring the problem of how to interpret a given access request (since there is no direct

mapping now from the components of the request to the components of the authorization rules).

Users may belong to more than one group (although, in general, they will belong to only a few

groups). Two or more groups may have access to the same objects (as well as other objects), i.e.,

they may share rights. In this case more than one access rule may be applicable to a given access

request. For example given a request from user u, who belongs to user groups gx and g2, for access

of type a to object o, there may be two rules that apply:

ri'-(9i,o,a,pi) and r2 : (g2,o,a,p2)

Two basic policies to handle this case are [9]:

1. The user chooses. Some systems require a user to specify which group applies for a particular

session. For example, a Multics user who works on several projects chooses one to provide

the authorization context for a session.

2. The rules are combined. A user can receive the union of the rights of the groups to which he

belongs. This allows, for example, an overall minimum level of rights to be specified for the

Universal or Public user group (This group allows access to a basic set of objects). In our

example, the request is valid if it is authorized by either r^ or r2.

Clearly, intersection the rules of the groups to which a user belongs is not reasonable; for

example if she belongs to two disjoint groups she would get no access rights!

The two possibilities above may make sense in specific environments. For example, [11] m~,ke-

a point for the use of the union of groups while [14] believes only one group should be active :• ; :;

user interaction. Any mechanism for groups should be able to implement both of them.

Other issues that must be considered to define group structurings are:

• How are access rights associated? Are they associated only with groups, or could users ako

have individual rights? There is a tradeoff between complexity and flexibility in these two

approaches. The simplest, and more uniform approach, is to associate rights only with groups

(we can always define a group with only one user to accommodate special users) and we use
this approach here.

• How to structure groups, i.e., is it possible to have groups of groups? As we discuss later

(Section 5) this can significantly enhance the power of the model to describe different security
policies.

• How the rights for groups are defined? This is an institution policy, ideally groups should

correspond to user functions or roles and the group should receive the necessary rights for the

required function to be performed (e.g., a mail clerk receives only enough rights to perform
his job).

• How to evaluate access using groups, i.e., how to accelerate access request evaluation by

taking advantage of group composition. We discuss this in Section 6.

• How to revoke granted rights; this is a more general problem that has been studied elsewhere

[9]. It depends on the general problem of how are rights granted.

• How to find efficient implementation methods? While of practical importance, this is not

discussed in this paper. Sandhu [20] considered this aspect in detail.

4 Policies for Unstructured Groups

We start our discussion with a system that uses only independent groups. We call these unstructured

groups. We then consider groups that are related to one another, and we call this kind of groups

structured groups. In this section we will discuss the first approach and develop a conceptual

specification of its behavior, groups of groups are considered in Section 5.

We define a group as a set of users with common rights. In other words, access rights are.

defined for specific user groups, or inversely, a group can be seen as a set of rights. When we create

a group, we are effectively creating a set of rights, i.e., usually groups are defined with respecr ic

User

Register_user
Join_group

I

Group

Check_rights
Accessjype

Member of

Authorizatlon_rule

Method/Accessjype
Predicate

Composed_of Related to

Figure 1: Class model for authorization rules

some functional task (role) that has to be performed and that requires access to a set of specific
data items. This is a strict application of the need to know policy: a set of rights for each functional

task. Formally, a group g is defined as: g = {«,}, where «, is any registered user of the system,

right(ui) is the set of user «,• rights, and right(g) is the set of group g rights, right(ui) and right(g)
are related as follows:

(9,0, a) € right(g) A u, € g -*■ («,-,o,a) € right(ui)

We do not define a universal or public group, to which each user belongs by default and which

provides some basic access rights, but require that any right be explicitly given. A user may belong

to one or more groups according to his functional tasks (job assignment). All rights are associated

with groups, i.e. users only acquire rights by belonging to some group. A new group can be

created for a single user if there is no group that accommodates her functions. If we also apply

the policy of separation of use from administration, groups can be operational groups, database

administrator groups and security administrator groups. However, as said earlier, that distinction

is not fundamental for our group development and we do not pursue it further here (see [7] for
further discussion).

As shown in Figure 1, authorization rules can be represented using OMT as a relationship

between group and data. The "data" class shows the possible structurings of the data in an

object-oriented database. Class User represents all the registered users with id u. Two basic

operations are shown in this class: Register-user and Join-group with obvious meaning. Other

useful operations would be Delete.user, Leave-group, SDisplay.users, etc. [10]. The relationship

Member-of describes which users are in what groups. Class Group represents the groups in the

system, for which relationship Authorization .rule defines the corresponding rights. The relationship

attribute Method/Access type defines the operator that the user is authorized to apply to the d;; ,:

while Predicate indicates the corresponding data-dependent restriction. In some systems accer-f. ::

controlled at the read/write record level [7], [15]. In others, at the method level [8]. The method

Check-rights evaluates if a given request is authorized for some subject. Check-rights could also b>

attached to data if we think that its invocation is the result of accessing some specific data entity.

Method AccessJype returns the method authorized to a user for a given class. As indicated earlier,

the hierarchical structure of classes and subclasses may also be used to define implied accesses [7],

thus further reducing the number of explicit rules.

An example of a class definition is given below. (Remember $ denotes a class operator as opposed

to an object operator.) Some of these methods may not be needed in specific implementations or

additional methods may be needed; that is, this is only a typical definition.

Class GROUP is

g: string; - - group identifier

proc Create.group (g); - - Creates a new group g.
proc Delete-group (g); - - Deletes an existing group g.
proc Divide-group (g,g(l), ...,g(n)); - - Divides one group into n groups.
proc Combine-group (newg,g(l), ...,g(n)); - - Combines n groups into one group.
proc Add_right (g,o,a); - - Adds access right (o,a) to group g.
proc Delete-right (g, o, a); - - Removes access right (o, a) from group g.
proc Display-G-attributes (g); - - Lists the attributes of a group.
proc Check-rights(flr, o.a.); - - Checks if a group is authorized to apply a to data o.
proc Access_type(ff, o,a);-- Returns the value of a for a given group with respect to data o.
proc Add-member(gi, u); - - Adds user u to group g.
proc List-rights(g); - lists all the rights of a given group.
proc SDisplay-groups; - - Lists all the groups in the system.
func $Is-a-group (</): Bool; - - Checks if a specific group exists in the system.
func $Has-a-right (</, o, a): Bool; - - Checks if a group has a specific explicit access right.
proc SDisplay.member; - - Displays all the (user, group) pairs.

end

Specifications for the operations of these classes are given in detail in [10]. We show here two cases as
illustration.

proc Join-group (u,g);
- - Adds a user to a group.
begin

if not Is-a.group (g)

then return error - group does not exist
else if User.Is-a-member (u,g)

then return error - user u is already a member of g
else begin

Add-member(#,«)

9

end if
end Join^group

proc Add-right (g,o,a);
- - An access right tuple (o, a) is added to a group rights package
begin

if not Is_a_group (</)
then return error
else if Has_a_right (g, o, a)

then return error - - group already has this right.
else Authorization-rule := Authorization-rule U (g, o, a)

end Add_right

5 Policies for Structured Groups

5.1 Group structuring

In an institution there exist more complex structures than just groups. For example, a set of

departments can become a division and be under the direction of a single manager. Sometimes, for

work reasons it is necessary to collect small groups of employees to work on specific projects. This

creates the need to have groups of groups. We present now three types of structurings and some

of the corresponding procedures to manipulate them.

As seen in Section 2 there are three basic ways to associate classes in the object-oriented model

[19], namely generalization, aggregation, and relationship. By analogy these three associations can

be used as a basis to structure groups of users and all of them can be given a useful meaning for

representing the institution organization:

• A generalization structure describes structures where the subgroups perform more specialized

operations than the supergroups. For example, figure 2 shows a group of programmers

(Programmer) which can be specialized to programmers that perform more specific tasks,

e.g., System Programmer, Real-time Programmer, etc.

• A composition structure describes structures that represent the administrative or physical

division of people. For example Figure 3 shows a company divided into three groups of

employees that belong to different departments.

• A relationship structure describes associations between groups needed to perform new jobs.

It effectively describes a new group formed taking people from two (or more) existing groups.

For example in Figure 4 some real-time programmers and some processor designers are

10

Programmer

System
Programmer

Application
Programmer

Real-time
Programmer

Figure 2: Generalization structure

assigned to work in a project called Real-Time Computer defined by relationship Real-th«

Computer. In forming this type of group we ignore the correspondence between set element

indicated by a relationship, i.e., we only consider the presence of the elements themselves.

We also describe this group by the name of the relationship; a more consistent representation

from a notational viewpoint would describe this relationship as another class [10], but we
have not done this.

A specific user may belong to different groups, for example, an individual could be in the group

of application programmers and in the group Manufacturing. In general, these groupings can

represent the permanent jobs of the users as well as temporary assignments. Sometimes both

types of groups may coincide, for example a company may divide its departments according to

specialty; in this case, in the example of Figure 2, we would have also a composition structure.

As another example, Figure 5 shows a group New_systems which is made up of three groups:

New_op_sys, New_userJf(interface), and New_reaLtime_comp, where each component group is a

relationship group combining designers of different specialities. Here New_systems would be the

group including all designers working in new systems development.

The principle of "need to know" is fundamental to design a secure system [9]. This principle

establishes that users should be given just enough rights to perform their duties. Groups can reflect

the structure of the functional tasks to be performed and the policies of the institution. If they are

the only way to acquire rights, by controlling access to groups it is possible to enforce institution

11

Company X

Personnel Engineering Manufacturing

Figure 3: Composition structure

Programmer

Real-time
Computer

Hardware
Designer

/ \ / \

Real-time Processor
Pro gn immer Desi gn er

Figure 4: Relationship structure

12

Programmer Hardware
Designer

Real-time
Programmer

New_real_time
comp

Application
Programmer

New_userjf

System
Programmer

New_op_sys

CRT
Designer

I/O System
Designer

New-systems

New_op_sys New_userJf New_reaLtimexomp

Figure 5: Group combinations.

13

security policies in a simple way. Consequently we can define the following group policies (GP):

• Policy GP\: Users in subgroups of generalization structures inherit all the rights from their
supergroups.

• Policy GT2: Users in supergroups of composition structures acquire all the rights of their

subgroups.

• Policy GP3: Users in relationship structures bring to the new group their own group rights

and acquire the specific rights implied by the needs of the new group.

We use the following notation: righte is a set of explicit rights, i.e. rights that are explicitly

associated with the group under consideration; righti is a set of implicit rights, i.e. rights that can

be derived from the explicit rights using one of the above three policies. G = {gi,g2, —,9k} is a

generalization of k groups, C — {51,52, —,9k} is a composition of k groups, R — {<7i,#2, ••-,5i} is a
relationship group among k groups. A group g may have explicit or implicit rights, i.e.:

right(g) = righte(g) U righti(g)

We express these policies formally as:

GPi : 5,-eGAre right(G) -+ r G righti(g)

GPi : gi£C Ar € right(g) ->■ r € right^C)

GP3 : Ui € RAr € right(R) -»r6 righti(ui)

Note that a relationship group is not strictly a group of groups as the generalization and composition

groups. We can visualize a relationship group as a group formed taking specific users from two or

more existing groups and collecting them into a new group.

Policy GP\ is justified because subgroups define more specialized groups. In this case the mem-

bers of the subgroups should have the rights of their supergroups and in addition the rights needed

to perform more specialized functions. For example, a Real-time Programmer is a programmer and

should possess all the rights needed by programmers to perform their functions. Additionally, a

Real-time Programmer needs access to specialized tools.

Policy GPi makes sense to describe data access. For example the group that develops programs

for the whole company should have access to the programs developed by the individual departments.

Another justification comes from seeing the subgroups as the result of dividing an existing group;

in this case the large group is a way to refer to the set of subgroups and includes all of their

functions and consequently all of their rights. This policy describes the hierarchical structure of

most institutions where a high-level group has more power and rights than a lower-level group.

14

Figure 6: Group of groups graphs.

Finally, Policy GP3 would be useful to describe projects which require the combination of

people with different specialties or from diverse departments. Because their function is specific the

members of this type of group should have project-specific rights in addition to their other group
rights based on their specialty or the department to which they belong.

As we said earlier, groups are very important for efficiency because there is no need to write

individual authorization rules defining the rights of each user; if a user can join a given grouc

because of her functions she automatically acquires all the group rights. Groups of groups aiio ;

to reduce the number of explicit rules even further by taking advantage of the inherent hierarchies

present in most institutions. Negative authorization rules and predicates can be used to provide

a more precise control of access (although we do not show that in this paper). Section 7 shows a
detailed example of the application of these policies.

5.2 Procedures

We add now a set of procedures to manipulate groups of groups. All these procedures assume that

the structure of a group of groups is described by a class GROUP_OF_GROUPS which includes the

interconnection graph of the groups. We also assume that each group G in GROUP-OF.GROUPS

can include only one type of association, i.e., G can be a generalization, aggregation, or relationship

group of groups. This is not a restriction since we can decompose a complex group into homogeneous

subgroups. Notice also that a given group g can belong to any number of groups G of any type.

Figure 6 shows this situation; here GO represents an aggregation graph and so on. In particular,

generalization and aggregation graphs are trees; relationship class graphs can be seen as 2-le>

trees if the relationships are binary or ternary. The class representation of group of groups
be as shown below.

Vtl

could

15

class GROUP-OF.GROUPS is
G: string; - identifier for group of groups graph

Children (gGG): - - For each group g in the group of groups this data structure describes its children.
Type: {generalization, aggregation, relationship}; -The three types of group graphs
proc Create-group.of_groups (G, /) - - Creates an empty group of groups G with type t.
proc Delete-group (G, g) - - Deletes group g from G.
proc Add-group (G, gu g2)

- - add group gx as the child of g2 in G, the type of G determines the type of association.
proc Ancestor (G, g) - - Finds the ancestors of a group g within a group G.
proc Descendant (G, g) - - Finds the descendants of a group g within a group G.
proc Related-group (g) - - Finds the related groups of a group g in the system.

end

As before, the details of these procedures can be found in [10].

6 Evaluating Authorization

Access requests from user programs or query languages must be compared with the authorization

rules to decide if the requested access is legal. This is normally performed by some evaluation

algorithm [9]. A request has the general form (s', o', a'), where s' is the requesting subject, o' is

the requested data item, and a' the intended access type. Since authorization rules have groups as

subjects if we start from a request from user u, one must determine first the effective subject, Gef},

considering the groups to which he might belong. The data item can be a class or an attribute of

a class. The access type may be a method or read/write actions on attributes. In other words, we

are trying to match up (g e Geff, o',a) against an authorization rule of the form (g, o, a) explicit
or implicit.

The evaluation algorithm is just one of the methods (Check_rights) in the authorization model

of Figure 1. To find the effective subject we need to determine all the inherited and acquired rights

according to the group structuring (Figure 7). A high level expression of the evaluation of a request

is shown below The algorithm accommodates any policy with respect to active groups by adjusting

the function Group_membership to return either only one group or a set of groups:

func Check-rights (s', o', a'): Bool;
- - s' comes from login, o' and a' are defined from the application language interface.
- - Gefj is the effective group of s' which defines the subject of the authorization rule
begin

G := USER.Group-membership (s'); ,

- - If we use the policy of OR-ing all the groups to which a user belongs, method Group .membership
- - returns of set of all the groups to which a user belongs. If the user can only use one of his groups the
- - user would be allowed to select one of the groups in this set. This would imply to add here an

16

Descendant (g)
(Gj is O)

Figure 7: Determination of effective subject.

17

- - interactive step to receive the user's choice.
if G±<1>

then begin
Ganc '■= Ua£G Ancestor (g);

- - This finds all the ancestors of g in all generalization group graphs to which g belongs.
Gdesc '■= UJ€G Descendant (g);

- - Finds all the descendants of g in all aggregation group graphs to which g belongs.
Grei := UgeG Related_group(G, g);

- - This finds all groups directly related to g.

Geff '■= g U Ganc U Gdesc U GreV,
- - Geff is used as subject for possible access rules that authorize the request

if (o', a') G (o, a) of {set of rules with g £ Geff as subject}
then return True
else return False

end if
else return False

end if
end

This algorithm works as follows:

• First the effective subject is determined by considering all the direct, inherited, and acquired

rights for subject s (Figure 7).

• We have now a set of groups that are the possible subjects for access rules authorizing this

request, let these be Ge// = {gi,g2,93}-

• We can think of the relationship Rights as a table linking subjects (groups) to data. We then

search this table and determine the rules that have gi, gi, or «73 as subjects. If any of those

rules has o = o' as security object we check in the relationship table the corresponding access

type a. If this matches a the request is authorized.

One should note here that this approach applies to any type of class structuring for the protected

data. In the model of [7] the set of rules that have Gejj as subject are determined by implication

along the data hierarchy (implied accesses are inherited from superclasses or subclasses) while in

other models they would be determined in other ways. For example, in systems without implied

accesses one needs to find a rule that matches exactly the requested data unit, i.e., o = o'. Another

important issue is the meaning of G; it could be interpreted as the set of all the groups to which u'

belongs (as shown in the algorithm) or as one of these selected by the user [13] (See discussion in

Section 3). The algorithm is also general in this sense, in a specific implementation one could adopt

either policy. For example, in certain applications the structure of a program under development

can be modeled very conveniently by a class hierarchy describing its components. Versions of a

18

Programming Programmer

A.
Application-
Programmer

Real-time-
Programmer

Figure 8: A grouping of programmers.

program can be described by relationship associations between programs. This approach provides

then a unified view of the complete system, as well as an easily implementable design.

Two aspects must be considered in the implementation of this algorithm:

• Complexity. In general the groups of groups for a real application will be simple, with at

most three to four levels. This implies that the propagation of access rights is rather short.

To improve efficiency even more the effective subject can be determined at login time or van

at compile time.

• Graph structure. If groups are defined without control, loops may occur. Because of tla

recursive nature of the algorithm these must be avoided. The Add-group method should

check for possible loops.

7 Application of the proposed approach

We will show the practical value of our proposal through a detailed application example. We

consider a software development environment because it requires a rich variety of authorization
policies [4].

We assume a typical software development company and we see how logical actions of its

operation can be implemented by specific commands from the set of group primitives described
above.

1. Assume the initial state of the development system is described by the graph of Figure

8. Note that Programming is the groups of groups' name, that is, up to this point th-

operation of the system is such that only one grouping with two levels is necessary, i.e., we criy

have programmers and they are classified in several types requiring different types of tools.

19

Programming

I
Security-

Programmer

Programmer

Application-
Programmer

Real-time-
Programmer

Figure 9: The company after step 3.

Programmers have access to standard compilers and editors, while real-time programmers

for example, can also access real-time simulators, a Petri-Net specification tool, and other

specialized tools.

2. Mary Jones (an application programmer) and Eduardo Lu (a systems and real-time program-

mer) join the company and are assigned to their corresponding groups through the commands:

Join-group (M. Jones, Application-Programmer)

Join-group (E. Lu, Systems-Programmer)

Join-group (E. Lu, Real-time-Programmer)

Now, for example, M. Jones can use the specialized tools needed by application programmers.

She inherits rights to access the standard tools needed by all programmers as well.

3. Now the company decides to go into the high-security systems market and they hire several

programmers that are specialists in secure systems. In order to incorporate these specialists

in the system we perform the following actions:

a) Create a new group of security programmers:

Create-group (Security-Programmer)

b) Add to this group the new k programmers just hired:

Join-group (name.l, Security-Programmer)

Join-group (name_k, Security-Programmer)

c) Make this group a generalization subgroup of Programmer:

Add_group(Programming, Security-Programmer, Programmer)

Now the company structure looks as shown in Figure 9.

4. The market for applications programming is poor and the company decides to abandon this

field. The members of this group will be reassigned or laid off.

20

Programming Programmer

-A-
Systems-

Programmer
Real-time-

Programmer

Figure 10: The company after step 4.

a) Group ApplicationJProgrammers is deleted:

Delete_group (Programming, Application-Programmer)

b) Some Application Programmers, e.g., R. Johnson, are laid off:

Leave-group (R. Johnson, Application-Programmer)

R. Johnson is also deleted from class User.

c) Others are just reassigned:

Join-group (M. Jones, Systems-Programmer)

The company now looks as shown in Figure 10.

5. Management realizes that it is impossible to develop good systems without hardware special-

ists and hires several of these. They are assigned to three specialization groups: processor

designers, I/O system designers, and CRT designers. The new state of the company is shown
in Figure 11.

6. This organization works reasonably well because the users have the rights they need to use

their tools and the systems they are developing. It assumes that a project is divided into the

different specialties according to their abilities. If there is only one project under development

that is all we need. However, we want more flexibility. What if we need to select some

software and hardware designers to work in a high-priority project, e.g., a new real-time

computer? This is the reason for the relationship groups that we have introduced. Note that

an aggregation group will not do: an aggregation group including for example the group Real-

time-Programmer and Processor-Designer will select all of these people not just a specific

set of them. We define then a relationship group: Relate-group (New_reaLt-comp, Real

timeJProgrammer, Processor-Designer). We then assign rights to this group according to he

intended function. Then we can indicate its members: Join-group (E. Lu, New_real-t-comu y

etc. The new state of the company at this stage is shown in Figure 12.

21

Programming Programmer

A
i 1 1

Security-
Programmer

Systems-
Programmer

ReaLtime-
Programmer

Hardware Hardware-
Designer

A
1 i 1

Processor-
Designer

I/O-System-
Designer

CRT-
Designer

Figure 11: The company after step 5.

Programming

New-real-t
comp

Hardware

Programmer Hardware-
Designer

A A
1 r

ReaLtime-
Programmer '

t Processor-
Designer

Systems-
Programmer

I/0_System_
Designer

Security-
Programmer

CRT-
Designer

Figure 12: The company after step 6.

22

8 Conclusions

The main contributions of this work are:

• A basis for unstructured groups of users including a set of procedures to manipulate them fa.

more detailed set of procedures can be found in [10]).

•
r

•

•

A framework for structured groups of groups including the corresponding procedures for thei

handling. A detailed comparison with other approaches can be found in [10].

A new concept to structure groups of groups, the relationship group, which had not been

proposed in any previous system and which is useful to define some types of security policies,

i.e., it enhances the precision of the authorization system.

A new set of authorization policies for groups of groups which can reflect the least privilege

policy into the institution group structure.

The formulation of the authorization system itself in terms of classes and associations between

these classes. This provides unity to the complete system design in that all of these models

can be shown to be special cases of ours. Our approach also provides a direct basis f

implementation. More importantly, it allows the authorization system to protect itself. Thjs

had not been done for object-oriented databases; in fact other models, e.g., [13], use k

level primitives for this purpose. This also results in simpler algorithms in the authorization
system.

• The application of the proposed group structures to the evaluation of access requests. This

can significantly improve the efficiency of the authorization system. A specification of the

necessary algorithm is presented. This algorithm can be combined with evaluation algorithms
based on data structuring [7].

In fact, although all these concepts were developed with an object-oriented database in mind
they can be applied to other types of databases. Further, they can also be applied to operating
systems. They are particularly useful for distributed environments where there are many users with
similar roles.

References

[1] R. Ahad, J. Davis, S. Gower, P. Lyngbaek, A. Marynowski, and E. Onuegbe. "Suppo
ing access control in an object-oriented database language". In Proceedings of the Europ-
Conference on Extending Database Technology, EDBT '92, Vienna, Austria, March 1992

23

[2] R. W. Baldwin. "Naming and grouping privileges to simplify security management databases"
In Proc. IEEE Int. Symp. on Research on Security and Privacy, pages 116-132, 1990.

[3] E. Bertino and H. Weigand. «An approach to authorization modeling in object-orient^
database systems ". To appear.

[4] A. W. Brown and J. A. McDermid. "Learning from IPSE's mistakes". IEEE Software, 9(2):23-

[5] H. H. Bruggemann. "Rights in an object-oriented environment". Database Security V: Status
and Prospectus. C. E. Landwehr and S. Jajodia (Eds.). Elsevier Science Publ. B.V., pages
yy -LjLD? j_yy^.

[6] Department of Defense Computer Security Center, editor. «Trusted Computer System Evalu-
ation Criteria". DoD 5200.28-STD. Dept. of Defense, December 1985.

[7] E. B. Fernandez, E. Gudes, and H. Song. "A model for evaluation and administration of
security m object-oriented databases". IEEE Trans, on Knowledge and Data Engineering
6(2):275-292, April 1994.

[8] E. B Fernandez, M. M. Larrondo-Petrie, and E. Gudes. «A method-based authorization
model for object-oriented databases". In Proc. of the OOPSLA 1993 Workshop on Security
in Object-Oriented Systems, pages 70-79.

[9] E. B. Fernandez, R. C. Summers, and C. Wood. Database security and integrity. System
Programming Series. Addison-Wesley, Reading, Massachusetts, 1981.

[10] M. H. Fernandez. "Group structures in object-oriented database authorization". MS Thesis
Dept. of Computer Sei. & Eng., Florida Atlantic University, 1992.

[11] R. Giagliardi, G. Lapis, and B. Lindsay. "A flexible and efficient database authorization facil-
ity . RJ 6826 (65360), IBM Research Division, Yorktown Heights, New York, May 1989.

[12] H. M. Gladney, E. L. Worley, and J. J. Myers. "An access control mechanism for computing
resources". IBM Sys. J., 14(3):212-228, 1975.

[13] Ü. Kelter. "Group-oriented discretionary access controls for distributed structurally object-
oriented database systems". In Proc. European Symp. on Research in Comp. Security, pages
AU ody iyyu.

[14] U. Kelter. "Discretionary access controls in a high-performance object management system".
In Proc. IEEE Symposium on Research in Security and Privacy, pages 288-299, May 1991.

[15] W. Kim. Introduction to object-oriented databases. MIT Press, Cambridge, MA, 1990.

[16] W. Kim. "Object-oriented databases: Definition and research directions". IEEE Trans
Knowledge and Data Engineering, 2(3):327-341, September 1990.

[17] J. D. Moffett and M. S. Sloman. Domino Paper Arch/IC/3, Imperial College of Science
Technology, and Medicine, London, UK, 1991.

24

on

[18] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. "A model of authorization for next-general-:/;::
database systems". A CM Trans, on Database Systs., 16(1):88-131, March 1991.

[19] J. Rumbaugh, M. Blaha, W. Premerlani, F.Eddy, and W. Lorensen. Object-oriented modelin:
and design. Prentice-Hall, Englewood Cliffs, N. J., 1991.

[20] R. S. Sandhu. "The ntree: A two dimension partial order for protection groups". ACM Trans.
on Comp. Systs., 6(2):196-220, May 1988.

[21] T.C. Ting. A user-role based security approach. Database Security: Status and Prospects. C.
Landwehr (Ed.). North-Holland, pages 187^208, 1988.

25

User-Role Based Security in the ADAM
Object-Oriented Design and Analyses Environment

M.-Y. Hu
IBM Corporation

1311 Mamaroneck Ave
White Plains, NY 10605
myhuQvnet.IBM.COM

S. A. Demurjian and T. C. Ting
Computer Science and Engineering Department

University of Connecticut
Storrs, Connecticut 06269-3155

steveQbrc.uconn.edu, tingQeng2.uconn.edu

Abstract

Over the past three years, our work has explored the attainment of user-role based
security (URBS) for discretionary access control (DAC) within an object-oriented design
model. Our approach has extended the public interface (which defines the means for
accessing classes or object types) to allow its methods to be selectively assignable (or
prohibited) on a role-by-role basis. This allows different users at different times to have
particular access to the public interface based on their specific roles.

The work presented in this paper details our prototyping efforts as we transition
from research on URBS and DAC to the object-oriented design and analyses environ-
ment ADAM. ADAM, short for Active Design and Analyses Modeling, is a language-
independent environment that automatically generates compilable code in C+ + , Ontos
C++ Ada83, or Ada9X (object-oriented extension to Ada) from designs that have been
supplied via text and form-based input. ADAM unifies the structural and security re-
quirements, elevating the latter to a first-class citizen in the design process. ADAM also
offers a framework of analysis techniques that are intended to support a more precise
and accurate characterization of an application and its security requirements. Note that
we also present recent research results on the support for integrity constraints within
our model and ADAM, and discuss their potential impact on security considerations.

1 Introduction

Over the past three years, our research emphasis has concentrated on the investigation
and attainment of discretionary access control (DAC) within an environment that sup-
ports object-oriented design and offers user-role based security (URBS) [2,10,19] as an

equal partner in the development process. URBS was proposed in 1988 [13,18] as a tech-
nique which focuses on individuals by characterizing and denning their responsibilities
within the application as the means for identifying and establishing security privileges.
We have chosen the object-oriented paradigm, since it has drawn much interest in recent
years, in academia, industry, and government, and appears to offer unique capabilities
that promote the design process (e.g., encapsulation and hiding - public interface vs.
private implementation) and facilitate software evolution (e.g., representation indepen-
dence and inheritance). Existing support for DAC in the object-oriented approach is
limited to the public interface (i.e., the set of all visible methods, their parameters, and
their return types for each object type or class), where all users, regardless of their needs
within the application, have full access to all methods in the public interface.

Our research efforts have sought to customize access to the public interface, to allow
different individuals to have particular access to specific subsets of the public interface at
different times via their roles within the application. Our approach [2,10,19] has focused
on establishing privileges by assigning (positive) and prohibiting (negative) methods
based on roles. A role assigned a method can invoke the method, and by inference can
also access instances on the object type on which the method is defined, and potentially
read and modify private data that the method might use. A prohibited method restricts
access in a similar fashion. The idea of defining both assigned and prohibited methods
is important, since it allows the possible problem of information leakage [16] due to the
inheritance between object types to be addressed.

There have been a number of other efforts related to our work. The approach
in [14] is similar to our process of method assignment, but differs since they assign
objects and authorization types to roles. Our approach also contrasts to [13], where the
access rights/permitted roles are assigned based on data levels. Our approach and [15]
both have the goal of providing different interfaces to different users, but differ since
they assign views based on data. When considering negative privileges, our concept of
prohibited methods is similar to the concepts of negative authorization in [14], denied
roles in [13], and permission tags in [1], but differs since all of their efforts emphasize
data; we focus on object types/methods. Other efforts for security in object-oriented
systems via mandatory access control [12,17] differ from our DAC approach.

Our purpose in this paper is to report on the status of our prototyping efforts for
supporting object-oriented design that includes URBS definition. Ongoing work has
resulted in the development of an object-oriented environment, ADAM (short for Active
Design and Analyses Modeling), that is capable of supporting both the design process
and generating compilable code in multiple languages [6,7,8]. ADAM currently supports
code generation for two dialects of C++ (GNU C++ and Ontos C++ - an object-
oriented database system), Adal983 [4], and Ada9X [5]. This paper reports on the
incorporation of a portion of our previous security research into the ADAM environment,
focusing on the definition of security privileges on user roles [10].

Our approach also contains a framework of analysis techniques [2,10,19] that operate
from two perspectives to indicate: which user roles have access to a specific aspect (OT,
method, private data) of an application; and, what is the access to the application of
a chosen user role. Analyses are supported in two different ways within ADAM. First,

as privileges are being defined for different user roles, they are automatically checked
against all existing privileges for that role to identify conflicts or inconsistencies in real-
time. Second, at any time during the overall process, a security designer can initiate a
large and varied number of analyses that allow him(her) to understand and evaluate the
defined privileges against the desired security requirements of the application These
analyses can be used by the designer to investigate realized privileges against the appli-
cation's intended security requirements. This paper will discuss the ADAM prototype,
with an emphasis on its support for security definition and analyses.

The remainder of this paper is organized into four sections. In Section 2 we de-
scribe the object-oriented model and URBS definition capabilities of ADAM 'using a
health care application (HCA). Section 3 reviews the available analysis framework that
allows the designer to understand and evaluate the application from complementary
perspectives, with the goal to support a more precise characterization of an application.
In Section 4, we detail ongoing research and prototyping issues, including an extension
to the object-oriented model and ADAM for supporting integrity constraints, and a
discussion of next-step research concepts for security enforcement. Finally, Section 5
summarizes the paper and indicates future plans.

2 Object-Oriented Design, URBS, and ADAM

The object-oriented design model for ADAM is tightly integrated into the environment,
with the semantic, scope, content, and context of each modeling construct clearly de-
fined. There is no specific syntax for the design model; choices are made via menus
browsers, etc., and text is directly entered by the designer using forms. Thus, the envi-
ronment stresses language independence by focusing on design and allowing code to be
generated in a variety of target languages for supporting a transition to the implemen-
tation effort. ADAM supports incremental design by allowing design data to be stored
persistently in the Ontos database system. Design-analyses are promoted through pro-
files [8,10], which are detailed requirements on the semantic content and context for all
constructs of the application. Profiles have two purposes:

1. Force software engineers to supply detailed information as an application is de-
signed.

2. Provide on-demand and automatic analyses for feedback to software engineers
whenever an action in the environment results in a conflict or possible inconsis-
tency.

To support the entire design, development, and analyses processes, the ADAM environ-
ment has been partitioned into two stages: design phases and semantic perspectives

Design phases (DPs) are intended to be used for constructing the application struc-
ture and behavior by segmenting the design process into logical parts. That is, through
DPs, software engineers can define, modify, and evolve applications, including both its
information and security characteristics. Throughout the design process, profiles are
entered by software engineers and, in some cases, this data is propagated throughout

the entire environment. As software engineers develop and detail their designs, DPs alsG
offer automatic feedback as discussed above. At any point during the design process,
code can be generated so that designers may inspect whether generated code meets their
needs and requirements.

Semantic perspectives (SPs) are the stage in ADAM that can be used by software
engineers to analyze structure and behavior by examining different context views of an
application's content. By understanding the semantic associations through feedback
based on information, methods, object types, and user roles, software engineers can
refine and redefine their designs. The analyses supported via SPs are accomplished
using profiles. However, the SPs are a "read-only" world; to correct problems, changes
must be made in the DPs.

The current implementation of ADAM (as of July 1, 1994), supports five design
phases (three for modeling constructs and two for URBS and authorization) and two
semantic perspectives (for object types and URBS). The remainder of this section dis-
cusses four of the five design phases and in the process reviews the major concepts using
examples from a health care application (HCA) [10]. Note that ADAM has been imple-
mented on a Sun architecture under a Unix environment using X windows, Inter Views
3.01, and AT&T C++ 2.0.

2.1 Object-Type Specification

In the object-type-specification phase of ADAM, the designer can define object types
(OTs), attributes, and methods through associated profiles. This work has been ex-
plored elsewhere [8], and is only briefly reviewed. An attribute profile (AP) includes:

1. a prose attribute description on the purpose of the attribute in the OT
2. the name and type of the attribute
3. a list of the methods that access the attribute and an indication of whether

the attribute is read and/or written by each method

A method profile (MP) includes the following information:

1. a prose method description for the method's actions within the application
2. the method's name, return type, and parameter list (with names/types)
3. the read/write set for each private attribute used by the method Mi
4. the other methods that are called by M{ to accomplish its task

An OT profile (OTP) consists of following information:

1. a prose OT-description for the purpose of the OT in the application
2. the OT's name
3. the persistency status of the OT
4. the attribute profiles for all private attributes
5. the method profiles for all methods

Record

Mcdlcaljl Prescription^

I (Phtses) (Perspective!] (Platform») (Generate] (DiUbue] [Quit]

Figure 1: Object Types of a Health Care Application (HCA).

6. the relationships that involve the OT
7. the supertypes and subtypes of the OT

A subset of OTs of a HCA, based on prior work [10], is shown in Figure 1. In
this figure, there are ten OTs: Object, Item, Record, Visit, Prescription, Test,
Medical_R, Prescription^, Financial_R, and Patient. Visit, Prescription, and
Test are subtypes of Item, for different medical procedures for a patient. The profiles
for OT Medical_R, attribute Medical_History, and method Read_Med_Rec are shown
in Figure 2. Note that some information in profiles is designer-supplied (e.g., each MP)
while for others, input/choices by the designer automatically update relevant profiles
(e.g., each MP/AP is included in OTP).

2.2 Relationship-Type Specification

In the second phase of ADAM, the designer can define the relationship types (RTs)
between different OTs via a relationship-type profile (RTP). An RTP is a specialized
OTP that contains:

1. all information from an OT profile
2. the relationship variant (e.g., one-to-one, one-to-many, set, etc.)
3. the involved source and destination OTs

Object Name: Persistency:

Medical H IffiT
Instantiation: Inheritance Variant:

 1 Ni
Object Description:

Holds a patient's medlca! record-

Head Med
'rintMedlca

SupcrTypt: Relationships:

Record i ContaänaP
SubTypea: Contains!

ContalnsV

Object Name:
Medical R ~

Attribute Name: Attribute Type:
1 Medical History I ggüTg

Attribute Description:
Pescriptlon of patient's medical hlstoiv
AccessMethods:
PrintMedlcal History
GctMedical History
SeiMedlcal History

GAII System Methods
DSet Method EPubllc DPrtvate

BPubllc □Private
HPubllc DPrtvate

Method Nerae: Object Name:

Medical R I [Read Med Record i

Access Designation : EPubllc DPrivsti

Method Description:

Bead medical recordT

ReturnType:Medical R

Parcraaiers: ParamGterTypc^:

Read Write Set: Methods CallEd:

Get Syrp.ptoros
let ülagnosia

(Cancel)

Figure 2: Profiles for Medical_R, MedicalJiistory, and Read_Med_Rec.

Note that except for relationship name and description, all other information in the
profile is^ automatically generated based on a designer's actions. A partial subset of
the relationships between the OTs given in Figure 1 is shown in Figure 3. In this
figure, we have established associations between the different OTs. For example, a
Medical_R(ecord) contains the Visits, Prescriptions, and Tests that catalog the
complete medical history of the Patient.

2.3 URDH Specification

To support URBS, the user-role definition hierarchy (URDH) characterizes the differ-
ent kinds of individuals (and groups) who all require different levels of access to an
application. The responsibilities of individuals are divided into three distinct levels of
abstraction for the URDH: user roles, user types, and user classes. User roles allow the
security software engineer to assign particular privileges to individual roles. To repre-
sent common responsibilities among user roles, a user type can be defined. Privileges
that are assigned to a user type are systematically passed to all of its roles. The different
user types of an application can be grouped in to one or more user classes. Privileges
that are supplied to each class are passed on to its types and their roles.

Figure 4 shows a partial URDH created in the ADAM environment for the HCA,
with a more complete URDH given elsewhere [10]. In the figure, the roles are defined in
a two-step process of specialization (top-down) and generalization (bottom-up). From
a top-down perspective in Figure 4, there are two different user types: Nurse and
Physician. In this case, the software engineer is assuming that each of these user types
may have privileges that would be common to all user roles under the type. Within
each user type, one or more user roles may be defined. For example, in Figure 4,
user roles for Nurse include Staff JIN, Discharging (planning), Education, and

^^B ADAM
Active DAtabiie Model fjj23

Relationship-Type SptcfflciUon

File Prolllej AddProllle VlrwProflle

Relation Arrow

Object Ust

PiUent
Has

Medical R

Prescription

(Phases] (Perspectives 1 Platforms | | generate) (Quit

Figure 3: A Subset of the Possible Relationships.

Manager. The URDH can also be examined from a bottom-up perspective to determine
the common characteristics by the grouping of the user types into user classes such as
Medical_Staff, Support_Staff, and Other, which is not shown in this figure.

To more accurately characterize the capabilities of user classes, user types, and user
roles in the URDH, with respect to the privileges to be granted against the application,
we propose the creation of a node profile (NP). A node profile contains:

1. a name for the node (user role, user type, or user class)
2. a prose description of its responsibility
3. a set of assigned methods (the positive privileges)
4. a set of prohibited methods (the negative privileges)
5. a set of criteria for relating URDH nodes

A user-class profile or user-type profile is a specialized node profile. A user-role pro-
file is a specialized node profile that also contains a prose description of its security
requirements.

In the URDH-specification phase of ADAM, the designer must select the node type
(user role, user type, user class) to define a new URDH node as shown in Figure 5.
After selecting the type of a node, the designer must supply the node name and node
description for the created node. The initial information for the node profile of the user
role Staff_RN is shown in Figure 6. After a node is created, the designer can select

fflfi ADAM
Active DAtabase Model

URDH Specification

FBe AddProflle VlewfroSle Analysis

Select

(Phase») (Perspectives) (Platform») (Generate) (Quit

Figure 4: The URDH of the HCA.

ADAM
Active DAtabue Model

URDH Specification

Flit AddProHIc VlewProfile

(Users)

Please select die node type:

f User Class | [User Type | I User Hole) (Cancel

Phases | [Perspectives) | Platforms] I Generltl)

Figure 5: Selection of URDH Nodes.

User Role Name: gtaft RN
Description:
[Administer direct care to patient» |
Sec. Reqr.:
(All clinical inlormation tor the patients! I

Done (Cancel'

Figure 6: Initial Information for the User Role Staf f _RN.

Visit:Get_Treatment
Visit:Set Diagnosis
Visit:Gef Diagnosis
Visit:Set~Symptom
Visit:Get_Symptom
Vlsit:Set_Treatment
Prescnption:Set Medication
MedicaIR :Get_AII_Physician
Medical_R :Get_AII Medicine
Medical_R:Get All Visit jm

(accept | (done j [' cancel)

Figure 7: Selection of Assigned Methods for the User Role Staff _RN.

the menu option AddProfile to supply other information on the security privileges for
a node, i.e., assigned and prohibited methods, and consistency criteria. The designer
utilizes the mouse to select the assigned/prohibited methods from a list of previously
defined methods. To specify the equivalence/subsumption criteria, the designer utilizes
the mouse to select nodes from the list of defined URDH nodes. A selection of assigned
methods for user role Staff_RN is shown in Figure 7.

In the URDH-specification phase of ADAM, the checking on assigned/prohibited
methods is performed automatically to insure that there are no conflicts, e.g., an as-
signed method conflicts with an earlier prohibited method. If a problem is identified by
the analyses, the system will not accept the specification and will require a correction
by the designer, as shown in Figure 8. Note that the conflict may be more subtle,
and arise due to nested method calls, e.g., one assigned method calls a method that
calls a method that is prohibited. The checking on consistency criteria is also per-
formed automatically to insure that there are no conflicts when designers specify the
assigned/prohibited methods and/or the consistency criteria, as shown in Figure 9.

The complete node profiles for the user role Staff_RN and Manager are shown in
Figure 10. The node description and node security requirements for Staff_RN were:

Node Description: Administer direct care to patients and implement the physician
treatment plan.

Security Requirement: All clinical information for the patients that they are respon-

ADAM
Active DAtabue Model

URDU Specification

File AddProflle VlewProfile Analysis

Warning : Conflict between Assigned and Prohibited Methods

C2JD

^UR:Staff_RN^) K^mtimM^) (^UR'-ManageT) (^PnV«?} <^UH:Attending^

UR:Dlscha!-ge_P!r!g

(Phases) (Perspectives ~] (~ Plalforgs] [Generate) (Quit

Figure 8: Conflict Identification Message.

m
ADAM

Active DAtabase Model H_
URDH Specification

File AddProlile VliwProlile Analysis

Warning : Inconsistency between Assigned Methods and Subsumpüon Criteria

f OK I

UR :S«an_HrT) /^URiEducatJ^T) ^^ManagsT} QUR Private

UR'.Discharge ^T>

IMMIMgjMOTra^fflaKj

(Phases) (Perspectives] (PlatFotms | | Generate | (Quit)

Figure 9: Consistency Criteria Checking Message.

10

User Hole Name: IStaff RN

Description: (Administer direct care to patients
Sec. Rear.: |AII clinical information for the patients

— Assigned Method Prohibited Method
Get Symptom Set Treatment
Set Symptom Set Medication
Get Diaqnosis Get All Visit
Set Diaqnosis Get All Medicine
Get Treatment Get All Physician

Consistency Criteria
Equivalence Subsumption

< Manager

(Done 1 (Cancel)

User Role Name: Manager
Description. Responsible lor the operation ol unit

Sec. Reqr.: (All clinical info plus other info

Assigned Method Prohibited Method
Get Symptom Set Treatment
Set Symptom Set Medication
Get Diagnosis
Set Diaqnosis
Get Treatment
Get All Visit
Get All Medicine
Get All Physician

Consistency Criteria
Equivalence Subsumption

> Staff RN

(Done J (Cancel]

Figure 10: Node Profiles of the User Roles Staf f _M and Manager.

sible for (referred to subsequently as clinical info.). Can write/modify a substan-
tial portion of clinical information to record the results/patient progress. Cannot
change a Physician's orders on a patient.

Other node profiles for the user type Nurse and user class Medical-Staff are given in
Figure 11.

2.4 Authorization-List Specification

To more accurately characterize the capabilities of users in an application, with respect
to the privileges to be granted, we employ user profiles, which are similar in concept to
node profiles (see Section 2.3 again). A user profile (UP) contains:

1. a name for the user
2. a prose description of its responsibility
3. a prose description of its security requirements.
4. a set of assigned roles (the positive privileges)
5. a set of prohibited methods (the negative privileges)
6. a set of criteria for relating users

In the authorization-list-specification phase of ADAM, the designer must supply the
user name, user description, and user security requirements when creating a new user.

11

User Type Name: Flurse
: Description: [Direct involvement with patient care

i Assigned Method Prohibited Method
Read Med Record |
Insert Visit
Get Visit
Insert Lab Test j
Get Test
Insert Med Hist

Consist
Equivalence

ency
Su

Criteria
bsumption

1
(Done j (Cancel j 1

User Class Name: Medical Staff

Description: JHesgonsible lor all aspects ol patients
Assigned Method
Get Record No

Prohibited Method

Consistency Criteria
Equivalence Subsumptiors

Done | I Cancel

Figure 11: Node Profiles of the User Type Nurse and the User Class Medical_Staff.

Since all of the actions performed in this phase are very similar to the URDH phase, we
omit bit maps. However, note that conceptually, a user has privileges via a set of'one
or more assigned roles. So, the URDH information is aggregated for each role for which
a user has been authorized (or prohibited).

3 Security Analyses

To provide the designer with the ability to compare/contrast the privileges which have
been defined (via URDH and/or authorization list) with the application's intended
security requirements, an analyses framework is supported. In this section, we briefly
review the analyses that have been implemented in ADAM. The research motivation and
algorithmic techniques for these analyses were reported in an earlier work [11]. Recall
that the analyses are supported in the semantic perspectives of ADAM, as described
in Section 2. We provide bit maps of ADAM to demonstrate a select subset of the
supported analyses.

3.1 Analyses of User-Role Definition Hierarchy

ADAM supports designer-initiated analyses of the URDH in two categories:

• the capabilities of the URDH node based on the assigned and prohibited methods

12

• the authorization analysis of the application based on the assigned and prohibited
methods

In the first category, the security designer chooses a URDH node (say Staff _RN) and
can then analyze its privileges with respect to OTs, methods, and private data that
can/cannot be accessed. In the second category, an aspect (OT, method, attribute) of
the application is selected and the different user roles that have access are supplied.

All of these and later analyses occur at direct and indirect levels. Direct analyses
inspect only the explicit privileges that have been established. Indirect analyses search
for privileges exhaustively, since methods can call other methods (see the method profile
definition in Section 2.1). These nested method calls are important, since they provide
an inferred access to methods, OTs, and private data they may not have been intended
by the security designer. Indirect analyses are also used to support automatic analyses
as discussed in Section 2.3. Due to space limitation, we will omit indirect analyses from
our remaining discussion.

3.1.1 Capabilities Analyses

Capabilities analyses allow the security designer to review the permissions given to
a chosen URDH node on an application's OTs, methods, and/or private data. This
review can occur throughout the time period when the designer is defining the URDH
and establishing assigned/prohibited methods for its nodes. For example, the designer
can choose the Staf f _RN node and be presented with:

• all methods which have been assigned to Staff_RN and its ancestors (Nurse,
Medical_Staff, and Users);

• all OTs which can be accessed by Staff _RN, since each assigned method belongs
uniquely to a single OT; and

• all private data which is accessed by Staf f _RN, since each assigned method uses
private data in a read, write, or read/write fashion.

Analysis is also available for the prohibited methods to find what cannot be accessed.
For example, the designer can choose the Staf f JRN node and be presented with:

• all methods which have been prohibited to Staff_RN and its ancestors (Nurse,
Medical_Staff, and Users);

• all OTs which cannot be accessed by Staff_RN, since each prohibited method
belongs uniquely to a single OT; and

• all private data which is not accessed by Staf f _RN, since each prohibited method
uses private data in a read, write, or read/write fashion.

In the semantic perspective of the URDH, a list of available analyses can be enabled
as shown in Figure 12. The designer can select any option from the list and perform the
desired analyses. If the "Direct Assigned Methods" option is selected, a set of assigned
methods on a selected node will be returned. The results of the direct analysis of

13

333 ADAM
Active OAtabise Model

File
URDH Analysis

Direct Assigned Methods
Direct Prohibited Methods
Indirect Assigned Methods
Indirect Prohibited Methods
Direct Assigned Object Types
Direct Prohibited Ob|eet Types
Indirect Assigned Object Types
Indirect Prohibited Ob|ect Type« |
Direct Assigned Private Data
Direct Prohibited Prt/ale Data
Indirect Assigned Private Data
Indirect Prohibited Private Data

Phases | (Perspectives Platform» | (Generate) (Quit

Figure 12: Available Capabilities Analyses of the URDH.

assigned methods for Staff _RN is shown in Figure 13. Each method name is associated
with the URDH node name, so that the designer can understand where the methods
have been assigned. If the method list cannot fit into one window, the designer can
use the scroll bar to check other methods. If the designer identifies any problem(s) in
method assignments (or the privileges) as a result of the analyses, correction(s) can be
made by modifying the URDH, node profiles, or/and the application. Direct analyses for
user types work in a similar fashion as shown for Nurse in Figure 14. Correspondingly,
when the "Direct Prohibited Methods" option is selected, a set of prohibited methods
on a selected node will be returned as indicated for Staff_RN in Figure 15.

3.1.2 Authorization Analyses

Authorization analyses allow the designer to investigate which user roles have what
kinds of access to different aspects of an application (i.e., an OT, a method, or a private
data item). For example, the designer can choose the Medical_R OT and be presented
with:

t all user roles which have access to the Medical_R OT;

• all user roles which have access to the methods of Medical_R OT; and

• all user roles which have access to the private data items of Medical_R OT.

The authorization analyses of prohibited methods are similar to the analyses of assigned
methods. For example, the designer can choose the Medical_R OT and be presented

14

Medical _S:Get_Record_Mo
Nurse :Get Visit
Nurse:Get~Test
Nurse:lnsert_Lab_Test
Nurse:Head_Med_Reeord
Nurse:lnserf_VisiF
Nurse:flead_Med Record
Staff_RN:Get_Symptom
Staff_RN:Set Symptom
Staff_RN:Get~Diagnosis

Figure 13: Direct Analysis on Assigned Methods for the User Role Staff_RN.

|L3 Direct fissfgredt Ketffcdsr ?ef ired-'inr Wwrre *'■ \i. Bfl|g|
] 1

1
? Users :Get Patient Name

Medical SlGet Record No
Nurse :lnsert_Med_Hist
Nurse:lnsert Visit
Nurse:Get_vTsit
Nurse :insert_Lab_Test
Nurse :Get_Test
Nurse:flead_Med_Record

it

(OKJ j

Figure 14: Direct Analysis on Assigned Methods for the User Type Nurse.

Staff RN:Set Treatment
StalTRN:Set>iedication
Staff RN:Get All Visit
Staff RN :Get>lf Medicine
Staff RN:Get_Alf Physician

M

OK

Figure 15: Direct Analysis on Prohibited Methods for the User Role Staff_RN.

15

with a list of user roles that should not be allowed access to the OT. Clearly, these
analyses are the complement of capabilities case, and are being implemented.

3.2 Analyses of Authorization List

ADAM also supports a semantic perspective for analyses based on the authorization-
list, where multiple (one or more) user roles have been assigned (and/or prohibited)
to each individual who accesses an application. These analyses extend the URDH
situation, since they (in most cases) repeatedly call the "relevant" URDH analyses for
each user role assigned to an individual. The designer-initiated analyses provided for
the authorization-list are:

• the capabilities of the individual based on the assigned and prohibited roles

• the authorization analysis of the application based on the assigned and prohibited
rol es

We do not provide bit maps from ADAM for the authorization list analyses, since these
analyses are extensions from the URDH analyses with aggregated information from the
user roles.

3.3 Other Analyses

In addition to the security related analyses that have been described, we have also
developed a significant set of analysis techniques for non-security object-oriented design
model constructs. For example, one analysis would choose OT in an application and
perform a "neighborhood search" to all other OTs and RTs that are within a certain
distance. This analysis searches for both inheritance and relationship links to determine
the correct neighborhood. Another analysis that is supported examines the design of an
application to identify cycles that have been caused by different RTs linking OTs. Cycle
detection is an important step, especially since an ADAM design might span multiple
screens so that an engineer would not "see" all of the interdependences. These and
other analyses have been detailed elsewhere [8].

4 Ongoing Research and Prototyping Issues

This section considers other relevant issues which involve research and prototyping ef-
forts that are in progress and have a strong relationship to security concepts. Specifically,
in the first part of this section, we review research on integrity constraints. Integrity
constraints represent a research focus [9] that has not been reported to date. Next, we
discuss a plausible approach for realizing and enforcing security in a manner that is
consistent with object-oriented precepts and principles.

16

4.1 Integrity Constraints

The integrity constraint (IC) construct for ADAM has been designed to span both
programming (typing) and database (derived values) requirements for integrity in an
object-oriented model. In our model, we take the view that ICs are restricted to within
an OT and define the values that an attribute may take. This fulfills the encapsulation
characteristic of the object-oriented paradigm and ensures that all instances of the same
OT have identical behavior. An IC applies to a single instance of an OT, i.e., a constraint
may not involve the private data items of two separate instances even if the two instances
are of the same OT. While this is a very strict definition of dependent behavior, note
that the propagation construct in ADAM [6], which has not been discussed herein, is
available to handle more complex situations.

Integrity constraints are inherited within the ISA hierarchy, where all constraints
defined on the attributes of an OT's ancestors are inherited by the OT itself. In addition,
an IC may apply to the private data directly defined on an OT and/or to the private
data that the OT has inherited from its ancestor(s). In this sense, an OT is composed
of itself and its ancestors; while it appears that a constraint may cross multiple OTs, in
reality only one OT (and its instance that contains instances of ancestors) is involved.
To maintain consistency with Section 2, an integrity constraint profile, ICP, contains:

1. the name of the constraint
2. a prose IC-description for the purpose of the IC
3. the constraint variant
4. an algebraic expression describing the constraint
5. the attribute profiles for all attributes involved in the constraint
6. the method profiles for methods impacted by the IC

There are two IC variants: value restriction and attribute dependent. The value-
restriction variant of ICs restricts the values that an attribute can have based on an em-
pirical value, e.g., Age < 25. In the attribute-dependent variant of ICs, the values that
the dependent attribute may assume are restricted based on one or more other attributes
defined on the same OT (or its ancestors), e.g., AmtDue = Charge - Insurance.

An important aspect of ICs that is related to security constraints involves our im-
plementation approach for constraint maintenance. The main thrust of our approach
is to ensure the integrity of all attributes on a method-by-method basis. The designer-
defined methods specified for an OT are the unit of integrity assurance, and operate by
checking the values of all attributes written by the designer-defined method after the
execution of every method. Since ICs are limited to a single OT, and may not span
instances of OTs not related by inheritance, a more centralized approach to integrity
maintenance is not required.

We use a straightforward example from our HCA to demonstrate our approach. Sup-
pose that the following ICs have been defined on the Prescription OT for its Cost and
W_Sale_Cost attributes: IC1: Cost > 0 and IC2: W_Sale_Cost < Cost. Assume
that the UpdateCost method modifies both the Cost and W.Sale.Cost attributes by
the same amount. The first step in constraint maintenance generates a boolean method

17

for every attribute that is involved in a particular IC. This method is passed the new
value for the involved attribute and returns true or false depending on whether the IC
has been violated. Using the previous example, a single method is produced for IC1
and two methods are produced for IC2.

Boolean CostCheckICi(NewCst) {Return (NewCst > 0);}
Boolean CostCheckIC2(NewCst) {Return (W_Sale_Cost < NewCst);}
Boolean W_Sale_Cost(NewW_Sale_Cost) {Return (NewW_Sale_Cost < Cost);}

The next step is to group together all of the boolean methods that involve the same
attribute so that all related ICs can be checked with a single method call, to, in this
case, CheckCost. Note that the results of each of the individual boolean methods are
logically ANDed together.

Boolean CheckCost(NewCst)
{ Return(CostCheckICl(NewCst) AND CostCheckIC2(NewCst)); }

These different methods will be automatically generated by ADAM for maintaining
constraints, in conjunction with an appropriate runtime process.

Specifically, we utilize a constraint consistency OT (CCOT), which is responsible
for maintaining information consistency with respect to an OT's ICs at runtime. Every
designer-defined OT contains a CCOT generated by ADAM that operates conceptually
in a fashion similar to a constructor (i.e., an instance of CCOT is created whenever an
OT is instantiated to track and verify the changes to attributes against defined OTs).
The constructor for an OT is extended so that when an instance of an OT is instantiated,
a constructor for the CCOT is called to automatically create a CCOT instance. In this
manner, an object's constraints are maintained while the vehicle which carries out the
maintenance is shielded from the user.

The CCOT is activated on each method call. Any changes to attribute values made
to by the method are stored to copies of the attributes located in the constraint consis-
tency object. At the end of the method's execution, the CCOT calls an attribute check
method for all attributes modified by the method. If the new values of all attributes
(the copies) are consistent with respect to their ICs, the attributes on the original object
are updated to reflect the new values, i.e., copy from CCOT to the OT. If any of these
checks fail, the effect is that the method did not execute since the values for CCOT are
not copied back to the OT.

In our example, if the UpdateCost method is called, the constraint checker first
makes copies of the W_Sale_Cost and Cost attribute values. Next, the UpdateCost
method is executed, making changes to the copies of the attributes located on the
CCOT. When the method has finished executing, the CheckCost and CheckW_Sale_Cost
methods are called and their results logically ANDed together. If the results of all of
these methods are true, then the values for Cost and W_Sale_Cost are copied to the
apropos attribute values located in the original object (instance).

The use of a CCOT encapsulates the integrity maintenance behavior within an OT
while providing separation between the behavior and its maintenance mechanism, and
therefore offers another layer of information protection. The approach also resolves the

18

undo problem; since changes are not made to actual attributes until their integrity has
been validated, there are no actions to be undone, and the CCOT instance is discarded.

Some may argue that our approach wastes time by delaying the validation of at-
tribute values to the end of a method call. However, this is necessary to avoid "tran-
sient inconsistency", where a value is inconsistent for a brief period during a method's
execution. For example:

1 UpdateCost(amount)
2 i
3 W_Sale_Cost = W_Sale_Cost + amount;
4 Cost = Cost + amount;
5 }

suppose that the original values for the attributes are Cost = 4 and W_Sale_Cost =
3, and the amount parameter contains 2. If we were checking attribute integrity on
a line-by-line basis, when W_Sale_Cost is set to 5 at line 3, the W_Sale_Cost < Cost
integrity constraint would no longer hold. Using our approach, both W_Sale_Cost and
Cost are checked at the end of the method when both will contain consistent values
with respect to their ICs.

Note that by making changes to the CCOT and then transferring values to the
OT, we are assuming that problems are likely to occur that requiring undoing. This
behavior is appropriate for applications where integrity violations are highly probable.
An alternative approach would revise the concepts so that the CCOT contains the
original values and the OT itself is directly modified. When an undo was necessary, the
CCOT values would be copied to the OT. This case applies well to applications where
the ICs are not likely to be violated. We believe that both approaches are desirable and
will be explored as future research.

4.2 Security Realization and Enforcement

In a recent effort [3], we advocated that the characteristics of the object-oriented
paradigm must be the guiding factor in the design and development of security capabil-
ities. This includes: basic features such as the public and private interfaces, encapsula-
tion, and hiding; advanced features such as polymorphism, dispatching, and overloading;
and paradigm claims such as software reuse and evolution. In self-critiquing our own
efforts, we asked two important questions:

• How can and should these three advanced features be utilized to realize security?

• What role can the paradigm claims play in the security enforcement process?

Polymorphism, through its type independence of code, might be the vehicle by which
security code for object-oriented systems can be successfully implemented and reused.
In a URBS solution to security, different roles must all undergo the same processes of
granting privileges, authentication, and enforcement. When establishing a security pol-
icy for an application, polymorphism can be used to develop class libraries for supporting
these processes, that are parameterized by type (in this case, user role!). Dispatching

19

and overloading are strongly linked, and together allow an executing piece of object-
oriented code to behave differently based on the type of the invoking instance. There is a
strong parallel from a security perspective; dispatching and overloading have strong ties
to promoting and supporting the execution of security code via the runtime invocation
of different methods based on the involved user role. In this case, the security policy
and its associated code can be extended and modified as needed when user roles (or
their capabilities) change over time. The common theme of all three advanced features
is to consider the design and development of security class libraries, which are geared
towards the support of security requirements in an object-oriented domain.

The paradigm claims that appear to have the most impact on security for object-
oriented systems are software reuse and evolution. In practice, these two claims are
tightly linked to the definition and maintenance of OT/class libraries for object-oriented
applications. The security solution that utilizes an OT/class library approach is strongly
tied to reuse, since once defined, these libraries can be reused as is, extended with new
capabilities, or evolved to satisfy changing needs. For a given application (like HCA),
apropos security libraries would be automatically included. These libraries would pro-
vide all aspects of security, such as definition, authentication, and enforcement. For
example, in HCA, a software tool to monitor and establish treatment was to be devel-
oped for all professionals that administer care, e.g., nurses, physicians, technicians, etc.
In a URBS approach, each of these professionals would have different user roles. The
overall security policy for such an application would need to consider and distinguish
the security requirements for each role. If such a policy for HCA implemented as a class
library, then the user role for physician would be given more expansive access to the
library (to allow doctors to set medication and treatment) than nurses. When such a
policy is included in the software tool, the end result is that the tool behaves differently
based on the user and his/her role (dispatching again).

To realize the aforementioned scenario of a class library for security, where the same
tool would operate differently depending on the user role, there must be support at the
implementation level in the definition of OTs/classes. The integrity constraint imple-
mentation approach (see Section 4.1) can be exploited to further expand the capabilities
of the constructor to include instances of the relevant security classes, to define the se-
curity policy. This is analogous to the CCOT and provides a way to bridge the gap from
type-level security to its instance-level realization. Another choice would be to add a
security constructor to an OT/class, that would specifically and uniquely embody the
security policy. Regardless of the final choice, the idea of a security class library, and
its inclusion and reuse both within and across applications, can be strongly advocated
as consistent with object-oriented precepts and principles.

5 Concluding Remarks and Future Work

This paper has presented a report on the prototyping of ADAM, a unified environment
for supporting object-oriented design and analyses which includes URBS for D AC. While
the core concepts and constructs for our object-oriented design model (see Sections 2.1

20

and 2.2 again) were presented, our major emphases were on the user-role definition
hierarchy (for defining roles and establishing privileges in Section 2.3), the authorization
list (for individuals who need to play multiple roles in Section 2.4), and the available
analyses (see Section 3) within ADAM. These analyses are critical for successful design,
since they allow the security designer to compare and contrast the realized design against
his/her intended security requirements. This results in designs which are more accurate
and precise, at least when considered from a URBS perspective. We also provided
a preliminary report on our research/prototyping efforts for integrity constraints (see
Section 4.1), and related this work to security realization and enforcement issues (see
Section 4.2). Overall, we plan on continuing to develop and evolve ADAM, using it as
a test-bed to explore and verify our different research ideas related to both structural
and URBS design.

A number of projects related to ADAM have been identified and are ongoing:

• The Impact of Changes Across the Environment: In this case, we are interested in
what happens when a significant change to the application occurs. For example,
if a user role is deleted, the impact on the authorization list must be considered.
Likewise, if methods or object types are deleted, then the URDH and the autho-
rization list may be affected. The issue is the degree to which these changes can
be automated within ADAM.

• Enforcement of Roles and Authorizations: Throughout the entire environment,
software engineers involved in cooperative design or development on an application
should be only able to see, use, and/or modify the methods and object types that
have been authorized to them based on their roles. This must be enforced in all
relevant portions of ADAM.

• Automatic Documentation Generation: Originally, the different portions of pro-
files (see Section 2 again) are utilized to create comments in the generated code.
This capability hass been extended to automatically create Latex documentation
for a particular design.

Our overall goal is to have a unified environment that supports all aspects of software
design, development, and implementation, with security as a critical component.

References

[1] H. H. Bruggemann, "Rights in an Object-Oriented Environment", in Database Security,
V: Status and Prospects, C. Landwehr and S. Jajodia (eds.), North-Holland, 1992.

[2] S. Demurjian, M.-Y. Hu, T.C. Ting, and D. Kleinman, "Towards an Authorization
Mechanism for User-Role Based Security in an Object-Oriented Design Model", Proc. of
1993 Phoenix Conf. on Computers and Communications, Scottsdale, AZ, March 1993.

[3] S. Demurjian and T.C. Ting, "The Factors that Influence Apropos Security Approaches
for the Object-Oriented Paradigm", Workshops in Computing, Springer-Verlag, 1994.

[4] K. El Guemhioui, S. Demurjian, and T. Peters, "Object-Oriented Design and Automatic
Ada Code Generation in the Education of Software Engineers", Proc, of 1993 TriAda
Conf., Seattle, WA, Sept. 1993.

21

[5] K. El Guemhioui, S. Demurjian, T. Peters, and H. Ellis, "Profiling in an Object-Oriented
Design Environment that Supports Ada 9X and Ada 83 Code Generation", Proc. of 1994
TriAda Conf., Baltimore, MD, Sept. 1994.

[6] H. Ellis, S. Demurjian, F. Maryanski, G. Beshers, and J. Peckham, "Extending the
Behavioral Capabilities of the Object-Oriented Paradigm with an Active Model of Prop-
agation", Proc. of the 18th Annual ACM Computer Science Conf, Feb. 1990.

[7] H. Ellis and S. Demurjian, "ADAM: A Graphical, Object-Oriented Database Design Tool
and Code Generator", Proc. of the 19th Annual ACM Computer Science Conf., March
1991.

[8] H. Ellis and S. Demurjian, "Object-Oriented Design and Analyses for Advanced Ap-
plication Development - Progress Towards a New Frontier", accepted for publication in
Proc. of the 21st Annual ACM Computer Science Conf, Feb. 1993.

[9] H.J.C. Ellis, "An Information Engineering Approach to Unified Object-Oriented Design
and Analyses", Ph.D. Degree Dissertation, The University of Connecticut, May 1994.

[10] M.-Y. Hu, S. Demurjian, and T.C. Ting, "User-Role Based Security Profiles for an Object-
Oriented Design Model", in Database Security, VI: Status and Prospects, C. Landwehr
and B. Thuraisingham (eds.), North-Holland, 1993.

[11] M.-Y. Hu, "Definition, Analyses, and Enforcement of User-Role Based Security in an
Object-Oriented Design Model", Ph.D. Degree Dissertation, The University of Connecti-
cut, May 1993.

[12] T. Keefe, et al., "A Multilevel Security Model for Object-Oriented Systems", Proc. of
11th Natl. Computer Security Conf, Oct. 1988.

[13] F. H. Lochovsky and C. C. Woo, "Role-Based Security in Data Base Management Sys-
tems", in Database Security: Status and Prospects, C. Landwehr (ed.), North-Holland,
1988.

[14] F. Rabitti, et al., "A Model of Authorization for Next Generation Database Systems",
ACM Trans, on Database Systems, Vol. 16, No. 1, March 1991.

[15] J. Shilling and P. Sweeney, "Three Steps to Views: Extending the Object-Oriented
Paradigm", Proc. of 1989 OOPSLA Conf, Oct. 1989.

[16] D. Spooner, "The Impact of Inheritance on Security in Object-Oriented Database Sys-
tems", in Database Security, II: Status and Prospects, C. Landwehr (ed.), North-Holland,
1989.

[17] B. Thuraisingham, "Mandatory Security in Object-Oriented Database Systems", Proc.
of 1989 OOPSLA Conf., Oct. 1989.

[18] T.C. Ting, "A User-Role Based Data Security Approach", in Database Security: Status
and Prospects, C. Landwehr (ed.), North-Holland, 1988.

[19] T.C. Ting, S. Demurjian, and M.-Y. Hu, "Requirements, Capabilities, and Functionalities
of User-Role Based Security for an Object-Oriented Design Model", in Database Security,
V: Status and Prospects, C. Landwehr and S. Jajodia (eds.), North-Holland, 1992.

22

Database architecture:
Chair: M. Schaefer

Area Systems, Inc., CA

The SINTRA Data Model: Structure and
Operations

Oliver Costich

Center for Secure Information Systems,

George Mason University, Fairfax, Virginia 22030,

Myong H. Kang and Judith N. Froscher

Naval Research Laboratory,

Information Technology Division,

Washington, D.C. 20375

Abstract

Relational database systems are based on a powerful abstraction: the relational

data model with the relational algebra and update semantics. If the database de-

sign (i. e., the way the data is organized) satisfies criteria provided by this foun-

dation, users have assurance that they can retrieve information in a consistent,

predictable way. Multilevel secure database systems must not only provide assur-

ance that information is protected based on its sensitivity, but should be based

on a data model as sound and complete as the conventional relational model.

In this paper, we present a data model with a relational algebra and update

semantics for a multilevel secure database system whose protection mechanisms

are provided by the replicated architecture. The approach is to systematically

describe the effects of treating security labels as data and to define explicitly the

semantics of these data labels for relational database operations. We also briefly

compare the SINTRA data model to earlier ones from the SeaView project and
their derivations.

1 Introduction

Like all other database systems, multilevel secure database management systems (DBMS)

are based upon a data model. Data models originated as a way of describing the struc-

ture of data as used in the actual file systems of database management systems. Over

time, they have evolved to modeling data from the point of view of the users and of the
applications of the database management system.

We take the current view of data model for a database system, i.e., as a set of

concepts that can be used to describe the structure of and the operations on a database

[Nav92]. The database structure includes the data types, relationships and constraints
on the form, or "template," of the database. The database operations include the ways

in which the data may be manipulated via retrievals and updates. The operations ought

to provide specifically for insertion, deletion, and modification of the data.

The relational data model [Cod70] is a good example of a data model from this

perspective. The structure of the relational data model is well known, i.e., attributes,

relational schema, etc. The operations of the relational data model are provided, in

part, by the relational algebra [U1182]. SQL completes the operations portion of the

data model by incorporating the power of the relational algebra into a query language

which also permits insertion, deletion and modification of data. It is from this point

of view that we have approached development of a data model for a multilevel secure
relational database based on a replicated architecture.

In the world of multilevel secure relational database systems, early data models,

which were for the TCB subset architecture, tended to focus on the definition of the

structure rather than the operations [Den87, Lun90]. Later work did consider some

operations [JaS91], but still relied on a similar set of underlying constraints to define

the structure of the data model. Most of these constraints derive from the work done in

the development of the SeaView multilevel secure relational database system [Lun90].

In the course of re-examining data models while developing the prototype for SIN-

TRA (a high assurance multilevel secure relational database based on a replicated ar-

chitecture), we discovered that some of the constraints of these early data models were

not necessary, in our opinion, from database functionality or security points of view, but

rather seemed to stem from the way in which the architectures separate data to provide
mandatory access control.

We have developed a new data model specifically for the SINTRA prototype. Like
the earlier data models developed for the TCB subset architecture, the multilevel data

model is specified in terms of the conventional relational data model (but for a different

reason). In this paper we will describe the structure of the SINTRA data model and the

constraints on it. In some cases the constraints are the same as those of the TCB subset

data models. In these cases we will compare and discuss the potential for enforcing

the constraint. In other cases, constraints placed upon the TCB subset data model can

be weakened considerably or, in some cases, eliminated entirely, thereby improving the

functionality of database systems built upon the corresponding data model. In these

cases, we demonstrate the desirability of the improvement by example.

This paper is organized as follows. First, we present our criteria for a multilevel

secure relational data model and sketches of both the TCB subset and replicated ar-

chitectures for multilevel secure databases systems. We then examine the structure

of the data model, comparing the constraints imposed for each choice of architecture

as described above. Finally, we define the semantics of the insert, update, and delete

operations for the SINTRA data model and describe how they are done.

2 Criteria for A Multilevel Secure Relational Data
Model

Multilevel secure DBMSs are a relatively new concept, and very few products are in the

process of evaluation. Most potential users of multilevel secure DBMS are accustomed

to relying on system-high databases. (System-high databases are regular untrusted

DBMSs in which only users whose clearances dominates "system high" can access the

databases.) In such DBMSs, all data that users can legitimately view in the system
is available. The data are not security-labeled but all output from such a system is

classified "system high" even though some data in it are in reality lower security level

data. The security of such systems is assured by clearing all users to system-high.

When users make the transition to multilevel secure relational database systems,

they will bring with them many expectations about what these systems will be able

to do based on their experience with system-high DBMSs. In developing data models

for multilevel secure relational database systems, these expectations should be accom-

modated without compromising security to the extent possible. Alternatively, from the

user's point of view, a multilevel secure DBMS should allow secure access to all infor-

mation that users need to see and should provide operational capabilities equivalent to

those of a system-high DBMS. This means that (1) users should be able to represent

entities and associations among these entities, and (2) user should be able to store the

results of operations in relations (i.e., the relational algebra is closed for these opera-

tions). It also implies that multilevel equivalents of relation Schemas, relational algebra,

and perhaps even SQL should be formulated with as few restrictions as possible.

The data model that is presented here attempts to provide as many capabilities as the

current system-high databases have. For example, previous data model investigations

[JaS91, Den87] do not address the problem of inserting the result of a join operation into

another relation (i.e., INSERT INTO ...) and how the new tuples should be classified.

The integrity constraints, relational algebra, and update semantics in this paper are

influenced by the need that users have for these database operations.

This work also differs from previous multilevel secure data model investigations

[JaS91, Den87] in its treatment of the conventional data model [U1182] as a special

case of a multilevel secure data model. For example, if there is only one security level

(i.e.. system-high database), then this data model behaves in the same way as the con-

ventional data model if security labels are ignored (i.e., All multilevel relational algebra

and update operations behave exactly the same as the conventional relational algebra
and update operations).

3 The Replicated and TCB Subset Architectures
for Multilevel Secure Databases

This section presents only a brief descriptions of both the replicated (SINTRA) and TCB

subset architectures. Detailed description of these are readily available elsewhere and are

too lengthy to reproduce here; the purpose of this section therefore is to remind those

already familiar with those architectures and direct others to appropriate references.
Readers familiar with these architectures and basic data model can skip this section.

3.1 TCB Subset Architecture

There are two variants of the basic TCB subset architecture. TCB subset architectures

rely on a trusted computing base (TCB) to separate data at various security levels. This

approach requires that multilevel objects, relations, and attributes (sometimes) in the

case of multilevel secure relational databases, be decomposed into single-level entities

which can be protected by the TCB. The user's view of the multilevel object must be
recovered from the single-level entities as needed via database views.

In the TCB subset architecture, the DBMS runs under the control of a trusted

operating system. Each user of the system has a distinct multilevel view of a relation
where the classification of the view is dominated by the user's clearance. The DBMS

is untrusted and operates at the user's login level; the instance of the DBMS running

on the user's behalf can retrieve data at that level and below via the trusted operating
system.

3.1.1 Vertical TCB Subset Architecture (VTSA)

This is the original form of the TCB subset architecture and was originally produced by

the SeaView project [Lun90]. The decomposition-recovery procedures have undergone

several iterations. Basically the strategy is to embed multilevel relations into the con-

ventional relational structure by creating additional classification attributes to carry the

security label of the "real" attribute values (as do all the architectures we consider in

this paper). Multilevel relations are then decomposed vertically (and horizontally) into

single-level relations using the "real" key values and the classification attributes. The

conventional join operation is the primary means of recovering the multilevel relation

from the single-level fragments. Details can be found in [Den87, JaS90].

3.1.2 Horizontal TCB Subset Architecture (HTSA)

This variant of the TCB subset architecture is similar to the previous ones except that

the decomposition-recovery scheme replaces the join operation of the recovery process

with the union operation. This is accomplished by horizontally decomposing the multi-
level relations by security level and entering special markers in place of lower level data.

The complete description of this model is presented in its entirety [JaS91].

3.2 Replicated (SINTRA) Architecture

The SINTRA architecture relies on physical separation of data by security level and

replication of data across security levels to provide high assurance protection of infor-
mation [KFC92. Kan94].

The replicated (SINTRA) architecture has a trusted frontend and an untrusted back-

end database systems for each security level. Each backend DBMS contains information

at a given security class together with replicated information from each lower backend

database. Hence users have access to a single DBMS containing all and only the in-

formation they are cleared to see. For example, secret users have access to the secret

backend which contains both secret, confidential, and unclassified data, and confiden-

tial users have access to the confidential backend with only confidential and unclassified

data. Because data is retrieved from only one backend, queries cannot be used by Tro-

jan horse code in user applications to leak information to malicious processes on a lower
securitv level svstem.

4 The Data Model - Structure

Multilevel secure DBMSs have been generally defined as follows. The protected objects

of the secure system are data items and the subjects of the secure system are operations

or sequences of operations on the data items. Each subject or object has a security label

from a security lattice and the mandatory access control policy (or security policy) is a

variant of the standard Bell-LaPadula policy [BeL76]: Subjects may read objects at or

below their own security label but write objects only at their own security level.

In this paper, since we are interested in relational systems, the data items are taken

to be values of relational attributes. This is commonly called element level labeling

(as opposed to tuple level labeling, which is not addressed here). In the remainder of

this section, we discuss the structure and constraints of the SINTRA data model and

compare/contrast it with the TCB subset architecture data models, both VTSA and

HTSA.

4.1 Relational Schema

Given a conventional relational schema

R(A,, A2, . . ., An)

the corresponding SINTRA multilevel relation scheme is denoted by

R(A,, C. A2, Qt, . . ., An, Cn, TL)

where each A, is a data attribute over domain D2, each Q is a classification attribute

for Ai and TL is the tuple-level attribute. R(A\, A2, ■ ■ ., An) is the underlying relation
as viewed by the user.

Notice that the security label of a given attribute value is the value of another

related attribute. Thus the security labels are stored as data in the conventional sense.
There is nothing in data model theory that require that the security labels of data
items he themselves relational data, but only that a security label be associated. The

reason that both SINTRA and the TCB subset architectures take this approach is that

both anticipated exploiting conventional relational DBMSs to implement their systems

by embedding them in the conventional relational model. In the SINTRA case, the

conventional systems are used, unaltered internally, as the backends, while in the TCB

subset case, the conventional systems store relational data in files whose separation is
assured by the TCB.

Given a tuple t in relation R, tfXi] denotes the value of attribute X; in relation R.

We use R ambiguously for both R(AX, A2, . . ., An) and R(A1, d, A2, C2, . . ., An,
Cn, TL) with context being the arbiter.

In the SINTRA schema, the TL attribute represents the security level at which
the tuple originated whereas in the TCB subset model, the tuple class is simply the

maximum security level of all attributes. Notice that t[TL] in the SINTRA data model

is not just the least upper bound of all t[Q] because complex operations performed

at a high security level may generate tuples with all attribute value labels lower than

the t[TL], How this can occur will be discussed in section 5.2.1., which describes the
operations of the SINTRA model.

4.2 Entity Integrity Constraint

Let APK be the primary key of relation R(AX, A2, . . ., An). A multilevel relation R

satisfies entity integrity if and only if for all tuples t in relation R

• -4,- e APK => tfAiJ ^ null A t[QJ + null, and

• t[TL] > tfdj for any i.

Condition (1) is similar to the definition of entity integrity for the untrusted relational
databases. Condition (2) requires that if the tuple is generated or modified by a tfTLj-

user then any element classification within the same tuple should be equal to or lower
than tfTLJ.

The TCB subset models have a more restrictive constraint. In particular they require
that the primary key value be uniformly classified. That is,

At. A, e .4PA- -> t[QJ=t[CjJ.

This restriction does reduce functionality. Consider this highly simplified example
of a relational system:

EMP(ss#, name, address)

MISSION(mission#, description, skillsjieeded)

EMP-MISSION(ss#, mission#, location)

The EMP-MISSION relation represents a many-to-many association. It is possible that

ss# has a value which is classified at a low level while mission# and location are classified

higher. But the primary key of the EMP-MISSION relation is {ss#, mission#}, and the

TCB subset data model would prohibit this relation, because the TCB subset models

enforce this restriction. In the SINTRA architecture, this restriction is unnecessary. This

is important because relations represent both entities and associations, and associations

can be more sensitive than the entities whose relationship is defined.

4.3 Null Integrity Constraint

We mention this only for completeness as it is unnecessary for the SINTRA data model.

Some versions of the TCB subset model enforce constraints on nulls; namely that nulls

are classified at the level of the key (which is uniformly classified).

In the SINTRA model, classification of nulls is determined as for other data by the

operations used to enter or modify data.

4.4 Polyinstantiation Integrity Constraint (PI)

For the SINTRA model, let APK be the primary key of R(Ai, A2, ■ . ., An) and let Cpx
be the corresponding classification attributes in R(A\, C\, A2, C2, . ■ ., An, Cn, TL). A
multilevel relation R satisfies the polyinstantiation integrity property if and only if for

every i, 1 < i < n, the functional dependency

APK. CpK, Q, TL-> Ai

holds. The user specified primary key APK in conjunction with the classification at-
tributes CPK, Ct and TL uniquely determine the values of attribute A{. This constraint

limits polyinstantiation within a single security class. That is, given values for the

primary key and for all the classification attributes, the tuple is determined uniquely.

In the SINTRA model, the polyinstantiation constraint is imposed as an extension of

entity integrity, treating R(A}, C-\, A2. C2, ■ ■ ., An, Cn, TL) as a conventional relation

whose primary key is APK, C\, . . ., ('„, TL.

PI is easiest to enforce in the VTSA model because only a single instance of a
pair of values t[At, Q] is kept for attribute A,- not in APK- HTSA requires using a

decomposition-recovery technique which is subject to ambiguous interpretation1. The
SINTRA model has slightly more difficulty enforcing the constraint. Consider the stan-

dard example [JaS91] of the relation.

SOD(ship, objective, destination)

]The ?-replacement rule of the recovery algorithm does not specify which "replacement" to choose
if several are available. Unless this is very carefully done, the original relation is not recovered.

and the following sequence of actions

Operation level Ship Objective Destination TL

1. Insert U Ent U Explore U Tolas U U
2. Update C Ent U Mine C Tolas U C
3. Update U Ent U Explore U Sims U U
4. Update S Ent U Spy S Tolas U S

Ent u Spy S Sirus U s

deleted after action 3

where

- action 2 polyinstantiates the original tuple

- action 3 updates (and replaces) the original tuple

- action 4 updates the existing tuples by entering a secret objective.

The consequence of this sequence of actions produces a pair of S-tuples which do not
satisfy the PI constraint.

The resolution of this difficulty in the SINTRA model can be handled by requiring

that the update of the Destination attribute by action 3 be propagated to the C-level

tuples as well, so that the U-labeled Destination is always Sirus. Thus the S-tuple

whose Destination is Tolas would not appear. In general, an attribute value update

must be propagated to all higher level tuples which were derived from the updated tuple
by polyinstantiation.

5 The Data Model - Operations

The relational algebra and modification actions for conventional databases are well es-

tablished, but for multilevel secure databases these operations are not well denned.

Indeed, different data models may have different algebras. In this section, we define
multilevel relational algebra and modification operations for the SINTRA data model in

terms of the relational algebra for conventional databases consistent with our embedding
the multilevel relations in the conventional relational structure.

Before doing this we establish some notation. Given a security level c, the c-user's

view of a multilevel secure database consists of c-Ievel information and other information
from levels strictly dominated by c. Consider, for the time being, a DBMS system with

two security classes, high (H) and low (L), where H dominates L. Let L-user denote a

user session level is L. Let Rc denote the portion of a relation R that is generated by

c-users for c = L or H. The relation R in the low untrusted backend database will have

only RL, and all tuples in RL have tuple-level L. However, the relation R in the high

10

untrusted backend database contains RL\J RH.

For the TCB subset architectures, definitions of relational operations have not been

completed. For VTSA, the SeaView final technical report [Sho89] specifies a multilevel

SQL (MSQL) subsystem and gives the syntax of select, update, insert and delete

statements but does not specify the actual effect of these on the underlying multilevel

relations. For HTSA, update, insert and delete are defined in [JaS91]. We will

specify the equivalents of these and extend them to more complex operations.

5.1 A Multilevel Secure Relational Algebra

As in the conventional relational algebra, there are relations and operations in the

multilevel relational algebra. The relations represent both entities and associations.

Operations take as arguments one or two relations and produce another relation. We

define a very simple relational algebra which is sufficient to give the general idea of how

it can be extended. A more extensive relational algebra and multilevel SQL for the
SINTR A model are the subject of current research.

We can express the multilevel relational algebra between two multilevel relations R,

and S in terms of the conventional (single-level) relational algebra among RL, RH, SL and

SH. Relational algebra among RL, SL, RH, and SH is exactly the same as conventional
relational algebra [U1182] unless otherwise stated. We use the same operator notation

for both multilevel relational algebra and the conventional relational algebra, since it is
clear from the context which is intended.

Multilevel relational algebra between two multilevel relations R and S in the high
backend ran be defined as:

• Select (a) and project (0) operations act exactly the same as those in conventional
relational algebra

• R U S = (RL UR„)U (SL U SH)

• R - S = (RL - SL) U (Rw - Sw)

• R x S = (RH x SH) U (Rw x S/J U (RL x SH) U (RL x SL)

where the operators on the left side of the definitions are what are being defined and

those on the right hand side are those of the conventional relational algebra.

The select and project operations may include the security label attributes in their

parameter sets. The cross product operation is particularly significant because it is es-

sential in retrieving related data from multiple relations. The join operations, including

11

equijoin, outer join, etc., depend directly upon the cross product. These join opera-

tions can be defined using the cross product, select, and project operations as usual. It

is important to note that without the cross product, the operators which one can use

would be limited to operations on single relations, rendering the relational system no

more powerful than a flat file database.

Given a relational algebra, an SQL-like retrieval language can be defined. It is also

evident that this could be readily extended to an arbitrary security lattice.

However, we believe this relational algebra is overly simplistic as it places the respon-

sibility for the manipulation of data with respect to security labels completely on the

user. It is our intention to extend the definition of the relational algebra primitives so

that much of the security label specification in queries can be eliminated. In particular,

variants of the usual database operations can be defined depending upon whose view

of the data a user wishes to see. We will not pursue this in detail in this paper, giving

only the following example of two variants of the cross product operator for a specific

security lattice.

Consider the following security lattice.

H

Ml M2

H>M1>L
H > M2 > L

One cross product (complete cross product) at the high (H) security class can be
expressed as:

R x S = IK Rn x S6 I a,b £ {L, Ml, M2, H} } =

(RH x S//) U {RH x SM1) U [R„ x SM2) U (Rw x SL) U

(RMI x SH) U (RM1 x SAn) U (RMI X SM2) U (RMI X SL) U

(RM-2 x SH) U (RM2 x SMi) U (RM2 x SM2) U (RA/2 x SL) U
(RL x SH) U (RL x SMI) U (Ri x Sm) U (RL x SL)

Each tuple will have t[TL] = //"because an //-level user performs the cross product. For

12

this operation, the result is the product of all data that the H-level user is entitled to

see.

Another cross product (dominance cross product) can be defined in the following

way:

R x S = U { R« x Si I a > b or a < b, and a,b e {L, Ml, M2, H} }

The dominance cross product allows the H-user to see the data as it would be seen by

Ml-users, M2-users, and L-users, but nothing more. Thus (RMI
X
 SM2) and (RM2 X

SMI) are not included in this case because there is no dominance relationship between

the two security classes, Ml and M2, and so neither would be visible at either level Ml

or M2.

5.2 Data Modification Operations

In this section, we will present the SINTRA equivalents of the insert, update, and

delete operations. We use replace rather than "update" to avoid confusion with the

update operations which are used to maintain the consistency of replicated data. Even
though we will use SQL-like syntax to describe the form of these operations, we will use

retrieve rather than "select" for a similar reason. The insert and replace operations
are defined in both simple and complex forms.

A c-user's view of multilevel secure database consists of c-level information and

other information from levels strictly dominated by c. Therefore, we concentrate our
discussion on a single user level (e.g., c-level) .

5.2.1 Insert

The insert operation allows users to add new tuples to an existing relation. A c-user
cannot insert values in any classification attributes C\ or tuple-level TL. These are all

implicitly given the value c, which is the user's login level, by the system.

There are two types of insert operations: (1) simple insert and (2) complex insert.
We discuss the interpretation of each operation in the following.

Simple Insert

The simple insert query executed by a c-user, where the access class c is implicitly

determined by the user's login class, has the following general form:

13

insert into R [(Ai [, A2, ...])]

values (ai [, a2, . . .])

In this notation, the brackets denote optional items and the "..." signifies repetition. If

the list of attributes is omitted, it is assumed that all the data attributes in relation R
are specified.

Let / be the tuple to be inserted such that if A, is in the attribute list of insert

queries, then t[A{] = a,- and t[QJ = c; otherwise tfAiJ = null and t[Q] = c. The insertion
is permitted if and only if:

• t[Ap/v] contains no nulls (as is necessary to enforce entity integrity constraint).

• For all v in relation R, u[APK , G, . . ., Cn, TLJ ± t[APK , C\, . . ., Cn, TL].

Otherwise it is rejected, because it would violate polyinstantiation integrity. In other

words, a c-user can insert a tuple t in relation R if R does not already have a tuple

with the same primary key, attribute classifications, and tuple level classification. Each
element-class and tuple-level of a new tuple are set to c.

Complex Insert

The complex insert queries executed by a e-user have the following general form:

insert into R [(AT [, A2) ...])]

retrieve o^ [, <r2 > ■ ■ •]
from T, [, T2) . ..]
[where cond]

where T, denotes relation name, crk signifies any attribute of a relation in the from clause

or expression, and cond may contain any relational algebraic Boolean expression using
attributes of tables (including security level attributes) in a from clause.

The insertion is permitted and the tuple-level classification of tuples to be inserted
will be set to c if and only if:

• For all u in relation R, u[APK , Q. . . ., Cn, TL] ± t[APK , Cu . . ., Cn, TL],

where t is a new tuple to be inserted (i.e., polyinstantiation integrity is preserved).

14

For example, if the security lattice is {H, L} and an H-user wants a cross product

operation between two relations T and S, to be inserted into relation R, then (T x S)

= (T* x SH) U (TH x SL) U (TL x SH) U (TL X SL) will be inserted into relation R

provided that newly generated tuples do not violate the above condition. The tuple level

classification of newly inserted tuples will be H because a H-usei creates those tuples.

Notice that this can create tuples t where the tuple level strictly dominates the

security label of every attribute. In particular, every tuple in TL x SL will have the

security label of each attribute set to L but the tuple levels will be H. This represents a

real world situation where the classification of individual information may be lower than

that of the association of the information. An example of this case is give in [Lun89],

where EMPLOYEE(EMP#, NAME, DEPT, ...) and PROJECT(PROJ#, BUDGET,'

...) are confidential relations while WORK-ON(EMP#, PROJ#) may be a secret
relation.

5.2.2 Replace

The replace operation allows users to change data attribute values in existing tuples,

but the replicated architecture system does not allow a user to modify values of the

classification attributes Q or the tuple-level attribute TL. These are controlled by the
mechanisms of the replace operation.

The replace queries executed by a c-user have the following two general forms:

Simple Replace

replace R
set A, = s, [, A3 =

[where cond]
sj >

Complex Replace

replace R

set A, = query, [, Aj = query;, . . .]
[where cond]

where s,- is an expression, query, is a retrieve query that must return exactly one value

in the domain of A,-, and cond is a Boolean expression which identifies those tuples in R
that are to be modified.

Let R'c = U { Rc, | c' strictly dominated by c } and define two sets, S and S':

15

S = {t G Rc It satisfies the cond in where clause }

S' = {t £ R'c I t satisfies the cond in where clause }

We first consider the case where R = Rc U R'c. If t £ S then t will be replaced by the

new tuple f where

., , J < Si or queryi, c > At is in the set clause,

\ t[A{, Ci] otherwise

This updates the tuples at the user security level. If t £ S' then consider the new tuple

t" where

„r , J < Si or queryi, c > A{ is in the set clause

\ t[At, Ci] otherwise

and t"[TL] — c. This determines the new (polyinstantiated) tuples to be produced by

the replace. If there exists u £ Rc for which U[APK , C\, ■ ■ ■, Cn, TL] = f'[Apx ,

(i, . . ., Cn, TL], replace u by i". Else add f to Rc where f [TL] = c.

The effect of this rule is to update tuples which may have been derived by polyin-

stantiation from lower tuple. If the lower level has not already been polyinstantiated it
is done at this point.

For instance, consider an H-user's query to do a replace on relation R. and the where
clause contains a join operation between two relations R and T (i.e., R M T) where R.

= (Rt U RH) and T = (TL U TH). Let two sets, S and S' be:

S = {t £ URH (acond (RH X T)) }

S' = {t, £ nfl/. {aconi (RL x T))}

The values of tuples in set S will be modified. The tuples in set S' represent polyinstanti-

ated tuples that will be potentially inserted into \\p or replaced in R# after appropriate

values are modified. In particular, the tuple class will become c.

Now we consider the effect of replace on tuples above the user class. Let R" = (J

{ Rcn I c" > c }. t £ S, and At £ set condition. If there is a tuple f £ R" that is a

polyinstantiation of t, i.e., t[ApK, CPK] = i"[ApK, CPK], and f [Ci] = c then its value

will be modified according to s,- or queryi.

16

5.2.3 Delete

The delete queries executed by a c-user have the following general form:

delete from R

[where cond\

Tuples that satisfy cond in the where clause will be deleted from Rc. Said differently,

in view of ^-property [BeL76], only those tuples t that satisfy cond and tfTLj = c are
deleted from relation R.

Consider an H-user's query to delete tuples from relation R that satisfy a join con-

dition between two relations R and T (i.e., R 1X1 T) where R = (RL U RH) and T = (TL

U TH). The tuples in set S where S = { t <E IIRH (acond (RH x T)) } will be deleted
from R/y,

Even though our examples in this section use relations that have two security levels,

we can easily generalize the concept to relations that have a general security structure
as we did in section 5.1.

Adding these update operations to the SQL-like retrieval language derived from the

relational algebra yields an SQL-like language, capable of performing all basic multilevel
relational database operations.

6 Summary

We presented a data model for the SINTRA architecture database system. Based on
this data model, a simple multilevel relational algebra and the semantics of update
operations for multilevel relation were described.

We believe that any attempt to define multilevel SQL should be based on a multi-

level relational algebra and the semantics of multilevel update operations. We plan to
investigate multilevel SQL issues in the near future.

References

[BeL76] Bell, D. E., and LaPadula, L. J. Secure computer systems: Unified exposition
and multics interpretation. The Mitre Corp. (1976).

17

[Cod70] Codd, E. F. A relational model for large shared data banks. Communications
of the ACM, 13, 6 (1970).

[Den87] Denning, D. E., et el. A multilevel relational data model. IEEE Symposium on

Research in Security and Privacy (1987).

[JaS90] Jajodia, S. and Sandhu, R. Polyinstantiation integrity in multilevel databases.

IEEE Symposium on Research in Security and Privacy (1990).

[JaS91] Jajodia, S. and Sandhu, R. Toward a multilevel secure relational data model.

Proceedings of ACM SIGMOD International Conference on Management of Data
(1991).

[KFC92] Kang. M. H., Froscher, J. N., and Costich, 0. A practical transaction model

and untrusted transaction manager for multilevel-secure database systems. Pro-

ceedings of the IFIP 6th Working Conference on Database Security (1992).

[Kan94] Kang, M., et el. Achieving database security through data replication: The

SINTRA prototype. Submitted for publication (1994).

[Lun89] Lunt, T., et el. Aggregation and inference: Facts and Fallacies. IEEE Sympo-

sium on Research in Security and Privacy (1989).

[Lun90] Lunt, T., et el. The SeaView security model. IEEE Transaction on Software
Engineering, 16, 6 (1990).

[Nav92] Navathe. S. B. Evolution of data modeling for databases. Communications of
the ACM, 35, 9 (1992).

[Sho89] Shocklev, W. R., et el. Secure distributed data views: System specification.

RADC-TR-89-313, Vol V (Rome Air Development Center).

[U1182] Ullman, .J. I). Principles of database systems. Computer Science Press (1982).

The b2/c3 problem: How big buffers overcome covert channel
cynicism in trusted database systems

J. McDermott
Naval Research Laboratory, Code 5542, Washington, DC 23075, USA

Abstract
We present a mechanism for communication from low to high security classes that
allows partial acknowledgments and flow control without introducing covert chan-
nels. By restricting our mechanism to the problem of maintaining mutual consis-
tency in the replicated architecture database systems, we overcome the negative
general results in this problem area. A queueing theory model shows that big buffers
can be practical mechanisms for real database systems.

Introduction
Kang and Moskowitz [8] presented a general mechanism for rapid and reliable com-
munication from low to high security classes. The mechanism, called the Pump,
includes an adjustable and easily quantifiable covert channel to provide acknowledg-
ments. Their general result is that reliability, performance, and security cannot be
achieved together. This negative result agrees with other work [10] and we do not
dispute it here. Instead, we present positive results for a useful special case of com-
munication from low to high classes: maintenance of mutual consistency in repli-
cated architecture multilevel-secure database systems.

The replicated architecture [6] is an approach to providing strong multilevel security
in database systems. It provides multilevel security by replicating single-level copies
of low sensitivity data into higher classes. The replicated architecture depends upon
the ability to write-up reliably without creating an undesirable information flow.
According to the Bell-LaPadula model [1], write-up without read access is permissi-
ble. This kind of write-up is performed to volatile storage, without acknowledgment.
Furthermore, it requires the use of memory descriptors and mechanisms that do not
carry read access permission to the destination memory segment, a feature rarely
supported by existing hardware. The latter problem can be overcome by simulating
the write-up with a read-down, but the lack of coordination and the volatile nature of
the destination memory segment remain problematic.

By exploiting the structure of a computation, Sandhu, Thomas, and Jajodia [13, 14]
have shown how write-up without acknowledgment can be used in object-oriented
systems. Kang and Moskowitz have proposed a general mechanism for writing up
reliably with recovery by using acknowledgment with a controlled bandwidth1 covert

1. Moskowitz and Kang [12] argue that the concept of bandwidth is not a sufficiently precise measure of the
vulnerability introduced by a covert channel and provide a new metric, the small message criterion (SMC).
The small message criterion depends on a triple (n, T, p): when a covert channel exists in a system, the SMC
gives guidance for what will be tolerated in terms of covertly leaking a short message (e.g. master key) of
length n bits in time X with fidelity of transmission p%.

channel. Kang and Moskowitz assert that, for the general case, one cannot have
write-up that is reliable, recoverable and secure. The thesis here is that, for an
important special case, this is not so. Our special case is write-up performed for the
purpose of maintaining mutual consistency in the replicated architecture.

Three advantages of restricting our solution to the replicated architecture are: 1)
bounded storage space requirements at the destination, 2) a relatively small number
of source and destination processes, 3) transaction management. Because we are
only writing up for the purpose of replicating data items in a database, we know that
no new objects are created by writing up to higher classes1. We can fix the total stor-
age available at lower security classes and thus bound the total replicated storage
for all higher security classes. Because we are only supporting database system
instances, we know there will not be a large number of readers and writers2.
Because we are only supporting systems with transaction management capability,
we can choose to discard some write-ups in a correct fashion, in the event of a failure,
and bring the replicas into convergence with later transactions. This latter point is
proved by Bernstein, Hadzilacos, and Goodman [2].

Our specific problem is to provide a service for propagating update projections in the
replicated architecture database system. This service is to be reliable, recoverable,
and secure. By secure we mean free from implementation invariant covert channels
and compliant with a Bell-LaPadula access control policy, as discussed by [6]. By
recoverable we mean that write-ups accepted by the service are completed in the
event of a system failure. By reliable we mean that, if a write-up is requested, the
requestor can know if the write succeeded or failed, that is, acknowledgments are
given to the writer.

We conclude this section with some definitions. In the following sections we review
the Pump mechanism, define the basic write-up service, discuss necessary buffer
size, present some usability enhancements, and discuss our conclusions.

In our discussion, we assume that all processes use stable storage in a recoverable
way. Stable storage [2] is storage that is not affected by a system failure, e.g. disk
storage. Volatile storage is storage that is affected by system failure; system failures
cause the loss of possibly all of the contents of volatile storage. Stable and volatile
are relative terms; we could consider off-line tape storage as stable and disk storage
as volatile because disk hardware failures do not affect the off-line tapes. A more
precise definition would distract us from our point. When we say that processes use
stable storage in a recoverable way, we mean that they keep their data on stable
storage, and follow the usual approaches to logging and caching in volatile storage
[2] to ensure that their data can be recovered after a crash.

The Pump

The Pump provides communication from a low source process to a high destination
process. It is a trusted mechanism with three components: trusted low buffer TLB,
trusted high buffer THB, and communication buffer CB. A low source process sends

1. Yes, there is a problem with multilevel transactions that will be discussed in the conclusion.
2. Readers and writers being database system server/data manager instances.

a message to a high destination process by first passing it to the trusted low buffer
TLB, which then gives the message to the communication buffer CB. When mes-
sages are in the CB, the trusted high buffer TUB signals the high destination pro-
cess and passes the message to it. Acknowledgments (ACK) and negative
acknowledgments (NAK), and time-outs are used between TUB and the destination
and between TLB and the source. These acknowledgments are necessary for reliabil-
ity and recoverability They can be exploited as a covert channel because the destina-
tion process can modulate its ACK and NAK messages (or time-outs) to leak
sensitive information to low. The Pump itself is trusted and cannot be exploited in
this way. Figure 1 shows the Pump.

/

» trusted
low ! low
source [buffer
process ACK/NAK»x^\

/-vmessage/ "N

/ V* "t\THB

trusted
CB high

buffer

\ ACK/NAK/' A

^""message high

i destination
[process

\v^/message [message\ /

[communication
v buffer

! The Pump

Figure 1. Message Passing From Low to High Using the Pump.

Kang and Moskowitz throttle the covert channel by delaying the acknowledgments
from the high destination process in a way that gives approximately the same
expected (mean) response time but significantly reduces the influence that the high
destination process has on individual response times. The delay is added via a ran-
dom variable with a modified exponential distribution. By computing a moving aver-
age they control the capacity of the channel and further complicate matters for
Trojan horses.

The Write-Up Service

Now we look at a write-up service that does not incorporate a covert channel in its
mechanism but nevertheless also provides effective reliability and recoverability.
Like the pump, our write-up service also depends upon trusted software. The key
point of the trust is that trusted software will only send legitimate control messages
(i.e. NAK is only sent when a write-up fails). Protocol events caused by the write-up
service are not due to a Trojan horse. We prevent modulation of the write-up service
itself by disconnecting the flow of acknowledgments from high to low, and compen-
sating for this by providing a probabilistic form of guaranteed delivery.

The service provides a set of write-up ports to the low process, that is, the writer. It
provides a different set of receive ports to the high process that acts as the destina-
tion. The service maintains, in stable storage, a buffer to store the messages. The
service follows a fairly conventional protocol, except there is no acknowledgment

from the destination process to the source process:

The buffer slots can be either full or free and a message in the buffer can be removed
from a receive-down port or overwritten by the write-up service. The low source pro-
cess is allowed to query the write-up service regarding the status of a buffer slot, but
not the status of a message in the buffer slot. The high destination process can query
the status of buffer slots and messages in the buffer slots. The buffer starts with all
slots free and no messages in the slots.

1. Low connects to a write-up port.

2. High connects to a receive-down port by specifying the kinds of messages it
wants to receive,

3 Low send? a message. If the message is received by the trusted write-up service
thep an ACK is sent to low. the message is placed in a free buffer slot, the slot is
marked fail, and low may discard its copy of the message. If the message is not
received bv the write-up sendee then the trusted write-up service will either
send NAK or low will time-out. In either failure case low retries the write-up. If
the buffer is full, that is no free buffer slots are available, the write-up service
will tell low to wait.

4. The write-up service signals or interrupts the high process to notify it that a
message has arrived from low. After either a fixed or random time interval, the
message's buffer slot is marked free. Freeing a buffer slot does not remove a
message via a receive-down port.

5. High removes the message from its receive-down port. The write-up service
does not tell low that the message has been removed from the port. Removing a
message does not free its corresponding buffer slot.

To summarize, if we define a message in a free slot as discarded, denoting this condi-
tion as dis, removed from a receive-down port as rem, and overwritten as over, we
have six possible message conditions:

dis and not rem and over (1)

dis and not rem and not over (2)

dis and rem and over (3)

dis and rem and not over (4)

not dis and not rem (5)

not dis and rem (6)

Steps three, four, and five can be repeated until either high or low decides to end the
write-up session and disconnects. Flow control can be improved by overlapping sev-
eral acknowledgments with a sliding window protocol. The low source processes are
allowed to know how large the buffer is and when it is full, that is, they can be legit-
imately blocked when the buffer is full because the state of the buffer does not
depend on the destination process. Figure 2 shows the components of the write-up

service.

service process (trusted)

port U

ACK/NAK

high
destination
process

low
source
process

message
buffer - private to
service process

Figure 2. Basic write-up service

This protocol provides communication with conventional flow control between the
source and the service process. We could even have an incremental improvement in
the overall performance and reliability by having the service process send the mes-
sages (instead of a signal) and conduct a separate flow control protocol with the des-
tination, as long as this protocol did not change the rate at which buffer slots were
freed by the service process. The flow control is not modified by random extensions of
the delay associated with sending a message. There is no covert channel due to
acknowledgments sent from the high destination process to the low source process
because there are none. If a malicious destination process refuses to receive mes-
sages, then the messages are overwritten1. Thus performance and security exceed
that of the more general Pump mechanism. As we shall show next, the reliability
and recoverability can be made arbitrarily good.

Big Buffers

Our write-up service depends on careful buffer management to avoid overwriting a
message, condition (1) above. In normal operation and during short term failure, the
success of our approach depends on being able to establish a big (enough) buffer. As
we will show, it is possible to determine the probability of overwriting an update pro-
jection, as a function of the buffer size and system load. Because of this we can chose
a buffer size that makes the buffer practically infinite.

Let us define a catastrophic failure K as a failure of a database system that causes
parts of some transactions to be lost and the database system to produce an incorrect
history. This can happen even when correct transaction processing mechanisms are
used because the failure (most likely a combination of failures) causes one of the
underlying assumptions to be untrue (e.g. hardware failure or single-event upset in
the running software). Because of the transaction processing mechanisms and the
care taken in designing and implementing the system we expect the probability pK of
catastrophic failure K to be relatively small. Now define p^ as the probability that an
update projection will be overwritten. If the size L of the buffer is sufficiently large so

1. We make no claim to protect against denial of service, but such behavior would be detected quickly and
the offending software removed.

thatpffl< pK, then we say the buffer is a big buffer.

How big does a buffer need to be to be a big buffer? To answer this we model the des-
tination process as a server in an M/M/l queuing model1, where the queue is finite.
Recall that M/M/l queueing models have exponentially distributed arrival and ser-
vice rates, a single server, and are used to find steady-state values. The mean arrival
rate of the service requests (write-ups) is denoted X and the mean service rate
(removal of messages by the destination process) is denoted \i. We call the ratio X/JLL
the offered load (imposed on the system) and denote it by a. Offered load a repre-
sents the relative load on the system and is measured in units called erlangs. As a
concrete example of how offered load a relates to performance we can find the delay
for a particular offered load on our write-up system, using Little's Law [9]. Let L be
the mean number of requests in a queue or in the server and W the mean length of
time it takes request to pass through the system (i.e. sojourn time); then

L=XW (7)

for a wide range of queueing models, including the M/M/l model with finite queue
size.

For finite queues, the easiest way to apply Little's Law is to calculate the mean num-
ber of requests in the queue directly. Queueing theory [3] gives us the probability pn

of n update projections being present in the finite queue as

pn= (l-a)an/(l-amax+1) for 0<n<max

Pn= 0 for n>max (8)

where max is the size of the buffer. We then compute the mean number of requests in
the queue as L =£ n-pn.

0<ii<niax

So, if our write-up system was receiving one update projection per second on the
average (i.e. ^=1.00), the buffer size was 600 update projections, and the offered load
was a=0.99 erl, then, by Little's Law, a write-up would take roughly two and a half
minutes to propagate, on the average. Practical systems operate with much smaller
offered loads; for example if we take a=0.5 erl, the update projection propagates in
about one second. These values would hold even in an untrusted system that could
use conventional flow control protocols.

If we set n=max in equation (8), we getpmax the probability of a full buffer. Since a
full buffer causes an overwrite, we can treat pmax asptö probability of overwriting an
update projection. Figure 1 shows a plot of buffer size as a function of offered load,

1. Besides being tractable, this model is appropriate because the source and destination processes in a repli-
cated architecture are essentially the same, though possibly loaded differently. With respect to tractability,
our current model of a finite M/G/l queue must be run overnight to compute a single data point. Its results
tend to agree with the more tractable M/M/l model.

for a range of overwrite probabilities.

1000

100 -:

10

- 1 1
::::.l:0::;e:::-9::

1 -T - \ ^ ^ +■•••:

. .-1 n.-:^ .1-Q: : : j ■„■:'j'i ■ iu :t! JLA,

~T0'1"e-T5;"
' 10 :e-l8;

"~rSS :!P^ —^1—-■-'

- ; ;• J ' ■: :

i 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 3. Buffer size as a function of offered load for overwrite probabilities of 10" ,
10"12, 10"15, and 10-18-

As we see from Figure 3, a buffer size between 100 and 500 is sufficient for offered
loads as high as a=0.95 erl with a overwrite probability of 10"12, a condition where
the average delay for our previous example is about 28 seconds. Since there are
3.1536 x 107 seconds in a year, it is unlikely that our write-up system will have an
overwrite during its useful lifetime. Significant increases in reliability can be
obtained for relatively small increases in buffer size. If we reduce our overwrite prob-
ability to 10"15, we only need a buffer size of about 600 at a offered load of a=0.95 erl.

Since update projections are relatively small objects (an average size of IK bytes is
quite generous for a logical update projection1) provision of big buffers is practical.
In practice the average size of an update projection is likely to be an order of magni-
tude smaller. Even if our update projections were IK bytes, we would only need
about 600K bytes of buffer storage for a write-up service.

Because buffer exhaustion cannot be used to communicate, we assume no attempt by
the untrusted sender or receiver to fill up the buffer in order to cause an unautho-
rized information flow. This justifies our use of conventional models based on inde-
pendent arrival and service times, and conventional steady state values.

1. A logical update projection is implemented by sending the text of an update transaction rather than the
physical writes it generates.

Recoverability

From the perspective of the source processes and the write-up service proper, the
write-up service appears to handle system failures just as a conventional system
would. Messages in the buffer are in stable storage; transactional logging procedures
can be used to restore the buffer in the event of a system failure. If source processes
use similar techniques, they can retransmit messages that were not acknowledged
by the write-up service. For this reason, the write-up service provides recoverability
for failures of the source processes and of the write-up service itself; we will not dis-
cuss it further.

The question of recoverability with respect to failure of the destination process is
more interesting. Our basic approach is to make the write-up service buffer large
enough to hold all the messages that may be sent before a destination process can
recover. Here we are only able to succeed because we restrict the problem to repli-
cated-architecture database systems. Because we are using source processes with
finite memory we know we will have to chose to discard some update projections
(write-up messages) in the event of a long-term destination process failure. This
choice has nothing to do with write-up strategies but rather with the finite capacity
of the source process. The source must continue to process new updates at its own
security class and it must eventually run out of space to store the new update projec-
tions it wishes to propagate and so must discard some of them. This is not a problem;
the same choice is made for conventional distributed database systems [2, § 8.5]. For
this reason, if we restricted ourselves to use of the Pump, we would still have to dis-
card some write-up projections in the event of long-term failure1.

Since we know some update projections will have to be discarded in some cases, we
can chose to define a short-term failure to be one that fits our desired range of offered
loads. That is, if we expect offered load a to be small and failures to be infrequent, we
can define "short" as a longer period of time than if we expect frequent failures of the
destination process or if we expect offered load a to be relatively large. In any case,
in determining the required buffer size, we simply treat short-term failures as addi-
tional write-up requests that tie up the system for some period of time equal to the
time needed to detect and recover from the failure.

Usability Enhancements To The Basic Sen/ice

There are some non-critical enhancements we can make to the basic service to
improve its usability in practical systems: message time-outs, overwrite priorities,
and variable buffer sizes.

First, we can make it easier for the destination process to manage its rate of message
receipt and the write-up service to adjust its buffer size. To do this, we set a timer for
each message when it is accepted by write-up service. Messages received for write-up
are stored until they either expire or they are received by a high destination process.
If a message is received it is marked as such but is not removed from the buffer. Only
high destination processes can tell if a message has been received. The time-out

1. Recall that one-copy serializability does not require all writes to update all copies.

period for messages is fixed at system generation time. Upon time-out the message
expires, is marked as such, and it may be overwritten or discarded by the write-up
service. An expired message may be received and a received message will expire.
Only expired messages are overwritten or discarded. A human user (database
administrator or system security officer) can monitor the performance of the destina-
tion process with respect to the time-outs and adjust the buffer size of the write-up
service if necessary. If we use this option, we want to hide the buffer size from the
source process.

A second enhancement we can make will improve the ability of the write-up service
to ensure that critical messages are more likely to be received. The write-up service
can provide a priority parameter that indicates the criticality of the message. If an
overwrite is necessary, the lower priority messages will be overwritten first.

A third enhancement we can make is to provide variable buffer size. The write-up
service does not need to maintain a fixed buffer size, if the buffer size is not visible to
the sending processes. With this approach, the write-up service would maintain an
estimate of offered load a and adjust the buffer size as needed. In the case of a full
buffer, the write-up service would first try to expand the buffer and then overwrite
an earlier message if no more free space were available. Our model shows that this is
possible, since big buffers will fit easily into the stable storage space available on a
dedicated frontend or replica controller.

It is also possible to let the source process know the size of the buffer used by the
write-up service but still vary the effective buffer size. If the destination process is
designed as an interrupt handler (i.e. a small program that quickly removes data
from a port and then schedules work for a larger process that uses the data) it can
have a variable size buffer. This second buffer can be implemented at the destination
security class and thus will be invisible to the source process. The destination pro-
cess buffer can vary according to a, and the destination process will only be responsi-
ble for receiving write-ups from the service. The replicated architecture database

10

system can then accept update projections from the destination process.

service process (trusted)

port [] /^ []
ACK/NAK

high
buffer handler
process

low
source
process

variable-size
buffer (high)

i i
 i

message

fixed-size buffer
(private to service
process) high (^\

destination, J
process

Figure 4. Improved write-up service with variable-size buffer

Conclusions

The Pump represents a good general mechanism for writing up. However, we believe
that practical covert-channel-free alternatives exist for the special case of the repli-
cated architecture, with comparable or better time performance without a meaning-
ful sacrifice of reliability and recoverability. The write-up service we have described
here is one alternative. Our alternative mechanism has the same performance as an
untrusted communication mechanism, that is, no delays are introduced. It has no
covert channel due to acknowledgments. There is a nonzero probability of overwrit-
ing a message, but the reliability and recoverability can be made arbitrarily good by
appropriate choice of buffer size. Acknowledgements and flow control can be
extended to cover, separately, both source-to-service and service-to-destination com-
munications. We can easily make the write-up mechanism more reliable than the
system it supports. It is not clear that an adjustable covert channel can be set to be
smaller than the smallest covert channel that might be exercised, particularly in
light of the small message criterion of Moskowitz and Kang. On the other hand, we
must admit that our write-up service is not general, but limited to an important spe-
cial case and may not apply to other special cases.

Stable storage is inexpensive compared to the cost of developing new applications on
high-assurance trusted systems. This is the same justification for the replicated-
architecture approach, which is the place we expect this service to be used. Where
the offered load a is less than 1.1 erl, we can provide the desired reliability within
the bounds of conventional disk systems. In the more likely case, where the offered
load a is less than 0.95 erl, we can succeed with buffers whose size is between 102

and 10 update projections.

Our write-up service has not been specified so that it can deal with creation of new
data items at higher security classes. This kind of operation is not available in the
current SINTRA prototype [7], but is necessary for fully general multilevel transac-

11

of new data items via blind write-up, but this seems less than satisfactory. Future
work should investigate models and mechanisms for extending big buffer write-up to
handle creation of new data items in a more elegant fashion. We also plan to look at
more advanced models of buffer size, such as M/G/l queues with finite buffers.

Acknowledgments

Carl Landwehr suggested several improvements to the paper. Our queueing theo-
retic model (both on paper and in Mathematica) has benefitted from several discus-
sions we had with Ira Moskowitz. Insightful comments by anonymous referees also
improved this paper.

References

1. BELL, D. and LAPADULA, L. Secure computer systems: unified exposition and
Multics interpretation. MTR-2997, MITRE Corp., Bedford, MA, 1975.

2. BERSTEIN, P., HADZILACOS, V., and GOODMAN, N. Concurrency Control and
Recovery in Database Systems, Addison-Wesley, 1987.

3. COOPER, R. Introduction to Queueing Theory, North-Holland, 1981.

4. COSTICH, 0. and JAJODIA, S. Maintaining multilevel transaction atomicity in
MLS database systems with kernelized architecture, in Database Security VI:
Status and Prospects, B. Thuraisingham and C. Landwehr, ed. North-Holland,
1993.

5. COSTICH, O., McLEAN, J., and McDERMOTT, J. Confidentiality in a replicated
architecture trusted database system: a formal model, in Proceedings of the 1994
Workshop on Computer Security Foundations, Franconia, NH, June 1994.

6. FROSCHER, J. and MEADOWS, K. Achieving a trusted database management
system through parallelism, in Database Security II: Status and Prospects, C.
Landwehr, ed. pp. 151-160, North-Holland, 1989.

7. KANG, M. FROSCHER, McDERMOTT, J., COSTICH, O., and PEYTON, R.
Achieving database security through data replication: the SINTRA prototype.
NRL TM 5400-041A February 1994.

8. KANG, M. and MOSKOWITZ, I. A pump for rapid, reliable, secure communica-
tion. 1st ACM Conference on Computer and Communications Security, Fairfax,
Virginia, November 1993, pp. 119-29.

9. LITTLE, J. A proof of the queueing formula L=X,W. Operations Res., 9, 3, 1961,
pp. 383-387.

10. MATHUR, A. and KEEFE, T. The concurrency control and recovery problem for
multilevel update transactions in MLS systems, in Proceedings of the 1993 Work-
shop on Computer Security Foundations, pp. 10-23, Franconia, NH, June 1993.

11. FROSCHER, J., KANG, M., MCDERMOTT, J., COSTICH, O., and LANDWEHR,
C. A practical approach to high assurance multilevel secure computing service,
submitted for publication.

12. MOSKOWITZ, I. and KANG, M. Covert channels - here to stay?, to appear in pro-

12

ceedings of COMPASS '94.

13. R. SANDHU, R. THOMAS and S. JAJODIA. Supporting timing-channel free
computations in multilevel secure object-oriented databases, in Database Secu-
rity V: Status and Prospects, C. Landwehr and S. Jajodia, eds., pp. 297-314,
North-Holland, 1992.

14. R. THOMAS and R. SANDHU. Implementing the message filter object-oriented
security model without trusted subjects, in Database Security VI: Status and
Prospects, B. Thuraisingham and C. Landwehr, eds., pp. 15-34, North-Holland,
1991.

Trusted RUBIX: A Multilevel Secure Client-Server DBMS

James P. O'Connor

Infosystems Technology, Inc.

1835 Alexander Bell Drive, Suite 230

Reston, VA 22091

Abstract

In this paper, we present a design for a multilevel secure (MLS) database manage-
ment system (DBMS) intended to meet the Class B2 requirements of the Department of
Defense Trusted Computer System Evaluation Criteria. Our design approach allows us
to support client-server operation without introducing trusted code. We also present a
discussion of the issues that arise in the development of a multilevel secure client-server
DBMS and an analysis of the relationship between client-server architectural design
choices and assurance.

1 Introduction

There is a significant requirement for multilevel secure (MLS) database management system
(DBMS) technology in the Department of Defense (DOD) and the intelligence community.
A multilevel secure DBMS is a DBMS that can store and process information at multiple
security levels and serve multiple users some of whom may not be cleared for all the in-
formation in the system. The area of multilevel database management has been actively
pursued in the research community, and significant progress has been made in the theory
and practice of multilevel DBMS design and implementation.

The Client-Server model is fast becoming the predominant model of database access. A
client-server architecture offers many advantages over traditional mainframe-based mono-
lithic architectures, among these are: improved access to shared data resources, more ef-
fective use of computational resources, support for incremental growth, and support for
Open System standards resulting in greater database interoperability. However, multilevel
secure database technology and implementation has lagged behind advances in Open Sys-
tems distributed computing architectures. The result is that users must sacrifice Open
Systems/distributed computing solutions in order to meet security requirements.

In this paper, we report on an effort to design and implement a multilevel secure client-
server DBMS intended to satisfy the Department of Defense Trusted Computer System
Evaluation Criteria (TCSEC) functionality and assurance requirements for a Class B2 com-
puter system [1, 2]. The starting point for this effort was an existing commercial relational
DBMS product called RUBIX. An earlier phase of this effort focused on reengineering RU-
BIX to satisfy the B2 requirements. The results of that phase are described in [3]. This

paper describes progress since then in migrating the standalone version of Trusted RUBIX
to a client-server architecture.

In section 2, we provide a brief overview of the standalone version of Trusted RUBIX
that was the implementation basis for the client-server version of Trusted RUBIX. In section
3, we discuss multilevel secure client-server DBMS design issues. In section 4, we describe
the design for the client-server version of Trusted RUBIX. In section 5, we discuss the
relationship between client-server architectural choices and assurance. In section 6, we
present conclusions and discuss future research.

2 Overview of Standalone Trusted RUBIX

The starting point for our client-server implementation effort was a standalone version of
Trusted RUBIX running on the AT&T 3B2 running UNIX System Laboratories' (USL)
System V Release 4.1 ES (SV4.1ES). Since this system forms the core of the server in our
design, we provide a brief overview of its policy and architecture.

2.1 Security Policy

The Trusted RUBIX security policy is an adaptation of the policy developed as part of
the SeaView project [4]. The mandatory access control (MAC) policy is a straightforward
interpretation of the Bell and LaPadula [5] model. Subjects are operating system processes
running on behalf of users. Each subject has a security level that is dominated by the cor-
responding user's clearance. The MAC objects are databases, schemata, relations, indexes,
view definitions, access control lists, and tuples. A subject can read an object if its security
level dominates the security level of the object. A subject can write an object if its security
level is equal to the security level of the object.

Discretionary access control (DAC) is enforced in Trusted RUBIX by allowing users
to specify which users and groups are authorized for specific access modes (privileges) on
database objects. The DAC objects in Trusted RUBIX are databases, schemata, stored
relations, and views. Different modes of access are permitted on different objects (e.g.,
select, insert, delete, and update are some of the modes supported on tables). A special
NULL access mode is used to support the explicit denial of access.

The details of the Trusted RUBIX adaptation and interpretation of the SeaView policy
are discussed in [3]. A user-level description of the Trusted RUBIX protection mechanisms
is provided in [6].

2.2 System Architecture

The Trusted RUBIX architecture is based on the concept of a protected subsystem [7]. All
Trusted RUBIX data are stored in one or more volumes, which are single-level operating
system objects. To support fine-grained multilevel objects (viz., tuples), labels are attached
to individual database items within each operating system object. Note that these labels are
DBMS labels not operating system labels—-the operating system views these labels strictly
as data and attaches no security significance to them. The DBMS is trusted to properly

associate and maintain the label of each item and to correctly interpret those labels so
that, in cooperation with the operating system trusted computing base (TCB), the security
policy can be correctly enforced. To encapsulate protected data and to implement the
DBMS security policy, this architecture employs trusted subjects. A trusted subject is a
subject that runs with special privilege and can bypass the operating system's security
policy whenever this is necessary to implement the DBMS security policy.

Each Trusted RUBIX volume is encapsulated using two mechanisms. The first mecha-
nism is to add the special category RUBIX to the volume security label. Only subjects in
the Trusted RUBIX TCB can run with this category in their label. The second mechanism
used to protect database volumes is to make them accessible only to the reserved group
RUBIXTP. Access to this group can only be obtained when invoking a program in the RU-
BIX TCB (via the UNIX setgid mechanism). These mechanisms ensure that only subjects
in the RUBIX TCB can directly access volume data (i.e., the TCB is non-bypassable).

The programs that make up the Trusted RUBIX TCB are also protected by two mech-
anisms. First, they are MAC protected from unauthorized modification by labeling them
with the hierarchical level USER_PUBLIC which is dominated by the level of all untrusted
processes. Second, these programs are protected by installing them with execute only per-
missions. When in execution, these programs are protected by the underlying Trusted UNIX
process isolation mechanism. These mechanisms ensure that the TCB is tamper-resistant.

The implementation of the Trusted RUBIX TCB employs a technique known as privilege
bracketing. Privilege bracketing refers to the procedure of explicitly acquiring a privilege
immediately before a system call requiring that privilege and releasing the privilege imme-
diately after the call completes. The motivation for privilege bracketing is to minimize the
execution time during which a trusted process holds a privilege, thereby supporting the
least privilege principle within the DBMS TCB.

3 Multilevel Secure Client-Server DBMS Design Issues

There are a large number of design issues that arise in developing an multilevel secure
client-server DBMS architecture to satisfy higher assurance levels (e.g., B2). Many of these
issues are not security relevant, or also arise in the context of a centralized multilevel secure
DBMS. The following are some of the security-relevant architectural issues that are unique
to multilevel secure client-server database management systems:

• Placement of trusted DBMS code on the client machine. It is desirable to have a
design that limits all security relevant DBMS functions to the server. The reason for
this is that it is easier to reason about the correctness of a security mechanism that
is not distributed between client and server, and therefore, a higher level of assurance
in its correctness can be obtained. One difficulty in attaining this limitation is that it
requires a relatively sophisticated secure distributed computing infrastructure (SDCI)
to implement. Another difficulty is that it imposes limits on client functionality (e.g.,
support for trusted applications).

DBMS or OS/network identification and authentication. In a client-server DBMS,
there must be some way for the server to identify and authenticate the user. This
function can be performed by the DBMS itself (e.g., by sending a user identifier
and password to the server) or the DBMS can utilize the underlying SDCI in such
a way that DBMS-based authentication is unnecessary. The problem with the first
approach is that it requires that some portion of the client DBMS be trusted. This is
a consequence of the trusted path requirement that is introduced at B2. The problem
with the second approach is that it requires a relatively sophisticated SDCI.

DBMS or network listener. A client-server DBMS ultimately requires that there be
some software that listens to a well-known address on the network and responds to
client requests. In a process-per-user server architecture, this listener is generally
a separate process which will start up an instance of the server on demand. In a
multithreaded architecture, the listener is generally a standing instance of the server.
It is desirable that this function be performed in the SDCI for two reasons. First, the
listener must be multilevel1 and therefore would increase the size of the DBMS TCB.
Second, the listener is responsible for reliably associating a user-id with a request
and therefore requires a trusted counterpart on the client platform. If this function
is performed by the DBMS, then there must also be trusted DBMS functionality on
the client platform. Relying on the SDCI for this function has the same drawbacks
mentioned in the previous two items.

le.-level or multilevel client platforms. It would be desirable to support an archi-
tecture with multilevel servers and single-level client platforms. The problem with
such an architecture is that the client platform must be relied upon in some way for
identification and authentication (except in the case of a single-level component ded-
icated to a single user). If this identification is to be used for MAC purposes, then
the client platform must be at least as assured as the server (viz., B2). One possi-
bility is to use single-level client platforms evaluated at the C2 level and use their
I&A only for DAC purposes. Architectures such as this can use the identification and
authentication inherent in communications security (COMSEC) lines connecting the
client and server platforms to satisfy the mandatory trusted path requirement. This
approach is consistent with the ideas underlying the Trusted Network Interpretation
of the TCSEC [8].

Homogeneous or heterogeneous client platforms. It is preferable for a client-server
DBMS to run on heterogeneous client and server platforms. The problem with this
is that the required SDCI is not widely available at a high level of assurance. The
most desirable solution to this problem is to have multiple vendors develop support
for these services from a service and protocol definition that has been adopted as an
industry standard. This is being done in the CMW world with the MaxSix architec-
ture. Another possibility is to have a third party provide the services as an additional

'it is possible to have multiple single-level listener processes, but this would require having one active
listener for each point in the lattice.

ISQL
(secret)

RUBIX
Client

Software

ISQL
(top secret)

RUBIX
Client

Software

ESQL
Application

(secret)

RUBIX
Client

Software

ESQL
Application
(top secret)

RUBIX
Client

Software

SQL RDA

SQL RDA

SQL RDA

SQL RDA

Trusted
RUBIX
Server

Trusted
RUBIX
Server

Trusted
RUBIX
Server

Trusted
RUBIX
Server

Figure 1: Trusted RUBIX Client-Server Architecture.

trusted layer implemented on top of the heterogeneous platforms as is done in ORA'a

Theta [9].

• Single or multiple administrative domains. It is also desirable for a client-server DBMS
to allow clients and servers to have different user-id, group-id, and security level spaces.
The disadvantage of this is that there must be functionality to do mapping between
these attributes. There is also the issue of who does the attribute mapping—the
DBMS or the SDCI. This is an important decision because this is clearly a security
relevant function. Having a single administrative domain removes this problem, but
the result is an architecture that is inflexible and not scalable.

The Trusted RUBIX resolution of these issues will be covered in the next section.

4 Trusted RUBIX Client-Server Architecture

The system architecture for Trusted RUBIX is shown in Figure 1. Clients are untrusted
application programs that have been linked with the Trusted RUBIX client software so that
they can communicate with the Trusted RUBIX server. There is one instantiation of the
server for each active client. A given client and server pair can run on the same machine or
on different machines connected on a network. The server must reside on the same machine
as the data to be accessed. All communication between client and server takes place using
the SQL Remote Database Access standard protocol [10, 11]. A client can access multiple
servers concurrently (although no mechanism for distributed transaction management is
provided). Currently, two types of clients are supported: the standard Interactive SQL
(ISQL) interface and user-developed Embedded SQL (ESQL) applications.

Our design approach is to layer this architecture onto an existing SDCI in such a way

Client

"^

\Service Request Start Service /

Connection
Server

Listen
Port

Monitor

Figure 2: SV4.1ES Secure Networking Facilities

that no additional trusted code is introduced. To make this possible, the SDCI must satisfy
the following requirements:

• Remote Process Invocation. The SDCI must provide a way to invoke a process on a
remote machine at the invoker's current level, user-id, and group-id.

• Single-level connection establishment. The SDCI must provide a way to establish a
single-level connection between the invoker and the new process.

• Network security policy enforcement. The SDCI must ensure that the services do not
violate intra- or inter-host mandatory or discretionary access controls.

• Data Confidentiality. The SDCI must protect the confidentiality of transmitted data
(this can be accomplished by physic-ally protecting the transmission media).

• Attribute Mapping. The SDCI must perform user-id, group-id, and security level
mapping.

The SDCI we selected for the implementation of Trusted RUBIX was the secure network-
ing services of SV4.1ES [12]. The primary components of the SV4.1ES secure networking
facilities are the connection server and listen port monitor (Figure 2). The connection server
handles all client-side connection establishment as a single service. The listen port monitor
is a daemon that listens on the server machine for incoming connection requests, accepts
the requests, and starts services that have been requested. In order for these facilities to
be used to provide a service (e.g.. Trusted RUBIX), the service must have been previously
registered with the connection server on the client machine and the listen port monitor on
the server machine.

When an application needs to access a service on a remote machine, it makes a request
to the connection server. The connection server validates that the connection to the remote
machine is permitted at the application's level. If the connection is permitted, the con-
nection server opens a connection to the corresponding listen port monitor on the remote
machine. Once the connection is established, the connection server and listen port monitor
exercise a mutual authentication scheme (a cryptographic scheme based on secret keys). If
the authentication succeeds, the connection server passes the client's user-id, group-id, and

security level to the port monitor. The port monitor maps the user's identity to a local
user identity and starts the server corresponding to the requested service. The connection
server then passes its end of the connection to the client, and the port monitor passes its
end of the connection to the newly invoked server. The client and server are now connected
at the desired security level and user-id and can begin a session.

The details of how Trusted RUBIX utilizes these facilities is addressed in the following
sections.

4.1 Detailed Design

We describe the design of client-server extensions to Trusted RUBIX in terms of its module
structure, internal layering, and its process structure. The module structure is a decomposi-
tion of the system into modules. Each module consists of a set of closely related procedures.
The following are the modules related to the client-server portion of the Trusted RUBIX
architecture (the structure of the server engine itself is beyond the scope of this paper).

• The Interactive SQL (ISQL) module provides an interactive SQL interface. This
interface can be used to submit ad hoc queries to a Trusted RUBIX server.

• The Embedded SQL Preprocessor (ESQLP) module is a preprocessor that takes a C
program with embedded SQL statements and translates it into an C program that
can be compiled and linked with Trusted RUBIX client software to access the server.

• An ESQL Application (ESQLA) module is an application module generated by the
ESQL preprocessor.

• The SQL Client Interface (SQLCI) module provides a call-level interface that can be
used to access the Trusted RUBIX server. There are two versions of this module, a
network version and a standalone version. The network version uses the RDA module
to access the server. The standalone version uses the RXIPC interface directly and is
therefore only usable when client and server are on the same machine.

• The Remote Database Access (RDA) module provides low-level services that allow a
client to start/terminate a remote server, manage transactions, execute SQL queries
on the server, and retrieve query results and status information. This module utilizes
the SQL Remote Database Access protocol to support client-server communication.
This module supports both a client-side and server-side interface.

• The Secure Networking Facilities (SNF) module provides services required for invoking
the server on a host and establishing a secure communication channel between client
and server. This module supports both a client-side and server-side interface. This
module is not trusted in itself, but hides the details of the underlying secure networking
facilities. When these facilities change, only this module needs to be modified.

• The Server Driver (SD) module is the server side controller for Trusted RUBIX. It
accepts requests over the network connection (via RDA) and executes them on the

ISQL ESQLA
Server

SQLCI
Driver

RDA RDA
RXIPC(lib)

R'XIPC(srv)

SNF SNF
Server
Engine

SV'.l IBM! QV-t 1PC

Figure 3: Trusted RUBIX Software Architecture

Server Engine (via the interface provided by RXIPC). Query results and status infor-
mation are then returned to the client.

• The RUBIX Interprocess Communication (RXIPC) module hides the details of the
IPC interface to the Trusted RUBIX engine. The Trusted RUBIX engine runs isolated
in a separate address space (as described in Section 2) and is accessible only through
this interface. Functions on the interface of this module implement a form of remote
procedure call by translating calls into IPC requests to the rxserver process (which is
also encapsulated within this module).

• Server Interface (SI) module provides a function call interface to the server. This can
only be accessed through the RXIPC module since direct linking with this code would
result in a non-isolated TCB.

It is important to note that of the above modules, only the RXIPC and SI are within
the RUBIX TCB; and these modules are required even in the standalone architecture. That
is, no new trusted code was introduced to support client-server operation.

The layering of the Trusted RUBIX client-server modules is shown in Figure 3. The
shaded part of the figure indicates modules in the Trusted RUBIX TCB. The RXIPC module
is unique in that is consists of a trusted and an untrusted part. These parts correspond to
the two ends of the IPC connection. Note that the "Server Engine" module in the figure
actually consists of a large number of modules (including the Server Interface module) which
are not shown in this diagram. A discussion of these modules is beyond the scope of this
paper.

The process structure is a decomposition of the run time activities of the system into
processes. Trusted RUBIX actually has two process structures corresponding to the two
possible builds of the system (i.e.. the standalone process structure and the client-server
process structure). In the following, we will focus on the client-server process structure.

As shown in Figure 4, the process structure for Trusted RUBIX consists of three pro-
cesses. There is the application process which consists of an application linked with the
Trusted RUBIX client code. The application can be either the ISQL application supplied
with Trusted RUBIX or an application a user developed using ESQL. This process runs on
behalf of the user and has no special privileges.

8

Application
Client
Machine

ii

RDA Protocol

"
Server
Driver

li

Server
Machine

RXSERVER

Figure 4: Trusted RUBIX Process Structure

The server driver process runs on the server and reads database requests from the
application process (using the RDA protocol) and sends those requests to the rxserver
process using the RXIPC interface. This process is invoked as the result of a remote
process invocation request by the client (this functionality is supplied through SNF). The
process is invoked at the client's level, user-id, and group-id, and runs with no special
privilege. As part of the invocation process, this process obtains a single level connection
to the application process.

The rxserver process forms the Trusted RUBIX TCB (this is indicated by the shading
in Figure 4). It reads database requests from the server driver and executes them against
the requested database. The rxserver process performs all the access mediation functions of
Trusted RUBIX. It is started by the server driver when the server driver receives a request
to open a database. Rxserver is a trusted subject that runs under the user's user-id (the
group-id of this process is set to RUBIXTP so that it can access protected data).

4.2 Operational Scenario

The operational characteristics of this architecture are best illustrated with a scenario. A
user starts a session by logging in to a client machine at a specific level. Since the client
machine is a B2 platform, it identifies and authenticates the user via a trusted path. Once
authenticated, the user can invoke a Trusted RUBIX application on the client machine.
When the application requests a connection to the server (e.g., through an SQL CONNECT
statement), the request is ultimately translated into request to the SV4.1ES networking
facilities to access a remote service (viz., the Trusted RUBIX server). The networking
facilities first validate that the requested invocation does not violate network security policy.
If the operation is permitted, the networking facilities invoke a Trusted RUBIX server driver
process on the remote host at the application's security level and using the corresponding
user's user-id, and group-id (possibly mapped). The final step in the invocation process is
to provide the client application and server driver with a single-level connection over which

database access requests and results can be passed.
The server driver is the client's agent on the server machine. When the client requests

access to a database, the server driver invokes the rxserver process. This process inherits
the security level and user attributes of the server driver. An interprocess communication
channel is set up between the server driver and the rxserver process for the communication
of requests and results.

The client sends queries to the server (server driver) using the RDA protocol. These
queries are forwarded to the rxserver process which mediates access based on the user's
level and user-id. Since the server driver is untrusted, the rxserver process (i.e. the Trusted
RUBIX TCB) labels all data coming from the server driver at that level, and mediates
all database accesses based on that level. Since the rxserver process was started under
the user's user-id (possibly mapped), it has a basis for making discretionary access control
decisions. Results are sent from the rxserver process to the server driver and back to the

client application. When the client terminates its connection, the server driver notifies the
rxserver process to terminate and then terminates itself.

In this section, we presented a design for a multilevel secure client-server DBMS. Our
basic design approach was to layer the DBMS client and server onto an existing secure dis-

tributed computing infrastructure. This approach allowed us to transition Trusted RUBIX
to a client-server architecture without the introduction of any new trusted code. Another
notable aspect of our design is that all DBMS policy enforcement functions are centralized
on the server (i.e., not distributed). This is important because it makes it easier to reason
about the correctness of the mechanism enforcing the system security policy.

5 Assurance in Client-Server Architectures

Assurance is concerned with providing convincing and rigorous technical arguments that
the security mechanisms in a secure system are implemented correctly. The assurance
arguments for distributed systems are inherently more complex than the corresponding
arguments for centralized systems. This section discusses the relationship between certain
critical client-server DBMS design choices and assurance. In this discussion, we will limit
ourselves to architectures where the DBMS code is layered on top of an existing distributed
computing infrastructure such as in the design presented in the previous section.

To build a client-server DBMS on top of a secure distributed computing infrastructure
is to build on top of a distributed TCB where each host platform (client or server) forms a
partition ofthat TCB. We will use the terminology from the Trusted Network Interpretation
of the TCSEC [8] and refer to these partitions as Network TCB (NTCB) partitions. Figure
5 illustrates the layering of the DBMS client and server on top of the distributed TCB.
The degree of assurance that can be attained with such an architecture depends heavily
on the characteristics of the client and server components of the DBMS software. To aid
in our analysis, we categorize client and server components based on their policy-related
responsibilities. Our two categories are: support for DBMS mandatory access control and
support for DBMS discretionary access control.2 A given client-server architecture can now

2The notion of supporting policies (viz., identification, authentication, and audit) is rolled into these

10

DBMS Client

NTCB Partition

DBMS Server

NTCB Partition

Figure 5: Client-Server Distributed TCB

be characterized by assigning zero or more of the categories to the client and to the server.
The result is a set of 16 possible assignments (4 possible combinations for client and server).3

Certain (overlapping) classes of the above assignments are of particular interest from an
assurance point of view and are discussed below.

• No DBMS policy enforcing software in the client or server. This would be the case
in an architecture that relied completely on the underlying distributed TCB for its
security (similar to a Hinke/Scheafer approach [13] on a distributed TCB). This class
offers the highest level of assurance since the DBMS components enforce no security
policy in themselves and run with no special privilege with respect to the underlying
distributed TCB. Their security characteristics depend completely on the security
characteristics of the underlying distributed TCB.

• Discretionary policy enforcing software in the server only. This would be the case in
an architecture that relied on an underlying distributed TCB for MAC enforcement,
but implemented its own DAC on top of the DAC policy of the underlying TCB
(similar to a SeaView [14] approach on a distributed TCB). This case would have a
high degree of assurance for MAC because the DBMS runs with no special privilege
with respect to the underlying distributed TCB. The level of assurance obtainable for
DAC would be commensurate with the assurance techniques applied to the DBMS
server. The important point here is that effort involved in obtaining a given degree
of assurance for this architecture would be no more than that required for a similar
standalone architecture. This is because the DAC policy enforcement mechanisms are
centralized on the server.

• Mandatory policy enforcing software in the server. This would be the case in a trusted
subject DBMS architecture where part of the server runs as a trusted subject with
respect to the underlying distributed TCB. This is the Trusted RUBIX case. In this
case, more analysis is required to gain a high level of assurance because the DBMS
server runs with special privilege with respect to the underlying distributed TCB.
The difficulty that arises is that the DBMS server constitutes a modification to the
underlying TCB, and therefore, any assurance arguments must not only consider the
DBMS TCB itself, but also its impact and interactions with the underlying distributed
TCB. This is similar to a single machine case, where the assurance arguments for a
trusted subject DBMS must extend to the underlying operating system. It needs

categories since these policies can be supportive of MAC, DAC, or both. That is, if a component implements
supporting policies for MAC, we consider it a MAC component.

3A more detailed analysis could be done using the categories presented in Appendix A of the TNI. The
four categories presented there (M,D,I, and A) would yield a total of 256 combinations.

11

to be determined if these impacts can be isolated to the NTCB partition, or if the
assurance arguments would need to extend to the system level. This architecture
retains the advantage that the DBMS policy enforcement mechanisms are centralized
on the server.

• Policy enforcing software in the client and server. In this case, the assurance argument
may or may not have to extend into the distributed TCB depending on the approach
to MAC enforcement (i.e., TCB subset or trusted subject). But since the DBMS
policy enforcement responsibilities are distributed, the assurance argument for the
DBMS TCB will be much more complex than in the case when the DBMS TCB is
centralized.

This discussion covered only a few of the possible architectures. The important point to
remember is that the complexity of the assurance argument for a client-server DBMS archi-
tecture (which is directly related to evaluation difficulty) seems to be even more sensitive
to architectural choices than are assurance arguments for standalone DBMS architectures.

6 Conclusions and Future Research

In this paper, we presented a design for a multilevel secure client-server DBMS intended
to satisfy the TCSEC requirements for a Class B2 computer system. We also presented an
analysis of the relationship between client-server design choices and assurance. The major
conclusions from this effort are:

• It is possible to develop a multilevel secure client-server DBMS without introducing
additional trusted code over that used in the server engine. This can be accomplished
by building on an existing secure distributed computing infrastructure. This general
approach can be used with servers having trusted subject or TCB subset architectures.

• The complexity of the assurance argument for a client-server DBMS (and therefore
the evaluation difficulty) is dependent primarily on two factors: whether the client or
server require trusted subjects, and whether the policy enforcement functions of the
DBMS are distributed between client and server.

• The enabling technology for a multilevel secure client-server DBMS developed using
this approach is not yet mature. Some operating system vendors (e.g., UNIX System
Laboratories) provide the necessary functionality, but the functionality is not currently
in their evaluated configuration.

There are a number of directions in which this work could be extended. One promising
area is to investigate how this architecture can be used with single-level client machines as
discussed in section 3. Another possible extension of this work is to allow clients to execute
transactions that span multiple servers. If clients are assumed to be single-level, then they
may only connect to servers at that single level. Since the connections are single level,
and the servers to which they are connected are multilevel trusted, this class of transaction

12

would not appear to introduce any significant covert channels [15]. This of course assumes
that the concurrency control mechanisms of the underlying servers are secure.

A more ambitious extension of this work is to modify the server to support a true dis-
tributed database capability. Issues that could be investigated in such an effort include
secure distributed transaction management, secure distributed query processing, secure ac-
cess to heterogeneous databases, security implications of data replication, secure distributed
database infrastructure, and impacts of security on Open Systems standards.

Acknowledgements

This work was supported by the U.S. Air Force, Rome Laboratories, under contract F30602-
90-C-0045.

References

[1] Department of Defense. Department of defense trusted computer system evaluation
criteria. DOD Standard 5200.28-STD, Department of Defense, December 1985.

[2] National Computer Security Center. Trusted database interpretation of the trusted
computer system evaluation criteria. Technical Report NCSC-TG-021, National Com-
puter Security Center, April 1991.

[3] C. Testa, B. Wilner, and V. D. Gligor. Trusted RUBIX architecture and policy model
interpretation. In Proceedings of the 8th Aerospace Computer Security Conference,
December 1992.

[4] T. Lunt, D. Denning, R. Shell, W. Shockley, and M. Heckman. The SeaView security
model. IEEE Transactions on Software Engineering, June 1990.

[5] D. Bell and L. LaPadula. Secure computer system: Unified exposition and Multics
interpretation. Technical Report MTR-2997, MITRE Corporation, July 1975.

[6] Infosystems Technology, Inc. Trusted RUBIX Version 2.0 Security Features User's
Guide. March 1994.

[7] J. Saltzer and M. Schroeder. The protection of information in computer systems.
Proceedings of the IEEE, 63(9), September 1975.

[8] National Computer Security Center. Trusted network interpretation of the trusted
computer system evaluation criteria. Technical Report NCSC-TG-005, National Com-
puter Security Center, July 1987.

[9] ORA Corporation. An introduction to Theta. Technical Report TM-93-0004, ORA
Corporation, February 1993.

13

[10] International Organization for Standardization. Remote database access - part 1:
Generic model, service, and protocol. Draft International Standard ISO/IEC DIS
9579-1, International Organization for Standardization, 1991.

[11] International Organization for Standardization. Remote database access - part 2:
Sql specialization. Draft International Standard ISO/IEC DIS 9579-2, International
Organization for Standardization, 1991.

[12] Unix System Laboratories. System V Release 4-1 ES Network User's and Administra-
tor's Guide, 1991.

[13] T. Hinke and M. Schaefer. Secure data management system. Technical Report TR-75-
266, System Development Corporation, November 1975.

[14] T. Lunt and D. Hsieh. The SeaView secure database system: A progress report. In
Proceedings of the European Symposium on Research on Computer Security, Toulouse,
France, October 1990.

[15] S. Jajodia and C. McCollum. Using 2-phase commit for crash recovery in federated
multilevel secure database management systems. In Proceedings of the 3th IFIP Work-
ing Conference on Dependable Computing for Critical Applications, Mondello, Italy,
September 1992.

14

Inference analysis and control:
Chair: E. Gudes

Ben-Gurion Uni., Israel

A Practical Formalism for Imprecise Inference Control

John Hale Jödy Threet Sujeet Shenoi*
Department of Mathematical and Computer Sciences

Keplinger Hall, University of Tulsa
Tulsa. Oklahoma 74104-3189, USA

Abstract

iim nape; describes a powerful, vet practical, formalism for modeling and controlling imprecise FD-based
mfe-rn<::-' oi 'f-btional database systems The formalism provides a canonical representation of inference
which Miiiti'c pi-ccis«- inf-rence and the primitive imprecise inference mechanisms of abduction and partial
.-led.iir.tKii] Whereas other imprecise f partial) inference models estimate the probability of making inferences,
ihe formalism supports the analysis of the actual imprecise values inferred in a database extension. Imprecise
inference is analysed bv transforming a precise database augmented with additional "catalytic" relations.
< onvevinc possible imprecise a priori knowledge, into an equivalent imprecise database. The analysis of
imprecise inference and the related inference control methodology are highly flexible and robust. They can
be direct!" applied to classical, MLS. and imprecise databases. With minimal modifications, they also can be
used in knowledge: discovery or database mining

1 Introduction

(onf rdling eis-: ->- access o database data has been the forns <>f considerable attention in the security community.
However, serious security compromises also can arise front inference attacks [2]. An inference attack occurs in a
multilevel secure jWlLS) database [11] when a low user is able to infer sensitive information from common knowl-
edge and authorized query responses. Sn and Oszoyoglu 119,20] showed that integrity constraints, particularly
FDs and MVDs. pose serious security threats They devised an algorithm for optimally upgrading information
to eliminate inference compromises; they also showed that this problem is NP-c.omplete. More recently, Lunt
and colleagues at SHI International [5,15 18] have developed an interactive tool, DISSECT, for detecting and
eliminating compositional inference channels due In foreign kev FDs. The DISSECT model builds on earlier work
on inference control including tools and techniques developed by Ruczkowski [1], Thuraisingham [23,24], and
Hinke i9| The current version of DISSEf T [18] is limited to analyzing MLS database Schemas (intensions) rather
than actual MLS relations (extensions). Nevertheless, its success shows that it is possible to develop practical
tools for dealing with the difficult problem of inference control

Effectively controlling imprecise inference m MLS databases remains a relatively unexplored problem of great
importance An imprecise or partial inference compromise occurs when a low user is able to infer an exact value
or a sot of possible values - an information chunk — for a sensitive attribute with a. certain probability. The
granularity of I he inferred chunk may be small enough and/or its probability high enough to constitute a security
breach. Not only is imprecise inference pis' as damaging as precise inference, it is also far more prevalent.

Several researchers have recognized the importance of controlling imprecise or partial inference in MLS
databases Su and Oszoyoglu [19,20] noted that compromise elimination techniques involving FDs and MVDs

*To whom enrrpspondence should be addressed.
Research supported by NSF (iraut IRI-911070f) and (KIAST (I rant AR2-002.

-ould he extended to consider ranges of values. Morgenstern [13,14] was among the earliest researchers to for-
mally investigate imprecise inference. He viewed inference as a means to "localize the space of possible values."
A unique feature of his approach is its use of constraint expressions involving "spheres of influence" to capture
logical inference and an information-theoretic (entropy) measure for imprecise information. The inference control
tool developed by Buczkowski [1] uses Bayesian probability to estimate security risks due to imprecise inference;
bis model extends Morgenstern's framework to permit the propagation of imprecise inference. Garvey and Lunt
14.6,10] have characterized inference channels, including partial inference channels due to abduction and proba-
bilistic reasoning. Although the current version of their DISSECT tool is geared for precise inference, plans are
underway to extend it to partial inference control [15,18].

This paper describes a powerful, yet practical, formalism for modeling and controlling FD-based imprecise
inference m relational databases. The formalism uses scalar domain partitions - which we call "contexts" -
to model imprecise inference and to express integrity constraints [3,16,17]. Contexts also provide a canonical
representation which unifies precise inference and the primitive imprecise inference mechanisms of abduction
and partial deduction [7,21,22]. Morgenstern's sphere of influence notion for inferred information [13,14] has
motivated the development of our formalism. Indeed, the equivalence classes contained in contexts can be viewed
as specifying the •'maximal" spheres of influence for data involved in imprecise inference. Whereas other techniques
ie.c M.4.6,10]) estimate the probability with which sensitive values are inferred, the context-based formalism
enables us to consider the actual "information chunks" inferred in a database extension. To distinguish it from
probability-based models, we use the term "imprecise" rather than "partial" to characterize the inference model.

The imprecise inference model is highly flexible and robust. Imprecise inference is analyzed by transforming
a precise database, possibly augmented with additional "catalytic" relations [8] conveying a priori knowledge
available to low users, into an equivalent imprecise database. This technique, which is similar to those used in
deductive databases, is particularly suited to modeling the propagation of compromising imprecise inferences in
MLS databases. Furthermore, the canonical representation of imprecise inference enables the inference analysis
methodology to be directly applied to classical, MLS, or imprecise databases. With minimal modifications, it also
can be used in knowledge discovery or database mining.

This paper is organized into six main sections. Following these introductory remarks. Section 2 examines
the primitive FD-based inference mechanisms of abduction and partial deduction and provides a foundation for
their unification. Section 3 formally defines the context model, an imprecise data model representing our view
of imprecise inference. The key concepts of an imprecise FD and an imprecise inference channel are presented in
Section 4. Section 5 describes the related imprecise inference control methodology. The conclusions, relevance
and applications of the imprecise inference analysis and control methodologies are summarized in Section 6.

2 Imprecise Inference

In general, an FD-based inference may be deductive, involving forward reasoning with an FD, or abductive,
involving backward reasoning. Furthermore, FD-based inference may be precise or imprecise, depending on the
nature of the FD and the data used in inference. An imprecise inference compromise occurs when a user can
infer a range of values for a sensitive attribute using other information in the database. The granularity of the
inferred information could be fine enough to constitute a security threat.

Abduction and partial deduction are the two primary mechanisms for imprecise inference. This section
describes the two mechanisms and shows how they can be unified using the notion of an induced set FD, a special
kind of imprecise FD. The unification yields an elegant definition of an imprecise inference channel and greatly
simplifies the related inference analysis.

Note that the definitions and illustrative examples in this section and in the remainder of this paper use
classical relations to simplify the presentation. The extension to MLS relational databases — even those containing
polyinstantiated data — is accomplished by imposing the mandatory security constraints on data classifications
and user clearance levels. Views of MLS relations created at specific user clearance levels are individually analyzed
for potentially compromising imprecise inferences.

2.1 Abduction

The existence of an FD: X -» Y implies that a precise value for X determines a unique (and precise) value for
V it is also possible to use the FD — actually its manifestation in a relation — to reason backwards, i.e., to
determine a value for X given a precise (or imprecise) value for Y If the FD corresponds to a many-toonr
function, then the inferred value for X is imprecise. This mechanism is commonly referred to as abduction. For
example, in the relation below, given the salary 20A" and the fact that the FD: Name —* Salary exists, it is
possible to determine a set of names, {Bill, Bob}, that map to the salary value. Note that it is not necessary for
a user to know the complete FD mapping. Information is abduced using only the portion of the FD manifeste!]
in the relational extension.

Nams Salary

Bill 20 A
Bob 20 A"
Joe 25 A'
Jill 35A"

To understand how abduction can lead to a potential security compromise, consider the relation above, where
salary information is sensitive to the point, that low users should not obtain the salary of any employee to any
degree of precision. Now assume that the two relations below are accessible to low users (e.g.. m a poorly-designed
database view j

Name Tax

Bill 10%
Bob 10%
Joe 10%
Jill 15%

Salary Tax

20 K 10%
25 K 10%
35 A 15%

Provided with access to the relations R(Name. Tax) and R.(Salary, Tax) above, a low user could infer the
following relation by abduction.

Nairn Salary

Bill ■120 A. 25 A}
Bob {20 A. 25 A

{20A, 25 A)
Jill {35 A}

Note that, although the information in the abduced relation is imprecise, a security compromise exists because
the low level user has a reasonably good idea of how much each employee earns. The solution, of course, is to
classify the Ta.r attribute in R.(Narne, Tax) as sensitive so that the abductive channel is closed.

2.2 Partial Deduction

Partial deduction generalizes precise deductive inference. Given an FD: Xi...Xn -+ Y, partial deduction occurs
when values for a subset of left-hand side attributes are used to determine a right-hand side attribute value.
Partial deduction using a proper subset of A' attributes yields an imprecise Y value.

Job Experience Salary

Technician Little 15 A
Technician Lots 20A
Scientist Little 20A
Scientist Lots 25A
Manager Little 25A
Manager Lots 35 A'

To understand partial deduction, assume that the FD; Job, Experience.
'rejecting out the Experience attribute yields the following relation.

Salary holds in the relation above.

Job Salary

Technician 15 A
Technician 20 A

Scientist 20 A
Scientist 25A
Manager 25 A
Manager 35 A

Information m tin projected relation above .an be used with the FD: Job, Experience —> Salary in partial
deductive inference This gives rise to the relation presented below. Note that knowledge of a Job value allows the
inference of an approximate salary, e.g. {15 A. 20 A"} for a Technician, which may be potentially compromising.

Job Salary

Technician {15A, 20A}
Scientist {20A,25A}
Manager {25A,35A}

2.3 Unifying Abduction and Partial Deduction

The abduction example shows how a low user can infer a range or set of possible salaries given values for the
right-hand side of the FD Likewise, the partial deduction example shows how a range of possible salaries may-
be inferred from a job description, i.e , a proper subset of the left-hand side attributes. In both examples,
precise values are used to produce imprecise inferences. In general, however, inference can initiate with precise or
imprecise values: using imprecise information gives rise to inferred information which is correspondingly imprecise.
The ability to infer precise or imprecise information by abduction and partial deduction stems from "induced set
functions" generated from FD mappings manifested in database relations (extensions) [7,21].

Induced set functions for some function / : X ■+ V define the image of each A C dom(X) and the inverse
image of each B C dnm(Y). The induced set function concept allows us to define induced FDs which unify
abduction and partial deduction.

Definition: Let / : A" —> V denote an FD, then F : X —♦ }'
donuX) is F(A) = {y (dom{Y) : y — f(x) for some x e A}.

i the induced FD of / such that the image of A C

As explained above, partial deduction uses values for a subset of the left-hand side attributes in an FD: X —+
Y. Let us denote the subset of attributes and the tuple component values corresponding to these attributes by

asi'i r. respectively Partial deduction uses the x value to derive a value A = {t[X] : t[X'] — x}. The image
i 1 is a set of tuple components in Y which corresponds to the imprecise information that can be inferred froin
by partial deduction

Definition: Let f V — Y denote an FD then F~l : Y
mvcrst image of B C rtom(Y) is F~1(B) — {x f dom(X) .

X is the inverse induced FD of / such that tip

), B}.

Abduction use.s values for the right-hand side attribute in an FD: X —* Y. (Note that it is necessary only to
?insider FD« with "ingle attributes on their right-hand sides.'i Let us denote the tuple component in Y as y and

let, B - \y\ The inverse image of B is the information that can be inferred from y by abduction.

The two definitions above show that an induced FD: X —*■ Y is a function mapping sets of A tuple components
! subsets of dnmi V) < to sets of Y tuple components (subsets of dom(Y)). This mapping is induced from a relational
extension induced FDs and inverse induced FDs can be treated in a uniform manner. For this reason, we refer to
i.herri collective!} as induced FDs. This notion unifies the primitive imprecise inference mechanisms of abduction
and partial deduction.

In general, an imprecise FD maps set values to set values (A set and its subsets are considered to be equivalent
when determining ihe functional relationship.) The induced FD for a given relation is the "minimal" imprecise
FD generated m the relation. To understand the distinction between the two concepts consider the following
precise relation.

X Y

a 1
<i 2 j

b 2 !

The FT): A -^ V does not hold in the above relation. However, it. is possible to "induce" an FD from X to Y
by "merging" precise tuples. The induced FD: X —> Y holds in the imprecise relation below (left). It is obtained
by merging the fewest tuples in the precise relation so that a functional relationship exists between set values.

{*}
{1-2}

{2}

X Y

{a} {1-2}
W {1-2}

A "coarser"' imprecise FT): A' —* V holds in the relation on the right. The imprecise relation corresponding
to this imprecise FD is obtained by merging and "coarsening" (or "clouding") tuples to a greater degree than
is required to produce the induced FD. For any relational extension exactly one induced FD can be generated
between any two sets of attributes; however, numerous imprecise FDs can be made to hold by appropriately
clouding the extension The induced FD and imprecise FD concepts will be formalized in Section 4 using the
notion of a. "context" defined below.

3 Contexts and Imprecise Relations

Imprecise inference analysis involves the transformation of a precise database to an imprecise database to ma
tenalize potentially compromising imprecise inferences. Integrity constraints must be defined for the relations
containing imprecise data (set-valued tuple components). This section uses the idea of a context to define, domain
and entity integrity constraints for imprecise relations [3.16,17]. The context-based integrity constraints defined

in r.hifi. section generalize their classical counterparts. The notion of a context will be used in later sections to
formalize imprecise FDs and imprecise inference compromise, which also generalize their precise counterparts.

3.1 Contexts

\ context i ' is a partition on a set D generated by a semantics-based equivalence relation p on D. D is a subset
of the underlying database domain D. Since p captures natural semantic equivalences between domain elements,
the equivalence classes in C are sets of "closely related" (indistinguishable) elements. The set of all equivalence
relations 01, subsets of D is denoted by Up; the corresponding context set is Co-

Contexts ran he ordered by the equivalences contained in the generating equivalence relations. A 'coarser"
■-■".imvalence relation contains more equivalences than a "finer" equivalence relation and yields a 'coarser" contex

with larger equivalence classes.

Definition: Let p and P' be equivalence relations in %D Then, p' is coarser than p, i.e., p' Cp p. iff p C p'. If
(' and i " are contexts induced by p and p', respectively, then C is coarser than C, i.e., C Qc C.

An equivalence <-!ass in a finer context is a subset of an equivalence class in a coarser context. For exam-
ple, the relation \\n. b) jr. d, e}} Cc {{6}, {c, d}} holds. On the other hand, the contexts {{a}, {b, c}} and

j \a. I>}- \c\\ a.re not comparable.

i(V,. il, i is a complete lattice. The coarsest context {D} has a single (largest) equivalence class. The finest
•vacuous" .-on!ex* is induced by the empty equivalence relation.

3.2 Domain Integrity

When enforcing a domain integrity constraint, the equivalence classes in a context act as sieve openings controlling
the maximum imprecision of information chunks storable as tuple components. An imprecise tuple component that
passes through a sieve opening in a context (i.e., it is a subset of an equivalence class) is said to be consistent with
respect to the context. Consistent components are meaningful because equivalence classes comprise semantically-
reiated elements The null set is not a consistent value in this model. The maximally imprecise value from a

domain D is 'formed as P itself.

Definition: An imprecise (set-valued) component I, is consistent with respect to a context d iff it is a non-empty

subset of an equivalence class in C\.

Definition: An imprecise tuple t = {ti.t-j <%i) is consistent with respect to (C'i, C2,..., C„) iff each U is
consistent with respect tu context C{.

The classical domain integrity constraint is enforced by contexts with singleton equivalence classes. Only
atomic values are consistent with respect to these ''precise contexts " Coarser contexts permit the storage of

larger information chunks as tuple components.

3.3 Equivalence. Entity Integrity and Imprecise Relations

We now define context-based equivalence for imprecise information chunks and the related notion of entity integrity
for imprecise relations These definitions reduce to their classical counterparts for precise contexts with singleton

equivalence classes

Definition: Imprecise values (sets) t and t' are equivalent with respect to a context C, denoted by t ~c t', iff <
and t' are non-empty subsets of the same equivalence class in C.

iSlf

\ context acts as a sieve for determining the equivalence of information chunks. Since an equivalence class
v opening) comprises indistinguishable elements, all consistent chunks passing through the same sieve opening

arc considered equivalent. For precise contexts context-based equivalence reduces to classical equality. The
corresponding precise chunks are equivalent only when they are identical.

Definition: Two imprecise tuples t and t' are redundant with respect to contexts C = (C'I.GV

: - , G. iff 1, ~~, t'; for each component ?'.
,C„), i.e.

The classical entity integrity property requires that a relation be a set of tuples. A similar property is used for
imprecise databases: No two tuples in an imprecise relation may be "identical." In this case, however, "identical"
is defined as equivalence with respect to contexts, and a "set" may not contain multiple equivalent objects.

Definition: An imprecise relation scheme R(A.C\ '
S

a collection ofattribut.es A = (A\,

contexts G -- (G, . G2, .., ('.,).
42, ..., An) with associated

Definition: An imprecise database relation r with underlying scheme RIA,C) is a set of non-redundant tuples
with respect to the contexts in C.

An imprecise relation scheme is a collection of attributes and associated contexts. Since a classical relation
scheme has precise contexts on all its attributes, a classical database relation can only hold precise information.
An imprecise relation scheme has coarser contexts on some or all of its attributes. This enables the corresponding
imprecise relation to consistently hold imprecise information chunks.

Entity integrity is preserved by subsuming redundant tuples. In a classical relation, each set of identical
tuples is simply replaced by one of the tuples However, extra consideration must be given to an imprecise
relation heraus» it ls possible to have redundant imprecise tuples which are different from each other. Entity-
integrity is maintained in an imprecise {or precise) relation by "merging" a block of redundant tuples into a single
non-redundant tuple.

Definition: The merge of two tuples / and /' is u I?/, , u-. ., M„j where u,- = lj U l|.

The merge operation has an important role in imprecise inference analysis, especially for generating imprecise
relations to satisfy induced FDs (recall the example in the previous section). Imprecise inference analysis is
discussed in detail m Section 4.

N <tmt I'.rperievce Salary

{John} [7 10) {65 A)
{Bill} r~~ {21 -1 [25A'. 40A)

An example imprecise relation is presented above. It is defined with respect to a precise context on the Name.
attribute, and coarser contexts {[0, 5). [5. 10)} and {[(IA', 50A"), [50A'. I00A")}, on the Experience and Salary
attributes respectively. The tuples in the relation are consistent and non-redundant with respect to these contexts.
However, the tuples become redundant if the coarser contexts. {Men's Names}, {[0, 10)}, and {[0A', 100A')},
are used for the Nome. Experience and Salary attributes, respectively. The new merged relation contains a
single tuple obtained by taking the set union of corresponding components in the redundant tuples. Note that
precise information is correctly expressed using singleton sets. However, for simplicity we will represent precise
information as atomic values in the following sections.

4 Imprecise FDs and Imprecise Inference Channels

This section introduces the main concepts necessary for analyzing imprecise inference. It clarifies the notion
of an imprecise FD and presents inference axioms for determining closure. Two of these axioms correspond to
abduction and partial deduction. Finally, this section defines the notion of an imprecise inference channel. Since
the definitions generalize their classical counterparts, the imprecise inference methodology also can be used for

analyzing precise inference.

The existence of an imprecise FD implies that if some tuple components satisfy certain equivalences, then
other tuple components must exist and their values must be equivalent [7,17]. This notion extends the equality-
based classical FD to one based on equivalence with respect to contexts. Imprecise FDs can specify constraints
on precise and imprecise data. Examples of imprecise FDs are: Engineers have starting salaries of about J,0K,
and Approximately equal qualifications and more or less equal experience demand similar salary. Clearly, such

FD« have a key role in imprecise inference analysis

Definition: An imprecise FD: X(CX) -* Y(Cy) holds in scheme R(A,C) iff for all tuples t, t' in every extension

r of R, AI-\- i "Jr x f' implies t ~cv t'■

Lemma 4.1: The imprecise FD: X(CX) -* Y(Cy) is a classical FD when Cx and Cy are precise contexts.

Determining the closure of inference for a set of imprecise FDs is critical to analyzing imprecise inference. The
classical mode! uses Armstrong's axioms in defining the FD-based inference closure. Counterparts to Armstrong's

axioms exist for context-based imprecise FDs [17].

Lemma 4.2: Imprecise FDs satisfy Armstrong's Axioms:

V((V ! C X(('x) C U(Cu) implies X(CX) ->■ Y(Cy) (reflexivity)

\{Cx i - Y(C'y) implies XZ{Cx,('z) -* YZ(CyCz) where Z{CZ) C U{CV) (augmentation)

X(C'x) — Y(Cy) and Y(CY) -»• Z(CZ) imply X(('x) -> Z(CZ) (transitivity).

In addition to the counterparts to Armstrong's axioms, new axioms specific to imprecise FDs exist [21]. The
following inference axiom states that if an information chunk x determines some chunk y using an imprecise FD,
then information more precise than x can determine information less precise than y.

Lemma 4.3: V(("x) — Y(('Y) implies \'(('x) — Y(C'y) for ail C"x C<- Cx, C'Y Qr Cy.

As seen in Section 2. deductive and ahductive inference can be unified using the idea of an induced FD. In
the context model, an induced FD is an imprecise FD defined in terms of "induced contexts" [21]. For a relation
containing attributes A' and V", the induced context is the finest context for Y that yields an imprecise FD from
V to Y with context (\ for X. The induced context, is computed as the greatest lower bound (gib) of equivalence
classes merged m V according to values in X. It. represents the greatest lower bound on the inferred information
and always exists because the set of contexts is a complete lattice.

Definition: Let F be the set. function induced by the mapping A' —► Y from X tuple components to V" compo-
nents and let (t\X])<-y be the set of tuple components that are equivalent to t[X] with respect to Cx- An induced

context on V. denoted by IX->Y(CX), '
S
 constructed by making the set of Y tuple components in F((t[X])cx)

redundant for each t.[X] and then taking the greatest lower bound {gib) of this collection of contexts.

Having clarified the idea of an induced context, we now present the inference axioms for abduction and partial
deduction (Lemmas 4.4 and 4.5, respectively). ±y in Lemma4.5 denotes the coarsest context for Y. It is required
because information about Y is not used in partial deduction.

Lemma 4.4: A If 'x) — t'(Cy) implies Y(CY) -* X(1Y~X{(
:
Y\) and for any C'x such that Y(CY) — Xi("x)

holds. (~"x iZC ly^x(Cy).

Lemma 4.5: XYM'xCy ! -> £(Cz) implies A' (C">) -+ Z(1XY-*Z(CX±-Y))-

ProM:--- inference channels are composed of a "use set" of FDs [12]. Likewise, imprecise inference channels
are composed of a use set of imprecise FDs An imprecise inference channel is a chain of imprecise FDs. usually
represented as a directed acyclic graph (dag)

Definition: An tmprp.ct.ic inference channel, fron: X{(.-x) to Z(('z) is a sequence of imprecise FDs, T =
F; . F--, ... Fn. such that X(Cx) = LHS(FY). Z(C7\ =r. RHS(Fn), and RHS(Fi) = LHS(Fi+1).

The notion of an imprecise inference channel and its role in inference analysis and control are clarified using
a series of examples in the following section

5 Imprecise Inference Control Methodology

1 his section outlines the basic, imprecise inference control methodology. Imprecise inference analysis and its
application in a practical inference control methodology are described in detail.

5.1 Analyzing Imprecise Inference

The definitions in the previous section provide the forma! mechanism necessary for the rigorous analysis of
imprecise inference. Imprecise inference analysis primarily involves the determination of the inference closure.
This closure is computed using the inference axioms defined in the previous section. The inference closure can
be visualized hv materializing imprecise relations which correspond to the FDs induced within relations and
across relations with «emantically equivalent attributes The imprecise relations then are composed to create new
relations corresponding to potentially compromising inference channels.

Hypergraphs an' use<i to represent FD-based inference channels. The formal definition of a hypergraph used
in our work is Riven below

Definition: A hypergraph is a collection of edges FH and vertices VfI = 2s on some basis set S. A vertex is a
subset of .s and an edge is a pair of vertices

(,iven a relation and a set of FDs (preferably a minimum cover), it is a simple task to derive a hypergraph
whose "dges connect vertices containing sets of attributes. Such a hypergraph facilitates exploration of the
inference closur-- for the database being analyzed. We present a simple algorithm for constructing a hypergraph
from a global relation scheme and a set of FDs.

Hypergraph Construction Algorithm

<r': Global scheme; R: Relation scheme: F: Set of FDs; .4: Relational attribute
Vft e (i. V/l £ R: Instantiate a node labelled AH.
V FD-.V — Y 6 F:

(Teate a hypernode referencing all nodes with attributes in X if no such hypernode exists.
Create a hypernode referencing all nodes with attributes in V if no such hypernode exists.
Add a hyperedge between these two hypernodes.

Note that the hyperedges are bidirectional; thus, they capture abductive as well as deductive paths. The
constructed hypergraph expresses all inference paths in the database system. It must be analyzed to detect all
potentially compromising inference channels.

The following simple example illustrates imprecise inference analysis and clarifies many of the previously-
defined concepts, including context-based imprecise relation, imprecise FD and imprecise inference channel. Con-
sider a database containing the three relations, R\(Emp\, Sal\), R2(Sal2, Tax2) and R^Empz, Tax3). Note
that Ri and R2 are imprecise relations while A3 is a precise relation.

R2(Sal2. Tax2)
R\(Emp\, Sal\)

Emp\ Sal]

John [OK. 50A")
Mary [50 A 100/O

Jo> [0A\ 50A')
Jan < [0A; 50A")

Sal2 Tax-,

[OK, 10Ä) 10%
[10A, 20/O 15%
[20 K, 35/0 18%
[35A\ 50/O 25%
[50K 80A) 30%

[80 A" 100A) 35%
1

R3(Emp3, Tax3)

Emp3 Tax;,

John 18%
Mary 30%
Joe 25%

Jane 18%

Relation K\ expresses "common knowledge'' possessed by low users that salaries are in the [0A\ 50A') or [50A",
100A) range. This relation corresponds to "catalytic data" [8] added to a database by the DBA to materialize
imprecise inference channels due to common knowledge. The coarse context Csafi = {[OAT, 50A), [50A, 100A)}
enables imprecise salaries to be stored consistently in R\. A precise context is used for attribute Emp\. The
imprecise FD: Empx —>■ Sail holds in Ai for contexts (-Emp, and G'saj,. (A precise FD would have held between
the same attributes had the relation Ri been precise.) Since this example deals with the inference of salary values,
let the inference channel ICi = {Empi —* Sail}. ICi is a use set containing a single imprecise FD.

Relation R2 is a tax table This table could already exist in the database or it could be added to the database
as a catalytic relation conveying common knowledge. The table contains imprecise information in that multiple
salary values map to a single tax rate; it could be expressed less concisely by a table containing only precise
values. The context <"Sai, = {[0A, 10A), [10A, 20A) [20A', 35/0, [35/0 50A), [50A, 80A), [80A, 100A)} is
used for the salary attribute. The context used for Tax? is precise. The imprecise FD: Sah —+ Tax2 holds in R2

for contexts C:sal2
and ('Tax.-.

Relation R3 contains precise information and uses precise contexts for all its attributes. The precise FD:
Emp3 —' Tax:i holds in A3

The inference axioms produce the channel KV \Emp) —> Enip3, Emps —► Tax3, Tax3 —* Tax2, Tax2 —►
Sa.l2, Sail —> Sal] } Notice that some FDs in the use set. arise from the semantic equivalence of attributes, e.g.,
FD: Fmp\ — Fmpz. The salary information inferred through inference channel IC2 is presented in Relation Ric2

below The new relation is obtained by joining relations A;t and R2 as specified in the use set for \C2-

Rf< ■ ,(Emp, Sal)

Emp Sal

John [20A, 35A)
Mary [50A. 80A)
Joe [35/0 50A)

Jane [20A, 35A)

We can see that a potential imprecise inference compromise exists because the derived relation Ric2 has salary

10

information of finer granularity than the original relation R, More precisely, the compromise exists because the
derived inference channel IC2 is not coarser than the original channel ICi. The induced context Csai in Ric,
(and IC2j is equal to {[20A, 35A), [35/t", 50A), [50A'. 80A)}. It is not coarser than CSah = {[0A, 50A), [50A*
100A)} in A, (and 10,).

5.2 Controlling Imprecise Inference

To control and ultimately eliminate compromising imprecise inferences, it is necessary to specify a set of imprecise
inference channels considered to be secure This com.promi.it specification set is defined by the DBA. Suspect,
channels in a database are compared with these secure channels. A potential security compromise exists when a
suspect channel .allows the inference of information which is riot coarser than information inferred by any secure
channel with a finer R.HS context. Potentially compromising imprecise inference channels are eliminated by hiding
relational attributes or by "clouding" data manifested by imprecise FDs in the compromising channels.

Tbc f,-,]lowing algorithm describes the basic inference control methodology. Note that the compromise spec-
ification set !.- to he defined by the DBA The definitions of rompromiseQ and eliminate(), which detect and
eliminate potentially compromising inference channels, respectively, will be provided later.

Inference Control Algorithm

Define compromise specification set

Construct hypergraph from global schema (7 and FD set F.
I' Set of paths in hypergraph
lor each p; in /' If compronuseip,■). then eliminate^).

5,2.1 Compromise Specification and Detection

In a typical scenario, the DBA first identifies the set of imprecise inference channels called the compromise
specification sei This sei conveys the finest information that can he inferred without compromising database
security. It typically contains simple channels composed of FDs holding in the database relations being analyzed
and those holding m additional catalytic relations. As mentioned earlier, catalytic relations [8] are additional
relations added to the database being analyzed. They convey common knowledge about secure attribute values
and are used to materialize potentially compromising imprecise inferences that might otherwise go unnoticed. A
suitable assumption used when constructing the compromise specification set is that imprecise FDs and inference
channels \vithjn a relation are secure. Compromising inferences across relations can occur when attributes in
different relation* are semantically equivalent. A similar assumption is used in the DISSECT system.

We examine individual inference paths in tin- hypergraph constructed from inference analysis for suspected
compromise. For inference- path exploration, the hypergraph can be reduced to a regular graph whose vertices are
hyperdges [21], That is. a hyperedge A(„.i, with hypernodes a and b becomes a vertex V'E(O in a regular graph.
Two such vertices. l'E] and V'E2 , are connected if the intersection of a hypernode. of attributes from VEl and a
hypernode of attributes from VE2 is nonempty. Finding inference channels to test for potential compromise now
reduces to path enumeration for regular graphs. The algorithm for hypergraph reduction is presented below.

Hypergraph Reduction Algorithm

A//: Set of hypergraph edges; VH: Set of hypergraph vertices
En: Set of regular graph edges; V'R: Set of regular graph vertices
For each Eiaib) G EH: Add I Eu M to VR-

For each VE{ab). VE(c d) in VR:

If {a U 6} n {c U d} ^ 0 then add A,yE __ ^ yE ^ , to ER.

11

FD link

semäiic equivalence

Figure 1: Example Hypergraph

FD link

semantic equivalence

Figure 2: Inference Channel: IC2

A suspect inference channel originating at X that allows the inference of information about Y can be deemed
secure when that information is coarser than the inferred information of any inference channel from X —>■ Y in
the compromise specification set. On the other hand, a potential security compromise exists, i.e., compromise^)
is true, when there does not exist a secure inference channel in the compromise specification set such that the
information inferred from the suspect channel is coarser than the information inferred from the secure channel.
We use the context mode! to formalize the notion of a potentially compromising imprecise inference channel that
is used in our inference control algorithm.

Definition: A derived inference channel 1(" for A'((.'A) --> Y(CY) is a potentially compromising imprecise
inference channel, i.e.. c.ompromise.{IC) is true, iff ("'{■ is not. coarser than Cy, i.e., CY Qc CY does not hold,
for some [(' for \{('x) —* Y(Cy) in the compromise specification set

For the example in the previous subsection, the compromise specification set is equal to {Emp\ —> Sali,
Sal? —■ Tax2, Emps —>■ Tnx:i\. The inferences possible in the example database are represented in the hypergraph
in Figure I. A potentially compromising inference channel exists because the derived channel IC2: {Empi —>
Empz- Empn —> Tax3, Taxz —>• Tax2, Tax2 -+ Sal2, Sal2 -^ Sah } has a context for Csai, which is not coarser
than the corresponding context for inference channel]('.{: {Empi -» Sali } in the compromise specification set.
The derived inference channel IC2 is presented in Figure 2.

Detecting imprecise inference compromises is an NF'-complete problem [21]. This follows from the fact that
imprecise inference compromise detection generalizes the problem of detecting precise FD-based inference chan-
nels; the latter was shown to be NP-complete by Su and Ozsoyoglu [19,20]. Exhaustive search is the obvious
strategy for detecting compromising channels. Large databases will require the use of heuristics for compromise

h-iotm;, FifViiv- and practical heuristics for compromise detection are presented in [21]. Allowing for user
interact,son during the detection phase enhances the quality of the search.

5.2,2 Compromise Elimination

->■.-urine a database system from imprecise inference attacks based on FDs mandates securing all potentially com
promising imprecise inference channels Each channel can be secured by hiding (upgrading) relational attributes
|!S-20i Alternatively, the compromising inference channels may be secured by appropriately "clouding" tuple
•■omponen's j'l;; 17,211 (nforrnation used in a potentially compromising inference channel is clouded so that the
inferred information is coarser than that inferred using any related secure inference channel. When a suspect
channel has no secure counterpart in the compromise specification set, it must be secured according to policies

Sperifieil I)'.' th< DBA

In our oxamolc it is necessary onh f<> secun the inference channel IC'2- To illustrate the technique, we
secur■- the database using information clouding. Tin;- is accomplished by applying the finest clouding of the
Channel to eliminate the compromise. Selecting the channels to cloud and determining how much to cloud is
an NT-complete problem but for short, inference channels a simple heuristic suffices [7.21]. According to this
heuristic tin inference channel is traced backwards and information in the first acceptable attribute is clouded
\n attribute m an imprecise FD is not acceptable for clouding if the mapping is common knowledge (e.g.. FT>
in/-- ■■• Tcio '-enresents the tax table; or if the dependency arises due to the semantic equivalence ofattribut.es
'.e.g.. FD ß'-mp-, — Rmpi) The clouding algorithm presented below effectively secures compromising inference
channels. It is an'appropriate specification of the function elirmnatc() in the inference control algorithm.

Clouding; Algorithm

,V = (A'i, Xn): ('Compromising inference channel
■ A-,. (Context for attribute \,
1 'boose y — {A, A',ni t.o be a related secure channel
i where Xn and \„, refer to the same attibute).
Set i = ?i,
while cannot cloud V,. 1 ~ 1 — I
Set, ('{X,) = I-dvi i when- Z r, (,\\, V,)).

'\pp!vnuj this heuristic to our example, we scjr d at tribute- J ax:i in the FD: Emp-j, —> Tax^ for clouding (or
hiding! We cloud it by determining what can In inferred about Tux^ using the inverse channel, K.'ö , which
inters i-'mv\ from •-.at, using the imprecise vaiues known for h'al-, . i.e.. [OK, 50Ä'), [50A', 100/i). This inference
channel yields nnpreci«.' tax values of -jlO'/i. i5%. 18'X. 25'X \ and {30%, 35%} from imprecise salary values of
[0/A\ .Vl/\ j and [50/\ . 100A i respectively The relation /i':i(f/m.(t| l'ar-A) is coarsened appropriately to yield the
.'louded relation /V* belnv

'?.*(I'~'mp;\„ 7'iJ-3)

/' mp-.i i <:..)■.,

.1 oh 11 jl()% 15%. !8%, 25%H
Mary {30%. 35%}
.lor {10%. 15% 18%, 25%}

Jane {10% 15%. 18%, 25%}

The final database contains relation H\(Ehnp\. Sal\) -epresenting a priori knowledge, the tax table /^(.Sai^,
Tax'2). and h'l(Emp;i, Tax^) in which Tax:i values are clouded to eliminate the imprecise inference channel. Note

13

that in the new database the inference channel IC2 yields information which is coarser than that provided by the
secure channel K '-, This verifies that the channel is secure. The secured database is shown below.

R2(Sal2, Tax2)
Ri(Emp\i Salt)

Emp\ Sah

John [OK, 50A)
Mary [50 A'. 100 A)
Joe [0A, 50A)

Jane [0A, 50A)

Sal2 Tax2

[OK, 10A) 10%
[10A, 20A) 15%
[20A, 35A) 18%
[35A, 50A) 25%
[50A, 80A) 30%
[80A, 100A) 35%

R*3(Emp3, Tax3)

Emp3 Tax3

John {10%, 15%, 18%, 25%}
Mary {30%, 35%}
Joe {10%, 15%, 18%, 25%}

Jane {10%, 15%, 18%, 25%}

6 Conclusions

Research on imprecise inference by Morgenstern [13,14] and Garvey and Lunt [4,6] has highlighted the need to
develop formal, yet practical, techniques for dealing with the difficult problem of imprecise inference control.
The context formalism presented in this paper meets these requirements. Contexts provide a powerful and
systematic approach for modeling imprecise inference. They also define integrity constraints for imprecise relations
and the key notion of an imprecise FD which generalizes precise deduction and unifies the primitive imprecise
inference mechanisms of abduction and partial deduction. Whereas other imprecise (partial) inference models
estimate the probability or possibility of making inferences, the context-based methodology examines the actual
imprecise, values inferred in a database extension. Imprecise inference analysis is performed by transforming a
precise database, possibly augmented with additional catalytic relations conveying a priori knowledge available
to low users, into an equivalent imprecise database. This technique, which is similar to those used in deductive
databases, effectively models the propagation of compromising imprecise inferences in MLS databases. With
minimal modifications, the same inference analysis technique can be applied to knowledge discovery or database
mining.

The inference control formalism described in this paper provides a foundation for the development of practical
inference controllers for database systems. The DISSECT prototype developed at SRI International [5,15,18]
demonstrates the utility of an interactive tool for controlling database inference. The context-based model is
particularly suited for implementation in an interactive environment. The flexibility of the model will enable the
resulting tools to secure classical, MLS, and imprecise databases from precise and imprecise inference attacks.

7 References

[1] L..I. Buczkowski. Database inference controller, in Database Security III: Status and Prospects, D.L. Spooner
and C Landwehr (Eds.). Eisevier Science New York, pp 3i 1-322, 1990.

[2] D.E. Denning, Commutative filters for reducing inference threats in multilevel database systems, Proceedings
of the 1985 IEEE Symposium on Research in Security and Privacy, pp. 134-146, 1985.

[3] S. Finnerty and S. Shenoi, Abstraction-based query languages for relational databases, in Advances in Fuzzy

Theory and Technology, Volume 1, P.P. Wang (Ed.), Bookwrights, Durham, North Carolina, pp. 195-218, 1993.

[4] T.D. Garvey and T.F. Lunt, Cover stories for database security, Proceedings of the Fifth IFIP WG11.3
Workshop on Database Security, November 1991.

[5] T.D. Garvey, T.F. Lunt, X. Qian and M.E. Stickel, Toward a tool to detect and eliminate inference problems in

14

■u< design of multilevel databases, Proceedings of the IFIP TCI1/WG11.3 Sixth Working Conference on Database
Ecurity. pp 159-177. 1992.

K>] 1 D Oai'vev. T.F. hunt and M.E. Sticke!. Abductive and approximate reasoning models for characterizing
inference channels. Proceedings of the Fourth Workshop on the Foundations of Computer Security, June 1991.

j7] .1 Hah- S Fmnerty and S. Shenoi. Analyzing inference in fuzzy database systems, submitted to the Third
IEEI International ('(inference on Fuzzy Systems. Orlando, Florida, June 29 - July 1, 1994

;■".) I H Hinke. Inference aggregation detection in database management systems, Proceedings of the 1988 IEEI,
^ympnviuvi "V Ft (search in Security and Privacy, pp 96-106. 1988.

j!)i 1 H Hinke and H Delugach, Aerie: An inference modeling and detection approach for databases. Proceedings
of Hi, iFif M / / 'WCl /.,)' Sixth Working Conferenct or, Database Security, 1992.

ill'1 ! !' I-.uni Aggregation and inference: Facts and fallacies. Proceedings of the. 1989 IEEE Symposium on
R.-tenrrii ■■■■„ -,cvriiy and Privacy, pp. 102-109. 1985.

|[i U "i'.F I.iint O.F; Denning, R.R. Scholl. M. Heckman and W.R. Shockley, The SeaView security model, IEEE
'rmisactions on Software Engineering, voi 16, pp 093-607. 1991.

il2| li. Main- The Theory of Relational Databases. Computer Science Press, Rockville, Maryland, 1983.

\\'X\ M Morgenstern Security and inference in multilevel database and knowledge base systems. Proceedings of

i!>- ACM !n1>-"n.nl7«na! Conference on the Management, of Data (SIGMOD), pp. 357-373, 1987.

; I Si ,V1 Morgenstern. (ontrolling logical inference in multilevel database systems, Proceedings of the 1988 IEEE
Symposium or, Research in Security and Privacy, pp 245-255, 1988.

|15] X. Qiaii. M.E. Stickel. P.D. Karp. F.F. Lunt, and T.D. Garvey. Detection and elimination of inference
channels m multilevel relatiuiial database systems. Proceedings of the 1993 IEEE Symposium on Research in
•-ecnrilu and <S-,raey. pp. 196-205, 1993

!16j S Shenoi. Multilevel database security using information clouding. Proceedings of the Second IEEE Inter-'
national Confcrrnc, on Fuzzy Systems, pp. 483-48.S. 1993.

[17] S Shenoi. Fuzzy Sets, information clouding and database security, to appear in Fuzzy Sets and Possibility
Theory m Database Manaucment Systems. P. Bosr and J, Kacprzyk (Eds.), Omnitech Press, Warsaw, Poland,
and Physica-Verlag Heidelberg, Cermanv. 1994

i I8j M.E. Mickol. X. Qian. F.F. Lunt and T.D Oarvey, Inference channel detection and elimination, Elin A003:
Second Interim Report. Computer Science Laboratory, SRI International, Menlo Park. California. 1993.

i19! * "K si' HI i (. Ozsoyoglii, Data dependencies and inference control in multilevel relational database systems,
Proceedings of the 198'' I FEE Symposium on Research in Security and Privacy, pp. 202-211, 1987.

;20j ! -\ Sii and :■ Ozsoyuglu, Controlling FD and MVD inferences in multilevel relational database systems,
IEEI Prmis,,, I,mi-, on Knowledge and Plata Pr,give, ring. vol. 3, pp. 474-485, 1991.

[21; J Ihr-ei, Designing Secure Relational Databases. M.S. Thesis, Computer Science, University of Tu Is a.
Tulsa. Oklahoma. 1993

|22J J I hreet and S Shenoi, Controlling deduction and abduction m clouded relational databases, presented at
the 1993 iPPF Symposium on Research ni Security and Privacy. Oakland, California, May 24-26, 1993.

[231 MB Fhuraismgliam, Security checking in relational database management systems augmented with infer-
ence engines. Computers and Security, vol. 6, pp. 325-333, 1987.

[241 M.B. Thuraismgham The use of conceptual structures for handling the inference problem. Technical Report
M90-55. The MITRE Corporation, Bedford. Massachusetts, 1990.

Hypersemantic Data Modeling for Inference Analysis

Donald G. Marks and Leonard J. Binns
Office of INFOSEC Computer Science

Department of Defense
Ft. Meade, MD

Bhavani M. Thuraisingham
The MITRE Corporation

Bedford, MA

ABSTRACT

This paper describes a hypersemantic data model for representing multilevel database applications. This data
model, which is called multilevel knowledge data model (MKDM), incorporates constructs from, both data
models and knowledge models. An associated data definition language called multilevel knowledge data language
(MKDL) and a graphical representation scheme are also described. Finally, knowledge transformation as well as
inference analysis issues are discussed. Our goal is to develop a uniform representation and specification scheme
which can not only be used for inference analysis, but which can also be transformed into other representation
schemes so that existing inference analysis tools can be applied.

1. INTRODUCTION

It is possible for users of any database management system to draw inferences from the information that they
obtain from the databases. The inferred knowledge could depend only on the data obtained from the database
system or it could depend on some prior knowledge possessed by the user in addition to the data obtained from
the database system. The inference process can be harmful if the inferred knowledge is something that the user is
not authorized to acquire. That is, a user acquiring information which he is not authorized to know has come to
be known as the inference problem in database security.

We are particularly interested in the inference problem which occurs in a multilevel operating environment. In
such an environment, the users are cleared at different security levels and they access a multilevel database where
the data is classified at different sensitivity levels. A multilevel secure database management system
(MLS/DBMS) manages a multilevel database where its users cannot access data to which they are not authorized.
However, providing a solution to the inference problem, where users issue multiple requests and consequently
infer unauthorized knowledge, is beyond the capability of currenüy available MLS/DBMSs.

Morgeastern was the one of the first to investigate the inference problem for MLS/DBMSs [MORG87]. Since
then, several efforts have been reported. One of the major approaches to handling the inference problem is to
design the multilevel database in such a way that certain security violations are prevented (see for example the
work of Binns [BINN921, Burns [BURN92], Hinke et al. [HINK92|, Garvey et al. [GARV92J, Smith
[SMIT90], and Thuraisingham [THUR901). That is, the security constraints, which are rules that assign security
levels to the data, are processed during multilevel database design and subsequenüy the Schemas are assigned
appropriate security levels. While some of the proposed solutions focus on representing the multilevel database
application using conceptual structures developed for knowledge-based system applications and subsequenüy
reasoning about the application using deduction techniques (see for example [HINK92, GARV92, and
THUR90]), some focus on developing tools which generate new relational database Schemas given the original
relational database Schemas and the security constraints (see for example [BINNS92]), and some others are
proposing the use of semantic data models developed for database design to design the multilevel database also
(see for example [BURN881).

While the three approaches complement each other, each of them uses different representation schemes and
different inference analysis tools. That is, the approaches are highly specialized and therefore, if we use one tool
for inference analysis, then we cannot take advantage of the useful features offered by the other tools. Since no
tool can handle all types of inference problems and the problems handled by each tool are not the same, some of
the inference problems cannot be handled with the current approaches. What we need is a powerful uniform
representation scheme which can be transformed into specific representation schemes without much complexity.

Once this is done, the various inference analysis tools can be applied. This way one can take advantage of the
tools that have been developed without having to re-invent the wheel. The purpose of this paper is to describe the
essential points of this uniform representation method. That is, we are not interested in simply developing yet
another model for representing the application and conducting inference analysis. Our goal is to develop a
uniform representation and specification scheme which can not only be used for inference analysis, but which
can also be transformed into other representation schemes so that existing inference analysis tools can be applied.

The data model that is to be used to develop the uniform representation scheme should capture not only the
entities of the application and the relationships between them, but also provide the meaas to specify constraints,
heuristics and other complex relationships. What is needed is a model for bridging the gap between data and
knowledge base systems. This is because data models fuwe traditionally focused on representing data while
knowledge models have focused on knowledge representation for expert systems. An integrated model would be
appropriate for capturing the structural properties, the semantics, and the constraints of the application. Such
integrated models have been called hypersemantic data models in the literature [POTT891. This paper discusses
the use of hypersemantic data modeling for capturing the semantics as well as the structural aspects of multilevel
database applications, describes the generation of multilevel database Schemas from this representation, and
shows how inference analysis tools could be applied.

The hypersemantic data model that we have developed is called Multilevel Knowledge Data Model (MKDN. .
This model extends Potter et al.'s [POTT89! hypersemantic data model for multilevel database applications. It
integrates data and knowledge and captures the static as well as temporal aspects of the application. We have also
developed a graphical representation scheme called GRAPH1CAL-MKDM as well as a specification language
called Multilevel Knowledge Data Language (MKDL) for MKDM. The representation schemes that we have
developed are general enough to be transformed into conceptual structures such as semantic nets, logic
programming languages, as v/ell as SQL. This way, the inference analysis tools that have been developed for
other representation schemes could be applied. It should also be noted that inference analysis tools could be
developed for specifications in GRAPH1CAL-MKDM and MKDL. Such tools could find those potential
inference problems that can be uncovered with the complex constructs of MKDM and which are not
straightforward with the other representation schemes.

The organization of this paper is as follows. The hypersemantic data model that we have developed as well as
the associated specification language are discussed in Section 2. In particular, the essential constructs of MKDM.
MKDL (the language for specifying MKDM), and a graphical representation scheme are described. In Section ?
we describe how the graphical representation scheme and MKDL specification can be transformed into some of
the representation schemes proposed by others in the literature. In particular, we show how MKDM-based
representation of an application can be transformed into representations based on conceptual structures, logic
programming specification, and extended SQL specification. The types of inferences to be handled as well as
applying different inference analysis tools on the various representation schemes of the application are described
in Section 4. Related work is discussed in Section 5. The paper is concluded in Section 6 with a discussion of
future considerations,

2. DETAILS OF THE HYPERSEMANTIC DATA MODEL

Tins section describes the details of the hypersemantic data model that we have developed. In section 2.1 we
describe MKDM, In section 2.2, we describe MKDL. Our graphical representation scheme is described in
section 2,1.

2.1 MULTILEVEL KNOWLEDGE DATA MODEL

2.1.1 OVERVIEW

In this section, we describe the model that we have developed for representing multilevel database
applications. This model, which incorporates constructs from semantic data models and knowledge models, is
called a multilevel knowledge data model (MKDM). It incorporates data, knowledge, and security semantics of
an application. As in most semantic models, we use the notion of an object to represent any structural entity in the
application. Such an entity could be a person Joe, or a dog Lassie, or an airplane AAA. Each entity consists of a
set of properties which describe that entity. The essential constructs of the model are the following:

(i) Classification: objects with similar properties (which are also called attributes) are grouped into an
object-type via the "instance-of' relationship.

(ii) Generalization: a subset of the objects of an object-type which have common properties are grouped into
another object-type via the "is-a" relationship.

(iii) Aggregation: an object is composed into multiple components via the "is-part-of' relationship.

(iv) Membership: a collection of object-types are abstracted into a new object type via the "is-a-member-of'
relationship. An instance of this new type will consist of a collection of objects, one from each object type
which formed the new type.

(v) General constraints: a restriction is placed on some aspect of an object (such as the value of its
property), operation, or relationship via the "is-constraint-on" relationship.

(vi) Heuristics: information derivation mechanism is attached via the "is-heuristics-on" relationship.1

(vii) Temporal: specific object types are related by synchronous or asynchronous relationships.

(viii) Security constraints: a restriction is placed on the security level of an object, an object-type, an
attribute, or on the association between the property of an object and the value of this property. The
assignment of the security level may depend on the content, context, or time. Each classification constraint
may have a corresponding explanation for the restriction.

The following example illustrates briefly the essential points in the modeling constructs. An example of the
classification construct is the grouping of all students into a STUDENT type. An example of the generalization
construct is grouping all students over age 25 into a type called ADULT-STUDENT An example of an
aggregation construct is a book MATH-A which consists of the components INTRODUCTION, CALCULUS,
ALGEBRA, GEOMETRY, and CONCLUSION. An example of membership construct is (STUDENT,
TEACHER) whose instances are the (student, teacher) pairs. An example of a general constraint is a rule that
each student is bounded by the number of courses taken depending on his year. An example of a heuristic
construct is the inference rule that if a student is in his senior year, then he must have taken at least 20 courses.
An example of a temporal construct is that before a student starts his thesis he must finish his qualifying exams
and his oral exams. An example of a security constraint is assigning the Secret level to the association between
the GRADE property of the STUDENT object-type and its value.

In sections 2.1.2. to 2.1.9 we will discuss the details of each construct with examples. It should be noted
that security constraints are a special type of construct. They are used in the inference analysis process during the
design of the application. They are also used by the inference analysis tools to generate the database schema.

2.1.2 CLASSIFICATION CONSTRUCT

The purpose of MKDM is to define the objects, its properties, and the associated security levels. Each object
has associated with it a security level which we assume is the existence level of the object. That is, if an object's
level is L, then its existence is known at level L or higher.

The classification construct is used to group objects with similar properties into an object-type. Now, the
question is, should an object-type have a security level? Since objects have levels, it is reasonable to assume that
an object-type which groups objects also has a level. This level is the existence level of the object-type. The
relationship between the levels of the object and its object- type should be such that it is not possible to have a
security violation via inference. For example, if an object's level is LI, its object-type's level is L2, and LI < L2,
then one could infer at LI information about the object-type. So, it would be safer to have LI > L2.

integrity constraints are a form of general constraints. General constraints specify causal relationships while heuristics do not. An
example of a general constraint is "if a student's GPA is less than 2.0, then he cannot take Math 231". There is a cause for a student
not to take Math 231. An example of a heuristic constraint is " if a student is in his Senior year, then he must have taken 20
courses. Here, the fact that a student has taken 20 courses has nothing to do with him being in his senior year.

A model should also capture the properties of objects which are specified in the object-type classifying that
object. Nov., what should be the relationship between the level of an object-type and the level of its attributes?
What is the connection between the level of an attribute and the level of its values?2 It is felt that at higher levels
one could have information about additional attributes for a class. Also, if the level LI of the attribute is
dominated by the level L2 of the object-type, then at level L1, one could infer the existence of the object-type.
Therefore, it is safer to have the property that L2 < LI. Now, knowing that A is an attribute of object-type O
does not mean that one can read the value of the attribute. So, the level of the value (which is actually the level of
the association between the attribute and its value) dominates the level of the attribute.3 Otherwise, one could
read the value and infer that there is an attribute. The essential points are illustrated in figure 1. STUDENT class
is Unclassified with instances which are Unclassified and Secret. The attributes Name and GPA are Unclassified
while the attribute Bank-account is Secret. But the value of the GPA attribute (i.e., the association between the
GPA attribute and its value) is Secret. Figure 1 also illustrates an Unclassified instance of the object-type
STUDENT. This instance has name Jane, GPA of 3.8 and bank account ID of ppp. The association between the
name attribute and its value is Unclassified while the associations between the other two attributes and their
respective values are Secret4

Other complex types of security constraints should also be taken into consideration during the inference
analysis process. For example, one could classify the GPA value at the Secret level only if the student L;
attending a military academy. Another constraint would be to classify the GPA value at the Secret level and
enforce a general constraint that the teacher attribute of a student implies the GPA value. A third constraint would
be to classify the association between the value of the GPA attribute and the value of the name attribute at the
TopSecrct level. Such constraints should be taken into consideration when the security levels are assigned. For
example, if the teacher implies the GPA (assuming that certain teachers only teach students with a higher GPA
value), if GPA values are Secret, then so should the teacher values. Otherwise, by inference, an Unclassified
user could infer the Secret GPA values.

STUDENT

U Attributes
Name -Type: String,

Level: Level of instance
GPA - Type: Integer,

Level: Level of instance L if L > Secret
 Secret if L <Secret

S Attributes
Bank-account: Type: String

Level: Level of instance L.
if L > Secret
Secret if L < Secret

Figure i Classification Construct

2.1.3 (GENERALIZATION CONSTRUCT

Generalization is the relationship between an object-type and specialized cases of this object-type. These
specialized cases are called subtypes. It results in an object type hierarchy also referred to as the IS-A hierarchy.
An object-type may have multiple subtypes associated with it. For example, an object-type PERSON could have
subtypes STUDENT and EMPLOYEE. PERSON is called the supertype of both STUDENT and EMPLOYEE.
The properties of PERSON arc inherited by both STUDENT and EMPLOYEE.

-Note ihal by the level of an attribute we mean the level of the existence of the attribute. The level of the value is actually the level
of the association between the attribute and its value

Note that by the level of the value of an attribute we actually mean the level of the association between the attribute and its value.
For examp'e. if the salary value is 20K, then i! is meaningless to assign a level to 20K. A security level is assigned to the
association between the salary attribute and its value which is 20K.

4We use the letters U, C. S. and TS for Unclassified, Confidential Secret, and TopSecret, respectively.

The generalization and classification constructs seem to address the same problem. However, the
generalization construct specifies a "top-down" structure, that is given a large set of objects, how can they be
decomposed into smaller sets? The specialization construct is basically "bottom-up", that is, given a single object
what larger set is it an instance of? This distinction is important for inference analysis and will be discussed later.

Now, in MKDM, the issue is, what should the relationships be between the level of an object-type and the
level of its subtype? It is felt that subtyping could be used to protect the more sensitive attributes. Therefore, the
property that is enforced is one where the level of a subtype dominates the level of the object-type. This is
illustrated in figure 2, where the EMPLOYEE subtype is Secret while the PERSON object-type is Unclassified.
If this is not the case, then from the information about the subtype, one could infer the more sensitive information
about the object-type.5

PERSON (U)

Generalization

EMPLOYEE (S)

Figure 2. Generalization Coastruct

The next question is, what about inheritance? It is assumed that everything in the supertype is inherited by the
subtype. However, if the level of the attributes of the supertype are lower than the level of the subtype itself, then
these inherited attributes of the subtype are assigned the level of the subtype. That is, if EMPLOYEE inherits the
name attribute of PERSON, the name attribute of EMPLOYEE is Secret. Multiple inheritance, which occurs
when a subtype has multiple supertypes, has interesting consequences with respect to the inference problem. We
discuss some issues in section 4.6

2.1.4 AGGREGATION CONSTRUCT

The aggregation construct models the IS-PART-OF relationship. For example, a student text book could
consist of several chapters. Each chapter may consist of a collection of paragraphs. The question is, what should
be the relationship between the level of an object and the level of its components? Can a Secret book have
Unclassified chapters or can an Unclassified book have Secret chapters?7 A flexible model should support both.
However, one needs to assign appropriate levels so that security violations via inference do not occur. For
example, if the existence of a chapter is to be kept Secret, then one cannot classify the association between the
composite attribute and its value for that particular component chapter at the Unclassified level.8 Otherwise the
existence of the chapter would be inferred at the Unclassified level. Figure 3 illustrates a composite object book
whose chapters are A. B, and C. The composite attribute as well as the existence of all of its components are
Unclassified. The association between the attribute and chapters A and C is Unclassified while the association
between the attribute and chapter B is Secret. That is, an Unclassified user knows that there are three chapters,
but he can only read chapters A and C.

- Note that nur approach to the treatment of classification and generalization is similar to some of the multilevel object-oriented data
models such as the ones proposed in [LUNT89. THUR91a]. Other issues with generalization include single inheritance and multiple
inheritance. We adopt the approach proposed in [SELL93J.

6Also, it should be noted that a subtype could inherit the same attribute at different levels from different supertypes. Conflict
resolution rules need to be applied here. We assume that the level of inherited attribute is the least upper bound of the levels
involved.
'Note that we mean the existence levels of the object and its components.

°Note that the value of the composite attribute of a book object would be the chapters of the book. If the association between this
attribute and its value is classified at level L, then anyone at level L or higher could read the chapters of the book.

Figure 3. Aggregation Construct

2.1.5 MEMBERSHIP CONSTRUCT

The membership construct is used lo model collection objects. A collection object is an object which consists
of members which are objects. Each collection object would belong to an object-type. For example, the object-
type (TEACHER, STUDENT) is a collection object type whose members are the (teacher, student) pairs. That is.
TEACHER and STUDENT and member types of the'type (TEACHER, STUDENT). If John is the teacher of
Mary, then (John, Mary) would be an instance of the collection object-type (TEACHER, STUDENT).

It must be ensured that the level of a collection object-type must dominate the levels of the object-types which
form the collection. Otherwise, one could infer the more sensitive member object-types. The same rule applies to
collection objects also. That is, the level of a collection object instance must dominate the levels of the instances
which from the collection. That is, if the collection object (John, Mary) is Secret, then the fact that John is a
teacher and Mary is a student must be atmost Secret. In some cases, one could classify the fact that (John, x) is
Unclassified, but (John, Mary) is Secret. This means that John teaches someone, but the object whom he teaches
is not known at the Unclassified level. Suppose one were to have a constraint that the students of John should
not be released at the Unclassified level, and if the collection object (John, Mary) is Unclassified, then there is a
security violation via inference.

2.1.6 GENERAL CONSTRAINTS

General constraints arc constraints enforced on ihe objects, their properties, and object-types as well as
constraints enforced on the relationships between such constructs. Examples include, "the number of courses
taken by a senior student should not be less than 2" or "if a student's GPA is less than 2.0, then he cannot take
course 133."

Enforcing such constraints across security levels is of concern. For example, the grade of a student for
certain subjects could be Secret while for other subjects it could be Unclassified. So, if a constraint such as "if a
student's GPA is less than 2.0, then he cannot take course 333" is enforced at the Unclassified level, and if some
of the grades arc Secret, then if the student's GPA is considered for all of his classes, then there is a possibility
for someone at the Unclassified level to infer the grades which are Secret. If only the grades at the Unclassified
level are taken into consideration, then there would not be an inference problem, but integrity could be violated.
For example, with the GPA of the student when considering only the Unclassified grades could be 3.0 while the
actual GPA of the student could be 1.8.

There is a trade-off between preventing the inference problem and maintaining integrity when general
constraints are enforced across security levels. In such a situation, the constraints must be considered on a case
by case basis. In the case of the GPA example, the consequence of violating integrity may not be catastrophic.
So, the inference problem could be given higher priority. In the case of an aircraft example, where the maximum
load carried cannot exceed certain weight, and if the cargo are classified at different levels, then violating integrity
could be a serious problem if the aircraft is to he able to function, A good discussion of these security problems
is found in Marks et al [MARK94].

2.1.7 HEURISTICS

An example of a heuristic constraint is the inference rule that if a student is in his senior year, then he must
have taken at least 20 courses. Another example is that if a lecturer teaches more than 2 courses a semester, then
he has no external funding to do research. That is heuristics are used to express common knowledge. In
formulating heuristic constructs one has to be careful that security violations via inference do not occur. For
example, if the fact that a student has taken at least 20 courses is to be kept Secret, then one cannot assert at the
Unclassified level that a student is in his senior year. Otherwise, via the heuristic constraint listed above, one
could infer at the Unclassified level that the student must have taken at least 20 courses.

Heuristic constraints are in general expressed in the form of IF-THEN statements. They could be complex
logical formulas. An example of a more complex constraint is "if a student is in his senior year or a student is in a
gifted program, then he must have taken at least 20 courses or his GPA must be at least 3.5. During the inference
analysis process, the heuristic constraints as well as the security constraints are examined and if there could be
potential inference problems, then the constraints are modified accordingly.

2.1.8 TEMPORAL RELATIONSHIPS

An example of a temporal constraint is that before a student starts his thesis he must finish his qualifying
exams and his oral exams. Some of the discussion under heuristics also applies to such constraints. For example,
if the fact that the student has either finished his qualifying exams or he has passed his oral exams is to be kept
Secret, then the fact that the student has started his thesis cannot be Unclassified. If not, one could infer the
Secret information at the Unclassified level.

Inference analysis could also be carried out on the various activities. For example, a student studying for his
qualifying exams and a student preparing for his oral exams are both activities. Activities could themselves be
assigned security levels. Now, one of these two activities could be carried out at the Unclassified level. But one
could enforce the constraint where a student carrying out both activities should be kept Secret until the student
starts his thesis. In this case, one of the two activities should be Secret until the student starts his thesis. So, if
both activities are assigned the Unclassified level, and the student has not started on his thesis, then during
inference analysis such a problem should be detected.

2.1.9 SECURITY CONSTRAINTS

As stated earlier, security constraints are a special type of construct. They are used in the inference analysis
process during the modeling of the application. That is, every construct is affected by security constraints. The
various types of constraints that may be enforced are:

(i) Constraints that classify an object-type, an object, property, or value
(ii) Constraints that classify the value of an object's property depending on the value of some property.
(iii) Constraints that classify any object-type, object, property, or value depending on the occurrence of

some real-world event,
(iv) Constraints that classify associatioas between collections of attributes and their values.9

(v) Constraints which classify activities.

2.2 MULTILEVEL KNOWLEDGE DATA LANGUAGE

Associated with MKDM described in the previous section is an informal specification language that we have
developed called Multilevel Knowledge Data Language (MKDL). Our objective was to develop a language which
can specify all of the constructs of MKDM as well as translate them into other specification languages such as
logic and SQL statements without much difficulty. The language consists of only one construct, the object-type
specification. That is, each object-type is specified by an object-type specification where all of the constructs
associated with the object-type, such as attributes (properties), subtypes, supertypes, constraints, etc., are
specified.

"For example, the association between (name, value) and (GPA, value) pairs is assigned a level.

OBJECT-TYPE object-type-name HAS

[INSTANCES
{instance 1, }]

[ATTRIBUTES:
{attribute-name 1: type,
attribute-name 2: type, }]

[SUBTYPES
{object-type-name, }]

[SUPERTYPES
{object-type-name, }]

[AGGREGATES
{(component 1, component 2,

[MEMBERS
{member-type 1, member-type2,

[GENERAL CONSTRAINTS
{logical formula, j]

[HEURISTICS
{logical formula, }]

[SECURITY CONSTRAINTS
{logical formula, }]

[SUCCESSORS
{object-type-name, j j

[PREDECESSORS
{object-type-name, }]

[CONCURRENT
{object-type-name,)]

END-OBJECT-TYPE

-}]

)]

Figure 4. Object-Type Specification

The format of an object-type specification is illustrated in figure 4. The object-type specification has object
instance, attributes, subtypes, supertypes, aggregates, members, general constraints, heuristics, temporal
relationships specified by successors, predecessors, and concurrents, and security constraints. Not all of the
object-type specifications have entries for all components of the specification. For example, the object type
STUDENT may not have entries for successors, predecessors, or concurrents. An object type TAKES-COURSE
could have entries for successors to indicate the courses to be taken after the completion of the current courses,
predecessors to indicate the courses that should have been taken before taking the current courses, and
concurrents which specifies the actions, such as working on a project, the student could take in conjunction with
the current courses.10

10
Note that aggregate construct specifies the component types of an object if it is a composite object. Member construct specifies

the types of the members if the object type has members. Also, constraints are part of the specification of the object type.

Figure 5 illustrates the object type specification of the particular object-type STUDENT. It has three instances
si, s2, and s3. The attributes are names, advisor, enrollment, and GPA. The subtype is GRADUATE-
STUDENT while the supertype is PERSON. The general constraint enforced is "maximum number of courses in
an enrollment is four."The heuristic constraint is "if the advisor of the student is the Dean, then the student must
have a GPA of 3.8 or higher. The security constraint classifies the the association between the GPA attribute and
its value at the Secret level. The reason for such a security constraint is to protect the association between the
GPA attribute value and the name attribute value. As can be seen STUDENT has no specification for member,
temporal, and aggregate constructs.

OBJECT-TYPE STUDENT HAS

[INSTANCES
{sl,s2,s3,]]

[ATTRIBUTES:
(Name: String,
Advisor: FACULTY,
Enrollment: SET-OF-COURSE,
GPA: Real.

[SUBTYPES
(GRADUATE-STUDENT,

[SUPERTYPES
{PERSON, }]

[GENERAL CONSTRAINTS
(Maximum number of courses in

enrollment is four, }]

[HEURISTICS
{If the advisor of the student is the

Dean, then the student must have a GPA of
3.8. or higher,)}

[CLASIFICATION CONSTRAINTS
(student's GPA is Secret,

END-OBJECT-TYPE STUDENT

Figure 5. Object-Type Specification for STUDENT

One of the drawbacks with the specification language that we described earlier in this section is that all of the
security constraints are stated under the construct "SECURITY CONSTRAINTS."In fact, some of these
constraints could be attached to the other constructs. For example, a particular attribute value could be Secret and
this information could be attached to the attribute construct. That is, in addition to the type of the attribute, its
security level (i.e. its existence level) and the association between its level and its value are also specified. Such
an alternate representation language for OBJECT-TYPE as well as specification for a STUDENT object-type are
illustrated in figures 6 and 7, respectively.

As can be seen, associated with object-type, iastance, attributes, subtypes, supertypes, etc. there is a security
level. Attached to the level, one could also have explanation as to why such a level is assigned. In the
specification for STUDENT, there is no entry for SECURITY CONSTRAINTS as levels are attached to the

various constructs. Note that if the constraints are complex logical formulas which consist of many subclauses,
they could be specified under SECURITY CONSTRAINTS.

OBJECT-TYPE object-type-name HAS
(Level)

[INSTANCES
(instance 1 (Level), }]

[ATTRIBUTES:
{(attribute-name 1: type, (Level), (value Level))
(attribute-name 2: type, (Level), (value-Level))— }]

[SUBTYPES
{object-type-name (Level), }]

[SUPERTYPES
{object-type-name, (Level) }]

[AGGREGATES
{(component 1 (Level), component 2. (Level) - --}]

[MEMBERS
{(member-name (Level), member-type (Level), - - }]

[GENERAL CONSTRAINTS
{logical formula, (Level))]

[HEURISTICS
{logical formula, (Level) }]

[SECURITY CONSTRAINTS
{logical formula, (Level)) 1

[SUCCESSORS
{object-type-name, (Level) }]

[PREDECESSORS
{object-type-name, (Level))]

[CONCURRENT
{object-type-namc, (Level) }]

END-OBJECT-TYPE

Figure 6. Alternate Object-Type Specification

10

OBJECT-TYPE STUDENT (U) HAS

[INSTANCES
{sl(U),s2(U),s3(U), }]

[ATTRIBUTES:
{(Name: String, (U), (U))
(Advisor: FACULTY, (U), (U))
(Enrollment: SET-OF-COURSE, (U), (U))
(GPA: Real, (U) (S) (protect association

between GPA and name)) }]

[SUBTYPES
{GRADUATE-STUDENT (U), }]

[SUPERTYPES
{PERSON (U), }]

[GENERAL CONSTRAINTS
{Maximum number of courses in

enrollment is four (U), }]

[HEURISTICS
{If the advisor of the student is the

Dean, then the student must have a GPA of 3.
or higher (U), (]

END-OBJECT-TYPE STUDENT

Figure 7. Alternate Object-Type Specification for STUDENT

2.3 GRAPHICAL REPRESENTATION

Since graphical representations are easier to understand by the humans than written specifications, the
corresponding graphical representation for the STUDENT object-type specification is illustrated in figure 8. It is
basically an extended entity relationship diagram. Each rectangle represents an entity such as a PERSON or
STUDENT Each arrow represents an attribute and points to the entity which is the type of the value of the
attribute The security constraint, the general constraint, and heuristic are specified on the attributes. It should be
noted that such a representation may not capture complex general constraints, security constraints, heuristics,
members, and temporal relationships. Nevertheless, it can capture the entities, the relationships between them
and a reasonable set of constraints. We call the graphical representation based on MKDM to be GRAPHJCAL-
MKDM

Note that reasoning with the graphical representation scheme is less straightforward than reasoning with a
specification language. Therefore, in the modeling process, the first step is usually to represent the entities of the
application using a graphical representation scheme. The graphical representation is then translated into some
specification language. That is, with MKDM, the first step is to use GRAPHICAL-MKDM and represent the
application. Then the representation is transformed in an MKDL specification.

11

PERSON general constraint

super-type

maximum
number is 4

set attribute

Course

STUDENT

enrollment

name

advisor

FACULTY

heuristic

STRING

REAL

classification constraint

GPA is Secret;
protect asociation
between name
and GPA

If advisor is
Dean, then GPA
must be 3.8 or higher

GRADUATE-
STUDENT

Figure 8. Graphical Representation

3 KNOWLEDGE TRANSFORMATION

3.1 OVERVIEW

As stated in section 1, different representation schemes and inference analysis tools have been developed.
Each handles a subset of the inference types and is specialized to particular types of inference problems. That is,
the tools arc heterogeneous in nature. While standardization has been proposed to handle heterogeneity for
operating systems and database systems, it has also been realized that vendors, eager to maintain their advantages
over competitors to preserve their share of the market, are not going to abandon their products and develop a
single product such as an operating system or a database management system. That is, heterogeneity is here to
stay. In the same way, one can expect to see more and more heterogeneous inference analysis tools.

Now, one way to handle heterogeneity is to develop a uniform model of the system which each vendor can
interface his product to. That is, in the case of heterogeneous database systems, a global view of the environment
can be provided. Consequently, transformations are needed from each local system to the global view of the
environment. In the same way, the approach that we have proposed in this paper is intended to give a global view
for modeling the multilevel database application and consequently conducting inference analysis. Therefore,
transformations are needed from the MKDM methodology proposed here to the various heterogeneous
representation schemes such as conceptual structures, logic programming specifications, and SQL specifications
proposed by others. This way the transfonnations can be applied to obtain the individual representation schemes

12

which means that the inference analysis tools developed for the individual schemes can then be applied That is
one can take advantage of the complementary tools that have already been developed. '

We discuss with a simple example the usefulness of the transformations. Suppose we are given a multilevel
database apphcation and the tools developed by Hinke (which is applied to a special conceptual structure-based
representation called conceptual graphs) and a tool developed by Binns (which is applied to SOL specifications)
Ä°Ae ^Plication designer has difficulty learning about conceptual graphs and SQL, but he isfamiliar with
MKDM methodology So, he would first represent the application in MKDM related specifications, apply anv
inference analysis tools developed for MKDM, and then use the transformations to generate conceptual graph-
based representation and SQL specifications. Then he would apply Hinke's and Binns' tools for inference
analysis. Each tool would uncover a different set of problems and the result would be a more secure design of the
application.

This section describes the transformations from the scheme proposed here to conceptual structures logic
programming specifications, and extended SQL specifications. These transformations are described in section
J.ZJ j.jy and 3.4.

3.2 CONCEPTUAL STRUCTURES

This section describes how the specifications in GRAPHICAL-MKDM can be transformed into a conceptual
?£™rc ^ representation. Note that we obtained the graphical representation described in figure 8 from
MKDL specifications for the STUDENT object-type. Therefore, one could also transform MKDM specifications
into a conceptual structure-based representation. ^

^ Particular conceptual structures that we will examine are semantic nets discussed in [THUR901 We
consider a semanüc net to be a collection of nodes connected via links. The nodes represent concepts, entities
etc. and the linksjepres^it relationships between them. Our treatment of semantic nets is influenced by the work
reported in [RICH89]. The entities in GRAPHICAL-MKDM will transform into nodes and the arrows will
transform into links between the nodes. Therefore, much of the information in GRAPHICAL-MKDM (except the
constraints) will be represented in a similar manner using semantic nets. The constraints such as heuristic and
™fn

c
C°nStram^ in GRAPHICAL-MKDM will transform into what we have called constraint nets in

[rHUR90]. For example, the constraint "if the advisor is Dean, then GPA must be 3.8 or higher" is specified
using the constraint net illustrated in figure 9. F

GPA > 3.8

GPA

advisor

Figure 9. Constraint Net

3.3 LOGIC PROGRAMMING

As stated earlier, while conceptual structures and graphical representations help the humans to capture the
essential points of the applications more easily, reasoning with graphical representations could become quite
complex. Therefore, specification languages have been developed to specify an application so that analysis tools
could be applied on the specification. One of of the popular specification and reasoning languages that has been
proposed is based on logic. The advantage of using logic is that it can serve as a specification language or a
programming language. Using logic as a programming language enables the programmer to only specify the

13

application in logic. The programming system will conduct the reasoning and provide the results. This way, the
programmer need not be burdened with the details of the procedures.

We have proposed logic programming systems for inference analysis (see for example [THUR89]). The idea
is to specify the application as a logic program so that the control component of the program can reason and
detect certain inference problems that result due to logical deduction. To use tools based on logic programming.
MKDL has to be transformed into a logic-based specification. The specification for STUDENT described in
figure 5 will transform into the logic program shown in figure 10. From the first and last clauss shown in this
figure., one can deduce that the student si's GPA is Secret. The program uses backward chaining to make this
deduction.

STUDENT(sl)<-
STUDENT(s2) <--
STUDENT(s3) <--
ISAfGRADUATE-STUDENT. STUDENT» <--
1SACSTUDENT, PERSON) <-
ATTRIBUTE(STUDENT. Name. String) <--
ATTRIBUTE(STUDENT, Advisor. FACULTY) <-
ATTRIBIJTECSTUDENT. Enrollment. SET-OF-COURSE) <--
ATTRIBUTE(STUDENT, GPA. Real) <-
N < 4 <- NUMBERtSTUDENT, Enrollment, N)
GPA(S) > 3.8 <-- STUDENT(S) and ADVISORfS, Dean)
LeveKGPA(S))' = Secret <-- STUDENT(S)

Figure 10. Logic Programming Specification

3.4 EXTENDED SQL SPECIFICATION

Transforming the object-type specifications into a language such as SQL is highly desirable and in many
cases even necessary. This is because many of the MLS/DBMSs that exist today are based on the relational data
model with facilities for specifying the schemas in SQL. Furthermore SQL is also an ANSI standard language.
Since the object type specification has complex constructs, it is not possible to express all of them in standard
SQL. That is, extensions to SQL are necessary to specify the constructs. In this section we discuss the generation
of extended SQL statements from the object-type specifications.11

Each object-type will translate into a table (or relation) specification in extended SQL. The attributes of an
object-type will translate into attributes of a relation. Since subtypes and supertypcs are not part of the relational
model, the relations which correspond to the subtype and supertypes are inserted into the schema specification
for subtypes and supertypes. That is, SQL has to be extended to include subtype and supertype relationships. It
should be noted that such extensions have been proposed for SQL to support object-oriented constructs. This
version of SQL is called Object SQL.12 Extensions to SQL are necessary to specify constructs such as general
constraints, heuristics, security constraints, and the temporal relationships. One option is to specify these as part
of the specification of the table as shown in Figure 11. But this would mean more changes to SQL as integrity
coastraints are specified separately in SQL and are not part of the table declaration. If we want to be consistent
with the SQL standard, then the constraints have to be specified separately. Figure 12 illustrates the extended
SQL specification for object-type STUDENT.

1 'The discussion provided here on extended SQL is preliminary One of the objectives is to minimize the changes to the SQL
standard
12One way to implement the subtype relationship in SQL is to have a table for the supertype and a table for the subtype. The
primarv key of the table for the supertype will also the the primary of the table of the subtype. Some issues have been discussed in
[SELL93].'

14

CREATE TABLE table-name

[ATTRIBUTES:
{attribute-name 1: type,
attribute-name 2: type,

... ... n IJ

[SUBTYPES
{table-name 1, table-name 2, - - --}]

[SUPERTYPES
I table-name 1, table-name 2, - - --}]

[AGGREGATE
! table-name 1, table-name2, - - ■-}]

[MEMBERS
{table-name 1, table-name 2, - - -}]

[GENERAL. CONSTRAINTS
(logical formula, — - }]

[HEURISTICS
j logical formula. } 1

[CLASIFICATION CONSTRAINTS
(logical formula, }]

[SUCCESSORS
(table-name, - }]

[PREDECESSORS
(table-name,)]

[CONCURRENT
{table-name,) [

[TUPLES
(tuple i, }|

END CREATE TABLE

Figure 11. Extended SQL Specification

As can he seen, the object-types correspond to table names. The instances and attributes of object-types
translate into tuples and attributes of tables. SUBTYPES and SUPERTYPES are extensions to SQL that have to
be made to support the associated constructs in MKDL. Because these constructs are object-types, they can be
specified by table names. The member construct is specified by a collection of table names where each table name
in the collection corresponds to a member type. A tuple of the member table would consist of elements where
each element is the primary key of a table which corresponds to a member type. Similarly, aggregation construct
can also be specified by a list of table names where each table in the list corresponds to the type of a component
object.'^ General coastraints, heuristics, and security constraints are expressed as formulas and, as stated
earlier, they could be specified outside of table declaration or within a table declaration as shown in figure 12.
The temporal construct is represented by table-names. Here we assume that information about an activity can be

'•■More research needs to be done on specifying and implementing aggregate objects in the relational model.

15

represented by a table. Whether such a scheme is sufficient to represent all of the temporal constructs is yet to he
determined,14

CREATE TABLE STUDENT

[ATTRIBUTES:
(Name: String,
Advisor: FACULTY.
Enrollment: SET-OF-COURSE,
GPA: Real,

[SUBTYPES
(GRADUATE-STUDENT, j]

[SUPERTYPES
(PERSON. }|

[GENERAL CONSTRAINTS
(Maximum number of courses in

enrollment is four. } |

[HEURISTICS
{If the advisor of the student is the

Dean, then the student must have a GPA of 3.8. or
higher, - - - | j

[CLASIF1CATION CONSTRAINTS
{(student's GPA is Secret, protect the association
between the attributes GPA and name)

!i

[TUPLES
{sl,s2. si,

END CREATE TABLE STUDENT

Figure 12, Extended SQL Specification for STUDENT

4. INFERENCE TYPES AND INFERENCE ANALYSIS

GRAPHICAL MKDM and MKDL capture sufficient semantics of the application so that inference tools can be
developed for them. Furthermore, they are sufficiently general enough so that they can be transformed into
existing representation schemes such as conceptual structures. logic programming, and extended SQL. This
way. existing inference tools could be applied to the different specifications. Note that some aspects of inference
analysis was given in section 2 when we described hypersemantic data modeling. This section describes
inference analysis in more detail. Before one applies inference analysis tools, one needs to determine what types
of inference are to be handled. In section 4.1 we will describe some of the inference types that we are interested
in. In section 4.2 we discuss inference analysis.

4Note that instead of specifying all of the security constraints under the SECURITY CONSTRAINTS construct, as illustrated in
figures 11 and 12. one could attach levels with the tables and the attributes whenever possible. For example, if the attribute GPA is
Secret, then next to this attribute, a label S could be attached. That is. extended SQL specifications which correspond to figures 6 and
7 can also be given.

16

4.1 INFERENCE TYPES

In section 4.1.1 we discuss some inference types that are more special to (but not necessarily limited to) MKDM
and in section 4.1.2 we discuss some of the more general inference types.

4.1.1 INFERENCE TYPES FOR MKDM15

The Multilevel Knowledge Data Model provides a natural means to control some inference in databases.
Inference problem occurs when a Low cleared user, retrieving Low classified data, is able to infer High classified
data. Such inference capabilities are not part of the database mechanism, but instead depend upon the semantic
and logical relationship of the data. For the inference problem to occur, data is accumulated into a meaningful
concept, and knowledge about the instance of that concept is then applied to derive additional attributes. For
example, the object (name, salary) might be classified High, but the two objects (name, job) and (job, salary)
might be sufficient to infer the restricted object (name, salary). This will be true if there are two knowledge rules,
"each person has exactly one job" and "each job has exactly one salary" which hold for all individual instances of
the concept.

The simple classification constraints might be sufficient to address the inference problem if all instances in
the database belonged to a single object-type, but problems arise when an object inherits from multiple object-
types. In many cases, real objects belong to multiple object types. For example, the object- types
HospitaLpatient and Hospital_employee may have some identical instances, those employees who are also
patients. The object-types, however, could be maintained by independent departments (admitting and personnel)
with patient data being Confidential and employee data being Unclassified. Those instances belonging to both
would have to be classified at the highest of these levels, i.e. Confidential. Raising the classification of those
instances means that the Unclassified users of Hospital_employee can no longer access that information. One
solution to this problem is to keep the object-types separate, without shared instances. In this case, those
employee-patients will have two objects with some information (such as name, social security number) being
duplicated.

However, as the (name, salary) example illustrates, duplicating information may increase inference threats.
Inference is frequently accomplished by retrieving objects from different object-types and using smaller "pieces"
of these objects to form the restricted object. That is, name is retrieved from one object, and salary from
another At no time does the user retrieve an iastance from the classified object-type, yet such an instance results
from combining unclassified objects. We need a way to verify that a classified object-type has been created. To
solve this, we adapt the following definition:

An object is an instance of an object-type if the object has those attributes specified by the object type.

(This definition has been paraphrased in the real world as "if it walks like a duck, and it quacks like a duck, then
it is a duck'"!)

We can now define an object-type in terms of its instances. We will call such things virtual objects. A
virtual object is any collection of instances having a common set of attributes defined in database. Virtual objects
will be the means by which we can keep track of user's access to parts of restricted objects. We now discuss
some of the inference types for MKDM.

CASE I. Sub-types Accumulate to Release Object-type

If we have an aggregation construct (IS-PART-OF), inheritance issues do not apply. Release of the object
does not necessarily release the "parts", however we must assume that release of a "part" will release some
information about the object. Such infonnation may or may not be sufficient to compromise the object. Release
of all parts is assumed to release all of the object. If the object has a higher classification than the part objects,
then the object must be assigned a threshold, and only a limited number of parts may be released to a lower
cleared process. Note that a similar argument can be applied for the relationship between an object-type and its
part (or component) object-types.

'-'Our discussion of inference types for MKDM is preliminary. We feel that an investigation of the inference problem for the object-
oriented model warrants a detailed investigation.

17

The next two inference types are related and deal with relationships among real and virtual object-types.
Rather than try to account for all possible virtual object-types, we will show those virtual object-types derivable
from individual object-types and then show how these may be composed into additional virtual object-types. The
structure of an object-type immediately leads to a virtual object structure for sub-types. For example, let A be a
generalization construct consisting of sub-types Aj, A2, ...An. Each Aj isa A. Since Aj isa A, each instance of Aj
inherits all the attributes of A, plus possibly some additional ones. Instances in Aj restricted to the attributes
inherited from A therefore define a virtual object-type, denoted Aj I A. The instances of Aj I A have identical
attributes, (those specified by A) and belong to the generalization class denoted by A. We can say that Aj I A isa
A. If Aj itself has subtypes, these will inherit all of the Aj attributes as well as all of A's attributes, and hence may
be used to define two virtual object-types. These particular virtual object-types follow the transitivity relation as
do regular sub-types.

Transitivity.
If A isa B and B isa C, then A isa C.
If A I B isa B and B I C isa C, then A I C isa C.

CASE 2. Object-type Releases Virtual Sub-types

Let us consider the generalization constmct for object-type PERSON, having sub-types STUDENT and
EMPLOYEE. If all instances of PERSON are known, at least some attributes (those relating to PERSON) of all
instances of bnih STUDENT and EMPLOYEE are also known. Release of all instances of PERSON therefore
releases all instances in the virtual sub-types STUDENT ! PERSON and EMPLOYEE I PERSON. Since sub-
types must be classified at least as high as the parent object-type, this does not directly compromise any
information. However, information on such disclosures must be maintained since they may be combined with
other methods, such as case 3 below.16 This observation may be summarized as:

Lemma 1: If wc retrieve all the iastances of object-type A, and B isa A, we will be able to infer all the instances
of the virtual object-type B i A.

CASE 3. Instance in Virtual Sub-type Releases Instance in Object-type

Case 2 applies to cases where we release all instances of some object-type. Suppose, however, that we
release only one instance, dees this lead to an inference problem? Now, each instance of a sub-type is an instance
of the parent object-type. Instances in a sub-type inherit all the attributes of the parent, so this is restated as:

Lemma 2: If we retrieve an instance in object-type A. and A isa B, we will be able to infer an instance in object-
type B.

These two lemmas are utilized in the following theorem:

Inference Theorem: If we retrieve instances of object-type A, we will be able to infer iastances of object-type
Bif B I A isa B. and B ! A * 0.

Proof: By lemma i retrieving an instance of object-type A allows us to infer an instance of object-type
B i A. If B i A isa B. then by lemma 2, we can infer an instance of B for each instance of B I A. The instances
found in B may not be unique, however, and we cannot guarantee that all instances of B are derivable from
instances of A.

Informal Description «sf the Inference Theorem: If we retrieve instances of object-type A, we will be
able to infer instances of object-type B if the attributes of B are a subset of the attributes of A.

Example: Assume that a company has a classified contract, i.e. the people working on contract X may not be
retrieved by uncleared database users. Now assume that the database for this company consists of object-type
COMPANYJ3MP, containing the names and SS# of all the employees, and object-types (sub-classes)
ENGINEER, and SUPPORT containing the appropriate attributes. Now assume a second, classified object-type

l"For example, there could be a case where one infers the instances of a classified object-type C from the instances of the
Unclassified object-types CIA and CIB.

18

PROJECTJX EMP, containing only the names of the employees working on project X. Suppose we retrieve
instances of object-type ENGINEER. In the inference theorem, ENGINEER then corresponds to object-type A
and PROJECT_X_EMP corresponds to object-type B. The only attribute common to both objects is name,
(attributes of B I A = {name}) which is identical to the attribute set of object-type B and hence B I A isa B. So
release of unclassified instances of object-type ENGINEER releases names of employees in classified object-type
PROJECT_X_EMP-

The difficulty in inference control comes in applying the inference theorem. Database models typically do
not specify all possible generalization relationships. It may be possible to access several objects and form a chain
of inferences to compromise a classified object. In the worst case, all possible combinations of all objects must
be considered as possible inference paths.

Much of the current research in inference control centers around finding and specifying the relationships
between objects, especially objects that actually belong to object-types but are not specified in the object-type
definition Such hidden relationships may be combined to form an inference path. The work of Binns [BINN92]
and Garvey rGARV921 address the relational equivalent of finding these types of chains, or paths. The
conceptual structures used by Thuraisingham [THUR90] provide a graphical method of defining these
relationships between objects. Hinke [HINK92] has developed a knowledge engineering tool designed to assist
the database designer in defining relationships between such data concepts. Ideally, these methods would enable
us to specify all the generalization relations between all possible objects, and the inference relationships would
then be evident.

The use of the object-oriented paradigm offers certain benefits over the relational model. In particular,
arbitrary combinations of attributes need not be considered. Each object has a predefined set of attributes, and
new combinations of attributes which are not derivable from the existing predefined sets need not be examined.
The question now becomes: what new, virtual objects need to be controlled? Of course, we must prevent the
construction of any high classified object from lower classified pieces. Some such objects will be explicitly
defined via the classification constraints. That is, the classification constraints may be viewed as specifying a
classified virtual object or object-type.

Ai additional consideration for controlling deductive inference comes from considering the constraints.
General and heuristic constraints are a means of specifying connections between objects that are not derivable
from the specified hierarchical structure. They represent an additional set of deductive rules that may need to be
handled by use of logic programming and is discussed in section 4.2.2. It is important to realize, however, that
the techniques are not separate but complement each other.

4.1.2 OTHER INFERENCE TYPES

Some of the more common inference types that have been discussed in the literature include inference by
logical deduction and semantic association. For example if A implies B, A is Unclassified, and B is Secret, then
there is an inference problem through logical deduction. As another example if A and B are unclassified
individually, but taken together they are Secret, then there is an inference problem through semantic association.
Note that the inference problem through semantic association is in many ways similar to the inference problem
that results from the aggregate hierarchy. A discussion of some of the other inference types is given in
[THUR91bl.

4.2 INFERENCE ANALYSIS

As described earlier, inference analysis tools can be applied on GRAPHICAL-MKDM, MKDL, or on
transformed specifications such as conceptual structures, logic programming specifications, and extended SQL.
We describe some of the essential points in this section. Note that inference analysis has to be a repetitive process
if the application under consideration is a dynamic one. For example, new entities and relationships could be
introduced and the security levels of the entities could also change. Therefore, at every step, the various analysis
tools have to be applied to prevent security violations via inference.

4.2.1 TOOLS APPLIED TO THE HYPERSEMANTIC MODEL-BASED REPRESENTATION

This section describes some inference analysis tools that could be applied on the hypersemantic model-based
representation that we have discussed in section 2.

19

Consider the example of an inference analysis tool which could be used on the specification in MKDL to
detect certain inference problems. The security constraints could be applied to each modeling construct such as
classification, generalization, and temporal relationships. If it is detected that there is a security violation via
inference as discussed in section 2, then the designer is notified and the security levels assigned to the various
constructs are adjusted. For example, if the subtype is assigned a lower level than the object-type, then the
security rule for the inheritance hierarchy is violated, and the designer is notified of the problem. As another
example, heuristic rules can be used to deduce derived information and the security constraints could be used to
assign the security levels to the derived information. If the level of the derived information is higher than the level
of the information used to derive this information, then there is a potential for security violation via inference.
Such logical inferences could be detected during the inference analysis process.

Tools to handle some of the inference types discussed in section 4.1.1 are quite complex and require further
research. We are conducting some preliminary research toward designing a tool based on a graphical model
which shows how one object may be used to derive another object. Some of the issues toward developing such a
tool were discussed in section 4.1.1. Using such a tool, one could deduce whether a higher level object could be
derived from lower level objects.

4.2.2 APPLYING INFERENCE ANALYSIS TOOLS ON TRANSFORMED
REPRESENTATIONS

This section describes inference analysis on the transformed representations. Since the transformed
representations are essentially those developed by others, the information in this section is taken from the
inference work published by others. Also, since we have focussed mainly on representations based on
conceptual structures, logic programming, and SQL. we will describe the analysis tools designed for such
representations.

Reasoning with conceptual structures for inference prevention has been described in [THUR90]. Some tools
based on a similar approach have been developed by Garvey et al [GARV92] and Hinke et al [HINK92]. With
conceptual structures one could use a variety of inference rules for deductions. These include transitive rule,
distribution mle. and pattern matching. For example, with if there is a net which asserts that champion isa ship
and ship has a captain, then one can deduce through transitive rule that champion has a captain. If one wants to
protect that fact that champion has a captain at High and the information in the net is Low, then there an inference
problem. Pattern matching is one of the inference rules used in semantic nets to derive new information from the
main net and the constraint nets. For example, consider the constraint net of figure 9. If in the main net there is
an arrow from STUDENT to DEAN, then one can conclude that the student's GPA must be 3.8 or higher.

Logic programming techniques are used for inference detection in the following manner. As discussed in
section 3. one specifies the application as a logic program. As new clauses are added to the program, they are
tested as queries to see if there is an inconsistency. As a simple example, suppose the program consists of the
following clauses.

LevcK.X, Secret) <- TEACHERfJohn. X)
LeveKMarv. Unclassified) <-
NOT IxveKX, Secret) <-- Level(X, Unclassified)

They assert thai all those who learn from John are Secret and that Mary is Unclassified. Furthermore, the third
clause asserts that any entity which is Unclassified cannot be Secret. Suppose one wants to assert that John
teaches Mary. This is now tested as a querv. That is, the following query
<-- TEACHER (John. Mary)
is posed. Through backward chaining, a contradiction is derived. This means that if John were to teach Mary,
there will be an inference problem.

The extended SQL specification generated could be used to apply the inference analysis tool developed by
Binns [BINN921. Binns' tool uses a technique called secondary path analysis. It is assumed that an attribute of a
relation is classified in order to protect a collection of attributes which includes the classified attribute. For
example, if the grade attribute of a student is classified at the Secret level, it is assumed that it is classified in
order to protect the grade associated with some other attribute of the same relation or possibly a different relation.
A graph structure is used to represent the paths between the various attributes of relations. Paths are obtained by

20

performing the join operation between the relations. The lines forming the path are classified according to the
classification constraints specified in the schema. If there is a path between two attributes where some part of it is
Secret, and if there is a completely Unclassified path between the same two attributes, then there is a potential for
an inference problem. The tool could point out such problems. To apply Binns' tool, the extended SQL
specifications discussed in section 3 are necessary.

5. RELATED WORK

As stated in section 1, several proposals on using conceptual structures for representing and reasoning about
multilevel database applications have been given. We provide a brief overview of the various efforts and compare
the approach proposed in this paper with the others.

To our knowledge, the use of conceptual structures to handle the inference problem was first proposed by
Burns [BURN88] and Hinke [HINK881. While Bums proposed the use of the entity-relationship model,
Hinke's work was on the use of graphs for representing the application. He showed how inferences may be
detected by traversing alternate paths between two nodes in the graph. Further work on the use of conceptual
structures for inference handling was proposed by Smith [SMIT90]. Smith suggests extensions to the semantic
data model discussed in [URBA89] to represent multilevel applications. While he has shown how the the model
could be used for representation, reasoning techniques are not addressed. Thuraisingham [THUR90] showed
how conceptual structures such as semantic nets and conceptual graphs could be used to represent and reason
about the multilevel database application.

More recenüy the development of tools have been reported by Binns, Hinke, and Garvey et al. Binns has
developed a tool for secondary path analysis. As stated in section 5, this tool takes as input SQL specifications
and generates modified specifications. Hinke has developed a tool called AERIE which is based on conceptual
graphs. Garvey et al. have developed a tool based on semantic nets. At present, Collins [COLL94] is developing
an inference analysis tool using CLIPS.

While the approaches described above have focused mainly on the inference problem, a more general
approach for multilevel database application design has been reported in [WISE91, PERN92, and SELL93], The
approach, particularly in [PERN92] and [SELL93], is not only to capture the structural aspects of the application,
but also the dynamic aspects of the application. The goal is to design the multilevel database and the automated
system. While the inference problem has been given some consideration, it is not the major focus.

As stated earlier, the approach proposed in this paper focusses on developing a uniform representation
scheme that can be transformed into other representation schemes without much difficulty so that the inference
analysis tools developed could be applied so that one can obtain the maximum benefit from the tools that are
already available. One could also develop inference analysis tools for MKDM. The major contribution of MKDM
is that it incorporates constructs from data models as well as knowledge models. Therefore, it encompasses the
essential capabilities of the previous models discussed in the literature such as the ones developed by Burns,
Garvey, Hinke, Smith, Thuraisingham, and others. The paper also gives a specification language and a graphical
representation of the model. Since MKDM borrows constructs from the data and knowledge models, the
translation of MKDM and MKDL into other representation schemes such as conceptual structures, logic
programming specification, and extended SQL can be accomplished without much difficulty. In summary, the
strength of the approach proposed in this paper is its generality.17

l7One could argue that generality has some disadvantages in that one may not be able to get the full potential of a single tool. The
question of generality vs speciality has been discussed in other fields such as heterogeneous data/knowledge base systems integration.
The ultimate decision would depend on what the client wants. That is, should one be able to use a collection of inference analysis
tools in a reasonable manner or get the maximum benefit of one tool? Our hope is that this paper will make the community start
thinking about addressing some of these issues as inference analysis tools continue to develop.

21

6. SUMMARY AND FUTURE CONSIDERATIONS

This paper has described a model called Multilevel Knowledge Data Model (MKDM) and an associated
specification language called Multilevel Knowledge Data Language (MKDL), MKDM combines constructs both
from data models and knowledge models. Because of this, it has the representational power of semantic data
models, and the reasoning power of knowledge models. In describing the various constructs of MKDM we also
showed how potential security violations could be detected during the modeling process. Next we described how
GRAPHICAL-MKDM and MKDL could be transformed into other representation schemes such as conceptual
structures, logic programming specifications, and extended SQL. Finally we discussed different inference types
and how inference analysis tools could be applied on the various representations. Comparison of the approach
described in this paper with other approaches in the literature was also given.

This paper provides the direction for modeling the various entities of multilevel database application,
capturing the security semantics of the application, and subsequently applying reasoning tools for inference
analysis. Future research should include the following:

(i) Develop inference analysis tools for MKDM. Since MKDM is based on an object-oriented model, we
discussed various inference types that can be uncovered with such a representation. Inference analysis tools to
detect potential problems with such representations are yet to be designed. In section 4 we discused various
aspects of such tools with examples. Tools based on generalized algorithms need to be developed.

i iii} Develop transformations to other representations so that current inference analysis tools can be applied.
Some of the techniques for transforming MKDM constructs into other representations such as conceptual
structures, logic programming specifications, and SQL were discussed in section 3. Tools for such
transformations have to be developed.

(iii) Test the tools with examples. One needs to take a real world application, represent it using GRAPHICAL-
MKDM and MKDL. apply the inference analysis tools developed for MKDM, use transfonnation tools to
generate other specifications, and subsequently apply inference analysis tools such as the ones proposed in
[BINN92, HINK92. GARV92, COLL94], Such an exercise would demonstrate the usefulness as well as the
robustness of the methodology that we have developed.

ACKNOWLEDGMENT

We thank Dale Johnson for his support. We also thank Rae Burns and Kenneth Smith for comments on this
paper.

REFERENCES

[ANSI92] American National Standards Institute, SQL-2 Specification, 1992.

[BINN921 Binns, L., August 1992, "Inference Through Secondary Path Analysis," Proceedings of the 6fh IFIP
Working Conference in Database Security, Vancouver, British Columbia.

[BIJRNX8 i Bums. R.. May 1988, "ER Approach to Multilevel Database Design," Presented at the 1st RADC
Database Security Workshop Menlo Park. CA (Proceedings published by Springer Verlag, 1992)

[BURN92| Bums. R.. October 1992, A Conceptual Model for Multilevel Database Design, Presented at the 5th
Rome Laboratory Database Security Workshop. Fredonia, NY.

[COLL94] Collins. M., 1994 Design and Implementation of an Inference Analysis Tool using Conceptual
Structures, In preparation.

I MARK94] Marks D. et al. "Security Considerations of Content and Context Based Access Controls,"
Proceedings of SEC '94. IFIP WG11, May 1994.

[MORG87] Morgenstern, M., May 1987. "Security and Inference in Multilevel Database and Knowledge Base
Systems," Proceedings of the ACM SIGMOD Conference, San Francisco, CA.

22

|G A.RV921 Garvey, T., et al., August 1992, Toward a Tool to Detect and Eliminate Inference Problems,"
Proceedings of the 6th IFIP Working Conference in Database Security, Vancouver, BC.

IHINK92] Hinke T., and H. Delugach, August 1992, "Aerie: An Inference Modeling and Detection Approach
for Databases," Proceedings of the 6th IFIP Working Conference in Database Security, Vancouver, British
Columbia.

[LUNT891 Lunt. T., September 1989, "Multilevel Security for Object-oriented Database Systems," Proceedings
of the 3rd IFIP Database Security Conference, Monterey, CA.

[PERN92] Pernul. G., December 1992, "Security Constraint Processing During Multilevel Secure Database
Design," Proceedings of the 8th Computer Security Applications Conference, San Antonio, TX.

[POTT891 Potter. W. et al. 1989, Hypersemantic Data Modeling, Data and Knowledge Engineering Journal,
Vol. 4.

[RICH89] IRICH89] Richards, T, 1989, Clausal Form Logic: An Introduction to the Logic of Computer
Reasoning Sydney, Australia: Addison Wesley.

[SELL93] Sell. P. and B. Thuraisingham, September 1993, "Applying OMT for Multilevel Database Application
Design." Proceedings of the 7th IFIP Database Security Conference, Vancouver, BC.

[SMIT90] Smith, G., May 1990, "Modelling Security-Relevant Data Semantics," Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, CA.

[THUR89] Thuraisingham, B., 1989, Secure Query Processing in Intelligent database Management Systems,
Proceedings of the 5th Computer Security Applications Conference, Tucson, AZ

[THUR901 Thuraisingham, B. M., August 1990, The Use of Conceptual Structures in Handling the Inference
Problem, Technical Report M90-55, The MITRE Corporation, Bedford, MA (also published in the Proceedings
of the 5th IFIP Database Security Conference, 1991).

[THUR91a] Thuraisingham, B. M., 1991, Multilevel Object-Oriented Data Model: Issues on Noncomposite
Objects, Composite Objects, Versioning, and Concurrency Control, Journal of Object-Oriented Programming,
Vol. 4.

[THUR91bl Thuraisingham, B., 1991, Inference Problem in Database Security, CIPHER Newsletter, Winter
1991.

[URBA901 Urban, S., and L. Delacombrc, December 1990, "Constraint Analysis," IEEE Transactions on
Knowledge and Data Engineering, Vol. 2.

[WISE91] Wiseman, S„ November 1991, "Abstract and Concrete Models for Secure Database Applications",
Proceedings of the 5th IFIP Working Conference in Database Security, Shepherdstown, W. VA.

23

Database models:
Chair: E. Fernandez

Florida Atlantic Uni., FL

A Multilevel Secure Federated Database

Martin S Olivier*
Rand Afrikaans University

Abstract

This paper proposes a model for a multilevel secure federated database.
A federated database is a distributed database that is characterised by a
high degree of site autonomy, yet the sites cooperate on global transactions.

The proposed model has three main features: (1) it is intended for
a loosely coupled federation with almost no central authority; (2) local
classification of a data item is honoured by all members of the federation;
and (3) a site can decide on the level of sensitivity of its data that may be
sent to each other site.

The model solves the problem where the sites are homogeneous; how-
ever more work needs to be done for heterogeneous sites.

Keywords: Security, object-orientation, distributed databases

1 Introduction
Distributed databases have some well known advantages: amongst others,
access speed and availability of information can be increased since infor-
mation can be stored in close physical proximity to where it is most often
used. On the negative side, distributed databases are more complex than
their centralised counterparts.

Few papers have been published that address the security issues specif-
ically relevant to distributed databases. In a series of three papers Thu-
raisingham et al [18, 28, 20] have developed models for multilevel secure
relational databases that, assume three increasingly complex database ar-
chitectures. In the first paper [18] the data distribution reflects the classifi-
cation of the data; however, this database is not a true distributed database
[29. p6fi2]. The second paper [28] is based on a true distributed database
and assumes that the various databases forming the distributed database
are homogeneous. The third paper [29] also uses a true distributed data-
base, but allows for limited heterogeneity: only the classification ranges
for data at various nodes are restricted.

Bull, Gong and Sollins[3] argue that security in a federated system
should be governed from the servers and not by using conventional access
control lists or capabilities. They do not address multilevel security. Gong
and Qian[10] show that interoperation of systems can cause unintended
(indirect) access to information and prove that elimination of such un-
intended access for a simplified case is NP complete. One solution is to

* Department of Computer Science, Rand Afrikaans University, PO Box 524, Auckland
Park, Johannesburg, South Africa 2006; molivier@rkw.rau.ac.za

achieve secure global interoperation "incrementally by composing secure
local interoperation."

Obviously, since a distributed database is a collection of other data-
bases, most of the results obtained for secure centralised databases also
apply in the case of distributed databases—see [7. 21] for overviews of
centralised security and [11, 12, 13, 15, 20, 27] for examples of models for
(centralised) secure object-oriented databases and [16, 17] for a relational
example.

We are of the opinion that the additional security requirements posed
by distributed databases do depend on the architecture of the distributed
database. To illustrate this, consider the classification for such databases
described by [22]: they consider (1) the autonomy of the paticipating
databases. (2) their (geographical) distribution, and (3) whether they are
homogeneous or heterogeneous. As an example, consider a distributed
database where the participating sites are homogeneous with little local
autonomy Such a database probably needs very little more for security
than a centralised database needs (apart from a secure way to communicate
between the participating sites). This applies whether the database is

geographically distributed or not. On the other hand, any distributed
database that combines heterogeneous participating databases will require
a significant amount of additional security facilities to co-operate securely.

It would therefore seem that various categories of distributed data-
bases warrant investigation. For example, the papers by Thuraisingham
and others mentioned earlier [18, 28. 29] use different database architec-
tures. Similarly, while the paper by Varadharajan and Black [31] on 'Dis-
tributed Object-oriented Databases' does not specifically address any 'dis-
tributed' aspects, it does apply to what Ozsu and Valduriez [22] call an
integrated database -a distributed database that consists of homogeneous
sites with little local autonomy Other papers dealing with secure cen-
tralised databases (such as those cited earlier) similarly apply to such
integrated databases- as long as the described models do not incur exes-
sively high communication costs.

The categories of secure- distributed databases that have not received
enough attention in the literature seem to be those distributed databases
that provide a high degree of local autonomy to the participating sites
(the concern of this paper! and the various possibilities that exist for
heterogeneous sites. Note that the latter category includes a number of
cases, from those where only the security systems differ, through the case
where the data models are similar (but not identical) to the distributed
databases where the data models need not be the same at the participating
sites As an example, the sites of the model described in [29] only differ
in (lie sensitivity ranges of data that are allowed on each site; one site
may for example contain data m the range restricted In top secret, while
another may contain information in the range unclassified to secret.

This paper proposes a model for a distributed database that allows
a high degree of local autonomy. To use the classification of Özsu and
Valduriez [22, p81], we are interested in a federated database, that is one
that does allow a high degree of local autonomy, but where the sites can
cooperate on global queries and transactions (compared to a so called miil-
tidatabase. where the participating sites are autonomous but very loosely
integrated). We assume that no central authority exists that can decide
on (for example) classification of data and clearance of users. This model
will be referred to as SeFD (Secure Federated Database).

The required site autonomy of a federated database makes security
a fundamental issue of such a database since "site autonomy is achieved
when each site is able both to control accesses from other sites to its own
data and to manipulate its data without being conditioned by any other

site" [4, p323].
SeFD uses multilevel security that is security where the decision whe-

ther a subject should be allowed to access an entity is based on the clear-
ance of the subject and the sensitivity of the entity (and the type of access
requested). For example, a subject is often allowed to read the entity if
the clearance of the subject dominates the sensitivity of the entity. See
section 2.2 for more details.

SeFD assumes that the participating sites are homogeneous and (more
specifically) object-oriented By homogeneity we mean that the partici-
pating sites use the same data and security models; to simplify matters
one can assume that the DBMSs at the various sites are copies of the
same product. In particular, clearance and sensitivity levels at one site
will directly correspond to levels ar other sites. We make the assump-
tion of homogeneity in order to concentrate on the questions regarding
local autonomy—see section 5 for a short reflection on databases where
homogeneity is not assumed. The assumption that the model should be
object-oriented is not necessary, but has been made because this work
forms part of a more comprehensive project dealing with secure object-
oriented databases [19, 20. 21], Many of the comments made, do apply to
other database models; however this will not be discussed in the current
paper.

The next section contains background material on object-oriented data-
bases, multilevel security and federated databases. Section 3 then consid-
ers the security requirements posed by a federated database. Section 4
describes the proposed model. This is followed by the conclusion includ-
ing a short description of future research.

2 Background

This section briefly introduces the concepts that form the basis of issues
used in this paper. These introductions are intended to enable readers not
familiar with the concepts to follow the rest of the paper. It is also intended
to indicate the particular meanings associated with terms in this paper —
^specially terms that do not have a univocal meaning in the literature. This
section is not intended as a comprehensive treatment of the concepts, or
used in defence of this paper's view of the concepts; in particular, where
alternatives exist, these alternatives are not pointed out. References are
given for those readers who require a more comprehensive treatment.

2.1 Object-oriented databases

Object-oriented databases are databases that use object-oriented concepts
to implement the database. The basic unit used to store data is the ob-
ject. An object represents a logically single entity; it is an encapsulated
unit consisting of both the data {instance variables) and procedural code
(methods) to manipulate the data. Objects may only be accessed by ac-
tivating its methods. A method is activated by sending a message to it.
A method itself consists of a sequence of messages to be sent to objects

(interleaved with operations to read and write instance variables). Often
reading and writing of instance variables are modelled as messages sent to
(and replies received from) instance variable 'objects.' A database request
is. initiated by a user (or application program) sending the first message;
the remainder of the request then consists of a sequence of messages sent
between objects.

Objects are instantiated from classes--we assume that a class is an
object itself that serves as a template for the instances (objects) of that
class, (.'lasses can be derived from other classes by adding variables and/or
methods. A class thus derived is known as a subclass of the other class,
while the original class is known as the superclass of the derived class. The
process where the subclass uses the same declarations for variables and/or
methods as its superclass is known as inheritance.

We assume that all data items in the model arc objects—this includes
classes and 'primitive items such as integer variables. This assumption is
also made by Smalltalk [9] that serves as our model of object-orientation.

See [1 '2, 14] for a description of object-oriented databases, [5] for a
comprehensive treatment of databases in general and |32, 33] for a descrip-
tion of the object-oriented paradigm.

2.2 Multilevel security

In a secure system, requests to access resources are allowed or disallowed
depending on security criteria. The possible issuers (originators) of re-
quests are usually referred to as subjects. The resources accessed by the
request are usually referred to as objects: however, in this paper the term
entity will be used to refer to the target of a request and the term object
will be used exclusively in its object-oriented sense.

The criteria used to decide whether a subject should be allowed to
access an entity are usually divided into two categories: In discretionary
security, entities are owned by specific subjects; such a subject then has
the discretionary power to grant other subjects access rights to its enti-
ties (and to revoke such rights from other subjects). Multilevel security
(or mandatory security) refers to a system where all subjects are grouped
into categories; similarly all entities are grouped into categories, and then
it is indicated which categories of users are allowed to access entities in
any given category. This is often accomplished by assigning clearance la-
bels to subjects and sensitivity labels to entities and then only allowing
a subject to access an entity if a specific relationship holds between the
clearance of the subject and the sensitivity level of the entity. For example,
a subject is often allowed to read the entity if the clearance of the subject
dominates the sensitivity of t lie entity. In contrast, a subject is usually al-
lowed to write to the entity if the clearance of 1 he subject is dominated by
;he sensitivity of the entity Further, access restrictions remain in place,
even if the information is copied or otherwise manipulated. In contrast
to discretionary security where individual subjects have the authority to
grant access to other subjects, security classifications in a mandatory se-
cure system are determined by a particular individual (or group) with this
responsibility for the entire database. This individual (or group) is often
known as the system security officer.

See [23, pp285-286] for a discussion of discretionary security and [23,
pp329 340] for a discussion of multilevel security. [21] contains a descrip-
tion of a variety of approaches to multilevel security currently used in

secure object-oriented databases.

2.3 Federated databases

A federated database is a distributed database that "consists of component
DBSs [database systems] that are autonomous yet participate in a feder-
ation to allow partial and controlled sharing of their data. Association
autonomy implies that the component DBSs have control over the data
they manage. They cooperate to allow different degrees of integration"

[24. P189]. '
SeFD will assume that the component databases have compatible secu-

rity systems and that the component databases are capable (and willing)
to exchange the security information required for the operation of SeFD.

We assume that the federated database is homogeneous, not glob-
ally controlled and that no federal schema exists. See [24] for a discus-
sion of these and other issues that exist for federated databases. The
overview given by [22. 66-89] gives a clear positioning of federated data-
bases amongst the possible alternatives for distributed databases. An in-
troduction to distributed databases can also be found in [6].

We will assume that the local autonomy of each site implies that the
site has definite rights over the information stored at that site. When we
say that a site 'owns' local information, we will refer to these rights.

It is possible that ownership of information can be transferred; however,
relocation of information does not. necessarily imply transfer of ownership.
This will he dealt with in detail later.

Also note that a federated database must "be able to grow incremen-
tally and to operate continuously, with new sites joining to existing ones,
without existing sites to agree with joining sites on global data structures
or definitions" [4, p323]. This requirement, will be taken into account when
SeFD is described.

3 Security requirements of a federated data-
base
As stated earlier, local autonomy is the distinguising characteristic of fed-
erated databases. And the site's ability to control access to its information
is a fundamental aspect of local autonomy.

In the first instance, local autonomy implies local classification of local
information. Similarly, one can argue that local autonomy also implies
that the site should be able to determine the clearance of subjects directly
associated with that site

These two requirements have two implications affecting the site's par-
ticipation m the federation. Firstly, the sit.es decision about the classifi-
cation of its information should he respected throughout the federation.
This implies that no member of the federation should disclose information
to a party that the owner would not have disclosed it to. Secondly, a site
may not be equally willing to share its information with all other sites in
the federation. This may be because a particular site does not agree with
the subject clearance assignment policy of another site (and therefore be
unwilling to share, say, top secret information with that site because this
site does not trust some subjects of that, site who have been assigned top
secret clearances by that site). The site may also be unwilling to share

sensitive information with that site because it has evidence (or suspicion)
that the other site does disclose the information to unacceptable parties.
The reason why some information is not to be disclosed to a particular
site may also be the different roles different parties play in the federation.
To illustrate, consider a federation of commercial databases consisting of
bank and retail databases. The banks may be willing to share information
with one another that they are not willing to share with retailers.

We will use the phrase site trustedness of site. A from the viewpoint of
site B to refer to the maximum sensitivity of information that site R is
willing to share with site A. Often we will abbreviate this to the trustedness
of site A when the identity of the owner site is obvious.

This means that for any site S and any sensitivity level L a set of
trusted sites can be computed, that is sites where site S is willing to send
information with sensitivity level I, to. The notation T(S, L) will be used
to indicate such a set. and it will be referred to as the trusted site set of S
at level I,.

Secure interoperation always raises the issues of understanding and
enforcement: firstly, how does the global system ensure that all compo-
nent systems understand the security policy the same and, secondly, what
guarantees can be provided that the other systems will properly enforce
restrictions? In our case understanding at the technical level is trivially
solved because the same security systems are used. Understanding at a
higher level can be a problem: one site can use different criteria for classi-
fying data or users than another site. The solution that we are proposing
in this case is that data (at a given level) is simply not sent (directly or
indirectly) to a site before the system security officer at the sending site
is convinced that the receiving side has an acceptable security policy for
data at the concerned level. Enforcement is ensured because we assume
that the various sites use the same software. If this was not the case, one
site will again need to convince the other site that it does enforce security
properly before the other site will send information to this site.

This paper is therefore based on the following two fundamental se-
curity requirements of a federated database (in addition to the normal
'centralised' requirements that apply at each site):

1. Federation wide 'respect' for the owner's limitations on the treatment
of its data; and

2. The ability of a site to limit the sensitivity of information owned by
it to be sent to any particular site in the federation.

4 Proposed model

The next section gives some assumptions made about security in SeFD,
in addition to the security requirements identified earlier for federated
databases. Next ownership of data and the related concept of trusteeship
are considered. This is followed by descriptions of cases where entities are
relocated or instantiated (for example temporary object relocation, object
emigration and object replication). This is followed by a treatment of
changes in the federation.

4.1 Security assumptions

SeFD assumes that the individual sites are multilevel secure databases
themselves. The security provided by SeFD coincide with that provided by
the component databases, except for the additional requirements described
in section 3.

Using the taxonomy described in [21], we make the following security
assumptions about SeFD:

XI.1 The labels used to classify subjects and entities are partially or-
dered; a method can read from a variable if the clearance of the
subject dominates (>) the sensitivity of the variable; a method can
write to a variable if the clearance of the subject is dominated by the
sensitivity of the variable; a method can be activated if the clearance
of the subject dominates the sensitivity of the method.

XI.2 SeFD uses existence protection; that is, the fact that an entity ex-
ists is considered as sensitive as the information represented by (or
contained by) the entity.

X2.1 (.Hasses and objects can be protected (labelled), as well as their
methods and instance variables.

X2.2 When an object is instantiated, it is labelled according to rules
specified in its class; it can be relabelled by the system security officer
at the site where the object resides.

X2.3 No additional restrictions apply except those restrictions that apply
to all existence protected models identified in [21]: amongst others,
the sensitivity of methods and instance variables dominates that of
their object; instances are at least as sensitive as their classes and
subclasses as sensitive as their superclasses.

X3.1 The authorisation of a message is determined by the clearance of
its primary accessor. The authorisation can be reduced by the sites
that participate in a request as detailed in subsequent sections.

X3.2 Message sensitivity is determined by the 'normal' rules as described
in [21]: the sensitivity of a message is increased whenever it accesses
(reads) a value more sensitive than the current sensitivity of the
message. The sensitivity of a value is determined by the sensitivity
of the object and variable that contains the value or the sensitivity
of the method that returns the value.

X3.3 When a message cannot update the intended entity because the
contents of the message is too sensitive, the request will be rejected.

Parameters X2.3, X3.2 and X3.3 do not have a significant influence on
SeFD. The other parameters will he used in the description of SeFD.

4.2 Ownership

This section deals with the ownership rights that a site has over data
stored at that site. Note that ownership as used in this case should not
be confused with ownership in a model for discretionary security: In dis-
cretionary security an owner is a subject that has the discretionary power
to share entities owned by it with other subjects (see [23, pp285-286] for
example). In the current model owner refers to the site that has the au-
thority to decide with which other sites the entity may be shared.

A fundamental property of mandatory security is that an entity should
be as protected wherever it might be moved to in a system as it has been in
its original location [21]. In an object-oriented database objects are contin-
ually sent (as parameters) with messages. (Remember we consider every
data item in an object-oriented system to be an object.) In a distributed
database, these objects will often be sent across site borders. Another
possibility for objects to be moved across site borders is object relocation,
either temporarily for query optimisation purposes, or permanently when
the reason for placing information at a specific site changes. A last pos-
sibility for such moves across site borders is object replication at more
than one site, in most cases for efficiency or reliability. Each of these three

possibilities will be discussed shortly.
Before discussing the individual possibilities for such object movement,

the principle to be used in these cases should be considered. If one agrees
that, under normal circumstances, the object should be as protected in its
new location as it has been in its original, it means that the classification

label of the object (including labels associated with any facets of the object,
such as methods and instance variables) should be transferred with the
object. However, this is not adequate. If the site where this object resided
originally has not been willing to share its contents with a site X, the new
site where it resides now should also not share its contents with site X.
Stated in terms of ownership: Any other site should treat an entity only
according to the wishes of its owner, by only allowing subjects access to
the entity if the owner would have allowed it and only sharing the entity

with other sites if the owner is willing to share it.
In some cases ownership may be transferred to a new site; this may be

the case when an object relocates permanently to another site. However,
for temporary 'visits' to other sites, such as when a message includes an
entity as a parameter, ownership will not change.

The following subsections discuss the various possibilities for objects

that are not currently located at. their owner sites.

4.3 Trusteeship

Since the distributed database operates by sending messages between the
participating sites, it will often happen that the sites contain information
owned by another site. Unless ownership changes together with the trans-
ferring of the information, the receiving site can only use the information
m ways acceptable to the owner in other words the receiving site acts
as trustee for any information received in this way. This section considers
the case where such information is received as part of a message sent to
the site: subsequent sections deal with object relocation and replication.

SeFD assumes that information received as part of a message never
implies a transfer of ownership to the receiving site. The receiving site is
thus restricted when using such information. Some of the situations can
be dealt with quickly and those will be addressed first.

Suppose that an object residing at site A wants to send a message to
an object residing at site R. However, assume that sites A and B are not
connected, but both are connected to a third site C. Also assume that the
sensitivity of the message to be sent is such that site A is willing to send
it to site B, but does not trust site C enough to accept a message of this
sensitivity. SeFD assumes that the underlying communication system is
trusted and that the communication system is able to route information

via a not-so-trusted site in a secure way. This can be done by, for example,
encrypting the message when it is transmitted at the sending site such that
it can only be decrypted at its intended destination. A site that merely
routes a message, therefore does not 'see' any contents of the message.

A related, but more complex problem concerns the case where a mes-
sage is not simply routed via an intermediate site but sent to an object
residing at that site and where that object then sends a message to a third
site. Suppose, for example, that an object at site A wants to send a top
secret message to an object at site B. Suppose further that site A does
not want to send top secret information to site C. However, suppose that
site R does trust site C enough to send top secret information to it. What
are the implications if the target object at site B now sends a message to
an object at site C, containing the top secret information originally sent
by the object at site A? The conservative (but safe) approach usually fol-
lowed by security models is to assume that a message that is sent following
receipt of another message is at least as sensitive as the received message.
This means if the received message was not supposed to be sent to a site
C, no subsequent messages (in the current request) can be sent to site C.

In order to discuss possible solutions, we introduce the term message
trusted site set to refer to the set of sites that can still participate in the
request. The message trusted site set (logically or physically) accompanies
the message. This set initially consists of all sites. Whenever a site S
contributes information, all sites that the contributed information should
not be sent to, are removed from the set. Whenever a message has to
be sent to another site, the sending site will check the set to determine
whether the message can indeed be sent to that site. The message trusted
site set will also be referred to as the message set for the sake of brevity.

The message set need not be represented physically: it can be com-
puted. However, SeFD does include the message trusted site set with the
message. A possible implementation strategy will be discussed shortly.

This solution to determine the message trusted site set lies midway
between two other possibilities:

• On the one side the sending side can contain enough information
about other sites that, makes it unnecessary to consider the message
trusted site set dynamically, because a request will never be initiated
that sends information to an unacceptable site.

This solution has a number of drawbacks. Firstly, implementation
details (including objects used to implement other objects) are likely
to be confidential information in a federated database and not easily
shared with all other sites. Further, it is suggested that one site is
not allowed to inform a second site about entities available on a third
site. Thirdly, it is against the spirit of the encapsulation principle to
make use of such encapsulated information at all; in particular, if the
implementation of an object is changed it may cause a ripple effect
throughout the security system of the federated database. Lastly, the
information that needs to be transmitted before the trustedness of
all objects (or methods) can be determined seems to be prohibitively
high.

• On the other side the message trusted set may not be included with
the message, but rather computed when required.

A drawback of this solution is the high communication overhead for
all the anticipated approval requests.

Note that the option followed by SeFD to include the message trusted
site set with the message need not incur excessive overhead: a simple
solution (that will be revised later) is to include a bit string with every
message, with one bit per site1. A one can then indicate that that site
may still be involved in processing, while a zero may indicate the contrary.
When a message originates from a primary user (for example a human
operator) all bits are set to one. Ä site can then remove any site from the
potential contributors by just setting the corresponding bit to zero for any
message that it sends. No other site is allowed to change any bit to a one.

The message handler of any site now needs to do the following when it
receives a message:

• Start a method activation for the indicated method.

• If data is accessed at any point by the method activation, determine
the sensitivity of the data.

• Determine the trusted site set of the site where the message is ex-
ecuting for the sensitivity level of the data just accessed (as a bit

string) and logically <\N"D this set with the bit string accompanying
the message to get a new message trusted site set.

• If the sensitivity level of the message! does not dominate the sensitiv-
ity of the data just accessed, set the sensitivity of the message to the
least upper bound of its current sensitivity and that of the accessed
data.

• Tf the method activation attempts to write to an entity and the sensi-
tivity of the entity does not dominate the sensitivity of the message,
abort the message.

The message handler descibed above has to be a trusted process on the
site where it executes.

We therefore conclude that

• A secure communication system has to be used to link various sites
(implying that only the sending and receiving sites will be able to
access the message contents); and

• Any message must carry with it (logically or physically) a list of sites
that may be involved in handling ('executing') the message or receive
data obtained as a result of this message.

4.4 Temporary object relocation

When an object moves temporarily to another site it will probably happen
in order to optimise some query. Obviously, this does not mean that
its "security" should change the restrictions imposed by the owner site
still apply. It is therefore necessary for the new location to take such
restrictions into account.

This may be implemented by attaching the owner site's trusted site
set for every sensitivity level to the relocated object. The sending site can
then take this into account whenever the object takes part in an exchange
of messages. However, the trusted site sets are likely to be confidential
information not readily shared with other members of the federation.

As one referee pointed out, a federation of 8000 sites implies an overhead of approximately
1 kilobyte per message—again an indication that security can be costly.

10

An alternative implementation that is more likely to be acceptable is
to expect the objects to protect themselves while residing at the other
site: the security relevant information (current message sensitivity level
and message trusted site set) now forms inherent parameters whenever
any method is accessed. The method then updates the message set of
acceptable locations appropriately. The information necessary to update
this set can be contained as part (data) of the relocated object or can be
obtained by this object from its owner site. A combination approach is
also possible where the object may contain less sensitive sets internally,
but requests a server at its owner site to update the message set for more
sensitive site sets. This choice of which technique will be used for a par-
ticular object is left to the owner site of the concerned object. The owner
site may also take additional steps to protect access sets included in the
object, such as encrypting these sets. The object can further be protected
by (physically) removing facets that should not leave the site at all.

We therefore recommend that the responsibility to update the message
trusted site set is encapsulated in each object and the implementation
details of this action be left to the owner site of the object.

Note that there may be sites to which an object cannot move; see
section 4.7 (Object instantiation) for details.

4.5 Object emigration

Permanent relocation of an object will be referred to as emigration. When
an object emigrates to another site ownership is likely to change to the
new site. If ownership does not change, emigration can be handled exactly
like temporary relocation.

If ownership does change, the trusted site sets of the old and new
owners can be compared; if the new owner has the same (or a stricter)
view of other sites than the old site, the object can be relocated without
any problems. However, this process cannot be automated because the
sites cannot access one another's trusted site sets. Further, if the new site
is willing to send information to some site not acceptable to the old site,
the emigration cannot occur.

In all cases manual intervention is the appropriate action: the con-
cerned system security officers should decide whether the emigration can
occur and, if it does occur, the entity becomes the property of the new
site and is not owned by the old site in any way anymore.

Note again that there may be sites to which an object cannot emigrate;
see section 4.7 (Object instantiation) for details.

4.6 Object replication

An object is replicated if copies of a (logically) single object occurs at more
than one site (see for example [5, p624]). Replication presents a number
of interesting problems, in particular propagating an update from any one
copy to all copies (see for example [6, p293]).

Consider ownership of such a replicated object. For simplicity, SeFD
only allows single ownership. This matches the idea of a primary copy of
the replicated object (see for example [5, p630]); the owner of the primary
copy then owns the replicated object (including all copies). The security
of copies of the replicated object are then treated exactly like objects that
have temporarily been relocated.

11

Note that there may be sites where a specific object cannot be repli-
cated; see section 4.7 (Object instantiation) for details.

4.7 Object instantiation

An object carries with it information about its class. Since SeFD uses
existence protection, information such as which methods a particular ob-
ject support (and hence which methods are available from its class) are
considered protected information. The question that needs attention is
whether an object can be instantiated at any site, or, for example, only at
the site containing its class.

Since the structure of the class is only to be shared with those sites
trusted enough by the site owning the class, an object can clearly only be
instantiated at sites acceptable to the owner of the class. The set of such
sites depends on the classification level (sensitivity) of the class. Further,
once instantiated, the object cannot be relocated to a site where it could
not have been instantiated in the first place.

SeFD uses the following mechanism to ensure proper instantiation and
relocation of objects: To instantiate a new object, a message is sent to
the class of the new object. The method carries with it the site where
the instantiated object is to reside. (As a default, the site where the in-
stantiation request originated will be the site containing the new object).
The class then verifies (with its owning site) whether the object can be
instantiated at the requested site, and instantiates it if acceptable; if not,
the request is denied. In addition, all objects contain a method that deter-
mines whether any new site is an acceptable location for the object; before
the object is relocated (moved or replicated) the site currently containing
the object will activate this message to verify that the planned new site is
indeed acceptable. This method can either contain the list of acceptable
destinations, or can check with the site containing its class.

Subclass creation has a similar problem: If the subclass is instantiated
at site V while its superclass is owned by site X, obviously any information
about the superclass inherited by the subclass should be treated according
to the wishes of site X The conservative approach followed by SeFD is to
allow the subclass (or its instances) to be accessed only by sites acceptable
to both site X and Y. This is accomplished by requiring that an instance
of any subclass has th^ option to deny a request to relocate it to another
site. If it does not deny the request, the decision is made by the class,
exactly like the decision would have been made for a request to relocate
an instance of the class.

All classes therefore include an acceptable site method that is invoked
when an object is moved. This same method is used by the create method
of the class. Further, this method will always request permission from
the corresponding method of its superclass before granting the requested
approval.

4.8 Relocation of classes

SeFD assumes that classes are objects themselves (the view held by Small-
talk [9]). Therefore, for a class to be relocated (temporarily or for emi-
gration or replication) the same restrictions apply that apply to object
relocation.

12

However, in addition to the 'object' restrictions, additional restrictions
apply: Every class C that is a subclass of another class S carries with it
information about the class S. Such a subclass will carry with it the site
contraints of its superclass S, just like any instance of S will carry with
it such constraints. These constraints will be checked in addition to the
'object' restrictions mentioned earlier.

4.9 Changes in the federation
It has been mentioned earlier that federations change: Sites join and leave
the federation continually. Further, a site may change its view of the
trustedness of other sites; in this case its trusted site sets will change.

The first form of change (sites joining and leaving) can be a problem
if bit strings are used to represent trusted site sets. In this case every site
has an inherent number associated: the position that it occupies in the
bit strings. New sites will be assigned a position in the bit string as part
of the negotiation protocol to join the federation (negotiation protocols
are used extensively to cooperate activities in a federated database—see
[24, pp221 222] for an introduction). All members will (eventually) be
informed of the existence of the new member. However, until a site is
informed of the existence of the new member, it will consider the new
member untrusted for all sensitivity levels and not send any messages to
it. When a site is informed of the existence of the new site, the local system
security officer is informed accordingly, after which the trustedness of this
site is determined and the trusted site sets modified. Objects that contain
copies of the trusted site sets also have to be updated. This will be dealt
with in the following paragraph. When a site leaves the federation, the
trusted site sets will similarly have to be updated. Note that an adequate
time has to elapse before the corresponding bit position is used again,
because all sites must be able to remove the site that has left before the
bit position can be reused.

From the second form of change (ie change of trusted site sets) the prob-
lem arises because of trusted site sets that are part of objects—especially
objects that are not (currently) located at their owning site. This is rela-
tively easily solved by requiring each site to maintain a list of objects that
it, owns, residing at other sites. Such objects will then contain a method to
update their stored trusted site sets that can be activated by the owning
site. The same method will be used to update the trusted site sets in the
event of a new site joining or leaving the federation. When trusted site
sets change, the owning site will also be able to identify its objects that
reside at, sites that are no longer trusted and relocate those objects. Note
that a request from an owner to relocate the object to the owner has to be
accepted by any site- even if it is not normally willing to send information
at the concerned sensitivity level to the owner site.

5 Conclusion

Trusteeship is a central issue in a federated database; often members of
the federation handle information on behalf of other members. Where this
occurs, this member acts as a trustee for the information owned by the
other member.

13

SeFD uses a mechanism where such wishes are obtained from the con-
cerned object. The owner of the object can decide on the way an object
'knows' the wishes of its owner—by including such 'wishes' in the object
and/or instructing the object to obtain such 'wishes' from the owner. Ob-
jects modify the message trusted site set to protect information released
by the object. The object is also able to deny a request to relocate it to
another site based on the constraints imposed by its owner.

Since trust plays a central role in a federated database, it is necessary
to limit the actions of unworthy trustees. SeFD allows this to be done
on a site by site basis: each site has the discretionary power to limit the
sensitvity of any information that may (eventually) flow from this site to
anv other specific site in the federation

The following questions were identified during the design of SeFD but
not addressed by the current paper:

• Seb D assumes that the sites of the federated database are homoge-
neous, no provision was made for heterogeneous sites. As one exam-
ple, assume that the one site uses a fully ordered set of classification
labels while the other uses a partially ordered set. It is clear that the
one that uses the partially ordered set should accept data from the
other without too much of a problem. However, the converse does
not hold because there is no obvious, universally applicable way that
the partially ordered labels can be translated to fully ordered labels.

» It may be possible that a request cannot, continue because a message
cannot be sent to a target object because it resides on a site that
is (no longer) in the message trusted site set In this case it may
be possible to relocate (ho object to a site that does still appear in
the message trusted site set and so allow processing to continue; this
option needs to be investigated

• Iri SeFD different aspects of an object can be owned by different
sues. Typically structural information of an object is owned by the
owner of the object's class (and its superclasses'), while the content
is owned by the site where t lie object was instantiated or emigrated
to However, Sell) does not make provision for different aspects of
an object to be owned by different sites.

• SeFD assumes that t he object is t lie basic entity that will be relocated
or replicated no provision was made for fragmentation.

These points remain interesting research questions that will receive atten-
tion in future.

References

jlj M Atkinson et a: "Object-oriented Database System Manifesto",
Proceedings of Iht first inli rna'iova! Conference on Deductive and
Object-oriented Databases Kyoto. Japan. December 1989

[z] 1 Atwood. "The Object-oriented Database System Manifesto- A
Consensus from Acadc-mia". IloPnu on Object-oriented Technology,
1. :$. ti 9, January 1990

\'A) JA Bull. L Gong and KR Sollins. 'Towards Security in an Open Sys-
tems Federation". Proceedings of European Symposium on Research
in (innputer Security. Lecture Notes in Computer Science Volume
fi-'IS, ^ 20, Springer-Verlag. 1992

14

[4] S Ceri and G Pelagatti, Distributed Databases, McGraw-Hill, 1985

[5] CJ Date, An Introduction to Database Systems Volume 1, 5th ed.,

Addison-Wesley, 1990

[61 CJ Date, An Introduction to Database Systems Volume 2, Addison-

Wesley, 1985

[71 DE Denning, "Database Security", 1-22 in [30], 1988

[8] CG Gable and WJ Caelli (eds), IT Security: The need for Interna-
tional Cooperation, North-Holland, 1992

[9] A Goldberg and D Robson, Smalltalk 80: The Language and its Im-

plementation, Addison-Wesley, 1983

[10] L Gong and X Qian, "The complexity and Composability of Secure
Interoperation", Proceedings of the 199J, IEEE Symposium on Re-
search in Security and Privacy, 190-200, Oakland, California, 1994

[11] S Jajodia and B Kogan, 'Integrating an Object-oriented Data Model
with Multilevel Security", IEEE Symposium on Research in Security

and Privacy, 76-85, 1990

[12] TF Keefe, WT Tsai and MB Thuraisingham, "SODA: A Secure
Object-oriented Database System", Computers & Security, 8, 1989,

517-533

[13] TF Keefe and WT Tsai, "Prototyping the SODA Security Model",

211 235 in [26], 1990

[14] W Kim, "Object-oriented database systems: strengths and weak-
nesses", Journal of Object-oriented Programming, 4, 4, 1991, 21-29

[15] TF Lunt, "Multilevel Security for Object-Oriented Database Sys-
tems". 199-209 in [26], 1990

[16] TF Lunt, DE Denning, RR Schell, M Heckman and WR Shockley,
"The SeaView Security Model", IEEE Transactions on Software En-

gineering, 16, 6, 1990, 1247 1257

[17] TF Lunt and PK Boucher, "The SeaView Prototype: Project Sum-
mary". Proceedings of the 17th National Computer Security Confer-

ence, Maryland, October 1994

[18] J McIIugh and BM Thuraisingham, "Multilevel Security Issues in
Distributed Database Management Systems", Computers & Security,

7, 1988, 387-396

[19] MS Olivier and SH von Solms, "Building a Secure Database Using
Self-protecting Objects", Computers & Security, 11, 3, 1992, 259-271

[20] MS Olivier and SH von Solms. "DISCO: A Discretionary Security
Model for Object-oriented Databases", 345-357 in [8], 1992

[21] MS Olivier and SH von Solms, "A Taxonomy for Secure Object-
oriented Databases", ACM Transactions on Database Systems, 19,
1, 1994,3-46

[22] MT Özsu and P Valduriez, Principles of Distributed Database Sys-

tems, Prentice-Hall, 1991

[23] CP Pfleeger, Security in Computing, Prentice-Hall, 1989

[24] AP Sheth and JA Larson, "Federated Database Systems for Manag-
ing Distributed, Heterogeneous, and Autonomous Databases", ACM
Computing Surveys, 22, 3, 1990, 183-236

15

[25j B Shnver and P Wcgnev feds). Research Directions in Object-Oriented
Programming, MIT Press. 1988

;2bj 1)1, Sj'ooner and (' Landwehr (eds). Database Security III: Status and
Prospects, North-Holland. 1090

J2C WVI 1 huraisinghaiK. Mandatory Security in Object-Oriented Data-
base Systems", Proieedings oi the (Conference on Object-Oriented Pro-
qrn.vnmng Systems, hanquaqes and Applications, ACM, October 1989.
■MV-l 2 b')

.281 BM rhuraisinghani. "^lui(li^vfi Srcunn issues in Distributed Oa.ta-
b;>'.!■ Management System? IT" Computed f-: Security, 10, 1991. 727

;2'.>' Bet ? Iiuraisingliarn arul III! Riibinov-uiy, ''Multilevel Security Issues
in !'is! ribnted Dalabasi Mariegemein' .Systems lib Computers f* Se-
' 'iniii 11, 1992. !>'■;! (571

i.ibj .] !■ Ivauh ei o/(eds). Annv.nl Rencic of Computer Science Volume ."?,
\ Hiniaj Reviews i in- 1988

ioij r \ a.radharajan and S Black, "'Multilevel Security in a Distributed
Objpct-Oriented System" Computers C Security. 10, 1991, 51 67

j:S2j P Wegner, "The Object-Oriented Classification Paradigm", 479 560
m j25| 1988

|!!:i| P YYegner, "Concepts and Paradigms of Object-Oriented Program-
ming" OOPS Messenger. \ I, 1990.7 87

16

A New Authorization Model
for Object-Oriented databases

Elisa Bertino Fabio Origgi Pierangela Samarati

Dipartimento di Scienze dell'Informazione
Universitä di Milano

Milano, Italy

Abstract

In this paper we present an authorization model for the protection of object oriented
databases. The model supports the concepts of explicit /implicit, positive/negative,
and strong/weak authorization. The model is an evolution of the ORION authoriza-
tion model but differs from this in many respects. In particular, the semantics of
subject groups and of negative authorizations applied to sets of objects is different.
As a consequence also the implication rules for the derivation of authorizations are
different. In the paper we present our authorization model, illustrate the implication
rules supported by our model for the derivation of authorizations in object-oriented
systems, and define overriding rules among authorizations.

1 Introduction
Object-oriented database management systems (OODBMS) represent today the most
important research and development direction in the area of database systems. In-
deed, in addition to OODBMS directly developed from the object-oriented paradigm,
a number of systems, like relational DBMS (RDBMS) and deductive DBMS are cur-
rently being extended with object-oriented capabilities. The most notable example is
SQL-3 [11], the new standard, currently under definition, for the SQL language.

Most attention in the development of data management systems with object-oriented
features has, however, been given to traditional database issues such as data modeling,
query languages, query processing, and schema management. By contrast, less atten-
tion has been given to the problem of access control. Therefore, most of those systems
still lack adequate authorization models. The reason is that the various authorization
models, developed for access controls in operating systems and in data base manage-
ment systems, cannot be directly applied to OODBMS. Indeed, several concepts of
the object-oriented data model, such as inheritance, versions, and composite objects,
introduce new protection requirements which the traditional authorization models do
not address. Another source of complexity is that the applications intended as tar-
get for OODBMS, like CSCW, office automation, (DAD, have additional protection
requirements and policies that need adequate support, from authorization mechanisms.
Temporal authorizations represent an example of such a requirement [2].

Work in the area of authorization models for object-oriented databases is still in
a preliminary stage [5]. Very few OODBMS, namely Orion [13] and Iris [1], provide
authorization models comparable to the models provided by current Relational DBMS.
Other OODBMS either do not provide any authorization mechanism at all, or provide
very low level capabilities. The GemStone system, for example, only allows authoriza-
tions to be associated with segments, where a segment is the storage unit for objects

[4]-
The goal of the work, presented in this paper, is to define a new comprehensive

authorization model for OODBMS, characterized by a formal and sound basis. Indeed,
the complexity of authorization models for OODBMS requires forma] foundations for
accounting all aspects of these models and as a basis for a correct implementation.
Our model has been defined as an evolution of the Orion authorization model. Our
model, as the Orion model, provides the notions of explicit/implicit authorization,
positive/negative authorization, and strong/weak authorization. However, it has a
number of important differences with respect to the Orion model.

First, we take the approach of increasing the authorization types of the model and
reducing the number of authorization objects. The Orion model is based on only four
authorization types, whereas the number of authorization objects is quite high. The

main drawback of the Orion model is that authorization objects are introduced that do
not always correspond to real database objects. Moreover, the same authorization type
applied to different object types may have different semantic meanings, thus making
the semantics hard to understand in some cases. The model presented here is therefore
more natural and can be easily mapped onto a user language. Moreover, our model
allows a more detailed modeling of implications among authorization types.

Second, the Orion model uses a notion of user role that does not clearly correspond
to either the notion of group nor to the notion of role, as currently supported by
RDBMS or defined in literature proposals. Our model is based on the notions of user
and group as currently supported in RDBMS. Moreover, we plan to add the notion of
user role in our model, with, however, a clear semantic difference with respect to the
notion of group l,

A third difference is related to semantics of negative authorizations. Both our model
and the Orion model support negative authorization as a way to support exceptions
with respect to authorizations collectively granted to a set of subjects, or on a set of
objects. However, the ORION model the semantics of negative authorizations on a
set of objects is not clearly defined. In particular, a negative authorization on a set of
objects does not denote a negative authorization on each object of the set. Therefore,
it is not possible to specify negative authorizations on a set of objects to be intended
as applicable 1o all objects of the sets. For instance, the only way to give a user the
negative authorization for the read privilege on ail instances of a class is give the user
the negation to read the definition of the class. However, this negation is more than
what we would have like to do (it does not allow to read the definition of the class)
and it does not admit exceptions [3].

Finally, other differences that will not be discussed in details in the present paper
include a more sophisticated management for authorizations on versions and composite
objects, and capabilities for decentralized authorization administration [3].

With respect to authorization models described in other papers (e.g. [9, 1, 8])

JNote that recent versions of RDBMS support, both the notions of group and role.

our model differs for several aspects. First, the model defined by Dittrich et Al. [9]
does not include many of the notions that the Orion model and our model include,
namely positive/negative authorization, and strong/weak authorization. Indeed, the
model by Dittrich et Al. only provides the notion of explicit /implicit authorizations;
implicit authorizations in this model are derived through deductive rules defined by
the users. No consistency criteria are, however, defined by Dittrich et Al. for those
deductive rules. The model defined for the Iris system [l]2 is based on the approach
of considering methods as the authorization access types. Therefore, in that model
users are authorized to invoke methods on objects. The Iris model, however, does
not have a formal basis, and several questions, especially concerning authorization
administration, are left open. Moreover, the Iris model does not provide the same
flexibility of our model, since it does not provide all the various types of authorizations,
like positive/negative authorization and so on. The model defined by Bruggemann
[8] differs with respect to our model in a number of aspects. First, in that model
DO complete account is given for all modeling constructs of an object-oriented data
model, in that this model does not consider composite objects, and versions. Moreover,
no specification is provided of the access types supported in the model, whereas our
model provides a complete account under this aspect. Finally, that model handles
exceptions based on an explicit ordering given by the users. However, it is not clear how
this approach would work in a decentralized authorization environment. By contrast,
our model supports multiple-level exceptions based on the hierarchical composition
of authorization objects, and of user groups. Therefore, our model does not require
explicit user-defined priorities among exceptions.

The remainder of this paper is organized as follows. Section 2 describes the reference
object-oriented data model which will be used throughout in paper. Section 3 illustrates
our authorization model. Section 4 presents the implication rules for the derivation of
authorizations. Section 5 defines the authorization state. Section 6 illustrates how the
access control works. Finally, Section 7 presents the conclusions.

2 A reference object-oriented data model
In this section, we summarize the main features of object-oriented data models by a
reference model which will be used in the rest of the paper for the discussion.

Each real-world entity is modeled as an object. A set of attributes is associated to
each object. An attribute of an object may take on a single value or a set of values.
Each object is associated with a unique identifier (OID) which is fixed for the whole
life of the object. The identity of an object has an existence independent of the values

of the object attributes.
AH objects which share the same set of attributes are grouped together in a higher

level object called a class. Each object belongs to (is an instance of) only one class. A
primitive class is a class with no attributes (e.g., integer, string, or boolean). The value
of an attribute of an object belongs to some class. This class is called the domain of
the attribute. The domain of an attribute may be any class, including a primitive class.
If an attribute of a class C has a class C as a domain, an aggregation relationship is
established between the classes C and C. According to this relationship, the set of

2Note that this model has not been actually implemented in the Iris prototype. Therefore, the model
described in the paper is still at preliminary stage.

classes in the schema is organized in an aggregation hierarchy.
Users can derive a new class from an existing class. The new class, called a subclass

of the existing class, inherits all the attributes of the existing class, called the superclass
of the new class. The instances of the subclass are members of all its superclasses. Users
may specify additional attributes for the subclass. A class may have more than one
subclass (multiple inheritance). According to the subclass/superclass relationship, the
classes form a rooted directed acyclic graph, called inheritance hierarchy.

Objects are accessed by system-defined methods that allow to read and write object
attributes, read and modify the class definitions, create and delete instances and classes,
and so on.

3 The authorization model
In this section we illustrate our authorization model.

3.1 Elements of the model

3.1.1 Subjects

Authorization subjects can be either users or groups. In the following, sets S,U, and
GS denote the sets of subjects, users, and groups respectively, where S = U U GS. A
group is defined as a set of other subjects (users or groups). Groups are not necessarily
disjoint, i.e., a same subject may belong to more groups. The membership relationship
between subjects is represented by a graph, called subject graph, as follows. Each
subject is represented by a node. An arc directed from subject s,- (group) to subject
Sj (user or group) indicates that subject SJ directly belongs to group s,-. An example
of subject graph is illustrated in Figure 1.

Given two subjects SJ G S,S{ G GS, notation Sj <i s,- (or simply, Sj < s,) indicates
that there exists an arc from .s, to .y in the subject graph, i.e., Sj directly belongs to
group Si. Notation Sj <„ s, indicates that there exist sko G S, skl,..., skn G GS such
that sko = Sj.sk71 = Si and sko < ski < • ■ • < sk„. Notation Sj <0 s,- indicates equality,
i.e.. is equivalent to Sj = S{.

If Sj <n S{ with n > 1 we say that sj indirectly belongs to group sz. A subject Sj
may belong to a group s{ through several paths in the subject graph. In other words,
the relation s:j <n s,- may be valid for different values of n. For instance, with reference
to the subject graph illustrated in Figure 1, Bob < G4. Bob < G2, Bob <2 G2, Bob
<2 6*i, Bob <3 G'i.

3.1.2 Objects

The set of authorization objects, denoted by 0, is composed of databases, classes of the
databases, and instances of the classes, i.e., 0 = DatabaseliClassU Instance. We do not
consider attributes of instances as objects of authorizations. However, authorizations
for specific attributes can be specified on instances.

Objects are organized into an object granularity hierarchy: a class is composed of
a. set of instances, a database is composed of a set of classes. The system in turn
consists of a set of databases. An example of object granularity hierarchy is illustrated
in Figure 2.

James

Bob

Figure 1: An example of subject graph

In the following, given two objects Oi,Oj G 0, notation Oj <i e>; (or simply, Oj < o,-)
indicates that o, is a direct descendant of o,- in the object granularity hierarchy, i.e., Oj
directly belongs to the set of objects represented by 0{. Notation Oj <n 0{ indicates that
there exist oko, o/t,,..., o*n £ O such that oko = OJ,ok„ = os and oko < okl < ■ ■ ■ < okn.
Notation OJ <(> Oi indicates equality, i.e., is equivalent to Oj — 0{.

For instance, with reference to the object granularity hierarchy of Figure 2, Empl
< Employees < Administration.

Classes are organized into inheritance hierarchies on the basis of the subclass/super-
class relationship. In the following, given two classes o,o' notation o' -<i o (or simply,
o' -< o) indicates that o' is a direct subclass of o. In multiple inheritance, given
o\, o2...., o„ £ Class, notation o' -< {oi, o2,..., on} indicates that o' is a direct subclass
of o1.o2... .,o„. Notation o' -<n o indicates that there exist Ofc0, okl,..., okn € Class
such that oko = o', okn — o and oko < okl -<•••-< okn. Again, notation o' -^0 o indicates
identity, i.e., is equivalent to o' = o.

3.1.3 Access modes

The set of access modes, denoted by M, consists of privileges that users can exercise
on the objects. The access modes applicable to an object depend on the type of the
object, e.g., database, class, or instance. In our model, the following access modes are
considered:

1. M{database) = Access modes applicable to databases:

(a) read-def: to read the definition of the database;

System [University]

DatabasefAdministration]

ClasspProfessors]

Database!....]

Instance[Empl] Instance[Emp2] Instance[Emp50]

Attribute[Name] AttributefAddress] AttributefSalary]

Figure 2: An example of object granularity hierarchy

(b) read: to read all objects within the database;

(c) write: to modify all objects within the database;

(d) create: to create a new class within the database.

2. M(class) = Access modes applicable to classes:

(a) read^def: to read the definition of the class;

(b) write^def: to modify the definition of the class;

(c.) delete.def: to drop the class;

(d) read: to read all instances of the class;

(e) write: to modify all instances of the class;

(f) read(Ak): to read attribute Ak for all instances of the class;

(g) write(Ak): to modify attribute Ak for all instances of the class;

(h) create: to create new instances of the class;

(i) delete: to delete all instances of the class.

3. M(instance) = Access modes applicable to instances:

(a) read: to read all attributes of the instance;

(b) write: to modify all attributes of the instance;

(c) read(Ak): to read attribute Ak of the instance;

(d) write(Ak): to modify attribute Ak of the instance;

(e) delete: to delete the instance.

The read.def access mode on a class allows to read the definition of the class. The
read.def access mode on a database allows to read the directory of the database, i.e., it
allows to see the names of all classes within the database and the inheritance hierarchies

they form. Note, however, the read.def access mode on a database does not allow users
to read the definition of the classes contained in the database.

The delete-def access mode, which allows to drop a class, can be executed only

when the class has no instances.
The write privilege on a database is very powerful since it allows every access to

the database and the objects contained in it. Therefore, it is intended for the use of

the database administrator.
The privilege to read an attribute of an object whose value is the OID of another

object allows to read the object identifier of the referenced object, but, in general, it
does not allow to read the contents of the referenced objects.

In order to ensure that an access mode is properly applied, we define a function
t : O -* {database, class, instance} which associates with each object o £ O, its
type t(o). An access mode m £ M is applicable to an object o £ O if and only if

m E M(t(o)).

3.2 Authorizations
Our model provides both positive and negative authorizations. A positive authorization
is used to specify that a subject may exercise an access mode on an object. A negative
authorization is used to specify that a subject is denied an access mode on an object.

The possibility of specifying both positive and negative authorizations may intro-
duce conflicts due to the simultaneous presence of two authorizations that differ only in
the sign. In some cases, conflicts may be easily resolved by specifying overriding rules
among authorizations. Our model gives the grantor of an authorization the possibility
of specifying whether the authorization may be overridden by other authorizations. To
support overriding, we distinguish between strong and weak authorizations. A strong
authorization cannot be overridden, i.e., it does not admit exceptions. A weak au-
thorization may be overridden, according to specified rules, by other strong or weak
authorizations.

To formally represent authorizations, we introduce the following definitions.

Definition 1 (Authorization Space) The authorization space ASP is defined as:

ASP = S x O x M x {+, -} x {st, wk}

where + indicates positive, - indicates negative, st indicates strong, and wk indicates
weak.

Definition 2 (Authorization) An authorization a £ ASP is a 5-tuple (s, o, m, as. at)
where:

s £ 5 is the subject to whom the authorization is granted;

o £ 0 is the object to which the authorization is referred;

7?7 £ M(Uo)) is the access mode;

as £ { + . —} indicates whether the authorization is referred to the access mode (+) or
its negation (—);

at £ {st, wk} indicates whether the authorization is strong (st) or weak (wk).

For instance, authorization (s,o, m, + , st) states that subject s can exercise access
mode TO on object o, and this authorization cannot have exceptions. Authorization
(s,o,m.,—,wk) states that subject s cannot exercise access mode m on object o, and
this authorization can have exceptions.

Given an authorization a, notation s(a), o(a), m(a), as(a), at(a) denotes the sub-
ject, the object, the access mode, the sign (positive or negative), and the type (strong
or weak) of authorization a, respectively.

Authorizations specified by the users are called explicit. These authorizations are
grouped into a strong and a weak authorization base as follows.

Definition 3 (Strong authorization base) A strong authorization base SAB C ASP
is a set of explicit authorizations with at(a) = st.

Definition 4 (Weak authorization base) A weak authorization base WAB C ASP
is a set of explicit authorizations with at(a) — wk.

The authorizations specified by the users are seen as a generating set of authoriza-
tions. Starting from these authorizations, other authorizations can be derived through

the relationships among subjects, objects, and access modes. Derivation rules are given
in Section 4.

We introduce an implication relationship between authorizations defined as follows.
Given two authorizations a, a' £ ASP, a implies a', denoted by a —► a', if a' is derived
from authorization a through one of the implication rules of the model. Notation
a —>„ a' indicates that there exist a0, «j,..., an e ASP such that a0 = a,an — a' and
ÜQ —> a\ —► - • • —* an. If n — 0 the relationship indicates equality, i.e., writing a —>0 a'
is the same as writing a = a'.

The implication relationship preserves the authorization sign and the authorization
type, i.e., given a, a' G ASP, if a ^„ a' then as(a') = as(a),at(a') = at(a).

Authorizations derived by applying the implication rules are called implicit, as
stated by the following definition.

Definition 5 (Implicit authorization) An implicit authorization is an authoriza-
tion a G ASP such that a £ SAB U WAB and 3a' £ SAB U WAB such that
a' —*n a,n > 1.

Note that an authorization explicitly contained in an authorization base may also
be derivable from other authorizations through the implication relationship. According
to the previous definition we consider this authorization as explicit. In other words,
we do not require the explicit set of authorizations to be minimal.

4 Implication rules
In this section we illustrate the implication rules of our model. We distinguish among
the different domains along which we derive implicit authorizations. We analyze impli-
cation rules for subjects, for access modes, for objects, and along the class inheritance
hierarchy.

Implication rules can be1 illustrated with a graph in which the nodes are the access
modes. The set of nodes is partitioned into three disjoint subsets according to the

type of object to which the access modes are referred (i.e., databases, classes, and
instances). The arcs represent the implication rules of our model. The black-colored
arcs represent implications between positive authorizations, while the grey-colored arcs
represent implications between negative authorizations. Each arc is labeled with the
number of the corresponding implication rule.

4.1 Implication rules for subjects
The first implication rule refers to the propagation of positive and negative authoriza-
tions along the subject graph. The consideration of groups of subjects allows to grant
privileges to set of users in an efficient way.

Rule 1 The authorization (negation) of a group for a privilege on an object implies the
authorization (negation) for the privilege on the object for the direct members of the
group. Formally. Vsi,Sj G S.Vo G 0,Vm G M(t(o}),Vas 6 {+, -},Vai G {st, wk},Sj <

Si : (s,, o, m,as,at) —> (sj,o, m, as, at).

Rule] states that an authorization a for a subject (group) s propagates to all the
subjects which directly belong to s. By applying this rule recursively we have that the
authorization of a group propagates to all its members, both direct and indirect.

For instance, with reference to the subject graph illustrated in Figure 1, authoriza-
tion (d,Employees,read-def,+, wk) implies authorization ((^Employees,reacLde/,+, wk)
which in turn implies authorization (Bob,Employees,read-def,+,wk).

4.2 Implication rules for access modes
Implication rules for access modes are based on relationships among access modes
which belong to the same subset of access modes (i.e., referred to the same type of
object). Given an authorization (negation) for an access mode on an object, these
rules allow an authorization (negation) to be derived for another access mode on the
same object. Negative authorizations propagate, with respect to the corresponding
positive authorizations, either in the same way or in the opposite way (logic negation).

In the following, notation Setof.attr(o) denotes the set of attributes of object o.
The reason for the implications expressed by the rules is of immediate interpretation;
we will include some explanation when needed. The graphical representation of these
rules is given in Figure 3.

Rule 2 The privilege to modify an object implies the privilege to read the object.
Formally, Vs G S,Vo G 0, VW G {st,wk} : (s,o, write, + , at) ->■ (s,o,read,+,at).

Rule 3 The negation of the privilege to read an object implies the negation of the priv-
ilege to modify the object. Formally, Vs £ 5, Vo G 0,Vat G {st, wk} : (s, o, read, -,at) ->
(s, o, write, —, at).

Rule 4 The create privilege on a database (class) implies the privilege to read the
definition of the database (class). Formally, Vs G S,Vo £ Database U Class,Vat G
{st,wk} : {s,o, create, +, at) —► (s,o, read.de}', +,at).

10

DATABASES CLASSES INSTANCES

write

read

7, |,

read_def

'i t«
create

Legenda:

n

read def,

^ = positive implication rale n

write

write(Ak) ^

n
-$** = negative implication njle n

Figure 3: Graphical representation of the implication rules for access modes

Rule 4 states that if a subject is authorized to create a class within a database, then
the subject is implicitly authorized to read the directory of the database. Likewise, if
a subject is authorized to create an instance of a class, then the subject is implicitly
authorized to read the definition of the class.

Rule 5 The negation of the privilege to read the definition of a database (class) implies
the negation of the create privilege on the database (class). Formally, Vs 6 S,Vo G
Database U Cla.is,Vat € {st,wk} : {s.o,rejuLdef ,-,at) -> (s,o, create, -, at).

Rule 5 states that if a subject is denied to read the directory of a database, then
the subject, is implicitly denied to create a class within the database. Likewise, if a
subject is denied to read the definition of a class, then the subject is implicitly denied
to create an instance of the class.

Rule 6 The read privilege on a database (class) implies the privilege to read the
definition of the database (class). Formally, Vs e S,Vo £ Database U Class,Mat £
{st, wk} : (s, o, read, +, at) -> (s, o, read.def, +, at).

11

According to Rule 6, the privileges to read all objects within a database and to
read all instances of a class imply, respectively, the privileges to read the directory of
the database and to read the definition of the class.

Rule 7 The negation of the privilege to read the definition of a database (class) implies
the negation of the read privilege on the database (class). Formally, Vs 6 5, Vo 6
Database U Class, Va< £ {st, wk} : (s, o, readjdef, -, at) -* (s, o, read, -,at).

According to Rule 7, the negation of the privileges to read the directory of a
database and to read the definition of a class implies, respectively, the negation of
the privileges to read all objects within the database and to read all instances of the

class.

Rule 8 The privilege to modify the definition of a class implies the privilege to
read the definition of the class. Formally, Vs £ 5,Vo £ Class,\lat £ {st,wk} :
(s.o, uirite.de}, +, at) —► (s, o, read.de}, +,at).

Rule 9 The negation of the privilege to read the definition of a class implies the
negation of the privilege to modify the definition of the class. Formally, Vs £ S, Vo £
Class, Vai £ {st, wk} : (s, o, read.de}, -,at) —>■ (s, o, write.de}, -,at).

Rule 10 The privilege to delete the definition of a class implies the privilege to
read the definition of the class. Formally, Vs £ S,Vo £ Class,Vat £ {st,wk} :
(s, o, delete.de}, + , at) —»■ (s, o, read.de}, +, at).

Rule 11 The negation of the privilege to read the definition of a class implies the
negation of the privilege to delete the definition of the class. Formally, Vs £ 5, Vo £
Class.Vat £ {st,wk} : (s,o, read.de},—,at) —► (s, o, delete.de}, —, at).

Rule 12 The privilege to modify an attribute on a class (instance) implies the priv-
ilege to read the attribute on the class (instance). Formally, Vs £ 5,Vo £ Class U
Jnstance.MAk £ Setof-attr(o),Vat £ {st,wk} :
(s,o, write(Ak), +,at) —► (s,o, read(Ak), +,at).

Rule 12 states that the privileges to modify an attribute of an instance and to
modify an attribute for all instances of a class imply, respectively, the privileges to
read the attribute of the instance and to read the attribute for all instances of the
class.

Rule 13 The negation of the privilege to read an attribute on a class (instance) implies
the negation of the privilege to modify the attribute on the class (instance). Formally,
Vs £ S.Vo £ Class U Instance, VAk £ Setof-attr(o),Vat £ {st, wk} :
{s.o, read(Ak), —,at) —> (s,o, write(Ak), —,at).

Rule 13 states that the negation of the privileges to read an attribute of an instance
and to read an attribute for all instances of a class implies, respectively, the negation
of the privileges to modify the attribute of the instance and to modify the attribute
for all instances of the class.

12

Rule 14 The write privilege on a class (instance) implies the write privilege for ev-
ery attribute on the class (instance). The negation of the write privilege on an ob-
ject propagates in the same way. Formally, Vs G S, Vo G Class U Instance, VAk G
Setof-.attr(o),Vas G {+,—},Vat € {st, wk} : (s,o, write, as, at) —> (s,o,write(Ak),as,at)

Rule 15 The read privilege on a class (instance) implies the read privilege for ev-
ery attribute on the class (instance). The negation of the read privilege on an ob-
ject propagates in the same way. Formally, Vs G S, Vo G Class U Instance, VAk G
Setof.attr{o),Mas G {+, -}, Va* G {st, wk] : (s, o, read, as, at) -> (s, o, read(Ak), as, at).

Rule 16 The delete privilege on a, class (instance) implies the read privilege on the
class (instance). Formally, Vs G 5,Vo G Class U Instance, Vat G {st,wk} :
(s, o, delete, +,at) -> (s, o, read, +, at).

Rule 17 The negation of the privilege to read an attribute on a class (instance)
implies the negation of the delete privilege on the class (instance). Formally, Vs G

L9,VO G Class Ö Instance,\/Ak G Setof.attr{o),Vat G {st,wk} : (s,o,read(Ak),~,at) —
(s.o, delete, —,at).

4.3 Implication rules for objects
The implication rules for objects are based on the hierarchical structure of the set of
objects (see, for example, Figure 2). Given an authorization for a privilege on an object
o, these rules allow to derive an authorization for the same or a different privilege on
objects contained in o.

In the following we enunciate the implication rules for objects. The graphical
representation of these rules is given in Figure 4. The arcs of this graph represent the
relationships among access modes applied to objects bound by the relationship of <.

Rule 18 The privilege to read a database (class) implies the privilege to read all the
classes (instances) contained in it. The negation of the read privilege propagates in
the same way. Formally, Vs G S, Vo, G Database U Class,Voj G Class U Instance,Vas G
{+,-}, Va* G {st,wk},Oj < o; : (s,ot, read, as, at) -+ (s,Oj, read, as, at).

Rule 19 The negation of the privilege to read the definition of a database implies the
negation of the privilege to read the definition of every class of the database. Formally,
Vs G 5,Vot- G Database,Voj G Class.Vat G {st,wk},Oj < o{ : (s,Oi,read.def,-,at) ->
(s,Oj, read-def, —,at).

Rule 20 The privilege to modify a database (class) implies the privilege to modify all
the classes (instances) contained in it. The negation of the modify privilege propagates
in the same way. Formally, Vs G S,Vot G DatabaseUClass,VOJ G ClassUInstance, Vas G
{+,-},Vat G {st,wk},Oj < Oi : (s,Oi,write,as,at) -*• (s,Oj,write,as,at).

Rule 21 The write privilege on a database implies the delete privilege on each class
of the database. The negation of the write privilege propagates in the same way.
Formally, Vs G S^Vo; G Database,\/o3 G Class,Vas G { + ,-},Va* G {st,wk},o3 < o, :
(s, Oi, write, as, at) -+ (s, Oj, delete, as, at).

13

DATABASES INSTANCES

write

-► = positive implication rule n

= negative implication rule n

write

Figure 4: Graphical representation of the implication rules for objects

Rule 22 The write privilege on a database implies the privilege to modify the defi-
nition of each class of the database. The negation of the write privilege propagates
in the same way. Formally, Vs G 5",Vo; G Database,Voj G Class,Vas G {+,-},Vai 6
{st, iuk},Oj < Oj : (s, Oi, write, as, at) —> (s, o3, write_def', as, at).

Rule 23 The write privilege on a database implies the privilege to delete the defini-
tion of every class of the database. The negation of the write privilege propagates in
the same way. Formally, Vs G 5,Vo,- G Database,Vo, G Class,V'as G { + ,-},Va< G
{st,wk},Oj < Oi : (s,Oi,write,as,at) —• (s, o}, delete.de}, as, at).

Rule 24 The write privilege on a database implies the create privilege on every class
of the database. The negation of the write privilege propagates in the same way.
Formally, V.s G .S\Vo, G Database,\/oj £ Class.Vas G { + ,-},Va< G {st,wk},Oj < 0{ :
(s,Oi,write,as,at) —> (s,Oj, create, as, at).

Rule 25 The privilege to read an attribute on a class implies the privilege to read
the attribute on every instance of the class. The negation of the privilege to read an
attribute on a class propagates in the same way. Formally, Vs 6 S^Vo,- G Class,VAk G
Setof..attr(oi),Voj G Instance^as G { + ,-}, Vai G {st, wk},Oj < 0{,:
(s, Oi, read(Ak), as, at) —>■ (s, Oj, read(Ak), as, at).

14

Rule 26 The privilege to modify an attribute on a class implies the privilege to mod-
ify the attribute on every instance of the class. The negation of the privilege to mod-
ify an attribute on a class propagates in the same way. Formally, Vs £ S,Voi £
Class,VAk G Setof.attr(oi),Woj G Instance,V'as G {+,-},Vai G {st,wk},Oj < o,- :
(s,0{, write(Ak),as,at) —> (s,Oj,write(Ak),as,at).

Rule 27 The delete privilege on a class implies the privilege to delete every instance
of the class. The negation of the delete privilege on a class propagates in the same
way. Formally, Vs G S,Voi G Class,Voj G Instance,Vas G {+,-},Va< G {st,wk},Oj <

0{ : (5,0{, delete, as, at) —* (s, Oj, delete, as, at).

All. previous implication rules propagate authorizations top-down with respect to
the object granularity hierarchy. We introduce now two implication rules that propa-
gate authorizations bottom-up with respect to the object granularity hierarchy.

Rule 28 The privilege to read an attribute of an instance implies the privilege to

read the definition of the class to which the instance belongs. Formally, Vs £ 5,Voa £

Class,VAk G Setof.attr(oi),Voj £ Instance,^ at £ {st,wk},Oj < 0{ :

(s,Oj, read(Ak), + ,at) —> (s,Oi, read_def,+,at).

Rule 29 The privilege to read the definition of a class impbes the privilege to read
the definition of the database which contains the class. Formally, Vs £ 5, Vot- G
Database,Vo3 £ Class,Mat £ {st,wk},Oj < 0{ :
(s, o?, read.def, +, at) —*■ (s, o;, read-def, +, at).

4.4 Implication rules along the inheritance hierarchy
Implication rules along the inheritance hierarchy allow, given an authorization for a
privilege on a class, to derive authorizations for the privilege on the subclasses of the
class. Implication of authorizations along the inheritance hierarchy may be desirable
in some cases and non desirable in other cases [13, 6, 10]. Hence, we allow the user
defining a class to indicate whether he wants implication of authorizations along the
inheritance hierarchy. If so, the authorizations of users on the superclasses for the
create and delete access mode and for reading and writing attributes propagate to
the class. The reason why privileges on the definition do not propagate is that these
privileges should be reserved to the creator of the class. Note however that if a user
receives a. privilege on the class he indirectly receives the read-def privilege on the class,
according to the implication rules of Section 4.2.

To determine whether a subclass inherits the authorizations from a superclass, we
introduce function Is-Inh(o'.o) which, given a class o' and one of its superclasses o
returns True if o' inherits the authorizations specified on o; returns False, otherwise.

Note that authorizations applicable to a specific attribute can be propagated to
a subclass only if the attribute is inherited by the subclass. To determine this, we
introduce a function AttrJnh(Ak.o',o) which, given an attribute Ak and classes o and
o' returns True if o' inherits Ak from o; returns False otherwise.

Then, the implication of authorizations along the inheritance hierarchies is deter-
mined according to the following rules.

15

Rule 30 The authorization (negation) to create and delete on a class o propagates
to all subclasses o' of o for which function IsJnh(o',o) returns True. Formally, Vs 6
S,Vo,o' G Class,Wm G {create, delete},Vas G {+,-},Vaf G {st,wk},o' -< o,IsJnh(o',o)

True: (s, o, m, as, at) —>• (s, d, m, as, at).

Rule 31 The authorization (negation) to read/write an attribute Ak on a class o prop-
agates to all the subclasses o' of o such that functions IsJnh(o', 6) and AttrJnh(Ak, o', 6)
return True. Formally, Vs G S,^o,o' G Class,\/m G {read, u;n£e},Vylfc G Setof.attr(o),
Vas G { + .-},Vai G {s£,wfc},o' -< oJsJnh(o',o) = True, AttrJnh(Ak,o',o) = True:

(5, o, m(Afc), as, ai) -> (s, o', m(Afc), as, af).

The implication rules along the inheritance hierarchy are illustrated in Figure 5.
Label E associated with the arcs indicates the inheritance relationship.

write(Ak)

= positive implication rule n

= negative implication rule n

E = inheritance relationship

Figure 5: Graphical representation of the implication rules along the inheritance hierarchy

4.5 Derivation of implicit authorizations
Given the authorizations specified by the users (explicit), the rules illustrated in the
previous section allow new authorizations (implicit) to be derived. The rules given for
the different domains can be jointly applied thus allowing, from an authorization, the
derivation of other authorizations, with same or different subject, same or different
object, and same or different access mode.

Figure 6 illustrates the graph representing all the implication rules of our model,
except for the rule specified for the set of subjects. In this graph, we use one-colored

16

arcs. An arc labeled with + (—) represents the implication for a positive (negative)
authorization. For sake of clarity, the arcs are not labeled with the corresponding rule
number.

Derivation of authorizations according to the rules corresponds to traversing the
arcs of the graph. The set of authorizations implied by an explicit authorization a is
called the extension of a. We now illustrate how to determine the extensions of strong
and weak authorizations.

Since strong authorizations do not admit exceptions, the extension of a strong
authorization is composed of all authorizations which can be derived from a by applying
the rules. This is formalized by the following definition.

Definition 6 (Extension of a strong authorization) The extension of a strong
authorization a is the set E(a) defined as: E(a) — {a' \ a ->m a',m > 0}.

Note that a belongs to this set (m — 0).

Determining the extension of a weak authorization is more complex. Indeed, since
weak authorizations can have exceptions, the set of authorizations derivable from an
explicit weak authorization depends also on the content of the strong and weak autho-
rization bases. Hence, before defining the extension of a weak authorization we give
some definitions to determine when a weak authorization is overridden by exceptions.

Definition 7 (More specific subject) Given two subjects s,s' £ S, s' is more spe-
cific than s, written s' <! s, if and only if s' <n s with n> 1.

The above definition states that subject s' is more specific than subject s if and
only if s' is a member (direct or indirect) of s. In the following, notation s'<\ s indicates
that either s' — s or s' <i s.

Definition 8 (More specific object) Given two objects o,o' £ O, o' is more specific
than o. written d <\ o, if and only if either d <v o or d -<n o, with n > 1.

Definition 8 states that object d is more specific than object o if either d is descen-
dant of o in the object granularity hierarchy, or d is a subclass of o.

Definition 9 (More specific access mode) Given two access modes m.m1 £
M [class) U M(in stance), m' is more specific than m, written m' <] m, if and only if
m' 6 {wri1e[A!:).Trad(A[;)}. and m £ {write, read}.

Definition 9 states that an access mode referred to a single attribute is more specific
than an access mode referred to a set of attributes. Note that according to Definition 9
the write access mode on an attribute is considered more specific than the read access
mode on an ins.1 ance. Moreover the read access mode on an attribute is considered more
specific than the write access mode on an instance. These relationships hold because
of the implication relationship existing between the two access modes (Section 4.2).

Definition 10 (More specific authorization) Given two authorizations a, a' £ WAB,
authorization a' is more specific than authorization a, written a' <| a, if and only if any
of the following conditions is satisfied:

1. s(a') < s(a),o(a') = o(a),m(a')<\ m{a)\

17

DATABASES CLASSES INSTANCES

write

write

read

read def

create

Legenda:

+ .

write

II'
read -

t-
delete

= positive implication

—► = negative implication

E = inheritance relationship

1-
read(Ak)

It-
write(Ak)

Figure 6: Graphical representation of the implication rules of our model

18

2. s(a') < s(a),o(a')< o{a);

3. s(a') <l s(a),o(a') = o{a),m(a) fim(a').

Definition 10 states that an authorization a' is more specific than an authorization
a if and only if either (1) the subject of a' is more specific than or equal to the subject
of a, the object of a and a' are equal, and the access mode of a' is more specific
than the access mode of a; (2) the subject of a' is more specific than or equal to the
subject of a, and the object of a' is more specific than the object of a; or (3) the
subject of a' is more specific than the subject of o, the objects of a and a' are equal,
and the access mode of a is not more specific than the access mode of a'. The last
condition of item (3) is needed to avoid, given two authorizations a and a1 such that

s(a') O s(a) and o(a') = o(a), considering a' <i a if m(a) <1 m(a'). For example, given
authorizations a = (G'2,Empl,read! Name),+ ,wk) and a' = (Bob,Empl,read, — ,wk), a'

cannot be considered more specific than a since s{a') <i s(a) (Bob «dG^), o(a') = o(a)
(= Empi), but m(a)<] m(a') (rear/(Name) <1 read).

Example 1 Consider authorizations:

• m = (G-2-Employees,write,+. wk);

• «2 — (Bob,Employees,razd(Salary),—, wk);

• «3 = (G2,Empi,write,+, wfc);

• Ü4 = (Bob,Employees,cfe/cte,—, u>&).

ß2 <J «i since 5(02) < s(ai),o(«2) = "(ai),rr?.(a2) <3 ?n(ai) (Definition 10, item 1).
a3 < a] since 5(A3) = s(oa), o(a3) <] 0(0.!) (Definition 10, item 2).
a4 <] «! since 5(a4) <1 s(fl!), 0(0.4) = o(aj),m(ai) /l 777(04) (Definition 10, item 3).

We now define when a weak authorization is overridden. We distinguish the cases
where a weak authorization is overridden by a strong authorization or by another weak
authorization.

In the following, given an authorization o = (s. o, m,as, at), notation \a\ denotes
the set composed of authorization a and its negation (i.e., an authorization with the
same subject, object, access mode, and type as authorization a, but with different
sign). That is, \a\ = {(s,o.m,+,at}.(s%o,m.-.at)}. Given a weak authorization
o = (s,o,m,as,wk), \a\^ denotes the set composed of authorization authorization a'
and the negation of a', where a' is a strong authorization with the same subject, object,
access mode, and sign as a. That is. \a\f = {(s.o,m,+,st),(s,o,m,—,st)}.

Definition 11 (Strong overriding) Given two authorizations 0,0^ such that a £
ASP,at(a) = ivk,a.): £ SAB, we say that o/. overrides a, written a^ > a if and only if

3o; 6 |o|^,Ofc -'m o-i,rn > 0.

Definition 11 states that a strong authorization a^ overrides a weak authorization
a if Ofc implies (or is equal to. if m=0) an authorization with same subject, object and
access mode as o and different type.

The overriding relationship among weak authorizations is more complex. In par-
ticular, in order to define whether an authorization a/,, overrides an authorization o,
the authorization from which a has been derived must be considered. The overriding
relationship among weak authorizations is formalized by the following definition.

19

Definition 12 (Weak overriding) Given three authorizations a, ak, a' such that a, a^

G WAB, a -+t a' ,1 > l,s(ak) = s(a'),o(ak) — o(a'), ak overrides a', written a^ ^> a' if
and only if 3at- G \a'\, ak —>n a;? n > 0, a^ <] a.

Definition 12 states that an explicit weak authorization ak overrides an authoriza-
tion a' implied by an explicit weak authorization a if and only if the subject and
the object of a^ are equal to the subject and the object of a', authorization a' or its
negation is implied authorization ak, and the authorization Ofc is more specific than
authorization a.

Given the above definitions, the extension of a weak authorization is defined as
follows.

Definition 13 (Extension of a weak authorization) The extension of a weak au-
thorization a is the set E(a) defined as: E(a) — Un^o^ -^n(a)

where

E; () _ / M tf ?ßfc e SAB, ak > a
[0 otherwise

En(a) = {a1 | 3a" G £n_i(a), 3afc G (SAB U WAB), a" -+ a',^ > a'},
and
Na is the first w such that En+i(a) = 0.

The existence of such an Na is ensured by the fact that the implication rules are
finite and they work on finite lattices.

Definition 13 states that the extension of a weak authorization o is composed of all
the authorizations which can be derived by a and which are not overridden. Note that
if a g E0(a), then set E(a) is empty.

Example 2 Consider the subject graph illustrated in Figure 1 and the object hierarchy
illustrated in Figure 2. Suppose that SAB = 0, WAB = {ai,a2} where:

• «j = (Gß, Employees, read ,-\-, wk);

• a2 = (Mary,Empl, read,-, wk).

Let us analyze how authorization «! propagates. For sake of clarity we do not
derive all extension of ai but only some authorizations. First of all, ai G E(a\) since
no strong authorization exists which overrides a\. Moreover, 03,04 G E(a\) where:

• a3 = (G^iEmpl,read,+, wk);

• Ü4 = (Mary,Employees,read,-f, wk).

Indeed, ai —► 03,0! —+ 04,01 G E(ai) and no authorization exists which overrides
a3 or a4. By contrast, authorization a = (Mary,Empl,read,+,wk) $ E(ai). Even if
a3 —► o,a3 G Ei(ai) and a4 -* a,a4 G Ei(ax), a g E(ai) since a2 G WAB and a2 > a.
In fact, according to Definition 12, a2 -»■o a> = (Mary,Empl,read,-, wk), a' G \a\, and
a2 < a\. This last relationship comes from Definition 10 since 5(02) <3 s(ai) (Mary
OGö) and o(a2) < o(ai) (Empi <] Employees).

Figure 7 illustrates the propagation of authorization a\.

20

Class [Employees]

Instance[Empl] a2: Mary, read (a3: G6, read

Legenda:

= explicit positive authorization

= implicit positive authorization

= explicit negative authorization

= link between elements
of the object hierarchy

= positive implication

Figure 7: An example of derivation of implicit authorizations

5 Authorization State
The authorizations valid at a given time are all the authorizations explicitly defined
by the users, or derived from the authorizations explicitly defined by the users, which
are not overridden. The set of authorizations valid at a given time is called the autho-
rization state, formally defined as follows.

Definition 14 (Authorization State) The authorization state AS C ASP is a set
of authorizations defined as follows:

AS = U E(a)
agSABuWAB

The simultaneous presence of two (explicit or implicit) authorizations a and a' equal
but for the sign (c' = ->a) and such that no one overrides the other is interpreted as
an inconsistency in our model. This is formalized by the following definition.

Definition 15 (Consistent authorization state) An authorization state AS is con-

sistent if and only if jia,a' 6 AS such that a' = ->a.

Inconsistencies are not allowed in our model and, accordingly, the following invari-
ant must hold.

Property 1 (Consistency of the AS) The authorization state is consistent.

Each time an authorization is granted, the system determines whether the insertion
of the authorizations would introduce an inconsistency in the authorization state. If
so, the grant operation is rejected.

Example 3 Consider to the subject graph illustrated in Figure 1 and the object hi-
erarchy illustrated in Figure 2. Suppose that SAB = 0, WAB = {ai,a2} where:

21

• Oi = (Bob, Administration, read-def,—, w k);

• 02 = (Bob, Emp2,reaa*(Address),+ ,wk).

Authorization a\ states that user Bob is denied to read the directory of the database
Administration; authorization a? states that user Bob is authorized to read the at-
tribute Address of instance Emp2 of class Employees.

Those authorizations generate an inconsistency in the authorization state, since

authorizations 03 £ E(a\) and a4 £ E(d2) where:

• a^ — (Bob, Employees, reacUef,—,wk),

• a4 = (Bob,Employees,reaö'_rfe/,+, wfc),

which are one the negation of the other, belong to the authorization state (Fig-

ure 8).

Database[Administration] al: Bob, read_def

Class[Employees]

Instance[Emp2] <^Tßob, read(Address£>

Legenda:

= explicit positive authorization

= implicit positive authorization

|:j;';: ■:■ :-yy| = explicit negative authorization

I I = implicit negative authorization

= link between elements
of the object hierarchy

= positive implication

- negative implication

Figure 8: An example of inconsistency in the authorization state

6 Access control
In this section, we illustrate how access control is performed. An access request can
be characterized as a 3-tuple (u,o,m) with u G U,o £ 0,m G M, indicating that user
u requests to exercise access mode m on object o.

The access control determines whether fully grant, partially grant, or deny the
access to the user. Consider a request (u,o,m). The access control performs the

22

following steps. First, the system checks whether m is executable on o (for instance,
the read-def access mode on a class allows to read the definition of the class) or on its
components (for instance, the read access mode on a class allows to read all attributes
of all instances of the class). In the first case, the access request is granted if there
exists in the authorization state a positive authorization which satisfies the request,
and it is rejected otherwise. In the second case, the access request specified by the
user is split into a set of elementary access requests with u as subject, a component of
o as object, and an access mode related to m (according to the rules) as access mode.
If all elementary access requests are authorized (i.e., a positive authorization exists
for each of them in the authorization state), the system fully grants the access to the
user; if none of the elementary access requests are authorized, the system denies the
access to the user; if only some of the elementary access requests are authorized, the
system partially grants the access to the user returning the subset of elementary access
requests that are authorized.

The access control can be represented by a function b defined as follows:

b:UxOxM-+ 2Ux0xM x {True,False}.

Given the access request (M,O, m), function b returns {(u.o, m),True) if the access re-
quest is fully granted; it returns ((u,o,m), False) if the access request is rejected; it
returns the set {((u,o,-, mfc),True)} (i.e., the set of elementary access requests autho-
rized) if the access request specified by is partially granted.

Example 4 Consider the authorization state illustrated in Figure 7 and access request
{Mary,Employees,read) which states that user Mary requests to read all instances of
class Employees.

The function of access control b returns the following set: {{(Mary,Emp.,,reaf/),True)}
for all i 4 1. In fact, user Mary is implicitly authorized to read all instances of class
Employees, except for instance Empl. Thus, the access request (Mary,Employees,read)
is partially granted.

7 Conclusions
The semantic concepts of object-oriented database systems make traditional access
control model developed for operating systems and traditional databases systems inad-
equate. Work in the area of authorization models for object-oriented systems is still at
a preliminary stage and many questions are left open. In this paper we have presented
an authorization model for object-oriented databases. The model supports both posi-
tive authorizations (meaning permission to do something) and negative authorizations
(meaning denial to do something). From the authorizations specified by the users the
system derives new authorizations on the basis of the relationships existing among
subjects, objects, access modes, and on the inheritance hierarchies. The model allows
authorizations to be overridden by permitting two types of authorizations (strong and
weak). Strong authorizations cannot be overridden whereas weak authorizations can
be overridden according to specified rules. In the paper we have given the rules for the
derivation and the overriding of authorizations.

23

References
[1] R. AHAD ET AL., "Supporting access control in an object-oriented database lan-

guage," Proc. Third International Conference on Extending Database Technology
(EDBT), Vienna (Austria), Springer-Verlag Lecture Notes in Computer Science,
Vol. 580, 1992, pp. 184-200.

[2] E. BERTINO, C. BETTINI, AND P. SAMARATI, "A temporal authorization model,"
submitted for publication.

[3] E. BERTINO, F. ORIGGI, AND P. SAMARATI, "An extended authorization model
for object-oriented databases," in preparation.

[4] E. BERTINO AND L. MARTINO, Object-Oriented database systems: concepts and
architectures,'1'' Addison-Wesley International, 1993.

[5] E. BERTINO. S. JAJODIA, P. SAMARATI, "Access Controls in Object-Oriented
Database Systems: Some Approaches and Issues," Advanced Database Concepts
and Research Issues, N.Adam and B. Bhargava, eds., LNCS 759, Springer- Verlag,

1993.

[6] E. BERTINO AND H. WEIGAND, "An approach to authorization modeling in
object-oriented database systems," Data and Knowledge Engineering, Vol. 12,
No. 1, February 1994, pp. 1-29.

[7] R. BREITL, ET AL., "The GemSfcone data management system," in Object-
Oriented Concepts, Databases, and Applications, W. Kim, and F. Lochovsky, eds.,
Addison- Wesley, 1989, pp. 283-308.

[8] H.H. BRüGGEMANN, "Rights in an object-oriented environment," in Database
Security, V: Status and Prospects, C.E. Landwehr and S. Jajodia, eds., North-
Holland, Amsterdam, 1992, pp. 99-115.

[9] K. DITTRICH, M. HARTIG. AND H. PFEFFERLE, "Discretionary access control
in structurally object-oriented database systems," in Database Security, II: Status
and Prospects, C.E. Landwehr, ed., North-Holland, Amsterdam, 1989, pages 105-
121.

[10] E. B. FERNANDEZ, E. GUDES. II. SONG. "A model of evaluation and adminis-
tration of security in object-oriented databases," in IEEE-TKDE, vol. 6, no. 2,
April 1994.

[11] L.J. GALLAGHER, "Object SQL: language extensions for object data manage-
ment," in Proc. First International Conference of Information and Knowledge
Management (CIKM) , Baltimore, Maryland, November, 1992.

[12] W. KIM, E. BERTINO, J.F. GARZA, "Composite object revisited," in Proc.
ACM-SIGMOD International Conference on the Management of Data, Portland
(Oreg.), May-June 1989.

[13] F. RABITTI, E. BERTINO, W. KIM, AND D. WOELK, "A model of authorization
for next-generation database systems," ACM Trans, on Database Systems, Vol.
16, No. 1, March 1991, pp. 88-131.

The Integration of Security and Integrity
Constraints in MOKUM

Reind P. van de Riet
Jack Beukering

Department of Mathematics and Computer
Science

Vrije Universiteit
Amsterdam

e-mail: {vdriet, jbeuker}@cs.vu.nl
March, 1994

Abstract

In this paper we will describe how constraints involving integrity and
security can be specified in the active object-oriented knowledge-base sys-
tem MOKUM. Also we will indicate how they are implemented.
Keywords: Security and Database systems, integrity constraints, Object-
Oriented Databases, Active knowledge bases.

Contents

1 Introduction 3

2 About MOKUM: two levels
2.1 MOKUM in a nutshell

4
4
5
6

2.2 About objects, collections, ivnes an classes
2.3 Some details about the implementation

3 About constraints
3.1 classification of constraints
3.2 Security constraints

6
7
8

9
9

12
13 *

16

4 Constraints in MOKUM scripts
4.1 Scripts in MOKUM
4.2 Security in MOKUM

4.3 Visibility and accessability in MOKUM

5 Constraints as MOKUM restrictions

6 Conclusions 18

1 Introduction

In a knowledge base system constraints are very important entities which should
be treated carefully. In particular for active knowledge base systems which
are supposed to realize Information- and Communication Systems (ICS), which
connect people and information systems. One has to accommodate for the fact
that people willfully and unwillfully are changing data and rules about the data.
It is of paramount importance that these changes are governed by rules in the
form of constraints and security checks, which are maintained by the knowledge
base system in a safe way. For the quality of the data the constraints are
important, while access rules must give security in order to be able to guarantee
protection and privacy of people's data. Both kinds of rules are interrelated
very much, notified already in one of the earliest papers by the Ingres group:
[Stonebraker,Wong &; Held, 1976] and which is not been taken care of by most
data- and knowledge base systems: constraints on the data are globally specified
in the form of triggers, while security is defined using a single access matrix.
See e.g. the overview paper [Grefen & Apers, 93] which deals with integrity
constraints in database systems and the paper [Paton.Diaz & Barja, 93] about
constraints in the form of rules in Object-Oriented (O-O) systems.

Our current work on integrity and security in databases can be considered
as a continuation of work by our group in the not so recent past on security and
databases. We explicitly refer here to the work on:

* privacy and security and a programming language approach; see [vandeRiet,
Kersten & Wasserman, 82], [vandeRiet, Kersten & Wasserman, 82], [Was-
serman, vandeRiet, Kersten & Leveson, 1983]

* access control; see [Kersten,85],

* keeping secrets by a knowledge base [Sicherman, deJonge & vandeRiet, 83],

* statistical databases [deJonge, 83] and

* cryptography [deJonge, 85].

In the more recent years our attention was focused on Object-Oriented sys-
tems. We developed the MOKUM ' system, which is an active object-oriented
knowledge base system (see [vandeRiet,89]). Also more formal aspects of Con-
ceptual Modelling we worked on. The current paper can be seen as a study of
the issue of Security within an existing system as seen from the standpoint of
a Conceptual Model. We will describe how constraints involving integrity and
security can be specified in MOKUM. In MOKUM both kinds of constraints are
treated from one viewpoint and are not separated. The basic mechanism for
communication in MOKUM is the message, sent from object to object. It can
always be seen who the sender of a message is. Objects who send and receive
messages can usually be identified with office employees having certain rights
and responsibilities. In this way MOKUM differs from usual 0-0 systems where
objects denote active pieces of software. In most other 0-0 systems constraints
on classes and meta-classes are considered themselves as active objects who be-
come active.This is not the case in MOKUM. We have deliberately designed
MOKUM to be close to the real world applications, where persons and institu-
tions can be active, but where regulations, specifications or collections of things
cannot be active.

'The acronym MOKUM stands for Manipulating Objects with Knowledge and Under-
standing in Mokum (=Amsterdam).

In section 2 we will give a short introduction of the MOKUM architecture.
In section 3 we will give some taxonomy of constraints and security rules. In
sections 4 and 5 we will see how these rules can be treated in MOKUM, first
in the form of scripts, then in the form of restrictions. In section 4 we will also
focus our attention to security constraints, how they can be implemented in
MOKUM and some theory about them. In the final section we will give some
conclusions and describe the status of the MOKUM system.

type person is^a thing
has_a name: string

script part of person endscript
type employee is^a person

has_a mgr: employee
private

has a salary: int
script part of employee endscript

type empl_admisa employee/*shorthand for employee^administrator*/
private

has_a nr_of_employees:int
has_a employees: collection of employee

script part of empLadm endscript

Figure 1: Three type definitions in MOKUM.

2 About MOKUM: two levels

2.1 MOKUM in a nutshell

In Information Systems it is customary to differentiate between intension and
extension. The intension is the form of the IS, called schema or Conceptual
Model, while the extension is the contents of the IS, i.e. the collection of all
objects in the IS.

In MOKUM we have made a principle of this division: we have type defi-
nitions and instances of these types in the form of objects. Each object is the
instance of one (or more) type(s). As shown in fig. 1, objects of type employee
are also objects of type person. We adopt here the convention that all identifiers
which have a pre-defined meaning in MOKUM are printed in bold face. For an
example of a script see figure 2 in a next section.

Objects are made by new . After their creation they have type thing, after
which their only property is that they have an identity: the object .identity,
which is a uniquely determined identifier, in principle not accessible in the out-
side world. After being created they can get other types, such as person or
employee. For example, a new person, later also becoming an employee, identi-
fied by the value of the (Prolog) variable John is created after:

new (John), add type (John, person, [(name, 'Jan')]),
addtype (John, employee, [(salary, 10.000)])

As customary, we say that objects having a certain type are instances of that
type. Because objects have types they have attributes, which may have values.

In our case, John is an instance of person as well as of employee so that it has
the attributes name, salary and mgr, of which only the first two are filled in.
One can give a value to an attribute as follows:

Pete to John:mgr

Asking values of attributes can be done as follows:

S from John:salary

Because salary is specified as private this statement is protected: only
in the script, part of the employee type of John (and in the script parts of its
possible subtypes), this statement will result in putting John's salary in the
Prolog variable S. Outside this script part (with the exception to be discussed
in connection with keepers) this statement will fail. Also this statement will
be successful only when the object who asks for the salary is John itself (or
its keeper, see next discussion). For a more detailed discussion about access
protection see section 4.3.

In a type definition one also can specify restrictions, computed attributes and
scripts. For restrictions and scripts we refer to sections 4 and 5; for computed
attributes we refer to other MOKUM documents (See e.g. [yandeRiet, 89]).

2.2 About objects, collections, types an classes

With types one can reason (epistemic). So inheritance of properties is defined
on the level of types: from the above definitions one can infer that objects of
type employee also have the person attribute name. As far as the object is
concerned, there is no difference between John having salary as attribute and
name. In our perspective it would be wrong to say that the object John in any
way inherits some properties.

Objects stand for entities existing in the Universe of Discourse, which may
be put together in collections (ontology), which also have a long life as they
are persistent and as such stored in an O-O database. In most 0-0 systems
the collection of all objects being instances of a certain type is called a class,
usually with the same name. This is confusing, in particular when that class is
also called an object. A consequence of this principle is that MOKUM does not
have the notion of class, but it has the notion of collection.

Definition: collection and its keeper
A Collection is a set of objects having a certain type, and it can be defined only
as the value of an attribute of an object called its keeper.

It is the task of the keeper of a collection C to maintain security and integrity
rules about C and its members.

The elements of C all have at least one common type. (This condition is not
a severe one, because, if wants to put objects of different types in C, another
type can be introduced, being a supertype of these different types (and one could
take thing for it), and these objects can be made instances of that supertype.

Other attributes of K can be connected to C, e.g. an attribute nr_of_elmts can

denote the current number of elements in C, while an attribute max_nr_of_elmts
can denote the maximum number of elements in C. The combination collection
and special attributes is what other people call "grouping", (see [Motschnig &
Storey, 93])

In the example above we may have several employee administrators, all in-
stances of the type empLadm. All have a (different) collection of employee
objects for which they are responsible. These collections are also protected.
In the script part and in restrictions the access to these collections and their
integrity constraints is regulated.

In the script part the reaction of an object is specified upon receiving some
message. The object can be in different states and dependent on the state it
reacts on messages called triggers. The behaviour of an object can be char-
acterized as a Finite State Automaton. There are two kinds of triggers, one
is activated by another object, called sender, and the other is a reaction on a
timer, set by the object itself. The message itself is also an object and identified
by message; it must be an instance of a user-defined type, being itself a subtype
of the type message type. To transfer parameters in the message one can sim-
ply use attributes. In section 4 we will see some examples. For more extensive
examples one is referred to [vandeRiet, 89].

2.3 Some details about the implementation

The current MOKUM system consists of a compiler, a kernel, a storage facility
and an animation facility. The compiler translates a knowledge base system
written in the MOKUM syntax into Prolog predicates. These predicates to-
gether with the kernel form a Prolog program which can be run as a simulation
for a real ICS system. Objects can be stored in an INGRES database system,
(see [vandeRiet & Gamito, 90]) but not necessarily, they can also be stored in
the Prolog fact base. The animation facility (see [Croshere,vandeRiet & Blom,
93]) makes it possible to see what is happening during a MOKUM simulation.
Objects are shown, for which three windows are used, one is the animation win-
dow in which one can see the objects changing. The system is really very small
(about 20 pages of Prolog text for the kernel, 20 pages of C code for the interface
with INGRES, 20 pages of XPC Prolog text for the animation facility and also
about 20 pages for the compiler, written in C). It is mainly been used in an
educational environment, where it should be easy for students to add facilities,
such as the facility discussed in this paper.

The addition of the restrictions and constraints resulted in a system called
MOKUM-C.

3 About constraints

A constraint is a formula which specifies some properties of some collections of
objects. In its most general form several collections may be involved, while the
constraint may refer to the set properties, such as nr_of..elmts, or combinations
of sets, such as the union or the intersection of two sets, but also to properties of
the individual elements, such as the salary in case of a collection of millionaires.
Furthermore, a constraint may refer to a certain operation, e.g. an update, or
the addition of an object to a collection and the constraint may refer to both
the value before and the value after the operation. Finally, a constraint may
refer to the context in which it should be seen, such as a the object who issues

the update.
In general, one can say that each time some manipulation on an object or

a collection mentioned in a constraint or an object being an element of such a
collection is performed (create/change/inspect/destroy), some check has to be
performed.

3.1 classification of constraints

In the following we will give a classification of the different kinds of constraints
possible.

First, there are constraints which refer only to static properties of the objects,
i.e. properties which must always hold, as soon as an object or collection gets
a certain type (i.e. has indeed properties about which the constraint deals).

Second, there are dynamic properties which are attached to certain opera-
tions; these properties deal with the properties before and after the operation,
for example that a salary may only increase.

Third, there is context dependency, usually the object on whose behalf the
operation is carried out is attached to the operation. (In MOKUM terminol-
ogy: the sender of the message). There may be constraints restricting these
operations. Usually called authorization constraints. We are working in an en-
vironment that objects may stand for persons who want to change or inspect
certain properties, such as their salary. We assume that real persons can sit at
a workstation and be connected to their person object counterpart. One can
imagine that the properties this real person can see and change are the person
properties, but the properties as employee, such as salary, are properties not
freely available. These properties are only available through the interference of
the employee administrator.

The following is a possible list of different kinds of constraints:

Cl Constraints on attributes of one object only:

Cl.l single attribute constraint; example:
0 < age < 140

C1.2 two-attribute constraint; example:
nr of elmts < maxnr of elmts

C1.3 constraint concerning new and old value; example:
new.age > old.age

C2 Constraints on attributes of two objects

C3 Constraints on one collection

C3.1 The properties of the members of the collection are not involved;
example:
B(C) < 10

C3.2 Only the properties of the members of the collection are involved;
example:

Vl£C : x.salary > 1000.000 or

3eec '■ e.function = boss

C3.3 A combination: example:

8(C) < 10 A 3xSC : x.salary > 1000.000

C4 Constraints on two or more collections C and D:

C4.1 intersection constraint: example:
(C n D) = 0

C4.2 constraint involving a cardinality: example:
tt(CUD) < 10

The operations we have to look at are the following: Suppose an object O
is also a member of a collection C.

OP1 only on the single object

OPi.l O's creation

OP 1.2 O gets a new type

OP1.S some attribute of 0 gets a value, without having one before;

OP1.4 some attribute of 0 gets another value;

OP1.5 0 is used as value of an attribute of (another) object

OP1.6 O is destroyed

OP2 only on the collection

OP2.1 C is created

OP2.2 C is destroyed

OP3 on the relation of the object and the collection

OP3.1 O is added into C

OP3.2 O is deleted from C

The constraints which involve old and new values are all attached to certain
operations, usually update operations.

The above operations may all be connected to the actor of the operation,
i.e. the object who issued the request to carry out this operation which must be
entitled to do so. In principle the context can involve the time of the day and
or conditions of other objects. Example: a nurse can inspect a file of a patient
when the responsible physician is not present.

There is a large number of literature about the efficient maintenance of
integrity and security constraints, we only refer to [Weigand, 93] for an overview.

3.2 Security constraints

When a constraint involves explicitly the context in which an operation is taken
place we say that it is a security constraint. For static constraints there is
no security involved, only when the constraints are dynamic one can speak of
security. In this case some operation has to be carried out on some piece of
the knowledge base and the operation is carried out on behalf of some entity,
usually a person. The context is represented by the invoker of the operation and
possibly some other circumstantial information, such as the time of the day, or
mode of operation (e.g. urgency). A typical situation is the Automatic Teller
Machine: dependent on the person who uses the ATM and dependent on the
amount of cash available, money can be withdrawn, which leads to an update
of the client's account in the bank's database. The operation is an update on
the account of the database, the context consists of invoker and the state of the
ATM.

In some security systems one has levels of security. For example, in a military
environment the general can see and do more than a soldier. The information
is characterized as top-secret, secret, confidential and non-confidential, say. We
shall see in the next section how such a security system can be specified in
MOKUM.

4 Constraints in MOKUM scripts

4.1 Scripts in MOKUM

In MOKUM there is a natural place where these checks can be executed, namely
at the script part of the object or of the keeper of the collection involved in the
constraints.

Let us assume that we have an employee object, John, member of a collection
employees with keeper Empl_adm. John also has type person. See figure 1 for
the type definitions.

We assume that salary is a private attribute which can only be seen and
changed by the object itself and by the keepers of the collections the object is
a member of. We assume that John as employee is a member of the employees
attribute of the object EmpLadm. There are two places where it is allowed to
manipulate the salary attribute of John: in its own script, i.e. the script part
of employee and in Empl-adm's script, i.e. the script part of empl_adm.

In principle, the compiler can syntactically check that indeed at no other
place "salary" occurs. This is not enough however as the compiler cannot see
that John is referring his own salary. So a dynamic check is also necessary, and
this is how the kernel of MOKUM works: operations on private attributes are
translated so that this check is carried out. To be more precise: the operation
to , which puts a new value in some attribute of an object O, also has as
parameter the object who is the caller, and when the attribute is a private one
it is checked whether the caller object is the same as the object O. Or, whether
the caller object is among the keepers of O. Evidently, this presupposes that
we have available for every object a list of its keepers. Things are somewhat
more complicated because also the type of the collection has to be administered.
It is possible that a keeper has several types and it is also possible that it is
the keeper of several collections, even of several types. In actual practice when
objects are stored in a separate database the whole of operation and checking
is left to the database system, using some kind of access table.

In any way, on a low level, MOKUM checks whether a certain operation can
be performed by some object in its script part. This provides the means for a
full and most general checking for the context in which some operation referring
to a private attribute is carried out. A message must be sent to the keeper
of the object, or to the object itself. This message should specify the kind of
operation to be performed.

Let us assume for the above example, that there is no script part for em-
ployee, i.e. the employee object can only be operated upon by EmpLadm. We
may have as a rule that an object of type person can only see its own salary
while its manager can change (and for the sake of the example: increase) it. In
figure 2 the script of empLadm is shown which specifies these rules:

Note that the commands in figure 2 should be read as Prolog predicates:
if one fails the rest is not executed. In actual practice we should also have

script
state active:

atjtrigger see.salary:
type .of (sender) = employee, /*is the sender employee?*/
select (E in employees where E = sender),
sender = E, /*is sender this employee?*/
E: salary to message: param, /*return the salary*/
next (active).

at-trigger change_salary:
type of (sender) = employee, /*is the sender employee?*/
select (E in employees where E = message: empl),
sender = E:mgr. /*is sender this employee's mgr?*/
N from message: param, /*get new salary from message*/
N > E: salary. /*is new salary higher?*/
N to E: salary, /*a.ssign to salary attribute*/
next (active).

endscript .

Figure 2: A script for empl adm.

provided this specification with some code for appropriate error messages.
Messages must have a type defined as follows:

2

type message typel is a message type
has a empl: employee /*identifier of the employee*/
has a param: int /*for giving through salaries*/

From this example one can see that quite complex checks can be specified
before some operation is carried out. By providing the low-level identity checks,
discussed above, it is thus possible to create a truly safe knowledge base system
in which the operations are carried out only when the appropriate authorization
checks have been performed successfully.

As another example, take the situation that a salary can only be changed
when both the manager and the boss are acting in concert. Suppose the boss
must first send a message to the Empl adm and within 2 time units the manager
must then send the change salary message.To provide for a secure checking the
Empl adm gets an extra state: attention, which it gets when the boss sends
that message. Only in this state Empl adm is willing to listen to the message
change salary. After 2 units of time the Empl adm changes automatically in
the state active, in which it is not willing to react on the manager's message.
The script now runs as follows:

script
state active: i <

at.trigger see salary: /*same as above"/

2Note that above and in the rest of this paper we allow ourselves some freedom as far as
MOKUM syntax is concerned. Actually, sender is an attribute of message and getting values
in and out of attributes has to be done in MOKUM more clumsily: one should write: "S from
message: sender, S = E" instead of" sender = E". ,

10

next (active).
at ..trigger change J)o_attention:
sender = boss,/*is the sender the boss?*/
now+2 to time_trigger,
next (attention).

state attention:
at trigger change_salary: /*same as above*/

next (active).
at_time time.trigger:/*waited long enough*/
next (active).

endscript

We have shown that quite complex contextual security rules can be put in
the script part of a keeper of a collection.

Turning to the list of Constraints in section 3, we can easily see that all
kinds can be dealt with. Take C4: when there are more than one collections
involved with one keeper, then a keeper type can be specified in which these
collections are values so that this keeper can be made responsible for keeping
all the constraints. When there are more than one keepers involved, these have
to communicate with each other. As an illustration, take as example that there
are two empl_adm's, one for the male and one for the female employees. Let
us call them M and F. The constraint is that their collections may not overlap.
M and F have the same type: empLadm. In this specification of EmpLadm
it is not possible to refer to M and F directly, i.e. by names denoting the re-
spective objects. It is, however, possible to specify an attribute which denotes
the "other" keeper. Let this attribute be called "otherEA". When M and F
are created this attribute gets as value F and M, respectively. The definition of
empLadm may now look like:

type empl adm
private

has .a otherEA:empl adm
has a nr of employees:int
has a employees: collection of employee

script
state active:

at trigger add employee:
send (otherE'A. check membership, message),
R from message :param,
(Ft = 1, /*empl is member of the other EA*/ ;
R = 0, /*empl is not member of the other EA*/
message:empl into employees),
next (active).

at trigger check membership:
sender = otherEA, /*only the other EA is entitled to get an answer*/
(select (E in employees where E = message:empl),
1 to message :param;
0 to message:param),
next (active).

endscript .

11

It would be interesting to see whether a compiler can be made who generates
code like this when given the constraint in its original form:

M : employees n F : employees = 0.

Looking now back at the list of possible operations we remark that the
relevant operations in MOKUM. such as new , adcLtype , from , to , into ,
out of , destroy (for types of objects) and delete (objects), all are used in
the script part and thus under the control of the ICS designer.

4.2 Security in MOKUM

Let us first see how a typical security system can be implemented in MOKUM.
In the next subsection some theoretical remarks will be given. Take the mil-
itary situation as sketched in section 3.2. Suppose the objects of interest are
documents characterized as top-secret (T), secret (S), confidential (C) and non-
confidential (N) and that they are to be inspected by generals (G), lieutenants
(L) and soldiers (S). Gs may see documents characterized S, C and N, Ls may see
C and N documents and Ss may see only N documents. The way to implement
a safe and secure system in MOKUM is to put the documents in a collection,
and to install a keeper of that collection. The keeper is called Security Officer.
The documents have an attribute sensitivity with possible values: 3, 2, 1 and 0.

Another attribute of a document is: contents, in which the contents of the
document is put. Both attributes are supposed to be private. So, only Security
Officers can manipulate both attributes. Military persons have a type which is
a subtype of person, with (at least) one extra private attribute: clearance, with
possible values: 3, 2 and 1. It is supposed that the particular object in charge of
determining the clearance of a mil person is mpm, having type miLperson_mgr.

A possible definition of the types is given in figure 3.

type mil person is a person
private

has a clearance: int
type document is a thing

has a identification: string
private

has a sensitivity: int
has .a contents: string

type mil person mgr is a mil person
private

has a mil persons: collection of mil person
type security officer is a mil person

private
has .a documents: collection of document

Figure 3: Type specification of security problem

In the script part of the security.officer the important security checking can
be specified, as in figure 4.

12

script
state active:

atJ;rigger inspect -document:
type_of (sender) = mikperson,
select (D in documents where D:identification = message:id),
new (M),add..type (M,messageiype2,[(paraml,sender)]),
send (mpm,askior .clearance,M),
/*the clearance is returned in param2 of the message M*/
Clearance from M:param2, destroy (M),
Clearance >= D:sensitivity,
/*the test is successful*/
D: contents to message: param;
/*the test fails and no information is disclosed*/
next (active).

endscript .

Figure 4: A script for the security problem.

As can be seen from this example, it is very important to have a close connec-
tion between the internal person objects and the real persons. It is considered
part of the man-machine interface to make this connection. In a future project
we will extend MOKUM such that a real person can do almost all that can be
described in a script. So real protection is necessary then.

In [Olivier & von Solms, 1994] the authors formulate a taxonomy for security
in 0-0 databases. We notice that many of the different systems they describe
can be implemented in MOKUM, using the notion of private attributes and
keepers of collections, as we have demonstrated above.

4.3 Visibility and accessability in MOKUM

In this subsection we derive some theory about visibility and accessibility in a
MOKUM program. A MOKUM program consists of types, attributes, proce-
dures and scripts. In procedures and scripts one can specify the use of types,
object identifiers and attributes. In the rest of this section we shall use the term
'script' meaning both scripts and procedures.

MOKUM does not provide any protection on the usage of object identifiers
and types. If somewhere in a script the value of an object identifier is known,
e.g. because it is the parameter of a message, it can be used, by asking its type
(type of) and its attributes can be manipulated, provided the attributes are
available. Attributes declared private are protected in the MOKUM system.
All other attributes can be seen and changed by all objects in the script of any
type and no protection is provided.

Also, to make things very simple, protection is full, i.e. it includes read
and write protection. In a future MOKUM system we will build in a more
differentiated form of protection.

In the following we shall focus our attention on protection of private at-
tributes. We will define visibility and accessibility.

A MOKUM program consists of:

• a set of (user-defined) types, called type.set;

13

• a set of attributes, called attr_set;

• a set of facts of the form: attr(T,A,CT) where T in type_set, A in attr_set
and CT has the following form: [Case. Type], where Case = simple, or coll
and Type is either elementary i.e. int, real or string, or is user defined:
Type in type set;

t a set of facts is a(T,S), where T and S in type_set, defining the usual
generalization/specialization. The resulting graph must be cycle free. The
meaning is that T inherits all attributes from S, in particular the private
ones;

• a set of facts of the form: private(A), for some A in ATTR.

In a MOKUM program the attributes must be unique.
We now define visibility: Non-private attributes are visible in all types: for

private attributes, the type in which the attribute is defined has evidently the
property that that attribute is visible. Moreover, an attribute is visible within
a type when that attribute is visible in a super type or when that type is the
type of a collection keeper, whose collection has elements with a type in which
that attribute is visible. In Prolog, this is defined very precisely as follows:

vis(A.T):- A in attr_set, T in type_set, not private(A).
vis(A,T):- A in attr_set, T in type_set, private(A),

(attr(T,A,_);
(attr(T,_,[coll.S]); is_a(T,S)), vis(A.S)

).

Visibility is a property which can easily be detected by the compiler using the
Prolog rule given above. Accessibility presupposes visibility, i.e. the compiler
has checked that access to an attribute is allowed. The MOKUM system also
needs to check that the proper object is involved. This is evidently necessary.
Just a check on visibility means that in the case where salary is a private object
of employee, an employee can change his manager's salary when manager is an
attribute of employee.

For proper access protection MOKUM applies the following rule: suppose
the access involves an attribute of object O. The caller object CO must be the
same as O, or must be one of the keepers of O. So:

acc(C0,0,A,T):- not private(A), vis(A.T).
acc(C0,0,A,T):- private(A), vis(A.T), (C0=0; keeper(C0.0)).

A keeper K of an object O of type t is an object of type kt and attr(kt,a,[coll,t])
is in the program, while indeed O has been put into K:a. Evidently, the latter
can only be checked at run time.

Visibility is a necessary property to check before access to a certain operation
by some object can be allowed. One can see from a simple example why a run
time check on the object's identity is not sufficient.

Suppose in the script part of a person the attribute salary is mentioned, e.g.
in a statement to change it. Now salary is supposed to be a private attribute
of employee, to be manipulated only by an object of type employee or the
keeper of employees. Without the visibility protection it would be possible for
this person to change his/her salary because evidently the object identity test
succeeds. A similar counter example where a keeper of a collection is involved
is the following: a collection consists of persons, maybe a subtype of person,
say tennis_player, and the keeper of this collection wants to know the salary of

14

these persons, which evidently is against the rules. Also in this case a simple
object identifier test would be insufficient.

Visibility can be checked by the compiler, as has been remarked above, it
can also be checked at run time (actually the representation of the MOKUM
type specification, as generated by the compiler, looks quite similar to the above
representation). The reason we let the compiler do this is of course efficiency: in-
stead of checking visibility every time a private attribute is accessed this checking
is done once by the compiler. When we have extended MOKUM with a facility
that the "real" person can manipulate his internal counterpart person object as
if a script were executed, the run time checking of visibility will be built in for
this case.

Let us now see the protection theory applied to the example above. We
have:

type_set = [person, mil_person, document, mil_person_mgr,
security_officer]

attr_set = [name, clearance, sensitivity, mil.persons, documents]
private(clearance).
private(sensitivity).
private(mil_persons).
private(documents).
is_a(mil_person, person).
is_a(mil_person_mgr, mil_person).
is_a(security_officer, mil_person).
attr(mil_person, clearance, [simple,int]).
attr(document, sensitivity, [simple,int]).
attr(document, contents, [simple,string]).
attr(mil_person_mgr, mil_persons, [coll, mil.person]).
attr(security_officer, documents, [coll, document]).

We shall now compute, using the Prolog system the visibility of name, clear-
ance and sensitivity, by asking:

vis(name,T)?-
person, mil_person, document, mil_person_mgr,
security_officer.

vis(clearance.T)?-
mil_person, mil_person_mgr (2*), security_officer.

vis(sensitivity,T)?-
document, security_officer.

and vice versa asking what is visible by objects of type security-officer,
mil person mgr, mil person and person:

vis(A,security_officer)?-

name, clearance, sensitvity, documents.

vis(A,mil_person_mgr)?- /
name, clearance (2*), mil.persons.

vis(A,mil_person)?-

name, clearance.

vis(A,person)?-

name.

15

For another interesting approach to visibility and in particular authorization
in an 0-0 environment see [Rabitti, Bertino, Kim & Woelk, 91].

5 Constraints as MOKUM restrictions

There is a major problem attached to simply putting the maintenance of the
constraints in the script part, namely the constraints have to be coded by the
MOKUM programmer in the form of rather detailed MOKUM instructions. It
would be nice that the MOKUM compiler takes care of some of these constraints.
In this section we will see how this is done and how far we can go.

We will introduce the notion of restriction. A restriction is always connected
to a type and to some attributes of that type. A restriction is furthermore in-
heritable. Both the compiler and the MOKUM kernel have to deal with a
restriction. In principle, the compiler translates a restriction into Prolog code,
while the kernel is performing an update after checking that the particular Pro-
log code is successfully executed. If not, the kernel refuses to carry out the
update. An example of a restriction is the following one where a person's wage
is related to that person's age:

type person
has a name: string
has a wage: int
has .a age: int
restriction age, wage: Restr procl

proc
Restr _procl:-

A from age.
W from wage,
W < A.

endproc

Each time age or wage gets a new value (operation 0P1.4) this restriction is
invoked substituting the new value into either age or wage, the Prolog procedure
Restr procl is invoked and it must return successfully.

With these kind of restrictions we are able to treat the constraints in cate-
gories Cl.l and 01.2 of section 3. Denoting the old value of an attribute, that
is the value before the update, with A from attribute, and the new value with
the attribute itself, we can relate old and new values of attributes, e.g. in the
restriction:

restriction age: Restr proc2
proc

Restr proc2:-
N = age, /*new value*/
0 from age, /*old value*/
N > 0.

endproc

Such restrictions are appropriate for connection with one attribute as only
one attribute can be changed at a time. These kinds of restrictions presuppose

16

that there always is an old value, which sometimes is not the case (Operation
OP1.3). In MOKUM one can handle such cases by first checking whether the
value is available, as is illustrated in the following example:

Restr_proc3:
N = age,
(O from age, !, N > 0 ;
true /*there is no old value for age*/).

Constraints of category C2 can principally not be treated this way, they
must be handled using a script. Such constraints typically refer to more than
one object, such as the constraint that a spouse of a spouse of someone must
be that someone. Evidently, such a constraint can not be maintained if the
registration of a marriage involves two actions: changing the marital status of
the husband and doing the same with the wife. This typical constraint must be
defined in a script of the keeper of marriages.

Let us now turn our attention to the constraints of category C3. When the
properties of the members are not involved the constraint usually refers to prop-
erties of the set itself, e.g. number of elements. The collection keeper should
now have an extra attribute to keep track of such a property. Upon insertion
and deletion of an element of the collection such an attribute must be updated
and possibly checked. With the tools described above one can have:

type empl adm
has a nr of employees:int
has a maxnr_of employees:int
has a employees: collection of employee
restriction nr of employees : Restr_proc4

proc
Restr proc4:-

N from nr of employees, M from max nr of_employees,
N < M.

endproc
script

at trigger insert empl: . ..
N from nr of employees. Nl = N+l,
Nl to nr of employees,
/*if successful then insert in employee collection*/
... into employees, ...

endscript

The constraints of category C3.2, where properties of the members of a col-
lection are involved, can also be treated by restrictions. Take as example:

"eEemp/oyees* e.age J> L\j

17

This constraint requires that the update of the age attribute of some person
involves a check whether that person is, as an employee, member of employees.
Note that the MOKUM kernel knows the keepers of the collections to which
a certain object belongs; this facility had to be implemented for proper access
control anyhow. The above constraint is specified in the type of the collection
keeper, in our example: empLadm, as if it were a restriction on the elements of
the collection:

restriction employees : Restr_proc5
proc forall employees: Restr_proc5:- (A from age, A > 20).
endproc

The compiler can see that this restriction is actually a restriction on age of
employee objects and translates this restriction in the following one:

proc Restr_proc6:- (A from age. A > 20). endproc

This restriction is then connected to the age attribute in person (age in
employee is inherited from person). The attribute age then has two restric-
tions connected to it: Restr procl and Restr _proc6. When the age attribute is
changed Restr.procl is called always and Restr_proc6 is called only when the
object is a member of an employees collection.

Also, when an element is added to the collection the restriction is executed
of course.

Constraints involving existential quantifiers cannot be accommodated by
restrictions in MOKUM. They should be treated in the script parts. The same
holds true for constraints of category C3.3.

Looking at the list of operations, we see that the restrictions can be combined
with the operations OP1.3, OP1.4 and OP1.5 (there is no difference between
ordinary values and object-values in MOKUM) and OP3.1 and OP3.2 (the set-
membership operations). For the other operations MOKUM restrictions cannot
be used.

For security constraints, involving the context, in the form of the invoker
and its environment, as introduced in section 3.2, we see that restrictions could
be used, in combination with a MOKUM procedure. In the procedure we could
specify constraints on invoker and environment. However, this would be very
unnatural. A much simpler way is to specify the security constraints in the
script, as we have shown at the end of section 4.

6 Conclusions

In this paper we have demonstrated how integrity constraints, referring in par-
ticular to the quality of the data, and security constraints, referring to protection
and access rights, are treated in an integrated way in the MOKUM system. It
is argued that all constraints, whether they refer to attribute values of one or
several objects, whether they refer to properties of several collections, combined
with properties of their members, or whether they refer to access rights, they
can all be written as Prolog predicates in the form of a script. Many of them
can also be specified in the form of restrictions on attributes and collections.
These are much easier to read and to specify. For a secure implementation
it turned out to be necessary to build in some low level control performed by

18

the MOKUM kernel, this pertained to the checking of restrictions as well as to
access control.

One can compare this treatment with the one in [Bassiliades & Gray, 94],
in which the authors describe how in their CoLan system all constraints are
translated into Prolog predicates, which are also connected to certain update
operations. No mention was made in their paper, however, of security and
protection rules.

It is our conviction that the fact that in MOKUM has only two levels: objects
and types, specifying constraints on objects and on collections can be done in
a very direct way. It is also possible to make a compiler which takes some of
the burden of the constraint specifier away. It would be nice to see how far we
can go in building a compiler which translates the constraints written in a high
level language, like FOL, into the scripts we use for MOKUM objects.

Another future addition to the MOKUM system is that the animation facility
is extended with a window in which a real person, as end user, can interactively
communicate with his "own" object. The manipulation available for the real
person comprises all the commands which can be used in the trigger part of a
script. Having this facility makes it possible to experiment with a knowledge
base who is willfully changed in unforeseen ways in order to demonstrate that
its constraints and security rules are sufficiently strong.

Another interesting problem is to make a tool which can check whether
constraints are inconsistent. For example a constraint on an object type may
be in conflict with a constraint on the elements of a collection of objects of that
same type. This is a problem which in general leads to undecidability, but for
special cases, for example, range restrictions, is solvable. A similar problem can
be formulated for constraints concerning types and subtypes. These problems
are to be worked out in the future.

Our group is also working on how to use linguistics in the area of Modelling
Information and Communication Systems. One of the projects is how to trans-
late a high level language, in which natural language and language in the form
of pictures and diagrams is mixed, into MOKUM specifications. This involves
also the security and integrity constraints we discussed in this paper.

References

iBassiliades & Gray, 94] N.Bassiliades, P.M.D.Gray, CoLan: A Functional Con-
straint Language and i ts Implementation, Data and Knowledge
Engineering, forthcoming.

[Croshere, vandeRiet & Blom, 93] R. Croshere, R.P. van de Riet, A.Blom, An
Animation Facility to Simulate an Information and Communica-
tion System, in: C.Rolland (Ed.) Proceedings CAiSE93, Springer,
199 3, pp. 547-568.

[deJonge, 83] Wiebren de Jonge, Compromising Statistical Databases Respond-
ing to Queries about Means, ACM Transactions on Database Sys-
tems, Vol.8, No. 1, (March 1983) pp. 60-80.

[deJonge, 85] W.de Jonge, Security and Privacy in Information Systems, Some
Technical Aspects, Ph.D. Thesis, Vrije Universiteit, Amsterdam,
1985.

[Grefen & Apers, 93] P.W.P.J. Grefen, P.M.G. Apers, Integrity control in Re-
lational Database Systems - A n Overview, Data and Knowledge
Engineering, Vol. 10, nr. 2 (March 1993), pp. 187-2 23.

19

[Kersten, 85] M.L. Kersten, A Model for Secure Programming Environment,
Ph.D. Thesis, Vrije Universiteit, Amsterdam, 1985.

[Motschnig & Storey, 93] R.Motschnig-Pitrik, V.C.Storey, Grouping: an effec-
tive construct for mod elling sets , private communication, 1993.

[Olivier & vonSolms, 94] Martin S. Olivier, Sebastiaan von Solms, A Taxon-
omy for secure Object-Oriented Databases, ACM Transactions on
Database Systems, Vol.19, No. 1, (March 1994) pp. 3-46.

[Paton, Diaz & Barja, 93] N.W.Paton, O.Diaz, M.J. Barja, Combining active
rules and metaclasses for enhanced extensibility in object-oriented
systems, Data and Knowledge Engineering, Vol. 1 0, nr. 1 (Febru-
ary 93), pp. 45-64.

[Rabitti, Bertino, Kim & Woelk, 91] Fausto Rabitti, Elisa Bertino, Won Kim,
Darrell Woelk, A Model of Authorization for Next-Generation
Database Systems, ACM Transactions on Database Systems,
Vol.16, No. 1, (March 1991) pp. 88-131.

[Sicherman, deJonge & vandeRiet, 83] George L.Sicherman, Wiebren de Jonge,
Reind van de Riet, Answering Queries Without Revealing Secrets,
ACM Transactions on Database Systems, Vol.8, No. 1, (March
1983) pp. 41-59.

[Stonebraker, 76] Michael Stonebraker, Eugene Wong, Peter Kreps, The Design
and Implementation of INGRES, ACM Transactions on Database
Systems, Vol.1, No. 3, (Sep. 1976) pp. 189-222.

[vande Riet,Kersten & Wasserman, 82] R.P. van de Riet, M.L. Kersten, A.I.
Wasserman, A Module Definition Facility for Access Control in
Communicating Data Base Systems, in: vandeRiet & Litwin
[Eds.J Distributed Data Sharing Systems, North Holland Publish-
ing Company. 1982. Also published in: Proceedings of a Confer-
ence on Security and Privacy, 1980, IEEE Computer Society.

[vande Riet, Kersten,deJonge & Wasserman, 83] R.P. van de Riet, M.L. Ker-
sten. W. de Jonge, A.I. Wasserman, Privacy and Security in In-
formation Systems using Programming Language Features, Infor-
mation Systems, Vol. 8. 2, 1983, pp. 95-103.

[vandeRiet, 89] R.P. van de Riet. MOKUM: An object-oriented active knowl-
edge base system . Data and Knowledge Engineering, Vol 4, No.
1, North Holland, 1989. pp 21-42.

[vandeRiet & Gamito. 90] R.P. van de Riet, M.V.Gamito Dignum, Interface
MOKFM/Ingres IR-215, Faculteit Wiskunde en Informatica, Vrije
Universiteit, Amsterdam, mei 1990.

[Wasserman, vandeRiet, Kersten & Leveson, 83] Anthony I. Wasserman, Reind
P. van de Riet, Martin L. Kersten, Nancy Leveson, A Formal In-
tegrated Approach to Data and Usage Integrity in Health Infor-
mation Systems, in: G.Griesser.J.P Jardel, D.J.Kenny, K.Sauter
(Eds.), Data Protection in Health Information Systems, Elsevier-
Science Publishers, 1983. '

Constraint Management in Knowledge Bases, in: R.P. van de Riet,
Kennisbanken, Course notes, Faculteit Wiskunde en Informatica,
Vrije Universiteit, Amsterdam, 1993, pp. 153-178.

20

Queries, updates, and transactions:
Chair: O. Costich

Consult, to NRL, VA

Field Level Classification and SQL

Simon R. Wiseman

Defence Research Agency, Malvern, Worcestershire WR14 3PS, England

ABSTRACT

The SWORD secure DBMS is unique in that it provides field level classifications
which are not equivalent to row level classifications. This has a significant impact
upon the query language used to access the database. In particular, it is necessary to
handle the results of expressions which clients are able to know exist, but are not
cleared to know the actual value. Also, it is desirable to generate detailed, field level
information labels. The paper focusses on the effect of these requirements on the
semantics of SWORD's secure variant of SQL.

1. INTRODUCTION

In the SWORD Secure Relational DBMS [Wood et al 92], Information Flow is
controlled using field level classifications. This is in contrast to the emerging Secure
RDBMS products, which only add a single classification per row. The important
difference between the two approaches is that with field level classification a client is
able to detect the existence of data even when their clearance is insufficient to allow
them to observe the data's value. With such row level classification, the only data that
can be detected is that which can also be observed.

This paper describes the extended form of SQL, called Secure SQL (SSQL), which has
been devised as the query language for SWORD. The emphasis is on the semantic
problems associated with field level classifications, support for trustworthy clients and
providing detailed Information Labels.

The addition of row level classifications to a DBMS need have very little impact on the
query language. The essential addition is the ability to use the row label in
expressions. With SWORD's field level classifications there is a need to handle
values which the client is not cleared to observe, and this makes a significant
difference to the semantics of the query language.

Alternative field level classification schemes have been proposed, but these are
equivalent to row level classifications [Qian&Lunt92|. In these schemes, the existence
of a field is hidden from a client with insufficient clearance to observe its contents, by
the presence of a lowly classified field (which, if nothing else, contains a null). This
results in polyinstantiation, with consequent loss of system integrity [Wiseman89].
SWORD deliberately adopted the Insert Low approach [Wiseman90] to avoid
polyinstantiation and the associated problems.

Support for trustworthy clients is often provided by a system of privileges, but these can
be rather crude and difficult to manage. Instead SSQL allows the text of a query and the
fact that it is issued to be classified lower than the client's clearance, while still
preserving the Information Flow policy. Such support is easier to use and manage but
significantly complicates the Information Flow constraints inherent in the semantics,
though the paper does not describe these in any detail.

The Secure DBMS products all allow simple Information Labels to be attached to rows
retrieved from the database. SSQL tries to provide more detailed information, by

This work was! carried out for the UK Ministry of Defence under order NNR/19h/93.

labelling both retrieved rows and their fields, and by taking into account the subtleties
of complex predicates. DBMS Information Labels, which are sometimes called
Advisory labels, are strongly related to CMW [Berger et al 90] "Information Labels"
although the mechanics of their operation are quite different.

2. SECURITY POLICY

The SSQL security policy constrains information flows and defines Information
Labels.

2.1 Information Flow Security

The Information Flow Security policy is a strong statement about the way in which
information is permitted to flow through the DBMS. All inputs (queries) are labelled
with classifications that indicate the sensitivity of the information conveyed by the
input. All clients are labelled with a classification, their clearance, which restricts the
information they are permitted to observe.

Roughly, the policy, which is called "No Flows Down", is that no client may learn
anything about information entered into the database, unless their clearance
dominates the classification given that information. This can be put more formally as
follows:

Clients that have insufficient clearance to see any difference between
two sequences of inputs, may not see any difference in the sequence of
results caused by those inputs.

This is a generalisation of the Non Interference property defined by Goguen and
Meseguer's seminal paper [Goguen&Meseguer82].

2.2 Labelling Results

The result of a query provides some basic facts directly, but implies more facts by virtue
of the context in which it arises. That is, knowing the answer gives some information,
but knowing the question as well gives much more. Generally, the direct facts are
classified lower than the implied facts.

In some applications, it appears useful to know what other clients, in terms of
clearance, are able to learn the various facts encoded in a result. Thus results are
labelled to provide this information. A formal statement of the policy is given in
[Wiseman93].

3. MULTI-LEVEL QUERIES AND RESULTS

In SSQL, tables, queries and the results of a select query are all multi-level entities.

3.1 Multi-level tables

Tables in SSQL are multi-level entities, structured in two-dimensions: row and
column. This two-dimensional structure can be represented as an object hierarchy
consisting of a number of rows each with the same number of fields.

Each table has a classification, which is used to protect the table's schema information.
The existence of a table is classified independently by the classifications in the
hierarchical directory system which is used to name tables [Cant et al 94]. The
directory system is an important extension to SQL which allows tables to be named in a

similar way to files in an operating system. The directory structure allows tables with
sensitive names to be hidden inside highly classified directories.

The existence of a row in a table is given a classification, though this row existence
classification must dominate the classification of the table. In addition, no two rows in
a table are allowed to have incomparable existence classifications. This constraint
permits the rows to be stored in order of increasing existence classification, which is
necessary to avoid highly classified information from being encoded into the time
taken to process a query.

The existence of each column in a table is given a classification, with similar
restrictions. However, unlike with hidden rows, the data in hidden columns can be
processed without affecting query execution time through the judicious use of list
manipulations. Thus rows can be inserted or deleted, without execution time revealing
highly classified information, even if the table contains hidden columns.

Each field in a table is also given a classification. This field classification must
dominate both the row existence class of the row it is within and the column existence
class of the column it is within. That is, the object hierarchy which makes up a table is
'Compatible' in the [Bell&LaPadula76] sense.

For each column in a table, there is a row in a data dictionary table which describes it.
If the existence of a column is to be hidden from users with low clearances, then the
corresponding row in the data dictionary must also be hidden. This is achieved by
classifying the existence of the row to the classification of the column it describes. This
is the only practical use of tables with varying row classifications that has so far been
identified, so the restrictions on their use does not appear to be a problem.

3.2 Multi-level queries

Queries in SSQL are generally multi-level entities. However, those clients which
cannot be trusted to maintain the separation between the different elements of the
query, are constrained to issuing single-level queires. Multi-level queries allow
trustworthy clients to change the database in ways which are visible to clients with
lesser clearance, while at the same time preserving "No Flows Down".

Within the SSQL syntax, it is only possible to label expressions. This is achieved by
enclosing the expression in brackets and prepending a (constant) classification. The
classification of the query as a whole is given by a classification prepended to the
query.

The following query is shown as an example. It is given an overall classification of
Confidential, but part of its where clause is classified higher, at Secret.

rCl SELECT * FROM flights
WHERE dest IS NOT NULL AND [S](cargo = 'Bombs')

This query can be seen in its entirety by clients with clearances of Secret or above.
However, clients with Confidential clearance would see a censored structure:

[Cl SELECT * FROM flights
WHERE dest IS NOT NULL AND [S](not cleared)

In practice, one client is not able to observe the queries issues by another. However, it is
sometimes possible to infer details about those queries by observing the effect they have
on the database. In these cases, SSQL is such that effects observed by a client will not

reveal anything about the nature of parts of others' queries that are classified higher
than the client's clearance.

In the case of stored procedures, a client may execute a query which is not completely
visible to them. In this case, the query will fail if that part of the query turns out to be
relevant to the query's execution. For example, suppose a client cleared to Confidential
executes the above query. This will successfully return no rows if all rows in the table
have a null dest field, however it will fail if any row has a non-null dest, because it is
then necessary to compute the 'invisible' condition.

3.3 Multi-level results

The result of an update, insert or delete query is a simple message, however select
queries yield Derived Tables which are themselves multi-level entities. The structure
of a Derived Table is similar to that of real tables, but the labels are used to convey
additional information about how the result was formed. These labels may be
'Incompatible', meaning that the labels may decrease as the tree is descended. Hence,
untrusted clients may usefully be given a multi-level result, but their clearance will be
greater than all the labels within it. The derivation of the labels in Derived Tables is
discussed in §6.

4. CALCULATING THE VALUE OF EXPRESSIONS

In SSQL, the client does not always have sufficient clearance to be able to compute an
expression. This has a significant effect on the semantics of expressions.

4.1 Arithmetic and Comparisons

An SSQL query will only be evaluated in terms of those rows whose existence is
classified at a level which is dominated by the client's clearance. In general, the query
will have to compute expressions for these rows. These expressions are used in Where
clauses, Select lists and so forth.

In some cases, the results of these expressions will depend upon the contents of fields
which are classified at a level which is not dominated by the client's clearance. This
means the value of the result cannot be revealed to the client, even though the client is
cleared to know that there is such a result.

In effect, the result of computing an expression for a given row is either a value of the
appropriate type, or a special value called Not Cleared. If the client's clearance permits
them to learn the result of the expression, they receive the proper value, while if their
clearance is insufficient they receive Not Cleared. Note that Not Cleared is special
only because it cannot be stored in a field of a table, even though it can be stored by the
client software if required.

The simplest form of expression is a constant. The result of such an expression is that
constant, and is always visible to the client because the client provided the constant as
part of the query.

Another simple form of expression is a column name, the result of which is the value of
the row's field in that column. However, in SSQL the client's clearance is first checked
against the field's classification. If the clearance dominates the classification, the
result is the field's contents, otherwise the true value is ignored and the result is Not
Cleared.

For arithmetic and simple comparisons, the result is Not Cleared if any of the
arguments are Not Cleared. Some examples are shown in the following table:

1
2

Not Cleared

Not Cleared

False False Not Cleared
True False Not Cleared

Not Cleared Not Cleared Not Cleared

Actually, SSQL is slightly over-strong in this respect because it is sometimes possible to
give a correct answer even when one argument is Not Cleared. For example, the
smallest integer is less than or equal to all other such integers of the same precision.
Thus a query language with the following behaviour for 16 bit two's complement
integers would still be secure:

-32768 2 Not Cleared

-32768
2

Not Cleared

False False False
True False Not Cleared

Not Cleared Not Cleared Not Cleared

However, SSQL does not provide for such special cases as any implementation would be
rather inefficient and the relaxation does not seem particularly worthwhile.

4.2 Field & Row Labels

In SSQL it is possible to use the labels attached to fields and rows as expressions of type
Class. If the rows are from a joined Derived Table, it is possible to select the row labels
of the individual tables that contribute to the join. The syntax is as follows:

CLASS OF column name - label of a field
CLASS OF ROW - label of row
CLASS OF ROW OF table name - label of contribution to joined row

A client who has sufficient clearance to detect the existence of a row, is always able to
observe the row's existence classification and the classifications of its fields. Although
some applications may not wish this information to be so freely available, it is not
precluded by "No Flows Down". When necessary, stricter control can be achieved
through the judicious use of triggers I Lewis et al 92!.

The emerging secure DBMS products only support row labels, and all essentially treat
this as an additional column of the table. Unfortunately, this approach does not scale to
field level labelling and so SSQL uses a different form of concrete syntax. Another
advantage of the SSQL syntax, is that it requires no additional reserved words. This is
because, in SQL, "<ident> OF" is not legal syntax.

4.3 AND/OR Predicates

Boolean expressions, which are called predicates in standard SQL, can often be
computed accurately even when one argument is Not Cleared. For example, when
False is ANDed with either True or False, the result is False. So if the client's
clearance is sufficient to determine that one argument is False, the result can be
determined without examination of the other argument, even if it is Not Cleared.

One further complication in SQL is that truth values are three-valued, since a predicate
may evaluate to Null (called unknown in the standard). Thus in SSQL, truth values
are four-valued, since predicates evaluate to False, True, Null or Not Cleared. This is
shown in the following truth tables:

AND False True Null Not Cleared

False False False False False
True False True Null Not Cleared
Null False Null Null Not Cleared
Not Cleared False Not Cleared Not Cleared Not Cleared

OR False True Null Not Cleared

False False True False Not Cleared
True True True True True
Null False True Null Not Cleared
Not Cleared Not Cleared True Not Cleared Not Cleared

The behaviour of AND and OR predicates with respect to Not Cleared values provides
some very important functionality. When updating a table, the Where clause
expression is used to determine whether a particular row should be modified (see §5).
However, if computing the Where clause results in Not Cleared for any row, the query
is abandoned with no rows being modified. If the client wishes to update those rows
which meet the Where clause criteria, except where the clearance is insufficient to
determine this, it is necessary to augment the Where clause as follows:

UPDATE WHERE condition AND clearance is high enough to compute condition

As a concrete example, consider the following table and update query issued by a client
with a clearance of Confidential:

Payload
Id Weight

123 IUl
456 IUl
789 IUl

42 |C|
42 [SI
0 [C|

UPDATE Payload SET Id = 0
WHERE Weight > 10 AND CLEARANCE DOM CLASS OF Weight

With the first row, the client is able to observe the Weight and hence can determine that
the Where clause expression is True. Similarly, with the third row, the client is able to
determine that the Where clause is False. However, with the second row, the client is
not able to observe the Weight, hence the first part of the Where clause is Not Cleared,
but the second part of the Where clause yields False. Thus the entire clause is False and
the row is not selected for update. Without this second part, the Where clause would
yield Not Cleared and the whole update would fail.

Such Where clauses are particularly useful, but adding the correct clearance check is
tiresome and error prone, particularly when AND and OR predicates are nested. So, to
make things easy, SSQL introduces two new monadic boolean operators (predicates),
called DEFINITELY and POSSIBLY. These are defined by the following truth table:

X DEFINITELY x POSSIBLY x

False False False
True True True
Null Null Null

Not Cleared False True

The example query given above can now be restated using the DEFINITELY operator:

UPDATE Payload SET Id = 0 WHERE DEFINITELY Weight > 10

TU- P?' J^SIBLY operator wouid tie used when some action is required if a condition can
tie seer to he True or the client's clearance is insufficient to compute it

4.4 Set. Functions

■SQL provides a variety of set functions (sometime« called aggregate functions) such as
■Sum and Maximum. These are applied to a multi-set of values which are obtained by
evaluating an expression for a number of rows. Optionally, duplicates may be removed
from the multiset before the function is computed In SSQL additional set functions are
provided., including set forms of Leas« Upper Bound and Greatest Lower Bound on
classifications

Fo; SSQ.C ■esult of one
(VU Cleared

Not Cleared if any of the values in

ida-rs SQ> 'ii'-c includes an .'additiona! set. i'uncuor
is ;;OI:

NT; ' <'hich count? the c:,mhi■:• U -ows in
"NT DISTINCT exp) which eounC the number of;
answer for the given expression

■■ailed COUNT This has two
the- set being considered, and
s*s that give a distinct, non

Ur Hsiifi. the '• UUNTU) function is slrnighfforwa.rd. in that it simply provides a count
of Ihr number of
whose existence
ci
alwar-. seam their number

rows in the «ot being considered The set will only ever contain rows
is classified with a. classification that is dominated by the client's

ranee Thus the client is always cleared to detect all the rows and hence may

in SSQL the Distinct form of Count is more interesting because it includes an implied
equality test and test for Null If any rows are such that the expression yields Not
Cleared, it is not possible to determine whether the row should be discounted, either on
the grounds of giving Null or being a duplicate value. So. if the client's clearance is
insufficieni to compute the expression for any of the rows being considered, the overall
result of fh'-' Count Distinct is Not Cleared.

The following table shows the results of computing various set functions against the
row:- m the Payload table for clients with two different clearances:

CLIENT 01LARANCE

iO!
SUM(Weight)

Mot Clearer!
8-1

COUNT*

3
COCNT(DISTINCT Weight)

Not Clearer!
42

L-". U nan fined Predicates

in standard SQL, a Quantified Predicate is one where an expression is compared
against each of the values in a one column wide Derived Table. All the usual
;r;ihmetio comparisons may he made and there are two forms of the predicate; one

which gives whether some selected value meets the condition and one which gives
whether they all do.

In effect, such predicates are a series of tests, AMDed together in the case of the ALL
form and ORed together in the case of the SOME form. Hence in SSQL the rules of AND
and OR with respect to Not Cleared values applies.

4.6 Exceptions

The SQL standard does not detail how arithmetic exceptions such as overflow should be
handled. In a secure environment, such exceptional behaviour could be the source of
illicit information flows, so it is important to be clear about the effects.

The following fragment of an embedded SSQL/Ada program shows how inappropriate
exceptional behaviour could be exploited by a client to obtain the (integer) value of a
field which has a classification not dominated by the client's clearance:

declare
SSQL DECLARE STATEMENT st AS

SELECT Weight + :P FROM Payload WHERE Id = 456;
SSQL DECLARE CURSOR c;
SSQL DECLARE VARIABLE res : Integer;
SSQL DECLARE VARIABLE try : Integer := Integer'last; - start with largest

begin
loop

SSQL OPEN CURSOR c FOR st USING try FOR p
begin

SSQL FETCH FROM c INTO res
exit, - weight + try = integer'last,

exception
when ssql_interface.overflow => null; -- weight + try > integer'last

end;
try .-■ try - 1;

end loop
text_io.putJine("weight - " & integer'image(integer'last-try));

end

This repeatedly attempts to add some constant to the quantity field of a particular row.
The constant starts off as large as possible, and is gradually decreased. At first an
arithmetic overflow will occur during query processing, but this is handled by the loop
and the search continues. Eventually the constant is made small enough so that an
overflow does not occur. At this point a forced exit from the loop is made and the value
in the field can be computed.

SSQL avoids such problems by introducing exceptions as special values. With respect
to classification checks, these exceptions are treated like any other data. In effect, the
clearance check occurs before the arithmetic takes place The following table, which
gives some example results for addition of 16 bit, twos complement integers, shows this:

-32768 32767 Not Cleared
32768

1
32767

Not Cleared

Overflow
-32767

-1
Not Cleared

■32767
2

Overflow
Not Cleared

-1
Overflow
Overflow

Not Cleared

Not Cleared
Not Cleared
Not Cleared
Not Cleared

For comparisons the result is an exceptional value if any of the arguments are
exceptional values, but for ANDs and ORs an exceptional value as an argument need
not. lead to an exceptional result, as the following table illustrates:

X y x AND y xORy
True
False

Not Cleared

Exception
Exception
Exception

Exception
False

Not Cleared

True
Exception

Not Cleared

5. WHERE, GROUPBY AND HAVING CLAUSES

An SQL query contains three clauses, Where, Groupby and Having, which are used to
identify the rows that are to be selected, updated or deleted.

The Where clause is processed first It. consists of a predicate (boolean expression)
which is evaluated for each of the rows in the table being processed. If the expression
yields False or Null for a particular row, that row is removed from future
consideration. The default Where clause is the constant True.

The Groupby clause, which consists of a set of column names, is now applied. The rows
being processed are divided into the minimum number of groups, such that the rows in
a particular group all have the same values in the fields of the specified columns. If no
Groupby clause is specified, all the rows are formed into one large group.

Finally, the Having clause is applied. This is a predicate which is evaluated for each
group The expression must evaluate to the same value for each row in a group,
otherwise the query fails completely. Any group for which the Having clause is False
or Null is now discarded en masse. The default Having clause is the constant True.

The main effect of the Groupby clause is on set functions For a particular row. a set
function applies to all the rows in that rows group. In SSQL. Set functions in the Where
clause apply to all the rows in the table being processed.

if. SSQL, for Update and Delete queries and Select queries that occur inside other
queries, the client clearance must be sufficient to compute the value of the Where clause
for each and even' row in the table. If the result of the Where expression for any row is
Not Cleared. or is some exception, the query fails. For Select queries at the outer level,
such rows are ignored and the select continues, although the client is able to ask
whether this has occurred.

Processing the Groupby clause is in effect a number of equality tests. Thus the client
must be cleared to observe all the data in the columns mentioned in the Groupby list. If
this were not so for some row, it would not be possible to decide in which group the row
belongs Hence, if the classification of any of the data in the Groupby columns is not
dominated by the client's clearance, the query fails.

SSQL also allows rows to be grouped according to the classification of fields in a
column. However, a client is always able to observe the field classifications in any row
that they are cleared to know exists. Hence it is always possible to form groups on this
basis The following example illustrates how the syntax of Groupby clauses has been
extended to allow this:

SELECT AVGKweight! FROM Payload GROUP BY CLASS OF Weight

The rules for processing the Having clause are similar to those for the Where clause.

6. DERIVED TABLES

A Derived Table can be formed by extracting data from a stored table or by combining
other Derived Tables in a variety of ways.

6,1 Field Classifications

The field classifications of a Derived Table are effectively Information Labels, which
are the minimum clearance a client can possess such that it is still possible, using
some query or other, to learn the facts derived from the fields.

The Information Label given for a constant is always Unclassified (lattice bottom).
This is because all clients know about all constants, so anyone can construct a constant
expression.

For a column name expression, the field's classification is used as the Information
Label. This is because the field classification is the lowest clearance a client can have
if they are to learn the field's value.

The Information Label generated for arithmetic operations and comparisons is given
by the least upper bound of the arguments' Information Labels. This is because a client
must be cleared to know the value of all arguments in order to learn the result.

Deriving the Information Label generated for an AND/OR predicate is more complex.
This is because the result of such an expression can sometimes be known even when
some arguments are not known. As the following tables show, the Information Label is
usually the least upper bound of the arguments' Information Labels, However, if the
result, of an AND is False, then knowing just one of the False arguments is enough to
learn the answer Hence the Information Label should be that of the 'lowest' False
argument Similarly for OR.

AND OR
False lowest' False argument False lub arguments
True lub arguments True lowest' True argument
Null lub arguments Nu'l lub arguments
Not Cleared lub arguments Not Cleared lub arguments

Unfortunately, security classifications are not always comparable, so there may not be
a 'lowest', In the case where the Information Labels of all the False arguments are
comparable, the Information Label of the AND's result is simply the greatest lower
bound of the False arguments' Information Labels. When they are incomparable, there
is no one correct Information Label. This is because there are several possible
'minimum' clearances which are sufficient to learn the result.

Rather than support multiple Information Labels, which is just too difficult to
implement and does not seem very useful, the incomparable Information Labels are
combined in the following way. First the labels are partitioned into the minimum
number of sets of labels which are comparable. The greatest lower bound from each set
is taken and then the least upper bound of these is used as the result's Information
Label. Although this operation sounds complex, an iterative bit-pattern
implementation is quite straightforward.

For arithmetic set functions, such as SUM and AVG, the Information Label is the least
upper bound of all the Information Labels of the expressions calculated for each row.

The set function COUNT(*) returns the number of rows in the table (strictly, the
current, group of the table). The result is completely unrelated to the contents of the rows,
but reveals information about the existence of each row. Hence, the Information Label
is the least, upper bound of the existence classifications of each row.

For COUNTfDISTINCT exp) the expression is calculated for each row, and rows
giving duplicate or null values are ignored. Thus the result depends on both the values
of the expressions and the existence of the rows. Hence, the Information Label is the
least upper bound of the Information Labels for the expressions and the existence
classification of each row (note that for Derived Tables, the row existence
classification may strictly dominate the expression's Information Label).

For quantified predicates, the Information Label is derived according to the rules
given for AND/OR predicates, though the existence classification of the rows is also
taken into account.

10

6 2 Row Classifications

When a Derived Table is described by a Select query, the presence of a row is
determined by the query's Where clause. Thus the row's Information Label is a
classification which is the minimum clearance needed to discover that the Where
clause expression is True. This classification may be higher than that needed to
compute the selected expressions. Thus, the Information Label attached to a row need
not be dominated by the Information Labels on the fields.

In general, the row's existence is also influenced by the Groupby and Having clauses
and the row classification is actually the least upper bound of the classifications needed
to evaluate these clauses as well.

7. SUMMARY

This paper has described Secure SQL, a variant of standard SQL89 which has been
extended to support the field level classifications provided by the SWORD Secure
Relational DBMS. The language also provides detailed Information Labels and
allows trustworthy clients to work freely within the bounds of their clearance while
still enforcing No Flows Down".

8. REFERENCES

Secure Computer System: Unified Exposition and Multics Interpretation
D E.Bell & L.J LaPadula
ESD-TR-75-306 (MITRE Report MTR-2997), January 1976.

Compartmented Mode Workstation: Prototype Highlights
Jeffrey L Berger, Jeffrey Picciotto, John P.L. Woodward & Paul T. Cummings
IEEE Trans on Software Engineering, Vol 16, Num 6, June 1990, pp608-618.

The SWORD Data Dictionary
Christopher Cant, Sharon Lewis & Simon Wiseman
DRA Technical Rerport 94002, February 1994

Security Policies and Security Models
J.A.Goguen & J.Meseguer
Procs. IEEE Symp. on Security and Privacy, Oakland CA, April 1982, ppll-20.

Providing Security in a Phone Book Database Using Triggers
S.R.Lewis, S.R.Wiseman & N.D.Poulter
Procs 8th Computer Security Applications Conference, San Antonio, Texas,
November 1992, pp 85-96

Tuple-ievel vs. Element-level Classification
Xiaolei Qian & Teresa Lunt
Procs. IFIP WG11.3 6th Annual Working Conference on Database Security,
Vancouver, British Columbia, August 1992

On the Problem of Security in Data Bases
Simon R. Wiseman
Procs. IFIP WG11.3 3rd Annual Working Conference on Database Security,
Monterey, CA, September 1989

Control of Confidentiality in Databases
Simon Wiseman
Computers & Security Journal, Vol 9, Num 6, October 1990, pp529-537

11

Security Properties of the SWORD Secure DBMS Design
SimonWiseman
Procs. IFIP WG11.3 7th Annual Working Conference on Database Security
Huntsville AL, September 1993

The SWORD Multilevel Secure DBMS
AW Wood, S.R.Lewis & S.R. Wiseman
Defence Research Agency Report 92005, February 1992.

12

Degrees of Isolation, Concurrency Control Protocols, and Commit
Protocols

Vijayalakshmi Atluri °, Elisa Bertino 6'*, and Sushil jajodia a

"CenteT for Secure Information Systems and Department of Information and Software
Systems Engineering, George Mason University, Fairfax, VA 22030-4444, U.S.A.

6Dipa,rtimento di Scienze dell 'Inform azione, Universita degli Studi di Milano, Via
Oomelico 39/41. 20135 Milano, Italy

Abstract
In this paper, we make two contributions related to transaction management in multi-

level secure distributed databases. First, we present a secure locking protocol (SLP) that
provides different degrees—0, 1, 2, and 3 of isolation. Next, we present a secure early
orepare commit protocol (SEP) that not only preserves atomicity of distributed trans-
actions, but, can be integrated with SLP without violating the isolation requirements as
well. Both SLP and SEP take advantage of the isolation degree of the transaction being
executed. For degrees 0, 1, and 2. SLP is free of starvation, and SEP requires only 4n
messages (where n is the number of sites participating in the commit protocol). For degree
3 isolation, SLP may suffer from starvation, although the probability of starvation is quite
small: and SEP may sometimes require more than 4n, but never more than 6n messages.
We suggest a way to reducing this additional cost in messages using synchronized clocks.

Keyword Codes: D.4.6; H.2.0; H.2.4
Keywords: Security and Protection, Information Systems, General; Systems; Multilevel
Security; Atomic Commit, Isolation, Concurrency Control; Serializability

1. INTRODUCTION

In a distributed database (DDB), there are several logical objects, which are physically
located at different sites or nodes. A distributed transaction, though initiates at one site,
may require to access objects stored at remote sites. To guarantee correct executions of
distributed transactions, each site in the DDB is equipped with a concurrency control
protocol and a commit protocol. There are several different concurrency and commit
protocols with two-phase locking (2PL) and basic two-phase commit (2PC) as being the
most well-known concurrency and commit protocols, respectively.

Although most conventional (single-level) commercial systems use locking based mech-
anisms for concurrency control, they-do not always use 2PL. They offer different degrees

'The work of E. Bertino was carried out while visiting George Mason University during summer 1993.

1

of isolation-Q, 1, 2, and 3—to transactions [GLPT76, GR93]; each transaction has the

option of specifying the degree of isolation required.1 The reason for providing different

options is that transactions that specify lower degree of isolation require fewer and shorter

duration locks, leading to improvement in the amount of concurrency and response time.

Moreover, most commercial systems (e.g.. IBM's LU6.2 and Digital's DECdtm) use

the early prepare commit protocol (EP) rather than 2PC as the commit protocol. This H

because these systems do not support request/response paradigm, thus an implementation

of 2PC in these systems requires 6n messages (where n is the number of sites participating

in the commit protocol) compared to 4n messages required by EP.
Irs keeping with the existing practices in commercial systems, we first offer in this

paper a, secure (distributed) locking protocol (SLP) that provides all four degrees of

isolation A nice property of SLP is that it is not subject to starvation for degree 0.

1, o) 2 isolation- Although SLP may suffer from starvation for degree 3 isolation, we

show that the probability of starvation is quite small. The significance of this result

is that locking, which is the universally accepted mechanism for concurrency control in
conventional databases, can be used in multilevel secure databases as well, provided we

are willing to tolerate a small probability of starvation.
Next, we give a secure analog of EP, called SEP, that not only preserves atomicity, but

requires only 4n messages for degree 0, 1, or 2 isolation. For degree 3 isolation, it may

sometimes require more than 4n messages, but it never requires more than 6n messages.

We suggest a way to reducing this additional cost in messages using synchronized clocks.

We also show that SLP and SEP can be easily integrated to provide the desired degree

of isolation as well.
This paper is organized as follows. We begin in section 2 with a review of related work.

In section 3. we present our distributed multilevel secure (MLS) DDB model. In section
4, we describe the lock-based protocol, SLP, which provides different degrees of isolation.
Since SLP is susceptible to starvation for degree 3 isolation, subsection 4.1 contains a

probability model showing that the probability of starvation is quite small. In section 5,
we describe SEP for different degrees of isolation. Since SEP sometimes requires extra

rounds of messages for degree 3 isolation, section 6 describes an optimization of SEP,

called 03SEP, which reduces this extra number of messages. Finally, section 7 presents

conclusions.

2. RELATED WORK

Although most of the research in MLS transaction management has focused on cen-

tralized databases, there has been some recent activity that deals with DDBs. In [

JM93, JMB93], Jajodia, McCollum, and Blaustein study the secure analogs of 2PL and

commit protocols. They modify 2PL to give a secure 2PL protocol (S2PL) that yields

degree 3 isolation. S2PL, like our SLP, is susceptible to starvation.
[JMB93] also shows how EP, 2PC, and some optimizations of 2PC (e.g., presumed

commit) can be modified to be secure. While their modifications to 2PC and presumed

commit yield a protocol that can be integrated with S2PL without any violation to global

t Degree 0 is also known as chaos, degree 1 as browse, degree 2 as cursor stability, and degree 3 as repeaiable
reads or serializable.

■ onsistency their modifications to EP cannot guarantee the global consistency of the

distributed data when used in conjunction with S2PL. In this paper, we give a different

modification to EP that ensures global consistency of data.

3. THE DISTRIBUTED SYSTEM MODEL

4 distributed system consists of a sei of nodes N, where each node /V, G N is an

MLS DBMS The various nodes in the distributed system are connected via communica-

tion links. We assume that these communication links are tamper proof Each node is

supported by a Trusted Computing Base (TCBj. which is responsible for mediating all

database accesses and cannot be bypassed. Each node also has its own local transaction

iTioua.gei (LTM} and distributed transaction manager (DTM). The DTM acts as an in-

;<rtace between the LTM and distributed transactions (those that originate at the site or

are remote).

3.1 The MLS DBMS model

We model the MLS DBMS as a quadruple < I),7\S,L >, where D is the set of data

items (olnects), T is the set of transactions {subjects), S is the partially ordered set of

access classes (or security levels) with an ordering relation <, and L is a mapping from

DUT to ,v For every ;r £ D, L(x) t S. and for every T1 t: 7\ L(Tj) G S. In other words,
every data item as well as every transaction has a security class associated with it.

We extend the mapping L such that it maps each MLS DBMS A,- to an ordered pair

of security classes L„Mn(A,-) and Lmai(A'i!. Clearly, it should always be the case that

lm,n{ N.) < Lma^Ni) and Lmax(N%). Lmin(NA € S. In other words, every MLS DBMS in

the distributed system has a range of security levels associated with it. For every data

item x stored in an MLS DBMS A,-, Lmin(Ni) < L(x) < Lmax{Ni). Similarly, for every

transaction T, executed at TV,-, Lmin\Ni) < L(Tj) < Lmax(Ni). A node A7,- is allowed to

communicate with another node /V, only if Lmax(Ni) — Lmax(Nj). The reader may refer

to f ,TM93j for additional details on distributed MLS DBMS model.
Our security policy is based on the Beli-LaPadula model (BL76]. According to this

model, th^ following two conditions are necessary for a system to be secure:

» A transaction 7, is allowed to read a data element .T only if L(x) < L(Tj).

9 A transaction 7, is allowed to write a data element x only if L(x) — L(Tj).

7 he second property, which allows transactions to write only at its level, is a restricted

version of the *-property. The original *-property proposed in the Bell-LaPadula model

allows transactions to write into levels above their security level. However, in the database

context, it seems prudent to disallow transactions that write to higher levels [JK90].

In addition to these two requirements, a secure system must guard against illegal in-
formation flows through signaling and covert channels.

3.2. The distributed transaction model

When a transaction T, is submitted to the DTM of a local MLS DBMS, if T, is a local

transaction, DTM simply passes it to the LTM. When T, is distributed, DTM assumes

the role of the coordinator and, thus, is responsible for resolving references to the data

items accessed by that transaction so as to determine where these data items are located.
DTM then generates the subordinate processes (from now on we refer to these as simply
subordinates). A distributed transaction 1\ can originate at an MLS DBMS Nk where
Nk € N if Lmin(Nk) < L(T.) < Lmax(Nk). A subordinate T^k can execute at Nk if
Lmin(Nk) < L{Titk) < Lmax(Nk)

t

Each subordinate T,-^ at node Mh inherits the same security level as that of Tf L(Titk) =
L(J;j. Even if a, subordinate {<■■ a read only transaction that reads data items below the
security level of the originating transaction, it is executed as a read-down transaction
at the corresponding subordinate node, its clearance level being same as that of the
originating transaction. Every subordi. ate T,tk is subjected to the security rest; ctions
described in the earlier subsection. These when combined with the range constraints
result in the following conditions on subordinates. A subordinate T,^ can execute at node
A/*, only if

• whenever T,^ wishes to read an item x, Lmin{Nk) < L(x) < L(T{), and

• whenever Tt:k wishes to write an item x, L(x) — L(Ti) < Lmax(Nk).

3.3. The transaction model
We model a transaction T\ (either a local transaction or a subordinate) as a sequence

of read and write operations on data items. We use r,[x] and Wi[x] to denote the read
and write operations issued by a transaction Tt on a data item x.

Sometimes transactions acquire a lock before they read or write an item. They acquire
a share lock (S-lock) for reading and an exclusive lock (X-lock) for writing an item. All
locks acquired by a transaction must eventually be released.

Definition 1 Two locks O,-[.T] and Oj[x] arc, compatible if i = j or neither of them is an
X-lock. D

An Slock is compatible with other S-locks on an item and, therefore, multiple trans-
actions can hold an S-lock on an item at the same time. However, only one transaction
can hold an X-lock on an item at any given time.

Definition 2 A transaction is well-formed with respect to writes if it acquires an X-lock
before writing a data item. A transaction is well-formed if it acquires an S-lock (X-lock)
before reading (writing) a data item. D

Definition 3 A transaction is two-phase with respect to writes if it does not acquire any
X-lock after it releases an X-lock on a data item. A transaction is two-phase if it does
not acquire any more locks once it releases a lock on a data item. Ü

3.4. Degrees of Isolation
We present below the definitions for degree 0, 1, 2, and 3 isolation proposed by Gray

et al. in [GLPT76].

*We use Titk to denote the subordinate of 1} at node Nk.

4

Definition 4

Degree 0. A transaction observes degree 0 isolation if it is well-formed with respect

to writes.

Degree 1; A transaction observes degree 1 isolation if it is well-formed with respect
f,o writes and also two-phase with respect to writes.

Decree 2: A transaction observes degree 2 isolation if it is well-formed and two-phase

with respect to writes.

Degree 3: A transaction observes degree 3 isolation if it is well-formed and two-

phase,

D

4. SECURE LOCKING PROTOCOL FOR DIFFERENT DEGREES OF ISO-

LATION

For the distributed executions of transactions to be correct, it is necessary to ensure
atomicity, consistency, isolation, and durability [GR93]. Isolation means that the system
sdves every transaction the illusion it is being executed alone all by itself, although other
transactions are run concurrently in the system.

While total isolation is desirable, most commercial systems offer different degrees of
isolation, viz., degree 0, 1, 2 and 3. In SQL2, a transaction can specify its desired degree
of isolation, declaring the degree of sharing it can tolerate. Lower degrees of isolation
improve the performance of the system, though achieved at the expense of consistency.

Intuitively, with degree 0 isolation, a transaction is not allowed to update a data item
while another transaction is updating it. With degree 1 isolation, a transaction cannot
overwrite a data item until the completion of the transaction which wrote it earlier. With
degree 2 isolation, a transaction can read data items only from committed transactions.
Degree 3 provides complete isolation to transactions. By choosing this degree of isolation,
a transaction must wait to either road or write a data item for the completion of all other
transactions 1.1)at read or wrote it

The stringent requirements imposed by multilevel security dictate modification of the
locking protocols given in the previous chapter. An ideal locking protocol in a multilevel
secure database management system must possess the following key properties:

• Provide the desired degree of isolation for transactions

• Preserve security (i.e., it must obey Bell-LaPadula restrictions and be free of sig-
naling channels)

• Be lruplementable with untrusted code

• Be free of starvation. Starvation may occur because high level transactions may be
subjected to indefinite delays or suspended repeatedly by low level transactions to

prevent signaling channels.

Since transactions can specify their desired degree of isolation, in this section, we pro-
pose a secure locking protocol that gives degree 0, 1, 2, and 3 isolation. This protocol is a
modified version of the protocol given in [GLPT76, GR93] so that it meets the security
requirements.

Algorithm 1 [Secure Locking Protocol (SLP)]

• For degree 0 isolation,

- Whenever a transaction or a subordinate wishes to write a data item x, it must
first, acquire an X-lock on x before writing x.

A transaction or a subordinate T, releases the X-lock on a data item x when
the write operation u>i[x] is completed.

• For degree 1 isolation,

- Whenever a transaction or a subordinate wishes to write a data item x, it must
first acquire an X-lock on x before writing x.

- A transaction or a subordinate T; releases all X-locks only when it commits or
aborts.

- A transaction or a subordinate cannot acquire any more X-locks once it releases
an X-lock.

• For degree 2 isolation,

- All transactions and subordinates are well-formed. That is, whenever a trans-
action or a subordinate wishes to read (write) a data item .T, it must first
acquire an S-lock (X-lock) before reading (writing) x.

A transaction or a subordinate T, releases all X-locks only when it commits or
aborts. However, 1) must release an S-lock as soon as the corresponding read
operation is completed.

- A transaction or a subordinate cannot acquire any more X-locks once it releases
an X-lock.

• For degree 3 isolation,

- All transactions and subordinates are well-formed. That is, whenever a trans-
action or a subordinate wishes to read (write) a data item x, it must first
acquire an S-lock (X-lock) before reading (writing) x.

- A transaction or a subordinate T, releases all locks only when it commits or
aborts. However, T, must release an S-lock on a data item x whenever another
transaction Tj requests an X-lock on x such that L(Tj) < L(T,). In such an
event, TJ is aborted.

- A transaction or a subordinate cannot acquire any more locks once it releases
a lock.

D

It is important to note that SLP is single-lev.?!, and therefore, can be implemented with
untrusted code. However, since the SLPs at a I security levels use a common lock-table,
the lock-manager must be trusted.

For degree 2 isolation, whenever a low transaction requests an X-lock on a data item
while a high transaction's read operation en the same data item is being executed, the
high transact.on h not required to release its S-iock to accommodate the write request by
the low transaction. This is because we assume that the read operation is instantaneous
and thus does not cause any deki in processing the low transaction's write request, and
therefor-, does not introduce a signaling charni 1. in other words, we make the assumption
that the three actions-acquiring an S-lock, reading the data item and then releasing the
Slock are executed instantaneously. This is not an unreasonable assumption since SLP
for degree 2 isolation does not require the S-iocks to be two-phase; the S-locks are short
duration locks and are released as soon as the read operation is performed.

On the other hand, for degree 3 isolation, whenever a low transaction requests an
X-lock on a data item on which a high transaction already has an S-lock,^ the high
transaction releases its S-lock and thereby allows the low transaction to proceed with its
write operation. Otherwise, the lower level transaction would need to wait for the release
of this S-lock by the high transaction. This situation can be exploited by two colluding
transactions at levels high and low to establish a signaling channel. To prevent such illicit
flow of information, a secure system must prioritize lower level transactions over their
higher level counterparts while allocating the locks In this process, some transactions
may get aborted repeatedly, resulting in starvation.

To reduce the amount of starvation, Jajodia and McDermott [MJ92] propose a variation
of this approach. According to this variation, whenever a high transaction prematurely
releases its S-lock on a low data item due to security reasons, it does not abort or roll-
back entirely The high tra.nsac.tion continues to hold its X-locks on high data items,
marks the low data item in its private workspace as unread and retries reading this data
item by entering into a queue. This queue maintains the list of all high transactions
waiting to reread that particular data item, and enables the first transaction in the queue
to be serviced first. Though transactions are not two-phase, this approach guarantees
senalizability. We refer the reader to [MJ92] for additional details and for the proof of
correctness

Theorem 1 If a transaction observes the SLP. then any legal history' H will give that
transaction degree 1, 2, or 3 isolation, as long as other transactions in H are at least
degree 1

Proof- Proof is similar to the one given in [GLPT76, pages 384-386]. □

4.1, Probability of starvation
A very simple model, adapted from [GR93], is provided to estimate the probability

of starvation. Suppose that the database has R data items. Moreover, suppose that

-Recall that high transactions are allowed to read, but not write data at lower levels. Therefore, a high
transaction will never be able to acquire an X-lock on a lower level data item.
11A history is said to be legal when no two incompatible locks on an item are simultaneously held by
transactions in that history.

7

there is a high transaction that wishes to read I low data items and that there are n
low transactions, each modifying r low data items. These transactions are all running
concurrently.

The probability that the high transaction must release a lock on a low data item,
because a low transaction is modifying it, is approximately P = (nr)/R. Note that, as
pointed out in [GR93], nr < < R i.e., most data items are unlocked most of the time.
The probability that the high transaction is aborted because one of its locks on the low
data items has been released early is given by:

TA = 1-(1-P)1

I

IP
Inr

E

The high-order terms can be dropped because nr « R and, therefore, P « 1.
The probability that the high transaction is aborted again, after being restarted the

first time, is given by TA2. Therefore, the probability that a transaction is aborted n
times, due to early release of locks, is given by

i

Since in most cases the number of'data items locked by the transactions is a small
subset of the total data items, expression (•) rapidly decreases with the increase in n. As
an example, consider the case of a database containing 1,000,000 data items, with 100
low "ransactions, each modifying 100 data items. Moreover, consider a high transaction
that reads 25 low data items (i.e. 25% of the data modified by a low transactions). The
probability that the transaction is aborted once is 1/4, and the probability that it is
aborted twice is 1/16, which is already a quite small probability.

5. SECURE EARLY PREPARE PROTOCOL FOR DIFFERENT DEGREES
OF ISOLATION

In this section, we present SEP that takes into consideration different degrees of iso-
lation. We assume that SLP is being used as the concurrency control algorithm by all
LTMs

Algorithm 2 [Secure Early Prepare (SEP)]
When a user who is logged on at security level s initiates a distributed transaction T,-

at a node Nj, the user must specify Tj's degree of isolation. The DTM at Nj acts as the
coordinator for Ti, and initiates the first phase of SEP.

The pr : ire phase:

* T ■ c coordinator generates subordinates T, -, Xj2, . -, Ti,n" and sends** them to the
nodes Ni„N~,. Nn, respective!.-/. The coordinator also sends t;ie security level,
which is s, and the isolation degree, which is same as the isolation degree specified

7". bv the user, with each subordinate. ii.'-

• The DTM at each node Nk. k - 1. <., hands Ti,*, its security level, and its
degree of isolation to LTM. Ti,k is execute ': by the LTM, taking into consideration
the isolation level of T,\fc.

For degree 0 isolation, LTM acquirer an X-lock for each item before it is written
by Tuk- These locks are short locks meaning that they can be released as soon
the write has taken place. DTM sends a yes vote to the coordinator if T.-.jt
successfully completes its execution; it sends a no vote otherwise.

- For degree 1 isolation, LTM acquires an X-lock for each item before it is written
by 7,>. These locks are long locks meaning that they must be held until 7;,*
commits at the end of the decision phase, DTM sends a yes or no vote to the
coordinator depending on whether or not 7,-jt completes successfully.

For degree 2 isolation, LTM acquires an S-Lock (X-lock) on an item before it
is read (written) by 7},*. S-locks are short locks, while X-locks are long. DTM
sends a yes or no vote to the coordinator depending on whether or not 7^
completes successfully.

- For degree 3 isolation. LTM acquires an S-Lock (X-lock) on an item before
it is read (written) by Thk- S-locks as well as X-locks are long locks. If T;^
completes successfully, DTM augments its yes vote to the coordinator with
a read-low indicator. A one-bit read-low indicator is added whenever T,\fc has
read an item from a lower level. DTM sends a no vote if LTM cannot commit

Ti.k.

A s ibordmate that sends an yes vote to commit is said to be in a prepared state.

The decis! m phase:

• Sunpe • Hie mo- i-nator receives yes votes from all its subordinates.

! degree >■}. 1. or 2 isolation, the coordinator commits 7; and then sends
> otnmit messages to all its subordinates.

- For degree 3 isolation, there are two cases. If no subordinate has read data Fora
ower levels, the coordinator commits T, and then sends commit messages to

all its subordinates. On the other hand, an extra round of messages is required
between the « oordinate and all those subordinates Nj that sent the read-low
indicator with their yes vote.

II We assume T, is decomposed into n subordinates, and T,j, the subordinate at the originating node JV,-
is one an'.''''ig them.
** We us bold letters to indicate messages.

•

•

* The coordinator sends to each Nj a confirm message to confirm the com-
mit.

* If Nj has not released its S-iocks on any lower level data item during the
time it has been in the prepared state, it responds with a confirmed
message; otherwise, it sends a not-confirmed message.

* If the coordinator receives a confirmed message from all iV/s to which
the coordinator has sent the additional round of messages, then it sends
commit messages to all its subordinates; otherwise it sends abort.

If the coordinator receives at least one no vote or if it times out waiting for a vote,
it aborts the transaction, a,nd sends abort messages to all subordinates.

Each subordinate is committed or aborted according to the message received, and
then an acknowledgment of this fact is sent back to the coordinator.

After receiving the acknowledgment from all the subordinates, the coordinator ter-
minates T{. D

5.1. Discussion
If we compare the number of messages required by SEP to that required by EP, EP

always requires about 4n messages (where n is the number of subordinates), while SEP
requires 4n messages for degree 0, 1, and 2 isolation, but sometimes requires more than
4n messages for degree 3 isolation. An extra round of messages is required between the
coordinator and those nodes where the subordinates have read data from the lower levels.
This is because degree 3 isolation in the distributed setting requires that not only each
subordinate must be two-phase, but the distributed transaction as a whole must be two-
phase as well (see [JMB93, Lom93, ML086]). A simple way to ensure this is to require
that all S-locks be held until the commit of the transaction. Unfortunately, we cannot
impose such a restriction in a multilevel secure environment; a subordinate must release
its S-lock on a data item whenever a lower level transaction requests an X-lock on the
same data, item

Note that this release of locks does not cause any violation of the degree 3 isolation
requirements if it occurs while the subordinate is still being executed (i.e., before the
subordinate enters the prepared state). In such a case, the subordinate can be either
aborted or reexecuted. However, if the release of locks occurs while the subordinate is in
the prepared state, the subordinate can be neither aborted nor started over again. We
illustrate this further by way of an example.

Let T\ and T2 be two distributed transactions as follows:

r1=r1[x]r1[2/]tz;1[.~], L(TX) = high
T2 = w2[x]iu2[yl L(T2) = low

Suppose Ti is initiated at node Nc, and T2 is initiated at node Nb. Furthermore, assume
that data item x is stored at node Na, y is stored at Nb, and z is stored at JVC. The
coordinators, Nc and Nb, generate the subordinates, and send them to the corresponding
remote nodes. Accordingly, Nc divides T\ into three subordinates, Ti>0, 7i,& and TliC, and

10

then sends l\,a and T\j, to Na and Nb, respectively. Similarly, Nb, upon dividing T2 into
two subordinates :"i2,a and T2,b, sends T2„a to Aa.

The execution of these subordinates at each of the nodes may result in a distributed
history D, as shown in figure 1. At jV0, the following sequence of events takes place: After
successful execution, the subordinate Tii0 votes yes and enters the prepared state, At
this point, the low level subordinate T-x.a arrives. 7\,„ releases its S-lock on x, enabling
T;,,„ to acquire an X-lock on x. At Nb, the subordinate T\j, is successfully executed after
the commit of X2,(,. At Nc, T\ is committed after the coordinator receives the yes vote
from all the subordinates.

Na

high. r.\x\ prepared
T\ releases locks

low. w2[x]

At
coordinator of 72

dy]

W2\l

Nc

coordinator of T\

wi[z]

Figure 1 The distributed history D

Clearly, the distributed history D is not seriahzable since 7\ is serialized before T2 at
Na, while the serialization order is reversed at node Nb. A moment of reflection shows
that this inconsistency arises because the distributed transaction 7\ is not two-phase,
although it is well-formed.

It is easy to see that SEP manages to avoid the above problem. During the prepare
phase of the protocol, T1|£1 and T\$ send read-low indicators with their yes votes. As a
result, during the decision phase, coordinator Nc sends a confirm message to both Na and
Nb- Since 2\>a has released its S-lock on x, Na responds with a not-confirmed message,
and Nb responds with a confirmed message since I^f, has not released its shared lock
on the low data item y during the prepared state. Because Nc receives a not-confirmed
message, it decides to abort T\ and informs .all the subordinates of the outcome. Thus,
our protocol is able to avoid the problem.

5.2. Proof of correctness
Theorem 2 Suppose that every DTM uses SE3P for atomic commitment of distributed
transactions and that every LTM uses SLP for concurrency control. Then any legal history
H consisting of local and distributed transactions will give transactions degree 1, 2, or 3
isolation, a.s long as other transactions are at least degree 1.

Proof: Suppose T,- is a transaction in H. We prove this theorem in both cases where T;
is a local transaction and T,- is a distributed transaction.

First, suppose that T, is a local transaction in H. Then 71, is given degree 1, 2, or 3
isolation, as long as other transactions in H are at least degree 1. This is because, in such
a case, this theorem reduces to theorem 1.

11

Next, suppose T, is a distributed transaction in H initiated at node N,. Assume that
Ti requires to be executed at n nodes. The DTM at Nj generates r,-,i,Ti,2, • • • ,Tiitl and
sends them to their respective nodes JVj, iV2,. - Nn.

We prove this theorem in the following three cases.
Case 1: First we show that if T.; specifies its degree of isolation as degree 1, then it is
given degree 1 isolation as long as other transactions in H are at least degree 1.

Every ITM ai nodes N\,N2 ■ Nn observe the SLP for degree 1 isolation to schedule
the operations of rSii,T,i2. - T,.n. In other words, every subordinate of T, is well-formed
with respect to writes and two-phase with respect to writes. According to definition 4, T,
is given degree 1 isolation.
Case 2: In this case, we show that if T; specifies its degree of isolation as degree 2, then
it is given degree 2 isolation as long as other transactions in H are at least degree 1.

Every LTM at nodes Nt,N2 ■ ■ Nn observe the SLP for degree 2 isolation to schedule
the operations of 7^i,T,-,2 . -. Ti<n. In other words, every subordinate of Ti is well-formed
and two-phase with respect to writes. According to definition 4, T, is given degree 2
isolation.
Case 3: In this case, we show that if Tt specifies its degree of isolation as degree 3, then
it is given degree 3 isolation as long as other transactions in H are at least degree 1.

In this case, we need only to argue that every distributed transaction T, observing SEP
protocol for degree 3 isolation is always two-phase and, therefore, T, sees degree 3 isolation

in H.
According to SEP for degree 3 isolation, a transaction or subordinate must release an

S-lock on a data item if some other lower level transaction or subordinate requests an
X-lock on the same data item

Suppose none of the subordinates of T, release their S-locks. In such a case, we can
trivially see that the distributed transaction T, is well-formed and two-phase and therefore
Ti is given degree 3 isolation

Now suppose that at least one of the subordinates of T,- reads a low data item x and
releases its S-lock on x. If one of the subordinates of T, say Tj, releases the S-lock on
,r before entering the prepared state, then by voting no it chooses to abort T,-. On the
other hand, suppose T;,* releases its S-lock on x during its prepared state. According to
SEP, since the the DTM at A, receives a read-low indicator, it sends an additional round
of message to Nk. Since T,j: responds with a not-confirmed message, Tt is aborted.
Therefore, whenever any of the subordinates of T. releases its S-lock during the prepared
state of the SEP protocol, T, gets aborted. In other words, SEP allows a distributed
transaction T, to commit only if all its subordinates continue to hold all their respective
locks until T,'s commit. Since T, is well-formed and two-phase, according to definition 4,
T is given degree 3 isolation. '-'

6. AN OPTIMIZED DEGREE 3 SECURE EARLY PREPARE (03SEP)

For degree 3 transaction, SEP as described above has two drawbacks. In addition to
sometimes requiring more than 4n messages, it is overly pessimistic. Any high subordinate
that reads low data is labortedi if any of its S-locks on the low data are broken while it
waits for the confirm message from the coordinator. Thus, SEP aborts a transaction if

12

there is a possibility of a violation of the two-pha.se requirement. It is entirely possible

that the transaction is two-phase, even though some of the S-locks are broken.

We ran improve in both these areas if we assume that clocks in the distributed system

are synchronized.^ This is not an unreasonable assumption [Lis91]. Using time services

sn: i» as network time protocol [Mil90] or Digital time service [Dig89], it is possible to

ha -r distributed clocks that are synchronized within a millisecond, "even after extended

periods when synchronization to primary reference sources has been lost" [Mil90].

I» this section, we propose an optimization to SEP for degree 3 isolation, called 03SEP,

thai nses the synchronized clocks 03SEP uses the clocks to isolate the exact situation in

which the two-phase requirements are violated. This optimization reduces not only the

number of messages, but the number of transactions being aborted as well.

In '-he 03SEP protocol, we maintain for every transaction the time at which each lock

has been granted, We also mainta.in the early lock release tune for each transaction if the

transaction prematurely releases its S-lock on a lower level data item in order to accom-

modate a lower level transaction. We present next the necessary notation that will be
used m tins protocol,

Notation; Given a subtransaction TSiJ, tl°f denotes the time at which the last lock is

obtained by 7\.,. Given a subtransaction TtJ that has read a low data and voted yes, t"fe

denotes the time when the yes reply is sent. Moreover, given a subtransaction T,-,, that
has read a low data and voted yes but later forced to prematurely release some locks,
flense denotes fiie fime 0f tne first early release of lock has occurred.

Given a. transaction 71,-, let

maximum-^'j* | Thj is a subtransaction of 7i}.

mm release __ ,^,^T1,rY111TY1 j^relea.S' = minimumjiij '• | Ij,, is a subtransaction of 7], such that Ttj has read
low data and has released some lock early}.

In other words, maxj.f denotes the time of the latest lock acquired by transaction T,,
whereas rmn j?'™"6 denotes the time of the earliest lock release performed by a subordinates
that has read low data. D

Algorithm 3 [Optimized Degree 3 Secure Early Prepare (03SEP)]

When a user who is logged on at security level s initiates a distributed transaction T{
at a node A'',, the user must specify T.-'s degree of isolation. The DTM at Nj acts as the

coordinator for Tj, and initiates the first phase of 03SEP.

*TNote that the improvement in the message cost is without considering the cost incurred in maintaining
a synchronized clock.

13

The prepare phase:

• The coordinator generates the subordinates, T,-,i,r,)2,.. . T,-,n and sends them to
the nodes Ni,N2,. ■ ■ Nn, respectively. The coordinator also sends to each of the
subordinate nodes the security level .s of each L(Tirk), k = 1,2,... n.

• The DTM at each Nk executes Tiik as a transaction of level s and responds with a
vote as follows:

It, sends a yes vote and t\°f if the subordinate successfully completes its execution,
otherwise it sends a no vote.

If the subordinate that votes yes lias read a data item x such that L(x) < L(Titk),
then the subordinate includes in its vote message, in addition to the vote, one bit
read-low(Thk) indicator (that indicates that it has read low data) and t™k

e.

The decision phase:

• If the coordinator receives at least one no vote or it times out waiting for a vote, it
aborts the transaction and sends abort message to all its subordinate nodes.

The coordinator commits T; if all subordinate nodes voted yes and the coordinator
ha,s not received read-low(Tl%k) from any Nk. It then sends commit messages to all
its subordinate nodes.

If the coordinator receives a rcad-low(Ti,k) from some Nj, then the following addi-
tional steps are performed by the coordinator:

- determine maxjck

- for each Nj such that /?°'f < maxj^, an additional round of messages are sent
to node Nj

* The coordinator sends to node Nj, a confirm message to confirm the
commit.

* If node Nj has not released its read-locks on a lower level data item during
the prepared state, then it responds with a confirmed message, otherwise,
it sends a not-confirmed message together with tTij

ease,

- At this point, if the coordinator receives a confirmed message from all Nj to
which the additional of messages have been sent, then it sends commit to all
its subordinate nodes.

Otherwise it evaluates min^ease and if minT
T
elease > maxfik, it sends commit

to all its subordinate nodes, otherwise, it sends abort.

• The subordinate node either commits or aborts the subordinate according to the
message received, and then it sends an acknowledgment back to the coordinator.

• After receiving the acknowledgment from all the subordinates, the coordinator ter-

minates T{.

14

Theorem 3 If all transactions observe degree 3 isolation, every DTM uses 03SEP (algo-

rithm 'V> for atomic commitment, and every LTM uses SLP (algorithm 1) for concurrency
rorij.ro! then over)' legal history H consisting of local and distributed transactions will be

*en abzahle

Proof: "l.o prove this theorem, it. is enough to prove that every distributed transaction

~-'. jr. ft ip always t.vo-phase. If none of 'Vs subordinates do not release any locks to

accommodate a write request from a lower level transaction or subordinate, then 7,- obvi-

onsb -s two-phase since 03SEP allows T to release a!! its locks only at the commit time.

i nerofnrr «"?■■ ;iow need to prove that e^en though T, releases some of its locks during

It* execution, it is still two-phase For 7, to be not two-phase, at least one of Tj's subor-

dinates must acquire a lock after a subordinate of T, releases its S-lock In such a case,

miv.'f_1'"""' 'nnx'fck According to the 03SECP protocol, transaction T, will be aborted.

Tin:-; guarantees that every distributed transaction in H is two-phase Therefore, H is

■■■erializable D

7 CONCLUSION

Is; Hur- paper we. have given a secure looking protocol (SLP) and a secure commit

orotocoi (SEP) for different degrees of isolation. SLP is free of starvation, and SEP

reqipres only 4n messages for degree 0, .1, and 2 isolation. For degree 3 isolation, SLP

mav suffer from starvation, although the probability of starvation is quite small, and SEP
may sometimes require more than 4n, but never more than 6n messages. We suggest, a

way ?.o reducing this additional cost in messages using synchronized clocks.

A C K NO WLED GMENTS

We are indebted to joe Giordano of Rome Laboratory and LouAnna Notargiacomo and

John ' a sale ni The MITRE Corporation for making this work possible.

REFERENCES

jHi'T; |).L,. Bell and L.J. LaPaduia. Secure computer systems: Unified exposition and

muitics interpretation. Technical Report MTR.-2997, The Mitre Corporation,

Bedford. MA, March I97(>.

\l)\£,&'.)\ Digital Equipment Corp, Digital Time Service Functional Specification, Ver-

sion T. 1.0.5, 1989.
JGLPT76] j N Gray. R. A. Lorie, C. R. Putzohi, and I. L. Traiger. Granularity of locks

and degrees of consistency in a shared data, base. Modelling in Data Base

Management Systems, pages 365-394, 1976.

[GR.93] Jim Gray and Andreas Router. Transaction Processing: Concepts and Tech-

niques. Morgan Kaufmann, San Mateo, California, 1993.

[JK90] Sushil Jajodia and Boris Kogan. Transaction processing in multilevel-secure

databases using replicated architecture. In Proc. IEEE Symposium on Security

and Privacy, pages 360-368, Oakland, California, May 1990.
JJM93! Sushil Jajodia and Catherine D. McCollum. Using two-phase commit for

crash recovery in federated multilevel secure database management systems.

15

In C. E- Landwehr et a)., editor. Dependable Computing and Fault Tolerant
Systems, Vol. 8, pages 365-381, New York, 1993. Springer-Verlag.

[JMB93] Sushil Jajodia, Catherine D. McColIum, and Barbara T. Blaustein. Integrating
concurrency control and commit algorithms in distributed multilevel secure
databases. In T F Keefe and C E. Landwehr, editors, Database Security VII:
Status and Prospects, pages 109-121 North Holland, 1993.

|Lis91j Barbara Liskov. Practical uses of synchronized clocks in distributed systems,
In Proc 10th ACM Symp, on Principles of Distributed Computing, pages 1-9,
August 1991.

ILom93j David Lomet. Using timestamping to optimize two phase commit. In Proc. of
the PDIS Conference, pages 48-55. San Diego, CA, January 1993.

jMil90j David L. Mills. Network time protocol (version 3) specification, implementa-
tion, analysis. DAR PA Networking Group Report, July 1990.

[MJ92] John McDermott and Sushil Jajodia Orange locking: Channel-free database
concurrency control via locking. In Proc. of the 6th IFIP WG 11.3 Workshop
on Database Security, Vancouver, RC, August 1992.

IML086J C Mohan, B. Lindsay, and R Obermarck. Transaction management in the
R* distributed database management system. ACM Transactions on Database
Systems, 11(4):378- 396, December 1986.

16

Status reports on current projects:
Chair: J. Biskup

Um. Hildesheim. Germany

Trusted üNTOS Prototype
Preliminary Considerations

Map/in Schaefer Sandra Wade
ARC A Systems, Inc. ONTOS, Inc.
Columbia, MD Vienna. V.A

n r;ie late -uminer of 1993. the authors' began research under contract to the National Security
\gen.'.-/ and Rome Laboratory to begin development, of an informal access control model [1] for
i misted ohie-.t-onemed database management system s ODBMS'}. This study is intended to
c- - :!.", :hr basis for future efforts to produce a trusted prototype of an ODBMS offering fea-

^arabie to those required for Class B i of the DoD's Trusted Computer System Evaiu-
!"~CSEC) and the associated Trusted Database Interpretation (TDD of the TCSEC.

■■.uiT.b ■~nm-

.men Cmeri;

■■ ae Dfiiiosoonv behind object oriented technology is becoming the de rigueur standard for the
'(lustra. e-;en though there is presently no universal mode! that serves as a standard for individ-

ual ODBMS implementations. Several ODBMS products are currently serving a growing user
oommumtv They are being used with greater frequency by the government and industry be-
cause they offer many benefits over existing technologies such as increased performance for
complex applications, support for unusual data types, and a highly flexible data model. Addi-
raonaiK with the reduction of budgets m both the government and industry,'object-oriented
technology is gaming a wider audience for its potential to reduce overall life cycle costs by
enabling component based software development, promoting software re-use, and supporting
extensible solutions. It is evident that ODBMS technology will be the basis for future DoD "
database applications. There is a clear need for a high integrity, multilevel secure, ODBMS.

Although there have been numerous paper studies, there are presendy no uw&^examples of a
misted ODBMS, extant or under development. It is equally important to note that although the
more traditional concepts and architecture of relational DBMS (RDBMS) tend to dominate the
i DI, there are no intzrvn.ta.twns of how specific TCSEC requirements are to be applied to an
ODBMS. The present effort is intended ro support future research and development needed in
order better to understand a) the security related issues in the design and implementation and b)
the evaluation, and especially the assurance requirements for a high-integrity, multilevel secure
ODBMS that offers Bl features.

This study :s intended to take a fresh look at the trusted DBMS problem. Previous, relational
modes-based approaches, have largely been based on a set of security architectures that lead to

poiyinstantiation or selective database replication as a means of preserving confidentiality.
However, use of this strategy is often at the cost of database consistency, integrity, performance,
and the ability to see updates without delay. Further, the semantics and operational conse-
quences of poiyinstantiation have sometimes proven to be inadequately understood by users and
have resulted in database update inconsistencies. Given that object-oriented architectures invite
the introduction of new security architectures, the opportunity is present to re-examine alterna-
tives that could result in a more favorable tradeoff between the objectives of confidentiality and
database integrity.

'Marv Schaefer was affiliated with CTA Incorporated at the time.

Panel: Perspectives on database
security:

Chair: M. Morgenstern

Cornell I !ni. NY

PANEL
Perspectives On Database Security

Panel chair: Matthew Morgenstern -■• Xerox/Cornell U., Ithaca NY, USA

Panelists: Joachim Biskup - U. Hildesheim, D

Klaus Dittrich - U. Zurich, CH

Carl Landwehr - Naval Research Lab., Washington, USA

Marv Schaefer - ARCA Systems, Maryland, USA

This panel will explore the themes and trends in database security, including security policies and models
as well as the user's perspective and requirements.

As security for relational database systems matures, we see that the new commercially available products
offer hooks for flexible security policies - to accommodate application-specific requirements. These hooks
loosen the restrictions on information flow between levels in a controlled manner. For discretionary access
controls, the analysis of group-based privileges and the emergence of new security paradigms, such as
separation of powers, also suggests a trend toward choices among security policies through flexible
configuration of the security parameters. This raises the question of whether there might be several
orthogonal dimensions that help to define a space of alternative security policies and models, and the extent
to which these dimensions can be made non-interfering.

The need for assurance and certifiability conflicts with flexible security policies. One must determine the
consequences of each alternative security policy, and assure that for each combination no operational flaws
or loopholes exist. Thus vendor products often seek certification based upon the one preferred configuration.

Another trend is the expansion of multilevel security from relational systems to encompass object-oriented
systems. Issues of granularity of classification in the relational model led to decomposition of multilevel
relations, and then to the concerns of polyinstantiation - which some would say currently includes several
distinguishable causes, but which have similar operational symptoms.

While the object model is more complex than the relational model, the use of object identity provides some
control for polyinstantiation. The object model also highlights the fact that there is interdependence among
the classification levels assigned to schema components and to object and attribute instances. Perhaps these
classification levels of the model should be subject to security constraints so as to support a consistent
security policy, as has been proposed.

The theme of constraints arises even more directly as a consequence of application semantics. Such
semantic constraints span multiple levels and thus may conflict with security-based separation of
information. Distributed database systems demonstrate an analogous conflict between physical separation
of information due to distribution versus similar logical interdependence of data for semantic consistency.
For distributed systems, secure design will add another dimension of complexity. It will be interesting to
see how the techniques developed for single site multilevel security - especially the replicated approach -
may be extend ed to distributed security.

At the heart of such conflicts with application semantics is the theme of data integrity and consistency. For
example, polyinstantiation often conflicts with application semantics regarding uniqueness of keys and
consistency of single-valued attributes. The security field is ripe for a renewed inquiry into the issues of data
integrity and faithful modeling of the application. Also, the rapidly growing distributed information Web is
providing an opportunity for security to support both commercial and government applications in a new
kind of information network. Perhaps an ultimate challenge for security is whether it can contribute to the
safety of individual systems and the safety of composed or interconnected systems.

Policy modelling:
Chair: V Varadharajan

Hewlett-Packard Labs., UK

Providing Consistent Views in a Polyinstantiated Database

Laurence Cholvy Frederic Cuppens
ONERA ^ERT
2 A.v E. Belin

31055, Toulouse Cedex
France

email: {cholvy,cuppens}@tls-cs.cert.fr

Abstract

In a situation where data are polyinstantiated. one problem which arises is that the high users can observe
both the high level data and the low level cover story, the high data being contradicted by the cover story,
if the database provides the high users with all these data without explanation, the high users would be
faced with an inconsistent situation In this paper, we propose a formal mechanism that enables the global
consistency of the database to be restored. This mechanism is based on the merging of the high level view of
the database with the lower level views by assuming that, when two contradictory facts exist in the database,
the higher sensitive fact is the most reliable one and the lower fact is a cover story. However, in the case of
a partial ordering of the security levels, the use of the order defined on the security levels is not sufficient
to restore the database consistency. In this case, we suggest to associate topics with data for representing
some semantic links between data. Then, we use topics to parameterize the order of the security levels in
order to define a finer grain of preference when the database consistency is restored.

Introduction

Since its introduction in the Seaview Model in 1987 [DLS+87], polyinstantiation has generated
a great deal of controversy. Much has been written on this topic, and several panels have been
organized Two extreme positions can be identified with respect to polyinstantiation:

i Polyinstantiation is an inevitable phenomenon of multilevel data. It is a property of information
and not of any specific technology. In this case, large numbers of polyinstantiated tuples are
usually generated and the problem is to investigate how best to deal with these spurious tuples.

2 Polyinstantiation and integrity are fundamentally incompatible. The results of polyinstantia-
tion are unacceptable for an operational system because it could prevent a.job from being done
properly In this case, solutions must he found to avoid polyinstantiation.

Our view lies between these two extreme points It is argued in [Bur90, Bur91] that cover stories
are the only good reason for the use of polyinstantiation. We agree with the point of view that
representing cover stories is an appropriate use of and motivation for polyinstantiation. However, it
is important to understand that there is nothing fundamental about the occurrence of polyinstanti-
ation Jajodia and Sandhu [JS91. S.I91] have shown how it is possible to prevent polyinstantiation
in many situations where there is no need for cover stories. Hence, polyinstantiation should only be
used where it is appropriate.

When this point is made clear, several problems have to be solved. In a situation where data
arc polymstantiated, the high users try to lie to the low users in order to cause them to believe
something which is incorrect. The problem of how to properly choose a cover story is discussed in
SGL92]. In particular, a cover story to be effective usually requires consistency. The second problem
is that the high users are authorized to have a complete view of the database They can observe
both the high level data and the low level cover story, the high data being contradicted by the cover
storv If the database provides the high users with al! these data without explanation, the high users
would be faced with an inconsistent situation.

In this paper, we propose a mechanism that allows us to restore the global consistency of the
database This mechanism is based on the merging of the high level view of the database with the
lower ie"e! "sews by assuming that, in case of polyinstantiated data, the higher sensitive datum is
the most reliable one and the lower datum is a rover story1 However, in specific situations, the
ns'- of the order defined on the security levels is not sufficient to restore the database consistency.
These situations appear in the case of a partial ordering of the security levels For these situations,
we propose So associate some topics with data. Topics allow representation of some semantic links
between data [OD88 f'D89]. For instance we can associate the same topic Localization with the
two »elations DP part lire-City and Arrival. City, Wc will show that in many cases it is actually
possible to identify a topic with a set of information a user needs to know to perform a particular
job Then, we use topics to parameterize the order of the security levels. This allows us to define a
finer order of preference when database consistency is restored.

The remainder of this paper is organized a.s follows Section 1 reviews the concept of polyin-
stantiation emphasizing those aspects which are important to the objective of our paper. In section
2 we show, through examples, how to restore database consistency when polyinstantiation is used.
Sector. 3 proposes a formal mechanism for restoring the database consistency In section 4, we
illustrate how to use this mechanism to provide answers to variously classified users. In section 5,
we compare our approach with related work and section 6 concludes the paper on further work that
remains to be done.

1 Polyinstantiation and cover stories

\ common use for cover stories is to hide the existence of an otherwise sensitive event. For example,
the plane F127 might be said to carry food when its actual cargo is gas-masks Without a cover
st.on. an unclassified user who asks the query "What is the cargo carried by Ft27" will be provided
with ?,he answer "I don't know" or "You are not cleared fo know that". In both cases, the fact that an
answer is not provided may disclose the existence of the secret mission of F127. In many situations,
this disclosure may not be desirable if a mission is to be successful.

However, notice that, in many other situations, ther" is no need for cover stories. For instance.
let us consider a database containing information about the members of a Secret Service and let us
assume that an unclassified user asks the query "Gv.r rnc the list of spies". As it is well-known by
everybody that information related to a Secret Service is sensitive we argue that the best answer to
this question is "Yon are not cleared to know that" Hence, a cover story should only be used where
appropriate This point has been noticed several times before (see for instance [Wis90. SJ92]).

On the other hand, polyinstantiation is a technique introduced by Denning et al. in [DLS+87].

' It is important to notice that we only make this assumption fo compare two contradictory facts. It would generally
be false to consider that the high level data are more reliable than the lower ones; confidentiality levels are not used
to represent the data reliability.

It was used as a technique for closing a signaling channel which arises when an unclassified user
inserts a tuple that has the same primary key values as an existing but higher sensitive tuple. This
initial view of polyinstantiation has been discussed and many researchers ([Bur90, SJ92] for instance)
consider that these technical arguments are not the best motivation for polyinstantiation. We agree
with this point of view and, as [Bur90. SJ92], we consider that:

Claim 1 Polyinstantiation is actually a technique that must only he used to support cover stories.

However Wiseman argued in [Wis92] that polyinstantiation is not essential for supporting c^er
stories and he showed that SWORD is perfectly capable of supporting cover stories without using
polyinstantiation Wiseman actually considers that polyinstantiation is a poor technique for cover
stories because it is difficult to prevent them arising spuriously His conclusion would be that
polyinstantiation >s a threat for the global integrity of the database. For instance, let us consider
the scenario adapted from the one he proposed in |Wis90].

Example 1 "Suppose an officer wishes to send gas-masks to the forces at The Front- He queries the
database and dtscovrs that aircraft FI27 is suitable and available He then "books'" that aircraft by
vpcordinq 'f! the database that Fl'7!',' is carrying gas-masks to the front. He decides that, for strategic
reasons, this fact is Secret (..).

Vow iuppo.se the system is also used by the. Army Catering Corps to arrange delivery of rations
in the troops This activity is less sensitive than supplying armaments, so the officer in charge is
only cleared to Confidential. Wishing to restock forces at headquarters with champagne, the catering
officer queries the database and finds that aircraft F121 is suitable and available. He is not told that
it is already booked because he is only cleared to Confidential and hence, because of polyinstantiation
his query does not see the secret fact Therefore the officer goes ahead and arranges for F127 to
carry champagne to HQ. The database now contains two conflicting facts2. (..) The database is
therefore inconsistent " □

If such a scenario could arise, then we would really be faced with an integrity problem because it
is not clear to answer to the question "Who will win?'' the armament officer who wants to carry
gas-masks to the front or the catering officer who wants to carry champagne to HQ. However, it is
not difficult to prevent this situation from occurring. When the armament officer inserts the secret
fact that F127 is carrying gas-masks to the front, then there are two possibilities:

1 The armament officer wants to hide the existence of a secret mission for F127. Then, this officer
himself must create a confidential session to insert a cover story to protect the existence of the
secret information.

2 Thf armament officer does not want to hidp the existence of a secret mission for F127. In
this case, this officer must also create a confidential session to insert that F127 is booked for a
serre* mission. For this purpose we can use, as suggested in [SJ91], the special symbol restricted
whose meaning is that some data exists but is higher classified.

In both situations, the catering officer will know that F127 is already booked Deciding whether
the catering officer is authorized to modify the mission arranged by the armament officer does
not depend on the confidentiality policy, but depends on an integrity policy which defines who is
permitted/prohibited to perform updates in the database. For instance, let us assume that the
unclassified data (actually a cover story) "F127 is carrying champagne" is stored in the database
and user A wants to update this data Then, there are two possibilities:

1 The integrity policy says that A is prohibited to modify the cargo of F127. In this case, A's

3We artually assume that F127 can carry only one cargo and has only one destination.

update would be rejected because F127 is already booked. Notice that this does not represent
a signaling channel; A's update ^s rejected because of the existence of an unclassified data.

'■ A is permitted to modify the cargo of F127 Let us assume that this update will represent
an effective change of the real cargo fn this case, the unclassified cargo will be updated
but it is likely to also update the secret cargo No one has proposed this solution seriously
because deleting the existing secret cargo would clearly represent a threat However, by using
an integrity policy, we argue that m many rases this solution becomes realistic, we have only
to properly define who is permitted to perform the update

Similarly. Sa.ndhu and Jajodia introduced in. [S.T91] special integrity privileges for changing restricted
'< unrestricted However, it is not the purpose of this paper to further discuss integrity policies. We
only want to justify our second claim

Claim 2 fa case nf polyinstantiate.d data there must be only one person who controls the secret
information nnd the associated rover story

("'his ''laim f>l|ow< sis to conclude i hat. when two contradictory facts exist in a database the higher
sensitive t»r\ is always the most reliable one and the lower fact is a cover stor

> -ontmiimg ih< above example Wiseman then wants to show that polyinstantiation is unaccept-
able riecause n might prevent a job from being done properly

Example I (continued) "Suppose thai other nfbrrri use the database to receive their orders The
fliab' r~"-ir of /'/':'" nrr cleared to cont'dentio- herons'- fhry do not need to know about the cargo they
arr transporting therefore the datahast tt'tl^ than thiy are going to HQ because the fact that they
should he qoinq In thf Front is secret Note that the crew are. about to make a big mistake." □

\ ,)ossiblr solution to prevent this kind of mismatch is to introduce a set of compartments of
information to create a finer gram of classification on the basis of need-to-know. For instance, in
the above .«yample we can create two compartments Destination and Freight The flight crew
would be actually cleared up to {Secret. Destination) and the data "The destination of Ft27 is
The Front" would he also classified i Secret. Destination). In this case, the flight crew would be
told fhe proper destination of F127 On the other hand, the data "The cargo of Ft21 is gas-masks''
would be classified {Srcret, Freight) and the flight crew would not know about the cargo they are
transporting Hence, we can state our third claim:

Claim 3 When polyinstantiation is used, ire must always consider the specific fob-related need to
kvov nf users i e Ho not provide a cover story to users if this lie would prevent them from properly
performing their wh

if this third , iami is respected, then we argue that there is no fundamental incompatibility between
poiyins'antiation and integrity Moreover according to this claim, if two contradictory facts exist
m a database and if a user need' to know one of those facts to properly perform his job. then the
'oh related fact is the most reliable one and the other fact is a cover story.

2 Merging polyinstantiated databases

the mam idea of this paper is to apply techniques of multi-sources reasoning [DDP92]. [Cho92],
\(ho94hc [(ho9.f| in order to provide a consistent view of the. database when polyinstantiation is
used

2 1 Multi-source reasoning: state of the art

Roughly speaking, multi-source reasoning is a kind of reasoning with information provided by dif-
ferent sources of information. This can be seen as a way of merging several sources of information or
databases One problem which arises is that, of inconsistency: even if each source is self consistent,
the global set of information may be contradictory One way of solving this problem is to consider
that, the sources are ordered according to a total order which expresses their relative reliability
|ChoQ4al and fOB94] show that if is actually more judicious to consider as many orders as topics.
Intuitively a topic is a cluster of formulas which "concern" the same thing. In this section, we will
show that It is generally necessary (o consider topic-dependent orders on the different databases.
Furthermore, the previous works defined two attitudes called "suspicious" and "trusting" They
differ in that when a source contradicts a more reliable source, we can either globally reject it or
we can reject only the contradictory information If topics are not used, then the trusting attitude
v. clearly more adequate becaus: the suspicious attitude would cause all lower classified data to
he ignored as soon as a contradiction appears between the lower classified database and the higher
classified database However, in using topics, we can define a finer order of preference when database
'•onsistency is restored. We will show in the following that when applying multi-source reasoning
with topics to polyinstantiated database the "suspicious'" attitude becomes more adequate,

2,2 Application of the multi-source reasoning techniques to polyinstan-
ciated databases: examples

We suggest applying the multi-source reasoning technique to restore database consistency when
polymstantiation is used. In a multilevel context, each piece of information is assigned a security
level Hence one can partition the global multilevel database into single-level databases3 corre-
sponding to each security level. The data stored in each single-level database generally correspond
to a partial view of the universe by users at the corresponding security level. Indeed, a user at a
given security level is cleared to observe all the single-level databases which are dominated by the
user s clearance. To provide the user with a complete view of the universe corresponding to his
clearance level, we suggest merging all these single-level databases

In the case of polymstantiation. the multilevel database contains some contradictory facts. Our
goal is to restore a consistent view of the universe at each security level. To achieve this goal, we
make the following assumption:

Claim 4 Farh singlr-level database is ml em ally consilient.

Henc >f the multilevel database contains iwo contradictory facts, then these facts would belong
in tv.-c different single-level databases To achieve claim 4. we must precisely constrain the use of
nolvinstantiation (see [CY92] for a detailed discussion I

If -laim 4 is respected, then we propose merging a given single-level database with all the lower
single-level databases If the security levels arc totally ordered, then this principle allows us to
provide a consistent view of the universe at each security level. It is illustrated in the following

example-

Example 1 (continued) Let us ronsider the state of the database after the armament officer has
stored in the database the secret fact that F127 is carrying gas-masks to the front We also assume
that, the armament officer has inserted, in order to hide the secret mission for F127, the unclassified
fact that F127 is carrying champagne to HQ, Finally, Captain Brown has been ordered to be the pilot

'The single-level databases are perhaps not real databases but only virtual databases

I D?st(Fl27, Front}
! Dest(F127,HQ))
\ Cargo{F\27', Champagne)

\ OnraoiFm, Gap. Masks) | ;„,„„■„
\ I \P%tot{F\27,Captain-Brown

DBsecr,- DBuncla,

Figure 1 (-omplete view of i he multilevel database

of f1 i2" This ias* fad is also unclassified Hiese farts are respectively inserted into two single-level
.-tatahases denoted ''ß^ecret and DBrrnria, (see figure ' >

i.nr- sher: is mi lower level than unclassified, the complete view of the universe by users at
■ h ^r-'lassifietl level is equal to the single-fev^i database DBi;:,.!ns. But, to provide a secret user

with -v complete »iev of the unn-erse. we need to merge DB^f.,.ret with DBr„rin? Tn merging
i)fi[F\'27 Fmrti) with Dest(FV27 HQ). ;:< contradiction appears However, as Pest (F127, Front)
is more- sensitive than Dest(F\2~. HQ). Haim 2 allows us to conclude that Dist{FY17. Front) is
mor: rei'.abie than De si (F127. HQ; Hence a secret riser will be provided with !Jest(Fl27, Front).
Similarly, after merging the two single-level databases, we will obtain Cargo(F\27,Gas-Masks) in
the secret view Finally. there is no fact \v, /)ß,!frt) which contradicts that
Pjloii F'2F C apt am Brown). In this case ?. secret user could adopt two different attitudes:

i A suspicious attitude. As DHy„.(„., contains facts which are contradicted by DBsccret, the
secret user does not believe in any facts stored in i)Bi;„ria,.

I \ 'rusting attitude. The secret user believes \r, any facts of DBuncias which are not contradicted

by HRv^rr,

in the sequel, we will discuss which attitude is the best one in the case of polyinstantiation. In our
example, if a secret user adopts a trusting (resp. suspicious) attitude then he will (resp. not) believe
that Filoti FV27, Captain -Brown) Figure 2 shows the complete view of the universe by unclassified
and secret users, we respectively denote them DB<j:ni.la, and DB-.secrei, when the secret users adopt
a trusting attitude. In this example it seems that this attitude is more adequate because it allows
the secret user to observe the likely correct information PUot{F\27.Captain-Brown). D

nest(F\27. Front]

Cargn{Fl27, Gas-Masks)
Pilnii F127, Captain.Brown

J

Prst(F 127, HQ)
' 'argot F\27, Champagne)

Pilot(F127, Captain-Brown)

DB<Stcm DB<Unclas

Figure 2: View at the unclassified and secret levels (trusting attitude)

However a reader m search of simplicity may found that this internal merging of databases is
useless and introduces unnecessary complications. He may consider, as most multilevel databases
suggest that it is sufficient to provide a secret user who queries the multilevel database to know
the destination of F127, with the two facts

7>s/(F127. HQ), DesflF 127, Front)

and to mention that the first fact is unclassified and the second one is secret, Then, he will
assume that this secret user can perform an "external" merging of the two facts and derive that
f)est{F\2". Front) is the real fact and Dest(F127, HQ) is a cover story. Unfortunately, this "solu-
tion"' does not apply to many situations, especially in the case of deductive database. The following

example illustrates this problem.

Example 2 Let us consider the following state of a multilevel database used in a travel agency:

r
ib.Pa.isrngers(F128,20n)

Fu»(F128)
Capacity(F128, 250!

V/. c, Capactty(f, c) —►
(Full(f) ~ NbJ>assengers(f,c))

RB Secret DBUn

Figure 3 (Complete view of the multilevel database

Wf assume that, in this travel agency, some seats are kept free for secret users. This is the
,-eason why. the database stores the unclassified fact that F128 is full even though some seats are
«til! availahle for secret users. If a. secret user queries the database to know if F128 is full, then the
database management system (DBMS) will answer yes and mention that this fact is unclassified.
Notice that if we do not merge the secret database with some unclassified facts, then the DBMS
cannot tell this secret user that, F128 is actually not, full and mention that this fact is secret. Hence,
the DBMS only provides the secret user with the unclassified cover story! In using the approach
we suggest m this paper, the complete view of the universe at the secret level is represented in the

following database.

Nb.Pa.«sengeTs{F\2»,20a).
Caparttyi F12H. 250)

V/. <. Capacttyif. r) ~—
(f'ull(f) *-■ Nb.Pas.iengersi/. r))

l)B<Serre,

Figure •) Complete view at the secret level

*■:«,,- ,f a secret user queries the rial abase to know if F128 is full, then the DBMS also derive the
answer n.i and mention that this fact is se<-ret °

(.nfortunately. in case of a partial ordering of the security levels, it is not, sufficient to use the
order defined on the security levels to restore the database consistency. The following example

illustrates this problem,

Fjxemple 1 (Continued) Let us assume that the flight crew of F127 use the database to receive
their orders To allow the flight crew lo know about the destination but not about the cargo, we
have seated a compartment Destination The flight crew are cleared up to (Secret, Destination)
and the data Dest(F127, Front) is actually classified at (Secret. Destination) to allow the flight
crew to know about the proper destination of P" 127

Similarly, let us assume that the ground crew use the database to know what, cargo to load.
We assume that they do not need to know the destination. Hence, we create another compart-

;>r>, < i Deal,Freight

\

^L„

! D->st(F127,i ?rK<!
\ !"nrgo(F127. >'onF

.arge F127, Gas-Ma*kx) DB,Srrr„iFre,„h

~*\

i i')(*t{ f- i.r. HO;
DBunci.,. \ l 'argoi >■ \ .i:.. i hcronagv?

\t'iioti I'i ','T .' aptatn thrown

Figure 5 (omplete view of the multilevel database

men*. Freight the ground crew arc cleared »p to (Secret Freight) and the data Cargo(F 127. Gas-
M'ask-s) >.s classified at (Secret, Freight)

*!A - also assume that the following unclassified integrity constraint is stored in the database:

Vx.C eirgof r (hampagne \ -™- Pestlx. HQ)

This constraint says that champagne may only he sent to HQ Let us now consider the flight, crew's
,-ieiv of the universe They can observe the exact destination of F127 - Desti F127, Front) and
the unclassified cargo of F127 (argot[F127. Champagne). However, this view is contradicted by
the abov» integrity constraint. Bv using claim 2. the flight crew know that Drst(F\21. Front) is
'he proper destination of F127. So. the flight crew will derive that Cargo(FY17.Champagne) is
a -over storv A possible solution to prevent this kind of disclosure is to introduce a second cover
stop, for the flight crew, for instance ('argo{!"\27. Fond) On the other hand, the ground crew can
observe that Pe.itl F\ 27, HQ) A Carqn(F\'l7 Ca s-- M ask x) In this case, we do not have to change
the -over story Pf.itIF 127, HQ) because we consider that it is possible to restock the headquarter
with gas-masks. Figure 5 sums tip. the complete \ iew of the multilevel database

In using a similar approach as the one used m the previous example, it is easy to build the
■omplete vjpw of the universe by users at the {Secret. Destination) and (Secret, Freight) levels.
But to provide a user cleared up to t Secret, { Pest, Freight}) with a complete view of the universe,
we need to merge PB(SecretDe„, with DB:Srrrrurrri!,hv. In merging Cargo(Fl27', Food) with

Cargo(F\27 Gas-Masks), a contradiction appears. As we cannot compare (Secret, Destination)
and (Secret, Freight), a user cleared at (Secret, {Dest, Freight}) cannot use the order of the secu-
rity levels to restore the database consistency However, a user cleared at (Secret, {Dest, Freight})
knows that users cleared at (Secret, Freight) need to know the correct cargo to properly perform
their job Hence, a user cleared at (Secret, {Dest. Freight}) can use this knowledge to deduce that
Cargo(F\27.Gas-Masks) is the most reliable fact and, therefore, Cargo(F127, Food) is a cover

story.

We suggest introducing the concept of topic [CD89] to model the deduction the user at
[Secret, {Dest. Freight}) has performed to derive Cargo(F127, Gas-Masks) Data with similar
semantics are linked by the same topic. In our example, we may introduce three topics: Dest,
Freight and Crew4 We respectively associate the topic Dest with the data Dest(F127, Front)
and DestiFm.HQ). the topic Freight with Cargo(F\21, Gas-Masks), Cargo(Fl27. Food) and
(argo(F\Ti Champagne), and the topic Crew with Pilot(F\27, Captain Jirown)

In order to provide secret users with a consistent view of the database, we use topics to param-
eterize the order of the security levels and to merge data with this finer grain of preference For
instance, we define the following total order of preference5 for merging information related to the

topi- Dest

(Secret, {Dest, Freight}) >D„, (Secret, Dest) >De,t (Secret, Freight) >De.,t Unclas

In particular, this order means that information related to the topic Dest are more reliable at level
{Secret, Dest) than at (Secret, Freight). Similarly, we define the following total order of preference
for the topic Freight

(Secret, {Dest. Freight}) >Freight (Secret, Freight) >Freight (Secret, Dest) >Freight Unclas

Notice that this order differs from the one defined for the topic Dest because, according to the
specific need to know of users at level (Secret, Freight), information related to topic Freight are
more reliable at level (Secret, Freight) than at (Secret, Dest). Finally, for the topic Crew:

(Secret. {Dest, Freight}) >Crew (Secret, Dest) >crew (Secret, Freight) >Crew Unclas

These orders of preference are used to restore database consistency at the (Secret. {Dest, Freight})
level Figure 6 (next page) shows the resulting view of the database at the different security levels.

We have also pointed out that a user at (Secret. {Dest, Freight}) can adopt two different atti-
tudes: a suspicious attitude or a trusting attitude Which attitude is the best, in case of polyinstan-
tiation" If we do not use topics, then we have already noticed that the trusting attitude is probably
more adequate However, we think that when using topics, the best attitude is the suspicious one.
Indeed, let us consider the following example: at the unclassified level, we insert that the champagne
carried by F127 is a Veuve Chquot of 1981. Clearly, we do not want to provide the secret user with
the fact that F127 is actually carrying gas-masks called Veuve Cliquot and dated from 1981. So,
if a contradiction appears between the lower information related to a given topic and the higher
information related to the same topic, then the best attitude is to reject all the lower information
related to this topic because these information are probably related to the same cover story - namely
that F127 is carrying champagne in our example This attitude does not preclude the high user from
observing lower information related to another topic, for instance Crew, and thus knowing that the
Pilot of F127 is Captain Brown. Hence, in separately merging information related to the same topic,
we argue that the best attitude is the suspicious one

1 The sets of compartments and topics may generally overlap
5 Actually, this order would be defined by the database security administrator

I Dc«i{ FT27. Front)

fS<i secret.(Best,Freights. | Cargo(F127 Gas-Maskn)

[PilotlF i27, Captatn -Brown)

■ Dest{F]27, Front-)

| CaTgo(F\27.. F r,od\ \

\Pitnt.(PI 27. C aptatn Brr.vmj

~KT

Desi{F\27,HQ))

I Cargo'. F 1.27, Gas-Masks) | OBsj Secret,Freight

\Ptloi< F'i ■'", Captain Jimiim)j

/*"

-5^i

/ lh-.it{F[27. HQ))

DB<Unr!-' i '' <irgn> i \'.~ Champagne) j

lP»./of.(/' 127, C aptam -Flrniun))

Figure 6. View at the different security levels

Moreover, for the readers who might prefer the trusting attitude, it is important to notice that
the database administrator who is in charge of defining topics may choose a very general or a more
specific representation In particular, if he decides to associates any pair of literals (1, — 1) with a a
lopir then the suspicious attitude and the trusting attitude collapse. Hence, the trusting attitude
may ho seen as a particular case of the suspicious attitude D

In the next section we propose a formal model for restoring the multilevel database consistency
*<;h"'!i includes topics and adopts a suspicious attitude

3 The formal model

3,1 Assumptions of our model

« Security Ifivels

Let us first assume the existence of a set of security levels which are ordered according to a
strict partial order, noted >

tcvrl] > ifvri; means that people cleared up to lrvels may access information which belong to
levclx or to level?. People cleared up to level? are not allowed to access information at level\.

For instance, the four levels: xecrei\ ?, secret\, secret?, unclas may be partially ordered in the

!()

following way: secreti^ > secreti > unclas, and secretly > secret^ > unclas.

• The language and the approach.
We assume that the language used to describe the databases is propositional. Notice that, even
if apparently a first order language is needed (tuples of relations) we can associate it with a
propositional one because of the domain closure (i.e. we assume that there is a finite number

of objects)[Rei78].
The databases which we consider here are sets of propositional literals and we adopt a model-
theoretic approach, i.e. each database is associated with its logical models. Notice that this
restriction to literals means we cannot represent rules in the database, such as those in example
2 This clearly represents some further work that remains to be done.

• Topics
We assume that the underlying propositional language is partitioned in several pairwise disjoint
subsets called "topics". In this paper, we do not consider the case of topics structured with an
ISA relation: we only consider that topics form a partition of the language. The only condition
we impose on topics is the following one. Let t be a topic, let / be a formula:

(/ G t) <=> (-■/ e t)

This condition says that the formula / belongs to the topic t if and only if the negated formula

■-if belongs to t.
Each topic is supposed to be a set of formulas which "concern" the same thing. For instance
the following two formulas: "the destination of F127 is the front" and "the destination of F127
is the head-quarter" belong to the same topic "destination-of-F127". But "the pilot of F127
is Captain Brown" does not belong to this topic. Notice however that the definition of topics
depends on the context. Indeed, if it was necessary, we could have considered only one topic
"F-127" which could have grouped the three previous formulas.

• Topic-dependent orders.

As said previously, each security level is associated with a (possibly virtual) database. For
instance, in the above example, there would be four databases, respectively accessed by the
people cleared up to secret].2, secreti, serret^, and unclas

The existence of cover-stories make these databases apparently inconsistent. The solution we
suggest is to allow the database security administrator to express topic-dependent orders on

security levels
Let t be a topic, we note >t a total order of levels which is associated with t.

Definition 1 Compatibility between security levels and topic-dependent orders.
Let > be the partial order defined on the security levels. Let >(be a topic-dependent total
order They are compatible iff for all levels /, and I-, we have; (lx > /2) ==> (h >t h)-

In other words. > and >(are compatible iff >< is a total extension of >.

Claim 5 We assume that the different topic-dependent orders >(are compatible with >.

3.2 Semantics of the suspicious fusion with topic-dependent orders

Consider n databases to be combined. Let us note L the underlying propositional language associated
with m topics <! tm. The individual databases are finite sets of literals of L which are satisfiable
(consistent) but not necessarily complete (a base B is not complete if there is at least one literal 1

such that 1 £ B and -> 1 g B).

11

in this section, we give the semantics of a logic, called FUSION-S whose language V is obtained
from / by adding pseudo-modalities i.e., marks on propositional formulas. These pseudo-modalities
a re

• \(h Om], where the Oi are total orders on a given subset of {1,..., n] which are ^-dependent
and compatible with >.

Let (); .Om be m total orders on k databases. Our goal in this section is to define a semantics
for \Ot ..Om]F. Intuitively, [Oi-.Y>m]F means that F is true in the database obtained by vi:tual!y
merging the k databases according to the m ^-dependent orders Oi...Om. The satisfiability of
iO, Om\F is defined in definition 5

Remark Notice that the general form of these pseudo-modalities allows us to re] resent the par-
ticular ca.se where k = 1. In thin case, there is only one database ii to be ordered.
So. 0} ~- 0*i - — Om = (J|) And [?■, , >i\F will mean that F is true in database ix.

By convention. [?']...ij] will be noted [?i !

Definition 2 Let m be an interpretationc of I. and / a fopic of i . We define:

m I r ~ {I I £ m and / £ 1}

r-i \ - is the projection of the content of m on the topic 1.

Definition 3 I,ei. F be a set of interpretations of /. and / a topic of L. We define:

E\t - {n, \1 .m£ E)

Definition 4 I,et t be a topic and O, be a total order (i, > .. > ik) on k databases. We defin« :

RAO,) :-■■: h,,tJ(...ht7t(R(i1))...), where: hlit(E) - R{tj) \t n E\t if not empty

hi,AE)=F\t else

Definition 5 The unique model of FUSION is the pair M = (W, 7?) where:

» W :■■■ the finite set of all the interpretations of /.

• R is a finite set of subsets of \V such that any modality [Ox ..Om] is associated with such a
subset noted R(0\...Om). These subsets are defined by .

/?(? i) is the set of models of dabatase t We note it R(i).

RIO, . Om) —- {w : w — ill U i i tern, where
V? e [\..m].v> £ R,(0,) and
V/G L,l<? iv or .l^f }

We can prove that

Proposition 1 R{0) .Om) is never empty

This means that, although the bases are contradictory (because of the cover stories), the combined
base is not contradictory (i.e the information provided at any level will not be contradictory).

6 We assimilate an interpretation of /, with a set of literals.

Definition 6 (Satisfaction of formulas).
Let Fbea formula of L. Let Fi and F2 be formulas of V, Let Ox...Om be total «.-dependent orders
on a subset of {1, ...,n}. Let M - (W,K) be the unique model of FUSION and let w € W.

FUSION,«; |= F <=*• w\= F
FUSION.«- h [Oi-Om]F <=> V«/, u/ e Ä(Oi...Om) =► I»' |= F
FUSION,«; \=->F <=* (FUSION, iu £ F)
FUSION.«; |= Fi A F2 <=> (FUSION,«; |= Fx) and (FUSION,«; |= F2)

We note M |= F. iff V«; G W, FUSION, w |= F.

We are interested in finding formulas of the form: [Oi...Om]F which are satisfied in the model
M. i.e. finding formulas F which are true in the database obtained by merging the databases, when

the order is 0\...Om

3.3 Model application

Example Let us consider again the previous example. Let L be the prepositional language whose
propositions are: front, HQ, food, gas-masks, champagne, captainbrown. Let us define three topics:
Dest = {front, HQ}. Freight = {food, gas-masks, champagne} and Crew = {captainbrown}. We
consider the three topic-dependent orders : > Dest ,> Freight ,>Crew defined by :

0De,t : (Secret, {Dest, Freight}) >De,t (Secret, Dest) >De,t (Secret, Freight) >Dest Unclass,

(^Freight -
fSecret, {Dest, Freight}) >Freight (Secret, Freight) >Freight (Secret, Dest) >Freight Unclass,

Ocrew ■ (Secret, {Dest, Freight}) >crew (Secret, Dest) >Crew (Secret, Freight) >Crew Unclass,

Let us compute R(ODe,t,0Freight,Ocrew) in the model M.

• R(DB(s>,cret.{Dc>t,Freight})) >« all the models of L which satisfy the integrity constraints express-
ing that a plane can carry only one freight and has only one destination.

• R(DB(serret.Dest)) = { (front, food, -i HQ, -> gas-masks, -. champagne, captainbrown),
(front, food, - HQ, -■ gas-masks, -i champagne, -■ captainbrown) }

• R(DB(Scrret Freight)) = { (front, gas-masks, -. HQ, -i food, -i champagne, captainbrown }
(HQ, gas-masks, -■ front, -. food, -> champagne, captainbrown)
(front, gas-masks, -i HQ, -> food, -i champagne, -. captainbrown)
(HQ, gas-masks, -i front, -> food, -i champagne, -■ captainbrown) }

• R(DBv„ria,i) = { (HQ, -> front, champagne, -• gas-masks, -> food, captainbrown) }

Let US now compute RDest(Opest)' RFreight(0 freight)^ Re r eu(0 C r ew) ■

• Rne,t(One,t) = { front, - HQ }

• RFreight(0Fre.ight) - { gas-masks. -. food, -> champagne }

• Rcrew(Ocrew) = { captainbrown }

Thus, by definition 5

• R(ODe3t,Opreiciht,Ocrew) — \ front, -i HQ, gas-masks, ->food, -> champagne, captainbrown }.

So. M \=z \Or>estOFrei9htOcrew] (front A gas-masks A captainbrown),

i e the formula (front A gas-masks .A captainbrown) is true in the base obtained by merging all

the bases which are under DB(Secre.t.{Deti.F<-Hgkt\\- -n other terms, a person who is cleared up to
iSeeret, {Dest, Freight}) will know that "Captain Brown pilots the F-121 to the front with a cargo
r>f qrii- masks".

4 Answering queries

In this section, we show how to answer queries addressed to the database which is composed of several
databases attached to different security levels This query evaluator is based on the semantics given
HI "he previous section.

First of all, we need to introduce the following definitions-

Definition 7 Let DRi1...DBitt be n databases associated with n security levels. Let Ot be a total
order on these databases which is dependent on a topic t Let us note Ot = { tj >t h >t ■■■ >t In }•
Let ' be a security level. We define 0,\l the restriction of Ot to the set of databases DBi, such that

Example Let us mme back to the example introduced in section 3.3 and consider the security level
{Secret. Freight) For every topic / g {Dest. Freight, Crew}, we have:

Ot\(Secret. Freight) — {(Secret. Freight.) >t Unclass}

Let us consider a person who is cleared up to level / asking a query Q (which is a formula of L).
We define the answer of Q provided for persons cleared up to / as follows:

Definition 8 (Answer to Q pronded to persons cleared up to I)
].ft r>Bi ..DB\n be n databases associated with r? security levels. Let Ot,.i = 1,. ..m, be total
orders on these databases which ar" dependent on topic ti, ...,tm. Let Q be a formula of L.

\\Q\\! = TR(
;
F; iff

HOiii ■---: FALSE iff
M h [0,,\I...O,„\l\Q
M\=\Ou\l .O.JIhQ

Example : The following array lists some questions and the answers provided according to the
clearance level of the person who asks it. Notice that we give the queries in the first order language
from which /, is based

!
Habilitation

Queries
Where does F127 go^ What does F127 carry? Who is the pilot of F127?

i i> Tret.{Oest.Freight)) Front G as- Masks Captain Brown

i (Secret .Desf) Front Food Captain Brown
1 (Secret, Freight) HQ Gas-Masks Captain Brown
| Unclas HQ Champagne Captain Brown

14

5 Comparison with related work

There exists some connection between our approach and the Nonmonotonic Typed Multilevel Logic
(NTML) developed by Thuraismgham [Thu91]. In NTML, the primitive symbols such as constant,
variable or predicate name are associated with security levels. Hence, it would be possible to
consider that the fact Cargo(Fl27,Gas~Masks) is secret because Gas-Masks is a secret constant.
In our approach, we consider that the logical language used to model the multilevel database is
not, protected. We agree that hiding some part of this language allows us to represent additional
ways of protection We consider that this problem represents further work that remains to be done.
However, it, is not essential to achieve our goals in this paper.

On the other hand, we feel that it is a conceptual simplification to represent a multilevel database
as a set of single-level databases instead of a single multilevel theory as in NTML. We also prefer
representing each single-level database as a set of models instead of as a theory. Moreover, ir.
many specific situations it is not clear how to restore the database consistency using NTML. These
situations include the case of a partial ordering of the security levels but are not restricted to this
' ase For instance, as noticed in [OLQS92], if P and Q are facts at the unclassified level and ^(PAQ)
H new fact at the secret level, it is not clear how to choose which of P and Q is not, inherited from
unclassified level to secret level to avoid a contradiction In our approach, we propose to use topics
to define a finer gram of preference which allows to restore the database consistency even though the
security levels are partially ordered. Finally, information related to the same topic are separately
merged We argue that in this case the best attitude is a suspicious attitude instead of the trusting
attitude used in NTML. Hence, in the above example, if P and Q are facts at the unclassified level
and related to the same topic, ->(P A Q) a new fact, at the secret, level, and the secret user adopts a
suspicious attitude, then this secret user would reject both P and Q.

6 Conclusion

Situations exist, where we need to hide the existence of an otherwise sensitive event. In these
particular situations, we generally need to use cover stories. Hence, cover stories are a fundamental
multilevel requirement. On the other hand, we agree with [Bur91] that polyinstantiation is not a
fundamental property of multilevel databases: it is simply a powerful technique for supporting cover
stories. Moreover, in using polyinstantiation. several problems have to be solved. This paper aims to
solve one of these problems, namely how to restore the database consistency when polyinstantiation
is used. We have proposed a formal mechanism which works even though the security levels are
partially ordered Further refinements of our approach are possible. A first refinement would be to
extend our model to include the possibility to deal with rules in the database. This extension would
allow us to treat the example 2 in our model

We have also suggested that it, could be interesting to hide some parts of the database schema
in order to represent additional ways of protection. Another refinement would be to include the
case where we do not need polyinstantitation, i.e. we do not want to hide the existence of a secret
event For this purpose, we can use the special symbol restricted introduced in [SJ91]. We do not
feel that it would generate any problem because, in this case, the high view is not contradicted by
the lower view. A third possibility would be to deal with content-dependent rules. For instance, we
may introduce a rule saying that "The destination of F127 is always secret information". All these
refinements would allow to have a complete representation of the different ways of protection.

Our approach is designed to provide the high level user with some parts of the low level database
which are not in contradiction with the high level database. It would also be interesting to extend

15

f-hi° approach so that it would be possible for the high level user to see what the lower users see and
know- if thev are believing some rover stories. As our approach is designed to recognize if a given
data is a cover story, we guess thf1 : would probably be easy to include this extension in our model.

Another problem not discussed in this paper is how to properly choose a cover story. For instance,
in figure 3, we have rejected Dest(Fl27, Front) ACargo{F127: Champagne) because this view would
i:f- contradicted by an integrity c> istraint. Hence, a cove story to be effective requires consistency.
On the other hand, we have accepted the view Dest(r' >'?7, HQ) A Cargo(F'[27, Gas-Masks) for
users "leared up to {Secret, Freight) because we have vsisidered that this view may be plausible.
Knowing if users at (Secret, Freight) would really beli< ■" in this cover story is a difficult problem
discussed in [GL92] We feel tha> 'ombinmg the solutk o this last problem with the mechanism
developed in this paper would be an important step towa. '■• a meaningful semantics for cover s.ories
=wid therefore polyinstantiation.

Bibliographie

BnrPO] R K. Burns. Integrity and secrecy. Fundamental conflicts in the database environment.
In Proceedings of the Third RADC Database Security Workshop, 1990.

Burflll R K Bums. Polyinstantiation. A position statement, in Proc. of the computer security
foundations workshop. Franconia. 1991 Panel position paper on Polvinstantiation.

i 'D88| F '-uppens and R. Demolomh* <"ooperativ< Answering: a methodology to provide
intelligent access to Databases In Second International Conference on Expert Database
Systems Tvsons Corner Virginia 1988

ff :D89] F Onppens and R. Demolombe How to recognize topics to provide cooperative answer-
ing. Information Systems 14(2). i989.

H'!D'-)4] F Cholvv and R. Demolombe. Reasoning with information sources ordered by topics. In
Proceedings of Artificial Intelligence methodologies, systems and applications (AIMSA),
1994

[(1ho92i L Oholw Consistency of merged databases. In Proceedings of the Workshop on Coop-
eration systems, Keele University (GB). 1992

i('h.o93j i, Oholvy Proving theorems in a multi-sources environment. In Proceedings of IJCAI,
1993.

|',ho94aj i. ('liolvy Fusion de sources d'informationsordonnees en fonction des themes. In congres

AFCET RFIA (Paris >. 1991

!('Uo9-1b[F f'holvy A logical approach t.o multi sources reasoning. In Lecture notes in Artificial
Intelligence number 808 Springer-Verlag, 1994

!'. *Y!!2| F (uppens and K. Yazdaman \ "Natural'" Decomposition of Multilevel Relations. In
IFFF Symposium on Security and Privacy. Oakland. 1992.

1DDP921 .) Fang I) Dubois and H. Prade Dealing with multi-source information in possibilistic
logic In Proceedings of FC A!, 1992

[D!,S+87] D Denning. T. Lunt. R Shell, M Herkman. and W Shockley. A Multilevel Relational
Data Model In IEEF Symposium on Security and Privacy, Oakland. 1987.

[GF92J T D Garvey and T. F Flint »'"over Stories for Database Security. In S. Jajodia and
(Fandwehr, editors. Database Security. 5 Status and Prospects. North-Holland. 1992.
Results of the IFIP WG 11.3 Workshop on Database Security.

i(S

[GLQS92] T Garvey, T. Lunt, X. Qian, and M. Stickel Toward a Tool to Detect and Eliminate
Inference Problems in the Design of Multilevel Databases. In Proc. of the Sixth IFIP WG
11.3 Worktng Conference on Database Security, Vancouver, 1992.

[JS91] S. Jajodia and R. Sandhu. Enforcing Primary Key Requirements in Multilevel Relations.
In Proceedings of the Fourth RADC Database Security Workshop, 1991.

[Rei78] R. Reiter. Deductive question-answering on relational database. In Logic and data bases.
Plenum Press New-York 1978.

[SJ91] R. Sandhu and S. Jajodia. Honest Databases That Can Keep Secrets. In Proceedings of
the Hth National Computer Security Conference, Washington, D.C., 1991.

[S.192] R. Sandhu and S. Jajodia. Polyinstantiation for cover stories. In European symposium
on research in computer security.. Toulouse, France, 1992. AFCET.

[Thu91] B Thuraisingham. 4 Nonmonotonic Typed Multilevel Logic for Multilevel Secure
Database / Knowledge-Based Management Systems. In Proc. of the computer security

foundations workshop Franconia, 1991

[Wie90] S Wiseman. On the Problem of Security in Data Bases. In S. Spooner and C. Landwehr,
editors, Database Security,' 3: Status and Prospects. North-Holland, 1990. Results of the
IFIP WG 11.3 Workshop on Database Security

[Wis92] S Wiseman. Using SWORD for the Military Aircraft Command Example Database. In
Proc. of the Sixth IFIP WG lt. S Working Conference on Database Security, Vancouver,
1992.

17

Secure Logic Databases Allowed to Reveal

Indefinite Information on Secrets

Adrian Spalka

Department of Computer Science III, University of Bonn
Römerstr 184. D-53117 Bonn. Germany

Fax: - 49 228 550 H82, Email: aclrian@cs.uni-bonn.de

Abstract

!■;!'- n;iper presents a new approach to the definition and the enforcement of confiden-

tiality, m logic databases. We investigate the semantics of a logic database consequent

upon the introduction of user"-, and rights. Regarding a database with rights as a proper

extension of an open database, we define the notion of global validity and that of a per-

sonal database profile. We give lour formal definitions of confidentiality and show that

iinee oi Them are meaningful in the presence of the Closed World Assumption. Exter-

nal assumptions regarding the allocation ot rights and the individual user knowledge

round up die formalism. Thereafter we focus our attention on the enforcement of the

confidentiality lorm Gl, which allows a user to possess indefinite information on se-

t reis i his form, being the lowest possible level ol confidentiality, has the advantage

ilia! the database never lies to a user. io il can be met without a cover story. We con-

ad T (he enforcement of Gl with respect i<> the dala and the integrity constraints. The

presented formalism is theoretically sound, completely embodied in standard predicate

ioü'.i and extendable to a multilevel security model.

1 Introduction

in iius section we give an informal definition of an open logic database (LDB) and that

oi a secure LDB, viz a LDB which is expected to keep some confidential information

Si.alka. 04.07 1994 dbsec94.doc

secret from particular users Thereafter, we discuss previous works and related ap-

proaches. In this paper we put the emphasis on a clear illustration of our ideas, thus we

omit some formal details.

1.1 Overview

A slate of the world as seen by a LDB consists of facts, rules and general laws. The

i I)B-model maps the facts and rules of a state of the world into a set of data and the

genera! laws into a set of static integrity constraints. A LDB uses normal clauses for the

uniform representation of fads, rules, integrity constraints and queries. The application-

dependent symbols which may occur in a clause are contained in the database's signa-

ture. The database-language comprises all clauses which the database understands, viz

recognises. A user can directly obtain information from a LDB in two ways: he can re-

quest a listing of the current state's data and integrity constraints and submit a query

which is evaluated under the Closed World Assumption . The listing contains all

clauses explicitly stored in the database; the answer to a query comprises facts either

stored or derived from the data.

The life of a LDB is determined through a series of states. The application-dependent

components which remain invariable with respect to all states, ie the signature and the

integrity constraints, define a I ,DB-scheme. Two states of a LDB can only differ in their

^ets oi data. A data set is consistent if it satisfies the integrity constraints, viz the data

seen as a set ol axioms must allow the derivation of the constraints. A state of a LDB is

always valid, ie its set of data is consistent. Thus the set of all valid data sets is uniquely

determined by the integrity constraints. A transaction is an activity which modifies the

explicitly stored data of the present state. If the modified data set is valid, then the

transaction is accepted and the LDB changes its state, ie the modified data set forms

ci Reifer (1978).

■\ .->r.„;ka,s»4.07.1994 dbsec94.doc 3

i I i< ucw 1 .DB-state. Otherwise the transaction is rejected and the I J)B-state remains

unchanged, ie the modification is ignored,

in this open LDB, each user who has access to il can obtain a full listing of the stored

;]au, and integrity constraints, receive a complete answer to any query and change the

i I »L ■■■ slate into any valid state. An open database treats all users equally or. to say r in

another wav. it can only discern one universal user with unrestricted power.

i ;KT(are many reasons why it may he necessary to restrict the freedom of a user. One

v ■■Min is the requirement to keep some elements of a LDB secret from a user. In the

hsoadosi sense we define a secure LDB as a. LDB together with a set of users who have

<H 11 v- le il and a set of confidentiality requirements that state which elements of the

i id' should be kept secret from winch user The confidentiality requirements form a

jv-ri oi ,i s<><-iirin policy.

1 2 Related work

Ai cording to (jougen/Meseguer (1984), a confidentiality requirement expresses that

'nude! . ertain conditions, certain individuals should not have access to certain informa-

tion Its jonualisation as non interior» nee is specifically intended to model trusted

ivMI vssos. bul the authors also introduce a simple model of a multilevel-secure data-

base ir. proof-theoretical view which has neither integrity constraints nor updates, and

\h« o the Closed World Assumption (t WA) is not made. In this context, they interpret

no;, üim'loivnoe as non-denvabili(v and say that a security violation has occurred if the

data accessible at a low security level allow the derivation of data accessible only at a

lu.uh se.■nriP.- level. Howevei, tlicy do not mention until when a security violation has

no! o,-i nri'ed Yei this distinction is important since- u <■ Th{I) and a g Th{I) are not the

only relationship-possibilities between a formula and a set of theorems.

Soiif, n MesegutT (t984):?;>

A hpaika, 04.07.1994 dbsec94.doc

Börsen/hunt (1987a) and Berson/Lunt (1987b) investigate the possibility of the appli-

; aiion of t'he MAC-model to deductive databases. They point out many new problems

and suggest an approach to tackle them, but, due to the initial nature of these works, no

solutions are offered.

Morgenstern (1987) notes that, in a deductive database, making a piece of information

dim tly inaccessible may not be sufficient if one wants to keep it secret. Here it can still

be possible to infer a secret from the accessible facts, rules and integrity constraints.

Ihr author speaks of deductive databases in an informal manner and uses them mainly

to accentuate the new problems which arise during the transition from relational to de-

ductive databases..

Meadows/Jajodia (1987), Burns (1990) and Wiseman (1990) are examples of early ap-

proaches which consider a multilevel relational database where primary key and for-

eign kev constraints are the.1 only classes of integrity constraints. They assume that each

user has access lo a different part of the database, but that there is just one set of con-

straints which must be satisfied at all levels. Burns (1990) and Wiseman (1991) note

that there is a fundamental conflict between secrecy and integrity, since each of them

can onh be enforced at the expense of the other.

i unt Milieu (1989), Garvey/Lunl (1990) and Garvey/Lunt (1991) choose an approach

which considers deductive databases as a special case of object-oriented databases. Al-

though their motivation has its origins in deductive databases, the presentation is based

on the terminology of object-oriented databases. Hence it is difficult to regard this ap-

proach as a contribution to a predicate-logic based theory of secure databases.

Steinke (1991) reports on a specific problem in multilevel secure deductive databases

which arises when integrity constraints must be kept secret. He argues that it may be

impossible to keep a database valid. However, no satisfactory solution is offered.

"V Snaika. 04.07.1994 dbsec94.doc

(tippens A'axdanian (1991) extend a relational database with horn-clauses. Similar to

Mauren stern (1987), the authors consider the 'inference problem", viz how to avoid that

a ;;^< ■! can draw a conclusion Irom his accessible data which should be kept secret from

him. Rather than present a solution, the}/" emphasise that logic is a suitable framework

<or the study of security problems in databases.

The first basic attempt of a iormal treatment of confidentiality is presented in

ihunnsingham 11991). The author s main idea is to formalise the multilevel security

properties in N'TML, a non-monolonic logic. Although this approach points to the right

di'Vi-linn. NT Ml has been shown to be not sound.

i he advances achieved until 1991 arc described in Tenor (1991) as simply unsatisfac-

I'.I'A Security requirements have bei'ii so far neglected in the development of deductive

da'abases while at the same time deductive databases are increasingly employed in

sensitive areas. Consequently, he urges a stronger formal security research.

!h>. work of Ikmatti/Kraus/Subrahmanian (1992) deals with the confidentiality of for-

mulae m deductive databases. A formula is secret if it is not derivable. The authors al-

low the database to lie; their formalism and results are based on a mixture of standard

predicate and an extended modal logic. However, the presented approach has some

"vak points ' >n the one hand, the authors define a very simple database model which

lacks the i V\ A, integrity constraints and update operations. Yet, in our opinion, these

an e\aclly the components which make the confidentiality-problem interesting. On the

oilier hand. !he\ make rathei unrcalistk assumptions on a user's own knowledge.

fk-M (-ivumsianees and some of their implications confine this work's applicability to

a narrow context. Finally, no motivation is provided for the choices made in this ap-

proach, eg the unit of protection, the range of answers and the preference or necessity

o! modal logic in comparison to standard predicate logic.

arveyel al (1992): 160.

A. Spalka, 04.07.1994 dbsec94.doc 6

Finally, the reliability of databases is discussed in Williams (1992). His arguments are

based on the notion of external consistency/ It states that all data in a database visible

to a user must be accurate. Phis requirement is as such always satisfied in a normal

open database and to a large extent in a secure database allowed to reveal indefinite in-

formation on secrets to the user. However, it precludes the use of aliases which may be

necessary in order to attain an even higher degree of confidentiality.

2 Basic definitions

following (lallaiiv/Minker/Nicholas (1984) and Cremers/Griefahn/Hinze (1993) we

consider databases from the viewpoint of predicate logic. Thus the discussion and the

r< suits are also valid for relational databases in proof-theoretical representation.

2.1 Predicate logic

Definition 1 A signature Z is a pair Z = (FS, PS). The set FS contains ranked function

symbols and PS ranked predicate symbols. Both sets, FS and PS, are non-empty, finite

and disjunct.

Definition 2 The set of terms over die signature Z, TFZ, is the smallest set with the fol-

lowing properties: each variable is a term; each constant, ie a function symbol of rank 0,

is a term: let /be a function symbol ol rank k and /,. ..,/,. terms, then f{tv...,tk) is a

term. A term is ground if it does not contain any variable.

Definition .V let rbe a predicate symbol of rank k and tv...,tk terms, then r(tu...,tk) is

an atomic- formula, or simply an atom. An atom is ground if it comprises only ground

lerms. let a he an atomic formula, then «is also a positive literal and —.or a negative

literal. We denote the set of atomic formulae over Z by AF2 and the set of literals over Z

cl Williams (1992):58.

ci R.-iU-r (19S4).

\. Spalka: 04,07,1994 dbsec94.doc

lv. Uf

Definition 4 A clause is a formula of the form a, v.. .vam <- # A. .. A/?„ , in which all

eariables are assumed to he universally quantified. Each a{ in the head of the clause is

an atom and each ft in its body a literal, A clause is ground if it comprises only ground

atoms A clause is normal if m 1; it is a query if m = 0. A normal clause is called a rule

if a > 1.: i! is called a fact if n = 0. A clause is range-restricted if each of its variables oc-

curs also in a positive literal in its body. We denote the set of all range-restricted clauses

over I by CV' and its subset of normal clauses by N(XV *

We assume in this paper that all formulae are range-restricted clauses.

ih'fimtwv /) \r\ X c CL be a set of clauses, then Th(X) c CL denotes all clauses

v inch cm be (logically) derived from X (for a clause cp, cp e Th(X) is also denoted as

A hep) The set of all literals in Th{X) is denoted by F{X), ie F(X) = Th(X)\nr .

2.2 Logic databases

definition 0 A LDB-scheme DB is /;# = (Z.C), where Z = (FS,PS) is a signature and

CL a set of static integrity constraints; the present state of DB is denoted as

db J, where / ci NCLX. The closure of / under the Closed World Assumption is de-

noted as / , ie F(i)=F(I)u {-,d a e AF\F(I), or ground}. A state db = I is always

consistent, viz Cc Th(l\ holds.

Definition 7 \x\ /(C) denote the set of all consistent data sets with regard to C, ie

/(C) -■■ \I c: NCIJC c 777(7)}, and let db - / be the present state of DB. From a declara-

tive viewpoint, a transaction ris a set X cz NCL. From an operational viewpoint, a

transaction r = (S,i) alters the set / into X c NCL, which we denote as /—!-^ X ;

r - (Sj) is completely characterised through two components: the set of facts deleted

WV omit the superscript whenever the respective signature is evident.

A Spalka. 04.07.1994 dbsec94.doc 8

from /, A and the set of fads newly included intoX i,\e Sm = 0 and

F[I) \ S ■■= F(X) \ z. If X e z(C), then ris accepted and db - X is the new state of DB.

The set of all accepted transactions with regard to j(C) is denoted by T(C), ie

T(CV-\T[S,ül-^X,LXex{C)}.<»

Moreovei'- we assume thai Ilie only way to communicate with a LDB is through an in-

if-rlarc wilh the following properties:

• LDB s response to the command LIST is a complete listing of I, C and /.

• i i)[) s response to a queiy is:

Syntax error if the query is not a valid query in the language over Z.

otherwise, a possibly empty set o! ground substitutions which define a subset

oi F(I).

• LDB s response to a transaction ris:

Syntax error if rcontains a clause which is not in NCL .

A-Ccepted if r e T(C).

Rejected if reT(C).

• i DB's response to any other input is Unrecognised command.

2,3 Persons and rights

Hie database presented above is an open OIK- because it cannot tell one user from an-

other it answers any query and follows any valid transaction in the same manner. A

database must be able to recognise the users if it is expected to treat them differently.

Therefore we add to our database a set /' of all users or persons who have access to it.

I he rules of the database behaviour towards a user are usually laid down in relations.

Relations expressing rights and prohibitions are of a special interest to us. We intro-

A spa!ka. 04.07' 1994 dbsec94.doc

(luce for each user p e P the following rights:

• RSt, c CI /"" determines the clauses a person may see as an element of / or C.

o RDp c= RSp determines the clauses a person is allowed to delete.

• RI,, c: ClA' determines !he clauses a person is allowed to insert.

Mow w< have arrived at a database which recognises different users and is able to be-

have m accordance with the slated rights We call it a database with rights.

2.4 Forms of secrecy

A secure logic database is a logic database with rights together with a set of confidenti-

alilv requirements. Speaking in a colloquial manner, a confidentiality requirement is a

statement of the form:

d should be kept secret from p with regard to DB

where (I is a component of LDB and /; a user from P. A user knows that DB is a LDB.

Thus only the elements which form a particular I JDB-scheme or a LDB-state can possi-

bly be kept secret: the symbols of the signature, the terms, the atoms, the clauses, the

inlegrilv constraints and the data.

A 1.1 i onficlenliality of atomic formulae

1 «1 us consider the confidentiality requirement:

a (AF1 should be kept secret from p «E /' with regard to DB

Spalka (1994a) has shown that the confidentiality of an atomic formula can be related to

its denvabilitv, ie to the membership-problem with respect to Th{J\ The following table

illustrates the different possibilities of a relationship between an atomic formula and a

set of formulae.

lor the moment it suffices to know that the sets of symbols of Z^ , the signature oip, are subsets of
the respective sets of Z. The motivation for the removal of a symbol from Z^ is given later.

YSpalka. 04.07.1994 dbsec94.doc 10

DoC* Answer Amount of information on derivability

Informal Formal

((JO) Yes Positive definite a e Th(I)

Gl

G2

Maybe Indefinite ava'v a"v... e Th(I^

No Negative definite a £ Th(I)

G?>

G4

Oon't know Indeterminate a € Tk(I) and -,a e Th(l)

Don 1 understand No information «g AF

The entries in the table are interpreted as the database's answer to the user's question

'1 >ors a <-. Th(I) hold?' in the situation when a e Th(l) actually holds. There are five

possible answers. The first answer obviously does not preserve the confidentiality of a,

hut which of the remaining lour does? We see that it is not sufficient to merely require

that c/should be kept secret from p, in addition we must specify how much information

on «with regard to /is/) allowed to have.

At (i4 Ihe database pretends that a cannot be constructed in its language. It gives the

user no information on the relationship between «and /. At G3 the database under-

stands the user's question, but it pretends that it has insufficient information to answer

it At (,2 the database's answer is a definite 'No\ Finally, at Gl the database tells the

user that it knows the answer but it will not give it him. From the viewpoint of secrecy,

GO relates to facts which are not secret. Gl is the weakest and G4 the most stringent

liniii o!"confidentiality.

hum now on a confidentiality requirement for an atomic formula must be accompanied

b\ a degree o! confidentiality, ie it is of the form:

(/ should be kept secret from p with regard to / at the degree of confidentiality G

when G can be Gl, G2, G?> or G4.

Octree of Confidentiality

A Snalka. 04 07 1994 dbseo94.doc

Use interpretation of G4 in a LDB is easy since all we have to do is to remove one sym-

bol 'VM;U an user s signature he would need to construct the secret fact. However, it

should be kept HI mind thai < 4-requirements may unreasonably deteriorate the usefuh

!!'■•>-■!>! tiie database, since the removal of one symbol from a user's signature reduces

hw language hv a whole group of clauses,

', ; is irivtalh not satisfiablc m a I .OR with the < VVA. The CWA tells us that lor each,

d'.nivi a. eilhe-i o e F(I) or -<a <■■ E[l \ holds

i'h« interpretation of G2 is again simple More the CWA tells us that a i F(l).—>

;Y '. h{ 11 ie the non-derivability of 111*- secret fact implies by default the derivability of

i!" lit eahon.

ei |o illnstrate the interpretation of (il, lot us consider the following exampl e.

Example ! let I = (FS - \o jPS - \p.q,s\) and C = \p(X)vq(X) <- s(X)} be a LDB-

s.lK-nie visible !<> a user u. \ et moreover F(I)^ [/>(«), s(a)}, and p[a) should be kept

>-r: re! from u with regard to / at the degree of (il. Then p(a) must not be derivable for

v, Urns we reduce w's set of |)ositive data to El /„) = \s{a)j. Now the trouble is that /„

does not satisfy (. and we owe the user an explanation. We suggest to tell him that:

• die integrity constraints in tare always satisfied by the data in /

• his data may seem to violate ('due to some secrets

Now lh< us-- is able to identify the violated constraint, and through a simple substitu-

tion he can find out that p{a)- q{rt)r:Th{ I) holds, viz either p(a) or is q{a) true. It may

he iHfi) but niav as well not be p(a). •

V\'e see that the interpretation of (il in a LDB involves some interactions and new con-

ventions. ()ne can object that it is hardly acceptable if confidentiality depends only on

two choices, eg p(a) or q(a). However, the integrity constraints as such are given by an

A. hpaika, 04 07.1994 dbsec94.doc

application and Gl only interprets them. Thus if the relevant integrity constraint is a

definite clause, then it may be impossible to keep a fact secret; if on the other hand the

constraint is a disjunction of 7000 links, then Gl seems to be fairly strong.

Although Gl is the weakest form of confidentiality, it has a number of important advan-

tages over the other forms, Firstly, it does not lie to the user. It only provides him with a

weaker information than it is capable of, but this information is still true. If we contem-

niale the possible consequences of a lie from a practical and ethical point of view, then it

s(tins preferable to give imprecise rather than false- information This viewpoint is

shared by many researchers. Secondly, the enforcement of Gl can be achieved with-

out cover stories, viz explicitly introduced lies. Being compared to it, G2 may require

the maintenance of a consistent set of lies which greatly raises the effort needed to en-

I'orcr it.

2.12 Confidentiality of clauses

Most previous approaches have defined the confidentiality of a clause as non-deriva-

bility. ie a clause ip is secret for a user p with regard to a set of clauses /, Up cannot

conclude that cp e 77/(7) holds. We believe that this definition is inappropriate. Let us

consider two motivating examples.

Example 2 1x1 db = I = {rf«)}, then the clause tp = r(X) <- q(X) is derivable from I.

Yet then- is no substitution which makes #?'s body true; its derivability depends com-

pletely on the default data given by the CWA. In particular, p remains derivable even if

wo substitute any other predicate symbol of the signature for q.

Example ■>' \x-\ F(I) = {q(a,).r(c, L. ..,q(aum),r(anm)), then cp = r(X) <- q(X) is deriv-

able. In order to make <p non-derivable, it is already sufficient to adjust the data in I so

that eg either r(a,) is deleted from F(I), or q(aMn) is inserted into F(I).

CSFW (1994).

\. ApaiK,,. 04 (P.1994 dbsec94.doc !.

in the firsi example, the clause is trivially derivable, but this information seems to be of

little aval! In Ihc second example, the clause is no longer derivable as soon as there i^

ins) oil! -.iibstilulion which • lakes (lie clause s body true while leaving Us head false,

hm ■ ;ü w-e ins! neglect the i()0() other substitutions where this is net the case? When

■ ■ '-\" Hi it :i clause is confidential do we just regard the clause as any other formula.

w- <!n •> <■ implicitly express that a confidential rule derives confidenlial data? There are

presumably no lormal grounds on winch this queslion can be answered. However,

ä>,!'. !-.-■;! h\ out motivation, «< believe that the second part of this question should be

;;',^w(>!'ed will- "Yes'.

■Addier, ton give the following definition. i.< = cp he cp /jev. ..vo,., e ß: \ ..'\ß,r The

- ■.'iiüdeuiialitv r<-(juiremem

in should be kepi secret from the user u with regard to /at the degree of G

i~ innrpreted m a LDB as lollows'

/; cp e I.. and cp gC3i

n' for all ground substitutions r(ß A - ß 1 so that /Z"(/?,A.. e/j„)e Th(l), it is re-

quired that Tz{ax v . v/;i 1 should be kept secret from/? with Regard to /at the

degree (,

\n;< logons to 1 he previous section. G4 secrecy of a clause is linked to the user s signa-

iii; 1 . and a cianse cannot he kept secret at the degree (,3 due to the C'WA. The G2-

degi ■.",■ means that x{ax\. (x„. 1 g 77?(/). Since ir\o: v#,„) is a disjunction of ground

ainnre (his can only be satisfied when each link of the disjunction is not derivable. The

<1 i degree does not seem to make sense for indefinite clauses. However, Gl has a sim-

ple interpretation for definite clauses, eg cp = a <-- ß{ A. . .A/?„:

• cp £ /,. and (p <£ CH

Y Spalkii. 04.07.1994 dbsec94.doc 14

• ail ground instances of the head derivable from the present state's data, ie

7r{a)£ F{I), should be kept secret at the degree G1.

Finally, we note that the given interpretation of a clause's confidentiality is a proper ex-

tension of an atomic formula s confidentiality. If the clause is definite and has an empty

body, then its head is a ground atom.

.; 4.,i Some remarks

A complete discussion of the4 confidentiality of symbols of the signature and of terms

can he found in Spalka (1994a).

In oiii opinion, one of the main advantages of the presented formalisation is that it is no

longer necessary to use ambiguous, colloquial descriptions of confidentiality-degrees,

eg hilly secret, disclosure of the existence, partial disclosure of secret information. To

give an example, when is an atomic formula r(£,,..., y partially disclosed to a user?

• When the user knows that the symbol r or some terms tt are elements of the da-

labase-language?

• When the user knows that ;-(/, /,) is a valid formula, viz the database recog-

nises- it?

• When the user knows that some atomic formula comprising t, is derivable?

1'he degrees G1-G4 avoid this confusion.

ilns paper investigates only the enforcement of G1. It is the weakest form of confiden-

lialily and we do not say that it is suitable for all situations. Yet we feel that it may be

appropriate for some situations and we know that its investigation is a necessary pre-

liminary step for the investigation of G2, which seems to be the commonly preferred

form of confidentiality.

\ eoaSka.<M i)7.1994 dbsec94.doc i

2.5 Personal database profiles

i i'l Hh be a database with !n .^ heine />)/?■-- j L,i.') and the state <lh !. I'he appiu-•■•

<i MS ill; right '■) see, to .; ' ■■ provides for each user /.> his profile ■"''<' - jL.,.(\ i and

''■■ f. ■• he ■! die requii- uients to the profile ss jh;n jt satisfies the < onfidendalitv ; e

,nnr>'!!,:'ii!s !os he user/». Kul ihen is mon bam Ihis Our starting'point has been ao

.'pei, uaiab;)s> riien we have added users and - igki> !o it. If a user possesses all rights

UM o In'- profik ' identical u <h< whole daPibn■ - Otherwise, his profile is different

leae a NhoufH the database srinantu s of I he e hole database or oia profile be allowed!

' • van depending on the actual selling, o! the rights We maintain that the rlesirable

ai.s'ver r in b.iih eases T\dd YYV would like U, iuok on a profile as an independent open

;!..!■! has- u-j1!(o M-spects he- --audio (if die wbwle dal abase. We state loin expectations

about the semantics of a (iaiabas* with rights

:: the original databa- !>H- (Z.f) and db - /. is valid if C c 77?.(7).

n< A profile l)H,,=(l. j) and rf/>. --■ /,.. is valid iff, c7jfe(/.).

in« validity of a prodl- is subordinate lo the validity of the original database:

-/rh{lt) ■(s. Thil)

The validity of two dillereni profiles is mde])endent from each other.

''•>:-nt-- d) and on restate tie fundamental definition a\ integrity in databases. '] <•, qne"

!;-;!:> ;;p\on-" -a diem means !o uuosdon integntv constraints as such, viz we would no

loiigei talk about flatabasi ^ I'omt (in) allows lor die mention ol an update command

i--'.ue(i !>\ /> (\ - v, if the rosuning ~aal< db / is valid This can be the ease when f,

i eniams stronger proper!'< ■- tlian (i'lus is <. onsisteni with our formalism and can he

u^e-lul m practice. These aisiderations show that it no longer makes sense to ask da

I Vna iiii) (xpn-sses also thai ihf integrity ol non-confidential data implies (lie integrity of confidential
iaia. ("his nun- sound strange at firsi. However, the whole database comprises all data and its integrity

mav never be violated - this is a fundamental property of a database.

Id c<

A. Spaika. 04.07.1994 dbsec94.doc 10

r! jit abase with rights is valid when we have the definition of validity of an open database

m mind. We therefore give a new definition of the validity of a database with rights DB.

We still say that DB is valid, if the state db = I is valid. But we say that DB is locally

valid for a p e P \WBp is valid, or simply that DB is locally valid if it holds for all pro-

files, and we say that DB is globally valid if db = / is valid and DB is locally valid, ie all

profiles are also valid.

in this lighl (he notion of global validity of a database with rights seems to be the

matching counterpart to the notion of validity of an open database.

Point (iii) requires some final explanation. Animated by other authors, we have also

mtemplated the situation where a command is rejected because C <X 77z(7), even if

(\ c: Th[I,) would hold. We exclude it for the following reasons:

• The user p has been granted his rights on condition that he is trusted to make

use of them. To us it seems judicious to provide him with an explanation for the

acceptance as well as for a rejection of his actions authorised by these rights.

• We have considerable doubt whether it makes sense at all to talk of a database

from the user's point of view when the part of the database seen by him exhibits

random behaviour. We could then omit I), completely from his profile, since he

would never know if a decision made by C,, is not overruled by some invisible

authority.

• Finally, the formalism the database is based on would be of no use for the de-

termination of the risks of disclosure. An autonomous profile gives the user no

opportunity of finding out any properties of C. In the other case the database

would not have the slightest idea of the information which the user already has

deduced and will deduce from its behaviour.

\ Snaika, 04.0V. 1994 dbsec94.doc

2.6 External assumptions

Although we have laken a theoretical approach to security, it would he inappropria1 ' ->

nctrl'-ci the real context of an environment where a database may he used. There aw

lin :r mam areas of concern outside the database:

• 1 lie ml'oi uiation stored in the database a use]" has already known of.

• I'lio process of rights-granting

• Mdlwar^ and hardware manipulations

: h 1 hiriivuhial knowledge

'^ hen w< talk about a database with ns<rs who are real persons, we must lake their in-

'ii'.'Hliitii knowledge relevant in du database contents into accounl. The necessity to

model !he user-knowledge has been recently strongly emphasised by I^andwehr and

! al'adula A person's own knowledge is evidently not subject to the allocation of rights

in die dal abase Thus it can be considered as the lower bound on the size of a person s

daiakise profile.

U " denote the properties o! / known lo p by /",,..; we call Et, the expectations of/) wilh re-

e. n d !■> ilie ennlents of ljt. in order lhal (he database is able to take- /•;,, into consider:-;

Oii'i in- eonlenls must lay williin the expressive- IHIWH of (he database. Hence we as

• ;• lhal /' , (L. Moreover we assume lha! /> s perception conforms 1o !he notion of

audio, as i! i-, understood bv the database, ie ':'/>?■ I'C c:Th(I) -^ /<,',. c 777(7). Note thai

! a- abo sufficient to express /> s knowledge of any piece of information from /. In this

i>an<■: «e assume that an /A, is given for each /).

,. xj VI , nit)4;.

M.iiiL '<*oth :! •■' i' sail also in! rod art iowcr In ami Is on the size of the signatun and the set of clauses.
i hi- üovwer. is not relevant to this paper.

V ,ip. ivell aware of the difficulty in determining the expectations of a user in practice and it is obvi-
■ ash- out w question that safe clauses can only capture a part of the relevant user knowledge, hut still we

.VSp,ilka. 04.07.1994 dbsec94.doc 18

2x).2 Trustworthiness

<'>m database recognises rights, but the decision to grant or refuse a right is made out-

side it Who makes the decision and what are his criteria? The first part of the question

i ior sure of great practical importance, but it has no relevance whatever to the prob-

lem i>i t onfidcntialily when according to the criteria only reasonable decisions are ap

hi"'>v<-<i of The motivation lor the crilena is given by hindwehr (1981);

When a document is not in a safe, it is in the custody of some individual trusted not

;■•! distribute it improperly.

This means that a person is only granted a right if he can be trusted to comply with its

intended use. In particular, we may assume lhat the refusal of a right to a person within

the dalabase will not be circumvented outside the database by other persons possess-

ing this right. When the right to see is considered, a specific confidentiality is usually

assigned to the document, ie the object of protection, and an individual trustworthiness

to each person. The condition that the person's trustworthiness is adequate to the ob-

jei t s confidentiality by some kind of measurement, is necessary but not. sufficient for

the granting of this right.

(Mir database with rights makes therefore the following assumptions:

• The granting of a right to a person is always justified by this person's trustwor-

thiness which is established outside tin database.

• \ person always behaves in accordance- with Ihe expectations implied by his

trustworthiness.

believe thai it is a good point to slarl with.

hinrlwehr (1981):250.

(>ne should note that Ulis assumptions do,not imply that a person is trusted to see confidential data. If
this person is able to trick another person to obtain confidential information, then there is nothing the da-
tabase can do about it.

A.spaika. 04.07.1994 dbsec94.doc 1

2.63 Others

t he security provided by a database is just one component of an overall security pr'T ;

V\"c do no! consider any software attacks like Trojan Horse Program-, etc, nor any

hardware attacks, like theft, wire tapping, etc. These issues are related to a pailiar

implementation but not to our logical model. We take only those risks into account

?< Inch can be expressed within our formalism, viz which the database can recognise1 m-

;i< ■pendent of its actual implementation. We make the following assumptions:

• The only way for a person to ^c\ a piece of information stored in the database is

through tin1 database interlace intended for communication with this person.

• \ny piece of information a person may otherwise get is in time with the data-

base s present assignment 'd rights.

3 Enforcement of Gl -secrecy

V j his paper concentrates on the enlorcement of Gl only in logic dalabases. In this se

urns " e investigate the aspects of the various forms of reasoning about the interactions

beiwven a user and a database with regard to G1-secrecy. The primary purpose of this

section i- !o enable the database to recognise when a secret fact may possibly be dis

• lescu io a user, for this reason, our investigations do not extend beyond the expros

si'.<> power o! our databases

i i ! (r. denote the set of facts which, should be kept secret from the user/) with regard

ic >ib ! at the (. 1-degrees

,'?, 1 (T1 and the right to see

We i eminence by considering of the ease in which the user/) is only an observer of his

profile, that is, his rights RD and RI are empty. In his profile DBh = (^■l>,Cl,), we set

A. Spalka, 04.07.1994 dbsec94.doc 20

(\ =- Ep because Cp is not involved in the process of answering p's queries, and p is not

allowed to issue any update commands.

First of all, as a formalisation of the external assumptions, we may assume that no se-

cret fact is already known to p.' Secondly, we also assume that no secret fact is among

F(I,). Otherwise the database will tell p a secret whenever he likes to ask about it. Fi-

nally, the user s state dbp ----- /,, should be productively useful, ie it should confe-in exactly

(he information which the user needs to do his job. Now we face the problem that such

a state may be invalid. We have to consider that Kp places a lower limit on the size of

db: = /, and we may not adjust Ep s contents. Thus an Ip which does not tell p any se-

cret may well be too small for Ep. There are three possibilities to handle this situation:

i) We can tiy to enlarge dbp = lp to a valid set by including some clauses of db = I

which need not be kept secret (romp and which guarantee that F(/,) still does

not comprise any secret.

ii) We can enlarge dbh - /„ into a valid set if we add all the clauses primarily re-

sponsible for its invalidity to it.

iii) We do not adjust dbp = /,,. Instead we tell p that his current state is invalid due to

some secrets.

The first possibility is obviously the most desirable one, but its application depends on

the contents of the present state db = I. If there are no suitable clauses or we are not

willing to show/) clauses of which he has no need to know, then point (ii) suggests to

relinquish some secrecy - this is rather a surrender than a solution. We believe that

whenever point (i) cannot be applied, we should follow point (iii) and see whether this

preserves (H-secrecy. To admit point (iii), we say that a profile DBp is weakly consis-

tent if there is a subset S c Gp so that C„ c TII(TP'ZJS). Similarly, we say that a data-

II" this is not Hit- case, then some external security precautions have failed to keep it back from him.

Sometimes we call a valid state strictly consistent in order to draw a distinction to weak consistency.

Y Spalka. 04.07.1994 dbsec94.doc 21

base with rights is globally weakly consistent if there is a weakly consistent profile. One

should note that we never allow DB to become inconsistent. Inconsistency is only tot-

aled as a local phenomenon of a profile due to the confidentiality requirements.

II l)Br is valid, then - from the database's point of view - secrecy is preserved. Wh -

can p find out if his profile is only weakly consistent? He can identify the violated inter-

rity constraints of Cp and then look for the reason of the violation. Let us assume that

ax . \<am <-- - $ A. ..Aß„ G Cp is a weakly consistent constraint, ie it is false due to a se-

cret lac! It can only be violated if all ß, are true and all a, are false, viz there is a substi-

tution TT so that ;r(# A...A/?„)<='/%(;,) and 7r{a,v...vam)£Th(lji). However, weak con-

sistency tells the user that /r\al v...va,„) <= 77/(7). Firstly, we see that weak consistency

is concordant with the definition ofGl. Secondly, wo see that a definite integrity con-

straint is not able to preserve secrets.

When the user is left with /r(ax v. ..va„,), m > 1, as the result of his search, then each

jz\a. j represents an equally well suited candidate for a secret. What else can he do to

reduce the number of candidates5 Principally, he could check his rights RS and find out

that there is just one candidate which would not be visible to him. To close this gap, we

assume that a user's rights manifest themselves only through the interaction with his

profile The only remaining way (within Hit' database) for the user is to simulate insevä.

commands lor each candidate. To keep the secret, there must be at least one more

candidate the insertion of which would lead to a consistent profile.1 This method can

nr> serve the secret fact which is responsible for the weak consistency of the constraint,

1 ei ii mav disclose another secret.

Note thai if there is more than one substitution like n, then each one identifies a secret fact since oth-
erwise l>[->h would not be weakly consistent..

Since p has no insert-right, lie is forced to perform these wto-«/operations outside the real database
lint they are still within the expressive power of our formalism.

ci Kxample 1, p 11.

A. Spalka, 04.07.1994 dbsec94.doc 22

Example 4 Let Cp = {r(X) v s(*) <- *(*)}, /, = {^ ,(Z) <_ r{X)> v{x) ^ s{x)y and

G, - (r(a)^(ö)}. This profile is Weakly consistent and preserves Gl-secrecy of r(a), yet

the secret fact v(a) is disclosed.

Definitions Let p^v...^, <-flA...A£ be a weakly consistent constraint. *fa.) is

a candidate for a secret if /.,o n:(a,j is consistent. <p is Gl-secrecy-preserving if there

are ai least two candidates for a wvret and there is no secret fact d such that

(I £ F[/, u{;riY/)}) holds for all candidates z(a;).

Lach violated but Gl-secrecy-preserving constraint can be separately considered. Let

;■'„.... /', bt' these constraints and let Ky denote the disjunction of the candidates for a

secret. Weak consistency due to the simultaneous violation of all y, tells/) only that

A\. * . AKYI crrh(f). •

Lemma / A profile DBp is G1-secrecy-preserving for RS if:

• No secret clause is among Cp or /,,

• No secret fact can be derived from Ip

• DU,, is consistent, or it is weakly consistent and each violated integrity constraint

is (11-secrecy-preserving.

3.2 Gl and the right to delete

i et DB, be a Gl-secrecy-preserving profile for RS. We now assume that/) has the right

to delete some data. Ul <p e RDfi; we assume that the state db'p = !'„, consequent upon

the acceptance' of the DELETE <p command, does not contain q>, and we denote by Sv

the set of atoms which have disappeared from F(lp) together with cp, viz

<\. ■-- F{L,)\E{l'h). This implies that a secret fact which has not been among F(lp), is

not among F{I'p) either. We therefore concentrate on the integrity constraints in the

Note that a delete command is accepted in contravention of Cp if the new state is weakly consistent.

V Npalka, 04.07.1994 dbsec94.doc

consideration of the following possible cases:

DB., DEUTE <p DB'p

1. slncl accepted strict

2. strict accepted weak

3. strict rejected (no change)

4. weak accepted strict

5. weak accepted weak

6. weak rejected (no change)

i I) DB,, has been secrecy-preserving, so is DB]„ since all constraints are satisfied,

(-) 1-ct y er, /...vam*. ßx -//,, be on«, ol the violated constraints of Cp. The fact

thai Hias been valid in DB,, but is not in DB'h (while it retains validity in DB) means

that there is a substitution TSO lhat some 7r(<r)e<>,. Thus /is only secrecy-preserv-

ing i! A-, with all its links in dip removed, is also secrecy-preserving. This point diver's

otii attention to the fact that lo handle update commands we must maintain a history

dialling a! a particular state. All atoms from r-, head /> knows to have deleted can no

ii.'iigor belong lo AT,

E-«nnM> :. l.cl(; = (s(,Vur|A'!< <t\X)\j -■- {(i(a),r(a)} and G., - [s(a)}. After the

U'-«T has doleicd r[a), the piofile is weakly consistent, but the secret is disclosed.

'■'0 l "it According to our definition of a profile l)Bp as an independent databas-

»ha h behaves in conformity with DB, the command is rejected since1 Cp cz '/7/.(//'J) iv.»~'

no so rots are involved in this decision.

(-1) 1 his case is secrecy-preserving. Here a previously weakly consistent constraint

I IK- constraint y is an indefinite clause, lor otherwise the delete command would have been rejected.

(itherwise the command would lead into a weaklv consistent state.

A. Spalka, 04 07.1994 dbsec94.doc 24

is now strictly consistent. If the set of positive ground facts has become smaller, this

can only happen, when an instance of an atom of the constraint's body has been deleted.

Example 6 Let Cp = {s(X) v r(X) <- q(X)}, Ip = {q(a)} and Gp = {s(a)}. After the user

has deleted q{a), the profile is strictly consistent.

I: >) A weakly consistent constraint s property of being secrecy-preserving is not al-

lectod bv delete commands since Die sets K,, once they are established, are invariant

«vilh respect to them.

kxamplc 7 \r\ Cp =[v(X^ s(X)vr(X)^ q[X)}, 1 „ ={q(a\r(a)} and Gp ={s(a)}. Af-

ter the user has deleted r(a), the profile is weakly consistent. The candidates for a se-

it; crel are v{a) and s(a). This situation is now independent of any other delete operations.

/ i-mmu 2 A profile DB, is G1 secrecy-preserving for RD if:

• />/>'/, preserves Gl-secrecy for 7?$

• Any newly created set of candidates for a secret has more than one member.

3.3 Gl and the right to insert

\A-\ l)H, be (r 1 secrecy-presorving f(„- Rj) and RI/} = CI>. Let <p e RI p; we assume that

i IK siale (lb't, I' consequent upon the acceptance of the INSERT <p command contains

O?.IIKI we denote by /^the set ol atoms that have been newly included in E(lfi) together

willwAi."/„-//(/;,)\F(//-i-

iI /.. "-> (r: - 0, then the new clause does not produce any new facts which should be

kepi secret from p. Hence the data do not disclose any secret. This is always the ease

when the user behaves concordant with his trustworthiness.

1 Iowever, the user can, eg by mistake or on purpose, insert a clause so that / nG,^0.

Wo take the view that in this case the reaction of the database should be guided by the

A. Snalka, 04.07.1994 dbsec94.doc 2!>

external assumptions, ie p has not gained knowledge of any secret. The database may

not simply enter «pinto RSp since this means admitting that the secret is disclosed. We

believe die database should assume that the user has created his own <pand it mi;:; ;r

a way to resolve the name clash which has now arisen in the global name space of - - < -

data in /. One possible solution is the globalisation of <p in /by qualifying it with the

nameol'/j. Lei tp = s{cu.. .r,K .. then it is sufficient to qualify the head. In particular

we oin either qualify the predicate symbol itself, ie turn s into s.p, or we can qualify the

terms of s, ie turn s(cl,...,e,:) < . into s(r(./>,..,ck.p) <-... This process must be trans-

parent to p. The application of this method results in two different clauses pand tp.p: cp

i- used in derivations initialed by persons who have the right to see it, and <p.p is used

■is cjiu /J s derivations.

Now thai (p.p is a member of l(i, does it make sense to make it visible to other persons

as well, (hat is, can we treat (p.p as an ordinary element of I? The answer should be

'Yes* The basic database semantics tell us (hat <p = TRUE <=> <p e Th(l). Up is just try-

in«; lo trick the database, then he will issue a delete command immediately after the in-

sert command, hoping thai nobody has noticed his efforts. Whereas a clause which is

'me lor p will remain in the database as long as he considers it true. Purely by chance

Ibis clause has been given a conflicting name. Thus we think it right to include //s <pas

■'fe;./). .c,.p)< ... into /and (real it (with respect in all persons except />) as an ordi-

när, clause. The main advantage of Ibis solution is that it influences neither the seman-

tics o! Dli nor o\ DBp, and we do not need to introduce notions like: is believed by..., is

only hue for... etc. Moreover it preserves the secrecy of all K.

'Ac now turn our attention to the role of integrity constraints in the possible state transi-

tions.

>palka. 04.07.1994 dbsec94.doc 2*

DBp INSERT <p DB'p

1. strict accepted strict

2. strict accepted weak

3. strict rejected (no change)

4. weak accepted strict

5. weak accepted weak

6. weak rejected (no change)

ilii cases (3) and (6) pose no risks, since Cf, provides the reasons for the rejection.

i iisc (1) docs not introduce any new risks, either. In case (4),p must have inserted a

link of a K, so 1 hat a previously weak consistent integrity constraint is now satisfied.

Cases (2) and (5) can be considered together. I.et us assume that a constraint

y a, v. .vam < ßx A. . ./\ßn of (\, has been valid in Ip but is now, due to some new ele-

ments of i^, weakly consistent. Thus there are some elements in /^ which have made

the constraint s body true so that no matching instances of the head s atoms are pres-

ent in F(l't,). Thus the insertion lias created a new K^ Again, y\s secrecy-preserving if

K has more than one link.

Example H h-t Cj,={s[X\vr{X)< q(X)*v{X)), /,, = {q{a)}im<\ Gp = {s(a)\. The in-

tegrity constraint is now satisfied. After the user enters v(a), it is weakly consistent, and

since there are two candidates for secrets, it preserves Gl-secrecy.

Lemma 3 A profile DBt, is Gl-secrecy-preserving for RI if:

• DBf, preserves secrecy for Gl and RD

• Insertions valid with respect to Cp are handled along the presented guide-lines.

• Any newly created set of candidates for a secret has more than one member.

ri Spalka,i)4,o7 1994 dbsec94.doc v?

3.4 Final remarks

We would like io mention that we have also contemplated the use of a special term, for

.xainplf a term secret, for our purposes However, we have abandoned this idea he

cause ovelinunary steps ha^e- alreadv indicated dial we are going to run into troubles

similai lo !hos< oftheM// value-.

i anally wo note ähat Gl-seerecy t an he applied to multilevel secure databases. The de-

tails of 11 ■<))■, presented in Spalka (4994b).

4 Conclusion

A logic database has served as die starting point lor this paper. We have shown a way

to add persons and rights lo it, so that the semantics of this database is properly ex-

tended; the users have been assumed to possess their own knowledge. We have intro-

duced lour possible meanings ol eonfidentiality; wben asked about a confidential clause,

Mr daiabasr . ;;n (informally) answer: '! don I understand', 'I don't know', 'No' or

'Mavix- three ol these answers are applicable in the presence of the Closed World As-

sumption, I ho formal version of the las! possibility, denoted by (il, is allowed to pro-

rid-. Mi' us« i '-vidi indefinite inlomiaiinn on a secret. In the following we have concen-

trated on die enforcement ol (, i

As our mam ; esult, we have identified conditions which guarantee til-secrecy in situa-

tions whew Mr user has the right to submii queries, delete and insert commands. The

clisünguished role of integrity constraints ha< been given careful attention. We have

demonstrated that there- is no fundamental conflict between security and integrity, but

instead the constraints' role as boundary conditions has become apparent throughout

the investigation. The presented formalism is well-founded, and has been completely

expressed within the limits of standard predicate logic.

A. Spalka, 04.07.1994 dbsec94.doc

Our next steps will be:

2H

• to investigate the enforcement of G2-security in logic databases and to extend it

to a multilevel security model

• to search for a feasible, practical way to construct user profiles.

References
Bersnn/Lunt (I9,S7a)

Berson. Thomas A., and Teresa F Lunt. 'Security Considerations for Knowledge-Based
^-•stems'. Third Expert Systems m (government Conference. Reprint. 1987.

Berson/Pimf (1987b)

Berson. Thomas A., and Teresa F hunt. 'Multilevel Security for Knowledge-Based Sys-
tems !9X7 IEEE Symposium on Security and Privacy. IEEE Computer Society Pres^
1987. pp23;>242. ""

!.onaili'Kraus/Subrahmanian (1992)

Bonalti, Hero, Sarit Kraus, and V. S. Subrahmanian. 'Declarative Foundations of Secure
Deductive Databases'. Ed Joachim Biskup, and Richard Hull. 4th International Confer-
ence on Database Theory - ICDT92. LNCS vol 646. Berlin, Heidelberg: Springer-Verlag,

Burns (1990)

Burns, Rae K. 'Integrilv and Secrecy: Fundamental Conflicts in the Database Environ-
ment . Ed Bhavani Thuraisingham. 3rd RADC Database Security Workshop 1990. Bed-
lord, Massachussets: Mitre. 1991. pp 37-40.

< p-mers 'Criefahn/Hinze (199.'',)

^r.-mers Annin B., Ulrike Crielahn, and Ralf Hinze. Deduktive Datenbanken, Vieweg,

i.'SI<W (1994)

Private coinnumicatii.il. iFEF Computer Security Foundations Workshop VII. Erancnnia
New Hampshire, 1994

t uppens/Yazdaman (1991)

Ciippcns. Frederic, and Kioumars \azdanian. Logic Hints and Security in Relational Da-
tabase Ed Carl E. bind wehr, and Sushil Jajodia. Database Security V. IEIP WG11.2,
Workshop on Database Security 1991. Amsterdam: North-Holland, 1992. pp 227-238.

(.allaire/Minker/Nicholas (1984)

< iallaire, Herve, Jack Minker, and Jean-Marie Nicholas. 'Logic and Databases: A Deduc-
tive Approach'. ACM Computing Surveys 16.2 (1984):153-185.

Carvey/Punt (1990)

Cai-vey, Thomas D., and 1 eresa F. Lunt. 'Multilevel Security for Knowledge Based Sys-
tems'. 6th Annual Computer Security Applications Conference. IEEE Computer Society

>.-öc.L. 1ÜÜH ^ ' J Press, 1990.

A Spalka. 04.07 1994 dbsec94.doc 29

■:a!-vrv:)unl (1991)
{iarvev. Thomas D., and Teresa F. I ,unt. Multilevel Security for Knowledge Based Systems.
Technical Report SRI-CSL-91-01. Menlo Park, CA: SRI International, 1991.

< ,arvev et al 0992)
(,arvey, Thomas D., Teresa F hunt, Xiaolei Qian. and Mark E. Shekel. 'Toward a tool to
detect and eliminate inference problems in the design of multilevel databases'. Ed Bba-
vani Thuraisingham, and Carl E bmdwebr. Database Security VI IITP WG11.3 Work-
shop on Database Security 1992 Amsterdam: North-Holland, 1993. pp 149-167.

s. r mgcn/ iVleseguer (1984)
Gongen Joseph A., and Jose Mcseguer. 'Unwinding and Inference Control'. 1984 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, 1984. pp 75-86.

EindwHir (1981)
Sandwehe CarlE. 'formal Models ibi Computer Security'. ACM Computing Surveys 13.3

C9oT):24,-->78.

limt/MMen 09.S9)
hint, leresa F., and Jonathan K. Milieu. Secure Knowledge-Based Systems Technical Re-

port SRLCSL-90-04. Menlo Park, CA. SRI International, 1989.

Meadows/Jaiodia (1987)
Meadows. (atherine. and Sushi! Jajodia. Integrity Versus Security In Multilevel Secure
1 tatabases' Ed Carl E. hindwehr. Database Security. IFIP WG11.3 Workshop on Data-
base Security 1987. Amsterdam: North-Holland, 1988. pp 89-101.

Morgen si em 0987)
Morgenslern, Matthew. 'Security and Inference in Multilevel Database and Knowledge-
Has<"svs!ems'. 1987 ACM SICMOD ('onfermec SIGMOD Record 16.3 (1987E357-373.

Heiter 1.1978)
Reiter. Kavinond. 'On closed world databases' Fd Herve Gallaire, and Jack Minker.

Logic and Data Bases New York: rienum. 1978 pp 55-76.

Reiter 0 984) .
Reit(>r. Raymond. "Inwards a Logical Reconstruction of Relational Database I heory . Ed
Michael F Brodie, John Mylopoiilo;. and Joachim W. Schmidt. On Conceptual Modeling.

New M>rk. Springer. 1984. pp 191 7188.

N>alka 11994a)
Spalka. Adrian. 'Forma! Semantics of Righ^ an,l Confidentiality in Definite Deductive
i Miaba^es IEEE C 'owpiilrr Sc-. univ Eouv.datiom Workshop VII. IEEE Computer Society

Press. 1994]>]■> 47-58

Spalka i 1994b)
Spalka, Adrian. 'Formal Semantics of Confidentiality in Multilevel Logic Databases'.
ACM SI(,SAC New Security Paradigms Workshop 1994. ACM Press. 1994.

Steinke (1991)
Steinkc, (, 'Towards a Strategy for Achieving Security and Multi-User Integrity in
Knowledge- Based Systems'. 2nd International Workshop on the Deductive Approach to In-

formation Systems and Databases. 1991. pp 128-148.

A. Spalka, 04.07.1994 dbsec94.doc 30

/if,
lener(199l)

Tener, William T. 'Knowledge Based Systems: Audit, Security and Validation Issues'
International Conference on Information Security. North-Holland, 1991. pp 111-121.

Thuraisingham (1991)
Thuraisingham, Bhavani. A Nonmonotonic Typed Multilevel Logic tor Multilevel 1:. u:
Data/Knowledge Base Management Systems'. IEEE Computer Security Foundation.;
Workshop IV. IEEE Computer Society Press, 1991. pp 127-138.

Williams (1992)
Williams, James G. A Shift in Security Modeling Paradigms'. 19921993 ACM SIGSAC
New Security Paradigms Workshop. IEEE Computer Society Press. 1993 pp 57-61.

Wiseman (19901
Wiseman. Simon. 'The (ontrol of Integrity in Databases'. Ed Sushil Jajodia, and Carl E,
1 xindwehr. Database Security IV IFIP WC11.3 Workshop on Database Security 1990.
Amsterdam: North-Holland. 1991. pp 191-203.

YVis.man (1991)
Wiseman, Simon. The conflict between confidentiality and integrity'. IEEE Computer
Security Foundations Workshop IV. IEEE Computer Society Press, 1991. pp 241-242.

Access control and application design:
Chair: T. C. Ting

Uni. Conneticut. CT

A Fine-grained Access Control Model for
Object-Oriented DBMSs

Arnon Rosenthaia James Williams*. William Hemdonb, and Bhavani Thuraisinghama

«The MITRE Corporation, 202 Burlington Road, Bedford MA 01730, USA
bThe MITRE Corporation, 7525 Colshire Drive, McLean VA 22102, USA
email: {arniejgw, wherndon, thura}@mitre.org

ABSTRACT

We have developed an object model for MLS object-oriented databases with per-element access
control We argue that an MLS object mode) should specify structures and operations
supported by a trusted kernel and hence should be kept simple. "Convenience" operators and
enforcement of noncntical integrity guidelines are provided by nonassured layers above the
kerne]. Also for simplicity, there is a single kind of labeled entity, the data element; these
labels determine the protection lor several other types of constructs. We identify assumptions
in some pnor models that conflict with commercial OODBMS requirements for language
compatibility, and performance. Finally, we explore some conflicts between flexibility o'f
de etion and avoidance of polyinstantiation. Companion papers will address metadata
polyinstantiation, and ordered collections.

1. INTRODUCTION

Object-oriented database management systems (OODBMSs) are gaining popularity due to their
inherent ability to represent conceptual entities as objects, paralleling the way humans view the
world This power of representation has led to a new generation of object database managers
rln/r ATIT

aPPllc^0I}s such as comPuter aided design and computer aided management
(C AD/CAM), multimedia information processing, artificial intelligence, and process control
hoi secure applications, this paper specifies an object model for securing multilevel secure '
(MLS i information.

1.1. The Need For A New Model
The model presented here is not radically different from other models that label individual

elements. However, it appears that no published model provides all of the following:

• Model Flexibility: Some models impose restrictions to rule out states that appear
unreachable or unnecessary. Paradoxically, such restrictions may complicate the

model and implementation, as thev must be documented and enforced, and will be
von/ difficult to remove later

* Element-level Access Control The need to split natural problem domain objects into
objects each at a single security level greatly complicates application-building [Smit89
(sec 5.2), Rose93]. Many of the existing models provide protection only on coarse
granules (i.e., objects!

' Comistenc v with Industry Trendy Some existing models make method calls very
expensive 'orbid multiple inheritance, require that the language encapsulate
individual objects, or require thai the DBMS maintain the integrity of all stored
reference.'. These decisions are inconsistent with the languages (e 2 C++) and
tradeoffs common in the OODBMS industrv

" Explicit Operation Specifications Few existing models define their operation semantics
m detail, especially for deletion and regradmg. Thus it is difficult to judge whether an
operation's results can be expressed by the model's structures, or whether features
that impact operations at different levels, such as object existence and identity can
cause channels.

This paper addresses the above issues, and extracts lessons that may be of use with other
models A fuller model that also addresses metadata, polvinstantiation, and collections (e g
sets, lists, trees) is presented in [Rose94j.

1.2, Paper Overview

1.2.1. Role of a Secure Data Mode!
The specification of an MLS DBMS can be done at three layers—the kernel interface,

which defines the allowable structures and basic trusted operations, guidelines that advise '
about structures that should be viewed with skepticism, and the application programmer
interface (which includes convenient operators built above the kernel).

The model presented in this paper defines die kernel interface, taking care to minimize its
size and vet provide appropriate flexibility for users Kerne! facilities must be present and
assured so that they can be relied on in implementing other features. Kernel operations on a
legal state always produce another legal state, even if privileged. In contrast, integrity
constraints are frequently enforced only at transaction commit time. We spend little time on the
application interface's additional •convenience'- features, leaving them to DBMS designers.

Explicit guidelines are warnings about database states that seem dubious (e.g . dangling
references, inaccessible data, and odd patterns of classification). Since such states do not
uirapromise security, their detection need not be assured. In fact, the model is not violated if
DBMS builders omit enforcement of some guidelines, or if an application overrides warnings
especially during intermediate steps in a larger process. Some integrity-related guidelines are '
discussed in the appendix.

1.2.2. Paper Organization
The Uniform Fine-grained Object Security (pronounced "U.F.O.s") family of models

[Rose94] attempts to address all the difficulties mentioned in Section 1.1. This paper presents
a limited model called Single-valued UFOS (sv-UFOS), which explores the possibilities and
limitations of a model with neither polyinstantiation nor covert channels.

The model description begins in Section 2 with a simple nonsecure object model, above
which richer type systems could be built. We show how a polyinstantiated data model has
different natural security entities from one that forbids polyinstantiation. Section 3 discusses
security issues in more detail and illustrates how various situations would be modeled. Section
4 presents operator semantics (including the handling of security levels) and examines
alternative deletion operations. Section 5 covers design goals and implementation issues. And
finally Section 6 addresses future work and conclusions. In addition, the appendix discusses
integrity enforcement tradeoffs.

1.2,3 (omparison with Previous Work
Several MLS object models have been previously published. Some of them assume that

an object contains information at only a single level, thereby forcing application programmers
to decompose the application's natural conceptual objects [Keef89, Jajo90, MÜ192, Bert94J.
This decomposition is very onerous and single-level restrictions would be difficult to remove
from a DBMS once implemented, so we consider the such restrictions unsuitable for the long
term [Smit89. Rose93].

Sv-UFOS is closer to published object models that permit multilevel objects, such as
[Gajn88, Thur91, Smit89, Morg90]4 Unlike some relational work (especially SeaView,
fLunt94j). most of these MLS object models define operators' semantics informally; specifying
sv-UFOS operators in detail caused us to find and fix many problems. Also, some of the
above models include many constraints on entities' relative levels. The costs of such
constraints are discussed in Section 5.

We protect several of the varieties of information identified in [Smit89], including
associations to values, associations to abstract objects, values, objects, and labels. Section 3.2
illustrates how this is achieved by means of controls on read and write access to a single
construct, the element. (Our operational semantics do make special provision for the existence
and labels: however, we benefit in that operations defined on ordinary attributes can also
manipulate existence information.)

Several models inspired by Smalltalk exploit object encapsulation and assume that private
attributes of an object can be accessed only by methods called on that object [Jajo90. Bert94,
Oliv04j Such results appear very difficult to transfer to the mainstream of the OODBMS
industry, where C++ is the predominant language. Three major difficulties are examined
below

[BiskSS] permits objects whose elements have different access classes, in aDAC setting.

First, and most seriously. C++- encapsulates classes rather than objects: that is a method
on £l (HM>b]ea,, can access the private state of any object in class(o).i Second, some models
assume ,hat methods can wnte only in ways mediated by the OODBMS but method code is
usually allowed to invoke any system capability Finally, for high-assurance systems
verifying that a language's encapsulation is enforced may require assuring a substantial part of
tnt. <„emptier

2 THE UNDERLYING OBJECT MODEL

Thi ^section defines a simple, conventional object model which we subsequently extend to an
Ml. ,s ob,ecf model We also examine two candidates for the basic securitv entity—element (a
pair <obiecf instance, attributes and association fa Darr. <element value» 3

An object instance (or jusi object) consist of a state (stored data) that associates a value
*ith eac.o attribute, and a set ol defined operations or methods that act upon that state
«Methods are discussed only briefly m this report) Objects are instantiated from a class
deimition u, which all of an object s attributes and methods are defined; an element's value
mus; be Hass-appropriate. An object will often be denoted using an optional prefix ("a"' or
foc^ Plus ?, class name or a human-understandable instance name, as in aShip. theNimitz, or

Objects arc an abstraction: user programs and \ JFOS model operations refer directly only
lvalues There are two kinds of values: primitives, such as integers and strings, and object
references «often referred to as handles). Given a handle, the DBMS can test if it references an
object currently m the database, and if so can access that object. To avoid serious impact on
performance and language compatibility (as discussed in the appendix), referential integrity is
merely a guideline. If o denotes an object. @n denotes a value that can be used as a handle for
o.

Given an objeci o and attribute A. oA denotes the corresponding element An
association assigns a value to a data element, the value of the association. For example
Z\?t I fPeAimd theQE2D^™^n might be associated respectively with the integer 40
ami ine nandic (^Singapore.

Several technicalities should be noted. First, an element's value and an operation's
argumenis are not objects; only such values are passed to user programs. Second, the current
ciatanase state has at most one association, and hence one value, for each element Thus we
can use n.A i„ reter to either an element or the association, if any, from that element Third
there * no requirement for a unique object identifier that is shared across security levels-at'the
implements s option, an object may have any number of handles. Finallv. the same primitive

O-l designers have traditionally emphasized software engineering and performance rather than security.

Bofh the object-oriented and security communities use the term object. To avoid confusion, this report uses
,i.e lerm m the hrsi sense, as an ob,ect possessing attributes and methods. The units of security are referred

or handle may be the value of many elements, potentially requiring different security
protections. For example, @Beijing may be the value associated with both
KissingerTrip.Destination and China.Capital

Operations create and delete objects and associations to values. For purposes of the
abstract model, values are never created, deleted, or changed; conceptually, all possible valu-
i integers, strings, handles) exist when the database is created. The implementation must
support this illusion without violating security. The link between a handle and an object's
physical storage is maintained by the DBMS, transparent to the user.

2.1. Basic Security Entities
In sv-MFOS the basic security entity is the element; in polyinstantiated-UFOS (p-UFOS<

it is the association [Rose94]. The rationale for the different choices is discussed here
One way to understand a conventional database is that each element identifies a property

ot some real-world object, and each association asserts the current state of such a property An
association is thus the basic unit of fact. A common notion of polyinstantiated database is to
allow a separate assertion about such a property at each security level; some levels may make
no assertion When associations are the protected entities, a user at level L knows nothing
about associations at any level V dominating or incomparable to L. An update to an element
that already has an association at U cannot be refused without creating a covert channel

To avoid polyinstantiation, we associate a security level with each element to govern the
sensitivity ot the association it holds. Elements' security levels are readable by any user whose
level that can see that the object exists: thus each update operation can test whether an update is
permitted, even if it cannot see the element's association and value. The model includes
operations to change an element's level.

Neither values nor elements' levels are "first class" security entities. Values always exist
in principle: the sensitivity is attached to their usage, as shown above for @Beijing Elements
are rather closer to being entities, but they do not require their own labels.

3 STRUCTURES, CLASSIFICATION, AND SUBJECT LEVELS

This section defines the constructs of the secure object model. Section 3 1 describes the
security entities oi the model, and their usage is illustrated in Section 3.2. Section 3 3 sketches
the model s operations (which are presented in detail in Section 4).

3.1. Security Levels of Elements
Security entities are those for which access classes can be individually assigned To

simplify the theory and (we hope) the DBMS implementation, the only kind of security entity is
the element. The sensitivity of each element o.A is indicated by a classification called
levehoA). Levels typically include hierarchical and nonhierarchical components and are
partially ordered. Throughout the discussion, the level of the current user program is denoted

Object existence is a security entity, as in other models, and operations need to test
whether an object s existence level is dominated by Ls. Rather than define a completely new

mode! construct, we represent existence using an additional Boolean attribute, exist, in each
umpct. Most kernel and higher level features applicable to ordinary elements also apply to
existence 4 These features include labels, quer,/ languages, auditing of updates, triggers, and
(in p-UFOS) polymstantiation to reflect disputes about an object's existence We impose the
constraint that for every element o.A, level(o.A) > leveKo. exist). Element levels may be stored
m each object, along with exist. Alternatively, if all objects in a class have the same level for
some attribute the schema can identify that ievel.

A. m MLS relational DBMSs. a secuntv subjeci corresponds to a process or executing
p:<",'v;)n-, which is assumed to be single-ieve; Data residing m a process's memory is part of
the process Method invocations and attribute references execute as part of a program, like
ordinary procedure calls; they do not came creation of a new subject.5 The OODBMS permits
access n the database only for the operations thai are explicitly in the secure object model.

Our security policy for whether an unprivileged subject can read or modify a particular
element is in the tradition of Bell and 1 aPaduia. An unprivileged subject, at Ls can retrieve the
associated value of elements at or below !,s and can modify element values at. or above Ls. The
levels o! elements of the form o.A are protected as i(they were part of existence information at
ieven o exist), and furthermore may be updated oniv by special operations in the model
('Section 4 3)

3 2. Representing an MLS Database in I.JFOS: Examples and Discussion
We now illustrate how the model s access controls for elements serve to protect other

information of concern, such as existence, obieci identifiers (handles), and the fact that a value
appears in the database. Any level that dominates leveKo.exist) may appear on any element.

Figure .11 shows two instances of the class Person, p2 •? and p78, and one of class
Department, d/2.i The existence of object p2* is unclassified, as \sp23.p_name. The
associations from p23.address to "Times SqT and of p2J.department to the handle @d!23aie
Secret. p7H has a completely different pattern of security levels. Existence of p78 is
confidential, and handles of p78 will appear invalid to unclassified operations. In this
example, both Person records reference the same department, using associations to same
handle (tfvi/2,-? However, p78\ association with the department is less sensitive.

' pdate operator-, behave different on CYIS> than on other elements If the OODBMS is implemented in an

object oriented language. Existent Element car. he a •aibtvpe of tyre Element Existence. Element can
inherit most operations from Element, but some o g Modify) will be overridden

Because nhjeci managers often handle both mam-memorv and (disk-based) persistent objects transparently

performance could suffer if all method calls were significant operating system or security events. We are

noi awaic o! anv commercial object oriented programming language or DBMS that implements each object

or each method call as a separate process. Such implementations seem appropriate only in an object model

devoted to large-granule distributed computing. Even for Smalltalk, whose conceptual model consists of

messages, the implementation typically approximates late binding for procedure calls.

p23

p_name

<u> —

"Bill"

p78

p_name

<s> —

"Max"

d123

d _ name

<u> —

address

<s> —

"Times Sq."

address

<ts> —

"Old Town"

"Special Ops"

phone*

<c> —

"555-1234"

birthdate

<u>

birthdate

<s>

"1/1/71"

budget

<ts> —

10,000,000

department

<s>

@d123

exist

<u> -

true

department

<c>

@d123

exist

<c> -

true

exist

<u> -

true

Figure 3-1 Objects with Labeled Elements

3.3. Operations in the Model: Overview and Illustrations
This section sketches the model's operations and discusses the kinds of information that

are protected from access.
Operations in the UFOS model are procedures, callable from either methods or ordinary

application programs. As procedures, the model's operations have input and output parameters
that are bound to arguments in the calling program (i.e., to program variables that store or
receive values). Issues of name scope and encapsulation would be part of the programming
language but are not considered part of the secure object model; security of the system does not
rely on compiler enforcement of object encapsulation.

The model's operations for accessing elements are retrieve and modify, and (expressed as
a reference to the exist attribute) effectively_exists. The operations on whole objects are create
and delete. Operations to raise and lower element levels are also provided. Like the majority of
commercial OODBMSs, we provide no explicit operations or protection for k-ary relationships
except as ordinary objects. We now illustrate some operations to show how they protect '
various forms of information

Retrieval of P23. department returns the handle @d!23. The association to the handle is
protected at the Secret level, thus protecting the fact that Bill works in dl23, and also protecting

Information that the implementation might store in the handle.* The model does not release
^.eondentdiers to user. Thus far. the user has access only to the handle: neither the object
identity, the obiect itself, nor any of the object's element values has been retrieved. To access
the referenced department's element values, one invokes retrieve with @dm as an argument-
the new invocation is again subject to the security policy. The only way to determine that a '
valur such as 555-1234" or @dm appears in the database is by retrieving it as the value of
;<n Memens

Thr example schema illustrates that UFOS permits objects that are viable but unreachable
■■■■■ ■ .<n-> security lever For example. <H2.i has Unclassified djmme, but there is no
• ■n.-.assinea mtercncc to dI23 This situation can anse in several ways, e.g . through deletion
o! a reference or through Regrade As in single-level databases, an object can become totally
unreachable Like most programming languages, wc handle such unreachable objects via
garbage collection rather than by constraints enforced on each operation. Tradeoffs for integrity
enforcement are discussed further in the annendix

4. OPERATIONS OF SY-UFOS

fins section describes the operations ol the Mngle-valued UFOS model and illustrates their use
! he model includes operations on a single object, on the association of a single element and on
the level of a single element. The operations appear not to have channels, but we have not
given a formal proof Section 4.4 discusses alternatives to the potentially clumsy deletion
operation; we show that they require relaxing the assumption that every obiect has a unique
lowest level ' ^

The operation interfaces were chosen lor clarity in expressing the model: the application
program interface can provide a layer of syntactic sugar. For example, to be compatible with
egacv code that expects only a value, other output parameters (e.g., return code, element's
level, might be returned by separate calls. This syntactic layer might be different for each
programming language from which the OODBMS can be invoked and is not specified here
For each operation , wo give a shorthand description in ferns of objects, define the interface
ann men give the semantics (including return codes to indicate the situation encountered)

f h denotes a handle. Th will denote the object referenced by h. As a convention we
consider h to be a way to identify the real" operand ol the operation, an obiect denoted o A
return code invalid handle indicates that the handle references no object, or if the referenced
obiect does not exist at or below /., J leicieiiceu

use
■ »Derations cannot assume that a handle presented as an argument is legitimate or that a

v he - presents a handle is authon zed to access the referenced object. Arguments come
from «intrusted user code, which may generate them randomly and maliciously or may hide
«vg ..s a Mnng) a low handle to an obiect thai has been upgraded. In the operations below

!i

handles are values that may be passed to application axle, and one must assume that users have access to
HIi ^formation m the stored handle, such as On some implementations) the fact that 472.? is an instance not
ot class Department, but of the subclass Covert Ops Depi

the Boolean function effectively_exists{h) returns true iff Th denotes an object o in the current
database, and o.exists is dominated by Ls. It may be useful to consider this as an additional
model function.

4.1. Accessing Elements: Retrieve, Modify
Attribute values are retrieved or modified only by the model's operations on elements.

Retrieve o.A Traverses the association to return the element's value; also returns the
element's level

Interface:

Inputs: h: Handle, A: Attribute
/* The object referenced by h must have an attribute A in its class
definition. The output value's type is determined by A */

Outputs: val: Value, L: Level

Semantic? s:

If Th does not effectively exist, return null and the return code invalidjiandle.
If there is no association from o.A, or that association is not dominated by Ls,

return val = null and the element's level.
Otherwise return the value and level for o.A.

Modify o.A = newValue: The value of element o.A is changed.

Interface:

Inputs: h: Handle, A: Attribute, newValue: Value
Outputs: none (except return codes)

Semantics:

If o= Th does not effectively exist then return(code = invalidjiandle).
If level(o.A) is not Ls then return (code = wrongjevel)
assign newValue to o.A

Example:

Consider p78.Address in Figure 3.1. A confidential or secret request will read the
confidential information that level(p78. Address) = "ts" and return wrongjevel,
thereby avoiding both polyinstantiation and the familiar covert channel. A top secret
modify will succeed, while Unclassified will return invalidjiandle.

4.2. Object Operations: Create, Delete, Test_Identity

Create Create a new object

Interface:

Inputs: c: handle of a class
Outputs: h: a handle for the newly-created object o.

Semantics:

S^oeAnXsS^; t Tnf cf!he !ILdlca5d class- ^^ever- ele^ent's u fo LS Assign tr«e to o.CTö Return the object s handle

Met" isa difficult operation with multilevel objects, because an object's existence snans

5^ t0mi °f ddeti0n iS prcsented h- Secto 44 -P'°- the poSlb^gLter

Delete jip Deletes the object's information at L, or higher levels.

Interface:

Inputs: h: handle for an object (denoted oi
Outputs: none (except return" codes)

Semantics:

ass^n^n^tf60^"^ CXf • d0 n0thmg and return- Otherwise, destroy all associations at Ls or higher trom attributes of o (i.e set these attribute values to
H Tf ,,S a! Av; thpn " n° l0nger effectively exists at Ls, the object is

considered deleted, and h will no longer be a valid handle.

Ih^Trah°n5,ab0V!' °ne mght add an u"Privileged operation Test Identity to test whether two handles reference the same object.

43 Operations that Manipulate an Element's Level

.mn i7r'^hera'ralalter the IPve' ,0r an Clement nA <and hence {°r its association) When
unp, alleged, they both must run at lcvel(„.«m). (At the end of the section we discuss

memocl s.' tjtveUh, 4. «gH<_>vg/) that also runs only at level(o.exist).

ReduceUvel o.A Effectively resets the level of an element o.A. to its lowest value discard^
an association provided at a higher level discarding

10

Interface:

Inputs: h: Handle, A: Attribute
Outputs: none (except return code)

Semantics:

If (Th does not denote an object o such that leveHo.exisi) = Ls) or
(A is not an attribute of o) then return //with an appropriate error code

Assign o.A = null; II destroy existing value, to avoid possible information flow
Set _level(h,A,Ls)

Re grade o.A: Changes the level of an element without losing its association. Any regrade
except an upgrade issued at level(o. exist) requires privilege.

Interface:

Inputs; h: Handle, A: Attribute, newLevel: Level
Outputs: none (except return code)

Semantics:

If h does not denote an object for which level(o.exist) = L$.
or A is not an attribute of o or
{newLevel does not dominate level{o.A) and request is not privileged)
then error_return

Otherwise Set_Level(h, A, new level)

We now sketch two ways to gain more flexibility. One approach is to require that o.A be
classified to match its contents, e.g., it would be Secret that level(o.A) is Secret, TS<A> that it
TS<A>, etc This permits tighter protection of levels, and allows unprivileged upgrade by
users who are above lev el{o. exist) but dominated by level{o.A). A user who is refused access
to level(fl.A) must assume that the level has been upgraded to a higher level. This does not
appear to be a channel, when upgrades are initiated from below. Since these two approaches
are so similar, it might be feasible to provide a single implementation that could be installed
according to either convention.

A further generalization would be to make levels into ordinary labeled entities. However, that
would necessitate storing an additional label; in both the previous cases the sensitivity of'
level(o.A) was determined by ordinary elements' labels (respectively o.exist or o.A).

4.4 Alternatives to the Delete Operation
To compare sv-UFOS with a DBMS that stores single-level objects, observe that an

application object (e.g., aShip) that contains data at multiple levels would be represented by
multiple DBMS objects; to delete it, the user must issue a delete command for each relevant

11

t,, possibly r<)m separate logins Deleting an enure object is thus significantly easier in sv-
i.-Kto. it is ol little help however in deleting selected portions of an object. This section
investigates alternatives that cater to partial deletion The tentative conclusion is negative—the
generalization pays much of the implementation price of polyinstantiation. while providing
much less expressive power. ' &

We consider the alternative operation, delete, atjevel, which sets elements at Lv to null
wuhoui changing other levels When/, ■Wvcl'n rxists there is no problem When
. v =levoho exist), exist must somehow he r^rued and stored at the higher levels It mav
also be desirable to rescue other elements of an object about to be deleted (e g
a. .hw (aptam) C all the minimal levels above ls at which the object has associations the
rexciie levehs)

We treat these difficulties as manifestations of a more general issue »hat also arises in
nonsecure databases- -the conflict between user autonomy and data sharing. One group (e e
low. mav provide data to another (e.g.. high t. but retain the right to update or delete
information without permission trom the consumers Die issue has been explored in
conjunction with referential integrity [Morg90, Qian«4]. but can arise even among elements of
ä simza: object The solution does not he in changing the semantics of basic operations- rather
• in- -. ')nsume. must create a private copy of required information, possibly when first rcadin« it
possibly „t the last moment using a trigger or- modip or delete, or possibly by versioning ° '

>M?n-.at_u>vel is an operation of this sort When there is a unique rescue level the
operation semantics appear straightforward The number ot rescue levels is known at
levcKo.exist». All rescued associations are regraded to the rescue level: this rescued
intnmiation includes exist = true and (if specified in application-defined triggers) useful
application elements that were at L, For this case, wo can relax a restriction in [Morg901 and
allow the rescuer to modify these associations at their new level.?

The ease where there are incomparable, rescue levels appears to require weak
pohmstemtmhon. in which the same assertion is made at multiple security levels (in contrast to
normal nolvinstantiation in which assertions made al different levels may differ). Consider an
iMeaaShip which exists at Unclassified, but has additional attributes at two incomparable
classified levels <A> and and at their upper bound <AB>. What is to be the result of a
dele e at the unclassified level'? To be faithful to the outside world, the result should have a
single object aShip that holds information in compartments <A> and <AB>
Reierences 10 aShip should continue to be usable by processes at'these levels. Note that one
uinno! speak unambiguously aboiii the level of rescued elements

Weak pnlyinstantiaiion causes operational difficulties. There appears to be no way to
modit v roscueo attributes or to delete aShip from one compartment without causing a channel
between compartments <A> and .-R>* We believe that polyinstantiation (of associations)
Prides a more flexible and cleaner way ol separating actions at different levels |Rose94].

Since „ does no! provide weak poly.nstantiation of existence, the mode! in [MorS90| appears to require
creation of a separate object for each rescue level

it mav be possible to confine weak polyinstantiation to exist To do so, one must relax the model's
constraint thai aShip.Captain must dominate aShip.exist; permitting this dubious state does not appear

5 DESIGN GOALS AND IMPLEMENTATION ISSUES

5 1, Design Goals
Our design process may have been unusual in the attention given to the goals of

simplicity and robustness. These goals led to an effort to minimize restrictions within the
kernel s states and operations. We therefore proposed that the model be specified separately
from application programmer aids and integrity-promoting guidelines.

Model restrictions impose burdens on the DBMS's specifiers (to document and explain
them., on DBMS implementers (to enforce them), on security evaluators (to evaluate the
enforcement), on DBMS maintained (if restrictions are altered), and especially on users (to use
them or work around them).

To make the model simpler, we minimize the number of top-level concepts and avoid
explicit restrictions. Existence is treated as a specialization of Element. Protection of
existence, values, and object identifiers is built into operation semantics but does not require
additional labeling. Moreover, we impose just one constraint on label assignments—that each
element dominates exist (and even this can be relaxed). Other models vary in these respects.
For example, due to use of object names, [Gajn881 uses seven inequalities on levels. Several
models make difficult objects read-only Metadata management is another area where we
believe many inequalities should be relegated to guidelines outside the TCB.

Flexibility and robustness were also important design goals. Once the model imposes a
restriction, it becomes difficult to relax because it may be assumed in code throughout the
DBMS. Furthermore, so few applications have been built over MLS DBMSs that we cannot
confidently declare any restriction harmless. Arguments that there is no utility to a particular
database state often tacitly make assumptions that ought to be debated, for instance that states
reachable only through privileged operations should be illegal.

A more conservative and robust course is to specify a general model, determine an
implementation approach, and then accept only those restrictions that greatly simplify the
implementation. Restrictions motivated by needs of the formal model rather than of users
deserve great suspicion.

5.2. Implementation in a Client-Server Environment
As a model that labels individual elements. Sv-UFOS's data structures do not present

new challenges. Conventional approaches include storing each object as a single multilevel
record, or splitting it into multiple single level records.

OODBMSs do raise one important kind of design issue: How to pass information
between the database (typically on a server) and the application (typically on a client). In
relational systems, requests affect sets of tuples, which are then passed sequentially to or from
the client. The client-side software is relatively simple. In OODBMSs the passed information

harmful The rescue can then leave aShip. Captain unchanged (i.e., Unclassified). The operations' semantics
Süll allow ordinary elements to be read only at levels that dominate exist, and will prevent updates.

13

is ofren much closer fo the representation of data in storage, objects or pages. OODBMS client
software maps from this direct representation and. upon request from a user program, directly
retrieves or updates the desired elements Eventually the object or page is written back to
permanent storage

The above scheme gives very good performance on OODBMS workloads, but raises
serious security issues. In particular, if the client urns on a single-level or low assurance
machine any information passed to the client must be considered revealed, and any multilevel
object or page returned from the client must be considered corrupted. We are currently
investigating the degree to which various DBMSs' information-passing mechanisms can be
protected from these vulnerabilities

6. CONCLUSIONS

Sv 1FFOS is an object-oriented data model that provides fine-grained protection of data by
prntfvunp a single kind of security entity, namely elements It contains many details that may
be o; use in future models. Existence information can use most operations defined on ordinary
attributes Flemeni levels can be changed by unprivileged operations, though not as flexibly as
we would like Another contribution is that the mode! specifies operations in detail. Working
out the details led ro many improvements whose necessity was not obvious without operation
definition;,, especialIv for deletions and regrading.

We discussed the role of an MLS object mode! in an MLS DBMS, to distinguish the layer
at which features should be specified This practice helped in reducing the size of the TCB.
The motivation for many design decisions was discussed. We devoted considerable attention
to keeping the model's specifications consistent with priorities and practice in the OODBMS
industry especially compatibility with existing languages and good performance. We did not
rely on encapsulation that violates C++ piles and is difficult fo assure, did not change the
language semantics to make integrity checks mandatory, and treated methods as procedures
rather than security events.

We conclude that simultaneous avoidance o! channels and polyinstantiation is feasible,
but leads to users having considerably less flexibility (especially for Delete and Upgrade) than
in the polyinstantiated UFOS model

14

REFERENCES

[Bert94] Bertino, E., Mancini, L., Jajodia, S., "Collecting Garbage in Multilevel Secure
Object Stores," Proceedings of the 1994 IEEE Symposium on Research in Security and
Privacy. Oakland, CA, 1994.

[Bisk88] Biskup, J., and H. Brueggermann, "The Personal Model of Data: Towards a
Privacy-Oriented Information System," Computers & Security, Dec. 1988.

jCart.91] Cattell. S.. Object Data Management, Addison-Wesley, Reading MA, 1991.

|Gajn881 Gajnak. G "Some Results from the Entity/Relationship Multilevel Secure DBMS
Proiect." Proceedings of the 1988 IEEE Symposium on Research in Security and
Privacy, pp. 66-71, April 1988.

|Jaio90] Jaiodia. S., and B. Kogan, "Integrating an Object-oriented Data Model With
Multilevel Security," Proceedings of the 1990 IEEE Symposium on Research in Security
and Privacy, Oakland, CA, May 1990.

|Keef89| Keefe, T. W. Tsai, and B. Thuraisingham, "SODA - A Secure Object-oriented
Database System," Computers and Security, Vol. 8, No. 6, 1989.

[Lunt94] Lunt, T. and P. Boucher, "The SeaView Prototype: Project Summary," Proceedings
of the 17th National Computer Security Conference, Baltimore, MD, Oct. 1994.

[Mark91] Markowitz, V., "Safe Referential Integrity Structures in Relational Databases,"
Proceedings of the 17th International Conference on Very Large Databases, Barcelona,
Spain. 1991. (An extended version has been submitted to Information Systems).

rMill92| Millen, J , and T. Lunt, "Security for Object-Oriented Database Systems,"
Proceedings of the 1992 IEEE Symposium on Research in Security and Privacy
Oakland. CA, May 1992.

|Morg90| Morgenstern, M.. "A Security Model for Multilevel Objects with Bidirectional
Relationships,- Proceedings of the 4th IEIP Working Conference in Database Security
Halifax. England, 1990.

[Oliv04] Olivier, M„ and S. von Solms. "A Taxonomy for Secure Object-Oriented
Databases," ACM Transactions on Database Systems, Vol. 19, No. 1, March 1994.

[Qian941 Qian, X "Inference Channel-Free Integrity Constraints in Multilevel Relational
Databases." Proceedings of the 1994 IEEE Symposium on Research in Security and
Privacy. Oakland, CA, 1994

15

|Ro.se93] Rosentha) A. and W. Herndon, "Granularity of Data Protection for MLS
Applications and DBMSs." Proceedings of the 7th IFIP Working Conference on
Database Security, Huntsville, AL. August 1993.

[Rose.94i Rosenthal, A., J. Williams, W Herndon. and B. Thuraisingham, "Multilevel
Security for Object-Oriented Database Management Systems," MITRE Technical Report
(publication pending), The MITRE Corporation, Bedford, MA, 1994,

i SmitfWj Smith, G.. The Modeling and Representation of Security Semantics for Database
Applications- Ph.D. Thesis. George Mason University, 1989.

IThurQl] Thuraisingham, B., "Multilevel Secure Object-oriented Data Model - Issues on
Noncomposite Objects, Composite Objects, and Versioning," Journal of Object-Oriented
Programming.. Vol. 4(7). New 1991 ., - j^> wnentea

16

APPENDIX A. INTEGRITY ENFORCEMENT TRADEOFFS

We argue here that certain kinds of integrity enforcement should be performed only if requested
by a data administrator who accepts their costs. We also discuss reasons why further research
may be needed before MLS technology for integrity enforcement can be robust Our
arguments are based primarily on the nonsecurity requirements of the OODBMS market rather
than on covert channel issues. The reduction in the size of the Trusted Computing Base'fTCB >
is a bonus " v

We discuss referential integrity in detail and then mention some multilevel integrity
constraints for which similar arguments apply.

A.l Referential Integrity
A referential integrity constraint asserts that the database contain only valid pointers That

is «f some element's value is a nonnull handle (denoted h), then the database must contain an
object P such that o = Th. One decision in UFOS that has proved controversial is that we allow
handle-valued attributes for which referential integrity is not enforced. We advocate accepting
reduced integrity pn manly because we wish to conform to practice in nonsecure DBMSs where
references are, by default, unchecked.9

Nonsecure DBMSs accept suboptimal integrity in order to obtain compatibility and
performance. II all reterences were subject to integrity checks, several problems would arise:

Existing programs would now crash whenever they performed updates that
invalidated references. Such programs need not be incorrect—they may simply defer
the reference check till the reference is used.

When a value is assigned to any element of type Handle, one must check that the
reference was valid (since the argument comes from untrusted user code). Thus, an
assignment that could have been performed on a client might now require access to
disks on a server. One might also need to update a object reference count possibly
requiring that an update go to the server.

The human creator of an object a may insist on the right to delete it, even if another
user holds a handle. Referential integrity can then be enforced only if the DBMS
maintains a costly inverse-traversal structure that, for each o, identifies all elements
whose values are handles of o. Every update to a handle-valued element causes an
update to this structure.

We do believe that the data administrator ought to have the option of requesting
enforcement on any reference-valued attribute. However, even in non-MLS systems, the

y
r ++ and Smalltalk otter no referential integrity checks, while OODBMS products often check only when
explicit! v requested. In relational systems, an attribute can be joined with a foreign key even if no foreign
key constraint has been declared; these are references with neither integrity checks nor type checks

17

Creating Abstract Discretionary Modification Policies with
Reconfigurable Data Objects

Todd Gross
Dept. of Computer Sciences

The University of Texas at Austin*
tagScs.utexas.edu

July 25, 1994

ABSTRACT

We desire a mechanism for defining security policies that is both flexible and easy to use. This allows
us to manage dynamic changes to database Schemas aM security policies with the least amount of effort.
Any such mechanism will therefore have to be (1) discretionary (for changing the security policy) and (2)
defined over abstract data (for changing the database schema). Currently, the only security mechanisms
with these features operate on views. Despite their abstractness, specifying a policy using views requires
detailed knowledge of how the views are implemented. Furthermore, because of the view update problem,
we need a special mechanism for enforcing modification policies over views, one that reveals the structure of
the underlying data to any user that is allowed to modify the database.

This paper proposes a new data abstraction called the reconfigurable data object, with properties that
simplify the creation of abstract security policies. In particular, it will allow us to define modification policies
over our database while hiding implementation details from both the end user and, potentially, the person
responsible for specifying and maintaining the overall database security policy.

*This research was not funded by any grant whatsoever.

1 Introduction

Abstraction is a fundamental concept in computer science: it simplifies the process of solving problems

by eliminating details of the problem space that are not relevant to solving the problem. Maintaining the

security of information stored in a database is a problem we are interested in solving, and we use abstraction

to ignore details about data representation and database implementation in creating a set of mechanisms

to enforce security. Abstraction is a particularly useful concept for this problem, because we can also use it

to hide details about database implementation from the DBMS user, making the DBMS easier to use and

increasing its security. This explains why views have been used by database administrators to restrict access

to information stored in a database.

Views are. however, an insufficient abstraction for specifying modification policies—policies that de-

termine; when data may and may not be modified—because views in general cannot be updated directly.

Furthermore, views do not hide their own implementation details, and therefore policies over them can be

just as complex and "implementation dependent" as policies over base relations. What we desire is a data

abstraction that hides its own implementation details as well as those of the underlying data. Security poli-

cies defined over such an abstraction would be easier to specify (because there are fewer details to remember)

and more secure (because less is known about how the database is implemented).

This paper is about just such an abstraction, which we call the reconfigurable data object (or RDO for

short). With this abstraction, we can create security policies that are discretionary and schema-independent.

Section 2 defines reconfigurable data objects and provides a few examples. Section 3 shows how we can

specify modification policies over RDOs. Section 4 defines algorithms for enforcing these security policies,

and demonstrates how they work. Section 5 compares view-based and RDO-based modification policies

through an example (the former differing radically from standard view-based policies). Finally, Section 6

offers some concluding remarks.

2 RDOs and Related Concepts

Before we can define what an RDO is, we need to explicate the concept of a function over a database—in

our case, a relational database. Many existing DBMSs allow the creation of functions that consist of a query

in their own DML containing one or more parameters to the function. When the function is called, the

parameters are bound to the values passed as arguments to the function, and the query is evaluated. For

example, consider the following EXCESS function [CDV87, p 24]:

define Employee function youngerKids(maxAge: int4) returns int4

(

retrieve (count(C from C in this.kids where Cage < maxAge))

)

The function youngerKids has one parameter (maxAge), and its body is an EXCESS query that uses maxAge

in the where clause of the query. The value returned by the function call youngerKids(lO) is the value

returned by the body of the function with maxAga bound to the value 10—in other words, the number of

children of all people in the Employee relation that are less than 10 years old. Definition 1 formalizes this

concept

Definition 1: A database function f is a function of one or more parameters whose body is a
SQL query with the following properties-

« All tuple variables are explicitly named

• All parameters of / appear at least once in the WHERE clause D

Figure 2.1(a) defines a database function salary that satisfies Definition 1: it has a single parameter emp

that is used in the WHERE clause of the function, and the body of the function is a SQL query with one tuple

variable named E. When the function is called with an employee ID number as an argument, the function

will return the salary of that employee. But in order for this to work, the function query must be evaluated

against a database with a schema that supports the relations and attributes used in salary. Without such

a database, we cannot evaluate a call of function salary. Definition 2 formalizes this concept.

Definition 2: Let / be a database function, and V be a relational database. V supports f iff:

1 For every relation name R in the FROM clause of /, R is in the schema of V

2. For every expression of the form V.attr, where V is a tuple variable over relation R in the
body of /, attr is an attribute of R in the schema of V D

The database in Figure 2.1(b) supports function salary in Figure 2.1(a): it contains a relation named

Employee, which contains attributes wage (from the SELECT clause) and eid (from the WHERE clause). The

relation also has attributes name and dept, which are not used by the database function and therefore do

not affect the satisfaction of Definition 2.

With a formal definition of database functions, and the support of such a function by a database, we can

now give a formal definition of the value of a call to a database function. This definition is given below, with

examples of its use given in Figure 2.1(c).

Definition 3: Let f be a database function, V be a database that supports /, and a be a list
of values. The value returned by a call of / with argument list a evaluated against V (denoted
/(a, V)) is the value returned by evaluating the body of /, with the parameters of / bound to their
respective values in a, against the corresponding tuples of V. a

Figure 2.1(c) shows the value returned by two different calls to our database function salary when

evaluated against the database in Figure 2.1(b). For the first call, there is only one assignment of tuples

to our tuple variable that satisfies the WHERE clause of salary—namely, assigning E the fourth tuple of

Employee—therefore the function returns a singleton set. For the second call, there is no such assignment

(as there is no tuple in Employee with an eid attribute of 21250), therefore the call returns the empty set.

salary(emp)

{
SELECT E.wage
FROM Employee E
WHERE E.eid = emp

I

eid name
uoyee
dept wage

100 Aaron 1 55000
101 Baker 1 35000
102 Chase 1 37500
200 Davis 2 21250

(a) (b)

salary(200) = {21250}
salary(salary(200)) - {}

(c)

Figure 2 1 The creation and use of database functions: (a) a database function definition, (b) a
sample database containing the relation used by our database function, (c) two sample database
function calls and their values given our sample database.

Having formalized the concept and attributes of database functions, we now define the basic abstraction

of our security model: the reconfigurable data object.

Definition 4: Let / be a database function and a be a list of values such that for some database V
that supports /, f(a, V) is nonempty. Then the pair (/, a) is a reconfigurable data object (or RDO).

D

An RDO is a syntactic construct consisting of a database function name and a proper list of arguments

to the function. For example, (salary, (200)) is the RDO that corresponds to the first function call in

Figure 2.1(c). Do not confuse the RDO (/, a) with the function call f(a,T>), RDOs represent abstract values

that are independent of the structure and contents of the database, and independent of the function bound

to /. This not only reduces the amount of information a user needs to know to obtain a value from the

database, it also allows great flexibility in reconfiguring the structure of the database. Furthermore, and for

our purposes most importantly, this abstraction hides both the contents of the database and the algorithm

used to evaluate the RDO from the user, making inference of unauthorized information that much more

difficult.

In the next section, we show how to define modification policies with RDOs as the unit of protection,

and what such policies mean.

3 Creating Policies over RDOs

We have created a syntax for specifying security policies over RDOs, the syntax was designed to be easy

to use and to support a wide range of security policies. Ease of use again means abstraction—there are no

impl. ■mentation details in the policy specification—but it also means keeping track of as few details about

the policy itself as necessary. Supporting a wide range of policies means that our policies are discretionary,

as mandatory policies place tight restrictions on access and modification based on information flow.

3.1 Syntax

A policy, in our syntax, is simply a list of statutes, each statute placing specific restrictions over a set of

RDOs based on properties of the RDO. Since we are interested here in modification policies, we will only

describe the syntax of statutes on modification. Such statutes can take one of two formats:

Format 1: ALLOW MODIFY fCp) WHERE pr(f)
Format 2: DISALLOW MODIFY ftp) WHERE pr(p)

where f is a database function, p is a list of parameter names corresponding to the parameters of /, and

pr(p: is a boolean predicate over the parameters named in p. Informally, each statute specifies a list of

RDOs whose value the DBMS user is allowed for not allowed) to modify. This includes every RDO of the

form {/, a), where / is the database function mentioned in the statute and a is a list of arguments to / that

cause pr(p) to evaluate to TRUE when parameter list p is bound to a. For example, the statute

ALLOW MODIFY salary(emp) WHERE emp = 200

allows a user to change the value associated with RDO (salary, (200)}, which corresponds to the salary of

the employee with ID number 200. Note that this statute makes no reference to any property of the person

performing the query (in particular, no reference to a user clearance level), and therefore applies to any

DBMS user. If we want the semantics of a statute to depend on who is performing the modification, we

need some extra syntax. If, for example, we let $EID be a token that evaluates to the employee ID number

of the current DBMS user, the statute

DISALLOW MODIFY salary(e) WHERE e = $EID

prevents the user from modifying the value of RDO {salary. ($EID)>, which corresponds to the user's own

salary.

The previous two example statutes have been quite simple: the predicate compares a single parameter to

a constant value. More complex policies will be not merely value-based but content-based, dependent on the

current contents of the database. To ensure that our policies remain independent of the database schema

(like the RDOs over which our policies are defined), we require that all accesses to the database be through

database function calls. For example, in the statute

ALLOW MODIFY salary(emp) WHERE salary($EID) > salary(emp)

the ' i action salary is called twice in the predicate This statute allows the user to modify the salary of any

employee whose salary is smaller than their own. The statutes assume the existence of a current database

that supports all database functions used by a policy. Thus, if we make the database in Figure 2.1(b) the

current database, the preceding statute allows employee Aaron to modify every employee's salary but her

own.

3,2 Semantics

In the previous section, we defined the semantics of statutes in terms of the set of RDOs that satisfy the

predicate of the statute. Taking our first statute as an example, the only value we can assign to emp to

satisfy the predicate emp = 200 is 200—therefore the only RDO we allow the user to modify under this

statute is (salary. (200)}. But the abstractness of our RDOs presents a semantic issue we don't face with

more concrete data objects like relations and tuples: their contents can overlap. This means that when we

modify the value of one RDO we may also be modifying the value of other RDOs at the same time. For

example, consider the database function pay defined in Figure 3.1(a) below:

pay (emp) Department
/ did dname bonus

SELECT E.wage + D.bonus
FROM Employee E, Department D
WHERE E.eid = emp AND D.did = E.dept

}

(a) (b)

Figure 3.1: Example of potential overlap of RDOs (a) new database function (b) extension to
the database to support the new function

If we wanted to change the value of salary(emp, V) for a given emp and V, we must change the value of

the wage field of the corresponding tuple in Employee in T>. For example, if V is our sample database,

then changing the value of sage in the fourth tuple of Employee will change the value of (salary, (200))

accordingly. If we now add the relation Department from Figure 3.1(b) to V, the same modification to the

wage field changes the value of (pay, (200)) as well as (salary, (200)). Therefore the statute

ALLOW MODIFY salary(emp) WHERE emp = 200

must allow us to modify both of these RDOs, as one cannot change the value of (salary, (200)) without also

modifying the value of (pay, (200)}. This raises a semantic issue with respect to policies: if a modification m

of the contents of a database V changes the value of two distinct RDOs (/i, Si) and (/2, S2), when should we

allow m to take place: (a) when both RDOs satisfy an ALLOW MODIFY statute from the policy, or (b) when

at least one RDO satisfies an ALLOW MODIFY statute of the policy? We opt for the latter interpretation,

because it reduces the amount of information a policy writer needs to know. In particular, if a new database

1 Admin 1000
2 Sales 100
3 R&D 0

function is added to the system, the policy writer need not worry about adding ALLOW MODIFY statutes over

the new function just to maintain the current policj'.

Another unusual semantic feature of RDOs is that one can change the contents of the database without

changing the value of any RDO. In fact, it is possible to change the value of tuple fields used to calculate

an RDO without changing the actual value calculated. For example, if we change the wage field of the last

tuple in Figure 2.1(b) from 21250 to 21300 and the bonus field of the second tuple in Figure 3.1(b) from 100

to 50, the value pay(200 ,T>) is still 21350, even though both of these fields are used to calculate this value1.

From our standpoint, any change to the database that doesn't change the value of any RDO doesn't count

as a modification, and therefore will be allowed regardless of the current policy. To sum up, the set of RDO:-

that an ALLOW (DISALLOW) MODIFY statute will allow (not allow) to be modified Is:

• RDOs whose database function matches the statute function and whose argument list satisfies the
statute predicate

• any RDOs whose value changes as a result of modifying said RDOs (because of overlap)

Any RDOs whose value doesn't change as a result of a modification to the database have no effect on whether

or not the modification is allowed.

As a policy is simply a list of statutes, the set of RDOs one can modify under a policy is based on the

individual statutes of the policy. An RDO r may be modified under policy P iff

• There is at least one ALLOW MODIFY statute sA 6 P that covers r

• There are no DISALLOW MODIFY statutes sD € P that cover r

The syntax and semantics we've provided for specifying modification policias is flexible (because it's

discretionary and value-based) and abstract (because all references to data are made through database

function calls). But how would one enforce such a security policy? This is the subject of the next section.

4 Enforcing Our Policies

In existing discretionary security policies, the units of protection are sufficiently concrete that enforcing

security is straightforward. System R for example protects tables and views, and one can simply maintain a

list for each user of the tables and views they are permitted to access. Because of the abstractness of RDOs,

one cannot simply maintain a list of which database objects the user is allowed to operate on: policies can

depend on the contents of the database and database functions may be rewritten to keep up with changes

to database Schemas. Essentially, we need to dynamically determine which RDOs have changed value when

a change is made to the database. For example, a change in the bonus field of the first tuple of Department

will change the value of three RDOs: (pay, (100)), (pay, (101)), and (pay, (102)).

This assumes that both modifications occur within a single transaction.

This task is quite complex in general, so we have made several simplifying assumptions, which we will

explain as we go along. The following subsection gives a brief outline of our approach to solving this task.

the remaining subsections briefly explain the algorithms for achieving this solution. There will be a running

example of a policy and its enforcement to demonstrate this process.

4.1 Outline of Approach

(liver; a set of database functions T, a database T> that supports J-, a modification policy P whose statutes

use functions from T, and a modification m of the contents of V, our task is to determine whether v is

permuted under P We divide this task as follows:

i For each database function / that is covered by a statute in P, determine whether / belongs to a
«ubclass called conjunctive locator functions. If not. all statutes in P that cover / are ignored.

2. For each function /; that belongs to this subclass, construct an internal table of all RDOs over /; that
have nonempty values when evaluated against V. Store the value of the RDO with its identifying
information.

3. Perform modification m on 23.

4 Re-evaluate every RDO r in the internal tables and compare the new value with the stored value. If
the two values are different, add r to a set R.

5. Compare every RDO r 6 R to every statute s 6 P to determine whether s covers r. If there is any
DISALLOW MODIFY statute in P that covers any r 6 R, undo the modification. Otherwise, if there
is no ALLOW MODIFY statute in P that covers any r e R, undo the modification. Otherwise let the
modification stand.

We now consider each of these steps in turn, with the following running example to demonstrate our

approach: let T contain the two database functions previously defined (salary and pay), V contain the two

relations previously defined (Employee and Department), and P be the following policy:

ALLOW MODIFY salary(emp) WHERE emp = $EID
DISALLOW MODIFY pay(emp) WHERE salary(emp) < 30000

4.2 Before the Modification

Before we are ready to enforce our policy, we must ensure that we are in the proper initial state. Basically,

we must (a) record the existence of every RDO whose value could be affected by the modification and (b)

record the current value of these RDOs so that we can compare this value to the value after the modification.

This process is difficult to generalize, therefore we have restricted our attention to a subclass of database

functions called conjunctive locator functions, for which we have defined algorithms that are provably correct

with respect to our intended semantics. This subclass is defined as follows:

Definition 5: A database function / is a conjunctive locator function iff:

• For any database V that supports / and RDO {/,a), f(a,T>) evaluates to either the empty
set or a singleton set

/;<•- ,.-/

• For any list of tuples f that may be assigned to the tuple variables of /, there is no more
than one RDO (/,o) such that the WHERE clause of / is satisfied when the parameters of /
are bound to 3 and the tuple variables of / are bound to t

• The WHERE clause of / is a conjunction of equality tests among (a) function parameters, (b)
tuple variable attributes, and (c) literal values □

Both of the database functions in our running example are conjunctive locator functions. Functions with

these properties simplify the creation of internal tables, which are used to record the current value of all

FUiOs with nonempty values.

Definition 6: Given a conjunctive locator function / and database V that supports /, the
internal table for / over V (denoted T(f,V)) is a relation with the following properties:

• The relation schema contains one attribute for each parameter of / and one value attribute.

• For e^ery RDO (f,a) such that /(a,Z>) is nonempty, there is a tuple t in T(f,V) such that
f a) the attribute for a given parameter of / contains the value of the corresponding argument
m a and (b) the value attribute contains the value / (a, X>) D

Figure 4 i shows the internal tables for our tvx database functions salary and pay. Notice that there

is sue i.upie in each of these tables for every tuple in Employee. We give an algorithm for calculating the

contents of an internal table below: the restriction of our method to conjunctive locator functions is primarily

to simplify the creation of these internal tables.

Algorithm 1 (creating internal tables)-

For every legal assignment of tuples in V to tuple variables in /.

1 Substitute the values of the fields of the corresponding tuples for the tuple attribute expres-
sions in the body of /

2 If there is an assignment of values to the parameters of / such that the WHERE clause
evaluates to TRUE, add a tuple to T(f, V) assigning each parameter field the value bound
to that parameter and assigning the value field the value of the expression in the SELECT
clause of /

To see how this algorithm works, let / be salary and assign tuple variable E the first tuple of Employee.

Then E aid is assigned the value 100, and we set parameter emp to 100 to make the WHERE clause evaluate

to TRUE. Since we were able to satisfy the clause, we add a tuple to T(salary, Z>) with an emp value of 100

and the value attribute set to E.wage or 55000

r(salary,2?) T(pay, V)
emp value emp value
100 55000

101 35000

102 37500
200 21250

100 56000

101 36000

102 38500

200 21350

Figure 4.1: The internal tables generated by using Algorithm 1 against database V

4.3 Making the Modification

Once the internal tables liave been properly set up, we can modify the database. Note that our modification

policy says nothing about how to modify the database—all we need to know is which fields were modified

and what their new values are. Views, on the other hand, provide a fixed interface to the underlying database

that may not map uniquely to the database. For our running example, we will change the value of the bonus

field in the second tuple of Department from 100 to 500.

Having made the modification, we need to determine which of our RDOs has changed value. We do this

by taking each tuple * of each internal table T(f,V), extracting the argument list 3 from t, calculating the

value f(.a,T>), and comparing this value with the stored value attribute in t. If they are not equal, we add

the RDO (f,a) to set R—which is initially the empty set. We currently have two internal tables with four

tuples each.

Starting with the first tuple of r(salary,Z>), we extract the argument list from the tuple. The argu-

ment list for this internal table is simply (emp), and therefore (100) for the first tuple. We then calculate

salary (100 ,V). where V is the new modified database, and get 550002, which is the same as before. We

therefore do not, modify R. In fact, no RDO over salary will change value, as no modification was made to

Employee, which is the only relation used by the function. We therefore skip to the first tuple in the pay

internal table

We evaluate Fay(100,X>) by assigning tuple variable E the first tuple in Employee and assigning D the

first tuple in Department, because that assignment satisfies the WHERE clause. Since we modified the second

tuple of Department, not the first, the return value is the same as before, namely 56000. The only RDO

that changed value is (pay, (200)), represented by the last tuple in the pay internal table. We therefore add

this RDO to our (previously empty) set R and quit checking values. At this point, we know of every RDO

over our database functions that has changed value with respect to the current database.

We should note that this process of calculating which RDOs have changed value is very expensive, both

in terms of time and space. We have to create an internal table for every function we are interested in, add a

tuple to that table for every RDO that has a nonempty value using our current database, and that's before

we even start enforcing our policy. Once a modification is made, we need to recalculate the value of every

RDO. even though most will not change value. And each of these evaluations corresponds to a separate

query over our database, with a separate scan of all the relevant relations. We intend to develop a more

efficient algorithm for discovering which RDOs have been modified as our research progresses.

4.4 Checking its Correctness

Once we have the set of RDOs whose value has been modified, we can compare them against the statutes of

our policy to see whether they allow (or disallow) the RDO to be modified. As with other positive/negative

To be precise, we get {55000}, as functions return sets as values. But because conjunctive locator functions will never
return a set of more than one element, we coerce the set into its single element.

10

permission mechanisms3 (e.g. GRANT/REVOKE in System R [ABC+76] and ALLOW/DISALLOW in

RRDS [GO90]), we allow modification when at least one positive permission (for us, an ALLOW MODIFY

statute) covers the RDO and no negative permissions (DISALLOW MODIFY statutes) cover the RDO4. But in

our case RDOs can overlap, therefore we: have to extend this a bit: a modification is permitted if any of the

RDOs in our set R are covered by an ALLOW MODIFY statute in our policy P and none of these RDOs are

covered by a DISALLOW MODIFY statute in P

In our running example, the set of changed RDOs R has a single element, which is {pay, (200)). We

see that the first statute in P does not cover this RDO, regardless of who made the modification, because

this statute only applies to RDOs over function salary. The second statute Is over the correct function,

therefore we test whether the predicate holds over this RDO- -that is, whether salary(200) < 30000. Since

salary (200) - 21250 when evaluated against our current database, the predicate holds. In sum then, no

ALLOW MODIFY statute holds and one DISALLOW MODIFY statute holds. Therefore, the modification is not

allowed and must be undone.

Since there were no changes to the database, the internal tables as they stand are correct, so we can go

directly to step 3 of our enforcement algorithm (from Section 4.1) and perform the next modification. Had

the modification been allowed (e.g. a modification of the wage field of the first Employee tuple by employee

Aaron) we would have to replace the value attribute for all RDOs in R to reflect the modification (in this

case, (salary, (100)) and (pay, (100))). Then we could proceed to step 3 as before.

5 A Comparison of Views and RDOs

We are now in a position to compare the expressive power of relational views and RDOs as a basis for

defining security policias In this section, we will define an abstract policy (based on our existing relations

Employee and Department), represent the abstract policy using both views and RDOs as basic data objects,

and discuss how one would enforce such a policy as defined for both of our data abstractions.

5.1 Policy Representation

First, let us define an abstract policy (where by abstract we mean independent of the underlying data

representation) Let our abstract policy V be defined as follows:

'P: An employee may modify the pay of all employees who work in their department,
but no others

In order to implement thus policy, we will need abstract definitions of the concepts "pay" and "department"

of a given employee. For RDOs, we use the database function pay defined in Figure 3.1 to define the concept

of "pay" the equivalent definition using views is given in Figure 5.1 below.

3It should be noted that profile, as described in [OvS92] take a different approach: all positive permissions (which they term
necessary conditions) must be satisfied.

unnV)vStatUute co"e"an RDO when binding the Parameters of the database function (which immediately follows the word
MODIFY in the statute) to the arguments in the RDO causes the predicate of the statute to evaluate to TRUE.

11

CREATE VIEW PayView(id, pay) AS
SELECT E.eid, E.wage + D.bonus
FROM Employee E, Department D
WHERE E.dept = D.did

Figure 5.1: A representation of "pay" using a view

Note that we have two attributes in our view PayView: one to hold the pay amount and one to identify the

employee whose pay it represents. We also need representations for the abstract concept of an employee's

department, these are given (for views and RDOs) in Figure 5.2.

dept(emp)
{

SELECT E.dept CREATE VIEW DeptView AS
FROM Employee SELECT eid, dept
WHERE E.eid = emp FROM Employee

}

(a) (b)

Figure 5.2: Representations of an employee's department using (a) database functions and (b) views

Again, notice that the definition of DeptView includes a field to identify the relevant employee, whereas

the database function dept takes this identifier as an argument which it uses to calculate the appropriate

value. The difference between these approaches becomes clear when we use these definitions to represent our

abstract policy V, as shown in Figure 5.3.

VVKW: ALLOW MODIFY P.pay
FROM PayView P, DeptView Dl, DeptView D2
WHERE P.id = Dl.eid AND D2.eid = $EID AND Dl.dept = D2.dept

PRDO: ALLOW MODIFY pay(emp) WHERE dept(emp) = dept($EID)

Figure 5.3: Representations of abstract policy V using views and RDOs

As you can see, PRDO is not only simpler and shorter than TView, but more abstract as well. In the view

policy, the attributes we created to store the employee ID number (id in PayView and eid in DeptView)

were mentioned by name. The RDO policy, on the other hand, only mentions the value of an employee

ID (through the database function(s) parameter emp) and not how that value is internally represented. The

implementation independence of 'PRDO makes it feasible to separate the duties of policy administration and

database administration, a feature we will expand on in the concluding remarks.

5.2 Policy Enforcement

For a policy specification to be of any use, we must be able to enforce the policy as specified. In the case

of abstract policy V, this means that we must allow all modifications m by a user u to a database V that

12

is covered by V where m does not change the pay of any employee e in a different department than u. For

example, we would allow u to modify the bonus field of the Department record corresponding to u but not

for any other Department record.

Notice that we could not modify the pay attribute of PayView directly, because this attribute is the sum

of a wage field and a bonus field, and there is more than one way to modify these two fields to obtain the

new value of pay. Cases like this where a change to a view maps nonuniquely to changes in the base relations

that, populate the view is what we call the view update problem—note that this is a different problem than

the one cited in §3.6.2 of [KS91], which concerns null key fields in base relation tuples created from a view

tuple- -and requires us to restrict modifications to base relations only (e.g., Employee and Department in

the case of PayView). The algorithm for enforcing policy Vview against these changes is given in Figure 5.4

below:

1. Update PayView to reflect the changes to our base relations

2 Note all records in PayView whose pay attribute has changed

3. Assign each such record to tuple variable P from the WHERE clause of VView

4. For each tuple assigned to P, determine if there are two tuples in DeptView that can be
assigned to tuple variables Dl and D2 such that the WHERE clause of PView is satisfied

5. If there are any tuples bound to P that, have no corresponding bindings to Dl and D2 that
satisfy the WHERE clause, the modification must be undone. Otherwise, the modification
stands.

Figure 5.4: Algorithm for enforcing TView

The algorithm for enforcing VRDO, on the other hand, is given in Figure 5.5. Note that the algorithm

is fundamentally the same as in Figure 5.4 despite the surface differences: database function evaluation

replaces the relational scan of T\iew, and variable binding replaces much of the equijoin computation.

1 Update the internal table for database function pay to reflect the changes to our base
relations

2. Retrieve the emp attribute for each tuple of TYpay, V) whose value attribute changed

3. Find all tuples in T(dept, V) with the same value in their emp field as was retrieved

4. Compare the value attribute of all such tuples to dept ($EID). If any of our changed tuples
from the pay internal table has no corresponding tuple in the dept internal table with this
value as its value attribute, the modification must be undone. Otherwise, the modification
stands.

Figure 5 5: Algorithm for enforcing PRDO

The algorithm for enforcing VRD0 is simpler than the algorithm for enforcing Pview, because dept($EID)

remains constant as the former algorithm is evaluated. Therefore, each pay table record whose value has

changed will only require a single-level scan of the dept internal table, whereas we need a two-level scan of

DeptView to retrieve tuples Dl and D2 to satisfy PView. This simplification, however, should not be seen

as a significant advantage—as a smart optimizer could conceivably make a similar improvement to Pview-

The primary advantage of using RDOs/database functions to specify an abstract policy versus views is the

implementation independence and simplicity of the former.

13

6 Conclusions

Nowadays, we expect software to be both powerful and easy to use. Word processors, for example, allow

the user to use many different typefaces and sizes of text, with control over spacing, margins, alignment,

and other aspects of the document. And yet these packages are simple to learn and use, because the user

need not worry about how information concerning typefaces, font size, etc. is stored in their document.

That is, the word processor provides an abstract interface (via a WYSIWYG display screen) that hides the

internal representation of the text from the user, yet provides her powerful tools for creating documents, This

abstract interface also allows the user to import documents created using other word processing packages, as

the interface the user sees is independent of how the formatting and textual information is represented. For

database security systems, however, this expectation is not easily met.

For these systems, the user of interest is the person who creates and maintains the security policy for

a specific computing environment. This policy writer would like to create policies like V from the previ-

ous section—referring to high-level abstract concepts like "salary" and "department" without reference to

implementation details like field and relation names. Mandatory security is defined directly over concrete

relations, tuples, and fields; therefore, policies are implementation dependent. Furthermore, they are re-

stricted to information flow based policies. Views do provide abstraction in that they hide the underlying

data representation, but one must still know the schema for these views to write security policies using them,

as we saw with Vview. Furthermore, enforcing PView requires functionality that existing view-based systems

don't possess. DB2, for example, will not allow a user to modify the contents of a joined view like PayView,

which is different than preventing the contents from changing value.

On the other hand, 7>RDO only required that the policy writer knows how to call database functions Day

and dept. The implementation independence of RDO-based policies allows us to separate the duties of policy

management and database management. The database manager would manage the data and define database

functions over them, the policy writer would create sets of statutes using these functions. This leaves the

database manager free to change the database schema as the environment changes without worrying about

how it affects security5. Note that this separation of powers is the same form espoused by Clark and Wilson in

their seminal paper [CW87]. This work is also related to [Cab93], in that data in "physical" form must satisfy

constraints that are written over "abstract" data—but in her case, the physical-to-abstract transformation

must preserve the structure of the data (and functions like pay do not).

This advantage in flexibility and ease of use, however, comes with a heavy price tag. Enforcing a policy

is highly time- and space-consuming. Policies are currently limited to a relatively small class of database

functions6, because other classes are even more costly to enforce. All database access is through database

functions, therefore one loses the flexibility of SQL and may have to write hundreds of database functions,

which would substantially increase the cost of enforcing policies. Finally, like views themselves, verification
5See [SJ092] for an example of a database whose schema changed dramatically in a relatively short period of time.
The class is however sufficient, in that one can use conjunctive locator functions to retrieve any attribute of any tuple of

any relation with unique keys.

14

of code would be difficult, as the enforcement algorithm relies on much of the DBMS to function.

fhere is much work left to be done. We need to find more efficient algorithms for enforcing security

policies. The class of database functions we can and should monitor needs to be investigated. There

are many extensions we could make to the current policy syntax, several are worth pursuing. Finally, an

implementation of these concepts needs to be fleshed out to test the effectiveness of this approach. It is clear

that we have only laid the groundwork, and we have many questions to answer before this approach can be

deemed practical.

15

References

[ABC+76]

[Cab93]

[CDV87]

[CW87]

[GO90]

[KS91]

[OvS92]

[SJ092]

M M Astrahan, M W Blasgen, D D Chamberlain, K P Eswaren, J N Gray, P P Gnffiths, W
F King, R A £orie, P R McJones, J W Mehl, G R Putzolu, I L Iraiger, B W Wade, and
V Watson. System R: Relational approach to database management. ACM Transactions on

Database Systems, 1(2):97-137,1976.

A M Cable. Data Updates and Integrity Checking in Transformed Deductive Databases. PhD
thesis, The University of New Mexico, Albuquerque, NM, May 1993.

M J Carey, D J DeWitt, and S L Vandenburg. A data model and query language for EXODUS.
Computer Sciences Technical Report 734, University of Wisconsin-Madison, Madison, WI, Dec

87

D D Clark and D R Wilson. A comparison of commercial and military computer security
policies. In Proceedings of the 1987 IEEE Symposium on Security and Privacy, pages 184-194,
Oakland, CA, Apr 1987. IEEE Computer Society Press.

D A Goldberg and A Orooji. A symmetrical approach to granting and revoking access rights in
database management systems. In Proceedings of the Fourteenth Annual International Com-
puter SoXare and AppUcations Conference (COMPSAC), pages 124-131, Clncagc IL, Oct-

Nov 1990. IEEE Computer Society Press.

H F Korth and A Silberschatz. Database System Concepts. Advanced Computer Science Series.

McGraw-Hill, New York, 1991.

M S Olivier and S H von Solms. Building a secure database using self-protecting objects.
Computers & Security, 11(3):259-271, May 1992.

D Sj0berg. Measuring schema evolution. Technical Report FIDE/92/36, University of Glasgow,

1992. ESPRIT BRA Project 3070.

16

SECURITY GUIDELINES FOR
DATABASE SYSTEMS DEVELOPMENT

Prof George Pan sal OS

Informatics laboratory, Computers Division. Faculty of Technology General
Department, Anstotclcan University. Thessaloniki 540 06, Macedonia, Greece

Abstract

Database scennn plays an important role m the overall security of information systems
1,n<1 ncmorks A scl ot database security guidelines is described in this paper which aim
!•■ pnnuie a functional guide lor the introduction, administration and enforcement of the

;'PP^rniiu- Icy«! ,.r database ^cnnly The proposed guidelines, which have been
l."7.:.",Pal m |hr !^mcwork of the S! ISMF!) pm)cct of the EEC, help ensure the
!,iil,!!ru:m '/' !hl ^"-rcspondiii}. se; „I security principles, as defined in the high level

01 '""'• pi: '"'> ' iU:h such Principle :. implemented throuah one or more of the proposed
■er • .-ntrol agents, which specrh ihe methodological means tor satisfyina one or more of
in."., rrmonlc-

;';;. ■,lHl Va\;l:^1^ I" p;";: '"' '!'!' ' ■^,^'>'" '-'l''ho European Communities. \'M pmunim SFISMED (A20V.) p!VUV,

Keywords, database securm gmdehms. information svstcms security, database
security

1. INTRODUCTION
Security is an important issue when dealing with computer based information systems
and networks (1,41,46,50). Current thinking in information systems security is that the
issues center on confidentiality (information is only disclosed to those users who are
authorized to have access to it), integrity (information is modified only by those users
who have the right to do so), and availability (information and other IT resources can be
accessed by authorized users when needed). Computer based information systems are
risky systems with respect to at least these issues. The level of security that should be
included tn a information system involves however some judgement about the dangers
associated with the system and the resource implications of various means of avoiding or
minimising those dangers. Developments in this field have progressed today to a point
where information systems security needs to be tackled in a coherent and consistent
fashion as a subject on its own right (7.41,44,50).

Database security in particular is an area of substantial interest in information systems
security today. In addition to the more common security concerns of integrity access
control, audit etc.. database systems add concerns for granularity, inference, aggregation
filtering, lournahng etc. (1,41,50). Database systems also provide new tools for enforcing
and controlling security. They also make it possible to increase granularity by enforcing
security at a record or even at a data item level. The security of a single clement may be
rhus different from the security of other elements of the same record or from values of
the same attribute. That is, the security of one clement may be different from that of other
elements of the same database row or column. Database systems can also support several
grades of security for sets of data or individual data items These ranges may represent
ranges of allowable knowledge, which may overlap (2,41).

This paper presents a set of database security guidelines for the development of a secure
database system. The proposed guidelines help ensure the fulfilment of the corresponding
set of security principles, as defined in the high level security policy of the specific
establishment (47). Each such principle is implemented through one or more of the
proposed ten control agents. The guidelines also provide, to the related categories of
personnel, a functional guide for the introduction, administration and enforcement of the
appropriate level of database security. Effort has been made to avoid technical details
related to the methods and techniques used for the implementation of the guidelines
which arc discussed in detail in (41).

2 DATABASE SYSTEMS SECURITY
Database security is concerned with the ability of the system to enforce a security policy
governing the disclosure, modification or destruction of information Within an
organisation humans typically use a database as a technical tool for storing, processing
and communicating information. At any time an amount of data has been stored in it a
large amount of messages has already been sent and the corresponding data can 'be
called tor duplication and further transmission on demand from potential receivers The
database relays the messages by persistently storing the corresponding data following
the three phase procedure (2): "accept messages ==> store / process data =>
fwniMc duplicate and communicate data on demand'. The quality of mediation is
dependably assured by special protocols enforcing completion of transactions and
integrity constraints on stored data. Mediation is shared among many users and is
required to be efficient in time and space (2).

Databases are usually an amalgamation of data from many sources; users entrust their
data to a DBMS and rightfully expect protection of the data from unauthorised access
loss or damage. Databases contain structured data that arc maintained by a database
management system (DBMS) which is usually a separate software component that runs
on the top of the operating system and provides the additional functions to use the
database. It may also include functions to manage transactions. A DBMS assumes one or
more data models upon which the data are structured (such as relations networks

hierarchies etc.; Database applications typically require a fine granularity of access
control from a security view point, database systems may be viewed as applications that
require considerable kernel service or as protected subsystems and/or trusted processes.
Databases may be considered to provide another level of security to complement that of
the operating system

Tie- following assumptions about the database system environment and general
principles related to database security have been widely accepted (10,11,14):

a The database system security considerations must take into account all system
S'W and H/W that touches information flowing into, and out of, the database. For
example an easily penetrated operating system would usually render a superbly-
protected DBMS useless.
b Data integrity is a key requirement. The database system must preserve the
integrity of the data stored m it The user must be able to trust the system to give
back the same data that is nut in the svsfcm and to permit data to be modified only
be. authorised users. The data should not be destroyed or altered cither accidentally
as m a svstern crash, or maliciously as in some unauthorised person modifying the
data At the •■••cry least, the user should know if the data was corrupted
<• Data should be available when needed. This implies system fault tolerance and
icdundancy in data, software and hardware.
•I Audi! should be detailed enough to be useful and efficient enough so as not to
severcb burden system performance
> I he aim should be to provide an adequate level of confidentiality (prevent
disclosure) and yet preserve integrity by using appropriate concurrency and integrity
controls (e.g. referential integrity).
I The prototypes should be of genera! purpose, commercial quality and. according to
niosi proposers, relational systems. The relational svstern has been chosen because it
!■- i 10) currently the model of preference m the commercial world.

(iiven the above definition and general framework of database security, we can regard a
database as a channel in the sense of communication theory. Then a database security
policy states (2) o; which Ape of sub channels between (groups of) users can be
established, (ii) the requirements of the availability of certain facilities of the sub
channels, and (in) the requirements on the (partial) separation and non-interference of
sub channels. Seen from this point of view, we can identify two prominent proposals for
database security policies (1,41.45V
a The Mandatory security approach. The need for such a policy arises when a computer
database s\ stem contains information with a variety of classifications and has some
user which arc no! cleared for the highest classification of the information contained in
the scstcrn The approach is frequently based on the following assumption (constructs):
there are users, data items and a lattice of security levels (1.4 0.
b I'hc diseretionan security approach Discretional access controls in today's database
systems are designed to enforce a specific access control policy (1,41). The approach is
based on the following assumption (constructs): there arc users, (well informed)
transactions, and (constraint) data items 11.2.41)

bach one offers a number of advantages A basic distinction for example among the two
is m the degree of protection they provide from Trojan horse programs. In general
discretional security is set by the use- and can be defeated by Trojan horse programs,
while mandatory security is set by the database system and is much more effective
against Trojan horse programs.

3. THE SEISMED PROJECT
The work reported in this paper has been based on research undertaken in the framework
of the SEISMED project of the European Union (EU). The SEISMED project (a Secure
Environment for Information Systems in MEDicinc) is part of the European Union's AIM
(Advance Informatics in Medicine) program. AIM is currently investing some 90 milion

ECU to provide opportunities for improving computer information systems across Europe
within the medical environment. The project lasts for three years (1992-94) and is
implemented by a European consortium (41). It is the only one in the area of information
systems security and one of the biggest of the program.

The main objectives of SEISMED are:
To develop a High Level Security Policy to enable organizations using information
systems to follow a consistent path;
To develop specific guidelines to enchance security in existing systems, in the design
and implementation of future systems, and in systems using networks;
To develop an encryption prototype for use in health care environments;
To perform risk analyses at a number of health care centers across Europe to identify
the opportunities and needs for improved security;
To examine, across Europe, the legal issues of data protection and privacy with health
care information systems in order to develop a common deontology or code of ethics.
To identify mechanisms by which the results of SEISMED can be put in effective use.

The technical approach used in SEISMED was to break the project into a number of
mtcr-connecting themes, which are:
- The identification of current practices by means of a survey throughout Europe and

detailed risk analyses at four healthcare centres;
- The preparation of guidelines detailing:

- the development and implcmentayion of a high level security policy
how7 to perform risk analysis

- how to include security with a system's design
- how to retrospectively include security within existing systems
- how to achieve security where networks are utilised
- the use of encryption in health care environments
- the legal framework across the European Union countries.

- To test the implementation of these guidelines (except for the legal framework) by the
reference centres participating in the project.

- To revise the guidelines in light of the reference centre experiences.

4. SECURE DATABASE DEVELOPMENT METHODOLOGY
The problem of developing a secure database system consists of three main issues
(3.4.16):
(i) the definition of the semantics of the secure database to be developed, that is to
characterise the needed security properties in terms of the database semantics,
(ii) the implementation of those semantics on a database system, that is on a DBMS and
on the data it handles, and
(ui) assuring that the implemented system provides the needed security properties.

A development methodology has the purpose of specifying how each one of these three
secure database development issues can be achieved. This is usually accomplished by
guiding the various steps of the development, by providing modelling and analysis tools,
and by organising these three issues into a global framework allowing to achieve
consistency of the whole development process and of the target system. Such a
development methodology should be multiphase (29) in order to allow for incremental
construction of the secure database system. The various phases of the methodology
should also be supported by models able to represent the details necessary to each phase
and to support the types of analysis about the system under design which pertain to each
phase. Multiphase development of systems is a widely-accepted principle today. The
benefits of a multiphase approach lie mainly in the separation between design and
implementation aspects; this is the principle of security policies-mechanisms separation
(29).

tl'-"-L C,
'H T™ } -^cm development methodologies have been described in

t v -<•,„,,. he s ructure of most of them is based on the same traditional generic ("V"
■>! *atu-,nl!) model, which mrludes the following phases (49): Requirements Analyst
:R U,. Prototyping (PRO) Des.gn Specifications (DES), Coding (COD), T tmg SsT

Z T^dh * i In
t
hne W,tb f ab0Ve^ d3tabaSe d-eloprnent could alsoYe Sen

ha, ,. generally carried out m a number of similar steps ,41): Database system security
icqunements analysis (REQ). Prototyping (PRO), Database system design specifications

" "cm testtSsÄD ??' and PhyS1Ca! dCS,§n- DES" ^^ 'coST'Äe8

Äo^X^^ä Mä^ ver,t,catlon (VER)-Such a database des^n

It v, important to note that since the database system is part of the overall information
-wem. database security should be seen as an integral part of the overall mformat on

Z»- r,biCm in Tty aSPC'1S nillS' ,hCiT'°rC bc COnsldcred m a ™<f^ way as e rhy
<^ posMhic in ih^ information systems design and implementation process. Prior to the
■ c iimtion nnd implementation of database sccurilv a well defined overall security pol ey
;n„ a smtable overall system dc-s.gn methodology are therefore required. Such a dS

2 1 - h° ""uTS" ^°f f' dC,,,nCS,ft"' thC devc"W «>f a suitable high level security
andcanbe tndn?:4t P '" "^ "'^ ^^ ""**' °f th° ^

if the abcuc development mcfhodologn ,,, to be used for the development of a security-
ons„p.o database system, then specific sccunt> guidelines, like the ones proposed in

.afc chapters, snould be included ,n the description of all these phases (5 6 41 47) The
gmdclmes help ensure that each of the database development phases will bc performed
ccordmg to cx.st.np security standards and regulations. They help also to provuie toTe

:: "™ TT-h PC,'SOnn ;' ,l,
1
nctra,,8UidC t0r thC '"'auction, admLtration 1

:;Z vVi !?
PPr°Pr,a,C lcVci °f databasc ^»«-ity. The database security guidelines have the following characteristics-

<n Kach guideline intends to fulfil at least one of the requirements for database security
(ID rach giiideline addresses at least one personnel category and
'ml They are based on the requirements tor database security and the personnel duties
and responsibilities, the potential and limitations of information systems and database
technology today, and the establishment's organisational structure and procedures

5 THE CONTROL AGENTS

The gmdelme, proposed herein are provided tor the fulfilment of a set of predefined (in
^ high level security pohev (Hl.SP)) database security principles (47 49) Each
Pnn.-,p,c,s implemented through one or more control agents. The control agents

P-Pot-J mT M '0r Sat,SfVmg °nC °r m°rC °f thC baS,C ^ Principles (49?^
on nrT g^,nCOrP°rat,S !Cn such COntro1 a^cnts' na^ly: 'tools review

lociunent ton. tnrmal.sni, 'raceab.hn. standardisation, code reuse, methodology
icsponsibilp, and reliability. The,,- scope ,s described in the sequel &>"

. 'oo/s i Ff St:

■S..thvnrc products should bc employed by the database system designer to ensure that
<■-■ MLp ,n the development process will be earned out according to efficiency or

standards 1 xamplc: Tools that measure complexity and potential programming
ge vio ation.s ' ö fa

'. ci
securitx s
language violation.-

'• RCMCU /RVU i

M system development phase- should be reviewed by teams of security experts together
r? ..sers and relevant technical experts, to ensure that all procedure" have'been
■o.lovu, according to secuntv and integrity standards and criteria. Example- Test

I;.: *^,,ng sh0,,,d be Uscd t0 cnsure *at all test procedures have been carried out

.-'. Documentation (DOC):

Documentation should follow the end. of every development phase and it should be used
as a reference to the security actions that should have been performed that far. Example:

Documentation of the source code of all the database application programs can help for
comparing the programs that should run, with the ones that actually do. This control
agent forms the main input to the verification process at each stage as well as to the
validation and certification processes.
4. Formalism (FRM):
Specific formal procedures should be followed in phases where the complexity of the
development may cause misinterpretation or flaw of information, or other relevant
inconsistencies. Example: The conceptual database design should be described in a
formal specification framework.
5. Traceability (TRC):
In several cases capability of tracing back a procedure to the requirement which has
originated this procedure should exist. Example: Every application program should be
associated with its functional requirement(s).
6. Standardisation (STD):
Standards help the database system developer to employ a uniform set of approaches,
thus decreasing the types of techniques that are available for malicious software
developers. Example: Coding standards in database applications programming increase
the auditability and maintainability of the resulting code.
7 Code Reuse (CRU):
Code reuse provides a means of error propagation; therefore it should be done according
to specific security procedures. Example: If prototype code is reused in the development
code, then it should be first tested and verified towards well defined security goals
8. Methodology (MET):
Specific methodologies should be used to ensure that a procedure has been performed in
the (secure) way that it should be. Example: All test tasks should be performed according
to a methodology, capable of ensuring that all security critical test data have been used
9. Responsibility (RES):
The nomination of person(s) or organisation(s) who is(are) responsible for the fulfilment
of all security goals is an effective means toward preventing security violations.
Example: The responsibility for the verification tasks should not be placed with the body
responsible for the database testing tasks.
10. Reliability (REL):
The reliability of some specific procedures should be measured and used to reduce
unwanted side-effects to an acceptable level. Example: Test results should be used to
reduce observed software flaw densities.

6. GUIDELINES DESCRIPTION
Now we present a structured description of a set of database security guidelines which
help ensure the fulfilment of the corresponding set of information system security
principles (as defined in the HLSP for the specific establishment, (41)). Each such
principle is implemented through one or more of the ten control agents described earlier.
As discussed in (49), information systems developed according to the provisions set out
in the proposed guidelines enjoy security-related functions efficient and integratable with
all other specified functions. Given the scope of this paper, this list cannot be exhaustive.
Part of the security guidelines that we have proposed in the framework of the SEISMED
project of the EEC (41) is set out below in order to demonstrate the process (41,47). We
have tried to avoid in this description technical details related to the implementation of
the guidelines. A detailed discussion and presentation of methods and procedures for the
implementation of the proposed guidelines can be found in (41).

We can classify database security guidelines into three main categories: (i) Database
development guidelines, (ii) Control of database software guidelines, and (iii) Database
operational and organisational guidelines. The actual description of each guideline below
is preceded by a header conforming to the following format:

Guideline short title [Code Number /Phase / Control Agent]

In this formal:
"Phase"

The database development phases include the ones described earlier, and are refered
to as follows

i. Database development security guidelines:
•- Preliminary analysis security guidelines ...> (PRE)

Database system security requirements analysis —> (REO)
Prototyping (where applicable i ___> (PRQ)

• Database system design specifications .__> (DES)
(which include conceptual logical and physical design)

- Coding (e.g. using DBMS tools) ___> (COD)
- Database system testing > (TRS)

•■ Database system verification ___> (VER)
u. Control of database software security guidelines:

Genera! precautions " :, (QpD\
Software development ..__> (cnV)

ii- Operational and organisational security guidelines:

- Database organisational/administration guidelines — > (ORG)
- Database operational guidelines ' .._> (OPER)

!'" \" in the development phase stands Tor "All phases").

"Control agent":

It refcres to the control agent codes described in the previous section as follows-
I • I oo!s _.._> JY £
2- Review ...-, Rvw

3. Documentation ___--. f)OC
4 Formalism ..__> pRjyj
5. Traccabilirv ___-. JRQ

6. Standardisation .._> <^TD
7 Code Reuse ___ , CRU
8 Methodology ___> [VJET
^ Responsibility .._> j^pg
10. Reliability _.._■> ppj
("OP" in the control target stands for "Overall Philosophy"),

7. DATABASE SECURITY GUIDELINES

7.10 DATABASE DEVELOPMENT - I

The sei ol the proposed security guidelines to be followed in all phases of the database
development process is the following: dSL

/ Integrated Design Methodology [DRGfi 10-1 4 OP]
Data protection procedures should be specified along with the information system's
development specifications. j-o^m»

.2. Auditing \DBGd 10-2/A/OP]

A record of all controlled software development operations should be logged and
stored by the software development department in a nrotccted repository

' Mediation /DBG610-3/A/OPJ '

All controlled development operations should be automatically mediated by the
software development department with respect to an explicit mandatory and
discretionary security regulations.

4. Trusted Path [DBG610-4/A OP]

An cxphct mechanism should be included in the development department to ensure
hat all controlled software development operations cannot be imitated or intercepted

by unauthorised means. f

5. Identification - Authentication [DBG610-5/A 'OP]

No developer should initiate or participate in any development operation unless they
have first been identified and authenticated by the software development department
responsible person.

6. Configuration Management [DBG610-6/A/OP]
All software resulting from controlled software development activity should be stored
in a protected repository that maintains and controls all software versions, software
modification requests, software changes, and related information such as modification
request initiators and change responsibility.

7. En vironment Integrity [DBG610- 7/A/OP]
An explicit procedure should be available for identifying changes in all the
environment and tool-related software and, if required, to restore the integrity
associated with that software.

8. Trusted Distribution [DBG610-8/A/OP]
All software should be delivered to the departments of the establishment in a manner
that ensures that the integrity has not been compromised.

9. Intrusion Detection [DBG610-9 'A C*:
\udit records should be used ro pod'orm periodic and random intrusion detection
analysis on the software development department.

10. Administration [DBG610-10 A/OP]
The software development department, as well as the tool software and the developed
application code should be maintained according to explicit administrative
documentation by experienced administrators.

/ /. Environment and Tools [DBG610-11/A/TLS]
All tool software should be selected according to an explicit selection policy that
considers the maturity and development course of the software.

12. Least Privilege [DBG610-12/A/OP]
Privileges to perform controlled software development operations should be allocated
and maintained so that a privilege is only given to establishment personnel
individuals who require that privilege.

13. Multi-person Control [DBG610-13/A/OP]
Controlled development operations should be completed with the active endorsement
and involvement of more than one experienced software developers.

14. Security Policy [DBG610-14/A/OP]
All controlled software development operations should be performed in accordance
with an explicitly defined and enforced security policy.

15. Shared Knowledge [DBG610-15''A/OP]
At least two experienced individuals should be thoroughly familiar with all aspects of
the requirements and design.

16. Software Reuse [DBG610-16 A CRU]
Any software reused during development should be selected according to an explicit
reuse policy that takes into account maturity and facilitates for building object code
from reused source.

/ 7. Planning [DBG610-17/A/OP]
The characteristics of all development activities should be described in a Development
Plan (DP) and the management of the software development should follow the
approach described in this SDP.

18. Risk Mitigation [DBG610-18/A/OP]
All potential risks associated with the development approach should be explicitly
identified and a risk mitigation strategy should be documented and complied with
throughout the software development life cycle.

7.20 DATABASE DEVELOPMENT - 2
The set of the proposed security guidelines for each specific phase of the design and
implementation of databases is the following:

i. Preliminary analysis phase:
/. Risk analysis [DBG620-1 -1/PRE/MET]

RISK analysis ot the target system should be performed prior to anv database
development steps. Rise analysis should include assets identification, identification of
vulnerabilities of assets, estimation of the likelihood of exploitation estimation of
expected costs, survey of new controls, savings estimation etc.

ii Database system requirements analysis phase:
/. Requirements Analysis Tools [DBG620-2-1/REQ/TLS]

Automated requirements analysis tools should be employed in order to provide
requirements specification, consistency checking, and documentation generation

<=.. Requirements Analysis Review [DBG620-2-2/REQ/R VWJ
Requirements analysis activities should be performed by multiple experienced
development personnel, at least one of whom is not directly involved in requirements
analysis

3. Requirements Analysis Documentation [DBG620-2-3/REQ/DOC]
The characteristics of the requirements analysis process employed and a rationale for
all requirements, should be documented

4 Formal Requirements Specifications /DBG620-2-4/REQ/FRM]
Requirements should be specified in a forma! specification framework

.r Requirements Traceability /DBG620-2-4REQ TRCj
All requirements should be directly traceable to an explicit user source.

iii. Prototyping phase:
/. Prototyping Approach [DBG620-3-t'PRO/MET]

Prototyping should be performed according to an explicitly defined prototype plan that
describes the manner in which the prototype is designed, developed tested
documented, and protected.

2. Prototype Code Reuse [DBG620-3-2 PRO'CRJj]
If prototype code is reused in the developed code, then the prototyping approach
should be taken into account m the measurement of software trust.

iv Database system design specification phase (includes conceptual, logical and
physical design):
/. Design Tools [DBG620-4-I DES/TLSf

Design tools should be employed to maintain design requirements traceability
mappings and to generate design documentation.

2. Design Review[DBG620-4-2 DES'RVW]
All design decisions should be reviewed by multiple experienced software
development personnel, at least one of whom is not directly involved in the design

v Design Documentation [DRG620-4-3 DES-'DOC/ '
The characteristics of the design process, design alternatives considered, and design
rationales should be documented

4 Forma! Specification [DBG620-4-4 DES FRMj
The design should be specified in a formal specification framework

.•> Design Iraccability [DBG620-4-5 DES TRC I
All aspects of the design should be demonstrated in all design documentation to be
traceable to an explicit set of requirements.

v. Coding phase:
/ Coding Standards [DBG620-5-1 COD STDj

An explicitly defined coding standard that enforces modular, structured programming
should be complied with throughout the coding activity

2. Code Analysis Tools [DBG620-5-2 COD Tis)
All developed code should be subjected to code analysis using tools that measure
complexity, style, and potential programming violations

3. Code Review[DBG620-5-3 COD'RVW]
All code should be reviewed by multiple experienced software development personnel
at least one of whom is not directly involved in coding.

4. Code Documentation [DBG620-5-4/COD/DOC]
The characteristics of the coding process, the module organisation, criteria used for
module decomposition, and source code comments, should be documented

5. Code Traceability [DBG620-5-5/COD/TRC]
All code should be shown in the source code documentation to be directly traceable to
an aspect of the design and to a set of requirements.

vi. Database system testing phase:
/. Test Strategies [DBG620-6-1/TES/MET]

All test and integration tasks should include provision for security, functional,
penetration, regression, and random testing.

2. Test Responsibility [DBG620-6-2/TES/RES]
The responsibility for testing should be placed with an independent body, not directly
involved with coding or design.

3. Reliability Measurement [DBG620-6-3/TES/REL]
Test results should be used to reduce observed software flaw densities to an acceptable
level.

4. Testing Tools [DBG620-6-4/TES/TLS]
The software development department should include an automated testbed for
creating, executing, documenting, and analysing the completeness of all tests

5. Test Review [DBG620-6-5/TES/R VW]
All tests should be reviewed by multiple experienced software development personnel,
at least one of whom is not directly involved in testing.

6. Test Documentation [DBG620-6-6/TES/DOC]
The characteristics of the test process should be documented.

7 Test Traceability [DBG620-6-7/TES/TRC]
All tests should be shown in the test documentation to be directly traceable to explicit
aspects of the code, design, and requirements.

vii. Database system verification phase:
/. Design Verification [DBG620-7-1/VER-'FRM]

A formal verification should be performed to prove that the formal design
specification correctly meets its requirements.

2. Code Verification [DBG620-7-2/VER/FRM]
A formal verification should be performed to prove that a low-level formal
specification of the code correctly meets its requirements.

3. Verification Responsibility [DBG620-7-3/VER/RES]
The responsibility for verification should not be placed with the organisation
responsible for testing.

4. Verification Tools [DBG620-7-4/VER/TLS]
Design and code verifications should be performed with the assistance of an
automated verification environment.

.\ V eritication Review [DBG620- 7-5/VER/R VW]
All verification results should be reviewed by multiple experienced software
development personnel, at least one of whom is not directly involved in verification.

6. Verification Documentation [DBG620-7-6/VER/RVW]
The design and code verification processes employed and all assumptions required to
interpret the verification results should be documented explicitly.

7. Verification Condition Traceability [DBG620-7-7 VER/TRC]
All verification conditions should be shown in the verification documentation to be
traceable to explicit aspects of the requirements, design and code.

7.30 CONTROL OF DATABASE SOFTWARE
i. General precautions
1. Demarcation [DBG630-1-1/GPR/MET]

A strict demarcation must be maintained between the operational versions of
database software and programs and their test equivalent. These should be kept in

,opanU: libraries The operational libraries must exist m both source and object
torni. The operational form library should be used for the live operations and be
called up as necessary by the users for on-line or batch operations. The operational
sourc- library should exist only as a means of support for the object library
Database programmers and other development staff should never normally access
ine operational library.

2 New systems [DBG630-1-2/GPR'MFTl

New systems and changes to live programs will be lodged on the test source library
iPBiifi.m !-!). Only when the tests on the new version arc completed, will it be
"nnsterrcd bom the test to the operational libraries. This must aiwavs be done

through a formal procedure
■■ Operational versions [DBG6-0 i -3TP?FCMFTj

A ropy of the operational -ersion of the source code of each operational database
pro-am should be kept until any new version has been established as working
correct Iv b

4 Hack up jnB<reoü-l-4/GPR MHTj
Back up of database software is as important as the back up of the database data.
< opies of database software should include both operational and test libraries

: (hange log j DB(.630-1 -5/GPR MF f1
\ lot, should be kept of all changes to die operational software libraries. Dsuallv this
■■■ill consist of ail the formal authorities to transfer, kept in a file. Sufficient details
ot \\hv imv changes were made and the dale of transfer should be recorded.

ii Software development
I. MB software specifications |i")BG630 .: | SDYT'RM]

All database software written m-house should be written from a full specification.
When the specification is first drawn up it should be agreed by the database users
concerned, or their representative, and signed as correct. If there is any financial
impact, the database auditor should also agree the specification and add any controls
thai arc necessary from the audit point of view Checks should be made during
development on compliance with the full specification and the establishment's
secuntv policy.

2 l')B software testing [DBG630-2-2/SI)V;MFT|
All database software written m-house should he thoroughly tested. The testing may
con.Mst of several phases. For example: the programmer testing that the software
docs what is expected, the database analw.t testing that the performance matches his
own expectations, die supervision by another programming specialist to ensure that
all paths in the software have been tested, the checking of the results by the end
'"■■••■- the checking of the results In the database auditor (if anything financial is

1 iui i. etc
! OB software maintenance |DBGo3o-'•• s SDY MFTj

Vs much care should be taken o\ e; maintenance of database software as for its
d, volopmcnt I he same standards ot testing, checking, documentation and sign-off
should applv io maintenance as to pure development
from ihc strum; point of vie», we may be mink oi three classes of maintenance,
•■mth ilm corresponding security guidelines: corrective, adaptive and cnehaneing'
<- ..rrective maintenance is required when the software is found to be not in keeping
with the specification or the real needs ot the database users, or when an error has
been discovered. Adaptive maintenance is required when database software needs to
be adapted for changed circumstances while basically performing the same function.
1'inally. enhancing maintenance is required when new uses or better services are
desued and the database software is adopted to provide them.

4. Corrective maintenance [DBG630-2-4/SDV/STD|
It is important that corrective maintenance takes place and errors arc corrected as
soon as possible. There is no need for end users or the database auditor to be
involved, as the maintenance is only required to provide what should have been
there in the first place. However, throughout testing is required and the results

should be tested by someone else other than the programmer changing the software.
A log must be kept of the change and the data and time that it was effective in case
of errors discovered later.

5. Adaptive and enchancing maintenance [DBG630-2-5/SDV/STD]
When maintenance is required for those reasons, more formal procedures should be
followed. For example, the originator of the maintenance (e.g. the database user)
should be required to complete an amendment request, which must be agreed by the
database auditor.

6. Copies [DBG630-2-6/SDV/MET]
Measures must be taken so that where multiple copies of database software are in
use, they remain consistent. End users should only be permitted to maintain their
own applications software after specific agreement with the database administrator,
and only if they hold the single instance of this software and they are able to take
responsibility for any changes.

7.40 DATABASE ORGANISATION AND OPERATION
i. Database organisational and administration guidelines
1. Scope [DBG640-1-1/ORG/OP]

Database system security considerations should take into account all system software
and hardware that touches information flowing into, and out of, the database.
Example: an easily penetrated operating system would render a superbly protected
database management system useless.

2. Database security policy [DBG640-1-2/ORG/MET]
A well defined database security policy should be established before the database
goes to operation. The database security policy should provide adequate guidance on
issues like: database security policy administration, database security policy
specification, database access control specification, database information flow control,
enforcement of control, etc..

3. Database administration [DBG640-1-3/ORG/OP]
The position of a database administrator should be filled prior to the implementation
of the database. Appropriate decisions on his selection criteria, duties and
responsibilities should be taken in the early stages of database development.

4. Access control [DBG640-1-4/ORG/OPJ
A detailed access control policy should be specified, so that database users are allowed
to access only authorised data and so that different users can be restricted to different
modes of access. The database access policy should include: database access control
administration, database access control specification, database access control
enforcement, etc..

5. Integrity [DBG640-1-5/ORG/OP]
Data integrity is a key requirement. The integrity of the database should be maintained
so that the database data arc immune to physical problems, the structure of the
database is preserved and the data contained in each clement is accurate. The user
must be able to trust the system to give back the same data that is put in the system
and to permit data to be modified only by authorised users. At the very least, the user
should know if the data was corrupted.

6. Confidentiality [DBG640-1-6/ORG/OP]
The database system should provide an adequate level of confidentiality/secrecy
(prevent unauthorised disclosure) and yet preserve availability and integrity by using
appropriate controls (e.g. referential integrity).

7. Availability [DBG640-1-7/ORG/OP]
Database users should be able to access all the database data for which they are
authorised. This implies system fault tolerance and redundancy in data, software and
hardware. Inference and aggregation must be studied and controlled. A specific
availability policy should be developed which will deal with problems like arbitrating
two users' requests for the same data item, withholding some non-protected data in
order to avoid revealing protected data, etc..

8. People [DBG640-1-8/ORG/OP]

12

Pc'.spK; :<rc crucial in security. Trusted individuals, such as operators and programmers,
mus! be carefully selected because of their potential ability to affect the computer
(database) system and all computer users. Well defined procedures and rules for
employee selection must be developed and used.

9 Education and awareness [DBG640-1-9ORG/OPJ
suitable (raining programs and seminars must be planned for all types of database
users Education and awareness programs must take place on a periodical basis. There
should be different such programs for every major type of users (e.g. , technical,
administration users, etc.).

a Database; operational guidelines
i ' Ac .infhentu.aiion [DBG640-,:-1 ()P?Ti OP!

I'!;- HBMS shr.nid be designed !o pevforrn i's own authentication at the required level.
!i' addition m the authentication ped'ormed by the operating system Specific
■mÜienticatHm procedures should be implemented according to the specific needs and
security requirements of the particular establishment.

' Aaduability |nBCi640-2-2/'OPF;R/()Pi
Appropriate audit procedures should be developed so thai it will be possible to track
mamhonsed accesses or modifications of tae elements of the database. Audit should

he detailed enough to be useful and sufficient enough so as not to sc\erely burden the
•vstem performance.

-■ inference conlrol JDBG640 23 OPFR'OPj
\n inference prevention policv should be soccificd. This should include issues like:
database inference prevention administration, database inference prevention
specification database inference prevention control, etc.

4 Database recovery [DBG640-2-4 OPFR 'OPj

A detailed database recovery policv should be specified. This policy should define:
database recovery prevention procedures, database recovery administration, database
recovery specification, database recovery control, etc..

8. REFERENCES
! I um ! . Necuntv in database systems. Computers and security journal. Vol 7,No. 1.

2. Biskup .1 . Medical database security, in data protection and confidentiality in health
informatics. EEC DGXII cd..K)S press. 1991.
5 1 andwehr C . ed Database security 11: Status and prospects, North-Holland. 1989.
t Snooner !)., Eandwchr C, eds.. Database security [II, North-Holland. 1990.

Proceedings 1 SORICS (European Symposium, on Research in Computer Security)
I'oiilouse. France, 1990.

'j ■i:i.l<H.li;1- S l-<'"dwehrC, eds.. Database seciintv IV. North-Holland, 1991.
EEC DGXII. ed . Data protection and confidentiality m health informatics, (OS press.

S Biscnp .1 . Analysis of the prnacv model tor the information system DORIS, in (3).
'"[_ ('""lataii A Data protection issues in database management and expert systems, in

in (amnbell .1. \ research and development program for trusted distribute DBMSs in
Database security IV. Jaodia (cd). North Holland. |09|
1 ! DoD. Department of Defence Trusted computer system evaluation criteria DoD
5200.28-STD. 1985

E2 National Computer Security Centre. Draft trusted DBMS interpretation of the DoD
trusted computer system evaluation criteria. ESA, 1989
13. National Computer Security Centre. Trusted network interpretation of the trusted
computer system evaluation criteria. NCSC-TG-005. USA. 1987.
14. Information Technology Evaluation Criteria (ITSEC), Version 1 2 FEC Document
Brussels. June 1991.
15 Information Technology Security Evaluation Manual (ITSEM), Draft V0 2 EEC
Draft Document. April 1992.

16. Landwehr C. E., Minutes of IFIP-TC11 1986 meeting, Montecarlo, December 1986.
17. Stonabrakcr M.. The design and implementation of INGRES, ACM TODS Vol 1
No. 3, 1976.
IX Zloof M.. Query by example: a database language, IBM systems Journal, Vol 16
No 4, 1Q77
19. Astrahan M., System R: Relational approach to database management, ACM TODS
Vol. l,No. 2, June 1976.
20. McGce W„ The information Management System IMS/VS. Part V: Transaction
processing facilities, IBM systems journal, Vol. 16, No. 2. 1977.
21 Landwehr C, The best available technologies for computer security, IEEE Computer
Vol. 16, No. 7, 1983.
22 4CF2 The access control facility - General information manual, 1983.
23 Secure product description. Bull and Babbagc publ., 1979.
24 Duffy K and Sullivan .!., Integrity lock prototype, in the Proceedings 4th IFIP
international security conference, Montecarlo, 1986.
2? Cerni.ulia C and Millen .!., Computer security models, MTR project, Report No
05 31, JQ84.
26 Landwehr ('., Formal models for computer security, ACM computer surveys Vol 13
No T 1981.
27 Griffiths P and Wade B., An authorisation mechanism for a relational database
system. ACM TODS, Vol. 1, No 3, 1976.
28 Fagin R... On an authorisation mechanism, ACN TODS, Vol. 3, No. 3, 1976.
29 Fugini M.. Secure database development methodologies, in (3)
30 Dwvcr P.. Multilevel security in database management systems, Computers and
security. Vol. 6. No. 3, 1987.
31. Akl S., Views for multilevel database database security, IEEE Trans, on S/W Eng
Vol. 13, No. 2. 1987.
32. Hartson H., Database security - system architectures, Information systems, Vol 6
N0.1, 1981.
33 Lcvcson J„ Safety analysis using Pctri nets, IEEE Trans, on S/W Eng., Vol. 13 No
3, 1987.
34. Bussolati I.'., A database approach to modelling and managing of security
information. Proc 7th Int. Conf. on VLDB, Cannes, 1981.
35 Bussolati I.J., Data security management in distributed databases, Information
systems. Vol. 7. No. 3, 1982.
36 Date C. An introduction to database systems. Vol. 2, second ed., Addison-Wesley
1986.
37 Ting L. Application information security semantics: A case of mental health
delivery, in (4).
3S Hinke T-. DBMS trusted computing base taxonomy, in (4).
39 Graubart R., A comparison of three secure DBMS architectures, in (4).
40 Hosmcr H., Designing multilevel secure distributed databases, in (3).
4L Pangalos G.. Security in medical database systems, EEC, SEISMED project report
No. INT S3 92. 1992.
42. TV. Marcl. A.B. Bakkcr, User acccssrights in an intcrgrated hospital information
system. IFIP-IMIA. North-Holland, 1988.
43 .1. BisKup. A general framework for database security, Proc. EROSICS, Toulouse
France. 1990. pp. 35-41.
44 .1. Biskup. Medical database security. Proc. GI-20, Jahrestagung II, Stutgart, October
1990, Springer-Verlag, 1990, pp. 212-221.
45 T.C Ting, S.A. Demurjian, M.Y. Hu, A specification methodology for user-role
based security in an object-oriented design model, Proc. 6th IFIP WG11.3 on database
security. 1993.
46. C. Pflccger, Security in computing, Prentice hall, 1991.
47 S. Katsikas, D. Gritzalis, High level security policies, SEISMED report, June 1993.
48. S. Oliver, S., Building a secure database using self-protecting objects, computer
security journal, vol. 11, no. 3, pp. 259-71.

14

4v (.nivalis. D. Katsikas, S. Pangalos (,., Design of medical information systems
Proceedings: MII-,'93 conference. Israel, 1993.
50. I.unt T.. Research directions in database systems, Springer-Verlag, 1992.

ACKNOWI EDGEMENT
i would like to thank Mr. John McDermont for his interest and constructive comments.

Verzeichnis der Hildesheimer Informatik-Berichte

1/94 K Diethelm:
Modified Interpolatory Quadrature Rules for Cauchy Principal Value Integrals
(Januar 1994)

2/94 S. Enrich:
On the Error of Extended Gaussian Quadrature Formulae for Functions of
Bounded Variation
(Januar 1994)

V94 S. Ehnch:
Asymptotic Behaviour of Stieltjes Polynomials for Ultraspherical Weight Functions
F-h-uarl994)

4/94 K. I Förster
On the Weights of Positive Quadrature Formulas for Ultraspherical Weight
Functions
(April 1994)

5/94 K J Förster
Inequality. !..■•, au: Weights of Positive Quadrature Formulas for the Legendre
Weight FI^-.M.T.
(Apri; I•■->'■'■--)

6A>4 Institut uir Mathematik:
Vorträge auf der Jahrestagung der GAMM vom 4.4. - 8.4.1994 in Braunschweig
(April 1994) h

7/94 K.-J. Förster, P. Köhler, G. Nikolov:
Monotonicity and Stopping Rules for Compound Gauss-Type Quadrature Formulae
(April 1994)

8/94 U. Gehrmann:
Eine Methode für Entwurf und Spezifikation von Protokollkonvertern
(April 1994)

9/94 K. Diethelm:
A Definiteness Criterion for Linear Functionals and its Application to Cauchy
Principal Value Quadrature
(April 1994)

10/94 I Biskup, G Bleumer:
Reflections on the Security of Datahase and Datalransfer Systems in Health Care;
J. Biskup:
Impacts of Creating, Implementing and Using Formal Languages
(April 1994)

11/94 B. Pfitzmann, M. Waidner:
A General Framework for Formal Notions of "Secure" Systems
(April 1994)

12/94 M. Hagström:
Error Tolerant Retrieval in Large Text Files
(Mai 1994)

'. : .iisj r>;Ha Compression for (be kepresr;i:ai;.>i> -4 Sparse!\ Coded
Associative^ Memore
(Mai 1994)

i4/94 F j Bentz, Jürgen Braun:
Über die Werte von Zeta(2n+ S ■
(Mai 1994)

' V94 U I Bentz Jürgen Braun:
Sp;-;w Strange Series Involving p-
(Mai l'>'-*4-

\<-"H B Pfit/.mann.
Fail Slop Si «natures Withoul Tree,
ofuni i994i"

;";''4 j Rrskup R Menzel, T. Poll.
Iransiorrmng an Fnüty-Relao>!useo- S. homa -no* »hiee!-Oriented
Daiuhaee Sehema1

t.lnni 1()94;

AC>4 H K.i.ieU;.. *\ Ko onko, S. -v.
Fpsstaso; \arun. e io Genetic A C.-nCno.
ifuh iW4 =

i^'94 K. Diethelm.
Asymptotical'} Shan p Error Beam, \s ios ., (J^ukmirc Rule lor Cauchy
Principal Valne Integrals Based or- Pkvewise i anear Interpolation
(Juli i994^

'*'-"»4 }. Bi.skup. M. Morgenstern, (Landwehr i! dsterst
Po'.o rimgs (hhclUPWG i < Oighih Anjuiii! W.-.rkina < onlerence on
Daiabao Seenriiv
: he; HHU

