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Preface 

Dear Members of the Information Fusion Community: 

It is a pleasure to report to you that the Information Fusion community continues to mature 
and grow, a positive reflection on all members and especially on that subgroup of the community 
that persists in supporting its maturation process. Thanks are due to Dongping Daniel Zhu and X. 
Rong Li, Belur Dasarathy, and the members of the Transitional Board of the International Society 
of Information Fusion (ISIF), for the attention paid to and energy expended on the wide variety of 
tasks and issues involved with trying to get the ISIF established. Tasks of this sort are 'yet 
another thing to do' for those involved but these noble, collective efforts and their results and 
consequences are what give identity and substance to a community. Slowly but persistently, this 
community is filling in the "Infrastructure gaps" it has suffered from for some time--we hope soon 
to have a Society, an International Journal, and an Information Analysis Center; we already have 
one University Research Center, which could be expanded to a Consortium framework. 

The ISIF is a particularly welcome and needed infrastructure initiative in our community, but it 
will only be as good as the collective efforts of its membership. Being a member of any Society 
results in both an opportunity and an obligation; opportunity for collegiality in its füllest sense, 
and obligation to contribute in its fullest sense. Being among the oldest in this community, I can 
tell you that I have always been proud to label myself as a member of the "fusion" community 
since it is a distinctive, extraordinarily interesting field of specialization, and one with great 
promise. We welcome and encourage you to become "official" members via the ISIF, about 
which we will all have considerable discussion at FUSION'99 - give us your thoughts about what 
ISIF should be, and give us your membership; see http://www.inforfusion.ore for more 
information. 

In recent visits I have had the opportunity to interact with and learn from Information Fusion 
researchers in Australia, in Spain, and in Norway, and last year I was involved in a technology 
planning task in Sweden. In all cases I was impressed with both the nature of the work and the 
talented people involved in it. I think I can say without reservation that all of the people involved 
in these IF efforts, as well as the cognizant organizational leaders and managers are anxious for 
interaction, and technology and knowledge-sharing, and for a forum to periodically share ideas. 
Inspired by this, I have motivated a session on "International Collaboration in IF" for this year's 
conference which I hope will be a standing session for future conferences, and which I hope will 
be one focused forum in which people can both understand what options for collaboration may 
exist and also to act on them. Of course the "FUSION'XX" conferences serve this purpose in the 
large, but offering some details on the underlying mechanics regarding programs and activities 
specifically tailored to international collaboration won't hurt. 

Welcome to FUSION'99 

Jim Llinas 
President, International Society of Information Fusion 
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Foreword 
Across Las Vegas desert land, Heat waves shimmering from the sand. 
A fusion caravan comes into view,     Destination - Timbuktu. 

If Shakespeare is correct that "What's past is prologue," then FUSION'98 should be an good 
introduction that brings us together again at FUSION'99 in the Silicon Valley, exactly one year later. 
Clearly, data fusion follows from idea fusion and people fusion 

It gives us great pleasure to introduce this collection of papers presented at the Second International 
Conference on Information Fusion (FUSION'99), organized by the International Society of Information 
Fusion (http://www.inforfusion.org) on July 6 through July 8, 1999, at Sunnyvale Hilton Inn, California, 
USA. These papers reflect the state-of-the-art of sensor, data and information fusion, and cover 
architecture, algorithms and applications in many fields, ranging from target tracking and recognition to 
diagnostic information fusion and image fusion to biomedical and management information fusion. 

Many factors have contributed to FUSION'99. First of all, we'd like to thank the conference sponsors, 
without their support this conference would not have been possible. These sponsors are NASA Ames 
Research Center*, US Army Research Office*, IEEE Signal Processing Society, IEEE Control Systems 
Society, and IEEE Aerospace and Electronic Systems Society. 

We are fortunate to have many renowned people to provide vision and leadership to the conference. 
We are especially grateful to Dr. Yaakov Bar-Shalom of University of Connecticut who serves as 
Honorary Chairman, Franklin White of Navy SPAWAR as Steering Committee Chairman, Dr. Kenneth 
Ford of NASA as Advisory Committee Chairman, Mark Bedworth of DERA, UK and Dr. X. Rong Li of 
University of New Orleans as General Vice Chairmen, and Dr. Pramod Varshney of Syracuse University 
as Technical Program Chairman. We gratefully acknowledge Dr. Bill Sanders of Army Research Office 
for his continued inspiration and support. 

We are very grateful to the many colleagues who are experts in the field and have greatly helped 
organize the conference. In particular, the General Chairman would like to thank all members on the 
Technical Program Committee, led by Dr. Pramod Varshney and Dr. Peter Willett, for their efforts in 
assembling a collection of quality papers, and Dr. Robert Levinson for his tireless effort in printing and 
publishing the Proceedings. We like to acknowledge other Executive Committee members: Dr. Chee-yee 
Chong for managing logistics and finance, Captain Erick Blasch for leading a successful sponsors 
program, Dr. Belur Dasarathy for publicizing the conference to a wide audience, and Dr. Fa-long Luo for 
local arrangements. Last but not the least, Society board directors and liaisons, session chairs, authors, 
and many others have offered valuable assistance. They all helped make the conference a success. 

We also like to thank the following persons: Deborah Jean Gamble-Ly of Creation, Janny Wu, and 
Mike Lee of ComStar for administrative assistance, Maylene Duenas and her staff at NASA for technical 
support, Bob Hamm of OmniPress for publication, and the staff at Zaptron Systems for web site support. 

With the success of FUSION'99, we can expect even greater successes at FUSION'2000 in the new 
millennium. In the words of Sir Winston Churchill: "This is not the end, it is not even the beginning of the 
end, but it is perhaps the end of the beginning." 

Dongping Daniel Zhu, General Chairman 
Zaptron Systems, Inc. 
Robert Levinson, Publication Chair 
University of California-Santa Cruz 

* The views, opinions, and/or findings contained in this proceedings are those of the authors and should not be construed as an 
official US government or its agency's position, policy, or decision, unless so designated by other documentation. 



Technical Program Chair's Message 

I am delighted to welcome you to FUSION'99. We have assembled an excellent technical 
program consisting of 29 contributed and invited sessions. The conference attracted about 
210 submissions from 22 countries. Each submission was reviewed by the technical program 
committee and only worthy papers were included in the final program. I was extremely 
pleased with the large number of submissions and their high quality. In addition to the 
technical sessions, we feature three plenary talks and a luncheon talk by R. Luo (Taiwan), 
K. Ford (USA), G. Shaw(USA) and F. White(USA). All of these speakers are widely known 
and have significant experience in their areas of expertise. 

It is a pleasure to acknowledge the tireless effort of Peter Willett, the Technical Program 
Vice Chair. He reviewed each and every submission and was instrumental in putting the 
sessions together. I would like to thank the members of the Technical Program Committee 
for their assistance with reviewing: M. Alford (USA), B. Dasarathy (USA), D. McMichael 
(Australia), J. O'Brien (UK), E. Shahbazian (Canada), and P. Svensson (Sweden). 

The efforts of the following persons in organizing invited sessions are greatly appreciated: 
C. Anken, E. Blasch, R. Blum, 0. Drummond, K. Goebel, M. Kokar, M. Larkin, R. Liuzzi, 
J. Llinas, G. Rogova, S. Shah, A. Stoica, and D. Zhu. 

This is the second year for this conference and we have made great strides in this short 
period. I am confident that the conference will continue to grow both in terms of size and 
quality. Thank you all for making this conference a success. 

Pramod E. Varshney 
Technical Program Chair 
Professor 
Syracuse University 
NY, USA 
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1    Plenary Speech I: "Multisensor Fusion and Integration Issues, 
Approaches and Opportunities" 

Dr. Ren C Luo, Professor and Dean College of Engineering National Chung Cheng University, Taiwan and 
General Chair of MFP99 - IEEE International Conference on Multisenor Fusion and Integration for 

Intelligent Systems 

1.1 ABSTRACT 
Interest has been growing in the use of multiple sensors to increase the capability of intelligent systems. In 
this presentation, the issues, approaches in dealing with multisensor fusion and integration (MFI) will be 
discussed. The applications and potential opportunities for the implementation of MFI will also be included. 
The issues involved in integrating multiple sensors into the operation of a system are presented in the context 
of the type of information these sensors can uniquely provide. The advantages gained through the synergistic 
use of multisensory information can be decomposed into a combination of four fundamental aspects: the 
redundancy, complementarily, timeliness, and cost of the information can then denned as the degree to which 
each of these four aspects is present in the information provided by the sensors. 

In general, sensory fusion can be accomplished at different levels: data fusion, feature fusion and decision 
fusion° More'commonly known is data fusion level, Example of this type of fusion are fusion of multiple 
ultrasonic data, and fusion of images from different imaging sensors. In feature fusion level, features are 
extracted from the raw measurements that are then combined in a quantitative or qualitative manner. For 
example, feature fusion can be used to fuse information from imaging and a non-imaging sensor. Decision 
fusion level can be employed when the sensors available are not compatible or be applicable to many pattern 
recognition problems. 

Typical of the applications that can benefit from the use of multiple sensors are industrial tasks like 
assembly, military command and control for battlefield management, mobile robot navigation, multitarget 
tracking, and aircraft navigation. Common among all of these applications is the requirement that the 
systems intelligently interact with and operate in an unstructured environment without the complete control 
of a human operator. Advances in hardware, software and algorithm have made it possible to employ multiple 
data sources for information gathering and to develop more complex multisensor fusion and integration 
system. An example of applying MFI system in an automations mobile robot/intelligent wheelchair system 
with video demonstration will also be presented. 

1.2 Short Biographical Sketch 
Ren C. Luo (IEEE M'82 - SM'87 - F'92), is currently a Professor and Dean of College of Engineering 
at National Chung Cheng University, he also served as Director of Automation Technologies Program at 
National Science Council and Advisor of Ministry of Economics Affairs in Taiwan, R.O.C. He was a Professor 
in the Department of Electrical and Computer Engineering and the Director of the Center for Robotics and 
Intelligent Machines at North Carolina State University in Raleigh, North Carolina, USA. He received his 
Ph.D degrees from Technische Universitaet Berlin, Berlin, Germany in 1982. 

iFrom 1983 to 1984, he was an Assistant Professor in the Department of Electrical Engineering and 
Computer Science at the University of Illinois at Chicago. From 1984 to 1990, he was Assistant, Associate 
Professor and became Professor since 1991 in the Department of Electrical Computer Engineering at North 
Carolina State University, Raleigh, NC. From 1992 to 1993, he was Toshiba Chair Professor at University of 
Tokyo, Japan. . 

Dr. Luo's research interests include: sensor-based intelligent robotics systems, multisensor fusion and 
integration, computer vision, rapid prototyping and advanced manufacturing systems. Dr. Luo has published 
over 170 technical journals, proceedings, and patents in the above-mentioned areas. He authored a book, 
Multisensor Fusion and Integration (Ablex, 1995); and was editor of the book, Robotics and Vision (IEEE, 
1988). Dr. Luo was also guest editors for the Journal of Robotics Systems (John Wiley and Sons. Vol. 7, 3, 
1990), IEEE Transactions on Industrial Electronics in special issues on the topics of multisensor fusion and 
integration for intelligent machines, and editor of IEEE/ASME Transactions on Mechatronics. 
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2    Plenary Speech II: "AI and Space Exploration" 

Dr. Kenneth M. Ford Associate Center Director for Information Technology and Director of NASA's 
Center of Excellence in Information Technology, NASA Ames Research Center, Moffet Field, CA, USA 

2.1 ABSTRACT 

Humans are quintessential^ explorers and makers of things. These traits, which identify us as a species and 
account for our survival, are reflected with particular clarity in the mission and methods of space exploration. 
The romance associated with the Apollo project is being replaced with a different vision, one where we make 
tools to do our exploring for us. We are building computational machines that will carry our curiosity and 
intelligence with them as they extend the human exploration of the universe. 

In order to succeed in places where humans could not possibly survive, these "remote agents" must 
take something of us with them. They must be self-reliant, smart, adaptable and curious. Our mechanical 
explorers cannot be merely passive observers or puppets dancing on tenuous radio tethers from earth. They 
simply will not have time to ask us what to do: the twin constraints of distance and light-speed would render 
them helpless while waiting for our instructions, even if we knew what to tell them. AI plays a central role 
in space exploration because there is, literally, no other way to make it work. Our bodies cannot fly in the 
tenuous Martian atmosphere, endure Jupiter's gravity or the electromagnetic turbulence of Saturn's rings; 
but our machines can, and we will send them there. Once at distant worlds, however, they must deal with 
the details themselves. The only thing we can do is to make them smart enough to cope with the tactics of 
survival. 

How clever will these agents of human exploration need to be? Certainly, cleverer then we can currently 
make them. It will not be enough to be situated and autonomous: they will need to be intelligent and 
inquisitive and thoughtful and quick. NASA is committed to integrating intelligent systems into the very 
center of our long-range strategy to explore the universe. 

In this talk, I will describe the current and future research directions of NASA's expanding information 
technology effort with a particular emphasis on intelligent systems. 

2.2 Short Biographical Sketch 

Kenneth M. Ford is the Associate Center Director for Information Technology at NASA Ames Research 
Center and Director of NASA's Center of Excellence for Information Technology. In these roles, Dr. Ford 
has had the honor and responsibility of helping shape NASA's IT research effort (about 200M dollars effort 
at Ames, but much larger Agency wide). The Ames Research Center has about 5,000 employees, of which 
about a third work in IT and 700 have Ph.D degrees. 

Additionally, Dr. Ford is the Director and Founder of the Institute for the Interdisciplinary Study of 
Human and Machine Cognition (IHMC) at the University of West Florida - a multidisciplinary research unit 
of the State University System. Since its founding in 1990, IHMC has rapidly grown into a well-respected 
research institute investigating a broad range of topics related to understanding cognition in both humans 
and machines with a particular emphasis on building cognitive prostheses to leverage and amplify human 
intellectual capacities. While at the University of West Florida Professor Ford received national and local 
recognition for teaching excellence and in 1997 he was awarded the University's highest research distinction, 
the Research and Creative Activities Award. Dr. Ford has been on a leave absence from the University to 
NASA for the last two years. 

Dr. Ford entered computer science and artificial intelligence through the back door of philosophy. After 
studying epistemology as an undergraduate, he joined the Navy and wound up fixing computers among 
other things. When his Navy stint ended, he earned his doctoral degree in computer science from Tulane 
University in 1988. His research interests, among others, include: artificial intelligence, knowledge-based 
performance support systems, computer-mediated learning, and internet-based applications. Dr. Ford is the 
author of well over 100 scientific papers and the author/editor of five books. 

Dr. Ford is the Editor-in-Chief of AAAI/MIT Press, Executive Editor 
of the International Journal of Expert Systems, Associate Editor of the Journal of Experimental and 

Theoretical Artificial Intelligence, and is a Behavioral and Brain Sciences (BBS) Associate. 



3    Plenary Speech III: "Music Enhances Learning: Keeping Mozart 
in Mind" 

Dr. Gordon Shaw Professor Emeritus, Elementary Particle Theory Theoretical Neurobiology Department 
of Physics and Center for the Neurobiology of Learning and Memory University of California - Irvine CA, 

USA 

3.1 ABSTRACT 
Theoretical studies [Leng and Shaw, 1991], the "Mozart effect," based on the trion model [Shaw et al., 1985] 
predicted that music would enhance spatial-temporal reasoning (the ability to mentally image and transform 
patterns in space and time). Recent supporting experiments involving the Mozart Sonata for Two Pianos in 
D Major-K.448 are: behavioral studies showed that listening to it enhanced spatial-temporal reasoning in 
humans [Rauscher et al., 1993, 1995; Johnson et al., 1998] and in rats [Rauscher et al., 1998]; EEG studies 
[Sarnthein et al., 1997] showed that listening to it results in increased coherence lasting several minutes; 
exposure to it reduced pathological activity in comatose epileptic patients [Hughes et al., 1998]. MRI studies 
[Muftuler et al., 1999] showing excitation of cortex relevant to spatial-temporal reasoning. Studies relevant 
to education are: We [Rauscher et al., 1997] showed that preschool children who were given 6 months of 
piano keyboard training improved dramatically on spatial-temporal reasoning. Second grade children (in 
the inner-city 95 St. School in Los Angeles) given 4 months of piano keyboard training as well as training 
on Peterson's math video software scored striking higher [Graziano et al., 1999] on proportional math and 
fractions. Support for the trion model from cortical data [Bodner et al, 1997] show families of firing patterns 
related by symmetries. Implications for education, basic neuroscience, clinical medicine, and technology are 

discussed. 

3.2 Short Biographical Sketch 
Professor Shaw earned his B.S. from Case Institute of Technology in 1954 and his Ph.D. in Theoretical 
Physics from Cornell University in 1959. He had post-doctoral positions at Indiana University and the 
University of California, San Diego, and a teaching position at Stanford University before joining the new 
UCI campus in 1965. In addition to his research in elementary particle theory, he started working on brain 
theory in 1974. He is a member of the UCI Center for the Neurobiology of Learning and Memory. 
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4.    Plenary Speech IV: "International Fusion: Changes and Approaches " 

Franklin E. White, Jr. 
Director, Program Development, Navy SPA WAR Systems Center, 

Code D101, San Diego, CA, USA, Email: whitefe@spawar.navy.mil 

4.1   ABSTRACT 

In the current Information age, the potential for overwhelming availability of data largely without 
meaning has become a reality. Everywhere individuals and organizations are drowning in data and 
information and starved for knowledge and understanding. This is a problem that has become apparent 
worldwide in developed and developing countries. One of the keys to addressing this is data and 
information fusion. Fusion has long been the domain of a relatively small number of practioners in a 
largely classified endeavors within nations. This speech will address the changes in this world view that 
are coming about and discuss the burgeoning exchange of information about fusion on an increasingly 
global basis. It will also suggest some discipline and approaches essential to making fusion tools useful, 
and discuss some of the needed mechanisms and pitfalls as an international community comes together. 

4.2 Short Biographical Sketch 

Franklin E. White Jr. has spent 30 years with Navy as an officer and scientist. He has focused on 
integration and fusion efforts, has worked with Navy's Command, Control and Intelligence systems and 
is Chairman of the Joint Directors of Laboratories, Data Fusion Group. Mr. White has long term 
experience with Top Level architectures, serving on the team that developed the Copernicus Architecture 
and spending two years on detail to the Intelligence Community Management Staff (CMS) where he 
chaired the working group that developed the INTELINK information sharing concept. He has long been 
a supporter of international cooperation serving for 2 years at RAF Brawdy Wales, UK and temporarily 
at many European sites and is active in many international programs. He has spoken at international CIS 
symposia and AFCEA meetings. He is a long time member of AFCEA , SASA, The Naval Institute and 
Naval Intelligence Professionals and is currently the Director of Program Development at SPA WAR 
Systems Center San Diego. 
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Tuesday July 6 

Session TAl Naval Applications 
Chair: Michael Larkin, Naval Undersea Warfare Center 

o 
Information Fusion in Undersea Warfare ; J 

Michael J. Larkin, Naval Undersea Warfare Center, Newport, RI 
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Illumination-Invariant Corner Detection ....  
Xiaoguang Lu and Jie Zhou, Tsinghua University, Beijing, China 

* 
Resolution Enhancement with Nonlinear Gradient Filtering 
Francisco Torrens, Universität de Valencia, Spain 

Session WA2 Fusion Architecture & Management I 
Chair: Alan Steinberg, Environment Research Institute of Michigan 

Pitfalls in Data Fusion (and How to Avoid Them)  429 
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Decision-Making  
David Tuck, Industrial Research Ltd, Auckland, New Zealand, 
Nik Kasabov and Michael Watts, University of Otago, New Zealand 

A Hybrid Artificial Intelligence Architecture for Battlefield Information Fusion 463 
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Newport, RI 02841-1708 

Abstract:  The shift in emphasis in undersea warfare from open ocean to 
shallow water has complicated the objective of threat detection. Detection 
and classification of enemy submarines, torpedoes, and mines is much more 
difficult in the littoral environment, with its adverse acoustical 
characteristics. In an effort to solve his problem, new sensors have been 
developed, both acoustic (active and passive sonar) and non-acoustic 
(magnetic, laser, etc.). As a result, information about a particular contact 
is often derived from multiple sensors. The information obtained from an 
individual sensor may be only partially reliable, for example, in the case 
of a quiet threat in a noisy and cluttered environment. Thus, novel 
information fusion techniques are called upon optimally combine these 
sensors and to best detect and classify the threat. This paper Will survey 
recent efforts to apply such techniques to undersea warfare. These 
applications, in general, fall into two categories: tracking (data 
association and state estimation), and classification of contacts. 
Particular examples from the Platform Acoustic Warfare Data Fusion (PAWDF) 
project will be highlighted. 
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Abstract: The Deployable Autonomous Distributed 
System (DADS) Intra-Field Data Fusion Project is 
developing technology to fuse sensor information 
from afield of autonomous sensor nodes and 
dynamically control the field of autonomous nodes. 
The field consists of three different types of nodes in 
littoral -waters, which operate on batteries and 
communicate underwater via acoustic modems. 
Sensor nodes contain acoustic sensors, electric field 
sensors, and vector magnetometers. These nodes 
collect and process data, fuse the acoustic and 
electromagnetic data available within the node, and 
forward contact information to a master node. The 
master node fuses the sensor outputs and also 
controls the power usage in nodes throughout the 
field to maximize system lifetime. Data are sent to an 
operator site via the gateway nodes using RF 
communications. This paper will concentrate on the 
fusion and network control methodologies being 
developed for the master node that are unique to 
operation of such an autonomous field. 

Keywords: data fusion, undersea surveillance, 
automated classification, multiple hypothesis 
tracking, optimization, fuzzy logic, dynamic 
control, autonomous systems 

1    Introduction 

The Deployable Autonomous Distributed 
System (DADS) Intra-Field Data Fusion Project 
seeks to develop technology to support a field of 
autonomous sensors in shallow water. 
Technologies under development include the 
fusion of data within the field and control of the 
communications network and other functional 
processes to extend the life of the field. This 
project, sponsored by Dr. D. H. Johnson at the 
Office of Naval Research, is an integral part of a 
broader thrust which is addressing the other 
technologies required for the implementation of 

the overall DADS concept. The concept utilizes 
three different types of nodes, which make up a 
network. Sensor nodes are small nodes that sit on 
the ocean floor and contain acoustic sensors, 
electric field sensors, and vector magnetometers. 
Data are collected from the sensors, processed, 
and locally fused in the node. The node then 
forwards contact information to a master node, 
which controls the field and fuses the data it 
receives from the various sensor nodes. Master 
nodes send their data acoustically to gateway 
nodes, which communicate with a command 
center via RF communications. Each of the nodes 
will run on battery power and communicate with 
each other via underwater acoustic modems. 

The development of a system concept for such a 
field presents many unique problems and thus 
provides opportunities for research and technology 
development. Among the unique problems are the 
following: a) energy limitations based on using 
batteries to power the nodes; b) the use of micro 
processors in the nodes, limiting the complexity 
and computational demands which can be 
expected for near real time signal and fusion 
processing; c) the variability of the environment in 
littoral waters significantly affects the consistency 
of sensor data acquisition required to support state 
estimation by the fusion engine; d) the 
configuration and density (of sensor nodes) of the 
field will often result in a paucity of data from 
sensor nodes, creating large gaps (in time/ 
distance) between track segments; e) difficulty in 
correlating tracks when reports from different 
sensor nodes are based on different sensors 
detecting the target or different attributes being 
reported; f) demands of the system to control the 
reporting of false alarms, g) the need for an 
automated classification capability. 
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This paper will describe several of the areas of 
technology development being pursued to 
address some of the unique problems posed by a 
DADS field. 

2   Correlation 

Due to potentially different configurations of the 
DADS field, a number of correlation processes 
and controls were considered for the fusion 
performed by the master node. Target kinematic, 
target attribute, and environmental 
measurements are the prime inputs. In a sparse 
field, the opportunities for sensor node coverage 
overlap are minimal or nonexistent. The issue 
becomes the lack of data due to long time 
periods between detection reports. In a densely 
spaced field where sensor coverages overlap, 
textbook correlation algorithms can be 
employed. In either case, the correlation of data 
and tracks from nonhomogeneous sensor types 
reporting different target attributes also requires 
a careful application of correlation methods. 

2.1 Correlation Methods and Strategies 

Because of large uncertainties associated with 
underwater measurements, a multiple 
hypotheses tracking (MHT) approach, developed 
by ORINCON Corp., has been selected as the 
fusion core. In this well-known concept, 
hypotheses are formed based on the association 
and correlation of sensor reports. The Munkres 
algorithm and a geo test are used to evaluate the 
data associations. Each hypothesis consists of a 
different combination of sensor reports, an 
association confidence, and a tracking 
confidence. This methodology allows for soft 
decisions to be made until more data are 
received. Drawbacks entail the use of more 
memory due to potentially large combinatorics 
and the addition of pruning rules to manage the 
hypotheses. An implementation using fuzzy 
control to provide efficient hypothesis 
management (see section 3) has been 
incorporated into the MHT. 

To significantly reduce the data transmission 
from each sensor node and offload some of the 
fusion processing at the master node, intra-node 

fusion (with cross-cueing between acoustic and 
electromagnetic sensors) will be performed at the 
sensor node. This results in the reporting of 
tracklets that provide high confidence position, 
course, speed, and classification attributes. From 
the field level fusion perspective, they provide 
strongly correlated sensor reports, reducing the 
number of uncorrelated or weakly correlated 
detections that occur at the sensor node. 

To address correlation of dissimilar sensor types, 
correlation in the fuzzy-conditioned Dempster- 
Shafer (FCDS) target classification algorithm (see 
section 4) uses a sensor-target attribute database 
and expert system heuristics to determine the 
probability of correct classification. This process 
requires initial correlation and clustering. 
Described in more detail in reference [1], the basic 
step of the attribute correlation is matching the 
measured attributes to existing database composite 
target profiles. This attribute probability of 
association is then combined with the kinematic 
probability of association to determine the report- 
to-track combination. 

To reduce sensor detection "holes" in sparsely 
spaced fields, a master node control is being 
designed (see section 5). When appropriate, the 
master node would be able to direct selected 
sensors at the sensor nodes to reduce then- 
detection threshold, thereby increasing probability 
of detection and hence the sensor area of coverage. 
Though this also results in an increase in false 
alarms and potentially in communications, the 
benefit is in the fact that more detections allow for 
more correlation opportunities. System trade-offs 
between this benefit and other disadvantages are 
being studied through modeling and simulation. 

Lastly, correlation processes can be vastly 
improved by using in situ environmental 
information as well as information external to the 
field. At the field level (master node), knowledge 
about the environment can be exploited to control 
processing at the nodes and provide the best 
opportunities for correlation of sensor detections. 
Likewise, external or INTEL information about 
likely targets in the area can be used to adjust 
correlation confidences. 



2.2 Summary 

Once the mission and sensor node spacing have 
been selected prior to deployment of a DADS 
field, the appropriate correlation methodologies 
can be selected as part of the configuration 
package. These methodologies, of course, must 
be tested in conjunction with the target state 
estimator for optimal fusion performance. Once 
deployed, to allow for the greatest flexibility in 
changing shallow water environments and 
unpredictable target movements, adaptive 
controls should be applied. 

3    Distributed Autonomous Tracking 

The selection of an MHT for the DADS fusion 
engine provides the project with an already 
developed product. A need to make it more 
efficient in addressing the DADS requirements 
dictated minimization of computational demands 
while maintaining a high level of performance in 
a fully automated environment. A study was 
undertaken to assess the benefits associated with 
maintaining large numbers of hypotheses when 
operating in a DADS-like environment. Results 
reported in a paper presented at Fusion 98 [1] 
indicate that a single hypothesis approach 
(nearest neighbor tracker) had poor performance 
for sparse field configurations but that a limited 
hypothesis tracker (3 hypotheses) often 
performed comparably to the full MHT. The 
recognition of cases where limiting the tracker to 
three hypotheses resulted in reduced 
performance suggested the development of 
adaptive methods for pruning hypotheses. 

Independently, an effort was initiated at the 
Center for Multisource Information Fusion 
(CMIF) at SUNY, Buffalo, to study fuzzy logic 
methods for their applicability in addressing 
some of the problems associated with tracking 
targets in a DADS environment. 

3.1 Fuzzy Control of Multiple Hypothesis 
Tracker Parameters 

The overall performance of the fusion engine 
depends upon the set of parameters that are used 
by the MHT. Although a static set of parameters 

may work well over a wide range of scenarios, 
they will not lead to optimal performance in all 
cases. In an effort to improve performance of the 
data fusion system at a master node, a fuzzy logic 
controller was developed to adaptively tune some 
of the parameters. To date, two fuzzy logic 
algorithms have been developed [2] that modify 
the tuning parameters of the ORINCON MHT. 
The first parameter is a sliding window length 
used for cluster N-scan pruning and the second is 
the amount of process noise to inject into the 
Kaiman filter for target maneuver tracking. 

Cluster JV-scan pruning is a technique used for 
efficient hypothesis management. The algorithm 
uses a sliding window of length N to prune away 
poor branching hypotheses. Cluster JV-scan 
pruning forces a hard decision on all 
measurements in the (JV-l)-st oldest scan. It 
therefore allows the MHT algorithm to carry 
multiple hypotheses on the most current data and 
make hard decisions on older data. A Fuzzy Logic 
Controller (FLC) to adapt the N-scan length of 
each individual cluster allows each cluster to carry 
its own window length as needed to resolve its 
own ambiguity. Since each cluster contains a 
different N-scan length, the overall number of 
hypotheses carried by the MHT is reduced. The 
reduction occurs when a cluster that contains little 
or no ambiguity, carries only a few hypotheses and 
has an JV-scan length of one to three. The number 
of hypotheses used by the MHT algorithm is 
influenced by two key values: the number of 
system tracks (in the cluster) and the amount of 
contention among these existing tracks for 
incoming measurements. The contention value is 
calculated as the average normalized residual 
among all pairs of tracks in the cluster. This 
calculation is done only after all track states and 
covariances are predicted to the current time. 
Each of these two input variables uses five input 
membership functions: 1) the number of targets is 
defined as either None, Few, Some, Many, or 
Numerous, 2) the contention is defined as either 
Low, Medium-Low, Medium, Medium-High, or 
High. Finally, the output variable JV-scan length is 
defined as one of the seven possible values: Very- 
Short, Short, Medium-Short, Medium, Medium- 
Long, Long, or Very-Long. Each of the 25 
possible combinations of the variables is mapped 
into one of the seven possible values for JV-scan 
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length by the fuzzy rule inference engine. Then, 
using a denazification procedure, a single value 
for JV-scan length is obtained that is used as a 
parameter within the MHT algorithm. This 
process is performed each time a cluster of 
tracks is updated based upon new measurement 
reports. 

The process noise of a Kaiman filter is used to 
account for mismodeled dynamics, unmodeled 
modes, and noise in the system model. The 
motion model used in the MHT is constant 
course/constant speed. If a target maneuvers 
from its present course, the straight-line motion 
model is incorrect and possible track 
fragmentation occurs. A way to track through 
the maneuver is to add process noise to the 
Kaiman filter prediction step. The amount of 
process noise used in the Kaiman filter is 
acceleration-dependent for all targets. A fixed 
amount of process noise has ill effects on targets 
moving at different accelerations. A Fuzzy 
Logic Controller (FLC) to adapt the process 
noise to account for targets with different 
acceleration allows the filter to track through 
significant maneuvers without compromising the 
tracking accuracy for cases of minor maneuvers. 
A typical maneuver involves a change of 
velocity and hence this information is used as 
input into the process noise calculation using an 
estimated acceleration value. This value is 
simply calculated as the difference between the 
velocity of the track estimate and the velocity of 
track-level measurement. In this way, the 
process noise is able to enlarge in situations in 
which there are significant differences in 
velocity between the track and measurement 
states. However, in situations where the velocity 
terms agree, the process noise is able to remain 
small. 

3.2 Fuzzy Logic Based a-ß Tracker 

A wide variety of estimator forms have been 
developed to deal with the target tracking 
problem. One of the early forms, a so-called 
fixed-coefficient estimator called the a-ß filter, 
has been employed on many operational 
systems. In spite of its simplicity and 
limitations, it continues to be of interest. The 

work at CMIF/SUNY, Buffalo explored many 
aspects of developing a fuzzy logic gain modified 
a-ß filter. The focus of recent efforts was 
control-theoretic based analysis of the fuzzy 
a-ß filter. A detailed characterization of the 
development of this filter is provided in another 
paper presented at this symposium (and included 
in the Proceedings) [3]. 

Unlike the fixed gain a-ß filter, the fuzzy logic 
based a-ß filter changes the smoothing 
parameters, a and ß, as a function of the 
maneuver error and error rate to provide tracking 
performance comparable to a Kaiman filter, at 
least for the types of ASW scenarios evaluated. 
Furthermore, the computational cost is less than 
that of the Kaiman filter. 

The maneuver error can be defined as the 
difference between the observed position and the 
predicted position of the target. The error rate can 
likewise be defined as the difference between 
errors for successive observations. Singh [3] 
defines the input membership functions with seven 
error and seven error rate input sets 
(positive/negative large, medium and small plus 
zero) requiring a minimum of 49 rules. He then 
exploits an analogy from system control theory, 
the rest-to-rest maneuver of a second order system 
to define appropriate rules. The control law is 
modeled in the form of a non-linear spring-damper 
system. A transfer function for the spring-damper 
system is developed in the time domain relating 
the position and velocity of the mass to the 
undamped eigenfrequency and the damping ratio. 
The results of this work develop the 49 rules to 
relate the error and error rate to small, medium, 
large or zero values for the undamped 
eigenfrequency and the damping ratio. This 
results in the development of stiffness and 
damping control surfaces defined for variation in 
error and error rate. Finally, a transformation is 
made to provide the input-output-relationship 
between maneuver error and error rate and the 
smoothing parameters a and ß. The adaptive 
a-ß filter developed is thus capable of tracking 
various types of maneuvers whereas the fixed 
a-ß filter can only be optimized for one type of 
maneuver and level of sensor noise. 



The proposed fiizzy a-ß filter was evaluated 
against several alternative trackers (filters) using 
a tracker testbed developed at CMIF/SUNY 
Buffalo. The tests compared five tracking 
filters; (1) a fixed a-ß filter, (2) a fixed 
a-ß-? filter, (3) Chan's a-ß FL filter [4], (4) 
the proposed FL a-ß filter, and (5) a Kaiman 
filter. Each were evaluated on four realistic 
benchmark target maneuvers: (1) targets moving 
with constant speed on a straight line, (2) targets 
moving with constant acceleration on a straight 
line, (3) targets moving with constant speed on a 
single gradual turn, and (4) targets moving with 
constant acceleration on a single gradual turn. 
The benchmarks were also run with three 
different sensor distributions (dense, medium, 
and sparse). Examples of the results (tracker 
error) obtained are shown in Table 1. While 
other, more dramatic maneuvers may give 

Table 1: Simulation Results for a Medium 
Sensor Field at 60 [s] Sampling Time 
Filler Mancuv. 1 Maneuv. 2 Manuev 3 Manuev. 4 

Mean Var Mean Var Mean Var Mean Var 

381 108535 700 411456 749 541677 1523 1635908 

2 1786 9770645 1135 1159524 1050 1159934 1612 2200747 

307365 1172 1386552 753 562431 1249 

4 
5 

378 
405 

111253 
123283 

666 
1173 

402310 
990780 

687 
809 

522226 
488069 

1548 
1629 

1845937 
2054990 

different results, the results for these maneuvers 
for the other field configurations were 
comparable to those in Table 1 and 
demonstrated the proposed FL a-ß filter to be a 
viable tracker for such applications. In addition, 
a counter for floating point operations was 
actuated to provide an estimate of the 
computational costs associated with the 
respective filters. Table 2 shows the comparison 
of FLOPS used by the trackers for equivalent 
operations (20 scans). The proposed FL a-ß 
filter required approximately 75% less floating 
point operations than the Kaiman filter while 
providing comparable performance. It also out 
performed the other trackers evaluated for 
maneuvering targets. 

Table 2: FLOPS used by the Target Tracker 

Tracker 1 Tracker 2 Tracker 3 Tracker 4 Tracker 5 

FLOPS 470 974 2021 2287 8282          1 

4    Automated Classification 

Automatic target classification is a critical 
function of an autonomous system of sensors 
because of the lack of an operator in the loop. The 
issues to be resolved not only address the 
reduction of false alarm reporting from the field, 
but also the levels of target classification 
refinement and their associated uncertainties. 
Because of the use of multiple sensor types in 
DADS, the approach selected uses multi-sensor 
parametric attribute information reported by the 
individual sensor types. The centralized nature of 
the DADS fusion architecture drives the primary 
target classification process to take place in the 
master node. 

Emulating the human thought process, the 
automated classification approach requires two 
components: 1) the data bases of sensor attributes 
and target characteristics, and 2) a process to 
combine the received information. Detailed 
classification databases were developed to 
compare the parametric data to previously 
collected data from a variety of targets. The 
fidelity of both the data and the databases 
determine how well a system can ultimately 
classify targets. The detail in the databases 
determines how refined a classification estimate 
can be produced. For this reason, DADS 
employed Summit Research Corporation to 
construct accurate, detailed databases of acoustic, 
magnetic, and electric field sensor attributes for 
classification of AS W targets. 

The second component required for the target 
classification in DADS is the algorithm that fuses 
the measured sensor attributes using the data bases 
to determine an overall classification estimate. 
Lockheed Martin has developed the fuzzy 
conditioned Dempster-Shafer (FCDS) algorithm 
for this purpose. FCDS, a fully probabilistic theory 
consistent with Bayesian probability theory, is a 
Dempster-Shafer like methodology for reasoning 
with ambiguous, imprecise/vague, and non- 
disjoint evidence. Unlike Dempster-Shafer, FCDS 
is also capable of incorporating a priori 
knowledge of targets. The FCDS classification 
procedure is based on a method of mathematically 
modeling imprecision/vagueness in parametric 
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attributes as random fozzy sets. Both the 
databases and the FCDS algorithm have been 
discussed in detail in reference [1]. 

5    Optimization and Control 

The goal of the DADS Network Control and 
Optimization task is to increase field lifetime by 
reducing power consumption while maintaining 
field level detection capability. This task is 
divided into two parts: processing optimization, 
which limits the consumption of battery power 
by controlling the processing in the nodes, and 
communications network control, which 
attempts to reduce power by dynamically 
routing communications from the sensor nodes 
to the master node. 

5.1 Processing Optimization 

The basic idea behind processing optimization is 
to intelligently determine in which of five 
primary processing modes a node should be set, 
and to determine the detection thresholds for 
processing at each sensor node. The five 
primary modes are processing, relay-only, 
detect-only, sleep, and dead. Processing is when 
the node is processing data from some or all of 
its sensors, generating and sending its own 
reports, and relaying reports from other nodes. 
Relay-only mode is when the sensor node is 
relaying reports from other sensors, with no 
processing or detection of its own. A node in 
detect-only mode processes data from its sensors 
and generates and sends its own reports, but 
does not relay messages. Nodes in sleep mode 
are still alive, but only have the ability to receive 
wake up signals. A dead sensor has used up all 
of its battery power, and therefore cannot detect 
nor relay messages. For nodes in processing and 
detect-only modes, a detection threshold for 
each sensor in that node must be set. These 
thresholds are set to determine how clearly a 
signal (from a target of interest) must be 
distinguishable from noise to be reported. High 
detection thresholds decrease the probability of 
detection, and also decrease the probability of 
false alarms. Low detection thresholds increase 
both probability of detection and false alarms. 
Thresholds will be set to increase the probability 

of detecting targets in areas of the field where 
targets are expected to be located, while reducing 
the number of detections and false alarms (and 
therefore messages generated) in areas where 
targets are not expected. 

To date there have been two different approaches 
proposed to control processing. The first is a 
simple heuristic based on remaining battery 
power, and the second seeks to limit false alarms 
while increasing detections in areas of special 
interest. Both will be discussed in the next 
section. 

5.1.1      Processing Optimization Methods 

Wagner Associates has developed a simple 
heuristic for first level control of the processing 
modes for the sensor nodes. In each node, a 
battery power threshold is set. When the 
remaining battery power for a node in the 
processing mode exceeds this threshold, it is 
switched to relay-only mode. The node remains in 
relay-only mode until the threshold is changed or 
the node dies. The master node can alter the 
battery power threshold, and will do so for a 
number of reasons. If the current threat condition 
is high, for example, the master node may tell a 
sensor node to decrease its threshold, thus keeping 
it in the processing mode longer. Alternately, the 
threshold may be increased when the threat 
condition is low for the field or individual node. 

Another approach to processing optimization 
involves maintaining a constant false alarm rate 
(CFAR) for the field. The idea is to maximize the 
probability of detection while maintaining a CFAR 
(or alternatively a constant probability of detecting 
a target) throughout the field while maximizing 
lifetime. This will be accomplished by lowering 
detection thresholds for the sensors on sensor 
nodes that have been alerted to possible threats in 
the area. Lower detection thresholds increase both 
the probability of detection and the false alarm rate 
for those nodes. In order to maintain a field level 
CFAR, other sensor nodes will have to increase 
their thresholds, or switch to a different mode, 
such as relay-only or sleep. 



This will impact power consumption in several 
ways. First, nodes in areas where targets are 
currently not expected may change to a relay- 
only or sleep mode. Other nodes may have their 
detection thresholds increased. This will lower 
the number of messages generated and sent from 
such nodes. Not only will this save on power 
consumption at that node, but also at other nodes 
along the path to the master node. 

In order to develop a CFAR algorithm (or 
alternatively a constant probability of detection 
algorithm), several parameters will have to be 
defined and modeled. There are a number of 
ways to model field level probability of 
detection. One can determine that a detection (at 
a field level) is made when at least m sensors (or 
sensor nodes) in the field detect a target. 
Another possibility is to call a detection if at 
least one sensor has detected a target and that 
target is classified with a high confidence. In 
like manner, field level false alarm rate also 
needs to be modeled. 

After models for probability of detection and 
false alarm rate are created, a method for solving 
the CFAR objective function will need to be 
established. The objective function will 
maximize field level probability of detection 
subject to the constraint that probability of false 
alarm remains constant [5]. Efforts to adapt this 
objective function to the DADS field for the 
purpose of maximizing field lifetime are 
currently in their infancy. 

5.2 Communications Network Control and 
Optimization 

While it is believed that the gain in field lifetime 
by processing optimization will be significant 
(particularly when processing control drives the 
amount of reporting and hence the 
communication requirements), the dynamic 
control of the communications network may in 
itself prove to be very significant in increasing 
field lifetime. Dynamic control of the DADS 
communications network consists of the initial 
assignment of routes from each sensor node to a 
master node, and the adjustment of these routes 
as time progresses. 

When the DADS field is initialized, a routing table 
will be produced that lists every node to which an 
individual node can talk. This table will be stored 
in the master node. From this table, an initial 
routing of the field will take place to connect 
every sensor node to a master node. It is expected 
that as time progresses, these routes will need to 
change, in order to prevent some portions of the 
field from burning out faster than others. The 
master node will maintain a database with 
estimates of each node's remaining energy, and 
will periodically poll the routing algorithm to 
check if rerouting is in order. The algorithm will 
change routes only when it is determined that 
doing so will increase the field lifetime. 

5.2.1      Control Techniques 

The communications routing algorithms developed 
for DADS will determine the best route from each 
sensor node to the master node for the purpose of 
extending the lifetime of the field. Routes will be 
updated as needed in order to extend field lifetime. 
Two separate algorithms are under development in 
order to determine the optimal routing strategy. 
These are a one step rollout algorithm (simplified 
Neural Dynamic Programming) and a genetic 
algorithm (GA). 

The rollout algorithm is an approach to stochastic 
control using dynamic programming [6]. The 
rollout algorithm seeks to minimize, over all 
possible control strategies, a cost-to-go function, 
which is the expected cost to termination from 
each state of the system. The cost-to-go is given 
by Bellman's equation, 

J* (i) = mina £ PiJ (u)[g(i, u, j) + f (/)], 

where 
Pi(u) is the probability of transitioning from state 

i to state 7 given control strategy u, 
g(i, j, u) is the cost of transitioning from state / to 
statey" given control strategy u, 
and J * (j) is the cost-to-go from statey. 
The rollout algorithm estimates the cost-to-go 
using a base heuristic. 

In DADS, the algorithm works as follows: a 
simple algorithm, such as a minimum hop 
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algorithm, is used to determine the initial 
routing. When an update is requested the 
algorithm creates a large number of candidate 
routings, including the current route, and 
calculates the expected lifetime for each 
candidate routing. The lifetime is calculated 
assuming that the field will maintain this route 
for time T, and then revert to some base 
heuristic. There are currently two candidates for 
the base heuristic: 1) keep the current routing or 
2) revert to the initial routing. Testing of the 
system will determine which heuristic yields the 
best result. Included in the calculation is the 
drain on the power in order to reroute. The 
routing candidate with the maximum expected 
lifetime is chosen, unless it fails to show 
significant improvement over the current route. 

Much earlier in development is the Genetic 
Algorithm (GA). Genetic algorithms attempt to 
model the biological processes of natural 
selection, also known as "survival of the fittest", 
in order to reach an optimum. Work on a 
Genetic algorithm for optimization is currently 
being performed under an ONR SBIR. Once 
complete, the GA technique will be compared to 
the rollout algorithm, and the best will be chosen 
for use in the DADS communications network 
control strategy. 

5.3 Summary 

Minimizing the amount of energy used by the 
DADS field is necessary in order to maintain the 
lifetime of the field. At the same time, field 
capability must not be degraded. Maintaining a 
high probability of detecting targets while 
constraining the FAR and reducing power 
consumption will prove to be a valuable 
approach for extending the usefulness of the 
field. 

Intelligently controlling the communications 
network to maximize field lifetime should also 
prove to be of great benefit to a DADS field. 
Both the rollout algorithm and the Genetic 
Algorithm are expected to provide good 
solutions to the problem. Results from 
simulated test cases of the rollout algorithm are 
due shortly. These should provide insight into 
both the usefulness of dynamic routing in 

general and the rollout algorithm in particular. 
The GA is still in early stages of development, and 
tests and results are not expected until CY2000. 

6 Summary 

Developing fusion technology to deal with the 
limitations of the DADS field results in the 
creation of interesting fusion and control 
algorithms. The methods developed in this project 
will be tested in a virtual environment in the near 
term, with at sea tests planned for the future. 
Eventually, these techniques will be targeted for 
transition into fielded Navy systems. 
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Abstract In this paper, several methods are 

demonstrated and compared for detecting targets 

by fusing information from tracks generated by in- 

dependent continuous wave (CW) and frequency 

modulated (FM) waveforms. Performance of each 
method is illustrated using operating characteristic 
type curves that are based on an average of over 
2200 pings of real active sonar data. The results of 
this comparison reveal that performance improves, 
over that of either an OR detector or a track associ- 
ation test, when a classification approach is adopted 
for information fusion. Specifically, the Bayesian 

Data Reduction Algorithm (BDRA) is applied to 
the data, which selects the features from both wave- 
forms yielding best target detection performance. 

Keywords: Active sonar, Target tracking, Feature 

selection 

1    Introduction 

The subject of this paper is the comparison 
of several methods for detecting targets by 
fusing information from tracks generated by 
independent continuous wave (CW) and fre- 
quency modulated (FM) waveforms (i.e., sonar 
echoes whose purpose is to track and detect 
various surface ships and submarines). With 
the first of these methods, individual detec- 
tion decisions of the CW and FM sequential 
(kinematic log likelihood ratio (KLLR)) detec- 
tors are fused by an OR detector. In the next 

method, information fusion is accomplished by 

'Supported by an NUWC In-House Laboratory In- 
dependent Research (ILIR) Grant, and by the Platform 
Acoustic Warfare Data Fusion (PAWDF) Project. 

associating the CW and FM tracks using a 

Chi-squared track association test. Finally, a 
classification approach is adopted for informa- 
tion fusion by using as features the KLLR and 
Chi-squared test statistics of the previous two 
methods, and Doppler information. Also, with 
this latter method, those features which yield 
best target detection performance are found 
using the Bayesian Data Reduction Algorithm 
(BDRA), [4]. Performance of each test is illus- 
trated using plots of the total number of de- 
tected target tracks verses the number of false 
alerts per hour. Additionally, all results are 
based on an analysis of over 2200 pings of real 
active sonar data (obtained in several littoral 
environments), which represents a time dura- 
tion of approximately fifteen hours. As it turns 
out, the BDRA shows the best performance fol- 
lowed, respectively, by the Chi-squared track 
association test and the OR detector. 

The methods used to fuse information from 
the CW and FM tracks are detailed in the sec- 
tions below. However, before describing these 
methods a few observations are made about 
the track generation process for each waveform. 
Note, at each ping the CW and FM waveforms 
are transmitted from the source as a wave- 
train (a delay of approximately one half sec- 

onds exists between successive pings). Then, 
upon reception and prior to any track infor- 
mation fusion, each waveform is independently 
processed by a processing chain which con- 

sists of matched filtering, normalization, clus- 
tering, and shape filtering. From here, the pro- 
cessed CW and FM waveforms are detected 

and tracked by separate Automatic Detect and 
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Tracking (ADT) algorithms. In this case, the 
ADT contains a sequential kinematic log like- 
lihood ratio (KLLR) detector and a Kaiman 
filter based interacting multiple model (MM) 
tracker, [1]. Finally, the CW and FM track 
pairs are time aligned (by time index shifting) 
in order to be in the correct format for infor- 
mation fusion.1 

2 Description of the Methods 
Used for Track Information 
Fusion 

2.1 OR Detector 

As mentioned in the previous section each 
ADT contains a sequential kinematic log like- 
lihood ratio (KLLR) detector. The KLLR de- 
tector is based on track innovation, which is 
the difference between a measured track and 
its prediction (produced by the ADT). In this 
method of track information fusion the deci- 
sions of the CW and FM KLLR detectors are 
fused using a logical OR. Thus, this method 
of fusion depends on the accuracy of each in- 
dividual detector, and as will be seen below 
performance can be substantially degraded if 
one of the detectors has a high false alert rate. 

2.2 Chi-squared   Track   Association 
Test 

In the next method of information fusion track 
pairs are associated by a Chi-squared track as- 
sociation test, which is based on the normal- 
ized (by the estimation errors) product of the 
difference between the individual CW and FM 
track state estimates (a four dimensional vec- 
tor of position and velocity estimates in two 
dimensions). In particular, track association 
begins by first forming the difference between 
the track state estimates of CW and FM (see 

[1]), 

FM i 

'Tracking errors for the CW and FM tracks are as- 
sumed independent in both the measurement and the 
state. 

A(n)=xc',v(i.)-x*M(n) (1) 

th and, assuming independent tracks at the n 
time index (ping), the sum of their estimation 
error covariance matrices given by 

T(n) tCW (70-P'A>). (2) 

Then, using formulas (1) and (2) the track 
association test is performed using the statistic 

[A(B)]'[T(n)r1[A(n)]<Z?a (3) 

where the left side of formula (3) is a Chi- 
squared random variable with four degrees of 
freedom (i.e., the number of elements in the 
track state vector). Note, the threshold Da 

is set from a Chi-squared table (for example, 
see [2]) for an a probability of missing a valid 
association. 

Intuitively, it can be seen that an advantage 
of state association (as compared to an OR de- 
tector) based on the Chi-squared test is that 
more information is used in the detection de- 
cision (i.e., the four components of the target 
state). However, a shortcoming of this method 
is that the target must exist in both tracks in 
order for a detection to be declared. Thus, 
state association tends to be opportunity lim- 
ited, and this is evident in the results below. 

2.3    The   Bayesian   Data  Reduction 
Algorithm 

The Bayesian Data Reduction Algorithm 
(BDRA) uses the Dirichlet distribution, [3], 
as a noninformative prior. The Dirichlet rep- 
resents all symbol probabilities as uniformly- 
distributed over the positive unit-hyperplane. 
Using this prior the algorithm works by reduc- 
ing the quantization complexity, M, to a level 
which minimizes the average conditional prob- 
ability of error, P(e \ X). The formula for 
P(e | X) is fundamental to the BDRA, and for 
two classes it is given by (see, [4, 5]) 

P(e\X) 
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y   x 
+P(tf,)Z(**>*/)/(y|x/,#i)   (4) 

where (note, k and / are exchangeable) 
Zk = f (y|xjt, #*) 
_   AfyitAffc+M-l)!  nAf    (*fc,.+j/i)', 
_ (Nk+Ny+M-iy.lli=l    xkii\yi\    ' 

k, I € {target, nontarget}, and k ^ /; 
Hk : py = Pk', 
M is the number of discrete symbols; 
X = (x;t,xj) is all training data; 
Xk,i is the number of the ith symbol in the train- 

ing data for class k, and Nk \ N'k = £;=i %k,i\] 

yi is the number of the ith symbol in the test 

data, and Ny {NY = YlfL «/;}• 
Notice that only cases involving one test ob- 

servation (i.e., Ny = 1) are considered here so 
that f (y\xk,Hk) of formula (4) becomes 

f(yi - l|xjt, Hk) = 
Xk,i + 1 

(5) 
Nk + M 

Given formula (4) the algorithm is imple- 
mented by using the following iterative steps. 

1. Using the initial training data with quan- 
tization M, formula (4) is used to compute 
P(e\X;M). 

2. Beginning with an arbitrarily selected fea- 
ture, sum (i.e., merge) the training data of 
those quantized symbols that correspond 
to its reduction (e.g., in the binary case, 
merge those quantized symbols containing 
a binary zero with those containing a bi- 
nary one). 

3. Use the newly merged training data, X , 
and the new quantization, M , and again 
compute P (e \ X';M'). 

4. Repeat items two and three for all adja- 
cent feature quantizing levels, and all re- 
maining features. 

5. From item four select the minimum of all 
computed P (e | X ; M J (break ties arbi- 
trarily), and choose this as the new train- 
ing data configuration for each class. 

6. Repeat items two through five until the 
probability of error decreases no further, 
or until Al' = 2. 

As will be seen in the results below, the mo- 
tivation for using the BÜRA is to select the 
best combination of features that simultane- 
ously overcomes the opportunity limitations of 
the Chi-squared test, and the high false alert 
rate of the OR detector. 

Note, before discussing performance results 
for methods shown here it is pointed out that 
the data first had to be correctly labeled by 
identifying true targets. This was accom- 
plished manually by comparing the similarity 
of estimated tracks to those of the Global Po- 
sitioning Satellite (GPS). Therefore, any track 
not identified as a true target (surface ship or 
submarine), by default, automatically was la- 
beled a nontarget (this latter class is made up 
of background disturbances such as shipping 
noise and clutter). 

3    Results 

15 20 25 
False detections per hour 

Figure 1: Target track recognition perfor- 
mance comparison of the OR detector, the Chi- 
squared test, and the BDRA. 

In Figure 1, operating characteristic (OC) 
curves appear showing the total number of true 
detected targets (i.e., target track fusions) ver- 
sus the number of false detections (i.e., false 
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track fusions) per hour for the OR detector, 
the Chi-squared test, and the BDRA.2 Notice, 
the OC curve for the OR detector was ob- 
tained by simultaneously varying the thresh- 
olds of both the CW and FM detectors from 
-2.3 to 30. However, note that in the re- 
sults for this detector many nontarget tracks 
are counted more than once because the true 
identity of these tracks can not be established 
(i.e., all nontarget detections for CW and FM 
are added together). Also, the OC curve for 
the Chi-squared test was obtained by varying 
the threshold Da (see formula (3)) from 0 to 
100,000. In this case, the only situation that 
is counted as a valid detection is when the 
same target is contained in the CW and FM 
track pair which passed association. There- 
fore, potential false track fusions for the Chi- 
squared test are all CW and FM target and 
nontarget track pairs (at a given ping) which 
do not have the same true target label. Be- 
fore the results contained in Figure 1 are dis- 
cussed further the application of the BDRA to 
the data for feature reduction (and selection) 
is described next. 

The first step in applying the BDRA to the 
data was to form the following five dimensional 
feature vector, 

{ Chi-squared statistic, CW Doppler, FM 
Doppler, CW KLLR, FM KLLR } 

where the Chi-squared statistic and KLLR are 
shown above, and the additional features have 
the following descriptions. 

CW Doppler (knots) is measured from the 
CW processor. 

FM Doppler (knots) is    estimated    from 
range rate. 

Based on this feature vector the data were 
then partitioned into a training set consisting 

Table 1: Threshold Settings for Each Feature 
Before Applying the BDRA 

level Chi-sq. Doppler KLLR 

1 7.78 1 2.3 
2 50 5 6.8 

3 100 10 20 
4 100K 70 30 

2All results shown are based on converting detected 
target pings to detected target tracks using the average 
number of pings contained in a track. Also, results for 
the BDRA are determined by testing on the training 
data. 

of 5774 samples of which Niarget = 848, and 
Nnontarget = 4926. Actually, the original data 
contains more than fifty thousand track pairs 
that can be considered of the nontarget cate- 
gory (i.e., all track pairs which can potentially 
be tested for association). However, a form 
of track pruning, or gating, was employed to 
substantially reduce this number by ordering 
all Chi-squared statistics. That is, for each 
track only the smallest Chi-squared statistic 
was accepted (the track it most closely asso- 
ciated with), and all other larger Chi-squared 
statistics involving this track were rejected (all 
other tracks it might also have been associated 
with). 

At this point, before actually applying the 
BDRA to the data it was necessary to thresh- 
old each feature into an initial set of discrete 
levels. This thresholding was based on experi- 
ence examining the data, and as a result, four 
thresholds were chosen for each feature. Thus, 
with four discrete levels per feature the ini- 
tial quantization complexity of this data was 
M = 1024. Table 1 lists these thresholds 
where at each discrete level the upper bound is 
shown, and the lower bound is defined in the 
next lower level (note, the Doppler and KLLR 
columns represent both CW and FM). 

After the BDRA was applied to the data the 
initial quantization complexity of M = 1024 
was reduced to a final quantization complex- 
ity of M = 8. With this, the computed em- 
pirical probability of error (see formula (4)) 
was reduced from 0.325 to 0.117. In reduc- 
ing this data, it was found that the BDRA 
completely removed the FM features.   Addi- 
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tionally, it reduced the Chi-squared statistic, 
CW Doppler, and CW KLLR to binary valued 
features keeping, respectively, the thresholds of 
7.78,1, and 2.3. Thus, for correct target recog- 
nition the BDRA prefers to rely mostly on CW, 
and it only uses FM when it associates with 
CW through the Chi-squared statistic. No- 
tice, this is consistent with the fact that FM 
is known to perform poorly in this data. 

Now, continuing with the results in Figure 
1, it can be seen in this figure that for low- 
rates of false alert (the area of most interest) 
the BDRA is able to improve performance over 
the other methods. Notice, it is apparent that 
the high false alert rate of FM is degrading the 
performance of the OR detector. Also, the op- 
portunity limitations of the Chi-squared test 
are obvious because the target must exist in 
both waveforms in order for this test to detect 
it. However, the BDRA overcomes these lim- 
itations by selectively choosing those features 
associated with best performance. 

Transactions on Information Theory, vol. 
14, no. 1, January 1968, pp. 55-63. 

[4] R. S. Lynch, Jr., Bayesian Classifica- 
tion Using Noninformative Dirichlet Pri- 
ors, Ph.D. Dissertation, Major Advisor, P. 
K. Willett, University of Connecticut, May, 
1999. 

[5] R. S. Lynch, Jr. and P. K. Willett, 
"Bayesian Classification and Data Driven 
Quantization Using Dirichlet Priors," Pro- 
ceedings of the. 32nrf Annual Conference on 
Information Sciences and Systems, March 
1998. 

4    Summary 

In this paper, several methods were applied 
to fusing information from sonar echoes which 
were produced by independent CW and FM 
waveforms. It was shown that a classification 
approach (using the BDRA for feature selec- 
tion) was more effective at correct target recog- 
nition than either a Chi-squared test, or an OR 
detector. 
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Abstract The problem of optimally estimating the 
state of a stochastic linear dynamical system using 
a library of linear sensors (observation maps) of 
varying costs is addressed. The role of sensor cost 
in determining the optimal sensing strategy is il- 
lustrated by several examples. The marginal trade- 
off between sensor gain and cost in estimation of a 
system operating near steady state leads to the no- 
tion of sensor value which serves as the basis for 
sensor selection in the attentive sensing strategy. 
This suggests the possibility of analytically quantify- 
ing sensor value for well-defined scenarios in future 
work, thereby allowing libraries of sensors suitable 
for estimation tasks to be identified prior to deploy- 
ing sensor suites. 

Keywords: attentive sensing, estimation, Kaiman 
filtering, data fusion 

1    Introduction 

Recent research has shown how sensor data 
should be chosen for optimal iterative esti- 
mation of the state of a discrete-time linear 
stochastic system when linear measurement 
maps can be selected from a pre-determined li- 
brary in each iteration [1,2]. In prior work, the 
library of measurement maps represents a col- 
lection of available sensors from which the best 
combination must be selected at each iteration 
time due to resource constraints (e.g., commu- 
nication bandwidth or computational power) 
or sensor constraints (e.g., ability to operate in 
only one mode at any given time). The goal has 
been to achieve a sensing strategy that min- 

imizes some function of the estimation error 
covariance matrix at each iteration of the esti- 
mator - without consideration to costs or risks 
associated with the sensing strategy. 

This paper extends earlier work by introduc- 
ing sensing cost as a factor in the selection of 
a sensing strategy. In this setting, some mea- 
surement maps may be more expensive to use 
than others in terms of risk or monetary cost 
and strategies that are optimal with respect to 
criteria incorporating both cost and estimation 
performance are sought. 

Depending on the specific scenario involved, 
there are several reasonable ways in which sens- 
ing cost can be considered in optimizing a sens- 
ing strategy; e.g., 

1. Choose the strategy of lowest overall cost 
that will satisfy a pre-established criterion 
on estimator performance. 

2. Choose the strategy that achieves the best 
estimation performance subject to a cost 
constraint. 

3. Minimize an objective functional that in- 
cludes both overall cost and estimation er- 
ror at a pre-set terminal iteration. 

4. Perform step-by-step minimization of such 
an objective functional without assump- 
tion of a pre-set terminal iteration. 

Pioneering work by Athans [3] in atten- 
tive estimation addressed variation 3 in a 
continuous-time setting. This paper focuses 
on variation 4: optimization at each iteration 
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of the estimator with respect to an objective 
functional combining estimation performance 
and sensor costs. This is the most straight- 
forward generalization of the problem exam- 
ined in [1,2]; previous results are subsumed by 
assuming uniform sensing in those presented 
here and a key property of earlier results (i.e., 
that "sensor scheduling" solutions, in which 
the entire optimal sequence of sensor selections 
is made before the onset of data collection, 
are possible if certain system parameters are 
known in advance) is preserved by this formu- 
lation. 

2    Attentive   Estimation   with 
Sensor Cost 

2.1    Classical Iterative Estimation 

A classical discrete-time iterative estimation 
problem involves estimating the state xk of a 
linear stochastic system 

xk+i = Akxk + uk (1) 

in which Ak is a matrix and the tok are indepen- 
dent vectors of zero-mean gaussian noise with 
known covariance matrix Qk. The estimate is 
to be based on noisy linear measurements of 
the state 

yk = Hkxk + vk (2) 

where Hk is a matrix and the vk are indepen- 
dent vectors of zero-mean gaussian noise which 
are independent of the ujk and have known co- 
variance matrices Rk. 

The optimal estimate of xn given yo,—,yn 
(in most commonly accepted senses) is xn = 
E[a;n|yo, -nVn]- This estimate is provided iter- 
atively by the Kaiman filter. 

2.2    Formulation of the Attentive Es- 
timation Problem with Cost 

A related attentive estimation problem arises 
when the state of the system (1) is to be esti- 
mated using noisy measurements that are se- 
lectable from among a collection of linear obser- 
vation maps; i.e., Hk in (2) is selectable from a 

collection Hk of observation maps representing 
a collection Vk of viable sensor configurations. 
The selection of a measurement map Hk en- 
tails a cost £fc which, in practice, may arise as 
a monetary cost or a risk associated with us- 
ing the sensor or sensing mode that yields that 
particular measurement map. 

The goal is to choose a sensing strategy 
{Ho,Hi,...} that minimizes the sum Jk of a 
cost measure Ck and an estimation perfor- 
mance measure Ek at each stage k. Since 
the system state xk is to be estimated from 
measurements yo, ...,yk by an unbiased estima- 
tor xk at each stage k, the estimation perfor- 
mance measure may be taken to be a func- 
tion of the estimation error covariance matrix 
Pk = E[(xk - xk)(xk - xk)T]. Throughout the 
remainder of this paper, the estimation per- 
formance measure will be mean-squared error 
E[{xk - xk)T(xk - xk)] = tr Pk, though the ap- 
proach described is also applicable if another 
function of Pk is used in this role. The cost 
term is given by Ck = Cjk where jk is the index 
of output map selected at stage k and Cjk is its 
(pre-established) cost. 

The Kaiman filter propagates 
pre-measurement error covariance Sk and post- 
measurement error covariance Pk according to 
the equations 

Sfc+i   =   APkA
T + Qk 

Pk   =   (S^ + HjR^H,)-1 

(3) 

Examination of these equations makes the so- 
lution to this problem evident: at each time 
step k, Hk should be selected to minimize 
Jk = cfc+tr Pk. 

Some previously published work on estima- 
tion with selectable sensors has emphasized the 
problem of calculating an observation map Hk, 
subject to constraints, that minimizes some 
given cost function of Pk [4, 5]. The form of the 
second equation in (3) suggests the formidabil- 
ity of such a calculation. Here, the collection 
"Hjt is assumed to be finite or parameterized in 
such a way to allow an optimal or nearly op- 
timal Hk to be found by exhaustive search or 
perhaps some efficient search strategy on the 
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parameterized search space (e.g., a gradient or 
genetic algorithm). A pair of approaches that 
efficiently identify nearly optimal observation 
maps from a large collection have recently been 
proposed by Reeves [6]. 

It is important to note that the solution de- 
scribed here is an open-loop strategy. "Sensor 
scheduling" can be undertaken based on knowl- 
edge of the system parameters before any data 
are actually collected. Other work has shown 
that adaptive strategies for sensor selection are 
possible if certain system parameters are un- 
known, but that these strategies are typically 
closed-loop; i.e., the sensor to use in the next 
iteration cannot be determined until the cur- 
rent iteration is complete. 

3    Examples of Attentive Sens- 
ing with Sensor Cost 

To illustrate the role cost can play in selection 
of a sensing strategy, several examples are pre- 
sented in this section. All of the examples are 
based around a stable discrete-time dynamical 
system with three-dimensional state space: 

c(fc +1) = 

.10 0 
0 .1 0 
0    0    .1 

x(k) + w(fc) 

The states are coupled through 
the zero-mean gaussian driving signal w(k) = 
[wi(Jfc) u)2(k) us(k)]T which has constant co- 
variance matrix 

Q = 

.8 0 
1 0 
0    1.8 

and is independent from stage to stage. 

3.1    Sensors with Equal Gains 

Figure 1 shows results when three sensors of 
equal gain relative to the measurement noise 
variance R = 1 are available at each stage: 

H3 

= [100] 

= [0 10] 

=   [001] 

Note that each sensor provides a noisy observa- 
tion of exactly one of the three system states. 
Figure 1(a) shows the sensing strategy when 
sensor costs are ignored (i.e., c\ = c% = c$ = 0). 
Time increases along the horizontal axis and 
sensor number is indicated on the horizontal 
axis. At the horizontal position correspond- 
ing to each time increment k, the region cor- 
responding to the sensor selected at that time 
is shaded black. The fact that Hi is always 
chosen in this case is justified by the obser- 
vation that sensor 1 provides the estimate of 
minimal mean-square error - the only crite- 
rion if costs are equal. For comparison, the 
aggregate mean-square error obtained by the 
attentive sensing strategy was 3.201 which was 
obtained (in this special case) by using only 
sensor 1; using only sensor 2 yielded a mean- 
square error of 3.768; using only sensor 3 pro- 
vided mean-square error of 3.459. An aggre- 
gate mean-square error of 3.426 was obtained 
with a round-robin sensing strategy (i.e., using 
sensors 1, 2, and 3 in rotation). 

Figure 1(b) shows the sensing strategy ob- 
tained if the cost of sensor 1 is raised to 0.4 
while the other two sensors' costs remain at 
zero. The best sensor, number 1, has become 
expensive enough that exclusive use of sensor 
3 is favored even though the resulting mean- 
square error is higher (as noted above). 

Figure 1(c) shows that a cost of 0.22 on sen- 
sor 1 with the other two sensors' costs remain- 
ing at zero results in a strategy that alternates 
between sensors 1 and 3. After each use of 
sensor 1, the estimation performance measure 
is sufficiently good that the cost-performance 
tradeoff favors the inferior but less expensive 
sensor 3 for the next measurement (i.e., the 
value of sensor 3 exceeds that of sensor 1). Af- 
ter sensor 3 is used, however, the estimation 
performance measure is degraded to the point 
that the additional performance of sensor 1 is 
worth its extra cost and it becomes the sensor 
of highest value for the next measurement. 

Figures 1(d) and 1(e) illustrate that the be- 
havior observed in Figure 1(c) is preserved if 
both c\ and c2 are increased by approximately 
the same amount while holding c2 constant 
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Figure 1: Effect of cost on sensor selection: sensors with equal gains. 
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— but only up to a point. When both sensors 
1 and 3 become sufficiently expensive, the at- 
tentive strategy begins to use sensor 2. The 
costs for which the values of the three sensors 
are sufficiently close to equal for all three to be 
used can be sensitive to small perturbations, as 
shown in Figure 1(f) where sensor 3 is dropped 
from the strategy of Figure 1(e) after only a 
small change in cost. 

The aggregate mean-square estimation error 
obtained in the case depicted in Figure 1(f) is 
actually higher (3.556) than if a round-robin 
strategy were used; cost causes the strategy 
pictured to be favored. 

3.2    Sensors with Unequal Gains 

The results pictured in Figure 2 also come from 
a three-sensor scenario. In this case, however, 
the gains of the sensors relative to the measure- 
ment noise variance R = 1 are not all equal: 

Hi 

H2 

H3 

= [2 0 0] 

= [100] 

=   [0 0 2] 

Again, each sensor provides a noisy observation 
of exactly one of the three system states. In the 
absence   of cost considerations, sensor   2   is 

b. Cl = 0.5075 
C2 = 0 
C3 = 0.2103 

d. Cl = 0.6 
C2 = 0 
C3 = 0.21 

Figure 2: Effect of cost on sensor selection: sensors with different gains. 
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dominated by sensor 1: regardless of the state 
of the system, a measurement from sensor 1 
will always yield a higher-quality estimate than 
a measurement from sensor 2. 

Figure 2(a) shows that, with the costs of all 
sensors equal, a sensing strategy using only 
sensor 1 yields the lowest aggregate mean- 
square estimation error (2.630). A strategy in- 
volving all three sensors is obtained when the 
costs of sensors 1 and 3 are raised enough to 
make the use of sensor 3 cost effective. Figure 
2(b) shows a case in which costs are chosen so 
that all three sensors have approximately equal 
value. In this example, the mean-square error 
is 2.909 — higher than when cost considera- 
tions are ignored, as expected. 

Figures 2(c) and 2(d) illustrate that the sit- 
uation in which all three sensors have approx- 
imately equal values is again sensitive to small 
perturbations in sensor costs. Modest varia- 
tions in costs between the cases in Figures 2(b), 
2(c), and 2(d) result in radical changes in sens- 
ing strategy. 

4    Discussion and Conclusions 

This paper has introduced considerations of 
sensor cost, which may arise as operating cost 
or risk, into the framework of attentive estima- 
tion for a discrete-time linear dynamical sys- 
tem. Examples illustrating the behavior of at- 
tentive sensing strategies as costs are adjusted 
were presented and discussed, and the obser- 
vation that the sensor configuration of highest 
value is chosen by the attentive strategy was 
made. This suggests the possibility of theoret- 
ical analysis of the marginal tradeoffs between 
sensor gain and cost for a system in steady 
state to predict a sensor's value in particular 

scenarios — perhaps to identify libraries of sen- 
sors suitable for collections of estimation tasks 
prior to fielding of a sensor suite. 

Future work should also consider costs in- 
curred by switching between sensors. 
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Abstract-Some techniques and systems that support subma- 
rine sensor fusion are discussed. They include navigation 
system, other sensor systems like oceanographic sensor sys- 
tems and own-ship performance monitoring sensor systems, 
own-ship steering system, sensor management, data flow 
arrangement, onboard data base system, and temporal and 
spatial information alignment. Their relationships with the 
fusion system, the coordination among these systems them- 
selves and practical system design tips are also presented. 
Special emphases are put on system development considera- 
tions, especially on the unique requirements for submarines. 
The aforementioned systems are critical to the fusion sys- 
tem. They are also very complicated and may need fusion 
techniques in their own information processing, although 
they serve as supports to the fusion system. 

Key Words: sensor, fusion, submarine. 

1. Introduction 

In fusion system development, much attention has 
been put on the basic fusion techniques, such as fusion 
structures and algorithms. In fact, also very important 
are support systems or techniques, such as coordinates 
selection and conversion, timing between different 
sensors and events, sensor management and data flow 
coordination. They serve as the basis for the fusion 
system. They are an inseparable part of the fusion 
system. Without a reasonable arrangement of these 
systems and techniques, it is impossible for a fusion 
system to work smoothly and effectively, and present 
most useful fusion results. 

The supports available to different fusion systems are 
quite different. So is the management of these support 
resources. For submarine fusion systems, the support 
techniques are particularly important. The entire in- 
formation environment of submarines has many dis- 
advantages, such as poor information quality, mostly 
passive type of information, miscellaneous informa- 
tion patterns and an enormous amount of information 

[1]. In addition, similarly to other military systems 
there are many uncertain factors that may have an im- 
pact on the submarine information system such that 
the system may become very fragile and vulnerable to 
even minute errors. Under such conditions, a strong 
support from basic subsystems is vital. Not only can 
they help the system reach its performance climax, but 
enhance its robustness also. Therefore, especially in 
fusion system development, the importance of these 
support systems and techniques should never be over- 
looked or belittled. 

2. Support Sensor Systems 

There are three major categories of sensors that serve 
directly as information providers for command and 
control. They are own-ship information sensors, envi- 
ronmental information sensors and target information 
sensors. By sensor fusion many people mean fusion 
of target information sensors. This is the case in the 
literature where emphasis is mostly put on target in- 
formation fusion. The fact is, however, own-ship and 
environmental information is also important. It is the 
basis of target information collecting and processing, 
not to mention other functions. As a matter of fact, the 
other two categories are also composed of many so- 
phisticated modern sensors. 

It should be emphasized that the three sensor groups 
are not completely separable. Some sensors are not 
confined in one group. Radar and the periscopes, for 
example, are important target search and detection 
sensors. Simultaneously they are also important navi- 
gation sensors. This demonstrates that navigation 
system and other sensors are not only conceptually 
important for the target sensor fusion system, they are 
also physically connected to the target sensor system. 

2.1 Own-Ship Information Sensors 
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The most important own-ship information sensor sys- 
tem is navigation system. It includes all the naviga- 
tion sensors and the related processing devices. It 
provides own-ship positional and postural information 
which is a reference frame for the entire sensor sys- 
tem, including the sensor fusion system. This infor- 
mation includes longitude, latitude, depth, course, 
speed, dip angles, etc. of the own-ship. 

The most important navigation sensors onboard a 
modern submarine are the GPS receiver and ship's 
inertial navigational system (SINS). GPS provides 
three-dimensional fixes with very high accuracy. The 
limitation is, however, that the mast has to be raised 
out of the water to obtain a fix. This is always a risky 
action although modern masks are usually coated with 
radar-absorbing material (RAM). 

Inertial navigation system is very important for a 
modern submarine because it enables the submarine 
with long time submerged navigation ability. It con- 
sists of a three-gyroscope and three-accelerometer 
system that senses relative motion from a known 
starting point. Obviously the fixation error accumu- 
lates with time. Other navigation measures like GPS 
are needed to update the output periodically. 

Of course there are many other more traditional navi- 
gation sensors such as magnetic compass, gyrocom- 
pass, radar, periscope and log. Clear enough, the 
navigation system is also a multisensor system that is 
not less complicated than the target information sensor 
system. So it is natural that its information be fused to 
achieve more concise and accurate results. The fusion 
of these navigation sensors cannot be expected to be 
easier. In fact, the own-ship information fusion is 
similar to the target information fusion. For example, 
the navigation sensors can also be divided into two 
groups, submerged sensors and surfaced sensors. The 
fusion system is accordingly divided into two parallel 
sectors: submerged fusion and surfaced fusion, exactly 
the same as for target information fusion. Some fu- 
sion techniques can also be shared. 

The fused own-ship information finally should be in- 
put into target information fusion system, serving as a 
reference frame to target information. The navigation 
system here is treated as a support system to the fusion 
system, that is, as one of the necessary "supports" for 
the fusion system. In terms of e.g., military impor- 
tance and system development, the navigation system 
and the target information sensor fusion system are 
equivalent - they complement and support each other. 

Another important submarine sensor is the self-noise 
monitor sonar. It consists of several arrays located at 
different noise sensitive points on the submarine hull. 
Area around the propeller is one of such locations that 
need to be monitored because the propeller is the main 
noise source of the submarine. Self-noise level is one 
of the decisive factors for successful submarine opera- 
tions. Propeller noise increases tremendously when 
cavitation occurs. Cavitation is a hazardous physical 
phenomenon that appears when the rate of rotation of 
the propeller is high enough, or equivalently, the speed 
of the submarine reaches a certain level. The main 
task of the array around the propeller is monitoring 
cavitation noise. Another location often monitored is 
around the bow sonar dome. The noise around this 
location is significantly harmful to the performance of 
the sonars with their arrays located in this area. 
Seemingly irrelevant to the fusion system, the monitor 
sonar provides early alarm for other sonars. In fact, 
the information provided by the monitor sonar is an 
important factor in underwater sensor management, a 
basic function of the fusion system. 

2.2 Environmental Information Sensors 

Environmental information sensors usually mean sen- 
sors that provide hydrographic, oceanographic and 
even meteorologic information. Some people argue 
that they also should be included in the navigation 
sensor category, which does not make much sense. 
Environmental information sensors are miscellaneous. 
They provide bathythermy, chemistry, magnetics, 
gravity, and acoustics information such as the tem- 
perature, salinity and seawater density, sound speed 
gradient, the basic structure and components of the sea 
bottom, and ambient noise. Such information is used 
to estimate the underwater sound speed gradient, 
acoustic convergence zone, propagation loss, and re- 
verberation data. Other important information such as 
acoustic propagation paths, acoustic sensor range, etc, 
can also be estimated or predicted. 

A significant difference between environmental in- 
formation sensors and the other two sensor groups is 
that there is no strong need for real-time collection and 
processing of the information provided by the former 
group. It is not necessary to provide this information 
repeatedly in an engagement without a major envi- 
ronment and/or time change. Usually this information 
is measured as soon as the submarine reaches its des- 
ignated position or battlefield. Environmental infor- 
mation is usually stored in onboard data base. 

Environmental information is fundamental to sensor 
fusion as well as other command and control func- 
tions.   Ocean environment analysis and sensor per- 
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formance prediction, which are important in sensor 
fusion, can only be achieved by using such informa- 
tion. Therefore, the environmental information sen- 
sors typically support the fusion system in an indirect 
way. Their measured information is used to calculate 
the basic parameters in cases such as underwater 
acoustics analysis and sonar performance prediction. 
These parameters are important fundamental elements 
for fusion functions such as determination of associa- 
tion gate size and sensor management. 

nate system should facilitate to satisfy these require- 
ments. 

Sometimes even units should be unified. It is common 
to use the navigation unit system for naval applica- 
tions. In some cases, however, the international stan- 
dard metric system is adopted by some sensors (e.g., 
some radars) and weapons (e.g., missiles). This dif- 
ference has to be handled although it is a minor prob- 
lem. 

3. Spatial Alignment 

Although the sensors onboard a submarine are con- 
centrated in a small space (Typhoon, the biggest sub- 
marine in this world, has a length of 171m and a beam 
of 24m), the work of putting information from these 
sensors into the same space reference frame can not be 
ignored. 

First, since sensor transducer arrays are installed in 
different places onboard the submarine in a distributed 
fashion, the effect of this location distribution on the 
fusion results has to be examined. For example, the 
noise sonar array is mounted in the bow nose dome of 
the submarine. The information provided by it is most 
likely centered at the ship bow point. The passive 
ranging sonar arrays, however, are symmetrically ar- 
ranged on both flanks of the ship. The reference cen- 
ter is usually the central point of the ship. Radars and 
periscopes are usually installed on the bridge some- 
where between the bow and the center of the ship. 
Navigation sensors are also distributed. Information 
provided by these sensors has to be converted into a 
common space reference frame before fusion. 

Secondly, different sensors may use different coordi- 
nate systems. Some sensors provide information un- 
der the Cartesian coordinates. Others use polar or 
spherical coordinates, absolute geographic coordi- 
nates, or relative coordinates. A unified coordinate 
system is needed when a fusion system is developed, 
and this is also important for spatial alignment of in- 
formation. 

Sometimes other factors have to be considered. For 
example, another coordinate system may be adopted 
when firing weapons. It will be much more conven- 
ient if the same system is adopted for both fusion and 
weapon firing purposes. If different coordinate sys- 
tems are used, it is better that they can be converted 
easily. Processing algorithms (e.g., fusion or tracking 
algorithms) sometimes also have some special re- 
quirements for coordinates.   A well-selected coordi- 

4. Temporal Alignment 

The timing of different sensors is usually different. It 
is necessary to create a unified time reference for all 
sensors when fusion system is developed. 

The frequencies being used are different. Sensors, 
such as passive sonars, are used for both surveillance 
and detection. They may be in operation all the time 
in the battlefield. Some other sensors, especially ac- 
tive or exposed sensors like radar, active sonar and 
periscopes, can be used only occasionally and under 
rigid restrictions. The exposed sensor is a name des- 
ignated for submarine sensors like radar and periscope 
whose operation requires raising their masts out of the 
water, or sensors like active sonar and again radar 
whose operation requires sending out energy waves 
which can be detected. In both cases, the use of such 
sensors bears the risk of exposure the submarine to 
enemy. 

The different physical field in which different sensors 
operate can lead to timing problems also. For exam- 
ple, radars and periscopes operate in light speed physi- 
cal field while sonars operate in underwater acoustical 
speed physical field. If a target is detected at the same 
time instant by a sonar and a radar, the information 
provided by these two sensors obviously represents the 
target states at different time instants. While the in- 
formation given by the radar may be deemed instanta- 
neous, that is, at the time instant when the detection is 
made, the sonar only provides target information that 
is say, several minutes (or even longer) old because its 
takes considerable time for the acoustical wave to 
travel. To make things more complicated, the under- 
water acoustical wave path is often seriously distorted 
caused by the highly uneven distribution (sometimes 
even with sharp leap) of the transmission media. The 
time lag for the signals to travel from the target to the 
sonar array is difficult to estimate. For active sonars, 
the time lag is even larger due to the round trip of the 
acoustical pulse but can be easily determined. 

25 



The difference in the data rates of different sensors 
may also cause problems in timing as well as commu- 
nication organization. Some modern digital sensors 
have very high data rates. They are usually used in 
environment with higher real-time requirements. 
Some other sensors like active sonars can not have a 
very high data rate. In cases where both of these sen- 
sors are involved, coordination and compromise are 
necessary. 

There are many other special problems in sensor tim- 
ing. The data flow is very complicated, especially 
during a real engagement. The timing of the sensors is 
virtually the timing of the data flow, a very difficult 
task. Miscellaneous requirements have been imposed 
on both the sender and the receiver of a signal. Some 
need the signal to be sent or received at particular time 
instants. Others have no such a requirement. Some 
require automatic sending or receiving of signals. 
Others do it upon request. Some may transmit data 
only when other data is available. Some need a strict 
synchronization. Others may transmit asynchro- 
nously. 

5. DataBase 

Like many other military systems, the submarine sen- 
sor fusion system deals with two groups of data or 
information. One is the fragile information that would 
become useless if not processed timely. Measurement 
data of a moving target belongs to this group. The 
other is the more robust data or information that can 
last for a relatively longer time. Characteristic data of 
a target is an example. This type of data should be 
stored and accessed when necessary. To manipulate 
and manage these data effectively, a powerful tool, 
such as a database management system, is needed. 

Data base provides an important support for the fusion 
system [2]. For a submarine sensor fusion system 
especially, the information available is relatively poor 
and monotonous. For example, when the submarine is 
in its most probable submerged navigation state the 
information provided by sensors is simply acoustic 
measurements that are often seriously corrupted by 
noise and other factors. Performances of sensors on- 
board both the submarine and target ships should be 
evaluated by these data. The target can not be recog- 
nized without the help from these data. Algorithms 
may have to be initialized using these data. Artificial 
neural networks need to be trained by these data. In- 
cidentally, collecting and processing such data is not 
an easy job. It is a painstaking and time-consuming 
effort. 

The amount of data needs to be entered into a data 
base for fusion purposes varies, because several fac- 
tors may affect it. The requirement of the user, the 
capability of the data base system available, the ability 
to handle data of this kind of the fusion system itself 
are some of the major factors. No matter what kind of 
data base is used, however, the following basic infor- 
mation is necessary. 

1) Ocean Environmental Data 
Ocean environmental data, from onboard sensors or 
from historical records, is important for the fusion 
system. A new trend these years is to put all the in- 
formation on a marine chart into the data base. This is 
the so-called electronic marine chart. With its user- 
friendly interfaces, this new chart can provide rich 
nautical and oceanographic information in a very ef- 
fective and flexible way. The ability of three- 
dimensional information generation and display of this 
chart system is especially useful in submarine applica- 
tions. 

2) Target Data 
Facts about some possible targets are needed in many 
ways by the fusion system. Apart from basic data e.g., 
size, displacement, movability, and weapon capacity, 
information like acoustic features of its propeller noise 
and active sonar signals is also key to such missions as 
target recognition. 

3) Decision-Making Data 
This category includes information concerning human 
intelligence. Examples include fusion related tactical 
regulations, reasoning rules for artificial intelligence 
systems, artificial neural network training data, etc. 
Submarine tactics weighs heavily human and artificial 
intelligence in decision-making because of the usually 
disadvantageous information environment. Enough 
well-selected and well-organized decision-making 
data in the data base is a prerequisite for effective hu- 
man and artificial intelligence systems. 

6. Sensor Management 

Proper management of sensor sources is quite a key to 
a successful battle engagement. The entire sensor 
system should be operated in an optimum synergic 
way. The basic concepts of sensor management are 
target assignment and target indication. Target as- 
signment is the initiation of observation channels by 
assigning a specific sensor a specific target. Target 
indication is telling the assigned sensor where its tar- 
get might be located, helping the sensor to catch the 
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target quickly. Indication may be given by the possi- 
ble position of the target, the possible direction in 
which the target may move or the possible sector in 
which the target may stay. 

Sensor management sometimes has to be concurrent 
with navigation and own-ship steering. Some sensors 
require special own-ship posture to ensure their speci- 
fied performances. For example, avoiding detection 
blind zone of a sensor is the most basic requirement 
when the sensor is recommended to operate [3]. To 
manipulate the submarine to avoid the blind zone is 
the obligation of the navigation and steering systems. 
In addition, the time instant at which a specific sensor 
is used is another factor that should be considered. 
This is particularly true for the exposed sensors. To 
use them timely is critical for improving the observa- 
tion and even the final results of an entire engagement. 

In submarine tactics, the use of an exposed sensor is 
always seen as an action that needs precautions. For 
example, to operate a sonar in an active mode might 
mean to give up stealth and tactical advantages. How- 
ever, in some cases it is necessary. In a submarine 
versus submarine engagement, for instance, it is ex- 
tremely difficulty to detect a modern submarine by 
passive mode. Using an active sonar may expose 
yourself to your opponent though, you may win the 
critical time advantage. Sometimes it is very difficult 
to get an ideal fire control solution by using passive 
information, "ping" the target before firing weapons to 
get some active information to improve the solution 
can be a wise choice. In such cases that involve the 
use of the exposed sensors, target indication is espe- 
cially important, because the time and the number of 
shots allowed for using these sensors is usually strictly 
limited. 

Each sensor usually has its optimum frequency band. 
If a sensor is better at getting data on a particular sig- 
nal, it is better to switch to this particular sensor. For 
example, targets at long distances can be detected 
more effectively by low frequency sonars. Small tar- 
gets are better detected by high frequency sonars. Fast 
moving targets can be handled well by sonars with 
Dopplor abilities. At the same time, each sensor itself 
usually has several operation modes and frequency 
bands. Mode or frequency band recommendation 
sometimes is also a necessary task of sensor manage- 
ment. 

It can be seen that sensor management in most cases is 
a decision-making problem. It is therefore almost 
impossible to handle it entirely automatically. Human 
interference is necessary and very important. 

7. Steering System 

One important task of sensor fusion is own-ship mo- 
tion optimization. This is emphasized in [1, 3]. The 
goal of this optimization is to guide own-ship motion 
so that best sensor observations and/or best fusion 
results may be obtained. This can be achieved, how- 
ever, only if the relationships between the fusion sys- 
tem and the steering system, among many other sys- 
tems, are appropriately coordinated. There are always 
conflicting requirements for these systems. First of 
all, the recommended motion strategies by the fusion 
system should be realizable. One distinctive feature of 
a submarine is its poor movability. Strategies out of 
the reach of the steering system are absolutely unac- 
ceptable. To achieve such a balance is always a chal- 
lenge. To make things even worse, there are many 
other constraints. For example, the remaining power 
storage of the battery arrays is another limitation for a 
diesel-electric submarine motion. The blind zones of 
sensors also impose limitations on submarine maneu- 
ver. Tactical requirements are another source of con- 
cerns. With all these factors being taken into account, 
the room left for the fusion system may be quite small. 

Compromise strategies are necessary for the fusion 
system to handle these situations. For example, when 
a target contact is reported by a sensor, say, a noise 
sonar, it is usually a good strategy for the submarine to 
move at a low speed, because a low speed corresponds 
to a low level of self-noise. A low self-noise is a fa- 
vorable condition for the sonar to keep the detection 
stable and effective and for the submarine to keep it- 
self stealthy. It is also more power efficient, an at- 
tractive lure for a diesel submarine. Sometimes, how- 
ever, some of these advantages have to yield to more 
urgent requirements. For example, low speed in some 
cases (e.g., bearings-only case) can result in much 
longer tracking time. Sometimes critical opportunities 
of tactical operations can be missed because of low 
speed. 

Another point that should be emphasized is the fact 
that the procedure of carrying out a steering recom- 
mendation needs time. After a recommendation is 
made, the operator notices it and then reports to the 
commander, who then makes the decision to accept it 
or not. If the decision is yes, he gives the order. Per- 
sonnel in charge of the operation of the steering sys- 
tem (e.g., planesman and helmsman) then carry out the 
order. Even after the human control operation, it still 
takes some time for the ship to finish its adjustment. 
At this time, the situation may have changed signifi- 
cantly since the recommendation was made. This im- 
plementation delay has to be taken into account when 
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making the recommendation. In fact, this is a problem 
for any machine-made decision. If this delay is large, 
its impact should be examined in such a decision- 
making process. 

8. Conclusion 

The support systems and techniques can be seen as an 
important integral part of the submarine sensor fusion 
system. Although known as support systems and tech- 
niques, they are actually complicated. So are their 
implementations. In fact, only some major issues are 
discussed in this paper. There are many other impor- 
tant aspects, such as system management, human- 
machine relationship and system performance evalua- 
tion that deserve attention. In fact, there are much 
more considerations when a real system development 
is to be undertaken. At the same time, submarines are 
experiencing modernization [4]. New technology and 
devices keep on pouring in [5,6]. Submarine sensor 
fusion, as well as its support systems and techniques, 
has to adjust itself to this development trend all the 
time. 
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Abstract— This paper discusses the fusion of 
structured and unstructured data. Information 
fusion methods based on a knowledge discovery 
model, and the case-based reasoning decision 
framework are implemented and evaluated. At the 
core of the knowledge discovery model is an 
unsupervised and incremental neural learning 
approach. Using signal data and database records 
from the heart disease risk estimation domain, three 
data fusion methods are discussed. Two of these 
methods combine information at the retrieval- 
outcome level, and one method merges data at the 
discovery-input level. The evaluation of such 
techniques demonstrates that the fusion of 
information at the retrieval-outcome level are 
significantly superior. 

Key words— Biomedical information fusion, case- 
based reasoning, knowledge discovery in databases, 
neural networks. 

1. Information Fusion and Case Retrieval 

The fusion of information is crucial in domains 
that consist of multiple variables and sources of 
data. With the proliferation of numerous sources of 
data, information fusion has become a fundamental 
research field inside and outside the computer 
science community. The term "data or information 
fusion" has been very recently established. The 
following definition has been adopted by The 
European Association of Remote Sensing 
Laboratories, The European Space Agency and the 
Space Exploration Engineering Group [1]: 

"Data fusion is a formal framework in which are 
expressed means and tools for the alliance of data 
originating from different sources. It aims at 
obtaining information of greater quality; the exact 
definition of 'greater quality' will depend upon the 
application". 

Thus information fusion is used to improve 
decision tasks — such as classification, estimation, 
and prediction — and to provide a better 
understanding of the phenomena under 
consideration. 

Fusion may take place at the level of data 
acquisition, data pre-processing, data or knowledge 
representation, or at the decision-making level. Fig. 
1 .a illustrates a process of information fusion at the 
level of input data representation in a medical 
decision-making environment.   At this level two 

main types of data may be effectively fused or 
integrated by the expert: structured and unstructured 
data. In this paper, the term structured data refers to 
standard «-tuple database records or attribute-value 
representation. It can represent medical tests or any 
other clinical reports. In this diagram the term 
unstructured data refers to text, signals, images, etc. 
Fig. l.b depicts a process of information fusion at 
the level of decision-making. Here, the medical 
expert interacts with other human or/and computer- 
based experts that provide knowledge or hypotheses 
in order to support a final decision. This process 
can be understood as the fusion of multiple 
decisions. Thus Fig. 1 provides an illustration of 
the process of medical decision-making that can be 
approached as an information fusion problem. 

Data Fusion based on artificial intelligence (AI) 
are becoming more and more established in areas 
ranging from image analysis through robotics to 
biomedical systems [2], [3]. The need for higher 
levels of reliability, emphasising at the same time 
clinical reasoning models, makes AI particularly 
attractive for those tasks that involve clinical data 
fusion. Assi [4] discusses some medical data fusion 
applications, where textual data from essays used in 
pharmacological practice and toxicology teaching is 
used, however, he focuses only on unstructured 
data. 

One such AI technique is Case-based reasoning 
(CBR), [5] that views understanding and reasoning 
as a by-product of the underlying memory processes 
of memorising (data storage) and reminding (data 
retrieval). In CBR, the basic processes of solving a 
new problem or interpreting a new situation revolve 
around the retrieval of relevant cases from a case 
memory. This process is followed by the 
adaptation of the past to the new problem or 
situation. Arguably, the most crucial aspect in 
building effective CBR systems is the modelling of 
relevance knowledge. This knowledge is used in 
the retrieval stage to ensure that only those cases 
relevant to the current problem are retrieved. 
Usually, relevance, in such systems, is modelled via 
a similarity measure (computational approach) or 
an indexing structure (representational approach), 
or a combination of both [5]. 

Traditional CBR systems do not explicitly 
consider the dimension of fusing data which 
originated from different sources. Typically, a case 
in a CBR system is represented as a monolithic data 
record and the underlying retrieval and adaptation 
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schemes do not explicitly model the fusion of data. 
The limitations of this simplistic view become 
apparent in situations where the underlying case 
data is composed of different types of data; either; 
structured and or unstructured. In this study, the 
two main data sources have representatives in both 

categories, namely, digitised electrocardiogram 
signal data and medical database records (see Fig. 
2). The basic decision task is that of estimating the 
coronary heart disease (CHD) risk of asymptomatic 
subjects. 

(a) (b) 
Structured data Unstructured data Human experts 

1 ' 1 '                       1 
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\—► Medical 

If decision 
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Medical 
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Medical decision maker Medical decision maker 

Fig. 1. (a) The process of medical reasoning seen as an information fusion problem at the level of input data 
representation, (b) Medical reasoning seen as an information fusion problem at the level of input data representation. 

The work presented in this paper proposes a 
framework for information fusion based on the CBR 
paradigm. A knowledge discovery method permits 
relevance knowledge to be automatically extracted 
from existing structured and unstructured data. This 
method is based on a self-organising and 
incremental neural model called growing cell 
structures (GCS). 

The remainder of the paper is organised as 
follows: Section 2 describes the medical problem 
under consideration. Section 3 introduces a 
relevance knowledge discovery model based on 
GCS. In Section 4, the information fusion methods 
are described in detail. Section 5 illustrates the 
implemented CHD risk estimation experiments 
based on the three fusion models, and compares the 
resulting overall systems with two single-source 
models. Finally, Section VI ends with some 
concluding remarks. 

a) Unstructured data b) Structured data 
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Fig. 2. a) RR interval sequence encoded as Poincare" plot; 
b) CHD risk factors encoded as feature vector. 

2. The medical application domain 

Coronary heart disease is a multi-factorial disease 
and it remains one of the most common causes of 
death in many countries [6]. A number of different 

approaches involving a variety of AI techniques 
such as chaos theory, neural networks, and based 
upon long-term ECG have been used to facilitate 
diagnosis of the condition [7], [8], [9]. 

The method proposed in this this paper models 
CHD risk estimation on the basis of input data that 
describes asymptomatic patients by means of short- 
term electrocardiograms (RR intervals) and 
recognised risk factors. A single RR interval 
reflects the length of the time period between the R- 
spikes of two subsequent heartbeats. In line with 
other research on RR intervals [10], a Poincare" plot 
encoding is used to represent a sequence of RR 
intervals. Plotting each RR interval in a sequence 
against the following, Poincare' plots provide an 
easy-to-understand visualisation of the heart's beat- 
to-beat behaviour. Fig. 2 illustrates the two types of 
data sources involved in the proposed risk 
estimation method. 

The diagram in Fig. 2 depicts the RR interval and 
risk factor data of a healthy, low-risk subject. It is 
known that CHD risk is related low mean RR 
interval and low heart rate variability. Moving the 
cluster of points in such a plot from bottom-left to 
top-right corresponds to an increased heart rate, and 
a lower dispersion of the points in the cluster 
reflects an increased hear rate variability. 

The data underlying this study was obtained from 
a set of standard screening tests that were performed 
on 75 asymptomatic, middle-aged, male subjects in 
order to identify subjects of high CHD risk. For 
each subject the CHD risk was determined by 
means of the Anderson scoring system [11]. This 
method calculates the risk score based on the 
following factors: Age, Sex, Total Cholesterol, High 
Density Lipoprotein  Cholesterol,  Systolic Blood 
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Pressure, Diastolic Blood Pressure, Smoking, 
Diabetes, Left Ventricular Hypertrophy. In addition 
to the risk factor data, the subjects also underwent a 
supine resting electrocardiogram at fixed respiratory 
frequencies. For each subject, four tests were 
carried out under varying respiratory conditions 
with regard to breathing volume and frequency 
encoded into a single RR interval sequence by using 
a Poincare" plot. 

3. Relevance Knowledge Discovery Model 

The notion of relevance is of primary concern in 
information retrieval, case-based reasoning 
systems, and for multiple attribute decision making 
methods [5]. Based on a query or problem 
description, relevance knowledge provides a means 
to retrieve those data items from a repository that 
are relevant to answering the query or to solving the 
problem. The explicit definition of useful similarity 
measures or indexing structures can be laborious 
and time-consuming and, as a result, less effective 
general measures, such as the Euclidean distance, 
are often used. Another less frequently encountered 
approach is to use machine learning methods or 
statistical models discover relevance knowledge 
from existing data. A relevance knowledge model of 
this sort, indexing knowledge discover, IKD, is at 
the centre of the data fusion methods proposed in 
this paper. The IKD model is based on the self- 
organising neural network approach; growing cell 
structures (GCS) [12]. 

The process of discovering similarity or indexing 
knowledge from a given set of cases, Q, can be 
described in terms of partitioning the cases into a 
set, C, of disjoint groups or clusters such that 
members of the same cluster are more alike than 
members of different cluster [13]. A clustering 
algorithm, A, produces a mapping 

,4:fi->C;(Cc2n)A f]X = 0, 
XeC 

which associates a cluster of similar cases, G, with 
every case, /, in the case base (where /' e Q and G s 
Q. 

In this work, a GCS neural network is employed 
to cluster cases. GCS neural networks constitute a 
variation of so-called self-organising map neural 
networks [14]. A typical GCS can be described as a 
two-dimensional space, where the units (cells) are 
organised in the form of triangles. The cells are 
represented as a weight vector, which is of the same 
dimension as the input data. The learning process in 
a GCS network consists of a number of input 
vectors or case presentations and weight vector 
adaptations. 

In the first step of each learning cycle (i.e., 
presentation of a single case), the cell, c, with the 
smallest distance between its weight vector, wc, and 
the actual input vector, x, is chosen. This cell is 
referred to as the winner cell. This selection process 

defined in equation (1) (O denotes the set of all cells 
in the network). 

c: be - wj < he - w,- ; V/' e O (1) 

The second step consists in the adaptation of the 
weight vectors of the winning cell, c, and their 
neighbour cells; these steps are defined by equation 
(2) and (3). The terms sc and en are learning rates 
for the winner and its neighbours respectively; ec, e 
n e [0,1], and Nc denotes the set of direct 
neighbouring cells of c. 

In the third step of the learning cycle, each cell is 
assigned a signal counter, x, which counts how 
often a cell has been chosen as the winner during 
the learning process. 

wc(t + l) = wc(t) + £c(x-wc) (2) 

w„(t + l) = w„(t) + e„(x-w„yyneNc   (3) 

Equations (4) and (5) specify how this counter is 
modified from one learning cycle at time t to the 
next at time t + 1 (the index c refers to the winning 
cell and i to all other cells). The parameter a is a 
constant rate of counter reduction, where as [0,1]. 

Tc(t + l) = Tc(t) + \ (4) 

T, (t+l) = T, (0 - a T, (0; / * c        (5) 

The GCS learning algorithm also performs an 
adaptation of the overall structure by inserting new 
cells in those regions that represent large portions of 
the input data. In this respect GCS neural networks 
differ from conventional and classic Kohonen-type 
neural networks. The insertion adaptation process is 
performed after a fixed number of learning cycles or 
input presentations epochs, X. An input 
presentation epoch refers to a series of learning 
cycles within which the network is sequentially 
presented with each case, or input vector, in the 
training set. For example, if there are n = 100 
training cases, and X = 10, then a new cell will be 
inserted every 1000 learning cycles. Equations (6), 
(7), and (8) define the rules that govern the insertion 
process in a GCS network, the step of insertion of 
new cells. In the equations, the terms hj and hn 
reflect the relative counter of the corresponding 
cells / and q respectively. 

q:hq>h,; Vi e O 

r: \\wr - wJ > \\wp - w± \fp e N, 

(6) 

(7) 

(8) 

The cell with the highest relative counter, hq, is 
symbolised by q. Now, the neighbouring cell, r, of 
q with the least similar weight vector is determined 
as defined by equation (8), and a new cell, s, is 
added between the cells q and r.  The initial weight 
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vector of this new cell is equal to the mean of the 
two existing weight vectors. At the same time the 
signal counters, T, in the neighbourhood, Ns, of the 
recently inserted cell, s, have to be adjusted. The 
new values of T represent an approximation to a 
hypothetical situation where the cell s would have 
been existing since the beginning of the process. 

After completion of an entire learning process, a 
number of ordered, discrete reference vectors are 
fitted to the distribution of the vectorial input 
patterns (cases). Thus, each case is assigned to the 

cell whose weight vector is closest to the case itself 
represented by the input vector. The resulting GCS 
network topology, with its cells, connections, and 
adapted weights, can be thought of as an partition 
structure for the underlying cases. Each cell in such 
a structure represents zero or more cognate cases 
that form a cluster or (extensional) concept. 
Generally, the similarity between cases from direct 
neighbour cells is higher than that of more distant 
cells. Based on weight vector differences of 
neighbouring cells, a quantification of 
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Fig. 3. (a) GCS indexing structure after learning; (b) retrieval of cases C\ and C% (c) retrieval of case Cj 

inter-cluster similarities is readily available. 
Hence, once training is completed, such a GCS 
network can be used to assign a new, previously 
unseen query case to its nearest "non-empty" cell. 
All cases in that cell are deemed most relevant or 
similar, and are retrieved for further processing. 

To illustrate consider Fig.3. Fig. 3(a) depicts 
the GCS topology and inter-cluster distances 
(similarities) that have emerged after a learning 
episode based on a set of seven training cases. 
The resulting structure consists of five cells, each 
of which is associated with a subset of the training 
cases. For example, Cell 5 represents the cases 
C4, C5, and C6, and Cell 3 is not associated with 
any case. 

In the test mode (run-time), when the GCS is 
presented with a new query case, X, the GCS 
similarity indexing structure is used locate those 
cases in the case base that are most relevant or 
similar to X. This situation is depicted in Fig. 
3(b). The new case, X, is assigned to Cell 1 based 
on the difference between Xs value vector, vx, 
and the cell weight vectors, w;, using DIS(vx<wi) 
= II VX ~ W

J II (e-g-> the Euclidean distance). All 
cases associated with the "best-match" call are 
retrieved, in this case the cases C, and C2- 

Fig. 3(c) illustrates the retrieval scenario where 
a query case, Y, is initially assigned to a cell (here 
Cell 3,) that does not represent any cases. In this 
situation, the algorithm selects the closest 
neighbouring cell (based on inter-cluster 
distances). If that cell is also "empty" the process 
will continue until a "non-empty" cell is reached. 
In the example, the process terminates at Cell 4, 
and the associated cases, in this case only a single 
case (Cy), are retrieved. 

Many advanced adaptation techniques have 
been reported in the CBR literature [5]. For this 

study, the simple null adaptation was used. Null 
adaptation directly applies the past solution to the 
new case without modifying or transforming the 
past solution taking into account the differences 
between the retrieved and the new case. In this 
research the adaptation function for the CHD risk 
estimation task is defined in the following way: 

Definition 1 Let X denote the new query case, 
and r(X) the risk score that has to be estimated for 
X. Further, let the set, K, denote the set of most 
relevant cases retrieved for X, where K = { C,, C2, 
..., Cn }; n 6 {1, 2, ...}. Then, on the basis of the 
previous risk scores KQ). KQ)> •■•> KC«), the 
risk score riX) is estimated as follows: 

r(X) = -Yr(Cky,C^K (9) 

A diagrammatic illustration of the retrieval and 
adaptation model, based on the IKD method, is 
provided in Fig. 4(a). In the diagram, the 
discovered indexing structure is depicted by the 
bar labelled indexing, and the adaptation model, 
defined by equation (9), is portrayed by the bar 
labelled adaptation. 

4. Information Fusion on Structured and 
Unstructured Data 

The three fusion models presented in this 
section can be divided into two groups according 
the fusion level: case representation, and retrieved 
cases fusion. Both types of fusion rely on the 
IKD retrieval strategy and the solution adaptation 
model presented in the previous sections. Fig. 4(a) 
represents the basic single-source model in which 
a query is based on the underlying data source, 
and represented by the query case X.       An 
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indexing structure is established by applying the 
IKD model, and an adapted solution is obtained in 

order to estimate the risk score r(X). 

4.1 The Case Representation Fusion Model 

The case-representation fusion model combines 

RR interval data (source 5,) with risk factor 

records (source S2) at the case representation level. 
This means that a single vector is created for each 
patient in the entire data from both data vectors 
(sequence of RR interval values and risk factor 
values). The bold-lined box labelled "fusion" in 

Fig. 4(b) illustrates this fusion model and the 
resulting transformed cases. Before risk scores 

can be estimated for new cases, the IKD model is 
applied to establish an indexing structure from the 

transformed cases in the case base. Also, a query 
is based on the fusion of the underlying data 
sources into the transformed query case, X. 

Definition 2 Let the sequence S, = (/ fn > 

and S2 = (tx, ..., tm) denote two distinct data 

sources that describe two properties of a single 

case. Then case representation fusion, ^/^S„S2), 
of the data sources S, and S2 is defined to be the 

sequence, F, composed of the elements in S, 

immediately followed by the elements in S2, as 

follows: 

/CrCS„S2) = F = (/,. ..,/„,?, tm)       (10) 

In equation (2) m, n e N*, and the values/;, and 

tj are normalised, such that/;, tj e [-1.+1]. The 
method can be is generalised to n sources. For the 

application described in this paper, source S, 

relates to the risk factors and S2 represents RR 

interval information of the same patient; n = 5, 
and m = 144 (the 144 RR interval information 
values obtained from the Poincare" plots encoding 
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Fig. 4. The IKD case retrieval and adaptation model, a) basic, single-source model; and b) case-representation fusion; and 
c) retrieved retrieved-cases fusion, (rounded boxes = transformed data; dotted boxes = IKD model; bold style boxes = 

fusion rules; dashed arrows = data transformation; bold arrows = case data flow; thin-lined arrows = control; r(X) = s: risk 
score estimation, s, for query case X) 

4.2 The Retrieved Cases Fusion Model 

The retrieved-cases fusion model combines 

information based on the retrieval results of 
multiple single-source or partial-case case bases. 

The idea is that for each individual data source a 

separate case-base of partial cases is constructed 

using the IKD model. Fig. 4(c) depicts the 
architecture of such a system with two data sources 
and the corresponding partial-case case bases. A 
partial case reflects that part of the original case 
that is described by the corresponding data source. 
For a new query, the retrieval process is then 

carried out in each individual partial-case system. 
The result of each individual retrieval process is a 

set of one or more partial cases (depicted in the 
diagram by "{retrieved cases}"). Assuming a 
simple case identifier mechanism, each partial case 
can be linked to the overall outcome or solution 
(e.g., CHD risk score) of the original complete 

case. In general, the set of complete cases 
identified by the retrieved partial cases of one 
partial-case system is not identical to that of 

another. This raises the question: Given n sets of 

partial cases, which set of complete cases should 
form the basis for further processing (solution 

transformation)? In Fig. 4(c), this question is 

illustrated by the bold-lined boxes labelled 
"fusion", which takes as input the partial cases of 
the individual partial-case systems. Two fusion 
models are proposed to address this question, 
namely, multiple-credit and single-credit fusion. 
These fusion models are general fusion models, 
because their input is made up of the output of n 

individual case-based retrieval systems, which are 
general information processing engines. 
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4.2.1 Single-Credit Fusion 

The single-credit fusion model merges complete 
cases referenced by the retrieved cases from the 
underlying partial-case systems, and it removes 
duplicate cases. This means that if the same 
complete case should appear more than once, the 
past solution that comes with this case will only be 
considered once. 

Definition 3 Let/I = { Pu ..., Pi P„ } and B 
= { g, Qj,..., Qm } denote the sets of retrieved 
partial cases originating from two independent 
partial-case systems corresponding to the data 
sources S, and S2. Further, let i(R) denote the 
complete case associated with the partial case R e 
AuB. Then the fused single-credit set, Ksc(Si,S2), 
of complete cases (solutions) processed by the 
adaptation module is defined as follows: 

^c(S„S2) = /(^)n/(5) (11) 

such that 1(A) = { KPi) .... KPi), .... KPn) h KB) = 
{<&),-, KQj), -, KQm)}, and m, n e V. 

4.2.2 Multiple-Credit Fusion 

The multiple-credit fusion model also merges 
complete cases referenced by the retrieved cases 
from the underlying partial-case systems, but it 
does not remove duplicate cases. This means that if 
the same complete case appears more than once, 
the past solution that comes with this case will be 
included as many times as the it appears. 
Intuitively, this method gives increased attention or 
credit to those cases that are deemed relevant on the 
basis or multiple data sources. 

Definition 4 Based on the formalism and 
notation in Definition 3, the multiple-credit fusion 
results in the mutiple-credit bag or multiset, 
/JTffIC(S1,S2), which denotes complete cases 
(solutions) processed by the adaptation module; it 
is defined as follows: 

Kmc(S„S2) = 1(A) u 1(B) 

5. Results and Evaluation 

(12) 

All three fusion methods discussed in Section 4 
have been implemented and tested using the data 
described in Section 2. In addition, two single- 
source reference experiments were carried out 
using only RR interval data and risk factor data 
respectively. The respective IKD-based fusion 
models discussed in Section 4 were then applied 
(risk estimation task) to the query cases in the test 
sets. The overall mean of the average absolute 
errors (15 query cases) for each of the five 
estimation models after 10 test runs are shown in 
Table 1. 

Table 1. Two single-source, and three fusion-model 
results. 

RF RRI CR SCF MCF 
3.73 5.03 5.18 3.52 3.22 

(RF: risk factor source only; RRI: RR interval source only; CR: 
case-representation fusion; SCF: single-credit fusion; MCF: 
multiple-credit fusion). 

We observe that the single-credit and multiple- 
credit fusion models perform better than both 
single-source methods and the case-representation 
fusion model. 

An analysis of means (ANOM) allows us to 
evaluate the significance of the difference of the 
proposed models [15]. In this evaluation method 
one computes decision lines defined as: 

X..±h(a;I,N-I)ß^,^-J- (13) 

t-    i - • 
b 

g in 
i.   '■ ■            1 

3 - 

• 
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Fig. 5. ANOM chart for the performed experiments. 

Where the critical values h(a;I,N — I) are 
available in [15], a is the probability level of 
significance, Z and MSe represent the main 
absolute error and main variance respectively for 
all of the performed experiments, I is the number of 
models, n represents the number of absolute errors 
for each model and N is the total number of 
absolute errors under study. In this case, taking 
into account the averages absolute errors of the five 
models for each of the test runs, the ANOM is 
carried out graphically by computing decision lines 
at the a = 0.05 level, X, = 4.11, MSe = 0.75, 7=5, 
n = 10 and N = 50. The ANOM chart (Fig. 5) 
compares the averages absolute errors for each 
model based on the lower (LDL) and upper (UDL) 
decision lines calculated by using Equation (13). 
From this chart one sees that the retrieved case 
fusion models fall outside the lower decision line 
LDL, while the single source models and the case 
representation model fall onto the other critical 
regions. Thus one finds that the means obtained 
from these experiments are significantly different at 
the a = 0.05 level. 

The statistical significance of the error 
differences comparing the best single source model 
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(RF) with the best fusion model (MCF) is given in 
Table 2. 

The results are interpreted in the light of the 
following three significance methods: Voting 
strategy: The multiple-credit fusion method 
performed better than the single-data method in 8 
out of 10 tests, and 3 of those results were 
statistically significant. Total Combined SE (I): 
Taking into account the average outcomes from the 
10 tests, a combined standard error (SE) equal to 
2.53 was obtained. Total Combined SE (II): Taking 
into account all the average errors of each of the 10 
test runs (150 samples), a combined SE of 2.10 was 
obtained. This evaluation indicates that the total 
average error (3.22), obtained through the multiple- 
credit fusion method, was significantly superior to 
that obtained from the single-data model (3.73). 

Table 2. Comparing single-data with multiple-credit 
fusion. 

Test Run RF MCF SE Significance 
1 3.80 3.74 0.10 N.S 
2 3.25 2.86 0.71 N.S 
3 3.43 2.84 0.58 N.S 
4 3.09 3.19 0.13 N.S 
5 3.32 3.24 0.09 N.S 
6 3.81 4.08 0.4 N.S 
7 3.69 2.51 1.98 p<0.05 
8 5.09 3.56 1.86 p<0.05 
9 2.71 2.60 0.19 N.S 
10 5.08 3.58 1.76 p<0.05 

avg. 3.73 3.22 — — 
N.S. = not significant; SE = combined standard error 

6. Conclusions 

This paper presented three data fusion models for 
case-base decision support and reasoning using 
CHD data. It was clearly demonstrated that at least 
two of the fusion models — single-credit and 
multiple-credit fusion — were superior to single- 
source models. Based on the best single-source 
model and the best fusion model, it was shown the 
superior performance of the fusion approach was 
statistical significant. 

CBR is often characterised by five dimensions, 
namely, representation, retrieval, adaptation, 
revision, and retention. At a methodological level, 
the three fusion models put forth in this paper could 
be viewed as general models for some of these 
dimensions. Essentially, the case-representation 
fusion model constitutes a case representation 
framework that can consistently handle and 
integrate structured and unstructured data sources 
into a single unit. The two case-retrieval fusion 
approaches could be thought of as a multiple-case 
adaptation strategy. 

The indexing knowledge discovery model 
proposed in this paper forms a crucial part in the 
overall fusion approach. Not only can this model 
handle data format diversity, high dimensionality, 

and relative importance of the data source, but it is 
also capable of incrementally updating the existing 
indexing structure when new cases are added to the 
system. 

The case retrieval and fusion techniques outlined 
in this paper have demonstrated significant 
improvements of a medical decision support task. 
They can provide a better insight into the process of 
medical reasoning viewed as a multi-source and 
incremental data application domain. 

Future work on this fusion model will have to 
consider intra-cluster, i.e., local, similarity 
processing, source selection procedures and fusion 
models. Another line of investigation would be to 
consider performance feedback within the learning 
stage, possibly in conjunction with genetic 
algorithms. 
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Abstract - Traditional surface reconstruction 
techniques have focused exclusively on contour sections 
in one anatomical direction. However, in certain 
medical situations, such as in presurgical planning and 
radiation treatment, medical scans are taken of the 
patient in three orthogonal directions to better localize 
pathologies. Fusion techniques must be used to register 
this data with respect to a surface fitting method. We 
explore the issues involved infusing data from ellipsoid 
anatomy, such as the brain, heart, and major organs. 
The output of the fusion process is a set of data points 
that are correlated to one another to describe the 
surface of a single object. This data network is then 
used as input to a surface fitting algorithm which 
depends on two sampling metrics which we define. The 
solution to this problem is important in presurgical 
planning, radiation treatment, and telemedical systems. 

Key Words: data fusion, contour reconstruction, 
surface reconstruction, scattered data 

1. Introduction 

A common problem in many scientific fields is to 
reconstruct a three-dimensional surface from a set 
of planar contours. This type of data can be taken 
from many problems, including histological 
sampling of anatomy and computer aided design 
settings, but the most common field in which this 
technique is used is in clinical medicine. Data is 
obtained from patients by measuring serial 
sections of anatomy with medical imaging 
devices. The most well-known of these are 
computer axial tomography (CAT scans), 
magnetic resonance imaging (MRI), and 
ultrasound, which measure structural information 
in the object [1]. 

Most methods that reconstruct surfaces from 
contours only handle a set of contours along a 
single axis [2-4], but it is common practice to 
obtain medical scans from patients in three 
orthogonal directions. It is not possible to recover 
features of the surface of an object in areas where 
sampling is insufficient. The additional 
information in multiaxial contours is used to 
better localize anatomy; to "fill in the gaps" 
between contours in one direction and observe 
anatomy from a different perspective. Precise 
localization of target objects in clinical treatment 

is imperative in presurgical planning to minimize 
invasiveness and in radiation treatment to 
minimize exposure to surrounding tissue. Thus, 
our work is concerned with the data fusion issues 
in integrating the contours of three orthogonal 
axes into a coherent data set to which a surface 
may then be fit. 

Many times, instead of segmenting sections 
from each scan slice, imaging techniques will 
instead consider the data as a sampling of a 
trivariate function on a cubical lattice and employ 
volumetric rendering techniques to create 
isosurfaces of the object, such as the marching 
cubes algorithm [5]. However, this approach 
assumes that the data are uniformly dense over the 
cubical region and thus can require the storage 
and transmission of a large amount of data. 

We adopt the terminology of Meyers et.al. [4] 
and use the following definitions: 

l.A contour is a simple polygon that results 
from the intersection of an object's surface 
with a plane. 

2. A section is a collection of contours in the 
same plane. Note that, in general, a section is 
not necessarily composed of contours from 
the same object and an object may have more 
than one contour in a section. 

The   objects   that   we   are   interested   in   are 
nonbranching  ellipsoidal  objects,  such  as  the 
brain, the heart, and other major organs. 

1.1 Previous Work 

Most attention to contour reconstruction has 
focused on fitting a smooth surface to a 
triangulation of a set of contours along a single 
axis. Meyers et. al. [4] have decomposed the 
problem into four subproblems: the 
correspondence problem which results from 
having multiple contours in a section and the 
solution of which determines the gross topology 
of the objects, the tiling problem which 
establishes a triangulation between adjacent 
contours (where adjacency is determined by the 
solution to the correspondence problem) based on 
some optimality metric, the branching problem 
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which handles the case where x contours are 
merged to y contours in adjacent sections and x 4- 
y, and the surface fitting problem which 
parametrically fits a smooth surface to the 
triangulation determined by the solution to the 
tiling and branching problem. Boissonnat [2] and 
Fuchs etal. [3] are additional references to 
Meyers etal. [4] for this case. 

The aforementioned approach is 
inappropriate for the set of contour data from 
three different directions, since it makes the 
assumption that the data points all lie on the same 
closed manifold in three-dimensional space (i.e., 
is error intolerant) and it depends on the 
structured nature of parallel planar contours to 
perform the triangulation. However, a drawback 
of this assumption is that connectivity information 
is lost outside of the planes of intersection, hence 
the correspondence and branching problem 
mentioned above. Payne and Toga [6] proposed a 
possible solution based on a dense sampling of 
parallel planes to form a volume of data upon 
which resampling along any other intersecting 
plane may be performed. While this method 
allows arbitrary intersecting planes, it also leads 
to data inconsistencies since contours on separate 
planes of intersection are required to agree where 
the planes intersect. Also, this approach is 
computationally expensive. Finally, this method 
requires that the data is dense enough to construct 
a volume of data. However, one of our goals is to 
not require a dense sampling of patients. By 
minimizing the amount of data required to 
accurately reconstruct the object we also 
minimize the amount of possible radiation 
exposure to the patient and the time needed to 
transmit the contour data over low-bandwidth 
networks in telemedicine applications. 

1.2 Motivation 

According to Luo and Kay [7], multisensory 
fusion "refers to any stage in the integration 
process where there is an actual combination of 
different sources of sensory information into one 
representation format". For example, 
electrocardiogram sensor nodes are placed at 
various points on the surface of a patient to 
measure electrical cardiac activity and are 
combined into a single reading of spikes and 
valleys on a CRT display or paper tape. The 
definition of multisensor fusion is also applicable 
to the setting where data acquired from a single 
sensory device over an extended period of time is 
to be fused together into a single representation 
format  [8].  The  advantages  of multiple axes 

contour data in surface reconstruction over the 
uniaxial approach can be summarized in terms of 
two of the advantages of multisensor fusion 
presented by Luo and Kay. 

1. Complementarity The use of multiple sets of 
contour data taken from different directions 
collects more detail than contour data taken 
along a single axis. For example, features of 
the object in between two contours of a 
single set of contour sequences can never be 
reconstructed since there is no data of the 
feature. However, it is more likely that the 
multiple contour approach, particularly if the 
directions of sampling are mutually 
orthogonal, will sample data from these 
features and represent them in the final 
reconstruction. Another example is the 
possible disambiguation of the branching and 
correspondence problems mentioned 
previously that are a result of the structure of 
the data in uniaxial contour reconstruction. 

2. Redundancy Errors in either collecting the 
sampled contours or in triangulating the 
sequence of contours in the uniaxial approach 
results in erroneous surfaces over a wide 
segment of the object. The redundancy 
provided by sampling the same object from 
different directions reduces uncertainty and 
contributes to a more accurate surface 
representation of the object. 

1.3 Our Approach 

The approach to surface reconstruction from 
contour information in this paper is motivated by 
the shortcomings of the uniaxial contour 
reconstruction methods. Additionally, we wish to 
use the standard set of image data collected from 
patients in the transaxial, saggital, and coronal 
orientations and not require special orientations 
not normally performed. Note that we do not 
require that data be collected by the same sensor 
arrangement. The only restriction is that the type 
of the sensor used, structural versus functional, be 
consistent. We also wish to minimize the amount 
of data needed to capture salient anatomy 
features, thus making our approach applicable in 
low bandwidth telemedical applications. 

Our method consists of three computational 
components in which the output from each stage 
feeds into a subsequent stage (Figure 1). The first 
stage is to perform a segmentation of the object of 
interest in the medical images into sets of points 
that form contours. This stage is typically 
performed with trained human intervention. The 
second stage takes the three sets of contour data 
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sets and fuses them into a coherent data network 
which defines a single object. This network is 
then fed into the third stage in which a smooth 
surface should be fit. Our contribution and the 
focus of this paper is primarily with the second 
stage of data fusion (Section 2) and secondarily 
with the third stage of surface fitting (Section 3). 
We utilize an existing method of surface fitting to 
scattered data points by deriving two sampling 
metrics required by the algorithm. 

Segment Contours from Image Sequences 

Data Fusion 
Contour SBts D 

Surface Fitting ol 
Data Network 

Figure 1. Computational steps in surface fitting process 

2. Contour Fusion 
The first component of the reconstruction process 
is a fusion of the sets of contour data from each 
axis to ensure that the axes along which the data 
are situated are orthogonal and the contour data 
points describe the same manifold. In this work, 
the assumption is made that the object from which 
the data is taken is ellipsoid in nature and, thus, 
has only one representative contour in each 
section taken. While this excludes certain types of 
anatomy, specifically anatomy with branching 
properties such as vascular networks, this 
assumption simplifies the method. Also, it should 
be noted that most anatomical features that are 
imaged in this manner are ellipsoid in nature. 

The input to the data fusion stage is assumed 
to be three sets of contour sequences where each 
set is composed of contours that lie in 
perpendicular planes to some axis. The contours 
are sequences of points that have been segmented 
from the images of the medical scanning process, 
such as MRI or CAT scans. Usually, some human 
intervention is involved in the segmentation of 

points from interesting anatomical regions. In 
effect, the input can be thought of as three sets of 
points each of which lies on or near the surface of 
the object and the fusion problem is to correlate 
the points so that they define the same object. 

The first step in the fusion process is to align 
the three contour axes such that each is orthogonal 
to the other two. Let the three contour sequences 
be Si = {Ci,i, C1,2,...,Ci,„i},52= {C2,l, C2,2,-..,C2,ra) 
and S3 = {c3,i, c3t2,..., C3,n3} where each contour cu 

= {Pu,k) for i = 1,2,3, j = 1,2....,«,-. and k is a 
subscript of the number of points in Cy. Since for 
a given Sit the contours are assumed to be planar 
and parallel, one ordinate is fully specified by the 
imaging geometry and serves as the axis along 
which the contours are aligned parallel to one 
another. Additionally, the points are assumed to 
be given relative to the same global image 
coordinate system (Ix,Iy,Iz) for which the 2-D 
subspace (/„ ly) is illustrated in Figure 2. Given 
the imaging geometry for all three sets, the axes 
of the sets are assumed to be mutually orthogonal. 
The points that are a result of the segmentation 
process are in the coordinate system of the images 
and each series of images from the three differing 
directions are separate coordinate systems. In 
order to correlate the axes along which the 
contour sequences lie, we must transform them to 
a common coordinate system (Figure 2). For each 
S„ the transformation T : cy -» c'u takes the points 
of contour /' from the image coordinate system to 
the coordinate system centered at the origin and 
bounded by the cube [-1... 1, -1... 1, -1... 1] which 
may be considered the object coordinate system. 
The procedure for this step is 

1. Determine the maximum and minimum 
ordinates of all points in St. Denote these as 
3-vectors max and min on which indices x,y,z 
exist. 

2. For all points (x, y, z) in 5„ make the 
following transformation: 

x' = .—(x-minj-l 
max-minr 

y =- maxy-miny 

-(y-min,)- 1 

-(z-minj-l 
maxz-minz 

This transformation is T as given above. 

41 



/              \ 

\    .: : °>              ; ' 

\   \ 
1 

( 
... 

'i      1 
/ 

Figure 2. Relationship between the different 
coordinate sytems. The object has its own 
coordinate system denoted by Ox, Oy as well as 
being described in the coordinate system of the 
image I„ Ir 

When this procedure is applied to Si, Sz, and 
53, the transformed sets share the same coordinate 
system. In this way, the three axes along which 
the contours are aligned are correlated and fit to 
thecube[-l...l,-l...l,-l...l]. 

The second step of the fusion process is to 
adjust the contours for scaling. In practice, images 
taken from a patient using the same medical 
imaging device in a single session do not undergo 
scaling differences between different directions. 
The reason for this is that the scanning device, 
which is composed of an energy source and 
sensors on the other side of the body, is mounted 
on a circular platform and rotated concentrically 
during the scanning process [1]. However, scaling 
errors may occur in the segmentation phase when 
points are sampled from images. 

If scaling is to be resolved, it can be assumed 
that it exists only between the sets Si, 52, and/or 
S3. That is, there is no difference in scaling 
between contours of the same contour sequence. 
This assumption is reasonable when one considers 
that the contours that make up a particular 
sequence Si are sampled at the same sampling 
session. There is no combination of contours 
along an axis from different scanning sessions. If 
this were the case, the resulting data would be 
useless to the clinician since temporal and spatial 
differences could not be resolved. 

Scaling of contours is either uniform or non- 
uniform. The general transformation from a set of 
points to a scaled set of points is given by the 
homogeneous matrix 

~Sr    0    0   0" 

When Sx=Sy=Sz, the scaling transformation is 
uniform. We determine and handle uniformly 
scaled contours by comparing the ratios of the 
width of the central contours in each of the three 
sets in a pairwise manner. If the ratio is greater 
than l±e, we scale the offending contour set by 
using the ratio as the scaling factor. It is not 
sufficient to compare only two sets since it leaves 
the question of which contour set to scale 
undetermined. Currently, we do not consider the 
case of non-uniformly scaled contour sets. 

The reader may notice that we have dealt 
with translation and scaling but have not 
discussed rotation. The reason for this omission is 
that it is assumed that the imaging geometry of 
the medical scanning device takes care of the 
element of rotation. In fact, in real world settings, 
the three directions that we have discussed, 
transaxial, saggital, and coronal, are mutually 
orthogonal directions that are "hardwired" into the 
scanning geometry of the hardware systems [1]. 
This condition may be violated when the patient 
moves while the device is in the process of 
scanning, but usually patient movement will 
induce other serious errors such as ghost images 
and blurring before there is enough movement to 
grossly violate the orthogonality. 

The output of the fusion process is a set of 
data points that are correlated to one another to 
define a single object's surface. This set of points 
is then used as input to a surface fitting process. 

0 s, 0    0 
0 0 5Z   0 
0 0 0    1 

Figure 3. Scaling contours either by shrinking or 
growing. 

3. Surface Determination 

The output from the data fusion step is a network 
of points with a certain structure and the final task 
is to fit a smooth surface to this network of data 
points. We assume our surface to be compact, 
connected, orientable in 913, and closed. This 
problem has been examined from many different 
perspectives in the computer graphics and vision 
community. 

42 



3.1 Surface Fitting to Scattered Data 

Hoppe et. al. [9] present an algorithm to 
reconstruct the surface of an object from an 
unorganized collection of scattered data sampled 
from the surface. While our data network is not 
unorganized - it has the structure of three sets of 
points where each set is a sequence of planar 
contours and the three axes are orthogonal - we 
choose to use this algorithm because it produces 
good results when the sampling density of points 
is sufficient. A generalized approach is also 
preferable since it is applicable to the case of two 
sets of contour sequences instead of three. In fact, 
Hoppe et. al. [9] demonstrate their algorithm on 
the uniaxial reconstruction problem. 

Prior to applying the scattered data 
reconstruction algorithm, two metrics describing 
the sampling error and sampling density must be 
defined. Consider the set X = xu x2, ..., xn of 
sampled data points, i.e. X = Si U S2 U S3, on or 
near the unknown surface. We assume that 
Xi=yi+ei where yt is a point on the surface and 
etE 9l3 is an error term. Then, X is 5-noisy if 
||e,||<6, V i. Features on the surface of the object 
that are smaller in magnitude than 8 are not 
captured in the reconstruction. We estimate 5 by 
recognizing that the most significant source of 
error associated with points not on the surface of 
the object is the segmentation by human 
intervention. Thus, the resolution of the image on 
the computer screen and the size in pixels of the 
image are important factors in estimating 8. 

The other metric to be defined is the 
sampling density. As mentioned, features in those 
regions on the object's surface that have been 
insufficiently sampled cannot be reconstructed. 
Let Y = yi,y2,---,yn be defined as above and S be a 
sphere of radius p. If Hy.-yJI^, \/y( E Y where 
yc is any point on the surface of the object 
representing the center of S, then Y is said to be p- 
dense. We can provide an estimate of p by noting 
the structure in Figure 4(a). When combined and 
scaled, the sets of contours intersect to form a 
series of patches that approximates the surface. 
We assume that the inter-contour distance is 
constant along a given axis and that the distance 
between contour planes is greater than the 
distance between adjacent points on the same 
contour. Define dt as the distance between 
contours Cy and cy+i along axis i, and dk as the 
distance between contours cfcI and c^+i along axis 
k. Define a sphere S centered between ctj, cy+i, 
ct(, and Cjt,;+i with radius 

vaax(d,,dk) 

S is the sphere circumscribed around the square 
sharing the same center and with sides of length 
max(<44) (Figure 4(b)) and it contains at least 
one point in the set 5, U Sk when placed near some 
patch. 

CkUl 

Figure 4. Configuration of contours in estimating the 
sampling density p 

We   outline   the   algorithm   for   surface 
reconstruction of scattered data below and refer 
the reader to Hoppe et. al. [9] for the details. 
1. Define a scalar valued signed distance function 

/:D-»%Dc9t3 

which estimates the signed distance from a 
point to the unknown surface. Take the zero set 
of/as the estimate of the unknown surface. 
A. Estimate the tangent planes 

Let Nt(Xi) be the it points of X closest to xh 
otherwise known as the k-neighborhood of *,-. 
A tangent plane which is the least-squares 
best fitting plane to Nfa) can be determined 
in the following way. Compute the centroid 
of Ntfxt) as 

and let r, be the eigenvector associated with 
the smallest eigenvalue of the symmetric 3x3 
semidefinite matrix 

X(y-o>(y-0l) 

This eigenvector corresponds to the normal 
vector of the tangent plane, and thus, the 
tangent plane is given by (pb r,). While (ou r,) 
for each xtEX forms a local linear 
approximation to the surface at each JC„ the 
set of all (Oj, /-j) cannot be used as the 
approximation for the surface since the 
resulting union may not be a manifold. 

B. Make   the   tangent   plane   orientations 
consistent 
Determining the tangent planes {p» rf) is 
relatively straightforward; however, in order 
to be useful, the set of all (o*, r.) must be 
consistently oriented. Note that two points xt 

and Xj are geometrically close if xtE Nrfxj) or 
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xß. Ni£xi), and their tangent planes are 
consistently oriented if r ä ^ j = 1. The 
problem of making the tangent planes for 
geometrically close points consistently 
oriented over all points in X can be cast as an 
NP-complete graph optimization problem, so 
Hoppe et. al. choose an approximation 
scheme. The basic idea is to choose an 
orientation arbitrarily (such as the *, with the 
largest value of the z ordinate) and propagate 
the orientation that favors nearly parallel 
tangents planes by constructing the MST of 
the Riemannian graph. 

C. Construct f 
The signed distance function is created in the 

following way. Let pE 9^ be an arbitrary 
point. 

a   /«—index of (Op  r,) whose centroid is 
closest to p 

b   z<—or((p-Oi)f i)ri as the projection of p 
onto (0„r,). 

c   if d(z,X)<p+ö±enßp)<r-(p-Oi)ri 
else ftp) is undefined 

2. Perform contouring of the zero set of/ 
The zero set of/is linear yet discontinuous. 
Thus, contouring methods such as the 
marching cubes algorithm [5] are used to 
extract an isosurface which is piecewise 
linear and continuous. 

4. Concluding Remarks and Future Work 

A method for integrating and correlating contour 
data sequences from three orthogonal imaging 
directions for surface reconstruction algorithms is 
developed in the context of data fusion by 
establishing a common coordinate system and 
adjusting for scaling discrepancies between the 
contour sets. Metrics for sampling density and 
error used in a scattered data reconstruction 
algorithm are derived for the fused data network. 

4.1 Implementation 

We have implemented our data fusion approach 
for three types of objects: spheres, ellipsoids, and 
a rough segmentation of medical data. The first 
two objects are artificially generated with a small 
perturbation from the idealized surface added at 
random intervals during the point generation 
process. Also, for one instance of the sphere, we 
uniformly scaled the contours along each of the 
three axes. Although we have not focused on 
nonuniform contour scaling in this paper, we 
generate data for spheres with a "bulge" in one set 

of contours. Each contour sequence in an object 
was generated from three distinct offsets to 
simulate segmentation of objects in the image 
coordinate systems. The ability to control the 
error in the data is an important factor at this stage 
of development. 

The results of the contour alignment and 
uniform scaling fusion steps were favorable for 
the case of the sphere (Figure 5) and the ellipsoid. 
We have found that small errors are induced by 
the effects of non-uniformly scaled contours 
which are "warped" by the error, as predicted 
above. These errors in turn induce dimpled 
surfaces because of the segments of the contour 
which are non-uniformly warped outside of the 
surface. We are currently working on the 
registration of non-uniformly scaled contours. We 
are also gathering other sources of real digitized 
medical data as our attempts at digitizing MRI 
films produced digital images of low contrast 
which made subsequent segmentation by hand 
difficult, if at all possible. 

Figure 5. A sphere with a random uniformly scaled 
contour sequence (scaled by 1.34134398702) and 
the results of our uniform scaling fusion technique. 

One area for exploration is designing surface 
reconstruction algorithms that build simplicial 
surfaces by exploiting the structure of the fused 
data network. There are two possible approaches 
to the triangulation of our data network. The first 
approach is to use the two extra sets to guide or 
correct the triangulation of a single contour 
sequence. This approach, as an extension of the 
methods described in [3,4], places constraints on 
the triangulation based on a geometric optimality 
criterion. Another approach is to extend the 
traditional methods of triangulation by 
considering all three sequences simultaneously. A 
different approach to the surface fitting stage that 
we are currently investigating is the use of 
deformable models as a 3-D surface 
representation. Further investigation to determine 
whether the additional information provided by 
the three sets of contour sequences is helpful to 
disambiguate the branching and correspondence 
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problems posed by Meyers et. al. [4] would be 
useful. 
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Abstract - Artificial neural networks have been shown to be a 
useful computational model for a wide range of applications 
such as machine learning, pattern recognition, and pattern 
clustering. However, they received criticisms of being too rigid- 
structured models; their performance relies too heavily on a 
large number of free parameters; and most importantly, there 
were no explanations for their reasoning processes. They are 
considered by some not well suited for knowledge discovery 
tasks. In this paper, an attribute-pruning algorithm is presented 
and applied to a self-organised growing cell structures network 
in an attempt to discover knowledge that is most relevant for 
pattern clustering. Instead of using a predefined, fixed structure, 
the network topology is generated gradually during the 
incremental self-learning process and is determined entirely by 
the problem in hand. The results of this work demonstrate that 
by excluding irrelevant or less significant information, the 
network performance can be improved. More importantly, the 
extracted knowledge that is relevant to clustering can provide 
meaningful explanations for the clustering process and useful 
insight into the underlying domain. 

1. Introduction 

There have been many successful examples in the use of 
artificial neural networks for pattern clustering or other 
complex machine learning tasks. However, artificial 
neural networks suffer difficulties describing or 
explaining their behaviours. There is no simple 
mechanism, so far, that can be equipped to a neural 
network to help with the explanations of the knowledge 
learned in the network. Some hybrid approaches that 
integrate neural learning mechanisms and symbolic rule- 
based systems have been proposed to address this 
important issue [Healy & Caudell, 1997; Setionon & Liu, 
1996; Sun & Bookman 1995; Tan, 1997] for the purpose 
of knowledge discovery [Weiss & Indurkhya, 1998]. The 
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most popular hybrid approaches — the so called 
knowledge-based neural networks [Fu, 1993; Towell & 
Shavlik, 1993] — rely on some initial domain knowledge 
for network construction. In these models the learned 
knowledge, embedded in the large number of numeric 
connection weights of the trained network, is extracted by 
performing some complex rule extraction algorithms. The 
explanation of the reasoning process of such networks 
depends on the set of extracted, simple symbolic if-then 
rules. In case of weak domain knowledge in some real life 
applications, (e.g., the DNA promoter recognition 
problem [Barbara et al, 1998] which has imperfect 
domain knowledge) a fully connected fat network would 
have to be constructed. This makes the rule extraction 
procedure even more difficult, and in some cases 
impossible [Wu, 1998]. 

Another problem that prevents artificial neural networks 
from being a main stream technique for problem-solving 
is that users (even some experienced users) often find it 
difficult to determine a network structure of suitable size 
and topology. That is, the number of hidden layers, hidden 
units, connection links between any two layers, and some 
other free learning parameters such as the learning rates. 

Within the context of the discussed shortcomings of 
conventional neural networks, this paper proposes a 
promising approach to discovering and explaining 
knowledge relevant for pattern clustering. The approach 
taken is based on an incremental neural network model 
called growing cell structures (GCS). A key advantage of 
the proposed method is that it allows the shape as well as 
the size of the network to be determined during the 
simulation in an incremental fashion. Thus, the resultant 
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network has a structure that is intimately linked with the 
underlying problem-solving situation. For clustering tasks, 
the network is able to capture and represent the semantic 
similarity of the «-dimensional input patterns through the 
corresponding network topological structure (all input 
patterns are represented by « attributes). Moreover, this 
knowledge can be easily conveyed to and understood by 
humans via readily available visualisation techniques. 

This paper proposes a powerful extension to GCS 
networks that makes it possible to provide explanations of 
the network learning process by using an attribute pruning 
algorithm. The algorithm is capable of determining those 
attributes in the underlying patterns whose contribution to 
the clustering task most significant. Identifying such 
attributes constitutes the key to explaining the network's 
clustering process [Agrawal et. al, 1998; Mitra, et. ah, 
1997]. Irrelevant or redundant attributes will be discarded. 
In other words, the initial high-dimensional input data is 
reduced by the algorithm to a pattern of lower 
.dimensionality, and the knowledge most relevant to the 
clustering task is discovered. Additional advantages of 
attribute-pruning include better generalisation capability 
and lower cost of future data collection. By pruning 
attributes that are of little or no relevance for the 
clustering process, a better clustering accuracy on unseen 
patterns can often be achieved. Furthermore, a lower 
dimensionality of patterns means that only values of high- 
impact attributes need to be collected, and therefore, the 
cost of data collection can be reduced. As a consequence, 
the time required to cluster new patterns can also be 
reduced. By performing the proposed attribute-pruning 
algorithm on the GCS for pattern clustering, it is possible 
to display not only the semantic similarity of high- 
dimensional patterns, but also highlight the relevant 
knowledge for each cluster. Above all, the reasoning 
process in the GCS can be explained in terms of the most 
significant attributes for clustering. 

The remainder of the paper is organised as follows: 
Section 2 explains the basics of the GCS — a growing and 
splitting artificial neural network. Section 3 presents the 
details of the attribute-pruning algorithm, and 
experimental results are reported in Section 4. Finally, 
conclusions are drawn in Section 5. 

2. Growing Cell Structures 

GCS neural networks [Fritzky, 1996] constitute an 
extension to Kohonen's self-organising maps [Kohonen, 
1995], and are only one member in the family of self- 
organising, incremental models. Other family members 
include  growing neural gas  [Martunetz  &   Schulten, 

1994], growing grid [Blackmore & Miikkulainen, 1993], 
and dynamic cell structures [Brüske & Sommer, 1995]. 
These models are not very different at all from an 
architectural point of view. Some properties shared by all 
models are described first in Section 2.1, followed by a 
concise description of the GCS which was used in the 
experiments carried out for this work. 

2.1 Common Properties 

Self-Organising networks have no predefined network 
topology, i.e., their structure emerges during learning. The 
structure of a network after learning is a graph consisting 
of a number of cells (also referred to as units or nodes) 
and edges connecting the cells. Each cell, c, "owns" a 
weight vector, wc, which is of the same dimension as the 
input data vector. The basic learning procedure of a 
network is characterised by repeated input vector, x, 
presentations and weight vector adaptations. The purpose 
of the adaptation of the weight vector, wc, is to reduce the 
distance between wc together with its direct topological 
neighbours and the input vector, x. 

At each adaptation step, local error information is 
accumulated, which is then used to determine where to 
insert new cells in the network after a fixed number of 
adaptation steps. When an insertion is done, the error is 
re-distributed locally. This increases the probability that 
the next insertion will be somewhere else. The local error 
will be reduced in a particular area of the input space by 
inserting new cells in exactly the same area. The local 
error variables can be thought of as a kind of memory 
which lasts over several insertion cycles and indicates 
where most errors have occurred and new cells are 
required. 

2.2 Growing Cell Structures Networks 

A typical GCS neural network can be described as a two- 
dimensional output matrix, where the cells are organised 
in the form of triangles. The network starts with only three 
connected cells each assigned with an «-dimensional 
weight vector with small random values. The first step of 
each learning cycle selects the cell, c, with the smallest 
distance between its weight vector, wc, and the actual 
input vector, x. This cell is known as the winner (best- 
matching) cell for the current input pattern. The selection 
process is succinctly defined by using the Euclidean 
distance measure as indicated in expression (1) where O 
denotes the set of cells within the structure at a given point 
in time. 

c:\lx- wc\\ < \\x - w,\; Vz e O (1) 
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The second step of the learning process consists of the 
adaptation of the weight vector, wc, of the winning cell, 
and the weight vectors, wn, of its directly connected 
neighbouring cells, Nc; see equations (2) and (3). 

We(t + l) = We(t) + £c(x-We) (2) 

w„(t +1) = w„(t) + e„(x - w„); V» e Nc       (3) 

The symbols EC and sn are the learning rates for the 
winner and its neighbours respectively, such that sc, en e 
[0,1], and Nc represents the set of direct neighbour cells of 
the winning cell, c. 

In the third step of the learning cycle, each cell is assigned 
a signal counter, r, which represents the number of times 
a cell has been chosen as the winner. Equation (4) and (5) 
define how the signal counter is updated (symbol c still 
refers to the winning cell). 

re(r + l) = rc(0 + l (4) 

(5) 

The parameter a in equation (5) reflects a constant rate of 
counter reduction for the rest of the cells at the current 
learning cycle, /. 

Apart from weight vector adaptation, cell insertion is 
another important operation of the learning process for 
GCS. Pragmatically speaking, new cells are inserted into 
those regions of the output space that represent large 
portions of the input data to reduce local errors. Also, in 
some cases, a better modelling can be obtained by 
removing cells that do not contribute to the input data 
representation. Cell deletion may split the output space 
into several disconnected areas, each of which 
representing a set of highly similar input patterns. The 
adaptation process is performed after a fixed number of 
learning cycles (or epoches) of input presentations. 
Therefore, the overall structure of a GCS network is 
modified through the learning process by performing cell 
insertion and/or deletion. Equations (6), (7) and (8) define 
the rules that govern the insertion behaviour of the 
network. 

A,=r;/£.r,;V/,ye0 (6) 

q:hq*h,;VieO (7) 

r:\\wr-wl>\\wp - wj; Yp e Nq (8) 

Insertion starts with selecting the cell, which served the 
most often as the winner, on the basis of the signal 
counter, r. The cell, q, with the highest relative counter 
value, h, is selected. The neighbouring cell, r, of q with 
the most dissimilar weight vector is determined using 
expression (8). In the expression, Nq denotes the set of 
neighbouring cells of q. A new cell, s, is inserted between 
the cells q and r, and the initial weight vector, ws, of this 
new cell is set to the mean of the two existing weight 
vectors, Wq and wr, as follows: ws = (wq + wr) 12. 

Finally, the signal counters, T, in the neighbourhood, Ns, 
of the newly inserted cell, s, are adjusted. The new signal 
counter values represent an approximation to a 
hypothetical situation where s would have been existing 
since the beginning of the process. A simplified growing 
process of a GCS network is shown in Figure 1. 

Figure 1. An example of the GCS network growing process. 

The initial structure is a triangle of cells with randomly 
initialised weight vectors. The structure is reorganised 
(with or without insertion) after a constant number, X, of 
input pattern presentations. When a new cell (black circle) 
is inserted, it is connected to other cells in the local 
neighbourhood in such a way that again a structure of 
triangles emerges. 

3. Attribute-Pruning 

A self-organising neural network based on the GCS 
approach described above has the advantage of being able 
to automatically construct a network, and to support easy 
visualisation of semantic similarity in high-dimensional 
data. There is, however, no explanation of the clustering 
process carried out by the network. This section presents 
an attribute-pruning algorithm, which is designed to 
exclude as many clustering-irrelevant attributes as 
possible, and to lower the dimensionality (complexity) of 
the data in each cluster. The most significant attributes can 
then be drawn upon for the explanation of the network's 
clustering process. The proposed pruning algorithm is 
inspired by some previous work on neural network 
pruning [Castellano et al, 1997; Setiono & Liu, 1997], 
and especially Setiono and Liu's work on feedforward 
networks. 
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3.1 General Descriptions 

Given a trained GCS network with each cell associated 
with an «-dimensional weight vector, which corresponds 
to the n input attributes, the purpose of the pruning 
mechanism proposed in this paper is to find the smallest 
subset of the attributes that still represents the 
characteristics of the patterns for clustering. After pruning, 
it is important that only those weights corresponding to 
the significant attributes have large magnitudes in the 
weight vector. To achieve this goal, a penalty function 
approach [Setiono, 1997] is adopted to take part in the 
modification of each weight at each processing cycle 
during the pruning operation. The penalty function that 
was used is defined in equation (9) below: 

P(w) = &0w*/(l+flv>) + &W2 (9) 

0.14 

Figure 2. The penalty function with w e [-20,20]. 

Figure 2 illustrates the characteristics of the function with 
w in the range of -20 to 20, £ = 0.1, & = 10"*, and ß = 
10. The diagram shows that the penalty function 
encourages weights of small magnitude to converge to 
zero. Also, as reflected by the quadratic component, 
weights are prevented from taking too large values. 

At the beginning of the pruning process, the values of the 
penalty parameters £, and & are set equal for all weights, 
since it is not clear which attributes are the most 
significant and which are irrelevant ones. Each time the 
pruning process starts (with one weight, w/, in each weight 
vector in a cluster set to zero), the clustering accuracy rate 
is computed on both the training and testing patterns 
respectively. A high accuracy rate suggests that the 
particular input attribute, a\, which corresponds to the 
weight w{ does not contribute much information to this 
cluster, and may be removed from the input attribute set. 
The values of the penalty function parameters are then 
updated for all the remaining weights based on the 
accuracy   rate   of   these   networks.    Larger   penalty 

parameters are given to the networks with higher accuracy 
rate in order to keep the values of the weights smaller after 
the networks are retrained. It is therefore expected that the 
corresponding attributes are removed in the next iteration 
of the pruning algorithm. On the other hand, a lower 
accuracy rate indicates that the attribute, a/, provides 
information important for clustering the underlying data 
and should therefore not be removed. In this case, small 
penalty parameters are assigned within the retraining 
process. This pruning operation is repeated for all weights 
in the «-dimensional weight vector until no more 
attributes can be removed. The detailed algorithm is 
outlined below. 

3.2 The Attribute-Pruning Algorithm 

A. Partition all the patterns into training and testing sets, 
T, and T2 respectively. 

B. Perform GCS-based clustering on T, to obtain the 
network topology (see Section 2). After training, each 
cell owns a weight vector, WJ, corresponding to the n- 
dimensional input attribute, ctj (i = 1, 2, ... , N). 

C. Initialise penalty function parameters: £, = 0.1, 4 = 

10"*; set lowest acceptable clustering accuracy rate: 8 
= 70%. (these settings were used in the experiments) 

D. Use both T, and T2 for attribute-pruning per cluster. 
Based on the clustering accuracy rates T, and T2, the 
algorithm decides whether to continue or stop pruning. 

• for / = 1 to N 
• Set all WJ except wjfc (k = 1, 2, ... , A7) equal to 

the trained weights; set wk = 0 
• Thus, A^ networks are obtained each of which 

has one weight equal to zero in the weight 
vector wjß i and j count the numbers for the 
networks and weights in the weight vectors. 

• Compute the clustering accuracy rate Rj of each 
of the Af networks on T, and T2 respectively. 

• Ravg is me average of these rates. It is 
calculated only once in the first iteration of the 
algorithm and is then used as a constant for the 
rest of the pruning process. 

• Rank the networks according to accuracy rates: /?, 
> R2> ... > R2N- Each time, consider network Nj 
with the best accuracy rate Rbest um"il me network 
with RJN is considered or the other recursive 
condition is met: 

• If Rbest < °> terminate the pruning process. 
• Otherwise, retrain network Nj by updating the 

penalty parameters as follows: 

^ Rbest ^ Ravg> 
Let 4(/} = 1.1 £(/), and 4(/} = 1.1^ 
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overcome this explanation problem, the attribute-pruning 
algorithm was applied to the data in a series of 
experiments. In the experiments, the entire data set of 160 
patterns was randomly partitioned 10 times into a disjoint 
training set and a testing set, each training set containing 
150 patterns, and each testing set containing 10 patterns. 
The clustering accuracy rates on training and testing sets 
before and after pruning were calculated. The results are 
summarised in Table 1. 

Let £,(/) = #,(/) /1.1, and fa =fa /1.1 
wjft+l) = wjjit) -P(wjj); for: / */ and P(wjß 
is computed as shown in equation (9) 

•   Reset the input attribute a to a - o/, and set N = 
N-1, go back to D. 

4. Experimental Results 

Two real-world problems from the medical prognosis 
domain and an artificially generated animal taxonomy or 
clustering problem, borrowed from Ritter and Kohonen's 
[1989] early work on semantic maps, were used to test the 
pruning algorithm. The following two subsections report 
the results of the attribute-pruning experiments. 

4.1 Clustering of Animals 

The problem is concerned with clustering 16 animals. 
Each of the 16 animals is represented by a 29-dimensional 
vector consisting of 13 semantic or symbolic attributes 
and a 1-out-of-« coding of the animal's species name. The 
13 semantic attributes are size-small, size-medium, size- 
big, has-2-leg, has-4-leg, has-hair, has-hooves, has-mane, 
has-feathers, likes-run, likes-hunt, and likes-swim. The 
GCS-based clustering process was performed during self- 
organisation of the network. The clustering results are 
shown in Figure 3. 

The diagram in Figure 3 illustrates that four clusters were 
generated automatically. The GCS-based clustering 
provides a clear visualisation of the semantic similarity 
among different input patterns (e.g., horse, zebra, and cow 
are very similar). However, no straightforward 
explanations of the clustering process or results can be 
drawn from the resulting network topology. For example: 
What (which attributes) are the important characteristics 
that make cows and zebras similar? In an attempt to 

Table 1. Results of animal clustering; underlined attributes are pruned for some patterns in the cluster and kept for others. 

Figure 3. GCS based clustering results for animal attributes. 

They show that clustering accuracy rates on testing sets 
are improved after the irrelevant attributes are pruned 
from the original attribute set. For example, consider 
Cluster 1 (Bird), when only the five most significant 
attributes (size-small, 2-leg, has-feathers, like-fly, like- 
swim) are used for the clustering task, the accuracy rate on 
the testing set is 94.5%. This is a significant improvement 
over the clustering accuracy before pruning (91.5%). 
Also, the clustering carried out by the GCS network may 
be explained by the first row in Table 1. For instance, 
consider Cluster 1. An explanation for the reasoning 
process can be stated as follows: If an animal is small- 
sized, has two legs, feathers, and likes to fly or swim, then 
it is a bird. 

Columns: Clusters and 
Clustering Attributes 

C 1: Bird C 2: Gentle Mammal 
small-size; 2-leg; has-      size-big, has-hooves, 

feathers; like-fly; like-swim    has-mane, like-run 

C 3: Hunter C 4: Small Mammal 
size-big, size-medium, has-hair,   size-small, has-hair, 

has-mane, like-hunt, like-run like-hunt 

Average Percentage of 
Relevant Attributes 

CAR on Training Set 
before Pruning (%) 

CAR on training Set after 
Pruning (%) 

CAR on Testing Set before 
Pruning (%) 

CAR on Testing Set after 
Pruning (%)  

17.2 

100 

96.2 

91.5 

94.5 

13.8 

89.4 

83.6 

78.1 

76.5 

20.7 

80.6 

73.9 

76.3 

77.5 

10.3 

96.2 

90.5 

92.2 

97.1 

Legend: C n: Cluster n; CAR: clustering accuracy rate 
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4.2 CHD and CC Problems 

The pruning algorithm was also tested on two medical 
data sets within a medical prognosis task context. The 
prognosis tasks were to predict coronary heart disease 
(CHD) risk change, and the survival time of colorectal 
cancer (CC) patients after surgery. The algorithm was 
applied to both data sets based on a GCS clustering 
process (ec = 0.095, e„ = 0.01, a = 0.095, X = 10); Table 2 
summarises the corresponding data. The same training and 
testing patterns were used for both problems. To test the 
pruning algorithm, the attribute numbers were expanded 
by taking each possible value of some of the attributes as a 
single new attribute. 

For example, in the CC problem, attribute pathological 
type, which could take four values tubular, mucinous, 

papillary, and signet would be taken as four different 
attributes. The total numbers of attributes used in the 
pruning experiments for the CHD and CC problems are 
therefore 20 and 64 respectively. The pruning results are 
summarised in Table 3. Only three clusters are included in 
the results table for each of the two problems because of 
the large number clusters obtained from the GCS 
experiments. It should be noted that coherent results were 
obtained for most clusters. 

Table 2. GCS clustering data for CHD and CC data. 

Attribute No.   Train. Sample   Testi. Sample  Cluster No. 

CHD 
CC 

5 
15 

71 
158 

12 
30 

12 
20 

Table 3. Attribute-pruning results on CHD and CC problems. 

Relevant Attributes for the Clusters CHD-C1       CHD-C2      CHD-C3      CC-C1      CC-C2      CC-C3 

Avg. Percentage of Relevant Attributes 
CAR on Training Set before Pruning (%) 
CAR on Training Set after Pruning (%) 
CAR on Testing Set before Pruning (%) 
CAR on Testing Set after Pruning (%) 

Legend: CAR: clustering accuracy rate; C n: cluster number n 

5. Conclusions 

Using self-organising GCS networks to meaningfully 
cluster data has a number of appealing features over more 
conventional neural network models. For example, 
incremental self-construction, and easy visualisation of 
semantic relationships among the input data. However, a 
severe shortcoming of this model is that it cannot provide 
explanations of the clustering process. To address this 
problem, an attribute-pruning algorithm is proposed in this 
paper. It is designed to extract those attributes that are 
most relevant for pattern clustering. The most relevant 
knowledge for each cluster can be highlighted, and 
provide meaningful explanations about the clustering 
rocess and useful insight into the underlying problem and 
data. 

The key idea of the pruning algorithm is to distinguish 
relevant and irrelevant attributes by determining how their 

25.0 40.0 55.0 39.1 21.7 23.9 

90.2 92.7 89.0 98.1 85.5 91.0 

83.1 80.6 75.9 91.8 78.3 80.9 

84.5 87.1 73.9 92.0 75.3 79.4 

86.5 89.5 76.5 95.1 79.0 84.8 

corresponding weights in the weight vectors of the trained 
GCS network influence the network performance. 
Irrelevant attributes are identified by the small magnitude 
of their respective weights and are excluded from the 
original input attribute set. A penalty function approach 
serves as a basis to update all the weights in the weight 
vectors during retraining of the networks. The algorithm 
has been implemented and tested on two real-world 
medical data sets and one artificially generated data set. 
The experimental results show that with only a small 
subset of those relevant attributes used, the performance 
of the networks in terms of the clustering accuracy rates 
on unseen data can be improved. Although focus has 
primarily been on applying the attribute-pruning 
algorithm to self-organised GCS networks, the approach is 
naturally applicable to networks of arbitrary topology as 
pruning operates on both nodes and connections 
respectively. 
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Abstract Our goal is to reconstruct the human rachis 
in order to observe the growth of some pathologies on 
patient suffering from scoliose. We present the first re- 
sults on segmentation step. So we use an active con- 
tour method of segmentation. To minimize the uncer- 
tainty and the inaccuracy of the information, we use 
a data fusion method based on Dempster-Shafer theory. 
The originality of our contribution, consist to work with 
pictures sequence and not slice by slice. From three dis- 
tincts sources, we search to detect the position of error 
on the slices. For each slice we use the information 
content in preceding and following slice. We define for 
each pair of slice's , a distribution of mass. The deci- 
sion is taked from maximum credibility-plausibility cri- 
terion. We show endependently of the position of error 
that our method give to doctor a decision of good or bad 
classification of each part of the slices sequence. 

Keywords: Dempster-Shafer theory, picture sequence, 
proved segmentation, data fusion, IRM. 

1    Introduction 

The work presented in this article is keeping with 
the "Institut Calot de Berck sur Mer". It is done in 
order to help the doctors for spinal diseases. The 
studies of the pathologies are made from MRI im- 
ages. The objective is reconstructing each vertebra 
of the lumbar spine from a serial parallel sections. 
From a initial segmentation, we're looking for parts 
which represents as better as possible the vertebra 
anatomical contour, in order to give to the doctors 
a belief degree on each part of this segmentation, 
and to show clearly the parts for which it is impos- 
sible to conclude. Generally, the slices present some 
imperfections, it is not always possible to define ex- 
actly the anatomic contour. We propose to use the 

adjacent sections, in order to get more information 
and to affirm or invalidate the taken decision. 

The methodology is based on the belief theory 
using in order to fusion the information. This meth- 
ode introducts a doubt notion between the differ- 
ents elements. 

2 The data 

Several parallel views of spinal are used. On each 
of them, a spinal segmentation is realised with the 
snake method. We consider there is no junction. 
The objective is to make a segmentation of the ver- 
tebra of the lumbar spine. Each vertebra is delim- 
ited by a thin area with low signal intensity sur- 
rounded the vertebral body. We now study only 
one vertebra. For the reconstruction of the spinal, 
the same approach is repeated for each vertebra. 
The spinal is observed by a dozen of slices. The 
study bringing at the vertebral body segmentation 
which a parallelepiped form. The thickness of the 
IRM acquisition slice is small than the size of ver- 
tebra. For a done vertebra, the first and the last 
views are ignored because they are tangent to the 
vertebra extremities. 

3 The frame of discernement 

Each view is constitued by K elements which rep- 
resent K different sets (or K organs) defined by fi. 
In each view then is a lot of elements, and a lot of 
them are not separable to each other. This problem 
of diferentiation comes from the working principle 
of the MRI sensor. 

fi = {skin, vertebral body, cortex 

muscle, air, fat, fluid} 
(1) 
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The new Q set is denned by the K=2 following 
elements : 

n = {S,S} (2) 

with S is the substance familly which gives_signal 
intensity (vertebral body, muscle, fat), and S, the 
substance familly wich gives a low signal intensity 
(cortex, air, fluid). 

Several methods of segmentation have been 
tested in order to extract from the picture the in- 
formation of cortex. The segmentation by active 
contour has been choosen for the good detection 
results and its always closed contour. 

The segmentation of cortex gives the contour to- 
ward the low signal intensity. By considering the 
thickness of the section and the knowledge of the 
vertebra anatomic body, we can deduce the follow- 
ing hypothesis : for two consecutives slices, impor- 
tante variation of the spinal form leads to, at least, 
a mistake on one of them. The vertebral body is 
defined by a contour on all views. Each contour is 
sampling with the same number of points. The seg- 
mentation is defined to converge toward the good 
area. 

Segmentation = {Qi} 

with i € [1..N] 

Qi£S       with i € [1..JV] 

(3) 

(4) 

The goal is to give an opinion on the Qi elements 
in order to determinate if they are really a part of 
the S area. 

The MRI introduces some artefacts during the 
acquisition of the data due to the partial volume 
effect and signal noise. So it's not possible to affirm 
that the obtained segmentation converges perfectly 
toward the good contour. 

4    The expert mass sets 

4.1    The expert 

An expert gives an opinion on one or several el- 
ements of the frame of discernement. But, some- 
times the expert can't differentiate several hypothe- 
ses and his opinion is distributed on the recovered 
familly. The belief theory is enable to introduce the 
doubt by passing from K elements frame discerning 
to the 2K elements. 

Then, the expert gives an opinion on the set of 
proposition of 2n = {S,S,to}. 

If the detected contour isn't entirely false, we 
call that we have high form variation when the dis- 
tance between two parts of two consecutive slices 
become important compared to the mean distance 
separated all the points of the slices. 

The expert or the original information, used here 
is based on the knowledge of two segmentations of 
successives slice, and particulary of the separated 
distance of two matched points. 

We consider the slices two by two, in a same 
space. Each obtained contour is sampled with N 
points. Each points is matched at a point of the 
next slice. The matching is realised by the correla- 
tion two consecutive contours. We keep the combi- 
nation of points which minimize the mean distance 
between P and Q. 

4.2    Mass set 

The mass set quantify all the expert opinions on the 
different elements of the discerning frame. When 
two points belong at two successives contours (Pi 
and Qi) and are closed, they are surelly a part of 
the same organ. But if this distance is more impor- 
tant, it would be a mistake of segmentation on one 
of the two contours. 

We don't determine if the two points belong at 
S or S, but these points have the same nature. We 
define a mass distribution for the expert opinion 
to a a; point has the same nature, different na- 
ture, or uncertainty compared to its matched point. 
The expert opinion is modeled by the three follow- 

ing mass : mx U ) ■ - (ItHtl) • 
mx (Cl), with x = Qi a point from the sampled seg- 
mentation of cortex. 

The     single     mass mx U and 

mx U give the belief degree of the 

expert to trie x element has an identical (respec- 
tively different) nature compared to its matched 
point. 

The composed mass mx(0) gives the doubt that 
the expert has on the membership of x point. The 
proposed mass distributions are the following : 

mx 
(Sp       Sp\ -rj.\dp, — a\ 

dpg € [e..a] 

otherwise 

mx (Cl) -n-\dv W, ■pq 

(5) 

(6) 
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We interpret the combination to extract many 
informations. We obtain the following relation on 
the error position : 

• no error on slices P Q R, 

• error on slice P and no error on slice Q R, 

• error on slice Q and no error on slice P R, 

• error on slice 11 and no error on slice P Q. 

Futhermore we extract information of uncertainty 
between all these cases. 

good point       false point 

Figure 1: two slices 

mx U = 1 „-■n-\dPq-a\ 

, dpq£ [a..oo[ 

= 0      , otherwise 

(7) 

with r) = f (e,a). 

Where a is the maximum expert doubt on the 
distance dpq, a is function of Dr dpq is the dis- 
tance between two points, and Dmean is the mean 
distance between each point of two slices. 

5    Combination of two sources 
in three consecutives slices 

5.1    Distribution fusion 
Each expert has his own frame of discernement, 
that must be extended to a common frame in order 
to process the fusion. We take three consecutive 
slices (P Q R) for which we calculate the mass set. 
For the couple (P Q) we define the m1 mass. For 
the following couple (Q R) we affect m2. The fol- 
lowing slice (R) and the preceding (P) allow at the 
current slice (Q) to dispose relationship (with m1 

and m2 mass) between (Pi,Qi) and (Qi,Rt). 
The combinaion result shows some information 

on the continuity relationship between Pi Qi Ri 
points. This gives a better information on the 
points belong to the anatomic contour. The Demp- 
ster rule is used to combine these distributions of 

5.2    Decision 
We find several choice to make the decision fol- 
lowing the maximum plausibility, the maximum 
credibility, the interval credibily-plausibility, or the 
maximum evidence. We choose to use the inter- 
val credibily-plausibility to extract information to 
evaluate the point belonged because we can calcu- 
late them for each case. The credibility and the 
plausibility are defined : 

Cr{A)= Y^miB) 
ACB 

PI (A) = 1 - Cr (A) 

(9) 

(10) 

The interval allows to exclude any cases where 
we can't differentiate the plausibilities or the cred- 
ibilities. 

6    Results 

At the end of the fusion step, a segmentation solu- 
tion is proposed to the doctor. This step gives an 
opinion for the Pi Qi Ri points belonging at the S, 
S, or fi elements. The synoptic fig. 2 represents the 
synthesis data. 

We tested our modelling on several examples 
of syntheses in order to verify its evolution. On 
the figure 3 we simulated no mistake on slices, 
the result is validated by the corresponding inter- 
val credibility-plausibility that is maximal. On the 
figure 4 (mistake on P), figure 5 (mistake on Q), 
et figure 6 (mistake on R), we simulated only one 
mistake on one of the three slice. The interval 
credibility-plausibility is maximal where the mis- 
take is located.   On the figure 7 we simulated a 
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Figure 2: Synoptic fusion 

mistake on the P and Q slices. The interval on R 
appears major because the two other slices are in 
the same way nature (identical mistake). Therefore 
the R slice appearing different of the two another, 
the mistake will be supposed on this last contour. 
That is compliant to the logic of our modelling. On 
the figure 8 we simulated an identical mistake on 
the three slices. That results in one maximal inter- 
val credibility-plausibility of not of mistake. They 
appear according to our modelling as being in the 
same way nature. This method allows to detect the 
abrupt variation of the spinal contour. The expert's 
criterion is defective on the example of the figure 9. 
There are errors on the two extremes slices and no 
error on the central slice. The fusion of the expert 
gives an error on the central slice Q. The expert 
criterion need to be completed to solve this case. 

Expert's report oi i pro, oio. Rio 

0.9 B Plausibility 
Credibility 
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0.7 • 
0.6 

I 
*0.5 

i 
0.4 

n ■       : 
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02 1 
0.1 1 

i - ».   m, 
nP error on Q 

7    Conclusion Figure 4: error on P 

The results are interesting because they take out 
the correct decisions in most cases. Moreover the 
result of the decision is a belief degree. We have 
created a new expert, that from three consecutive 
slices, gives us an opinion on each of these. It let 
us consider in future works to use this expert in a 
new process of fusion.   This expert doesn't allow 

to solve all cases, but combine with others,it will 
permit to correct invalide decision of segmentation. 

We envisage in the future, to modify the mod- 
elization to solve this problem, the expert appraisal 
could have been completed by other informations as 
a low level fusion on the pixel intensity. 
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Abstract- Nowadays, information fusion constitutes 
a challenging research topic. Our study proposes to 
achieve the fusion of several knowledge sources, in 
order to detect the aorta artery, in ultrasound slices 
of the esophagus area. After a brief description of 
information fusion concepts, we propose a system 
architecture including both model and data fusion. 
Two primary models compose the algorithm: a fuzzy 
model, based on data fusion of three different 
information sources extracted from slices, and a Hough 
Transform (HT) model, which is often employed for 
pattern recognition. A global fusion model combines 
their complementary aspects and advantages. Along the 
sequence, spatial aorta matching is achieved by 
parameters propagation and controlled using a 3D- 
trajectory model. Simulation results, obtained from 
echo-endoscopic sequences, are presented. 

Key Words: Hough Transform, knowledge sources 
fusion, echo-endoscopic image sequences, spatial 
matching. 

I. INTRODUCTION 

Many engineering research domains use imaging 
processing architectures that often include fusion 
modules. In medical imaging and particularly in 
ultrasound imaging, data fusion is a must. Original 
data image usually contains insufficient information 
to develop robust segmentation algorithms, because 
of noise and distortion introduced by the acquisition 
system. Unfortunately, numerous medical imaging 
systems are not based on a multi physical sensor 
architecture that offers complementary information, 
to improve the efficiency of a posteriori numerical 
computation. 

In this study, our particular interest is the 
detection of the aorta position and shape, estimated 
on a sequence of ultrasound transversal slices of the 

esophagus area. This detection is a module within a 
larger project intended to achieve a realist esophagus 
3D reconstruction based on anatomical context 
information, in order to use the whole reconstruction 
as a diagnosis aid tool to evaluate digestive system 
pathologies [1]. 

As numerous anatomical human objects, an 
ellipse can first approximate the general shape of the 
esophagus wall. On ultrasound slices, the aorta has 
significant shape and position variations during all 
the sequence acquisition, as a consequence the 
condition of continuity is not always satisfied. 
Despite the small distance between two consecutive 
slices (1mm), strong shape and position variations 
can be produced by the patient breath activity, blood 
stream, natural anatomical orientation, and sensor 
displacements. Otherwise the contour is imprecise, 
noisy and is usually opened. 

After the section II, which presents general 
fusion concepts, we propose in section III an aorta 
detection system based on data fusion, model fusion 
and on the Hough Transform (HT). In this section 
are first discussed the different knowledges which 
are able to complete the poor numerical information 
of ultrasound images. In a second time, method to 
combine their complementary aspects is precised. At 
the end of this part, model fusion to improve HT 
efficiency is proposed and ways to include 
knowledge at different level of HT are presented. In 
the section IV, results from a sequence acquired in 
real conditions of a medical exam are presented and 
commented. The conclusion evokes possible work 
perspectives. 

II. INFORMATION FUSION 

A definition of data fusion, given in [2] can be 
generalized to information fusion as follows: 'A 
multilevel,    multifaceted   process    dealing    with 

ISIF © 1999 59 



automatic detection, association, correlation, 
estimation, and combination of information from 
single and multiple sources'. 

II. 1 Information fusion concepts 

Information fusion appeared when researchers 
have had the necessity to solve problem classes 
requiring to imitate the human intelligence. A 
possible classification of the fusion [3] introduces 
three conceptual levels corresponding to the three 
kinds of information: 
-Data Fusion- is the first conceptual level. It usually 
consists in the merging of low level information, as 
primitives, in order to deduce a decision less noisy 
than with only one information source. 
-Decision fusion- acts at the decision space level. 
Decision fusion achieves the combination of 
elaborated information as decision hypothesis, or 
results issue from a data fusion. 
-Model fusion- is the case where information to be 
merged are strategies, processing methods or 
reasoning modes. A model fusion uses 
complementary aspects of two or more approaches 
in the case that just one isn't able to lead to the 
solution of a given problem. In [4], edge detection 
problem and model fusion are considered through 
the use of the Canny-Derich algorithm. 

n.2 General fusion system archi tecture 

This subsection intends to summarize the two 
major fusion system architectures. Due to some 
historical reasons, the first available scheme that we 
have when discussing information fusion systems, is 
that of a multi-sensor system. This scheme 
constitutes a partial view of the reality where several 
"physical" sensors are needed, in order to access 
several information issues of an object from the real 
world scene. In fact, two main architectures of 
information fusion systems can be distinguished: 

Object in a 
real wild I 

scene   ' 

A priori informalion source 

^ 

s 

-*o 
Jx 

) Sensor -K) 
-+0 
-K) 

Sensor }*> 
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real world 
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.    :   -K) 
Ey|   Sensor    |->Q 
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Figure 1: Information fusion systems architecture 
Mono sensor (a) and multi-sensor architectures (b). 

The first, Figure l.a, (referred to as the mono-sensor 
architecture) is based on the use of a single sensor 
and, the application of a priori knowledge, to obtain 
a new set of information data. The use of the 
probability set theory or the fuzzy set theory is 

generally performed through this step. The second 
system architecture (Figure l.b) corresponds to the 
intuitive multi-sensor situation, where the 
"analyzed" object is observed through different 
physical sensors (or the same sensor, but with 
different geometric observation positions as is in the 
case of stereovision). The first system architecture 
has not been considered, for a long time, as being a 
real information fusion system. Anyhow, this is the 
main architecture used in several applications where 
the use of different sensors remains an obstacle and 
where an important amount of knowledge can be 
formulated as a priori knowledge sources of 
information. This is the case, for instance, in 
medical applications where the processing system 
can use a huge amount of a priori anatomical and 
expert-based sources of knowledge, to analyze 
medical images. 

III. AORTA DETECTION 

As previously mentioned, the aim of this study is to 
accomplish the aorta detection, using an ultrasound 
image sequence, acquired by an echo-endoscopic 
system. The sensor, called endoscope, is introduced 
through the mouth in the patient digestive system. 
Generally, a doctor assumes the sensor control but, 
in our particular case, endoscope progress through 
the esophagus lumen is entirely controlled by a 
mechanical system [1]. The obtained precision on z 
coordinate, which is about one millimeter, is enough 
to acquire all structures useful for a diagnosis 
elaboration (esophagus, aorta artery, and 
ganglions...). 

Figure 2: (a) Position of aorta in anatomical 
general scheme: aorta artery is always in contact 
with the esophagus, (b) Echo-endocopic imaging 
system: endoscope progresses along the esophagus 
lumen and, thanks to ultrasound waves, an 
esophagus area image can be computed. 

An echo-endoscopic image is shown in Figure 3. 
Detailed analysis shows that the image quality 
depends mainly on two phenomena: speckle noise 
(due to the ultrasound imaging acquisition approach) 
and a concentric wave reflections network created 
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by the protection surrounding the ultrasound 
transducer. These different factors show the extreme 
difficulties encountered in the detection of the aorta 
section [1][5][6][7][8]. 
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lumen *' *$"*",: •' ^ I.A   . 
'" ;"isf>sfeagüs ioher wall (a) 

- n-.t 

Aorta    "'"^flections ■    ~\nr. 

Esophagus •    t> -" '\^? 
lumen     **■■—',.>*•   -•    ju* 

Esoptiagus inner wall-  / 

Figure 3: Echo-endoscopic ID-slice views of the 
esophagus area. Aorta lumen is uniformly black and 
contour is clearly visible (a). Aorta lumen becomes 
noisy and the contour is practically invisible (b). 

ID. 1 Global architecture 

Concerning the numerical images processing, we 
propose a mono-sensor information fusion system 
based on the use of echo-endoscopic image slices of 
the esophagus and of a priori knowledge to detected 
the aorta section. 

We have taken into account the following 
constraints: (i) it is necessary to preserve medical 
information contained in the slices, (ii) Numerical 
information is completed by means of models and a 
priori knowledge to make algorithms more robust, 
(iii) A slice by slice processing is applied, given the 
characteristics of the acquisition system, (iv) Aorta's 
shape uncertainty is handled knowing that a, b and y 
are set according to a variation A. Considering the 
above constraints, two different approaches are 
used: 

FUZZY LOGIC: allows integrating knowledge from 
different sources, simplifying data fusion thanks to 
fuzzy operators properties. 

HT: detects parameterized shapes, handling 
uncertainty. This transformation can also include a 
priori knowledge at different levels of its 
implementation. Finally, HT is robust on noisy 
images because it is based on co-operative vote and 
on the notion of Accumulation Kernel (AK) [9]. 

rn.2 Considered knowledge 

Aorta visual appearance: A doctor easily denotes 
aorta presence in echo-endoscopic slices, but he 
can't precisely draw its contour. In fact, on 
ultrasound slices, aorta contour is very noisy. The 
following scheme shows elements, which perturb 
the artery detection. 

Figure 4: Pixels of interest for the aorta detection 
are contained in the hyper-echoic contour. Pixel 
within the halo must be eradicated to achieve a right 
detection. 

The part of the aorta ellipse called hyper-echoic 
contour, which is opposite to the ultrasound sensor, 
is the primary knowledge we use. Otherwise, 
independently to the approach of detection that will 
be adopted, it is necessary to privilege hyper-echoic 
pixels, and contribution of the halo pixel must be 
less important. 

Aorta position: Specialists usually consider that the 
aorta artery is invariant in term of position relatively 
to the anatomical context. Real medical exams and 
sequences observation leads to think that the aorta 
has to be searched in a region surrounding the 
esophagus. It is a precious information, which avoid 
to confuse aorta with others encountered elliptical 
anatomical structures (harmonics, ganglions, 
artery...). 

Scalable trajectory model: Aorta 3D shape can be 
considered to be invariant with a linear 
transformation. Both, doctors considered a 3D 
model as an information we have to take in account 
to perform a good detection. As, for the moment, a 
slice by slice processing was retained, only the 3D- 
model projection is of great interest to be use as 
knowledge. 

IQ. 3 Fuzzy model 

The fuzzy set theory pioneered by L. Zadeh 
[ 10] [ 11 ] provides us with a powerful mathematical 
tool for modeling the human ability to reach 
conclusions when the information available is 
imprecise, incomplete, and not totally reliable. The 
major characteristic that distinguishes fuzzy set 
theory from traditional crisp set theory is that it 
allows intermediate grades of membership. A fuzzy 
set A over Q is defined as the set of ordered pairs 
A={(X, ßiA(X)), XejQ}, where fiA(X) (e[0,l]) is 

termed the grade of membership, or simply the 
membership value, of the element X to the fuzzy set 
A. 

Let first introduce, the useful concept of fuzzy 
images.      A   fuzzy   image   is   defined   as   the 
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transformation of an original image (considered as a 
MxN array of gray level associated with each pixel) 
into an image with the same dimensions but where 
each pixel is associated with a value denoting the 
degree of possessing a fuzzy property: 

A:    MxN    ->[0,1] 
P(x,y) ->MA(P) (1) 

where, pA (P) reflects the appropriateness or the 
validity of the fact that the pixel P possesses the 
fuzzy property "A". Concerning the application of 
the esophagus inner wall detection, four fuzzy 
images are defined: 

Fuzzy position image: fuzzy image representing the 
more reliable position of the aorta section 
Fuzzy intensity image: fuzzy image representing the 
"brightness" of different pixels. 
Fuzzy gradient image: fuzzy image representing the 
gradient computed at each pixel. 
Fuzzy region   image: fuzzy image representing the 
contrast of each pixel relatively to the dark region of 
the esophagus light. 

Fuzzy Position Image: In a sequence, reliable aorta 
position information is introduced through a 
manually built fuzzy image /2P(P) where pixels gray 
level traduces the membership value to the aorta 
contour. More a pixel is far from the center i.e. the 
location of the esophagus, more its membership 
value is important (Figure 5.a). 

Fuzzy Intensity Image: Physical consideration on 
the tissue nature lead to conclude that a large part of 
the aorta contour is generally hyper-echoic. 
Therefore, contour pixels have a high intensity. The 
S-shape function is applied over the gray level 
values in order to construct the fuzzy intensity 
image, /4(P). The S-shape parameters selection 
method is considered as a normalization process of 
the image brightness values and, thus, the 
visualization parameters tuning has no influence on 
the fuzzy intensity image (Figure 5.b). 

Fuzzy Gradient Image: The edge information 
constitutes an important element in the 
determination of the aorta contour. Therefore, the 
fuzzy gradient image, //Ä(P), (representing the 
degree of membership of each pixel P to the "ill- 
defined" or ambiguous concept of an edge) is of 
great interest. For this purpose, a 5x5-gradient filter, 
similar to the Sobel operator, is used. The horizontal 
and the vertical masks of this filter are given as 
follows: 

0      -10     10 
-1-2021 
-1    - 2    0    2     1     G, = 
-1-2021 
0      -10    10 

(0    -1    -1    -1    0 ^ 
-1   -2   -2   -2   -1 
0     0      0      0     0 
12      2      2      1 
0      1110 

(2) 

Therefore, the x-y gradient of an image I(x,y) is 
given through the following expressions : 

~(x,y) = G,*I(x,y) 
ox 
9/ 
3y 

(x,v) = Gv */(*,y)        (3) 

The module of the gradient is given by: 

G, (x, y) = J(Gx*I)2(x,y) + (Gx *l)2{x, y)   (4 ) 

Finally, we use the S-shape function to perform the 
'fuzzification' operation (Figure 5.c). 

Fuzzy Region image: aorta halo introduces 
imprecision in the contour detection cause of its 
hyper-echoicity and area. Also, the use of a I~I- 
function, which performs a progressive threshold as 
well as the 'fuzzification', seems to be adapted to 
limit influence of pixels corresponding to this 
region. In a fuzzy region image juR(P), each pixel is 
represented by a coefficient (i.e. membership value) 
denoting the degree of possessing the property: Do 
not be in "touch" with the region of the aorta halo 
(Figure 5.d). 

(a) 

Figure 5: An example of knowledge sources 
extraction: position fuzzy image (a), intensity fuzzy 
image (b), fuzzy region image (c) and fuzzy gradient 
image (d). 

Fuzzy Reasoning: The fuzzy reasoning step aims at 
the concentration of all the information previously 
mentioned in order to produce a single membership 
value, for each pixel in the analyzed image, to the 
aorta inner wall. The wide range of combination 
operators proposed in fuzzy set literature (see, for 
instance, [12]) reflects the power as well as the 
flexibility of the use of fuzzy concepts. In this study, 
the simple fuzzy intersection operator (i.e. a 
"conjunctive-type" combination operator) is used: 

HjP) = Min (MP, Mi, Mg> Mr) (5) 
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where ßw(P) denotes the "global" degree of 

membership of the pixel P to the aorta wall. On the 
Figure 6, an example of fuzzy decision is presented. 
We can notice that the halo has disappeared, as well 
as harmonics and speckle noise. 

Figure 6: Decision fusion obtained from a given 
image of an echo-endoscopic sequence. We note that 
the information is less noisy and that only pixels 
belonging to the aorta contour has significant 
membership degree. 

m.4 HT Model 

Hough has introduced a detection method (HT) 
in 1962 for identification of straight lines [13]. Duda 
and Hart have extended the same method to extract 
parameterized curves in general [14]. 

General idea: Let f(X, V)=0 be an analytic 
expression defining a parameterized curve, where 
X=(x, y) define a pixel coordinate and V a parameter 
vector. The HT is accomplished in two steps: 

The first aims to the definition of the parameter 
V and the quantification of the parameter space into 
rectangular n-dimensional cells called Hough Space. 
The last expression signifies that if we are given a 
parameter vector V, then, the curve of interest is 
formed by pixels in the image plane satisfying the 
analytic curve expression. The application of an HT 
consists in considering the inverse situation where 
we have a contour pixel Ek included in a 
parameterized curve and we are looking for the set 
of parameter vectors V that pass through this 
considered pixel which verify the following 
expression: f(Eh V)=0. The locus of these vectors in 
the Hough Space (HS) is called Accumulation 
Kernel (AK) as in [9]. Let consider for a set of pixel 
of the same contour the set of the parameter- 
associated vector. In theory, as these pixels are 
members of the same parameterized curve, among 
the set of parameter associated vector, only one is in 
common. This vector entirely defines the search 
curve. Given that, each pixel can be considered as an 

elementary expert, which contributes to the global 
object detection. 

Particular ellipse case: In the ellipse case, five 
parameters are necessary to entirely define the 
curve. On each slice, aorta section can be modeled 
as an elliptic shape according to these parameters: 
ellipse center coordinates (x0, yo), semi-major a, 
semi-minor b and orientation y 

We don't directly discuss in five dimensions HS. 
In a first time, only a restriction space of two 
dimensions, corresponding to ellipse center position 
space, is considered. 

As previously mentioned, HT needs to know 
curve parameters. Thus, an initialization of these 
parameters is required. This problem will be 
discussed in the next sub-section. 

This operation achieved, the slice gradient is 
computed using a large convolution kernel. From 
the gradient image, two informations are extracted: 
the gradient magnitude, which is a criterion to 
accomplish a first selection of pixels implicated in 
the algorithm (using a threshold), and the gradient 
direction, which is exploited to limit the search 
space. 

Figure 7: (xo, y0) is the center of the ellipse, 0 the 
angle to the ellipses center, 0 the direction of the 
gradient. 

In the case where the searched ellipse parameters are 
a, b, y, the geometric relation between the gradient 
angle and the angle relative to the center is given by 
the following relation (Figure 7): 

0= y+ arctan( (b/af tan(0) (6) 

Imprecision handle: Handle of imprecision on 
direction radius introduced in [9] was useful to take 
in account fluctuation of aorta shape. 
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In the case of total ignorance accumulation, from 
a pixel edge Ek, the whole space is explored (Figure 
8.a). 

(a) (b) 

Figure 8: Total ignorance accumulation (a), and 
total knowledge accumulation (a). 

a+^a* 

b-Ab 

Hough Space 

Figure 9: Imprecise direction/radius accumulation 
(a). Accumulation Kernel accumulationJb). 

In total knowledge accumulation, a precise 
direction for given distance d is observed (Figure 
8.b). In the case of imprecise direction/radius 
accumulation, imprecision on the definition of semi- 
minor and semi-major axis is introduced as well as 
in the direction exploration (Figure 9.a). For each 
contour pixel, an area so called AK, corresponding 
to a set of parameter vectors, is computed (Figure 
9.b). 

The aorta center estimation is obtained 
computing the max of the accumulation. Finally, 
considering the set of pixels S=(Mi, M2, .... MJ, 
which have contributed to this estimation, a and b 
parameters are re-estimate with the following 
method: 

Given b member of the interval [b-Ab, b+Ab], a 
is computed from each pixels of S. The b which 
corresponds to the minimal standard deviation of a 
can be considered as a good estimation of the semi- 
minor axis. The retained semi-major axis is given by 
the mean of the obtained a. Given x, y, a, b, y, 
ellipse is entirely defined. Then parameters are 
propagated to the next slices assuming that a 
continuity hypothesis satisfied. 

HI. 5 HT and Information fusion 

The proposed general architecture is presented in 
Figure 10. We can see that others knowledges as 
numerical information have been introduced at three 

levels of the HT implementation to improve the 
efficiency of our method: 

Miscellaneous knowledge 

JL 

,<3 
Slice 

fINTENSITY^.'   • 
REGIONS 'c£|   .    F 

GRADIENT.'™'' W^\ *, 
'POSITION -%*;, 

;W[ 
HflB 

111 re-evaluation M votel 
3 AK I Binary 

decision 

T 
pothe 
Aa,b 

t 
T 

Parameters hypothesis for ellipse 
searching: a±Aa,b±Ab,y±Ay 

Scalable 3D model     Parameter 
of aorta trajectory    propagation 

=i Next slice ^ 
Figure 10: Aorta detection architecture based on 
fuzzy logic and HT. A fuzzy model based on data 
fusion of information extracted from a priori 
knowledge is merged with a HT based model. 

Initialization of parameters: For the moment, 
initialization of ellipse searched parameters is 
assumed considering typical anatomical measures. 
But we can easily imagine a human-assist tool, 
which is able to assume this task for the first slice of 
the sequence. Once the first ellipse detected i.e. 
parameters evaluated, these ones are propagated to 
initialize the detection on the next slice. 

Fuzzy decision fusion: At the level of accumulation 
elaboration, fuzzy decision image is used to weigh 
pixel vote (see [15] for a ponderation by the 
gradient). This method has the advantage to take in 
account, in the HT, both the numerical information 
contained in a slice, elaborated considerations as the 
halo problem and a priori knowledge on the aorta 
position. 

Figure 11: From aorta trajectory 3D model, we just 
consider the projection on the slice plan. The model 
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is first adjusted to the data and then used as 
knowledge. 

Scalable 3D model: Recall the proposed solution is 
based on a slice by slice processing, the coefficients 
derive problem must be considered. Even if a 
continuity hypothesis is considered by introducing 
parameters propagation, it is a relatively local 
consideration, which is insufficient to assure a 
correct detection along the sequence. The proposed 
solution is based on the use of a 3D model of 
trajectory to assure the global coherence of the 
elaborated reconstruction. Cause of the 2D nature of 
processing, only the 2D-model projection seems 
useful (Figure 11). The model is first adapted to the 
data considering a linear transformation (in fact a 
similitude). Then, when the error is inferior to a 
given threshold, the model can be fully considered 
as real knowledge source. 

IV. RESULTS 

Images given in Figure 12 and Figure 13 come 
from a real sequence acquired in a medical context. 
We can notice the aorta contour vanishing in several 
parts. Finally, it is worthwhile to notice the 
important problem due to the harmonics presence, 
which can introduce error on the detection of aorta. 

Figure 12: Detected aorta at different levels of a 
sequence acquired from a real patient. 

Figure 13: Obtained results on two slices of an 
echo-endoscopic sequence. On each frame, 
coordinates of ellipse center (x0, yo), semi-major (a) 
and semi-minor (b), and orientation (y) are 
precised. 

On Figure 12, we can see the detected aorta at 
different levels of the sequence. The stability of the 
detection is due to trajectory 3D model. This 
knowledge source adds a fundamental information 

on the aorta global shape, which fully compensates 
defects of a slice by slice processing sequence. 

On Figure 13, two magnified views prove that 
the use an elliptical model is judicious to 
approximate the aorta contour. Such a model assures 
a correct precision despite its relative simplicity. 

V. CONCLUSION 

Obtained results are very encouraging. 
Simulations have shown that the processing 
sequence is robust enough against the noise (Figure 
13), thanks to Hough Transform. Imprecision on a 
and b estimation at the level of the aorta bend, 
should be compensated by the introduction of a full 
3D model taking in account both the trajectory of 
the center, semi-minor and semi-major axis. 

In term of image processing, ultrasound slices 
relative positions can be corrected from this 
reconstruction considering shape regularity 
conditions. 

Actual studies are conducted in order to 
generalize the proposed HT based information 
fusion system to the case of spherical anatomical 
structures 3D detection as ganglions. 

The whole system will be soon integrated in a 
blackboard architecture that seems to be promising. 
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Abstract 
In this paper we consider how to organize the 
sharing of information in a distributed network of 
sensors and data processors so as to provide 
explanations for sensor readings with minimal 
expenditure of energy. We point out that the 
Minimum Description Length principle provides 
an approach to information fusion that is more 
naturally suited to energy minimization than 
traditional Bayesian approaches. In addition we 
show that for networks consisting of a large 
number of identical sensors Kohonen self- 
organization provides an exact solution to the 
problem of combing the sensor outputs into 
minimal description length explanations. 

Key Words: self-organization, fusion 

1. Introduction 
One of the grand challenges of 

cognitive science is to understand how, 
at least in principle, a network of sensors 
and simple data processors might be 
configured to "understand" what is going 
on its environment. In general forming 
perceptions from sensor outputs will 
require a network of sensors because 
noise or insufficient selectivity may not 
allow individual sensors to provide 
unambiguos signals regarding the 
environment. It should be kept in mind in 
this connection that increasing the 
sensitivity of an individual detector will 
not lead to an increase in the signal to 
noise ratio for the signatures of interest 
unless some scheme for background 
subtraction is available. The upshot is 
that even in networks where the 
individual detectors are very sensitive, it 
will in general be desirable to correlate or 
"fuse" the signals from different kinds of 
sensors or sensors in different spatial 
locations. 

When one is considering the problem 
of combing information from different 
sensors it is tempting to use Bayesian 
probabilistic reasoning [1] or its Demster- 
Shafer generalization  [2].  One  of the 

Minimum Energy Information Fusion 
in Sensor Networks 

George Chapline 
Lawrence Livermore National Laboratory 

attractive features of a Bayesian 
approach to information fusion is its 
adaptability to incremental computational 
schemes [1], which allow one to pool the 
evidence from different sensors 
hierarchically using a tree-like network. In 
particular each node of a Bayesian data 
fusion tree combines the conditional 
probabilities for the units which proceed 
it in some ordering to form a new set of 
conditional probabilities. These 
Bayesian networks often incorporate 
unobserved latent variables known as 
hidden variables, and such networks 
have been successfully used for some 
quite difficult real world pattern 
recognition problems such as speech 
recognition. Bayesian-type networks are 
also attractive for combining the outputs 
of neural network classifiers [2]. On the 
other hand when applied to the problem 
of information fusion in an autonomous 
network of sensors and associated data 
processors neither Bayesian 
probabilistic reasoning nor the Dempster- 
Shafer method seem by themselves to 
offer any particular insights into the 
important problem of how to minimize 
overall energy usage in the network. In 
this paper we will argue that in contrast 
with Bayesian techniques the Minimum 
Description Length (MDL) principle [3, 
appears to be an ideal statistica 
inference methodology to use when 
energy usage in the network is an 
important constraint. 

The MDL principle has been gaining 
in popularity as a fundamental alternative 
to Bayesian reasoning for statistical 
inference for several reasons. Two well- 
known problems with Bayesian 
reasoning are a) a priori probability 
distributions may not be known or even 
exist, and b) Bayesian methods are 
impractical when there are many 
possible explanations for a given 
instance of environmental data. While the 
Neyman-Pearson likelihood ratio test is 
uncontested as the best thing to use 
when there is just one hypothesis to 
test,   there   is   no   similarly   canonical 
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method when there are many 
approximately equally likely 
explanations for the environmental data. 
Indeed, not only does keeping track of 
the conditional probabilities for a 
possibly exponentially large number of 
hypotheses make hierarchical Bayesian 
fusion schemes difficult to implement, but 
choosing the single largest conditional 
probability to select a particular 
hypothesis could give the wrong 
answer. On the other hand the MDL 
principle was the inspiration for the 
Heimholte machine [4], which is a 
promising approach to dealing with the 
combinatorial complexities associated 
with data whose explanation is 
ambiguous. 

A third general problem with 
Bayesian methods is that they don't b y 
themselves address the important 
question of minimizing the complexity of 
coded representations. A corollary of this 
second point is that Bayesian methods 
don't seem to be particularly well suited 
to the problem of optimizing the energy 
usage in an sensor network. However 
by focusing on the simplest possible 
way to explain environmental data the 
MDL principle appears to be very well 
suited to minimizing energy usage in a 
sensor network. In the following section 
we briefly review the MDL approach to 
pattern recognition. The basic idea here 
is that overall description costs are 
minimized when the probabilities for 
various explanations are related to their 
description costs by the Boltzmann 
distribution. In section 3 we show that 
MDL explanations for the outputs of a 
large number of identical sensors can 
obtained using Kohonen's algorithm for 
self-organization. In section 4 we 
compare the energy requirements for 
sensor fusion using distributed self- 
organization with the energy 
requirements for sensor fusion using a 
hierarchical Bayesian network. 

2. Minimal description length 
approach to pattern recognition 

It has been understood for some 
time that pattern recognition systems are 
in essence machines that utilize either 
preconceived probability distributions or 
empirically determined posterior 
probabilities to classify patterns [5]. In 
the   ideal   case   where   the   a   priori 

probability distribution p(cc ) for the 
occurrence of various classes a of 
feature vectors and probability densities 
p(xj a) for the distribution of data sets x 
within each class are known, then the 
best possible classification procedure 
would be to simply choose the class a 
for which the posterior probability 

P(a | x) 
p(a)p(x | a) 

%p(ß)p(x\ß) 
ß 

(1) 

is largest. Unfortunately in the real world 
one is typically faced with the situation 
that neither the class probabilities p(oc ) 
nor class densities p(x|oc) are precisely 
known, so that one must rely on empirical 
information to estimate the conditional 
probabilities P(a [ x) needed to classify 
data sets. In practice this means that one 
must adopt a parametric model for the 
class probabilities and densities, and 
then use empirical data to fix the 
parameters 6 of the probability model. 
Once values for the model parameters 
have been fixed, then sensory data can 
be classified by simply substituting 
values for the model probabilities p(a; 0 
) and p(x|a; 6) into equation (1). 

Unfortunately determining values 
for the model parameters from empirical 
data is itself a computationally intractable 
problem. This means that in practice one 
is usually limited to using models of 
relatively modest complexity, and 
consequently one is always faced with 
the issue of choosing the best possible 
values for the model parameters. A very 
elegant approach to this problem was 
suggested some time ago by Rissanen 
[3], who suggested choosing a model 
such that the length of binary code 
needed to represent the model is 
minimized. The description length for a 
binary variable s, is: 

E (Si) = 
-silogp-(1-si)log(i-pi), (2) 

This leads us to define the description 
cost or "energy" of a classification a to 
be 

Ea=2   E(Si) +E   E<*)'       (3) 
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where the x are the variables needed to 
describe the input data and the s, are the 
variables needed to represent the 
interpretation of the input data. One 
might think that the pattern recognition 
algorithm should be chosen to minimize 
E0, but this is incorrect because it is 
possible [3] to devise coding schemes 
that take advantage of the entropy of 
alternative explanations for the input 
data. The effective cost F(x) for 
describing a data set x with explanations 
a={S;} is 

F(x) = 
^{EaP(a)-(-P(a)logP(a))}.       (4) 
a 

The quantity ^Pe(a)log[Pe(a)/ P(a)] 

in the second term in equation (4) is 
always positive and measures of the 
difference in bits between the model 
distribution Pg (a) and the true 
distribution P(a). This distance measure, 
known as the Kullback- Leibler 
divergence, is the basis for the 
Maximum Likelihood estimator that is 
widely used by statisticians to measure 
how well a given set of model 
probabilities reproduces the empirical 
data [5]. As in physics F(x) is minimized 
when the probabilities of alternative 
explanations are exponentially related to 
their costs by the canonical Boltzmann 
distribution: 

P(a | x) = (5) 

Thus a minimal cost recognition model 
should produce a probability distribution 
Q(oc) that is as similar as possible to the 
Boltzmann distribution (5). 

Of course we are still left with the 
problem of how to generate explanations 
and conditional probabilities P(a) that 
satisfy equation (5). An ingenious 
approach to generating explanations {a} 
for which the posterior probabilities P(oc| 
x; 9) are naturally represented in the 
canonical Boltzmann distribution form (5) 
was introduced in 1985 by Ackley, 
Hinton, and Sejnowski [6]. In this model, 
known as the Boltzmann machine, 
environmental data and their 
"explanations" are represented by 
configurations   of   binary    units    with 

activation levels a, = 0 or 1. The energy 
function for the assembly of binary units 
is assumed to have the same form as 
that used by physicists to describe a 
system of interacting spins in a magnet: 

(6) 
i*j 

where a ={aj denotes the set of 
activation levels and the weight w0 

describes the interaction strength 
between binary units i and j In the 
original version of the Boltzmann machine 
these interactions are assumed to be 
symmetric; le.Wy = wjr However 
layered versions of the Boltzmann 
machine with asymmetric weights; i.e. wt] 

*w.,., are also of interest because they 
are equivalent to Bayesian decision 
networks [7]. In both the symmetric and 
asymmetric Boltzmann machines the 
probability distribution Pg (a)will be the 
probability distribution for the activation 
levels in a certain subset, referred to as 
the hidden units, of all binary units. The 
remaining binary units, referred to as the 
visible units, represent the environmental 
data x. The model parameters 9 for the 
Boltzmann machine are the connection 
strengths w0 and biases 0, for the binary 
units. These parameters are determined 
by minimizing the Kullbach-Leibler 
divergence between the probability 
distribution Pg(a) with the visible unit 
activation levels fixed and the probability 
distribution for classifications with the 
activation levels of the visible units 
allowed to vary freely. Used as a pattern 
recognition device the Boltzmann 
machine has the virtue that high order 
correlations between different instances 
of environmental data can be 
represented and used in the classification 
of data sets. This means that the 
classifications provided by the 
Boltzmann machine take into account 
more information than just the relationship 
between a class and its feature vectors. 
Unfortunately Boltzmann machines have 
not found many practical applications 
because determination of the connection 
strengths and biases for realistic data 
sets is very slow because of the 
necessity for repetitive Monte Carlo 
sampling of a joint probability distribution 
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for the activation levels of the hidden 
units. 

A quasi-deterministic version of 
the Boltzmann machine, known as the 
Heimholte machine [4, 8], assumes the 
binary nodes are organized into layers 
and that there is Markov transition 
probability for going between layers of 
the form 

p(a,.(n+1)|a(n)) = 

a[ß(1-2«,.(n+1))5>0.a,.], (7) 

where o(x) = 1/[1+exp(-x)] and for each 
node of the activation level a, =0 or 1. 
The vector a(n) = {a,(n)} in equation (7) 
denotes the set of activation levels at 
layer n of the network. One can also 
think of the way activation levels vary 
from layer to layer as describing the time 
evolution of a system of binary units [9]. 
If one assumes that the activities of the 
binary units within a given layer are 
independent, then the probability of a 
particular explanation a, which we 
identify as the "time history" {a(n), n>1} 
of activations will be given by [8]: 

Q(«)=n   Y[lP("jW-P<<*M~ai (8) 
7!>1 j 

so that the binary units that are turned on 
contribute with weightpj(x) while the 
units that are turned off contribute with 
weight 1-/?;(JC). In order to determine the 
recognition   weights wtJ   Hinton   et.   al. 
employ a parallel "fantasy" generation 
network to generate a model 
distribution/^(a). The weights of the 
fantasy generation network are chosen 
so as to minimize the Kullback- Leibler 
divergence between the model 
distribution and the probability values for 
training the recognition connection 
weights Wy     using    standard     neural 
network training algorithms. 

By restricting its attention to 
distributions of the form (8) the Helmholtz 
machine finesses the combinatorial 
problem associated many hypotheses. 
Therefore organizing a network of 
sensors and data processors as a 
Helmholtz machine, as was previously 
recommended by the author [10], might 

seem like a good idea. However, two 
aspects of the Helmholtz machine 
architecture seem problematical in 
connection with the problem of energy 
minimization. The first is that even though 
the Helmholtz machine attempts to 
minimize the free energyF(x), by 
restricting attention to distributions of the 
form (8) it is not clear how close one can 
approach to the ideal Boltzmann 
distribution (5). A second problem is that 
each node in a given layer will in general 
be connected to every node in the 
previous layer. Compared with a 
hierarchical Bayesian network this would 
increase the number of communication 
links in a network of N total nodes by a 
factor on the order of N/L, where L is the 
number of layers. However, replacing 
the fully interconnected network used in 
the Boltzmann machine with the quasi- 
deterministic evolution of a string of bits 
does point us in the direction of the exact 
model for MDL information fusion 
described in the next section. 

3. Self-organization approach to MDL 
information fusion 

Let us suppose that our sensor 
network consists of N feature detectors, 
and that each feature detector can 
communicate with three neighboring 
feature detectors. The assumption of 
three communication links per node is 
made for convenience since models 
where the feature detectors are allowed 
to connect to a larger (but fixed) number 
of neighbors lead to similar results. Also 
for simplicity we will assume that the 
feature being looked for can be 
characterized by a single continuous 
variable w such that 0<W<2TI; leaving for 
the future the more typical case where 
the features are characterized by a 
vector in a higher dimensional space. In 
addition we assume that every sensor is 
looking at the same environment. As an 
initial condition for the network we assign 

to each sensor a value 0 of the feature 
that is randomly chosen from a 
probability distribution for the 
occurrences of various features in the 
environment. Now intuitively it seems 
clear that since in principle nearby 
sensors ought to have the similar 
outputs, a minimal description of the 
sensor outputs  ought to  involve  just 
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giving the parameters of a smooth curve 
for w vs. location r of the sensor nodes. 
Therefore we will guess that the data 
processing required for minimum 
description information fusion can be 
modeled by assuming that the maps of 
sensor locations into feature space are 
"self-organizing. If we follow Kohonen's 
prescription for self-organization [11], this 
means that the orientation of the feature 
detector located at r will evolve according 
to a rule of the form 

w(r,t +1) = w(r,t) + h(r - s)[(j> - w(r,t)] j 

(9)' 

where h(r) is typically assumed to be a 
Gaussian function peaked at r=0. For our 
purposes the function h(r-s) can be 
replaced by the rule that each feature 
detector is connected to just three of its 
nearest neighbors. The location s in (9) 
corresponds   to   the   feature   detector 
whose orientation w(s) is closest to v. 
Thus the data fusion process is modeled 
as a Markov process whose states are 
the sets {w(r)} of possible states of the 
feature detectors, and where the 
transition probabilities are determined b y 
probabilities    of    occurrence    in    the 
environment of various orientations r. In 
order to construct an analytical model of 
this evolution process it will be useful to 
introduce an energy functional E[w] that 
satisfies 

< P(<j>)8w >= -gradwE (10) 

where8w = w(r,t + l)-w(r,t) and P(0) 
is the a priori probability distribution for 
the orientations of the environmental 
stimuli. Neglecting certain mathematical 
subtleties, the required energy functional 
is [12] 

E[w]- 
1 

V£p(0)|0-w(r,O| 
2^ * <r,s><t>eR (11) 

where the sum over <r,s> runs over 
nearest neighbor connections and R (r) 
is the receptive field of the feature 
detector located at r; i.e. the union of all 
environmental stimuli that are closer to 
w(r, t) than any other w(s,t), where s^r. 

Given an energy functional that 
satisfies (10) there are standard 
techniques that one can use to describe 
the stochastic evolution of the 
organization of our neural network. 
However here we will limit our interest in 
how the organization of feature detectors 
evolves with time to noting that under the 
influence of the random variable 0(t) the 
system relaxes to an asymptotic state 
characterized by a stationary probability 
distribution for various final configurations 
of feature vectors {w(r)} . Given the 
existence of an energy functional 
satisfying (19) the statistical properties 
of the set {w(r)} in this stationary state 
can be derived from a "partition function" 
Z = exp[-F (x) ] which is a sum over all 
possible stationary state configurations 
weighted with the Boltzmann factor exp(- 
E[w]). If we assume that the stochastic 
evolution of network is governed by an 
energy functional of the form (11) then 
this partition function has the form [13]: 

__      „ F  r2n --2|w('-1)-w(rJ)|2 

Z = ydK
FU\dw{ri)e 2<>->- 

(12) 

where K and K are constants, the sum 
overL means a sum over triangular 
lattices, and the indices i and j refer to 
orientation sensitive neurons located at 
the centers of the triangles in this lattice 
(note that N is the number of faces of the 
triangulation L ). For large numbers of 
faces the triangulationL can be thought of 
as approximating a smooth 2- 
dimensional surfaces, and in the limit N 
—> °° the sum over triangular lattices in 
eq.12 becomes a sum over smooth 2- 
dimensional surfaces. In this limit the 
partition function (12) becomes 

Z = J Dw(cx)exp(-S) ,13* 

where (avaz) are the coordinates of a 
point on the smooth surface and the 
continuum action S is given by 

S = —jd2adawdaw + X 
(14) 
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The constant ^ in (14) replaces the 
constant K and plays the role of an 
energy per node. It turns out that the 
partition function (13) has an interesting 
physical interpretation [13]; namely, it 
represents the quantum theory of a 
"string" moving on a 2-dimensional 
surface - in mathematical terms this 
means random holomorphic mappings 
from a 2-dimensional manifold onto a 
fixed 2-dimensional manifold. In this string 
interpretation the angle variable w 
becomes a complex variable by the 
addition of a second real variable 
representing the local magnification of the 
mapping. It is worth noting that this result 
is consistent with the theorem [14] that 
for maps of 2-dimensional surfaces onto 
2-dimensional surfaces the stationary 
state of Kohonen's algorithm is a 
holomorphic (or anti-holomorphic) map. 
Thus we have the general result that the 
feature vector will be a smooth analytic 
function of position, in accordance with 
our initial expectations. As noted in ref. 
13 this formalism also determines the 
topological connectivity of the 2- 
dimensional surfaces involved; therefore 
in contrast with other approaches to 
information fusion the network topology 
is not an extra ad hoc assumption, but 
follows from the MDL principle. 

We can now see why somewhat 
miraculously Kohonen self-organization 
provides an exact solution to the 
problem of finding minimally complex 
explanations for the outputs of a large 
number of sensors. In the large N limit 
explanations are represented by smooth 
mappings of a 2-dimensional surface 
representing the physical layout and 
connectivity of the network into feature 
space. The information cost of any 
particular explanation is just an 
exponential of minus the quantized area 
of the surface in feature space given in 
eq. 14. The natural unit of quantization, 
i.e. the area equivalent to 1 bit, is 
determined by the inverse of the 
constant K in eq. 14. The cost averaged 
over environmental inputs is just the 
negative logarithm of the partition function 
Z defined in eq. 13. 

4.   Hierarchical   versus   distributed 
information fusion 

It is self-evident that other things 
being equal generation of a minimal 
binary representation for feature vectors 
and explanations for feature vectors will 
minimize the energy usage in any sensor 
network. A remaining question though is 
how to compare the energy costs of 
hierarchical Bayesian network with those 
of network that fuses sensor outputs via 
Kohonen self-organization. In a self- 
organized network of sensors and data 
processors the information fusion 
processes are distributed throughout the 
network. However if, as we have been 
implicitly assuming, the different sensors 
in the network are physically separated 
then some means must be provided for 
these nodes to communicate with each 
other. In a Bayesian network the 
communication support must be capable 
of relaying the conditional probabilities at 
one decision level of the network to the 
data fusion units in the next level of the 
network within a relevancy time interval. 
Thus an interesting question is how the 
data processing and communication 
energy costs for information fusion in a 
network using distributed self- 
organization compare with these costs in 
a network using hierarchical Bayesian 
reasoning. 

If one uses a conventional 
hierarchical data fusion strategy [see e.g. 
15] where separate data fusion nodes 
collect information from sensor nodes, 
then every data fusion node in the 
system must incorporate a Bayesian 
inference engine which calculates 
conditional probabilities for all the 
relevant hypotheses. In a Bayesian 
tree-like network of data fusion and 
sensor nodes with a total of N nodes, 
these conditional probabilities must be 
calculated at each of the N nodes and 
communicated to the node in the next 
higher level. If every data fusion node 
receives information from say 3 nodes in 
the next layer down, there will be 
approximately InN layers and 2N/3 
communication links in the network for 
large N. The total amount of information 
that needs to be transmitted from one 
layer of the network to the next will be on 
the order of (N/ InN) £ (Ea +(-lnP(a)) 

a 
where  Ea is the description   cost  for 

74 



hypothesis a. On the other hand, in a 
network of M sensors using a self- 
organization scheme of the type 
discussed in the previous section for 
data fusion, the conditional probabilities 
are not directly calculated; instead they 
are coded into the description length for 
the feature vectors. This is a tremendous 
advantage because initially one can 
choose the most likely feature vector for 
every sensor node. Furthermore, after a 
certain number of iterations of Kohonen's 
algorithm the M feature vectors are 
compressed into a smooth function. 
Therefore in a self-organizing network the 
amount of information that must be 
processed during the data fusion 
process is enormously reduced because 
one isn't carrying along conditional 
probabilities for every possible 
hypothesis. 

If every sensor node in a self- 
organizing network communicates with 3 
of is neighbors, the number of 
communication links that must be 
established to implement Kohonen self- 
organization will be approximately equal 
to 3M/2. If we assume every data fusion 
node in a hierarchical Bayesian network 
also functions as a sensor node so N=M, 
we see that the minimum number of 
communication links required in a self- 
organizing network with the same 
number of sensors will be approximately 
9/4 the required number of links in a 
hierarchical Bayesian network. However 
as one moves from one step of the data 
fusion process to the next the amount of 
information that must be transmitted in a 
self-organizing network will be vastly 
smaller when the number of hypotheses 
to be tested is very large. As discussed 
in the last section one can initiate the 
self-organization process b y 
independently choosing feature vectors 
for each sensor according to the 
probability that they occur in the 
environment. However in reality the 
sensor readings are not independent, 
and it would make more sense to initially 
replace each sensor output with the most 
likely explanation for the sensor output. 
In this case the total amount of 
information transmitted between sensor 
nodes for each iteration of the Kohonen 
algorithm will be on the order of 
(3M/2)F(x), where F(x) is the average 
description cost for the explanations. 

Since F(x) will be on the order of 
H Ea , whereH is the number of 
hypotheses, we see that the 
communication costs in a hierarchical 
Bayesian network will be larger than 
those in a self-organizing network with 
the same number of sensors by a factor 
on the order of H. If we assume that each 
data fusion node in a hierarchical 
Bayesian network combines the 
conditional probabilities from three nodes 
then the computational costs for each 
hypothesis are similar in the Bayesian 
and self-organizing networks. However 
in the Bayesian network the conditional 
probabilities must be updated for each 
hypothesis; therefore the computational 
cost per node will be on the order of H 
larger in the Bayesian network. The end 
result is that the relative energy costs of 
moving from one step of the data fusion 
process to the next in a distributed self- 
organizing versus a hierarchical 
Bayesian network will be on the order of 

Bayesian / Self-organization energy cost 

« — (15) 
IniV 

5. Conclusion 
We see that when there is only 

one hypothesis to test the energy cost 
for fusing sensor outputs using a 
hierarchical Bayesian network is not 
significantly different form the MDL 
energy costs of a self-organizing 
network. However, when the number of 
hypotheses to be tested is very large, 
then the energy costs of using 
distributed self-organization to fuse 
sensor outputs will be very much 
smaller. We should also note that 
because the fusion process in a self- 
organizing network is distributed 
throughout the network, using self- 
organization for information fusion also 
has the advantage of greater reliability. 
In addition we have seen that distributed 
self-organization may be better able to 
deal with the combinatorial complexities 
associated with ambiguous 
explanations. It is of course tempting to 
speculate that the energy saving and 
reliability features of distributed self- 
organization, as well as the ability to 
cope with ambiguous environmental 
stimuli,   are   principal    reasons    why 
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biological evolution has favored self- 
organization and complete 
decentralization of the cognitive 
processes in the mammalian brain. 
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Abstract - An expert system GIFTS (a Guide to In- 
telligent Fusion Technology Selection) developed to 
aid sensor fusion system design, was presented at 
Fusion 98 as an on-going project with additional 
support tools under development. In this paper, a 
simulation tool, FUSE, that exercises a decisions in - 
decision out (DEI-DEO) fusion model to estimate the 
benefits (utility) along a sequence of multiple obser- 
vations, is presented. This can be employed either 
independently or as one of the tools supporting 
GIFTS. FUSE permits the simulation of different 
Boolean fusion logic functions in the context of sen- 
sor suites with two independent sensors. The inputs to 
FUSE are the sensor performance characteristics in 
terms of the probabilities of correct and incorrect 
decisions for target and decoy classes along with 
parameters that define the fusion logic and duration. 
The outputs of the system are the fused system per- 
formance expressed in terms of probabilities of cor- 
rect-, incorrect- and non- decisions over the specified 
range of observations. Whenever any of these input 
parameters are altered, FUSE responds instantane- 
ously by updating the fused system performance. In 
order to further aid the user in the comparison of the 
different fusion logic alternatives and to assess the 
benefits of temporal fusion through multiple inde- 
pendent observations, FUSE provides several 
graphic visualization options. 

Key Words: decision fusion, fusion benefits, fu- 
sion logic, temporal fusion 

1. Introduction 

A common question that arises, especially from 
outside the sensor fusion community, is why fuse the 
sensors at all. An often heard comment is: "Why 
should I fuse my two sensors when sensor number 
one has superior performance? I will just be degrad- 
ing its performance by mixing in less reliable infor- 
mation." Of course fusing sensors can be beneficial, 

but it is often hard to convey this message without 
showing hard data to the skeptic. 

Even assuming that one is convinced of the ad- 
vantages of pursuing fusion, a second question is 
often how the fusion should be accomplished. This is 
the challenge of determining what to fuse, when to 
fuse [1], and how to fuse. There is abundant litera- 
ture offering different methods of accomplishing fu- 
sion [2,3], but few universal rules to follow. Instead, 
each scenario has been individually analyzed and all 
methods have to be considered in the appropriate 
context. 

FUSE (Fusion Utility Sequence Estimator) is de- 
signed to address both of these questions, albeit in a 
limited fashion. To help with the first problem (ad- 
dressing the utility of fusion), FUSE can be used as a 
stand-alone fusion simulator. A user simply inputs 
appropriate values for the individual sensor charac- 
teristics through the user interface and fused decision 
probabilities are immediately updated. Hence, the 
advantages of fusion can be instantaneously gleaned. 
To further aid in examining the fusion benefits, 
graphical representations can be displayed. 

FUSE, when used in conjunction with GIFTS (a 
Guide to Intelligent Fusion Technology Selection) 
[4], addresses the larger problem as well. GIFTS 
guides a user through an interactive query session 
that defines a fusion system architecture that is ap- 
propriate to the problem environment under consid- 
eration. Included within the GIFTS architecture, are 
several support tools that provide assistance to the 
designer in developing and assessing the detailed 
fusion system design corresponding to the chosen 
architecture. FUSE is an additional assessment tool 
that can be included in the GIFTS architecture or can 
be operated as a stand-alone simulation. FUSE em- 
ploys a decisions in -decision out (DEI-DEO) fusion 
model to estimate the benefits along a sequence of 
multiple observations using a two-sensor suite under 
AND and OR boolean logic. 

In this paper, the initial version of FUSE will be 
introduced.   In Section 2, an overview of the basic 
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fusion concepts underlying the estimation techniques 
is presented along with a summary of the GIFTS ar- 
chitecture. Section 3 is a description of the FUSE 
simulation and section 4 presents how FUSE can be 
used as a realistic analysis tool. Section 5 offers 
some closing comments and outlines the scope for 
further development. 

2. Background 

This section contains the basics of the methods 
by which FUSE estimates fusion benefits and the 
GIFTS architecture. For more details on the estima- 
tion techniques see [5]. Those interested in GIFTS 
should look up [4]. 

2.1 Fused Probability Estimation 

There are two basic fusion strategies that are used 
in FUSE. The two strategies are OR and AND boo- 
lean logic. Both strategies operate in an environment 
where two sensors are operating in parallel, have a 
provision for multiple looks, and have a non-decision 
option as well as the normal binary decisions. OR 
logic fuses decisions by making a binary decision if 
the two sensors are not contradictory and a non- 
decision otherwise. AND logic, on the other hand, 
requires that the two sensors make concurring deci- 
sions to obtain a binary decision and a non-decision 
otherwise. 

Let cy, Wjj, and u^ correspondingly represent the 
probabilities of correct, incorrect, and non-decision 
of objects j ={Target (T), Decoy (D)} by the sensors i 
= {1,2}, where both sensors are deemed independent. 
Similarly, p/, qj1, and r/ represent the fused prob- 
abilities of correct, incorrect, and non-decision of 
object j after the k'h fusion attempt under logic / = 
{OR (o), AND (a)}. Using these definitions we note 
that 

Cy+Wy+Uy=l. 

It can then be shown for OR logic that 

P0/=^2,+C1,«2,.+Hlj.C2;. 

1cj    = WUW2j + WljU2j + UljW2j 

roj
l=UljU2j+C

lj
W2j+W

lj
C2j- 

(1) 

(2) 

(3) 

(4) 

Similarly, the following equations can be developed 
for AND logic. 

Pa/=CljC2j 

Qaj   = WlJW2j 

(5) 

(6) 

raj    =UljU2j+CljW2j+WljC2j + 
(1) 

The k'h probabilities can thus be written as 

pfi =LPf, = Pfj -j  (8) 
1=1 I- 

l-[r,'] 

i 

Si 

i=i l'-r, /; 

i    1        i        i 

(10) 

(11) 

These eleven equations form the basis of the fusion 
benefit analysis in FUSE. 

Three types of fusion benefits will be defined. 
These are with respect to the probability of correct 
decision, probability of incorrect decision, and both. 
A fusion benefit exists with respect to the probability 
of a correct decision when 

PfJ
k >max(clJ,c2J). (12) 

Similarly, the fusion benefit with respect to the prob- 
ability of an incorrect decision would be 

Q/ <min(wiy,w2;). (13) 

A joint fusion benefit is thus when both (12) and (13) 
simultaneously hold true. 

2.2 GIFTS 

GIFTS is currently composed of four modules. 
The primary component is the architecture selection 
process that determines the relevant architecture. 
The second piece is a reference database that can be 
used to help answer problem specific questions. The 
third part is an FEI-DEO fusion selector. It provides 
a means of choosing an implementation of FEI-DEO 
fusion. The final component is FUSE that is dis- 
cussed in this paper to simulate DEI-DEO fusion. 

Through the use of all the modules, GIFTS can 
provide aid to the fusion system architecture designer 
during the different phases of development. The 
user, who knows the specifics of a fusion problem, 
uses GIFTS to determine a proposed architecture. 
This is accomplished by responding to problem spe- 
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cific questions posed by the primary component of 
GIFTS. Once the proposed architecture has been 
created, the user will begin a problem specific refin- 
ing process that will produce a fusion solution. Dur- 
ing this time, the goal is to determine the optimal 
means of implementing the different fusion modes in 
the proposed architecture. (Of course the option of 
not utilizing a fusion mode in the proposed architec- 
ture is always available. It may be that even though 
fusion is practical in this mode, there is no reasonable 
means of implementing it in the user's application, or 
a restraint outside the realm of GIFTS could be a 
limiting factor.) 

It is at this point in the development process that 
the remaining modules of GIFTS will be useful. The 
reference tool can be used to provide sources of in- 
formation on different fusion levels. The reference 
tool will provide a list of references that are related to 
the fusion modes in the proposed architecture. Thus, 
the reference tool makes use of the knowledge gained 
by the primary component. Similarly, if the user has 
not previously determined methods for performing 
FEI-DEO fusion or making local decisions, then the 
FEI-DEO fusion selector will be helpful. In this tool, 
the user is asked application specific questions to 
determine the most appropriate implementation 
method. The FUSE tool would be used to investigate 
DEI-DEO fusion as discussed in this paper. 

3. The FUSE Tool 

FUSE is currently implemented on a PC using 
Visual C++ [6]. It will thus run with no alterations 
on Windows 95, Windows 98, or Windows NT. The 
user can alter the sensor characteristics by choosing 
"Fusion Inputs" from the Fusion menu, or by clicking 
on the fusion characteristics button on the toolbar. 
Figure 1 shows the user interface with the Fusion 
menu activated. After "Fusion Inputs" has been cho- 
sen, the Data Definition Dialog Box (DDDB) will 
appear. It is through this dialog box that the fusion 
characteristics can be altered. Figure 2 is the default 
setting of the DDDB. 

The DDDB consists of two group boxes labeled 
"Inputs" and "Fused Decision Probabilities", respec- 
tively along with a button label "OK." 

The "Inputs" group is where the fusion charac- 
teristics are controlled. The inputs that can be altered 
are: decision probabilities for sensor 1, decision 
probabilities for sensor 2, the type of fusion logic, 
and the number of looks permitted for each sensor. 
Note that the user can have control over the correct 
and incorrect decision probabilities for both of the 
possible binary decisions (T and D). This allows for 
the maximum flexibility in the definition of a sensor. 

These probabilities can be entered by directly typing 
in the desired number of by using the adjacent slid- 
ers. It should also be pointed out that from equation 
(1), the four non-decision probabilities are uniquely 
defined by the inputs. The fusion logic is selected by 
a simple check box (checked for AND logic and un- 
checked for OR logic). The number of looks are en- 
tered by typing the appropriate integer in the box 
labeled "Number of Looks." 

The "Fused Decision Probabilities" group is 
where the fused results, based on the above inputs, 
are displayed. The fused correct, incorrect, and non- 
decision probabilities are displayed for both the T 
and D binary decision. 

The calculation of fused probabilities is only one 
aspect of FUSE. FUSE also provides a collection of 
visualization tools to help analyze the results.  Each 
of these options are accessed through the "Fusion" 
menu.  (Note that to activate the "Fusion" menu the 
input dialog cannot be open. Hence, if the dialog box 
is open then the "OK" button needs to be selected to 
exit the dialog box.) The graphical options are: 
"Plot Target"- plots the fused correct, incorrect, and 

non-decision probabilities, for the T object, 
against the number of looks, 

"Plot Decoy" - plots the fused correct, incorrect, and 
non-decision probabilities, for the D object, 
against the number of looks, 

"Plot Target And/OR" - plots the fused correct prob- 
ability, for the T object, under both AND 
and OR logic against the number of looks, 

"Plot Decoy And/OR" - plots the fused correct prob- 
ability, for the D object, under both AND 
and OR logic against the number of looks, 

"Plot Target Fusion Benefits" - plots the fused cor- 
rect and incorrect probabilities, for the T 
object, against the number of looks while 
shading the domain of fusion benefit for 
each and marking the domain of joint bene- 
fit, and 

"Plot Decoy Fusion Benefits" - plots the fused cor- 
rect and incorrect probabilities, for the D 
object, against the number of looks while 
shading the domain of fusion benefit for 
each and marking the domain of joint bene- 
fit. 

The definition of a domain of joint fusion benefit is 
the intersection of the domains of correct and incor- 
rect fusion benefit.    The domain of correct (incor- 
rect) fusion benefit is the domain where the correct 
(incorrect) fusion benefit exists. The correct and in- 
correct fusion benefit domain can be thought of as the 
domain bounded by a fused probability curve (with 
respect to the number of looks) and the best perform- 
ance of a single sensor.  As an example, if the prob- 
ability of correct, incorrect, and non-decision for sen- 
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sor 1 are 71%, 16%, and 13% respectively and 45%, 
15%, and 40% for sensor 2, then the best perform- 
ance for a single sensor would be a correct-decision 
probability of 71%. Thus the fused correct probabil- 
ity curve and a horizontal line would bound the do- 
main of fusion benefit for the probability of a correct 
decision at 71%. 

4. FUSE Usage Illustration 

For FUSE to be of practical value, one needs to be 
able to exercise it in a realistic scenario. It is meant 
to be a utility to assist a fusion system designer. To 
demonstrate its utility, consider the following sce- 
nario. A fusion system is being designed that em- 
ploys two sources of decisions (or sensors) that are 
independent and capable of multiple looks. (An ex- 
ample of such a system would be a target acquisition 
system that employs an active X-band radar and a 
passive IR sensor.) 

The goal is to balance the performance require- 
ments of the system against the costs. Often this 
balance is obtained while using individual sensors 
that make decisions below system specifications and 
obtain decision probabilities that meet specifications 
through fusion. For example, the system in this sce- 
nario requires that the probability of correct and in- 
correct decisions for the target object are 95% and 
1% respectively, while these probabilities are 90% 
and 5% for the decoy object. From a cost-benefit 
analysis, it was determined that each sensor will be 
manufactured to produce at best a 65% - 70% prob- 
ability of a correct decision and 7% - 10% probability 
of incorrect decision. Also, the maximum number of 
looks desired should be between 5 and 8. 

Initial values are first chosen in the analysis. In 
this case, sensor one has probabilities of correct (T), 
correct (D), incorrect (T) and incorrect (D) of 0.650, 
0.549, 0.070, and 0.098 respectively. Similarly, sen- 
sor two has values of 0.700, 0.647, 0.075, and 0.137. 
OR logic will be examined with the number of looks 
at five. The DDDB with these values is displayed in 
Figure 3. 

Immediately, it can be seen that the results will 
not be satisfactory because the fused probabilities are 
just shy of the specifications and the non-decision 
probability has been driven down to 0 at five looks 
leaving no room for further gains. Hence, additional 
looks will not help. Likewise, fewer looks will de- 
grade performance. Both of these conclusions can be 
seen by examining the "Plot Target" and "Plot De- 
coy" graphs. (See figures 4 and 5.) 

One possibility, yet to be considered for these 
sensor inputs is the use of AND as opposed to OR 
logic.  By examining the "Plot Target And/OR" and 

"Plot Decoy And/OR", it can be seen that AND logic 
shows increased fused correct probabilities for 
greater than five looks. The "Plot Decoy And/OR" 
graph is displayed in figure 6. By checking the AND 
logic on the DDDB, AND logic results can be more 
investigated further. An examination of the "Plot 
Decoy" graph, which can be found in figure 7, shows 
that a minimum of 6 looks will be needed, but un- 
fortunately for 6 or more looks the fused probabilities 
for the target object do not meet the specifications. 
Hence, the basic sensor characteristics need to be 
tweaked. The probability of correct (T) decision will 
be increased to 0.6600. 

With this new value, the "Plot Target And/OR" 
and "Plot Decoy And/OR" show that for five looks, 
OR logic is preferable but for 6 or more looks AND 
logic will provide better fused results. The "Plot 
Target And/OR" is shown in figure 8. 

Unfortunately, an inspection of either the "Plot 
Target" or "Plot Decoy" (which is shown in figure 9) 
charts show that five looks will produce a probability 
of incorrect decision that is larger than acceptable. 
Hence, AND logic will be considered with six to 
eight looks. With six looks, the system requirements 
can be met. 

Of course because this analysis is being done in 
the design phase, another useful fact is to know how 
many looks are required for fusion to be beneficial. 
An examination of the "Plot Target Fusion Benefits" 
and "Plot Decoy Fusion Benefits" shows that fusion 
benefits can be obtained in the range of three to eight 
looks. These plots are displayed in figures 10 and 11 
respectively. 

5. Concluding Comments 

This work represents a continuing effort to fur- 
ther the application of fusion technologies by devel- 
oping tools to aid in fusion system development. As 
a continuation of this effort, the same logic that was 
used to develop the theoretical foundations for de- 
termining fusion benefits for two sensors should be 
expanded to include three or more sensors and incor- 
porated into FUSE. Furthermore, additional modules 
(similar to FUSE) covering other fusion modes 
should be added to increase the utility of the GIFTS 
architecture. 
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Abstract—Optimal distributed fusion assuming that sen- 
sor decision rules are given is considered. A general and 
computationally tractable optimal fusion rule is presented, 
which relies only on the joint conditional probability densi- 
ties of all sensor observations and all local decision rules. 
It is valid for general decision systems with any sensor 
observations and sensor decision rules, regardless of their 
interdependence, and any network structure. It is also valid 
for M-ary Bayesian decision problems and binary problems 
under the Neyman-Pearson criterion. Local decision rules 
of a sensor that are optimal for the sensor itself are also 
presented, which take the form of a generalized likelihood 
ratio test. Numerical examples are given, which reveal 
some interesting phenomena. 

Key words: distributed decision, optimal fusion, likeli- 
hood ratio test, sensor rule 

1   Introduction 

The multisensor distributed decision problem continues to 
attract much research interest in recent years, as evidenced 
by recent publications, e.g., [1-25]. A system with multi- 
ple sensors offers many advantages over one with a single 
sensor in terms of e.g., survivability, reliability, and robust- 
ness [12, 25]. 

Consider a decision system with a distributed sensor 
network. Each local sensor observes data and may re- 
ceive messages from other sensors simultaneously. It lo- 
cally fuses/compresses all its available information to a 
communicable message and transmitted it to a fusion cen- 
ter and/or other sensors. The fusion center makes a final 
decision using all received messages by some fusion rule. 
Communications are possibly permitted not only between 
the sensors and the fusion center, but also among sensors 
themselves. 

The best distributed decision system uses a fusion rule 
and a set of local sensor decision rules that globally op- 
timize the system's performance given a communication 
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pattern of the system. The optimum fusion rule and the 
corresponding set of sensor rules are highly coupled in this 
framework. Early work along this line were reported in 
e.g., [1-3]. Some new ideas and results for a class of dis- 
tributed decision systems that are quite general have been 
presented recently in [4-7], where finding the optimum fu- 
sion rule is reduced to determination of the sensor rules 
that yield optimum system performance. 

On the other hand, a sensor decision rule is determined 
(optimally) in many practical situations based only upon 
all information available to it, regardless of the whole sys- 
tem's performance (without knowledge of the fusion rule). 
The fusion center only makes a final decision that is op- 
timal subject to the fixed sensor rules. For example, in 
a decision process of a dynamic system, it is impossible 
sometimes for a decision maker to wait and make interme- 
diate decisions until the final decision is known. Another 
example involves decision systems in a war situation. In 
order to enhance the survivability of the whole decision 
system, every local sensor must make a locally optimal de- 
cision upon all information available to it and then transmit 
the decision out. In so doing, even if the fusion center or 
some local sensors are destroyed, other local sensors can 
still make decisions. In short, while optimal fusion with 
already fixed sensor rules does not yield globally optimum 
performance, it is of strong practical significance and in- 
terest. 

There are two classes of distributed decision systems in 
which local (sensor) rules are fixed, depending on whether 
every local rule is known to the fusion center (or the whole 
decision system) or not. We will call the first class "fusion 
with given local rules" and the second "fusion subject to 
fixed local rules." Note that in the first class either the 
fusion center or every sensor and the fusion center have 
complete knowledge of every local rules. The latter enables 
us to determine not only the optimal fusion rule with given 
local rules but also all sensor rules that are locally optimal. 
The first class is more often encountered in practice, but 
the second is not rare, either. A typical example of the 
second class is a decision system involving partners who do 
not want to share all intimate details of their own systems. 
Optimal fusion for the second class is clearly more difficult 
and the authors are not aware of any relevant result. 
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Previous work on distributed decision fusion with given 
local rules has been reported in [8-10]. Chair and Varshney 
[8] presented an optimal fusion rule as a linear combina- 
tion of local decisions for distributed binary decision with 
independent local decisions, where the weight for each de- 
cision is a ratio of correct-decision probability to incorrect- 
decision probability. In [9], Drakopoulos and Lee extended 
the result of [8] to cases with dependent local decisions. 
They used correlation coefficients to express the joint con- 
ditional decision probabilities. Following a similar idea, 
Kam, Zhu and Gray in [10] normalized local decisions 
first and then employed the so-called Bahadur-Lazarsfeld 
polynomial and the normalized correlation coefficients to 
express the optimal fusion of correlated local decisions for 
distributed binary decision. In fact, these two expressions 
of the likelihood ratios are equivalent, because for zero- 
one binary random variables, conditional probabilities can 
be easily expressed as conditional expectations. It is hard 
to extend these results for coupled local decisions to more 
general cases, e.g., M-ary decision systems. 

The main contribution of this paper lies in optimal fu- 
sion with given sensor rules for general decision systems, 
in particular those with dependent sensor decisions. There 
are three cases that lead to dependent sensor decisions: 
I) sensors with coupled observations but without mutual 
communications; II) sensors with independent observations 
but with communications among sensors; III) sensors with 
coupled observations and mutual communications. Note 
that sensor observations of a random signal are coupled 
even if observation errors are independent. 

This paper presents a general and computationally 
tractable optimal decision fusion rule with given sensor 
rules in terms of the joint conditional probability densities 
and the sensor rules given. The optimal fusion rule is com- 
pletely general in that it is valid for all sensor decisions, 
dependent or not, and all sensor network structures, with 
or without communications between any two sensors, pro- 
vided that the joint conditional probability densities of all 
sensor observations and the sensor rules are known. It is 
also valid for both M-ary Bayesian decision problems and 
binary problems under the Neyman-Pearson criterion. Un- 
der the same optimality criterion as for the entire system, 
sensor decision rules are also presented that are optimal 
based on all information available to them individually, in- 
cluding their own observations and the received messages 
from other sensors. Thus, combining the optimal fusion 
rule and the locally optimal sensor rules, the optimal per- 
formance of a distributed decision system with given lo- 
cally optimal sensor rules can be obtained. Finally, three 
numerical examples are given. They not only support the 
analytic results presented but also demonstrate some in- 
teresting properties of a distributed decision system with 
given sensor rules. 

The paper is organized as follows. The problem is for- 

mulated in Sec. 2. In Sec. 3, we present, analyze, and 
show how to compute the optimal fusion rule for a general 
decision system given local sensor rules. Sec. 4 describes 
locally optimal local sensor decision rules. In Sec. 5, we 
extend the above results to several more general decision 
systems. Numerical examples are provided in Sec. 6. Fi- 
nally, concluding remarks are given in Sec. 7. 

2   Problem Formulation 

Consider a distributed decision problem of M hypotheses 
Ho, H\, ..., i?M-i and I sensors with multi-dimensional 
observation data y!,...,yj, where y$ G Rni. Each local 
sensor i makes a local M-ary decision Ui based upon the 
information available to it first and then transmits its deci- 
sion out. If communications between sensors are allowed, 
the information available to a sensor includes not only its 
own observation but also messages received of some other 
sensor decisions. Finally, a fusion center (which may also 
observe data itself) makes a final M-ary decision F based 
upon all the received messages of local sensor decisions. 

Obviously, this is a very general formulation of a dis- 
tributed decision system. For example, it allows feedback 
among sensors. However, for notational simplicity, we 
consider a two-level Bayesian binary decision system first, 
which consists of only one level local sensors and a fusion 
center. Then, we show in Sec. 5 that all results presented 
for this simpler case can be extended to the more general 
decision systems described above. 

At the fusion center, a final decision is made using 
a nonrandomized fusion rule F. Let p(yi,y2, —,yi\Hi) 
and p(yi,y2, — ,yi|-ffo) be the known conditional proba- 
bility density functions (pdfs) of the observations under the 
two hypotheses, respectively, and let (ui,U2,...,U[) be the 
observations of the fusion center. The Bayesian cost is 

C(ui,u2,...1ui]F) = co0P0P(F = 0\Ho) 

+c0iPiP(F = 0\Hi) 

+ci0P0P(F = 1\H0) 

+cnP1P(F = l\Hi)      (1) 

where c^- are some suitable cost coefficients, Pi is the 
prior probability of hypothesis Hi, and P(F = i\Hj) is 
the probability that the fusion center decides on hypothesis 
Hi while hypothesis Hj is true. 

Substituting identity P(F = l\Hj) = 1 - P(F = 
0\Hj) into (1) and simplifying yield 

C(ui,u2,...,ui;F) = Pocw + PiCu 
+Pi(coi-cn)P(F = 0\H1) 

-Po{cio ~ c00)P(F = 0\H0) 

Denote the set for H0 decision (a finite point set) by 

Fo = {(ui,it2,...,ul):F = 0} (2) 

86 



Hence, 

Piicoi - cn)P(F = 0|JJi) - Po(cio - co0)P(F = 0\H0) 

= Hr0[Pi{coi ~ cn)P(u1,u2,...,ui\H1) 
-Po(cio - cm)P(ui,u2, ...,ui\H0)} 

Using the above three equations, minimizing the cost 
function is equivalent to defining To as follows: 

P(ui,...,Ul\Hi)  ^  PQ(CIQ - CQQ) 

n). 
(3) 

Ul): P(Ul,...,Ul\Ho)     Pi(coi-cn)/ 
To=UuX,U2,..., 

This is the optimal fusion rule mentioned in [8] 

3   Computation of Likelihood Ratios 

To have optimal fusion performance given the sensor rules, 
(3) indicates that all we need to do is computing the re- 
quired ratio of likelihoods or conditional joint sensor deci- 
sion probabilities. The contribution of [8] was in essence 
the simplification of the above likelihood ratio to a prod- 
uct of the ratios of two conditional decision probabilities 
of every sensor when sensor observations are independent 
and there are no communications among sensors. The sen- 
sor decision probabilities can be calculated easily from the 
given conditional probability densities p(yi, y2,..., yi\Hi) 
andp(yi,y2,...,y;|tfo)- In practice, if the above two con- 
ditional probability densities of a sensor are not known, the 
two unknown conditional decision probabilities of the sen- 
sor may be replaced by their approximate (e.g., empirical) 
average values obtained from the historical data. The for- 
mula in [8] thus is still applicable but is, of course, no 
longer optimal. In [9, 10], although two alternative formu- 
las were given, the computation of the desired correlation 
coefficients in the two alternatives is exactly just the com- 
putation of all possible conditional joint sensor decision 
probabilities. 

In this paper, we point out that when the two con- 
ditional probability density functions of the observations, 
P(yi,y2,• • -,yi\Hi) andp(yi,y2,• • • ,y/|Ho), as well as 
all sensor decision rules are known to the fusion center, we 
can compute all conditional joint sensor decision probabil- 
ities via the probabilities of subsets in the product space 
of all sensor observations, no matter how complicated the 
sensor decision rules are. This is computationally tractable. 
For example, in the case of no communication among sen- 
sors, the computational burden is the same as for the case 
with independent local decisions. 

We state the above precisely as a proposition. 
Proposition 3.1. A given set of all local nonrandomized 
decision rules defines a given 1-1 mapping between 2l sub- 
sets Uu ..., U2i of the product space Rni x ■ ■ ■ x Rn' of 
all sensor observations and points of the set of an Z-tuple 
{ui,u2,...,u{]i (i < 2l) of (0,1) binary elements. These 2l 

subsets U\, ...,U2i form a partition of the product space 
Rni x ••• x Rni. 
Proof. Given a set of all sensor decision rules, no matter 
how complicated they are, a mapping from the product 
space Rni x • • • x Rni of all sensor observations onto an 
Z-tuple (ui,u2,...,ui) of (0,1) binary elements is defined. 
Let Ui - (ui,u2, ...,ui)i be the zth point in the range of 
this mapping, that is, the ith possible value of this /-tuple 
or the ith possible set of sensor decisions. Clearly, there 
are 2l distinct u,'s and corresponding to each ut there is a 
unique subset Ut of the product space Rni x • • • x Rni (if 
more than one subset is mapped to the same Uj, then Ui 
is their union). The proposition thus follows from the fact 
that these Ui's are disjoint and exhaustive. ■ 

In Sec. 4, we illustrate this proposition by some quite 
general examples. Using Proposition 3.1, the conditional 
joint sensor decision probabilities P(ui,u2,..., ui\H0) and 
P(ui,u2,...,ui\Hi) can be computed easily in principle 
from the conditional pdfs of the sensor observations as fol- 
lows: 

P(u1,...,ui\H1)= /  p{yi,y2,-,yi\Hi)dy1dy2---dyl 
JUi 

P(uu...,ui\H0)= /  p(yi,y2,...,yi\H0)dy1dy2---dyl 
JUi 

where Ui = {(yi,...,yj) : («i,U2,-,«0»}- 
To partition the whole observation space Rni x • • • x 

Rni into two decision regions, we need to compute 2i+1 

such integrals of ]T)'=1 n* folds because the optimal fusion 
(3) requires the computation of probabilities over all pos- 
sible points (ui,u2,...,ui)i under both hypotheses. If no 
communications exist among sensors, each sensor makes 
a decision based only on its own observation. Thus, each 
region Ui can be decomposed into a product of / regions of 
lower dimensions. This implies that the above (l]i=1 n,)- 
fold integrals can be reduced to the product of I integrals 
of ni,..., ni folds, respectively. Hence, although the local 
decisions may be coupled in this case through the interde- 
pendent sensor observations, the computation of the like- 
lihood ratio is the same as for the case with independent 
local decisions. 

4   Locally Optimal Sensor Decision Rules 

All the above results assume that the local decision rules are 
known. Locally optimal sensor decision rules are presented 
in this section. By a "locally optimal sensor rule" of a 
local sensor we mean a sensor rule that is optimal using all 
information it received under the same optimality criterion 
as the one used for the whole decision system, that is, the 
Bayesian criterion with the same parameters PQ, PI, and 
Cij. Such a sensor rule is not to be confused with one 
based on the so-called "locally optimal test." 
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p(Yi\Hi) 
Ui  = 1 

> Po(cw - coo) 
p(yi\Ho) < 

Ui =0 Pi(coi -en) 

Clearly, in the case of no communications among sen- 
sors, regardless the dependence among sensor observations, 
the decision rule of a sensor relies only on its own obser- 
vations. Thus, the locally optimal sensor rule is given by 
the following marginal-likelihood ratio test, for alii < I: 

(4) 

If a sensor receives some other sensors' decisions, along 
with knowledge of their decision rules, its locally optimal 
decision rule is more complicated but can be obtained as 
follows. 

Suppose the ith sensor can receive j local decisions 
from other sensors along with knowledge of their decision 
rules. Without loss of generality, denote the received j 
local decisions by (ui,u2,...,Uj) and assume i > j for the 
convenience of presentation. The general decision rule at 
this sensor is defined by the following mapping: 

tn(ui,...,«,-,*) : {0,lp x Rn' ■—> {0,1}      (5) 

decision based upon all the received local decisions at the 
first stage, the fusion center communicates its decision to 
some local sensors. 

Suppose that the ith sensor can receive the fusion 
center's decision at the first stage and j other local de- 
cisions, along with knowledge of their decision rules, 
at the second stage. Without loss of generality, denote 
the received fusion center's decision and j other local 
decisions by (F^,^^ ,u2

2),...,uf)). Note that other 

sensors may also receive F^\ Assume the two joint 
conditional probability densities p(Y^\y[ \...,y[ |-Hi) 

and p(F(1),yi2),...,y;(2)|#o) are known, where Y^ = 

(y^.-yf1'). 
Note that F^ actually defines a partition {J7^,^} 

of Rni x R712 x ■ • • x Rni. Note also the following analogy: 

(ui,u2,...,Wj) 

p(yi,-,yi\Hi) 

(F^,u[2\uw •X2)) 1    ) "2    i—J"j 

(2) „(2) p(YU,y?\..,yl2)m 
r(l) /(2) Wxwnu^'xwn (i) y(2)i 

By an analysis similar to the one that led to (5)-(6), we 
can derive the locally optimal sensor i's rule at the second 
stage, given by 

(2) 

To define this mapping, we need to determine the values of 
Ui() for every possible value of the j-tuple (ui, u2, ■■-, Uj) 
and yj. As these j sensors may also receive local de- 
cisions from other sensors,  each point of the j-tuple 
(ui,«2, -,Uj) of binary elements is mapped from a sub- flrf.i)xUm}p(Ym#l?>---v[a)\Hi)dYi»dy™--M-M+i-^ 
set of Rni x • • • x R^-1 x #ni+1 x ■ ■ • x Rni. Since we 
consider nonrandomized decisions only, these 2J subsets 
are disjoint. Denote them by {Ui, U2, ■ ■ ■ ,U-n) ■ Since all 
sensor rules are known, we know exactly what every subset 
Uk is. Thus, similarly as for the case without communi- 
cations, the locally optimal sensor rule at the ith sensor is   /{^a)x„(2)}p(y(M2V--.yP)l-fri)dy(1)rfyi^-^flM^-^i 
given by 

i^(1)xU(2):P(y(1>,yia,,...-y1
(2,l^o)dy(1)dyl2)-dy<2_'1^1...dy; <2>...,V„<2> ,*„<*>  ...rf„<2> 

'o   —k 
, (2> — 

> Po(cio-coo)        yk < 2J 
< Pi(coi-cu)' — 

u<2) = 0 

SUk p(yi>->yi\Hi)dyi • • ■ rfyi-i^yi+i • • • dyi 

fu„ p(yi' •••' yi\Ho)dyi ■ ■ ■ dyi-idyi+i ■••dyi 

/{,;l)xM(8)}P(y«1>■ySa^•-y!3,l»o)dy(l)«fyia^••4ySl>S8.V••«^y.li,, 

Pofao-coo) yfc < 2ß 
■Pi(coi-cii)' — 

K<2>  = 1 
> 

u^= 0 

"*>        -PQ(CIO - CQQ) 

Ujl0    Pi(coi-cn)' 

,(2) 

Vfc < 2j (6) 

Note that all the integrals in the above rule are functions 
of yi and this rule consists of 2J sub-rules corresponding 
to different values of (ui,U2,...,Uj) so that the mapping 
(5) is uniquely defined. 

When there is no communication between the i sensor 
and any other sensor, j — 0 and thus the only partition Hi 
of the product space Rni x • • • x R^-1 x RJ1^ x---xRn' 
is the product space itself. As such, 

Clearly, the above integrals are all functions of y\ and 
can be called generalized likelihood functions. As such, 
the locally optimal sensor rules in the general setting still 
take the form of a likelihood ratio test. 

When the sensor observations is a strictly stationary 
independent sequence, the above decision rule reduces to 

Jll(2)P(yi,-,yi\Hi)dy1--dyi-1dyi+1--dyi 

p(yi\Hi)=     p(yi,...,yi\Hi)dy1---dyi-idyi+1 ■dyi 

That is, rule (6) reduces to rule (4). 
The above result can be extended to the more general 

case with feedback from the fusion center to the local sen- 
sors.  Suppose that after the fusion center makes a final 

Ju(2)P(yi,-,yi\Ho)dyi-dyi-1dyi+1---dyi 

u<2> = 1 m 
> P(rt'\HQ)Po{c10-coo) Vfc < 2j 

(2f PC^IffOJMcoi-cu)' 
u\ ' = 0 

JM(2) v{y\,-,yi\H\)dyx-dyi-i.dyi+x-dyl 

-pJS  
Jw(2)p(yi.—,yil^o)dyi—dyi-idyx+i—rfyi 

(2)   _ j 

"' > P(Jr
1'
1'|go)Po(cio-coo) Vfc < 23 

,S PC^^'lffOPiCcoi-cn)' 
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5   Extensions to More General Systems 

The results in Sec. 4 indicate that the locally optimal sensor 
rules as well as the optimal fusion rule given these local 
rules depend only on the conditional probability densities 
in a form well known as the likelihood ratio test. In view 
of this, the optimal fusion rules can be extended to a variety 
of very general distributed decision systems. 

5.1 Extension to Sophisticated Network Structures 

A multi-level decision system, such as a tandem or a tree 
network system, can be viewed as the above two-level deci- 
sion system with possible communications among sensors 
and between sensors and the fusion center. Sensors at a 
higher level in the multi-level system may be treated by 
fictitious sensors that receive new messages at a new stage 
in the above system. This should be the case since a two- 
level system that allows communications between any two 
sensors and between any sensor and the fusion center is ac- 
tually a system of a general structure. Note that the optimal 
fusion rule and the locally optimal sensor rules presented 
in the above sections are valid for this general system. 

5.2 Extension to M-ary Decision Systems 

The above results can be easily extended to an M-ary de- 
cision system because the optimal decision rule for a cen- 
tralized M-ary decision problem can be reduced to a set of 
likelihood ratio tests (see, e.g., [26]). 

For an M-ary decision system the Bayesian cost in (1) 
can be extended to 

C(«i, «a,..., uv, F) = ES=o CijPjPiF = i\Hj) 

= E&1 E* Ölö1 CijPjPim, ...tU,\Bi) 

where each dj is some suitable cost coefficient; Pj is a pri- 
ori probability of hypothesis Hy, and each P(F = i\Hj) 
denotes the conditional probability that the fusion center de- 
cides on Hi while in fact Hj is true, i,j — 0,1,..., M -1. 
Similarly, the optimal decision region Ti for Hi is defined 
as 

Ti = {{uu ...,ui) : 
M-l M-l 
E cijPjP(u1,...,ul\Hj) <  E ckjPjP(u1,...,ul\Hj), 

Vfc ^ t} (7) 

where those points (ui,...,ui) satisfying multiple decision 
regions Ti can be defined to belong to anyone of them. 

5.3 Extension to Neyman-Pearson Decision Systems 

For a distributed Neyman-Pearson decision system, the ma- 
jor task for its optimal decision rules is still the compu- 

tation of the conditional joint sensor decision probabili- 
ties P(ui,u2,:.,ui\Hi), i = 0,1. The only thing that 
differs from the Bayesian decision in this case is that 
P(ui,u2,...,ui\Hi), i = 0,1 are in general nonzero over 
the region 

|(yi»-.yj): 

Suk P&1' •••' wlffOfri • • • <fr»-i^yi+i • • • dyi 
Iuk p(yi>->yi\Ho)dyi ■ ■ ■ dyi-idyi+i ■••dyi 

_ Pojcio - Coo) \ 
Pi(coi - en) J 

An appropriate parameter A (0 < A < 1) for the probabil- 
ity of making Hi decision while observation falls into the 
above region is required in order for the actual type I error 
(false-alarm) probability Pf to best approximate (but not 
exceed) its maximum allowable value (see, e.g., [9]). 

6   Numerical Examples 

In the following simulations, we consider distributed sys- 
tems of 2 and 3 sensors, respectively, for detecting Gaussian 
signals in Gaussian noise. 

6.1   Two-sensor Neyman-Pearson Decision System 

The two hypotheses are 

Ho :   i/i = vu y2 = v2 
Hx:   yi = s + vi,   y2 = s + v2 

where the signal s and the two sensor-observation noises 
v\, and v2 are Gaussian and all mutually independent: 

s ~ iV(2,2),  n~ ^(0,0.3),  z/2~iV(0,0.2). 

Thus, the two conditional pdfs under H0 and Hi, respec- 
tively, are 

p(yi,V2\H0)~N( (°0 

p(yi,V2\Hi) ~ N 

0.3 0 
0 0.2 

2.3    2 
2 2.2 

Example 6.1 
Consider Neyman-Pearson detection with false-alarm 

probability Pf < 0.092. Table 1 gives the detection prob- 
abilities, false-alarm probabilities and the thresholds of the 
two-sensor centralized decision, single-sensor decisions, 
and two-sensor distributed decision with given two sensor 
decision rules, where the step size used for the discretized 
algorithm was 0.05. 

It is observed that the distributed decision system out- 
performs the single sensor decision systems but of course 
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Table 1: Performance Comparison of N-P Systems 

Pf Pd A 
Centralized 0.0913 0.8805 0.375 

Sensor 1 0.0919 0.8087 0.656625 
Sensor 2 0.0919 0.8437 0.51 

Distributed 0.0919 0.8584 0.65 

error probabilities of the centralized decision, single sen- 
sor decisions, and distributed decision with given sensor 
decision rules. 

Again, the distributed decision system outperforms all 
single sensor decision systems but of course performs 
slightly worse than the centralized decision system. Among 
the three single sensor decisions, the greater the SNR of a 
local sensor is, the better the performance is. 

is worse than the centralized decision system. Sensor 2 
with a greater signal-to-noise ratio (SNR) performs bet- 
ter than sensor 1. In this numerical example, it turned 
out that randomized decision was not carrier out because 
P(ui,u2|i?i) = XP(ui,u2\H0) case never happened. 

6.2   Three-sensor Bayesian Decision System 

It was set in all the simulations below for Bayesian decision 
systems that c^- = 1 for i ^ j, cu = 0, Po = 1/2. 
pl = p2 = 1/4. In this case, the Bayesian cost functional, 
denoted as Pe, is actually a weighted sum of decision error 
probabilities. 

The hypotheses are 

H0 :    Vi = vu 2/2 = v2, 2/3 = vz 
Hi:   yi = si + vi,   y2-si + u2,   2/3 = si + ^3 
H2 ■■     yi=S2 + Vl,     2/2 = 52 +^2,      2/3=32 +^3 

where the two signals si, s2 and the three sensor obser- 
vation noises vi, v2 and 1/3 are all Gaussian and mutually 
independent: 

Sl~iV(2,3),  a2~W(-2,3), 
vi ~ JV(0,3), v2 ~ N(0,2),  v3 ~ N(0,1) 

Therefore, the three conditional pdfs under Ho, Hi and 
H2, respectively, are 

p(Vi,V2,y3\H0) 

p(2/i,2/2,2/3|#i) 

p(yi,y2,y3\H2) 

"3 0 0" 
0 2 0 
0 0 1 

[6 3 3" 
3 5 3 
3 3 4 

6 3 3 
3 5 3 
3   3   4 

Example 6.2 
Consider a parallel Bayesian decision system with the 

above ternary hypotheses without communications among 
sensors. According to (4), the locally optimal fusion rule 
at each sensor can be derived. Table 2 gives the decision 

Table 2: Performance Comparison of Bayesian Systems 
Centr. Sensor 1 Senor 2 Senor 3 Distr. 

Pe 0.2157 0.3642 0.3274 0.2645 0.2475 

Example 6.3 
Consider again the above three-sensor decision system, 

but with one extra communication channel from sensor i 
to sensor j, denoted as "Sensor i-j," i,j = 1,2,3, i ^ j, 
in addition to transmitting all local decisions to the fusion 
center. 

Sensor decision rules can be obtained by (7). For ex- 
ample, for "Sensor 1-2," the three local decision rules (re- 
gions) for the sensor 1 are given by 

«?> = < 

(i) n\ 

H? = < 

yi: s 

yi 

yi 

(^(p(yi\Hi)+p(yi\H2)) 
<&(yi\H0) + ip(yi\H2), 
\(p(yi\Hi)+p(yi\H2)) 

><&(yi\Ho) + &(yi\Hi) 

( ip(yi\H0) + ±P(yi\H2) 
<\(p(yi\Hi)+p(yi\H2)) 
hp(yi\Ho) + \p(yi\H2) 
<±p(yi|tfo) + iP(yi|#i) 

'|p(yil#o) + ip(yi|ffi) 
<\(p(yi\Hi)+P(yi\H2)) 
^p(yi\H0) + ^p(yi\Hi) 

{<fr(yi\H0) + \p(yi\H2) 

By an extension of (6) (see the likelihood ratio test given in 
[26] for a ternary decision system), the locally optimal sen- 
sor 2 decision rules are defined by the following 9 regions 
of y2, where H^CH^), i,j = 1,2,3, denotes the region 
for sensor 2 to decide on Hi while the received sensor l's 
decision is Hj. 

+ JH(D p(yi,y2\H2)dyi) 

^ |/«a>p(yi.y2l#b)4yi 
+\ IHm P(yi,y2\H2)dyi, 

I (Inw P(yi. y2 \Hi )dyi 

+ JnwP(yi,y2\H2)dyi) 
j 

^ 5 Jw(»P(yi.y2\Ho)dyi 
j 

+\ IHw P(yi,y2\Hi)dy! 

AQeuW n^(ny>) = ( y2 
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%f\nf) Y2 : < 

' 3/«<«p(yi»y21^0)^1 

+i/w(i>p(yi.y2|fl2)dyi 

< 5/w(i)P(yi,y2|-H'o)dyi 

+j/w(i)p(yi.ya|ffi)<fyi. 

|/w(DP(yi.y2|^o)dyi 

+j/w(i>p(yi.y2|fl'2)dyi 

< j(/««.1>p(yi'y2liri)dyi 

+ L(DP(yi,y2|^2)rfyi) 

/,5/w(DP(yi.y2|-ffo)dyi 

+ijfw(i)p(yi.y2l^i)<tyi 
<5/wwp(yiiy2lÄ'o)<fyi 

+i/w(i)p(yi.y2l-H'2)4yi, 

5/w(j)p(yi»y2|-öo)dyi 

+iJw(i)p(yi,y2|#i)dyi 

< i(/i(.i)p(yi>y2lffi)dyi 

+ /W(i)p(yi,y2|-Hr2)rfyi) 

Table 3 gives the performances of the distributed deci- 
sion fusion with given sensor rules for the systems with all 
possible Sensor i-j, respectively. 

Table 3: Performance Comparison of Distributed Bayesian De- 
cision Fusion with Different Single Additional Communications 

H? (Wf}) y2 : < 

Distr. Sensor 1-2 Sensor 1-3 Sensor 2-3 

Pe 0.2518 0.2433 0.2381 
Distr. Sensor 3-2 Sensor 3-1 Sensor 2-1 

Pe 0.2441 0.2509 0.2577 

Table 3 carries very interesting information. Comparing 
it with the results in Example 6.2, we have the following 
observations: 

• Fusion does improve performance: All distributed 
decision systems still outperform the three single sen- 
sor decision systems. This makes sense since more 
information is used in the fused decision than in any 
single-sensor decision. 

• Communication direction matters: The direction of 
communication affects the performance of the dis- 
tributed decision system significantly. For two given 
sensors, communication from the one with a smaller 
SNR to the one having a greater SNR leads to better 
performance than the other way round. This is under- 
standable from the following perspective. It can be 
seen from a comparison between sensor 1 (with three 
decision regions) and sensor 2 (with nine regions) that 
in terms of decision rules, a sensor receiving infor- 
mation from another sensor is equivalent to having a 

more refined partition of its observation space. Thus 
it can be expected that communication to a more re- 
liable sensor will result in better performance than if 
the communication direction is reversed. 

• Communication does not necessarily improve per- 
formance: Not all the distributed decision systems 
with communication between sensors outperform the 
corresponding distributed decision systems without 
communication between sensors. While communi- 
cation between sensors with a greater SNR improves 
performance, communication between sensors with a 
smaller SNR degrades the performance. This is some- 
what counter-intuitive at first glance. Note, how- 
ever, that what we considered is distributed fusion 
with given sensor rules. Communication involving a 
less reliable sensor either forces it to make more re- 
fined decisions, leading to increased decision errors, 
or forces the other sensor to make its decision based 
on these less reliable decisions. 

These observations give an insight into the problem of 
distributed decision with sensor-wise communications and 
provide guidelines for the design of communications be- 
tween sensors in practice. Further analysis and more nu- 
merical examples will be reported in near future. 

7   Conclusions 

We have developed the optimal distributed decision fusion 
for general distributed systems in which local decision rules 
are given. An optimal fusion rule has been presented in a 
general and computationally tractable way based on the 
joint probability densities of all sensor observations con- 
ditioned on the hypotheses and all local sensor decision 
rules given. It is valid for any sensor observations and any 
given local decision rules (whether they are dependent or 
not) and any network structure (with or without commu- 
nications between any two sensors). We have also shown 
that the decision rules of a sensor that are locally optimal 
— in the sense that all information available to it is used 
optimally — are of the form of a generalized likelihood 
ratio test. Numerical examples have been given. They 
provide not only additional support to the analytic results 
presented, but also useful information for the design of 
communications among sensors in practice. 
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A Neural-Network Learning Method for Sequential 
Detection with Correlated Observations 
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Abstract This paper proposes a neural-network 

sequential detection method for correlated observa- 
tions drawn from an AR(l) model. We examine 
Wald's optimal sequential probability test (SPRT) 
when observation data are correlated. We focus 
on developing neural network methods to implement 
the SPRT procedure under the condition where pa- 
rameters of the data model are unknown. In the 
paper, an optimal neural network model is designed 
to represent the ideal target functions - the condi- 
tional posterior probabilities of the observation data 

with which an SPRT procedure can be realized. A 
reinforcement learning method is then proposed to 
train the neural network using the temporal differ- 
ence (TD) learning algorithm. Simulation results 
show that the proposed neural-network sequential 

detector can successfully learn the unknown ideal 

target functions and is able to give the same detec- 

tion level performance as the parametric SPRT. 

Keywords: Neural networks, reinforcement learn- 
ing, sequential detection, learning detection. 

1    Introduction 

Most research in sequential detection has been 
restricted to tests with independent observa- 
tion data [1, 2, 3]. This is because, in gen- 
eral, the theory of sequential tests, such as the 
optimum property of the sequential probability 
ratio test (SPRT) [1] is limited when the ob- 
servations are not independent. In engineering 

"This work was supported in part by NSF grant 
ECS9625557. 

applications, however, there are many situa- 
tions where it is natural to consider sequential 
tests with correlated observations. For exam- 
ple, in decentralized sequential detection prob- 
lems, when there is feedback from fusion center 
to local detectors [4], the input data to the fu- 
sion center are highly coupled even if the orig- 
inal observations of each local detector are in- 
dependent, identically distributed (i.i.d.) se- 
quences. In digital communications, the re- 
ceived signal samples are often contaminated 
with intersymbol interference during channel 
transmission and hence are correlated although 
the original signals sent out from source trans- 
mitter might be independent. For nonindepen- 
dent observation data, as pointed by Ghosh [2], 
it is an open problem whether the SPRT is re- 
ally better than other detection procedures. 

Note that the optimum SPRT property does 
not require the observation data {Xk} to be 
necessarily independent [2, 3]. In fact, it only 
requires the log-likelihood ratios Zn (Zn = 
Ylk=i Yk) sl1011^ be composed of independent 
components Yk, i.e., {Yk} must be independent 
[2, 3]. When {Xk} are i.i.d., {Yk} are also 
i.i.d.. Therefore, for the optimum property of 
the SPRT, the i.i.d. condition on {Xk} is only 
a sufficient condition, but not a necessary one 
since {Yk} may turn out to be i.i.d. even when 
{Xk} are not so. 

In this paper we consider the sequential de- 
tection problem with correlated observation 
data {Xk} which are a first order autoregres- 
sive (AR(1)) sequence (also a Markov pro- 
cess). We will show that, in this case, although 

ISIF © 1999 93 



{Xk} are correlated, {Yk} can be represented 
as independent variables and, more specifically, 
{Yk\k > 2} are i.i.d. sequence. Therefore, 
the optimum property is still achievable when 
these observation data are used in an SPRT 
procedure. 

We then focus our discussion on correspond- 
ing neural-network approaches with this data 
model. Our objective is to develop a neural 
network method to realize the SPRT procedure 
for correlated data under the condition where 
accurate knowledge on the data model is not 
available. 

The conventional SPRT method is a para- 
metric approach where complete statistical 
knowledge about the observation data is given 
in advance. In practice, however, this statisti- 
cal knowledge may not be available, or is only 
partially known. In order to overcome this dif- 
ficulty, we study neural network based learn- 
ing sequential detection methods that will not 
have access to statistical information, but will 
learn the sufficient statistics from observation 
data. Once the neural network is trained, it 
will operate as a sequential detector: as the 
neural network receives input observations se- 
quentially until one of two output units of the 
network exceeds a certain specified boundary, 
a final decision will be made by accepting the 
hypothesis associated with that output neuron. 

In previous work, the authors proposed a 
neural network sequential detection method [5] 
for independent observation data. In this pa- 
per we extend the work to the case of corre- 
lated observations. We first derive an equiva- 
lent SPRT algorithm that uses the conditional 
posterior probability functions to make sequen- 
tial decisions instead of using the likelihood ra- 
tio function. The posterior probability func- 
tions are then chosen as the ideal target func- 
tions of the neural network sequential detec- 
tor. A suitable neural network architecture is 
obtained through examining the ideal target 
functions and taking advantage of the Markov 
property. The proposed network architecture 
is shown to be optimal and there exists a set of 
ideal weights where the outputs of the neural 
network are equal to the ideal target functions. 

A reinforcement learning algorithm is then de- 
signed to train the neural network to approach 
the ideal target functions. The learning algo- 
rithm uses a binary label function as a rein- 
forcement signal and uses the temporal differ- 
ence (TD) learning method [6] as an updating 
rule. It learns the desired outputs from the 
labeled training data without needing statisti- 
cal information about the data model. Simula- 
tion results conducted in the paper show that 
the proposed neural network sequential detec- 
tor can successfully approach the ideal target 
functions and give detection performance that 
is comparable to the parametric SPRT. 

2    Data Model and Optimal- 
ly Analysis 

Consider the following signal model: 

/ So + N(k),     iiXkeH0 m 
Ak ~ \ Si + N(k),     ifXkeHi { > 

where Si (i=0,l) are constants (signals), and 
{N(k)} are first order autoregressive (AR(l)) 
noise sequence satisfying 

N(k) = pN(k-l) + ek, (2) 

where {e^} are i.i.d. zero mean Gaussian se- 
quences, i.e., ek ~ iV(0,o-2), and parameter p 
satisfies — 1 < p < 1. 

Our goal is to develop neural-network se- 
quential detection methods using the data 
{Xk} drawn from this AR(l) model with un- 
known parameters, So, Si, p and a. Before dis- 
cussing the neural network method, a question 
arises about this detection problem: whether 
the optimum property of the SPRT is achiev- 
able if these parameters are known? 

We will show that, although {Xk} are cor- 
related, the log-likelihood ratios, Zn can be 
represented as the summation of an i.i.d. se- 
quence, {Yk; k > 2} and an independent vari- 
able Yi with the given data model. Then ac- 
cording to [3], the SPRT property still holds. 

Let xn = (Xi,- ■ -,Xn) be the vector of the 
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observation data. By using the Markov prop- 
erty of the AR process, we have the following 
expression for the log-likelihood ratio Zn: 

Zn  = log 

= log 

/x(Xn I #l) 
/x(Xn I Ho) 

f(X1 | Ho) + £2   
g fWXk-uHo) 

fc=i 

(3) 

where 

y1=log/(Xl|ffl).    and 

Yk = log 

f(Xi\HoY 
f{Xk\Xk-x,H{) 
f(Xk\Xk-i,H0) 

,fork>2   (4) 

and f(x\Hj) is the conditional density function 
of a; given Hj. 

From (1) and (2), we have that 

Xk 

So + pN{k -l) + ek 

Si+pN(k-l) + ek 

m.0 + pXk-\ + ek, 
m-L + pXk-\ + ek, 

if Xk G Ho 
if Xk G Hx 

(5) 

where m; = (1 - />)& for z = 0,1. 
Hence, for A; > 2 

_ i /(^fcl^fc-i^i) 
f(Xk\Xk-i,Ho) 

ffe(^fc - mi - pXk-l) 
=   log ffe(Xfc - mo - pXk-i) 

ip(ek;m0,mup) (6) 

where #e(-) is the density function of e^ (Gaus- 
sian), and ip(ek; m0, mi,p) is the function of ek 

and parameters mo, mi and p. 
From (6), we see that {Yk,k> 2} is an i.i.d. 

sequence conditioned on each hypothesis since 
{ek} are i.i.d. . 

We next show that Y\ and {Yk,k > 2} 
are independent of each other. This can be 
done by showing that JV(1) and {ek,k > 2} 
are independent  since X\  =  Si + N(l) and 

Yi^togfijfflft^tiNMSoiS!). 

From [7], the AR(l) sequence {N{k)} can 
also be represented as a moving average pro- 

cess, i.e., 

oo 

N(k) = pN(k-l) + ek = Y,Piek-j      (7) 
j=o 

This says that JV(1) = HJLo Pjei-j and hence 

JV(1) is independent of {efc; A: > 2}. 
Then, by examining the optimality analysis 

conducted in [3] one can see that the average 
sample size of the SPRT procedure in this case 
is minimized among all other tests under the 
same error detection bounds. 

3    Neural-Network   Architec- 
ture Design 

3.1    Ideal Target Functions and An 
Equivalent SPRT Algorithm 

In order to design a neural-network model that 
can approach the optimal performance of the 
parametric SPRT, we first need to find a func- 
tion that is both able to match the SPRT and 
also suitable for a neural network to learn. We 
call this function the ideal target function. 

Let us consider the conditional posterior 
probability, Qj(xt) (j = 0,1) defined by 

Qj(xt) = P(Hj irue|x«),   for j = 0,1  (8) 

where xt = (Xx, • • •, Xt) is the observation se- 
quence up to time t. 

We show that Qj(xt) is well suited to serve 
as the ideal target function: Let 7r; = P(H = 
Hi) (i = 0,1) be the prior hypothesis prob- 
abilities, A = 1/(1 + %ea) and B = 1/(1 + 
^e~b) with a and b the Wald's SPRT detec- 
tion boundaries [1]. We then have the following 
sequential detection algorithm using <2j(xt): 

(1) compute <3o(xt) and Qi(xt); 
(2) accept H0 and stop, if <2o(x*) > A; 
(3) accept Hi and stop, if Qi(xt) > B;     (9) 
(4) continue observing Xt+i,t *- t + 1, 

and go to (1), otherwise. 
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In [5] we proved that the above sequential de- 
tection algorithm is equivalent to the original 
SPRT method. 

In Section 3.3 and Section 4, we will discuss 
how to learn the ideal target functions. 

3.2    Neural-Network Sequential De- 
tection Scheme 

We are now ready to give a neural-network se- 
quential detection scheme that is shown in Fig- 
ure 1. In this scheme, as the observation data, 
Xt are fed into the neural network successively, 
the neural network gives two outputs, y0(t) and 
yi(t) that are used to learn the ideal target 
functions, <3o(x;) and <2i(x*) with 

yo(t)~Qo(xt) and Vl(t) ~ Qi(xt).     (10) 

After the training phase is finished, these 
two outputs are used to replace <5o(x<) and 
Qi(x.t) to make sequential decisions by using 
the equivalent SPRT algorithm given in (9). 

Xt Neural 
Network 

y0(t) 
Sequential 
Detection 
Algorithm 

d(t) 

y,(t) 

Figure 1: Block diagram of neural-network se- 
quential detection scheme. 

3.3    Neural-Network Architecture 

In order to obtain a proper network architec- 
ture, let us further examine the log-likelihood 
ratio function Zt under the data model of (1) 
and (2) for t > 2: 

= U0{9) + tfi(0)*i + V0(9){t - 1) 

+ v1(e)J2xk + v2(e)Y;xk-1    (n) 

where 9 = (So, S\,p, a) is the vector of param- 
eters of the data model defined by (1) and (2), 

x, -T^-Ä^ 
Feedforward   ■ 
Network 

X, 
^X,., *%t\ A  1 *- 

-&-&&/ 
v    , 

1   ■ 

TD Learning 
Algorithm *- 

y(0 
o 

*- y(0 

R(t) 

Figure 2:  Neural network architecture for se- 
quential detection for AR(1) data 

^W» 

w> 
S(t-l) 

W2T -5L5S 
*1 

^no^^p' 
wl>^ ̂ o/l__.  3^[            *  >- 

t-1 WOL 

1 

yfi) 

Figure 3:  Realization of the feedforward net- 
work of Figure 2 (S(t) = £Li Xk) 

Ui{9) (i=0,l) and Vj(9) (j=0,l,2) are functions 
of the parameter 9 with 

U0(9) = (1 - p2)(S0
2 - Sl)/{2o*) 

U,(9) =(l-p2)(51-50)/a
2 

V0{9) ={l-p)\Sl-Sl)l{2a*)     (12) 
V1(9) ={l-p){S1-S0)l<T2 

V2(9) =p{l-p){S0-Sx)la* 

Above expressions are useful for our neural 
network method not for the purpose of para- 
metric computation but because we can take 
Ui(0) and Vi(9) as unknown weights to learn 
by using neural-network techniques. 

Based on these expressions, we construct a 
neural network architecture shown in Figure 2 
and Figure 3. In Figure 2, the units marked 
with " T ■" represent a unit time delay oper- 
ation and the input nodes marked with "+" 
are linear accumulative units (context units). 
The two output units of Figure 3 take linear 
weighted sums of their inputs and then pass 
these values through a sigmoidal nonlinearity 
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a{z) = 1/(1 + e") to get outputs y0(t) and 

0i(O- 
Similar to the i.i.d.   case discussed in [5], 

for the AR(1) data, we have Theorem 1 that 
discusses how the proposed neural network ar- 
chitecture matches the ideal target functions. 

Theorem 1 : For the neural network model 
shown in Figure 2 and Figure 3, when the input 
data Xt (t = l,2,---j satisfy the data model 
defined by (1) and (2), there exists a set of ideal 
weights, w^ and 7? (i = 0,1,2,3; j = 0,1), 
that makes the outputs of the network, yj(t) 
equal to the ideal target functions Qj(*-t)> i-C-, 

yo(t) = <2o(xt) and y^t) = Qi{xt),     (13) 

where 

logt' 7o° = 7i° = Ur(0) 

w(1 = v1(e), w°3A = v2(e) 

-7i 

(14) 

w: iß -<i    for «' = 0,1,2,3 

Theorem 1 can be proved by first represent- 
ing the ideal target functions Qj{xt) as sig- 
moidal functions, i. e., 

<2o(xt) = 
1 

l + e*-^' 

Qi(xt) 
1 + e-(^-loS^) 

and then using the neural network model and 
the ideal weights given by (14) to express the 
outputs of the neural network yj(t). 

Theorem 1 implies that the neural-network 
architecture given in Figure 2 and 3 is an opti- 
mal neural-network model for the AR(l) obser- 
vations since it gives the ideal target functions 
Qj(-x.t) (j = 0,1) whenever the ideal weight 
values have been learned. 

the ideal target functions. The condition for 
this learning problem is that the parameters of 
observation model are unknown and the de- 
sired values for ideal target function Qj(x<) 
are unavailable. Under this condition, it is 
clear that commonly used supervised learning 
methods, such as the error back propagation 
(BP) algorithm [8], are not suitable. Note 
that the problem we are facing is similar to 
the reinforcement learning problem discussed 
in [5] except that the observation data here are 
not independent. We extend the reinforcement 
learning approach of [5] to this case: 

• Assume that a binary label signal Dj(xt) 
(j = 0,1) is available for each training se- 
quence x„ at the termination time of the 
sequence, 

{unavailable,  t  <  n 
1,    if Xi G Hj and t=n 
0,    if xt £ Hj and t=n 

Note that, in practice, we may have ac- 
cess to some labeled training data, but 
not to the statistical characteristics of the 
data. For example, in radar and sonar 
problems, for each set of the experimen- 
tal data, we know whether or not there is 
a target in the experiment, but accurate 
statistical information about the data is 
not readily available. 

• Construct the reinforcement signal using 

R(t) = 
unavailable, t <  n 

(A)(x„),2Mx»))»      t = n 

• Take R(t) as nominal targets to train the 
neural network using the TD learning al- 
gorithm [6]: 

4    Reinforcement 
Algorithm 

Learning 

This section discusses the learning algorithm 
design for the neural network detector to learn 

Awf'(i) = e,(i)E^Vw2/#) 
k=\ 

wjm+1> = w}m> + /i5>wH«) 
t=\ 
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where E(t) = (c0(0,ci(*)) = Y(t + l) ~ 
Y{t) (t= 1,2, .--.n- 1), E(n) = R(n)- 
Y(n), Y(t) = (y0(t),yi(t)), w,- is the 
weight vector consisting of the weights 
connected to the output Vj(t), A is the pa- 
rameter of TD learning algorithm, fi is the 
learning rate, and Vwi/j(A;) is the gradient 

of yj(k) with respect to w (m) 

With correlated observations, we will not 
have the same theoretical results to guarantee 
the convergence of the learning algorithm as 
we did in [5] with i.i.d. data. This is because 
the Law of Large Number (LLN) [9] used in 
the convergence analysis in [5] is not applica- 
ble to this case though LLN does hold for some 
dependent data under certain conditions. 

But in practical applications, many learning 
algorithms, such as the BP algorithm [8], have 
frequently been used and been found to be suc- 
cessful when input data are not independent. 
From our simulation results, we see that the re- 
inforcement learning algorithm works well for 
all the simulations conducted with the AR(1) 
data. 

Table 1: Detection performance of SPRT and 
NNRL method for AR(1) data 

AR(1)-1 AR(l)-2 AR(l)-3 

So,i: — 1.0,1.0 S0,i:-1.0,1.0 So,i'-3.0,3.0 

(7=1.0 p=0.1 (7=1.0,p=0.5 <r = 1.0,p=0.9 

SPRT NNRL SPRT       NNRL SPRT       NNRL 

R .9952 .9946 .9942    .9936 .9946    .9938 
N 3.52 3.42 8.69      8.71 11.83    11.59 
ä .0053 .0059 .0066    .0091 .0069    .0083 

~ß .0043 .0049 .0050    .0038 .0040    .0042 

miss probability ß for the two different detec- 
tion methods. All the performance values are 
obtained by averaging over 10,000 testing se- 
quences. From the simulation results, we see 
that the neural-network method has achieved 
the same performance level both in detection 
rate and in average sample number as the para- 
metric SPRT. 

The two error detection probability bounds 
were preset at a — ß = 0.01 in the simula- 
tions that were used to determine the detec- 
tion boundaries with A = B — 0.99. Both the 
SPRT and NNRL methods have kept within 
these bounds in the experiments. 

5    Numerical Results 

Simulation experiments are conducted for the 
neural-network sequential detection method 
using the correlated data drawn from AR(1) 
models with a variety of different parameters. 
Simulations are also conducted for the para- 
metric SPRT method using the same data. 
In the experiments, the data parameters are 
given to the SPRT detectors. These values are 
not given to the neural-network reinforcement 
learning (NNRL) detectors as they must learn 
the ideal target functions from labeled training 
data without this information. 

Table 1 shows the simulation results with 
three different AR(1) models, corresponding 
to the cases of small, medium, and large cor- 
relation values. Four performance measures 
are used in the simulations to evaluate the 
correct detection rate R, the average sample 
number N, the false alarm probability ÖT, and 

3 1.0 
t 
I 0.8 

0.6 

«3   0.4 

1  0.2 

,..,,,,,. 

■ 

  Learning curve for AR(1)-1 

  Learning curve for AR(l)-2 

  Learning curve for AR(l)-3 

- 

50 100 150 
Training Iterations 

200 

Figure 4:   Learning curves of neural-network 
detector for AR(1) observation data. 

Figure 4 shows the learning curves of the 
neural-network sequential detector under the 
three different AR(1) observation models dur- 
ing the training procedure. These learning 
curves are the square roots of the normalized 
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sample mean-squared errors (MSE) between 
the ideal target functions Qj(xn) and the neu- 
ral network outputs yj(n) in different train- 
ing stages. From these learning curves, one 
sees that the neural-network detector is able 
to learn the unknown ideal target functions 
with rapidly decreasing mean-squared error. 
The learning results also indicate that the pro- 
posed neural-network sequential detector can 
approach the optimal SPRT performance. 

6    Summary 

In this paper, we first studied the readability 
of the optimal SPRT property with AR(1) ob- 
servation data. It is shown that the optimum 
property of the SPRT method still holds under 
correlated observations when the parameters of 
the data model are known. 

We then studied using a neural network 
learning method to implement the sequential 
detection procedure for the case where sta- 
tistical information about data is unknown. 
An optimal neural network architecture is ob- 
tained that can give the ideal target functions 
for realizing the SPRT procedure. Then a re- 
inforcement learning method is used to train 
the neural network to learn the ideal target 
functions from a set of labeled training data 
with the TD learning algorithm. Simulation 
experiments conducted in the paper show that 
the proposed neural-network sequential detec- 
tor can successfully learn the unknown ideal 
target functions and can give the same detec- 
tion level performance as given by the para- 
metric SPRT. 

Further directions for this work include ex- 
tending this work to other correlated data 
models and extending the work to decentral- 
ized sequential detection problems. 
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Abstract 

The fact that "Two heads are better than one" can 
bring many usually work together to solve many 
complex problems. Problem solving in a group, 
for instance, is a dynamic process and the action 
of each member must be coordinated in order to 
achieve globally consistent and good solutions. 
Cooperative works, if it is by a group of decision- 
makers, or by a team of experts, also require a 
proper consensus formation. Consensus formation 
is necessary, to ensure that the work is carried out 
in time and that no conflicts arise. 

The decentralized decision is also an important 
consideration, and it should be deployed in a manner 
parallel to the consensus formation. In order to 
increase the efficiency of complex decision- 
makings through proper consensus formation, they 
have to exchange and integrate their knowledge. 
If they argue same problem, there happen to reach 
different conclusion especially when each decision- 
maker perceives different environments or they have 
different viewpoints or backgrounds. 

In this paper, we aim at investigating the 
knowledge integration, the high level of information 
fusion, in the problem domains of the decentralized 
decision-making environments. In order to 
investigate this type of problem, we consider the 
team of decision-makers with their own preferences 
and the levels of adaptation. We then consider the 
situation where a team of decision-makers, as a 
whole, should make the group decision based on 
the consensus formation. Each decision-maker 
modifies his own preference by reflecting other 
decision-makers' preferences. Each decision-maker 
is modeled to adapt toward the group preference 
based on his own adaptation level. 

We then provide the adaptive mechanism for 
knowledge integration and coordination. We also 
consider how heterogeneity of the group formed 
by different types of personality and sociality make 
effects on the speed of consensus formation and 
the quality of group decision-making. 

Keyword: adaptive coordination, decision-making 
with knowledge integration, preference fusion 
, consensus formation, 
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1 Introduction 

Cooperative works, if it is by a team of 
engineers, or by a group of expert, for 
instance, require a proper coordination. 
Coordination is necessary, to ensure that 
the work is carried out in time and that no 
conflicts arise. Problem solving in a group 
is a dynamic process and the action of each 
member must be coordinated in order to 
achieve globally consistent and good 
solutions. The group decision is always an 
important consideration, and it should be 
deployed in a manner parallel to the 
coordination [3][8]. 

Adaptive behavior of each member in 
a group is an important issue when 
considering the problem of coordination 
[6]. The fact that "Two heads are better 
than one" can bring many peoples usually 
work together. However, in order to 
increase the efficiency of the co-works, 
they need coordination through the 
consensus formation. 

The general impossible theorem by 
Arrow indicates that the impossibility of 
obtaining the overall preference of a group 
that consists of more than two peoples, 
each of them has his own preference 
satisfying the weak-ordering [7]. However, 
in a conference, for instance.we analyze 
the problem based on the individual 
preference, and express our own opinion 
considering what is most suitable for both 
an individual and a group. Each menber 
also considers the general group opinion 
and that consideration provides new base 
of each member to reconsider his own 
preference. Therefore, there is a great 
success of getting agreement in a group 
by self modifying his own preference by 
reflecting the position in a group [1][5]. 

If they argue same problem, there 
happen to reach different consensus as a 
group when the adaptiveness of each agent 
differs. How will these phenomena 
happen? To analyze this issue, we also 



consider both the degree of personality 
and sociality. In this paper, we consider 
the problem of consensus formation in a 
group of adaptive agents. Adaptive agent 
has its own preference with different level 
of adaptation. Here, we define an adaptive 
agent as an autonomous agent with the self- 
modification capability of its own 
preference. We introduce the indexing 
method so that each agent's preference can 
be expressed by the proper index, and group 
preference is obtained by aggregating those 
indices. Each agent is modeled to adapt 
toward the group preference based on its 
own adaptation level. We show that we 
can avoid the problem of impossibility that 
encounter in group decision-making with 
the adaptive model of consensus formation. 
We also consider how heterogeneity of the 
group formed by different types of 
personality and sociality provides the 
effects on the speed of consensus formation 
and the quality of group decision-making. 

We also illustrate the prototype model 
developed as the group decision-aid in 
order to allocate internet resources. 

2 The indexing method of individual 
preference and their aggregation 

In this research, we aim at investigating 
the emergent coordination in the problem 
domain of the group decision-making. In 
order to investigate this type of problem, 
we consider the group of adaptive agents 
with their own preferences and the adaptive 
capability. We then consider the situation 
where a group of those adaptive agents, as 
a whole, should make the group decision 
based on the consensus formation. The 
coordination among autonomous agents 
with their own preference, possess a 
difficult issue if the priority is given toward 
each agent's rationality, and they seek their 
own individual preference. Precursor to a 
group decision, they have to exchange and 
share their preference. Each agent is then 
required to modify its own preference by 
reflecting other agents' preferences. 

When each agent's preference relation 
satisfies weak-ordering, it can be 
represented as linear-ordering. But Arrow's 
general impossibility theorem indicates that 
it is impossible to derive the group 
consensus by aggregating individual 
preference The condition of weak-ordering 

is quite strong condition and there exist 
many cases in where any two alternatives 
can not be compared and that violates one 
of the conditions of weak-ordering. 

In this research, we consider semi- 
ordering which satisfies the condition of 
only reflexivity and transitivity. This 
excludes the condition of connectedness 
from weak-ordering. The tree expression 
can be used for representing the preference 
with semi-ordering. The advantage of the 
tree expression is that the judgement based 
on natural feeling, such as comparing each 
two alternatives can be also expressed 
easily. 

We introduce the indexing method of 
the semi-ordering preference. Here, we 
consider a set of agents G = {A,,- 1 < i < n) 
and    a    set    of    alternatives    of 
W = {Ot; l<i<k). 

Step 1; Setting of local code 

Each element of W is locally coded. That 
is, we provide the local code C(Ot) to each 
alternativeO, eWas follows: the i-th 
element of C(Ot) is 1 and set 0 for the 
other elements. 

Step 2: Inheritance of upper index code 

For the immediate descent alternatives 0} 

of 0,, i.e. if they satisfy the relation 
Oj -< 0„ the index code of 0, is inherited 

to the index code of Oj as follows: 
C(Oj)^C(Oi)®C(Oj) (2.1) 

where © represents the bit OR of each 
element of the two row vectors. For 
instance,we   consider   the   following 
preference order, 

R :0X >02>04, 0]y03,02y05  . 
Then, this preference order can be indexed 
as follows: 
C(O,) = (10000),   C(02) = (1 1000), 
C(O3) = (10100),   C(04) = (11010), 
C(05) = (11001) (2.2) 

We define group preference by aggregating 
the preference of each A,-,e G. When any 
two alternatives Oa,OßeW satisfies the 
following condition, 

l^Oa^t^OßH (2.3) 
i=i i=i 

where ||   || represents the sum of the 
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elements of each preference index which 
expressed bit vector. We then define the 
alternative Oa is preferable to Oß by the 
whole group G, and denote the group 
preference defined by (2.3) as Oa >-G Oß. 
We have to remark that, from the definition 
of the index code in (2.1), the most preferred 
alternatives has the lowest norm. 

3 The adaptive consensus formation 

We define adaptation of each agent as the 
modification process of its own preference 
order. Each agent, considering a harmony 
with others, puts emphasis on both its own 
preference and the group preference. Since 
each agent adapts its own preference to 
the group preference, the group preference 
is also modified through each agent's 
adaptation. The group preference can be 
considered as evolutionary coordination 
by considering the modification of each 
agent preference as the adaptation process. 
The adaptive mechanism of each agent is 
defined as follows: 

C?»(0) = a,(G,(0) - C?"(0)) + C«\0) 
(3.1) 

where Gt(0) represent the index of group 
preference for the alternative OeW, 
C(

t°(0) represents the index of agent 
A, e G preference at the step t, respectively. 
The factor a, represents adaptive speed of 
agent A, e G which takes the value between 
0 to 1. If agent has the value that closes to 
0, it insists its own preference. In other 
word, such an agent is said to be rational, 
and to be faithful to its own original 
preference. On the other hand, if it has the 
value that closes to 1, it can be said to be 
a sympathetic agent. The following 
property can be derived from the adaptation 
process of each individual defined in (3.1) 

//   G,(0)>-Ct"(0) 

then   C{;;l(0)>C\'){0) (3.2) 

That is, if the individual preference index 
is lower by comparing with the group 
preference index, it increases its own 
preference index. On the other hand, if it 
is much higher, it may decreases it. From 
this property, the adaptive mechanism in 
(3.1) reflects the fact that each agent revises 

its own preference in accordance with the 
group preference. 
4 Simulation Results 
4.1 Consensus formation of a 
homogeneous group 

We consider a group of agents of five 
G = {A„ A2, A3, A4, A5}, each of them has its 
own preference over the five alternatives 
W = {O,, 02,03,04,05) as follows: 

R,: 0,>02>- 03 >04y 05 
R2:02y03^04>05>- O, 
R3: 03>04>-05y01>- 02 

R4 :04^05yO,y02> 03 

R5:05>-01>02>03>04 (4.1) 

It is impossible to derive consensus from 
such preference relations, and which is 
known as "paradox of voting'We define a 
homogeneous group as a group of agents 
with the same value of a, i.e., the speed 
of adaptation. 

We also classify homogeneous group 
into the following two categories. 
Case 1: Each agent has the high value of 

a  (a =0.9) 
These agents put high emphasis on the 
group preference. 

Case 2: Each agent has the low value of 
a (a=0.1) 
These agents, on the other hand, insist their 
own preference. 

The simulation results of Casel and 
Case2 are shown in Fig.l and Fig.2. In 
Casel, such a group can make the 
consensus formation very quickly. In this 
case the consensus formation can be made 
even if they encounter the circulation order 
of preference, so called, 'paradox of voting'. 
Since each agent adapts its preference to 
group preference quickly, such a group can 
be also said to be harmonious. 

On the other hand, in Case2, that group 
preference does not converge. In Case2, 
each agent is rational and it puts emphasis 
on its own preference. And, they can not 
derive consensus formation. This also 
implies that individual rationality is not 
always rational as a member of a group. 
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4.2 Consensus formation of a 
heterogeneous group 

We define a heterogeneous group in which 
each agent has the different adaptive speed 
a. In a heterogeneous group, different 
consensus formation can be emerged even 
if each agent has the same preference in 
the  two  groups.     We  consider  the 
combination of adaptive speeds as follows. 
Case 3: 
a, = 0.9, a2 = 0.7, a3 = 0.5, a4 = 0.3, a5 = 0.1 
Case 4: 
a, = 0.1, a2 = °-3> a3 = °-5> a4 = °-7> as = °-9 

We also consider the same preference order 

of each individual as given in (4.1). The 
simulation result of Case 3 is shown in 
Fig.3. 

In heterogeneous group consists with 
many types of agents, in terms of their 
adaptive capability, it is also possible to 
get consensus formation. These simulation 
results show that heterogeneity of the group 
gives influences such as the promotion of 
deriving consensus and the emergence of 
new idea which nobody can expect. 
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Fig.3 The simulation result (Case3) 
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Fig.4 The simulation result (Case4) 
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5 Application 

In this section, we illustrate the prototype 
model developed as the group decision-aid 
in order to allocate the internet resources. 
The concept of the prototype model is 
depicted in Fig.3. This model works with 
the following steps. 

(1) Presentation the set of alternatives 
from the server to each user. 

(2) Each user provides his preference 
and the level of adaptation to his user agent 
by GUI. 

(3) The server aggregates all users' 
preferences, and the determine group 
preference. It is the presented to each user 
agent. 

(4) The user agents adapts user's 
preference, and the modified preference is 
sent to the server. 

(5) After several iterative process, each 
user agent presents the result of the 
negotiation as group decision to each 
user. 

Sewer 

Fig.5 Application for the adaptive 
consensus formation on the internet. 
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Fig.6(b) User interface and the screen 
image(2) 

We have developed the group decision 
support system over the internet. Some of 
the screen images of the prototype model 
are shown in Fig.6. 

We applied this prototype model in the 
domain of the resource allocation of the 
internet to many potential users. We could 
derive many useful properties of the 
evolutionary approach for the group 
decision-making. The concept of the 
internet resources allocation using this 
prototype model is shown in Fig7. 

104 



Group Preference 

User Agent 

An 

self-adaptation 

self-adaptation 

User 

Fig.7 Application for the allocation of the 
internet resources 

6  Conclusions 

We considered the emergent adaptive 
behavior in the problem domain of group 
decision-making. We formulated the 
adaptive mechanism of each agent who has 
its own preference. Each agent, not only 
sticking to its own initial preference, it also 
cares other agents' preferences. And we 
also developed the prototype model in order 
to evaluate the evolutional approach for 
consensus formation. And we snowed that 
the benefit what group can evolutional 
decision-making without they coming 
together on same place. 
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Abstract This paper introduces: an approach to 
the automation of fusion using category theory 
based formal method. Category theory has a rich 
and rigorous mathematical language to manipulate 
complex systems via the relations between various 
kinds of objects. Specware, a category theory based 
formal development system, is used as a platform. 
This approach has the following advantages. First 
of all, fusion systems designed using this approach 
are easy to reuse, extend and maintain under evo- 
lution. Secondly, it provides a forma) support to 
represent and state human knowledge explicitly. Fi- 
nally, with the support of Specware, we can refine 
the formal specification into final executable code by 
stepwise refinement. Specware guarantees that the 
final executable code is provably correct. 

Keywords: information fusion, fqrmal method, 
category theory. 

1    Introduction 

A number of information fusion architectures, 
models and techniques have been proposed, 
but there are few systematic approaches to rep- 
resenting, implementing and maintaining fu- 
sion systems. For instance, it is not possible to 
guarantee that a system designed using specific 
architecture actually implements the architec- 
ture and its requirements.   It is also hard to 

reuse, extend or evolve such systems. 

To deal with these kinds of issues, we use 
a formal method approach to the development 
of fusion systems. In our approach, we follow 
a software engineering paradigm, i.e., we first 
specify requirements for a fusion system, and 
then we develop code through progressive re- 
finement of specifications. Our approach has 
the following advantages. First of all, fusion 
systems designed using this approach are easy 
to reuse, expand and manage under changes. 
Secondly, it enables us to represent and state 
human knowledge explicitly in the specifica- 
tion. Finally, with the support of Specware, 
we can refine the formal specification into fi- 
nal executable code by stepwise refinement. 
Specware guarantee that the final executable 
code is provably correct. 

The main problem that we are addressing in 
this paper is how to guide the process of fusion 
of specifications into a final specification of the 
system. In our approach, we use Specware, a 
formal method tool that is based on category 
theory. Since category theory provides us with 
the rigorous mathematical language and rich 
operations to represent and manipulate com- 
plex information structures, we can assemble 
fusion system specifications modularly and in- 
crementally by using category theory opera- 
tors, such as colimit and interpretation, to the 
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particular basic specifications. 

While Specware provides a formal specifica- 
tion language, the specification developer has 
to decide which specifications to combine and 
how. Our goal is to automate this process. 
Towards this goal, we investigated the Plan- 
ware approach [2] to developing specifications. 
Planware is a process developed at Kestrel In- 
stitute for the domain of scheduling. We are 
investigating a similar approach to developing 
fusion systems. Basically, our process is as fol- 
lows. 

First, we develop a library of formal specifi- 
cations of various goals, sensor theories, back- 
ground theories and fusion theories. The rela- 
tions among these theories are represented by 
specification morphisms. 

Second, we assemble an abstract specifica- 
tion of a fusion system from the library devel- 
oped in the first step. Fusion is then consid- 
ered as an operation of combining those various 
specifications into a specification of a fusion 
system. In other words, fusion is an operation 
on these specifications. This differs from other 
views of fusion, where it is considered as an 
operation on data or decisions. 

Third, we refine the abstract specification 
into a concrete specification using the informa- 
tion provided by the user. For any individual 
specification, we refine it to a more concrete 
specification via sequential composition of in- 
terpretations. For structured specification, we 
use parallel composition operator to automat- 
ically construct the refinement. 

Finally, we generate code for the concrete 
specification. 

The rest of the paper will explain how to 
implement the above procedure. Section 2 
provides a brief introduction to category the- 
ory and Specware. In Section 3, we describe 
our approach to automation of fusion using 
Specware. A specific multisensor fusion ex- 
ample will be given in Section 4 followed by 
summary in Section 5. 

2    Background 

Category theory was originally invented as an 
abstract mathematical language to describe 
the passage from one type of mathematical 
structure to another. Specware supports the 
modular construction of formal specifications. 
It also supports stepwise and componentwise 
refinement of structured specification into exe- 
cutable code. 

2.1 Category Theory 

Category theory is an abstract language for de- 
scribing external properties of objects. In cat- 
egory theory, an object is described by its in- 
teraction with all other objects via morphisms. 
This unique feature of abstract, high-level de- 
scription makes category theory an ideal math- 
ematical tool for the information fusion prob- 
lem. In information fusion, we need to know 
the relations or interactions between disparate 
sources (information) in order to combine them 
together (fusion). 

A good review of category theory related to 
fusion can be found in [3]. Interested reader 
can find more information about category the- 
ory in [8, 5, 1]. 

2.2 Specware 

In this section, we will introduce Specware con- 
cepts which we used to automate the fusion 
process. 

Specware is a system which aims to provide 
a formal support for specification and devel- 
opment of software [9]. The foundations of 
Specware are category theory, sheaf theory, al- 
gebraic specification and general logics. Us- 
ing Specware, one can construct formal spec- 
ifications modularly and refine such specifica- 
tions into executable code through progressive 
refinement. The underlying basic concepts of 
Specware are described below. 

A specification (spec or theory) is a collection 
of sorts, operations and axioms that define a 
theory via higher-order logic. An example of 
specification of image is shown in Figure 1. 
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spec IMAGE is 
sorts Image, E 
op make-image : Nat, Nat, E ->■ Image 
op xsize : Image —>• Nat 
definition of xsize is 

axiom xsize(make-image(m,n,e)) = m 
end-definition 

other operations and axioms ... 

end-spec 

Figure 1: Image specification 

Specifications can be developed from scratch 
or can be constructed from other specs via the 
specification-constructing operations - import, 
translate and colimit. Spec A has a copy of spec 
B if A imports B. Translate is similar to import 
except some elements of the copy of spec B are 
renamed according to the given renaming rules. 
The colimit operation takes a specification di- 
agram as input and produces a specification 
called the colimit of the diagram. 

A specification morphism is a mapping from 
source specification S to target specification T 
such that the signatures of the operations are 
translated compatibly and theorems are pre- 
served. 

A specification diagram (or simply diagram) 
is a directed multigraph whose nodes are la- 
beled with specs and whose arcs are labeled 
with morphisms. So a diagram shows the rela- 
tions between specifications. A diagram exam- 
ple is shown in Figure 2. In this diagram, both 
reflexive relation spec and transitive relation 
spec import binary relation spec. Therefore 
the morphisms are import-morphisms. 

The definition of interpretation is as fol- 
lows [10]: An interpretation p : A=$~ B from a 
specification A (called domain or source) to a 
specification B (called codomain or target) is a 
pair of morphisms A-> A — as — B <- B with 
common codomain A — as — B (called mediat- 
ing specification or simply mediator), such that 

Binary 
relation 

Reflexive 
relation 

Transitive 
relation 

Figure 2: A specification diagram 

the morphism from B to A — as — B is a defi- 
nitional extension. Interpretation is also called 
refinement. 

A morphism S -4 T is a strict definitional 
extension if it is injective and if every element 
of T which is outside the image of the mor- 
phism is either a defined sort or a defined op- 
eration. A definitional extension is a strict def- 
initional extension optionally composed with a 
specification isomorphism. 

Sequential (Vertical) composition of inter- 
pretations allows us to connect interpretations 
together so that we can refine a specification 
progressively. If pi and pi are two interpreta- 
tions such that pi : S => R and pi : R => T 
then their sequential composition p\\pi is an 
interpretation from S to T. That is, pwpi : 
S^T. 

Parallel composition allows us to put 
interpretations together like specification- 
constructing operations allow us to put speci- 
fications together. Suppose we have interpre- 
tations for each of the specifications in a given 
diagram, we can compose them to obtain an 
interpretation whose domain is their colimit. 
The codomain of the composed interpretation 
will be the colimit of a diagram whose nodes 
are codomain of the component specification 
interpretations. 

All the above concepts are expressed and im- 
plemented in Slang, Specware language. The 
specification example in Figure 1 is written in 
Slang. 
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3    Automation of Fusion 

In the last section, we reviewed the basic con- 
cepts of Specware. Next, we are going to show 
our approach to automation of information fu- 
sion using Specware. 

3.1 Information Fusion Problem 

Basically, information fusion or fusion is de- 
fined as the process of acquisition, filtering, 
correlation and integration of relevant infor- 
mation from various sources, like sensors, 
databases, knowledge bases and humans, into 
one representational format that is appropri- 
ate for deriving decisions regarding the inter- 
pretation of the information, system goals (like 
recognition, tracking or situation assessment), 
sensor management, or system control [6]. A 
typical multisensor fusion scenario is depicted 
in Figure 3. In the figure, N sensors observe 
the region of interest, World, and send infor- 
mation to the fusion system. Human sends 
queries or goals to the fusion system. Based 
on the information received from sensors and 
queries or goals from the human, the fusion 
system computes the solution and returns an 
answer to the human (in the situations such 
as detection, automatic target recognition) or 
sends instructions to sensors (in the situation 
of sensor management). 

3.2 Abstract Fusion Specification 

Based on the analysis of the fusion problem, 
we represent the abstract fusion problem as a 
structured specification as shown in Figure 4. 
Without loss of generality, we use two image 
sensors as an example. Fusion systems with 
more than two sensors or different types of sen- 
sors have similar structures. 

Basically, there are two subdiagrams in 
this structure. The first subdiagram, COMB- 
SPECS-DIAGRAM, consists of specs IMAGE, 
SENSOR, SENSOR1, SENSOR2, ABS-PROB- 
THY 1 and ABS-PROB-THY 2 where ABS- 
PROB-TRY 1 and ABS-PROB-THY 2 represent 
fusion problems, such as detection, expressed in 

©(    Sensor    ) 

Human 

Figure 3: A multisensor fusion scenario 

terms of respective sensor theories. Specifica- 
tion COMB-THY is the colimit of this diagram. 
The second subdiagram, FUSION-DIAGRAM, 
consists of specs ABS-PROB, ABS-FUSION- 
THY and COMB-THY. ABS-REQ-THY, the ab- 
stract requirement specification of the multi- 
sensor fusion system, is the colimit of FUSION- 
DIAGRAM. Here we use ABS-PROB to glue 
ABS-FUSION-THY and COMB-THY together to 
get the final ABS-REQ-THY. 

The above structure provides us with follow- 
ing advantages: 

• Represent and state human knowledge 
explicitly in the specification. For in- 
stance, sensor theories, fusion theories are 
represented by specs SENSOR and ABS- 
FUSION-THY. Other human knowledge, 
from geometry to statistics, can also be 
represented as specifications. 

• Reuse, extend and maintain fusion sys- 
tems relatively easily. The structured 
specification gives us a clear roadmap of 
the whole fusion system. The relations 
between different parts are clearly repre- 
sented by specification morphisms. This 
fusion system can be used repeatedly for 
a class of problems. Also building a larger 
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COMB-SPECS-DIAGRAM 

ABS-PROB  -COMB-THY FUSION DIAGRAM 

ABS-FUSION 
THEORY 

ABS-REQ-THY 

Figure 4: Abstract Fusion Specification Struc- 
ture 

the concrete problem theories later on via 
user's selection. Finally, the fusion theory is 
represented as a function from outputs of two 
problem theories (Ql and Q2) to the final out- 
put Q. Notice,we didn't specify Ql, Q2 and 
Q at this moment because they could be Nat, 
Boolean or any other sort in the refinement. 

spec SENSOR is 
import IMAGE 
sort Sensor 
op sense : Image, Sensor 

end-spec 

Image 

spec ABS-PROB-THY1 is 
import SENSOR1 
sort Ql 
op pi: Image 1, Sensor 1 

end-spec 
Ql 

system from this simple one is fairly easy. 

• Refine the formal specification into final 
executable code by stepwise refinement 
with the support of Specware. As we dis- 
cussed in Section 2, Specware supports 
both sequential and parallel compositions 
of refinement. Once we have such a struc- 
tured specification, we can refine it incre- 
mentally into a sufficiently refined specifi- 
cation using sequential and parallel com- 
position. The sufficiently refined specifica- 
tion is such a specification that every sort 
and operation of it are represented by the 
built-in abstract target language (ATL) [7]. 
ATL describes the constructs of the target 
language. Currently, Specware supports 
two kinds of target language, C++ and 
Lisp. 

Some of the component specifications are 
shown in Figure 5. Here we modeled the 
abstract sensor as a function. Similarly, 
both problem theories(ABS-PROB-THYl and 
ABS-PROB-THY2) are also represented as 
functions.  These theories will be refined into 

spec ABS-PROB-THY2 is 
import SENSOR2 
sort Q2 
op p2: Image2, Sensor2 

end-spec 
Q2 

spec ABS-PROB is 
sorts Imagel, Image2, Sensor 1, 

Sensor2, Ql, Q2 
op pi : Imagel, Sensorl ->■ Ql 
op p2 : Image2, Sensor2 ->• Q2 

end-spec 

spec ABS-FUSION-THY is 
import ABS-PROB 
sort Q 
op fuse : Ql, Q2 -»• Q 

end-spec 

Figure 5: Fusion Specifications 
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3.3    Refining   to   a   Domain-specific 
Specification 

The user can refine the abstract fusion specifi- 
cation into a domain-specific specification by 
choosing concrete domain theories from the 
knowledge base. The basic procedure for re- 
finement is as follows: 

• First, choose two image sensors as SEN- 
SOR! and SENSOR2 from a library of 
sensor theories. 

• Second, choose a concrete fusion problem 
from a hierarchy of fusion problems. We 
will discuss details of this step in the next 
section. 

• Then, choose a corresponding fusion the- 
ory. 

• Finally, after refining each component the- 
ory of abstract specification to its cor- 
responding concrete theory, compute the 
final domain-specific requirement theory 
via parallel composition of interpretations. 
The final domain-specific requirement the- 
ory is the refinement of ABS-REQ-THY. 

we have analyzed the information fusion 
problem and introduced a Specware based ap- 
proach to constructing fusion specification and 
refining it into final code. We showed that a 
formal system can be represented as a struc- 
tured specification and one can develop such a 
fusion system formally through sequential and 
parallel composition of refinement. 

4    A Fusion Example 

In this section, we will show how to apply the 
refinement procedure described in last section 
to a particular fusion problem. 

• Sensor fusion. In this kind of fusion, evi- 
dence from two or more sensors of similar 
type is combined in order to get more pre- 
cise information which can not be deduced 
from each piece of evidence alone. 

• Multisource integration. This type of fu- 
sion includes Detection, Classification(ov 
Automatic target recognition), Tracking 
and Correlation. 

• Sensor management. This refers to the 
process of adaptively allocating the dwells 
of each re-allocatable member of a suite of 
sensors. 

• Situation/threat assessment. This is to 
provide an overall picture of the military 
significance of the data collected by the 
previous two kinds of fusion. 

• Response management. This is the pro- 
cess of deciding upon courses of action 
which are appropriate response to current 
and evolving military situations. 

Based on the above information, we can 
draw a hierarchy of fusion problems as below 
(Figure 6). 

Figure 6: Hierarchy of fusion problems 

4.1    Subdomains of Fusion Problem 

Goodman [4] described subdomains of data fu- 
sion as follows: 

Next, we will show how to refine an abstract 
fusion specification to a concrete specification 
based on this hierarchy. 
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spec DETECTION-THY is 
import LABELING 
op target? : Image, Sensor -» Boolean 
definition of target? is 

axiom target? (img,s) <£*> 
gt(max-lab(img,s), zero) 

end-definition 
end-spec 

Figure 7: Detection Theory 

4.2    Refining to a Detection Subdo- 
main 

To particularize the abstract fusion specifica- 
tion, the user has to select a concrete fusion 
subproblem from the hierarchy of fusion prob- 
lem. The (composed) arrow from ABS-PROB- 
THY to the selected problem theory is the ar- 
row used for refinement. 

Suppose the user has chosen a detection the- 
ory (Figure 7). It imports LABELING theory 
which contains operation max-lab. The max- 
lab returns the maximum number of labels of 
the image being detected. 

Then part of the refinement arrow is: 

Q\ i-> Boolean 

pi i-> target"! 

Sensorl H-> Sensor 

Next, the user has to choose a correspond- 
ing fusion theory. In this case, the user should 
select DETECTION-FUSION-THY (see Fig- 
ure 8). 

So the refinement arrow is: 

pi i-> dl 

p2 (->■ dl 

Q\ i-> Boolean 

Q2 i-> Boolean 

Q H» Boolean 

fuse H* final — decision 

spec DETECTION-FUSION-THY is 
sorts Imagel, Image2, Sensorl, Sensor2 
const confidencel : Nat 
const confidence2 : Nat 
op dl : Imagel, Sensorl -> Boolean 
op d2 : Image2, Sensor2 -> Boolean 
op final-decision : 

Imagel, Image2, Sensorl, Sensor2 -» Boolean 
definition of final-decision is 

axiom dl(il,sl) = d2(i2,s2) =4> 
final-decision(il,i2,sl,s2) = dl(il,sl) 

axiom not(dl(il,sl) = d2(i2,s2)) A 
gt(confidencel, confidence2) => 
final-decision(il,i2,sl,s2) = dl(il,sl) 

end-definition 
end-spec 

Figure 8: Detection Fusion Theory 

After having refined each component of the 
abstract fusion specification, the multisensor 
detection specification can be computed as de- 
scribed in the last section. 

This section has shown how to refine the ab- 
stract fusion specification to a particular fusion 
problem theory. We have chosen a simple ex- 
ample and artificial theories to make the pro- 
cess clear. It needs careful, hard work to de- 
velop specifications for real applications. 

5    Summary 

We have shown in this paper a first step to- 
wards automation of information fusion using 
category theory based formal method. Specifi- 
cally, we discussed the construction and refine- 
ment of fusion specifications using Specware. 
This approach enables us to represent human 
knowledge explicitly so that we can utilize this 
knowledge repeatedly and expand and manage 
it with ease in a changing environment. This 
formal approach also provides a way to produce 
provably-correct code through stepwise refine- 
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ment. 
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Abstract 
This paper discusses the application of category theory as 
a unifying concept for formally developed information 
fusion systems. Category theory is a mathematically sound 
technique used to capture the commonalties and 
relationships between objects. This feature makes category 
theory a very elegant language for describing information 
fusion systems and the information fusion process itself. 
After an initial overview of category theory, the paper 
investigates the application of category theory to a wavelet 
based multisensor target recognition system, the Automatic 
Multisensor Feature-based Recognition System (AMFRS), 
which was originally developed using formal methods. 

1. Introduction 

The goal of information fusion is to combine multiple 
pieces of data in a way so we can infer more 
information than what is contained in the individual 
pieces of data alone. This requires us to be able to 
determine how the individual pieces of data are 
related. It would also be nice if we could describe 
this relationship between data in a formal way so that 
we can automatically reason over the process without 
the use of unreliable and brittle heuristics. In this 
paper we present category theory as a unifying 
concept for formally defining information fusion 
systems. The goal of category theory is to define the 
relationships between objects in a category of related 
objects. Category theory also provides operators that 
allow us to reason over these relationships. In 
previous research we have shown category theory to 
be useful for defining relationships between object 
classes in object-oriented systems [1] and now we do 
the same for information fusion systems. 

The first section of the paper is a tutorial on algebraic 
specifications and category theory. Next we describe 
a formally defined fusion system, the Automatic 
Multisensor Feature-based Recognition System 
(AMFRS), and describe how we could incorporate 
category theory constructs to provide a provably 
correct technique for implementing the system. 

Mieczyslaw M. Kokar 
Northeastern University 

Department of Electrical and Computer Engineering 
Boston, Massachusetts 02115 

kokar@coe.neu.edu 

2. Theories and Specifications 

The notation generally used to capture the formal 
definitions of systems is a formal specification. 
There are two types of formal specifications 
commonly used to describe the behavior of software: 
operational    and    definitional. An operational 
specification is a "recipe" for an implementation 
that satisfies the requirements while a definitional 
specification describes behavior by listing the 
properties that an implementation must posses. 
Definitional specifications have several advantages 
over operational specifications because they are 
generally shorter and clearer than operational 
specifications, easier to modularize and combine, and 
easier to reason about, which is the key reason they 
are used in automated systems. 

It is recognized that creating correct, understandable 
formal specifications is difficult, if not impossible, 
without the use of some structuring technique or 
methodology. Algebraic theories provide the 
advantages of definitional specifications along with 
the desired structuring techniques. Algebraic theories 
are defined in terms of collections of values called 
sorts, operations defined over the sorts, and axioms 
defining the semantics of the sorts and operations. 
The structuring of algebraic theories is provided by 
category theory operations and provides an elegant 
way in which to combine smaller algebraic theories 
into larger, more complex theories. 

Categories are an abstract mathematical construct 
consisting of category objects and category arrows. 
In general, category objects are the objects in the 
category of interest while category arrows define 
a mapping from the internal structure of one category 
object to another. In our research, the category 
objects of interest are algebraic specifications and the 
category arrows are specification morphisms. In this 
category, Spec, specification morphisms map the 
sorts and operations of one algebraic specification 
into the sorts and operations of a second algebraic 
specification   such   that  the axioms   in  the   first 
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specification become provable theorems in the 
second specification. Thus, in essence, a specification 
morphism defines an embedding of one specification 
into a second specification. 

2.1. Algebraic Specification 

In this section, we define the important aspects of 
algebraic specifications and how to combine them 
using category theory operations to create new, more 
complex specifications. As described above, category 
theory is an abstract mathematical theory used to 
describe the external structure of various 
mathematical systems. Before showing its use in 
relation to algebraic specifications, we give a formal 
definition [6]. 

Category. A category C is comprised of 

• a collection of things called C-objects; 

• a collection of things called C-arrows; 

• operations assigning to each C-arrowfa C-object domf 
(the domain off) and a C-object cod f (the "codomain" 
off). If a = domf and b = cod f this is displayed as 

f 
f: a-*b       or      a  ¥ b 

• an operation, "°", called composition, assigning to each 
pair (g, f) of C-arrows with dorn g = codf, a C-arrow g o 
f. domf—> cod g, the composite of fand g such that the 
Associative Law holds: Given the configuration 

f      u8           h      , a > b > c > d 

of C-objects and C-arrows, then 

hofgoß    =    (hog) of 

• an assignment to each C-object, b, a C-arrow, id),. (,_,£,, 
called the identity arrow on b, such that the Identity Law 
holds: For any C-arrows f: a—>b and g: b —» c 

idbof = f and g oidb = g. 

2.1.1. The Category of Signatures 

In algebraic specifications, the structure of a 
specification is defined in terms of an abstract 
collection of values, called sorts and operations over 
those sorts. This structure is called a signature [7]. A 
signature describes the structure that an 
implementation must have to satisfy the associated 
specification; however, a signature does not specify 
the semantics of the specification. The semantics are 
added later via axiomatic definitions. 

Sienature. A signature Z = (S, Q), consists of a set S of 
sorts and a set Q of operation symbols defined over S. 
Associated with each operation symbol is a sequence of 
sorts called its rank. For example, f:si,s2,— ,s„ —» s 
indicates that f is the name of an n-ary function, taking 
arguments of sorts Sj, s2, ..., s„ and producing a result of 

sort s. A nullary operation symbol, c: —» s, is called a 
constant of sort s. 

An example of a signature is shown in Figure 1. In 
the signature RING there is one sort, ANY, and five 
operations defined on the sort. 

signature Ring is 
sorts ANY 
operations 

plus ANY X ANY ->ANY 
times ANY X ANY ->ANY 
inv ANY ->ANY 
zero ->ANY 
one ->ANY 

end 

Figure 1. Ring Signature 

In our research, signatures define the required 
structure for formally describing wavelet-based 
models. Signatures provide the ability to define the 
internal structure of a specification; however, they do 
not provide a method to reason about relationships 
between specifications. To create a theory of 
information fusion using algebraic specifications, 
operations to define relations between specifications 
must be available. There must be a well-defined 
theory about how specifications relate to one another. 

As might be expected, signatures (as the "C-objects") 
with the correct "C-arrows" form a category that is of 
great interest in our research. For signatures, the C- 
arrows are called signature morphisms [7]. 
Signatures and their associated signature morphisms 
form the category, Sign. 

Sienature Morphism. Given two signatures Z = (S, Q) and 
£ ' = (S ', ß '), a signature morphism a: Z —> Z' is a pair 
of functions (as : S —> S', OQ : Q -» ß '), mapping sorts to 
sorts and operations to operations such that the sort map is 
compatible with the ranks of the operations, i.e., for all 
operation symbols f:si,s2,— ,s„ —> s in ß, the operation 
symbol Oa (fi:as(s,), Os(s2),... ,Os(s„) -> orfs) is in ß'. The 
composition of two signature morphisms, obtained by 
composing the functions comprising the signature 
morphisms, is also a signature morphism. The identity 
signature morphism on a signature maps each sort and 
each operation onto itself. Signatures and signature 
morphisms form a category, Sign, where the signatures are 
the C-objects and signature morphisms are the C-arrows. 

Given the signatures RING from Figure 1 and 
RlNGlNT from Figure 2, a signature morphism 0 : 
RING -> RlNGlNT, is shown in Figure 3. As required 
by the definition of a signature morphism, a consists 
of two functions, as and Cn as shown. as maps the 
sort ANY to Integer while da maps each operation to 
an operation with a compatible rank. 

Signature morphisms map sorts and operations from 
one signature into another and allow the restriction of 
sorts as well as the restriction of the domain and 
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range of operations. However, to build up more 
complex signatures, introduction of new sorts and 
operations into a signature is required. This is 
accomplished via a signature extension. 

Spec Ringlnt is 
sorts Integer 
operations 

+ Integer x Integer -»Integer 
X Integer x Integer ->Integer 
- Integer -¥ Integer 
0 -»Integer 
1 -»Integer 

end 

Figure 2. Integer Ring Signature 

os = {ANY H» Integer} 

Cn = {plus H» +, times h-> x, inv i-> -, zero h* 0, one h-> 1} 

Figure 3. Signature Morphism 

Extension. A signature E2 = (S2, £22) extends a signature E, 
= (S,, Q,) ifS, cS2 and Q, cQ2. 

Signature extensions allow the definition of entirely 
new signatures and the growth of complex signatures 
from existing signatures. 

2.1.2. The Category of Specifications 

To model semantics, signatures are extended with 
axioms that define the intended semantics of the 
signature operations. A signature with associated 
axioms is called a specification [7]. 

Specification. A specification SP is a pair (E, 0) consisting 
of a signature E = (S, £1) and a collection 0 ofE-sentences 
(axioms). 

Although a specification includes semantics, it does 
not implement a program nor does it define an 
implementation. A specification only defines the 
semantics required of a valid implementation. In 
fact, for most specifications, there are a number of 
implementations that satisfy the specification. 
Implementations that satisfy all axioms of a 
specification are called models of the specification 
[7]. To formally define a model, we first define a £- 
algebra [7]. 

E-aleebra or E-model. Given a signature E = {S, £2), a E- 
algebra A = (As, F/J consists of two families: 

• a collection of sets, called the carriers of the algebra, 
As = {As I s e S}; and 

• a collection of total functions, FA = {fA\fe £2} such 
that if the rank off is Si,s2, .... s„ -> s, then fA is a 
function from As, x As2 x... xAsn to As. (The symbol x 
indicates the Cartesian product of sets here.) 

Model. A model of a specification SP = (E, 0) is a E- 
algebra, M, such that M satisfies each E-sentence (axiom) 
in 0 The collection of all such models M is denoted by 

Mod[SP]. The sub-category of Mod(E) induced by 
Mod[SP] is also denoted by Mod[SP). 

An example of a specification is shown in Figure 4. 
This specification is the original RING signature of 
Figure 1 enhanced with the axioms that define the 
semantics of the operations. Valid models of this 
specification include the set of all integers, Z, with 
addition and multiplication as well as the set of 
integers modulo 2, Z2 = {0, 1}, with the inverse 
operation (-) defined to be the identity operation. 

As signatures have signature morphisms, 
specifications also have specification morphisms. 
Specification morphisms are signature morphisms 
that ensure that the axioms in the source specification 
are theorems (are provable from the axioms) in the 
target specification. Showing that the axioms of the 
source specification are theorems in the target 
specification is a proof obligation that must be shown 
for each specification morphism. Specifications and 
specification morphisms enable the creation and 
modification of specifications that correspond to 
valid signatures within the category Sign. However, 
before we can formally define a specification 
morphism, we must first define a reduct [7]. 

spec Ring is 
sorts ANY 
operations 

as defined in Figure 1 
axioms 

Va,b,c e ANY 
a plus (b plus c) = (a plus b) plus c 
a plus b = b plus a 
a plus zero = a 
a plus(inv a) = zero 
a times (b times c) = (a times b) times c 
a times one = a 
one times a = a 
a times (b plus c) = (a times b) plus (a times c) 
(a plus b) times c = (a times c) plus (b times c) 

end 

Figure 4. Ring Specification 

Reduct. Given a signature morphism a:E —> E ' and a E '- 
algebra A', the a-reduct of A', denoted A'\a is the E- 
algebra A = {As, FjJ defined as follows (with E = (S, £2)): 

As = Ao(s)'fors e S, and 
fA = (a(fl)A;forfen 

A reduct defines a new E-algebra (or Z-model) from 
an existing E'-algebra. It accomplishes this by 
selecting a set or functions for each sort or operation 
in S based on the signature morphism from £ to X '. 
Thus if we have a signature, S ', and a £ '-model, we 
can create a Z-model for a second signature, Z, by 
defining a signature morphism between them and 
calculate the associated reduct. A reduct is now used 
to extend the concept of a signature morphism to 
form a specification morphism [7]. 
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Specification Moryhism. A specification morphism from a 
specification SP = (E, 0) to a specification SP' = (E ', 0') 
is a signature morphism a: X —> X ' such that for every 
model M e Mod[SP'], M\ae Mod[SPJ. The specification 
morphism is also denoted by the same symbol, a: X —¥ X '. 

We now turn to the definition of theories and theory 
presentations. Basically a theory is the set of all 
theorems that logically follow from a given set of 
axioms [6]. A theory presentation is a specification 
whose axioms are sufficient to prove all the theorems 
in a desired theory but nothing more. Put succinctly, 
a theory presentation is a finite representation of a 
possibly infinite theory. To formally define a theory 
and theory presentation we must first define logical 
consequence and closure [6]. 

Logical Consequence. Given a signature X, a E-sentence 
(p is said to be a logical consequence of the E-sentences 
(ph...,(p„, written (pi,...,(pn 1= <p, if each E-algebra that 
satisfies the sentences <ph ... ,<pn also satisfies (p. 

Closure, Closed. Given a signature E, the closure, 
closure(0), of a set of E-sentences 0 is the set of all X- 
sentences which are the logical consequence of 0, i.e., 
closure(0) = {<p I 0 1= (pj. A set of E-sentences 0 is said to 
be closed if and only if0= closure(0). 

Theory, presentation. A theory T is a pair (E, closure(0)) 
consisting of a signature Eand a closed set of E-sentences, 
closure(0). A specification (E, 0) is said to be a 
presentation for a theory (E , closure(0)). A model of a 
theory is defined just as for specifications; the collection of 
all models of a theory T is denoted Mod[T]. Theory 
morphisms are defined analogous to specification 
morphisms. 

Specification morphisms complete the basic tool set 
required for defining and refining specifications. 
This tool set can now be extended to allow the 
combination, or composition, of existing 
specifications to create new specifications. This is 
where category theory is extremely useful in 
information fusion. Often two specifications that 
were originally extensions from the same ancestor 
need to be combined. Therefore, the desired 
combined specification consists of the unique parts of 
two specifications and some "shared part" that is 
common to both specifications (the part defined in 
the shared ancestor specification). This combining 
operation is called a colimit [6]. The colimit 
operation creates a new specification from a set of 
existing specifications. This new specification has all 
the sorts and operations of the original set of 
specifications without duplicating the "shared" sorts 
and operators. To formally define a colimit, we must 
first define a cone (or cocone) [6]. 

Cone. Given a diagram D in a category C and a C-object c, 
a cone from the base D to the vertex c is a collection ofC- 
arrows ff: dt —> c I 4 e Dj, one for each object dt in the 

diagram D, such that for any arrow g: d-, —> dj in D, the 
diagram shown in Figure 5 commutes i.e., g of =f. 

4. S >A 

Figure 5. Cone Diagram 

Colimit. A colimit for a diagram D in a category C is a C- 
object c along with a cone {f: dt —>c\ d, e D} from D to c 
such that for any other cone {f: d;—>c'\ dj e Dj from D to 
a vertex c', there is a unique C-arrowf: c ->c' such that for 
every object dj in D, the diagram shown in Figure 6 
commutes (i.e., f of =f). 

4 

■►<:' 

Figure 6. Colimit Diagram 

Conceptually, the colimit of a set of specifications is 
the "shared union" of those specifications based on 
the morphisms between the specifications. These 
morphisms define equivalence classes of sorts and 
operations. For example, if a morphism for 
specification A to specification B maps sort a to sort 
ß, then a and ß are in the same equivalence class and 
thus is a single sort in the colimit specification of A, 
B, and the morphism between them. Therefore, the 
colimit operation creates a new specification, the 
colimit specification, and a cone morphism from each 
specification to the colimit specification. These cone 
morphisms satisfy the condition that the translation of 
any sort or operation along any of the morphisms in 
the diagram leading to the colimit specification is 
equivalent. An example of the colimit operation is 
shown in Figure 7 and Figure 8. Given the BIN-REL, 

REFLEXIVE, and TRANSITIVE specifications in Figure 
7, the "colimit specification" would be the PRE- 

ORDER specification as shown in the diagram in 
Figure 8. Notice that the sorts E, X, and T belong to 
the same equivalence class in PRE-ORDER. Likewise, 
the operations •, =, and < also form an equivalence 
class in PRE-ORDER. Thus PRE-ORDER defines a 
specification with one sort, denoted by {E, X, T} and 
one operation, denoted by {•, =, <}, which is both 
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transitive and reflexive. The specification BlN-REL 
defines the "shared" parts of the colimit but adds 
nothing to the final specification. 

spec Bin-Rel is 
sorts E 
operations 

•     : E, E   -> Boolean 
end 

spec Reflexive is 
sorts X 
operations 

=    : X, X  -» Boolean 
axioms 

Vxe X  x = x 
end 

spec Transitive is 
sorts T 
operations 

<    : T,T   ^-»Boolean 
axioms 

V x, y, z e T   (X<VAV<Z)=>X<Z 

end 

spec Pre-Order is 
sorts {E,X,T} 
operations 

{•, =, <} : {E, X, T}, {E, X, T} -> Boolean 
axioms 

V x, y, z e {E, X, T} 
x {•,=,<} x 
(x {•,=,<) y A y {.,=,<}z)=>x {•,=,<} z 

end 

Figure 7. Specification Colimit Example 

Many of these methods are useful in specifying and 
implementing information fusion systems. For 
instance, if we can define the shared part of two types 
of data, we can formally combine them using a 
colimit. 

2.2. Functors 

The previous sections defined the basic categories 
and construction techniques used to build large-scale 
software specifications. In this section, we extend 
these concepts further to define models of 
specifications and how they are related to the 
construction techniques used to create their 
specifications. Before describing this relationship, we 
define the concept of a functor that maps C-objects 
and C-arrows from one category to another in such a 
way that the identity and composition properties are 
preserved [5]. 

A category in which the colimit of all possible C- 
objects and C-arrows exists is called cocomplete. As 
shown by Goguen and Burstall [2], the category Sign 
and Spec are both cocomplete; therefore, the colimit 
operation may be used freely within the category 
Spec to define the construction of complex theories 
from a group of simpler theories. 

Using morphisms, extensions, and colimits as a basic 
tool set, there are a number of ways that 
specifications can be constructed [7]: 

1. Build a specification from a signature and a 
set of axioms; 

2. Form    the    union    of   a    collection    of 
specifications; 

3. Translate  a specification via a signature 
morphism; 

4. Hide some details of a specification while 
preserving its models; 

5. Constrain the models of a specification to be 
minimal; 

6. Parameterize a specification; and 
7. Implement  a  specification  using  features 

provided by others. 

Figure 8. Example Colimit Diagram 

Functor. Given two categories A and B, a functor F: A —> 
B is a pair of functions, an object function and a mapping 
function. The object function assigns to each object X of 
category A an object F(X) of B; the mapping function 

assigns to each arrow f X -> Y of category A an arrow 

F(fl : F(X) -> F(Y) of category B. These functions satisfy 
the two requirements: 

F(lx) = h(X) 
for each identity lx of A 

F(gof)= F(g)oF(ß 

for each composite g of defined in A 

Basically a functor is a morphism of categories. 
Actually, we have already presented two functors: the 
reduct functor that maps models of one specification 
(in the category Mod[X,]) into models of a second 
specification (in the category Mod[X2]) and the 
models functor that maps specifications in the 
category Spec to their category of models, Mod[X], 
in Cat, the category of all sufficiently small 
categories. 
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3. AMFRS L! L'<—E    L, 

To show applicability of the category theoretic 
notions described above to information fusion 
systems, we will discuss a case study of Automatic 
Multisensor Feature-based Recognition System 
(AMFRS) [4], which was originally developed using 
a model-based approach. In this case study, we 
transform the AMFRS framework into an equivalent 
system using a category theoretic approach. First we 
will discuss the original system and then show its 
equivalent structure using algebraic specifications 
and category theory. 

3.1. Model-Theory Based Framework 

In the original model-based development approach, 
wavelet-based models were developed for integration 
into the AMFRS to help recognize targets. AMFRS 
uses a model-based framework to describe how to 
combine information contained in the wavelets for 
use in the system. Within this framework, models 
were developed to help recognize targets based on 
wavelet coefficients that could be interpreted as 
meaningful features of the target. 

In this framework, models were developed based on a 
language and its associated theory that described the 
semantics of the language. To combine languages 
and theories, three operators are used: reduction, 
expansion, and union. In general, the reduction 
operator removes symbols from a language along 
with all the sentences in which it exists in its 
associated theory. Expansion is the opposite. 
Expansion allows us to add symbols and new 
sentences about those symbols to the language. 
Finally, the union operator combines the symbols and 
sentences from two different language/theory pairs 
into a single language and a single theory. 

Using these operators, Korona created a framework 
for combining languages and theories about two 
different types of sensor data into a single fused 
language and theory. This framework is shown in 
Figure 9. In Figure 9, we show only the language 
composition process. The theory fusion process is 
identical. In this example, we assume there are two 
sensors whose data is described by two languages Lr 

and Lj. These languages are extended to the 
languages L' and L' by adding symbols denoting 
operations on a subset of the wavelet coefficients 
used to describe the sensor data. These subsets of 
coefficients represent those coefficients that will be 
part of the final fused language. The coefficients are 
selected by the designer based on knowledge of the 
wavelet coefficients and their relationship to features 
in targets of interest. 

L* 
E 
R 
U 

expansion 
reduction 
union 

Figure 9. Model-Theory Based Framework 

After the necessary symbols have been added to the 
languages, L' and L' are reduced by removing all the 
symbols not related to the coefficients selected for 
use in the final fused language. The new reduced 
languages, L" and L, er, are then combined into a 
single language, Lri, by the union operation. This 
language contains all the symbols representing the 
coefficients and operations on them required to 
construct the final fused language. 

The last two steps in the process create our final 
fused language, Lf. First, Lri is extended to Lri

e by 
adding symbols denoting operations that combine the 
coefficients from L'r and L,". Then, we create Lf by 
removing the symbols denoting those operations that 
do not work on the fused set of coefficients. 

3.2. An Equivalent Categoric Framework 

Before we convert the AMFRS model-based 
framework into a categoric framework, a few 
observations are necessary. First, the language and 
theory combination used in AMFRS is basically 
equivalent to an algebraic specification. An algebraic 
specification defines a set of sorts, operations over 
those sorts, and axioms that define the semantics of 
the operations. Constants, relations and functions 
defined via language symbols are defined as 
operations in an algebraic specification. Sentences 
of a theory translate to axioms in an algebraic 
specification. Algebraic sorts define a collection of 
values used in the operations. 

The model-based expansion, reduction, and union 
operators also have counterparts in category theory. 
The basic operator in category theory is the 
morphism. In the category of Spec, which includes 
all possible algebraic specifications, these morphisms 
are specification morphisms that define how one 
specification is embedded in a second specification. 
That is, it defines a mapping from the sorts and 
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operations of the first specification into the sorts and 
operations of the second specification in such a way 
as to ensure the axioms of the first specification are 
theorems of the second specification (i.e., the axioms 
hold in the second specification under the defined 
mapping of sorts and operations). Thus a 
specification morphism can be used to define an 
expansion as well as a reduction (they are basically 
inverses of each other). If we have an expansion of 
specification A into specification B, in effect we have 
a morphism from A to B. Likewise, a reduction of 
specification A to specification B, indicates morphism 
from B to A. The language union operator can also 
be modeled easily using the category theory colimit 
operation. The colimit operation combines two (or 
more) specifications, automatically creating a 
morphism between the original specifications and the 
resulting colimit specification. If two specifications 
being combined using a colimit operation share 
common parts (e.g., they both use integers), these 
parts can be specified as common by defining 
morphisms from the common, or shared, 
specification to the individual specifications. This 
shared specification, along with the associated 
morphisms, are included in the colimit operation. 
The result of this is that the shared parts of the two 
specifications are not duplicated. 

The conversion of the model-based framework into a 
category theoretic framework is shown in Figure 10. 
In this framework, the languages and their associated 
theories are converted to algebraic specifications (or 
theory presentations) and reductions and extensions 
are converted to morphisms. Note that a reduction 
from A to B results in a morphism from B to A. The 
union operation is converted to a colimit operation. 
The S specification denotes any shared part of 
specifications T" and T"'. In this case it might 
include domain information about wavelets, targets, 
etc. 

Figure 11 represents a simplification of the category 
theoretic setting shown in Figure 10. Basically, the 
morphisms a3, a4, and c8 from Figure 10 have been 
combined into morphism Oi5 of Figure 11. This is 
possible since all the sorts, operations, and axioms 
removed by <T3 and (T4 can be carried along without 
changing the semantics. As we see when we get to 
the model creation phase, carrying along these extra 
sorts, operations, and axioms is an advantage. 

Figure 12 is an even further simplification of the 
category theoretic setting of Figure 10. In Figure 12, 
the morphisms au o2 and a7 from Figure 10 have 
been combined into morphism au. In this 
framework, we combine the two basic specifications 
together via the colimit operation before we insert 

any knowledge about which wavelet coefficients 
correspond to which interpretable features. 

*2—   T, 

Figure 10. Categorical Framework 

S 

Tr — <J,C T! Tf 

\l/ 
OH 

\ 

t 

Figure 11. Simplified Categorical Setting 

Since all the operations used to expand the basic 
specifications have a well defined interpretation in 
the expanded specifications (cf. [4]), the morphism 
<Ti4 becomes a definitional extension and the 
subdiagram contained in the dotted box becomes an 
interpretation. An interpretation basically says that 
we can build a model of Tf from a model of Tri. This 
is a powerful construct in category theoretic software 
development tools such as Specware [3]. 

Finally Figure 13 describes how we create models in 
our category theoretic framework. In Figure 13, 
MOD represents the model functor, which takes 
specifications from the category Spec and maps them 
to a valid category of models, denoted MOD[Spec], 
in the category Cat (the category of all sufficiently 
small categories). The nice part about the category 
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theoretic framework we have come up with is that 
each morphism, a: A —> B, induces a reduct functor, 
lCT, that automatically maps models of B to models of 
A. Therefore if we create a valid model for B, we 
automatically get a valid model for A! Following the 
flows of reduct functors in Figure 13, we now see 
that if we can create a valid model of Tras-Tri (Mri

e as 
pointed at by the large arrow in Figure 13) we can 
automatically create the valid models Mr, M„ Mri, and 
Mf from Tn T„ Tri, and 7) respectively. Not only are 
these models consistent with their individual theories, 
but since all the models are based on a single initital 
model, they are consistent with each other as well. 

Interpretation 

Figure 12. Theory Interpretation 

4. Implications 

There are many positive implications of putting the 
AMFRS design into a category theoretic setting. 
First, there is no information loss in translating 
languages and theories into algebraic specifications. 
In fact, we gain modeling ability by adding the notion 
of a sort. By using sorts, we can precisely define 
operation signatures. Also, the notions of 
morphisms, definitional extensions, colimits, and 
interpretations give us a wide variety of tools with 
well-defined meanings. We can prove when 
morphisms and definitional extensions exist as well 
as construct the resulting colimit specification based 
on a set of specifications and morphisms. All in all, 
category theory provides us a much greater capability 
to prove relationships between specifications. 
Finally, the categorical setting allows us to construct, 
in a provably correct manner, consistent sets of 
models required by the AMFRS system. All we have 
to do is construct one specific model and the models 
required by AMFRS can be generated automatically. 
The bottom line is, you lose nothing and gain a lot by 
using category theory in the development of formal 
information fusion systems such as AMFRS. 

Figure 13. Model Creation using Theory 
Interpretation 
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Abstract  This paper uses a formal approach to 
incorporating uncertainty of input information into 
the fusion process and decision making.  Fuzzy set 
theory (fuzzy numbers, and fuzzy operators) is used 
to characterize and then manipulate (reason about) 
uncertainty.    A library of specifications of fuzzy 
set theory is developed using category theory and 
Specware, a tool that supports category theory based 
algebraic specification of software.   The library is 
then used to construct specifications of fuzzy infor- 
mation processing systems. The main construction 
in this process is composition. Category theory op- 
erators of limits and colimits are used for compo- 
sition.   As an example, a fuzzy edge detection al- 
gorithm is shown, which uses fuzzy operations in 
its processing.   One of the advantages of this ap- 
proach is that every aspect of the fusion process is 
specified formally, which allows us to reason about 
the uncertainty associated with the sensors and the 
processing. 

Keywords: fuzzy set, category theory, colimit 

1    Introduction 

In information fusion systems, uncertainty of 
information comes into the picture for a num- 
ber of reasons: incompleteness of the cover- 
age of the environment, inaccuracy of the sen- 
sors (e.g., limited resolution of sensors), back- 

ground noise in the environment, and others. 
There are many ways of dealing with uncer- 
tainty. Statistical methods and efficient fil- 
tering algorithms have been applied to this 
area using mathematical tools, such as FFT 
or wavelets, but none in a completely formal 
way, i.e., these mathematical formalisms have 
been used to derive algorithms by humans, but 
not by computing machines (computers). 

Why is a formal method so important? We 
know that in order to design a fusion system, 
we need to be able to reason about the im- 
pact of the uncertainty of the input informa- 
tion on the outcome of the fusion system, be- 
fore the system is built. In other words, we 
need to be able to predict the performance of 
the fusion system for any given level of uncer- 
tainty and guarantee that it will give satisfac- 
tory solutions provided that the uncertainty of 
incoming information is within some prespeci- 
fied bounds. With conventional methods, rea- 
soning about the performance of the system 
cannot be done automatically, but even hu- 
mans might draw different conclusions about 
a specific system due to the lack of full math- 
ematical specification of the system. 

In this paper, we describe the process by 
which uncertainty is formally incorporated into 
the fusion system design, so that it allows us 
to reason about the uncertainty of the deci- 
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sions of the fusion system while in the design 
phase. Section 2 describes how a fuzzy set the- 
ory library is built using category theory and 
Specware, and how the library is used to con- 
struct specifications of fuzzy information pro- 
cessing systems. This is the main part of the 
paper. Section 3 describes a simple conven- 
tional edge detection algorithm, and then maps 
this algorithm into a corresponding fuzzy edge 
detection algorithm in which all the operations 
are replaced by fuzzy operations. This part 
serves as an example of the application of our 
approach to reasoning about the uncertainty 
in information fusion. Section 4 concludes the 
paper and gives directions for future research. 

2    Fuzzy Information Process- 
ing 

Before fuzzy set theory was introduced by 
Zadeh in 1965, uncertainty was solely treated 
by probability theory. But there are some sit- 
uations where uncertainty is non-probabilistic. 
In information processing systems, for in- 
stance, we cannot guarantee that the input 
data are precise numbers; instead they are of- 
ten referred to as approximately x, or around x. 
The reason for this uncertainty is not that we 
measure the values with some error, but sim- 
ply because we do not know what it should be. 
This uncertainty of imprecision can be modeled 
by using fuzzy set theory. Another example is 
evident in linguistic expressions, such as tall, 
big, hot, or likely, unlikely, etc. This linguistic 
uncertainty, of vagueness or fuzziness, can be 
well described by appropriate fuzzy sets. 

In this paper we use fuzzy set theory to han- 
dle uncertainty in information processing sys- 
tems. We show how fuzzy information pro- 
cessing systems can be specified by using cate- 
gory theory and Specware. Category theory is 
a mathematical technique that is suitable for 
representing relations between various types 
of objects [5]. Specifically, we are interested 
in relations between (algebraic) specifications. 
Specware is a tool that supports category the- 
ory based algebraic specifications of software 

[10]. This section will talk about the construc- 
tion of a fuzzy set theory library and fuzzy in- 
formation processing specifications. 

2.1    Construction of Fuzzy Set The- 
ory Library 

The fuzzy set theory library is composed of 
specifications (also called specs) of the main 
concepts of fuzzy set theory: fuzzy sets, fuzzy 
numbers, a-cuts, and fuzzy arithmetic opera- 
tions. These specs are useful in composing for- 
mal specifications of fuzzy information process- 
ing systems. 

2.1.1    Fuzzy Sets 

There are a number of definitions for fuzzy sets. 
Two most popularly used definitions are listed 
here for comparison, out of which we chose the 
second one. 

Definition 1 [4]: Fuzzy set A is a set of or- 
dered pairs 

A = {(x,nA(x))\xeX} 

where X is a collection of objects (called uni- 
verse of discourse), and HA(%) is the member- 
ship function. This function takes real values 
between 0 and 1. 

Definition 2 [3]: Fuzzy set A is a function 

A:X^[0,1], 

where X is the universe of discourse. 
The difference between the two definitions is 

that the former defines a function that is not 
necessarily total on X, while the latter requires 
that the function be total. Since Specware re- 
quires that all functions be total, we chose the 
second definition of fuzzy set for building spec- 
ifications. The diagram of the specification of 
fuzzy set is shown in Figure 1. 

The spec UNI-INTVL imports REAL 
and introduces a new sort: UniJntvl = 
Real | betweeri-zerojonel. FUZZY-SET is a 
definitional extension [5] of the colimit of UNI- 
INTVL and SET; it defines a function sort: 
Fuzzyset = E —>■ UniJntvl, where E is the 
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REAL 
sort 
Real 

y 

UNI-INTVL 
sort 
Uni-intvl = 
Reall 
between-zero-one? \ 

FUZZY-SET 
colimitof 
UNI-INTVL 
and SET 
sorts 
E 
Set 
Uni-intvl 
Fuzzy-set = 
E-> Uni-intvl 

SET 
sorts 
Set 
E 

i: import 

Figure 1: Diagram for Fuzzy-set 

type of all elements in Set. In the FUZZY-SET 
spec, a-cut and height are defined as 

op alpha-cut: Fuzzy set, Uni-intvl -> Set 

op height : Fuzzyset -> Uni-intvl 

The a-cut is a powerful concepts that links 
fuzzy sets with sets. The application of the a- 
cut to a fuzzy set results in a set, and thus all 
operations and relations of sets can be applied 
to the a-cuts of the fuzzy set, or to a-levels. 

2.1.2    Fuzzy Numbers 

Fuzzy numbers are one specific type of fuzzy 
set. The universe od discourse for fuzzy num- 
bers is real numbers. Fuzzy number A has the 
form: A : Real ->• [0,1]. It has the following 
properties: 

• A must be a normal fuzzy set. That is, 
the height of the fuzzy set A should be 1: 

height(A) = sup A(x) = 1 
xex 

• A must be a convex fuzzy set. The prop- 
erty of convexity is captured by the fol- 
lowing theorem: 

Theorem: A fuzzy set A on Real is convex 
iff 

A{\x\ + (1 - A)z2) > min[A(x\),A{x2)\ 

for all x\,x-2 € Real and all A € [1,0], 
where min denotes the minimum opera- 
tor. 

• a-cut of the fuzzy set A should be a closed 
interval for every a € (0,1]. 

These properties are intuitively obvious. A 
fuzzy number is normal since our concept of a 
fuzzy number "approximately x" means that 
it is fully satisfied by x itself. We require that 
the shape of the fuzzy number be monotonicly 
increasing on the left and monotonicly decreas- 
ing on the right, so a-cuts of any fuzzy number 
should be closed intervals, which leads to the 
property that fuzzy numbers are convex. 

Fuzzy number is specified in the spec 
FUZZY-NUMBER, which imports FUZZY- 
SET and adds one sort axiom: E = Real. It 
also adds two axioms: normality and convex- 
ity. 

2.1.3    Fuzzy Operations 

In [3], two methods have been presented for 
developing fuzzy arithmetic. One method is 
based on interval arithmetic. Let A, B denote 
two fuzzy numbers, * denote any of the four ba- 
sic arithmetic operations, +, —, x, and+. Then 
A * B is a fuzzy number, which can be repre- 
sented by 

A*B=    \J   (aA*aB) xa 
ae[0,l] 

This method requires using a-cuts of fuzzy 
numbers. The second method represents fuzzy 
number A*B in the following way: 

(A* B)(z) =  sup   min[A(x),B(y)] 
z=x*y 

for all z G Real. We chose the latter one be- 
cause it is more explicitly expressed, thus more 
convenient to be specified in Specware. 
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Fuzzy arithmetic operations are specified in 
the spec FUZZY-ARITHM, which is a defi- 
nitional extension of FUZZY-NUMBER, with 
fuzzy operations being of the following types. 

op fjadd : Fuzzy „number, Fuzzy-number 

—>■ Fuzzy .number 

op fsub : Fuzzy-.number, Fuzzyjnumber 

—> Fuzzyjnumber 

op fjmult : Fuzzyjnumber, Fuzzyjnumber 

—> Fuzzyjnumber 

op f-div : Fuzzyjnumber, Fuzzy-number 

-» Fuzzy-number 

FUZZY-, 
sort 
'Real 
Fuzzy-number 

FUZZIFICATION 
sorts 

■Integer 
■Real 
■Image 
«Fuzzy-number 
Fuzzy-image 
= Integer, Integer 
-> Fuzzy-number 

2.2    Fuzzy Information Processing 

There are three stages in fuzzy information 
processing: fuzzification, fuzzy reasoning, and 
defuzzification. They are covered in the follow- 
ing three subsections. 

Figure 2: Diagram for Fuzzification 

2.2.1    Fuzzification 

The first step in fuzzy information processing is 
to fuzzify input data. There are many ways to 
do this. We chose the one in which a triangular 
membership function is involved. For a given 
value c, we define the triangular fuzzy number 
A, such that for all x € Real, A(x) satisfies the 
equation 

A(x) 

0 if x < c — 6, 
or x > c + S 

(x — c + S)/6   if c — 6 < x < c 
(c + S - x)/8   iic<x <c + S 

In this equation, 6 represents the uncertainty 
level. The larger the S, the more uncertain the 
input data. 

One kind of typical input data for an infor- 
mation fusion system is image, which is gener- 
ally sampled into a rectangular array of pix- 
els. Each pixel has an x-y coordinate that 
corresponds to its location within the image, 
and an intensity value representing brightness. 
The spec IMAGE imports INTEGER and 
REAL, and defines a function sort: Image = 

Integer, Integer —> Real. The spec FUZZI- 
FICATION is generated by taking the colimit 
of IMAGE and FUZZY-ARITHM, and defin- 
ing another function sort: Fuzzy-image = 
Integer, Integer —> Fuzzyjnumber. The di- 
agram for this specification is shown in Fig- 
ure 2. FUZZIFICATION maps Image to 
FuzzyJmage, so that each pixel has a corre- 
sponding fuzzy triangular number instead of a 
crisp number. Also in this spec, two operations 
are defined: 

op fuzzify : Real, Nonzero 

op fuzzifyJl : Real 

■ Fuzzyjnumber 

■ Fuzzyjnumber 

where fuzzify takes a crisp number and some 
uncertainty level, and generates a fuzzy trian- 
gular number. The operation fuzzifyJl deals 
with the situation when the uncertainty level is 
zero, which means there is no fuzziness about 
the result. The latter operation is specified so 
that a crisp number can also be regarded as a 
fuzzy number. 
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2.2.2    Fuzzy reasoning 

Fuzzy reasoning takes fuzzified inputs and ap- 
plies fuzzy arithmetic operations on them. For 
instance, as we discussed above, the input can 
be a fuzzy image in which each pixel corre- 
sponds to a fuzzy triangular number. While 
for crisp numbers we apply some arithmetic 
operations, like +,-, x,and-r-, for fuzzy num- 
bers we will apply fjadd,fsub,fjmult, and 
fjiiv, as specified in FUZZY-ARITHM. Some 
additional fuzzy operations are specified there 
too, which will be useful in our applications. 
One is fuzzy minimum(/mm), another is fuzzy 
maximum(/maa;). Let A,B denote two fuzzy 
numbers, then 

fmin{A,B){z)=      sup      min[A(x),B(y)] 
z=min{x,y) 

fmax{A,B)(z) =      sup       min[A(x),B(y)] 
z=max(x,y) 

for all z 6 Real. The results of these two op- 
erations are fuzzy numbers. These two opera- 
tions introduce partial ordering of fuzzy num- 
bers. 

Corresponding logic operations such as fuzzy 
equ&l(f equal) and fuzzy less than(/Zt) are also 
specified here. There are many ways to define 
such operations. Here we have chosen the fol- 
lowing: 

op f equal : Fuzzy-number, Fuzzy .number 

-4 Fuzzyjnumber 

op fit: Fuzzy-number, Fuzzyjnumber 

—> Fuzzyjnumber 

The operation f equal takes two fuzzy num- 
bers, defuzzifies them and compares the differ- 
ence of the result. If the difference is less than 
a threshold, f equal will return a fone, which 
is generated by fuzzify(one, a), a is the value 
where the two membership functions intersect 
and a will be zero if there is no intersection. 
If the difference is larger than the threshold, 
f equal will return a fzero, which is generated 
by fuzzify(zero,a). The intersection of the 
two membership functions are taken to gen- 
erate a, the same way as in fuzzify(one,a). 

The result of fequal and fit is either fone or 
fzero. This is the fuzzy equivalent of boolean 
values true and false. They are not limited to 
stating whether something is a fact or not, but 
in addition to this, they give the value of the 
uncertainty associated with such a statement. 

2.2.3    Defuzzification 

The input to the defuzzification process is a 
fuzzy number, and the output is a crisp num- 
ber. There are several defuzzification methods 
- centroid calculation that returns the center of 
the area under the curve of the fuzzy number, 
middle of maximum that returns the average 
of the maximum value of the fuzzy number, 
largest of maximum, and smallest of maximum. 
We chose the largest of maximum method to 
implement the defuzzification process. 

Defuzzification is implemented in DE- 
FUZZIFICATION, which is a definitional ex- 
tension of FUZZY-NUMBER. This spec de- 
fines the defuzzify operation as: op defuzzify : 
Fuzzyjnumber -4 Real. It takes a fuzzy num- 
ber, finds the largest of maximum of its mem- 
bership function, and returns the real number 
as defuzzification result. In our situation we 
fuzzify the input data using triangular mem- 
bership function, so after fuzzy operations are 
applied to these fuzzy triangular numbers, the 
result will always have only one peak value. 
Therefore the largest of maximum of its mem- 
bership function will always return only one 
value. There are situations where other types 
of fuzzification are used, and then the defuzzi- 
fication spec should be more complex. 

3    An Example:    Fuzzy Edge 
Detection 

In this section, we will show how to use fuzzy 
information processing specifications to trans- 
late a standard detection algorithm into a fuzzy 
detection algorithm, and see how uncertainty 
of input data propagates during the process 
and influences the final decision. 
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3.1    Edge Detection Algorithm 

An edge in an image could be considered as 
a boundary at which a significant change of 
intensity, I, occurs. Detecting an edge is very 
useful in object identification, because edges 
represent shapes of objects. There are many 
algorithms for edge detection. The objective 
of an edge detection algorithm is to locate the 
regions where the intensity is changing rapidly. 
So we can decompose the whole process into 
two steps, the first is to derive edge points in 
an image, the second is to apply edge detection 
method only to these points. 

We use the Laplacian-based method to de- 
rive edge points. Edge points are where the 
second-order derivatives of the points are zero, 
zero crossing. So edge points can be searched 
by looking for zero crossing points oiV2I{x, y), 
which can be calculated by the equation 

V2/(x, y) = I(x + 1, y) + I{x - 1, y) + 

I(x, y + l)+ I(x, y - 1) - 4/(z, y) 

In order to avoid false edge points, local vari- 
ance is estimated and compared with a thresh- 
old. The local variance can be estimated by 

, x+M       y+M 

E     E  [J(*i>k) o2{x,y) 

where 

m{x,y) 

(2M + l)\i^_Mk2^_M 

-m(ki,k2)]2 

x+M y+M 

E     E   ^i'*^) VM + l)\^Mk2^_M 

with M typically chosen around 2. Since 
a2(x, y) is compared with a threshold, the scal- 
ing factor (2A/+1)ii can be eliminated. 

The spec EDGE-POINT imports IMAGE 
and defines a sort and some ops: 

sort-axiom Edge-point = 

(Integer, Integer)\edge-point? 

op edgejpointl : Integer, Integer 

—>■ Boolean 

op grad : Integer, Integer -+ Real 

op var : Integer, Integer —> Real 

where grad and var represent gradient and lo- 
cal variance respectively, and for all Integers 

x,y: 

edgejpointl(x,y) 

grad(x, y) = 0 A var{x, y) < thrd 

Therefore a pixel at (x,y) satisfies an edge 
point if and only if the gradient equals zero 
and the local variance is less than the thresh- 
old. Otherwise the pixel is not an edge point. 

3.2    Fuzzy Edge Detection 

Now we will use fuzzy information processing 
specifications and translate the above edge de- 
tection algorithm into a fuzzy edge detection 
algorithm. 

Fuzzy edge detection is specified in FUZZY- 
EDGE-POINT, which imports FUZZIFICA- 
TION, and defines a function sort: 

Fuzzy-edge-point = Integer, Integer 

-+ Fuzzy-number 

which maps each pixel to a fuzzy number rep- 
resenting the level at which the pixel satisfies 
an edge point. This fuzzy number represents 
fuzzy boolean. Instead of making the decision 
that a pixel is an edge point or is not an edge 
point, a fone or a fzero is given. A fone states 
that the pixel satisfies an edge point with un- 
certainty as described by the fuzziness of this 
fone. A fzero, on the other hand, states that 
the pixel does not satisfy an edge point with 
uncertainty that is described by the fuzziness 
of this fzero. The following constants and op- 
erations are specified: 

const delta : Nonzero 

const thrd : Real 

op fgrad : Integer, Integer -> Fuzzy-number 

op fvar : Integer, Integer -»■ Fuzzy-number 

where fgrad and fvar represent fuzzy gradient 
and fuzzy local variance respectively. Calcula- 
tion of fgrad and fvar requires fuzzy arith- 
metic operations that have been specified be- 
fore. The operations f equal, fit and fmin are 
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also needed here to realize fuzzy edge detec- 
tion. The operation f equal takes two fuzzy 
numbers and returns a fzero or a fone, rep- 
resenting how similar these two fuzzy numbers 
are. The operation fit takes two fuzzy num- 
bers and returns a fzero or a fone, represent- 
ing how much the first one is less than the sec- 
ond one. For all Integers x, y: 

Fuzzy-edge-point{x,y) = 

f uzzyjmin[f equal (fgrad(x, y), 

fuzzify(one, delta), 

flt(fvar(x, y), fuzzify(thrd, delta))] 

Thus the likelihood that one pixel satis- 
fies an edge point depends on both the like- 
lihood that the fuzzy gradient is close to zero 
and the likelihood that the fuzzy local vari- 
ance is less than a threshold. The more the 
fuzzy gradient is near zero and the fuzzy lo- 
cal variance is far less than the threshold, the 
more likely this pixel is an edge point. Then 
fequal(fgrad(x, y), fuzzify(zero, delta)) 
should return a fone with less uncertainty, and 
flt(fvar(x, y), fuzzify(thrd, delta)) 
should also return a fone with less uncertainty. 
Therefore Fuzzy-edge jpoint{x,y) corresponds 
to a fone with less uncertainty. 

If f equal (fgrad(x, y), fuzzify(zero, delta)) 
returns a fzero, which means fuzzy gra- 
dient of the pixel (x,y) is not close 
to zero with some uncertainty, and if 
flt(fvar(x,y),fuzzify(thrd,delta)) also re- 
turns a fzero, which means fuzzy local vari- 
ance of the pixel (x, y) is not less than a fuzzy 
threshold, then Fuzzy-edge jpoint{x, y) should 
return a fzero, which is the fuzzy minimum of 
the two results and which shows that the pixel 
is not an edge point with some uncertainty. 

If one of these two operations(/eguaZ and 
fit) returns a fzero, and the other returns a 
fone, then Fuzzyjedge-point(x,y) should re- 
turn a fzero which is the fuzzy minimum of 
the two results. It shows that the pixel is not 
an edge point with some uncertainty. 

3.3    Results and Analysis 

In order to show that with this approach we 
can reason about the influence of uncertainty of 
input information on the final decision before 
the system is built, we specify a GOAL spec, 
which imports FUZZY-EDGE-POINT and in- 
troduces a theorem: 

V<*i,<52 £Real,6i < S2 

==>• ai < «2 

where 6\ and <52 are two different values cho- 
sen to fuzzify the input data and represent 
the uncertainty levels of the input informa- 
tion, and a.\ and a2 are the generated un- 
certainty values for deriving the results of 
Fuzzyjedge-point(x,y) for the two different 
fuzzified images. These a\ and a2 repre- 
sent the uncertainty levels in decision making. 
They are influenced by the result of the fuzzy 
gradient and the fuzzy local variance. It is nat- 
ural that the more uncertain the input data 
the more uncertain the decision. Depending 
on the values 8\, <52, a.\ and a2, the theorem 
prover [10] returns either a "yes" or a "no". 

In the above example we have applied fuzzy 
information processing specifications on a stan- 
dard edge point derivation algorithm and the 
results show that the uncertainty of input data 
propagates through the whole process and in- 
fluences the uncertainty level of the decision. 
The uncertainty of input data influences the 
fuzzy gradient and the fuzzy local variance re- 
sults, which in turn influence the uncertainty 
of the decision. So instead of giving a crisp de- 
cision (true or false), a fuzzy decision is given: 
true with some uncertainty or false with some 
uncertainty. The relation between the uncer- 
tainty levels in the final decision and in the 
input information can be proved in this speci- 
fication stage. 

4    Conclusions     and     Future 
work 

In this paper we have introduced a formal ap- 
proach to characterize and manipulate uncer- 
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tainty in information processing systems. We 
chose fuzzy set theory to represent uncertainty. 
We have shown how to specify basic elements 
of fuzzy set theory in Specware. As an exam- 
ple, fuzzy information processing specifications 
were applied to an edge detection algorithm. 
We showed how the uncertainty of input in- 
formation propagates and influences the final 
decision. 

In our future work, we will enrich the fuzzy 
set theory library by putting in more specifica- 
tions for fuzzy set theory, a-cut is a powerful 
link between fuzzy set and crisp set, so more 
specs for a-cut will be built. We will also put 
more specs in the fuzzy information process- 
ing system. For instance, various fuzzification 
methods other than triangular will be speci- 
fied. Trapezoidal, Gaussian, and bell fuzzifi- 
cation methods are three most popularly used. 
They can represent different levels and kinds 
of uncertainty among input data or decision 
making. Fuzzy reasoning will be enriched by 
defining different versions of fuzzy equal and 
fuzzy less than. Other defuzzification methods 
will also be specified. 

Also in our future work, we will generalize 
this uncertainty topic by using random set in- 
stead of fuzzy set to characterize and manipu- 
late uncertainty. We will also specify random 
processing and formally introduce randomness 
to some typical information processing prob- 
lems. 
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Abstract This paper proposes a formalization 
of the notion of "information fusion" within the 
framework of formal logic and category theory. 
Within this framework information fusion systems 
can be specified in precise mathematical terms al- 
lowing in this way to formally reason about such 
specifications, designs and implementations. The 
notion of fusion proposed in this paper differs from 
other approaches, where either data or decisions 
are fused. Here, the structures that represent the 
meaning of information (theories and models) are 
fused, while data are then simply processed using 
these structures (filtered through these structures). 
Within this framework the requirement of consis- 
tency of representations is formally and explicitly 
specified and then can be manipulated by the com- 
puter using automatic reasoning techniques. 

Keywords: information fusion, formal methods, 
category theory, model theory 

1    Introduction 

An information fusion system (IFS) (see Fig- 
ure 1) may receive inputs from various sources: 
sensors, data bases, knowledge bases, and 
other systems (over communication lines). In 
our discussion we will focus on inputs from sen- 
sors, since other sources of information can be 
considered as special kinds of sensors. Sensors 
provide measurements of a number of inter- 
related variables (n-tuples).   In mathematical 

sense, sensors output either functions or rela- 
tions. In general, the goal of an IFS is to in- 
terpret data received through sensors. It is ex- 
pressed in a prespecified goal language under- 
standable to either the user or another system. 

Human 

Soluikm.   T                         , , 0°^Q""l~ 

Knowledge 
Basel 

Information 
Fusion System 

(IFS) 

System 

Data 
Bases 

■■»-•*■ 

Control 

Other 
IFSs 

1 Sensor 1                                              Sensor 2 

t     *                      t     + 
T                         1 

_^,      , „ 
"* 

Figure 1: Information Fusion System (IFS) 

A natural requirement for an information fu- 
sion system is that the interpretation of the 
data be "correct". Intuitively, this means that 
the objects identified by the IFS really exist 
in the world, that these objects have the fea- 
tures as identified by the IFS, that the relations 
recognized by the IFS really exist in the world, 
and that the interpretation does not violate the 
constraints that the world is known to obey, 
e.g., the laws of physics.   In order to main- 
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tain the truthfulness of the interpretation, the 
system must maintain consistency of its repre- 
sentation. 

To deal with the issue of correctness of in- 
terpretations we use the framework of model 
theory [1]. In particular, we make use of for- 
mal languages to describe the world and the 
sensing process and models to represent sensor 
data, operations on data, and relations among 
the data. Models consist of carriers of differ- 
ent sorts (usually sets) and many-sorted op- 
erations, and relations among the elements of 
different carriers. We use theories to represent 
symbolic knowledge about the world and about 
the sensors. 

Fusion is then treated as a goal-driven op- 
eration of combining a fixed number of lan- 
guages, theories and classes of models related 
to the goal, the sensors and the background 
knowledge, into one combined language, one 
combined theory and one combined class of 
models of the world. Therefore, fusion is a 
formal system operator that has multiple lan- 
guages, theories and classes of models for in- 
puts and a single language, a theory, and a 
class of models as the output. 

This understanding of fusion differs from 
more traditional approaches [2, 3], where is- 
sues like consistency are not dealt with explic- 
itly. Rather, there is an underlying presump- 
tion that the operations of fusion are imple- 
mented in a consistent way by the human. In 
our approach, on the other hand, a framework 
is provided in which the requirement of consis- 
tency of representations can be formally and 
explicitly specified and then can be manipu- 
lated by the computer using automatic reason- 
ing techniques. 

Although there are several definitions of "fu- 
sion" in the subject literature, there does not 
seem to be an agreement on what is and what 
is not fusion. In Section 2 we argue that the 
issue of fusion must be addressed in the spec- 
ification phase. Then in Section 3, we provide 
our formal definition of fusion. In Section 4 we 
identify two parts of the fusion problem: syn- 
tactic fusion and semantic fusion. Section 5 
puts the problem of fusion in the category the- 

ory framework and discusses fusion operators. 
We present and example of a specification de- 
veloped according to our approach in Section 
6. Finally, in Section 7 we provide conclusions. 

2    Decomposition of the IFS 

In this presentation we follow a top-down ap- 
proach by progressively decomposing the prob- 
lem of development of an IFS into simpler sub- 
problems. In the first cut we decompose the 
IFS into three subsystems, as shown in Fig- 
ure 2. This decomposition follows the for- 
mal approach to software development, where 
code is developed in the process of progressive 
refinement of a formal software specification. 
Information Processing represents the actual 
running system that takes inputs from all the 
sources and produces outputs in real time. The 
main fusion problem, as presented in this pa- 
per, is solved in Specification Synthesis. This 
is essentially the only block where expertise of 
sensors and scenarios is needed. Code Gener- 
ation can be performed independently of such 
expertise. 

Figure 2:   Information Fusion System:   First- 
level Decomposition 
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3    The Fusion Problem 

In this section we consider the main fusion 
block, i.e., the Specification Synthesis block. 
By specifications we mean signatures (lan- 
guages), theories over the signatures, and 
classes of models of the theories. We show the 
first decomposition of the Specification Synthe- 
sis block in Figure 3. As we said in Section 1, 
the goal of information fusion is to develop a 
fused theory Tf and a fused class of models 
{Mf}. The inputs to this fusion process, as 
shown in Figure 3, are some or all of the fol- 
lowing: 

(1) EG, E,-, Ej, Eft,... - signatures associ- 
ated with the goal of the fusion system, cor- 
responding sensors and background knowledge 
theories. These signatures include variables 
and constant symbols of different sorts as well 
as many-sorted operation and relation sym- 
bols. 

{2)TGyTi,Tj,Tb,...- formal theories de- 
scribing the goal theory, knowledge about the 
sensors, and theories of the world (background 
knowledge) expressed in terms of the above 
described signatures. Background knowledge 
contains constraints on possible interpretation 
of the received data and/or special theories like 
Theory of Reals (Real Closed Field Theory), 
Random Sets Theory, Elementary Theory of 
Boolean Algebras that can be utilized in the 
process of constructing the fused theory. 

(3) Q - goal. These are queries about the 
world that cannot be answered in general by 
using only one of the sensors (information 
sources) but can be answered by using many 
(all) sensors. They are formulas expressed in 
terms of the signature EG of the goal theory 

TG. 
(4) {MG}, {Mi}, {Mj}, {Mb},... - classes 

of models associated with the theories TQ, TJ, 

TJ, Tb,..., respectively. 
The Fusion Problem 

Given the knowledge described above, con- 
struct a, fused theory T and an appropriate class 
of fused models {M}, such that for any model 
M in {M}: 

Goal 

Wb 

Theory 
Construction 

Spec 

MiMMjUMJ Model 
Construction 

Figure 3: Specification Synthesis 

1. M\=G 

2. M\=T 

3. M\=Tb 

In some cases we might be given specific 
models Mi, Mj, instead of classes of models. 
Depending on which of the above are available, 
and depending on some other preferences, the 
process of developing the fused theory and class 
of models may be arranged on many different 
ways. For instance, we might first develop a 
fused theory Tj, and then find a class of mod- 
els associated with this theory. 

4    Syntactic/Semantic Fusion 

One way to achieve the fusion goal is to split 
the inputs to the Specification Synthesis block 
(Figure 3) between the two tasks, so that 
purely semantic information (theories) are in- 
put into the Theory Construction task and the 
semantic inputs (models) are input into the 
Model Construction task. We denote the syn- 
tactic task by Vx, and the semantic task by 

To be consistent with the formulation of the 
fusion problem in Section 3, the diagram rep- 
resented in Figure 4 must commute. This can 
be described by the following relations. 

M\=VT(TG,TuTj,Tb) 

M = VM(MG, Mi, Mj,Mb) 

MG |= TG, Mi \= Ti, Mj \= Tj,Mb (= Tb 
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Figure 4:   Syntactic and Semantic Levels of 
Specification Synthesis 

4.1    Syntactic Theory Construction 

The Theory Construction task can be consid- 
ered as a goal-driven process that starts with 
the goal theory TG. This theory contains a goal 
sentence G. The intent is to prove that the 
goal is true. This theory has to be combined 
with (extended by) other theories in order to 
make such a proof possible. It is natural to use 
the theories of the sensors in the first place. 
If the goal still cannot be proved, other back- 
ground theories Tb need to be added. Various 
standard mathematical theories are added also 
in this step. The signatures of the goal theory 
and of the sensor theories, as well as some non- 
logical symbols appearing in these theories, can 
be used in the search for theories to add. As 
a result, we obtain a sufficiently rich theory T 
(specification) in which all sorts and operations 
from the goal theory TG should be definable. In 
other words, the transition from the goal and 
sensor theories to the fused theory T can be 
achieved by appropriate definitional extensions 
of these theories using the background theories 
n. 

4.2    Semantic Model Construction 

In the Model Construction task we need to 
combine structures (classes of models of the 
particular theories fused in the syntactic task) 
into one class of structures. Since as a net re- 
sult, this operation should produce such a class 
of structures {M} that each one of them is 

a model of the fused theory T, the semantic 
model construction operation VM must be so 
chosen that this property holds. 

5    The Fusion Operator 

In Section 4 we presented fusion as consisting 
of two operators, Vj and VM- What can these 
operators be? In this section we propose a cat- 
egory theory based approach to this problem, 
similar to the one taken in the Specware ap- 
proach [4]. In this approach theories are rep- 
resented as specifications. They are objects 
in the Small Categories (Cat). Relationships 
among them are morphisms. Composition of 
theories is done using the colimit operation. 
Models of the theories are objects of another 
category (Mod). 

According to this paradigm. Figure 4 can 
be represented as in Figure 5. In this diagram, 
corners of the diagram represent objects (or 
collection of objects). The arrows represent 
morphisms. The operators became: 

VT(TG, Tu Th Tb) = Col(TG, Ti: Tv Tb) 

VT({MG},{Mi},{Mj},{Mb)} = 

Lim({MG},{Mi},{Mj},{Mb)} 

where Col represents the colimit operator and 
Lim represents the limit operator. Note that, 
since Lim and Col are two contravariant oper- 
ators, the morphism arrows point in opposite 
directions. 

According to this diagram, fusion is ac- 
complished by two operators: colimit and 
limit. The colimit operation combines (glues) 
two theories (specifications) along the common 
part. It is a shared union of two theories. In 
other words, first, common parts are identified 
in the languages associated with particular the- 
ories, then these common parts are renamed 
so that they have the same symbols in both 
theories, then the renaming is reflected in the 
axioms of the theories, and finally, the theo- 
ries are put together into one structure (one 
theory). 
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Figure 5: Category Theory Fusion Operators Figure 6: A scenario for sensor data fusion 

Note also that the arrows from theories to 
models are of a different kind - they are func- 
tors that map objects of one category into the 
objects of another category. 

6    Example 

In this section we discuss a simple and idealized 
fusion scenario. In this example (see Figure 
6) we consider a world which is a two dimen- 
sional plane with two kinds of objects possible: 
rectangles and triangles (with one right angle). 
The objects are illuminated with parallel light; 
the light direction is denoted by the angle a, as 
indicated in the figure. The world is measured 
through two sensors: a one-dimensional vision 
sensor, and a one dimensional range sensor. 

The goal is object recognition. In some cases 
the range sensor is sufficient for the classifica- 
tion of an object into one of the three classes. 
E.g., when an acute angle is at the sensor side, 
the range sensor gives enough information to 
classify the object as either a right triangle 
or as an illegal object. Nevertheless, in some 
other cases, the information provided by the 
range sensor is not sufficient to make such a 
distinction. The advantage of the vision sen- 
sor stems from its ability to see shadows. In 
some configurations (sizes of an object and its 
rotational location), the size of the shadow and 
its location can provide the extra information 
that can be used to decide if the object is a 

triangle or a rectangle (as shown in Figure 6). 
To understand this example the reader has 

to possess some knowledge of geometry and 
physics. We cannot expect that a computer has 
this kind of capabilities. Our goal is to under- 
stand the mechanisms involved in the above ex- 
ample, formalize these mechanisms, and then 
implement them in the computer so that this 
knowledge can be incorporated in the process- 
ing automatically. 

6.1    Formalization of Knowledge 

In the following we list the theories involved 
in the recognition process, show examples of 
the theories, and describe how they are fused. 
A complete presentation would include the de- 
scription of appropriate classes of models. We 
implemented these theories in the specification 
language Slang, used by Specware [4], a formal 
method tool. For readability, however, the the- 
ories are presented here using common mathe- 
matical notation. 

Theory % : Range Sensor. The theory of 
the range sensor, %, consists of the following 
two axioms: 

1. fr{x) = yl\y< 1=>  Or(x,y) 

2. /r(a:) = y A y = 1 =»-iOr(3,y) 
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where 1 is a constant symbol, fr is a symbol 
denoting a one-placed function (sensor mea- 
surement function), 0T is a symbol denoting 
a two-placed relation (detection). 

Theory % : Intensity Sensor. The theory 
Ti contains the knowledge about the intensity 
sensor.   It consists of the following single ax- 
iom: 

fi(x) = ishd =>  S(x) 

where ishd - is a constant symbol, /,• is a sym- 
bol denoting a one-placed (measurement) func- 
tion, S is a symbol denoting a one-placed rela- 
tion (detection of shadow). We have selected 
a very simple theory of the intensity sensor, 
since in this example, we use this sensor solely 
to identify shadows. We extract other relevant 
information from the range sensor. 

Theory %t : Rectangles and Right Trian- 
gles. This theory contains knowledge to dis- 
tinguish rectangles from right triangles. It in- 
cludes the following predicates: segment, con- 
stant, length, projection, angle, right-angle, 
acute-angle, triangle, rectangle. This knowl- 
edge is just a subset of geometry, and thus is 
not specific to any sensor or a specific scenario. 
As an example, the segment predicate is de- 
fined as follows: 

SEG(xi,yi,x2,y2) ^VXl<x<x20(x,y) A 

2/2 -m 
y = 

x2 - X\ 
i+l/iA yx2<x<x1 ->0(x, y) 

Theory Tsh    : Shadows. This theory contains 
two axioms: 

SHD(x1,x2) & VXl<x<x2S(x) AVX2<x<Xl-iS(x) 

TRN(x1,y1,x2,y2,x3,y3)A 

RAN(x1,y1,x2,y2,x3,y3)A 

PRJ(x2,y2) = xi A PRJ(x3, y3) = xr A 

SHD(xuxr)^TSH 

where SHD is the symbol for a two-placed 
relation (end points of the shadow), TSH - 
constant representing "shadow of a triangle", 
and S is part of the language of the theory 
%. The first axiom states that shadows are 
continuous, and the second axiom defines con- 
ditions for when a shadow can be TSH, it is 
the shadow of a triangle. The idea behind this 
axiom is the essence of this fusion problem. It 
can be understood by analyzing the scenario in 
Figure 6. 

Theory Tw : The World. In our example we 
presume that our world can be in three possible 
states: either it includes a rectangle, or a right 
triangle, or is empty. 

-,{TRN A REC) 

(TRN V REC) A -^TSH => REC 

Goal: Q The goal of the system is to find 
our which of the following four situations is the 
case in the world: (1) there is only a rectangle 
in the world (-iTRN A REC), (2) there is only 
a right triangle in the world (TRN A ->REC), 
(3) there is either a single rectangle or a single 
triangle in the world (^TRN A -^REC) (4) the 
world contains no objects (TRN V REC). 

6.2    Formalization of Fusion 

The specification of the rectangle/triangle 
recognition system was developed in Slang, 
the language used by the formal method tool, 
Specware. Both Specware and the underly- 
ing its implementation category theory are de- 
scribed in [5]. The structure of the resulting 
specification is shown in Figure 7. 

The specification was developed in a 
bottom-up fashion. In the first step we devel- 
oped the specification XREAL. This is an ex- 
tension of the theory of real numbers (REAL). 
REAL is one of the theories that is provided 
with the library of Specware. We needed some 
additional functions and thus we needed to ex- 
tend this theory. The arrow from REAL to 
XREAL is called import in Specware. It is an 
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extension of the category theory concept of col- 
imit described in [5]. 

In the next step, theories of the range 
sensor, Tr, and of the intensity sensor, 7;, 
described in Section 6.1, are encoded in 
Slang. Both theories need to import XREAL. 
In the Specware implementation they are 
called RANGE-SENSOR and INTENSITY- 
SENSOR, respectively. In a similar manner, 
the RECT-TRIAN specification is created; it 
imports RANGE-SENSOR and encodes the 
axioms of the theory %t. SHADOW imports 
INTENSITY-SENSOR and encodes the theory 

The next level specification, RECT-TRIAN- 
SHADOW, is the main fusion block in this 
whole specification. Here the two theories, 
RECT-TRIAN and SHADOW, are "glued" to- 
gether along the common part - the real num- 
bers. In the diagram of Figure 7 this common 
part is shown as the ONE-SORT specification. 
The sort defined in this specification serves as 
the common base that unifies the real num- 
bers from the other two specifications. At the 
same time all the axioms of the two compo- 
nent specifications are mapped into one set of 
axioms. Then the sort and the operations of 
this specification are used to extend the col- 
imit by adding additional axioms specified by 
the theory %h. 

6.3    Reasoning about the Fusion Sys- 
tem 

The specification described above can be used 
for reasoning about the fusion system being 
specified. For instance, we can reason about 
the goals of the system. Towards this end, 
we would have to submit candidate theorems 
(queries) to a theorem prover and ask whether 
they could be proven within the theory pre- 
sented by the specification. In the stage of 
specification development, such queries could 
be submitted by either the users (customer 
side) or by the specification developers (devel- 
oper side). First, one would need to choose one 
of the goals from Q. The preferable goals are 
{^TRN A REC} and {TRN A -^REC}, since 

RECTTTUAN-SHADOW 

Figure 7: Diagram of the Fusion System 

the success of one of these goals means a precise 
classification of the object in the scene. The 
goal {-'TRN A -<REC} is at the same level of 
detail. The goal {TRNvREC} is less specific, 
since its success means that there is an object 
in the world, but it is not clear whether it is 
a rectangle or a triangle. In addition to goals, 
some information about the inputs, or ranges 
of inputs, would need to be entered into the 
system, in order for the prover to resolve the 
validity of a theorem. The goal is posted to the 
top level system, WORLD. Since this specifi- 
cation (theory) uses terms from the imported 
specification, the query is propagated down to 
that specification, and the process continues 
until all the truth values can be resolved. 

Another application of such a specification 
is to use it for implementing the system. This 
can be achieved in the process called refine- 
ment. In this process, the specification goes 
through a number of refinement steps (called 
interpretations), the final step being transla- 
tion into a programming language. Specware 
supports such a software development process. 

Once the system is implemented, its opera- 
tion can be understood as model checking (in 
logical terminology, (cf. [1]). If the system 
is implemented according to such a rigorous 

139 



methodology, as can be easily checked, it will 
always derive correct decisions, i.e., it will be 
always right whether the world contains a tri- 
angle, a rectangle, one of them, or nothing. 
The system is not perfect, in the sense that in 
some situations it will not be able to recognize 
whether it is a rectangle or a triangle (it will 
simply say that there is an object in the world: 
rectangle or triangle). Nevertheless, it can be 
seen that the fused system will be more pow- 
erful than a system with only a range sensor, 
since it will be able to distinguish between a 
rectangle and a triangle in all the situations 
similar to the one shown in Figure 6. 

7    Conclusions 

In this paper we provided a formal definition 
of fusion. Fusion is treated as a formal op- 
erator that is applied to two families of ob- 
jects, theories and their classes of models and 
returns a pair - a fused theory and a a class 
of fused models. The general fusion procedure 
consists of two parallel tasks one of the syntac- 
tical nature and the second of the semantical 
nature. Syntactic Theory Construction inputs 
a goal theory (with a goal formula in it), the- 
ories of sensors and background theories and 
constructs one fused theory for the whole sys- 
tem in which the goal sentence can be proved. 
Semantic Model Construction inputs models 
of the theories utilized in the Syntactic The- 
ory Construction task and generates a class of 
models for the fused theory. 

The goal of our research is to find various 
schemes for performing fusion and to find com- 
putationally efficient algorithms to achieve this 
goal. In this paper we showed an example of 
developing a fused theory, i.e., of the Syntac- 
tic Theory Construction. Since we used cat- 
egory theory as our mathematical basis, and 
Specware as our implementation tool, the cor- 
rectness of the resulting specification and of 
the existence of the properties of the specifica- 
tion are guaranteed by the formal semantics of 
Specware and of the Specware theorem prover. 

Formal specifications of fusion systems, like 

the one described in this paper, can serve two 
purposes. For one, we can reason about vari- 
ous properties of such specifications when we 
are specifying such systems. This is a very 
valuable feature, since errors discovered in the 
specification phase of system development are 
much cheaper to eliminate than in the later 
stages. For instance, the same error discovered 
after deployment of a system can cost hundreds 
of thousands times more. The other purpose 
is that such specifications can be transformed 
into code through the process of refinement. 
This process guarantees that the specification 
is implemented correctly. This does not imply, 
however, that the specification is correct, since 
this decision depends on the specifier and the 
user to make. However, having a formally de- 
fined specification certainly makes such a pro- 
cess much more reliable and robust. 
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Abstract This paper discusses in detail the a- 
ß-f filter which is a sampled data target tracker 
which can asymptotically track a constant acceler- 
ation target. The a-ß-y parameters are studied to 
characterize the stability of the filter and its per- 
formance viz its noise ratio. A closed form equa- 
tion for the mean square response of the system to 
white noise is derived for an a-ß-y filter. It is also 
shown that the results of the noise ratio for the a- 
ß filter are different from those presented by other 
researchers. 

Keywords: Trackers, Stability, Noise ratio 

ample, a procedure to optimally select the a-ß 
parameters to minimize a performance index, 
which is a function of the noise-ratio and the 
tracking error for a specific maneuver. Follow- 
ing his work, Benedict and Bordner [3] used 
calculus of variations to solve for an optimal 
filter which minimizes a cost function, which 
is a weighted function of the noise smooth- 
ing and the transient (maneuver following) re- 
sponse. They show that the optimal filter is co- 
incident with an a-ß filter with the constraint 
that ß = a2/(2 - a). 

1    Introduction 

There exists a significant body of literature 
which addresses the problem of track-while- 
scan systems [1] [2] [3] and [4]. Sklansky [1] 
in his seminal paper analyzed the behavior 
of an a - ß filter. His analysis of the range 
of values of the a-ß smoothing parameters 
which resulted in a stable filter constrained 
the parameters to lie within a stability trian- 
gle. He also derived closed form equations to 
relate the smoothing parameters for critically 
damped transient response and the ability of 
the filter to smooth white noise, using a figure 
of demerit which was referred to as the noise 
ratio. Finally he proposed, via a numerical ex- 

*Graduate Student, Department of Mechanical and 
Aerospace Engineering 

'Assistant Professor, Department of Mechanical and 
Aerospace Engineering 

Numerous researchers using assumptions of 
the noise characteristics develop optimal fil- 
ters [5], [6] and [7] which are commonly called 
Kaiman Filters. Those filters were first intro- 
duced in the 60's by Kaiman and Bucy [8], [9]. 

In this paper, a detailed analysis of the a- 
ß-f filter is carried out. Section 2 discusses 
the bounds on the smoothing parameters for a 
stable filter. This is followed by a closed form 
derivation of the noise ratio for the a-ß-y fil- 
ter in Section 3. The results of this paper can 
be used to solve for optimal filter parameters 
for specific maneuvers given the measurement 
characteristic of the sensors. It also provides 
bounds on the smoothing parameters which 
can be used in adaptive filters. The paper con- 
cludes with some remarks in Section 4. 
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2    Stability Analysis 

2.1    a-/3-7 Tracker 

The a-ß-j tracker is an one-step ahead position 
predictor that uses the current error called the 
innovation to predict the next position. The in- 
novation is weighted by the smoothing param- 
eter a ß, and 7 . These parameters influence 
the behavior of the system in terms of stability 
and ability to track the target. Therefore, it is 
important to analyze the system using control 
theoretic aspects to gauge stability and perfor- 
mance. The prediction equation of the a-ß-f 
filters are 

xp(k+l) = xs(k) + Tvs(k) (1) 

parameters which result in a stable transfer 
function in the ^-domain. 

For a system with a characteristic equation 
P(z) = 0, where 

P(z) = a0z
n + axz

n-1 + .... + an^z + an (8) 

and ao > 0, we construct the table where the 
first row consists of the elements of the poly- 
nomial P(z) in ascending order and the second 
row consists of the parameters in descending 
order [10] as shown below where 

Table 1: General Form of Jury's Stability Ta- 
ble 

and 
vp(k + l) = vs(k) + Tas(k), (2) 

where the smoothed kinematic variables are 
calculated by weighting the innovation as fol- 
lows: 

xp(k) + a(x0(k) - xp(k)) (3) xs(k) 

ß Vs(k)    =    vp(k) + ^(x0(k) - xp(k))        (4) 

as(k)    =    a,(k - 1) + £-(x0(k) - xp(kWß) 

The transfer function of the a-ß-*i tracker can 
now be represented in the z-domain as 

Row zu zl Zn-L zn . 

1 an O-n-l ai Oo 
2 a0 a\ an-i an 

3 bn-i bn-2 bo 
4 bo 6l bn-l 

2n-5 P3 P2 
2n-4 Po Pi 
2n-3 92 31 ?o 

bk   = 
Q>n     Q"n—l—k 

0-0        ßfc+1 

G(z) = 
a + (_2q -ß + \7)z + (a + ß + \f)z2 

z3 + (a + ß + i7 - 3>2 + (-2a - ß + \j + 3)z + a - 1 
(6) 

which reduces to the popular a-ß tracker when 
7 is zero resulting in the transfer function 

a(z- 1)4-/02 

Cfc 

(Lh   = 
G{z) 

z2 + (a + ß-2)z + (l-aY 

bn-l     bn-2-k 

bo       bk+i 

P3    P2-k 

Po    Pk+1 
.k 

k = 0, 1, 2, ..., n-{9) 

(10) 

(11) 

, k = 0, 1, 2, ...,(ä-22) 

. k = 0, 1, 2 (13) 

(7) 
To determine the bounds on a, ß and 7 which 
guarantee stability, we exploit the Jury's sta- 
bility test which is described next. 

2.2    Jury's Stability Test 

The Jury's Stability Test can be used to ana- 
lyze the stability of the system without explic- 
itly solving for the poles of the system. There- 
fore, it is used to determine the bounds on the 

Note that the last row of the table contains 
only three elements. The Jury's test states 
that a system is stable if all of the following 
conditions are satisfied: 

I On I < Oo 

P(z)\z=l > 0 

(14) 

(15) 

„, .. f > 0 for even n ,    , 
P^=- 1\<0foroddn (16) 
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|6«-i| 

|cn-2| 

> 

> 
IM 

(17) 

N    >    M 

2.3    Stability Bounds 

Equation 6 can now be used to determine the 
bounds of a, ß and y for stability. For this 
complex system, the Jury's Stability Test is 
used as described in Section 2.2, to determine 
the region of stability. 

Writing the coefficients of the characteristic 
polynomial in Jury's Table, and calculating the 
determinants b2, &i and b0 (Equation 9) yield 
the following table.   The condition a0 > 0 is 

Table 2:   Jury's Stability Table of the a-ß-y 
Filter 

which is the same constraint for a and ß as 
in the a-ß tracker. The last condition which 
states |62| > IM, requires 

|a(a-2)| > \a(a-2) + a(ß + ±y)-±y\ (21) 

Observing Equation (21) and knowing the fact 
that a(a - 2) is always negative within the sta- 
bility area, we have: 

a(ß+\y)-\y>0. (22) 

This statement leads to the constraint on 7 for 
which the a-ß-y tracker is stable which is 

7 
Aaß 

a 
(23) 

Figure (1) illustrates the bounding surfaces 
which include the stable volume in the a-ß-y 
space based on Equation (18), (19), (20) and 
(23). 

Row z° z1 z' zA 

1 a-1 -2a - ß + A7 + 3 a + ß + h - 3 1 
2 1 a + ß + \y - 3 -2a - ß + ±7 + 3 a-1 

3 a(a - 2) a(4-2a-/J + h)-5 a(a + /?-2 + i7)-5 

satisfied since a0 = 1. To satisfy the constraint 
\an\ < a0, the coefficients require \a - 1| < 1, 
which is equivalent to 

0<a<2. (18) 

Substituting z = 1 and applying the constraint 
P{z)\z=\ > 0, requires satisfaction of the in- 
equality 

1 + (a + ß + ^7 - 3) + (-2a - ß + -7 + 3) + a 

which can be rewritten as 

7> 0 (19) 

Satisfying the constraint P(z)\z=-i  < 0, for 
odd n, yields 

2a + ß < 4, (20) 

Figure 1: Stability Area of the a-ß-y Tracker 

It is desirous to divide the stability volume 
into regions which are characterized by spe- 
cific class of transient responses such as, under- 
damped, overdamped, and critically damped. 
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However, the difficulty of factorizing the char- 
acteristic polynomial of the transfer function in 
the a-ß-j space prompt us to conceive of a new 
space which we refer to as the a — b — c space. 
In this space, the characteristic polynomial is 
represented as 

(2 + c)(z2 + (a + b - 2)* + 1 - a),      (24) 

where the second order factor has a form which 
is identical to the characteristic equation of the 
a — ß filter and the third pole is real and is 
located at -c. Comparing the denominator of 
Equation (6) with Equation (24) the following 
transformation is derived: 

a   =    1 + c(l - o) 

ß   =   a(l + c)+±b(l-c) (25) 

7   =   26(1+ c). 

The usefulness of this transformation, becomes 
evident when one derives the stability volume 
of the a-ß-') filter. Since, c is constrained to lie 
within —1 and 1, and the a — b space resembles 
the a — ß space, the stability volume in the 
a - b - c space is a prism (Figure (2)) with a 
triangular cross-section which is derived from 
the a — ß filter. Mapping the stability prism 
in the a — b — c space to the a-ß-j space using 
Equation (25), we rederive the stability volume 
illustrated in Figure (1). 

Since, the pair of poles of Equation (24) 
which are functions of a and 6 are responsible 
for oscillation of the system, the a-b-c space is 
divided by extruding the lines which divide the 
stability triangle of the a — ß filter, in the c di- 
mension. These surfaces, shown in Figure (2), 
are transformed using Equation (25) to the a- 
ß-j space. Figure (3) shows the surfaces in 
the a-ß-f space corresponding to each criti- 
cally damped surface of the a-b-c space. Fig- 
ure (4) shows the transformation of the two 
surfaces dividing the stability area at a = 1 
and b = 2 - a.     Observing Figures (3) and 

Figure 3: Critical Damped Surfaces of the a- 
ß-f Space 

(4), illustrates the fact that for 7 = 0, the 
third order tracker reduces to the a-ß tracker. 
Substituting 7 = 0 in the transfer function 
(Equation (7)), results in a pole zero cancel- 
lation at 2 = 1, resulting in a second order 
tracker. From Equation (25), we can infer that 
c equals —1 when 7 = 0, and furthermore a 
and 6 degenerate to a and ß. The cross-section 
at c = —1 therefore corresponds to the a-ß 
tracker. Note that c = 0 does not result in the 
a — ß - 7 degenerating to the a-ß filter. 

3    Noise Ratio 

Figure 2: Stability Prism in the a-b-c Space 
Measurement noise significantly effects the per- 
formance of target trackers.   It is therefore, 
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Regions In the a-b-c space Regions in the a-^-y space 

Figure 4: Mapping between a-b-c Space and 
a-ß-j Space 

of interest to characterize the noise filtering 
strengths of the trackers. In this section, we 
derive a closed form expression for the noise 
ratio parameterized in terms of the a-b-c pa- 
rameters whose relationship to a, ß and 7 is 
uniquely known. 

Studying the effect of noisy signals requires 
a metric which measures the influence of the 
noise on the system. Since, the response of 
the system to a noisy input, can reflect this 
influence, the noise ratio is defined as the ratio 
of the root mean square value (RMS) of the 
system response to the RMS value of the noisy 
input. The noise ratio is defined as follows. 

P = (26) 

Since, we require the tracker to reject measure- 
ment noise, a small value of p implies an ex- 
cellent filtering of noise. The mean-square of 
xp(t) can be derived in the time domain using 
the standard integral over time from -00 to 
+00. T 

.^ = THm -jf   x2
p(t)dt (27) 

Assuming the input is known, the response 
xp(t) of the system can be evaluated by using 
the transfer function, G(s). 

x%t)=[c-1{G(s)x0(s)}]2,        (28) 

where £_1 represents the inverse Laplace 
Transformation and x0(s) is the Laplace trans- 
formation of the input. The input noise is as- 
sumed to be white noise, so that the value of 
the noise input at any time is independent of 
previous values. Therefore, the sampled noise 
can be evaluated as a train of independent im- 
pulses, where the * indicates the sampling. 

N 

s:(t) = 5>o(nr)«(i-nT)        (29) 
ra=0 

Equation (28) yields the following response to 
the impulse train: 

x2
p(t) = 

N 

5>0(nT)«(t- 
.71=0 

nT) -HGWf 
(30) 

since, the impulse responses are uncorrelated. 
Since the sum of the mean square value of the 
system response to each impulse equals to the 
mean square value of the system response cor- 
responding to the complete impulse train, the 
RMS value of xp(t) can be calculated by first 
deriving the response to each impulse and then 
determining the ensemble average. 

W) = E ^m h lT M(* - nT^nT^-HGis)}}2 dt. y —' X—>oo 1   JO 
n=0 

(31) 
The averaged impulse value is taken over an ar- 
bitrary time interval nT <t < (n+l)T to later 
derive the ensemble average. Since this inter- 
val is one sampling time long, Equation (26) 
can now be derived as follows: 

7Z lini 
rr-+oo. 

j "[c-HGtftfdt     (32) 

Fortunately, the definition of the noise ra- 
tio reduces to finding the integral of the in- 
verse Laplace transform of the transfer func- 
tion G(s), of the tracker. 

Equation (32) could be solved in the time 
domain by finding the Laplace inverse of G(s) 
[1], or by integrating Equation (32) in the dis- 
crete domain (z-domain) by rewriting the con- 
tinuous time integral (Equation (32)) in the 
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discrete domain as 

+00 1 +00 +00 

n=0 n=0 
(33) 

Applying Parseval's Theorem [10] and the 
Residue Theorem to the sum of Equation (33) 
yield the final expression in the discrete do- 
main. 

+00 -,      . 
E9\n) = ^1fG(z)G(z-1)z-idz 
n=0 JJC CT^T-«»   -0.4   ■**   ° 

r l 
= Y^ Res [G(z)G(z~l)z\ 1        (34) Figure 5: Constant p Surface in the a-b-c Space 

where p is the number of poles on or inside the 
unit circle. The discrete transfer functions for 
the a-/?-7 tracker (Equation (6)) can be used to 
solve for the noise ratio. Note, that these trans- 
fer functions differ from those used by Benedict 
and Bordner [3] and by Simpson [11] respec- 
tively. Since the transfer function of the a-ß-j 
tracker can always be reduced to the a-ß fil- 
ter by setting 7 to zero, only the noise-ratio 
of the three parameter filter are derived in the 
following section. 

The derivations of the residues of the a-ß- 
7 filter become difficult since the poles within 
the unit circle contain three roots. Therefore, 
it is convenient to solve the residues in the a- 
b-c space introduced in Equation (25). The 
transfer function, Equation (6), is rewritten in 
the a-b-c space as 

residues lying within the unit circle can be de- 
rived as follows: 

Res f(z) = lim (z - z„) ■ f(z). (38) 

G(z) 
(1 + c + a + b)z2 + (-2 + be - 2c + ca 

From Equation (34), the noise-ratio can now 
be calculated by using the Equations (37) and 
(38) which leads to the following result: 

2   =    ~(46a2 + 2ab2 + Ab2) - 46(1 + c)h 
P     ~ 2a(6 + 2a-4)6 + a(l + c)&2       

K    ' 

k\ = k\\c2 + k\ic + ki3 

kn = 4a + 2a3 - a6 + 6a2 - 6a2 

k12 = 6a2 + a62 - 6a6 - 2a3 + 8a 

jfc13 = 6a2 - 2a62 - 46a2 + 4a - 262 + 7a6 

k2 = (6 + 2a - 4)(c2a - ca - c2 - 26 + be + 1) 

Constant noise-ratio surfaces are obtained by 
a)z + 1 + c — ca 

(z + c)(z2 + (a + b-2)z + 
(35) 

where the poles are decomposed into a set of 
second order poles and one first order pole such 
that 

z\ 

^2,3 

=    —c 

1 _ a) solving Equation (39) for either a, 6 or c. A 
simple solution for 6 = f(a,c,p) exists, which 
consists of two solutions of 6, where one is al- 
ways outside the stability prism. A typical con- 
stant noise-ratio (p2 = 10) surface is shown 
in Figure (5). Applying the transformation of 

(36) 
Equation (25) to each point of the constant 

__(a + 6 - 2) ± J(a + 6 - 2)2 - 4(1 -(3i?))noise-ratio surface in the a-6-c space yields the 
constant noise-ratio surface in the a-ß-'j space 
shown in Figure (6). 

As mentioned in the section about stabil- 
ity, the a-ß-j filter reduces to a two parameter 
tracker if 7 becomes zero, which corresponds 

The line integral in Equation (34) is carried 
out along the unit circle, guaranteeing that all 
stable poles of G(z) lie within and the poles of 
G(z-1) lie outside the unit circle.   The three 
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Figure 6:   Constant p Surface in the a-ß- 
Space 

to c = -1; and a and b then degenerate to • 
and ß.  Thus, the noise-ratio of the a-ß-f fil- 
ter reduces to the a-ß filter by applying these 
conditions to Equation (39), which is 

P2 = 
2a2 + aß + 2ß 

a(4 - ß - 2a) 
(40) 

The line of constant noise-ratio for the a-ß fil- 
ter is also included in the Figures 5 and 6 by 
setting c = -1 and 7 = 0 respectively. How- 
ever for greater clarity, the plots of constant 
noise ratio curves are plotted in the a-ß space 
for various noise ratios as shown in Figure 7. 
Equation (40) is different from those derived 
by Sklansky [1] and Benedict and Bordner [3] 
where, Benedict and Bordner use a different 
transfer function G(z), to represent the im- 
pulse response of the filter. 

Table 3: Noise-ratio from different Approaches 

Figure 7: Constant p curves in the a-ß Space 

noise ratio by calculating the ratio of the root- 
mean-square value of the output and input. 
The following table displays the simulation re- 
sult for the parameter set a = 0.5 and ß = 
0.7. As is clear from the table, the solu- 
tions of Sklansky and Benedict and Bordner do 
not match the results of the simulation, while 
Equation (40) matches the simulated results. 

4    Conclusions 

This paper focuses on the design of a-ß-f fil- 
ters. The issue of determination of stability 
volume is first addressed. A simple technique 
to simplify the procedure to determine the sta- 
bility bounds on the a, ß and 7 filters is pro- 
posed. This includes parameterizing the 

Simulation 
1.9540 

Sklansky 
1.2058 

Benedict k Bordner 
0.7391 

Proposed (Eq. 40) 
1.9565 

To prove the veracity of Equation (40), nu- 
merical simulations are carried out. Results 
of simulating an a-ß filter for normally dis- 
tributed white noise are used to calculate the 

characteristic equation of the a-ß-f filter via a 
nonlinear transformation to what is referred to 
as the a-b-c space. In this space, the charac- 
teristic equation appears to be the product of 
the characteristic equation of an a-ß filter and 
a first order pole which is only a function of 
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the parameter c. One can now easily determine 
the bounds on the parameters with knowledge 
of the bounds on the parameters of an a-ß fil- 
ter. Therefore the stability volume in the a-b-c 
space is a prism which can be transformed into 
the a-ß-f space. To quantify the performance 
of a-ß-j filters, a metric referred to as the noise 
ratio which is a figure of demerit to represent 
the noise filtering capability of the tracker is 
calculated. A closed form solution to the noise 
ratio is arrived at in the a-b-c space which re- 
duces to the noise ratio for the a-ß filter when 
7 is equated to zero. The resulting solution 
is shown to be different from that derived in 
the literature. Numerical simulations are car- 
ried out to evaluate the veracity of the derived 
solution. The information about the stability 
volume and the noise ratio can be used in the 
design of a — ß - 7 filters. 
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Abstract This paper addresses the issue of deci- 
sion fusion when two (or more) sensors and the 
fusion center have a common language to repre- 
sent queries and decisions, while each of the sen- 
sors has its own interpretation of the formulas 
of the language. Fusion is achieved through the 
model-theoretic operation of direct product of mod- 
els. Since not all (most) formulas are not preserved 
under the product we need an decision procedure 
that tell us how to combine decisions from partic- 
ular sensors into one fused decision. Towards this 
aim the notion of Galvin system is used. The opera- 
tion of a decision procedure based on this approach 
is explained on simple examples. The validity of 
the solution is formally defined and proved in an 
appropriate theorem. The main advantages of the 
approach proposed in this paper are that the deci- 
sion mechanism is generic, i.e., it can check the 
validity of any goal formula, and that it is provably 
correct. 

Keywords:   information fusion, formal methods, 
category theory, model theory 

1    Introduction 

In this paper we consider a case of decision fu- 
sion in which all sensors (two or more) derive 
decisions that are expressed in a language com- 
mon to all the sensors. Even though it may 
seem like a very simple case, it is not quite 
so, because each of the sensors has its own in- 
terpretation of the terms of the language. In 
other words, for each sensor, there is a (differ- 

ent) model associated with the language. Con- 
sequently, the process of fusion (cf. [1]) re- 
quires that these different interpretations be 
taken into account when decisions from differ- 
ent sensors are fused. 

We address this problem by fusing the inter- 
pretation structures (models) rather than just 
the decisions. In this paper we use the opera- 
tion of product to combine structures [2]. Un- 
fortunately, in such a case, even if both sensors 
derive the same decision, it is not necessarily 
preserved in the product of two models. For 
instance, the formula 

a(x, y) = x ■ y = 0 .=*> (x = 0 V y = 0) 

most typically does not hold in the product. 
To be more specific, consider two structures A 
and B such that A = B - R, i.e., both are real 
numbers with two operations - addition and 
multiplication under usual interpretation. The 
formula a(x,y) holds in both A and B, since 
either x or y must be 0 in order for x ■ y to be 
zero. We can say then that A \= a and B |= 
a. In the product Ax B, however this is not 
the case. Note first that in the direct product 
AxB, the zero element, 0, is represented by the 
pair 0(0,0) and if x = (x1,x2) and y = (2/1,2/2) 
are any elements of A x B we have x ■ y = 
((zi,x2) ■ (yi,Y2)) = (zi • yi,x2 ■ y2). It is easy 
to see that for x = (0,3) and y = (5,0) we have 
x ■ y = (0,0)4, but neither x or y are equal 0. 

Horn formulas [3], on the other hand, are 
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preserved under products. Even more, Keisler 
[4] proved that any formula that is preserved 
under reduced products is equivalent to a Horn 
formula. Some applications of Horn formulas 
can be found in [5, 6, 7]. 

Since, as we stated above, we are interested 
in fusion by products, our goal in this paper 
is to deal with more general types of formu- 
las, not necessarily Horn formulas, and thus 
we need a decision procedure which will allow 
us to decide when a given formula is preserved 
in the product of two models. Moreover, our 
objective is to show how such a decision pro- 
cedure can be derived automatically, i.e., how 
to construct autonomous fusion systems of this 
sort, given that the system knows the language 
in which decisions are expressed. 

goal is to recognize whether a detected object 
(house) has a gable roof oriented in the East- 
West direction. Two sensors, N and W (north 
and west) provide reports to the fusion unit. 
Suppose one of the terms in the language is 
GableEW(x), which is one of the goal formu- 
las of the system. The fusion center, F, can 
then send the query to the two sensors, W and 
N. Both sensors will interpret this formula in 
their own manner. Sensor W will reply "yes" 
(or "true") when it sees a triangle. Sensor N, 
on the other hand, will reply "yes" when it sees 
a rectangle. The fusion center, F, will conclude 
GableEW(roof) holds if both sensors say so. 

2    Problem Formulation 

We are addressing here the problem of decision 
fusion. We assume that the goal of the fusion 
system is to derive a decision <p based upon de- 
cisions <pi,.. .,ipn obtained from n sensors (n 
decisions based on inputs from sensors). It is 
assumed that all sensors have the same lan- 
guage and that they interpret information in 
structures of the same kind of structure. In 
our example we assume even more - that carri- 
ers of models are the same, although in general 
it is not important. However, the semantical 
interpretations of the information can be very 
different. Our goal is to construct a decision 
procedure which will assert a formula when- 
ever all the sensors report that some witness 
formulas holds. 

We envision a hierarchical scenario in which 
there is a central fusion unit that collects in- 
puts from all subordinate units (we call them 
sensors) and then the cenral unit makes a de- 
cision. The central unit can send various ques- 
tions (queries) to the sensors. It is possible 
since both the central unit and the sensors 
speak the same language. 

To better explain the problem we are ad- 
dressing, we consider the follwing example sce- 
nario (see Figure 1).    In this scenario, the 

Figure 1: Decision Fusion Scenario 

Notice that, as we mentioned above, in a 
genearal case such a decision procedure is not 
correct. Our goal in this paper is to propose 
a solution to this problem. More specifically, 
we will show how to decide about the truthful- 
ness of such formulas. Since the procedure will 
allow for automatic answering of such queries, 
we call this procedure an autonomous fusion 
system. 

3    Outline of the Solution 

To construct an autonomous fusion system, we 
use the notion of Galvin system (cf.   [8, 6]). 
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In the framework of Galvin systems, we show 
an algorithm for deriving the goal decision <p. 
In the first step, for any given goal formula 
(p, our system constructs a set of formulas 5 
and an operation II : Sn —»• 5. The opera- 
tion II asserts which of the goal formulas hold 
in the fused structure (in the product), given 
that formulas <pi,...<pn hold for each of the 
sensors. The algorithm then computes a set 
T C 5, such that the goal formula <p is equiva- 
lent to the disjunction of all the formulas from 
T. In the next step, the algorithm computes 
(p = IL(<pi,..., <pn) and checks whether this for- 
mula is in T. If it is, then the decision <p holds, 
otherwise it does not. It is clear that since <p 
is a disjunct in the set T, <p implies the goal 
formula ip. 

Popular wisdom has it that when two sen- 
sors derive the same decision, then the decision 
must hold in reality. In this paper we show how 
to rationalize such a rule, i.e., when to accept 
such a rule in decision fusion and when not 
to. We have already showed simple examples 
of decision fusion for both when this popular 
wisdom rule should be used and when it should 
not be used. In the following we show how the 
Galvin system approach works on the scenario 
of Figure 1. 

First of all, the fusion center F must select a 
query, or a goal formula. It is obviously related 
to its higher-level goals. In the next step it 
analyzes the syntax of the formula. Among 
others, it identifies atomic formulas within the 
goal formula. (Note, for now we are dealing 
only with open formulas, i.e., formulas without 
quantifiers.) In the case of <p = GableEW, 
the goal formula consists of one atom. Based 
upon this analysis, F constructs the set 5. In 
this case 5 = {GableEW,->GableEW}. In the 
case of open formulas, 5 contains all atomic 
formulas, all conjunctions, and their negations. 
In the next step, F constructs the mapping II. 
In this example it is defined as: 

n(v,v) = v 

.II(-ip, <p) = 1%, -■</>) = n(-.¥>, -■¥>) = ->¥> 

The set T in this case consists of only one 

element, T = {GableEW}. To make a spe- 
cific decision, the system takes the answers to 
the query, computes the value of II and checks 
whether the result is in T. In this example, 
the only case that a result is in T is when both 
sensors say "yes". 

4    Proof of the Solution 

In this section we present a formal definition 
of the Galvin information fusion system [8, 6] 
that was informally described above. We also 
provide a proof that a decision can be reached 
for any goal formula. 

Definition 4.1 A Galvin Information Fusion 
System IFS (with variables v\,...vn) is a pair 
(5,11), where: 

(i) S is a finite set of formulas with variables 
in {vi,...vn}. 

(ii) II is a commutative and associative oper- 
ation on S (i.e. (5,11) is a commutative semi- 
group). 

(iii) For any structure 21 and a\,... an G 21, 
there is exactly one formula a G 5 such that 
21 \=a[ai,...an]. 

(iv) For any structures 21 and 25 and 
any elements a\,...an G 21 and bi,...bn G 
*B if for some a,ß G S we have 21 |= 
a[ai,...an] and <B |= ß[bi,...bn] then 21 X 
03 [=n(a,/3)[(ai,&i>,...(a„,&n)]. 

Theorem 4.2 — For any goal formula <p = 
<p(xi...xn) we can effectively construct a 
Galvin IFS(S,II) with variables x\,...xn and 
a setT C S such that \JT <-*■ <p is a tautology. 

Proof: We will proceed by induction. Let 
ip be an open formula and tp\,...,ipk be all 
atomic formulas occurring in (p. Let S consists 
of 2k formulas of the form ipi A ... A ipk, where 
each ipi is either <# or -up,-. Suppose a = ip[ A 
...ATp'k,ß = ip"A...ATp'{. Take TL{a,ß) = 
ipi A ... A tpk where ipi = ipi if V,' = V'f = <Pi or 
tpi = -«pi otherwise. Now II satisfies all of our 
requirements and it is easy to see that (5,11) 
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is then a Galvin IFS and we can find the set 
T C S such that V T <-»■ <p is a tautology. 

Let us remark now that, if (5, II) and T sat- 
isfy our theorem for <p, then (5, II) and 5 - T 
satisfy our theorem for -xp. 

Let (5i,IIi) and T\ satisfy the theorem for 
ipx and let (52, II2) and T2 do the same for (p2. 
Let us define 5 = {a A ß : a G S\ and ß G 52}, 
r = {aAß : a G 2\ or/J € T2}, n(ai A/?i,a2A 
&) = n1(ai,a2) A n2(/?i,/32). Then it is easy 
to check that (5, II) and T satisfy the theorem 
for ipi V ip2- 

Finally let ip = 3xo<pi, and let (51,11!) and 
T\ satisfy the theorem for <p\. We will find 
(5,n) and T for <p. Let 5 = {ax : X C 5J 
where a^- = AIS^oT : 7 € X} AAi-^a^Y : 7 £ 
5i - X}. Then it is easy to see that 5 satisfies 
the conditions (i) and (iii). 

Let n(ax,Q!y) = «z, where Z = {IIi(7,£) : 
7 G X and 6 G F}. Obviously II satisfies (ii). 
We will show that II satisfies (iv). 

Indeed, suppose 21 |= ax[ai,.. -,an] and 
03 |= ay [b\,.. .,bn]. To prove (iv), we 
will show that for any ß G 5i, 21 X 03 |= 
(3x0ß)l(aub1),...(an,bn)]ifißeZ. 

Let /3 G Z, then there is 7 G X and 
6 G y such that /? = IIi(7,<5). Moreover 
since 21 |= ax[ßi,...,o„], we have 21 |= 
(3a;o^)[ßi, • •-,ßn] and in the same way 03 |= 
(3xo6)[bi,...,bn]. Thus there are ao G A 
and bo € B such that 21 |= ^[ao,...,an] 
and 03 f= 8[bo,...,bn]. Consequently 2t x 
03 |= I[1(j,S)[(a0,b0),...,(an,bn}}, but /? = 

ni(7,«), 
whence 21 X 03 \= ß[{ao,bo),.. .,(an,bn}] and 
2lx03h(3xo/3)[(a1,&1),...,(an,6n)]. 

Conversely, let 
21 x 03 |= (3zo/?)[(ai,&i>,---,KA)]- Then 
there is (a0,b0) € A X B such that 21 X 
03 |= /3[(a0,6o), ••-,(««, &n)]- Let 7 G 5i 
be such that 21 |= 7[ao, ■•■an] and ^ G 5i 
be such that 03 |= *[6i,...,6„]. Then 21 |= 
(3a;o7)[ai,.. .,an] and by definition of ax, 7 G 
X. In the same way 6 G Y. Moreover 
Iii(7,^) = ß, thus ß £ Z and II satisfies (iv). 

This completes the proof. 

5    Conclusions 

In this paper we addressed the issue of deci- 
sion fusion. We assumed the situation in which 
various sensors and a central decision fusion 
system share a common language. More pre- 
cisely, the syntax of the language is common 
to all parties. But the interpretation of partic- 
ular symbols is different for each sensor. The 
fusion process is based on the model-theoretic 
operation of direct product of models. Accord- 
ingly, the fusion process takes all the decisions 
from the particular sensors and then derives a 
positive decision only if all the sensors agree. 
In this scenario, the fusion center must be able 
to send queries to the sensors. This query is 
dependent on its goal represented by a goal 
formula. In case of a complex query, the fu- 
sion center analyzes the structure of the goal 
formula and derives a decision derivation pro- 
cedure. This decision process is based upon 
the notion of Galvin system. In this paper we 
showed simple examples of how such a system 
works. We also showed the formal derivation 
of the correctness of such procedure. 

Decision fusion is important in many ap- 
plications. The scenario in which particular 
sensors have their own interpretations is quite 
typical. For instance, a radar "sees" an ob- 
ject in a different way than a vision camera, 
an infrared camera or an ultrasound. All of 
these sensors, however, are used in target de- 
tection. Decisions from such sensors need to 
be fused. Typically, fusion algorithms are con- 
structed around a specific set of goal formulas. 
If an additional formula needs to be added, the 
system must be redesigned and reimplemented. 
The approach presented in this paper resolves 
such a problem by proposing a generic deci- 
sion mechanism that can check the validity of 
any goal formula. The main advantage of this 
mechanism is that, unlike heuristic rule-based 
approaches, it is provably correct. 
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Abstract - A procedure for finding the optimum 
distributed sensor detectors for cases with statisti- 
cally dependent observations is described. This pro- 
cedure is based on a theorem proven in this paper. 
These results clarify and correct a number of possi- 
bly misleading discussions in the existing literature. 
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1     Introduction 

Consider the design of an iV-sensor distributed 
detection scheme, which is to decide between 
a simple signal-present alternative hypothesis 
Hi and a simple null hypothesis HQ. Each sen- 
sor has an associated processor which makes 
a decision based only on the observations ob- 
tained from the sensor. The sensor processors 
transmit their decisions to a single central fu- 
sion center where an overall decision is made. 
A particular value Xk of the random vector Xk 
is observed at the kth sensor, k = 1,...,N, 
where Xk consists of a set of m/t real scalar 
observations. We consider the case where the 
Xi,... ,XN may not be independent. The fi- 
nal binary decision in our distributed detection 
scheme is denoted by the random variable UQ, 

with a particular realization of UQ denoted by 
UQ and where «o = 0 corresponds to a decision 

for HQ and UQ = 1 corresponds to a decision for 
H\. Uk is the random variable which describes 
the decision made at the kth sensor. A partic- 
ular value for Uk is denoted by Uk which may 
take on only the values 0 or 1 (binary sensor 
decisions). We let 70(u) denote the probability 
that we decide for UQ = 1 for a given set of sen- 
sor decisions u = («1,..., u^). We let 7fc(xk) 
denote the probability we decide for Uk = 1 
for a given observation Xk- A complete set of 
sensor rules and fusion rule are described by 

7 = (7O,71)---.7JV)- 

Let us focus on the Neyman-Pearson crite- 
rion. Specifically, denote the problem of inter- 
est as NP which is defined as finding a 7 that 
satisfies 

NP 

"This paper is based on work supported by the Office 
of Naval Research under Grant No. N00014-97-1-0774 
and by the National Science Foundation under Grant 
No. MIP-9703730 

maxPd(7) 
7 

subject to the constraint Pfij) = a 

where Pdil) = Prob(Uo = l|i?i) is the prob- 
ability of detection obtained when 7 is used, 
Py(7) = Prob(U0 = l|#o) is the probability 
of false alarm obtained when 7 is used, and 
0 < a < 1. Specifying the forms of NP opti- 
mum distributed detection schemes can be ex- 
tremely difficult [1], especially for cases with 
dependent observations from sensor to sensor 
where the optimum sensor test statistics are 
not generally likelihood ratios. 
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2    Optimum Sensor Tests 

Let us assume the Xk, k = 1,...,N 
each have probability density functions (pdfs) 
/xk(xk|#,), j = 0,l. Define 

£jfc(xk) = /xk(xk|Äj) 

£|Pro&(0b = l\Uk = «fc, Uk = 1) - 
uk 

Prob(Uo = l\Uk=uk,Uk=0) 

Prob{Uk = «£|Xk = Xk.fTj), (2.1) 

for j = 0,1 and k = 1,..., N where 5* 
stands for a specific value of the random vec- 
tor Uk of sensor decisions excluding the kth so 
that Uk = (UijU2, • • ■, Uk-u Uk+i, ...UN) and 
Prob(U0 = l\Uk = v7k, Uk = uk) = Prob(U0 = 
1\U = u) describes the fusion rule 70. The 
sum in (2,1) is over all values of 5* (for exam- 
ple, if N = 2 and A; = 1, then Sjt = ui and the 
sum is over 1*2 = 0,1). Jfote that the condi- 
tional probability Prob(Uk = «fc|Xk = *k,Hj) 
is defined as a limit as the conditioning event 
shrinks to a point. 

Using these definitions, we present Theorem 
1, proven in [2], which gives a set of necessary 
conditions for an optimum sensor rule given 
the fusion rule and other sensor rules are fixed. 

Theorem 2.1 Given a fusion rule and a set 
of sensor processor rules at all but the kth sen- 
sor and a statistical description for Xi,..., X^r 
under Ho and Hi such that 
1) Xfc is an mk-dimensional random vector 
with a probability density function /xk(xk|-Hj) 
with no point masses of probability under ei- 
ther hypothesis j = 0,1; 
2) -Difc(Xk)/X>oJfc(Xk) is a continuous scalar 
random variable with a probability density 
function with no point masses of probability un- 
der either hypothesis; 
3) A)*(xk) = 0 only if /xk(xk|.Ho) = 0. 
Then 
1) A 7fc of the form 

7fc(xk) = Prob{Uk = l|Xk = Xk) 

■( 

l,    tfAfc(xk) > A*A)fc(xk) 
0,     if Dik(-xk) < XkDok(xk) 

(2.2) 

will satisfy NP for the given fusion rule and 
the given set of sensor processor rules pro- 
vided there exists some rule jk that will pro- 
vide the required overall false alarm probability 
a for the given fusion rule and the given set of 
sensor processor rules. The event Z?ifc(xk) = 
Afc£>ofc(xk), which occurs with zero probability, 
can be assigned jk = 0 or ^k = 1. 
2) Any rule that satisfies NP for the given fu- 
sion rule and the given set of sensor processor 
rules must be of this form except possibly on a 
set having zero probability under Ho and Hi. 

Theorem 2.1 gives the best form of any sen- 
sor detector, given all the other sensors and 
the fusion rule are fixed. Thus it gives condi- 
tions for person-by-person optimality. No bet- 
ter rule can be found by changing one sensor 
at a time. However, if two sensors are changed 
at the same time, it is possible that perfor- 
mance can be improved. Next, we will show 
that by considering changes in two sensors at 
the same time we can put further restrictions 
on the conditions produced by Theorem 2.1 
such that Ai = A2 = • • • = AJV will produce 
an optimum solution. 

Theorem 2.2 Under the same assumptions 
in Theorem 2.1 and j//xk(xk|Äj) > 0Vxk, j = 
0,1, the best performance can only be obtained 
with a set of sensor rules jk described in Theo- 
rem 2.1 with Ai = A2 = • • • = Aw. Thus, under 
these conditions only a set of sensor processor 
rules (71,72, • • •, JN) of the form 

7fe(xk) = Prob(Uk = l|Xk = xk) 

( 1,     «/£>i*(xk)>AA)fc(xk) 
1   0,     tf£>ifc(xk)<AA)fc(xk) 

(2.3) 

will satisfy NP for the given fusion rule. The 
event .Difc(xk) = A£>ofe(xk)j which occurs with 
zero probability, can be assigned jk = 0 or 
jk = 1. In nonsingular detection cases with 
/xk(xk|H7)  = 0 for some Xk,  there can be 
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other solutions which appear to be different 
which are also optimum. 

Outline of the Proof: First assume that 
fXk{xk\Hj) > 0 for all xk, k = 1,...,N and 
j = 0,1. Then, we only need to show that 
for a fixed fusion rule, the set of sensor proces- 
sor rules (71,72, • • • ,7AT) can not be optimum 
if any two of them, 7m and 7„ (1 < m, n < 
N,m ^ n), take different parameters Am and 
A„. We prove this by contradiction. 

Let Ai denote the decision region of sen- 
sor i. Thus Ui = 1 if Sj € A^. 
Let Q(Au • ■ ■, An, • ■ ■, Am, • • •, AN) denote the 
scheme using Ai,---, An, ■ ■ •, Am, • • •, AN- Let 
(71 > 72) • • • > IN) denote a set of rules for which 
7m and 7„ (1 < m,n < N,m ^ n) take dif- 
ferent parameters ATO and An. A set of rules 
which is better than (71,72,- ■• ,7AT) in NP 
sense could be found by using the following 
steps. We assume Am > An, as the proof for 
the opposite case ATO < An is in fact the same. 

Define    A4°'
6)

      =      {xk\aDok(xk)      < 
Dik(xk) < bDok{xk),Dok(xk)  > 0}, and 
AB{°'b)    =    {xk\bDok(xk)    <    Dlk(xk)    < 
aDok(xk),Dok(xk) <0}. 

First we change the parameter Am of the 
decision rule of sensor m by a small amount, 
i.e. Am = Am - e, e > 0, thus the deci- 
sion region of sensor m will be A^, where 

A*m = {Am U AA^m~e'Xm)) n (Af4Am-£,Am))c. 
Consequently, PJ with ti(Ai,---,A*m,• • •, AN) 

is given by (see (6)-(9) in [2]) 

Fi = Pf+ D0m{xm)dxm 

■I 
JAB 

.   ,Dom(xm)dxm.   (2.4) 

From the definition we see that 
Din(xn) IDon(xn) is the combination of contin- 
uous functions of Am, thus Din(xn)/Don(xn) 
itself is a continuous function of Am. 

Therefore, there exists a minimum 6 > 0 so 
that 

\Dtn(Xn)/D^(xn) - Dln(xn)/D0n(Xn)\ < 6 
for all xn E A^An,Am) U ABn

Xn'Xm) 

(2.5) 

Define A*n = (An U ABn
Xn+6'Xn+SH)) D 

(AAn
Xn+S'Xn+S+®)c- Then, there exists an 

£ > 0 so that Pf* with the decision region 
n(Ai, • • • ,A*m, ■ ■ • ,A*n, ■ ■ ■, AN) is equal to Pf 

with tl(Ai,---,Am,--',An,---tAN), or P*} - 
pf = P*- P** so that 

/     ,-, i   ,Dom(xm)dXm 
JAA(Xm~e'Xm) 

—  I     ,. ... ■Dom\Xm)"'Xm 
JAB{Xm~e'Xm) 

-/AB<*n+M„+,+0^n)^„. (2.6) 

Using ideas similar to the ones used to de- 
velop (2.4) [2] we obtain 

P£=Pd+ Dim(xm)dxm 
a JAA(Xm~e'Xm) 

~ /     ,v i   ^ Dlm(xm)dxm    (2.7) 
J AB{Xm~e'Xm) 

and 

Pä*=Pä-fAA^,n+S+0D^n)dxn 

+ Lk,Mn+S+i)
D^n)dxn.(2.8) 

From the definition of AAn and ABn, we 
know that 

/     ,. ,., J-'lm(.Xm)d,Xm 
JAA{Xm~e'Xm) 

> (Am - e) /    ..       .   . D0m(xm)dxm  (2.9) 
JAA(Xm-c'Xm) 

and 

—  /      ,. ... J-'lm\Xm)dXTn 
JAB£m~ ' m) 

>-(Xm-e) f D0m(xm)dxm{2.10) 
JAB(Xm~e'Xm> 

Using these same ideas we can also show 

JAA«Mn+S+V DlnMdxn 

<(\n + 6 + 0 JAAixMn+s+i) Dln{xn)dxn (2.11) 

159 



and 

< "(An + 6 + 0 j^Mn+s+0 ^n(Sn«2.12) 

Combine this with (2.6) to obtain 

—  I      ,. ,    > i^\m\xm,)"'xm 
JAB£m~''Xm> 

>    Aw~£    ( f D*Jxn)dxn 

-/AB(X„+,X„+W)^^)^)-(2-13) 

Since 8 and £ will get monotonically smaller 
when e is made smaller, we can choose e small 
enough so that An + 6 + £ < Xm -e, thus (2.13) 
becomes 

/     ,. .    , J-'\m\xm)"'xm 
JAA^m~c'Xm) 

—  I     ,. .    , J-'lm\,Xm)"'Xm 
J KT>\Am—c**m) 

-JABk,Mn+e+oD^n)dxn       (2.14) 

which can be rewritten as 

PS -Pä >-(PS*-PS) (2-15) 

or 

PS* > Pd (2.16) 

This means that the rules defined 
by Q.(Ai,---,A*m,---,A*n,---,AN) achieve a 
larger detection probability while maintaining 
the same level of false alarm. This contra- 
dicts the assumption that a scheme without 
Ai = A2 = ■ ■ ■ = Ajv can be optimum. 

If Am is taken to be at ±00 while Xn,n — 
l,...,N,n 7^ m are taken to be finite, then 
a similar argument to that made above shows 
that performance can be improved by choosing 
a finite Am. 

Now suppose that fxk(
xk\Hj) = 0 f°r some 

xk, j = 0,1 and k = 1,... ,N. We do not 
consider cases where only one of fxk(xk\Ho) 
and fxk{xk\H\) = 0 and the other is not since 
this describes a singular detection problem. In 
this case if A* is in any interval where this is 
true then we can clearly move Xk to any point 
in this interval without any change in perfor- 
mance. Of course, such changes are not re- 
ally of any significance and if these changes 
are ignored, the above results still hold. Ex- 
cept, of course this possibility introduces cases 
without Ai = A2 = • • • = A AT which can pro- 
duce exactly the same performance, instead of 
\x — A2 = • • ■ = XN being strictly better. 
Note that this possibility is incorporated in the 
wording of the Theorem. □ 

3    Discussion 

Conditions for the optimum sensor detectors 
for NP have been studied in a few previous 
papers, but the derivations provided in these 
papers have been questioned by a number of 
respected authors [1, 3]. The questions they 
raised appear to be justified based on some of 
the derivations provided. Our derivations do 
not leave any questions. We clearly show our 
conditions which allow Ai / A2 7^ • • • 7^ XN 

are necessary to solve NP. Then we show that 
constraining Ai = A2 = • • • = Ajv is necessary if 
the pdfs of the sensor observations have infinite 
support and in other cases it will not sacrifice 
optimality (we ignore singular detection cases). 

In [1] the author demonstrates that attempt- 
ing to solve NP in a distributed case by max- 
imizing Pa — XPf without constraints, which 
was the approach taken in some previous pa- 
pers, is not generally correct. In particular, he 
demonstrates that this procedure will fail if the 
overall ROC is not concave. This is significant 
since no one yet has proven (even for cases with 
a fixed fusion rule and no point masses in the 
sensor test distributions) that the overall ROC 
must be concave. In fact, a counter example 
is given for the case of a fixed fusion rule in 
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[4] for a case with point masses in the sensor 
test distributions. In [5] we present a counter 
example for a case with a fixed fusion rule and 
no point masses in the sensor test distribution. 
This is the first example of this type we have 
seen. Clearly the ROC can be non-concave if 
the fusion rule is not fixed. For an example 
see [6]. Note that our derivation did not rely 
on the overall receiver operating curve (ROC) 
being concave since we don't attempt to max- 
imize Pa — XPf. 

Interestingly enough, even though we don't 
attempt to maximize Pd - XPf the conditions 
we provide through Theorem 2.1 and Theo- 
rem 2.2 in this paper are similar in form to 
those produced in some previous papers that 
attempted to produce necessary conditions for 
maximizing Pd - XPf- Although we found this 
very confusing initially, there is a simple expla- 
nation. Basically, it can be viewed as a coinci- 
dence that the necessary conditions for maxi- 
mizing Pd - XPf just happen to look like our 
correct conditions. To see this, let us illustrate 
a similar circumstance for a different problem. 

Consider an optimization problem where 
one is attempting to find a vector t that maxi- 
mizes a quantity Pd under the constraint P/ = 
a. For this example assume Pd and Pf are con- 
tinuous functions of each component oft. Nec- 
essary conditions for this case are well known. 
For example, restating a Theorem from page 
224 of [7] we obtain the following Theorem. 

Theorem 3.1 LetPd be a real-valued function 
ofoft = (ti,...,tjv) where — oo < U < oo for 
i = 1,...,N. Let Pf be another real-valued 
function of t. Let t0 be a local extrernum of 
Pd under the constraint Pf = a and assume 
VP/ 7^ 0 at t0 where VP/ denotes the gradient 
ofPf with respect to t. Then there exists a real- 
valued X such that att0 we have VP</—XVPf = 
0. 

The conditions provided in Theorem 3.1, 
VP* - AVP/ = 0, are called first-order nec- 
essary conditions and A in Theorem 3.1 is gen- 
erally called a Lagrange multiplier. VP<* - 
AVP/ = 0 says that the normal vectors to the 

tangent planes of the Pd and Pf surfaces must 
point in the same direction at the extrernum 
(see the proof in [7]). Theorem 3.1 does not 
generally imply t0 will be at an unconstrained 
extrernum of Pd - XPf. In fact, a few counter 
examples are presented in [8] which show this is 
not generally the case. However, the conditions 
VPz-AVP/ = 0 would also be obtained as nec- 
essary conditions to find extrema of Pd — XPf 
without constraints for the correct A, the La- 
grange multiplier. So in fact, the correct form 
of the necessary conditions are obtained using 
a possibly inappropriate procedure (attempt- 
ing to find extrema of Pd - XPf without con- 
straints instead of using Theorem 3.1). Fur- 
ther, in the case where there is only one solu- 
tion to VPd - AVP/ = 0 then this will be the 
solution to the problem posed in Theorem 3.1 
and it must also be an unconstrained extrema 
of Pd — XPf. This situation will occur with 
the appropriate type of convexity condition as 
described for example in [7]. 

Our situation is similar, in one important 
way. Our correct conditions are produced by 
combining Theorem 2.1 and Theorem 2.2, not 
by attempting to maximize Pd — XPf. However 
these conditions are identical to those which 
have been obtained as necessary conditions for 
maximizing Pd - XPf. In summary attempt- 
ing to maximize Pd - XPf is generally not the 
correct way to solve NP, but the necessary con- 
ditions to maximize Pd — XPf just happen, by 
coincidence, to take the same form as a set of 
conditions which will lead to an optimum so- 
lution. 

For completeness we note some other in- 
teresting, but less important comparisons be- 
tween our problem and the one considered in 
Theorem 3.1. First, of course, our problem is 
different. For example, instead of a vector op- 
timization, we have a functional optimization 
where 7, a set of functions, replaces the vec- 
tor t x. We produce our necessary conditions, 
from Theorem 2.1 as the best form of a given 
sensor detector when the other sensor detec- 

tor an approach to defining a gradient which allows 
a generalization to Theorem 3.1 to functional optimiza- 
tion problems see for example [9]. 
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tors and the fusion rule are fixed. We can 
view these person-by-person optimum neces- 
sary conditions as taking the place of the "first- 
order" necessary conditions in Theorem 3.1. 
In our case performance can't be improved by 
changing only one sensor and in the case of 
Theorem 3.1 performance can't be improved 
by moving t by an incrementally small dis- 
tance in any direction. We emphasize again, 
that our conditions, like those in Theorem 3.1, 
don't attempt to maximize Pj — XPf. However, 
the conditions produced by combining Theo- 
rem 2.1 and Theorem 2.2 are identical to those 
which have been obtained as necessary condi- 
tions for maximizing Pa — XPf. 

In the previous papers, take [10, 11] for ex- 
ample, that produced conditions that look sim- 
ilar to what we obtain from Theorem 2.2 (they 
use Ai = A2 = ••• — XN), it was frequently 
implied that these conditions are always nec- 
essary for NP. In fact our derivation shows this 
is not always true and further we give a counter 
example later in this paper. 

The discussions in [1, 3] led to a number of 
publications which stated that they produced 
counter examples in which conditions similar 
to those produced by the combination of The- 
orem 2.1 and Theorem 2.2 do not work. Since 
these conditions were originally produced us- 
ing an incorrect methodology, we understand 
the motivation of these authors. However, in 
checking these counter examples, we found the 
results in Theorem 2.1 and Theorem 2.2 did 
work. Next we describe our findings in more 
detail. 

First, consider a three-sensor scheme for de- 
tecting a Rayleigh fading signal in Gaussian 
noise for the case where the observations are 
independent from sensor to sensor [3]. In this 
case, likelihood ratio tests are optimum at the 
sensors. Let ei be the signal-to-noise ratio at 
sensor i, PFIIPDI be the false alarm probabil- 
ity and detection probability at sensor i, and 
ti be the threshold at sensor i that the likeli- 
hood ratio should be compared to. From [12], 

for this problem 

PFi = (<i(l + 6i))-
1-(1/£i)        if*i>i4- 

(3.17) 
Note that for any U such that U < 1/(1 + e*) 
then Ppi = 1. It appears that [3] assumed 
that the left-hand side of (3.17) was valid for 
all ti. The discussion in [3] implies that for this 
problem Theorem 2.1 and Theorem 2.2 do not 
work. When we correctly apply (3.17) we find 
these conditions work. We explain this in more 
detail next. 

For this case the conditions from Theo- 
rem 2.1 and Theorem 2.2 reduce to the fol- 
lowing comparisons 

<3 

=   A 

=   A 

=   A 

PF2(1 - PF3) 

PD2{1-PDZ) 

1-(1-PFI)(1-PF3) 

1 - (1 - Pm)(l - PDZ) 

{1-PFI)PF2 

(1-PDI)PD2 
(3.18) 

In [3], the authors consider the case of t\ = 
e2 = e3 = e. They show a direct optimumiza- 
tion for this case implies that PF2 = PD2 = 1- 
Then the authors divide the equation in (3.18) 
for t2 by the equation for £3 from (3.18) and 
claim that after using (3.17) with algebra they 
obtain an equation only in terms of Pp\. How- 
ever, they don't recognize that Pp2 = -PD2 = 1 
is satisfied by any t2 < 1/(1 + e) so tna* 
the value of £2 can't be determined by (3.17). 
There is a whole range of possible t2 that sat- 
isfy (3.17). Thus an expression of the type 
they say they obtain, can't be valid. In fact 
£2 takes on the value necessary to satisfy the 
second equation in (3.18) and it can be seen 
easily that this will yield t2 < 1/(1 + e) so the 
conditions in (3.18) do give the same solution 
as the direct optimumization does. 

For example, let e = 1 and use a fact found 
from the direct optimumization, that is P/i = 
Pf3. Define ß2 = P/i = Pf3. Then from (3.17) 
we find ß2 = (2ti)~2 and so the first equation 
of (3.18) yields 

A = 
20(1 + /?) 

(3.19) 
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and this with the other equations in (3.18) 
yield 

1 
h   =   2ß 

*2   = 
2-ß2 

2(2-ß2+ß) 
(3.20) 

h   =   2ß 

and from the fusion rule we find ß = (1 - 
\/l-o;)2, and a is the false alarm rate. From 
(3.20), we see that t2 < 5, and thus PF2 = 
pD2 = 1, which agrees with the results given 
in the direct optimumization. 

A similar two-sensor example for the same 
Rayleigh fading signal in Gaussian noise prob- 
lem has been given in [13] where the same mis- 
take appears to have been made. Here, for the 
AND rule case with ei ^ e2, there is said to 
be no solution to the conditions produced by 
Theorem 2.1 and Theorem 2.2. However, when 
(3.17) is applied properly a solution does ex- 
ist. For example, for the AND rule case with 
ei = l,e2 = 2 and PF = 10"6, the optimum so- 
lution should be h < \ and t2 = \ x 104, which 
is satisfied by the formulation given by Theo- 
rem 2.1 and Theorem 2.2 with A = \ x 104, 
ti = i and t2 = 5 x 104. It should be noted that 
A = I x 104, h = i and t2 = 5 x 104 are not the 
only values which can solve NP. In fact, sensor 
one should use P/i = 1 and as we have already 
stated any t\ such that t\ < 1/(1 + ei) = 1/2 
will give Pfi = 1 so there are many other op- 
timum schemes besides the one produced by 
Theorem 2.1 and Theorem 2.2. Of course this 
possibility is discussed in Theorem 2.2 as a case 
without infinite support. This shows that the 
conditions in Theorem 2.1 and Theorem 2.2 
are not always necessary conditions, as some 
have stated. This shows that, exactly as we 
state in Theorem 2.1 and Theorem 2.2, we 
can obtain an optimum solution using Theo- 
rem 2.1 and Theorem 2.2, but in cases with 
fXk(

xk\Hj) = 0,j = 0,1, there may be other 
schemes which are also optimum. 

A second two sensor example is also con- 
sidered in [13].   In this case a known signal 

(mi,rn2) is to be detected in additive zero- 
mean unit-variance Gaussian noise by a two- 
sensor parallel distributed detection system. 
For the case of m2 = 0.5 when either the AND 
or the OR rule is used, the authors state that 
an optimum solution to the conditions from 
Theorem 2.1 and Theorem 2.2 can only be 
found for a finite range of mi. We found that 
the conditions in Theorem 2.1 and Theorem 2.2 
did produce an optimum solution outside the 
ranges given for every case we tried. We note 
that in each case we tried we found the t\ and 
t2 produced by Theorem 2.1 and Theorem 2.2 
were always finite values and that the optimum 
thresholds found by a direct optimumization 
also always took on the same finite values. 

Numerical Results 
By using Theorem 2.1,Theorem 2.2 we 

can employ a Gauss-Seidel type of iterative 
algorithm to solve a wide range of opti- 
mum distributed detection problems under the 
Neyman-Pearson criterion. Our approach em- 
ploys the technique used in fixed fusion rule 
Bayesian optimization of distributed detection 
schemes [14] with a slight twist. The twist [5] 
is to find the best A and then to apply the 
Gauss-Seidel procedures given in [14]. 

As an example, let's consider a two-sensor 
problem with a binary hypotheses 

H0:xux2~N(0,0,l,l,p) 

Hi : xx,x2 ~ N(si,s2,l,l,p) 

where N(a, b, c, d, e) denotes a bivariate Gaus- 
sian distribution with E[(xi,x2)

T] = (a,b)T, 
Var{xi) = c, Var(x2) = d and E[xix2] = 
eVcd. Assume the fixed fusion rule is the AND 
rule and consider the case of s\ = l,s2 = 2 
and p = 0.2. In this case we find the overall 
receiver operating characteristic is concave and 
the false alarm probability is monotonic with 
respect to the value of A. However, we show 
in [5] that the curve of Pf versus A will not al- 
ways be monotonic. Further for a given value 
of A, several different converged solutions may 
result from the Gauss-Seidel procedure. Illus- 
trative examples and extensions to cases with 
multiple bit sensor decisions and other topolo- 
gies are given in [5]. 
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4    Conclusion 

This paper has focused on optimum Neyman- 
Pearson distributed signal detection. We have 
presented two key Theorems which we believe 
clarify the conditions for NP optimum sensor 
detectors under a fixed fusion rule. The The- 
orems appear to be similar to some previous 
results that were obtained using an inappropri- 
ate procedure. Our Theorems, however, state 
requirements under which our conditions are 
necessary. Such conditions have been lacking 
in previous research and we demonstrate that 
these conditions are needed. Our focus here 
was on cases with binary sensor decisions and 
for a parallel architecture, but we have already 
extended our results in both of these regards. 
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Abstract Equivalent data from independent radar 
sensor systems can increase track accuracy by pro- 
viding diverse "looks" at a common target area. 
With proper geometry, complementary sensor sys- 
tems can aid in resolving uncertainties in the coor- 
dinate registration process associated with the var- 
ious ionospheric modes. Systematic positional dif- 
ferences between tracks seen from the separate radar 
sites can be used to improve the estimation of iono- 
spheric parameters. In operational systems, targets 
are tracked by multiple over-the-horizon (OTH) 
radar systems in overlapping coverage areas. In 
this paper, we consider the case of two overlapping 
OTH radars. If an ensemble of targets were in the 
coverage area, an error in the ionospheric model 
parameters would manifest itself similarly in each 
of the tracks, and a correction to this error would 
improve the accuracy of all target positions in the 
region. This approach presumes correct or at least 
consistent mode assignments. 

Keywords: over the horizon radar, generalized 
least squares estimation 

1    Introduction 

In a previous paper [1], a data set was used 
which consisted of two independent OTH radar 
systems covering a common surveillance region 
at a range about 1500 nmi from both OTH 
sites. A ground-based microwave radar pro- 
vided truth data in the region. During the 
two-hour data period, eleven ground targets 
were concurrently held by both OTH radar 
systems and by the ground-based microwave 

radar. The OTH radar systems, running in 
their standard manner, detected the targets, 
formed tracks in radar coordinates, identified 
tracks belonging to the same target, selected 
and assigned ionospheric modes to be used, 
brought each of the radar tracks to ground co- 
ordinates using the appropriate coordinate reg- 
istration tables, and fused the collection into 
common target states. This was done for each 
minute in which the OTH radar held contact 
on the target. Using the microwave radar to 
provide the true target position, the range and 
cross-range errors for each of the targets were 
calculated. The range errors and cross-range 
errors were plotted as a function of time and 
it was shown that a significant range bias was 
present and persisted over time. In this pa- 
per, an algorithm is developed to calculate and 
hand-off a range correction to OTH radar 1 
based on the observation of the cross-range po- 
sitions observed by OTH radar 2. Likewise, 
OTH radar 1 will provide its cross-range bear- 
ings on common targets by mode for correction 
of any range bias experienced by OTH radar 2. 
It is shown that if this is done for the ensemble 
of targets in the surveillance region and these 
corrections are used to update the coordinate 
registration tables, positions of targets in the 
area being detected by only one of the OTH 
radars will also be improved. 

2    Analysis Approach 

We consider the problem of estimating the po- 
sition Z of a target from multiple measure- 
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ments provided by a system of two spatially 
distributed OTH radar sensors. At the cen- 
tral tracking processor, the track plots from 
the multiple radars are used to update exist- 
ing system tracks or initiate new system tracks 
as appropriate. Specifically, the central track- 
ing processor must perform the following five 
functions: 

1. Coordinate Registration: Transformation 
of the radar plots from local radar (or slant) 
coordinates to system coordinates, which are. 
latitude and longitude (or ground coordinates). 

2. Correlation or association of the radar 
plots with the appropriate system tracks. 

3. Initiation of new tracks with the uncor- 
related plots and rejection of clutter plots. 

4. Track filtering and track prediction. 
5. Track monitoring and system track man- 

agement. 
Functions 2 and 4 represent the heart of 

the traditional data association and tracking 
problem. However, before either of these pro- 
cesses can occur successfully, function 1 must 
be performed; that is, the individual radar data 
must be expressed in a common coordinate sys- 
tem in which the errors due to site uncertain- 
ties, antenna orientation, and improper cali- 
bration of range and time (usually due to iono- 
spheric uncertainties) have been minimized so 
they do not cause a significant degradation of 
the system operation. The process of ensuring 
the requisite "error free" coordinate conversion 
of radar data is called coordinate registration 
(CR). Thus, CR is an absolute prerequisite for 
multiple radar tracking or sensor fusion in gen- 
eral. 

The type of measurements provided by the 
systems consists of radar slant coordinates 
(bearing, 0, and range, r, from a radar sen- 
sor to the target). Following Wax[2], and us- 
ing the notation in Dana[5], we formulate the 
difference AP in the reported positions as a 
function of the set of measured variables Z (i.e., 
observations) and the set of bearing and range 
biases ß (i.e., parameters) to be estimated: 

AP = F(Z,ß) 

Following the usual linearization technique, 
but with the roles of the actual values and es- 
timators reversed, the vector equation or po- 
sition difference can be transformed in the 
classical Gauss-Markov generalized linear least- 
squares estimation (GLSE) model: 

Xß+£=Y 

where X is a matrix of known parameters, £ is 
the vector of measurement errors, and Y is the 
measurement vector.   " '""  

The solution of the GLSE problem is simply 

where 

ß* = s*xJ s<f ar 

s* = (x^^xy 
is the covariance matrix for the estimate ß* of 
the vector of biases ß. 

The GLSE approach was developed for two 
range and two azimuth offset biases. To assess 
quantitatively the performance of the GLSE 
approach, the algorithm will be evaluated in 
detail considering both simulation and real 
OTHR data analyses. 

For this application, we consider the case of 
two overlapping OTH radars RA located at the 
origin, and RB, located at coordinates (u, v). 
We further assume that RA gives biased mea- 
surements of range, while RB gives biased mea- 
surements of target azimuth. Denote the vec- 
tor of radar measurements by 

^k = (rAk,0Bk)T 

where rAk and Oßk denote the range and az- 
imuth measurements from radar RA and RB, 

respectively, and k denotes the time index. 
The generalized measurement equations 

from the two sensors is, as mentioned above, 
AP = F(Z,ß), based on the measurements 
i&k and the set of biases ß = (ArA,A$B)T. 
For this application, these measurements are 

gA(x(k),zi(k),ArA) 

= rA(k) - ^(k)+x2^(k) - Ar A 
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gB{x(k),z2(k),A0B) 

= eB(k) ■tan-HX2{k) 
V
X!(fe) • U 

)-A0B 

Here z\k are range measurements from RA 

at time A;, Z2(k) are azimuth measurements 
from sensor RB at time k, Ar A and A0B are 
the bias parameters to be estimated and xi(k) 
and X2(k) are target state vectors at time k. 
These equations relate the set ß of bias pa- 
rameters to be estimated from the set of mea- 
surements % and the vector of observations z. 
However this relationship is nonlinear. 

To apply the theory of generalized least 
squares, we will need to represent the obser- 
vations as a linear function of the parameters 
to be estimated, namely ß. This can be accom- 
plished by defining a function / as follows: 

f(*k,ß) 

= \gA(x(k), *i(fc), Ar A), 9B(x{k), z2{k), A6B)} 

Further, let \Pfc' and ß' denote the actual mea- 
surement sets and an initial estimate of ß, re- 
spectively. Now Taylor's Theorem can be used 
to in the usual way to approximate the func- 
tion / at the true values of #* and ß in terms of 
the measurements **/ and the initial estimate 
ß'. 

3    Conclusions 

This paper has presented a comprehensive and 
generalized method for estimating the bias pa- 
rameters arising in OTH radar surveillance. 
Before system implementation, it is planned to 
utilize the analysis approach on a wide variety 
of target scenarios. Recently, researchers (cf. 
[3,4]) have developed software packages for the 
bias estimation procedures. The former ap- 
proach [3] is interesting, because it does not 
impose any distributional constraints on the 
system measurements, although an assumption 
of Gaussianity on the measurements allows for 
optimal (i.e., maximum likelihood) statistical 
estimates (cf [4]). 
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Field Evaluations of Dual-Band Fusion for Color Night Vision 
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Abstract - As part of an advanced night vision program 
sponsored by DARPA, a method for real-time color night 
vision based on the fusion of visible and infrared sensors has 
been developed and demonstrated. The work, based on 
principles of color vision in humans and primates, achieves 
an effective strategy for combining the complementary 
information present in the two sensors. Our sensor platform 
consists of a 640x480 low-light CCD camera developed at 
MIT Lincoln Laboratory and a 320x240 uncooled 
microbolometer thermal infrared camera from Lockheed 
Martin Infrared. Image capture, data processing, and display 
are implemented in real-time (30 fps) on commercial 
hardware. Recent results from field tests at Lincoln 
Laboratory and in collaboration with U.S. Army Special 
Forces at Fort Campbell will be presented. During the tests, 
we evaluated the performance of the system for ground 
surveillance and as a driving aid; Here, we report on the 
results using both a wide-field of view (42 deg.) and a 
narrow field of view (7 deg.) platforms. 

Keywords: sensor fusion, image fusion, infrared, night 
vision. 

1.   Introduction 

In night vision applications, both low-light visible and 
thermal infrared are effective but not sufficiently 
capable when used independently. These two sensor 
modalities image different physical properties of a 
scene, and the complementarity of the information 
they provide is well known. The work presented here 
addresses the real-time fusion of visible and IR 
(MWIR or LWIR) imagery into a single color 
composite either for presentation, or for further 
processing, with the aim of efficiently exploiting the 
complementarity of the multi-sensor information. 

Dual-sensor fusion has been achieved using an 
architecture based on principles of processing in 
primate retinal circuits. The architecture achieves 
contrast enhancement, adaptive dynamic range 
compression, and single-opponent color contrast 
processing, from which a color image is derived. Here, 
we report on progress in this approach to image fusion 
and on field tests conducted in collaboration with the 
Special Forces group at Ft. Campbell, KY. 

Prior to our introduction of opponent-color fusion 
strategies [1, 2, 3], other methods for image fusion 
were rooted  in pixel-level  choice  or blending  of 

modalities, aimed at maximizing contrast and 
implemented on multiscale image representations [4, 
5, 6, 7, 8]. The results are grayscale-fused images, 
which don't support target detection as accurately as 
our color fused images do in human factors tests [9, 
10]. While there have been other approaches to 
obtaining color fused results [11, 12], they often 
produce a degradation in performance and/or image 
quality [9, 10]. Thus, in assessing the utility of fused 
imagery for select tasks such as target detection and 
localization, we found that one must be careful not to 
lose sight of the importance of image quality (i.e. 
resolution), for it certainly plays a role in object 
recognition tasks. 

We have made important progress in the design of 
dual modality fusion architectures and of the 
associated hardware platforms for real-time 
processing. We introduce the theoretical background 
for our architectures in the next section. In addition, 
we have assembled a dual-sensor platform for color 
fusion based on a higher resolution, night-capable 
CCD camera developed at Lincoln Laboratory and a 
LWIR camera. Given the new computational needs 
for preprocessing, image combination, and color 
generation at video rates (currently 30 fps at 640x480 
resolution) and the desire for future expandability, we 
adopted a new multi-node C80 architecture that we 
describe in a latter section. In particular, we report on 
the development and field-testing of a real-time 
platform based on COTS hardware. 

2.  Biologically-based sensor fusion 

Our computational approach to image fusion derives 
its basis from biological models of color vision. In 
particular, in the retinal circuitry which has three types 
of retinal cones (i.e., detectors) each has sensitivities 
to short, medium, and long wavelengths of the visible 
spectrum. The resulting images coded by each cone 
type are contrast enhanced within band by spatial 
opponent processing creating both ON and OFF 
center-surround channels [14]. These signals are also 
color-contrast enhanced via center-surround 
interactions between bands [15]. A significant insight 
that one obtains from these neurological findings is 
that nonlinear center-surround receptive fields come in 
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many varieties, are used to process imagery within and 
between bands, are the substrate for opponent 
processes in vision, and in general play an enormous 
role in the hierarchical design of biological image 
processors. In particular, they provide examples of 
working multi-band fusion mechanisms. 

Our fusion strategy helps to complement the 
information provided by brightness contrast in the 
grayscale domain by utilizing color contrast to 
enhance information content in the displayed image. 
The combination of both forms of contrast has been 
shown to greatly enhance human perception [16, 17]. 
The neural architecture utilized in our real-time 
platform to fuse visible/LWIR imagery is constructed 
from center-surround opponent processing fields, 
specifically, shunting neural networks [18], as 
illustrated in Figure 3. 

Following noise-cleaning of the visible and IR 
imagery and distortion correction to ensure image 
registration, a first stage of center-surround 
interactions within-band leads to contrast enhancement 
and dynamic range compression. Then, in a second 
stage of center surround processing across bands, we 
form two grayscale fused single-opponent color- 
contrast images with the enhanced Visible (+Vis) 
feeding the excitatory centers and the enhanced IR 
(ON-IR, +IR, and OFF-IR, -IR, respectively) feeding 

the inhibitory surrounds. We label these two single- 
opponent images +Vis-IR and +Vis+IR. In this 
context, our opponent-color contrast images can be 
interpreted as coordinate rotations in the color space 
of Visible vs. IR, along with local adaptive scaling of 
the new color axes, which leads to a decorrelation of 
the information in the two bands. 

To achieve a useful color presentation of these 
opponent images (each being an 8-bit grayscale 
image), we assign the following color channels (8-bits 
each) to our digital imagery: (1) +Vis to Green, (2) 
+Vis-IR to Blue, and (3) +Vis+IR to Red. These 
channels are consistent with our natural associations of 
warm red and cool blue. The result is an image that 
uses brightness contrast to present information from 
the visible bands while utilizing color contrast to 
represent the thermal vs. visible information in the 
scene. 

Finally, as shown in the architecture of Figure 3, these 
three channels can also be interpreted as R, G, B inputs 
to a color remapping stage in which, following 
conversion to H, S, V (hue, sat., val.) color space, hues 
can be remapped to alternative "more natural" hues. 
The result is a high quality fused color presentation of 
visible/IR imagery. 
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Figure 1. Single-opponent visible/LWIR image fusion architecture built from adaptive center-surround receptive fields. This 
architecture is well suited to sensors of non-equal resolution, with the higher resolution visible imagery providing input to the 
centers of the color contrast fields. 
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3.   Sensor platform 4.   Real-time COTS hardware 

Two different pods were assembled to provide for 
both a wide and a narrow field-of-view capabilities. 
Figure 2 illustrates the dual-sensor visible/LWIR 
imaging pods constructed at Lincoln Laboratory for 
the DARPA Integrated Imaging Sensors program. The 
imaging pods consists of a Lincoln Lab low-light CCD 
imager of 640x480 pixel resolution, able to provide 
useful 12-bit imagery at 30 frames/sec (or slower) 
below starlight illumination levels [13], an uncooled 
microbolometer LWIR thermal imager of 320x240 
resolution and 15-bit dynamic range from Lockheed 
Martin Infrared, and a dichroic beam splitter that 
transmits the visible-NIR band but reflects the LWIR 
band. 

The lenses utilized on both pods, in conjunction with 
the beam splitter, provide a nearly registered 42° and 
7° field of view respectively. Deviations from 
registration (magnification and distortion) are 
compensated for in the real-time fusion processor. 

We developed a real-time visible/IR color fusion 
processor to support the wide dynamic range digital 
imagery provided by both cameras. We utilize a set of 
four Matrox Genesis C80 boards, providing for dual- 
digital video input and six C80 processing nodes, in an 
industrial PC rack-mount chassis, with a Pentium host 
processor card (see Figure 3). 

The total number of operations per second is around 
1.5 billion (640x480 pixels with 150 operations per 
pixel at 30 fps). Due to these requirements, we 
selected the C80 DSP as the core processing unit. 
This processor consists of 4 parallel integer processing 
units and a fifth floating-point processing unit. The 
Matrox board was selected because they offer a 
modular architecture revolving around two useful 
types of "Genesis" boards: (1) a main board, 
consisting of one C80 processor, 8Mb SDRAM, an 
analog/digital grab daughter board, and a 
video/display section; and (2) a co-processor board 
(see bottom of Figure 3), with two processing nodes, 
each with a C80 processor, 8Mb of SDRAM, and 
independent communication and control hardware. 
The main boards allow simultaneous capturing of the 
imagery from the two cameras. Two C80 nodes are 
allocated for preprocessing the imagery from each of 

Figure 2. Dual-sensor fusion pods with Lincoln 640x480 
pixel low-light CCD, a Lockheed Martin IR 320x240 pixel 
uncooled LWIR camera, and a dichroic beam splitter. Top: 
Wide field-of-view optics (42°). Bottom: Narrow field-of- 
view (7°). 

Figure 3. Real-time computing platform. Top: Computer 
chassis with four Matrox Genesis boards interconnected via 
a VM-channel bus and two proprietary grab-port buses. 
Bottom: Close-up of one of the dual C80 boards (co- 
processor board). 
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the sensors. Preprocessing consists of image warping 
for registration, noise cleaning, contrast enhancement 
and dynamic range compression. The remaining two 
nodes are then used to fuse the preprocessed imagery 
and to drive the color display. 

5.   Field demonstrations 

A first set of demonstrations took place in an open 
field and while driving without headlights in Bedford, 
MA. There, the real-time fusion system was evaluated 
under all phases of the moon during the fall of 1998. 
Figure 4 presents an example image taken under full- 

Figure 4. Color night vision by fusion of low-light visible and 
uncooled thermal 1R imagery, (a-c) Lincoln Lab imagery (dusk 
conditions') usina imaae intensified CCD and LWIR sensor txid. 

moon conditions. Figure 4a being the preprocessed 
visible image, 4b, the pre-processed IR image, and 4c, 
the color fused image. All were imaged with the wide 
field of view pod with the subject standing at 100 m. 
from the sensors. The results confirmed the 
preservation of both image quality and information 
content as obtained from both sensor bands. 

The second set of field demonstrations with our real- 
time fusion platform was targeted at evaluating the 
system under more realistic conditions for military 
night-time operations. These tests took place during 
October 1998 at Ft. Campbell. KY in collaboration 
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Figure 5. Color night vision by fusion of low-light visible and 
uncooled thermal IR imagery, (a-c) Lincoln Lab imagery (dusk 
conditions'» usina imaee intensified CCD and LWIR sensor ood. 
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Figure 6. Qualitative assessment matrix. Observers judged their ability to perform the different tasks while using each of the 
modalities (visible, thermal ir, and color fused). 

with US Army Special Forces. The goal of the tests 
was to evaluate the performance of the fusion imagery 
as compared to the individual modalities alone (visible 
and IR), as well as comparing it to direct view Omni 
IV intensifier tubes. 

Several tasks were evaluated which included tracking 
people and objects, recognizing uniforms and 
weapons, detecting camouflage, seeing through 
smoke and vegetation, and recognizing vehicles of 
various types. All tests were performed after 8:00 pm 
under starlight conditions. The light level measured 
with a calibrated photometer was between 1.5-2.1 
mLux. Tests were evaluated in both ground and water 
operations. Both fields-of-view pods were utilized at 
35, 70, and 100m. for the wide fov and 100, 300, and 
500 m. for the narrow fov. Special Forces personnel 
wore uniforms of various types, carried a variety of 
weapons, and performed exercises in the open, among 
vegetation, and in the water. 

Figures 5a-c illustrate enhanced visible, LWIR and 
color fused imagery results with the narrow field-of- 
view pod. The fused color image shown in Figure 5c is 
obtained using the architecture shown in Figure 3. 
Notice how this fused result combines the 
complementary information provided by the source 
imagery. In this example, with two subjects at 100 m., 

both holding automatic weapons of various makes. 
The man on the left is wearing a ski mask which can 
be seen in the visible image but not in the IR image. 
Similarly, the weapons standout in the visible band 
which is also being preserved in the fused result. On 
the other hand, the IR band is leading to a more 
evident pop-out of the human targets which is 
preserved in the color fused in the form of color 
contrast. 

All images were captured at their original wide 
dynamic range with a 640x480 resolution for the 
visible and 320x240 for the infrared. Here, we can see 
that the information and resolution from the Low- 
Light CCD is preserved in the form of the brightness 
contrast in the fused image. On the other hand, the IR 
vs. Visible imagery serves to "paint" the fused image 
in the blue-red gamut to code the thermal contrast 
information. 

During these exercises, qualitative analysis were 
conducted by night vision experts from the US Army 
and various research laboratories. Here, observers 
were provided with an evaluation matrix as shown in 
Figure 6. Utilizing this table, they recorded their 
judgements in their ability to perform the various tasks 
while utilizing the different modalities (i.e. visible- 
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only, IR-only, or visible-IR fused), 
results are summarized in Figure 6. 

In summary, the color fused result was found to 
provide high image quality, support enhanced depth 
perception down the field, and produce target pop-out 
capabilities. Also, not evaluated in Figure 6, were the 
Omni IV intensifier tubes due to the fact that they 
could not be imaged and recorded for analysis. 
However, users in the field reported being unable to 
perform the majority of the tasks involved in these 
tests. 

6. Summary 

We have shown that an effective strategy for the 
fusion of imagery derived from two complementary 
sensors is to emulate the early stages of opponent- 
color processing in the human visual system. Single- 
opponent color architectures are sufficient for fusing 
two sensors, such as a CCD camera and a thermal IR 
imager. A real-time fusion processor has been 
developed from commercial DSP boards for fusing the 
Lincoln Lab 640x480 low-light CCD with an uncooled 
320x240 LWIR camera to provide color night vision. 
Field tests with night vision experts have corroborated 
psychophysical tests in the laboratory that support the 
use of color fused imagery in place of the original, 
separate bands. 
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Abstract Distributed multiaenaor detection 
problems with quantized observation data 
are investigated for cases of nonbinary hy- 
potheses. The observations available at each 
sensor are quantized to produce a multiple- 
bit sensor decision which is sent to a fusion 
center. At the fusion center, the quantized 
data are combined to form a final decision 
using a predetermined fusion rule. Firstly, 
it is demonstrated that there is a maximum 
number of bits which should be used to com- 
municate the sensor decision from a given 
sensor to the fusion center. This maximum 
is based on the number of bits used to com- 
municate the decisions from all the other 
sensors to the fusion center. If more than 
this maximum number of bits is used, the 
performance of the optimum scheme will not 
be improved. Then in some special cases of 
great interest, the bound on the number of 
bits that should be used can be made signifi- 
cantly smaller. Finally, the optimum way to 
distributed a fixed number of bits across the 
sensor decisions is described for two-sensor 
cases. Illustrative numerical examples are 
presented at the end of this paper. 

Keywords: distributed signal detection, decentral- 
ized detection, quantization for detection, M-ary 
hypothesis, multiple bit sensor decisions. 
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1    Introduction 

Signal detection algorithms which pro- 
cess quantized data taken from multiple sen- 
sors continue to attract attention [1, 2, 3, 4, 5]. 
Such algorithms have been classified as dis- 
tributed signal detection algorithms. The ma- 
jority of distributed signal detection research 
has focused on cases with statistically inde- 
pendent observations, binary hypothesis test- 
ing problems and binary sensor decisions [6, 7]. 
Studies on nonbinary hypothesis testing prob- 
lems have been lacking. An early paper on this 
topic [8] provided equations describing the nec- 
essary conditions for the optimum sensor pro- 
cessing. A more complete discussion which in- 
cludes a thorough treatment of the necessary 
conditions for the case of independent observa- 
tions is given in [9]. A nice discussion of the 
complexity of cases with dependent observa- 
tions is also given in [9]. Neither [8] nor [9] 
give any numerical examples. A numerical 
procedure for finding the optimum processing 
scheme was provided in [10] for cases with de- 
pendent observations and nonbinary hypothe- 
sis and a few numerical examples are provided. 
However, studies of the properties of optimum 
schemes have been lacking. 

In this paper, we demonstrate that no more 
than a certain number of bits should be used 
to communicate a sensor decision from a par- 
ticular sensor to the fusion center. Using more 
than that number of bits at a given sensor is 
unnecessary and will not generally lead to in- 
creases in performance. The number of bits 
which should be used is limited by the number 
of bits used to communicate all the other sensor 
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decisions to the fusion center. The paper is or- 
ganized as follows. In Section 2 we present the 
model for the observations and the distributed 
decision making. In Section 3, we prove that a 
finite number of bits can be used for the sensor 
decision at a given sensor without sacrificing 
any performance. In Section 4, we strengthen 
our results for some special cases of great inter- 
est. In Section 5, we consider how to allocate 
bits between two sensors in the case where the 
total number of bits used for sensor decisions 
is fixed. Section 6 provides some illustrative 
numerical examples. Finally, our conclusions 
appear in Section 7. 

2    Problem Formulation 
Consider a multiple hypothesis testing prob- 

lem using L sensors, where Ho, HI, ..., HK-I 

are K hypotheses, and P(Hi), i = 0,...,K-l 
axe the prior probabilities for each hypothesis. 
Assume an m* dimensional vector of observa- 
tions 

Vk = [Vk,l, Vk,2, ■•-, yk,mk],      Vk,l € R 

is observed at the fcth sensor, k = l,...,L. De- 
fine y = [yi,V2,■ ■ .,VL], and let p(y | Hi),i = 
0,...,K - 1 denote the known joint condi- 
tional probability density functions (pdfs) un- 
der each hypothesis. Note that we do not as- 
sume yi, j/2, • • • > VL are independent when con- 
ditioned on the hypothesis. Let P(Dj \ Hi) 
represents the probability that a final decision 
for hypothesis Hj is made given hypothesis Hi 
is true. 

Here we consider the criterion of minimum 
probability of error. 

to a fusion center, then the fusion center pro- 
duces a decision UQ as 

Pe = 1 " Pc (1) 

where 

Pc = £ P(Hi)P(Di | H) 
i=0 

Our goal is to design a system minimizing Pe. 
A typical centralized detection system re- 

quires each sensor to transmit its observations 

U0 = d{y) =d{yi,y2,...,yL) (2) 

where d is the decision rule and UQ = j corre- 
sponds to deciding that hypothesis Hj is true. 
A well known decision rule for centralized de- 
tection systems is to compare the joint likeli- 
hood ratio to a threshold. Due to a variety 
of reasons, it may be difficult to realize such a 
centralized system in practice. In a distributed 
detection system, the observation data at the 
fcth sensor are first quantized to a discrete vari- 
able Uk taking on only Nk possible values. For 
simplicity1, it is common to choose Nk to be a 
power of K, or Nk = Knk. Thus Uk can be rep- 
resented as a nfc-digit, K-ary number produced 
by an nk dimensional vector of decisions 

Uk = [Ukfi, Uk,l, ■■-, Uk,nk-l], 

Uk,i£{0,l,...,K-l} 

made at the fcth sensor, using a group of deci- 
sion rules 

dfc = [dk,o, dk,i, ■ • •, dk,nk-i\ 

Uk,i = dk,i{vk)  k = l,...,L, 
l = 0,...,nk-l (3) 

Please note that each dk,i denotes a scalar func- 
tion while d with only single subscript denotes 
a vector of functions. To avoid confusion be- 
tween Nk and nk, Nk is called the number of 
quantization levels in the sequel. Define the 
combination of all but the last sensor decision 
as U = [Ui,U2, ■ ■ •, UL-i\- All sensor decisions 
are sent to the fusion center to determine a 
final decision UQ with a chosen fusion rule F 

Uo = F(U;UL) = F(U1,U2,...,UL) 

= F(diß[yi),...,diini-i(yi),... 

,dLfi(yL),---,dL,nL-i(yL))        (4) 

where Uo and all Uk,i can take on any of the 
values 0,... ,K — 1. 

^lso see Remark 1 following Theorem 1. 
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3    Limits on Number of Bits Used in 
Sensor Decisions 
Here we will show that the number of 

bits which should be used to represent the sen- 
sor decision at one given sensor is limited by 
the number of bits used at all the other sen- 
sors. Furthermore, due to the non-uniqueness 
of describing a distributed detection system by 
defining a fusion rule and a set of sensor deci- 
sion rules, there are many combinations of fu- 
sion rules and sensor decision rules which are 
optimum. To see this just consider a K = 2 
case. Complementing all the sensor decision 
rule outputs and the fusion rule inputs will 
change nothing. We also present one specific 
fusion rule that can always be used to achieve 
optimum global performance for some special 
cases. 

Theorem 1 If the combination of the first 
L — 1 sensor decisions, U, consists of n com- 
ponents, where n = J2k=i nk> then a scheme 
which obtains optimum global performance can 
be found in the case where the Lth sensor 
makes nx = Kn decisions. Thus using an Lth 
sensor with nj_, > Kn will not improve the op- 
timum global performance. 

Outline of the proof. U is a vector of re- 
valued integers. We can also see it as a number 
in the K-ary number system. Then U takes on 
the values of 0,..., Kn — 1 and we can view 
F(U; UL) as a function of two variables, U and 
UL- The theorem will be proved if we show 
that whenever nx > Kn 

3i,j = 0,...,KnL-l,   i^j 

VU = 0,...,Kn-l  F(U;i)=F(U;j)(5) 

Thus it does not make sense to distinguish the 
decision of UL = i and UL = j since either 
decision leads to exactly the same final deci- 
sion. We can choose a new decision rule at the 
Lth sensor which uses just one value to rep- 
resent these two values i,j without changing 
performance. If UL is fixed, F(U; UL) degener- 
ates to a function of one variable which maps 
each possible value of U into a possible value 

of Uo- Alternately we can say each value of 
UL will correspond to a function from U to Uo- 
Since U takes on Kn different values and UQ 

takes on K different values. Obviously there 
are only KK" different mapping patterns be- 
tween the domain and the range. Hence there 
are totally KKn different functions from U to 
UQ. Whenever nx, > Kn, the number of possi- 
ble values of UL is greater than the number of 
different functions. Thus at least two values of 
UL will correspond to the same function. This 
statement is equivalent to (5). Ü 

Remark 1 Suppose the number of quantiza- 
tion levels at the kth sensor, N^, can not be 
represented as a power of K, then a slightly 
more general result can be obtained. Using 
the same argument we can prove an optimum 
scheme can be found in the case of NL = K , 

where N = UkZl Ni- 

Theorem 2 In the case of TIL = Kn, we can 
obtain optimum performance by employing the 
specific fusion rule 

U0=F(U;UL) = UL,U (6) 

where UL = [UL,O,UL,I,- ■ ■ ,UL,K"-i], U = 
0,...,Kn-l. 

Outline of the proof. We have shown that a 
scheme with nx = Kn can be used to achieve 
optimum performance. If we could also show 
that the fusion rule in (6) can be used with 
some groups of sensor decision rules to imple- 
ment any scheme in this case, Theorem 2 is 
proved. Consider an arbitrary scheme for the 
case of TIL = Kn. It consists of a fusion rule F 
and a group of decision rules d\,...,dL- For a 
given K-ary integer B taking on any of the val- 
ues 0,..., KK" — 1, let [bo,..., ^»-l] denote 
its digits. Now define a group of sets 

^B = {yL:F(0;dL(yL)) = bo,..., 

F(Kn-l;dL(yL) = bKn-i} 

After determining the set fi# corresponding to 
each possible value of B, we can use these sets 
to define a new decision rule for the Lth sensor. 

dL,l(yL) = k ifyLenB,   l = 0,...,Kn-l 
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The fusion rule in (6), with the sensor decision 
rules <?i,..., AL-\ and AL can insure the overall 
scheme produces the same output for any yL- 
Thus the fusion rule in (6) will always allow us 
to obtain optimum performance. Further, gen- 
erally we can not decrease nx, any more without 
affecting the global performance, ü 

4    A Stronger Result 
In Theorem 1, the upper bound of nL grows 

rapidly as n increases. However in some more 
specific cases, we can have a stronger result. 
As an example, consider a hypothesis testing 
problem with statistically independent Gaus- 
sian data with different mean vectors under 
each hypothesis. 

mfc = l,yjfe €R,   k = l,...,L 

Hi: y = [yi, i/2, • • •, VL] ~ N(Mh C), 
i = 0,...,K-l (7) 

where C = diag[o\,<%,...,aL], a) are the 
variances of observation data yj and Mi = 
[E{yi | Hi},E{y2 \ Hi}i...,E{yL | Hi}]T,i = 
0,..., K — 1 are the mean vectors under each 
hypothesis. 

Definition 1 A single-interval is a set of real 
numbers, {x | a < x < b}. Such a single- 
interval could be a finite length interval, the 
entire real line (a=-oo and b=+oo), a semi- 
infinite interval (either a=-oo or b=+oo while 
the other is finite), or the empty set (a=b). 

Theorem 3 For the Gaussian shift in mean 
problem in (7), a scheme which obtains opti- 
mum global performance can be found in the 
case ofriL = n + 1. 

Outline of the proof. It is sufficient to prove 
that all optimum schemes used in this case 
can be implemented by a new scheme with 
«L < n + 1. Let us consider an arbitrary 
optimum scheme. For statistically indepen- 
dent observations, It is equivalent to a set of 
comparisons of a likelihood ratio to a corre- 
sponding threshold. Each comparison yields 
a semi-infinite interval. So the intersection 
of these comparisons is a single-interval.   For 

fixed U, F{U\dL{yL)) is a multiple-step func- 
tion that can be determined by those thresh- 
olds between neighboring single-intervals, the 
number of which is less than K. For each 
values of U, we need less than K thresholds, 
h,u, • • •) *K"-i,i/) and U has Kn possible values, 
so less than K ■ Kn = Kn+1 thresholds can 
completely determine F(U;dL{yL))- We can 
put all the thresholds together and sort them 
by ascending order. The sorted sequence of 
thresholds are denoted by t[ < ... < fKn+i_v 

These thresholds will divide the entire real 
axis of yL into not more than Kn+l intervals. 
For any value of U, all points in each inter- 

val {yL : t'k < VL < t'k+i) wiu Yield tne same 

F(U;dL{yL)) If we assign a different value of 
UL to each interval, the new scheme will sat- 
isfy UL < n 4-1 and implement the considered 
arbitrary optimum scheme. □ 

Remark 2 From the proof of Theorem 3, it is 
clear that this stronger result is only based on 
the optimum sensor test being a direct thresh- 
old test of the observation. In the case we con- 
sider, this is true due to the monotone likeli- 
hood ratio property of Gaussian pdfs. Hence 
the result can be applied to any problem with 
independent observations and monotone sen- 
sor likelihood ratios. Studies have shown that 
a large family of pdfs have monotone likelihood 
ratios [11]. Cases of dependent observations 
may also possess the required property. Some 
cases with Gaussian pdfs are shown to have this 
property in [12]. Theorem 3 can be used in all 
these cases. 

5    A Case with Fixed Overall Num- 
ber of Sensor Decisions 
In a two-sensor system where the total 

number of bits is fixed, we denote a scheme 
by (ni,ri2), where n\ and ni are the number 
of bits used for decision from the first sensor 
and the second sensor respectively. Note that 
increasing both n\ and ni will improve the per- 
formance, so the constraint is reasonable. 

Theorem 4 Given ni + n2 is fixed, then re- 
gardless of the statistical characteristics of ob- 
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servation data, a scheme which obtains opti- 
mum global performance and satisfies the fol- 
lowing inequality can be found. 

logj(ni <ri2 < Kni 

Outline of the proof. Suppose we have 
found a scheme (ni,n2) which achieves opti- 
mum global performance but ri2 > Kni. Prom 
Theorem 1, we know the excessive decisions 
used at the second sensor is wasted. We can 
allocate some of them to the first sensor to im- 
prove the overall performance. Thus we prove 
«2 < Kni. Now switching n\ and ri2 in the 
argument, we can also prove that n\ < Kn2, 
or logK^i < n2. D 

Remark 3 Suppose the number of quantiza- 
tion levels Nk can not be represented as a power 
of K. Using the relationship between Nk and 
rik, we can get an inequality for N\ and N2. 

logKNi <N2< KNl 

Theorem 5 In those special cases with inde- 
pendent observations, known signals and noise 
pdfs which lead to monotone likelihood ratio, 
a scheme which obtains optimum global perfor- 
mance and satisfies the following inequality can 
be found. 

n\ — 1 < n2 < n\ + 1 

Outline of the proof. The proof of this the- 
orem is quite simple. All we need to do is to 
substitute the stronger result from Theorem 3 
in place of the result from Theorem 1 in the 
proof of Theorem 4. Then we can prove both 
n2 < n\ + 1 and n\ < ri2 + 1. So the theo- 
rem is proved. This result implies the optimum 
scheme would like to divide the number of deci- 
sions evenly or nearly evenly between the two 
sensors. If the sum of n\ + ri2 is even, then 
n\ = ri2, otherwise n\ = ri2 ± 1- D 

Remark 4 In the above cases, if the number 
of quantization levels Nf. can not be represented 
as a power of K, the inequality for N\ and N2 
will be 

^<N2< KNX 
J\ 

As opposed to the result of Theorem 5, the 
value of N\ and N2 are still to some extent 
undetermined. Only numerical techniques can 
find the exact Ni,N2 used by the optimum 
scheme. 

(a) The case of Theorem 4 (n1 ,n2) (b) The case of Remark 3 (N1 ,N2) 
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(c) The case of Theorem 5 (n1 ,n2) 
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Figure 1: Regions for optimum scheme 

We can demonstrate our results in the plane 
of (JVi, N2) or the plane of (ni, 722), as shown in 
Figure 1. In each of the four parts of this figure 
we label the Theorem or Remark it illustrates. 
We know only schemes in the region between 
the two curves can obtain optimum global per- 
formance, so we never need to search in those 
regions outside the two curves. 

6    Numerical Results 

In the following numerical investigations, we 
consider detecting a known signal in Gaussian 
noise with two sensors. If both U\ and U2 are 
binary variables, there are 22 = 16 possible 
nonrandomized fusion rules: two rules are triv- 
ial (UQ = l,Uo = 0), four rules ignore one of 
the sensors (Uo = Ui,Uo = U\,UQ = t/2,^0 = 
Ü2), four are_AND rules (Up = UiU2,U0 = 
UiÜ2~,U0 = UxU2,U0 = UiU2),Jmx are_OR 
rules (U0 = Ui + U2, U0 = Ui + U2, U0 = U1 + 
U2,Uo = Ui + U2), and two rules are exclusive- 
or operations (U0 = U\ © U2, U0 = Ui ®Th)- If 
either U\ or U2 takes on more than two values, 
or one bit, there will be more fusion rules. We 
can use the following equations to calculate the 
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total number of possible fusion rules. 

M = KKni+n2 

(a)CEN       Pe=0.1807 (b)DIS(1,1) Pe=0.2151 
5, 1 1 5r 

(8) 

Of course, theoretically we could compute the 
performance of the best scheme using each 
possible nonrandomized fusion rule and pick 
the one with minimum probability of error. 
But as n\ and n2 grow, this require signifi- 
cant computation. For instance, in a scheme 
of (1,3) or (2,2), the number of fusion rules is 
M = 22" = 256. which is 16 times of that in a 
scheme of (1,1). 

For a fixed fusion rule, we employ a dis- 
cretized Gauss-Seidel iterative algorithm [10, 
12] and attempt to find all solutions to the nec- 
essary conditions in Appendix A. With every 
set of initial decision rules we have tried, the 
algorithm always converges to the same result 
in a finite number of iteration steps. Due to 
this, we take the solution we found as the op- 
timum solution and use this group of sensor 
decision rules and the fusion rule to calculate 

Pe- 
Assume the observation data at the sensors 

consists of different constant signals for each 
hypothesis and additive Gaussian noise ni ~ 
iV(0,3) andn2~N(0,2). 

H0:Yi = -l + ni,   Y2 = -l + n2 

Hx:yi=    1 + ni,   Y2 =   l + n2 

We also assume all hypotheses have equal 
prior probabilities and the noise samples at 
the two sensors are statistically independent. 
Therefore, 

P{Hü) = P{Hl)=
l- 

p{Yx,Y2\HQ) 

p{Y1,Y2\Hl) 

After trying all possible fusion rules for the 
scheme of (1,1), (1,2) and (1,3), we find the 
best rule for each scheme. The resulting opti- 
mum decision regions and Pe for optimum cen- 
tralized rules and optimum distributed rules 

-5, 

:     * 
X    :   

X 

_ 

(C)DIS(1,2) Pe=0.1974 (d)DIS(1.3) Pe=0.1974 

—! 1 5| i  
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Figure 2: Optimum decision regions (I) 
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Figure 3: Optimum global performance (I) 

with different number of bits used in the sen- 
sor decisions are provided in Figure 2. The no- 
tation "CEN" stands for centralized rules, and 
the notation "DIS" indicates distributed rules. 
In each part, a line divided the entire plane 
into two regions. Each region is assigned to a 
hypothesis. The little "x"s represent the signal 
for each hypothesis. Observing these interest- 
ing examples, we see that optimum centralized 
regions for this problem have boundary which 
is a straight line. All distributed fusion rules 
try to use a combination of horizontal lines and 
vertical lines to approximate the straight line. 
The more bits are used, the better approxi- 
mation is achieved. But when n^ > Kn, in 
this case n2 > 21, excessive decisions at the 
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second sensor can not improve the optimum 
global performance. This is illustrated by part 
(c) and (d) of Figure 2. 

In Figure 3, we vary SNR at the second sen- 
sor while fixing SNR at the first sensor and 
compute Pe for centralized and various dis- 
tributed schemes. The dotted line represents 
the result obtained by using only the first or 
the second sensor. The figure indicates that 
when the ratio of SNRs is less than 0.1, all 
distributed schemes will choose only the first 
sensor to make a decision. It is not surprising 
because the second sensor can provide little in- 
formation. When the ratio of SNRs is greater 
than 10, all distributed schemes have similar 
performances to the centralized schemes. We 
can see that for nearly identical SNRs there is a 
distinguishable improvement in global perfor- 
mance when using two sensors instead of one. 
However the difference of performance between 
centralized scheme and distributed scheme is 
much smaller. This suggests that only one or 
two binary decisions can give adequate perfor- 
mance with considerable complexity decrease 
in cases like this one. 

We continue our investigation in this case 
for other distributed schemes. This time in- 
stead of fixing the number of decisions at the 
first sensor, we fix the total number of deci- 
sions at the two sensors. Again we have tried 
all possible fusion rules and show the best re- 
sults we have found in Figure 4. From Fig- 
ure 4, we see that the scheme of (2,2) imple- 
ments the best approximate boundary so that 
it yields the best performance in this case. Fig- 
ure 5 provides the curve of probabilities of er- 
ror plotted against the ratio of sensor SNRs for 
this case. We can see that the three distributed 
schemes perform quite well. They always per- 
form much better than the scheme using only 
one sensor. Moreover, the scheme of (2,2) al- 
ways yields the best global performance of the 
three distributed schemes. 

7    Conclusion 
We investigated distributed detection prob- 

lems for cases with nonbinary hypotheses. We 
uncover some interesting general properties of 

(a) SECOND    Pe=0.2398 (b)DIS(3,1) Pe=0.2029 

X 

X 

5                          0                          5 

(c) DIS(2,2) Pe=0.1932 

I 
X 

X 

X 

x   ! 

(d)DIS(1.3) Pe=0.1974 

x  '  

Figure 4: Optimum decision regions (II) 

Ratio of SNR (SNR2/SNR1) 

Figure 5: Optimum global performance (II) 

distributed detection schemes. In particular 
we consider how much information must be 
transmitted from one sensor when the total 
amount of information transmitted from all 
the other sensors is fixed. We show there is 
an upper bound on the number of bits for a 
given sensor decision that should be used. Us- 
ing more bits at the sensor will not generally 
lead to improvements in the performance of 
the optimum scheme. Further, in some special 
cases, for example, with independent observa- 
tions and monotone likelihood ratios, we show 
that a stronger result can be obtained. The 
stronger result provides with a much smaller 
bound on the number of bits which should be 
used.   These results give important guidance 
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in the design of distributed detection schemes. 
Finally we analyze the issue of how to allocate 
bits across the sensors when the total number 
of bits used for all sensor decisions is fixed. 

Appendix 

A    Necessary Conditions for the Op- 
timum Sensor Rules 

Under a fixed fusion rule, the sensor decision 
rules must satisfy a group of necessary condi- 
tions to minimize Pe. Due to our configuration, 
Prob(Uo = i | y) is an indicator function 

Prob(U = i | y) = = (lif 
\0 ot 

d(y) = i, 
otherwise. 

Definition 2 A class of functions Ljik,i(yk) 
are defined as follows 

Lj,k,i(yk) = Zl-0
1J---fProb(Uo = i\ 

y,dk)l(yk) = J)p(HMY\H^    W 

where dy = Ylk=i dVk 

Theorem 6 Suppose Pe is minimized, then 
Vfc = l,...,L,l = 0,...,nk-l,dk,i{yk) must 
satisfy the following conditions 

VyfcGRmk    dkti(yk)=j    if 
W„-    -J- A      Lj.kAVk)    ^ 1 (10) 
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Abstract 

This paper describes the investigation by Computing 

Devices Canada (CDC) of the synergistic combination of 

detection results from multiple scanning sensors, using data 

fusion techniques, in the detection of buried anti-tank (AT) 

mines. 

I. Introduction 

Landmines are currently used in all types of warfare, 

from local conflicts to high level military operations. 

They are inexpensive to make and easily deployed. 

The proliferation of landmines throughout the world, 

resulting from them being indiscriminately used 

during regional conflicts, has caused disastrous 

consequences in resettlement and economic renewal. 

Mine detection is a difficult problem and requires the 

use of multiple sensors to achieve satisfactory 

detection levels in a variety of operating conditions. 

Currently, two types of mine detection technology 

are used. The first looks for anomalies associated 

with the presence of landmines, e.g. infrared (IR) 

imager, minimum metal detector (MMD), and 

ground penetrating radar (GPR). The second detects 

the presence of explosives directly. Thermal neutron 

activation (TNA) and nuclear quadrupole resonance 

(NQR) are two such techniques which detect the bulk 

nitrogen content of the explosives. When the 

technique detects explosives in trace amount, it is 

called trace explosive detection of which chemical 

sensing is an example [1]. 

While each of these sensor technologies is effective 

in detecting landmines in certain conditions, each has 

an associated false alarm rate (FAR) which is often 

excessive and impractical for mine clearance 

operations. In response to an urgent Canadian 

Forces (CF) operational requirement, Computing 

Devices Canada (CDC) and the Defence Research 

Establishment Suffield (DRES) have co-developed a 

multi-sensor mine detection system which employs 

data fusion techniques to reduce the system-level 

FAR such that mine detection operations can proceed 

at practical rates of advance. This paper describes 

these techniques. The resulting mine detection 

prototype, shown in Figure 1, has a number of unique 

characteristics as listed below [2]: 

• The use of multiple scanning sensors, the IR 

imager, the MMD, and the GPR, to increase the 

probability of detection (Pd); 

• The use of data fusion to reduce the FAR of 

detection; 

• The use of a confirmation sensor, the TNA point 

detector, to further reduce the FAR of detection; 

• The use of a remotely-operated vehicular sensor 

platform for personnel safety; 

• The use of an operator to select IR targets; and 

• The use of a marking system to mark potential 

mine locations for the mine clearing crew. 
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Figure 1. The Multi-sensor Mine Detection Prototype 

The detection process begins with the three scanning 

sensors identifying potential mine targets which are 

reported as individual sensor alarms to the data 

fusion processor. Initial data fusion processing 

reduces the potential mine targets by grouping 

individual sensor alarms into equivalence classes. 

Members from an equivalence class are assumed to 

originate from the same location. The TNA point 

detector is next positioned over the suspected 

locations to confirm the presence of landmines. 

Other mine detection systems have also been 

prototyped by a few other companies. An account of 

these other systems can be found in [3]. However, to 

the best of the authors' knowledge, the CDC system 

is the first in production. 

The remainder of this paper is divided into five 

sections. Section II gives an overview of the 

application of data fusion to mine detection. Section 

III discusses in detail the spatial correspondence and 

scanning sensor fusion modules on which this paper 

is based. The results of our study are presented in 

Section IV, followed by a discussion of the results in 

Section V. Section VI summarizes the paper. 

II. Data Fusion 
The   overall   data   fusion   process   includes   the 

following primary components: 

•     Calibration; 

Navigation Sub-system; 

Spatial Registration; 

Spatial Correspondence; 

Scanning Sensor Fusion; and 

Confirmation Fusion. 

2.1 Calibration 

Calibration refers to the overall process used to 

derive reference frame transformation, optical, and 

auxiliary sensor calibration parameters for the 

system. It is accomplished through a combined 

process of geometric calibration and optical 

calibration. Each sensor, scanning or confirmation, 

has its own frame of reference. So too does the 

vehicle, the navigation sub-system and its 

components, and all auxiliary encoders and sensors 

which measure relative positions or angles of system 

components. Geometric calibration gives numerical 

parameters for translations and rotations relating the 

various reference frames to one another. This 

information is essential in order to transform 

positional information, originally reported relative to 

a sensor reference frame, to the vehicle-centered 

reference frame. Optical calibration of the FLIR is 

performed so that operator designations within the 

displayed imagery can be transformed to positional 

vectors relative to the IR reference frame. Proper 

geometric calibration of auxiliary sensors is used to 

determine the TNA sensor position relative to the 

vehicle, which is also essential. 

2.2 Navigation Sub-system 

The navigation problem is one of state estimation 

which filters and transforms raw navigation sensor 

information to derive robust and highly accurate 

estimates of the motion state of the system. The 

vehicle motion state consists of translational velocity, 

translational acceleration, attitude, and angular 

velocity. The navigation sensors include a ground 

speed measurement unit, a three-axis accelerometer 

unit,    and    a   three-axis    rate    gyroscope    unit. 
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Measurements provided by the navigation sensors are 

input to the navigation processor which derives the 

motion state through the use of Kaiman filtering. 

The derived motion state is used in the registration of 

scanning sensor alarms in a common reference 

frame. 

2.3 Spatial Registration 
Spatial registration is the process of transforming 

positional information from any of the three scanning 

sensors to a common frame of reference. The 

accuracy of this process is highly dependant on the 

accuracy of the calibration process and the navigation 

filters. Once the sensor alarms are spatially 

registered in the local world reference frame, the 

detection information can be displayed to the 

operators) in a spatially correct manner. 

2.4 Spatial Correspondence 

Once all sensor alarms are spatially registered in a 

common reference frame, spatial correspondence 

algorithms are applied to partition the set of sensor 

alarms into classes, with each class representing 

those sensor alarms which could have resulted from 

the same local patch of ground or a single landmine. 

The correspondence decision for any two sensor 

alarms is based on their positions and the variance in 

this information. 

2.5 Scanning Sensor Fusion 

The information contained in the sensor alarms 

within a correspondence class is used to determine an 

overall position and confidence level for the suspect 

patch of ground. The overall confidence level is 

derived through a weighted summation strategy in 

which the weights are computed based on 

environmental and operational parameters. If the 

overall confidence level for a correspondence class is 

significant, a position for placement of the TNA 

sensor is computed, and the system automatically 

stops and positions the TNA point detector over the 

suspected mine location. 

2.6 Confirmation Fusion 
Measurements from the TNA sensor generate a 

confidence level that the local patch of ground under 

observation contains a sufficient amount of nitrogen 

to indicate the presence of a landmine. This 

confidence level is combined with the scanning 

sensor confidence level for this local patch of ground 

in order to generate the system confidence that this 

location contains a landmine. If this system 

confidence level is significant, a detection is 

declared, followed by the firing of the marking 

system. 

III. Spatial Correspondence and Scanning Sensor 
Fusion 

The following discussion is concerned with the 

spatial correspondence and scanning sensor fusion 

components/modules shown in Figure 2. Therefore, 

it is assumed that a sensor alarm has already been 

registered in a common reference frame. Each sensor 

reports an (x, y) alarm position and a corresponding 

detection confidence value. 

Spatial 
Correspondence 

Scanning 
Sensor 
Fusion 

Reference 
Frame 

Transformation 
parameters 

Inputs 

T 
Confirmation 

Sensor 
Fusion 

T 
Outputs for 

Target 
Marking 

Figure 2. The Data Fusion Process 

Two gating strategies, the error ellipse-based gating 

strategy and the chi-square gating strategy, will be 

presented below as candidates for the spatial 

correspondence module. Both gating strategies are 

followed by the use of a heuristic-based confidence 

value   updating   method   and   a   Kalman-based 
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positional update method in the scanning sensor 

fusion module. 

3.1 Error Ellipse-based Gating Strategy 
The error ellipse-based gating strategy is based on the 

premise that any alarm position is surrounded by an 

error ellipse. The minor and major axes of the ellipse 

can be derived directly from the variances of the 

sensor localization error in the x- and y-directions. 

Any two alarms are said to be in correspondence if 

their error ellipses intersect. The errors in the x and 

y-directions can take on different values. 

Determining the intersections of two error ellipses is 

equivalent to solving a fourth order polynomial. In 

general, intersection yields purely real roots for each 

intersection point. While it is necessary to check for 

real roots as a condition for intersection, this check 

by itself is not sufficient. Two special cases exist 

where the fourth order polynomial offers no root but 

the two sensor alarms are still in correspondence. 

Therefore, it is necessary to first check for the case of 

two error ellipses being identical and co-located as 

well as for the case of one error ellipse being 

contained within the other and the two are co-located. 
The existence of either condition is sufficient to 

declare correspondence without having to solve the 

fourth order polynomial. 

3.2 Chi-square Gating Strategy 
The chi-square gating strategy uses the Mahalanobis 

distance metric in calculating the separation between 

two sensor alarms [4]. The Mahalanobis distance 
between two sensor alarms, with position vectors &{ 

and a2, is defined as follows: 

DistMaha = A/(a1-a2)
rR-,(a1-a2) 

r = aj - a2, yields a vector that indicates how far 

apart the two alarms are. The distance measure 

provides a single figure that quantifies the spatial 

separation between the two alarms. The residual 

covariance matrix, R, is defined as 

R = E{rrT}. 

R is calculated from the individual sensor 
localization covariance matrices, PJR, PMMD, and 

PGPR . P for each scanning sensor is formed from 

the individual sensor localization error in the x- and 

y-directions. Since the sensor localization error in 

the x- and y-directions are assumed to be 

uncorrelated for each scanning sensor, the off- 

diagonal     elements     are     set    to     zero     and 

var.       0 
R, used in the Mahalanobis P = 

0 var. 

distance formula when associating two sensor alarms, 

is simply the sum of the two individual sensor 

localization covariance matrices. This simple result 

follows directly from a well known property of 

Gaussian random variables which states that all 
Gaussian random variables remain Gaussian under 

linear transformation [5]. 

All the alarms within a spatial correspondence class 

must satisfy the requirement that the Mahalanobis 

distance between each and every pair of alarms is 

less than a pre-determined threshold. This threshold 

(or gating distance) is chosen from the Chi-square 

distribution table based on the Chi-square probability 

and the number of degrees of freedom in the data. 

The positional vector of an alarm consists of its x and 

y components arranged in column format. Therefore, 

the square of the Mahalanobis distance between two 

sensor alarms, for the two dimensional case, can be 

written as: 

where   a, = 
x, 

A 
,1 = 1   and  2.     The  residual, 
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The covariance-weighted residual of the two sensor 

alarms has a Chi-square distribution with two degrees 

of freedom. If the residual is small, then DistMaha 

will be small. The Chi-square probability 

P(z2,2)=)p(z\2)dz2 

x2 

is used to decide the proximity of the two alarms. 

The Chi-square probability is the probability that the 

square of the Mahalanobis distance between two 

sensor alarms is greater than or equal to % . The 

gating distance % is chosen according to a pre- 

determined level of confidence between zero and 

one. For example, a confidence value of 95% 

(corresponding to a Chi-square probability of 0.05) 

dictates the use of a Chi-square distance of 5.99 when 

there are two degrees of freedom. In other words, 

95% of the fused alarms will be correctly associated. 

Both gating strategies are followed by the use of a 

heuristic-based confidence value updating method 

and a Kalman-based positional update method in the 

scanning sensor fusion module. The Kalman-based 

positional update will be discussed next, followed by 

the discussion of two variations to the heuristic-based 

confidence value updating method. 

3.3 Kalman-based Positional Update 
The advantage of Kalman-based positional update is 

that it utilizes sensor variances in determining the 

positional weights that are attached to the sensors. 

For example, if the MMD positional error variance is 

four times smaller than that of the GPR in one 

direction, then the MMD is more accurate than the 

GPR by a factor of two in that direction. A detailed 

mathematical description of the Kaiman position 

update method is presented below. 

When a spatial correspondence class contains only 

two members, the position vectors of two sensor 
alarms, ax and a2, can be combined by weighting 

them with the covariance matrices, P, and P2, and 

the cross-covariance matrices, P12 and P21, of their 

sensor localization errors. If the positional errors of 

one scanning sensor are independent of the positional 

errors of another scanning sensor (which is assumed 
to be the case here), then P12 and P21 are zero. The 

positional update for the fused alarm an is simply: 

fll2=P2(P1+P2)",a1+P1(P1+P2)"1fl2. 

The corresponding covariance of the fused 
alarm Mu is: 

Mu=Fl{F1+¥2y
iP2. 

Since a correspondence class can contain more than 

two sensor alarms, the general expression for the 

positional update is: 

a \,2,...,N 

V1 
fl,+... ™2 • • • "jV I 2-1M' •" "i-1    '+1"'-    N 

V;=l 

+ P1...P„jf>1...PMP/+1...Pj   aN 
1=1 

3.4 Confidence Value Updating Scheme 
The confidence value updating method employs two 

linear ramp mapping functions to map confidence 

values to a value between zero and one, one for 

spatial correspondence classes containing single 

alarms and the other for spatial correspondence 

classes containing multiple alarms.    Single alarm 
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classes are de-emphasized with confidence values 

within a prescribed range compared to multiple alarm 

classes. As shown in Figures 3 and 4 for the GPR, 

the weight applied to single alarm classes 

(represented by the slopes of the two linear ramp 

mapping functions) is reduced somewhat in order to 

reflect the fact that there is no other supporting 

evidence that there is indeed a mine at the reported 

location. 

GPR Linear Ramp Confidence Mapping 

100 150 200 

GPR Confidence Values 

300 

Figure 3. Linear Ramp Mapping Function for Multiple 

Alarm Clusters 

GPR Linear Ramp Confidence Mapping 

100 150 200 

GPR Confidence Values 

250 300 

Figure 4. Linear Ramp Mapping Function for Single 

Alarm Clusters 

The effect of applying the two sets of linear ramps to 

correspondence classes of multiple and single alarms 

on the Pd and the FAR depends on the employed 

gating strategy. The form of the linear ramps 

remains unchanged, but the thresholds and slopes 

will change. For example, if the gating strategy that 

is employed has a tendency to group alarms that 

should really not be included (i.e. a large gate), both 

the Pd and the FAR will tend to increase. In order to 

maintain the FAR low, single-alarm classes can be 

subjected to more severe thresholding than would 

normally be the case. The actual values for the 

thresholds and slopes are determined via a 

confidence value analysis on data collected before 

each mine detection mission. 

IV. Results 
The two gating strategies, together with the heuristic- 

based confidence update scheme and the positional 

update method, have been implemented and tested in 

Matlab. The data used in the analysis was collected 

at the Ground Standoff Mine Detection System 

(GSTAMIDS) Advanced Technology Demonstration 

(ATD) trials sponsored by the U.S. Army CECOM. 

The GSTAMIDS ATD trials were conducted at the 

Aberdeen Proving Grounds (APG) and Socorro trial 

site. The APG site provided a warm, humid test 

environment, while the Socorro site was hot and dry. 

A number of AT mine targets were used for the ATD 

including metal mines (M15, M15I, TM46, TM62M, 

and TM62MI), low metal mines (M19, M19I, 

TM62P, and TMA4), and non-metal surrogates 

(EM 12). These mine targets were surface laid and 

buried at depths of 1 to 4 inches. Approximately 

40% of the mines were surface laid. 

The Pd and FAR results of the two data fusion 

algorithms, each employing a different gating 

strategy, are tabulated below in Table 1 for 9 test 

runs at the APG trial site. The Pd and FAR results 

for the IR imager and the MMD are tabulated in 

Table 2. The GPR Pd and FAR results are not 

included for presentation due to the fact that its 

performance is proprietary to the manufacturer. The 

corresponding Pd and FAR for the simple "OR" 

operation on all the three scanning sensors are 

tabulated in Table 3. 
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Table 1 Results for Two Data Fusion Algorithms 

Data Fusion 

(Error Ellipse) 

Data Fusion 

(Chi-square) 

Run Pd (%) FAR(/m2) Pd (%) FAR (/m2) 

1 96.55 0.039 100.00 0.058 

2 93.10 0.046 96.55 0.086 

3 91.43 0.027 91.43 0.066 

4 94.29 0.022 94.29 0.062 

5 88.57 0.020 91.43 0.054 

6 85.71 0.025 85.71 0.061 

7 94.59 0.043 100.00 0.096 

8 96.55 0.026 100.00 0.054 

9 86.21 0.030 96.55 0.063 

Table 2 Results for Individual Scanning Sensors 

MMD IR 

Run Pd (%) FAR (/m2) Pd (%) FAR (/m2) 

1 62.07 0.116 100 0.056 

2 65.52 0.151 9655 0.063 

3 60 0.111 77.14 0.078 

4 60 0.108 85.71 0.059 

5 51.43 0.096 77.14 0.066 

6 54.29 0.004 62.86 0.073 

7 51.35 0.176 81.08 0.077 

8 58.62 0.110 100 0.014 

9 58.62 0.091 79.31 0.061 

Table 3 Results After an "OR" Operation 

"OR" Operation on IR, MMD, and GPR 

Run Pd (%) FAR (/m2) 

l 100 0.298 

2 100 0.347 

3 100 0.296 

4 97.14 0.297 

5 100 0.262 

6 94.29 0.272 

7 100 0.378 

8 100 0.314 

9 96.55 0.347 

The data fusion Pd and FAR results are then 

compared to the Pd and FAR results obtained with 

the IR imager and the MMD as well as the Pd and 

FAR results obtained with the use of a simple "OR" 

operation on the three scanning sensors. The 

comparison results are presented in Figure 5 below. 
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Figure 5. Pd Versus FAR Results 

V. Discussion of Results 

During the course of this investigation, two different 

gating strategies were examined under the spatial 

correspondence process. The first gating strategy is 

based on the premise that an alarm position is equally 

likely to be located anywhere within an error ellipse 

surrounding it. The second one is based on 

thresholding the "tail" in the distribution of the 

covariance-weighted residual of two sensor alarms to 

arrive at spatial correspondence classes. The "tail" in 

the distribution of the covariance-weighted residual 

of two sensor alarms gives an indication of the 

percentage of sensor alarms that are incorrectly 

associated. Both gating strategies are followed by 

the use of a heuristic-based confidence value 

updating method and a Kalman-based positional 
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update method in the scanning sensor fusion module. 

The   investigation  results  embody  the  following 

observations: 
• The use of data fusion produces superior Pd and 

FAR performance (as indicated by the diamond 

and square scatter plots residing closer to the top 

left corner) compared to the individual scanning 

sensors. 
• The use of data fusion produces a much better 

FAR performance compared to the use of 

multiple scanning sensors without data fusion 

(represented by the simple "OR" operation). The 

use of multiple scanning sensors increases the Pd 

but the resulting FAR is also extremely high, as 

indicated by the triangular scatter plot. 
• The error ellipse-based gating technique in the 

data fusion algorithm is superior to the chi- 

square gating technique. The error ellipse-based 

gating achieves the low FAR by accepting a 

slight reduction in the Pd. The percentage 

reduction in FAR is far greater than the 

percentage reduction in Pd. 
• The heuristic-based confidence value mapping 

scheme based on the results from a confidence 

value analysis provides good results. This is not 
surprising since a heuristic-based confidence 

value mapping scheme does owe its success to 

the availability of a good understanding of the 

confidence value behavior for a specific 

operational environment. 

data fusion tends to reduce the overall system Pd (as 

is indicated by the higher Pd achieved by the "OR" 

operation over that achieved by the two data fusion 

algorithms in Figure 4). Therefore, individual sensor 

detection performance is critical in simultaneously 

achieving high Pd and low FAR for all system 

operating conditions. 
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VI. Conclusions 

It can be concluded from our study that the use of 

data fusion, in conjunction with multiple sensors, 

provides a viable solution to the mine detection 

problem. It is important to note that the achievable 

FAR at this point is prior to the confirmation by the 

TNA sensor. Therefore, it is expected that the 

overall system FAR will be lower than the values 

tabulated in Table 1. It is also important to note that 
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Abstract - Image fusion aims at the inte- 
gration of complementary information from 
multisensor images, such that the result- 
ing image is suitable for further processing. 
Multisensor images may be of different reso- 
lutions. Wavelets with their multiresolution 
property, have proven to be effective in the 
blending of the coarse features and finer res- 
olution details of these images to produce a 
good fused image. The performance of two 
wavelet- based methods for image fusion is 
studied. One is the maximum-frequency rule 
and the other is a rule based on the standard 
deviation of the image coefficients. Multi- 
focal images and panchromatic-multispectral 
images are used as the test images. For 
both the image sets, the proposed standard 
deviation-based rule performs better than 
the maximum-frequency rule. The result- 
ing fused images have good spatial resolu- 
tion and preserve the salient features of the 
source images. 

Key words: image fusion, wavelets, multiresolu- 
tion 

1    Introduction 

Information from different sensors relative to 
the same scene can be used to obtain better 
knowledge of the scene than the use of a single 
sensor's information. Image fusion falls into 
the category of pixel-level sensor fusion. Mul- 
tisensor image fusion finds many applications 
in the fields of remote sensing, medical imag- 
ing, machine vision and Department of Defence 

(DoD). For land-use classification, for example, 
the Thematic Mapper (TM) images of LAND- 
SAT and SAR images can be fused to obtain 
a better picture of the area under considera- 
tion. In military applications, image fusion is 
generally applied for object or target recogni- 
tion. Data can be provided by radar, optical, 
infrared and other sensors. 

An important pre-requisite for image fusion 
is that the images to be fused must be regis- 
tered. This means that the pixels in the im- 
ages to be fused must precisely coincide to the 
same points of the image they represent. We 
consider registered images as inputs to the fu- 
sion process. The basic idea is to perform a 
wavelet packet decomposition of the source im- 
ages and use the best tree decomposition, to 
combine the coefficients according to some fu- 
sion rule. The most often used fusion rule is 
the maximum-frequency rule which picks the 
coefficient whose absolute value is the great- 
est. Another method uses an energy measure 
to choose between the coefficients. The stan- 
dard deviation of a 3x3 neighborhood centered 
around a pixel serves as an energy measure 
associated with that pixel. The fused image 
is obtained from the composite wavelet tree 
(formed by selecting the coefficients) by the re- 
construction process. 

The results of fusing multifocal images and 
panchromatic-multispectral images using the 
two fusion rules mentioned above are presented 
in this paper. Two source images are used 
in each case, but the methods are generally 
applicable to multiple source images. Multi- 
focal images arise when the distortion in the 
images is due to parts of the image  being 
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out of focus. These types of images are en- 
countered in digital camera applications. The 
panchromatic-multispectral images are satel- 
lite images of a region at different resolutions. 
While the panchromatic image has good spa- 
tial resolution, it has very little spectral in- 
formation. The multispectral image, on the 
other hand, has very good spectral resolution 
but poor spatial resolution. The composite or 
fused images in both the examples have good 
overall picture clarity and preserve the features 
at various resolutions. 

2    Wavelets and wavelet pack- 
ets 

Multiresolution analysis of images provides 
useful information for computer vision and im- 
age processing applications. The multiresolu- 
tion formulation is designed to represent sig- 
nals where a single event is decomposed into 
finer and finer detail. In the context of image 
analysis, multiresolution decomposition gives 
a coarse approximation image and three de- 
tail images viz., horizontal, vertical and diag- 
onal detail images. Thus the features dom- 
inant at various resolutions can be studied, 
which is not possible if conventional Fourier 
analysis is used. The multiresolution methods 
most commonly used for image fusion are the 
Laplacian Pyramid transform and the Discrete 
Wavelet Transform. Most recently, the Dis- 
crete Wavelet Frame (an overcomplete shift- 
invariant type of DWT) was also used for im- 
age fusion in [1]. 

2.1    The Discrete Wavelet Transform 

The concept of resolution defines a scaling 
function, and the wavelet function is derived 
from it. A set of scaling functions is defined in 
terms of integer translates of the basic scaling 
function [2] by 

<t>k{t) = <t>{t ~ k) (1) 

k G Z and <fr £ L2. Z and R denote the sets of 
integers and real numbers, respectively. L2(R) 

denotes the vector space of square-integrable 
one-dimensional functions. The subspace of 
L2(R) spanned by these functions is defined 
as 

v0 = Span{<f>k(t)}k (2) 

for all integers k from minus infinity to infinity. 
The over-bar denotes closure. This means that 

k 
(3) 

for any f(t) G u0. A two-dimensional family 
of functions is generated from the basic scaling 
function by scaling and translation by 

<l>jtk(t) = 2>'2<t>(Vt-k) 

whose span over k is 

(4) 

UJ = Span{(pk(2H)}k = Span{4>jtk{t)}k    (5) 

for all integers k G Z. This means that if f(t) G 
Vj, then it can be expressed as 

f(t) = ^ak<f>(2h + k). 
k 

(6) 

For j > 0, the span can be larger since <f>jtk(t) 
is narrower and is translated in smaller steps. 
This can represent finer detail. For j < 0, 
<f>j,k(t) is wider and is translated in larger steps. 
So these wider scaling functions can represent 
only coarse information, and the space they 
span is smaller. A change of scale thus implies 
a change in resolution. 

The important features of a signal can bet- 
ter be described or parameterized by defin- 
ing a slightly different set of functions i>jtk(t) 
that span the differences between the spaces 
spanned by the various scales of the scal- 
ing function. These functions are wavelets. 
Wavelets are basis functions of effectively lim- 
ited duration and are well-known for their lo- 
calization properties. The scaling functions 
and wavelets are generally required to be or- 
thogonal. This is because orthogonal func- 
tions allow simpler calculation of expansion co- 
efficients and follow Parseval's theorem that 
allows a partitioning of the signal energy in 
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the wavelet transform domain. The orthogo- 
nal complement of Vj in Vj+\ is defined as Wj. 
This means that all members of Vj are orthog- 
onal to all members of Wj. This requires 

<&,*(*),&■,<(<)> = f hAWiAW = o (7) 

for all appropriate j, k, I G Z. The relation- 
ship of the various subspaces starting at VQ is 
vo C V\ C 2*2 C ... C L2. The wavelet spanned 
subspace WQ is defined as 

vi = VQ © W0 

which extends to 

v2 = VQ®WQ®WI. 

This can be generalized as 

L2 = v0 © W0 © Wi © ... 

(8) 

(9) 

(10) 

when t'o is the initial space spanned by the scal- 
ing function <t>{t - k). The wavelets reside in 
the space spanned by the next narrower scal- 
ing function, Wo C v\, they can be represented 
by a weighted sum of shifted scaling function 
<j>(2t) as 

i){t) = ]T>i(n)V2(f>(2t - n)        (11) 
n 

where n G Z for some set of coefficients h\{n). 
This function gives the prototype or mother 
wavelet ip(t) for a class of expansion functions 
of the form 

^^k{t) = 2i'2^{2H-k) (12) 

where 2J is the scaling of t, 2~^k is the trans- 
lation in £, and 2^2 maintains the L2 norm of 
the wavelet at different scales. The set of func- 
tions 4>k{t) and i/>jtk(t) span all of L2(R). Any 
function g(t) E L2(R) could be written as 

oo oo       oo 

g(t)=   £  c(k)Mt) + Y,   E  <*0\*)^,*(<) 
k=—oo =0fc= 

(13) 
as a series expansion in terms of the scaling 
function and wavelets. The first summation in 
the above equation gives a function that is a 
low resolution or coarse approximation of g(t). 
For each increasing index j in the second sum- 
mation, a higher or finer resolution function is 
added, which adds increasing detail. 

2.2    Wavelet Packets 

The wavelet packet method is a generalization 
of wavelet decomposition that offers a wide 
range for signal analysis [3]. In wavelet packet 
analysis, the details as well as the approxi- 
mations are split to yield 2" different ways 
to represent the signal where n is the decom- 
position level. A single decomposition using 
wavelet packets generates a large number of 
bases which offer a more complex and flexible 
analysis. An entropy-based criterion is used 
to select the most suitable decomposition of 
a signal or image. This implies that at each 
node of the decomposition tree, the informa- 
tion to be gained by performing each split is 
quantized. The leaves of every connected bi- 
nary sub-tree of the wavelet packet tree cor- 
respond to an orthogonal basis of the initial 
space. For a finite energy signal, any wavelet 
packet basis will provide exact reconstruction 
and offer a specific way of coding the signal, 
using information allocation in frequency scale 
subbands. 

3    Image fusion using Wavelet 
Packet Decomposition 

The general method for image merger using the 
Wavelet Packet decomposition is as follows: 

1. The wavelet packet decomposition of the 
source images is performed, having chosen 
the wavelet basis and the depth or level of 
decomposition. 

2. The best trees for the images are found 
on the basis of some entropy-based crite- 
rion (in our case Shannon criterion) and 
the tree which has the greatest number of 
leaf nodes is chosen as the composite tree 
structure to be populated. 

3. The wavelet packet coefficients are then 
selected from the source images according 
to a fusion rule to populate the tree. The 
rules used in this paper are: 
Maximum frequency rule: selects the co- 
efficient with the highest absolute value. 
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The high values indicate salient features 
like edges and are thus incorporated into 
the fused image. The rule is applied at all 
the resolutions under consideration. 
Standard-deviation rule: calculates an ac- 
tivity or energy measure associated with 
a pixel. A decision map is created, which 
indicates the source image from which the 
coefficient has to be selected. 

4. The wavelet packet reconstruction of this 
synthetic or composite tree gives the re- 
quired fused image. 

Some variations in the above procedure may 
be necessary when dealing with special images 
like color images or Synthetic Aperture Radar 
(SAR) images. 

3.1    Multifocus image fusion 

Multifocus image fusion has been considered 
in [1]. These images arise in situations where 
only a portion of the scene is in focus while the 
rest is blurred. Camera position, quality and 
motion may generate such images which call 
for correction. 

Two multifocus images are considered, one 
in which the left half (pepsi can) is focused and 
another in which the right half (the chart) is fo- 
cused. To get a fused image, the wavelet packet 
decomposition scheme is used to select the co- 
efficients based on a fusion rule. The result- 
ing image is focused in all regions. A perfor- 
mance measure, p, is defined as the standard- 
deviation of the difference between the fused 
image and the ideal fusion result [4], 

fc£i gg*[/pr(«-,i) ifdiiJW 
N2 (14) 

where Ipr is the ideal fusion result, created by 
manual cut and paste and Ijd is the fused im- 
age. However, this performance measure only 
serves as a criterion for comparing the perfor- 
mance of various fusion rules and is generally 
not applicable to many of the real multisensor 
fusion problems as it is not possible to obtain 
the ideal fusion result manually. 

Figure 1:   Source images with different focus 
regions 

(a)     Maximum 
quency rule 

fre- (b)   Standard 
tion rule 

devia- 

Figure 2: Fused images 

The maximum-frequency rule gives a fused 
image with good overall focus but the letters 
on the chart are not quite clear. The error p, 
is 0.0402. The standard-deviation rule gives a 
better fused image in terms of overall focus. 
The associated error, p, is 0.0343, which is less 
than that of the maximum-frequency rule. The 
raw source images and the fused images are 
shown in Figure 1 and Figure 2 respectively. 

3.2    Panchromatic-Multispectral Im- 
age Fusion 

The IRS-1C satellite provides high spatial res- 
olution panchromatic (5m) images and multi- 
spectral images (25m) with poor spatial res- 
olution. The merged image should ideally 
have good spatial resolution and color informa- 
tion from the multispectral image. This gives 
a good picture of the scene under considera- 
tion. In [5], a Local Mean Variance Match- 
ing (LMVM) algorithm is used for the fusion 
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process, which yields a very good result. The 
result of this process is used as the ideal fused 
image for comparison purposes. 

The source images require the additional 
process of histogram matching before the 
Wavelet Packet decomposition. The his- 
togram matching of the high resolution chan- 
nel (panchromatic image) to each of the three 
low resolution channels - R, G, B of the multi- 
spectral image is performed to adjust radiome- 
try and improve the initial correlation between 
the images [5]. Then the Wavelet Packet de- 
composition and fusion processes are applied 
to each of the three channels. The detail coef- 
ficients are chosen from the high resolution im- 
age matched to the low resolution channels and 
the approximation coefficients are chosen from 
the low resolution channels according to the fu- 
sion rule. The composite color image with the 
required spatial details is formed from these 
three images. 

The maximum-frequency fusion rule gives a 
good reconstruction, with some blurring. The 
errors in the R, G, B channels pr,pg,pb, are 
0.0669, 0.0481 and 0,0572 respectively for the 
maximum-frequency rule and 0.1063, 0.0524 
and 0.0618 respectively for the standard- 
deviation fusion rule. The latter rule results 
in the details and brightness being enhanced, 
while the error in red increases and is visible 
as a distortion in the red patch of the fused 
image. Figure 3 and Figure 4 show the source 
images and fused images respectively. 

4    Conclusions 

In the study of the fusion of the two image sets 
(multifocal and panchromatic-multispectral 
images), it was found that the standard- 
deviation rule preserved the details well when 
compared to the maximum-frequency fusion 
rule. In the panchromatic-multispectral im- 
age fusion, the error in all the three chan- 
nels was found to be greater for the standard- 
deviation fusion rule but is preferred over the 
maximum-frequency rule when a little distor- 
tion in the color can be tolerated. The choice 

Figure 3: Source images 

(a) Panchromatic im- 
age (good spatial res- 
olution) 

(b) Multispectral 
image (good spectral 
resolution) 

Figure 4: Fused images 

(a)    Maximum 
quency rule 

fre- (b)   Standard   devia- 
tion rule 
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of the fusion rule used depends on the ap- 
plication. In a generic framework for im- 
age fusion [1], window-based, region-based ac- 
tivity levels were used for fusion of multifo- 
cal images alongwith a consistency verifica- 
tion scheme. Similar methods can be used 
for panchromatic-multispectral image fusion to 
improve the color information in the fused im- 
age. The Daubechies family of wavelets was 
used in this paper for a two-level wavelet packet 
decomposition. Other wavelet bases could be 
used. The source images in this paper were 
considered to be registered. The effects of 
slight misregistration on the fusion process is 
another area of active research. 
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ABSTRACT 

This paper presents an overview of a satellite images 
fusion system for mapping applications. The main goal of 
this system is to dilate the map's feature extraction 
bottleneck by semi-automating this process. This study 
deals with the linear planimetric features (LPF) extraction 
for the 1:50 000 topographical map creation. These features 
include roads, railroads, energy transmission lines and 
some types of rivers. Actually, the only data source used 
for their extraction is aerial black and white photographs. 
The objective here is to fusion multi-sources and multi- 
types information. This information ranges from satellite 
images (visible and radar) to domain based models and of 
expert's modeled knowledge, strategies and rules. The 
whole system includes an operator who will give inputs 
and validates the results along the whole task. 

Key Words: remote-sensing, satellite images fusion, semi- 
automatic mapping systems, expert systems 

1. INTRODUCTION 

Since childhood, everybody learns to position 
himself in his environment. As some seem to possess 
an integrated inertial positioning system in then- 
brain, the others needs to consult maps on regular 
basis. Maps exist since the beginning of humanity. 
Their development depends on the improvement in 
data acquisition and processing technologies. Data 
acquisition traditionally reserved to land surveyors 
extend to aerial photographs and now to digital 
images. Maps edition develops chronologically from 
unique hand-made maps to sophisticated software 
digital maps. If land surveyor's data can be edited 
directly, it is not the case of aerial photograph data. 
The land surveyor always preprocesses the first as 
the second is given in a raw format. Thus, a new task 
appears in the map creation process: map's features 

extraction from visual data. Experts assigned to this 
task are known as photo-interpreters. Their task is to 
extract map's features from aerial black and white 
(B&W) photographs used in stereoscopic (3D) 
models. For the 1:50000 official topographic map 
production in Canada, their job consists on extracting 
from 1:60000 aerial B&W photographs the main 
features such as the hydrographic network, contour 
lines, roads, railroads, energy transmission lines, 
vegetation and buildings. In Canada, topographical 
maps are updated each three years in urban areas and 
each five to eight years in rural areas. However, some 
areas such as forestry companies clear cuts zones are 
mapped each year for control purposes. 

Given that photo-interpreters training process takes 
up to ten years in some case [1], a problem occurs to 
get enough experts for the amount of incoming data 
and required maps (particularly in Canada). That's 
one of the reasons why official mapping is still using 
as a unique image data source aerial B&W 
photographs. They don't have the human resources to 
process satellite's remotely sensed data. Hence, this 
rich data sources are lost, in the mapping area. The 
second reason is the high accuracy required for 
mapping. If this criterion was good few years ago to 
discard satellite images, it is now less true and will 
probably be false in a close future with the apparition 
of high-resolution satellites. 

Hence, the bottleneck in mapping is between the data 
acquisition and the map edition, at the photo- 
interpreter tasks level. The objective of the research 
project presented in this paper is to dilate this 
bottleneck by semi-automating the linear planimetric 
features (LPF) extraction and classification tasks . To 
reach this objective, photo-interpreters capacities and 
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the rich sources of information offered by satellite 
remotely sensed data should be integrated in a unique 
system. 

LPFs include roads, railroads, energy transmission 
lines and rivers (only rivers geometrically looking 
like roads, as the main objective is road extraction). 
The choice of the LPFs is based on their strategic 
importance and their complexity. Everybody from 
the military to John Doe uses road maps. This feature 
is the most changing cartographic element. New 
roads are constructed, existing roads are modified 
relatively often if compare with the other map's 
features. The other LPFs are also strategically of first 
importance. On an other level, LPFs extraction 
represents a good challenge for their complexity. 
These features can require radiometric, geometric 
and topological information for their extraction. 
Some 3D geometric information is available only by 
depth perception. No algorithms today allow getting 
such information. 

Thus, a human operator have to be include through 
the LPF extraction process. Moreover, the human- 
machine cooperation should be optimized (i.e. the 
most interesting as possible for the human and with 
the highest level of performance). 

The system under development aims at the 
integration of multi-sources and multi-types (visible 
and radar) images, domain models and expert's 
knowledge. These last interacting with the human 
operator. The output of the proposed system is 
considered as a 3D symbolic map. Each voxel of this 
map will contain (X,Y,Z) terrain coordinates, class 
membership, accuracy information, etc. On this map, 
LPFs will be symbolized by their respective 
cartographic symbols. Hence, LPFs extraction does 

Figure 1: The image inputs, semi-automatic processing 
unit and the symbolic map output 

not only consist on identifying a road, for example, 
but also to classify this road as highway, principal or 
secondary (with respect to the details of the 
cartographic symbols). Figure 1 shows the diagram 
of the global system under development. 

II. METHODOLOGY 

Photo-interpreter task is positioned between the 
raw image data and the extracted and classified 
edited map data. This task can be resumed in three 
steps: structuring the data, identifying and classifying 
the feature. Previous works on LPFs extraction are 
almost exclusively concentrate on structuring the 
data. 

H.a. Primitive extraction 

Raw image data consists of a two-dimensional 
(2D) pixel array. The primitive extraction task (to 
structure the data) consists on grouping the pixels 
into basic structures. For road detection, these 
structures are linear segments that are extracted 
following one or many criteria. These criteria can be 
single pixel's radiometry, radiometry variations, 
geometry of the structure, etc. Unfortunately, many 
of these criteria vary from one zone to another. 
Hence, many road detection algorithms are specific 
to a particular road's type, context (urban, rural) and 
image's resolution and type. Some methods detect 
roads in a rural context using visible images [2][3]. 
Few methods are enough general to detect roads in 
both urban and rural contexts and on many resolution 
images [4][5][6]. The two first are developed on 10- 
meters resolution SPOT Panchromatic visible 
images. The third is developed for radar type images. 
As the first is relatively fast and easy to use in order 
to detect a road network, the second needs much a 

priori knowledge. The third is very 
time-consuming and not usable actually 
for real-time applications. Few studies 
are conducted concerning others LPFs 
primitives extraction [7] [8] [9] and no 
algorithms seem specifically developed 
for this purpose. 

lib Features identification 

As previously mentioned, no studies 
seem to have been conducted in order to 
identify railroads, energy transmission 
lines and road looking rivers. The only 
studies on this subject are primitives 
filtering methods in roads primitive 
extractions. For example, [6] extracts in 
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a first time road's looking primitive and in a second 
time removes primitives which seem to be artifacts. 
This subject is conducted in almost all studies 
concerning road detection. 

II. c Features classification 

A research field that seems to be neglected is the 
features classification. If a road primitive is 
extracted, how to classify it as a highway or a 
principal road? Moreover, how to assign to it a 
specific cartographic symbol? 

The current research project tackles the challenge of 
linking the image data to the final symbolic map by 
structuring, identifying and classifying the LPFs. To 
reach this result, the following methodology is used: 

fusion of the existing LPFs primitive extraction 
techniques; 
Combining them with the problem reality, the 
data acquisition systems and the decision space 
(symbolic map) models; 
Propagates each known data by domain expert's 
modeled    information    such    as    rules    and 
strategies; 
Finally,  integrates  all  the  data  sources  and 
information in a unique  system  including a 
human operator that gives primitives extraction 
input (starting point) and who validates the 
system's results. 

m. MODELS 

To extract mapping features, knowledge about the 
features   in  the  reality 
have to be known. In a 
second time, knowledge 
about        the data 
acquisition systems have 
to be modeled. In fact, 
each sensor shows a 
particular facet of the 
reality. Visible and radar 
images of the same zone 
can be completely 
different. Hence, it is 
important to know for 
each reality LPFs, the 
characteristics of their 
images. Finally, 
knowledge about the 
decision space, here the 
symbolic map, should be 

ZB 

well known. The expected result knowledge will 
constraint the system's accuracy for positioning of 
the extracted LPF (centimeters, meters or decimeters) 
as of the required details (all the road network or 
only highways and principal roads). 

III. a Problem reality model 

The problem reality model is principally based on 
road construction norm books. The current project 
uses the Quebec's road construction standards [10]. 
In this paper, each road types are presented and 
detailed as their geometric characteristics. Each road 
type is presented with its number possible tracks, 
their width, their minimum and maximum curvatures 
and slopes, etc. This information is "translated" to an 
object-oriented UML (Unified Modeling Language 
[11]) model following the specific LPF extraction 
from image data source. Thus, information such as 
road's tracks inclination in curves that are at the 
centimeters level, were not modeled. Photo- 
interpreter depth perception accuracy ranges from 
one to five meters on high-resolution 1:60000 aerial 
photographs. Figure 2 gives an overview of the 
reality based LPF hierarchy. 

Another source of information related to the reality is 
the relation between each the LPFs. Topological 
information will be modeled here following the 
intersection, disjunction, inclusion, neighborhood and 
equality operators. For example, a forestry road 
cannot physically intersect a highway. A railroad 
cannot physically intersect a river. In counterpart, the 
railroad can intersect the river at another level, on a 
bridge for example. 

LPF 

Railroad 

Energy 
Line 

2 
r 

Highway National Regional 

TYPEB TYPEC 

Figure 2: Problem reality model's overview 
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IILb Image models 

Image models share 
a common part that is 
the image, the 
stereoscopic model and 
the segment (primitive) 
structures. For each 
sensor, a specific part 
uses the main reality 
structures applied to the 
specificity of the sensor. 
For instance, road 
radiometric 
characteristics will be 
described differently in 
visible and radar images. 
In visible, road pixels 
appear bright. On the 
other hand, in radar they 
appear dark. On another 
level, structures definition will not be as much 
specific as in the reality. For example, the 
identification of a LPF on a satellite image cannot go 
more specific than "road in a rural zone". The 
classification of this road as highway or forestry road 
will use knowledge contained in the reality model or 
expert's knowledge source. Figure 3 shows an 
overview of the general image model. 

IILc Decision space model 

Finally, the decision space model contains the 
information relative to the symbolic map. It shows 
the characteristics of the mapping symbols that will 
be used and what sets of structures they include. 
Knowledge relative to the map's visualization is also 
contained here. Figure 4 shows a symbolic map 
model overview. 

Image 

Segment 

Hypothesis 

■> 

Stereoscopic 
model 

I 

Figure 3: Image model overview 

IV. EXPERT'S KNOWLEDGE 

The experts knowledge elicitation task is one of 
the most delicate task in the development of 
knowledge based systems. Various techniques can be 
used to perform this. Here, familiar and unfamiliar 
cases technique [12] was used. Four experimented 
photo-interpreters working for between 15 to 25 
years at the official mapping service in Canada were 
interviewed. As the resulting symbolic map will be 
complete with the 1:50000 topographical map 
constraints, 1:60000 aerial photographs were first 
used. Within this familiar case, experts explain their 
methods and tricks to extract the LPFs from the 
stereoscopic model. They explain how they 
discriminate the different LPFs from the others, and 

However, instead of 
all the data and 
information contained 
in these models, the 
system is incomplete 
without tools for 
propagating the 
information from the 
image raw data to the 
decision space. These 
tools are here 
knowledge structures 
modeled in a 
procedural way such 
as rules and strategies. 

Sensor Image 

«instance of» 

Image: visible 

«Instance* of» 

Image : ladar 

Cartographic symbols of the 
Canadian 1 :50000 topographical 
map 

Stereoscopic 
model 

Segment 

Map's legend 

I 
«is represented  by» 

n'nstance of» 

I 
LPF   cartographic   symbols 

Figure 4: Symbolic map model overview 
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how they classified them. Moreover, they explain the 
entire topographical map features extraction task. 

In a second time, satellite images were used. At first, 
IRS-1 5,5 meters-resolution visible image was shown 
to them. They had to explain the same extraction 
tasks as with the aerial images. Their reasoning was 
almost the same and they face no difficulties to 
extract the LPFs. Next, a Radarsat fine mode 8- 
meters resolution image was used with the same 
requirements. With explanations on the data 
acquisition techniques, they feel able to identify all 
the map's features again. Their knowledge was 
compiled and translated in two procedural knowledge 
structures: strategies and rules. 

IV. a. Strategies 

A Strategy is defined as "the art of devising or 
employing plans or stratagems toward a goal". In the 
context of the problem it can be defined as "the art of 
devising the 1:50000 topographical map features 
extraction tasks". It clearly appears that the photo- 
interpreters begin their features extraction task by 
extracting the terrain modeling information 
(hydrographic and contour lines). Next, they extract 
the human-made LPFs (roads, railroads and energy 
transmission lines), the vegetation and finally the 
buildings (all in urban areas and norm's specifics in 
rural areas). As been a hydrographic feature, rivers 
will logically be extracted before the other LPFs. 
Following individual expert's strategies, rivers will 
be extracted far much or not much before the other 
LPFs, but always before due to their 3D 
informational contents. If this information cannot be 
obtained in 100% cases verifiable (human are not 
machines), it gives at least a good hint for the 
identification of the processed LPFs. 

At specific LPF classification level, experts use also 
the strategies. Roads is the LPF which present far the 
most different class types. These classes range from 
urban highways to rural local roads. The knowledge 
elicitation task leads to the modeling of three distinct 
strategies. In the two first, experts start roads 
extraction by the most important i.e. highways. When 
they begin to extract a road, they extract the whole 
road in one step. Next, they extract national roads 
and sometimes, secondary roads. At this level, a 
difference occurs. The experts using the first strategy 
continue to extract the roads in a "from the most 
important to the less important" until the end of the 
road extraction task. The experts using the second 
strategy continue through the same way as the 
previous except that they do it only in specific areas. 

Their goal here is to fractionate their working area in 
approximately equal zones before to continue 
through the first strategy in these zones. One of the 
difficulties of their task is not to forget any feature. 
Then, it is possible for them to be concentrated on 
restricted perimeters. This facilitates their job and in 
the same time increases their performances. The third 
strategy was not encountered with the experts. 
However, it seems that it is well used. It consists as 
super-impose an artificial grid to the process stereo- 
model. As the second strategy, the operator works in 
a reduced area. On a feature point of view, the two 
first strategies can be qualified as hierarchical, and 
the third as sequential. 

Strategies lead to hypotheses about "what the 
operator is working with" based on the expert's 
behavior. Another part of knowledge, the rules, try to 
answer the same question, but based on different 
information sources. 

IV.b. Rules 

Rules are defined as "a knowledge structure that 
relates some known information to other information 
that can be concluded or inferred". They are 
presented in the form of "if A then B". A is called the 
premise as B the conclusion of the rule. Rules can 
have a single or multiple premises. However, their 
structure should be as simple as possible to avoid lost 
of information. For example, if a rule is composed of 
three premises like "if A and B and C then D", an 
error on only one premise can shutdown the whole 
rule (conjunction). In counterpart, the same rule split 
up in two or three separate rules decrease this lost of 
information. It is not always possible to do so, but it 
should be that as often as possible. Notice that a 
single premise rule is already complex in the current 
data fusion context. In fact, a premise such as "if 
road's pixel then LPF is a road" implies the fusion of 
pixel's information coming from different data 
sources, here in each process images. Figure 5 
presents a single premise rule in a multiple image 
fusion context. Figure 6 shows a concrete example of 
the complexity of multi-sensors observation fusion. 
On a visible-type image (SPOT Panchromatic), a 
straight energy transmission line is clearly visible. 
For the same area, radar-types images (Radarsat and 
ERS-1) contain a curved feature. As radar is an 
active system, it is sensible to terrain geometry. The 
image's zone is in the Canadian Rockies, a very high 
relief area. It explains why a straight line in the 
reality can be represented as a curve on an image. 
This example shows the importance to have good 
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Observation Xsens„ri is 
A 

Observation X^nsori is 
A 

Observation Xx„sori is 
A 

models of the problem 
(section II) and the 
complexity to process multi- 
types image-based rules. 

The expert's rules modeled 
premises fall in the next four 
categories: 

radiometric; 
geometric (2D and 3D); 
topologic; 
hypotheses    (i.e.    rules 
where    one    or    more 
premises are based on previous hypothesis). 

The two first categories relate image data to the 
decision space trough the reality model. For example, 
a bright pixel on a visible image primitive and the 
same pixel dark on the equivalent primitive in a radar 
image (image model) will lead to a road conclusion 
(decision space) based on the reality knowledge of 
this LPF (reality model). The third category relates 
the decision space (hypothesis) to the reality model 
(see the section III 
problem reality 
model). Finally, the 
fourth category 
relates the  decision 
space information to 
the   three   previous 
categories   and   the 
reality   model.    For 
example,   state  two 
hypotheses that 
seem,    after    some 
rules testing, lead to 
a road conclusion. A 
fourth category rule 
can   be   "if  the   2 
tested      hypotheses 
lead    to     a    road 
conclusion  (premise 
1) and that the angle 
between these LPFs 
ranges   between   75 
and     90     degrees 
(premise       2 
geometrical)       then 
add   confidence    in 
the roads hypothesis 
(conclusion)". 

IF A THEN B 

Figure 5: Single premise rule in a multiple image fusion context. 

of rules, confidence factors (CF) were used. It has the 
advantage of being close to the expert's language. 
These CF range from -1 to 1, where -1 (resp. 1) 
means "definitely not" (resp. "definitely yes") as 0 
states for "I don't know". For example, if an expert 
said "if I see curves on the analyzed primitive, then it 
is definitely not an energy transmission line". The 
confidence on the premise "I see curves" and on the 
rule "it is definitely not" is given by the CF. These 
CF can range either from -1 to 1 or from 0 to 1 

To translate experts 
knowledge in terms 

Fine Mode Radarsat 
8-meters resolution 

ERS-1 
30-meters resolution 

SPOT (Panchromatic) 
10-meters resolution 

(images © Canadian Space Agency) 

Figure 6: An example of multi-types image data 
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Figure 7 : The system's data sources fusion 

following their use. The last form can be more 
convenient in for use with the Dempster-Shafer 
theory or the fuzzy set theory. It respects the original 
idea of ranging from "not to yes" with zero as 
minimum of knowledge. In fact, the Shannon entropy 
maximum of uncertainty is located at 0.5 for a binary 
source of knowledge. Thus, certainly theory or 
Dempster-Shafer can easily be used for rules 
combination. However, each situation requires only a 
specific set of the modeled rules. If all the 
information leads to two specific results, it is more 
logical to try to relieve the ambiguity on them instead 
of searching information for another hypothesis. The 
rules should thus be structured in trees where the first 
nodes will be chosen following specific criteria. 
These criteria will be based on the other part of the 
modeled knowledge: the strategies. The combination 
of these two types of knowledge will allow the 
linking of the analyzed primitives to the decision 
space. [13][14] present in more details this part of 
this research project. 

V. MODEL AND KNOWLEDGE FUSION 

Figure 6 represents diagrammatically the relations 
between the system's data sources. These sources, 
presented in the previous sections are the system 
inputs and output, the different domain models, the 
rules and strategies basis and the operator (human). 
All the information is processed in an information 
fusion center. 

A multi-agents architecture system is currently under 
development for the current research project system's 
implementation. 

VI. CONCLUSION AND FUTURE 
DIRECTIONS 

The main objectives of the presented project are 
actually reached. The delicate task of expert's 
knowledge elicitation and modeling is complete. 
Domain models are also complete. The system under 
development uses far much knowledge sources than 
any previous works on road features extraction. 

However, the next step is the concrete integration of 
the systems parts. On a fusion point of view the final 
system should handled: 

Images fusion 
Propositions fusion 
Premises fusion 
Rules fusion 
Expert's based knowledge fusion 
Hypotheses fusion 
Results fusion. 
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Abstract - Image fusion is proposed as a method to 
combat errors during transmission of images on 
wireless channels. For images represented in the 
wavelet domain, diversity is used to obtain multiple 
data streams corresponding to the transmitted image 
at the receiver. These individual image data streams 
are fused to form a composite image with higher 
perceptual quality. Diversity combining methods 
using image fusion exploit the characteristics of the 
wavelet transform. Simulation results demonstrate 
that the perceptual quality of the received image can 
be significantly improved. 

Key Words: image fusion, diversity combining, 
image transmission 

1. Introduction 

The use of multiple images in fields such as 
remote sensing, medical imaging and automated 
machine vision has increased in the past decade. As 
a result of this, several image fusion techniques have 
been developed to produce a composite image with 
more useful information content for automatic 
computer analysis tasks as well as for human 
perception [1,2]. This paper applies image fusion 
concepts to a new area, namely to image transmission 
systems that employ wireless channels. For image 
transmission over wireless channels, several methods 
have been proposed in the literature [3-8] that use 
different types of error-correction coding, ARQ, or 
post-processing to deal with the channel errors. The 
goal of this paper is to introduce a novel image 
transmission method based on image fusion that can 
produce an image of high perceptual quality at the 
receiver. 

Before an image is transmitted over a wireless 
channel, it is desirable to implement a method for 
representing the image that is resilient to channel 
errors. For an error resilient representation, wavelet 
based decomposition will be utilized for transmitting 
the image in its uncompressed state. During 
transmission, the image will be subject to bursty 
channel errors. Therefore, a technique is needed at 
the receiver to correct or conceal any errors that may 
degrade the perceptual quality of an image beyond 

acceptable limits. 
Diversity is a communication method used to 

improve wireless transmission that utilizes 
independent (or highly uncorrelated) communication 
signal paths to combat channel noise. The 
independent signal paths provide the receiver with 
multiple signals for appropriate diversity processing 
of the received signals. For image transmission, a 
diversity technique has been employed in conjunction 
with ARQ [4]. This approach involves switched 
antenna diversity that operates in the data domain. 

Unlike data domain diversity combining 
methods, the diversity combining method we propose 
here operates in the image domain by using the 
properties of the original image or its wavelet 
transform. Our novel approach to wireless image 
transmission combats the effects of fading and other 
channel impairments by employing a diversity 
combining method that attempts to directly improve 
image quality. This diversity combining method was 
inspired by die image fusion work of Burt [9] where 
he produced one composite image from multiple 
source images with different information content. 
Burt implemented his fusion method by taking a 
Laplacian pyramid transform of each source image, 
combining the transforms based on measures in the 
transform coefficient neighborhoods, and performing 
the inverse transform to obtain the composite image. 
Later, Li et al [10] used this same image fusion 
methodology but with the wavelet transform. For 
image transmission over wireless channels, two or 
more diversity channels can be utilized to obtain 
multiple bit streams at the receiver, with each bit 
stream independently representing the image data. 
Then these bit streams can be fused in the image 
domain to improve the perceptual quality of the 
received image. Due to the random nature of radio 
propagation, we expect the errors on the individual 
channels to be independent or at least highly 
uncorrelated. This allows for a fusion method that 
yields excellent quality images in the presence of 
wireless channel errors. 

The organization of the rest of the paper is as 
follows. Section 2 briefly describes the channel 
model used for simulations. Our diversity combining 
method based on image fusion is discussed in Section 

ISIF © 1999 207 



3 along with some results and conclusions are given 
in Section 4. 

2. Channel Model 

Wireless channels are corrupted by errors that 
are bursty in nature. Modeling of the physical 
channel is a complex problem that depends upon the 
movement of the transmitter, receiver, and other 
objects in the signal path. While a number of models 
that characterize the physical phenomena have been 
proposed in the literature, here we employ an channel 
model to generate error sequences that attempts to 
represent the input-output relationships of the 
wireless channel. 

One popular input-output error model is in 
terms of a finite state Markov chain. In this model, 
each state represents a different channel condition 
and the associated error behavior. These models are 
specified in terms of transition probabilities between 
the individual states and the corresponding error 
probability for each state. The model we use for our 
simulations is a two-state Gilbert-Elliott channel [11, 
12]. 

The two-state Gilbert-Elliott channel has one 
good state and one bad state, represented by 0 and 1 
respectively as shown in Figure 1. This channel can 
also be described by its burst error length and error 
rate parameters, which are related to the transition 
probabilities between states and the error 
probabilities of the individual states. The average 
error rate is the proportion of errors to the total 
number of transmitted bits and the average burst error 
rate is the time spent in the bad state. While in the 
good state the bits are transmitted incorrectly with 
probability Pe(0), and while in the bad state the bits 
are transmitted incorrectly with probability Pe(l)- 
For this model it is assumed that Pe(0) « Pe(})- The 
two-state channel model can be described by the 
binary Markov process y„ with the following 
transition matrix: 

Figure 1. Two-state Gilbert-Elliott channel 

random variable with mean 1/(1-/?). The steady state 
probability of the channel being in a bad state is 
;r, = (l - p)/(r +1 - p)- Also, the steady-state error rate 

is given as e = (pe(0) • r + P„ (1) • (1 - p))/(r +1 - />) [ 13]. 

This model will be used to generate errors to corrupt 
the images in our simulations in order to evaluate the 
performance of our diversity combining method. 

3. Image Fusion for Diversity Combining 

Our diversity combining method for 
uncompressed images involves computing the two- 
dimensional wavelet decomposition of the source 
image and quantizing the resulting wavelet 
coefficients. The coefficients are then transmitted as 
a bit stream over a wireless communications system 
employing diversity without any error control. 
Diversity is used to obtain multiple copies of the 
decomposed image data at the receiver. At the 
receiver, the individual decomposed images are fused 
to form a composite wavelet decomposition and then 
the final received image is reconstructed. This 
diversity combining method based on image fusion is 
depicted in Figure 2. 

The first step in wireless image transmission is 
to consider how the image will be represented for 
transmission. The    two-dimensional    wavelet 
decomposition of an image is implemented with 
traditional    subband    filtering    [14]    using   one- 

p i-p 

r    \ — r 

where y„=0 if the channel is in the good state at time 
n, and y„=l if the channel is in the bad state at time n. 
The average burst length L is a geometric random 
variable with mean Mr, and the average time the 
channel is in the good state is also a geometric 
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Figure 2. Image transmission method. 
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dimensional low-pass (H) and high-pass (G) 
quadrature mirror filters. First, the input image is 
convolved with H and G in the horizontal direction 
and then the output rows are down-sampled by two. 
Then the two resulting sub-images are further filtered 
along the vertical direction followed by down 
sampling of the columns. At the output, the source 
image at resolution k is decomposed into four sub- 
images: an image at lower resolution level k-\, a 
horizontally oriented detail image, a vertically 
oriented detail image, and a diagonally oriented detail 
image. The filtering can be repeated by using the 
low-resolution image as the source image until the 
desired decomposition level is reached. The image at 
resolution k is reconstructed from the four sub- 
images at resolution k-\ using reconstruction filters H 
and G. The rows are up-sampled by two (one row of 
zeros is inserted between each row) and filtered in the 
vertical direction. Then the same procedure is 
followed in the horizontal direction. At the output, a 
reconstructed image at resolution k is obtained. 
Repeating the same procedure, the original level at 
which the decomposition was started can be reached. 

In this paper, we use images transformed in the 
wavelet domain with uniform scalar quantization of 
the coefficients. The results obtained will help 
demonstrate the usefulness of image domain diversity 
combining for image transmission over wireless 
channels. For images without compression, the 
wavelet representations are obtained from the bit 
streams received on the individual diversity channels. 
In general, the low-resolution subband is more 
important perceptually and a large error in pixel 
intensity can seriously affect image quality. An error 
in the high frequency subband is not as important to 
the overall image quality. Because the characteristics 
of the subbands are different, the diversity-combining 
rule for the low-resolution subband differs from the 
combination rule for the high frequency subbands. 
After obtaining the composite decomposed image 
from fusing the individual transformed images, the 
inverse wavelet transform is performed to obtain the 
final image. 

The idea behind diversity combination is to 
significantly reduce visible errors in the received 
image without necessarily using techniques such as 
ARQ or error correction coding. The diversity 
combining method is demonstrated here using two 
independent channels, channel one and channel two, 
but the idea can easily be extended to more channels. 
When the bit streams containing the decomposed 
images are received, a decision is made as to whether 
to take the data from channel one, channel two, or 
from a combination of both. Depending upon the 
channel state the two received bit streams will 
contain the same values for many of the coefficients. 

The low frequency subband and high frequency 
subbands have different sensitivities to bursty 
channel errors. Therefore, the rules for the two types 
of subbands are different. For both of the different 
subband types there are two combination modes: 
selection and coefficient combining. In the selection 
mode, one coefficient is selected from the two 
decomposed images and placed in the composite. In 
the coefficient-combining mode, groups of 
coefficients from neighborhoods of both decomposed 
images are examined and a value is placed in the 
composite decomposed image based on measures 
from both coefficient neighborhoods. The 
combination method is similar to using both image 
averaging and spatial filtering to remove channel 
noise. 

Since the low-resolution subband is more 
perceptually important to the image, more care must 
be taken when dealing with detected channel errors in 
the low-resolution subband. First, the coefficients 
from the two diversity bit streams are compared as 
they arrive at the receiver. If the received wavelet 
coefficient values are the same, we assume that the 
value is correct and select the coefficient from either 
channel to place in the combined transform. If the 
coefficient values are different, the receiver waits 
until an m by n neighborhood of coefficients 
surrounding the coefficient of interest is available 
from both channels. Small neighborhoods (i.e. 3 by 
3) of an image are generally smooth. Therefore, the 
intensity values usually do not vary significantly 
within these neighborhoods. When the two received 
coefficients at location (i, j) are different, the m by n 
neighborhoods of coefficients around them are 
grouped into a set of 2mn values. Then the median 
value is chosen as the coefficient to place in the 
combined low-resolution sub-image at location (/, j). 
In general, this median-based method tends to be 
more robust to large channel errors than averaging 
the coefficients in order to obtain a combined 
coefficient value. Therefore, for each (/, j), the 
coefficient placed in the combined low resolution 
subband image is defined as follows (assuming m and 
n are odd): 

cjj)= 
'cu(i,j) \£cu(i,j)=cu(i,j) 

for      /, i>   ((•   »-1       •   rn-\\ I .   n-\       .   n-\ 

where cLc represents the wavelet coefficients in the 
low-resolution subband of the combined transform, 
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and CLX and CL2 are the low-resolution coefficients 
obtained from two diversity channels. 

An error in the high frequency subbands does not 
affect the quality of the final reconstructed image as 
much as in the low frequency subbands. Also, most 
of the coefficients have magnitudes close to zero. 
Therefore, the errors in the detail subbands are 
processed differently when the received wavelet 
coefficients are not the same. Again, if the received 
wavelet coefficient values are the same, we assume 
that the value is correct and place this value in the 
combined transform. However, if the received 
coefficients are different, the coefficient with the 
minimum absolute value is chosen and placed in the 
final combined transform. The idea behind this 
selection method is that a coefficient that implies a 
strong edge where one does not exist will visually 
degrade the image more than a coefficient that 
implies no edge where one really exists. Since most 
of the coefficients in the high frequency subbands are 
near zero, there is a better chance that the coefficient 
with the minimum absolute value will be correct. 
Even if we set the coefficients to zero in the high 
frequency subbands, the quality of the final image 
will still be acceptable. The combined coefficient 
values for each location (ij) in the high frequency 
subbands are given as follows: 

cHc(.iJ) = 

cHl(i,j)    if cHl(i,j) = cH2(i,j) 

cm('» J)    if \cm (»'. J')\ < \CH2('»J')\ 

cH2(Uj)   if|cff2(/,;)|<|cff,(»,y)| 

where CHc represents the wavelet coefficients in the 

detail subbands of the combined transform, and cm 

and CH1 are the detail subband coefficients obtained 
from two diversity channels. 

In order to show the feasibility of using 
diversity combination for wireless image 
transmission, simulations were performed using 
uncompressed images. The results are compared to a 
system that uses error control coding for error 
protection. In our experiments, images were 
transmitted using a BCH(255, 179) code with error 
correction capability of 10 bits. For each simulation, 
two bit error patterns were generated using the two- 
state Markov model described in Section II. Both 
error patterns were applied to the image data bit 
streams for the diversity combination method and one 
of the error patterns was used for the error coding 
method. The parameters used for generating the bit 
error patterns were an average burst error length of 

500 bits and various bit error rates (.0001, .0005, 
.001, .005, .01). The error probabilities within the 
individual states were set to Pe(0) = 0.0 and Pe{\) = 
0.5. Performance is measured using peak signal to 
noise ratio (PSNR): 

PSNR = \0\ogXi 
2552 

^IIMU)-P(U))2 

where p\i, j) are the pixel values of the original 

image  and   p\i, j)   are the pixel  values  of the 

received image. 
For our simulations we tested our diversity 

combining method on the two images shown in 
Figure 3. Both are 8-bit graylevel images with 256 
by 256 pixels. First, the source images were 
decomposed to two levels using the wavelet 
transform. Then the wavelet coefficients were 
uniformly quantized to 8 bits per pixel in order to 
maintain the same number of bits as in the original 
image. But for the bit stream with BCH coding, the 
total number of transmitted bits is greater than 8 bits 
per pixel. For uncompressed images we did not 
attempt to match bit rates for performance 
comparisons. The given PSNR results were averaged 
over twenty runs. 

Figure 3: Original test images for wireless image 
transmission: (a) Peppers and (b) Lenna. 

Table 1 gives the PSNR results for the Peppers 
image using image fusion versus BCH(255, 179). In 
this table, we see that the PSNR results for image 
fusion are about 11 to 13 dB higher than error coding. 
Examples of the received Peppers images are shown 
in Figure 4 for bit error rates of 0.005 and 0.01. 

Table 2 gives the PSNR results for the Lenna 
image using image fusion versus BCH coding where 
the image fusion method exceeds the error coding by 
about 15 to 16 dB. Examples of the received Lenna 
images are shown in Figure 5 for bit error rates of 
0.005 and 0.01.   These examples demonstrate that 
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image fusion can significantly improve performance 
compared to using BCH error correction coding. 

Table 1: PSNR (dB) for Peppers 

Bit error rate Image Fusion BCH(255,179) 

.0001 31.5507 20.2975 

.0005 31.8934 19.9742 

.001 32.2498 20.8729 

.005 32.8253 20.3403 

.01 30.2323 17.0615 

Table 2: PSNR (dB) for Lenna 

Bit Error Rate Image Fusion BCH(255,179) 

.0001 34.1783 20.7307 

.0005 35.5003 20.8015 

.001 35.5044 19.6481 

.005 35.0813 20.3599 

.01 33.0693 17.5477 

Figure 4: Received images for BER = 0.005 (a) BCH 
coding, (b) image fusion and BER = 0.01 (c) BCH 

coding and (d) image fusion. 

Figure 5: Received images for BER = 0.005 (a) BCH 
coding, (b) image fusion and BER = 0.01 (c) BCH 

coding and (d) image fusion. 

4. Conclusions 

An image domain diversity method has been 
presented for the transmission of images over 
wireless channels. For images represented in the 
wavelet domain, diversity is used to obtain multiple 
data streams of the image at the receiver where these 
data streams are fused to obtain a composite image. 
The methods proposed here use some of the 
properties of the wavelet transform to significantly 
improve the perceptual quality of the received image. 
Our results showed that image domain diversity 
could be used to improve performance for images 
transmitted over wireless channels. We have also 
implemented similar image fusion methods for 
compressed images to improve image quality and 
have obtained excellent results [15]. 
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Abstract This paper presents a matching al- 
gorithm based on linear features and fuzzy 
integral. The algorithm is primarily aimed 
at problems such as object description, pat- 
tern recognition problems, and related to 
the analysis of industrial plants (3D metro- 
logy) considered like polyhedric objects.An 
initial treatment provide labeled lines, each 
line being structured in labeled segments. We 
have to match these extracted segments into 
homogeneous surfaces. We manage uncer- 
tainties by two ways. The patterned light per- 
mits to obtain labeled segments belonging to 
the same surface with a good accuracy but 
it remains some uncertainty to match them, 
for they are not exactly coplanar. So we have 
a qualitative decision (do the segments be- 
long or not to the same surface ?) under un- 
certainty in a finite setting to make. This 
decision is a one-shot decision so the Baye- 
sian methods are difficult here to use and we 
decided to choose the Choquet integral-based 
utility, a generalisation of expected utility 
that is sum-decomposable for such acts in 
this numerical framework. We use three at- 
tributes of the planarity, based on fuzzy mea- 
sures, to characterize the segments. These 
attributes are the parallelism, the overlap- 
ping zone, and the distance between the seg- 
ments. This method gives good results on 
real images (as well as 3D scene descrip- 
tion, an average variance of 5 per cent for 
the length and one per cent for the angles), 
and proves the interest of this tool (fuzzy in- 
tegral) introduced in fusion information for 
image processing. 

Keywords : fuzzy logic, image fusion and machine 
vision, manufacturing. 

1    Introduction 

Information fusion is an important aspect of 
any decision system. Dealing with multiple in- 
put information sources is that the information 
coming from individual source is either incom- 
plete or noisy that is , uncertain or imprecise. 
Numerous image processing systems or compu- 
ter vision systems (pattern recognition, scene 
analysis, image processing, 3D reconstruc- 
tion,...) belong to this category of decision ta- 
king problems. This paper presents a matching 
algorithm based on linear features and fuzzy 
integral. The algorithm is primarily aimed at 
problems such as object description, pattern re- 
cognition problems,... and related to the analy- 
sis of industrial plants (3D metrology) consi- 
dered like polyhedric objects. Two different 
ways are known to describe scenes of three- 
dimensionnal objects. The three-dimensionnal 
scene description, using region-based 3D re- 
construction techniques [Tar96] or the inva- 
riants of 3D structures approach to obtain re- 
liable 3D primitives, [CB96], is investigated by 
many authors and needs two or more perspec- 
tive views and the application of the projective 
geometry. The two dimensionnal scene descrip- 
tion is more classical but have to deal with the 
importance of the 3D depth uncertainties and 
it is difficult to detect points belonging to the 
same planar surface. So we propose a new me- 
thod to reconstruct planar surfaces of 3D ob- 
jects with a good accuracy in 2D scene descrip- 
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tion. The scene is illuminated with patterned 
light and we use an effective decision theory- 
tool, the fuzzy integral, to deal with the depth 
uncertainty and obtain a good accuracy. 
Our device is composed by one CCD camera 
and a laser, which is able to generate 11 paralell 
planes through an optical head. The calibration 
procedure and the extraction of the luminous 
pattern which gets rid of optical defects, in- 
herent to this system of vision, have been pre- 
viously described in [EBD96a] and [EBD96b]. 
We can summarize the four steps of the initial 
treatment : the first step represents the appli- 
cation of the laser signal on a polyhedric plant, 
the second one the acquisition of the scene in 
the obscurity, the third one the obtaining of 
the labeled lines and the fourth one the extrac- 
ted luminous pattern. So at the end of the ini- 
tial treatment, we obtain labeled lines that are 
structured in labeled segments. 
The second stage of our work is the matching of 
the segments which had been extracted into ho- 
mogeneous surfaces. We manage uncertainties 
about the 3D points by two ways. The patter- 
ned light permits to obtain labeled segments 
belonging to the same surface with a good ac- 
curacy (this is one of the advantage of active vi- 
sion) but it remains some uncertainty to match 
them, for they are not exactly coplanar. So we 
have a qualitative decision (do the segments be- 
long or not to the same surface ?) under uncer- 
tainty in a finite setting to make. This deci- 
sion is a one-shot decision so the Bayesan me- 
thods are difficult here to use and we decided 
to choose the Choquet integral-based utility, a 
generalisation of expected utility that is sum- 
decomposable for such acts in this numerical 
framework. We use three attributes of coplana- 
rity, based on fuzzy measures, to characterize 
the segments. These attributes are the paralle- 
lism, the overlapping zone (recovery area) and 
the distance between the segments. This me- 
thod gives good results (as well as 3D scene 
description, an average variance of 5 per cent 
for the length and one per cent for the angles), 
and proves the interest of this tool (fuzzy inte- 
gral) introduced in fusion information for image 
processing. 

FIG. 1: Geometrical Interpretation of the Image 

2    Problem    Formulation    by 
mean of synthetic evaluation 

2.1    Introduction 

The treatment presented in the previous 
chapter can be interpreted as an arborescent 
image (figure 1). 
If a 2D segment belongs to a 3D surface, we 
need at least two segments and their attributes 
to completely characterize a 3D facet. It is pos- 
sible to match the 2D segments of two adja- 
cent stripes, as well as we can detect the edges 
between two 3D facets by image analysis. This 
method permits to deal with the raw sensorial 
data and avoid us to treat the 3D data (the 
reconstructed 3D data are imprecise). In fact, 
we prefer to judge the coplanarity from attri- 
butes on 2D segments than on 3D reconstruc- 
ted segments considering the disparity of the 
3D space. Then a decision tool, based on the 
Sugeno (fuzzy) measures and the Choquet in- 
tegral is used to provide a confidence measure 
on the matching of two 2D segments according 
to the coplanarity hypothesis. 

2.2    Choquet Integral 

The Choquet integral is interesting to ag- 
gregate information in an uncertain environ- 
ment and has been introduced in this sense by 
Denneberg, [D.D94] and Grabisch, [Gra95] and 
[Gra98]. Some applications in image processing 
were proposed in the last years, [H.T90].This 
fuzzy integral may be defined by the following 
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form 

(c) I'fdp = jX fi(Fa)da (1) 

where Fa = {x\f(x) > a,xeX}, and / is a 
measurable function on (X,V(X)) which asso- 
ciates a value fj to each attribute Xj , this value 
being named marginal valuation. 
In a numerical framework, the Choquet integral 
may be defined as following : 

(c) I fdß = J2[f(x*j)-f(x*j_1)].Cli(51,S2,..., Sn) 

(2) 
i=i 

with 

' Cp(6u62,...,8n) = ß(\Ji]Si=lXi), 
V(*i,62,...,*„)e{Q,ir 

and 

I /(4) = o 

In the equation 2, the "x*j" represent a new 
arrangment of the Xj for the marginal valuation 
/• = f{xj) relative to each attribute Xj are in 
a non-decreasing order : 

f(xl) < f(x*2) < - < /«) 

The coefficients CM are the importance degrees 
(of a belief measure /x) for the Choquet integral, 
defined on the set V{X). 
For an application with a vector of attributes 
of length n, there exists 2n measures C^. For 
instance, the importance degree relative to the 
attribute x2 may be defined by : 

<^(0,1,0...0)=M{*2}) 

The non-additivity of the fuzzy integral comes 
from these coefficients C^. In fact, it is possible 
to define for instance ß{{xi,Xj}) with i ^ j, 
showing the interaction between the attributes 
Xi and Xj, that is not authorized by the arith- 
metic averaging by instance. 

To calculate the synthetic valuation of the 
Choquet integral, we can define three steps : 

The first one is the choice of the attribute 
X = {xi,X2,..-,xn} with (n > 2). In our 
application, the attributes were choosen 
according to the perceptual organization : 
parallelism, recovery area, and distance. 

The second step defines the belief measure 
fi, determining the importance degree on 
the set V{X) given to the different attri- 
butes and to their interaction. 

The third step considers the marginal va- 
luations f(xj) obtained for each attribute 
Xj, and using the three similarity functions 
/i,/2and/3. 
The implementation of the Choquet in- 
tegral for decision taking is characterized 
by a process with multiple inputs and 
one output. In practice, an expert sys- 
tem (or an a-priori knowledge) may pro- 
vide multiple synthetic valuation associa- 
ted to some experiments. We obtain a ma- 
trix with m samples : 

/   /ll      /l2     -     fin   \pl\ 
/21      /22     —     hn E2 

\ /ml     fm2    —    fmn /    \ Em J 

For this matrix, m is the number of expe- 
riments and n the number of attributes for 
a given application. 
The synthetic valuation E{ is there defined 

by: 

Ei = (c)JfMd(i   ,   Vz = l,2,...,m 

where the functions /W are : 

/(0(»i) = /y    >   i = l,2,...,n 

A belief measure fi on (X, V{X)) does not 
exist to solve this system, so it is neces- 
sary to find an optimal approximation of 
the equation 3. The terminology inverse 
problem of the synthetic valuation is em- 
ployed by some authors [WW97]. 
The classical technique consists of minimi- 
zing the quadratic error : 

(3) 

1   m 

zi=i 
(4) 
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where Ei is defined by an heuristic margi- 
nal valuation. 
The Sugeno measure we employ like be- 
lief measure /J, belongs to the family of the 
A-regular fuzzy measures. This measure is 
defined on (X, V(X)) and satisfy the fol- 
lowing properties : 

/i(0) = 0;/ipO = l 

ß(A\JB) = n(A)+n(B) + X.ß(Ä).fx(B) 

A and B are two disjunctive sets, and A e 
(-l,+oo). 

Each Sugeno measure fj, on X is cha- 
racterized by n real values a,j — ß({xj}) 
e [0,1]. Wang et Wang [WW97] used the 
following form for the quadratic error : 

e = 1 
1       771 

1=1 

(5) 

The non-linearity of this expression does 
not authorize to find the relation J^- and 
Wang et Wang used a neural net to calcu- 
late the Choquet integral. 
We propose to use an optimisation method 
(Gauss-Newton algorithm ) associated to a 
knowledge base to solve this problem. 
The initial vector is XQ = {|, |, |}, and 
an authorized error e of 0.01. For ins- 
tance,after 32 iterations, we obtain the op- 
timal following values for our problem : 

ai = 0.7246 
a2 = 0.5324 
a3 = 0.1209 

The number A is equal to 1.9232. 

3    2D segments matching 

3.1    Introduction 

The matching of segments, well known in 
stereoscopic matching, is considered in this 
work to define planar surfaces, according 

to a perceptual organization. So we have 
to identify the different attributes accor- 
ding to a relation of similarity. This rela- 
tion may be hierarchical, where we com- 
pute first a relation using one attribute 
(parallelism), then another relation using 
a second attribute (recovery area) and so 
on. 
The drawback of this method is that 
we can eliminate "non-parallel" segments, 
non-parallel because of errors coming from 
previous treatments and noise, although 
they are in fact parallel. A global approach 
is better in that way like the rule-base in- 
troduced by Jain and Hoffmann [JH88]. 
We propose in the same idea to use an 
aggregate method based on the Choquet 
integral (a generalisation of weighted sum 
operators) and using the previous defined 
attributes. 

3.2 Mathematical expression of 
the geometrical attributes 

We remind that the illuminated image is 
represented by a set of stripes 3? : 

M = {RW,RM,...,RW} 

where N is the number of stripes, and each 
stripe R^ is made of Mk linear segments 

RW = {s[k\s!?\...,s%>k} = 

{(#),/f)),(4fc),/?))>-,(4L/S)} 
where     $j — 

<*) _ /.,(*) J*h 

■Mk'JMk) 

«',/?>)     and f 
*? (<>£') 
,(fc) /    (k)       (fc)x 

The values df] and ff] define the 
begining and the ending of the segment j 
of the stripe k, and are composed of the 
image coordinates u et v. 
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FIG. 2: Function representation f\ 

To implement the Choquet integral, we 
need to calculate a marginal valuation for 
each attribute. The first function we define 
is /i which gives a measure of similarity 
on the orientation of the segment i of the 
stripe k (sf^) and the segment j of the 

stripe fc + l(Sf+1) )• 
Parallelism between two segments is then 
defined modulo II, and we can propose the 
following function /i : 

/1 = |cos"+1(eg))| (6) 

with n = 0,1,2,..., oo. 
The  integer   and  positive  coefficient   n 
permits to make the function /i  more 
selective. 

The function /i is represented figure 
2, with a constant n = 2. If the segments 
are parallel, the similarity measure tends 
to 1, and to 0 at the opposite. 

While a segment is defined by the image 
coordinates of its extremities, the measure 
of ©i^ is defined by the following expres- 
sion : 

u (fc+i) _   (fc+i) 

Sf = arctanC-ff 
u 

Si 
(fc+i) (fc+i) 

h 

)-      (7) 

S(g) 
A 

0.5 

0  ►g 

w 

FIG. 3: S Function 

arctan(- 
u (k) 

di uSi 
,(*)     JQ ) (8) 

udi — V Si 

The second function we have to define is 
/2, for the valuation of the similarity mea- 
sure (given in [0,1]), relative to the reco- 
very area. This calculus is based on the 
orthogonal projection of each segment on 
their bisectrix and define three classes of 
recovery, partial, complete and separation. 
We have to distinguish the complete reco- 
very from the separation, that shows the 
belonging of the segments to the same sur- 
face. That implies a value "1" for the func- 
tion /2, and the separation implies the va- 
lue "0". The uncertainty is about the par- 
tial recovery so we have choosen for the 
function /2 the "S" function defined by Za- 
deh in fuzzy logic and represented figure 3. 

S(g) = { 

0 if g <a 

2(?Ef)2 if a<g<b 

l-2(fEf)2 if b<g<c 

1 if g>c 
(9) 

with 6 = ^ and w = c - a. 
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The g parameter is the ratio of (length of 
recovery area) on (length of the segment), 
a = 0 (separation) and c = 1 (total reco- 
very), so the S function can be modified : 

S(g) = { 

o if   9 = 0 

2g2 if   0<</<± 

l-2(g-l)2   ,7   \<g<l 

1 if   9 = 1 
(10) 

The S function defines the measure of the 
recovery area relative to a segment. The 
function /2 have to calculate this measure 

(k) 
relatively to the right and left segment 5] ' 

and 5 • + . As the two segments are close, 
the function /2 may be written using the 
relation : 

h = s(j$) + siv&v) (11) 

where L^ defines the length of the re- 
(k) covery area between the segments fi,- 

and Sf+1), Lf] represents the length of 

the segment S\ (k) and Lj     ' represents 

the length of the segment 5J      • These 
lengthes are defined by : 

^ = M'-Wr+W-W 
L(k+i) fu, (*+i) -4+1))2 + (^+1) 

50   100  150  200  250  300  350  400  450  500 

FIG. 4: Test image 

When the stripes are close, dist < ^ and 
/3 tend to 1. When they are far, dist > ^ 
and fz tend to 0. The function /3 is | if the 
distance separating two segments is reaso- 
nable. 

3.3    Application 

The Sugeno measures ß obtained have 
been applied to a test image (figure 4), 
with three stripes and we can represent 
this image by the following set : 

& = {R(1\R(2\RW} 

RU = {S[
1
\SP} 

with 

(fc+iK2 C;) 

RW=:{s[2\si2\sW} 

RW = {s[3\si3\si3)} 

The length of the recovery area depends 
closely to the distance separating the seg- 
ments. So we have to define a third attri- 
bute : 

/3 = 
1 

1 + dist (12) 

The value dist represents the distance (in 
pixels) separating the centers of each seg- 
ment , while the ratio ^ define a reaso- 
nable distance with 512 being the horizon- 
tal resolution of the image and N the num- 
ber of stripes . 

The results were the following : 

- the 2D segments, which 3D homolo- 
guous segments belong to the same 
surface have a synthetic valuation up- 
per to 0.7652 

- the 2D segments, which 3D homolo- 
guous segments do not belong to the 
same surface have a synthetic valua- 
tion lower to 0.5515 
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FIG. 5: Planar surface reconstruction 

FIG. 6: Planar surface reconstruction of the test 
image 

4    3D   Surface  Reconstruc- 
tion 

When the segments S^ and SJ2) have 
been matched, we deal with groups Gr of 
segments belonging to the same surface : 

For each group, we know the 2D coor- 
dinates of the different segments. Each 
stripe being labeled, we know too the 
equation of the plane corresponding to 
the surface created by these segments. 
The equation of the 3D plane is then 
calculated by a least-square method and 
illustrated figure 5. 

The 3D reconstruction of the test image is 
illustrated figure 6. 

5    Conclusion 

We have mathematicaly formulate three 
geometrical attributes based on the Cho- 
quet integral and Sugeno measures for per- 
ceptual organization. This original method 
in matching segments to planar surfaces 
provide good results, as well as 3D planar 
surfaces reconstruction obtained by Tarel 
[Tar96] for instance, and remains simple to 
implement. 
The greater interest of the fuzzy integral in 
this application is that we assign impor- 
tance degrees to the interaction between 
attributes, non authorized in other aggre- 
gation method and permitting to deal with 
the depth uncertainty. For the exemple 
proposed, sensors are placed at 40 cm from 
the scene. We obtain a statistical error of 
0.55 mm (for a length of 5cm), that is a 
relative error of 1,1% and an angle error 
of 1,3° . 
With the Tarel 3D method we obtain 1,17 
% of relative error on length and 2,16° for 
the angle error. So this method offers a 
new possibilty in 2D image processing and 
we are being to estimate the potentiality of 
fuzzy integral for complex objects (linear 
and curve primitives) and in dynamic vi- 
sion. 
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Abstract 
Shape recovery methods from an image sequence have 

been studied by many researchers. Theoretically, these 
methods are perfect, but they are sensitive to noise, so 
that in many practical situations, we could not obtain 
satisfactory results. In addition, we could not obtain 
the scale of the recovered object because of the image- 
projection property. To solve these problems, we pro- 
pose a shape recovery method based on the sensor fu- 
sion technique. This method uses an acceleration-gyro 
sensor attached on a CCD camera for compensating im- 
ages. 

Keywords: Recovery from images, Sensor fusion, Gyro 
sensor, Three-dimensional model 

1    Introduction 

Image changes produced by a moving camera are an 
important source of information on the observer's 
motion and structure of the environment. These 
changes are represented by velocities called optical 
flow on an image screen or point-correspondences 
between two or more images. The recovery of a 
three-dimensional structure and motion from an 
image sequence is one of the most important is- 
sues in computer vision. It can be used in many 
fields such as three-dimensional object modeling, 
tracking, passive navigation, and robot vision. 

Recovery methods from an image sequence have 
been proposed by many researchers (for example, 
[1, 2, 3, 4]). Theoretically, these methods are per- 
fect, but they are very sensitive to noise, so that, 
in many practical situations, we could not obtain 
satisfactory results. 

Recently the factorization method developed by 
Tomasi and Kanade has attracted researchers' at- 

tentions [5]. This method has been proposed for 
orthogonal projection [5] and then extended for ap- 
proximations of perspective projection [6]. It is 
reported that good results have been obtained in 
practical situations by the use of this method, when 
the approximation of the camera model is suitable. 
However when the assumed camera approximation 
is not suitable for the situation or the amount of 
camera motion through an image sequence is small, 
the results are not satisfactory yet. 

There is another limitation comes from an im- 
age property. Under the perspective projection or 
orthogonal projection which is widely used as a 
camera model, a slowly-moving small object near 
to a camera produces perfectly the same image se- 
quence as a fast-moving object far from a camera. 
It means that we could not recover the scale con- 
cerning the object and camera motion (velocity or 
displacement). 

In order to solve these problems, we propose the 
use of an acceleration-gyro sensor attached onto a 
CCD camera. We selected the sensor because it 
does not require any environmental setting, so that 
the sensing system can be carried anywhere. In 
the following sections, we propose a method for the 
recovery of object shape and scale from the output 
of the CCD camera and acceleration-gyro sensor. 
Experimental results are also shown. 

2 Sensor Fusion for Obtain- 
ing Good-Quality Informa- 
tion 

One of the causes of the difficulty in shape recovery 
is the fact that the discrimination of small rotation 
and small translation, as shown in Figure 1, is diffi- 
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cult when the object's width along the optical axis 
relative to the distance between the camera and the 
object is small, because they invoke similar image 
changes. 

Object 4 

(j^\Camera 

Situaton 1: Translation Situation 2: Rotation 

Figure 1: Small rotation and small translation have 
a similar effect on the image screen. 

When we study animals, we find that many con- 
trol their eye motion so as to obtain better visual 
information. For example, the vestibulo-ocular re- 
flex makes us possible to obtain stabilized images 
on the retina. This reflex rotates our eyeballs so as 
to cancel rapid head motions, by using information 
on our head's rotation obtained from three semi- 
circular canals [7]. It is also reported that, when 
flying, insects control the direction of their bodies 
to obtain visual information without rotation [8]. 

In our system, we do not control the video 
camera to remove rotation, in order to build a 
compact, inexpensive and free-from-mechanical- 
problems system. Instead, we process the image 
sequence by a computer to remove rotation using 
output from the gyro sensor obtained simultane- 
ously with the image sequence. Conceptually, we 
design a virtual camera, as shown in Figure 2. This 
virtual sensor receives input from the video cam- 
era and gyro sensor and outputs an image sequence 
without rotation. 

Gyro sensor - 

Video camera ■ 

Inside computer 

Virtual camera 
Image sequence 
without rotation 

Figure 2: The virtual camera outputs an image se- 
quence without rotation. 

3     Overview of Our System 

3.1     Setup 

Our system consists of two sensors, a CCD camera 
and an acceleration-gyro sensor, and a computer for 
processing. The purpose of our system is the recov- 
ery of an object's three-dimensional structure in- 
cluding its scale from the sensor output. We assume 
the following situation. The rigid object is fixed 
in the environment and the sensor system moves 
around it. The object has feature points which 
can be tracked through an image sequence and its 
structure is determined by three-dimensional fea- 
ture point positions. 

The acceleration-gyro sensor (GU-3011 by Data 
Tec), mounted on the CCD camera, as shown in 
Figure 3, is used to compensate the CCD camera. 
It consists of 3 vibration gyroscopes and 3 acceler- 
ation sensors in a cube with sides 36 mm long and 
outputs 3-axial acceleration, 3-axial angular veloc- 
ity and 3-axial rotation angle at 60 Hz. The rota- 
tion angle is obtained by integrating angular veloc- 
ity, so that it drifts even though it can be corrected 
to some extent by using gravity as reference. In the 
present paper, we use the acceleration and angular 
velocity information. 

Figure 3:   A photograph of the CCD camera and 
acceleration-gyro sensor 

3.2    Four Stages in Our Method 

Our shape and scale recovery method using the 
CCD camera and acceleration-gyro sensor consists 
of four stages. 

In the first stage, optical flow or point- 
correspondences through the image sequence are 
obtained. This is usually achieved by tracking fea- 
ture points in the image sequence. Many methods 
are studied for this purpose but, are not discussed 
here. 

In the second stage, we use one of any shape- 
from-image-sequence methods, modified for use of 
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the acceleration-gyro sensor. This stage recovers 
the shape of the object and camera velocity and 
angular velocity at a point of time. It should be 
noted that the scale factor concerning the camera 
velocity and the recovered point positions cannot 
be obtained in this stage. 

The third stage is the integration of recovered 
parameters at different time points, which are ob- 
tained in the previous stage. By integration of the 
images, three effects can be expected. When re- 
covered points exist in more than one structure at 
different time points, more accurate positions can 
be obtained by taking their average. In addition, 
if there are points which exist in only some of the 
recovered structures, they are appended to the rest 
of the points. That is, occluded points in some 
parts of the image sequence can be recovered by in- 
tegration if the points are viewed in other parts of 
the image sequence. Finally, transition of camera 
motion is obtained. 

In the fourth stage, we obtain the scale concern- 
ing recovered positions and camera velocity. By in- 
tegrating acceleration output from the acceleration- 
gyro sensor, camera velocity is obtained, theoreti- 
cally. However, the acceleration output includes 
noise in practice, so that the velocity obtained from 
the acceleration-gyro sensor drifts. By using both 
acceleration from the acceleration-gyro sensor and 
velocity with the unknown scale factor obtained 
from the image sequence, the scale is obtained. 

3.3    Three Coordinate Systems 

Vector elements depend on the coordinate system 
to which the vector is related. For representing 
vector elements, we use three kinds of coordinate 
systems. 

The first is fixed in the world and is constant 
over time. We call this a base world coordinate 
system. Recovered structures and camera motion 
parameters at different time points are integrated 
in this coordinate system. When a vector x is rep- 
resented in this coordinate system, it is denoted as 
xB. 

The second is a camera coordinate system which 
is attached to and moves with the CCD camera. 
When a vector a; is represented in this coordinate 
system, it is denoted as x   . 

The last coordinate system is also fixed in the 
world, but its position is changed according to the 
referred time. It is used to represent the sensor out- 
put obtained at the referred time. The coordinate 
system is positioned so as to correspond with the 
camera coordinate system when the sensor output 

is obtained. Therefore this depends on time. We 
termed this a temporary world coordinate system. 
When a vector x is represented in this coordinate 
system, it is denoted as xw. 

An example of the application of the coordinate 
systems is as follows. When camera velocity is 
vB, vc = o because the camera coordinate system 
moves with the camera. The relation between the 
base world coordinates and the temporary world 
coordinates is vw = RvB where R is the rotation 
from the base world coordinates to the temporary 
world coordinates. Vector coordinates do not de- 
pend on the position of the origin of the related co- 
ordinate system, so that they can be transformed 
by only rotation. 

Output of the acceleration-gyro sensor is based 
on the temporary world coordinate system. That 
is, acceleration aw and angular velocity uw are 
obtained from the sensor. 

4 The Recovery of Object 
Shape and Camera Motion 
from an Image Sequence 

The recovery of object shape and camera motion 
from an image sequence at a point of time is stud- 
ied by many researchers. We modify one of these 
methods in order to use the acceleration-gyro sen- 
sor output for compensating images, then use it in 
our system. In this section, we briefly introduce the 
method previously proposed by us. The details are 
reported in [4]. 

Assume that we observe a point on the object at 
time t and t + 8t. We denote the unit vector from 
the camera center to the point as qw and camera 
translation as 6uw, as shown in Figure 4. Then we 
obtain 

(qw(t + 8t)xqw(t))-6uw =0 (1) 

because qw(t), qw{t+St) and 8uw are on the same 
plane. 

Taking 6t —► 0 and using the following relation 
(this can be easily proved) 

(2) ■w qc+u>wxqc, 

we obtain 

((gc+/x,c)x«c)./ = 0. (3) 

By arranging the above equation on n(> 8) points, 
we obtain 

Gi = o, (4) 
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Observed point 
T, 

rbJ?*" 
Camera center 
at time 2 

Figure 4: Relationship of camera positions before 
and after infinitesimal time lapse. 

where 

£ = [vl     \v2     \V3    I Wl   Vl     I W2   V2     I W3   W3     I 
W„ .W .W   W u>?v?+u,?v?\w?v?+u,?v?\ 

yv „,w w,w\r 0>3  ^!   +wx  v3 j (5) 

and G is a n X 9-matrix composed of only observed 
values. The ith row of G is 

Kf "C €z€i €,Z€A-€A€Z 2?i;3 

(«&)' - 1  I («&)' - 1  I («&) 
„C „C   I „C „C   I „C „C 1 
1i;l%2 I 9i;2?i;3 I «i;33*;lJ> 

«&«& 4&«£l 

(6) 

where the dot on variables denotes the time deriva- 
tive of the variable and qf.j is the jth element of qf 
which is the unit vector from the camera center to 
the ith point. 

By finding nontrivial £ ^ o from (4), camera 
velocity vw up to its scale and angular velocity u>w 

are obtained. We select the unit vector vs as the 
recovered camera velocity and denote the recovered 
camera angular velocity as u> . The positions of 
observed points are also recovered as 

'    \\qf+*wxtf\\> 
Qi (7) 

where s is the unknown scale factor and v    = svs 

if noise is absent. 

5 Using the Acceleration- 
Gyro Sensor for Compen- 
sating an Image Sequence 

In this section, we describe a modification of the 
shape and motion recovery method described in the 
previous section. 

From the acceleration-gyro sensor, uw is ob- 
tained. By substituting this into (2), we obtain 
qw. This can be considered as the output of the 
virtual camera in Figure 2. The virtual camera 
output when observing m points (m > 2) yields 

Hvw = o, (8) 

where H is the m x 3-matrix and its zth row is 

iW X «f • (9) 

This can be determined by observed values only. 
This equation is obtained from (3). 

By finding nontrivial vw ^ o from this equa- 
tion, we obtain the velocity up to its scale. This 
velocity is expected to be better than the previous 
one because the degree of freedom in the equation 
is smaller. 

In practice, m is usually much larger than 3 and 
H is disturbed by noise, so that the matrix has rank 
3. Hence this equation is ill-conditioned for obtain- 
ing vw ^ o. The SVD (Singular Value Decompo- 
sition) method is suitable for solving this equation. 
By the SVD, H is decomposed as 

UT,VT = [ui|M2|«3]diag{0-1,<T2,<r3}[vi|v2k3]T, 
(10) 

where U and V are orthonormal matrices and <T\ > 
<?2 > °3- Then v3 is adopted as i>s . Point posi- 
tions can be determined by (7). 

6 Integration of Recovered 
Structures and Motion Pa- 
rameters at Different Time 
Points 

The integration of recovered structures at different 
time points is expected to improve accuracy, re- 
cover occluded points and clarify the transition of 
camera motion. However, the object structures and 
camera motion parameters at different time points 
are obtained with respect to different temporary 
world coordinate systems. The scales are also dif- 
ferent because they cannot be determined by the 
method in the previous stage. Hence we cannot 
simply integrate recovered structures. 

This problem can be solved as follows. The ob- 
ject shapes are the same even though coordinate 
systems are different. Therefore we can determine 
(relative) scaling, rotation and translation transfor- 
mations which make transformed structures overlap 
each other. We take the structure at the first time 

224 



point as the base structure and find the transforma- 
tion to this structure. This means that the tempo- 
rary world coordinate system at the first time point 
is used as the base world coordinate system. 

We denote the recovered position of point i with 
respect to the temporary world coordinate system 
at time k as x\. The superscript W is dropped 
in this section for concise description. The trans- 
formed point position xf from xk is defined as 

„fc r>k„k s'R'x^+t", (11) 

where sk,Rk and tk are the scaling, rotation and 
translation from the structure at time k to the base 
structure. 

In order to obtain sk,Rk,tk, we minimize 

#(^Ä^») = 5X><-«?}a, (12) 
i 

where x, is the position of point i in the base struc- 
ture. In practice, the translation tk is obtained 
from dEk/dt = o as 

tk=g-skRkgk, (13) 

where g,gk are the centroids of Xi,xk.  Hence we 
minimize 

Ek(*k, Rk) = \Y, & -Ö- skRk& - 0*))2 • 
(14) 

In our implementation, we used the conjugate gra- 
dient method for minimizing the function numeri- 
cally. 

Using sk,Rk, tk obtained above, we can obtain a 
better object structure and camera motion as fol- 
lows. 

Object structure: Taking the average of the 
structures transformed using scaling, transla- 
tion and rotation, accuracy is improved. If the 
corresponding point does not exist in the in- 
tegrated structure yet, it is appended to the 
integrated structure. 

Camera velocity: Transforming using only scal- 
ing, vw(t) is recovered. Transforming using 
scaling and rotation, vB(t) is recovered. 

Camera angular velocity: From the recovery at 
a point of time, u)w(t) is recovered. So, trans- 
forming using rotation, uB(t) is recovered. 

Camera position: In the recovery at a point of 
time, the camera center is assumed to be at 
the origin of the temporary world coordinate 

system. Using the scaling, translation and ro- 
tation information, transition of the camera 
center position and direction in the base world 
coordinate system is obtained. 

7    Determining   the   Scale   of 
Structure and Velocity 

In this section, we denote camera velocity obtained 
from an image sequence as vY(t), that from the 
acceleration-gyro sensor as »g (t), and true camera 
velocity as ■üy'(f). Then, if noise is absent, 

t#(t) = svf(t) (15) 

where s is the unknown scale factor. Therefore if 
the relation between v$(i) and v%(t) is known, we 
can determine s form the above equation. 

Theoretically, v%(t) is obtained by integrating 
acceleration aw (t) obtained from the acceleration- 
gyro sensor if the initial value is known. It is for- 
mulated as 

v%{t) = R(t){ j\R-\r)aw(r) - gB}dr 

+ vB(t0)}, (16) 

where vB (t0) is the initial velocity and R(t) is the 
rotation form the base world coordinates to the 
temporary world coordinates. It can be obtained 
from the acceleration-gyro sensor output uw(t) if 
the initial value R(t0) is known. 

However, in practice, the acceleration-gyro sen- 
sor output includes noise so that Cg(/) drifts. 
Hence the following relation holds. 

v$(t) = v%(t) + b(t) (17) 

The b(t) represents the effect of drift and the un- 
known initial value. The change of b(t) comes from 
the drift, so we can assume that the change in short 
time is small. 

From discretization of above equations, we ob- 
tain 

W;k W;k   ,   ,k /io\ svj '   = vG'   + b , (18) 

where vY'k is vf at time k (k = 0,1,..., K) and 
so on, and changes of bk along k are small. We 
minimize the following function for obtaining s. 

K 

E2(s,bi) = -\\\svI 
W;k 

k=0 
K 

• (VG      + b J 

+Ia£||26*-&*-1-&'!+1||2, (19) 
fc=0 
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where b 1 — bK+1 = o and a is some positive value 
for weighting. 

8    Experiments 

8.2    Experiment 1: Simple and Short 
Camera Motion 

In experiment 1, the CCD camera was moved in 
short period almost straightly, as shown in Figure 
6. The lengths mentioned in this figure are rough 
estimates as explained before. 

8.1    Experimental Environment 

We used a cube with a known size, shown in Fig- 
ure 5, for examining the recovery errors. The cube 
has sides 20 cm long. The acceleration-gyro sensor 
output is obtained at 60 Hz via serial connection. 
The CCD camera has lens whose focal length is 8 
mm and its output (640 x 240 pixels) is captured 
at 15 frames/sec synchronously with acceleration- 
gyro sensor output. The CCD camera's inner pa- 
rameters are obtained in preliminary calibration. 
The CCD camera was moved by human hand, so 
we know only the rough trajectory of the camera 
motion. 

Figure 5: Photograph of the object with sides 20 
cm long. 

The interval between the two images for obtain- 
ing optical flow are automatically determined by a 
certain method, but we do not mention it for lack 
of space. 

In order to examine the accuracy of recovery, 
we found the rotation, translation and scaling (if 
needed) from the recovered structure to the actual 
structure, because the recovered structures are re- 
lated to a different coordinate system from that of 
the actual structure. We adopted the RMS (Root 
Mean Square) of the distances between actual and 
recovered points as the recovery error. 

^,^\Object 

/1.5 m 

^65 cm <~> 

CCD camera moves 
along this trajectory 

Figure 6: Camera motion in experiment 1. 

We obtained 27 frames (in 1.68 sec) in the mo- 
tion. When we do not use the acceleration-gyro sen- 
sor, optical flow for obtaining results must be large. 
In this case, only two structures were recovered and 
the average of the errors was 9.4 cm. When the 
acceleration-gyro sensor output was used, 13 struc- 
tures were recovered and the average of the errors 
was 3.1 cm. The accuracy was much improved by 
using the acceleration-gyro sensor. 

In Figure 7, errors of each of the recovered struc- 
tures and the results of the integration of structures 
when the acceleration-gyro sensor output was used 
are plotted. The error of the integration result at 
index i is the result of integration from 0 to i. It is 
shown that the integration of recovered structures 
at different time points improves the accuracy. 

S 3 
.Error of each structure,* 

sgrror of integrated structure 

_i l_ 

0 2 4 6 8 10 12 
Number of recovered structure 

Figure 7: Errors of recovered structures using the 
acceleration-gyro sensor in experiment 1. 

In Figure 8,  the relation between \\vY\\ and 

226 



\\v%\\ are plotted. The plotted points are on al- 
most the same line through the origin, because the 
motion finished in short period, so that the drift of 
vf was small. To determine s, (19) with a = 1 was 
used. The results are shown in Table 1, where point 
numbers for specifying sides are shown in Figure 5. 

Figure 8: Velocities obtained from the image se- 
quence and acceleration-gyro sensor output in ex- 
periment 1. 

Table 1: Recovered length and actual length in ex- 
periment 1 

Side Recovered [cm] Actual [cm] 

0-1 82.7 100 
1-2 91.9 100 

2-3 94.2 100 
3-4 80.8 100 
6-12 90.0 100 
12-13 82.9 100 

7-8 45.2 50 

1-9 58.0 50 

5-18 44.5 50 
12-17 49.0 50 

8.3 Experiment 2: 
Motion 

Complex Camera 

More complex motion in long period was adopted in 
experiment 2. In this experiment, the CCD camera 
moved around the object as shown in Figure 9. We 
obtained 94 frames (in 5.64 sec) in the motion. 

When the acceleration-gyro sensor was not used, 
6 structures were recovered as shown in Figure 10. 
In this case, the average of the errors before the 
integration of recovered structures was 3.2 cm. 

In Figure 11, the results when the acceleration- 
gyro sensor output was used are plotted, where 20 

Of Object 

20 cm 

Figure 9: Camera motion in experiment 2. 

/ —i—  1—     i         i 

6 - •> 

5 

I- ^N 
Error of each structure 

* 

2 - 
~'   *^~~~~^^^        ^ 

1 - Error of  integrated structure 

i                 i                j  

12 3 4 
Number of recovered structure 

Figure 10:   Errors of recovered positions without 
the acceleration-gyro sensor in the experiment 2. 

structures were recovered. It is shown that the in- 
tegration of the recovered structures at different 
time points improves the accuracy. In this case, 
the average of the errors before integration was 3.3 
cm. It is a little worse than the case without the 
acceleration-gyro sensor, but we obtained the larger 
number of recovered structures, so that the inte- 
grated structure was better than the results with- 
out the acceleration-gyro sensor. 

However, in this experiment where the camera 
motion is complex, we could not obtain reliable 
scale. A part of results is shown in Table 2. We 
need more study to improve the accuracy. 

The recovered structure using the acceleration- 
gyro sensor output projected to new screen posi- 
tions is shown in Figure 12. It is displayed using a 
wire frame or texture mapping. In the wire frame 
image, points are connected by lines in order to 
clearly show the structure. 

9    Conclusion 

We have proposed a method for shape and scale 
recovery using a CCD camera and an acceleration- 
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Table 2: Recovered length and actual length in ex- 
periment 2 

0       2       4       6       8      10     12     14     16     18     20 
Number of recovered structure 

Figure 11: Errors of recovered positions using the 
acceleration-gyro sensor in the experiment 2. 

Figure    12:       Recovered    structure    using 
acceleration-gyro sensor in experiment 2. 

the 

gyro sensor. We modified the method proposed by 
us before, in order to use both the CCD camera 
and the acceleration-gyro sensor. 

In the experiments, improvement of recovered 
structure is verified. However, recovered scales are 
not so reliable when camera motion is complex. 

In the next step, we try to improve the accuracy 
of our method. In particular, improvement of scale 
recovery is necessary. 

Side Recovered [cm] Actual [cm] 

0-1 60.1 100 
1-2 64.6 100 

5-18 31.9 50 
12-17 30.4 50 
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Abstract - This paper compares various track fusion 
algorithms and track association metrics, using a simple 
linear-Gaussian-Poisson model, to examine their 
performance under various degrees of non- 
deterministicitity of the target dynamics, i.e., process 
noises. Track fusion algorithms are compared by an 
analytical method while track association metrics are 
evaluated by Monte Carlo simulations. 

Keywords: Distributed Data Fusion, Distributed Tracking, 
Track-to-Track Association, Track Fusion, Non- 
Deterministic Dynamics 

1.   Introduction 
In many modern information gathering systems with 
multiple physically distributed sensors, a distributed 
data fusion architecture possesses several advantages 
over a centralized architecture. Among them is 
avoidance of data flow/processing bottle necks 
through well-designed data distribution and 
processing, without any significant loss of optimality 
achieved by a centralized architecture with infinite 
processing power. In the last three decades, 
distributed information processing algorithms have 
been one of the most studied areas in data processing. 
In the field of target tracking, according to [1], we 
can trace a pioneering work in distributed processing 
back to Singer's 1971 paper [2]. 

A general theory of distributed tracking was 
built ([4] - [7]) based on a general theory of 
distributed estimation described in [3] and on a 
general theory of multi-target tracking described in 
[9] (which generalizes the multi-hypothesis tracking 
algorithm developed by D. B. Reid [8]). Recently 
this general distributed tracking theory was also 
described in the random-set formalism ([10],[15]) 
using the general theory of multi-target tracking re- 
written in such formalism ([10] - [14]). This theory 
is general enough to be applicable to almost any kind 
of information flow pattern1 and to a very wide class 
of target and sensor models. However, it was pointed 
out from the very beginning of its development that 
there is difficulty in applying this theory to non- 
deterministic target models. 

including dynamically changing information flows. 

In a traditional sense of distributed tracking, 
track-to-track association and track fusion 
(distributed filtering) replaces measurement-to-track 
association and dynamic state estimation (i.e., 
filtering) in a single-site or centralized tracking. In 
the area of distributed filtering, there have been a 
large volume of papers and reports that describe 
various distributed filtering algorithms [16] - [25]. 
Also, in this traditional framework, it was recognized 
that effects of target model's non-deterministicity 
cause certain difficulties and several attempts have 
been made to study such effects and develop 
algorithms to alleviate such difficulties, as shown in 
[26] - [29]. In addition, efforts to expand the general 
framework mentioned before to cope with non- 
deterministic target dynamics were also made ([30]). 

The objective of this paper is to explore 
issues related to non-deterministic target dynamics in 
search of effective distributed tracking algorithms. 
This paper characterizes and evaluates several 
representative algorithms brewed through almost 
three decades of development in distributed tracking 
as described above. For this purpose, we will take a 
traditional approach to distributed tracking, i.e., we 
will discuss track-to-track association (Section 3) and 
track (state-estimate) fusion (merge) (Section 2) 
separately. Furthermore, in order to make evaluation 
and comparison easy, we will restrict ourselves to a 
linear gaussian case with the simplest information 
network, i.e., two sensors with local processors and 
one central processor. 

2. Track Fusion (Distributed Filtering) 
Algorithms 
There is a wide class of distributed filtering 
problems, and even more ways to describe them. In 
this paper, however, we will consider the simplest 
case in which two tracks generated by two local data 
processing nodes are to be fused together. 

2.1. Problem Statement: Let us assume that the 

state x, at time t of a target is described by a linear 
stochastic differential equation, 

dx, = A,xtdt + Btdw,  on an interval  [*,,«).    As 
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usual, the initial condition on x, is given as a 

gaussian random vector independent of the unit- 

intensity standard Wiener process   (w,)^, •    We 

assume that matrices At and B, with compatible 

dimensions satisfy all the necessary regularity 
assumptions to guarantee  unique  existence  of a 

solution (x,)* to the linear stochastic equation. 

Assume two sensors observe the target states as 

y* = Hikx,k + iikat siven time2> '1 < h < ••• < '„ > 

for each sensor /, with appropriate matrices Hjk and 

independent additive measurement noises rjjk, i.e., 

zero-mean gaussian vectors with positive definite3 

variance matrix Rik. 

Define a local target state estimate as any 

conditional mean x\ My^. J of target state x, at 

time / given a cumulative local measurement 

\yjjf._ ■   Needless to say these estimates can be 

obtained by the two local (disjunctive) Kaiman 
filters, and if necessary, by a smoother. For the sake 
of simplicity, let us write the local target estimate 

*VB \{yik )"k=\) a^er me 'ast observation at  tn   is 

processed as xt, and in place of xt , we write the 

target state at time tn simply as x. Then, in a wide 

sense, the track fusion problem is to come up with a 
"good" global estimate x of x from the two local 

tracks \yXk )k=i and \y2k )"k=1. In a narrow sense, the 

estimate x is restricted to be a function of only the 

two most recent state estimates, jc, and x2, 
calculated only from the two local tracks. 

2.2. Bar-Shalom-Campo  Fusion  Algorithm: 
The Bar-Shamon-Campo algorithm as described in 

[27] is to calculate the global estimate X from the 

two local estimates, Jc, and x2, as 

x = Wxxx + W2x2 
(1) 

where W, = fo -Fjjfc, +Ka -Va -V2X)'
X for 

i e {l,2} with j = 3-i, with Vu being the variance 

matrix of the estimate error x( - x and Vy being the 

covariance matrix between the estimation errors, 

Xj - x and x - x. 

This estimate can be viewed as a "convex 

combination" of* the two estimates, Jc, and Jc2, since 

we have W^+W2= I ■ This estimate is a kind of 

"maximum likelihood" estimate in the following 

sense. Let /?(■,■) be the density function5 of the joint 

distribution of the local estimation errors, xx - x and 

x2 - x, and let (\x) = p\xl -x,x2- x) be the 

"likelihood function" for the target state x given the 

two local estimates, Jcj and x2. As shown in [28], 
the estimate (1) maximizes this6 "likelihood 
function." 

2.3. Simple Convex Combination Fusion 
Algorithm: It is not clear to the authors to whom 
we should attribute this algorithm although it is used 
rather commonly probably because of its simplicity 
and relatively small amount of necessary data. This 
algorithm is also to calculate the global estimate X 
by the "convex combination," eqn. (1), but with a 

simplified weights ^=^(^11+^22) • In other 
words, we obtain this algorithm by ignoring the 

covariance matrices, Vu and V2X. 

2.4 Maximum A Posteriori Probability 
Density Estimate: Since our model is linear- 
gaussian, the maximum a posteriori probability 
density estimate of the target state x given two local 

2 Simultaneous observation by the two sensors is not 
essential to the discussions in this paper but we 
assume it for the sake of simplicity. 
3 In this paper, positive definiteness is always mean 
to be in the strict sense. 

4 The convex combination appears in a pair of 
quotation marks since it is not in a usual sense 
because of the lack of positivity concept of the 

coefficient matrices Wr 
5 Namely, 

p(s?j, 3c2 JbüCjöEcj = Prob.'Jx, - x e dxx, x2 - x e dx2 J. 
6 The word likelihood appears within a pair of 
quotation marks since the "likelihood function" here 
is not a likelihood function in a usual sense, i.e., 

p{Xl,x2\x). 
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estimates, ic, and x2, is the conditional mean of x 

given £, and x2, which is also the minimal variance 

(linear) estimate, and can be written ([31]) as, 

x = x +1,(jcj -x)+L2(x2 -x) (2) 

where the  gain  matrix   L = [i,   L2\ = VxSVs    is 

calculated from the covariance matrix Vxi between 

the target state x and the joint  local  estimates 
def 

Z = and the variance matrix V& = 
r2\ 

'n 
K22. 

of z . 3c in (2) is the a priori mean of the target state 

x at time tn . 

2.5 Tracklet Fusion: It might be said that almost 
all the algorithms described in a vast volume of the 
distributed filtering literature [16] - [25] is either 
equivalent to or modification of the algorithm of 
obtaining the global estimate x from the local 

estimates xx and x2 by 

V~ix = V~lxl+V22x2-V 'jc (3) 

with V ' = Vu
l + V22 - V X. x is the a priori mean 

of the state x, and V   is its variance matrix of x. 
Eqn.        (3)        can        be        rewritten        as 

V'Xx = ^xx-V'Xx x)+(V: 'Ijc,-K~15e)+K~l3t, 22 *2 

and the subtraction Vu 
1xl - V 'x can be viewed as 

an operation to extract "new" information obtained 
by sensor /' from the mixture with a priori 
information. For that reason, this algorithm is called 
information differencing in [38]. The so-called 
information-matrix form (3) can be rewritten in the 
variance-matrix form, which can be viewed as 
addition of information in terms of an equivalent 
measurement or pseudo measurement to the fusion 
agent as described in [20]. The terminology, tracklet, 
is attributed to [23] and [24], and is meant to be a 
"small" conditionally independent fragment of a 
track. 

We should also note that eqn. (3) can be 
derived from a general fusion equation expressed as 

p(x)=C~xpx{x)p2(x)lp{x) to calculate the 

probability density p of the target state x 
conditioned by the information from both sensors, 
from the two local estimation results represented by 

the probability density functions, px and p2, and 

from the density p of the a priori target state 
distribution. As mentioned before, however, the 
derivation of this formula (and hence eqn. (3)) is 
based on the non-deterministicity assumption. 
Nonetheless, usually the non-deterministic dynamics 
are used for the time alignment extrapolation. It is 
generally understood, therefore, this algorithm works 
well only when either the non-deterministicity is 
small or the frequency of using the fusion rule (3) is 
high enough. 

2.6. Comparison of Track Fusion Algorithms: 
A very simple example was chosen to compare the 
track fusion rules listed above, using a simple two- 
dimensional target tracking example.    The target 

To  / 
dynamics   are   defined   by A,m and 

*/s 
0 

0   -ßl 

where / and 0 are the 2x2 identity and 

zero matrices, and ß and q are two positive 
parameters. The initial condition is a zero-mean 
gaussian   random   vector   with   variance   matrix 

Block Diag.(cr0
2/,crv

2/) with7 q = 2ßcj2
v. We 

assume a supplementary (or redundant) sensor case 
assuming two independent but identical sensors with 

Hjk=[l   o]   and   Rjk=a2
MI,  and  an  identical 

sampling rate as tk+l -tk=At with8 n = 2 . The 
diagonal elements of the variance matrix of the 
stationary      velocity      process      are      set      as 

o\ = q /(2ß) = (2CT^ f ■ In order to compare the 

fusion rules, we vary the process noise intensity q 

and the standard deviation cr0 of the initial 

condition9. Fig. 1 shows a result when the process 
noise intensity is varied. 

In this figure, three fusion rules, (1) convex- 
combination,    (2)    MAP    (maximum    a   priori 

1 In this target model, the velocity is modeled by a 
stationary stochastic process which is referred to as 
Ornstein-Uhrenbeck model [32]. The model is also 
called Singer model [33]. 
8 Namely, each local sensor has only two 
measurements. 
9 It should be noted that the initial state contributes 

to the covariance Vn between the estimation errors 
of the two local estimates as well as the process 
noise. 

233 



probability) fusion, and (3) tracklet fusion, are 
compared. Because of the symmetry between the 
two sensors, the Bar-Shalom-Campo algorithm is 
identical to the simple convex combination 
algorithm, and they are simply referred to as the 
convex combination algorithm. In this example, 
performance measured by the total RMS errors, i.e., 
the square root of the trace of the state estimate error 
variance matrix, by any of the fusion rules, does not 
deviate much from the best performance, i.e., the 
performance achieved by the centralized processing. 
For this reason, performance is displayed as the 
percent increase in the RMS errors over the minimum 
RMS achieved by the centralized tracking. 

Fig. 1: Comparison of Fusion Rules with Varying 
Process Noise Intensity 
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It is interesting to see that the percentage 
increase becomes insignificant when the process 
noise is very small as well as when it is very large. 
The exception is the performance by the convex 
combination algorithm when the process noise is 
small. When the process noise is small, the system 
becomes almost deterministic, and the system 
uncertainty is dominated by the target's initial 
condition. The two local processing agents both use 
the a priori information. When the local estimates 
are fused together, this use of the a priori 
information might be double-counted. In the tracklet 
algorithm, as well as the MAP algorithm, this double 
counting is negated by subtraction, but not by the 
convex combination algorithm. 

Fig. 2 shows performance of the same three 
fusion rules, compared with performance by a 
centralized tracking, when the a priori position 
variance is varied.   The process noise intensity was 

set as ql\p2
M I Ati)=\.   The convex combination 

algorithm seems to be consistently worse than other 
fusion schemes, which we may attribute to the 
"double counting" of the a priori information. Both 
tracklet fusion and MAP fusion schemes deviate from 
the optimal performance as the initial state 
uncertainty increases. 

Fig. 2: Comparison of Fusion Rules with Varying 
Initial Uncertainty 

RMS Error 

1.52 

1.51 

1.5 

1.49 

1.48 
0.001 

Convex Combination 
>/:~ —i—i—i—i—r  

Tracklet Fusion - 
I—' 

£ v 
\ 

\ 

f I I      III      I   . 

Z 
r Centralized Tracking 

(Measurement Fusion) 

• 

5   10   20     SO  100 

A Priori Position S.D. a   I a 
0       M 

3. Track-to-Track Association 
We will restrict ourselves to the simplest form of 
track-to-track association problems, in which two sets 
of tracks are to be associated. We are interested in 
performance of various track association metrics. To 
simplify the problem, we assume that the two sets 
have exactly the same number of tracks and that the 
true association is always one-to-one. Under a 
certain set of assumptions, it can be shown that, given 
a two sets of n tracks, the track association problem 
can be defined as a problem of choosing a best 
hypothesis represented by a permutation a on the set 
{l,...,«} to minimize the association cost, 

^)=^>C4) 
(4) 

where each Cy e [0, oo] is a given track association 

metric. Cy = oo     results    from    appropriate 

thresholding. 

3.1. Problem Statement: We will model targets 
as a Poisson-Gaussian finite random set (point 
process) in the sense described in [10] - [15]. 
Namely, the number of targets is a Poisson random 
variable with a given mean, and given a number of 
targets,   the   target   states   are   independent,   and 
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identically distributed with a common gaussian 
distribution. As a common distribution, we use the 
linear-gaussian model described in Section 2.1. 
Given N targets, we assume that they are all detected 
and correctly correlated together by each local sensor 
data processing agent, without any mis-association or 
fragmentation, which means that each of the two sets 
of local tracks has a one-to-one correspondence to the 
set of targets. Using the linear-gaussian model 
described in Section 2.1., all the tracks from sensor 1 

share the same variance matrix Vu , and so do those 

from sensor 2, the variance matrix V22. Thus we can 
identify each track /' from sensor 1 with the target 

state estimate *,,-, and track j from sensor 2 with 

x2 . For any pair of track / from sensor 1 and track y 

from sensor 2, assuming that they originate from the 
same target, the covariance matrix between the two 
local target state estimates can be represented by a 

single matrix10 Vn =\V2i) ■ 

3.2. Bar-Shalom Metric: This metric was derived 
to be used in a classical chi-square test in [26] and 
can be written as11 

Cv~h>    X2Avn+r22-rn-r2iTl 

(5) 

3.3.   Mahalanobis   Metric:      This   metric   is 
probably the most frequently used and obtained by 

ignoring the covariance Vu = \V2l)   in (5), i.e., 

(6) 

"• ^iifa^r1 

which can be identified with the square of the 
Mahalanobis    distance    between    two    gaussian 

distributions, (xv,Vn) and \x2j,V22). 

3.4. Chong Metric:   This metric can be derived 
from a general form of track-to-track association 

likelihood    \\PXi{x)p2J{x)lp{x))ß{dx)    between 

10 By XT we mean the transpose of a vector or a 
matrix X. 
11 III   is a norm on a Euclidean space determined by 

II ll,f 

a    symmetric    positive    definite    matrix   A    as 

y =4X
T
AX. 

ii H-i 

track i from sensor 1 having the target state 

distribution pv described as a density with respect to 

a certain measure /J on a target state space and track 

j from sensor 2 with p2j, where p is the common a 

priori target distribution density. In our gaussian 
case, we have 

\X-Xu -i + r" *2%2i-F-*IH 

where V~lx = Vu
lxl+V2^x2-V !x 

(7) 

with 

■Vü+Vi 22 ■V ', and \x,V) is the a priori 
mean vector and the variance matrix of the target 
state x. The subtraction in (7) can be interpreted as 
an operation to eliminate the double-counted a priori 

information. It can be easily shown that, as V -» oo, 
Chong metric (7) converges to Mahalanobis metric 
(6). 

3.5. Expanded State Metric: This metric can be 
obtained by first expanding target state space from12 

5Rrf to 5R*' where d is the dimension of the original 
target state space, i.e., expanding the target state to be 

estimated from x(tn) to (x(^)X=i> and tnen by 
applying the Chong metric (7) to the expanded target 
state estimates. This metric was suggested in [7] but 
fully explored in [30]. This expansion of target state 
space generally makes calculation directly using (7) 
impractical. However, in [30], it was shown that the 
metric can be obtained by recursively calculating the 
properly defined track likelihood function of each 
track to be fused, as well as the fused track, using the 
measurements. 
3.6. Performance Comparison: Unlike the 
performance analysis of Section 2.6., there is no 
obvious way13 of predicting the track association 
performance by various association metrics. 
Therefore, Monte Carlo analysis was conducted. In 
each run, a random set of targets with the average 
number 100 of targets was generated according to the 
model described in Section 2.6., with the initial 
position uncertainty standard deviation being ten 
times   as   big   as   the   measurement   error,   i.e., 

a0=\0cxM. 

12 SR = (- oo, oo) = set of reals. 
13 In [34], a method for predicting data association 
performance is described but it may not be 
appropriate when the intensity measure of the random 
set (point process) is Gauss-Poisson, rather Uniform- 
Poisson. 
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Fig. 3 shows comparison of association 
performance by (1) Bar-Shalom metric, (2) 
Mahalanobis metric, and (3) expanded state metric, 
with various process noise intensity q. For each run, 
for each target, it was examined whether the tracks 
originating from that target are correctly associated or 
not. Then the probability of correct association is 
calculated as the number of correctly associated 
targets over the total number of targets. Each point in 
Fig. 3 was obtained by averaging 300 samples. 

Fig. 3: Track Association Performance 

Prob, of Correct Association (%) 
100 

Process Noise Intensity g I 

Since we have chosen relatively large initial 
state variance, we expected the difference between 
Chong metric and Mahalanobis metric to be very 
small. Consequently, only the simper algorithm, i.e., 
Mahalanobis metric, was evaluated. Because of its 
completeness and amount of required computation, 
better performance by the expanded state metric is 
not surprising at all. However, we should note that 
there is no significant difference between Bar- 
Shalom metric considering the covariance between 
the two tracks and Mahalanobis metric that ignores 
such cross-correlation. Lack of difference between 
two algorithms may be explained as follows: Bar- 
Shalom metric uses the covariance matrix to adjust 
the weights in the distance function (5); in a sense, 
decreasing with positive correlation and increasing 
with negative correlation. However, in our example, 
because we assume tracks with uniform quality, those 
differences become the same to all the track pairs, 
and between two different metrics, the effects appear 
only as a scaling difference. This scaling effect 
resulted in an extremely small difference caused by 
different relative scaling with respect to the fixed 
threshold (i.e., the chi-square value of 30). 

4. Conclusion 
Using very simple linear-Gaussian-Poisson models, 
several different track fusion algorithms and track 
association metrics were evaluated. Because of 
linear-gaussian-ness, track fusion algorithms can be 
compared     analytically. Track     association 
performance, however, had to be measured by Monte 
Carlo simulations. 

Generally computational and 
communication requirements were not considered. 
Considering these requirements, in practical cases, 
those track fusion algorithms requiring evaluation of 
cross-correlation between tracks form two sensors 
may not be very practical. In many cases, simply 
communicating all the measurements in a track with 
all the necessary statistics including observable 
partials, etc., would be more practical. Under a 
reasonable communication restriction, tracklet fusion 
would be more practical. Using an appropriate time 
intervals between two tracklets from local sites, we 
may treat each tracklet as equivalent measurements 
from which the expanded track association metric can 
be easily calculated. 

This approach has been used for a group of 
tactical data fusion products called Advanced 
Tactical Workstation (ATW [35]) developed by 
Advanced C3I Systems Unit of Raytheon Systems 
Company. As described in [30], in a particular 
variant of ATW specially tuned to undersea bearing- 
only tracking, the expanded state track association 
metric is used very effectively. Recently, it was also 
proved, in an ONR-sponsored program, on-board 
sensor fusion may be effectively architectured using 
this combination of tracklet fusion and expanded 
state association metric ([36],[37]). 

REFERENCES 
[1] Y. Bar-Shalom, and T. E. Fortman, Tracking and 
Data Association, Academic Press, Orland, FL 1988. 
[2] R. A. Singer, and A.J. Kanyuck, "Computer 
Control of Multiple Site Correlation," Automatica, 
Vol. 7, pp. 455-463, July 1971. 
[3] C. Y. Chong, "Hierarchical Estimation," Proc. 
MIT/ONR Workshop on C3, 1979. 
[4] C. Y. Chong, and S. Mori, "Hierarchical Multi- 
Target   Tracking   and   Classification   -   Bayesian 
Approach," Proc. 1984 American Control Conf, San 
Diego, CA, June 1984. 
[5] C. Y. Chong, E. Tse, and S. Mori, "Distributed 
Estimation in Network," Proc. 1983 American 
Control Conf., San Francisco, CA, June 1983. 
[6] C. Y. Chong, S. Mori, and K. C. Chang, 
"Information Fusion in Distributed Sensor 
Networks," in Proc. 1985 American Control Conf., 
pp. 830 - 835, 1985. 

236 



[7] C. Y. Chong, S. Mori, and K. C. Chang, 
"Distributed Multitarget Multisensor Tracking," in 
Multitarget Multisensor Tracking: Advanced 
Applications, Y. Bar-Shalom, ed., Chap. 8, Norwood, 
MA: Artech House, 1990, pp. 247 - 295. 
[8] D. B. Reid, "An Algorithm for Tracking Multiple 
Targets," IEEE Trans. Autmat. Contr., AC-24, Dec. 
1979. 
[9] S. Mori, C. Y. Chong, E. Tse, and R. P. Wishner, 
"Tracking and Classifying Multiple Targets wihout A 
Priori Identification," IEEE Trans. Automat. Contr., 
AC-31, May 1998. 
[10] S. Mori, "Random Sets in Data Fusion - Multi- 
Object, State-Estimation as a Foundation of Data 
Fusion   Theory,"   in   Random   Sets:   Theory  and 
Applications, ed. By J. Goutsias, R.P.S. Mahler, and 
H.T. Nguyen, Springer-Verlag, NY, 1997. 
[11]   S.   Mori,   "Random   Sets   in   Data   Fusion 
Problems," Proceedings of 1997 National Symposium 
on   Sensor   and   Data   Fusion,    MIT   Lincoln 
Laboratory, Lexington, MA, April 1997. 
[12]   S.   Mori,   "Random   Sets   in   Data   Fusion 
Problems," Proceedings of 1997 National Symposium 
on   Sensor   and   Data   Fusion,    MIT    Lincoln 
Laboratory, Lexington, MA, April 1997. 
[13] S. Mori, "Random Sets in Data Fusion," Proc. of 
SPIE Symposium on Data Processing and Tracking 
of Small Targets, San Diego, CA, August 1997. 
[14]  S.  Mori,  "Multi-Target tracking  Theory  in 
Random Set Formalism," Proc. First International 
Conference on Multisource-Multisensor Information 
Fusion, pp. 116 - 123, Las Vegas, NV, July 1998. 
[15] S. Mori, "A Theory of Information Exchanges: 
Random-Set Formalism," Proc. 1998 IRIS National 
Symposium on Sensor and Data Fusion, Marietta, 
GA, April 1998. 
[16] J. L. Speyer, "Computation and Transmission 
Requirements for a Decentralized Linear-Quadratic- 
Gaussian Control Problem," IEEE Trans. Automat. 
Contr., Vol. AC-24, pp. 266 - 269, April 1979. 
[17] A. Willsky, M. Bello, D. Castanon, B. Levy, and 
G. Verghese, "Combining and Updating of Local 
Estimates Along Sets of One-Dimensional Tracks," 
IEEE Trans, on Automat. Contr., Vol. AC-27, pp. 
799-813, Aug. 1982. 
[18] H. R. Hashemipour, S. Roy, and A. J. Laub, 
"Decentralized Structures for Parallel Kaiman 
Filtering," IEEE Trans. Automat. Contr., Vol. AC-33, 
No. 1, pp. 88 - 93, Jan. 1988. 
[19] H. F. Durrant-Whyte, B. S. Y. Rao, and H. Hu, 
"Toward a Fully Decentralized Architecture for 
Multi-Sensor Data Fusion," in Proc. IEEE Int. Conf. 
Robotics and Automation, 1990. 
[20] B. Belkin, S. L. Anderson, and K. M. Sommar, 
"The Pseudo-Measurement Approach to Track-To- 

Track Data Fusion," in Proc. 1993 Joint Service Data 
Fusion Symposium, pp. 519 - 538, 1993. 
[21]  R.  Lobbia and  M.  Kent, "Data Fusion of 
Decentralized Tracker Outputs," IEEE Trans. Aero. 
Elect. Syst., vol. AES-30, vo. 3, pp. 787-799, July 
1994. 
[22] O. E. Drummond, "Feedback in Track Fusion 
without Process Noise," in Proc. SPIE, Signal and 
Data Processing of Small Targets, vol. 2561, pp. 369 
-383,1995. 
[23] O. E. Drummond, "A Hybrid Sensor Fusion 
Algorithm  Architecture  and  Tracklets,"  in  Proc. 
SPIE, Signal and Data Processing of Small Targets, 
vol.3163,1997. 
[24] O. E. Drummond, "Tracklets and a Hybrid 
Fusion with Process Noise," in Proc. SPIE, Signal 
and Data Processing of Small Targets, vol. 3163, 
1997. 
[25] M. D. Miller, O. E. Drummond, and A. J. 
Perrella,   "Tracklets   and   Covariance   Truncation 
Options for Theater Missile Tracking," in Proc. 1998 
International Conf. on Multisource-Multisensor Data 
Fusion (FUSION'98), 1998. 
[26]   Y.   Bar-Shalom,   "On   the   Track-to-Track 
Correlation   Problem,"   IEEE   Trans.   Automatw. 
Contr., AC-25, pp. 802-807, Aug., 1980. 
[27] Y. Bar-Shalom, and L. Campo, "The Effects of 
the Common  Process Noise on the Two-Sensor 
Fused-Track Covariance," IEEE Trans, on Aero, and 
Elect. Syst., Vol. AES-22, No. 6, pp. 803-804, 1986. 
[28] K. C. Chang, R. K. Saha, and Y. Bar-Shalom, 
"On Optimal track-to-Track Fusion," IEEE Trans, on 
Aero, and Elect. Syst., Vol. 33, No. 4, pp. 1271-1276, 
Oct., 1997. 
[29]  K.  C.  Chang,  Z.   Tian,  and  R.  K.   Saha, 
"Performance   Evaluation  of Track  Fusion  with 
Information    Filter,"    Proc.    First    International 
Conference on Multisource-Multisensor Information 
Fusion, pp. 648 - 654, Las Vegas, NV, July 1998. 
[30] S. Mori, K. A. Demetri, W. H. Barker, and R. N. 
Lineback, "A Theoretical Foundation of Data Fusion 
- Generic Track Association Metric -," Technical 
Proceedings of Seventh Joint Service Data Fusion 
Symposium, pp. 585-594, Laurel, MD, Oct. 1994. 
[31]  I.  B.  Rhodes,  "A  Tutorial  Introduction  to 
Estimation and Filtering," IEEE Trans. Automat. 
Contr., AC-16, No. 6, pp. 688-706, 1971. 
[32] Tiburon Systems, "Over-The-Horizon Detection, 
Classification and Tracking (OTH/DC&T) System 
Level Specification Ship Tracking Algorithm," Rev. 
CTIB-01411, June, 1991. 
[33] S..S. Blackman, Multiple Target Tracking with 
Radar Application, Artech House, Norwood, MA, 
1986. 
[34]  S. Mori, K. C. Chang, and C. Y. Chong, 
"Performance Analysis of Optimal Data Association 

237 



with Applications to Multiple Target Tracking," in 
Multitarget-Multisensor Tracking: Applications and 
Advances, Vol. II, ed. by Y. Bar-Shalom, Artech 
House, 1992. 
[35] K. A. Demetri, W. H. Barker, S. Mori, and R. N. 
Lineback, "Advanced Tactical Workstation," 
Proceedings of 1997 National Symposium on Sensor 
and Data Fusion, MIT Lincoln Laboratory, 
Lexington, MA, April 1997. 
[36] W. H. Barker, S. Mori, E. G. Sullinger, and M. 
P. Boe, "Data Fusion Processing for the Multi- 
Spectral Sensor Surveillance System (M4S)," Proc. 
1998 IRIS National Symposium on Sensor and Data 
Fusion, Marietta, GA, April 1998. 
[37] W. H. Barker, S. Mori, E. G. Sullinger, and M. 
P. Boe, "Data Fusion of the Multi-Spectral Sensor 
Surveillance System (M4S)," Proc. ThirdNATO/IRIS 
Joint Symposium, Quebec City, Quebec, Canada, 
Oct., 1998. 
[38] J. M. Covino, and B. E. Griffiths, "A New 
Estimation Architecture for Muti-Sensor Data 
Fusion," SPIE Vol. 1478, Sensor Systems for 
Guidance and Navigation, pp. 114-125, 1991. 

238 



Architectures and Algorithms for Track Association and Fusion 

Chee-Yee Chong 
Booz Allen & Hamilton, Inc. 
San Francisco, CA 94111 

Kuo-Chu Chang 
George Mason University 
Dept. of System Engineering 
Fairfax, VA 22030 

Shozo Mori 

William H. Barker 

Raytheon Systems Company 
Advanced C3I Systems 
San Jose, CA 95126 

Abstract - Target tracking using multiple sensors can 
provide better performance than using a single sensor. One 
approach to multiple target tracking with multiple sensors is 
to first perform single sensor tracking and then fuse the 
tracks from the different sensors. Two processing architec- 
tures for track fusion are presented: sensor to sensor track 
fusion, and sensor to system track fusion. Technical issues 
related to the statistical correlation between track estima- 
tion errors are discussed. Approaches for associating the 
tracks and combining the track state estimates of associated 
tracks that account for this correlation are described and 
compared by both theoretical analysis and Monte Carlo 
simulations. 

Key Words: Sensor fusion, target tracking, distributed 
tracking/fusion, distributed data processing 

1. Introduction 
The use of multiple sensors for target tracking can 

potentially provide better performance than a single 
sensor due to better visibility, complementary infor- 
mation, etc. Theoretically, the best tracking perform- 
ance is achieved by fusing the measurements from the 
sensors directly. However, due to communication or 
organization constraints, many real-world systems 
have a hierarchical structure where the fusion system 
has no direct access to the sensor data. Instead, the 
sensor data are processed locally to form sensor tracks, 
which are then fused to form system tracks. Track fu- 
sion is then needed to associate the sensor tracks and 
generate an improved target state estimate. 

Track fusion has technical issues that are not pres- 
ent in measurement fusion or centralized tracking. In 
particular, the state estimates of sensor tracks cannot 
be treated like sensor measurements and fused with a 
standard centralized tracking algorithm. This is due to 
the fact that while sensor measurement errors are usu- 
ally independent across sensors and time, the errors in 
target state estimates associated with the tracks, i.e., 
tracker outputs, are generally correlated with one an- 

other. This has significant impact on the two main 
functions in track fusion: association and state estimate 
fusion. Both the computation of the association metrics 
and the fusion of the track state estimates need to con- 
sider any possible dependence between the track state 
estimation errors. The specific fusion architecture af- 
fects the nature of the statistical correlation and the 
algorithms that should be used. 

This paper presents technical issues associated with 
track fusion and compares several algorithms. We first 
describe the track fusion problem and possible fusion 
architectures. This is followed by the technical issues 
associated with track fusion. Algorithms for track state 
estimate fusion and track association are then pre- 
sented and compared. Specifically, we describe several 
algorithms for combining track state estimates, their 
optimality, and their advantages and disadvantages. 
Theoretical analysis and Monte Carlo simulations are 
used to compare their performance. We also describe 
different ways of handling the correlation between the 
target state estimates in computing the association met- 
rics. 

This paper focuses on deterministic target dynam- 
ics. A companion paper [1] will address the non- 
deterministic problem. 

2. Track Fusion and Architectures 
We consider a track fusion system with the compo- 

nents shown in Figure 1. 

Figure 1: Track Fusion System 
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Single sensor tracking generates single sensor 
tracks and target state estimates. Periodically, the 
tracks from different sensors are sent to a central site 
to be fused. 

Track fusion involves two steps: association and 
track state estimation fusion. In association, tracks 
from different sensors are associated to form system 
tracks, each corresponding to a single hypothesized 
target. Given an association, the state estimates of the 
system tracks are then obtained by fusing the state es- 
timates of associated sensor tracks. 

There are two possible processing architectures for 
track fusion depending on whether the state estimates 
of the system track are used. 

Sensor to sensor track fusion (Figure 2). The state 
estimates from different sensor tracks (propagated to a 
common time) are associated and fused with each 
other to obtain the state estimate for the system track. 
The previous state estimate of the system track is not 
used in this process. Note that with this architecture, 
fusion will in general involve sets of tracks from more 
than two sensors. 

This architecture does not have to deal with the 
problem of correlated estimation errors (if the common 
prior is ignored). Since it is basically a memory-less 
operation, the errors in association and track estimate 
fusion are not propagated from one time to the next. 
However, this approach may not be as efficient as sen- 
sor to system track fusion since past processing results 
are discarded. 

Sensor 1 Tracks     (^\ 

System Tracks 

Sensor 2 Tracks      i    j 

Figure 2: Sensor to Sensor Track Fusion 

Sensor to system track fusion (Figure 3). Whenever 
a set of sensor tracks is received, the state estimates of 
the system tracks are extrapolated to the time of the 
sensor tracks, and fused with the newly received sen- 
sor tracks. The process is repeated when another set of 
sensor tracks is received. 

Sensor 1 Tracks      (c 

System Tracks 

Sensor 2 Tracks 

Figure 3: Sensor to System Track Fusion 

Sensor to system track fusion reduces the associa- 
tion problem to a bi-partite assignment problem so that 
common assignment algorithms can be used. However, 
it has to deal with the problem of correlated estimation 
errors. In Figure 3, the sensor tracks in A and the sys- 
tem tracks in B have correlated errors since they all 
depend on C. Furthermore, any errors in system tracks 
due to past processing errors in association or fusion 
will affect future fusion performance. 

3. Technical Issues 
The main technical issues with track fusion are due 

to the fact that tracks and not measurements have to be 
fused. The inputs to track fusion are sensor tracks 
formed from local measurements and represented by 
position and velocity estimates and their error covari- 
ance matrices. 

3.1. Correlated Estimation Errors 

Fusion will be relatively straightforward if the es- 
timation errors of the two tracks to be fused are un- 
correlated. The estimates can be viewed as measure- 
ments with independent errors, fused with other esti- 
mates using a standard approach (e.g., association and 
Kaiman filter update). The estimation errors between 
two tracks may be correlated for the following reasons. 

A. Common prior estimates. This occurs in sensor 
to system track fusion as in Figure 4, which shows an 
information graph formulation [2], [3] of the track 
fusion problem. The solid squares in the graph repre- 
sent measurements and the hollow squares represent 
fusion, either of a measurement with a track or a track 
with another track. The tracks are assumed to have 
been propagated to a common time. The placement of 
the tracks in the graph represents information con- 
tained in the tracks. Basically a track at a node will 
contain all the information in the predecessor nodes 
(both tracks and measurements). In the example, both 
the sensor track estimate ij and the system track es- 

timate x, contain the sensor track estimate x} propa- 

gated from an earlier time. Figure 4 also illustrates that 
two sensor tracks do not share common prior estimates 
(except for a common prior). In general, there is cor- 
relation from this source if there are multiple paths 
from a measurement to the fusion node in the informa- 
tion graph. 

B. Correlated estimation errors due to common 
process noise. This occurs even when fusion is be- 
tween sensor tracks not sharing common measure- 
ments. The measurements from two sensor tracks are 
not necessarily conditionally independent given the 
target state at a single time when the target dynamics is 
not deterministic. Thus the estimation errors from two 
sensor tracks may not be independent. 
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The correlated estimation errors have to be consid- 
ered in associating the tracks and in combining the 
state estimates for the associated tracks. Otherwise, the 
target state estimates in the system tracks may degrade. 

 ►■ Time 
Sensor 1 
Measurements 

Sensor 1 Track 

System Tracks 

Sensor 2 Track 

Sensor 2 
Measurements 

Figure 4: Dependence in Track Estimates 

3.2. Imperfect Association 

Track fusion has to associate those sensor tracks 
that originate from the same targets. If the sensor 
tracks were pure, i.e., each sensor track consists of 
measurements from a single target, or the previous 
associations were perfect, i.e., the sensor tracks that 
were associated were indeed from the same targets, 
then track association would need only deal with new 
sensor tracks. At any time in the track fusion process, 
sensor tracks that have been previously associated 
should keep their previous associations. Only new sen- 
sor tracks have to be associated to determine whether 
they are from new targets or from previously detected 
targets (associated with old sensor tracks). 

In practice, sensor tracks are seldom perfect. They 
may be impure, i.e.,. each sensor track may consist of 
measurements from different targets (mis-association), 
or it may be fragmented, i.e., the same target may ap- 
pear in multiple sensor tracks. Furthermore, previous 
track associations may be incorrect in that some sensor 
tracks may have been mis-associated with other sensor 
tracks. Thus it may be necessary to re-associate sensor 
tracks even though they have been previously associ- 
ated to system tracks. If the sensor to system track 
fusion processing architecture is used, the computation 
of the association metrics has to consider the depend- 
ence between the sensor and system tracks. 

4. Track State Estimate Fusion 
Track fusion consists of two steps: (1) track-to- 

track association, or selection of a best association 
hypothesis, and (2) fusion of target state estimates 
given an association hypothesis. We will discuss track 
state estimates fusion first because the same techniques 
can be used for computing the association metrics. 

Track State Estimate Fusion problem. Suppose there 
are two tracks, i and j with state estimates and error 

covariance matrices (both propagated to a common 
time) x, and x,, P, and P}, respectively. The esti- 

mate fusion problem is to find the best fused estimate 
X and the error covariance matrix P . The two tracks 
may be two sensor tracks in a sensor to sensor track 
fusion architecture, or a system track and a sensor 
track in a sensor to system track fusion architecture. 

Track state estimate fusion algorithms have been 
investigated extensively over the past two decades 
with most of the research performed under the topic of 
decentralized or distributed estimation. In the follow- 
ing sub-sections, we discuss two approaches to track 
fusion: "best" linear combination of track estimates 
and reconstruction of optimal centralized estimate. 

4.1. "Best" Linear Combination of Estimates 

The fused estimate is constrained to be a linear 
combination of the track estimates, i.e., x = Axj + BXj. 

The matrices A and B are then chosen to optimize 
some criteria, e.g., weighted least squares or minimum 
variance. If the track estimates are not the sufficient 
statistics for the sensor measurements in the fused 
track, then the optimal linear combination may not be 
as optimal as an estimate that is allowed to use infor- 
mation other than the current estimates. Two algo- 
rithms have been developed for linearly combining the 
track estimates depending on whether the cross covari- 
ance between the track estimates is considered. 

4.1.1 Basic Convex Combination 

When the cross covariance between the two track 
estimates can be ignored, the fusion algorithm is given 
by [4]: 
• State estimate: 

x = Pj(Pi+PJ)-]xl+Pi(Pi+Pjr
lxj 

= P(Pr>Xi+P;lXj) 

• Error covariance: 

P = /»_/»(/>+/>)-'/> = ptf+Pj^Pj = tf-1+PJY 

(2) 
The basic convex combination algorithm has been 

used extensively because of its simple implementation. 
It is suboptimal when the estimation errors are corre- 
lated, such as when one track is a system track and the 
other track is a sensor track, or when process noise is 
present. However, when both tracks are sensor tracks 
and there is no process noise, then the fusion algorithm 
is (almost) optimal, i.e., it produces almost the same 
results as when the sensor measurements are fused 
directly (as will be seen in Section 4.2.4.) 

4.1.2 Linear Combination with Cross Covariance 

When the cross covariance between the two esti- 
mates cannot be ignored, the linear combination algo- 
rithm becomes [5]: 
• State estimate: 

(1) 
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x = x, HP, - W +Pj -Pv -Pj<Y\Zj -*,)   (3) 

•    Error covariance: 

P=PJ HP,-PVM+PJ-PV -p,r*(Pj-p,)    (4) 

The cross-covariance's Ptj and PJt are computed from 

the observation matrices and the Kaiman filter gains 
[6]. 

This fusion algorithm was originally developed to 
account for correlation due to common process noise. 
However, the derivation depends only the correlation 
between the two estimation errors and not on the spe- 
cific source of the errors, which could result from 
common prior estimates. The algorithm was originally 
thought to the optimal in the minimum mean square 
error (MMSE) sense but was claimed recently [7] to be 
only optimal in the maximum likelihood (ML) sense. 

The advantage of this algorithm is its ability to 
handle common process noise. For example, when the 
estimates come from two sensor tracks, even if there is 
no common prior, the estimation errors may still cor- 
related if there is common process noise. The main 
disadvantage of this algorithm is the amount of infor- 
mation needed to compute the cross-covariance. If the 
system is linear and time-invariant, the cross covari- 
ance can be computed from off-line information. Oth- 
erwise, the entire history of Kaiman filter gains and 
observation matrices need to be communicated to 
whoever is doing the fusion. Since extended Kaiman 
filters are usually used for sensor level tracking, the 
Kaiman filter gains depend on the measurement data. 
In this case, it may be more efficient to communicate 
the measurements for centralized fusion than sensor 
tracks for track fusion. 

4.2. Reconstruction of Centralized Estimate 

The other basic approach to track state estimate fu- 
sion attempts to reconstruct the optimal estimate (by 
fusing the measurements in the tracks) from the indi- 
vidual track estimates and possibly some additional 
information [8] - [23]. Figure 5 illustrates the philoso- 
phy behind this approach for sensor to system track 
fusion. The sensor measurements from the individual 
sensors are used to form estimates for the sensor 
tracks. Periodically, these estimates are fused to obtain 
state estimates for the system tracks. As seen in the 
figure, the sensor track estimate Xj and system track 

estimate jc, to be fused share the same measurements 

in the sensor track estimate 3cy which was transmitted 

earlier to fused with the system track. 
The algorithms in this approach avoid double 

counting of information by either recognizing the 
common information and removing it in the fusion 
process or by only sending information that is uncor- 

related with the system track. The latter uses the con- 
cept of so called "tracklets" [17] - [20], where a 
tracklet is loosely defined as a track segment computed 
so that its errors are not cross-correlated with the er- 
rors of other track segments. 

Measurements in *, 

Measurements in', 

Measurements in *, 

Sensor 2 Track 

Sensor 2 
Measurements 

Figure 5: Reconstruction of Centralized Estimate 

4.2.1   Information De-correlation 

The information de-correlation approach can be 
derived [9], [11], [16] easily using the information 
filter form of the Kaiman filter. The key idea is to 
identify the common information in the two estimates 
to be fused and remove it in fusion. This approach is 
useful when one track is the system track and the other 
track is the sensor track. 

The state estimate fusion algorithm is given by: 
•     State estimate: 

x^PiPr'x.+Pr'xj-Pf'xj) (5) 

Error covariance: 

p=(pl-
,+pJ-

,-pJ-
ly (6) 

where x and />. are the state estimate and error co- 

variance (propagated to the common fusion time) of 
the sensor track last communicated to the system track. 
This is the additional information that is used for the 
fusion algorithm. Basically, both the sensor and system 
tracks contain this common information. In order to 
avoid double counting, it has to be removed from the 
results. 

This fusion algorithm is based upon a general the- 
ory for distributed fusion [2], [3], [16] that can support 
arbitrary fusion and communication architectures, e.g., 
fusion with feedback. The information graph intro- 
duced earlier is used to identify the common informa- 
tion shared by two estimates, and the fusion algorithm 
then avoids the double counting. In addition to fusing 
state estimates and their error covariances, the general 
approach can also be used for fusing target classifica- 
tion probabilities. 

The main advantage of this approach is its simple 
implementation. No additional communication is 
needed since the state estimate and error covariance of 
the previously transmitted sensor track can be stored 
and propagated to the current fusion time. This ap- 
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proach is optimal when there is no process noise. 
When the process noise is small, and/or the update rate 
by sensor tracks is reasonably high, the degradation in 
performance has been shown to be small. 

4.2.2   Equivalent Measurement 
This algorithm de-correlates the sensor track by 

finding an equivalent measurement for the "tracklet", 
i.e., the sensor measurements in the sensor track since 
the last communication with the system track [21]- 
[23]. 

The equivalent measurement is generated from the 
current estimate and error covariance and the previous 
estimate and error covariance of the sensor track (all 
propagated to a common time) as follows: 
• Equivalent measurement 

uJ=xj+PJ(PJ-Pjr(xJ-xj) (7) 

• Error covariance 

The error of the equivalent measurement is condi- 
tionally uncorrelated with the estimation error of the 
global track. Thus, the standard Kaiman update equa- 
tion can be used to combine the equivalent measure- 
ment with the current state estimate. More specifically, 
the update equation is: 
• State estimate: 

x = xi+Pi(Pi+Ujy\uj-xi) (9) 

Error covariance: 

P = Pl-Pl(P,+Ujy
lPl (10) 

Equations (9) and (10) with (7) and (8) are com- 
pletely equivalent to (5) and (6) in Section 4.2.1 
Equations (5) and (6) are in the information matrix 
form while (7) - (10) are in the covariance matrix 
form. Hence, numerical calculation issues aside, the 
performance and behavior of the two algorithms 
should be exactly the same. The information de- 
correlation algorithm has the advantage that the same 
approach can be used for general non-Gaussian or dis- 
crete probability distributions. 

4.2.3   Restarting Local Filters 
Another way of de-correlating the sensor track 

from the system track is to generate local track esti- 
mates using only the measurements since the last 
communication. This approach is sometimes called 
"tracklets from measurements" [18]. As seen in Fig- 
ure.6, the local and system tracks are de-correlated 
since they do not share any common information. In 
terms of the information graph, there is a single unique 
path from each measurement to the fusion node. 

Sensor 1 
Measurements 

Sensor 1 Track 

System Track 

Sensor 2 Track 

Sensor 2 
Measurements 

Figure 6: Restarting Local Filters 

In this approach, after a sensor track has been 
transmitted to be fused with the system track, the local 
filter is re-started using the new measurements. The 
estimate from these measurements is then un- 
correlated with the system track and can be fused eas- 
ily with the system track. Since sensor tracking needs 
good estimates to evaluate the matrices for the ex- 
tended Kaiman filter and to support association, the 
usual tracker that processes all measurements is also 
used. Thus the local filter that is restarted periodically 
can be viewed as the "shadow tracker" [19]. 

The advantage of this approach is its simplicity. 
The disadvantage is the need to modify the existing 
tracking algorithm for the sensors. This approach is 
also equivalent to Equations (5) - (10). 

4.2.4   Global Restart 
The main problem in track fusion is the correlation 

between the sensor and system tracks. The correlation 
problem does not exist if the state estimate of the sys- 
tem track is not used in fusing the sensor track esti- 
mates. Since the sensor tracks already contain all the 
available measurements up to the current time, this 
global estimate formed will be optimal (Figure 7). 

At each fusion time, the estimates of the sensor 
tracks are fused with each other to obtain the global 
estimate. The fusion algorithm is given by: 
• State estimate: 

x = P{Prxxi+Pj'xj-P-'x) (11) 

• Error Covariance: 
/> = (/>-' +/»;'- p-ly (12) 

where x and P are the common prior state and covari- 
ance used by the sensor trackers propagated to the 
current time. Note that even though (11) and (12) are 
the same as (5) and (6), they are based on different 
processing architectures and use different priors. 

When the prior covariance matrix P is much 
larger than the updated estimation error covariance 
matrix, or when it becomes very large due to forward 
propagation, then P"' -» 0, and these equations are 
equivalent to the basic convex combination equations 
(1) and (2) described before, i.e., 
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x = P(Pr xi+p;% ) (13) 

P = (Pr ■+p;r (14) 

Sensor 1 

X-J&i 
Measurements 

Sensor 1 Track 

n-Ji * —►• System Tracks 

i-Jdj-un Sensor 2 Track 

Sensor 2 
Measurements 

Figure 7: Global Restart 

The advantage of this approach is that it does not 
have to perform any de-correlation since the sensor 
tracks to be fused do not have correlated estimation 
errors. 

4.3. Numerical Results 

We present some numerical results to compare the 
performance of the fusion algorithms. 

4.3.1   Simulation Approach 

Two sensors were located such that there is over- 
lapping coverage of the target trajectory and the 
viewing geometry offers potential performance im- 
provement from fusion. Measurements from the two 
sensors were then simulated. 

Single sensor tracking algorithms were simulated 
by standard extended Kaiman filters. The outputs from 
the two single sensor trackers were periodically fused 
using the algorithms to be analyzed. 

The estimated target states (position and velocity) 
were compared with the true target states to find the 
estimation error. The errors from multiple Monte 
Carlo runs were averaged to find the root mean square 
(RMS) position and velocity errors. The parameter to 
be varied is the communication or fusion frequency. 

We compared the performance of two fusion algo- 
rithms representing the two main approaches - convex 
combination and tracklet by means of information de- 
correlation. The performance of single sensor tracking 
and centralized tracking, was computed analytically by 
the Cramer Rao bounds. The two reference cases pro- 
vide lower and upper bounds for what can be achieved 
with the sensor measurements. 

The Cramer Rao bound provides a theoretical 
lower bound on the estimation error covariance matrix 
that is achievable by an unbiased nonlinear estimate 
[24]. For continuous time nonlinear deterministic 
models with discrete-time nonlinear measurements 
with additive Gaussian white noise, it can be shown 
[25] that the extended Kaiman filter covariance propa- 
gation equations linearized about the true (unknown) 
trajectory provide the Cramer Rao bound to the esti- 

mation error covariance matrix. This is computation- 
ally far more efficient than Monte Carlo runs. 

4.3.2   Simulation Results 

Figures 8 to 11 show the Monte Carlo performance 
results of the convex combination and tracklet fusion 
algorithms for 10 sec. communication interval and the 
Cramer Rao bounds for single sensors and both sen- 
sors (centralized fusion). The local sensor observation 
interval is 1 sec. Note that there is definitely benefit in 
fusion. Both fusion algorithms essentially achieve the 
performance of centralized fusion (measurement fu- 
sion) as predicted by the Cramer Rao bounds. This is 
consistent with the theoretic analysis that shows the 
optimality of both algorithms. The results also show 
that the performance right after communication does 
not seem to be affected by the communication fre- 
quencies simulated. Nominal values in the figures are 
1 Km. for position and 1 m/s for velocity. 

m RUS Error* Nontfnaf Vato* Convex CoffMiaBoft Algorithm 

Figure 8: Position Error for Convex Combination 

Figure 9: Velocity Error for Convex Combination 
PerJHon RMS Error I Nomrrul Vnfcn IrKkMt Fuller Mgertthm 

Figure 10: Position Error for Tracklet Fusion 
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Figure 11: Velocity Error for Tracklet Fusion 

5. Track Association 
Before the track state estimates can be combined, 

the sensor tracks have to be associated either with each 
other (sensor track to sensor track fusion) or with the 
system tracks (sensor track to system track fusion). As 
discussed before, if the sensor tracks were perfect and 
the previous associations can be trusted, then only the 
new sensor tracks need to be associated. The state es- 
timates of the other sensor tracks are fused with the 
system tracks that contain them to update the esti- 
mates. In practice, both the sensor tracks and the pre- 
vious associations may have errors. Thus some form of 
re-association is needed. In a multiple hypothesis ap- 
proach, this is handled naturally as the probabilities of 
the association hypotheses are re-evaluated. In a single 
hypothesis approach, the system tracks and sensor 
tracks are evaluated to determine which ones need to 
be re-associated along with the new sensor tracks. 

Track association consists of the two key steps: 
computing a table of association metrics and selecting 
the best association hypothesis, usually by some as- 
signment algorithm. 

5.7. Track Association Metrics 

The association metric measures how close one 
track is to another so that association decisions can be 

. made. A traditional association metric is the squared 
Mahalanobis distance. Given two tracks i and j with 

mean estimates and covariances represented by 
.(*,-, I7,)  and  (_Xj,V}), the Mahalanobis distance is 

defined as: 

Xn = pi-WW + VfÜ-ij)        (15) 
The association metric has to be modified when the 

track state estimation errors are correlated. The prob- 
lem was considered by Bar-Shalom [6] when the cor- 
relation was due to common process noise and the 
result is similar to that in (3) and (4). Even when proc- 
ess noise is absent, one still has to be careful. In par- 
ticular, in computing the association metric between a 

sensor track and a system track that contains the sensor 
track, one cannot ignore the correlation between these 
tracks. In the following we discuss how the association 
metrics should be modified depending on the quality 
of the sensor track or quality of the previous associa- 
tion. 

5.1.1   Imperfect Association 

When the previous association between a sensor 
track and a system track is questionable, the sensor 
track and the system track need to be re-associated 
with other system tracks and sensor tracks. Since the 
sensor track and system track have correlated estima- 
tion errors, the association metric has to account for 
the correlation in order to give correct results. In Fig- 
ure 12, the system track shown was previously associ- 
ated with Sensor Track 1 and Sensor Track 2 (and 
possibly other sensor tracks). Suppose it is necessary 
to reconsider the association between the system track 
and the sensor track due to large Mahalanobis distance 
between the tracks. Assume also that the purity of the 
sensor track 1 can be trusted. The effect of the sensor 
track 1 has to be removed from the system track before 
the association metric can be computed. Otherwise the 
system track will be too close to the sensor track. The 
error covariance and state estimate of the de-correlated 
system track is given by: 

V dSYS)      — ' i ') 

VdSYS)    Xi dSYS =vr]
Xi ■Vj-% 

(16) 

(17) 

-*■  Time 
Sensor 1 
Measurements 

Sensor 1 Track 

System Track 

Sensor 2 Track 

Sensor 2 
Measurements 

Figure 12: De-correlation of System Track 
The de-correlated system track state estimate can 

then be used in calculating the association metric. 

5.1.2   Imperfect Sensor Track 

When re-association is needed due to impurity in 
the sensor track, the tracklet formed from the meas- 
urements since the last association is re-associated 
with the system track. This is the case when the previ- 
ous association can be trusted, but the continuity of the 
sensor track is questionable. The state estimate (both 
mean and covariance) of the de-correlated sensor track 
is computed using the approach of Section 4.2.1 and 
given by: 

245 



VdSEN ) ■V   -v: 
j      J 

CdSEN)    -^dSEN ~ "j    Xj      *j    Xj 

(18) 

(19) 

Essentially we have replaced the sensor track 1 with 
the tracklet since the last association with the system 
track (Figure 13). This de-correlated sensor track is 
then used to compute the association metric with the 
system track. 

*■  Time 
Sensor 1 Measurements 

Sensor 1 Track 

System Track 

Sensor 2 Track 

Sensor 2 Measurements 

Figure 13: Sensor Track De-correlation 

6. Summary 

In this paper we have considered the track fusion 
problem and technical issues including correlated es- 
timation errors in the tracks, imperfect sensor tracks 
and impure previous association. Among these, corre- 
lated estimation errors depend on the fusion processing 
architecture and affect the choice of track fusion algo- 
rithms. We presented different approaches for fusing 
track state estimates, and compared their performance 
through theoretical analysis and Monte Carlo simula- 
tions. We also discussed different approaches for 
computing the association metric. 

7. References 
1. S. Mori, W. H. Barker. C. Y. Chong, and K. C. Chang, 

"Track Association and Track Fusion with Non- 
Deterministic Target Dynamics," in Proc. T1 Interna- 
tional Conf. On Information Fusion, 1999. 

2. C. Y. Chong, S. Mori, and K. C. Chang, "Distributed 
Multitarget Multisensor Tracking," in Multitarget Mul- 
tisensor Tracking: Advanced Applications, Y. Bar- 
Shalom, ed., Norwood, MA: Artech House, 1990, pp. 
247 - 295. 

3. C. Y. Chong, "Distributed Fusion Architectures and 
Algorithms," in Proc. 1998 International Conf. on Mul- 
tisource-Multisensor Data Fusion, 1998. 

4. Y. Bar-Shalom and T. E. Fortman, Tracking and Data 
Association, San Diego, CA: Academic Press, 1988. 

5. Y. Bar-Shalom, and L. Campo, "The Effect of the 
Common Process Noise on the Two-Sensor Fused Track 
Covariance," IEEE Trans. Aero. Elect Syst., Vol. AES- 
22, pp. 803 - 805, Nov. 1986. 

6. Y. Bar-Shalom, "On the Track-to-Track Correlation 
Problem," IEEE Trans. Automat. Contr., Vol. AC-26, 
No. 2, pp. 571-572, Apr. 1981. 

7. K. C. Chang, R. K. Saha, and Y. Bar-Shalom, "On Op- 
timal Track-to-Track Fusion," IEEE Trans. Aero. Elec. 
Syst., Vol. 33, No. 4, pp. 1271 - 1276, Oct. 1997. 

8. J. L. Speyer, "Computation and Transmission Require- 
ments for a Decentralized Linear-Quadratic-Gaussian 
Control Problem," IEEE Trans. Automat. Contr., Vol. 
AC-24, pp. 266 - 269, April 1979. 

9. C. Y. Chong, "Hierarchical Estimation," in Proc. 
MIT/ONR Workshop on C3, Monterey, CA, 1979. 

10. A. Willsky, M. Bello, D. Castanon, B. Levy, and G. 
Verghese, "Combining and Updating of Local Estimates 
Along Sets of One-Dimensional Tracks," IEEE Trans, 
on Automat. Contr., Vol. AC-27, pp. 799-813, Aug. 
1982. 

11. C. Y. Chong, S. Mori, and K. C. Chang, "Information 
Fusion in Distributed Sensor Networks," in Proc. 1985 
American Control Conf, pp. 830 - 835, 1985. 

12. H. R. Hashemipour, S. Roy, and A. J. Laub, "Decen- 
tralized Structures for Parallel Kaiman Filtering," IEEE 
Trans. Automat. Contr., Vol. AC-33, No. 1, pp. 88 - 93, 
Jan. 1988. 

13. H. F. Durrant-Whyte, B. S. Y. Rao, and H. Hu, "Toward 
a Fully Decentralized Architecture for Multi-Sensor 
Data Fusion," in Proc. IEEE Int. Conf. Robotics and 
Automation, 1990. 

14. B. Belkin, S. L. Anderson, and K. M. Sommar, "The 
Pseudo-Measurement Approach to Track-To-Track Data 
Fusion," in Proc. 1993 Joint Service Data Fusion Sym- 
posium, pp. 519 - 538, 1993. 

15. R. Lobbia and M. Kent, "Data Fusion of Decentralized 
Tracker Outputs," IEEE Trans. Aero. Elect. Syst., vol. 
AES-30, vo. 3, pp. 787-799, July 1994. 

16. M. E. Liggins, II, C. Y. Chong, I. Kadar, M. G. Alford, 
V. Vannicola, and S. Thomopoulos, "Distributed Fusion 
Architectures and Algorithms for Target Tracking," 
Proc. IEEE, vol. 85, no. 1, pp. 95 - 107, Jan. 1997. 

17. O. E. Drummond, "Feedback in Track Fusion without 
Process Noise," in Proc. SPIE, Signal and Data Proc- 
essing of Small Targets, vol. 2561, pp. 369 - 383, 1995. 

18. O. E. Drummond, "A Hybrid Sensor Fusion Algorithm 
Architecture and Tracklets," in Proc. SPIE, Signal and 
Data Processing of Small Targets, vol. 3163,1997. 

19. O. E. Drummond, "Tracklets and a Hybrid Fusion with 
Process Noise," in Proc. SPIE, Signal and Data Proc- 
essing of Small Targets, vol. 3163, 1997. 

20. M. D. Miller, O. E. Drummond, and A. J. Perrella, 
"Tracklets and Covariance Truncation Options for 
Theater Missile Tracking," in Proc. 1998 International 
Conf. on Multisource-Multisensor Data Fusion (FU- 
SION'98), 1998. 

21. G. Frankel, "Flexible Architectures for Sensor Fusion in 
Theater Missile Defense," IDA Paper P-2935, April 
1994. 

22. G. Frenkel, "Track Fusion for Intercept Support," IDA 
Working Paper, April, 1995. 

23. G. Frenkel, "Multisensor Tracking of Ballistic Targets," 
in Proc. SPIE, Signal and Data Processing of Small 
Targets, Vol. 2561, 1995. 

24. H. L. Van Trees, Detection, Estimation and Modulation 
Theory, Part I. New York, Wiley, 1968. 

25. J. H. Taylor, "The Cramer-Rao Estimation Error Lower 
Bound Computation for Deterministic Nonlinear Sys- 
tems," IEEE Trans. Auto. Control., Vol. AC-24, No.2, 
pp. 343-344, April 1979. 

246 



A Multiple Hypothesis Tracker for a Multiple Sensor 
Integrated Maritime Surveillance System 

Zhen Ding and Ken Hickey 
Advanced System Development 

Raytheon Systems Canada Limited 
400 Philip Street 

Waterloo, Ontario, Canada, N2J 4K6 
Phone: 519-885-0110 ext. 549, 526 

Fax: 519-885-1252 
zhen_ding@raytheon.com 
ken_hickey@raytheon.com 

Abstract This paper presents a review of a 
Multiple Hypothesis Tracker (MHT-2000) used for 
oceanic surface target tracking. A mixed co- 
ordinate system is selected in a multi-station radar 
configuration and a Converted Measurement Ex- 
tended Kaiman Filter (CMEKF) is implemented 
in the fixed co-ordinate frame. This tracker is a 
component of an Integrated Maritime Surveillance 
system which consists of multiple High Frequency 
(HF) Surface Wave Radars (SWRs) and Automatic 
Dependent Surveillance (ADS) systems. Simulated 
and real time multi-sensor data were used to eval- 
uate the system and some of the results from this 
investigation are presented in this paper. 

Keywords: Surface Wave Radar; Automatic De- 
pendent Surveillance System; Integrated Maritime 
Surveillance; Multiple Hypothesis Tracking; Multi- 
ple Sensor Data Fusion. 

1. Introduction 

Raytheon Systems Canada Limited (RSCL) 
and the Canadian Department of National De- 
fense are collaborating on the development of a 
long range maritime surveillance system for the 
monitoring of Canada's Exclusive Economic 
Zone (EEZ) [1]. The system has been designed 
to provide continuous, all weather surveillance 
of aircraft, surface vessels, icebergs, and envi- 

ronmental conditions to aid in the protection 
of Canada's natural resources, and to monitor 
and control the coastline for smuggling, drug 
trafficking, etc. 

The system employs two overlapping HF 
Surface Wave Radars (SWRs) and several Au- 
tomatic Dependent Surveillance (ADS) sys- 
tems [1, 2]. The radars main database and 
the Operation Control Center (OCC) is located 
in St. John's, Newfoundland. However, all 
the system operations are remotely controlled 
from RSCL, in Ontario. A Multiple Hypoth- 
esis Tracking (MHT) algorithm is used as the 
focal point of the tracking system since it fa- 
vorably accommodates multiple targets, new 
targets, false alarms and missed detections. 

This paper describes the fusion processor 
that performs four major tracking functions: 
MHT processing and management of clusters, 
fusion of the two radar reports, track tagging 
using the ADS systems, and the final fusion of 
the radar and ADS tracks. 

Detections from the polar co-ordinate sys- 
tem are converted to a common co-ordinate 
frame and the corresponding Converted Mea- 
surement Extended Kaiman Filter (CMEKF) 
is employed. The specially selected CMEKF 
is used to utilize the range rates from the 
two radars that have different measurement co- 
ordinate systems. 
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2. An Outline of the System 

The Integrated Maritime Surveillance (IMS) 
system (as illustrated in Figure 1) is a shore 
based system, which detects, tracks, and iden- 
tifies aircraft and ships throughout the EEZ. 

OpeiBbont Control Cmtre 
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Figure 1: An IMS system. 

The IMS comprises four principle compo- 
nents: 

2.1 Long Range Surface Wave Radars 

Radar coverage of coastal waters has tradition- 
ally been limited to line-of-sight and this is an 
inherent characteristic of radar systems oper- 
ating at microwave frequencies [3]. Radar op- 
erations at the lower end of the HF band (3 
MHz to 6 MHz) use the surface wave mode 
of propagation. In this mode, the radar signal 
follows the curvature of the earth such that tar- 
gets hundreds of kilometers beyond the horizon 
may be detected. Since the SWR is a coherent 
radar, range rate measurements are also pro- 
vided. 

2.2 ADS Systems 

Aircraft and/or vessels equipped with ADS 
systems transmit identification and position 
information on a regular schedule over pre- 
assigned communication channels to a shore 
based processing system. 

2.3 Other Adjunct Sensors 

Adjunct sensors are the systems that tradition- 
ally provide surveillance and include communi- 
cations, mandatory-reporting procedures, and 
visual identification from patrol vessels and air- 
craft. These sensor reports are characterized 
by their infrequent and often tardy nature. 

2.4 Multi^sensor Data Fusion 

The data fusion system automatically corre- 
lates tracks from multiple SWR sites with 
the ADS tracks and target attributes obtained 
from communication channels. ADS reports 
are sent to the OCC database. The database 
is polled for new reports. After processing, all 
the tracks are stored in the OCC database. 

3. The MHT Processing 

The MHT algorithm is described in [4, 5]. 
It is a statistical approach, incorporating false 
targets, new tracks, missed detections and fi- 
nite track lifetimes. The basic premise is that, 
through the application of Bayes' rule, the 
probability of any track-to-detection combina- 
tion, over a given number of radar updates, 
is solely dependent on the probability of the 
combination from the previous update, and the 
probability of the current track-to-detection 
updated association. The algorithm thus does 
not make 'hard' assignments at each step. In- 
stead, it keeps the N most likely possible track- 
to-detection associations, where N is typically 
2-4, and ranks them by their probabilities (i.e. 
how likely a given association is) [7, 8]. Such 
hypotheses may be efficiently updated at each 
step merely by calculating the current prob- 
abilities for association. Thus, a track and 
detection association that looks very likely at 
one stage, may at a later time, be revealed to 
be less feasible as its updated probability de- 
creases. The correct (or more likely) associa- 
tion hypotheses will then predominate. 

The MHT processing assumes that each new 
radar report is either an extension of an ex- 
isting track, a new potential target or a false 
alarm. The possibilities of these extensions (or 
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events), together with a missed detection sce- 
nario for each of the tracks, account for the 
propagation of the hypotheses at each update 
time. The combination and extension of tracks 
and hypotheses imply that there is an expo- 
nential growth as new hypotheses are formed 
at each update. Practical implementations us- 
ing MHT processing requires that limits are 
placed on this growth. The RSCL implemen- 
tation (MHP-2000) propagates several of the 
most likely possible track-to-detection scenar- 
ios forward, thus allowing for the likelihood 
of missed detection, crossed tracks and false 
alarms. Efficiency is maintained by clustering 
the data to reduce the gross complexity of the 
problem. Multiple hypotheses are considered 
only for clusters, each of which is a group of 
tracks and detections that are close to each 
other. These clusters encompass hypotheses 
that share common reports but these are sep- 
arated from those in other clusters. In this 
way, clusters may be processed independently 
and in parallel, thus preventing unconstrained 
growth of the hypothesis tree, The best track- 
to-detection hypotheses are determined as so- 
lutions to a linear assignment problem, where 
the 'cost' is determined ,probabilistically, by 
the targets and detection distance. Figure 2 
shows the basic data flow in the MHT algo- 
rithm. 

The MHP-2000 performs target tracking, 
data/track association and fusion of the HF 
radar detections and the ADS report process- 
ing. Air and ship data detection streams are 
input to the tracker for independent process- 
ing. Once a track is set up, the target trajecto- 
ries are propagated using a CMEKF which is a 
linearized Kaiman Filter. Associations (track- 
to-detection) are performed in antenna-based 
polar co-ordinates, and propagated in a North- 
East Cartesian co-ordinate system, centered at 
the primary radar site. The second radar data 
is transformed to the same co-ordinate sys- 
tem. This allows optimal usage of the detec- 
tion data, since it is the most accurate in the 
Doppler or range rate domain, and can thus be 
exploited during this association. The process- 
ing proceeds as follows. 

1 
remove empty clusters 

T 
coarse gate observations 

calculate association likelihoods 

split unassociated clusters 
I 

merge associated clusters 
X 

propagate hypotheses 
propagate tracks 

Figure 2: One cycle of MHT processing. 

1. Determine the penalty matrix (i.e. the 
log-likelihood function) by associating all 
existing tracks with all new reports as well 
as possible missed detections. (Coarse and 
fine gating are first applied here to prevent 
obvious associations between reports and 
targets that are distant from each other). 

2. Trim the clusters by removing deleted 
tracks and clusters that have become 
empty. 

3. Split the clusters and find those tracks 
that have common measurements. Re- 
form the clusters based on any new asso- 
ciations which may include further cluster 
merging and deletion. 

4. Update the clusters by: 

(a) Forming the appropriate track up- 
dates by using the CMEKF to up- 
date tracks and coasts (missed detec- 
tions), as well as initializing potential 
new tracks. 

(b) Sorting the hypotheses and deter- 
mining the N-best ones (N will be 
set in the tracker after initial anal- 
ysis and testing). 

(c) Updating the hypothesis list, based 
on the above processing. 
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4. Kaiman Filter Design 

In a single site MHT tracker, the Kaiman fil- 
ter state could be represented in track-oriented 
rectangular co-ordinates (TORC) [9], where 
the X-axis is the radial line between the target 
and the radar. This has the advantage that 
the range is approximately the x value and the 
y value is very small. As a result, the matri- 
ces associated with the Kaiman filter process 
are very sparse and updates may be performed 
efficiently. Since the MHP-2000 fuses SWR 
radar reports from two or more sites, such a 
co-ordinate system is no longer acceptable. In 
the overlapped region, consecutive same target 
reports may come from different radars. As a 
result, tracking and association in such a radial 
co-ordinate system would be optimal for only 
one of the reports. The system therefore tracks 
in a co-ordinate system which is centred about 
one of the radar sites. 

The tracker state matrix is in the form [x(k)t 

x(k), y(k),y(k)]. The track association, us- 
ing probability distance measures, is in track- 
oriented polar co-ordinates (TOPC) prior to 
the conversion to a fixed Cartesian co-ordinate 
system, i.e., a mixed co-ordinate system is 
used. Tracking is done in the Cartesian co- 
ordinate fame where measurements are con- 
verted detections and original Doppler mea- 
surements (accordingly, a mixed CMEKF is 
employed to use Doppler measurements). In 
addition, since converted measurements are 
used, additional processing is needed to remove 
the pseudo linearized measurement bias. 

5. Radar/ADS Fusion 

ADS reports are input to the sensor fusion 
processor to enhance track fusion and target 
updating. These reports are received, regu- 
larly, from vessels equipped with a Global Po- 
sitioning System (GPS). A functional diagram 
is shown below. 

Air/Ship reports 
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Figure 3: RADAR/ADS track fusion. 

Track level fusion occurs using the ADS re- 
ports and any other system that may enter sim- 
ilar information into the OCC database. ADS 
reports are entered to their own track database 
in the MHP-2000 which employs a simple poly- 
nomial tracker to improve the track quality. 
The ADS reports are fused as follows: 

1. Generation and updating of ADS tracks. 

2. Time synchronization of all confirmed 
radar tracks and ADS tracks which in- 
volves track filter updating to an appro- 
priate time reference. 

3. Gating of radar tracks and ADS tracks, 
i.e., the elliptical (probabilistic) gating of 
surviving radar tracks and ADS tracks. 

4. The ADS identifier (ID) will be passed to 
and preserved by the radar track that it 
corresponds to. 

5. Covariance estimation and state fusion are 
performed if the latest report is current 
and there are at least three points in the 
ADS tracks [6]. 
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6. If the new ADS report is current and there 
is only one or two points in the track, as- 
sociation is done just for the purposes of 
track ID assignment. 

Other sensor data, such as those from the 
air defense network and ATC systems, can be 
fused into the existing system. 

6. Testing Results 

In this section, we present some test results 
using both simulated and real time data. 

During the IMS trials, questions arose con- 
cerning the detection and tracking of the large 
Hibernia oil platform and nearby tankers [2]. 
Since their dimensions are in the order of the 
radar wavelength, mutual RCS interactions re- 
sult in severe fluctuations in detected power, 
which make detection and tracking harder. Hi- 
bernia is a large structure 90m tall and 110m 
wide. In the vicinity of the platform, large 
tankers, of approximately 100m in length, load 
oil from the platform. 

A simulated radar return from the Hibernia 
structure was used to test and design the track- 
ing filter. This simulated data was based on a 
positional estimate of 328km and 84.5 degrees 
relative to Cape Race with a range standard 
deviation of 2000m, an azimuth standard de- 
viation of 1 degree and a range rate standard 
deviation 0.5m/s. 

SvnulaUd Hib«mia Uaing CMEKF 

Figure 4: Hibernia tracking, where dotted 
lines denote measurements and solid lines are 

track outputs. 

Figures 4 displays the test results of the 
MHP-2000 processor. The tracker works well 
in reducing the variance of the original posi- 
tional estimates. Figures 5 and 6 show the 
corresponding converted measurement (dashed 
line) and the tracker estimation. The X con- 
verted measurement is observed to exhibit a 
lower error variance than the original measure- 

ment. 
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Figure 5: X measurement and estimation. 

Simulated Hitwmla Using CMEKF 

Figure 6: Y measurement and estimation. 

Numerous real time tests were performed to 
test the tracking capability of the MHP-2000. 
Furthermore, the following results are notewor- 

thy: 

• Long range detection ability. The sys- 
tem has successfully detected and tracked 
targets to 450km. Figure 7 demonstrated 
a real time test case with distant ship 
tracks. Long range and small target detec- 
tion requires low CFAR threshold which 

251 



•8 p 

e 

a 

c 

i 
•4-* <u 
bo 
S3 

f 
ß a 

252 



introduces dense clutter. In this environ- 
ment, the MHP-2000 tracker works well. 
Note that two modes (diagnostic and on- 
line modes) are set for the tracker. The 
diagnostic mode is used for off-line diag- 
nostic processing and the on-line mode is 
for real time processing. 

• Robust tracking ability in a highly 
dense false alarm environment. The 
average number of measurements is 
around 300, with up to 400 measurements 
per update. The MHP-2000 has demon- 
strated its target tracking capability in 
this environment. 

• Simutaneous tracking of air and ship 
targets. Figures 8 and 9 illustrate an 
example of air target tracking. Since an 
air target moves much faster than a sur- 
face target, the dwell time must be set 
much lower. Therefore, a wider band 
Kaiman filter model is required whose pa- 
rameters are changed accordingly. Differ- 
ing CFAR threshold scheme are also em- 
ployed for each data stream. Hence, both 
data streams are independently processed 
in the MHP-2000 tracker. All tracks are 
sent and stored in the OCC database. 

March 23 air target data 
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Figure 9: Air reports. 

• Fusion of multiple radars and other 
sensors. Currently, two radars and ADS 
are used. The dual radar tracking capabil- 
ity of the MHP-2000 has been tested using 
simulated data. Figure 10 shows an eight 
target case where two targets are detected 
by both radars. Real time evaluation of 
the two radar system is ongoing. 

Figure 8: Air tracking results. 

Figure 10: Eight target tracking. 

• Night detection and tracking ability 
The East Coast IMS system demonstrated 
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its night detection and tracking ability. 
Figure 11 shows a night tracking test (data 
set was collected from 12:34 pm Feb. 18 
to 5:05 am Feb. 19). 

Figure 11: Target tracking in night. 

7. Conclusion 

This paper presents a review of a Multi- 
ple Hypothesis Tracker (MHT-2000) used for 
oceanic surface target tracking. A mixed 
co-ordinate system is selected and a Con- 
verted Measurement Extended Kaiman Filter 
(CMEKF) is implemented. This tracker is used 
in an Integrated Maritime Surveillance system. 
Simulated and real time multi-sensor data were 
used to evaluate the system and some of the re- 
sults are presented in this paper. 

Acknowledgement 

The East Coast IMS system is a collabo- 
rative project between the Canadian Govern- 
ment and Raytheon Systems Canada Limited. 

References 

[1] Canadian East Coast Surveillance System, 
Raytheon Canada Ltd., RCL7401-1, ON, 
Canada, 1997. 

[2] L. Sevgi and A.M. Ponsford, "An HF Radar 
Based Integrated Maritime Surveillance Sys- 
tem", The 3rd International Conference on 
Circuits, Systems Communication and Com- 
puters, Athens, Greece, July 4-8, 1999. 

[3] L. Sevgi, "Stochastic Modelling of Target 
Detection and Tracking in Surface Wave HF 
Radars", International Journal of Numeri- 
cal Modeling: Electronic Networks, Devices 
and Fields, Vol. 11, pp. 167-181, 1998. 

[4] D.B. Reid, "An Algorithm for Tracking 
Multiple Targets", IEEE Transactions on 
Automatic Control, Vol. 24, No. 6, pp. 8434- 
854, 1979. 

[5] S.S. Blackman, Multiple Target Tracking 
with Radar Applications, Artech House, 
1986. 

[6] Y. Bar-Shalom and T.E. Fortmann, Track- 
ing and Data Association, Academic Press, 
1988. 

[7] R. Danchick and G.E. Newnam, "A Fast 
Method for Finding the Exact N-best Hy- 
potheses for Multitarget Tracking", IEEE 
Transactions Aerospace and Electronic Sys- 
tem, Vol. 29, No. 2, pp. 555-560, 1990. 

[8] I.J. Cox and M.L. Miller, "On finding 
ranked assignments with application to mul- 
titarget tracking and motion correspon- 
dence", IEEE Transactions Aerospace and 
Electronic System, to appear. 

[9] Artificial Intelligence Applied to Tar- 
get Tracking-Phase 2: Implementation, 
Raytheon Canada Ltd., RCL00158-671/A, 
ON, Canada, 1995. 

254 



Fuzzy Clustering for Association and Fusion 
in Multitarget Tracking with Multisensors* 

by 

Carl Looney and Yaakov Varol 
Computer Science Department/171 

University of Nevada 
Reno, NV 89557 

Looney@cs.unr.edu, Varol@cs.unr.edu 

Abstract - Three problems are involved in updating 
tracks of multiple targets at a central processing station 
based on the state estimates coming in from multiple 
local radar stations. The first is the synchronization of 
the estimated states to move them forward to a single 
time reference and to similarly obtain the predicted 
states at that reference time by means of the central 
tracks. The second problem is the association of the 
states to determine which ones represent the same 
target. The third is that of fusing the estimates for the 
same target into an updated state estimate with reduced 
error. The latter two problems are the subjects of study 
in this paper. We employ our new fuzzy clustering 
algorithm to associate the local track states and the 
predicted states. States that belong to the same cluster 
are associated. The clustering also finds a fuzzy 
weighted prototype that is the typical (smoothed) state 
of each cluster, which is an updated fused state for the 
cluster. Thus both problems are solved by clustering. 
We show simulation results for preliminary testing. 

Keywords: radar, tracking, association, fusion, 
fuzzy clustering 

1. Introduction 

1.1 Multitracking with Multisensors 

We consider a multisensor and multitarget tracking 
system that consists of multiple local radar stations 
that update their tracks and then transmit the data 
to a central tracking station. The state of a target at 
a specific time instant consists of the target 
position, the velocity, the acceleration, the 
reference time, the track number and possibly other 

* This work was supported by ARO Contract #39713-MA 

fields. A sequence of consecutive states over time 
forms a track of the target. If the local stations 
process their own tracks, in which case they would 
transmit their newly updated track states to the 
central station, the system is called decentralized 
[1,12]. If they transmit their positional readings and 
the central station performs all of the tracking, then 
the system is centralized. A decentralized system is 
efficient because it reduces both the complexity at 
the central processor and the bandwidth of the 
communications. 

In the hierarchical case that we investigate here, 
the local tracks are updated by the local track- 
while-scan [5] stations from their measurements 
and the new states are transmitted to the central 
station, which uses them to update its central 
tracks. Generally the local states are transmitted 
after every fixed number of local updates. 

The central station solves the first problem of 
synchronization by extending all received track 
states, and also its own previous central track 
states, forward to a common reference time [7]. For 
simplification of our simulation we omit this step 
and take all readings of target positions at the same 
time. The next problem for the central station is the 
track-to-track association problem for making a 
decision as to whether or not multiple tracks states 
coming from different sensors represent the same 
target [1]. The third problem is the fusion of the 
associated track states and the central predicted 
state into a central track state with smaller error. 
These problems and the basics of radar tracking are 
discussed in [5]. 
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1.2 Approaches to Association and Fusion 

The current methods are mostly probabilistic. 
Many use multiple hypothesis testing (MHT) to 
associate the track states, which sometimes 
requires significant computation. One example 
[10], uses MHT with sequential likelihood ratio 
tests and signal strength. The fusion to obtain new 
updates is usually done by Kaiman and extended 
Kaiman filtering [1,6,7,12] that requires matrix 
inversion. The aß and the aßy (simplified Kaiman) 
filters are also popular and they may depend upon 
correlations [9] as do Kaiman filters. 

Certain problems can, and do, arise, however, in 
probabilistic approaches to multisensor tracking. 
Target acceleration noise [7] necessitates taking 
into account the cross-correlation between sensors 
when employing a Kaiman (or extended Kaiman) 
filter. Without the cross-correlation matrix in the 
updating, a strong bias can be introduced [1]. Also, 
the transformation from polar (radar measurement) 
to Cartesian (tracking) coordinates further degrades 
the tracking performance due to nonlinear effects 
that are nonnegligible [6]. 

We seek to increase both computational efficiency 
and accuracy while avoiding the use of unknown 
apriori probability distributions and the real-time 
computation of inverse matrices as required by 
Kaiman filtering. It occurred to us that the training 
of a multiple layered perceptron neural network 
[2,3] over real world data could build into the 
tracking system the ability to deal with nonlinear 
effects without the need for extraneous correction 
methods. The training data could be gathered by 
actually flying aircraft trajectories and recording 
the global positioning system (GPS) data to obtain 
essentially true positions for the output training 
data. The radar measurements of a flight become 
the input training data. 

Upon checking the various types of neural 
networks, which led to self-organizing (clustering) 
networks, we were struck with the notion that 
clustering can do both association and fusion 
simultaneously. This would circumvent the extra 
effort required to gather real world data on which 
to   train different neural networks for the many 

different situations for the various scenarios that 
arise in the field. 

2. A Combined Approach 

2.1 Tracking 

We employ our new fuzzy clustering algorithm [4], 
which is very fast and which both associates and 
fuses the states in a single process. This contrasts 
with the commonly used method for associating 
two tracks by testing the hypothesis as to whether 
or not they are the same track, which can be 
problematic for multiple targets because of the 
number of pairwise combinations. Also, each pair 
of tracks has the same underlying process noise 
that makes the track estimation errors dependent. 

Each of the local radar stations RSl,...,RSn 
measures the target positions in polar coordinates 
(r,6,<t)) relative to the local radar station, where r is 
the range, 0 is the azimuth and (j> is the elevation. 
For our purposes here, we store the local tracks 
with respect to the central Cartesian coordinate 
system. These updated local target states are 
transmitted to the central processing station (CPS) 
for associating and fusing with its tracks. 

Our simulation here uses 2 local radar stations RS1 
and RS2 and three target trajectories Tl, T2 and 
T3. The discrete trajectories are target paths with 
points generated at 5 second time increments. 
There are thus 6 target states to be transmitted to 
the CPS for each update time (3 targets from each 
of the 2 local radar stations). The CPS is not a 
radar station here but is only a computer center 
for processing tracks. The simulation avoids 
moving the states forward to a common reference 
time by reading all targets at the same 5 second 
increments. The updated local states are 
transmitted to the CPS at 5 second increments. 

2.2 Association and Fusion via Clustering 

The local target states at update time tup that are 
reported to the CPS are fed into our clustering 
algorithm [4], along with the predicted states 
obtained by moving the previous central state 
forward in time to tup. A few iterations compose the 
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clusters with the results that those states in the 
same cluster are associated to represent the same 
target. The fuzzy clustering algorithm also 
determines a fuzzy expected state that is a fused 
estimate for the new updated state for the central 
track. This new fused state is stored in the track 
associated with the cluster with track number of the 
predicted central state. The predicted central states 
are used as the initial centers of clusters. Thus the 
fusion problem is also solved simultaneously. 

3. The Simulation 

3.1 Generating the Data 

The two local radar stations designated as RSI and 
RS2 each sense the 3 target trajectories denoted by 
Tl, T2 and T3 that are generated by computing the 
target positions at 5 second increments. Tl is a 
straight line, T2 is an ellipse at distance and T3 
flies from East to West with consecutive periods of 
10 seconds of rightward acceleration followed by 
10 seconds of leftward acceleration (from the 
direction of forward motion of the target). For 
example, Tl starts at 400 km/hr and accelerates at 
100 km/hr2. 

We store these trajectories in the files targetl.dta, 
target2.dta and XargetS.dta. Their positions are 
with respect to the central Cartesian coordinate 
system, which contains the CPS at the origin with 
RSI at (10,50,0) and RS2 at (100,5,0), where the 

[ Central Tracks 
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"  "    " 

CPS 

fu«y Clustering 
(Filter) 

New States for 
Tl. T2, T3 

Output 

Figure 1. The hierarchical system. 

numbers are in kilometers. Figure 1 shows the 
functional diagram for the hierarchical system for 
tracking T1,T2 and T3. 

Our local radar simulation function locsim reads 
the target trajectory files at 5 second intervals and 
translates their Cartesian positions to Cartesian 
coordinate systems centered at each of RSI and 
RS2. It then converts the target positions to polar 
coordinates with respect to each of RSI and RS2 
for the modeling of the sensor readings. To the 
polar positions we add Gaussian white noise and 
then convert the noisy polar positions back to local 
Cartesian coordinates. We then translate these back 
to the central Cartesian coordinate system. The 
local stations update their tracks with the noisy 
position readings in this coordinate system by 
means of aßy filters [5,9] (see Section 3.4 below). 

The noise on each of r, 0 and <|) sensed at the two 
local radar stations is Gaussian white noise with 
zero-mean. For each of the three target trajectories, 
each of RSI and RS2 reads the relative target 
position in polar coordinates and adds random 
errors from the noise distributions. For the range, 
we use standard deviations of or = 100 meters. For 
a9 we use 1 °, and similarly for the elevation angle. 
Then we convert the noisy polar positions back to 
the central Cartesian system. 

The polar coordinate readings by RSI and RS2 
have now become noisy Cartesian readings for 
updating the local tracks. After the local radar 
stations RSI and RS2 update their tracks by means 
of aßy filters, they store their updated track states 
in the files loctrackl.dta and loctrack2.dta. The 
first file stores the current local tracks for the 3 
targets as given by RS1, while the second stores the 
3 target tracks for RS2. These files contain the data 
to be transmitted to the CPS and are in the central 
Cartesian coordinate system. 

The central processing simulation program cpsim 
function now reads and processes the local state 
files listed above as received data transmitted by 
RSI and RS2. First, this program moves the 
previous central track state for each target forward 
to the reference time of the local states. The 
resulting predicted states are to be associated and 
fused with the received local states. At this point 
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there are 3 states for each target: the 2 local station 
states and the central predicted state. 

The 6 track states from the local stations and the 3 
predicted states from the CPS are all put through 
the clustering algorithm. The 9 track states are to 
be clustered into 3 clusters for the respective 3 
targets. The initial cluster centers are taken to be 
the predicted states, which have central track 
numbers. A cluster associates all states that belong 
to it. The fuzzy weighted center for a cluster is the 
fused update state for the CPS tracks. After the 
clustering, the fused track states may be adjusted 
slightly in the velocity and acceleration 
components to be consistent with the smoothed 
positions. They are then written to the track file 
CPStrackJta, which is used in the next update of 
the tracks. 

3.2 Simulating Multisensor Multitracking 

In our simulation, each state has the format 
(x,y,z,vx,vy,vz, a^a^, t,ID,r), where the first three 
triplets are for position, velocity and acceleration, 
t is the reference time of the updated state (in 5 
second increments), ID is the track identification 
number for the local state (1, 2 or 3) and r is the 
number of the local radar station (1 for RSI or 2 
forRS2). 

The 9 states for 3 targets are used on each update 
at the CPS by clustering using only the position, 
velocity and acceleration components. The 
clustering process uses each central predicted state 
as an initial center for a cluster, but over a few 
iterations, a fuzzy expected value is determined for 
each cluster. In the usual case where each final 
cluster contains three current states, one from each 
of RSI, RS2 and CPS, those states are associated. 
The final fuzzy expected value for that cluster is 
the fused current state which is influenced mostly 
by the pair of states that are closest to each other. 
Clustering of states generalizes the concept of gates 
[5], where each cluster defines a gate. 

3.3 Quality Parameters 

We are currently working on the use of quality 
parameters ql, q2 and qC for the estimates given 

by the respective RSI, RS2 and CPS. Here we 
define it for RSI (the others are analogous). 
Suppose that s = (x,y,z,vx,vy,vz, a^ay.aj is the 
latest state in the track for a target RS1 and let S = 
(X,Y,Z,VX,VY,VZ,AX,AY,AZ) be the latest MWFEV 
fused state given by the fuzzy clustering process. 
The difference d = ||s - S|| is added onto the sum of 
the previous p-1 differences for RSI to yield ql. 
The more recent squared differences are weighted 
more (and all weights sum to unity). Each station 
has such a parameter for each track. 

It is well known [10] that tracks can be lost due to 
strong maneuvers, fading effects or incorrect data 
associations. On the other hand, false detections 
and incorrect associations can create false tracks. 
Thus in cases where not all 3 states fall into the 
same cluster, decision mapping must be 
implemented. 

For example, when there are only 2 states in a 
cluster, with one being a local state from RS 1 and 
the other being the central state, then the quality 
parameters are examined. If q2 > ql and q2 > qC, 
where higher value means less quality, then we 
disregard the state from RS2 in updating that track. 
If q2 is low and appears in a separate cluster, then 
it is given a tentative new track ID and may be 
upgraded to a track if more corroborating returns 
are received on multiple future track time 
increments. At this stage we do not have all of the 
decision making mapped out but are gaining 
experience for doing this. 

3.4 The Simulated Filtering 

Let xm be the noisy measurements vector at either 
of RSI or RS2, where the polar coordinates have 
been converted to the central Cartesian system. Let 
xT, vT and aT be the position, velocity and 
acceleration from the central track for the 
previously filtered state. The predicted state 
vectors are determined from the central track by 

xp = xT + (At) vT + Vi( At)2aT (1) 

vp = vT + (At)aT,    ap = aT (2a,b) 

where At is the time increment. 
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The local state vectors are filtered (smoothed) via 
the aßy filter [5] that uses noisy measurements and 
predicted position, velocity and acceleration to 
smooth the state components via 

xs = xp + a(xra - xp) 

vs = Vp + ß{l/(At)}(xm-xp) 

as = ap + Y{2/(At)2}(xm-xp) 

(3) 

(4) 

(5) 

The parameters a, ß and y are found from a small 
positive adaptable parameter E, by [5] 

a=i - e 

ß=1.5(1 -aa-ö 

Y = 0.5(1-f) 

(6a) 

(6b) 

(6c) 

As 5 increases toward 1 [5], the noise on the 
measurements is smoothed more strongly (the 
predicted value has greater weighting). But as £ 
decreases toward 0, there is less smoothing (the 
noisy measurements have more influence). 

It is well known that velocity derivations from 
positions strongly increase any noise in the position 
measurements and that acceleration derivations 
from velocity data increase the noise even more 
and can be unstable. For this reason, the velocity 
must be smoothed and the acceleration must be 
strongly smoothed. 

If the range rate velocity were available from a 
moving target indicator (MTI), then it could be 
projected onto the Cartesian coordinates as a 
consistency check on the velocity. We do not use 
MTI data in this study, but we will do so in future 
work. 

4. Fuzzy Clustering 

4.1 A Fuzzy Expected Value 

The weightedficzzy expectedvalue of {xi,..,xP} was 
defined by Schneider and Craig [8] to be 

2(P=1,P) exp[-ßlxp - ul] xp 

E(r=1,P) exp[-ßlxr - ul] 
(7) 

In place of the decaying exponentials we use the 
bell shaped Gaussian function that is a canonical 
fuzzy set membership junction for the linguistic 
variable CLOSE_TO_CENTER. Vectors close to 
the center yield fuzzy truth values close to unity, 
but as they move away from the center, their truth 
values decrease rapidly toward zero. Starting with 
the mean u(0) of {x„..,xP}, we employ the Picard 
iterations on the (r+l)st iteration via 

H<w> = £        a(r)x "(P=I,P) up   Ap (8) 

a(r) = «P    - 

exp[-(xp-u
w)W)] 

(9) 
S(r=1,P)exp[-(xr-n«)2/(2o2)] 

= S(p=1,P)ap«(Xp-p)2 (10) 

We call the value u = uw to which this process 
converges the modified weighted fuzzy expected 
value (MWFEV). An initial value for the spread 
parameter o can be set at 1/4 of the average 
distance between cluster centers that we obtain 
with the k-means algorithm. We find prototypical 
MWFEV vectors via componentwise MWFEVs. 
The weighted fuzzy variance (WFV) is a2. 

Figure 2 shows an example of the MWFEV versus 
the mean and the median for a 2-dimensional 
example of 5 vectors (1,2), (2,2), (1,3), (2,3) and 

A 

(1,3)        (2,3) 
• •    ^^„MWFEV    (1.503,2.282) 

rt^Jl-Mean   (2.2,2.2) 

(1,2)   (2,V--Jtodian  (2'2) 

.(5,1) 

_L L i 1- -> 

Fig. 2. An MWFEV, mean and median. 

259 



(5,1). The single outlier (5,1) influences the mean 
(2.2,2.2) and the median (2,2) strongly, but it 
affects the MWFEV vector (1.503,2.282) only 
slightly (a little more along the y-axis because it is 
closer in that dimension). The MWFEV is more 
densely situated in a cluster of vectors. 

4.2 Our Fuzzy Clustering Algorithm 

To implement the MWFEV on a set of vectors, we 
find the MWFEV over each component. Our new 
fuzzy clustering algorithm is 

Step 1: Use predicted states as initial cluster 
centers and run the usual k-means 
algorithm (see [2], for example) to get 
initial clusters. 

Step 2: Compute ok values for each cluster k. 

Step 3: Compute all MWFEVs vectors v00. 

Step 4: Assign all x(q) to clusters of nearest centers. 

Step 5: If a cluster has changed then go to Step 2. 

Step 6: For each k, put v00 into the central tracks 
as fused state k. 

The Xie-Beni clustering validity [11] is a product 
of compactness and separation defined by 

v = {(l/QjE^K, o.Hl/D,™}2 

°k- ^(q=l,Q)wqkllx v    II 

(ID 

(12) 

Droi,, is the minimum distance between the cluster 
centers. Each ak is a fuzzy weighted mean-square 
error. We modify the Xie-Beni validity measure to 
sum over only the members of the kth cluster for 
each ak (instead of all vectors) and use this as a 
measure of the goodness of clustering. 

5. Results and Conclusions 

Figure 3 presents the 3 actual trajectories and also 
the 3 noisy trajectories as seen from the viewpoint 
of RSI at (10,50,0) (kilometers). Figure 4 shows 
these from the perspective of RS2 at (100,5,0). 

■ 

1»a»l1.tfta*  
*tar§et2.dta' —- 
"targaQ.dta"  

TglnaiayV    ■ 
TÖlnoisyS-    ■ 
TglnotsyS'    ' 

" ^         ' 

■ ;-'J:'"\ /" -      " 

RSI \„/           \j - 

:PS BÖ 

Figure 3. Trajectories seen by RSI. 

40 80 100 120 140 

Figure 4. Trajectories seen by RS2. 

\ 

Figure 5. Fuzzy clustering results. 
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The standard deviations for the Gaussian white 
noises for these runs were 

or= 100km, oe=l°, a^ = a0 

We note that the aßy filters at RSI and RS2 
smoothed the noisy trajectories. It used a value of 
£ = 0.8, which yields moderately strong smoothing. 
For example, from Equation (6a) we see that this 
value of £ gives the smoothing value a = 0.36 for 
use in Equation (3). However, at the CPS the 
association must be done via the fuzzy clustering 
with the fusing being provided as a by-product. In 
this case, the association was correct and the fusion 
reduced the noise level. 

This first study was more of a test of the feasibility 
of the fuzzy clustering for use in tracking. There 
remain several detailed problems to be worked out 
in the association decision making. We continue to 
work on this approach and expect to have more to 
report in the future. 
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Abstract In this paper we present an Interacting 
Multiple Model (IMM) estimator for tracking the 
motion of a large number of aircraft using the mea- 
surements obtained from an airborne sensor. The 
scenario under consideration, which is part of a 
study on Airborne Early Warning (AEW) weapon 
systems, consists of about 120 targets, whose mo- 
tions evolve in a wide variety of ways, for exam- 
ple, benign constant velocity, constant acceleration, 
weaving and coordinated turns with accelerations up 
to 6g. The measurements consist of range, azimuth 
and range rate. This AEW scenario presents a 
challenging environment to work with due to long 
sampling intervals, high measurement errors, close 
target formations and high maneuvers. The IMM 
estimator is used in conjunction with an assignment 
algorithm for data association. It is shown that the 
IMM/Assignment estimator yields significantly bet- 
ter results, in all measures of performance, than 
those obtained with a single Kaiman filter (with a 
similar assignment) on the same problem. 

Keywords: Multitarget tracking, state estimation, 
data association, assignment algorithm, Airborne 
Early Warning (AEW) weapon systems. 

1    Introduction 

The problem of tracking a large number of 
aircraft with varying motion parameters was 

1 Supported by Northrop Grumman Contract 
C996549, ONR Grant N00014-97-1-0502 and AFOSR 
Grant 49620-97-1-0198. 

considered in [9]. In [4] a benchmark track- 
ing problem, where it was required to track 
six different aircraft with widely different ma- 
neuver characteristics using a single estimator, 
was considered. In these problems, the Inter- 
acting Multiple Model (IMM) estimator [2] has 
been shown to be very effective. Other appli- 
cations of the IMM estimator can be found in 
[1]. In the IMM estimator, it is assumed that, 
at any time, the target trajectory evolves ac- 
cording to one of a finite number of models, 
which differ in their noise levels and/or struc- 
tures. The system model is assumed to evolve 
according to a Markov chain. By probabilisti- 
cally combining the estimates of the individual 
filters, typically Kaiman or Extended Kaiman, 
matched to these modes, an overall estimate is 
found [2]. 

In [9] it was demonstrated that the IMM es- 
timator, in conjunction with a two-dimensional 
assignment, performs well enough to handle 
hundreds of civilian air targets. It was also 
shown that two-dimensional assignment (asso- 
ciation between the list of established tracks 
and the list of measurements from the latest 
scan) is sufficient for civilian air traffic con- 
trol. Further, an IMM estimator containing a 
(nonlinear) coordinated turn model performed 
better than that with only linear motion mod- 
els. In this paper, we present the development 
of an IMM/Assignment estimator for tracking 
more than a hundred highly maneuvering (mil- 
itary) air targets. The scenario under consid- 
eration, which is part of a study on Airborne 
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Early Warning (AEW) weapon systems, con- 
sist of about 120 targets, whose motions evolve 
in a wide variety of ways, for example, benign 
constant velocity, constant acceleration, weav- 
ing and coordinated turns with accelerations 
up to 6g. The measurements consist of range, 
azimuth and range rate. This AEW scenario 
presents a challenging environment to work 
with due to long sampling intervals, high mea- 
surement errors, close target formations and 
high maneuvers. 

The measurements, which are obtained from 
an airborne sensor, consist of range, azimuth 
and range rate. In order to keep the estimator 
Cartesian, where the target motion is better 
modeled, the measurements are transformed 
from polar to Cartesian. Due to large mea- 
surement errors and long sensor-to-target dis- 
tances, the standard conversion introduces a 
bias, which is not negligible. In order to rectify 
this, the recently developed multiplicative de- 
biasing is employed before using the converted 
measurements in the estimator [6]. 

The performance metrics used in the study 
are the total track life, which gives the percent- 
age of frames during which a target is tracked 
by an acceptable track segment (subject to cer- 
tain longevity and purity constraints) and the 
mean track life, which is the average life of 
acceptable track segments for a given target. 
In addition, RMS position/velocity errors are 
also used. These are evaluated globally as well 
as for individual targets. Estimation results 
indicate that the IMM/Assignment estimator 
yields significantly better results, in all mea- 
sures of performance, than those obtained with 
a single Kaiman filter (with a similar assign- 
ment) on the same problem [8]. 

This paper is organized as follows. In Sec- 
tion 2, the measurements obtained from the 
sensor, the converted measurements and their 
error statistics are discussed. The IMM esti- 
mator and the data association via assignment 
are discussed in Sections 3 and 4, respectively. 
Estimation results are presented in Section 5. 

2    Scenario 

The measurements are obtained from an air- 
borne sensor with varying revisit intervals. 
The number of detections in scan k is de- 
noted by M(k). The m-th detection report 
(1 < m < M(k)) consists of a time stamp tmk, 
the measurement vector z(£mjt), and the sensor 
state Xp(tmfc) at time tmk. Note that the time 
stamps for different measurements within the 
same scan may be different. 

Let the m-th measurement in scan k be from 
the n-th target and the true state of the n- 
th target at time tmk be defined by the 4- 
dimensional vector 

x  (*mjj 
t(tmk) 
Vn(tmk) 
Vn(tmk) 

(1) 

where £n(*mfc) and rjn(tmk) are the distances 
of the target in the X and Y directions respec- 
tively from a reference point (origin). The cor- 
responding velocities are £n(*mJ and fin(tmk), 
respectively. The state of the sensor platform, 
which is known, is defined similarly by xp(tmJ. 
In the following, only the scan index k is kept 
while the other indices m and n have been 
dropped for simplicity. Also, the sensor-to- 
target range is defined as 

r(x(tfc)) = y/r*(x(tk))+r*(x(tk)) (2) 

where r^(tk)) and r^(tfc)) are the relative posi- 
tion components of the target at time tk with 
respect to the platform in the X and Y direc- 
tions, respectively. 

Then, the range rate, r(x(tfc)), of the target 
is given by 

r(x(tfe))   =    (&*)-&(**)) cos 0(x(ifc)) 

+ OKtfc)->k(tfc))sin0(x(ifc)) (3) 

where 

0(x(tfc)) '-1 (fflßffi) <4) 

The error statistics for the sensor measure- 
ments are given in terms of the range standard 
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deviation ar, range rate standard deviation o> 
and the azimuth standard deviation <jg, which 
are known. That is, the received range rz(tk), 
azimuth rz(tk) and range rate rz(tk) measure- 
ments are given by 

rz(tk) = r(x(tk))+Af(vr,0,o?) (5) 

0z(tk) = e(x(tk))+Af(veA4) (6) 

rz(tk)   =   r(x(tk))+M(vr,0,<r2r)     (7) 

where Af(v,v,a2) denotes the measurement 
noise v with mean v and standard deviation 
a. 

Note that the measurements are in polar 
coordinates whereas a target's motion is bet- 
ter modeled in Cartesian [3] for the estima- 
tor. This necessitates the transformation of the 
received range-azimuth measurements into X- 
Y position measurements. It has been shown 
that this nonlinear transformation introduces a 
bias and that a debiasing technique is required 
to compensate [3, 5, 6]. This is especially- 
true in the presence of large measurement er- 
rors and long sensor-to-target distances, as in 
the present problem. In order to rectify this, 
the recently developed multiplicative debiasing 
is employed before using the converted mea- 
surements in the estimator [6]. This exact 
multiplicative debiasing technique is preferred 
over the previously proposed additive debias- 
ing technique [5], due to the former's superior 
consistency and robustness. 

The unbiased converted measurement vector 
z(tfc) is given by [6] 

z(*fc)    = 

where 

W(tfc) cos 0z(tk) 
^elrz(tk)sm6z(tk) 

rz(x(tk)) 

= *-°V2 

(8) 

Xd = E{cos v0} = e ao (9) 

With these, the position variances in the re- 
spective directions and the covariance are given 
by [6] 

■*!(**)   =    (Xg1-2) r2
z(tk) cos2 6z(tk) 

i (r2
z(tk) + <%) (l + A; COS29z(tk)) (10) 

4?(**)   =    l(\g1-2)r2(tk)s™Wz(tk) + 

\(r2
z(tk) + a?)\'esm20z(tk) (11) 

*?(**)    =    fa1-2) r2(tk) sin2 9z(tk) + 

\ (r2
z(tk) + a2) (l - A;sin20z(tk))    (12) 

where 

\'e = E{cos2ve} = e~2a» (13) 

and, thus, the measurement covariance matrix 
R(tk) is given by 

R(tk) = 
"?(**)    <r2n(tk)    0 

(14) 

3    Estimator 

In order to handle the various maneuvering 
characteristics of different targets, which range 
from a benign (almost) constant velocity mo- 
tion to high maneuvers of 6g, an IMM estima- 
tor consisting of a number of EKF filter mod- 
ules is used. Typical models used in the IMM 
estimator include a (nearly) constant velocity 
model, a (nearly) constant acceleration model 
and a coordinated turn model [2, 9]. 

Using a direct discrete time kinematic model 
[2] and assuming linear motion in the X-Y co- 
ordinate frame, the evolution of the true target 
state x(tfc), which was defined in (1), can be 
written as 

x(tfe) = F(<5fc)x(tfc_i) + r(<SfcMtfc_i)     (15) 

where tk is the time of the k-th. scan, Sk = 
tk — tfc_i and Vtk is the white Gaussian process 
noise sequence with covariance Q(Sk). 

Because of the nonlinearity in the state- 
to-measurement relationship, the target orig- 
inated measurement can be written as 

+ z(tjfe) = h(x(tk))+w(tk) (16) 
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where with 

Mx(t*)) v(tk) 
r(x(tfc)) 

(17) 

and r(-) is defined in (3). The white Gaussian 
measurement noise sequence w(tk) is indepen- 
dent of v(tk) and its covariance R(tk) is given 
in (14). 

The above nonlinearity means that the stan- 
dard Kaiman filter cannot be used for state 
estimation either as a stand-alone filter or as 
an IMM estimator module — i.e., an extended 
Kaiman filter (EKF), which uses first or second 
order series expansion to linearize the measure- 
ment equation, is required [2]. For a first order 
EKF, the state can be estimated as follows1: 

The predicted state xe(tfe) at time tk is 

Xe(tfe) = iT(Äfc)*e(t*-i) (18) 

and the associated predicted state covariance 
Pe(tl) is 

PSD   =   F{5h)PSk-\)F{5k)'+ 
nSk)Q(Sk)F(Sky (19) 

where xe(tfc_i) is the state estimate from time 
(tfc-i) and Pe(tfc-i) is the associated covariance 
evaluated below using (28). 

The predicted measurement ze(tk) is given 
by 

Ze(tfc) = h(xe(tfc)) (20) 

and the associated innovation covariance is 

Se(tfe) = H{tk)PSl)H{tk)' + R(tk)     (21) 

where H(tk) is the Jacobian of h(-) evaluated 
as 

H(tk)   = VxMx)']' 
X=xe(tfc ) 

= 

"10     si 
0   0 
0   1   - 
0   0 

n0(x)i(x) 
cos#(x)) 
:os0(x)Z(x) 
sin0(x) 

(22) 

X=Xe(*fc) 

1A more comprehensive treatment of the Kaiman 
filter, EKF and the IMM estimator can be found in, e.g., 
[2]. The equations are provided here for completeness 
and to introduce the notations for later use. 

ti(tk)-£p(tkj)sme(x) 
Z(x)     = 1—:  v ' r(x) 

(fl(tk)-Vp(tk)) cos 9(x) 
r(x) 

(23) 

and, 6(-) and r(-) are defined in (4) and (2), 
respectively. 

As in the standard Kaiman filter, the state 
estimate is updated using 

Xeftfc) = Xe(tfc) + WSk) Mtk) (24) 

where We(tk) is the filter gain given by 

WSk)   =   Pe(tk)H(tk)'■ 

[H{tk)PSl)H{tk)' + Ä(tfc)]
_1(25) 

=  PSDmkysSkY1     (26) 

and 

Ve(tk) = Z(tfc) - Ze(tfc ) (27) 

is the measurement residual or the innova- 
tion. The covariance matrix associated with 
the state estimate is given by 

PSk) = Pe(tk) ~ Weih) Se(tk) WSk)' (28) 

In order to model the non-maneuvering in- 
tervals, one can use a (second order) piece- 
wise constant white noise acceleration model 
(WNA, with two position and two velocity 
components) with 

F(8k)   = 

T(6k)   = 

1   Sk 0    0 
0    10    0 
0   0 1   sk 

0    0 0    1 

%/2 0 
sk o 
0 Sl/2 
0 Sk 

(29) 

(30) 

with low process noise. For on-going maneu- 
vers, the same model with high process noise 
can be used [3]. 

It has been shown that the so-called coor- 
dinated turn model, where the turn rate oj(tk) 
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of the target is an additional state component, 
yields better results in estimating the motion 
of highly maneuvering targets during maneu- 
vers [9]. In this case, the state x(tfc) is given 

by 

x(t*)    = 

1 

0 

0 

0 
0 

V(tk) 

u(tk) _ 
sinfl(tfc_i)6fc 

fi(tfc-i) 
COsft(tjfc_i)<5fc 
1-cosflfa  i)<5jb 

n(t*-i) 
smQ,(tk-i)Sk 

0 

2°k 
h 
o 
o 
0 

0 

0 

1 

0 
0 

n(tfc_i) 
-sinft(tfc_i)4 

sinf2(tfc_i)Jfc 
O(tfc-l) 

C0sf2(tfc_i)<5fc 
o 

X(tfc-l) + 

0 
0 

I/i2 
2°fe 

0 

0 
0 
0 
0 
1 

v(tk-i) 

(31) 

0 

0 

0 

0 
1 

(32) 

= FCT(*fc)x(tfc_i) + rcr(<5fc)t;(t*-i)    (33) 

Note that for the coordinated turn model, 
F(6k) in (19) is replaced with the Jacobian of 
Fcri^k) [2]- The initial turn rate is assumed to 
be zero for the coordinated turn filter module 

[2]- 

4    Data Association 

In multitarget tracking with non-unity target 
detection probability Pp and spurious mea- 
surements (non-zero false alarm probability 
PFA), it is necessary to decide which one of 
the received measurements should be used to 
update a particular track — one needs a mech- 
anism for measurement-to-track data associa- 
tion [3, 9]. 

Two dimensional assignment, where the as- 
sociation is performed between the latest list of 
measurements in frame (scan) k and the track 
list from k — 1, is one of the data association 
algorithms which has been used successfully in 
large scale tracking problems [9]. The basic 
idea behind 2-D assignment is that the mea- 
surements from M(k) are matched (deemed to 

have come from) the tracks in T(k — 1) by for- 
mulating the matching as a constrained global 
optimization problem. The optimization is car- 
ried out to minimize the global "cost" of asso- 
ciating (or not associating) the measurements 
to tracks. 

To present the 2-D assignment, define a bi- 
nary assignment variable a(k, m, n)such that 

a(k,m,n) 
0 

z(imfc) is assigned 
to track Tn(k - 1) 
otherwise 

(34) 

A set of complete assignments, which con- 
sists of the associations of all the measurements 
in M(k) and the tracks in T(k - 1), is denoted 
by a(fc), i.e., 

a(fc)   =   {a(fc,m,n);m = 0,l,...,M(fc)(35) 

n = 0,l,...,N(k-l)} (36) 

where M(k) and N(k — 1) are the cardinal- 
ities of the measurement and track sets, re- 
spectively. The indices m = 0 and n = 0 
correspond to the non-existent (or "dummy") 
measurement and track, which are used with a 
special meaning in the assignment problem — 
the assignment a(k, 0, n) denotes the event that 
track Tn{k) is not associated with any of the 
measurements in M(k). In this case, the track 
Tn{k) is said to have been associated with the 
non-existent dummy measurement. Similarly, 
a(k,m, 0) corresponds to the event that mea- 
surement m is not associated with any of the 
existing tracks in T(k — 1) — the measure- 
ment is associated with the dummy track. The 
"dummy" notation is used to formulate the as- 
signment problem in a uniform manner, where 
the non-association possibilities are also con- 
sidered, making it computer-solvable. 

The objective of the assignment is to find 
the optimal assignment a* (A;) which minimizes 
the global cost of association 

M(k) N(k-1) 

C(fc|a(A;))=^    Yl    a(k,m,n)c(k,m,n) 
m=0    n=l 

(37) 
where c(k, m, n) is the cost of the assignment 
a(k,m,n). 
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The costs c(k, m, n) are derived from the di- 
mensionless global likelihood ratio of the mea- 
surements conditioned on a particular assign- 
ment [9]. The best assignments are obtained 
using the modified Auction Algorithm. 

5    Results 

Target trajectories and the corresponding po- 
sition measurements are shown in Figure 1. 
There are 120 targets in the surveillance re- 
gion and, due to measurement corruption (mis- 
alignment), only 115 of those are considered 
for tracking. It can be seen that the targets 
undergo a wide variety of maneuver modes, 
including benign constant velocity, constant 
acceleration, weaving and coordinated turns. 
The measurements error standard deviations 
are ax = 0.0323nm = 60m, a0 = 0.8° and 
Of = 8.8kts = 4.5m/s. The target detec- 
tion and false alarm probabilities are given by 
PD = 0.8 and PFA = 10-6/cell, respectively. 

The IMM estimator consisted of three filter 
modules, namely: 

1. Constant velocity model (M1) - WNA low 
process noise, which corresponds to the 
non-maneuvering intervals of the target 
trajectory. 

2. Maneuver model (M2) - WNA with high 

process noise, which corresponds to on- 
going maneuvers. 

3. Coordinated turn (CT) model (MCT), 
which corresponds to maneuvering turn 
intervals. 

For the above modules, the mode transition 
probabilities pa(k) at time t* are calculated 
(modeled) as follows. First 

pa = max{k,l } n 
(38) 

where k = 0.25 is the lower limit for the ith 

model transition probability 8k is the revisit 
interval [2, 4]. The other elements of the tran- 
sition matrix are calculated using 

pi2 = 0.6(1-pii) 
P2i = 0.9(1 - P22) 
P3i = 0.9(1 - P33) 

pis = 0.4(1 - pii) 

P23 = 0.1(1 -P22) 

P32 = 0.1(1-P33) 

In [9] the so-called directional process noise 
model, where the target motion is assumed to 
have a higher lateral uncertainty (acceleration) 
than axial, was shown to be more appropriate 
for air targets than the standard EKF model 
with equal uncertainties in X-Y directions. To 
track the AEW targets, the directional process 
noise models with axial and lateral acceleration 
standard deviations oar and air for the r-th 
model, respectively, are used for the M1, M2, 
and MCT (linear motion portion only). These 
values are given by 

aai    = ' 0.2m/s2, <rj1=0.2m/s2 

aa2    =   5m/s2,o72 = 20m/s2 

aa3    =   lm/s2,   cri3 = 5m/s2 (39) 

Also, the coordinated turn model assumed a 
turn rate process noise standard deviation of 
ow = 0.3°/s2. 

Previously, estimation results obtained us- 
ing a single Combined Kaiman Filter (CKF) 
in   conjunction   with   the   JVC   algorithm2 

2The JVC algorithm is equivalent to the Auction. 
As shown in [7] the Auction is faster than JVC for 
problems with sparsity above 80% (when only 20% of 
the assignments are feasible). Assignment problems in 
tracking generally have sparsities exceeding 90%. 
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for data association were presented in [8]. 
Here we present the results obtained with 
the IMM/Assignment estimator to illustrate 
the advantages of multiple model estimation. 
These advantages result from the provision in 
the IMM estimator for the target motion model 
to "softly switch" from one model to another, 
which makes the IMM into an adaptive band- 
width filter. This adaptive bandwidth capabil- 
ity is the key requirement for a maneuvering 
target tracking filter for good performance. 

The main performance metric is track con- 
tinuity or track purity, which quantifies better 
estimation and association. Track continuity is 
measured in terms of Mean Track Life (MTL) 
and Total Track Life (TTL). These two statis- 
tics are based on track segments that are, at 
least, six scans long (longevity), have been up- 
dated within the last seven scans (continuity), 
have been updated by a particular target at 
least 45% of the time (purity) and do not have 
consecutive updates by more than two other 
targets (purity). Total track life is then the to- 
tal number of times (scans) a target has been 
tracked by some track segment divided by the 
total number of scans the target has been in 
the scenario. Mean track life is the total track 
life divided by the number of segments that the 
target has been tracked by [8]. 

The IMM estimation results are compared 
with the baseline results presented in [8] in Fig- 
ures 2 and 3. It can be seen that the IMM 
estimator yields uniformly better results than 
the results obtained by using a Kaiman Filter. 
This indicates better measurement-to-track as- 
sociation and estimation (fewer broken tracks: 
from 68% to 12% for the difficult targets). 

The RMS position and velocity errors 
obtained with the IMM/Assignment and 
CKF/JVC estimators are shown in Figures 4 
and 5 respectively. It can be seen that the IMM 
estimator improves the position estimation er- 
rors by a factor of 1.5-2 over the Kaiman filter 
— using its adaptive bandwidth capability, the 
IMM estimator is able handle targets with dif- 
ferent maneuver parameters and yields better 
estimation results. In velocity also, the IMM 
estimator results in reduced estimation errors. 

Figure 2: Mean track life 
(— IMM/Assignment, - - - CKF/JVC). 
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Figure 3: Total track life 
(— IMM/Assignment, - - - CKF/JVC). 

6    Conclusions 

In this paper, we presented the development 
and implementation of a tracker based on the 
IMM/Assignment estimator for tracking the 
motion of a large number of air targets with 
different motion characteristics. The mea- 
surements, which included range, azimuth and 
range rate, were obtained from an airborne 
sensor. Because of the desire to keep the es- 
timator in Cartesian coordinates, the polar 
measurements were converted into Cartesian 
and the resulting conversion bias (due to large 
measurement errors and long sensor-to-target 
distances) was compensated for using a mul- 
tiplicative debiasing technique. Performance 
metrics in terms of track continuity/purity 
and position/velocity estimation errors indi- 
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Fnima number 

Figure 4: RMS position errors 
(— IMM/Assignment, - - - CKF/JVC). 

Figure 5: RMS velocity errors 
(— IMM/Assignment, - - - CKF/JVC). 

cate that the IMM/Assignment estimator per- 
forms significantly better than the previously 
published CKF/JVC estimator. This improve- 
ment results from the adaptive bandwidth ca- 
pability of the IMM estimator. 
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Other Approaches to Modeling of Information 
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Abstract - Conditional event algebra (CEA) - and more 
generally, relational event algebra (REA) - is a means for 
establishing a space of events - called "conditional events" 
- or "relational events"—whose probabilities yield 
corresponding ratios - or functions - of probabilities (the 
former being conditional probabilities). This paper 
establishes an outline of procedures for both analyzing and 
implementing the numerical aspects of CEA and REA. 
Computations of probabilities of conjunctions of conditional 
events are considered via assignment of appropriate atomic 
probabilities. Tests of similarity hypotheses, applying CEA 
or REA, are detailed and certain of these tests are shown to 
be related to tail percentages ofF- distributions. Alternative 
forms for conditional events from PSCEA, the product space 
form of CEA, are also considered, including truncated, 
probability dependent, and distributionally-derived. 
Furthermore, the metrics used in similarity hypotheses tests 
are determined for linear-weighted probability models via 
REA and are compared with the standard euclidean metric. 
For a relatively simple geometric setting and the choice of a 
natural loss function, the Minkowski orpointwise averaging 
of patterns is seen to produce significantly higher losses 
than an algebraic averaging procedure using REA. 

Key Words: conditional event algebra, relational event 
algebra, metrics, measures of similarity, combination of 
information 

1.  Introduction 

This work is concerned with establishing a basis for 
investigating both the numerical and implementation 
aspects of conditional event algebra (CEA) and 
relational event algebra (REA) and is a summary and 
modification of an earlier effort [1]. 

Briefly stated, CEA - and more generally, REA- are 
new procedures which expand significantly the scope 
of applicability of traditional probability theory. (See 
[2- 4] for general background.) CEA, as considered 
here, and denoted, from now on as PSCEA (Product 
Space Conditional Event Algebra) in order to 
distinguish it from other approaches to CEA [3], 
results from the extending of a given probability space 
of ordinary or unconditional events to a larger 
countable infinite product probability space containing 
the given one in an isomorphic isometric imbedding 

I.R. Goodman 
SSC-SD, 

Code D44215 Topside, Bldg. A33 
San Diego, CA 92152 

sense. When such a construction is made, certain of 
the events in the larger space, can then be shown to be 
identifiable in a natural way as the algebraic 
counterparts of conditional probabilities. In turn, this 
allows for the development of a comprehensive and 
rigorous logic and calculus of boolean operations and 
relations among such conditional events. Even though 
the conditional events themselves in general are 
countable infinite disjoint disjunctions of simpler 
events, the CEA calculus of operations and relations 
here typically consists of finite closed-form results. 
One of the main applications of PSCEA has been to 
the modeling, comparing, and combining of inference 
rules (see again the above cited references). 

Just as CEA (and PSCEA) was developed to answer 
the need for extending probabilistic techniques to 
address issues involving conditional probabilities, 
more generally, REA has been developed to permit 
sound analysis of probability-based models in the form 
of given functions of probabilities (other than just 
arithmetic divisions, which correspond to conditional 
probabilities and CEA). Some applications of REA 
have included the comparisons and combining of 
probability models in the form of linear and nonlinear 
combinations - representing, e.g., the modeling of 
expert opinion. In addition, it has been demonstrated 
that models initially in fuzzy logic form - such as 
those representing natural language descriptions - can 
be put into equivalent probability functional form, 
using the one-point random set coverage 
representation of fuzzy logic [4]. Thus, this class of 
models also can be addressed via REA. (See, again [2, 
3]-) 

All of the above, however, up to this point, has not 
considered as a prime focus the associated problems of 
actual implementation of these new techniques, as 
well as specific numerical comparisons with parallel 
results obtained without their use. This paper 
considers these issues only to some degree, because of 
limited space and the requisite background needed 
here to establish, even in a minimal sense, the 
pertinent concepts involving general computations, 
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hypotheses testing, and estimation of event-based 
procedures. 

For the implementation aspect, it is pointed out first 
that computations required for the probability 
evaluation of the conjunction of conditional events — 
which plays a critical element in implementation - 
can be approached via assignment of probabilities to 
appropriately chosen atoms. Second, it is seen that the 
actual calculations involved in computing one of the 
metrics and implementing basic testing of hypotheses 
between single events representing the models in 
question- utilizing REA (and Second Order 
Probabilities (SOP)) - can be related directly to tail 
percentage tables of F-distributions. Third, finite 
approximations to conditional events themselves (such 
events being in actuality an infinite disjunction of 
events), "empirical" conditional events or those 
possibly dependent upon particular choices of 
probability measures (unlike PSCEA), are considered 
as viable alternatives to full conditional events, in an 
attempt to reduce complexity of calculations. In a 
related direction, a distribution-based approach to 
conjunction of conditional events in PSCEA is also 
demonstrated. Fourth, probability metrics are 
evaluated for establishing measures of similarity 
between models in the form of weighted combinations 
of probabilities. Finally, it is shown for a relatively 
simple geometric setting and the choice of a natural 
loss function, that the well-known Minkowski or 
pointwise averaging of patterns produces significantly 
higher losses than a newly-proposed algebraic 
averaging procedure emanating from REA. 

2.  Summary of Event-Based Techniques 
for General Computations, Hypotheses 
Testing, and Estimation 

2.1 Summary of PSCEA 

As stated above, this paper is only concerned with the 
form of CEA known as PSCEA. For a brief history of 
CEA and background on various non-boolean 
structured CEA's, see [2,3]. 

One basic application of PSCEA- as utilized in this 
paper — is a rigorous basis for uniting, for the first 
time, classical deductive logic, commonsense 
reasoning, and probability logic [5]. Another use of 
PSCEA is to compare in a universal quantitative 
manner similarity and differences of inference rules, 
the validity of which is interpreted via naturally 
associated conditional probabilities. This also makes 
use of the tool SOP (Second Order Probabilities) ~ to 
be explained later — and the fact that all probability 

spaces can be made into (pseudo-) metric spaces using 
relatively simple unconditional and conditional 
probabilities involving the boolean symmetric sum 
operator - as considered, e.g., in [2]. Part III. A brief 
outline of this issue will be presented following the 
introduction of REA below. 

Summarizing here only the essential properties, for 
any a, b, c, d,... in B, for given probability space 
(Q,2?,P) consider the countable infinite product 
probability space derived from it, (fi0,50,P0), where 

fio = QxQxQ..., (2.1) 
and conditional events (a|b), (c|d),... in B0. Here, e.g., 
(a|b) is given directly and recursively, respectively, as 

(a|b) = (ab | b) =   v (b')*x ab x Q0 
j=0 

(2.2) 

= (abxno) v (b'x(a|b)), (2.3) 

with compatible evaluation, provided P(b) > 0, 
+00 

P0((a|b)) = £ (P(b')yP(ab) = P(ab)/P(b) = P(a|b). (2.4) 
j=0 

For purpose of convenience, all boolean operators and 
relations extending the usual ones for (Q,2?,P) to 
(fi0,50,P0) are indicated by the same symbols when 
unambiguous. The natural (isomorphic, probability- 
preserving) imbedding of unconditionals as 
conditionals holds between any a in B and (a|Q) in B0 

a<-> (a|Q) = axQ0, P(a) = P0((a|Q)).      (2.5) 

The imbedding in eq.(2.5) however is not an identity, 
and thus Lewis' triviality theorem is avoided (see [2], 
Sections 11.5 and 12.2.2.) Identification of 
conditional events with the null or universal events in 
B0, as well as relating to each other over B0, includes 
for any a, b, c, d in B: 

(a|b) = 0O = (0|b) iff ab=0; 
(a|b) = 00 = (b|b) =(ß\Cl) iff a £ b > 0, 

and for nontrivial (a|b), (c|d) in B0, i.e., 0 < a < b and 
0 < c< d, 

(a|b)£(c|d) iff a:£c  and  c'd rSa'b 
iff P(a|b) < P(c|d), all P; 

(a|b) = (c|d) iff     a = b  and  c = d 
iff P(a|b) =P(c|d),allP. (2.6) 

The following extensions of (.)', &, v over B hold 
over B0: 

(a|b)' = (a'|b); P0((a|b)') = 1-P(a|b) = P(a'|b), 
P0((a|b)&(c|d)) = P0(a)/P(bvd), 
P0(a) = P(abcd) + P(abd')P(c|d) + P(cdb')P(a|b), 
P0((a|b)v(c|d)) = P(a|b) + P(c|d) -P0((a|b)&(c|d)), (2.7) 
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provided P(b), P(d) >0. In fact, all laws of probability 
are respected relative to any conditional events in £0 
and the actions of P0. The conjunctive probability in 
eq.(2.7) for two arguments can be extended 
recursively to any finite number of arguments 
exceeding two: Using obvious multivariate notation', 
for arbitrary 0 < aj < bj in £, j in J, where now (a|b)j 
indicates (aj|bj)j „ j, &0>K) indicates &(bj), etc., first: 
define for any sets  0cKcJ: 

a((a,b),,K) = &(b')j-K & (&(aK)) in B, 

P0(ao((a,b)I))= Z(P(a((a,b)J>K))Po(«&(a|b)I.K)). (2.8) 

Then, the desired recusive relation using eq.(2.8) 
holds, where 

P0(&(a |b)j) = P0(ao((a,b),)) / P(V(b,)).       (2.9) 

2.2 Summary of REA 

REA, as stated above, extends PSCEA. Consider the 
role of PSCEA, where, given probability space and 
resulting  conditional  probabilities,   i.e.,  arithmetic 
divisions of probabilities of events, such as 

P(a|b) = P(ab)/P(b), P(c|d) = P(cd)/P(d),...   (2.10) 

one determines an extension of (C1JB.P) to probability 
space (QoA,Po)> via eq.(2.5) and conditional events, 
say (a|b), (c|d)... in B„ satisfying eq.(2.4) connecting 
numerical divisions of probabilities to algebraic 
"division". In fact, note that the expression in eq.(2.2) 
is the complete algebraic analogue of the standard 
power series expansion of the formal division of events 
a / b = a/ (1-b')- In turn, where desired, one then can 
compute probabilities of prescribed logical operators 
acting upon such conditional events. One such type of 
situation giving rise to this issue, as mentioned above, 
involves the computation of probability metrics 
determining the degree of similarity of models. This 
is pertinent for models arising in conditional form as 
inference rules - and hence with PSCEA applicable ~ 
as well as the more general situation where REA is 
applicable. Again, use of SOP is required. More 
details on this will be presented below. 

More generally, given (Q,£,P) and functions of 
probabilities of events, such as for any aj in B, 

07(3,) P(a„)),   g(P(a,),...,P(a„)),       (2.11) 

with the range of fand g in the unit interval [0,1], one 
determines an extension of (ß,£,P) to some 
probability space (Qi,5i,Pi), via eq.(2.5) and 
conditional events, say (a|b), (c|d)... in B„ satisfying 
appropriate analogues of eqs.(2.4), (2.5). Here, there 
exist relational events, say fi(ai,...,a„), gi(ai,...,a„) in 
B\ connecting numerical functions f, g of probabilities 

with algebraic counterparts, for all well-defined P and 
all aj in B, up to some restriction, 
trp(al),...,P(aO)=P1(f,(a1,...,a11)),g(P(a,) P(a„))=P,(g1(a1 aj), 

(2.12) 
Then, analogous to the role CEA plays, one may 
determine probabilities of prescribed logical operators 
acting upon such relational events. One class of 
example of such functions is weighted averages - as in 
the case of experts combining evidence via forced 
weights of probabilities of events which are not 
necessarily mutually disjoint, so that the total 
probability expansion theorem cannot be used. 
Another class of examples pertains to fuzzy logic, 
where at first the given functions are in the form of 
single argument increasing or decreasing functions 
representing truth modifiers (such as "very", "not so 
much", etc.). Then, utilizing the conversion of certain 
classes of fuzzy logic expressions to probabilities of 
corresponding events via use of random set 
representations, one obtains a situation where REA is 
useful. (See [2], Part in, [4].) 

Before proceeding further, note that many given 
numerical-valued functions - as is obviously true in 
the weighted linear case - are in linear, or more 
generally, power series form, with prescribed fixed 
coefficients in unit interval [0,1]. In order to represent 
such functions via REA, one must first represent such 
coefficients or constants w separately. One simple 
approach is simply to represent any w in [0,1] as event 
[0,w] (interval) in £[0,1], part of probability space 
([0,1], £[0,l],voli), which is made independent of the 
"variable" events, voli being lebesgue measure. (See 
[2], Part III] for more details.) In any case, denote 
9(w) as the constant event in B\, corresponding to w, 
for probability space (Qi,£i,Pi) extending (ß,£,P). 
Note, in the spirit of eq.(2.12), 

P1(G(w)) = w,allP. (2.13) 

But, when formally Pi = P only the trivial case can 
hold in eq.(2.13): w = 0 or 1, corresponding to 0(0) = 
0, 6(1) = Q. Returning to the forced weighted 
average application, suppose f, g in eq.(2.11) become: 
f(x,,...,xn) = w,o + w11x,+...+w,Ilxn; 
g(xI,...,xn) = w20 + w2ix, +...+w2„xn; all Xj in [0,1], 
fixed wts: 0<Wjj<l, Wio+Wu+.-.+w» = 1, i=l,2. (2.14) 

Utilizing relative atomic forms for the Xj in terms of 
products of combinations of xk and XI'=1-XI and simple 
combinatorics, produces the replacement of eq.(2.14) 

f(xI,...,xIl)=       £ x,(k')...xn
(k»)-W1(k1,...,kn), 

(overall kj in {0,1}, i=l,...,n) 

g(x, x„) =       X x,™-• -x*">-W2(ku...M«); (2.15) 
(overall It; in {0,1}, i=l,...,n) 
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for all Xj in [0,1], where 
V.O = V-       Y.W = Y-' 

J J >      j J ' (2.16) 

(2.17) ^(^,...,10= Wi0+ Zwjj 
(overall lSj^n, withkj »1) 

Then, taking into account eqs.(2.13)-(2.17), the natural 
algebraic counterparts of eq.(2.14) is 

fi(a, 3») =  V a,°[«)—aB
<Wxe(W,(k, kD))inBl, 

(overaUkjin{0,l},i=l,...^i) 

g,(a,,...A) = V a,*''-• •aa
(kn)xe(W2(k1,...,kn)) inBu 

(overaUkjin (0,1), i=l, ...,n) (1\K\ 

where aj in B is arbitrary, from which eq.(2.12) holds 
here (due to disjointness, etc.). For a concise table of 
relational events for a wide variety of functions of 
probabilities, see [7]. 

23 Uncertainty of Knowledge of 
Probabilities of Logical Operators 

First, recall the important tightest bounds on the 
probability of the conjunction and disjunction of 
events in terms of the individual probability 
evaluations, for two arguments. These are denoted the 
(slightly extended) Fr6chet-Hailperin (F-H) Bounds 
[6], and are used extensively in previous work [1, 2, 
4]. In summary, for any probability space (0,ß,P) any 
a, b in B, and real value t, 0 <, t<l 

max(P(a)+P(b)-l)0)< P(a&b)< min(P(a),P(b)) 
£ tP(a) + (l-t)P(b) 
£ max(P(a),P(b)) < P(avb)< min(P(a)+P(b),l). (2.19) 

The top lower bound is achieved iff the bottom upper 
bound is achieved iff P(avb) = 1 or P(ab) = 0. The top 
upper bound is achieved iff the bottom lower bound is 
achieved iff P(ab') = 1 or P(a'b) = 1 iff P(aSb or b<a) 
= 1, slightly abusing notation. The range of possible 
values, for example, for conjunction, say rng(a,b;P), a 
natural measure of the uncertainty of prior knowledge 
of P(a&b), is: 
rng(a,b;P) = min(P(a),P(b)) - max(P(a)+P(b)-l,0) 

= min(P(a),P(a'),P(b),P(b'))< J4, (2.20) 
which for various cases can be significantly large. 
Thus, if reasonable assumptions lead to the knowledge 
of P(a&b), a great reduction in the uncertainty of prior 
knowledge can be achieved. (See below.) 

2.4 Probability Metrics and Model Similarity 

Background on this brief review may be found in [2], 
Part III. Three basic metrics dj.p^-^fO.l] (or 
pseudometrics obeying at least the triangle inequality 
and reflexivity) - among a number of others - based 

upon probability for a given probability space (Q,5,P) 
are defined for any a, b in B as 
do,p(a,b) = |P(a)-P(b)| = |P(ab>P(a'b)|, 
d1>P(a,b) = P(aAb) = P(ab')+P(a'b) = P(a)+P(b>2P(ab), 
d2!p(a,b) = P(aAb|avb) 

= [P(ab')+P(a'b)]/[ P(ab')+P(a'b) + P(ab)] 
= [P(a)+P(b)-2P(ab)] / [P(a)+P(b)-P(ab)].(2.21) 

It readily follows that 
0 £ do,p(a,b) < d1>P(a,b) < d2,P(a,b) £ 1, (2.22) 

with strict inequality holding in general in eq.(2.22). 
Note that, given knowledge of P(a), P(b) separately, in 
order to determine dj_P(a,b) for j - 1, 2, one must also 
know the conjunctive probability P(ab). Furthermore, 
when P(ab) is not known, noting that such dj>p(a,b) are 
decreasing functions of P(ab), for fixed P(a), P(b), 
then the F-H bounds also provide the tightest bounds 
on the knowledge of djiP(a,b) for j = 1,2, as follows: 

do,p(a,b) < d,,P(a,b) <. min(2-P(a)-P(b), P(a)+P(b)), 
do,p(a,b)/max(P(a),P(b))=l-[min(P(a),P(b))/max(P(a),P(b))] 

^d^b)^ min(2-P(a>P(b),l), (2.23) 
The lower bound in the top equation is achieved iff the 
lower bound in the bottom equation is achieved iff 
P(a<b or b<a); the upper bound in the top equation is 
achieved iff the upper bound in the bottom equation is 
achieved iff P(avb) = 1 or P(ab) = 0. Note the limited 
use of do,p compared with dijP or d^p, because of the 
possibilities of quite distinct events a, b existing with 
low values of doP(as readily seen by inspection). 

2.5 Use of SOP and Probability Metrics to 
Test Hypotheses of Model Similarity 

Background on the summary of results presented in 
this section may be found in [2], Part III. The SOP 
technique ~ with a basic application to deduction - is 
also discussed in [5]. While the probability metrics 
considered in Section 2.4 are natural measures of 
similarity of events in that - except for do,p - they are 
themselves either probabilities or conditional 
probabilities of events, one can go further and 
determine how significant such distances themselves 
are with respect to variation of events and 
probabilities. A natural way to capture this is to 
consider, in a minimal sense, all relevant atoms and 
corresponding probability evaluations of them 
generated by the events a, b, and to assign a prior 
distribution to such possible variations, summarized as 
the random vector X. = (Xi,X2,X3,X4), where Xi is 
identified with P(ab) as a random variable (rv), and 
similarly, slightly abusing notation, 
(X,,X2,X3,X4) = (P(ab),P(ab'),P(a'b),P(a'b')) (as rv's). 

(2.24) 
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In turn, this makes the dj>P(a,b), each as a function of 
certain of the components of X. (see eq.(2.21)), 
become a rv over [0,1], denoted correspondingly as Dj. 
For convenience, define the null hypothesis Ho as the 
situation where events a and b have no specific level 
of similarity due to collapsing to 0 of any of the 
relative atoms, while Hi is its logical negation. Under 
a uniform joint distribution assumption for X* over its 
natural domain (taking into account the usual 
constraints on P), or equivalently, for X = (Xi,Xz,X3), 
the first three components of X» (omitting 
X4=P(a'b')=l-XrX2-X3, etc.), over the usual 3- 
simplex S3={(xbx2,x3): Xj in [0,1], Xi+x2+x3 £1}, one 
obtains the following closed-form expressions for the 
cumulative distribution functions Fj of Dj, under Ho: 

F0(t) = 1-0-t)3, F,(t) = ^-(3-2:), F2(t) = t2; t in [0,1]. 
(2.25) 

In addition, extensions of the results in eq.(2.25) to the 
case of X assumed to have a joint dirichlet distribution 
Dir(X), where A-K^i.^.**;^), can be carried out in 
relatively simple form for Di and D2. In this case, 

E(Xj|Ho) = Xj / (*., + X2 + h + h) (2.26) 
is a useful constraint to account for possible prior bias. 
(See, e.g., [8] for review, motivation, and applications 
of such a distribution to an updating problem, noting 
that when Xi=X2=h=K=i, it reduces to the joint 
uniform one. The case of D0 is also obtainable, but is 
rather complicated and is omitted here. Using obvious 
notation, where Fjjt) = F/t), apropos to eq.(2.25), 
Fi.x(t) - Bfta+XiM+W Bfa+hM+Xtl 
F^t) = BA2+X3A1) / B(X2+Xi,Xl)\ t in [0,1], (2.27) 
where B,(A,u) is the incomplete beta function and 
B(A.,n) is the (complete, t=l) beta function. (See, e.g., 
[9], Sections 6.6 and 26.5.) 

In any case, the test of hypotheses is carried out in the 
usual way for given "observed" dj>P(a,b), using for 
simplicity FJ: For significance level s, 0 < s « 1, 
Accept Ho (and Reject H j) iff dyfab) > Cy; 
Reject Ho (and Accept H,) iff dj>P(a,b) < Qj;  (2.28) 
where Qj is determined from 
s=P(Reject Ho | Ho true)= P(Dj(a,b) < Qj|Ho) = F/Csj), 

C^Fj». (2.29) 
Alternatively, one can simply compute the "observed 
significance level" 

s^F/dj^b)) (2.30) 
and determine if it is too high, etc. 

One can then combine REA or PSCEA together with 
the test of hypotheses outlined in this section above for 
determining similarity of models that are described as 
functions of probabilities as given in general in 
eq.(2.11): First obtain (via-REA or CEA such in the 

case of comparing inference rules) extended 
probability space (Qi,B\,^i), and relational events 
fi(ai,...A), gi(ai,...A,) in Bx satisfying eq.(2.12). 
Then, choosing dj>Pl   for j = 2 or 3, replace a by 
fi(a, a„),   b   by   gi(ai,...,a„),   and   (fi,fi,P)   by 
(Qi,5i,Pi) relative to all results connected with 
eqs.(2.25)-(2.30). Note the key use here of REA again 
in evaluating Pi(fi(ai,...,an) & gi(ai,...,a„)) in order to 
determine dipI(f1(ai,...,an),gi(ai,...,a11)), etc. 

2.6 Algebraic Combination of Models 

It is natural following testing of hypotheses of 
similarity for models as indicated in Section 2.5 to 
combine those models for which an affirmation is 
indicated by the test. One fundamental loss function L 
that has been proposed for such combining of models 
is a natural generalization of weighted square loss, as 
given, e.g., in [10], Section 3. More specifically, for 
any events a, ß in Bu relative to extension probability 
space (Qt,£i,Pi) of (0,ß,P), slightly abusing notation 
concerning the further extension of B\ and Pi, for any 
third event y in Bx - or the extended product version 
of By, Pi — and for any real number w in [0,1], define 
the loss function 

L(a,ß;y;w) = [(aAy)x (aAy)xe(w)]v [(ßAy)x (ßAy)x(9(w))']. 
(2.31) 

As before, A is the boolean symmetric difference 
operator and G(w) is the constant event corresponding 
to w. Define a partial order over the L (event) values 
in eq.(2.31) through the relation 

L(a,ß;y,;w) ■< L(a,ß;y2;w) 
iff P, (Ua,fty,;W)) <. P,(L(a,ß;y2;w)), all P,       (2.32) 

for any given a, ß, yu y2 in Bi. Also, define the w- 
weighted event average of a and ß as 

av(a,ß;w) = (ax0(w)) v (ßx(6(w))') in Bx. (2.33) 

Again, slightly abusing notation), it is readily shown 
that for all w, Wj in [0,1], with inequalities holding in 
general in the strict sense, 

L(a,ß;av(a,ß;w);w) = [(a&ß')2v(a'&ß)2]xe(w)x(e(w))'( 
L(a,ß;av(a,ß;w);w) ■< L(a,ß;a&ß;w), L(a,ß;avß;w), 
L(a,ß;av(a,ß;w,);w,) -< L(a^;av(a,fcw,);w2), 

a&ß < av(a,ß;w) £avß. (2.34) 

Moreover, the actual difference in the second equation 
of (2.34) can also be determined. Finally, one other 
candidate for the "average of two events", provided 
both a and ßcRm (m-dimensional euclidean space) is 
the Minkowski average, given as 
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mink(oc,ß;w) = wcc + (l-w)ßinRm, (2.35) 
using pointwise scalar multiplication (•) by w and 1-w 
and pointwise addition (+). When a and ß are convex; 
it follows directly, conv(.) indicating convex hull of, 

ot&ß = w(a&ß) + (l-w)(ot&ß)£ mink(a,ß;w) 
c w(auß) + (l-w)(auß)cconv(ctuß), (2.36) 

It is thus of interest to compare av(cc,ß;w) with 
mink(a,ß;w) in Rm. 

3.   Computational Aspects 

This section, utilizes the results in [1], as well as new 
modifications and additions, in conjunction with the 
background provided in Section 2. 

3.1 Calculations involving conjunction of 
multiple conditional event arguments for 
PSCEA 

Consider now the number of computations required 
for the probability evaluation of the conjunction of 
conditional events - which plays a critical element in 
implementation. Clearly, eqs.(2.8), (2.9) show at least 
an exponential growth in computational complexity as 
the number of conditional event arguments grows. In 
addition, the relation of the exact conjunctive 
probability values to the much-easier-computed F-H 
bounds is also relevant. (Here, one replaces, of course, 
the unconditional events in eqs.(2.19) by 
corresponding conditional ones in boolean algebra B0. 
More specifically, a somewhat-detailed numerical 
study has been carried out for the case of two and 
three arguments (see [1], Sections 2.1, 2.4 describing 
the procedure). Essentially, for the case of two 
conditional event arguments (see eq.( 2.7)), one first 
forms the relative atoms from nontrivial conditional 
events (a|b), (c|d), with 8 of 16 conjunctive 
combinations of affirmations and negations of a, b, c, 
d collapsing to 0 due to the nontriviality assumption. 
Then, one attempts to compute - via probability 
assignments determined over the atoms - a reasonable 
span of the possible (and typical) probability values of 
P0((a|b)&(c|d)), as a, b, c, d vary, relative to the F-H 
bounds. This means if each atomic probability is a 
multiple of 1/n (such as n=40), then there are G^ 

*:■)• 

-(•:") 
(using  standard  combinatorial  notation) 

possible probability assignments (viewed as 
partitions). Thus, for n=40, G^ is approximately (3.8) 
•10*. Similarly, considering the three nontrivial 
conditional event argument case, 37 atoms formed 
from, say, a, b, c, d, e, f, collapsing to 0, the number 
of  possible   probability   assignments   is   G„,3   = 

A reasonable value for n here is n=150, 

resulting in G^ being approximately (8.6)-1030. 
Therefore, the Monte Carlo method of sampling is the 
only feasible approach to implementing such 
numerical analysis. This leads to results in Section 3.2. 

3.2 Calculations Involved in Hypotheses 
Testing via Probability Metrics 

First, it is of some interest to note that the normalized 
incomplete beta function - the form of F^x. under the 
dirichlet assumption given in eq.(2.27) - can be 
identified with the tail or 1- cdf form Q of a Snedecor 
or F distribution (corresponding to the scaled ratio of 
two independent chi-square random variables with 
different degrees of freedom). More specifically, 
referring to [9], Section 26.6, the following holds 
(using Abramowitz & Stegun's notation) 

= Q((A*+*3Xl-t)/[(A.,+X<)t] | 2(^+X3)>2((X1+X4))). (3.1) 

Eq.(3.1) is useful for hypotheses testing - as outlined 
in Section 2.5 - because of the well-tabulated Q (see 
e.g., again [9], pp. 986-989). Alternatively, the 
calculation of Fi^(t) could be carried out in the form 
of a computer program generating a Maclaurin series 
for the incomplete beta function. But this series 
converges very slowly. However, the continued 
fraction representation converges rapidly (see, e.g., 
[11], p. 227). For the uniform case, although Fi(t) is a 
simple cubic, one can calculate the threshold level 
(which requires inversion of Fi) by Newton's method 
and compare the result with the tabulated value in [9], 
as cited above. 

Values for do,p, di>P, dy» have been calculated for two 
nontrivial conditional events (a|b), (c|d), for various 
values of P generated by the Monte Carlo method 
mentioned in Section 3.1. (For these numerical 
results, see [1], Appendix A, pp. 44-93.) It was found 
that typically such metric values often fell almost 
midway between the upper and lower F-H bounds. 

3.3 Truncated, Empirical and Other 
Approaches to Conditional Events 

Apropos to eq.(2.2), a natural question to pose is what 
will the result be to PSCEA if the full infinite 
disjunctive series of mutually disjoint events in B0 is 
truncated at various levels. It has been demonstrated 
[3] that closed form results always hold for all finite 
boolean logic operators and relations acting on the full 
conditional events; but these become computationally 
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intense for larger arguments. Thus, one can ask if the 
computations can be reduced in some sense via 
truncation techniques applied to the conditional events 
themselves. A related question is concerned with the 
construction of conditional events in finite form - or 
"empirical " conditional events that may well depend 
on the probability measure of choice - unlike the 
conditional events of PSCEA. In fact, the key idea 
here is extending the fixed point property of the 
recursion relation in eq.(2.3) to a more general setting, 
where at the beginning of the recursion, (a|b) is 
replaced by any event (a|b)iiP ~ which may well 
depend upon P - whose probability Pi over the space 
in which (a|b)i P exists is 

Pi((a|b),,p) = P(a|b). (3.2) 

Such examples of P-dependent conditional events 
(a|b)i,p can be generated geometrically (see [1], 
Section 3.2 for details) which also produce matching 
with all desired levels of PSEA operational 
counterparts, including the special independence 
conditions as in the characterization theorem for 
PSCEA (see [3], Theorem 16, pp. 298-299). In fact, 
recall that the characterization of PSCEA is only 
through the structure of the resulting probability 
evaluations of the boolean operators and relations — 
not actually depending on the structure of the 
conditional events themselves. As a simple example of 
empirical conditional events, let Cl= {o)i G>16} with 
each atom ©j distinct and with probability measure P 
over Q being uniform, i.e., P(ü>J) = 1/16. Let a = 
(a|Q),,p = {ü>4, 0)7}, b = (b|fi)!>P = {<» 1,002,0)3,0)4}, c = 
(c|Qi>P)   =    {ü)2,ö>4, Ö>16},   (a|b)i>P   =    {0)4,0)8,(012,(016}. 
Then, all logical relations, operations, and their P- 
evaluations here coincides with that of PSCEA, for 
a,b,c, (a|b), where (a|b) is formally replaced by (a|b)ijP. 

In yet another direction concerned with extending or 
modifying the definition of a conditional event, it can 
be easily shown that the conjunctive probability 
evaluation in eq.(2.7) is expressed alternatively as 
P0(a|b)&(c|d)) =  [wt,(b,d;P)comb,(PM(.),Pbd(..)) 

+ wt2(b,d;P)comb2(PM<-), IW«) 
+ wt3(b,d;P)-comb3(PbdO, PW(..) 

+ wt4(b,d;P)comb4(PM', Pbd(--))](axc),(3.3) 
where PM, PM', PM indicate the usual conditional 
probability    measures    P(.|bd),    P(.|bd'),    P(.|b'd), 
respectively, all well-defined over B, provided P(bd) > 
0,P(bd')>0, P(b'd)>0. Also, 
wt, = P(bd I bvd), 
wt2 = P(bd' I bvd)-P(b'|d) + P(b'd | bvd)P(d'|b), 
wt3 = P(b'dIbvd)P(d|b), wt4 = P(bd'|bvd)P(b|d). 

(3.4) 

Furthermore, comb2 = comb3 = comb4 = product. 
Thus, prodOVPpjXaxc) = P(i)(a)P(2)(c) yields the 
standard product jointing, or probability measure 
prod(P(i), P(2)) over sigma(ßxfi). In addition, for any 
two probability measures P(i), P(2) over B, 
combi(P(j),P(j)):5x5-»[0,l] is defined as 
combi(Pö),P(j))(axc) = Pj(ac), which, when extended in 
the usual way, yields a legitimate probability measure 
over sigma(ßx5). This is designated here as the 
identification jointing of Pj . More generally, the 
evaluation of P0 over any finite conjunction of 
conditional events in B0 for PSCEA is the same as a 
weighted mixture of probability measures over the n- 
fold cartesian product of B relative to the cartesian 
product of the consequent events. Here the weights 
depend only upon probabilities involving the atoms of 
the antecedent events and each component probability 
in the mixture arises as some combination of repeated 
identification and/or product jointing. Much more is 
expected in using this approach to generalize PSCEA. 

3.4 Computations Involving REA Models of 
Linear Combinations of Probabilities 

Referring to eqs. (2.12)-(2.18), for the case n = 2 and 
using eq.(2.21), it follows that 

(3.5) 
f(P(a,),P(a2)) = w,o + w„P(a,) + w,2P(a2), 
g(P(a,),P(a2)) = w20 + w2,P(a,) + w^Pfo), 
fi(ai,a2) = a,a2 v aia2'x8(wio+wu) v a,'a2xe(w,0+w,2), 
gi(ai,a2) = aia2 v a^xG^o+Wz,) v a1'a2xe(w20+w22), 
Pi(fi(a,,a2)) = uT(a,),P(a2)), P,(g,(a, A» = g(P(a,),P(a2)). 

Assuming from now on that Wi0=w2o = 0, 
doj.,(fi(ai,a2), g,(a,,a2)) = | fiT(a,),P(a2))- g(P(a,),P(a2))| 

= |P(a,)-P(a2)||w,rw2I| 
= |P(a1a2')-P(a1'a2)|-|w„-w21|; 

di,p,(fi(ai,a2), gi(ai,a2)) = P,(f,(ai,a2)Ag,(a,,a2)) 

= P(a,Aa2)|w„-w2,|; 
dy>,(fi(ai,a2), gi(a,,a2)) = P^fa.a^AgKa^) | 

fi(ai,a2)vg,(a,,a2)) 
= [P(a,Aa2)|w„-w21|]/ [P(a,a2) + 
[Pfaaz'J-maxCwu.Wz,) + P(ai'a2)(l-min(wi,,w2i))].  (3.6) 

It is also natural to consider as a basic measure of 
distance between the two models f(P(ai),P(a2)) and 
g(P(ai),P(a2)) the ordinary euclidean distance applied 

'2ip(ai)" to vectors rw„p(ai) 
|_w12P(a2)_ 

and 
w 
w22   P(a2) 

, i.e., 

dw,P(f(P(a1),P(a2)), g(P(a,),P(a2))) 

^(wnP(aj) - w2,P(a,))2 +(w12P(a2) - w22P(a2))2 
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(c = V(P(a,))2+(P(a2))2-|wirw2I|. (3.7) 

Comparing eqs.(3.6) and (3.7) (noting eq.(2.22)), we 
then have the total ordering, with strict inequality 
holding in general, 

do,P,(f(P(a,),P(a2)), g(P(a,),P(a2))) = |P(a,)-P(a2)||wn-w21| 

<; dlfi(ft(aua2),gi(ai,a2)) «= P(a,Aa2)-|w„-w21| 
^ dy^fKaiM gi(a,,a2)); (3.8) 

do.p,(f(P(a1)>P(a2)))g(P(a1),P(a2))) 
<; d^ftPfrO.Pte)), g(P(a,),P(a2))) 

=V(p(al))2+(p(a2))2-lw"-w2il- ■* (3.9) 
But, depending on P(ai), P(a2), which can be made precise, 
(WaiPWte)), g(P(a1),P(a2))) <. or 2: 
dliPl(f,(a,A), gi(a,,a2)), d2,Pi(f,(a,,a2), g,(a,,a2)).        (3.10) 

Reference [1], Sections 4.4 - 4.7 indicates the 
analogues of the above results for n=3 arguments and 
a method for carrying out explicit computations to 
obtain specific numerical comparisons. 

3.5 Comparison of Minkowski and Algebraic 
Averaging Procedures for Combining 
Information 

Here, for probability space (Q,5,P) , let Q = [-0.5, 
+0.5]x[0,l], P be uniform (normalized lebesgue) 
measure over Q and B be the borel field over Q. Let 
a, ß c ß be two rectangles of non-equal length, in 
general, of the same height Ay, and with bases colinear 
on the x-axis where the origin of the plane is midway 
between them. The width of a is Axi.where the left 
edge of a is at Xi < 0 and the right edge of a is at Xi + 
Axi < 0; the width of ß is Ax2 and the left edge of ß is 
at x2 > 0 and the right edge of ß is at x2+Ax2 > 0, 
where all Ax; > 0. This immediately implies that 
mink(a,ß;w) is also a rectangle with base on the x-axis 
of height Ay and with left side being at w-Xi+(l-w)-x2 

and right side being at w(xi+Axi) + 
(l-w)-(x2+Ax2). For av(cc,ß;w), see eq.(2.33) (as a 
disjoint disjunction of events). In turn, this yields first 
the algebraic loss function evaluations, followed by 
the probability evaluations: 
P(Ua,ß;av(a,ß;w);w))=((Ax1)

2+(Ax2)2)(Ay)2w(l-w); 
P(L(a,ß;mink(a,ß;w);w)) 
= (w[min(Ax,,(l-w)(x2-Xi)) + Ax2]2 

+(l-w)[ min(Ax2, w.(x2+Ax2- x,-Ax,)) + Ax,]2)(Ay)2. (3.9) 

Again using a Monte Carlo sampling technique, 
extensive numerical comparisons have been carried 
out in [1], Appendix B between av(a,ß) and 
mink(a,ß). The result is that the latter almost always 

produces a significantly larger value of P°L compared 
to the former in eq.(3.9). 
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Abstract Gaussian kernel models offer a powerful 
nonparametric approach to regression where a priori in- 
formation is available about the solution in terms of 
smoothness functionals. Where this a priori informa- 
tion is uncertain or the problem is nonstationary the 
choice of smoothness functional may prove unsatisfac- 
tory. One solution is to seek models which adapt to the 
data. Alternatively a committee of models can be used 
where each model represents different prior knowledge 
about the solution. By forming an appropriate combi- 
nation of these models the output will then, on aver- 
age, perform better than the average of the individual 
models. It will be shown that for Gaussian kernel mod- 
els the optimal combination strategy is to form linear 
combinations of the outputs of the models. The linear 
weightings are found by considering the performance of 
the models in terms of Gaussian error bars and assum- 
ing conditional independence of the model outputs. The 
approach is demonstrated on an illustrative example. 

Keywords: kernel methods, combining models, Gaus- 
sian processes, regression 

1    Introduction 

Data fusion usually refers to a combination of in- 
formation derived from multiple sources (sensors) 
to arrive at a consistent estimate of some desired 
output [1]. Alternatively we may wish to combine 
information from several algorithms. Often, when 
constructing models for a particular task, for ex- 
ample regression or classification, several candidate 
models are assessed and the model with the best 
performance is chosen [2]. These different models 
may embody different a priori information about 
the solution, use different features as inputs, or sim- 
ply be trained from different random initialisations 
of the parameters. 

We describe a class of parsimonious nonpara- 
metric models for data fusion which are kernel 
based.    This class of methods includes Gaussian 

processes [3], support vector machines [4], regular- 
isation networks [5] and splines [6]. These models 
are motivated from rigorous statistical theory in- 
cluding reproducing kernel Hilbert spaces, the solu- 
tion of ill-posed problems and regularisation theory. 
Kernel methods have a natural Bayesian interpre- 
tation and provide in a straightforward manner a 
measure of the uncertainty on the model. These 
models have been applied to classification and re- 
gression problems with great success. 

In the presence of nonstationarities and/or input 
dependent noise we must look to models which can 
adapt to their current operating conditions. One 
solution to this is to seek models which must adapt 
their parameters and structure recursively to se- 
quential data. Alternatively we can train a set of 
models each optimised for different prior knowledge 
about the solution. The outputs of these models 
can then be combined to form an improved predic- 
tion which will be optimal for the current operating 
conditions. 

In this paper we present an approach to the op- 
timal linear combination of models based on esti- 
mates of the variances on the predictions of the 
models. Linear combinations of neural networks 
for regression and classification are not new [2, 7]. 
It is also well known that they lead to improved 
generalisation errors over the (weighted) average of 
the individual models [8, 9]. Variance based linear 
combinations have been investigated by Tresp and 
Taniguchi where they follow an intuitive approach 
which simply weights the models by the inverse of 
the variance of the prediction [10, 11]. In this pa- 
per we present a theoretical framework for variance 
based linear combinations based on conditional in- 
dependence of the model predictions. The final al- 
gorithm is similar to the naive approach of Tresp 
and Taniguchi [10, 11]. 

The rest of the paper is organised as follows. 
The next section describes the Bayesian motivation 
for using kernel based models in regression prob- 
lems.   The form of the solution is then presented 
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as motivated by regularisation theory and a sim- 
ple explanation of the idea of smoothness function- 
al given in terms of Fourier transforms. Bayesian 
techniques are then applied to the problem of ob- 
taining confidence intervals for the predictions from 
the models. The problem of combining kernel mod- 
els is then described and a simple linear combina- 
tion rule presented. The combination approach is 
motivated from the Gaussian posteriors over the 
outputs of the models and the conditional indepen- 
dence of these outputs. Finally, the approach is 
demonstrated on a simple illustrative example. 

2    Bayes   in   Function   Spaces 
and Regularisation 

Given a data set V = {XJ,ZJ},Z = 1,... ,N con- 
sisting of d dimensional inputs Xj and univariate 
observations zt the problem of regression is to infer 
the relationship between the Xj's and Zj's for the 
set V. We denote our estimate of this relationship 
by j/(x) which will be found by minimising some 
risk function. We can write Bayes' rule for the re- 
gression problem as 

p(y\V) = p(v\y)p(y) 
p(P) 

which, ignoring the normalising constant p(V), is 
equivalent to 

p{y\V) oc p(D\y)p(y). (1) 

The likelihood p(V\y) is the probability that the 
observed data were generated by a particular func- 
tion and p(y) is a prior over functions. This prior 
reflects our beliefs as to what class of functions the 
final model should belong. The posterior p(y\T>) is 
the probability density over the possible functions 
given the observed data. We now have a single level 
of Bayesian inference which consists of finding the 
most probable functional approximator amongst a 
class of approximators. This class is specified via 
the prior and is usually chosen to incorporate a spe- 
cific degree of assumed smoothness. 

We choose, for reasons which will become appar- 
ent later, the prior to have a form 

p{y) ocexp{-A^%]} (2) 

where A is a positive constant and il>[y] is a smooth- 
ness functional. The exact nature of this smooth- 
ness functional will be discussed later but, for now, 
it will be assumed to embody some a priori prefer- 
ence for smooth functions.  The form of the prior 

p(y) then gives high probability to those functions 
for which the smoothness functional ip[y] is small. 

All that remains is to find the likelihood p(D\y). 
If we make the assumption that the observations 
are corrupted by additive Gaussian noise, i.e. 

zt = /(XJ) + Si 

where e* ~ 7V(0, of) V i then it is trivial to show 
that 

p(P|y)«exp{-^£(*-V(xO)2}.      (3) 

Substituting for the prior and likelihood into Bayes' 
rule, Eq. 1, the posterior can be written as 

p(y\V) a exp{-H[y}} 

where 

1     N 

The most probable function, in a maximum a pos- 
teriori sense, is then the one that minimises the 
functional H[y]. 

The form, Eq. 4, is a penalised least squares so- 
lution for the desired function where the penalty 
term Xtp[y] forces the solution to have certain de- 
sired characteristics. We will now see how we can 
solve for y. 

3    Kernel   Based   Models   for 
Regression 

In Eq. 4 are present two terms, the second is a 
penalty term which will be discussed later. The 
first term measures the closeness of the estimate to 
the data, in this case a simple least squares error 
term. More generally this term is called an empir- 
ical risk function which we will denote by Qemp[y]. 
The maximum likelihood approach to regression is 
to find the function y(x) which minimises the em- 
pirical risk. However, such a problem is ill-posed. 

A problem is defined to be well-posed in the 
sense of Hadamard if it has a solution which satis- 
fies the conditions that it [4] 

• exists; 

• is unique; and 

• is stable. 
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An ill-posed problem is then simply one which is 
not well-posed. The problem of regression from fi- 
nite noisy data is an example of an ill-posed prob- 
lem in the sense that the solution may not be unique 
and will often be unstable. However we will now see 
that the Bayesian formalism above actually leads to 
a well-posed problem. 

In order to make the approximation problem well 
posed we must impose some form of restriction on 
the possible solutions. If we are to make realistic re- 
strictions we must rely on a priori knowledge about 
the problem. The simplest form of a priori knowl- 
edge is to assume that the underlying function is 
"smooth" in the sense that if two inputs are close 
then the corresponding outputs should be close. We 
define a smoothness functional ip[y] on the outputs 
of our learning machine which takes large values for 
non-smooth functions and small values for smooth 
functions. We will discuss the exact nature of this 
smoothness functional shortly, but for now we as- 
sume it to be convex and continuous. 

The idea of regularisation theory is then to solve 
an ill-posed problem from a variational principle, 
which contains both the data and prior smooth- 
ness information [12]. There are then three basic 
possible settings for the optimisation problem [5]. 
We can minimise Qemp[y] subject to the constraint 
that ip[y] < A. This is what should be done when 
following the principle of empirical risk minimisa- 
tion and can be interpreted as incorporating a form 
of capacity (or complexity) control. We are min- 
imising the empirical risk while keeping the model 
complexity fixed by enforcing an upper bound on 
the measure of complexity. 

The second possible setting is to minimise the 
regularisation term tp[y] with an upper bound on 
the empirical risk, i.e. Qemp[y] < A'. However, the 
situation we consider here, and which results in a 
simple solution is to minimise the regularised risk 
functional 

Qreg [v] = Qemplv] + ty[y] 

where A is a positive number called the regularisa- 
tion (or smoothing) parameter. The regularisation 
parameter controls the trade-off between the close- 
ness to the data and the smoothness of the solution. 
For the remainder we will assume that the empiri- 
cal risk is given by the simple sum of squared errors 
such that the regularised risk functional is now 

N 

Qreg[y] = ^Zi ~ V^^ + A^ (5) 
i=l 

which now bears a close resemblance to our 
Bayesian solution in function space, Eq. 4. In fact, 

the equations are equivalent and can be made equal 
by including the term l/2cr| in Eq. 4 within the reg- 
ularisation parameter. We therefore see how the 
Bayesian approach in function space leads to the 
same result as that motivated by statistical learning 
and approximation theory via regularisation the- 
ory. In particular the choice of a Gaussian prior of 
the form given by Eq. 2 can now be justified and 
actually corresponds to a smoothness functional. 

All that remains is to choose the smoothness 
functional and solve for the learning machine. Nat- 
ural measures of the smoothness of a function are 
provided by differential operators which in the case 
of univariate inputs lead to the class of Tikhonov 
regularisers of the form 

•>l>[y] 
i   R    rb 

x) dx 

where hr > 0 for r = 0,1,... , R - 1 and HR > 0. 
In higher dimensions this class of regularisers can 
be generalised through Laplacian type differential 
operators. 

More generally, these differential operators form 
part of a class of smoothness functionals for which 
the solutions of the minimisation of the regularised 
risk functional, Eq. 5, have the same form. This 
class of smoothness functionals have the general 
form 

1%] = / s)P 
G(s) 

ds (6) 

where ~ denotes the Fourier transform and G is a 
positive function that falls off to zero as ||x|| -> oo. 
We can see immediately why this class of func- 
tionals measures the smoothness of the function 
j/(x). The effect of the function 1/G(s), which cor- 
responds to a high-pass filter is to extract the high 
frequency content of y(x). The power of this high 
frequency content is then measured via the L2 norm 
of the result. The smoothness functional then has 
the desired characteristic of taking high values for 
non-smooth functions (which have a large high fre- 
quency content) and low values for smooth func- 
tions (which have a small high frequency content). 

There are in fact two (related) classes of func- 
tions G which we are interested in. Either G is the 
Fourier transform of a positive definite (p.d.) func- 
tion or of a conditionally positive definite (c.p.d.) 
function where we denote this function by G. In 
the case where G is positive definite then the asso- 
ciated smoothness functional ip[y] is a norm. Simi- 
larly, for G conditionally positive definite then ip[y] 
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is a semi-norm with a finite dimensional null space 
M. 

The solution of the regularised risk functional 
then has the form [12] 

N k 
y(x) = J3 CiG(x - m) + 53 dala{x)      (7) 

i=l a=l 

where {7a}*=i is a basis in tne fc dimensional null 
space Af and the coefficients da and Cj satisfy the 
following linear system: 

(G + AI)c + rTd    =    z 

re  =  o 

where z is the vector of observations, c and d are 
the vectors of the coefficients da and Cj, G is a 
matrix of kernel activations, i.e. 

Gij = G(xi — Xj) (8) 

and T is a matrix of the values of the null space 
basis 

This learning machine is referred to as a regularisa- 
tion network. The general solution includes various 
other models including radial basis function net- 
works [8], splines [6], Gaussian processes [3], and 
certain classes of support vector machines [4]. The 
nature of these models is dictated by the choice of 
prior (smoothness functional) and whether this is 
interpreted in a Bayesian framework. Gaussian pro- 
cesses have been developed from a strong Bayesian 
motivation, splines as the solution of approxima- 
tion in certain reproducing kernel Hilbert spaces, 
and support vector machines from the idea of struc- 
tural risk minimisation. We now see how, for the 
class of regularisation networks with positive def- 
inite priors, we can assign confidence intervals on 
the predictions. 

4    Confidence Intervals 

We now return to the probabilistic (Bayesian) in- 
terpretation of the kernel models. We previously 
saw how positive definite smoothness functionals 
are equivalent to Gaussian priors over the functions. 
Similarly the output of a kernel model, Eq. 7, can 
be interpreted as a Gaussian posterior probability 
density. Prom this we are able to define Gaussian 
confidence intervals on our estimates. 

Based on the training data {XJ, zi), i = 1,... , iV 
we can define a covariance matrix GAT for this data 
based on the inputs with ijth element given by 

G% = G(xi,Xj) 

where G(xi,Xj) is the kernel function and GN is 
simply the matrix of kernel activations, Eq. 8. Sim- 
ilarly we can define a vector of covariances, gjv+i 
between the training data points and the point at 
which we wish to make a prediction, i.e. J/(XJV+I). 

This vector then has ith entry 

SN+I =G(xi,xN+i). 

Finally the scalar variance of the new data point is 
defined as g = G(xN+1, xjv+i) + A. Using standard 
results from multivariate Gaussian conditional dis- 
tributions the mean and variance of the prediction 
for the new data point are then given by [13] 

y{xN+i)    =   SN+I
G

N 
Z 

o\    =    g - EN+IGHSN+I 

(9) 

(10) 

where z is the vector of observations. The variance 
term can now be interpreted as error bars on the 
prediction which are usually shown on plots as one 
or two standard deviations from the mean predic- 
tion (we shall always show them as one standard 
deviation). 

However, we must be careful in our interpreta- 
tion of the error bars and subsequently their role in 
combining kernel models. Consider Figure 1 where 
a function is estimated using an optimal and subop- 
timal kernel model. A suboptimal model is defined 
as one for which one or more of the hyperparam- 
eters converges to a value such that the estimated 
error bars are inconsistent with the actual perfor- 
mance of the model This is different from a poor 
model which does not predict the true function very 
well but for which the error bars reflect this by be- 
ing correspondingly large. 

According to MacKay [14] the error bars, as de- 
scribed above, are found assuming the model is cor- 
rect. For a suboptimal model the true interpolant 
can lie significantly outside the error models. This 
is demonstrated in Figure 1 where the error bars on 
the suboptimal model bear little relation to the ac- 
tual poor performance of this model. Therefore, in 
applying any technique which uses the error bars as 
estimates of model performance we must take care 
to ensure that the models are optimal in the sense 
that the error bars are consistent with the actual 
model performance. 
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Figure 1: Optimal and suboptimal predictions us- 
ing a Gaussian process model showing the mean 
predictions [-], la error bars [ ] and observa- 
tions [••■]. Whilst the suboptimal model cannot 
adequately predict the function the error bars indi- 
cate that this prediction is as good as the optimal 
prediction. 

5    Combining Kernel Models 

We propose, in this section, an algorithm for com- 
bining kernel models which forms linear combina- 
tions of the corresponding outputs of the models. 
However, the approach is also directly applicable 
to other models for which the posterior probabil- 
ity densities are Gaussian, for example generalised 
linear regressors and certain classes of neural net- 
works [15]. 

5.1    Theoretical Framework 

We first look more generally at combining different 
models from a statistical perspective. We assume 
that we have M models and that the posterior out- 
put probability from model i is given by pi(y\x{). 
There are principally two scenarios for combination 
of the models [16]. In the first the input to each 
model is unique as might be the case in combining 
classifiers where the distinct input patterns are of 
different measurements/features. The combination 
strategy must then take account of the fact that 
the posterior probabilities are no longer estimates 
of the same functional value. In the second ap- 
proach each model takes the same inputs but the 
models themselves are distinct. This may arise due 
to differing model structures, a priori assumptions 

on the data, or initialisations of the parameters. 
We are interested, in this paper, in the second 

scenario and in particular the case where different a 
priori assumptions are made about the data. How- 
ever, the basic theoretical framework and algorithm 
are more widely applicable to the other situations. 
The posterior output probabilities can now be de- 
noted by pi (y\x, V.i) where we have assumed a com- 
mon input and the output is now conditioned on the 
model, or hypothesis, %. The combined output 
posterior can be expressed using Bayes' theorem as 

p{y\x,Hi,... ,HM) = 

p(x\y,ni,... ,%M)p{y\,'H.i, ■ • ■ ,HM) 

p(x|,%!,... ,UM) 

In most cases it will not be practical to compute 
the full joint densities and we must therefore make 
an assumption that the posteriors of the models are 
conditionally independent, i.e. 

M 

p(y\x,Hu...,nM) = ]lPi(y\x,Hi).       (11) 

Is this reasonable? The denominator in Bayes' 
theorem is simply a normalising constant which 
is independent of y and can therefore be ig- 
nored. The conditional independence of the prior, 
p(ä/|)^i>"- >%M), must be reasonable as we are 
deliberately assigning different (independent) pri- 
ors to each model. These different priors are 
in terms of the expected smoothness of the solu- 
tion and/or the initialisations of the parameters. 
The conditional independence of the likelihood, 
p(x\y,Hi, ■ ■ ■ ,%M) will be realistic in most situ- 
ations as we would expect the independence of the 
models, even for a common output, to infer that 
this output is the result of different inputs to the 
models. Based on the assumption of conditional 
independence then the output of the committee of 
models must be calculated using Eq. 11 which for 
certain classes of models leads to a simple solution. 

5.2    The Algorithm 

A key feature of the kernel models described above 
is that, taking a Bayesian perspective, it is possi- 
ble to assign confidence intervals to the predictions. 
These confidence intervals are of a known form and 
are in fact Gaussian. We assume then that, for 
M models, the outputs of the models are Gaussian 
with mean \ii and variance of, i = 1,... , M. Un- 
der the assumption of conditional independence the 
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output of the committee will be given by 

M 

p(y) = Y[pi(y) 
i=l 

where pi(y) are the probability densities of the out- 
puts of the individual models. As the pi(y) are 
Gaussian then the output of the committee, p(y), 
will also be Gaussian with mean 

EM    jii 

lh = ^M   i (12) 

and variance given by the equation 

M 

- = T- (13) 

The combination rule is a simple weighted linear 
summation of the outputs of the individual models. 
The mean of the committee can be written as 

M 

ßy = 22 aifli 

i=l 

where 

v^M      1 

(14) 

(15) 

We are now in a position to analyse the effect of 
the committee in reducing the error on the approx- 
imation. The following analysis follows that due 
to Bishop [8]. Denoting the true regression func- 
tion by /(x) then the mean output of model i can 
be written as equal to the value of the regression 
function plus some error term, i.e. 

Mt(x) = /(x) + Tfc(x) 

where the error term, r^j(x) should not be confused 
with the observation error ei. 

The average sum of squares error for model i is 
then given by 

ei = E[(ßi(x)-f(x))2} = E[rß] 

where the expectation E[-] is taken over the input 
space X weighted by the unconditional density of 
x, i.e. 

%2] = /%2Wp(x)rf(x). 

The average error for the M individual models is 
then 

M ,     M 

=£5>=£?:*WJ (16) 

Using the combined output from the committee, 
Eq. 14, then we can define the error on this predic- 
tion as 

=   E 

=   E 

M 

J2aiHi{x)-f(x)\ 

M 

^2{aiHi(x) - atif(x)} 
u=i 

^M 
where we have assumed J2i=i "t = 1 (which can 
always be ensured if necessary by normalising the 
weighting coefficients). The committee error is then 
given by 

= E 
M 

Y^air)i 
Ki=l 

M 

= £aÄ2] 
i=l 

where it has been assumed that the 77; have zero- 
mean and are uncorrelated. In order to analyse this 
further we make the additional assumption that the 
weighting coefficients are all equal to 1/M such that 
we arrive at the important result that 

M 1 
6-com — M2 E^2i=Me 

»=1 

(17) 

In other words the sum-of-squares error of the com- 
mittee is a factor of M lower than the average of 
the sum-of-squares errors of the individual mod- 
els. In practise the reduction in error will not be a 
factor of Mas the errors rji will be uncorrelated. 
However, this will be offset to an extent as the 
cüj weight better models greater than for the case 
where on = 1/M V i. 

6    Example 

We now present the application of the above ideas 
to an illustrative example. The data were generated 
from the function: 

+ 

i=l i=l 

z(t)    =   0.1sin(i) + exp|-^(i-5)2| 

0.4exp|-^-(i-8)2J+e(i) 

where the noise process e(t) has zero mean and vari- 
ance 0.0025. The observations were generated over 
the interval [0,10] but with missing data in the re- 
gions (1,2) and (7,8). A committee of six Gaussian 
process models was trained using the noisy obser- 
vations. Each model was initialised with a different 
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value for the regularisation parameter reflecting a 
priori different beliefs in the smoothness of the final 
solution. 

The results for the six models are shown in Fig- 
ure 2 and reflect this difference in expected smooth- 
ness most particularly in the region of missing data 
(1,2). The final model, whilst poor, cannot be con- 
sidered suboptimal in the sense described earlier as 
the error bars correctly reflect the lack of confidence 
in the predictions. 

Figure 2: Predictions for the individual models in 
the committee. Note the increase in error bars for 
regions of missing data and the different smooth- 
ness characteristics of the solutions. The prediction 
[-], data [• ■ •] and error bars [ ] are shown. 

The final output of the committee is shown in 
Figure 3. The performance of this committee is also 
reflected by the mean-squared errors (MSE) over 
the data set. The MSE of the committee prediction 
(0.0034) was better than all the individual models 
except for one which had an MSE of 0.0027 and 
was over a factor of 3 times better than the mean 
MSE over the model of 0.0110. 

7    Conclusions 

We have described a class of models for regression 
problems based on a Bayesian formalism in func- 
tion spaces and a variational principle for solving 
ill-posed problems using prior information. The 
resulting predictor encompasses various classes of 
models including splines, Gaussian processes, sup- 
port vector machines and regularisation networks. 
The solution is based on a kernel function which can 

Figure 3: The predicted output [-] versus true out- 
put [ ] for the illustrative example. The pre- 
diction generally shows close correspondence with 
the true output even in the region (1,2) of miss- 
ing data. However, in the second region of missing 
data, (7,8), the prediction diverges from the true 
signal. The noisy observations [■ • • ] are also shown. 

be interpreted as a Gaussian prior from a Bayesian 
perspective. For positive definite kernels (for which 
the null space is empty) we can define Gaussian 
confidence intervals on our predictions. These form 
the basis of a simple linear weighted combination 
rule for a committee of kernel models. This rule is 
motivated by a probabilistic framework and shown 
to perform better than the average of the individ- 
ual models. The approach was demonstrated using 
a committee of Gaussian processes applied to a sim- 
ple regression problem. 

8    Acknowledgements 

The authors would like to thank Matra British 
Aerospace Dynamics and EPSRC for their partial 
support of this work. 

References 

[1] C.J. Harris, A. Bailey, and T.J. Dodd. Multi- 
sensor data fusion in defence and aerospace. 
The Aeronautical Journal, 102(1015):229-244, 
May 1998. 

[2] Sherif Hashem and Bruce Schmeiser. Improv- 
ing model accuracy using optimal linear com- 

287 



binations of trained neural networks. IEEE 
Transactions on Neural Networks, 6(3):792- 
794, May 1995. 

[3] David    J.C.    MacKay. Gaussian    pro- 
cesses: A replacement for supervised 
neural   networks? Lecture   notes   for 
a tutorial at NIPS 1997. Available at 
http://wol.ra.phy.cam.ac.uk/mackay/, 1997. 

[4] Vladimir N. Vapnik. Statistical Learning The- 
ory. Adaptive and Learning Systems for Sig- 
nal Processing, Communications and Control. 
John Wiley & Sons, 1998. 

[5] Alexander Johannes Smola. Learning with 
Kernels. PhD thesis, Informatik der Technis- 
chen Universität Berlin, 1998. 

[6] Grace Wahba. Spline Models for Observational 
Data, volume 50 of Series in Applied Mathe- 
matics. SIAM, Philadelphia, 1990. 

[7] Michael LeBlanc and Robert Tibshirani. Com- 
bining estimates in regression and classifica- 
tion. Journal of the American Statistical As- 
sociation, 91(436):1641-1650, December 1996. 

[8] Christoper M. Bishop. Neural Networks for 
Pattern Recognition. Clarendon Press, Oxford, 
1995. 

[9] Anders Krogh and Jesper Vedelsby. Neural 
network ensembles, cross validation, and ac- 
tive learning. In G. Tesauro, D.S. Touretzky, 
and T.K. Leen, editors, Advances in Neural 
Information Processing Systems 7, pages 231- 
238, Cambrigde MA, 1995. MIT Press. 

[10] Michiaki Taniguchi and Volker Tresp. Averag- 
ing regularized estimators. Neural Computa- 
tion, 9:1163-1178,1997. 

[11] Volker Tresp and Michiaki Taniguchi. Com- 
bining estimators using non-constant weight- 
ing functions. In G. Tesauro, D.S. Touretzky, 
and T.K. Leen, editors, Advances in Neural 
Information Processing Systems 7, Cambridge 
MA, 1995. MIT Press. 

[12] Frederico Girosi, Michael Jones, and Tomaso 
Poggio. Priors, stabilizers and basis functions: 
from regularization to radial, tensor and ad- 
ditive splines. Technical Report C.B.C.L. Pa- 
per No. 75, Artificial Intelligence Laboratory, 
MIT, 1993. 

[13] T.W. Anderson. An Introduction to Multivari- 
ate Statistical Analysis. John Wiley & Sons, 
second edition, 1984. 

[14] David J.C. MacKay. Bayesian Methods for 
Adaptive Models. PhD thesis, California In- 
stitute of Technology, Pasadena, California, 
1992. 

[15] T.J. Dodd and C.J. Harris. A new multiple 
model framework for recursive Bayesian mod- 
elling of time series by neural networks. 1999. 
Also to be presented at Fusion '99. 

[16] Josef Kittler, Mohamad Hatef, Robert P.W. 
Duin, and Jiri Matas. On combining classi- 
fiers. IEEE Transactions on Pattern Analy- 
sis and Machine Intelligence, 20(3):226-239, 
March 1998. 

288 



Combining Models to Improve Classifier Accuracy and Robustness 

Dean W. Abbott 

Abbott Consulting 

P.O. Box 22536 

San Diego, CA 92192-2536 USA 

Email: dean@abbott-consulting.com 

Abstract 

Recent years have shown an explosion in research 
related to the combination of predictions from 

individual classification or estimation models, and 
results have been very promising. By combining 
predictions, more robust and accurate models are 
almost guaranteed to be generated without the need 
for the high-degree of fine tuning required for single- 
model solutions. Typically, however, the models for 

the combination process are drawn from the same 

model family, though this need not be the case. 
This paper summarizes the current direction of 
research in combining models, and then demonstrates 
a process for combining models from diverse 
algorithm families. Results for two datasets are 
shown and compared with the most popular methods 
for combining models within algorithm families. 
Key Words: Data mining, model combining, 

classification, boosting 

1. Introduction 

Many terms have been used to describe the 

concept of model combining in recent years. 

Elder and Pregibon [1] used the term Blending 

to describe "the ancient statistical adage that In 

many counselors there is safety"'. Elder later 

called this technique, particularly applied to 

combining models from different classifier 

algorithm families, Bundling [2]. The same 
concept has been described as Ensemble of 

Classifiers by Dietterich    [3],  Committee of 

Experts by Steinberg [4], and Perturb and 

Combine (P&C) by Breiman [5]. The concept is 

actually quite simple: train several models from 

the same dataset, or from samples of the same 

dataset, and combine the output predictions, 

typically by voting for classification problems 

and averaging output values for estimation 

problems. The improvements in model accuracy 

have been so significant, Friedman el al [6] 

stated about one form of model combining 

(boosting) "is one of the most important recent 

developments in classification methodology." 

There is a growing base of support in the 

literature for model combining providing 
improved model performance. Wolpert [7] used 

regression to combine neural network models 
(Stacking). Breiman [8] introduced Bagging 

which combines outputs from decision tree 

models generated from bootstrap samples (with 

replacement) of a training data set. Models are 

combined by simple voting. Fruend and Shapire 
[9] introduced Boosting, an iterative process of 

weighting more heavily cases classified 

incorrectly by decision tree models, and then 
combining all the models generated during the 

process. ARCing by Breiman [5] is a form of 

boosting that, like boosting weighs incorrectly 

classified cases more heavily, but instead of the 

Fruend and Shapire formula for weighting, 

weighted random samples are drawn from the 

training data. These are just a few of the most 
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popular algorithms currently described in the 
literature, and many more methods have been 
developed by researchers as well. 

While most of the combining algorithms 
described above were used to improve decision 
tree models, combining can be used more 
broadly. Trees often show benefits from 
combining because the performance of 
individual trees are typically worse than other 
data mining methods such as neural networks 
and polynomial networks, and because they tend 
to be structurally unstable. In other words, small 
perturbations in training data set for decision 
trees can result in very different model structures 
and splits. Nevertheless, results for any data 
mining algorithm that can produce significant 
model variations can be improved through 
model combining, including neural networks 
and polynomial networks. Regression, on the 
other hand, is not easily improved through 
combining models because it produces very 
stable and robust models. It is difficult through 
sampling of training data or model input 
selection to change the behavior of regression 
models significantly enough to provide the 
diversity needed for combining to improve 
single models. 

While the reasons combining models works so 
well are not rigorously understood, there is 
ample evidence that improvements over single 
models are typical. Breiman [5] demonstrates 
bagging and arcing improving single CART 
models on 11 machine learning datasets in every 
case. Additionally, he documents that arcing, 
using no special data preprocessing or classifier 
manipulation (just read the data and create the 
model), often achieves the performance of hand- 
crafted classifiers that were tailored specifically 
for the data. 

However, it seems that producing relatively 
uncorrelated output predictions in the models to 
be combined is necessary to reduce error rates. If 
output predictions are highly correlated, little 
reduction in error is possible as the "committee 
of experts" have no diversity to draw from, and 
therefore no means to overcome erroneous 
predictions. Decision trees are very unstable in 
this regard as small perturbations in the training 
data set can produce large differences in the 
structure (and predictions) of a model. Neural 
networks are sensitive to data used to train the 
models and to the many training parameters and 
random number seeds that need to be specified 
by the analyst. Indeed, many researchers merely 
train neural network models changing nothing 
but the random seed for weight initialization to 
find models that have not converged 
prematurely in local minima. Polynomial 
networks have considerable structural instability, 
as different datasets can produce significantly 
different models, though many of the differences 
in models produce correlated results; there are 
many ways to achieve nearly the same solution. 

A strong case can be made for combining 
models across algorithm families as a means of 
providing uncorrelated output estimates because 
the difference in basis functions used to build 
the model. For example, decision trees produce 
staircase decision boundaries via rules effecting 
one variable at a time. Neural networks produce 
smooth decision boundaries from linear basis 
functions and a squashing function, and 
polynomial networks use cubic polynomials to 
produce an even smoother decision boundary. 
Abbott [10] showed considerable differences in 
classifier performance class by class— 
information that is clear to once classifier is 
obscure to another. Since it is difficult to gauge 
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a priori which algorithm(s) will produce the 
lowest error for each domain (on unseen data), 
combining models across algorithm families 
mitigates that risk by including contributions 
from all the families. 

2. Method for Combining Models 
Model combining done here expands on the 
bundling research done by Elder [2]. Models 
from six algorithm families were trained for 
each dataset. To determine which model to use 
for each algorithm family, dozens to hundreds of 
models were trained and only the single best was 
retained; only the best model from each 
algorithm family was represented. 

2.1. Algorithms and Combining Method 
Once the six models were obtained, they were 
combined in every unique combination possible, 
including all two, three-, four-, five-, and six- 
way combinations. Each of the combinations 
was achieved by a simple voting mechanism, 
with each algorithm model having one vote. To 
break ties, however, a slight weighting factor 
was used, with the models having the best 
performance during training given slightly larger 
weight (Table 2.1). For example, if an example 
in the evaluation dataset had one vote from a 
first-ranked model, and anther from a second- 
ranked model, the first-ranked model would win 
the vote 1.28 to 1.22. The numbers themselves 
are arbitrary, and only need to provide a means 
to break ties. 

Table 2.1: Model Combination Voting Weights to 
Break Ties 

Model  Rank  on 
Training Data 

Weight 

First 1.28 

Second 1.22 

Third 1.16 

Fourth 1.10 

Fifth 1.05 

Sixth 1.00 

The six algorithms used were neural networks, 
decision trees, k-nearest neighbor, Gaussian 
mixture models, radial basis functions, and 
nearest cluster models. Five of the six models 
for each dataset were created using the PRW by 
Unica Technologies [11], and the sixth model 
(C5 decision trees) was created using 
Clementine by SPSS [12] . Full descriptions of 
the algorithms can be found in Kennedy, Lee, et 

al [13]. 

2.2. Datasets 
The two datasets used are the glass data from the 
UCI machine learning data repository [14] and 
the satellite data used in the Statlog project [15]. 
Characteristics of the datasets are shown in 

Table 2.2: 

Table 2.2: Dataset Characteristics 

Number Examples Number 
Inputs/Outputs 

Dataset Train Test Eval Vars Classes 

Glass 150 0 64 9 6 

Satellite 3105 1330 2000 36 6 

Training data refers to the cases that were used 
to find model weights and parameters. Testing 
data was used to check the training results on 
independent data, and was used ultimately to 
select which model would be selected from 
those trained. Training and testing data split 
randomly, with 70% of the data used for 
training, 30% for testing. No testing data was 
used for the glass dataset because so few 
examples were available; models were trained 
and pruned to reduce the risk of overfitting the 

data. 

A third, separate dataset, the evaluation dataset, 
was used to report all results shown in this 
paper. The evaluation data was not used during 
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the model selection process, only to score the 
individual and combined models, so that bias 
would not be introduced. The glass data was 
split in such as way as to retain the relative class 
representation in both the training and 
evaluation datasets. 

A breakdown of the number of cases per class is 
shown in following two tables, 2.3 and 2.4: 
Table 2.3: Glass Data Class Breakdown 

Number Examples 

Class Train Eval 

1 49 21 
2 54 22 
3 12 5 
5 9 4 
6 6 3 
7 20 9 

Note that there are no examples for class 4. 

Table 2.4: Satellite Data Class Breakdown 

Number Examples 

Class Train Test Eval 

1 752 320 461 
2 323 156 224 
3 649 312 397 
4 283 132 212 
5 343 127 237 
7 755 283 470 

Note that there are no examples for class 6. 

3. Results 
Results are compiled single models for each of 
the  six  algorithms,  and  all possible model 
combinations. 
Table 3.1: Number of Model Combinations 

Number 
Models 

Number 
Combos 

1 6 
2 15 
3 20 
4 15 
5 6 
6 1 

The emphasis here is on minimizing classifier 
error without going through the process of fine- 
tuning the classifiers with domain knowledge to 
improve performance—a necessary step for real- 

world applications. 

3.1. Glass Dataset Results 
The single best models for each algorithm 
family is shown in Figure 3.1 below. Results are 
presented in terms of classification errors, so 
smaller numbers (shorter bars) are better. For 
each model, a search for the best model 
parameters was performed first, increasing the 
likelihood that the best model for each algorithm 

was found. 

Nearest neighbor had perfect training results (by 
definition), and the best remaining algorithms 
were, in order, neural networks, decision trees, 
Gaussian mixture, nearest cluster, and radial 
basis functions, and ranged from 28.1% error to 
37.5% error. Interestingly, nearest cluster and 
Gaussian mixture models, both using PDF 
measures, had the best on evaluation data. 

Model combinations produced the following 
results shown in Figure 3.2. Not all datapoints 
can be seen as model combinations sometimes 
produce identical error scores. Two interesting 
trends can be seen in the figure. First, the trend 
is for the percent classification error to decrease 
as the number of models combined increases, 
though the very best (lowest classification error) 
case occurs with 3 or 4 models. The lower error 
rate (23.4%) occurs for the combinations in 
Table 3.1 below. 

Amazingly, radial basis functions occur in all 
four of the best combination, even though it was 
clearly the single worst classifier. Each of the 
other classifiers was represented exactly twice 
except the Gaussian mixture which occurred 
once. Radial basis functions also appeared in 
two of the four worst combinations of more than 
3 classifiers as well (Table 3.2), so it appears 
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this algorithm is a wild card, and one cannot tell 
from the training result alone whether or not it 
will combine well. The worst 2-way models 
always include neural networks or k-nearest 
neighbor, and in these case, the models were not 
improved compared to the single model results 
(34.4% for k-nearest neighbor, 31.3 for neural 
networks). 

Algorithm 

Figure 3.1: Single Model Results on Glass Data 
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Figure 3.2: Combine Model Results on Glass Data 

Table 3.1 Combinations Yielding Lowest Error Rate 

k-Nearest 
Neighbor 

Neural 
Networks 

Radial Basis 
Functions 

Decision 
Trees, 

Nearest 
Cluster 

Radial Basis 
Functions 

Decision 
Trees 

Gaussian 
Mixture 

Radial Basis 
Functions 

k-Nearest 
Neighbor 

Nearest 
Cluster 

Neural 
Networks 

Radial Basis 
Functions 

Table 3.2 Greater     than     3-way     Combinations 
Yielding Highest Error Rate (29.7%) 

Decision 
Trees 

k-Nearest 
Neighbor 

Nearest 
Cluster 

Decision 
Trees, 

Radial 
Basis Fn. 

Neural 
Networks 

k-Nearest 
Neighbor 

Nearest 
Cluster 

Radial 
Basis Fn. 

k-Nearest 
Neighbor 

k-Nearest 
Neighbor 

Neural 
Networks 

When the combination model results are 
represented only by the summary statistics 
minimum, maximum, and average error, the 
trends become clearer, as seen in Figure 3.3. 
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Figure 3.3: Combine Model Trend on Glass Data 

The average model error never gets worse as 
more models are added to the combinations. 
Additionally, the spread between the best and 
the worst shrinks as the number of models 
combined increases: both bias and variance are 
reduced: the error was reduced by 4.7%, a 
16.7% error reduction compared to the best 
Gaussian mixture model which had 28.1% error. 
However, the reduction found here is not as 
good as the reduction found by Brieman [5] 
using boosting (Figure 3.4), which brought the 

error down to 21.6%. 
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Algorithm 

Figure 3.4: Comparison of Model Combination 
with Breiman Arcing. 

3.2. Satellite Dataset Results 
Results for the satellite data are similar to the 
glass data. First see in Figure 3.5 the train, test, 
and evaluation results for the single models. 
Results are more uniform than for the glass data, 
but radial basis functions and decision trees are 
the worst performers on evaluation data. The 
best are nearest neighbor, neural networks, and 
Gaussian mixture models. 

Algorithm 

Figure 3.5: Single Model Results on Satellite Data 

The trends are shown in Figure 3.6. Once again 
the errors and the spread between maximum and 

minimum errors are both reduced as the number 
of combined models increases, though once 
again the very best models occur for the 3-way 
combination (k-Nearest Neighbor, Neural 
Network, Radial Basis Function, and the same 
three with Decision Trees). Once again, radial 
basis functions are involved in the best 
combination, and again are also involved in the 
worst combination models. 

2 3 4 5 
Number Models Combined 

Figure 3.6: Combine Model Trend on Satellite 

Data 

Comparing the model combination results to 
Breiman's results using Arcing (boosting) shows 
once again the boosting algorithm performing 
better, though the combination betters bagging 
by a small amount here. 

Algorithm 

Figure 3.7: Comparison of Model Combination 
with Breiman Arcing. 
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4. Conclusions and Discussion 

Clearly, combining models improves model accuracy 
and reduces model variance, and the more models 
combined (up to the number investigated in this 
paper), the better the result. However, determining 
which individual models combine best from 
training results only is difficult—there is no 
clear trend. Simply selecting the best individual 
models does not necessarily lead to a better 

combined result. 

While combining models across algorithm 
families reduces error compared to the best 
single models, it does not perform as well as 
boosting. The advantage of boosting over simple 
model combining is that boosting acts directly to 
reduce error cases, whereas combining works 
indirectly. The model combining voting methods 
are not tuned to take into account the confidence 
that a classification decision is made correctly, 
nor do they concentrate more heavily on the 
difficult cases. More research is necessary to 
confirm these suggested explanations. 
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Abstract We propose a fuser that projects differ- 
ent function estimators in different regions of the 
input space based on the lower envelope of the er- 
ror curves of the individual estimators. This fuser 
is shown to be optimal among projective fusers and 
also to perform at least as well as the best individ- 
ual estimator. By incorporating an optimal linear 
fuser as another estimator, this fuser performs at 
least as well as the optimal linear combination. We 
illustrate the fuser by combining neural networks 
trained using different parameters for the network 
and/or for learning algorithms. 

Keywords: Sensor fusion, fusion rule estimation, 
empirical estimation 

1    Introduction 

Recently, combinations of estimators have been 
shown to be very effective in a number of disci- 
plines such as forecasting, reliability, and pat- 
tern recognition (see [6] for an overview). In 
specific methods such as neural networks, it 
has been shown that better performance can be 
achieved by suitably combining the networks 
rather than choosing the best [1, 9, 4]. The rea- 
sons for the success of the combination meth- 
ods are often problem-specific: 

(a) errors from different estimators may can- 
cel one another, and 

(b) certain estimators, although have a high 
overall error, might achieve lower error in 
certain regions of input space. 

Roughly speaking, the linear combinations of 
estimators exploit the scenario (a) [3, 2, 5]. In 

this paper, we present a projective method that 
exploits the scenario (b). In general, estima- 
tors are designed to achieve a low overall error 
but not necessarily low local errors in all re- 
gions of the input space. Our method is aimed 
at exploiting the local behavior of the various 
individual estimators. 

We consider the problem of estimating a 
function / : Sftd *-¥ [0,1] based on a sam- 
ple(Xi,/(Xi)), (X2,/(X2)), ..., (Xn,f(Xn)), 
where X\, X2,..., Xn are randomly generated 
according to the distribution Px- An esti- 
mator / : 9td !->• [0,1] has a square error of 
(f(X) - f(X))2 at a given X e ft*. The qual- 
ity of the estimator / for / is given by the 
expected error defined as 

/(/)=   / (f(X)-f(X)fdPx. 

Consider that we are given N function esti- 
mators /i, /2, ..., /AT- We are required to 
compute a fuser that combines these estima- 
tors such that the fuser guarantees the perfor- 
mance of the best estimator as a minimum. 

The linear combinations are one of the 
widely employed fusers for function estimators 
[3, 2], and for neural network estimators in 
particular [1, 9, 4]. The projective fusers pro- 
posed here are qualitatively different from the 
linear fusers and provide complementary per- 
formances. Informally speaking, a linear fuser 
chooses a fixed constant for each estimator for 
the entire range of x which could make it in- 
effective in certain localities. The projective 
fusers, on the other hand, exploit the local er- 
rors of the estimators. Furthermore, if a linear 
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fuser is very effective, then it can be incorpo- 
rated as constituent estimator for a projective 
fuser which performs at least as well as the best 
of its constituent estimators. 

Projective fusers are described in Section 2. 
Comparison with linear fusers, and methods to 
combine linear and projective fusers are pro- 
vided in Sections 3 and 4, respectively. In Sec- 
tion 5, we describe simulation results dealing 
with fusing a set of neural networks which are 
trained with different parameters. 

2    Projective Fusers 

A projective fuser, fp, corresponding to a par- 
tition P = {7ri,7T2,...,7Tfc}, k < N, of input 

space 5Rd fa C 5ftd, (J *i = &, and *in*j = ^ 

for i ^ j), assigns to each block 7T; to an esti- 
mator fj such that 

fp(x,fl,...jN)=fj(x) 

for all x G 7Tj. For simplicity, we denote 
/pfa A, • • •, M by fp(x). An optimal pro- 
jective fuser, denoted by fp*, minimizes I(.) 
over all projective fusers corresponding to all 
partitions of !ßd and assignments of blocks to 
estimators /i, /2, • • • /iv- 

We define the error curve of the estimator / 
for / as £{x,f) = (f(x) - f(x))2. The error- 
curve projective fuser is defined by 

where 

fEc{x, A. • • •. Av) = fiEc(x)(x) 

*EC(X) = arg .  min    £(x,fi). 
2=l,Z,...,iV 

In other words, fscix, A,..-, Av) simply out- 
puts the output of the estimator which has the 
lowest error at x. Thus, we have £(x, fsc) = 

N 
ra.in£(x,fi), or equivalently the error curve of 

}EC is the lower envelope with respect to a; of 
the set of error curves {£(x, fi),..., £{x, /jv)}- 

Example 1: We first consider a simple ex- 
ample where f(x) = 1 [1/4,3/4] (z) for x e t0'1]' 

optimal 
projective fuser 

Figure 1:    Illustration of error-curve projective 
fuser. 

as in Figure 1, where 1A(X) is the indicator 
function which has a value 1 if and only if 
x e A and has value 0 otherwise. For fi(x) = 

l[l/4-ei,3/4]0l0 and Mx) = l[l/4,3/4-£2](z) &r 
some 0 < ei,e2 < 1/4. The error curves 
are given by £{xj\)   =   l[i/4-ei,i/4](z) and 

8{x,h) = l[3/4-ea,3/4](a0» which correspond 
to disjoint intervals. The lower envelope of 
the two error curves is the zero function hence 
I(fcE) = 0- Tne profile of fcEJs shown at 
the bottom of Figure 1, wherein f\ and /2 are 
projected in the intervals [3/4 - €2,3/4] and 
[1/4 - ei,l/4], respectively, and in other re- 
gions either estimator can be projected. □ 

For any projective fuser fp(x,fi,... ,/AT), 

let ip(x) denote the index of the estimator such 
that fp(x) = fip(x)(x). Then, for x G SRd, we 
have 

(f(x)-fp(x))2    =    (f(x)-fip{x)(x))2 

>    (f(x) - fiEc{x)(x))2 

=     (f(x)-fEC(x))2. 

Thus, we have £faAP(x)) ^ £(x,fiEC(x)) for 

all x G 5Rd. By taking the expectations on both 
sides, we have I(fEc) < I{fp), and hence fsc 
is an optimal projective fuser. 

We close this section by showing that $EC in 
not optimal in a larger class of fusers that can 
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project a function of the output (as opposed to 
just the output) of an estimator. 

Example 2:   Consider f(x) = 1 [1/4,3/4](x), 

fl{x) = l[l/4-ei,3/4-ei](a0) and Mx) = 
l[l/4,3/4-e2)(

x)   for   SOme   °    <    £l'e2    <    V8) 
and €1   <   €2-     Thus,  we have S(x,fi)   = 
l[l/4-ei,l/4](z)  and £(x,fi)  =  l[3/4-e2,3/4]j», 
whose lower envelope is not the zero function. 

Thus, we have £(x,fCE) = ^[3/4-e2,3ß-ei](x) 
and 

IUCE) = I dPx> 0, 

[3/4-e2)3/4-ei] 

for uniform Px- By changing the assignment 
of fcE to 1 - A for x e [3/4 - e2,3/4 - Cl], one 
can easily achieve zero error, rj 

3    Linear Fusers 

We now compare the performance of projec- 
tive fusers with linear fusers. A linear fuser is 
defined as 

N 

fUx, AI • • •»Av) = S ^Ate) 
»=i 

for some (ai,..., ajv) G 5Rd. An optimal linear 
combination fuser, denoted by fi,*, minimizes 
I(.) over all linear combinations. Roughly 
speaking, the performance of fp* is better than 
/x,* if the individual estimators perform better 
in certain localized regions of SRd. On the other 
hand, if the estimators are equally distributed 
around / in a global sense, ft, perforrris better 
as illustrated follows. 

Example 3:   In the Example 1, for ft,  = 
' «l A + «2/2. we have 

dPx 1(h)   =   a?       / 
[l/4-ei,] 

+(1 - ai - a2)
2       J       dPx 

[l/4-ei,l/4) 

[1/4,3/4-62) 

+(1 - ai)2      j      dPx 

[3/4-e2,3/4] 

which is non-zero no matter what the coeffi- 
cient are. The error curves of f\ and /2 take 
non-zero values in the intervals [1/4 — ei, 1/4] 
and [3/4 — 62,3/4], respectively. Since these 
intervals are disjoint, there is no possibility 
of error of one estimator being cancelled by 
a sealer multiplier of the other. The disjoint- 
ness of [1/4 - eu 1/4] and [3/4 - e2,3/4] yields 
£(x,/EC) = 0, and hence I(fp*) = 0. n 

The conclusions of this example are true in 
general that if the error curves of the estima- 
tors take non-zero values on disjoint intervals, 
then any linear fuser will have a non-zero er- 
ror. On the other hand, the disjointness of the 
error curves is sufficient to yield zero error for 
the optimal projective fuser. 

We now present an example where a linear 
fuser outperforms fp*. 

Example 4: Consider / = 1 for x 6 [0,1], 
fi(x) = ex + 1 — e, and. fi(x) = —ex + 1 + e, 
for 0 < e < 1. The optimal linear fuser is 
given by fL(x) = l/2(f\(x) + f2(x)) = 1 for 
x E [0,1]. At every x £ [0,1], we have 

£(x,h) = £(x,f2) = e2(l -z)2 = £(x,fp-). 

Thus, Itfp*) = e2 / (1 - x)2dPx > 0 for a 
[0,1] 

non-discrete Px, whereas I(fL,) = 0. □ 

In Example 4, the error curves of the esti- 
mators are "symmetrically" distributed around 
the function so that error of one is cancelled by 
a scalar multiple of the other. 

In summary, the performance of the optimal 
linear and projective fusers are complementary 
as illustrated in this section. 

4    Composite Fusers 

We now discuss the isolation property of the 
fuser class that ensures that the fuser is at least 
as good as the best estimator. A fuser class 
g = {g(x,fi,...,fk)} has the isolation prop- 
erty with respect to fi if it contains the func- 
tion gi(x, /1,..., fk) = fi(x) for all x G 9£d and 
alii = 1,2,..., Ä;. The isolation property was 
first proposed in [8, 7] for concept and sensor 
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data size projective 
as good 

other better perform ance (times) average 
error training test linear best linear best network 

Without noise 
10 10 8 1 1 1.009269 10.489711 0.075042 

25 25 8 2 0 1.039855 13.426878 0.021926 

50 50 10 0 0 1.304039 31.157175 0.013454 

75 75 10 0 0 1.530556 89.050201 0.004725 

100 100 10 0 0 1.788104 87.905518 0.003764 

With noise 
10 10 8 2 0 0.982823 9.205843 0.041874 

25 25 8 2 0 1.045973 14.115362 0.026983 

50 50 10 0 0 1.293410 19.121033 0.010399 

75 75 9 1 0 1.275850 33.192585 0.008435 

100 100 10 0 0 1.227069 37.937778 0.007115 

Table 1: Computational results for f\ 

fusion problems. If Q is the set of linear combi- 
nations, i. e. g(x, /i,..., fk) = axfi(x) + ...+. 
akfk(x), for OLi G 5ft, this property is trivially 
satisfied for each of ft, i = 1,2,...,fc. Simi- 
larly, the class of projective fusers satisfies the 
projection property with respect to fi(x) for 
i = 1,2, ,/u, wherein gi corresponds to en- 
tire 9td forming one block assigned to the single 
estimator fa. 

Consider that Q = {g(x,fi,... ,/JV)} satis- 
fies the isolation property, then we have for all 
» = 1,2,...,*, 

mif(f(X)-g(X))2dPx 

<ju{x)-h{x)fdpx 

N 
which implies ini 1(g)  < minl(/j).    Hence, 

g€G *=1 
by including the optimal linear combination as 
/i\r+i, we can guarantee that 

I(fp*(xJl,...,fN,fL*))<I(fL*) 

by the isolation property of projective fusers. 
Since linear combinations also satisfy the iso- 
lation property, we have 

I(h*) < rSnl(fi). 

The roles of fx,* and fp* can be switched 
such that 

!L* = a*/i + ■ • • + Oi*NfN + a*N+1fP* 

for suitable a? G », for i = 1,..., N. Then by 
the isolation properties of linear and projective 
fusers, we have 

I(h*)<I(fM-Ji,---JN))<minI(fi)- 
t=i 

5    Simulation Example 

We implemented six neural network estimators 
for the target function [4] 

f2(x)   =   0.02(12 + 3x - 3.5z2 + 7.2x3) 

(1 + cos 47ra;)(l + 0.08 sin 3nx). 

For each network, the number of hidden 
nodes is randomly chosen. Each network is 
trained with backpropagation algorithm with a 
different learning rate which is again randomly 
chosen. Then we compute empirical versions 
of optimal linear and projective fusers. Entire 
computation is repeated with several training 
and test sample sizes. We illustrate a typi- 
cal run in Figure 2 based on 50 training and 
50 testing examples. The neural network 3 has 
the lowest mean test error. The network 6 does 
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Figure 2:    Performance  of neural networks 
trained with different parameter values. 

not have the lowest mean test error, but for the 
region around x = 0.4 it has the lowest error. 

The linear fuser is computed for the neural 
networks which is then combined with the six 
networks to compute the projective fuser pro- 
posed here. Note that the linear fuser does not 
perform well in the region x = 0.4 but the net- 
work 6 does, which is utilized by the projective 
fuser. The linear fuser reduces the test error of 
the best network by a factor of 31.15 times, 
and the projective fuser reduces that of linear 
fuser by another factor of 1.3 times. 

The fusers computation is performed un- 
der different sample sizes and with additional 
noise. For each sample size, the computation 
is performed 10 times. The performance of the 
fuser is compared with the linear fuser and the 
best neural network. In most cases, the pro- 
jective fuser performed better than linear fuser 
and significantly better than the best neural 
network as indicated in Table 1. 

6    Conclusions 

We presented a class of fusers that project indi- 
vidual estimators at various points in the input 
space. We identified optimal fuser in this class, 
and compared it with the linear fusers, which 
are the most applied and analyzed fusers. The 
projective fusers provide a complementary per- 
formance compared to linear fusers. By suit- 
ably combining projective fusers with linear 
fusers, composite fusers can be obtained which 
are at least as efficient as the best of the pro- 
jective and linear fusers. 

Future research directions include the cases 
that involve randomness in the function esti- 
mators, and finite sample implementation and 
performance analysis of projective fusers. 
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A New Multiple Model Framework for Recursive 
Bayesian Modelling of Time Series by Neural Networks 

T.J. Dodd and C.J. Harris 
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University of Southampton, Southampton, U.K. 

Abstract Bayesian parameter estimation for neu- 
ral network type models with batch learning is now 
well established. This allows the incorporation of 
a priori knowledge about the solution and naturally 
results in regularisation. Recent results have shown 
that this framework can be extended to sequential 
data for time series problems. However, this ap- 
proach assumes that the correct model structure is 
known a priori and that the hyperparameters of the 
model can be estimated accurately. These condi- 
tions may not be met in practise which suggests 
that an alternative approach may be required. Mul- 
tiple model approaches are investigated as a solution 
where each model is allowed to adapt its parame- 
ters sequentially. A committee of models is trained 
each with a different structure and/or initialisa- 
tions of the hyperparameters. A simple weighted 
combination rule is found for the committee of mod- 
els based on Gaussian assumptions. This approach 
is found to demonstrate good performance for non- 
linear, nonstationary time series problems. 

Keywords: multiple models, Kaiman filter, neural 
networks, Bayesian modelling, time series 

1    Introduction 

Time series modelling plays an important role 
in many data fusion problems, including tar- 
get tracking, condition monitoring, robot nav- 
igation and guidance, and collision avoidance. 
The nature of these environments is such that 
we require models which are nonlinear, non- 
stationary and can adapt on-line to new data. 
In this paper we present an approach to this 

nonlinear, non-stationary problem using a mul- 
tiple model framework in which we fuse to- 
gether the outputs from a bank of models. 

We have recently developed a Bayesian so- 
lution to the recursive estimation of certain 
classes of neural networks [1] for time series 
modelling. Under Gaussian approximations for 
the noise and parameters we can train general 
linear models (GLiM) using the Kaiman filter. 
The algorithm recursively learns the network 
parameters from sequential data and incorpo- 
rates on-line regularisation. 

A significant drawback of the above frame- 
work is the a priori requirement of the struc- 
ture and hyperparameters of the model. We 
have investigated an adaptive solution to the 
estimation of the hyperparameters based on a 
maximum evidence framework. We found that 
this approach leads to consistently biased esti- 
mates for the hyperparameters. There is also 
no immediately obvious solution to the adap- 
tive estimation of the network structure, for 
example the number, position and size of the 
basis functions and input variable selection. 

We propose in this paper to use a multi- 
ple model framework to overcome the limita- 
tions described above. The framework con- 
sists of a bank of models and a combination 
rule. Each model represents a different realisa- 
tion of the uncertain hyperparameters and/or 
model structures. The outputs of the models 
are combined linearly based on the estimated 
posterior probabilities of these outputs. 

We demonstrate the above approach on the 
estimation of nonlinear non-stationary time se- 
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ries. The first problem is an illustrative demon- 
stration problem where the committee consists 
of models with different structures. The second 
problem is motivated by an analytical model 
of slender delta wings [2]. The committee is 
based on a set of identical models where the 
parameters and hyperparameters are randomly 
initialised. In both examples the performance 
of the committee is better than the average of 
the individual models and in certain instances 
better than the best individual model. 

2    Bayesian   Parameter   Esti- 
mation 

We now consider a class of models which are 
linear in the parameters. For these general lin- 
ear models (GLiMs) the output is simply a 
weighted linear combination of a fixed set of 
m basis functions. This class of models in- 
cludes many standard functional approxima- 
tors including B-splines, polynomials, Fourier 
series and certain classes of feedforward neural 
networks. 

We assume the data arrive sequentially and 
that at any time instant k + 1 the complete 
set of observations Zk+1 = {zi,Z2,-.- ,Zk+i} 
are available. In deriving the recursive param- 
eter estimation we will subsequently see that, 
in fact, only the current observation zk+\ is 
required. The physical model of the system 
consists of two equations, the first, for the ob- 
servations describes the data and is given by 

Zk+1 = </>T(Xfc+l)Wjt+l + Efe+i (1) 

where w G Rm is a vector of unknown param- 
eters, 0(-) is a vector of fixed basis functions 
and the subscript k +1 indicates that the value 
of the quantity is taken as at time k + 1. The 
noise term Ek+j is assumed to be zero-mean 
with time-varying variance cr^k+v The evo- 
lution of the parameters is described by the 
second equation 

wfe+i = FfcWfe + Tk£k (2) 

where Ffc G Rmxm and Tk € Wxm are as- 
sumed known and possibly time varying, and 

£k G W is a sequence of zero-mean Gaussian 
noise with covariance 

mkfk} = Qk. 

Eq. 2 is a general form for the parameter up- 
dates in which each parameter is updated as 
a linear combination of the current parameters 
plus some random component to account for 
unknown effects. In the simplest, and perhaps 
most useful, case where 

Wfc+i = wfe + £k (3) 

and £k G Rm this update law has a simple in- 
terpretation. We are assuming that the new 
(updated) parameters are equal to the old ones 
plus some random component. The degree to 
which the parameters are allowed to vary is 
controlled by the covariance of the noise term 
£fe. For the trivial case where Qfc = Afclm then 
Afe acts as a learning rate with large parameter 
updates being associated with large Afc. 

The recursive form of Bayes' rule for the pa- 
rameters is [3] 

p(v,k+1\Z"^) 
p(zfc+i|wjfc+i)p(wfc+i|.Z*) 

p{zk+i\Zk) 
(4) 

The posterior density over the parameters 
given the observed data p(vrk+i\Zk+1) is a 
function of: 

• the likelihood p(zfc+i|wfc+i) which reflects 
the prediction the model makes about the 
new observation zk+i for the particular 
values of the parameters; 

• the updated prior p(wk+i\Zk) which is 
equal to the predicted parameter values 
given only the observations upto and in- 
cluding the current time step k; and 

the    normalising 
p(zk+i\Zk). 

constant     (evidence) 

We make the additional assumptions that 
the noise terms are mutually independent 
and   independent   of   the   parameters,    i.e. 
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P(efc+i,£*|wjfc) = P(£k+i)p(£k) and that the 
probability density p{vrk+i\Zk+1) is Gaussian 
with mean w^+i and covariance Pfc+i- 

Substituting for these densities in Bayes' 
rule, Eq. 4 and after some simplification we 
then find for the posterior mean value of the 
parameters 

wfc+1 = FfeWfc + Gk+l(zk+i - 4>T(xk)Fkwk) 

where 

Gfc+i   =   Mfc+i0(xfc)(0T(xfc)Mfe+i0(xfc) 
Te,fc+l) +°re,fc+l) 

and the posterior covariance matrix for the pa- 
rameters 

Pfc+i = (.Mr* + -Ö—«/>(xfe)</»T(xfc) lk+l T „2 
'e,k+l 

(5) 

The estimated parameters are a function only 
of the parameters and observed data at the cur- 
rent time step. This defines a Markov process 
or sequence where all the available informa- 
tion upto the current time step is summarised 
by the data at the current time step. So we 
see that, under the Gaussian assumptions, the 
Bayesian formulation of the parameter estima- 
tion problem results in a simple recursive rela- 
tion for the evolution of the parameters. 

At a particular time step fc+1 our prediction 
for a new input Xfc+i will then have mean 

y(xjb+i,wfc+i) = 0T(xfc+i)wfe+1        (6) 

and the variance about this mean is given by 

crj(xfc+i) = <^T(xfc+i)Pfc+i(/)(xfc+i).       (7) 

To arrive at the final predictive variance we 
assume that the noise variance of fc+1 is uncor- 

related with the output variance a^{-x.k+\) and 
simply sum the two terms, i.e. the final pre- 
dictive variance is equal to cr^k+1 + ay(xk+i). 

3    Discussion 

The Bayesian approach described in the previ- 
ous section provides a natural framework for 
parameter estimation where data arrive se- 
quentially and we desire to incorporate some 
form of prior knowledge. Such an approach al- 
lows us to specify a prior over the parameters 
based on a priori knowledge. This prior is then 
modified as more data becomes available. This 
is intuitively what we desire as for little data 
we need the parameters to behave in a reason- 
able manner as given by our prior. However as 
more data becomes available the impact of the 
prior should be lessened to the point where, for 
an infinite data set, the prior has no influence 
and the parameter values are inferred totally 
from the data. 

An implicit assumption with the above ap- 
proach is that the model structure is known a 
priori. For a general linear model this means 
specifying the number, type and positions of 
the basis functions. By imposing such struc- 
ture we are actually incorporating a form of 
prior knowledge as the structure will, to an ex- 
tent, determine the classes of functions that the 
model can approximate. We must also deter- 
mine the number of inputs which, we will see, 
for time series means the number of time de- 
layed versions of the observations or derivatives 
thereof. For certain problems the model struc- 
ture may be learnt off-line. However, if the 
time series is nonstationary or we are uncertain 
as to the correct model structure then it would 
seem appropriate to use multiple model struc- 
tures covering a variety of a priori expected 
situations. 

In order to implement the learning strategy 
described above we must estimate the covari- 
ances Q* and o^k+1 where estimating Qk is 
usually reduced to estimating the learning pa- 
rameter Afe. Estimating these so called hy- 
perparameters in a stable, unbiased fashion 
where there may be nonstationarities in the 
data presents significant difficulties [1]. A pos- 
sible solution to overcoming the problems of 
estimating the hyperparameters is to train a 
committee of models each with different ini- 

304 



tialisations of the hyperparameters and then 
combining the final outputs. It would then be 
hoped that any effects of poor initialisations 
would be averaged out. 

4    Time Series Prediction 

We are interested in the representation of time 
series as simple functions of time 

y(t) = /(*), (8) 

as nonlinear autoregressive models 

y(t)=g(y(t-l)J...,y(t-d+l))       (9) 

or in nonlinear differential form 

y(t) = h(y(t),y(t),...JdHt)) (10) 

where y^d\t) = ^. The theoretical motiva- 
tion for using the latter two models is well es- 
tablished [4, 5, 6, 7]. In particular, under cer- 
tain assumptions, a time series can always be 
represented in the forms, Eq. 9 and 10, pro- 
vided d is great enough. In the case of noise- 
free observations then d > 2n + 1 is sufficient 
where n is the natural order of the state of 
the underlying dynamical system generating 
the time series. 

The particular choice of model depends very 
much on the goal of this modelling. If we are 
simply interested in making estimates about 
the time series, for example to find missing 
data, estimating the derivatives of the function 
or making short term predictions, then Eq. 8 
is appropriate. However, for system identifica- 
tion purposes, where we are interested in find- 
ing a model of the long term behaviour of the 
system, then the models, Eq. 9 and 10 are more 
appropriate. In this paper we will look at an 
example of short term prediction and a system 
identification problem using the nonlinear dif- 
ferential form. 

5    Combining Models 

The key feature of the model described above 
is that, via the assumption of a Gaussian den- 
sity over the parameters and taking a Bayesian 

perspective, it is possible to assign confidence 
intervals to the predictions. These confidence 
intervals are of a known form and are in fact 
Gaussian given by Eq. 7. We assume then that 
we have a committee of such networks, and at 
any time step each model makes a prediction of 
the output with Gaussian density. Then how 
can we combine these outputs in a consistent 
manner? This basic issue has been addressed 
by Manyika and Durrant-Whyte [8] where they 
look at the generic problem of combining prob- 
abilistic information for multiple sensors. Our 
situation is slightly different as the information 
source is the same for each model. The theo- 
retical motivation for the combination strategy 
described below is described in a companion 
paper [9]. Here we simply provide a general 
discussion of the underlying ideas of combin- 
ing probabilistic information. 

Each model is making predictions based 
on a common set of observations, Zk+l, and 
the output of each model can be considered 
as a local posterior pi(y\Zk+1) with mean 
2/j(xfc+i,Wfc+i) and variance cr^x^+i) where 
i = 1,... ,M and M is the total number of 
models in the committee. In deciding how to 
combine the predictions we must consider the 
nature of the prior information for each model 
and the conditional independence of the in- 
puts. Now, it is immediately obvious that the 
inputs are the same for each model and there- 
fore they cannot be conditionally independent. 
However, the prior information in each model is 
likely to be independent as we are deliberately 
setting the structure and/or hyperparameters 
of each model to be different. 

The combination strategy should embody 
certain characteristics: an ability to reinforce 
opinion, a reduction in uncertainty over any 
single model in the committee, the combina- 
tion rule should be simple and computation- 
ally inexpensive, consistency with the nature 
of the outputs of the models. A strategy which 
embodies all these characteristics is to simply 
form the product of the probability density 
functions of the predictions. 

We know that, for M models, the outputs 
of the models are Gaussian with mean j/j and 
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variance ay., i = 1,... ,M. Assuming, then, 
that these outputs are independent then the 
output of the committee will be given by 

M 

p(y) = J[pi(y) 
i=\ 

where Pi(y) are the probability densities of the 
outputs of the individual models. As the Pi(y) 
are Gaussian then the output of the committee, 
p(y), will also be Gaussian with mean [9] 

% 

EM     JU_ 

 y%_ 

EM     1 (11) 

and variance given by the equation 

M 

^2       Z_y „2 
t=l aVi 

(12) 

6    Results 

In this section we consider the application of 
the multiple recursive model approach to two 
time series problems. 

6.1    Simulated Time Series 

This example is a simulated time series which is 
highly nonstationary. The data were generated 
from the function: 

z(t) O.lsin(i) +exp {-&'-*} + 

0.4 exp H«-8>2} + e(t) 

where the noise process e(t) has zero mean and 
variance 0.0025. A committee of four networks 
was training using the noisy observations. The 
details of each network are summarised in Ta- 
ble 1 where the basis functions were equally 
spaced over the interval [0,10]. In each case 
the parameters and hyperparameters were ran- 
domly initialised using Gaussian probability 
density functions. The parameters were up- 
dated as described previously and the hyper- 
parameters were estimated using an evidence 
framework [10, 11]. 

Model No. Basis Fns. Variance 
1 41 0.25 
2 21 1.00 
3 14 2.00 
4 11 4.00 

Table 1: 

Figure 1: Comparison between predicted [-] 
and actual [ ] outputs for the simulated sig- 
nal. The different predictions correspond to 
the different network structures described in 
the main text. 

The outputs of the four models and asso- 
ciated predicted variances are shown in Fig- 
ures 1 and 2. We see that as the number of ba- 
sis functions decreases and associated widths 
of the basis functions increases the predicted 
outputs tend to be smoother and less able to 
model the fine detail. The is reflected in the 
predicted variances for the model outputs, Fig- 
ure 2. Where the output of the function is 
relatively smooth the models with larger ba- 
sis functions perform best. However, in the 
regions of greatest curvature the variances in- 
crease dramatically reflecting a lack of confi- 
dence in the predictions. The committee there- 
fore includes models which are suited to differ- 
ent regions of the function. 

The combined output of the committee is 
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Figure 2: The predicted variances over the 
data set for each model. Model 1 [-], model 
2 [- - -], model 3 [—] and model 4 [■ ■ •]. 

shown in Figure 3 which tracks the true output 
reasonably accurately. The important point 
to note is that from a set of models, three 
of which perform relatively poorly the average 
output performs comparatively as well as the 
best model. 

Figure 3: The predicted output [-] versus the 
true output [ ] for the simulated signal. 
Whilst the combined fit is not as good as that 
for the first model it shows a significant im- 
provement over the other models. 

6.2    Wing   Rock   in   Slender   Delta 
Wings 

The second problem is based on an analytical 
study of wing rock in slender delta wings [2]. 
The system is described by a set of continuous 
time nonlinear differential equations: 

Xl 

X2 

■= e = x2 

=   9 

=    C\a\X\ + (C\Ü2 — C2)X2 + Cid3Xl 

+010,4x^x2 + c\af,x\x\ (13) 

where c\ = 0.354 and C2 = 0.001 and the Oj 
vary with the angle of attack a of the wing. We 
simulated the model using a 4th order Runge- 
Kutta method in order to generate the inputs 
x\ = 6 and X2 = 9. The simulated data for the 
output 6 were then generated by adding Gaus- 
sian noise of variance 0.01 to the simulated out- 
put from Eq. 13. The wing was simulated for 
a stable case with an angle of attack of 15° 
for which aY = -0.01026, a2 = -0.02117, o3 = 
-0.14181,04 = 0.99735,05 = -0.83478. 

A committee of eight radial basis function 
networks was training recursively using the 
noise corrupted outputs. The structure of each 
network was the same with the centres of the 
Gaussian basis functions equally spaced over 
the input domain and a total of 49 basis func- 
tions used. A weight decay prior was used in 
each network and the parameters and hyperpa- 
rameters were given different random initiali- 
sations. Whilst for individual networks the ini- 
tialisations of the (hyper)parameters results in 
markedly different performance it was hoped 
that by effectively averaging over these effects 
the committee would, on average, perform sat- 
isfactorily. 

The prediction performance of the individ- 
ual models and the committee, in terms of 
mean squared error (MSE), is shown in Fig- 
ure 4. The MSE is shown for the three best 
individual networks along with that of the com- 
mittee and the average for the individual mod- 
els. We can see that the performance of the 
committee outperforms, by some margin, the 
average of the models and is generally at least 
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Figure 4: Mean-squared error across the data 
for the wing rock data set. Individual models 
[-], average of models [-•] and committee of 
models [ ]. 
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Figure 5: Prediction over the first 100 data 
points for the wing rock data set showing rel- 
ative performance between individual models 
and output from the committee of models. In- 
dividual models [-], committee [ ] and true 
output [—]. 

as good as the best individual models. Of par- 
ticular importance is the lack of a steep in- 
crease in the MSE evident for most of the mod- 
els. This increase is probably due to the train- 
ing algorithm being insufficient to deal with the 
nonstationarities in the data over this period. 

The average mean squared error for the indi- 
vidual models over the simulation period var- 
ied between 3.1383 x 10~7 and 2.5176 x 10~6 

whilst that of the committee was only 2.7493 x 
10_r. At any particular time instant, as ex- 
pected, at least one of the individual models 
usually performed better than the committee. 
However, this was not always the case and for a 
small number of time instances the committee 
actually performed better than the best indi- 
vidual model. 

The averaging effect of the committee can 
also be seen in Figure 5 which shows the pre- 
dictions over the initial 100 samples. The pre- 
diction from the committee shows good cor- 
respondence with the true output. However, 
the predictions from the two individual mod- 
els shows a marked difference in performance. 
It is this random nature, whereby models can 
show good performance in certain regions and 

poor performance in others, that the commit- 
tee tends to alleviate. 

7    Conclusions 

A recursive Bayesian approach to parameter 
estimation applicable to certain classes of neu- 
ral networks has been described. Via Gaussian 
assumptions a simple linear combination rule 
for committees of such models was presented. 
Time series examples have demonstrated that 
this approach can be applied successfully to 
problems where the time series is nonlinear and 
nonstationary. The resulting predictions are 
more robust to parameter and network initial- 
isations than for individual models. 
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Abstract - We describe some aspects of the data 
fusion community infrastructure. We set them in 
the context of the technology transfer cycle and 
sub-divide this cycle by identifying the main 
players at each stage. We argue that the disparate 
nature of data fusion (both the technologies that it 
encompasses and the domains in which it can be 
applied) makes a co-operative approach, not just 
desirable, but necessary. We highlight the lack of 
substantial international collaboration as a key 
barrier to the establishment of an effective data 
fusion community. Such collaboration is fraught 
with questions, which are listed and then 
elucidated upon. The paper is intended to catalyse 
discussion on this subject rather than to provide 
answers to all the questions. For this purpose we 
take a somewhat provocative stand on those 
elements of data fusion which have been found 
lacking. 

Keywords:    Collaboration,    community,    data 
fusion, society. 

1. Introduction 

The global data fusion community has seen a 
recent acceleration in its development. There are 
now thousands of data fusion researchers and 
systems engineers worldwide. There is a fledgling 
society and several fusion related conferences. 
Now seems a good time to take stock of where the 
field has evolved to and to make some strategic 

decisions regarding its future development. This 
paper illuminates some of the current issues and 
identifies the difficulties that we will have to face. 
It is intended as a catalyst for discussion rather 
than a prescription for success. 

2. The Fusion Cottage Industry 

There are many researchers and users of data 
fusion technology throughout the world. Despite 
this, however, many of them are working in 
isolation. This is a lamentable situation which 
Llinas [1] likens to a cottage industry. Researchers 
may be unaware that they are working on a 
recognised technology with a growing 
community. This may lead to: 

• implementation of inappropriate solutions; 
• re-invention of existing techniques; 
• duplication of effort; 
• under-utilisation of their results. 

Of particular relevance to the data fusion 
community is the issue of resourcing. Despite 
falling defence budgets the allocation of funding 
to data fusion projects is approximately stable. 
Furthermore, as the exploitation of data fusion in 
the commercial world matures, the industrial 
applications funding of data fusion is likely to 
increase. As a result of this and other factors there 
is a worldwide scarcity of high-calibre data fusion 
researchers. It is a pity that this finite resource is 
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currently being deployed so inefficiently from a 
global perspective. 

Many of these problems could be overcome if a 
proper data fusion community were to be 
established. There are a number of existing 
initiatives addressing this community issue. 

3. The Fusion Community 

people-centric knowledge-centric 

Figure 1: The community issues in the context of 
different viewpoints. 

A fusion community should assume several 
different viewpoints: 

• the people; 
• the knowledge they develop; 
• the market they work in; 
• the communication processes they use. 

There are several pressing issues associated with 
each of these viewpoints as shown in Figure 1. 

3.1 People Centric Issues 

There is a global shortage of scientists and 
engineers who wish to pursue a data fusion career 
and have the appropriate academic qualifications. 

The pervasive nature of data fusion (and therefore 
its broad technical background) has partly been 
responsible for its under-representation in 
educational establishments. Current data fusion 
experts generally have a mathematical, 
engineering or computer science background and 
have migrated into data fusion from a related field 
such as pattern recognition or control theory. 
Their knowledge has often been acquired on-the- 
job rather than as part of a formal training 
programme. 

There are now a small number of short courses 
available for providing introductions to data 
fusion techniques and applications. There is no 
agreed syllabus for such courses, nor is there a 
central source of information on them. A list of 
approved courses offering a standardised core 
syllabus should be a community priority. 

The situation in academia is even worse. There 
are currently no postgraduate courses devoted 
specifically to data fusion anywhere. This 
shocking situation has prompted the present 
authors to initiate plans for a masters-level data 
fusion course on both sides of the Atlantic. 

We should also realise that training and education 
is no longer the sole responsibility of universities. 
Nor is it entirely appropriate for companies to 
produce specialists through on-the-job training. 
We propose that a co-operative approach in which 
industry and academia work as a partnership is 
more suitable for such a field as diverse as data 
fusion. 

3.2 Knowledge Centric Issues 

Data fusion knowledge may be embodied in many 
forms. In some cases the evolved communal 
activity in establishing this knowledge has led to 
significant successes (the well understood 
principles of decision fusion, for example). 
However, in many instances whole areas of the 
field have been largely ignored: 

Algorithms and Tools 

There is no widely used, openly accessible, library 
of data fusion techniques and software modules. 
There is still a significant amount of nugatory 
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effort on re-implementation (for instance, nearly 
every researcher has their own code to implement 
a Kaiman filter). Many fields now have accepted 
implementations of standard algorithms, see [2] 
for example. 

Models 

There is an (over?) abundance of data fusion 
models. Each of these addresses a slightly 
different aspect of the system design problem. It 
would be highly desirable to establish a standard 
that provided the flexibility to match most 
situations [3]. 

Architectures 

There is no agreed recommendation of which 
architecture to use for any particular data- 
application-model combination. Many researchers 
develop their own, which results in solutions that 
cannot easily be integrated into a complete 
system. 

Frameworks 

Proponents of the main inferencing frameworks 
(probabilistic, possibilistic and evidential) have 
historically taken a somewhat entrenched attitude. 
There are few systematic comparisons of 
frameworks on realistic scenarios and a definitive 
and quantitative data fusion perspective is long 
overdue. 

Datasets 

Very few properly ground-truthed, multi-sensor 
datasets are available for open dissemination and 
re-use. A fusion equivalent to the machine 
learning repository held at the University of 
California in Irvine [4] would greatly enhance the 
ability to compare methods on common data. 

Metrics 

Fusion is essentially a system-level activity. For it 
to be taken seriously as a scientific endeavour it 
must allow measurements between prediction and 
reality at this system level. The definition of such 
measures of effectiveness is woefully inadequate 
and   their   use   currently   confined   to   well- 

constrained applications. 

The communal knowledge may be capitalised 
upon by: 

• archiving - of all aspects of knowledge in the 
form of easily-accessible on-line tutorials, 
papers, bibliographies and (pseudo) code 
segments; 

• dissemination - of information: there are now 
three open, international data fusion 
conferences each year (SPE [5], FUSION [6] 
and EuroFusion [7]). Thankfully there is 
useful co-ordination between the organisers of 
these events: 

3.3 Market Centric Issues 

Researchers should be mindful that the majority 
of their work is funded by market need (whether 
initially identified by the researcher or the 
customer) [8]. For nearly two decades the 
application of data fusion technologies lay almost 
solely within the defence domain including: 

• surveillance and reconnaissance; 
• air defence; 
• intelligence analysis; 
• non co-operative target recognition. 

During the last few years, however, the benefits of 
fusion have found more widespread use. There is 
now a substantial worldwide interest in the use of 
data fusion in: 

• aerospace industries; 
• medical applications; 
• machine condition monitoring; 
• process monitoring; 
• remote sensing; 
• industrial robotics. 

Despite the increase in the number of application 
domains for data fusion technology, there are still 
many relevant areas where data fusion is still not 
used. It behoves data fusion practitioners to 
champion the technology in these new domains. 
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3.4 Communication Centric Issues 

The transfer of technology from the domain of 
intellectual concepts to tangible, marketable 
products may be regarded as a cyclic 
communication process, as shown in Figure 2. 
The energy required for maintaining this cycle 
stems from: 

• an   intellectual   capability   supplied   by   a 
continuing education program; 

• stable funding derived from a sustainable 
market need. 

drive 

JfcRets 

Research 

produces 

Exploitation 

results in 

requires 

Figure 2. The technology transfer cycle 

It is possible to identify several  stereotypical 
roles: 

• the businessman - who is motivated by the 
current revenue-producing data fusion product 
and the reassurance that there will be 
something new to market; 

• the scientific researcher - who is driven by 
the creation and extension of knowledge but 
who is funded (possibly indirectly) by the 
market requirements; 

• the collator and archivist - who adds value by 
collecting, collating and storing the 
accumulated knowledge. They can add more 
value by facilitating its appropriate 
dissemination; 

• the system engineer - who capitalises on the 
communal data fusion knowledge to produce 

solutions to realistic tasks; 
•    the business development manager - who is 

able envision a market niche for a technical 
data fusion solution and to exploit such a 
solution in the marketplace. 

Some people (those who will make the biggest 
fusion community contribution) are involved at 
several stages. Others concentrate solely on one 
aspect and remain ignorant of the bigger picture. 

4. Fusion Community Requirements 

The development of a community has several 
requirements. These include the establishment of 
a set of standards, a knowledge repository and 
interaction and collaboration amongst the groups 
involved. Of these, collaboration is perhaps the 
hardest to achieve (international collaboration 
may be particularly difficult). 

4.1 International Standards 

To assist in the globalisation of data fusion an 
international standard for data fusion models, 
architectures and frameworks should be 
established. A lexicon of accepted definitions 
should be provided so that different groups can 
communicate their ideas effectively. A 
methodology for testing data fusion algorithms, 
and a standard set of problems would place data 
fusion system engineering on a firmer foundation. 

Some national efforts have been made to establish 
data fusion standards including models {e.g US 
and UK), lexicons {e.g. US and Australia) and 
guidelines {e.g. UK and US). These need to be 
made truly international. 

4.2 A Knowledge Repository 

An openly accessible and maintained repository of 
the collective data fusion knowledge should 
incorporate: 

• a directory of experts and groups giving their 
main areas of interest; 

• links to other information sources (such as 
conferences); 
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• a    bibliography    (preferably    with    some 
annotation); 

• case studies describing the lessons learnt from 
applications of data fusion; 

• standards (as described above). 

4.3 Collaboration 

Figure 3: The required communication between 
different data fusion work cultures 

Collaboration can take place in any part of the 
technology transfer cycle. The cycle can be 
augmented with details of the drivers, agents and 
recipients at each stage. These each belong to one 
of three main work cultures: 

1. industry - characterised by short timescales 
and driven by revenue production for 
stakeholders. They engineer a provided 
technical solution into a working product and 
can therefore be thought of as engineering 
providers. 

2. government - characterised by large (and 
lengthy) procurement projects and driven by 
politics. They generally produce solutions 
rather than products for industry and can be 
thought of as science and technology 
providers; 

3. universities - characterised by long-term 
research and driven by intellectual 
achievement. Universities also educate and 
train the personnel who will later produce the 
science and technology and, hence, they are 

the education providers. 

The driving force in each of these areas is 
described below [9]. 

Engineering drivers of collaboration are 
predominantly in industry. The requirement is for 
collaborators who can identify and understand real 
problems and provide workable solutions. As 
such, they often collaborate with government 
research laboratories and universities, rather than 
with other industries. 

The science and technology drivers are often 
research laboratories. Some of these are industry- 
based, but the majority are at universities and in 
government organisations. They require links with 
mainstream academia to provide them with 
suitably trained staff. Their main collaborative 
efforts are with industry as a user of their output 
and a source of funded applications. 

The educational drivers are mainly in 
universities. Their collaborative efforts are 
directed towards industry and research 
laboratories. Industry provides them with both a 
research focus and a user of their results. Research 
laboratories provide extra manpower on industrial 
projects and an additional source of project work. 

5. Collaboration Benefits and Barriers 

Collaboration has the mutual benefit of increased 
efficiency via the gearing that is obtained by the 
sharing of objectives and the risk reduction of 
using different approaches to similar problems. 
Collaborations of any sort, however, may 
encounter some difficulties, including: 

• the use of different context and definitions; 
• the   lack   of   regular   communication   or 

direction; 
• the     parochial     attitudes     of     potential 

collaborators. 

Some forms are intrinsically more problematic 
than others owing to work culture or geographical 
factors. 
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5.1 Cultural Factors 6. Forms of Collaboration 

There may be significant differences in ethos, 
beliefs and values between the different work 
cultures identified in Figure 3. If parties from 
different work cultures co-operate, then particular 
barriers to successful collaboration are introduced. 

Co-operation between organisations within the 
same work culture should represent the easiest 
form of collaboration. The individuals are often 
from similar backgrounds and share similar 
constraints and desires. However, they also 
compete for the same resources (market, human or 
financial for example). As competitors they will 
enter into collaborations only when the benefits of 
exploitation are clearly and fairly laid out. Issues 
to be addressed include intellectual property 
rights, royalties and market exclusivity 
agreements. 

Collaboration between work cultures removes this 
problem to some extent since the exploitation 
routes can often be apportioned in an obvious 
manner (for example intellectual property owned 
by the university and market exploitation rights 
for the industry). Inter-cultural collaborations, 
however, also bring additional difficulties of 
disparate values and different constraints. These 
include the differing time-scales, separate 
contractual requirements, potentially different 
fiscal cycles, the disparate views of risk 
management and the fundamental differences in 
what outcomes are regarded as worthwhile. 

5.2 Geographical Factors 

International collaboration which takes place 
within the same work culture but in different 
countries brings its own set of problems. These 
include different fiscal cycles, currency 
fluctuations, legal systems and national 
constraints (such as security). Even different time 
zones can cause a problem. Communication 
between project members is also made more 
difficult by distance and the cost of face-to-face 
meetings adds substantially to the overheads of 
the collaboration. 

Collaboration can take many forms spanning 
informal information exchange on a mutually 
interesting topic, short-term scientist exchange 
and the establishment of a virtual laboratory. With 
the use of modern communications technology 
(Email, internet and video conferencing for 
example) such collaborative working should not, 
in principal, be difficult to achieve. 

One difficulty that constantly arises is in finding 
suitable collaborators. One needs to determine 
what their interests are, how they operate and how 
their capabilities match ones own. An alternative 
to the traditional, serendipitous, approach is to 
establish a directory of data fusion research 
groups. On its own, however, this is not enough 
since such contacts only establish the mutual 
desire for co-operation. For successful long-term 
collaboration to occur a mechanism is also 
needed. 

organisations organisations     organisations 
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Figure 4: The three motivators for collaboration: 
top-down, bottom-up and outside-in. 

The match between desires and mechanisms leads 
to three basic types of collaboration. In the first a 
large organisation creates a mechanism and 
imposes actions on groups of individuals. This 
group collaborates because of the top-down drive. 
Secondly, a group may come together because 
they share a common desire but be unable to find 
an appropriate mechanism. If the need is strong 
enough they will find a way around this problem - 
the collaboration is driven from the bottom-up. 
The ideal case involves a good match between 
desires and mechanisms and can be thought of as 
outside-in collaboration. 
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6.1 Examples of Top-Down Collaboration 

A top-down collaboration is one that is envisaged 
by a government or large organisation. A 
mechanism is generally provided ahead of the 
formation of the co-operating group. Top-down 
collaborations usually cease when the funding 
policy changes. In some cases they then transform 
into bottom-up collaborations. A small selection 
of top-down collaborations includes: 

Technology Foresight - a UK Government 
initiative started in the mid 1990's which set up 
panels to critically review the state-of-the-nation 
in a few key technologies, one of which was data 
fusion [10]. The Data Fusion Working Group 
identified cross-cultural collaboration as a primary 
issue and recommended the creation of a 
mechanism for defence and aerospace 
partnerships to facilitate co-operation between UK 
government, industry and academia. 

Faraday INTErSECT- the INTElligent SEnsors 
for Control Technologies partnership [11] 
includes research and exploitation in data fusion 
for the multi-sensor engine as on eof its three 
main themes. A substantial amount of funding is 
forthcoming from government and industrial 
sponsors in collaboration with UK universities. 
The purpose is to create opportunities for 
technology transfer with science-push and market- 
pull explicitly identified. 

DFSG - in 1997 the UK Ministry of Defence 
provided baseline funding to establish the Defence 
Evaluation and Research Agency Data Fusion 
Strategy Group. The aim of this group was to 
facilitate co-ordination of all the projects within 
DERA which had an element of data fusion in 
them. This was, and still is, an awareness and 
information exchange project. It is not aimed at 
developing and applying data fusion technology 
[12,13]. 

6.2 Bottom-Up Collaboration 

A bottom-up collaboration is driven by a group of 
individuals who perceive a need and co-operate 
without substantial support of large organisations 
or governments. Such collaborations are often 

very successful but are also fragile since they are 
generally not robust to the movements of 
individuals. Examples of bottom-up 
collaborations include: 

JDL DFG - the Joint Directors of Laboratories 
Data Fusion Group has produced insightful 
analyses of data fusion and provided the most 
widely used fusion models and fusion taxonomies. 
This group continues due to the commitment and 
dedication of its members. 

ISIF - the International Society of Information 
Fusion is in its formative stages. It will be some 
time before ISIF is self-sustaining and in the 
meantime it continues to develop due solely to the 
hard work of a few key individuals whose time 
and effort is not funded. 

Information Fusion Journal - the need for a 
fusion journal has been widely acknowledged for 
some time. The forthcoming Elsevier publication 
was conceived and brought to fruition largely by 
the single-handed (unpaid) efforts of its editor. 

Clubs and Special Interest Groups - there is 
now an electronic club relating to information 
fusion and a special interest group dedicated to 
sensor fusion management [14,15]. These 
valuable forums are kept alive by their founders 
and the members that regularly contribute to them. 

6.3 Outside-in Collaboration 

A outside-in collaboration forms when there is a 
desire on the part of individuals and the 
simultaneous existence of a mechanism to achieve 
the activity. Outside-in collaborations are often 
the most successful examples of collaboration, 
both in terms of output and longevity. There are 
currently a few developing examples of outside-in 
collaborations in data fusion: 

DARP - The UK Defence and Aerospace 
Research Partnerships are a result of the 
Technology Foresight initiative described above. 
The Government is providing baseline funding to 
facilitate this activity. In the UK there is a current 
DARP on data fusion that includes a government 
laboratory, several major UK industries and a 
number of British universities. 
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FUSIAC - The American FUSion Information 
Analysis Center is currently being brought into 
existence. It will provide some of the archiving 
and dissemination activities discussed earlier and 
will have US government funding. It is unclear 
how it will work alongside ISIF and whether it 
can successfully operate internationally. 

7. Food for Thought 

We have presented a structured list of issues and 
problems relating to the establishment of a global 
data fusion community with ongoing international 
collaborations. We believe the following to be of 
the highest priority: 

• Easing of (inter)national co-operation: 
Q What desires are shared - should there be 

a directory resource? 
Q What mechanisms are appropriate 

(NATO, TTCP, MOU, bi-lateral, multi- 
lateral) and who are the points of contact? 

Q How do we create more outside-in 
collaborations? 

• Archiving and dissemination of communal 
knowledge: 
a   What should the resource contain? 
a   Where should it be held? 
□   Who should maintain the resource? 

• Data fusion in education: 
Q   What level of education is appropriate 

(undergraduate, masters or doctorate)? 
a   What should be included in an agreed 

core syllabus? 
Q   Should virtual courses be offered which 

are taught at several universities? 
a   How     should     the     coupling     with 

government and industry be handled? 

The present authors would encourage discussions 
on these issues and would welcome specific 
suggestions for developing the data fusion 
community infrastructure. 
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Abstract This paper is rather theoretical. Its 
aim is to describe a general algebraic framework, 
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1    A Motivating Example 

Data fusion means that we combine ("fuse") 
several pieces of information (measurement re- 
sults, expert estimates) about one or several 
objects. To describe our new approach to for- 
malizing data fusion, we will start with a phys- 
ically meaningful (and mathematically simple) 
example. 

In order to find the location of distant ra- 
dio sources, we measure the signals from these 
sources received on different radiotelescopes, 
and then fuse the measurement results. The 
larger the telescope, the more accurate the 
measurements. Therefore, to achieve maxi- 
mum accuracy, antennas forming a radiotele- 
scope are placed as far away from each other 
as possible:   ideally, on different continents. 

The resulting Very Long Baseline Interferome- 
try method (VLBI, for short) works as follows: 
whenever a pair of antennas is oriented towards 
a radio source (e.g., a quasar), we record the 
signals Si(t) and s2(t) on these two antennas, 
and compare the records. From trigonometry, 
one can easily deduce that the difference be- 
tween the lengths of the paths from the source 
to the two antennas is equal to r = B -s, where 
B is a baseline (i.e., a vector from the first to 
the second antenna), and s is a unit vector in 
the direction of the radio source. This differ- 
ence in paths leads to the corresponding dif- 
ference A* = T/C between the times when the 
same signal reaches the two antennas (here, c 
is the speed of light, with which the radio sig- 
nal travels). Thus, the signal si(t) recorded 
by one of the antennas is delayed by At from 
the signal recorded by the second one. Hence, 
by comparing the signals si(t) and S2(t), we 
can determine the delay At and therefore, the 
value r = c • At = B • s. 

Our goal is to determine the source location 
(i.e., the vector s). If we knew the baselines 
exactly, then we would get a system of linear 
equations for finding s. In reaUife, we only 
know the approximate values of B, and the ex- 
act values of the baselines must be determined 
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by the same measurements. In other words, for 
different baselines B{ and for different sources 
Sj, we measure the values Ty = 2?M . ^(i); we 

would like to extract, from the exact measure- 
ment results, the exact values of the source lo- 
cations s^fi. 

The corresponding problem has two aspects: 

• First, a theoretical (fundamental) aspect: 
If we make a sufficient number of mea- 
surements, can we, in principle, uniquely 
reconstruct all the locations? If we can- 
not reconstruct all the locations uniquely, 
then what exactly information about the 
source locations can be determined? 

• Second, a practical (computational} as- 
pect: how can we actually extract the lo- 
cations s W) (or whatever information we 
can) from the measurement results ry? 

2    Chu Spaces and 
Automorphisms 

2.1    General Description of Data Fu- 
sion: Chu Spaces 

We have described the data fusion problem on 
one specific example. In general: 

• We have a set of objects of interest which 
we will denote by X; in the above exam- 
ple, each object of interest sGlis char- 
acterized by a unit vector s, so we can say 
that X is the set of all possible unit vec- 
tors. 

• We also have a set of measuring instru- 
ments (or estimators) which will be de- 
noted by A; in the above example, mea- 
suring instruments are pairs of antennas; 
each pair is characterized by its baseline 
vector B, so we can say that A is the set 
of all (3-D) vectors. 

• We assume that the construction of mea- 
suring instruments is known, and there- 
fore, if we know the exact parameters of 
the object x G X and the exact param- 
eters of the measuring instrument a £ A, 

then we can uniquely predict the measure- 
ment result; this measurement result will 
be denoted by r(x.a), and the set of all 
possible measurement results will be de- 
noted by K. In mathematical terms, we 
have a map r from X x A to K. In the 
above example, K is the set JR of all real 
numbers, and r(B. s) = B ■ s. 

In mathematical terms, a general data fusion 
situation can be thus described as a triple 
(X.r, A), where X and A are arbitrary sets, 
and r is a map r : X x A -> K into the set 
K. Such triples are called K-Chu spaces, or 
simply Chu spaces [1] (when the choice of K is 
clear). Chu spaces have been successfully used 
to describe parallelism [5], information flow in 
distributed systems [2], etc. 

2.2 General Formulation of a Funda- 
mental Problem of Data Fusion: 
Chu Automorphisms 

In the above terms, the fundamental problem 
of data fusion can be reformulated as follows: 
in the ideal situation, when we know the re- 
sults of all the measurements, can we uniquely 
reconstruct all the objects? In other words, if 
we know the values r(x, a) for all x E X and all 
a £ A, will we be able to reconstruct all x, or 
it is possible to mis-interpret every object x as 
a different object f(x), so that under a certain 
associated mis-interpretation a -> h(a) of the 
measuring instruments, the results are still the 
same: 

r(x,a) = r(f(x),h(a)) (1) 

In other words, the unique reconstruction is 
possible if and only if there are no non-trivial 
pairs (/, h) with a property (1), and if there 
are such pairs, then we can only reconstruct x 
uniquely modulo transformations x —► f(x). 

For mathematical reasons, it is sometimes 
convenient to consider the inverse transfor- 
mation g(a) = h~1(a). In terms of the in- 
verse transformation, the condition (1) takes 
the form 

r(x,g(a)) =r(f(x),a). (2) 
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A pair of functions which satisfies this prop- 
erty is called an automorphism of a Chu space 
(X, r, A). Thus, the data fusion problem has a 
unique solution if and only if the corresponding 
Chu space does not have any non-trivial auto- 
morphisms, and if its has, then we only have 
uniqueness modulo these automorphisms. 

For example, for VLBI radioastrometry, 
there is no uniqueness, because we can apply 
a rotation f(x) and a similar rotation h(a), 
and the resulting scalar (dot) product will not 
change. One can prove, however, that this is 
the only possible non-uniqueness, i.e., that the 
only pair of transformations (/, h) which sat- 
isfies the property (1) is a pair of identical ro- 
tations. Thus, from VLBI measurements, we 
can reconstruct the locations of all radiosources 
modulo rotation: e.g., we can reconstruct the 
arcs between the sources. 

From the physical viewpoint, the fact that 
we cannot uniquely reconstruct the coordinates 
of all the sources makes perfect sense: the axes 
of the coordinate system are determined only 
by convention, so this non-uniqueness simply 
means that we can select an arbitrary Carte- 
sian coordinate system. 

2.3    From   Theoretical   Analysis   to 
Practical Data Fusion 

We have just shown that Chu spaces allow us to 
answer a theoretical question about data fusion. 
Let us now show that we can also get a practical 
data fusion algorithm out of this analysis. 

In our example, both sets X and A are rep- 
resented as manifolds, i.e., each element x GX 
can be characterized by several numerical char- 
acteristics ("coordinates") x\,..., xm and each 
element a e A can be characterized by several 
numerical characteristics a\...., am (in this ex- 
ample, n = 2 and m = 3). In general, when X 
and A are manifolds, a uniqueness theoretical 
result leads to a practical algorithm. Namely, 
we know: 

• the measurement results rij = r(xW, o^), 

• the approximate values 2fW of the param- 
eters x® which characterize the objects, 

and 

• the approximate values 5^ of the parame- 
ters a,M which characterize the measuring 
instruments. 

To find the exact values a;« and a^ of these 
parameters, it is sufficient to find the differ- 
ences Aa;« = x® -£(i) and Aa^O = a® -5(j). 
In terms of these unknown differences, we have 
x{i) _ j(0 + Aa;W and a& = a® + Aa^, and 
the above expression for r„ takes the form 

ry = r(x{i) + Aar«, 2(j) + Aa®).      (3) 

The approximate values are usually reasonably 
good, so these differences are small, and we 
can therefore expand the right hand side of 
the equation (3) into Taylor series and ignore 
quadratic and higher order terms in this expan- 
sion. As a result, we get the following system of 
linear equations for determining the unknown 
differences: 

n m 

£ Atja ■ Ax« + 53 Büß ■ A4   = Ariv (4) 
ß=i 

where: 

^ja 

B. ijß 

dr(x®,a&) 

dXa |a;(«)=J('),a(j)=ä(j) 

dr(x^,aW) 

da U) 

Ary=ry-r(5«,3W). 

Solving a system of linear equations is easy. 
For a detailed description of our example - 

and for a more realistic description of VLBI 
astrometry which takes into consideration the 
inaccuracy of the clocks - see. e.g., [3, 4]. 

3    Other Examples of 
Data Fusion 

In the previous section, we showed that Chu 
spaces can be used to formalize a general class 
of data fusion problems. Data fusion is a very 
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general concept which includes situations more 
general than the ones described above. In this 
section, we enumerate such situations; in the 
following section, we will argue that (at least 
some of) these more general situations can also 
be naturally described in terms of Chu spaces. 

3.1    Classical Statistics 

In the above example, we assumed that the 
measurement result is uniquely determined if 
we know the object x and the measuring instru- 
ment a. In real life, there are a lot of random 
factors (noise), as a result of which, repeated 
measurements of the same object leads, as a 
rule, to slightly different results. So, instead of 
the exact value of r(x, a), we have a probabil- 
ity distribution on the set of all measurement 
results. The measurement results may vary, 
but the probability distribution is uniquely de- 
termined by the measurement situation (i.e., 
by the pair of an object and of a measuring 
instrument). 

Let X denote the set of all measurement re- 
sults #, G be the set of all possible measure- 
ment situations 6, and let 

F={f{x,O)\x£X,0£@} 

denote the class of all corresponding probabil- 
ity density functions f(x,6). As a result of 
repeated measurements, we observe a random 
sample xi,...,xn from X. Based on this sam- 
ple, we want to estimate either the value 6 (i.e., 
the probability distribution itself), or some 
characteristic ip{0) of this distribution (e.g., the 
standard deviation). Each of the measurement 
results Xi provides some estimate for <p(6); to 
get a better estimate, we must "fuse" these es- 
timates into a single estimate depending on all 
the measurement results x\,...,xn. Usually, 
we seek some "good" estimator T(x\,....xn), 
in fact, the best one, e.g., in the sense that it 
will maximize (or minimize) some performance 
characteristic (e.g., the expected squared devi- 
ation of our estimate from the true value of 

The same is true in general: we look for fu- 
sion operator which optimizes a given perfor- 

mance characteristic. 

3-2    Coalitional Games 

Coalitional games, i.e., situations where sev- 
eral participants have different interests but 
are willing to cooperate, are non-measurement 
examples of data fusion. 

Let us denote the set of players (partici- 
pants) by fl. In a coalitional game, every sub- 
set A C fl can form a coalition, i.e., act to- 
gether as a group against all the others. For 
each possible coalition (i.e., for each subset 
A C fl), we thus get a zero-sum (antagonistic) 
game, and we can use known techniques to de- 
termine the payoff G(A) of this game. Thus, 
a coalitional game can be described as a set- 
function G : 2n ->■ JR. This function is mono- 
tone in the sense that increasing the coalition 
increases its payoff (if A C B, then G(A) < 
G(B)). The main objective of coalitional game 
theory is to avoid the time-consuming coalition 
forming and dissolving process, and to come up 
with a solution which is fair to all the partic- 
ipants. In other words, we must "fuse" (com- 
bine) the payoffs G(A) corresponding to differ- 
ent coalitions into a single solution. 

As a desired performance characteristic, we 
can take, e.g., fairness (in situations describing 
distribution of goods), productivity (in situa- 
tions describing the production of goods), etc. 

In mathematics, the most well-known exam- 
ple of a function 2n —> R is measure - an addi- 
tive function p from the set 2n of subsets of O 
to the set of real numbers JR. The most nat- 
ural operation which maps a measure ß to a 
number is a (Lebesgue) integral //d/x. Pay- 
off functions are not necessarily additive, so, 
to describe the corresponding fusion, we can, 
e.g., use Choquet integrals - a generalization of 
Lebesgue integrals to monotone (not necessar- 
ily additive) set-functions. This indeed leads 
to reasonable solutions. 

3.3    Expert Systems 

A typical problem for which an expert sys- 
tem is useful is to predict, based on the known 
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symptoms, whether or not an individual with 
these symptoms has a certain disease. To solve 
this diagnostic problem, we solicit the knowl- 
edge of an expert. An expert usually formu- 
lates his or her knowledge in terms of differ- 
ent rules; these rules form what is called a rule 
base. For a given patient, different rules lead to 
different degree of confidence that the patient 
has (or does not have) the disease in question. 
The main goal of the expert system is to com- 
bine ("fuse") these (sometimes conflicting) de- 
grees of confidence into a single result. 

3.4    Probabilistic Inference 

Similar to the previous example, we consider 
the problem of diagnosing a certain type of 
disease. Let X = (Xt,t G T) be the set 
of all variable which describe a patient: i.e., 
the variables which characterize the degree of 
the disease, the directly measurable variables 
(like body temperature, blood pressure, etc.), 
which are used in describing the symptoms, 
and the variables which are not directly mea- 
surable but which are used in the expert's ar- 
guments about the disease. Usually, the set T 
of these variables has some neighborhood struc- 
ture in the sense that some pairs of variables 
t.t1 are closely related ("close", t' belongs to 
the neighborhood Nt of t) while other pars are 
not directly related ("not close"). For example, 
we may be able to place all these variables on 
a plane so that "close" variables are the ones 
for which the distance is smaller than a cer- 
tain threshold. The notion of a neighborhood 
structure is naturally formalized by a condition 
P{Xt\Xs,s ?t)= P(Xt\Xs,s G Nt} which 
describes a Markov random field. 

From the experience, we can collect the 
conditional probabilities P(Xt = x \ Xs = y) 
which describe our degree of confidence in a 
rule "if Xt = x then Xs = y". The main objec- 
tive of data fusion is to combine these probabil- 
ities into a single symptom-determined proba- 
bility of the given disease. 

3.5    Randomness and Fuzziness 

In the above fusion problems, all pieces of in- 
formation had the same type of uncertainty. 
Here is a situation where different types of un- 
certainty can coexist in data. 

In his pioneering work on random elements 
in metric spaces, Frechet pointed out that be- 
sides standard random objects (such as points, 
vectors, functions), nature, science, and tech- 
nology offer other random elements which, 
he claimed, "cannot be described mathemat- 
ically". For example, for a randomly chosen 
group of people, we may be interested in their 
"morality" or "spirit"; for a randomly chosen 
town, its "beauty" of "shape" may be of inter- 
est, etc. Nowadays, these "fuzzy" concepts are 
described mathematically as fuzzy sets. Thus, 
examples of Frechet are random fuzzy sets. 

The existence of the two types uncertainty - 
randomness and fuzziness - requires new fusion 
procedures. 

4 Chu Spaces and Morphisms 
As A Description of Gen- 
eral Data Fusion Problems 

4.1    Chu Morphisms 

As we have already argued, each measurement 
procedure, each type of uncertainty, can be 
characterized by a Chu space. In some real-life 
situations, we must combine different types of 
uncertainty (e.g., random and fuzzy), so, we 
must consider relations between different Chu 
spaces. 

It's possible to combine, e.g., probabilistic 
and fuzzy approaches: a fuzzy set can be de- 
scribed as a random set and thus, combined 
with probabilities. However, these combina- 
tions are complicated and hardly practical. 

In general, for each type of uncertainty, we 
have a list of objects X and a list of properties 
A. Ideally, we would like to know exactly which 
object has which property; due to uncertainty, 
however, we only have the "degree" (probabil- 
ity, degree of certainty, etc.) r(x,a) to which 
an object x has the property a. So, a general 
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piece of uncertain knowledge can be described 
as a K-Chu space (X, r, A), where K is the set 
of all possible degrees (usually, K = [0,1]). 

Often, to check whether an object has a cer- 
tain property, we design a similar object (e.g., 
a scaled version), find its properties, and then 
make conclusions about the properties of the 
original system. In other words, we have a 
transformation / : X -> Y which maps each 
object into a new one, and a transformation 
g : B -4 A which transforms the properties of 
the new object into properties of the old one 
in such a way that if the object f(x) has a 
property b, then the original object x has the 
corresponding property g(b), i.e., that 

s(f(x),b)=r(x,g(b)). (5) 

A pair (/, g) is called a morphism between the 
Chu spaces (X, r, A) and (Y, s, B). 

4.2    Categories of Chu Spaces 

For every A"-Chu space, a pair of identical 
maps is an (auto) morphism. If (/, g) is a 
morphism between K-Chu spaces (X, r, A) and 
(Y, s, B). and (Z, t, C) is another K-Chu space 
with (u, v) being a morphism from (Y, s, B) to 
it, then there is a morphism from (X, r. A) to 
(Z, t, C) given by 

(f,9) *(u,v) = {uof.gov). (6) 

In the terminology of Category Theory, this 
means that if-Chu spaces and morphisms form 
a category in which a morphism composition is 
defined by the formula (6). This category will 
be denoted by CWA(K). 

4.3    Fuzzy Sets as Chu Spaces 

In fuzzy set theory, for a given set of objects 
X, properties are described as fuzzy subsets, 
i.e., A = [0, l]x = {a : X -> [0,1]}, and the 
degree rx(x,a) to which an object x satisfies 
the property a is described as rx(x, a) = a(x). 

Let us denote the [0,1]-Chu category 
of the corresponding Chu spaces F(X) = 
(X,rx, [0, l]x) by TUZZ. The morphisms of 

this category are easy to describe: if / : -X" -> 
Y is a function from X to Y, then the pair 
F(f) = (/,¥>/). where <pf : [0, l]y -> [0,1}X is 
defined by a formula (ipf(b))(x) = b(f(x)), is 
a morphism F(f) : F(X) -4 F(Y). By choos- 
ing an arbitrary function / : X —> Y, we can 
conclude that there exists a morphism between 
every two objects of the category TUZZ. 

It is easy to check that F preserves composi- 
tion, i.e., F(hof) = F(h)*F(f), and therefore, 
that F is a covariant functor from the category 
SET of sets and functions to TUZZ. 

4.4    Chu   Category   of   Conditional 
Probabilities 

In a probabilistic approach to diagnosis, the 
basic pieces of information (which are com- 
bined in data fusion) consist of conditional 
probabilities P(a\b) for different events a and 
b. So here, X and A are both sets of events, 
and r(x, a) = P(x\a). Let us describe the cor- 
responding Chu space in precise terms. 

A probability (measure) space is usually de- 
fined as a triple Ü — (Ü.P.A), where A is 
a er-field over a set fi, and P : A -» [0,1] is 
a probability measure on A. For each prob- 
ability space /?, we define the corresponding 
Chu space as a triple P{Q) = (A, rp.A), where 
rp(a,b) = P(a\b)(= P(anb)/P(b)) if P(b) > 0, 
and rp(a, b) = 0 if P(b) = 0 (i.e, if the above 
formula for conditional probability cannot be 
directly applied). 

How can we describe morphisms between 
these Chu spaces? Let Q = (fl,P,A) and 
E = (S, Q, B) be probability spaces. A map- 
ping (p : S —>• $ is called measurability preserv- 
ing if it is one-to-one, <p(£l) = S, and both 
</3 and <£>-1 are measurable transformations. 
A measurability preserving transformation is 
called measure preserving if P(<p~l(b)) = Q(b) 
for every b £ B, and isomorphic if both (p and 
ip~x are measure preserving. We say that a 
pair ((p, if)) of measurability preserving maps is 
mutually measure preserving if P{ar\(p~l(b)) = 
Q(il>-l{a)r\b) for all a € A and 6 € B. One can 
prove that a composition of mutually measure 
preserving maps is measure preserving: 
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Proposition 1. Let Q = ((l,P,A), S = 
(E,Q,ß), and P = (T.R.C) be probability 
spaces, and let ip : ft -> S, ip : S -> fl, 
Ö : S -> T, and A : T ->■ S be measurability 
preserving maps. If ((p, tp) and (6, A) are mu- 
tually measure preserving, then (6<p, tpX) is also 
mutually measure preserving. 

One can prove that if a pair is mutually mea- 
sure preserving, then the corresponding map- 
ping are also measure preserving; thus, they 
preserve conditional probabilities and define a 
Chu morphism: 

Proposition 2. If {ip, ip) is mutually measure 
preserving, then both (p and tp are measure pre- 
serving. 

Proposition 3. Let Q = (Q,P,A), S = 
(£, Q. B) be probability spaces, and let<p : fi -» 
£ and tp : £ -> fi be measurability preserv- 
ing maps. Then, the pair (</J, tp) is mutually 
measure preserving if and only if the mapping 
(ip~l,(p~l) is a Chu morphism P{Q) -¥ P{S). 

An example of mutually measure preserving 
transformation is given by the following propo- 
sition: 

Proposition 4. If both ip and <p~l are measure 
preserving, then the pair ((p,<p~l) is mutually 
measure preserving. 

5    Cross Product 
Of Chu Spaces As A 
Data Fusion Operation 

5.1    Motivating Example 

In traditional probability theory, conditional 
probability P(a\b) is defined for events a and b 
from the same tr-field of events. However, from 
the practical viewpoint, we start with two dif- 
ferent sets of properties and, correspondingly, 
two different «r-fields: a cr-field A of events re- 
lated to disease and a cr-field of events B related 
to symptoms; the only reasons why we have to 
combine these events is because otherwise, we 
will not be able to use the probability formal- 
ism. 

How can we describe this "combination"? 
To even describe the conditional probability 
P(a\b) of a given disease under given symp- 
toms, we must represent the symptoms and 
diseases within the same probability space. We 
can achieve it in two ways: 

• We can describe the symptoms in the dis- 
ease space. For that, we need a trans- 
formation g : B ->• A which reformu- 
lates each disease-related property b into 
diseases-related terms: e.g., "sneezing" 
would translate into "cold or allergy". In 
this case, the desired conditional proba- 
bility of a disease a under the symptoms b 
can be formalized as P(a\g(b)). 

• We can also describe the diseases in terms 
of symptoms. For that, we need a trans- 
formation / : A -¥ B which reformu- 
lates each symptom-related property a 
into symptom-related form. In this case, 
the desired conditional probability of a 
disease a under the symptoms b can be 
formalized as P(f(a)\b). 

The resulting conditional probability should 
not depend on how exactly we define it, and 
therefore, the corresponding two expressions 
must coincide: 

P(a\g(b))=P(f(a)\b). (7) 

5.2    Reformulation in Terms of Chu 
Spaces 

Let us re-describe the above construction in 
terms of Chu spaces. If we take into considera- 
tion that for probability Chu spaces, P(a\b) = 
r(a, b), then the formula (7) turns into the for- 
mula (2), which defines a Chu morphism. 

Thus, in terms of Chu spaces, we have the 
following situation: 

• Originally, we had two Chu spaces P(fi = 
{A,rA,A)and P(S) = (ß,rB,ß)), and a 
Chu morphism {f,g) : P(O) ->• P(S). 

• Based on this information, we design 
a new Chu space (A,rnew,B) for which 
rnew{a-,b) = rA(a,g(b)) = rB(f(a),b). 
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This constructed can be repeated for an arbi- 
trary morphism between two Chu spaces: 

• We start with two Chu spaces X = 
(X,r,A) and y = (Y,s,B) and a Chu 
morphism F = (f,g) : (X,r,A) -» 
(Y,s,B). 

• Based on this information, we design a 
new Chu space (X.t.B), with t(a, b) = 
r(a,g(b))=s(f(a),b). 

This new Chu space is called a cross-product 
of two original Chu spaces with respect to the 
morphism (f,g) and denoted by X ®w y. 

Acknowledgments 

This work was supported in part by NASA 
under cooperative agreement NCC5-209, by 
NSF grants No. DUE-9750858 and CDA- 
9522207, by United Space Alliance, grant No. 
NAS 9-20000 (PWO C0C67713A6), by Fu- 
ture Aerospace Science and Technology Pro- 
gram (FAST) Center for Structural Integrity of 
Aerospace Systems, effort sponsored by the Air 
Force Office of Scientific Research, Air Force 
Materiel Command, USAF, under grant num- 
ber F49620-95-1-0518, and by National Secu- 
rity Agency under Grant No. MDA904-98-1- 
0564. 

5.3 One More Possible Application 
of Chu Cross Product to Data 
Fusion: Fuzzy Logic 

In traditional fuzzy approach, fuzzy logic oper- 
ations ("and", "or") are used to combine fuzzy 
data. This combination lacks the ability to 
describe relationship between the fused data. 
The notion of a Chu cross-product gives us a 
general way of describing such a relationship. 
So, we get the following new method of fusing 
two pieces of fuzzy data: 

• first, we find the Chu morphism which 
best describes the relationship between 
these two pieces of data, and 

• then, we combine these pieces relative to 
this morphism (by using a cross-product 
construction). 

6    Conclusion 

In general, different parts of information are 
expressed in different forms, such as proba- 
bilistic information, fuzzy information, etc. To 
combine ("fuse") this information, we must de- 
scribe all types of uncertainty in terms of a sin- 
gle general formalism. In this paper, we have 
described a new general scheme for data fusion 
based on the notion of Chu spaces, and pre- 
sented the corresponding results. 
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Abstract - This paper addresses diagnostic 
information fusion for situations where several 
diagnostic tools are used to estimate a single system 
state. These estimates will always disagree to some 
extent and it is the task of the fusion module to 
provide an estimate which is more reliable than the 
best of the diagnostic tools. To that end, a fusion 
process was developed which performs a weighted 
average of individual tools using confidence values 
assigned dynamically to the individual diagnostic 
tools. These confidence values are derived from 
validation curves which are designed using 
individual a priori tool information and which are 
centered about the previous system estimate. In a 
further step, the fusion output is smoothed leading to 
additional performance improvement. In 
experiments, data were gathered from a high speed 
milling machine and fed through several developed 
diagnostic tools. 

Key words: fusion, information fusion, diagnosis, 
soft computing, fuzzy fusion. 

Introduction and Background 
The need of manufacturers to produce inexpensive 
quality products has resulted in increasing demand 
for unattended and/or automated manufacturing 
systems. One problem in automating machining is 
how to deal with common malfunctions and 
disturbances such as tool wear, chatter, and tool 
breakage. Tool wear is a highly non-linear process 
which is hard to monitor and estimate. To avoid 
costly damage due to tool wear or breakage, 
manufacturers use conservative operating 
procedures to prevent these malfunctions [1]. 
However, these result in less efficient and more 
costly production. A number of diagnostic 
techniques attempt to deal with theses problems, 
including neural networks [2], clustering algorithms 
Burke [3], Kohonen's Feature Map [4], fuzzy logic 
[5], and influence diagrams [6]. To achieve further 
performance  improvement,  hybrid  systems  were 

proposed to overcome shortcomings of individual 
systems, such as fuzzy-neural systems [7]. Hybrid 
use of above mentioned techniques and other soft 
computing principles for diagnostics and prognostics 
are given in Bonissone and Goebel [8]. In a similar 
spirit, fusion techniques combine different methods 
to overcome shortcomings of individual tools. This 
paper proposes one fusion method based on fuzzy 
validation gates. 

Diagnostic Fusion via Validation Gates 
The method developed is a two-level system 
consisting of a number of diagnostic classification 
systems on the first level and a managerial fusion 
unit on the second. The data are fed into each of the 
first level units, and their output is combined in the 
second level to produce a single, better solution 
(Fig. 1). 

Fig. 1: The system architecture 

To address some of the problems outlined above, we 
propose the fusion of diagnostic estimates via fuzzy 
validation curves called Fuzzy Diagnostic 
Validation and Fusion (FUDVAF). This technique is 
related to the FUSVAF (Fuzzy Sensor Validation 
and Fusion) algorithm developed for sensor fusion 
[10, 11, 12]. The fusion algorithm uses confidence 
values obtained for each diagnostic output from 
validation curves and performs a weighted average 
fusion. With increasing distance from the predicted 
value, readings are discounted through a non-linear 
validation function. The predicted value in the 
FUDVAF algorithm is obtained through application 
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of an exponential weighted moving average time 
series predictor 

The confidence value which is assigned to a 
particular diagnostic output depends on the specific 
tool characteristics, the predicted value, and the 
physical limitations of the diagnostic value. The 
assignment takes place in a validation region which 
assigns a maximum value to readings which 
coincide with the predicted value. The curve is 
dependent on the sensor behavior. Generally, this is 
a non-symmetric curve which is wider around the 
maximum value if the diagnostic tool is more 
reliable and narrower if it is less reliable. 

A choice for validation curves o(z) could be a bell 
curve of the form 

fM)'T 
a{dt) = l-, 
where 

m is a scaling parameter 
a, is the tool accuracy 
d, is the diagnosis of tool i 

d is the estimated diagnosis 

A validation gate is shown in Fig. 2. 

r=l df=~H 

5>M 
»=i 

where 
df: fused value 
dt> diagnostic output of tool t 
a: confidence values 

Note that if all diagnostic outputs lie on one side of 
the predicted value, the fused value will also be 
pulled to the same side. This ensures that evidence 
from the diagnostic tools is closely followed yet 
discounted the further it gets away from the 
predicted value. 

We used a time series filter to further improve the 
result of the system using the standard EWMA 
predictor of the form 

d{k) = d(k - \)a+-^ (l - a) I«, 
where 

a is the smoothing parameter; a=0.1 

,1,(10 d,(k) dck-1)    d,(k) diagnostic 
output 

dt 

<*i 

d{k 

diagnostic output 
confidence values 

1) fused value 

Fig. 2: Validation gate for the assignment of 
confidence values 

The fusion is performed through a weighted average 
of confidence values and diagnostic output. The sum 
of the confidence values times the measurements 
rewards measurements closest to the old fused value 
the most, depending on the validation curve which 
expresses a trust in the operation of each diagnostic 
tool through the design of its shape. Measurements 
further away are discounted. The operative equation 
in the FUDVAF algorithm is 

Experimental Setup 
A milling machine under various operating 
conditions was selected as the manufacturing 
environment. In particular, tool wear was 
investigated in a regular cut as well as entry cut and 
exit cut. Data sampled by three different types of 
sensors (acoustic emission sensor, vibration sensor, 
motor current sensor) were used to determine the 
state of wear of the tool. As the wear measure, flank 
wear VB (the distance from the cutting edge to the 
end of the abrasive wear on the flank face of the 
tool) was chosen. The flank wear was observed 
during the experiments by taking the insert out of 
the tool and physically measuring the wear. The 
setup of the experiment is as depicted in Fig. 3. The 
basic setup encompasses the spindle and the table of 
the Matsuura machining center MC-510V. An 
acoustic emission sensor and a vibration sensor are 
each mounted to the table and the spindle of the 
machining center. The signals from all sensors are 
amplified and filtered, then fed through two RMS 
before they enter the computer for data acquisition. 
The signal from a spindle motor current sensor is fed 
into the computer without further processing. Data 
are categorized into four classes and are 
approximated by fuzzy membership functions (no 
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wear, little wear, medium wear, high wear) shown in 
Fig. 6. 

ACOUSTIC EMISSION 
SENSOR SPINDLE -4] 
ACOUSTIC EMISSION 
SENSOR TABLE 

VIBRATION SENSOR 
SPINDLE 

VIBRATION SENSOR 

TABLE 

SPINDLE MOTOR 
CURRENT SENSOR 

~\-Jj "MS [_ 

"UT^l- 
CHARGE AMPLIFIER   |_.^~ÜvHP FILTER    |_^ RMS |_^ 

I 

1_^| LP/HP FILTER    [^ RMS |_». CHARGE AMPLIFIER 

Fig. 3: Experimental setup 

Input data transformations 
Before being used, the following transformations 
were applied to the data: 
1.) The data was smoothed by averaging using a 
window of 50 points, and then the sample size was 
reduced by sampling the resulting data set at 50 
point intervals. 2.) Each input and the output data 
was normalized to lie between 0 and 1. 3.) Since the 
output variable was sampled at much larger intervals 
than the input variables, and since it represents tool 
wear, the output data was further smoothed by 
fitting a 3rd order polynomial. 
Fig.     4 and Fig.     5 show the normalized and 
smoothed input and output data. The output 
data was categorized into four classes using fuzzy 
membership functions. 

The inputs 

Fig. 4: Input data 

The output 
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Fig. 6: Membership functions 

Diagnostic tools employed 
Nearest neighbor classifier (NNBR): The first 
subsystem uses a nearest neighbor scheme for 
classifying the data. The case base consists of a set 
of sensor readings and the associated unclassified 
wear value. Given an input, the k nearest data points 
are determined and the associated wear values are 
averaged. This average is then used to compute the 
membership degree for each of the four classes. 
Neural network (NN1): The second subsystem is a 
neural network that was trained on binary classes. 
That is, the target values were 0 and 1 vectors 
determined by the maximum membership value over 
the four classes. 
Neural network (NN2): The third subsystem is also 
a neural network, but this was trained to learn the 
membership values themselves, as opposed to the 
classes. 
Fuzzy inference system (RM): The fourth subsystem 
is a fuzzy inference system implemented using a 
relation matrix. 
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Neural network 1 

Architecture 
As shown in Fig. 1, the input to the first level of the 
system are the measured features. The output 
consists of four values indicating the degree of 
membership for each of the four output classes. We 
chose this approach over an approach where the first 
level subsystem generates a crisp class (from 1 to 4) 
because this approach gives more flexibility and 
information to the second level system. This is in 
response to the need recognized after development 
of the neural-fuzzy diagnostic tool [9] which 
attempted to segment the data into five crisp classes. 
In the approach chosen here, the membership 
approach allows a softer classification. The second 
level system then combines the results of the first 
level systems and classifies the input into a single 
class. We will be focusing in this paper on the 
fusion task and evaluate performance based on the 
fused membership values. 

One basic problem in averaging techniques or 
majority voting techniques is the danger of ending 
up with a system which performed worth than the 
best individual tool because the poor estimates drag 
down the better estimate. One potential solution is to 
weigh the tools according to their performance 
which must be known beforehand. The FUDVAF 
tries to perform this task. Stand alone tests were 
performed to establish the accuracy of the individual 
diagnostic tools which are shown in Table 1. 

Table 1: Classification rates 

System Rate (%) 
Nearest neighbor (NNBR)              96.8 
Neural network 1 (NN1) 80.6 
Neural network 2 (NN2) 86.7 
Relational matrix (RM) 81.0 

Nearest neighbour 

Fig. 8: Output NN1 
Neural network 2 

BOO 1O0O 1200 1400 

Fig. 9: Output NN2 
Relational matrix 

Fig. 7: Output NNBR 

Fig. 10: Output RBS 

Fig. 7 to Fig. 10 depict the performance of the 
individual systems. The solid lines show the true 
membership values for the data. The crosses indicate 
the membership values generated by the system 
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when the system disagrees on the classification. 
Thus, the crosses are an indication of the area(s) in 
which the system has difficulty in deciding on a 
class. Fig. 7 shows that NNBR has classification 
errors only near the cross-over points of the 
membership functions. These are areas where 
classification errors are expected, because a small 
change in the membership value results in an 
incorrect classification. Even at these points, 
however, NNBR membership values are very close 
to the true membership values. The success of this 
system is due to the continuous nature of the wear 
measure, and the averaging technique used in the 
nearest neighbor classification. The other systems 
are not as successful, and the membership values 
output do not approximate the true values to the 
degree that NNBR does. 

The high success rate of one tool means that if it 
were used as part of the majority fusion, the 
performance degrades somewhat. This is to be 
expected, because the votes of the poor performers 
will sometimes out vote the correct one. The 
problem is greater with increasing number of 
classification regions, as there will be cases when 
each system will generate a different class, and the 
majority voting system will then pick one randomly. 

Results 
The fusion using assignment of confidence values 
provides a means to integrate a priori information 
about individual tool performance. This is 
accomplished by designing the validation curves of 
a better tool wider than the curves of the tools with 
worse performance. The fused performance 
improves the already very good performance of the 
NNBR tool from 96.8% to 99.1% correct 
classification with ot=0.1 and m=0.1. Fig. 11 shows 
the result of the fused system where the membership 
functions no wear, little wear, medium wear, and 
high wear were estimated. 

800       1000      1200      1400 
samples 

Fig. 11: Fused system output 

Summary and Final Remarks 
The use of the FUDVAF algorithm provides a means 
to improve performance of individual diagnostic 
tools. In experiments with data from a milling 
machine, we show how the FUDVAF can be used 
for extant systems. Much of performance 
improvement appears to be due to the smoothing 
and an increase of performance might also be 
expected when the smoothing is applied to the best 
tool alone. 

Future research should address how to improve fine 
tuning of the validation curve parameters, depending 
on operating conditions and sensor history. This can 
be accomplished through machine learning 
techniques similar to the approach used for the 
FUSVAF algorithm [11]. Also helpful might be 
knowledge about locally changing diagnostic tool 
performance. Such local characteristics could be 
utilized in designing the validation curves in a 
dynamic manner by changing the width accordingly. 
Generally, it is desirable to maintain maximum 
independence of the diagnostic tools in the sense 
that tools which exhibit poor performance in certain 
operating conditions are matched with tools 
exhibiting better conditions there. This may, of 
course, not always be possible due to the limitations 
of observable conditions and shortcomings of the 
diagnostic tools because often times (and in this 
approach here), all sensor values are made available 
to all diagnostic tools. 
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Abstract 

In diagnostic probability models where typically there are 
dependencies among input variables, best selection of inputs 
depends on previous inputs. Active fusion is an iterative 
process of selecting the next set of inputs to acquire based on 
their potential to distinguish among the possible diagnoses. 

While decision-theoretic value of information is the ideal 
measure for test value, we use a mutual information 
approximation that uses less demanding computations and 
knowledge models. The algorithms presented here are fast 
enough to use interactively on a personal computer or in a web- 
based application. 

Active fusion is especially valuable in the initial stages of 
diagnosis, when the choice typically includes several non- 
specific observations. The method is being applied to diagnosis 
of faults in vehicle subsystems such as aircraft, locomotives 
and automotive vehicles. 

Key Words: Mutual Information, Value of Information, Bayes 
Networks, Active Fusion, Diagnosis 

1    Introduction 
1.1     Active Fusion 

Diagnosis is the process of reasoning based on 
information to sharpen the state of belief about possible 
faults (abnormal situations requiring adjustment, repair, 
or replacement). Typically there isn't sufficient 
information to produce absolute certainty, so the state of 
belief is expressed in terms of fault probabilities, and the 
diagnostic value of information is defined in terms of the 
potential to sharpen those probabilities from an initial 
state of high entropy (several possible disorders, none 
with conclusive support). [3,4,6] 

Most diagnostic processes involve a large number of 
potential inputs: symptom reports, measurements, or 
tests to be performed. Some of these require human 
intervention, while others entail costs, take time, use 
bandwidth, or require materials, equipment, skilled labor 

or facilities. The common thread is that it is impractical 
or uneconomical to seek all inputs for every problem. 
Therefore, there must be a tradeoff between "value" and 
"cost". (For purposes of this paper, we limit the meaning 
of "value" to diagnostic value, although in practice some 
diagnostic procedures may also have curative or 
preventive value. We use the term "cost" to include any 
limited resource; typically one type will dominate, and 
even if there are multiple cost factors, they can be 
additively combined into a single cost-equivalent when 
weighted appropriately.) 

Because the diagnostic value for most of these inputs 
depends heavily on the current state of belief about fault 
probabilities, the diagnostic process is typically 
sequential. [11] Some inputs are collected, and based on 
their results the state of belief is revised. If enough 
doubt remains, another set of inputs can be sought. The 
process of selecting a set of inputs dynamically based on 
the current information is called active fusion. 

1.2     The Bayes Network representation 

The Bayesian approach to diagnosis starts with a causal 
model. Typically elicited from experts (engineers, 
diagnosticians, service technicians, etc.), information is 
collected about the probabilities of various observations 
(symptoms, test results, etc.) given the variables that can 
cause these observations (i.e., the faults that are present) 
under some preconditions (e.g., which model of a 
machine is being evaluated). Generally, the relation 
between faults and observations is many-to-many: one 
fault will have many observable effects, and one effect 
can have many possible causes. There may also be 
causal relations among faults, and among observations. 
The consequences of the latter will be considered in this 
paper. This complexity is completely represented the 
joint probability distribution of faults and observations. 
Bayes Networks [6,13] provide a consistent, concise and 
computationally manageable representation for such 
causal diagnostic models. 

A Bayes network is a representation consisting of nodes 
connected by arrows. Each node represents an uncertain 

1 Work reported in this paper was partially funded by DARPA contract # DAAH01-95-C-R176. The authors 
gratefully thank AIS, Inc. for the opportunity and automotive expertise to construct cited application models. 

ISIF©1999 337 



proposition or variable, either an observation, a fault, or 
an intermediate unobservable condition. The information 
known about one node depends upon the information in 
its predecessor nodes that represent its causes. In other 
words, if one node variable is the cause of another, then 
knowing the one would give us more information about 
the state of the other. We say that the one probabil- 
istically conditions the other. This is expressed in the 
contents of the node by a probability distribution of the 
node variable conditioned on its predecessor variables. 

Formally the network is equivalent to a factoring of the 
joint probability distribution of all its variables. This 
network structure is both a concise visual representation 
and a formal specification by which the diagnosis is 
made. The structure of the model as represented by the 
network is intuitive to the experts and decision makers so 
that it is easy to construct the network, and easy to 
explain the results of a diagnosis when observations are 
made. Just as important, a Bayes network is a precise 
formal specification of the problem that ensures 
consistency in probabilities with which it is formulated, 
in a form that it can be solved by exact, fixed time 
methods. In practice a diagnostic network may have 
hundreds of nodes, representing the combination of 
possible state distinctions that is exponential in the 
number of nodes. It is a concise representation of an 
inconceivably large fault tree. 

There are several known exact solution methods for 
updating the probability distribution of fault variables as 
observation variables take on values. [12,15,16] As a by- 
product of the solution, one obtains value of information 
measures and their approximations such as mutual 
information. Exact solution methods are NP-hard in the 
number of nodes. This presents a practical limitation in 
model size when models are dense with conditioning 
arrows, however, as our example shows, this limitation 
does not prevent the practical application of Bayes 
networks to large-scale models. 

The computational methods for Bayes networks have the 
ability to invert the direction of reasoning in the causal 
model. The model is constructed by reasoning causally 
from faults to observations, whereas the diagnostic 
process reasons from observations to faults. Just as 
Bayes rule inverts the conditioning between two 
variables, a Bayes network can be solved for the 
conditioning of any disjoint subset of variables on 
another. While such computations would be extremely 
tedious if done manually, Bayes Network software such 
as Knowledge Industries' DX Solution Series can quickly 
and efficiently compute posterior probabilities of all 
faults in the model given any combination of possible 
observations as inputs. These posterior probabilities 

summarize the state of belief given all the observation 
information entered. 

1.3     The problem of test selection 

The hardest part of diagnosis is not reasoning about 
faults from the information given; it is trying to select the 
next set of inputs (observations) in a way that will arrive 
at the correct diagnosis efficiently. This may mean 
selecting an inexpensive test over a more precise but 
more expensive test. It may mean avoiding tests whose 
outcome is known with near certainty (unless the 
exceptional outcome would have overwhelming 
diagnostic value). It may mean choosing one of two 
highly redundant tests rather than selecting both. It may 
mean performing an inexpensive preliminary test whose 
results will tell whether it is worthwhile to perform 
another more expensive test. 

The key to each step is determining what would be the 
best single input, the best pair of inputs, the best set of 3 
inputs, etc. and then deciding which of these "best n 
input" sets to choose given the constraints and tradeoffs 
that apply. 

The problem of test selection is similar to the problem of 
feature subset selection when constructing a classifier. 
The difference is that feature subset selection typically is 
done once during construction and prior to the use of the 
classifier, whereas test selection is dynamic, and done 
during the diagnostic process. Here is an example of the 
feature subset selection problem. This example comes 
fromRipley [14]: 

To illustrate the difficulty, consider a battery of 
diagnostic tests Tj...Tm for a fairly rare disease, 
which perhaps around 5% of all patients tested 
actually have. Suppose test Tj correctly picks up 
99% of the real cases and has a very low false 
positive rate. However, there is a rare special form 
of the disease that T] cannot detect, but T2 can, yet 
T2 is inaccurate on the normal disease form. If we 
test the diagnostic tests one at a time, we will 
never even think of including T2, yet Ti and T2 
together may give a nearly perfect classifier by 
declaring a patient diseased if Tj is positive or Tt 
is negative and T2 is positive. This illustrates that 
considering features one at a time may not be 
sufficient, (p.327) 

2    Decision theory formulation 
2.1     Definition of value of information (VOI) 

Value of information analysis is a central part of 
diagnosis, since it determines which test or observation 
to pursue. [2,8,9,10] This section explains value of 
information and its approximation as mutual information. 
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The general question is to compare the improvement in 
the consequences of the subsequent decision based on 
the information generated or received. The degree of 
improvement becomes a measure of the quality of the 
information. 

The value of information measure is a by-product of an 
expected value optimization problem; it requires no 
additional information. Put in the context of diagnosis, 
the problem becomes the maximization of a value v(d,f) 
that is a function of the repair actions taken d and the 
fault state/of the device. The fault state is uncertain, 
described by its probability distribution p{Fk}. The 
optimization problem before acquiring test data is 

v* = ma.xdEf[v(d,f)], 

where the expectation over/is written as £/ ]. 

(1) 

The Bayes network diagnostic model specifies the 
probability distribution over faults and observations, by 
which information from test observation is introduced 
into the model. The tests or observations, Qj, can be 
known directly and reveal partial information about the 
faults. By solving the model given the test values, we 
can obtainp{Fk\Qj}, the distribution over fault states 
which are revealed by the test values in addition to pfQj}, 
the marginals on the tests. These are the distributions 
necessary to calculate VOL 

When posed as an expected-value decision problem, the 
formulation of VOI consists of a sequence of at least two 
decisions, together with the observation, fault and 
outcome variables. In the following equation, two 
distributions summarize the entire diagnostic model, 
plQj) representing the set of observation variables and 
the p{Fk\Qj} representing the set of all fault variables. 
Looking at the decisions as time-ordered, the first 
decision t is called the test; the decision d that follows it 
is the repair. The repair affects the outcomes and hence 
the value. The value is also a function of the fault state. 
The test affects solely the information available when the 
decision to repair is made. 

V(0 = tfimax, Ef[v(d,f) I q,t]\t] (2) 

Equation 2 gives the value as a function of the test 
variable, or the value with information. For VOI we need 
the difference between this and the value without 
information: 

Test selection is done by selecting t that maximizes 
VOI(t). In greedy test selection, the computation of VOI 
over the remaining set of tests is repeated after obtaining 
each test result. As long as there remains a test whose 
outcome would change the decision made, VOI will be 
positive. Positivity of VOI offers a valid stopping rule for 
testing. This rule extends naturally when there is a fixed 
cost, hence a net value, for each test. In cases where test 
resources or time for diagnosis are constrained, [7] the 
optimization problem can be extended to a constrained 
optimization problem by optimization under a cost 
constraint. 

VOI can be burdensome to model since it requires a 
value function for combinations of repair and fault 
outcomes in addition to the complete Bayes network 
model. A full value model would range over the 
probable actions to be taken based on a diagnosis, and 
the both the costs and benefit consequences of those 
actions. 

2.2     Entropy as a surrogate for VOI 

In cases where a value function is not available VOI can 
be approximated qualitatively by entropy-based methods. 
[1,17] Entropy-based methods do not require a value 
model because in effect they assume that the "regret 
values" in the value functions are the same for any 
wrong diagnosis (false alarm or missed fault). Entropy is 
a function of a probability distribution that corresponds 
roughly to the non-specificity of the distribution. To 
assign an entropy-based value to information we will 
derive a measure that ranks observations by their ability 
to decrease the entropy of the fault probability 
distribution. The effect of this decrease in entropy will be 
to drive the probabilities of faults toward extreme values. 

To measure the impact that knowing an observation 
variable will have on the probability distribution of a 
fault, we need an entropy measure of the correspondence 
of between the fault and observation random variables. 
The joint entropy of two random variables can be 
partitioned into a part that "overlaps," and the part that 
does not. The overlap is the pair's mutual information. 
For independent random variables it is zero. For identical 
random variables, it is equal to either random variable's 
entropy. These properties make mutual information 
appropriate to rank observations by their ability to 
confirm or refute a fault. The derivation of mutual 
information parallels that of VOI. The entropy of F is 
given by: 

VOI(t) = v\t)-v (3) 

H(F) = -Ef [In P{Fk}] (4) 
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The entropy of F conditioned on an additional 
observation Q, called the conditional entropy [ 1] is 
given by: 

H(F\Q) = -Eftq[lnP^k\QJl (5) 

The difference between the prior entropy of the fault 
H(F) and the entropy conditional on observation Q, gives 
the mutual information for F and Q: 

I(F;Q) = H(F)-H(F\Q) (6) 

Equation (6) mimics Equation (3). They are both the 
difference of two terms, one an expectation over F, the 
other an expectation over F and Q. They differ in that 
mutual information uses the logarithm of a probability in 
place of a value. If we assign a "regret value" of 
-ln(p{F\Q}) to a missed fault and -ln(l-p{F\Q}) to a 
false alarm, this formula corresponds to an expected 
value of information. It effectively penalizes any 
incorrect belief in proportion to the logarithm of the 
probability assigned to that false belief. In mutual 
information, the log function provides the convexity that 
the maximization operator provides in VOI. 

Unlike VOI, I(F;Q) is almost always positive and does 
not offer a natural stopping rule. To put a limit on testing 
either the urgency of the fault, or a constraint on test 
costs can be included in the model. 

2.3     VOI, mutual information and test relevance 

There are two independence criteria that are necessary 
for any test value value(Qj), both of which are satisfied 
by both VOI and mutual information. The first is that the 
value is non-negative, and if the observation is 
independent of the fault, then the measure is zero. This 
is necessary to eliminate tests that are irrelevant. 

Assumption 1: pfQ I F} = pfQ} implies that 
value(Qj) = 0. 

Furthermore, we want the dependence among value 
measures to mimic the conditional dependence among 
observations. This is a necessary condition to be able to 
identify conditionally independent tests that will not 
present problems with greedy selection, and so do not 
have to be considered in non-myopic algorithms. 

Assumption 2: If p{Q I Faults }= 
p{Q I other observations, Faults } then value(Qj) = 
value(Qj\other observations). In other words, the 
conditional independence relations among tests are 
respected by the test value measures. 

It is also desirable that the test measure not depend 
strongly on the current beliefs about the faults, but rather 
on the qualities of the tests and the test dependencies. 
This is desirable because the test values and thus the test 
rankings will be stable as the fault probabilities change 
due to previous observations. This condition is not 
necessary, and both VOI and mutual information have a 
weak dependence on fault posteriors. A complete 
axiomatic specification of the desirable properties of test 
relevance remains an open question. The question of 
axiomatizing relevance has been addressed in the 
machine learning literature. See [18]. 

If we assume that all observations are conditionally 
independent, then the optimal test ordering is just the 
greedy selection of tests in decreasing order by their 
value/cost ratios as initially computed. If all tests are 
assigned equal costs, this reduces to a ranking by value. 
In practice, conditional independence of tests is an 
unrealistically strong assumption, since it ignores 
dependencies that are captured in the Bayes network 
diagnostic model. The next section of this paper shows 
what can be done to account for dependencies among 
observations contained in the Bayes network. 

3    Greedy active fusion and its 
extension 

3.1     Example of greedy failure 

The dependencies that confuse greedy test selection 
occur for both VOI measures and its entropy-based 
approximations. They are a property solely of the 
probabilistic dependency structure of the model and 
occur irrespective of any cost constraints on tests. In the 
first example the failure occurs when two tests are 
meaningless by themselves, but form a powerful test 
when used in combination. The observations are valuable 
only as a pair, thus in greedy test sequences the tests will 
be passed over, leading to test orderings that are not 
optimal. 

Figure 1 is an example of a diagnostic network with two 
dependent observation variables. In this example the 
conditional distribution of fever is uniform 

P{ Fever 1 Disorder } Fever = absent Disorder = present 
Disorder = absent 0.5 0.5 
Disorder = present 0.5 0.5 

and the conditional distribution of headache has this 
structure: 

P{ Headache 1 
Disoider. Fever } 

Headache = 
absent 

Headache = 
present 

Disorder = absent, 
Fever = absent 

0.3 0.7 

Disorder = absent, 
Fever = present 

0.8 0.2 
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Disorder = present, 
Fever = absent 

0.7 0.3 

Disorder = present, 
Fever = present 

0.2 0.8 

The result is that the test values of headache or fever 
individually are zero. If headache = true, the probability 
of disorder conditioned on this observation's value does 
not change. Similarly for headache = false, or for either 
value of fever. If it is the case that redness or irritation 
are weaker effects of the disorder than the combination 
of fever and headache, then ordering the test sequence 
test value should place the combination of fever and 
headache first. 

Figure 1: A diagnostic network with one fault node, 
"disorder," and four observation nodes. The 
observation node "irritation" and "redness" are 
conditionally independent given the fault node. The 
nodes "fever" and "headache" are not, because of the 
conditioning of "headache" by "fever." 

Dependencies among observation variables can also 
occur for tests that nullify one another. Perhaps the 
disassembly necessary for one test precludes the 
measurements called for by another. In that case either 
test may have nominal value, but taking one test reduces 
the value of the second. Instead of looking for tests to 
combine, such conditions will disqualify one of the two 
tests, so that one will be used in lieu of the other. 

Typical of multiple-fault models, the dependency 
between observations will be indirect, by a path through 
another fault. In Figure 2 irritation and redness have a 
second-order conditional dependence, itself conditional 
on the posterior of disorder!. This is due to the 
conditional probability tables for irritation and redness, 
which have the same form as the table for headache. The 
priors on disorder and disorder! are uniform, and the 
conditional probability for context is any such that the 
test value with respect to disorder2 is positive. 

Irritation and redness exhibit a second order conditional 
independence from the point of view of diagnosing 
disorder. The conditional dependence shows up only 
when the posterior on disorder! is perturbed, in this case 
by observing context. Thus the value of both irritation 
and redness is zero, regardless of whether the other is 
observed, unless the variable context is observed. 
Characteristic of this model fragment is that the test 
value of all three variables with respect to disorder is 
zero initially. 

Figure 2: A multiple fault network, with fault nodes 
"disorder" and "disorder2." The disorder nodes create 
dependencies among the two observations "irritation" 
and "redness." 

3.2    Finding globally optimal sequences of 
tests 

The basic greedy algorithm for sequencing tests based on 
diagnostic value computes the value for all potential tests 
(or more generally, fusion inputs). It then selects the test 
with the highest value as the recommended next test. In 
an interactive setting, we would perform this test, then 
re-evaluate the remaining tests because their values may 
have changed based on the findings from the first test. 

However, in building up a set of tests to recommend, we 
do not have the information about the first test's outcome 
at the time we select the second test; all we know is that 
the first test will be done. So "greedy" in this context is 
a little more complicated than it is in the one-test-at-a- 
time context. Here, the value for the second test must be 
computed for each possible result of the first test; these 
are then combined additively, weighted by the marginal 
probabilities of the outcomes on the first test. Similarly, 
once the second test has been selected, the remaining 
candidates must be re-evaluated based on all 
combinations of results from the first two tests. 

It should be obvious that when there is a large number of 
possible tests, the number of combinations expands quite 
rapidly. Some simplifications can be achieved by noting 
that under certain conditions that can be ascertained from 
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the Bayes Network, the value for several tests will be 
independent of the newly added test, so no recalculation 
is needed. Furthermore, it may be possible to compute a 
bound on the potential impact of the newly added test on 
each remaining test, and recompute only the ones that 
show large potential effects. 

If this algorithm is continued until the entire set of 
remaining tests is exhausted, the results can be plotted on 
a cumulative-value chart like the one shown in Figure 3. 
The values are shown as percentages, where zero 
corresponds to the state of information before any of the 
remaining tests have been done, and 100 percent 
corresponds to the value of performing all of the tests. 
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Figure 3: Initial results of greedy algorithm 

Most of the time, the slope of each successive line 
segment will be less than or equal to its predecessor and 
the overall curve will be convex upward. In the curve 
shown, there is one instance where the curve displays a 
concavity. Any such concavity in the context of our 
greedy algorithm must indicate that the incremental 
value of the newly added item has changed because of a 
dependency on the immediately prior item (in the context 
of the other prior items). 

If we call the two tests in question A and B, then the fact 
that A was chosen first indicates that, given whatever 
tests lie to the left on the chart, the value-slope for B was 
lower than that for A. The concavity indicates that the 
value-slope for B given A is greater than the value-slope 
for A. This algorithm assumes that while values of the 
various tests in a set may change depending on the 
sequencing of the tests, the total value of all tests in the 
set does not depend on sequencing. This is because we 
are simply adding tests to a "to-do" list, not observing 
their results. 

The dependency suggests a way to repair this concavity 
by linking A and B together into a single entity "AB" 
whose value is value(A) + value(B\A), and cost is cost(A) 
+ cost(B\A). We now reorder the tests using AB in place 
of A and B. (Only a limited number of tests need to be 
reordered; details of the reordering algorithm are beyond 
the scope of this paper.) 

This combination step that is added to the greedy 
algorithm must be performed for all sequences of tests 
that have not been taken. This imposes a computational 
burden. In the next section we examine how the 
structure of the Bayes network can be exploited to ease 
this burden. 

3.3    Simplifying the search for dependencies 
from the Bayes network structure. 

The search for tests that must be combined in order to 
compute accurate test values can be simplified by the 
dependency relations that are evident on the Bayes 
network. From assumption 2 it is clear that observation 
variables whose only parent is a single fault will not 
change their rank with respect to other single parent 
siblings of the same fault. Thus once we have combined 
fever and headache in Figure 1, this principle tells us that 
no further test combinations need to be considered. 
Unfortunately this simplification applies only in single 
fault models. Heckerman et al. [5] made the equivalent 
observation that non-myopic computations needed to be 
considered only among sets of observation nodes that 
remain connected once the fault node is removed from 
the network. 

In the more general case, the indirect dependencies 
between observations due to common faults must be 
considered. It is true in a strict sense that observations 
whose dependencies are only due to common faults are 
conditionally independent give the set of fault variables. 
This fact has little practical value since it requires 
combining all common faults when calculating the test 
values. The problem in the multiple fault model is that 
observations can be dependent on observations 
connected by paths through alternating fault and 
observation nodes. There are two principles that 
simplify this. The first is a consequence of d-separation 
[13], which says that paths through observation nodes 
that have not been observed can be ignored. Initially this 
is helpful, but as the set of observations starts to fill up 
the network, the dependencies proliferate. The second 
principle is the Markov property of the network. The 
consequence of this is that the effect of an observation 
path that passes through an observation node that has 
already been observed can have no greater effect that the 
already observed observation node had. The 
formalization of these principles with respect to test 
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value measures and their ability to limit the complexity 
of non-myopic search is beyond the scope of this paper. 

4    An application to automobile 
diagnostics 

The concept of active fusion applies to a comprehensive 
"senses only" automobile diagnostic model that we are 
building. The model covers 188 observations that can be 
made by a typical consumer without recourse to tools or 
instrumentation. Based on the observations that a user 
makes, the model ranks 180 subsystem faults that 
correspond to repair recommendations. It is implemented 
as a multiple fault model in a single Bayes network with 
360 nodes. As a multiple fault model, it can identify 
simultaneously more than one fault from sets of 
observations that arise from the co-occurrence of faults. 
This is one of the largest diagnostic Bayes networks that 
has been constructed. 

In addition to the fault rankings, the model ranks 
observations by their ability to discriminate best among 
the current candidate faults. For observation ranking the 
model currently uses an entropy-style measure of test 
value. The observation ranking features efficiently 
localize the systems in which faults are likely, based on 
the non-specific responses (e.g. noise, odor and 
drivability concerns) of a user who is not an expert auto 
mechanic. The ranking for next test candidates is central 
to making the model usable for the target audience. 
Even if the data were available at no cost, the "cost of 
confusion" to the user makes it necessary to guide the 
user's choice of tests based on active fusion concepts that 
we have presented. The advantages of active fusion for 
costless observations are similar to the reasons that 
feature subset selection is valuable in classification 
problems. 

Our plans are to extend the automobile diagnostic model 
to incorporate test measurements made by a trained 
mechanic. This includes the digital code that current 
model cars provide through interfaces such as the new 
OBDII standard. In a model intended for mechanics, 
variables that were treated as unobservable can become 
directly observable. For example, low refrigerant levels 
that can only be inferred in the "consumer" model are 
measurable with the proper equipment. Metaphorically 
the "fringe" of observations in the model "rolls up" and 
the previous faults serve as observations, while "higher 
level" faults are added above. The profusion of new 
observation and fault variables will multiply the size of 
the model several times, but the higher diagnostic value 
of the added observations should permit convergence on 
a clear diagnosis with far fewer observations. We are 
pursuing the active fusion problems raised in this paper 
to address the needs of such a model. 

5    Discussion and Future Directions 
5.1 Previous work on non-myopic VOI 

The limitations of myopic VOI were addressed in a paper 
by Heckerman et al [5]. They formulated a true VOI 
problem where the decision variable has two alternatives 
so that the switch point between the alternatives is 
indicated by a probability threshold. The novel 
contribution of the paper was to approximate the series 
of observations by applying the central limit theorem to 
the sum of log-likelihoods of the observation variables to 
approximate the distribution of which side of the switch 
point that combined effect of the tests would fall. This 
gave an estimate of the probability that the set of 
observations would result in a change of the decision. 
This approximation assumes that the set of dependent 
observations is large. It has not been tested in practice. 

5.2 Evaluation of the approach: Benefits of 
active fusion at different stages of 
diagnosis 

The problem of optimal active fusion still raises many 
questions. The points that we have made in this paper are: 
• Optimal active fusion can be defined by reference to 

VOI in a probabilistic model of diagnosis - this 
serves as a gold standard for any solution that can be 
proposed. Deviations from optimality can be found 
by looking for non-convexities in the test sequence 
Pareto curve. 

• Non-myopic methods are necessary when 
observation variables are not conditionally 
independent given the fault variables of interest. 

• The complexity of an exact solution to the problem 
depends strongly on the dense-ness of dependencies 
among observation variables. These dependencies 
may be mediated by other fault variables in the 
model. 

5.3    Anticipated applications and future 
research 

There is a recent growth in interest in the related problem 
of feature subset selection in the classification literature 
[14,18] that is applicable to the active fusion problem. 
They address the question of what are the appropriate 
measures of test value. Optimal methods for active 
fusion depend upon this question. Additionally, decision 
theory addresses how outcome values come into play in 
comparison to the purely statistical approaches in the 
classification literature. We expect that the development 
of optimal active fusion methods will be driven strongly 
by results in these two areas. 
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Abstract: 
A fuzzy logic based approach is used to infer the 
correlation of data in linguistic and numeric formats. 
Case based reasoning is used in our design to 
categorize our linguistic database. This technique is 
applied to an aircraft guidance problem to help the 
aircraft land more safely on the aircraft carrier. By 
correlating the numerical motion trajectories with the 
previous grading of related aircraft approaches in a 
linguistic database, an average of the latest ten 
approaches is presented to facilitate decision making. 
Fuzzy logic proves to be effective in delivering the 
data mining result in this problem environment 
characterized by heterogeneous information, 
uncertainties, and incomplete data. 

1    Introduction 
With increasingly widespread use of computers 
in recent years, the number of formats and types 
of data being stored has also increased 
dramatically. Correlating this stored data with 
the need of specific problems and producing a 
decision or recovering related information is not 
a trivial issue. Data mining of data of different 
nature, e.g., linguistic vs. numeric, is even more 
challenging. Fuzzy logic [1] has been used 
extensively in relating linguistic domain 
knowledge to numeric computation. Linguistic 
rules that summarize the domain knowledge are 
interpolated with numeric fuzzy membership 
functions for inference purposes. Fuzzy logic 
approach has proved to be a low cost and robust 
way of producing a quick around solution for 
many engineering problems [2]. Areas of fuzzy 
applications include control[3], query[4], data 
mining[5], and pattern recognition[6]. 
It is common to encounter uncertainties and 
noises in data mining problems. It is also typical 
that not all the information is available to 
provide a solution needed. The fuzzy approach 
is effective in dealing with both of these 
challenges. Case based reasoning [7] is most 
effective in retrieving similar cases to solve 
problems at hand. Aided with fuzzy logic 

reasoning, a case based reasoning design is 
expected to be more competitive in solving 
problems with uncertainties. Our innovative 
design is applied to construct a guidance aid for 
guiding fighter planes to land on aircraft 
carriers. 

We will start by defining the problem in 
section 2. Basics of fuzzy logic are provided in 
section 3. The issue of data mining 
heterogeneous data is introduced in section 4. A 
real problem of creating a decision aid through 
data mining heterogeneous data for guiding 
aircraft to land on carriers is used to illustrate 
the design principle. Finally, future research 
issues are summarized in the Conclusion 
section. 

2    Problem Statement 
Consider the problem in which input 
information is in a different format than the data 
stored in the system and relevant data and/or 
inference are to be drawn based on some 
specified criterion. 

Without loss of generality, we assume 
the input information is in numeric and the 
stored data is in linguistic form. Figure 2.1 
illustrates this kind of problem. An inference 
engine is to be designed so that it can retrieve 
multiple pieces of data from the linguistic 
database and match the description of the 
numeric data presented as input. There are 
several challenging issues that need to be dealt 
with in this problem: 
1) A mapping that maps the numeric features 

of the input data to the corresponding 
linguistic variable in the database. 

2) More than one dataset, with different 
matching scores, may be produced from the 
data mining process. 
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Figure 2.1 Heterogeneous Data Mining 
Problem 

3) As more input data becomes available, the 
inference system needs to adaptively update 
the data mining result based on the latest 
overall input data. 

4) The input data may be noisy. 

Filtering will be applied in the 
preprocessing so that the effect caused by 4) is 
minimal. We shall assume the input data is 
prefiltered but noise may still be present. An 
expert may be consulted to construct the 
mapping needed for 1). However, different 
domain experts may have different subjective 
definitions of proper linguistic-to-numeric 
correlations. For example, the notion of high 
may be interpreted as 10 by one individual and 
12 by another. Even though different 
interpretations of the same linguistic variables 
may not differ by too much, it is safe to assume 
that the chosen mapping can only function 
approximately in general. A methodology like 
fuzzy logic is needed to deal with this need. 
Furthermore, since the mapping between the 
linguistic and the numeric domain is only 
approximate, it makes sense for the system to 
generate more than one output with matching 
scores for reference purposes. This requirement 
can also be handled if fuzzy logic approach is 
adopted. 
To be able to adjust the data mining result on 
the fly, previous inference outcome and the 
current inference result should both be 
considered in determining the matching data to 
be retrieved. It makes sense to weight the 
recent information more heavily in the overall 
inference process. 

A real-life example of data mining a stored 
flight database in order to guide Navy aircrafts 
to land safely on carriers will be used to 
illustrate our approach in section 4. 

3    Fuzzy Logic Inference 

3.1 Fuzzy Membership Functions 
The technology employed to fuse heterogeneous 
numeric and linguistic data is fuzzy logic. The 
concept of fuzzy sets was introduced by Zadeh 
in 1965. Since then, fuzzy logic has advanced 
in a wide variety of disciplines such as control 
theory, topology, linguistics, optimization, and 
category theory. Unlike a crisp set, a fuzzy set 
allows partial membership. Fuzzy logic is a 
generalization of the traditional TRUE/FALSE 
bilevel logic, one that allows for non-sharp 
transition, representing a region of partial truth, 
between absolute true and absolute false. For 
example, although the assertion that an 
individual is male is either true or false (and is 
therefore crisp), the assertion that an individual 
is fat is not so clearcut. Figure 3.1 demonstrates 
how the fuzzy sets may be used to capture this 
concept. A person with a body fat percentage of 
16.5 has membership values of 0.12 and 0.43 in 
the "lean" and "moderately overweight" fuzzy 
sets, respectively. 

3.2 Fuzzy Inference 
The basic architecture of a fuzzy logic data 
analysis system is illustrated in Figure 3.2. The 
numerical input data is codified through the 
fuzzifier into the equivalent linguistic 
parameters (such as lean, moderately 
overweight, and obese), with associated 
membership function values. The inference 
engine uses the knowledge in a particular 
representation to derive some expert conclusion 
or offer expert advice. It includes the system's 
general problem-solving knowledge. Various 
rules in the knowledge base and decision- 
making logic are invoked and recover the 
decision actions with different degrees of 
emphasis depending on their respective 
membership values. 
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Figure 3.1 Fuzzy Membership Functions 

A typical fuzzy rule might be: If you 
feel hot, the temperature is high. The final stage 
in the fuzzy logic data processor aggregates all 
the inferred fuzzy data and produces an 
appropriate conclusion or classification of the 
system's input. If the system's output needs to 
be in non-fuzzy numerical format, it is the 
responsibility of the defuzzification module to 
convert fuzzy data to numerical from. 

input 
data 

Intecfence engine 

'.I       t       " 
DefazzJfier *Di classification, 

decision 

Fuzzy wie base 
(optimization of system by experience 

oc engineering expertise) 

Figure 3.2 General architecture of fuzzy logic 
data analysis system 

4   Data Mining Heterogeneous 
Databases 

4.1   PAD AL 
The data mining approach discussed in this 
paper will be illustrated in solving the problem 
of construction of a Piloted Approach Decision 
Aid Logic system (PADAL), designed to 
provide guidance and advice in the domain of 
planes landing aboard aircraft carriers. This 
function is presently handled by landing signal 
officers (LSOs), navy personnel that offers 
corrections and feedback to the pilots 
attempting to land aboard the carriers. After the 
completion of each landing pass, the responsible 
LSO records a linguistic comment describing 

the pilot's trajectory and rates the pilot's 
performance. This information is subsequently 
stored in APARTS (Automated Performance 
and Readiness Training System) database. The 
goal of PADAL is to process the numerical 
radar data which provides information about the 
current landing trajectory and retrieve linguistic 
descriptions of similar landing passes executed 
by the same pilot in the past. These retrieved 
comments are merged to provide the landing 
signal officer with a concise summary of the 
pilot's past flight pattern. This procedure 
summarizes the pilot's performance in a 
succinct linguistic form and enables the user of 
PADAL to predict the pilot's future actions by 
consulting the summary of similar past 
behavior. 

4.2    Linguistic APARTS Database. 
The existing system stores trajectory 
descriptions in 2 formats: landing signal 
officers' (LSO) linguistic comments describing 
the previously executed landing approaches and 
numerical radar data which provides 
information about the current landing trajectory. 

This section focuses on the linguistic 
representation of aircrafts' trajectories and the 
decoding technique used to analyze it. Each 
landing approach is subdivided into 5 stages 
based on the aircraft's distance from ship's deck: 
One Nautical Mile(lNM), At Start(X), In the 
Middle(IM), In Close(IC), and At Ramp(AR). 
These stages describe how far away the landing 
aircraft is from the deck. Signal officers' 
comments are recorded in a special shorthand 
code which describes various aspects of the 
pilot's approach for each landing stage. These 
shorthand comments can be subdivided into 
several major types: comments referring to 
glideslope (approach angle) of the landing 
aircraft, its lineup (horizontal distance from the 
center of the deck), rate of descent, power, 
pilot's attitude, and miscellaneous comments. 
An example of a lineup comment would be LUL 
(lineup left), LUR (lineup right), or CB (coming 
back), as well as several others. Plane's 
glideslope might be described by H (high) or 
LO (low) comments. TMRD (too much rate of 
descent) or NERD (not enough rate of descent) 
are two of the comments used to describe the 
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aircraft's rate of descent. Numerous other 
comments are used to reflect different properties 
of airplane's landing trajectory. The comments 
may be modified by the following 2 sets of 
symbols: ( ) (= a little) and _ _ (= very) which 
denote the degree of comment's applicability. 
For example, (F) means a little fast, while 
_TMP_ may be deciphered as way too much 
power. 

The following sample comments 
illustrate the use of LSO's shorthand code: 

H(LUL)X     High and a little lined up 
left at the start. 
HFIM High and fast in the middle 
_NEPLOIC_ Not nearly enough power, 
very low in close 

The stage comments are combined to 
create a linguistic description of the entire 
landing trajectory: 
(HX) NEP.CDIM LOBIC-AR A little high at 
the' start. Not enough power on come down at 
the middle. Low and flat from in close to at the 
ramp. 

The system contains a database of such 
linguistic comments which describe different 
landing approaches performed by various pilots. 
In order for this data to be useful, information 
contained in the comments must be extracted. 
The first step towards extraction and utilization 
of this information is parsing. Parsing reveals 
the structure of the comments represented by 
parse trees constructed from appropriate 
grammar rules. A chart parser based on the 
LSO-specific domain grammar is used to 
process the comments. 
The following several rules are representative of 
the domain grammar: 

COMMENT -> DESCRIPTOR* 
(a comment may consist of a number of 
consecutive descriptors) 
DESCRIPTOR -> LINEUP 
(lineup is one type of a descriptor) 
DESCRIPTOR-► GLIDESLOPE (glideslope is 
another type of a descriptor) 
LINEUP -» LUL 
(LUL (lineup left) is a shorthand code which 
contains lineup information) 

LINEUP -> LUR 
(LUR (lineup right) is a shorthand code which 
contains lineup information). 

The parser functions by reading a 
comment from left to right, trying to match it 
against all the applicable rules in the grammar, 
and keeps a constantly updated chart of all the 
active rules describing the currently processed 
portion of the comment. For example, LU... 
could refer to the beginning of the lineup left 
(LUL) comment, lineup right (LUR) comment, 
or simply describe the fact that the pilot is 
trying to lineup (LU). The next symbol in the 
string might disambiguate this expression. 
When the parser is done with the comment, it 
constructs a parse tree which summarizes the 
comment's structure. 
The following example illustrates the result of 
application of this procedure to a sample 
comment: 

Parse tree which represents HLULIM-IC high, 
lineup left in the middle and in close: 

Comment 
Glideslope 

H     (high) 
Lineup 

LUL (lineup left) 
Stage 

Stage 
IM (in the middle) 

Stage 
IC (in close) 

Once a parse tree is constructed, the 
relevant information which can be used to infer 
the plane's trajectory is extracted by the 
program.   For example, the above comment 
contains glideslope information (high) and 
lineup information (lineup left) which allows 
the application to determine the plane's position 
in the specified distance range (in the middle 
and in close). This intermediate analysis will be 
used subsequently in heterogeneous data fusion. 

4.3    Numeric Motion Profile. 
When a plane is attempting to land on a ship's 
deck, the landing signal officer's comment 
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describing the pilot's performance is not yet 
available to the system. However, the ship's 
radar constantly monitors the pilot's progress 
and relays the numerical aircraft position data to 
the system. This motion profile provides the 
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Figure 4.1 Aircraft Motion Profile 
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Figure 4.2 Lineup and Glideslope vs. Time 

analogous fuzzy sets which construct a "very 
high" (_HJ to "very low" (_LOJ classification 
of the aircraft's glideslope. These fuzzy sets 
map directly onto the comments used by LSOs 
to describe the aircraft's position. 

Similar fuzzy definitions are 
constructed for various other parameters that 
define the landing trajectory. These fuzzy 
concepts enable the system to classify any point 
in the landing trajectory by associating fuzzy 
membership values with it. For example, a 
marked point in Figure 4.2 has the glideslope 
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Figure 4.3 Lineup & Glideslope Fuzzy 
Membership Functions 

deviation from the nominal glideslope (3.5°) of 
3.7314°-3.5° = 0.2314°, which corresponds to 
the following glideslope classification: 

basis for analysis of the current landing 
trajectory and allows for its comparison with the 
previously executed landings. Figure 4.1 shows 
a sample numeric motion profile. Figure 4.2 
illustrates decomposition of thus profile into 
corresponding lineup and glideslope trajectories. 

4.4    Fuzzy Logic in PADAL Domain. 
Fuzzy logic is employed in PADAL to perform 
numeric-to-linguistic conversion in order to 
ensure homogeneous data format necessary for 
information fusion. Fuzzy lineup and glideslope 
functions are represented in Figure 4.3. The 
lineup category consists of 7 fuzzy sets, ranging 
from significant left lineup (_LUL_) to 
significant right lineup (_LURJ. The 
glideslope category is subdivided into 7 

Glideslope: 
Hu, =0.00      HH =0.39 
H^o = 0.00        HH = 0.93 

RLO) = 0.00       M-(H) = 0.27 

IMPERFECT 
=
 0.00 

This means that an aircraft in that position is 
very likely to be classified as high by a landing 
signal officer, somewhat likely to be classified 
as very high or a little high, and extremely 
unlikely to be classified as low. 

Some concepts may be represented by a 
union or intersection of fuzzy sets. For 
example, WU (wrapped up) is an LSO comment 
used to describe significant deviation of the 
aircraft from nominal lineup or glideslope in the 
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beginning of its landing pass. In cases like this, 
the fuzzy membership is calculated with a fuzzy 
OR operation which is defined by 
a maximum operation: 
u(WU) = MAX(u(lineup WU), n(glideslope 
WU)) 

Once classification of a trajectory point 
is achieved, it is easy to classify a region by 
calculating the average of all the membership 
values of all the points in that region, i.e. 

/^(region) = 

£/*(pointi) 

N 
(4.1) 

where 
uF - membership value for fuzzy set F 
point, ... pointN - points which comprise the 
region in question 
N - number of points in the region in question. 

Figure 4.4 shows all the fuzzy set 
membership values for the region between 2 
dotted lines in Figure 4.2 (corresponding to "In 
the Middle" aircraft landing stage). 

At this point, the system is ready to 
retrieve previously stored linguistic cases most 
closely resembling the current landing 
trajectory. This is done by computing a 
similarity measure (SM) of the current numeric 
r^ctoryjwith respect to each 

[SLIGHT] [NORMAL] [HIGH]                 : 1 
LINEUP 
DL 0.000 0.000 0.000 
DR 0.000 0.000 0.000 1 
CHLU 0.000 0.000 0.000 
CB 0.189 0.189 0.189 
LU 0.000 0.000 0.000 
LUL 0.000 0.004 1.000 if 
LUR oooo 0.000 0.000 
OS - 
NESA 
WU 
GUDESLOPE: P 
LO 0.000 0.000 0.000 
H 0.598 0.061 0.008 
B 0.000 0.000 0.000 
RATE OF DESCENT: 
UP 0.000 0.000 0.000 
DOWN 0.000 0.000 0.000 
TMRD 0.099 0.033 0.001 
NERD 0.33S 0.187 0.203 
SRD 0.000 0.000 0.000 
CD 0.011 0.448     ' 0.244 %i 
S 0.000 0.000 0.000 
CO 

' 1 m f=S'":>j;S|I ||§||S|S|f5| A 

stored linguistic comment based on the 
following formula: 

Let C be a comment which consists of several 
descriptors D,.. .DN: 
Then 

N 

SMstage = ^//bi(region) (4.2) 
1=1 

Each membership value fiF represents the extent 
to which the current trajectory in the current 
stage can be classified as F. SM for each stage 
with respect to some comment C is computed by 
evaluating a sum of the membership values 
which determine how closely the numeric 
motion profile approximates each component of 
C. 

Example: computation of SMInTheMiddle for 
comment (H)LULIM based on the data in 
Figure 4.4. 
SMInTheMiddle = Li(H)(InTheMiddle) 
+ uLUL(InTheMiddle) = 0.004 + 0.598 = 0.602 

Similarity Measure is computed online 
every time the approaching aircraft passes the 
next landing stage. Each time a similarity 
measure is recomputed, exponential forgetting 
is used to assign higher weight to the later 
stages: 

SMtotal = ocSMstage+(l- a)SM, -■■previous stage (4.3) 

This total similarity measure determines how 
similar the current motion profile is to a 
specified LSO comment. It is computed 
separately for every linguistic comment stored 
in APARTS database, and 10 most similar 
comments are retrieved for consequent 
processing, as illustrated in Figure 4.5. 

Figure 4.4 Fuzzy Membership Values For the 
Selected Region of Figure 4.2 
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SRD.(OSX) HDLIM HLULIC HCD.LUAR (0.413) 
TMP.OSX HIM PNU.HIC SLO.CDAR (0.412) 
SRD.OSX HSLOIM-IC PNU.CDAR (0.412) 
(OSX) (H.CBIM) (NEP.CDIC) (LOAR) (0.315) 
HOOT-X (HIM) (HCDIC-AR) (0.195) LOOSX ACBIM 
HBIC-AR (0.120) 
(LOOSX) OCNEP.CBIM HIC HCDAR (0.120) 
(LO)OSX (TMP.CBIM) (HIC) (HCDAR) (0.120) 
(LO)OSX ACBIM HDLIC (VLUAR) (0.120) 
(AOSX) TMP.CBIM HIC (HCDAR) (0.120) 

Average: (LOOSX) CB(LURIM) HIC 

Figure 4.5 Retrieval of Similar Comments. 
Each comment is followed by SMtotal in 
parentheses. 

4.5   Data Fusion 
Retrieval of past similar cases is an inherently 
useful operation since it exposes the trends 
manifested by the aircraft's numeric motion 
profile. Moreover, it is reasonable to assume 
that previous landing approaches similar to the 
current one will also exhibit similar behavior in 
the future (especially if the search is restricted 
to previous landings performed by the same 
pilot). Thus, the PADAL system enables 
landing signal officers to predict the 
approaching pilot's future flight pattern based on 
past experience. However, PADAL is a time- 
critical system which needs to present 
information to the user in a concise and easily 
understandable fashion. In order to accomplish 
this, the system breaks up the comments into 
distinct stages and categories (lineup, 
glideslope, rate of descent, etc.) as described in 
the APARTS section of this paper. Once this 
operation is completed, the information 
contained in 10 distinct comments is merged 
within each category and each stage. This 
fusion operation takes place in 3 steps: 
1) Transformation from linguistic to numeric 

domain, 
2) Averaging, and 
3) Transformation back to linguistic domain. 

In order to accomplish the linguistic-to- 
numeric transformation i|/N, a characteristic 
value is associated with each fuz2y set which 
summarizes its numeric content[5]. For a fuzzy 
set represented by a gaussian function, this 
number may be defined as the mean ofthat 

function. Conversion of a linguistic concept LC 
represented by a fuzzy set with characteristic 
value X. is defined as i|/N(LC) = X. 

After the conversion of all the linguistic 
comments which belong to the same category in 
the same stage to numerical domain is 
completed, an averaging operation is applied to 
merge the data into a single numeric value. 
That number is converted back into the 
linguistic domain with a numeric-to-linguistic 
transformation function i|/L. 

Linguistic concept LC that corresponds 
to a numeric value v is defined as a concept 
represented by the fuzzy 
set F: i|/L(v)=F | nF(v) > fxF(v) V F * F in the 
category that F belongs to. 

The following example elucidates this 
procedure: 
Assume that 3 comments contain the following 
lineup information in the "In The Middle" 
landing stage: 
_LUL_, (LUL), (LUL), LUR 
Then, 
i|/N((LUL)) = -15 
v|/N(_LULJ = -7.5 
yN(LUR) = 12.5 
(from Figure 4.3) 

Average = '■— = -4.375 
4 

U_LUL (-4.375)=0.00 \L_un (-4.375)=0.00 
uLUL(-4.375)  =0.00 ^(-4.375) = 0.00 
lW -4.375)=0.14 n^C -4.375)=0.00 
UPERFECT(-4.375) = 0.02 

(from Figure 4.3) 

Max(0, 0, 0.14, 0.02, 0, 0, 0)=0.14=u<LUL) 

.-. ^(Average) = (LUL) 

Hence, fusion of _LUL_, (LUL), (LUL), and 
LUR produces (LUL). This process is used to 
compute the average comment that appears at 
the bottom of Figure 4.5. 

5    Conclusion 
A fuzzy logic approach aided with case- 
based reasoning is designed to solve a real 
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life problem involving data mining of 
heterogeneous data. The concept of 
computing with words through fuzzy 
membership functions proves to be effective 
in dealing with problems in which stored 
data and input appear in both linguistic and 
numeric formats. Although the aircraft 
landing guidance problem may not be the 
most challenging one, it represents a larger 
class of problems in which data mining and 
fusion of heterogeneous data is required to 
retrieve the needed information. 

There are several important issues in 
PAD AL domain that need to be researched 
further. By adaptively tuning the fuzzy 
inference engine or modifying the cases 
stored in a database, one should be able to 
achieve better performance and increase the 
robustness of the result. The use of genetic 
algorithms or neural nets to tune the 
parameters of our design may be a 
promising approach. 
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Abstract 
We have shown in preceding papers the feasibility of 
developing a framework for building hypertext based 
diagnosis systems. It was based on a novel definition and 
implementation of hypertext systems, which are more 
appropriate to account for the structural properties, 
which exist in any document describing a given 
engineering system. This framework also used a model 
ontology building method for representing our knowledge 
of a given system, its functioning process, as well as the 
occurrence of certain faults and the description of the 
corresponding diagnosis processes. 
In this paper we present the development of this 
approach in the case of the vibration diagnosis of 
rotating machines. We have developed an ontology of 
rotating machines by using the model ontology building 
method embedded in our hypertext system. It permits to 
browse across the ontological knowledge base for 
performing the diagnosis process. 
Given a certain problem, the user can chose among 
different methods, which one is the most appropriate. 
This choice relies on arguments, which are provided by 
the ontology. If several methods are used concurrently, 
the ontology provides a guidance for deciding, which tool 
to believe. 
Key Words: diagnosis, information fusion, hypertext, 

ontology 

1.   Introduction 
S. Abu Hakima has presented in [1] a thorough 
review of the state of the art in artificial intelligence 
(AI) techniques useful in diagnosis. Eight 
categories are identified, and a section of the report 
is dedicated to the analysis, discussion and 
prospective of each of the five that are the most 
relevant to diagnosis. They are: fault-based 
techniques, model-based techniques, case-based 
reasoning techniques, machine learning for 
knowledge acquisition, and integrated diagnostic 
techniques. The three remaining techniques are 
knowledge-based management, user interface and 
overviews relevant to diagnosis. Fault-based 
reasoning (FBR) techniques refer to what might be 
described as the experiential approach to represent 
human heuristic knowledge about maintenance and 
repair of a device or a process. Model-based 
reasoning (MBR) techniques use quantitative or 
qualitative models  of the correct and expected 
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France 
behavior of a device to detect and to explain the 
discrepancy between the observation of the device 
and its behavior predicted by the model. Case-based 
reasoning (CBR) techniques refer to the ability of 
representing, managing, and updating our memory 
of previous studied cases of a device failure. 
Machine learning for knowledge acquisition uses 
either classification techniques on data examples 
and counter examples to build a domain theory, or 
conceptual models of the domain theory to build 
analogies. Integrated diagnostic techniques propose 
elaborated answers to the established fact that no 
single strategy is suitable for diagnosis. In each of 
the five sections of [1] the strength and weakness of 
each of the approaches are discussed, with an 
emphasis on how future works will resolve some of 
their shortcomings. The integrated diagnostic 
approach is presented as superior to each of the four 
preceding ones, in the sense that it takes advantage 
of each of their strength. For example, "model- 
based reasoning is used with fault-based reasoning 
to integrate in a single system the experiential 
knowledge of diagnosing a device with its expected 
behavior. This reduces computational complexity of 
finding a diagnosis using MBR. Model-based 
reasoning is also integrated with data interpretation 
to reduce the computational search. Explanation- 
based learning is used to refine the reasoning chains 
in rule-based FBR. Rule induction is also used to 
generate FBR systems. Fault-based reasoning is 
integrated with CBR as a means of acquiring new 
knowledge and reducing the search for a diagnosis. 
Similarly, MBR is integrated with CBR to 
accelerate diagnosis" [1, pp. 78]. In addition to 
integrating AI techniques, efficient results can be 
obtained by integrating AI techniques with more 
algorithmic techniques such as real-time (RT) 
approaches [2] [3]. 
Although very attractive one major weakness of the 
integrated approach is that the role played by each 
of the integrated techniques and their relationships 
are more or less fixed by the application domain. 
Even if the employed AI techniques use non- 
predictable search-based problem-solving 
approaches,   selections   are   made   from   these 
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alternative   problem-solving   techniques   given   a 
priori knowledge of the most appropriate ones. 
It  is • easy  to   imagine  however  that  the  same 
diagnostic    system    may    be    used    differently 
according to the occurrence of a given failure with 
respect to the general state of the device. The same 
diagnostic system may present information, results 
and explanations differently according to the needs 
of the user. The same user may want to have 
different points of views of the same resolution 
process. The user may be interested in having some 
freedom  for building  relations  and  cooperation 
between different diagnostic techniques. 
Hypertext systems have been thought as systems, 
which   are  able  to  represent  and  support  the 
association of different information sources. Their 
purpose is to provide the user with the enriched 
information resulting from the association of the 
information sources. This objective is obtained by 
the use of navigation tools. Navigation tools use 
nodes and  links.  Each node is  an  information 
source. Links are built from one part of a node to 
another node (or a component of another node). 
If   the    information    sources    were    diagnostic 
techniques such as presented above, and if the links 
were the representation of how they interact to 
resolve a given diagnostic problem, the resulting 
hypertext system may be seen as a good candidate 
for    diagnostic    information    fusion.    However, 
although    necessary    for   proposing    interesting 
solutions, the common hypertext approach is not 
sufficient for providing the user with functions such 
as   comparison   of  diagnoses,   tools   expansion, 
confidence      improvement     or      inconsistency 
explanation, and so forth. This calls for proposing a 
hypertext scheme, which supports if not all, at least 
some of these functions. 
In previous work, we have proposed a framework 
for developing task oriented navigation tools for 
hypertext systems. It is based on the notion of 
contextual navigation. Its objective is to account for 
the fact that the path followed by the hypertext 
reader is not only defined by the relations between 
nodes, but also by the context in which links and 
other possibilities of navigation appear. This led us 
to define the notion of a digital document, which 
contains its own potential navigation structures. 
These potential structures become perceptible 
through projections, which correspond to 
interpretation and instantiation operations [5]. We 
have also shown that by separating nodes content 
from hypertext documents structures, it becomes 
possible to implement tools, that we call the 
instrumentation of the reading, which support the 
dynamic creation of documents while reading [4]. 
We have also been working on building a diagnosis 
typology and diagnosis ontology in the application 
domain of fault diagnosis of rotating machines. The 
approach is based on the assumption that, when 
limited to certain professional domain, the behavior 
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of the user corresponds to types, which are 
normalized by their practice. We used a generic 
tool, supported by a programming language, for 
building domain ontology, which is currently under 
development in our laboratory [6]. 
In this paper we present the third step of this work, 
which consists in integrating our hypertext scheme 
and our fault diagnosis of rotating machines 
ontology in a single tool. Its objective is to provide 
the user with efficient hypertext tools for: 
• building and browsing a domain ontology, 

including process description such as the 
occurrence of a fault or a diagnostic method, 

• building and browsing digital documents, 
which describe machines, parts, functioning, 
faults, diagnostic methods, 

• building while reading (browsing) synthetic 
documents, which propose alternatives of 
diagnoses for given faults. 

As sated above, developing such a system calls for 
an appropriate hypertext scheme. Section 2 presents 
a brief summary of our previous work on this 
subject. It describes a formal approach and an 
implementation scheme for representing the 
internal generic structure of a digital document and 
building different projections of information 
relevant to certain request of the reader. Section 3 
presents our general approach for building domain 
dependent diagnosis ontology. After introducing 
our formal language for ontology representation, 
we present its hypertext based implementation. 
Then an application to the ontology of rotating 
machines is presented. And an example of vibration 
diagnosis is described in section 4. Section 5 is the 
discussion and the presentation of future work. 

2.   Hypertext     for     Structured     Digital 
Documents Management 

The definition and the implementation of a 
hypertext scheme, which makes it possible to 
provide users with efficient tools for digital 
document management has been thoroughly 
presented in [4,[5]. Nevertheless the presentation of 
the hypertext diagnosis concepts requires some 
familiarity with our novel definition of a hypertext 
system, structured documents and synthetic 
documents built while reading. The aim of this 
section is to present the material needed in the 
further sections. 
Generally, hypertext is defined as a network of 
information nodes, connected by links that allow 
passing automatically from one to the other. This 
builds up a graph structure that defines the 
hypertext. It provides the users with the ability to 
create, manipulate, or examine a network of 
information-containing nodes interconnected by 
relational links. This representation allows using a 
graph to represent a whole hypertext system. One 



important shortcoming of this approach is that 
nodes have a fixed display. Although not explicitly 
stated, this assumes that the node content implies 
the node display. This comes from the principle that 
the nodes format includes the way in which the 
node is displayed. Consequently, most models do 
not take into account the content of the node itself, 
stating that the way in which it is displayed is not 
dependant on the hypertext system. These systems 
are only characterized by the graph of nodes. Nodes 
are considered as functional units, structurally and 
semantically complete, as if they were still on a 
static medium. Another characteristic of the current 
models is that the links do not belong to the 
description of the nodes. A link is "anchored" in the 
node, but this anchoring is considered to be 
dependent on the structure and the format of the 
node. The model of the interaction of the reader is 
the description of a path in the graph of nodes. The 
problem to be solved is then to find the relevant 
path, i.e. the relevant actions of the reader for 
reading the hypertext, during a single session. 
Instead of models of the reader's path in the graph, 
we can build models of the reader's reading action. 
They are based on structuring the instantaneous 
state of the hypertext system during the reading 
action. 
The action of reading can be limited neither to the 
study of paths in graph of nodes, nor to the study of 
states of the hypertext while reading. Reading 
includes also the context in which navigation 
functions appear in a node. The information, which 
appear in a hypertext document, influence the 
information supported by the link. Thus the 
meaning of a link depends both on the structure and 
on the content of a node. Hypertext nodes embed 
their own way of navigation for browsing 
documents. Therefore, they are highly dependent on 
the content of the node. By putting this navigation 
tools into context, hypertext allows the reader to 
navigate while reading. It results in a contextual 
navigation. This implies that the path taken by the 
hypertext reader is not only defined by the relation 
of the nodes, but also by the context in which links 
and other possibilities of navigation appear. 
Thus we come up with a definition of digital 
documents, which is closer to its use. A digital 
document is composed of a limited and linear set of 
values. Each document follows a format, which 
allows its interpretation into a more complex 
structure. For example, a bitmap graphic file 
contains the size of the picture and the values of the 
pixels. By knowing the width of the picture and the 
number of bit per pixel, any program can convert it 
into a matrix of values, which can be transformed 
further into a screen picture. The format specifies 
the structure of the file, and the use of the data. 
We cannot access the document itself, as a set of 
values. We only access it through what we call 
projection. It is the means by which a format is 

made perceptible. A projection can be exhaustive, 
partial, or synthetic. The table of contents from a 
structured text is a projection of the document, even 
if it omits a great part of the file, since it is still a 
view of the same file. Another synthetic projection 
can be an index of a document; any diagram based 
on statistics, a graph of a resolution procedure, an 
intensity diagram of a graphic file. 
As we have seen above, hypertext differ from other 
kinds of interaction with digital document by the 
localization of the navigation tools in the document. 
Thus, we can define hypertext documents from this 
characteristic. The navigation tools of the hypertext 
are produced by the projection of the node content.. 
With this approach hypertext is considered from the 
point of view of the nodes. This leads to consider 
that the main characteristic of hypertext is that the 
navigation structures are localized in the nodes. 
The most general way for implementing a hypertext 
system is to use a structural markup scheme, for 
example SGML [7]. It makes it possible to build 
representations of documents. Rather than relying 
on explicitly marked links, navigation is driven by 
the structures of the documents. We have used this 
frame to develop a prototype of electronic patient 
record management with a hypertext system [4]. 
The medical record belongs to a class of 
hyperdocuments that we call dossier. The generics 
of the uses of the dossiers are one of their major 
characteristics. They can be used for very different 
tasks, and so they can be considered as working 
tools. In a professional context, it is possible to 
work out working tasks relying on the different uses 
of a dossier. This classification leads to a low 
number of typical consultations of the dossier. The 
type of the consultation determines a reading 
strategy. These types correspond to different 
reading strategies, driving to different kinds of 
readings. In the same way as reading situations are 
standardized by their professional context, reading 
types are also standardized as corresponding to well 
defined activities. We can note that these reading 
types rely on the same structures, which are used in 
very different ways. An important characteristic of 
these structures is the generics of their use. 
We have established that some readings are 
standardized enough to be useful to many potential 
readers of the record. Then, the result of this 
reading may be collected in a new synthetic 
document. We call such a document a structuring 
document, because it proposes a reading of the 
record by selecting parts and organizing them into a 
new structure. A structuring document offers a 
direct access to selected contents. Therefore, 
structuring documents can become reading tools, 
with the potentiality of dramatically increasing the 
reader' productivity. 
The implementation of these synthesis tools has 
been made using the Standard Generalized Markup 
Language (SGML). Documents are described by a 
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SGML Document Type Definition (DTD), using 
medical content tags, e.g. <medical-history>, 
and each tag used in the DTDs has a type defined 
by a generic tag of the architectural form, e.g. 
<section>, <section-title>, etc. 
When new documents are added to the 
documentary database, synthesis tools are activated 
to generate the corresponding structuring 
documents. Pieces of documents are copied and 
organized into new structured documents. These 
new documents are added to the documentary 
database with the same status as the previous ones. 
The generation of new documents, especially 
synthesis documents, implies the duplication of 
parts of the content of the generic documents. 
Actually, the content is not duplicated 
straightforward, but links are built in the generated 
document toward the generic document. It is 
however necessary to have links between 
duplicated and original contents in both direct and 
reverse direction to have a satisfying document 
genesis. 

This system has been built based on an empirical 
ontology of the physician's practice. In the 
following section, we present a more formal 
approach for building ontology. It is based on a 
formal language and its hypertext implementation 
that we have applied to the domain of rotating 
machines. 

3.   Rotating Machines Ontology 

To create a hypertext based diagnostic information 
fusion system, we need a thorough description and 
presentation of our knowledge of the domain. This 
knowledge is not a descriptive, but a synthetic and 
structural one. We need to know how each 
diagnosis concept is articulated to the others. This 
knowledge is conveyed by what is called an 
ontology. Indeed, an ontology is threefold — it 
contains the descriptions of the various sorts of 
objects of the studied domain, of their properties 
and of their links with other objects in the domain 
[9]. Thus, ontological analysis is mainly concerned 
with the way knowledge is structured, and not only 
with knowledge alone. By describing the sorts of 
objects in the studied domain, the analyst creates 
terms, which have universal value as concepts. 
Hence, a language is created, which represents the 
knowledge involved in the domain. The words used 
in this language are distinct from the words of the 
natural language. Indeed, in a natural language, the 
definition of words is supposed to be based on a 
common understanding between users, but in 
practice it is well-know that users frequently misuse 
words. Moreover, natural language definitions are 
too loose and often do not make clear the difference 
between two close items. On the contrary, an 
ontological language is newly created, even though 

it may use words belonging to the natural language. 
It is based on a newly established convention, and 
therefore, it can reduce ambiguity. For example, 
when this language needs define two close items, 
two different terms will be provided. 
We can therefore say that ontologies do not depend 
on the kind of task which is to be performed in the 
domain. Ontology defines knowledge in a given 
domain, by capturing its intrinsic conceptual 
structure [9]. 
According Chandersekaran et al. [9] ontology has 
two dimensions: 
• Domain factual knowledge provides 

knowledge about the objective realities in the 
domain of interest (objects, relations, events, 
states,...) 

• Problem-solving knowledge provides 
knowledge about how to achieve various goals. 
A piece of this knowledge might be in the form 
of a problem-solving method specifying in a 
domain independent manner how to 
accomplish a class of goals. 

However Valente et al. [10] consider that in the 
case of a KBPS (Knowledge Based Problem 
Solving), ontologies are not used to describe the 
domain, but to support applications. In this case, 
ontologies do not develop the whole knowledge 
involved in the field, but only that which is 
necessary to a good understanding of the specific 
application. We will develop our problem solving 
ontology according to this line. 
There are several knowledge representation 
languages for describing domain through an 
ontology. Genesereth and Fikes describe KIF 
(Knowledge Interchange Format), an enabling 
technology that facilitates expressing domain 
factual knowledge using a formalism based on 
augmented predicate calculus [11]. Neches et al. 
describe a knowledge-sharing initiative [12], while 
Gruber has proposed a language called Ontolingua 
to help construct portable ontologies [13]. The 
CommonKADS project has taken a similar 
approach to modeling domain knowledge [14]. 
These languages mainly describe knowledge of a 
domain. They permit to share knowledge, but we 
want more than knowledge sharing. We want to be 
able to describe and use some problem solving and 
resolution methods. 
Our approach is based on the formal language 
Def-* [15]. It belongs to the type of languages 
developed to formalize and/or operationalize 
conceptual models, according to methods similar to 
CommonKADS. Def-* is dedicated to the 
formalization of operational models. It is a high 
level programming language and is more 
declarative than the rules production languages 
used in early expert systems. Besides, Def-* is 
based on "epistemological premises", which define 
the items of knowledge the language is able to 
represent, thus forming a "representation ontology". 
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One of the central characteristics of Def-* is that it 
makes it possible to formalize reflexive tasks. 
These tasks can be assimilated to problem-solving 
activities, just like diagnosis tasks. 
So, we have developed an ontology of rotating 
machine by using the model ontology building 
method embedded in our system. 

We define three types of concepts in our ontology 
of rotating machines. They are the generic concept, 
which concerns objects, the relation concept, which 
concerns relations between concepts, and the task 
concept, which concerns diagnostic processes. 
Generic Concept 
In Def-*, a generic concept is both a series of 
objects and an entity. A definition introduced by 
Def-Concept encapsulates the representation of the 
concept's intension together with the representation 
of its properties. The conceptual definition situates 
the concept in the taxonomy by using the 
properties, which make it different from all other 
concepts. A definition of the concept is also written 
in natural language, for a better understanding by 
the user. The natural language definition is twofold: 
first, a conceptual definition translating the 
properties defined by Def-*, and second a 
"dictionary" type definition with a reference. It may 
be completed by an example and a multimedia 
illustration (picture, film, sound) of the concept. 
The concepts are therefore defined as the 
specialization of other concepts. The result is a tree- 
shaped taxonomy (Figure 1). 

rotor     shaft     fan bolt 

Figure 1: the tree-shaped taxonomy 

Relations Concept 
After defining concepts, we define their relations. 
These relations are especially important for the 
definition of the properties of each concept. 
Relations are defined by the "Def-relation" 
primitive in the same ways as the Def-concept 
primitive. Moreover, this construction makes it 
possible to define both the relational concept and all 
the couples, which are concerned by the concept. 
Figure 2 presents a simple relation concept of "is 
composed by". 

Def-relation #is composed by 

is-a [#object-relation] 

1 _ — 

Figure 2:example of Def-relation syntax 

Task Concept 
The tasks concern the representation of control 
knowledge, which is actually the representation of 
diagnosis. The "Def-Task" primitive makes it 
possible to represent both a goal and the resolution 
method necessary to reach this goal. For example, 
in Figure 3, we define the global machine 
application corresponding to norm NF E90-300. 

Def-task#global-state-of-the-machine 

Data = vibration speed 
Control =and 

If vibration speed = good 
Then #no problem 
Else   If vibration   speed 

admissible 

Figure 3: a example of Def-task syntax 

We   have   implemented  Def-*   in  the   Standard 
Generalized Markup Language (SGML) (Figure 4). 

fsjoisi 
cj/Js J [Trrlvrtira"~H]|li' Jjgj*l^j 

ioNTOXCONCEPTXPEFIF-OriMELXWOMCONChmrxTfcXr UNII> 

/NOMCOHCEPT» 

rswtst 
<CONCEPT> 

<DEHFORMEL>Def-C0nCept#<H0MCOHCEPT>I 
Est-un 
#<r ERECOHCEPT> mechanlcal_part</PERECONC EPTXJD EFIFOPM EL> 

PROPRIETES 
<PROPWETE> 

<ENONCEPROPRI£TE>->(<OUAHTIFICATEUR>tt 
E</OUAHTIFICATEUR>#<RELATIOH>IS Composed 
by</RELATION>)->I#<VARlABLE>Shaft<MARIABLE>]</EMOKCEPROPRlE 
TE> 
<ENONCEPROPRIETE>->(<QUAHTIFICATEUR>tt 
E</QUAHTIFICATEUR>#<RELATION>iS Composed 
by:mELATIOH>)->[#<VARlA BL E>farK/VARIABL E> fUEHOHC EPROPRtET   '■■ 

</PROPRJETE> 
DEFINITDN 
<DEFINATUREL> ^. ^ , 

<COHCEPTUEL>A rotor Is a mechanical part, which Is composed öy 
a shaft nand a fan.</coNCEPTUEL> 
<NATUREL>A rotor is a whole of mechanical part, which has a 
rotational mouvement</nATUREi-> 
REFERENCED) 
<REF>NF E 90-300</REF> : 
EXEMPLE(S) 
<EXEMPLE>A Industrial venttlator.</EXEMPLE> 
<PICT> PICFILE- ,'c/:plcturesfvei>VtatarJp!i' 

</DEFINATUREL> 
<COHCEPT> 

</ONTO> 

m 
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This makes it possible to embed the ontological 
knowledge base in the hypertext system, while 
retaining the representative power of the language. 
Furthermore it permits to browse across the 
ontological knowledge base for performing the 
diagnosis process. Each primitive (Def-concept, 
Def-relation,...) is represented by a DTD. The 
ontology is represented by a another DTD, which 
includes the DTD of the different primitive. An 
example is given Figure 5. 

IfjäWi' ;E««!"-;ß.ft*üe*>*  2                                                                    .   .                    .■■:■..:.<■:■:■>:.,:*:-. 

<!00CTVPE concept [ ■M 
<T— DTD d 'essai pour les concepts de la taxinonir —        > 

<(— identlfcateur generique de tjipe de document —            > 

<!ELENEHT COHCEPT                - -           <deflfor*el, proprlete? . ieflnaturel) > ' 
<tELEMEHT deFifornel    - o    (nonconcept, pereconcept)        > 
OELEHEHT iMKoncept          - o          (SPCODTD)    > 
CIELEHEHT pereconcept       - o         (tPCDitTfl)    > 
CIELEHEH7 proprlete            - o         (enoncepropriete*)    > 
(«ELEMENT enoncepr-oprlete - o        (quantlficatewr. relation,  variable) > ■ 

<!ELEHEHT quantiflcateur    - o (ITCDATA)      > 
<!ELEHEHT relation              - o (WCMTft)      > 
<1ELEHEHT variable              - o (■PCOflTfl)      > 
CIELEHEHT dtflnaturel    - o        (conceptual, naturel, reF>, exenple»,plct>) > 
CIELEHEHT conceptuel     - o       (WDDflTfl)    > 
CIELEHEHT naturel            - o        (WCDftTn)    > 
<TELEHEHT ref                    - o        (iPCDIHn)    > 
«ELEMENT exenple           - o       (IPCDATA)    > 
CIELEHEHT plct                  - o        EMPTY            > 
CIJITTLIST plct          plcfile        EHT1TV    IIHPL1ED>]> J 

Figure 5: DTD of the Def-concept primitive 

4.   Example of a Vibration Diagnosis of a 
Rotating Machine 

The validation of our approach has been tested with 
a simple rotating machine example. We consider a 
rotating machine comprised of a shaft, a fan (thus 
forming the rotor), and two bearings, which allow 
the shaft to rotate. Although it is simple, this 
rotating   machine   makes   it   possible   to   find 
dysfunctions (i.e. vibration speeds, which are not 
admissible according to the Norm NF E90-300). In 
our example, we mainly deal with the global state 
of the machine as it is defined in Norm NF E90- 
300. Once the state is defined, if necessary, we look 
for faults and their respective causes. The term 
"fault" means "a cause of inadmissible vibration 
speeds", such as unbalance or misalignment. 
Our hypertext tool does not provide any definitive 
solution to the problem, but it purports to help the 
user for diagnosing. It gives information to make 
the right choice, and suggests pertinent elements, 
which will allow the user to achieve a diagnosis 
task, while leaning on the knowledge of the domain 
as it is provided by the system. 
We  illustrate  the  following  description with  a 
example of rotating machines. 
The user informs the system about the type of 
machine to analyze, for example a simple rotor with 
1.5kW engine. The system can thus know which 
group the machine belongs to according to Norm 
NF E90-300, {group I). It can also suggest various 
measurement locations where the user can put 
transducers, axial and radial bearing measures. 
These locations will contribute useful information 
for the diagnosis. 
The user collects the  measures at the defined 
locations and transfers them to the system. 

The system then treats the data (vibratory signals) 
with a MatLab® software, and thus defines the 
global state of the machine, the vibration speed is 
equals 5mm/s, so the state is not admissible. If the 
state corresponds to a dysfunction of the rotating 
machine, the system informs the user and suggests 
various protocols to find the cause of faults 
(unbalance, misalignment). Each protocol is 
characterized by the measurement locations and the 
processes performed on the associated signals. The 
system thus guides the user toward a protocol using 
signals, which already exist, instead of guiding the 
user towards a protocol, which would make it 
necessary to acquire new signals. 
The user chooses the diagnosis protocol according 
to the system's advice, unbalance detection 
protocol with radial bearing measure. Once the 
protocol has been chosen, the system gives the 
information, which is necessary to interpret the 
measurement results and to locate the fault 
(unbalance or misalignment), there is a harmonic of 
the rotating frequency, while appears in the 
spectrum, so there is an unbalance. When the fault 
has been located, the user can look for its cause 
(ball-bearing wear, broken blade or vane section, 
etc.). The system can then suggest to look for the 
cause of the faults thanks to observable signs, an 
eccentric accumulation of process dirt on blade. 
The table on 
Figure 6 represents the correspondence between 
causes of unbalance and observable signs. 

A      /      i     fi     *•      K.       v     *■      li 
SfcuM       '-A* : 

SYMPTOM 

Cause of unbalance 

I EcctMlrfa warhhrii tr fcrwbn huctvrtmht 

I Eccmttfcacnanlali»*fyf*ce*sflrtMU)it 

Observable signs 

IbmAh bek .ftjmmtrj 

Dafcetafcla Ufabr rani; wmni wltk ihl {*«(• «m 
kjdfc-eJfw 

iH fl*w ntadtm «tea huKj vftratfca 

Vbtufly ActmkU; Warb* vftntfem toiaf •ftnfcla; 

|a*wflK«**yifHewäMf 

Shaftbcafa iai daws »lit ct*fcr rffnrftj; s 
kraynftndM 

i BMn-aaeUBeJ tmenrtrie, •wing »fcrattm twfat 
itftrtUnt; cmfcr tfjrwhy ra» to WHHH M kxUV«4fM 

«r mi* - j- / I 

Figure 6: visualization of new document 

This document, as any document orienting the user, 
comes from the manipulation of a SGML document 
and the dynamic creation of a new SGML 
document which is then translated into the HTML 
in order to be visualized. 
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A rotor is a whole of mechanical pan, which hai »rotational mou 

■ fan 

REFEKENCE(S) 

NFE 90-300 

EXEMPLE(S) 

A Kaplan turbine m a hydrtie power plant 

1 r 
■WH'   v 

•FaF     # i L 
a i)|, Q9 1* ■ 

Figure 7: an example of HTML visualization 

5. Conclusion and Future Work 
We have presented a hypertext based system, which 
makes it possible to associate different information 
sources for performing a diagnostic task. 
The system relies mainly on context and task 
oriented navigation tools for user guidance. Its main 
contribution is to facilitate the access to relevant 
information for choosing the most appropriate 
diagnostic method. 
Further work will be to add information sources and 
reasoning tools for improving the comparison 
between concurrent diagnostic methods. Based on 
the ontology of the diagnosis problem solving, their 
main objective would be to facilitate the browsing, 
by the user of the ontology, ad thus facilitating the 
access to the most relevant information for 
choosing among different methods. 
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Abstract 

Nondestructive flaw detection of concrete structures is a 

difficult work, especially for detection of small or shallow 

flaws. In our research, both ultrasonic test and impact- 

echo test are used for detection of simulated flaws of 

different sizes because only one detecting method can not 

give out a believable conclusion sometimes. After signals 

are collected, wavelet analyses are used for feature 

extraction from these two kinds of signals. Then a feed- 

forward multi-layer neural network is used to implement 

local soft classification. After that, Shafer-Dempster 

reasoning is used for decision-level identity fusion and the 

hard decision of flaw detection is made. 

Key words: concrete, flaw detection, information fusion, 

soft decision, evidence theory 

I. Introduction 

Nondestructive test of heterogeneous materials 

is an important and difficult work. Concrete is a 

typical heterogeneous material. Its flaw detection is 

very difficult, especially for detection of small or 

shallow flaws in concrete slabs. Ultrasonic test and 

Impact-echo test are usually used for flaw detection 

in concrete slabs. Sometimes, only one detecting 

method can not give out a believable conclusion'1"81. 

So in our research, both ultrasonic test and impact- 

echo test are used for detection of simulated flaws of 

different sizes such as delamination and void. In this 

paper, after signals are collected, wavelet analyses 

are used for feature extraction. Thus, original signal 

can be expressed as a feature Vector. Because of the 

inherent  complexity  of heterogeneous  materials, 

randomness of testing environment and influence of 

noise, in such cases it is not appropriate, even for an 

optimally designed classifier, to make hard decisions. 

So the inevitable uncertainty in classification has 

been accounted for in the form of soft decision 

vectors and membership values have been expressed 

in terms of smooth functions. Here the classifier is a 

typically non-linear map from the feature space to 

the points in the fuzzy cube. The classifier has 3 

non-binary outputs, one for each class, non-defect, 

delamination, void, where each output takes values 

in[0,l]. The output of the classifier i.e., the fuzzy 

membership   value   is   assigned   as   the   basic 

probability mass to different classes. Thus two basic 

probability masses from ultrasonic test and Impact- 

echo test for a same target are provided. Then 

Shafer-Dempster reasoning can be used to get a 

unified belief function.     In the paper, four rules are 

provided as the criteria of hard decision. If four rules 

are satisfied, a hard decision of flaw detection is 

given out. 

II. Ultrasonic testing and impact-echo testing 

system 

The experiments  are  carried  out on three 
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concrete slabs. The aim of our research is to identify 

various flaws by ultrasonic testing, impact-echo 

testing and their fusion. 

2.1     Ultrasonic testing system 

For ultrasonic test, there are two methods 

available to detect flaws in concrete slabs, which are 

through-measure method (spacing transducers 

oppositely on each surface of the slab) and flat- 

measure method (arranging transducers on a same 

Table 1 Specification of specimens 

Specimen Sizes of 
slabs 
(m3) 

Types of 
Flaws 

Sizes of 
flaws 
(mm) 

1 1X1X0.2 Non-defect 

2 1X1X0.2 delamination 200x200x1, 
50x50x1 

3 1X1X0.2 void $50> $30 

surface of the slab). Because there are many 

concrete structures such as cement concrete 

pavement, airport's runway and tunnel spray that 

aren't possible for through-measure, thus flat- 

measure method is used in our experiments. 

2 1^1        3^ 4  ► 5 

1 

The frequency of the transducers used for detecting 

concrete should not be too high. The central 

frequency is at about 130 KHz. Furthermore, they 

must be wide-band in order to acquire high 

resolution in time domain, it is say that the 

transducers should have smooth amplitude response 

and linear phase response in a wide frequency range, 

which offers convenience for transmitting narrow 

pulse signal. In the experiments, NM-2B 

ultrasonoscope is used for transmitting ultrasonic 

signal to the specimen and receiving echo signal, its 

sampling frequency is selected as 2.5MHz. The 

digital signals are conveyed from the ultrasonoscope 

to a personal computer, in order to analyze them by 

applying various methods. 

2.2   Impact-echo testing system 

2Ö 

31"" a vrV 
i 

1. specimen 

2. bearing ball 

3. transducer 

4. 5. charge amplifier 

6. oscilloscope 

Fig.2 Diagram of impact-echo testing system 

1. specimen 

2, 3. transducer 

4. ultrasonoscope 

5. computer 

Fig.l Diagram of ultrasonic testing system 

As shown in Fig. 1, the system consists of two 

transducers,   a   ultrasonoscope   and   a   computer. 

As shown in Fig.2, the system consists of two 

transducers, two charge amplifiers a digital 

oscilloscope and a computer. The piezoelectric 

accelerator transducers B&K 8309 ( the frequency 

band is 0~50KHz ), the charge amplifiers YE5858, 

the digital oscilloscope HP infinium 54815A are 

chosen. Hardened bearing balls are used to produce 

exiting force. Echo signals are collected by the 

transducers. After amplified, they are transferred to 
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the oscilloscope and are changed as digital signals. 

Then they are conveyed to a computer for further 

analyses. 

III.  Signal processing 

In order to reduce the influence of exiting 

force on amplitudes of signals, the normalization 

and centralization of signals are carried out before 

feature extraction. The arriving point of R wave is 

considered as the first point. The length of signals 

used is 800 u s. After elimination of noise, wavelet 

transform is used for feature extraction. As we know, 

wavelet transform is a very promising technique for 

time-frequency analysis. By decomposing signals 

into elementary building block that are well 

localized both in time and frequency, the WT can 

characterize the local regularity of signals. This 

feature can be used to distinguish different flaws. 

Here, a dyadic wavelet transform is used and the 

local maximums of the WT modulus at the third 

scale are used for feature extraction. The dyadic WT 

of a digital signal is calculated with Mallat 

algorithm. The wavelet we used is a quadratic spline 

wavelet with compact support and one vanishing 

moment. It is a first derivative of a smooth function. 

The feature extraction process can efficiently 

provide class separation with a small number of 

features. After this process, each ultrasonic signal or 

each impact-echo signal can be expressed as a 

feature vector. In fact, non-destructive flaw detection 

of concrete structure is a kind of pattern recognition. 

The concept of pattern recognition may be expressed 

in terms of the partition of feature space (or a 

mapping from feature space to decision space). 

Suppose that N features are to be measured from 

each input pattern. Each set of N features can be 

considered as a vector X, called a feature 

(measurement) vector, or a point in the N- 

dimensional feature space Q . 

The problem of classification is to assign each 

possible vector or point in the feature space to a 

proper pattern class. This can be interpreted as a 

partition of the feature space into mutually exclusive 

regions and each region will correspond to a 

particular pattern class. For such a problem of 

pattern recognition, each possible pattern class J can 

be expressed as vector U; ■. 

Uj c Q (1) 

U = {Ul,U2,-,U.,,-,Ul.)      (J = l,2,--,L) 

Uj =[unuj2---ujr--ujJ 

(2) 

(3) 

u H   represents the   i th feature measurement of 

UJ-- 

UJ, (/'   =   1,2, •■•,«) 

In the application, let X be designated as the 

extracted feature vector from signal: 
t 

X = [x,x2---x;---x„] (4) 

What we needed to do is to assign it to one possible 

pattern U, belongs to U , or describe the possible 

degree of the vector X belongs to one pattern class 

U,, i.e. a membership between  X and  U,. 

In our research, we have collected adequate 

signals of known patterns (from simulated flaws), 

therefore, neural networks can be used to produce 

this fuzzy membership. Hard decisions of detection 

are achieved by the integration of local soft decision 

according to the rules in section 4. 

This membership is actual a kind of soft 

decision'91. The outputs of the neural network are the 

vectors of soft decisions which are based on the 

ambiguity   and   fuzziness   of  decisions.   As   we 
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mentioned above, it is difficult for only one method 

to make believable hard decisions because of the 

inherent complexity of heterogeneous materials, 

randomness of testing environment, the influence of 

testing noise and low repeatability of tests. Thus, 

here we use soft vectors to represent uncertainty of 

decisions. Then, Shafer-Dempster reasoning is used 

to reduce this uncertainty and getting a final 

believable hard decision. In addition, in non- 

destructive test of heterogeneous material, clusters 

of feature points, corresponding to different classes, 

overlap each other. These overlaps represent 

uncertainties that may come from local random 

variations among samples or may be due to the 

inherently fuzziness. For such cases it is not 

appropriate, even for an optimally designed 

classifier, to make correct hard decisions. The 

inevitable uncertainties in classification should be 

accounted for in the form of soft decision vectors 

and membership values should be expressed in 

terms of smooth functions to create fuzzy decision 

boundaries between clusters. 

Consider    a    collection    of    N    examples 

|5'; I      from   L different, but known, classes. In 

our application,  Ts correspond to training schemes 

based on soft decisions: 

Ts = {(vi,li):i = l,-,N     and  /,c[0,l]L} 

(5) 

The classifier is typically a non-linear map 

F(-)   from the feature space  lVs,s = (i,j)\  to 

the points in the "fuzzy" cube [0,1]   . Thus 

F  :  Vs e9T -+Ds e[0,lf (6) 

Where  Ds is a real valued decision vector whose 

/ th element shows the vote (or in fuzzy terms the 

fit value) associated with class  i . The classifier has 

L  non-binary outputs, one for each class, where 

each output takes values in [0,1]. 

The recent success of neural networks and 

fuzzy systems in dealing with uncertainty, ambiguity 

and randomness through distributed soft decisions 

makes them good candidates for implementation of 

these ideas. Before making local soft decision, the 

K—L transform of features are carried out. After 

that, the dimension of features is compressed to 18. 

A feed-forward multi-layer neural network is used to 

implement local soft classification in this paper. The 

neural network classifier consists of eighteen input, 

twenty hidden, and three output units. The input 

units are linear, whereas the hidden and output units 

have sigmoid non-linearity. A conjugate gradient 

method is used for fast convergence of the 

supervised learning algorithm. The training set 

consists of 200, randomly selected samples to 

provide enough information for the learning 

algorithm to create soft decision boundaries. Using 

simple feature sets and classifiers, very good 

performance has been obtained. The method is 

also robust to noise and easy for fast implementation. 

Of course, good feature extraction is also important 

for its performance. 

IV. Construction of basic probability mass 

and rules of decision 

In Shafer-Dempster reasoning, there isn't a 

general formula for calculating basic probability 

mass. A proper basic probability mass must be 

constructed according to applications. Based on the 

fuzzy membership mentioned in section 3, we 

constructed a basic probability mass formula that is 

ready for nondestructive application. 

The definition of the basic probability mass in 

our research is: 
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m h{j) = 
MJ) 

j 

(7) 

(8) 

Where ft,, is the number of transducers and jut (j) 

refers to the membership value that a signal 

collected from transducer i belongs to pattern class 

j.    COi    is   the   environmental   coefficient   of 

transducer / , which is determined by experts 

according to testing environment (temperature, 

humidity, field interference), its value within the 

range [0,1].      ai  is the   maximum membership 

value  of a  signal  collected  from transducer   i 

belonging     to     one     possible     pattern     class 

( ai =max{/^(y)} )     and   /^refers to the 

distribution   coefficient   of     membership   values 

( ß. = =—'-r-^ ) .     A*      is    the    reliability 

2>v) 
j 

(ojaißl 
coefficient of transducer /'   ( r- = -==; ) - 

i 

/»,.(_/)   is the basic probability mass that a 

signal collected from transducer  i   designates to 

pattern class j and #?,(©)   refers  to  the  basic 

probability mass that a signal collected from 

transducer / designates to the frame of 

discernment 0, i.e. the uncertainty probability of 

the signal collected from transducer /' » 

In the calculation of the reliability coefficient 

r of a transducer, not only the maximum 

membership value    {a)   and the distribution of 

membership    values    (/?)   ,        but    also    the 

environmental coefficient {(o)  are considered. In 

addition, (aßco) provides a parameter to represent 

the reliability between a signal and its membership 

value belonging to a pattern class. Second, when 

calculating the uncertainty probability mass of a 

signal, unreliable factor   (l-7})   and unreliable 

factor between a signal and its membership value 

belonging to a pattern class  (l-<2;/?,6>,)   are 

considered» 

Just as the construction of the basic probability 

mass, there isn't a universal method that can be used 

for making hard decisions after integration. 

Different methods are selected for different 

applications. Here, the rule-based method is used. 

According to the meaning of the basic probability 

mass, several rules are assigned as the criteria for 

making hard decisions. The main rules are four as 

follow: 

Rule 1: The pattern class designated to detecting 

object must have maximum basic probability 

mass; 

Rule 2: The difference between the basic probability 

mass of a designated pattern class and the basic 

probability mass of another pattern class must over 

a predetermined threshold; 

Rule  3:   The  uncertainty  probability  mass  must 

below a predetermined threshold; 

Rule 4: The basic probability mass of the designated 

pattern   class   must   larger  than  the   uncertainty 

probability mass. 

V.   Flaw identification by decision-level 
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identity fusion 

In the application of information fusion for 

flaw detection, three pattern classes, non-defect, 

delamination and void are selected. Here, same rules 

are used to making hard decision both for single 

detecting method and the identity fusion method in 

order to compare their results of classification. In 

our research, according to the steps mentioned in 

section 3 and section 4, the basic probability masses 

of flaw detection by ultrasonic test and by impact- 

echo test are got respectively first. Then, their local 

decisions can be made respectively. After that, 

hard decisions are performed by integrating soft 

local decision vectors to reduce their "ambiguities". 

The results of classification are shown in table 2 and 

table 3. 

The evidence intervals [jp?(^),/7/j(^)j in 

table 2 and in table 3 are calculated from the basic 

probability   masses.    spt(Ä)    is   equal   to   the 

minimal commitment to pattern class A , expressed 

the probability of proposition" A is true", called the 

lower bound of support for proposition A. pls[A) 

is equal to the support plus any potential 

commitment, called the plausibility or the upper 

bound. Whereas the difference 

(pls(A) - spt(A))     between     spt(A)     and 

pls(Ä) expressed  the  unknown   degree   of the 

proposition. These bounds show what proportion of 

evidence is truly in support of a proposition, and 

what proportion results merely due to ignorance or 

the need to normalize to unity sum. This is 

important, for instance, if it is desired to know 

exactly what proportion of evidence directly 

implicates a particular pattern class. 

From the tables, we learnt that the results of 

classification by integration of two detecting 

methods are obviously better than the results of 

classification by single detecting method. In the 

Table 2 Results of flaw detection by decision-level identity fusion for big flaws 

types of pattern 

class 

detecting       Probability interval [spt(Ä),pls(Ä)] 

method 
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Table 3 Results of flaw detection by decision-level identity fusion for small flaws 

application, when we use only one detecting method 

for classification, the detection of some flaws is 

failed. However, the results of classification by 

integration are all correct. Therefore, we can 

conclude that information fusion enhanced the 

detecting rate. From table 2 and table 3, we know 

that the values of /w(©)have reduced obviously 

after integration. This indicates that the uncertainty 

of the system is reduced by the information fusion. 

At the meantime, the basic probability masses after 

integration have better separatability than the basic 

probability masses before integration, i.e. the ability 

of flaw identification enhanced. When we use same 

rules for classification, information fusion will 

greatly enhance the performance of the system. In 

other words, the basic probability mass constructed 

in this paper is correctly reflected the specificity of 

the transducers and are suitable for application on 

non-destructive test. Furthermore, if we can make 

full use of the specificity of transducers or extract 

better features with suitable signal processing method, 

then the detecting rate will be even higher by using 

information fusion. 

VI. Conclusions 

The application of decision-level identity 

fusion on flaw detection of concrete structures is 

studied in this paper. In order to apply Shafer- 

Dempster reasoning to perform decision-level 

identity fusion, the idea of local soft decision is 

investigated to give out the fuzzy membership by a 

feed-forward neural network. Based on the fuzzy 

membership, a kind of basic probability mass is 

constructed. For better flaw detection, Shafer- 

Dempster reasoning is used to integrate local 

decisions. The integrated results of classification are 

better than the results of classification by either of 

the two detecting methods. Following are the main 

work of the research: 

(1) Soft local decision vectors that describe the 

relationship between a testing signal and a pattern 

class are provided; 

(2) Feature vectors are classified locally by using a 

neural network to allow fuzzy membership 

assignment; 

(3) A kind of basic probability mass is constructed 

for application on NDT; 
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(4) Rules for hard decisions are designed; 

(5) Different types of flaws are used for detecting. 

Decision-level identity fusion is utilized to identify 

these flaws. 

This work was supported by NSFC-69772001 
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Abstract In this paper we argue that the model- 
based development of knowledge-based systems built 
to work in partially uncertain domains benefits from 
the fusion of different conceptualizations for certain 
and uncertain parts of the required knowledge. We 
present conceptualizations that have proven to be 
useful, namely the KADS model of expertise and a 
causal model of uncertainty that reflects well known 
approaches to uncertain reasoning like Bayesian be- 
lief nets. We propose an extension of existing spe- 
cification languages that aims at an integration of 
these conceptualizations in a common knowledge 
model. We present parts of the analysis and specifi- 
cation of a rock classification problem as an exam- 
ple demonstrating the demand for the combination 
of different conceptualizations. 

Keywords: knowledge engineering, conceptualiza- 
tion, uncertainty, rock classification 

1    Introduction 

In real-world applications adjectives like 'prob- 
able', 'possible' or 'incomplete' are attached to 
domain knowledge and data. We summarize 
these phenomena of non-categorical knowledge 
as 'uncertainty'. Having recognized that uncer- 
tainty plays an important role in the develop- 
ment of knowledge-based systems we have to 
find ways to deal with different kinds of uncer- 
tainty when building knowledge models. Inves- 
tigating different model-based knowledge engi- 
neering approaches we found no sophisticated 
formalism for the explicit representation of un- 

certainty in any of their semi-formal or formal 
knowledge models. 

The problem is not that there are no ways 
to deal with uncertain knowledge. There is a 
huge amount of elaborated (numerical) calculi 
for the representation and processing of uncer- 
tain knowledge in application systems. 

So what is the real problem that prevents 
notions of uncertainty to be integrated in exis- 
ting knowledge engineering approaches? In our 
opinion the problem is that existing approaches 
for handling uncertainty follow a conceptuali- 
zation used to describe a knowledge domain 
that is completely different from the one used 
in common knowledge engineering approaches. 

Our previous work in the field of know- 
ledge engineering aimed at bridging this gap 
and resulted in a model of uncertain exper- 
tise (ModE-U) [1, 2]. ModE-U is the core of 
a methodology for the analysis, conceptualiza- 
tion and formalization of certain and uncertain 
knowledge. It has been developed as an ex- 
tension of existing knowledge engineering ap- 
proaches to cover those parts of human ex- 
pertise that cannot be adequately formulated 
using ordinary first-order logic. 

2    Problem Statement 

As an example for the need of such a combined 
approach we use a slightly modified version of 
the Sisyphus III problem [3]. The Sisyphus ex- 
periments of the knowledge acquisition com- 
munity are an attempt of comparing and eva- 
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Table 1: Mineral content relation QAPF 
Mineral content in % 

Rock class quartz alkali plagi. feld. 

granite 20..60 35..90 10..65 0 
syenite 0..5 65..90 10..35 0 
diorite 0..5 0..10 70..90 0 

luating different approaches used for the con- 
struction of knowledge based systems (KBS). 
The task of Sisyphus III is to build know- 
ledge models to be used as a specification of a 
KBS solving the problem of classifying igneous 
rocks. Figure 1 shows a snapshot of the classi- 
fication task from the Sisyphus III domain. 

classify specimen will 
QAPF diagram for 
fine-grained rocks 

t 
classify specimen witt 
QAPF diagram for 
coarse-grained rocks 

ti 
classify specimen 

using mafic 
mineral content 

Figure 1: Classifying igneous rocks 

In our example the rock class of a hand 
specimen can be determined through prede- 
fined classification schemes. These schemes are 
provided by so-called Streckeisen diagrams [4] 
that allow for a classification of a certain sub- 
group of igneous rocks using knowledge about 
their mineral contents. Table 1 shows a set 
of mineral content relations (which have been 
extracted from the diagrams) serving as asso- 
ciations for classifying a hand specimen. 

The selection of an appropriate scheme de- 

pends on the specimens grain size which can be 
estimated from a digital image of a thin section 
of the specimen using common image analysis 
techniques. Figure 2 depicts the connection 
between visual properties and the grain size. 

Determining the knowledge in use, we found 
that the subtasks of the problem-solving pro- 
cess are attached to different kinds of certain 
and uncertain knowledge. 
As extracted from Streckeisen diagrams there 
is no uncertainty attached to the mineral con- 
tent relations beyond their interval-based na- 
ture. Therefore these relations would be con- 
ceptualized as certain knowledge with almost 
no dissent. 
On the other hand, the knowledge used to de- 
termine the grain size has a highly heuristic 
nature and is based on the (more or less un- 
known) causal relations between the grain size 
of the specimen and the image features of its 
thin section. To compute the unknown grain 
size from the given image features the other 
way round we have to perform diagnostic rea- 
soning using these heuristics. 

Figure 2: Determining grain size through im- 
age analysis 

In our work we have conceptualized the dif- 
ferent types of certain and uncertain knowledge 
within the different parts of our common know- 
ledge model. 

Specifying a KBS for the given problem we 
have to combine the classification task which 
is based on the mineral content relation with 
the diagnosis of the grain size based on the 
heuristics mentioned above. In that sense our 
work presents a good example for the fusion of 
certain and uncertain diagnostic/classification 
knowledge. 
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2.1    The Spirit of Heterogeneity 

We argue that if it is necessary to deal with un- 
certainty in complex domains one has to bridge 
the gap between the different conceptualiza- 
tions. 

On one hand we need a rather simple con- 
ceptalization for models of uncertainty to en- 
able uncertain reasoning. In our example we 
are utilizing uncertain reasoning techniques for 
estimating the grain size with respect to the 
image features. However, from our point of 
view the use of raw conceptualizations pro- 
vided by these techniques should be restricted 
to a minimum. 

On the other hand we are not willing to give 
up the more elaborate conceptualization of mo- 
dels of expertise that has been proven to be 
useful for analysis, model building, and reuse. 
Regarding our example we try to cover as much 
knowledge as possible within the structures of 
a common model of expertise. 

3    Different 
Conceptualizations 

The basic idea of our approach lies in the exten- 
sion of a common model of expertise wich in- 
corporates explicit notions for uncertain know- 
ledge items. Therefore we use the well known 
KADS approach [5] and its specification lan- 
guages CML2 [6] and (ML)2 [7]. We proposed 
extensions of these languages (CML%anc and 
FLUE) which allow for the integration of un- 
certainty in the different informal, semiformal, 
and formal levels of model-based knowledge en- 
gineering. These extensions cover static as- 
pects of the domain knowledge as well as dy- 
namic ones of the problem-solving process. 

In the following section we give an overview 
of the basic concepts of our modeling approach. 
Further details are given in [1, 2]. 

3.1    Conceptualization of Expertise 

Conceptualizations of expertise knowledge are 
typically subdivided into three kinds of know- 
ledge:  domain, inference, and task knowledge 

as defined in the KADS model of expertise [5]. 
Subsequently we are describing this conceptua- 
lization on an abstract level. 

Those parts of the real world relevant to the 
given task are described through their proper- 
ties within the domain model. The formal spe- 
cification of this knowledge is realized by a set 
of ontological primitives enabling the user to 
define complex structures: concepts, instances 
of these concepts, attributes of and relations 
between concepts. 

Based on the modeled elements there are 
inference actions performing single steps of 
the problem-solving process. Inference actions 
operate on elements from the domain layer. 
These elements are described through input-, 
output- and static roles which are placehold- 
ers determining the role the element plays in 
the problem-solving process and the type of 
domain objects that can play this role. 

The task layer contains knowledge about 
how the elementary inference steps can be com- 
bined and executed to achieve a certain goal. 
This knowledge is organized in tasks which can 
be decomposed into subtasks including control 
knowledge about their execution in order to 
achieve the goal of the main task. Primitive 
tasks without any subtasks have a one-to-one 
correspondence to knowledge sources within 
the inference layer. 

Together these three layers form a model of 
expertise that claims to capture all aspects of 
expert reasoning relevant to the development 
of knowledge-based systems. A common model 
is achieved by connecting the different layers in 
the sense that the roles of inferences are filled 
with domain knowledge. Tasks are executed 
by applying inferences which produce a result 
corresponding to the task's goal. 

Within our approach we use these concepts 
to specify the structural and certain knowledge 
on the semi-formal level (CML2) as well as 
on the formal level (ML2). On one hand the 
integration of uncertainty is realized through 
a direct extension of the different concepts of 
CML2. On the other hand we propose stand- 
alone models of uncertainty on the formal level 
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which are realized through self-contained the- 
ories following an extended ML2 notion. 

3.2 Conceptualizing Uncertainty- 

One of the main ideas of our approach is the in- 

tegration of different types of uncertain know- 
ledge into model-based specification languages 
for building KBS. Due to the different levels of 
specification two related conceptualization of 
uncertain knowledge can be indentified in our 
approach. 

The syntactical integration is based on the 
differentiation of several valuation1 categories: 

• numerical valuations (like Bayes probabi- 
lities) 

• interval based valuations (like Dempster/ 
Shafer) 

• user-defined terms (like fuzzy sets) 

Based on these categories we are now able 
to define a basic ontology for the valuation of 
uncertainty on the semi-formal level. Together 
with the basic ontology of CML2 this ontol- 
ogy forms the underlying basis for our language 
CML^nc which is able to cover different phe- 
nomena of uncertainty within one single speci- 
fication. 

The following example shows the CML^nc 

specification of the local image feature 
anisotropy (anisotropy per region) and the 
globalized parameter globalized-anisotropy 
(normalized anisotropy). The uncertainty 
stemming from the application of a specific im- 
age operator is represented informally in terms 
of fuzzy membership functions. 

concept anisotropy; 
description: "Relation between horizontal 

and vertical extension of an image region"; 
sub-type-of: local-feature; 
properties: 

value: number-range(0,l); 
membership-functions: 

1A valuation attaches a degree of certainty or truth 
to configurations of variables/statements. 

function-value-oval: 
if value > 0.7 then value 

(globalized-anisotropy) = oval[0] 
else if 0.3 <= value <= 0.7 then 

oval[-2.5*(value-0.3)+l] 
else if value < 0.3 then oval[l] 
end if; 

function-value-round: 
if value < 0.3 then value 

(globalized-anisotropy) = round[0] 
else if 0.3 <= value <= 0.7 then 

value (globalized-anisotropy) 
= round[(2.5*x)-0.75] 

else if value > 0.7 then value 
(globalized-anisotropy) = round[l] 

end if; 
end concept anisotropy; 

The required connection between the local 
image feature and the grain size of the speci- 
men (see fig. 2) is realized through a norma- 
lization. Again, we make use of semi-formal 
specifications for the fuzzy membership func- 
tions. 

concept globalized-anisotropy; 
description: "Globalized relation between 

horizontal and vertical extension of all 
regions of an image"; 

sub-type-of: global-feature; 
properties: 

value: {oval, round} :: fuzzy-val; 
membership-functions: 

function-grainsize-coarse: ... 
function-grainsize-fine: ... 

end concept globalized-anisotropy; 

In the same sense we extended the dynamic 
parts of CML2. In previous work we proposed 
uncertain knowledge roles as well as special in- 
ferences working on uncertain domain know- 
ledge items. 

By using these enriched specification tech- 
niques we are able to cover all relevant aspects 
of the certain and uncertain domain know- 
ledge required for the problem-solving process 
in early stages of a KBS development. 

3.2.1    Uncertainty on the Formal Level 

As proposed in [1] the conceptualization of 
uncertainty on the formal level consists of 
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three basic concepts, which are derived from 
Shenoy's valuation based systems (VBS) [8] 
and Pearl's model of causality [9]: 

(1) A set of hypotheses is a variable, 
whose values denote different hypotheses 
concerning the same assertion. The hy- 
potheses are assumed to be conflicting in 
the sense that only one of the hypotheses 
can be true at a time. Variables are de- 
noted by small letters. If v is a variable 
then Wv represents the set of all possible 
values for v. 

(2) A valuation function [8] attaches a de- 
gree of certainty taken from a set of truth 
values denoted as \I> to configurations of 
hypotheses. Valuation functions are de- 
noted by capitals corresponding to a val- 
uated variable: 

V : Wv -> * (1) 

A set of hypotheses and a valuation func- 
tion over this set form a basic modeling 
element for uncertain domain knowledge 
which is denoted as phenomenon of un- 
certainty. A phenomenon of uncertainty 
UP is a pair consisting of a set Wv of hy- 
potheses and a valuation function V on 
this set. 

UP = (Wv,V) (2) 

(3) Causal relations [9] are special valu- 
ation functions defined on different phe- 
nomena of uncertainty mapping one or 
more phenomena of uncertainty and a spe- 
cial value set indicating the strength of the 
causal influence on a target phenomenon. 
Such a causal relation determines the va- 
luation function of the target phenomenon 
using the valuations of the source phenom- 
ena and the strength of the causal rela- 
tion. Let UP be the set of all phenomena 
of uncertainty, then a causal relation is a 
function C defined as follows: 

This conceptualization can be used to de- 
scribe different calculi for handling uncertainty 
in a graph-based setting [10] and therefore pro- 
vides a useful approach for the specification of 
uncertain knowledge. 

4    Heterogeneous Specification 
on the Formal Level 

For the formal model of uncertainty described 
above to be used for the specification of uncer- 
tainty in a problem-solving process, the reason- 
ing process has to be described formally. This 
can be done by using an extension of an exis- 
ting specification language. 

4.1    Integrating Different Conceptu- 
alizations 

We assume that uncertainty is present in the 
model of expertise (see chapter 3.1) in the sense 
that terminological knowledge is available, but 
some assertions cannot be determined due to 
uncertainty. These gaps in the model can be 
bridged in a three step approach using the for- 
mal model of uncertainty. 

Formal Model 
of Expertise 

Formal Model 
of Uncertainty 

mapping 

semantical 
mapping 

Uncertainty Calculi 

VBS 

C : UVn x * -)■ UV (3) 

Figure 3: Integrating the models 

Determination   of  the   language    to  be 
used in the formal model of uncertainty is the 
first step. For this purpose, the different phe- 
nomena of uncertainty are explicitly connected 
to terminological constructs in the model of ex- 
pertise through reference mappings. The re- 
ferred concepts provide a language to describe 
the meaning of the phenomena. 

Uncertain inference is the second step in 
which inference is carried out within the model 
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of expertise deriving valuations of previously 
unknown phenomena. Almost all existing cal- 
culi for processing uncertainty for which a de- 
scription in terms of a VBS is available can be 
used for this purpose, because inference in the 
model is equivalent with inference in VBS. 

In previous evaluations we tested triangu- 
lar norms as a more general approch for an 
implementation of the corresponding inference 
algorithm [2]. 

Determination of assertional knowledge 
is the last step that uses the results of uncertain 
inferences to state axioms about knowledge to 
be used in the problem-solving process. This 
step depends on a semantical mapping deter- 
mining the meaning of elements in the model 
of uncertainty in relation to the model of ex- 
pertise. 

4.2    Integrating the Dynamics 

Following the integration concept mentioned 
above figure 4 gives an insight into the connec- 
tion of the different inference actions used to 
formalize the overall problem-solving process. 

model of expertise 

scheme 

image 
features 

model of uncertainty 

Figure 4: Integrated inference scheme 

The transition from the image analysis to 
the estimation of the grain size is achived by 
an evidence that determines a valuation func- 
tion over the image features.    The result of 

the uncertain reasoning process (in our exam- 
ple a valuation of the hypotheses coarse/fine) 
is handed over to the certain model for deter- 
mining the appropriate classification diagram 
by using an acceptance criterion [11]. 

5    Specification 
FLUE 

Language 

The interaction described above has been used 
to develop a specification language for uncer- 
tain expertise, FLUE (Formal Language for Un- 
certain Expertise). To integrate uncertainty 
aspects smoothly into the existing parts of the 
language (ML)2 [7], a textual description of 
our formal model of uncertainty has been de- 
veloped which is based on the semantical map- 
ping between this model and (ML)2 theories. 
These theories consist of a signature describing 
the language used and a set of axioms. The 
overall structure of a specification is build up 
via import-relations. 

The language FLUE adopts this scheme. 
Each phenomenon of uncertainty is specified in 
its own theory. The signature of this theory is 
given by concepts from the model of expertise 
the phenomenon refers to. Instead of logical 
sentences, the set of axioms defines the valu- 
ation function over the hypothesis space of the 
phenomenon and the structure equation deter- 
mining the phenomenon. The connection to 
the relevant context, which is a parameter of 
the structure equation is established through 
import-relations as used in (ML)2. 

5.1    Formal Model of Grain Size De- 
termination 

The specifications given below describe a for- 
mal model of uncertainty for the problem of 
grain size determination from visual features 
using FLUE. It identifies relevant features, 
captures them in a causal structure and relates 
them with knowledge from the domain model. 

To establish a formal model of uncertainty 
for the determination for the grain size for a 
rock specimen, the visual features on which 
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this process is based have to be specified. They 
are represented as sets containing qualitative 
descriptions of the possible results of the im- 
age analysis. 

The first feature represented is anisotropy. 
The specification refers to the attribute of the 
same name that belongs to an image. The cor- 
responding concept description is 'snapshot'. 
The set of hypotheses connected to anisotropy 
contains the elements oval and round. The val- 
uations for these hypotheses are generated by 
a normalization over the anisotropy of all re- 
gions contained in the analyzed image. The use 
of a normalization operator is denoted in the 
axioms that describe the valuation function. 

uncertain-domain-module anisotropy 
import normalize 
type simple 
signature 

hypotheses round, oval 
object sample — picture : snapshot 
link has — global — anisotropy : image 

-►[0,1] 
axioms 

cert(anisotropy = round) 
= evidence(normalize, anisotropy, round) 

cert(anisotropy = oval) 
= evidence(normalize, anisotropy, oval) 

end- uncer t ain- domain-mo dule 

The next module defines a primitive infer- 
ence action that can be used to calculate valu- 
ations for the different hypotheses concerning 
the grain-size of the hand specimen. 

uncertain-pia estimate grain-size 
input anisotropy, relative-size, coarseness 
result grain-size 
assume max 

hypotheses coarse-grained, fine-grained 
signature 

pia-predicate determine-grain-size 
object specimen : rock 
link grain — size : rock 

-¥ {coarse — grained, fine — grained} 
axioms 

end-uncertain-pia 

The result of this calculation has to be in- 
terpreted and integrated into the certain mo- 

del for further reasoning. Special assumption- 
inferences are used for this purpose, which ap- 
ply an acceptance criterion to the calculated 
valuations. In our case we simply use a maxi- 
mum operator which is accepting the hypothe- 
ses with the highest valuation to reflect the 
true state of the world. 

6    Conclusions 

The work done so far focussed on the deve- 
lopment of semi-formal and formal models and 
specification languages for uncertain know- 
ledge items and their relations to existing mo- 
dels of expertise. The results allow for a com- 
plete analysis and conceptualization of hetero- 
geneous problem-solving knowledge regarding 
both certain and uncertain knowledge types. 
Prom our point of view the advantage of our 
approach lies in the separation and - simultane- 
ous - integration of different knowledge types. 
To draw a conclusion from the example we are 
able to specify the processing of uncertain in- 
put from image data utilizing simple knowledge 
structures while being able to represent exis- 
ting classification schemes in a highly struc- 
tured model of expertise. 

Furthermore, the introduced methods are 
offering the ability to apply the elaborated 
principles of established knowledge engineering 
approaches (reuse, knowledge level modelling, 
knowledge typing) to different kinds of uncer- 
tain knowledge. 

The approach gives implications to further 
research. One of the most challenging one is 
the operationalization of uncertain expertise, 
which has been investigated very superficial, 
so far. 
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Predictive neural networks and fuzzy data fusion for 
on-line and real-time vehicle detection. 
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Abstract - This article describes an on-line and real-time vehicle detection system. This system detects vehicles 
passing over magnetic sensors. It works independently of their initial position and of strong magnetic 
disturbance possibly induced by the load carried on the vehicles. This system is based on the co-operation 
between a reflective agent, using a reliability measure of its output, and a detection agent (on which this article 
mainly focus) based on two predictive neural networks and model selection techniques. The fusion of the data 
delivered by each agent is obtained through fuzzy logic rules. The system is also strengthened to resist 
substantial magnetic disturbances (even non-periodic ones); it uses the three components of the magnetic field, 
and is rotational invariant. Furthermore, its modular design opens up many possibilities of evolution. 

Keywords : Fuzzy logic, predictive neural networks, data fusion, real-time detection, on-line detection. 

1 - Introduction 

In this article we partly describe a 
system based on the architecture previously 
introduced by F. Smieja in 1996 and 
modified by ourselves in 1998 (cf. [Sm96] 
and [Jo98]). We will mainly focus on three 
points. The first one is the introduction of 
predictive neural networks in the detection 
process. The second point is the adaptation 
of the fusion techniques to enable the 
system to manage these heterogeneous data. 
The last point is the comparison between 
the results obtained by the first system 
(presented in [Jo98]) and by the new one. 

2 -  Global   architecture  of the 
system 

The architecture of the full vehicle 
detection system is pictured in figure 1. The 
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main principles of this system are that the 
division in the input space is made at a 
symbolic level by the sub-tasks separation 
and the fusion is made with fuzzy rules. 

At each sampling instant, the sensors 
give 3 measurements (one for each 
dimension of the magnetic field), and the 
information go through the entire system so 
that the detection decision can be estimated. 

The results of the preprocessing 
operations are all independent of the 
terrestrial magnetic field. It is obvious that 
the geographical position of the 
measurement has some influence on the 
magnetic properties of the vehicle and 
consequently on the disturbance it generates 
(because of the induced part of it). The 
different parameters calculated during the 
preprocessing and used by the rest of the 
system are described in [Jo98], they are 
geometrical parameters such as norm, 
radius of curvature, angular displacement, 
etc. Furthermore, all of them are rotational 



invariant. As shown on figure 1, they are 
both inputs of the different detection 
modules and context parameters for fusion 
and detection. 

parallel 
processing 

^ agent 2 

rt agent 1 

:::(fusion)::: 

n 
ii 

std / non std 
vehicle 

H1U/v 

;;;(decision");;; 

detection 
decision 

iinE^ 
non std 
distance 
estimation 
 *••• 

-{context ])- 

(sensors)—^preprocessing j 

Figure 1 : general architecture of the system 

The two detection agents are different 
and each one is dedicated to a particular 
subtask. 

The first one is dedicated to the middle 
third of standard vehicles detection. It is 
composed of two predictive neural 
networks (Multi Layer Perceptrons) and a 
function of error estimation. It is on this 
module that we will focus our presentation 
(it is the major change of the system 
presented previously in [Jo98]). The main 
reason to change the first agent into a 
predictive neural network based one, is that, 
considering the results of the first system 
and the global approach we had, it seemed 
to us that the major inconvenient of our 
system was its lack of global temporal 
view. Compared to a classical classification 
neural network; a predictive one allowed us 
to take into account much more global 
temporal phenomena of the problem such as 
magnetic vector trajectory shape etc... 

The second agent is detailed in [Jo98], 
it is dedicated to the non-standard vehicles 
approach detection (i.e. strong magnetic 
disturbances carriers). It is composed of a 

neural network ( also a M.L.P.) trained with 
a specific detection function and an other 
M.L.P. which aim is to estimate the 
confidence that can be put on the output of 
the first one. 

The fusion (also detailed in [Jo98]), 
and the detection decision are made with 
fuzzy logic rules based on the outputs of the 
two detection modules and some contextual 
parameters coming from the preprocessing. 
These parameters are also the inputs of the 
different neural networks of the two 
detection modules. 

3 - First magnetic detection 
module: standard vehicles 

For the standard vehicles detection, we 
used predictive neural networks. These 
networks modelize the magnetic field 
disturbances generated by a vehicle coming 
nearby the sensors. For this reason, we 
limited this approach to the standard vehicle 
detection problem. Actually, the non- 
standard vehicles have a priori not known 
characteristics as far as the close field 
magnetic disturbance is concerned. 
Consequently, a modeling approach for 
these vehicles seemed hopeless. 

We did chose a solution with two 
neural networks. The first one is trained 
with samples of vehicles passing aboVe the 
sensors, and the second one with samples of 
vehicles passing nearby. Both of them have 
been trained only with standard vehicles. 

The discrimination principle between 
those two kind of passages is as follows : a 
passage to be classified is presented to each 
network, the class given to this passage will 
be the one of the network which has 
produced the weakest error. We obviously 
defined an ad hoc error criterion. The 
definition of this criterion (based on moving 
windows and cumulated errors) is also an 
original part of our work. 

The parameters of such networks and 
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those needed for the subsequent 
competition fusion are difficult to estimate. 
We proceeded in three steps. During the 
first step, we designed the predictive neural 
networks for standard vehicles detection for 
off-line detection. This way, we reduced the 
problem to the detection of the standard 
vehicles middle third, knowing their 
complete signatures. This very hard 
restriction on the problem constraints 
allowed us to verify some of our hypotheses 
and to set some parameters of the system. 
During the second step, we optimized the 
other parameters of the predictive neural 
networks considering the on-line detection 
problem. We have finally integrated the 
predictive neural network in the global 
detection system with suited fuzzy logic 
rules. 

The predictive neural networks are 
used more to characterize the temporal 
shape of the different signals received by 
the sensors (to discriminate between the 
different kinds of passages) than to produce 
an excellent estimation of these signals. 
Nevertheless, we trained each neural 
network for prediction and their 
discrimination power obviously depends on 
the quality of their predictions. 

The predictive neural networks that we 
used are Multi Layer Perceptrons. Their 
particularities is that the desired output they 
are trained with, is a future value of one of 
their inputs. The input we have chosen for 
prediction is the norm of the observed 
magnetic disturbance : this parameter 
seemed to be the most informative of all. 

The learning base has been separated in 
two parts: an "over" part (with vehicles 
passing over the sensors) and an "aside" 
part (with the others). The "over" and 
"aside" passages have been presented 
respectively only to the "over" and "aside" 
network. 

In our application, we must have "real- 
time" and "on-line" detection. Two major 

problems occur with on-line detection. First 
we have to find a way to discriminate in an 
efficient enough way the "aside" passages 
from the "over" passages so that this 
discrimination could happen before the 
middle third of the vehicle. Secondly, we 
have to detect the middle third of the 
vehicle in the same time. 

Consequently, achieving this 
discrimination leads to define and then 
optimize a great deal of parameters. While 
the off-line discrimination is an easier 
problem, we prefered to test and tune some 
of our parameters on this problem. That 
showed us some limitations and 
possibilities of our approach. For these 
reasons, we designed an error analysis 
algorithm for the two predictive neural 
networks based on moving windows and 
weightings ; first we tested it on the off-line 
problem and then adapted it on the on-line 
processing. 

4 - Competition  principle 
moving windows 

the 
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The error analysis for each neural 
network on a passage (in the off-line 
problem) is pictured in figure 2 and can be 
summarized like this : 

During the first step, we stock the 
observed norm during the whole passage 
and the corresponding outputs of each 
network (i.e. the predicted values of this 
norm estimated by each network) on the 
same passage. 

During the second step, we calculate 
the error of each network according to a 
certain number of delays and advances 
(these delays and advances are chosen close 
to the value that was set for the networks 
learning). 

During the third and last step the class 
("over" or "aside") is decided to be the one 
of the network that made the less error in 
one of those cases. 



f 
over 

pred. 
neural net. norm(t) 

>• —  5 
Avwn«- 

other         E 
parameters 
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aside 
fe^s pred. 

neural net. 

Figure 2 : error estimation architecture. 

In fact, the predictions of the networks 
are often very good (according to the shape 
of the predicted curve), but a certain offset 
(in time) often subsist. Because of this 
behavior, a single value of the network error 
is not representative enough of the network 
prediction quality. So, if we call x0 the 
theoretical temporal delay between the 
observed norm nobs(t) and the predicted 
norm (nover(t) or naside(t) depending on 
which predictive neural network is 
concerned), the relation we hope after 
learning is , in case of an aside passage : 

nobs(t + Xo)=«os,&(0+Sas(t) 

and 

nobs(t + ^o) = n0VeM) + £ov(t) 

with 

£as      £ov 

But, due to this phenomenon of delay 
offset, we not only observe the difference 
between eas and eov, but between sas(x) and 
sov(x), where x is a variable close to x0. 

The value of x0 was also a difficult 
parameter to choose. Its choice is 
fundamental for the system. There are two 
limitations for its value : 

The upper limit is due to the delay that 
is consequently introduce for the final 
detection decision. Effectively, to calculate 
Sas and EOV, we need the value of n^t + x0). 
Furthermore, the very beginning of each 
vehicle signature is the same and so, non- 
informative. If we assume tb the duration of 
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the non-informative part of each signature, 
the total delay to wait to have significant 
values of the errors is tb + x0. 

The lower limit for x0 has two origins. 
Firstly, a very low value is impossible 
because of the sampling frequency used in 
the system and the need for a real-time 
system. Secondly, a low value means a 
short prediction horizon. If the prediction 
horizon is too short, the best prediction is 
quite always the linear prediction whatever 
the kind of passage. So the discrimination 
should become impossible (the two 
networks will make quite the same error). 

5 - Weighting of the errors 

After a brief analysis of the outputs of 
the predictive neural networks, it seemed 
that the overestimation errors should not be 
treated in the same way than the 
underestimation errors. There is a physical 
explanation to that observation : 

The signatures of the "over" passages 
are, by nature, more "agitated" than the 
ones of the "aside" passages. In the three- 
dimension space, they present more 
direction changes and their norms are quite 
bigger. 

Due to this matter of fact, the errors of 
the "over" network when facing an "aside" 
passage tend to be generally overestimation 
errors. In the opposite, the errors of the 
"aside" network, when facing an "over" 
passage, tend to be generally 
underestimation errors. 

To take benefit from this behavior, we 
decided to take more into account the 
overestimation errors of the "over" network 
and the underestimation errors of the 
"aside" network. This is not a classical 
method for error processing in prediction, it 
comes from our need to better characterize 
the shape of the prediction compared to the 
shape of the observation rather than to seek 
a perfect prediction. 



Formally, to take differently the 
different errors into account, we used 
different weights to calculate the errors 
depending on their sign. 

6 - On-line processing 

The major problem of the on-line 
processing is that the total signature is not 
known when the detection should happen. 
So,   assume   that   tc   is   the   considered 

sampling instant, B(t) is the magnetic field 

vector, n^t) its norm, naUe(t) is the 
estimation of this norm made by the "aside" 
network and noverif) is the estimation of 

ßobsCt+ To) made by the "over" network, we 
calculate the two error functions of 
respectively the "over" and "aside" network 
EoverCt, tc) and Easide(x, tc) like this : 

E
mer(T>tc) = 

1 
t=mm(tc,tf(T)) 

%ch\nobs{t-T)-nmer{t)\ 

Easide\F'K) = 

^ l=rmn(lc,lf(r)) 

■   L     ,   ,   ,\     w   x ZC*\nobs (' " *) " "aside(0| 

with 

ch = a   if   ncbS (t-T)< nover {t),   1   if not 

and 

cb=ß   if   nobs{t-r)>naside{t),   1   if not 

where a>land ß>l. 

For each sample instant tc, we chose 
the value of x xv and xd which respectively 
give the smallest errors Eover(xv,tc) and 
Easide(xd,tc). So, we obtain, for each network, 
a cumulated error, function of time, that we 
denote Eover(tc) and Easide(tc). 

While we have to take into account the 
temporal aspect of the signals, and not only 

the value at one instant, we define two 
functions Mx(tc) and Mn(tc). These 
functions depend on the cumulative sums of 
the difference between the two errors : 

>\ 
Mx(tc) = max £ £^(0-^(0 

('- 
Mn(tc)= min Z^(0-*w(0 

The detection can now simply be 
achieved with a couple of thresholds 
(Sx,Sn) with the first order logic rule : 

"The middle third of a standard vehicle 
is detected to pass over the sensors when 
Mx(t)>Sx AND Mn(t)<Sn". 

In fact, these functions have not been 
used with first order logic rules but even 
like this, it is remarkable that the detection 
almost always occurs during the middle 
third of the vehicle. The explanation of this 
behavior is certainly the delay x0, that 
prevent the system to detect anything two 
much early. Another influent point for this 
behavior is that the most informative part of 
the signature is roughly in the middle of the 
vehicle and the variance of the different 
vehicle speed is not very high. 

7 - Fuzzy fusion 

As the system still requires modularity 
and because we already made a fuzzy 
fusion module, the two functions Mx and 
Mn have not been used through first order 
logic rules but through fuzzy logic rules. 
The two functions are interpreted as 
possibilities value and one of the detection 
rule is : when Mx is high enough and Mn is 
law enough, then the passage of a standard 
vehicle midle third over the sensors is very 
possible. 

Furthermore, we take into account the 
outputs of the other agent, which is 
specialized  in non-standard  vehicle  and 
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owns a self confidence estimation. 

Working with fuzzy logic rules also 
allowed us to work with symbolic 
contextual parameters in the same time. 
These parameters are a sort of contextual 
expert verification to prevent the system to 
do some very easily (with a little human 
expertise) avoidable mistakes. 

8 - Results 

The results are summarized in the 
following tables. They present the 
comparison of our new system (predictive 
neural networks) and the previous one 
(classical neural networks). These results 
are very satisfying in both cases because the 
average correct detection rate is over 80% 
for the standard vehicles. Moreover, as we 
noticed in the precedent section, the 
detection quite always occurs in the middle 
third of each vehicle. 

These results have been obtained on a 
database containing approximately 500 
vehicle signatures. We made a distinction 
for standard vehicles between "aside near" 
(when the vehicle passes closer than 50 cm 
to the sensors) and "aside far" passages for 
physical and industrial reasons. For "aside" 
passages, the good result is : no detection. 
The bad detection for the non-standard 
vehicles are detection that occurred not 
even under the vehicle. 

The results of our new system are 
comparable to the first one. Contrary to the 
first system which is a little bit more 
efficient for "over" passages, the new one is 
better for "aside near" passages. 

Table 1 : results for standard vehicles and 
over passages 

Detection No detection 

Predictive 
neural 

networks 

89.24 % 10.76 % 

Classical 
neural 

networks 

95.62 % 4.38 % 

Table 2 : results for standard vehicles and 
aside near passages 

Detection No detection 

Predictive 
neural 

networks 

24.44 % 75.56 % 

Classical 
neural 

networks 

40.62 % 59.38 % 

Table 3 : results for standard vehicles and 
aside far passages 

Detection No detection 

Predictive 
neural 

networks 

1.55% 98.45 % 

Classical 
neural 

networks 

2.33 % 97.67 % 

Table 4 : results for non-standard vehicles 
and over passages 

Detection No det. Bad det. 

Predictiv 
e neural 

networks 

69.2 % 15.4% 15.4% 

Classical 
neural 

networks 

69.2 % 15.4% 15.4% 

Table 5 : results for non-standard vehicles 
and aside passages 

Detection No detection 

Predictive 
neural 

25% 75% 
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networks 

Classical 
neural 

networks 

31.3% 68.7 % 

Concerning the quality of errors, the 
two systems share 75% of their errors. 
These 75% of common errors are made on 
either very near "aside" passages of big 
(magnetically speaking) vehicles or "over" 
passages of very light vehicles. This 
observation is in perfect agreement with the 
physic of the phenomena involved. 

Concerning the possible evolutions of 
our system, we can try to optimize the 
architectures of the two predictive neural 
networks differently. For simplicity 
reasons, the current tests have been maid 
with networks of the same size. However, 
the modelization achieved by each network 
has certainly not the same complexity, so 
should certainly be the size of each one. 
Moreover, a more specific adaptation of the 
parameters of our fusion module is also to 
be done. 

Furthermore, if we are able to use both 
systems at the same time, we can notice that 
25 % of non common errors are a good 
potential for fusion of the two systems. 
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Abstract Information fusion refers to the acqui- 
sition, processing, and merging of information orig- 
inating from multiple sources to provide a better 
insight and understanding of the phenomena un- 
der consideration. There are several levels of infor- 
mation fusion. Fusion may take place at the level 
of data acquisition, data pre-processing, data or 
knowledge representation, or at the model or de- 
cision making level. Some aspects of information 
fusion can be implemented by using NEFCLASS a 
nemo-fuzzy approach to learn fuzzy classißers from 
data. Fuzzy rules provided by experts can be fused 
with rules obtained by a learning process. In this 
paper we present the information fusion capabilities 
of NEFCLASS-J - a JAVA-based implementation 
of the NEFCLASS approach. 

Keywords: classification, information fusion, 
knowledge revision, neuro-fuzzy system, rule induc- 
tion 

1    Introduction 

Fuzzy systems can provide simple, inexpensive 
and interpretable solutions for data analysis 
problems [19, 20]. They can be created from 
expert knowledge in the form of fuzzy if-then 
rules or they can be created from data by learn- 
ing. However, it is often important to find a 
combination of both ways. The idea is to use 
information provided by several different infor- 
mation sources. In this paper we consider hu- 
man experts who formulate their knowledge in 
form of rules, and databases of sample data. 

We show how to fuse these different types of 
knowledge by using neuro-fuzzy methods and 
present experimental results that demonstrate 
the usefulness of our approach. In this paper 
we present a neuro-fuzzy approach that is able 
to fuse fuzzy rule sets, induce a rule base from 
data and revise a rule set in the light of training 
data. 

Neuro-fuzzy systems are an important ap- 
proach in learning in fuzzy systems. They use 
learning algorithms derived from neural net- 
work theory and apply them to fuzzy systems. 
Because interpretability is often considered to 
be a key feature of fuzzy systems, neuro-fuzzy 
approaches restrain their learning algorithms 
such that the semantics of the trained fuzzy 
system is not affected. 

NEFCLASS is such a neuro-fuzzy approach 
that was developed for classification [7, 9]. It 
can induce fuzzy rules and fuzzy sets from data 
to create a fuzzy classifier. NEFCLASS can au- 
tomatically determine the number of rules that 
are needed to cover a certain training data set. 
After training the membership functions, auto- 
matic pruning strategies try to reduce the num- 
ber of rules and variables to make the classifier 
more interpretable. 

We have recently completed a new version 
of the NEFCLASS model and implemented 
it in JAVA[15]. The tool contains several 
new learning techniques and can also handle 
missing values and symbolic data. In addi- 
tion to just learning fuzzy rules from data, 
NEFCLASS can also fuse expert knowledge 
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with its current rule base at any time of the 
learning process, or later during application. 
NEFCLASS determines for each fuzzy rule in 
its rule base a performance value. This value 
is used to select rules for deletion if contradic- 
tions in the rule base must be solved, or if the 
number of rules is bounded. To revise a rule 
set in the light of training data the user can 
also influence, whether expert knowledge can 
be replaced by knowledge created during the 
learning process, or if rules entered by experts 
must remain, even when they have a lower per- 
formance value. 

In this paper we first outline the NEFCLASS 
model and its rule induction algorithm. Then 
we discuss techniques to fuse expert knowledge 
given in the form of fuzzy rules with the fuzzy 
rules created from data. In Section 5 we show 
with the help of a small example how to revise 
prior knowledge and fuse it with information 
obtained from data. 

2    NEFCLASS 

NEFCLASS is a neuro-fuzzy approach to learn- 
ing fuzzy classifiers from data using rules like 

Rr:    if x\ is /ir ' and ... and xn is fir
n' 

then class «v, 

where fir ■ X{ -)■ [0,1] is a fuzzy set 
that represents a linguistic value of a fea- 
ture Xi € Xi. We assume that each pattern 
p = (pi,... ,pn) belongs to one and only one 
class Cj, j 6 (1,..., m), but it may not be pos- 
sible to exactly determine that class. 

NEFCLASS can create a classifier from a set 
of training data £ that contains pairs (p, t), 
where p € X\ x ... x Xn is an input pattern 
and t G [0, l]m is a target pattern describing 
the classification of p. If we know the class Cj 
of p exactly then t € {0, l}m holds with tj = 1 
and tk = 0 for all k ^ j. If we do not know 
the class of p exactly, t G [0, l]m represents a 
fuzzy classification of p. 

The learning algorithm of NEFCLASS has 
two stages: structure learning and parameter 
learning. Rule (structure) learning is done by a 
variation of the approach by Wang and Mendel 

[17]. Each (metric) input feature is partitioned 
by a given number of initial fuzzy sets. This 
way the input space is partitioned and we can 
simply create antecedents for prospective rules 
by checking which areas of the input space con- 
tain data. This can be done by processing the 
training data once. An evaluation procedure 
then creates a rule base by assigning appropri- 
ate consequents (class labels) to the discovered 
antecedents and selects only a certain number 
of rules with good performance [7, 9, 14]. 

In parameter learning the fuzzy sets are 
tuned by a simple backpropagation-like proce- 
dure. The algorithm does not use gradient- 
descent, because the degree of fulfilment of a 
fuzzy rule is determined by the minimum and 
non-continuous membership function may be 
used. Instead a simple heuristics is used that 
results in shifting the fuzzy sets and in enlarg- 
ing or reducing their support. 

The main idea of NEFCLASS is to cre- 
ate readable fuzzy classifiers, by ensuring that 
fuzzy sets cannot be modified arbitrarily dur- 
ing learning. Constraints can be applied in or- 
der to make sure that the fuzzy set still match 
their linguistic labels after learning. In addi- 
tion pruning strategies are used to reduce the 
number of rules and variables [8]. 

The most recent implementation of the 
NEFCLASS model is called NEFCLASS-J [13] 
and provides the following features: 

• automatically determination of the num- 
ber of fuzzy rules, 

• training of triangular, trapezoidal, bell- 
shaped and discrete fuzzy sets, 

• processing data with missing values, 

• processing data that contains both nu- 
meric and symbolic attributes, 

• automatic pruning strategies to reduce the 
rule base size, 

• fusion of expert knowledge and knowledge 
obtained from data. 
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3    Learning in NEFCLASS 

In this section we shortly discuss some fea- 
tures of the learning algorithm that computes 
a fuzzy rule base from a set of training data 
that may contain numeric and symbolic fea- 
tures and missing values. Due to lack of space 
we cannot print the complete algorithm, please 
refer to [6, 15, 12]. 

Rule learning starts by creating initial an- 
tecedents that contain only metric attributes 
using the Wang/Mendel procedure [17]. This 
means antecedents are created by selecting 
hyperboxes from a structured data space 
(structure-oriented approach [11], see Fig- 
ure 1). If we encounter a missing value, any 
fuzzy set can be included in the antecedent for 
the corresponding variable. Therefore we cre- 
ate all combinations of fuzzy sets that are pos- 
sible for the current training pattern. 

s 

s 

small        medium large 

Figure 1: Learning fuzzy rules by selecting hy- 
perboxes from a grid 

If a feature value is missing, we do not make 
any assumptions about its value but assume 
that any value may be possible. We do not 
want to restrict the application of a fuzzy rule 
to a pattern with missing features. This means 
a missing value will not influence the computa- 
tion of the degree of fulfilment of a rule. This 
can be done by assigning 1.0 as the degree of 

membership to the missing feature [1], i.e. a 
missing value has a degree of membership of 
1.0 with any fuzzy set. A pattern where all 
features are missing would then fulfil any rule 
of the fuzzy rule base with a degree of 1.0, i.e. 
any class would be possible for such a pattern. 
After the training data is processed once, we 
have found all antecedents that are supported 
by the numeric features of the data. 

Let us assume we have found k possible an- 
tecedents. If there are also symbolic attributes, 
we continue the rule generation process as fol- 
lows. We create from each antecedent m rules, 
one for each class, and complete the initial an- 
tecedents by constructing fuzzy sets for the 
symbolic attributes. This is done by determin- 
ing the relative frequencies of the attribute val- 
ues [5]. This means we now have an initial rule 
base that contains a set of m ■ k rules. This 
rule set will usually be inconsistent, as it can 
contain contradictory rules. After resolving in- 
consistencies, by selecting from multiple rules 
with identical antecedents but different conse- 
quents the rule with better performance, a final 
rule base can be created. 

If there are no symbolic attributes, we com- 
pute for each antecedent that is found in the 
data a consequent to generate complete rules. 
We select each consequent such that each com- 
plete rule causes a minimal number of errors. 
This is done by computing for each rule the 
following performance measure: 

PR   = 

c   = 

J   £   (-l)cR(p), with 
(P,t)e£ 

J 0   if class(p) = con(i?) 
I   1   otherwise 

where con(i?) denotes the class label in the con- 
sequent of a rule, class(p) denotes the class of 
pattern p, and R(p) is the degree of fulfilment 
of rule R. 

The performance measure P € [—1,1] indi- 
cates the unambiguousness of a rule. For P = 1 
a rule is general and classifies all training pat- 
terns correctly. For P = -la rule classifies all 
training patterns incorrectly. For P = 0 either 
misclassifications and correct classifications of 
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a rule level each other out, or the rule covers 
no patterns at all. Only rules with P > 0 are 
considered to be useful. 

To reduce the size of the rule base, we apply 
one of the rule evaluation algorithms of NE- 
FCLASS and select a final (smaller) rule base 
[10,15]. The size of the rule base is either given 
by the user, or so many rules are included such 
that each training pattern is covered by at least 
one rule. 

After rule creation the fuzzy sets are trained 
to improve the performance of the classifier. 
Training algorithms for membership functions 
of numeric and symbolic variables are given 
in [6, 15]. The fuzzy set learning algorithm 
are based on the idea of backpropagation. An 
output error is determined and used to locally 
compute updates for each fuzzy set parameter. 
The computations are based on simple heuris- 
tics that aim at increasing or decreasing de- 
grees of membership depending on the current 
error. Figure 2 illustrates this process. 

Figure 2: Training membership functions 

4    Information Fusion 
in NEFCLASS 

Information fusion refers to the acquisition, 
processing, and merging of information origi- 
nating from multiple sources to provide a bet- 
ter insight and understanding of the phenom- 
ena under consideration. There are several 
levels of information fusion. Fusion may take 
place at the level of data acquisition, data pre- 

processing, data or knowledge representation, 
or at the model or decision making level. On 
lower levels of where raw data is involved, the 
term (sensor) data fusion is preferred. Some 
aspects of information fusion can be imple- 
mented by using NEFCLASS. For a conceptual 
and comparative study of fusion strategies in 
various calculi of uncertainty see [2]. 

If a fuzzy classifier is created based on a su- 
pervised learning problem £, then the most 
common way is to provide a data set, where 
each pattern is labelled - ideally with its cor- 
rect class. That means we assume that each 
pattern belongs to one class only. Sometimes 
it is not possible to determine this class cor- 
rectly due to a lack of information. Instead of 
a crisp classification it would also be possible to 
label each pattern with a vector of membership 
degrees. This requires that a vague classifica- 
tion is obtained in some way for the training 
patterns, e.g. by partially contradicting expert 
opinions. 

Training patterns with fuzzy classifications 
are one way to implement information fusion 
with NEFCLASS. If we assume that a group of 
n experts provide partially contradicting clas- 
sifications for a set of training data we can 
fuse the expert opinions into fuzzy sets that 
describe the classification for each training pat- 
tern. According to the context model, we can 
view the experts as different observation con- 
texts [3, 4]. 

If the reliability of the experts is known 
or preferences for selecting an expert should 
be described, we can assign different values 
Pk, YjkPk = 1 to the experts. If there are 
no preferences, we can assign pk = ^ to each 
expert. To create the training set £ for each 
pattern x we create a vector t with 

= £ (k) 
c) 'Pk 

k=i 

„(*) where cf} is the degree of membership of the 
pattern x for class Cj according to the fcth 
expert. The training data then reflects fu- 
sion of expert opinions on data set level. Due 
to the capabilites of its learning algorithms 
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NEFCLASS can handle such training data in 
the process of creating a fuzzy classifier. 

Like in every fuzzy classifier the output of 
NEFCLASS is also a vector of membership de- 
grees - like the target vectors of the training 
data. Such an output offers more information 
than a crisp classification alone, therefore the 
interpretation is left to the user and is not done 
hidden inside the NEFCLASS system. If there 
are, for example, only low degrees of member- 
ships for all classes or if several classes are acti- 
vated to a large degree, the user might want to 
reject the classification and to investigate the 
case described by the input pattern further by 
other means. If decision making requires to fi- 
nally assign a pattern to one class only, then 
the class with the highest degree of member- 
ship can be selected. 

Another aspect of information fusion that 
can be realized with NEFCLASS is to inte- 
grate expert knowledge in form of fuzzy rules 
and information obtained from data. If prior 
knowledge about the classification problem is 
available, then the rule base of the fuzzy classi- 
fier can be initialized with suitable fuzzy rules 
before rule learning is invoked to complete the 
rule base. If the algorithm creates a rule from 
data that contradicts with an expert rule then 
three options are available: 

• always prefer expert rule, 

• always prefer the learned rule, 

• select the rule with the larger performance 
value. 

Usually the third option will be used, i.e. the 
performance of all rules over the training data 
will be determined and in case of contradiction 
the better rule prevails. This reflects fusion of 
expert opinions and observations. 

Because NEFCLASS is able to resolve con- 
flicts between rules based on rule performance, 
it is also able to fuse expert opinions on fuzzy 
rule level. If rule bases from different experts 
are available, they can be entered as prior 
knowledge.   They will be fused into one rule 

base and contradictions are resolved automat- 
ically by deleting from each pair of contradict- 
ing rules the rule with lower performance. 

After all contradictions between expert rules 
and rules learned from data were resolved, usu- 
ally not all rules can be included into the rule 
base, because its size is limited by some crite- 
rion. In this case we must decide whether 

• to include expert rules in any case, or 

• to  include rules by  descending perfor- 
mances values. 

The decision on that option depends on the 
trust we have in the experts knowledge and 
in the training data. A mixed approach can 
be used, e.g. include the best expert rules and 
then use the best learned rules to complete the 
rule base. 

A similar decision must be made, when the 
rule base is pruned after training, i.e. is it ac- 
ceptable to remove an expert rule during prun- 
ing, or must such rules remain in the rule base. 

5    Fusing Expert Rules and 
Information from Data 

To illustrate our considerations from the pre- 
vious section, we use the "Wisconsin Breast 
Cancer" data set (WBC data) [18]. The WBC 
data has 9 attributes xi,...,xg with xi G 
{1,...,10}. There are 699 cases, where 16 
cases have missing values. Each case is either 
assigned to the class benign (458 cases) or ma- 
lign (241 cases). We randomly split the 699 
cases in a training set and a validation set of 
equal size. 

We used two fuzzy sets small and iarge to 
partition the domain of each variable. The 
membership functions are half trapezoids given 
by three parameters a, b, c G R: 

Msmall(z)     =     < 

'   1 
X 
c 
0 

if a < x < b 

'■^   iib<x<c 

otherwise 
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MlargeVaV     — 

j^£ i£a<x<b b — a —    — 
1 if b < x < c 
0 otherwise 

To initialize the membership functions for all 
variables we selected a = 1,6 = 4, c = 7 for 
small and a = 4,6 = 7, c = 10 for iarge. 

To demonstrate the fusion of expert rules 
and rules created from data we did three ex- 
periments. In the first experiment we included 
the rule 

Ro : (s,s,s,s,s,s,s,s,s) —> b (1) 

into the rule base. This notation is short for 
if xi is small and ... and xg is small 
then class is benign. 

This rule classifies a lot of benign cases cor- 
rectly and obtains a performance value of 0.55. 
To fuse this rule with the information con- 
tained in the training data, we started the 
learning process of NEFCLASS-J such that so 
many rules were created that all patterns are 
covered. The tool created 56 rules. In this rule 
base Ro (1) was still included, because it has a 
high performance value. All other rules found 
in the data have rather low performance val- 
ues around 0.01. Then we started the training 
process for the membership functions and the 
automatic pruning process. The final rule base 
contains 5 rules (a "—" denotes that this vari- 
able is not used, the performance of a rule is 
given in brackets): 

-, s, s, -, -, s, s, -,-)->■& (0.55) 

-,I,I,-,-,I,s,-,-)^m {0.11) 

-,l,Z,-,-,«,Z,-,-)->m(0.04) 

-,J,l,-,-,J,f,-,-)-+m(0.20) 
-, s, s, -, -, I, I, -,-)-> m (0.06) 

(s = small, 1 = large, b = benign, m = malign) 

This rule base covers all rules and causes 31 mis- 
classifications on all 699 patterns. We can see, that 
a pruned version of rule Ro is still in the rule base. 

For the second experiment we allowed the tool 
to include only 4 rules into the rule base. We again 

Ro (", 

Ri (-, 

R2 (~ 

R3 (-, 

i?4 '(- 

used rule Ro (1) as prior expert knowledge and pro- 
cessed the training data in the same way. After the 
rule base was completed by rules discovered in the 
data, rule JRo was still in the rule base with a per- 
formance value of 0.55. Then we started to train 
the membership functions an pruned the rule base. 
This time the resulting rule base contained only 2 
rules after pruning: 

Ro    :    (-,-,*,-,-,-, a,-,-,-)-> 6 (0.58) 
Ri    ■    (-,-,/,-,-,-,*,- -,-)-> m (0.25) 

Again a pruned version of rule Ro remains in the 
rule base. This smaller rule base does not cover 8 of 
the 699 patterns. The rule base causes 45 misclas- 
sifications altogether (including the 8 not covered 
patterns). 

For the last experiment we used the following 
inappropriate rule as expert knowledge: 

R'0 : (s, s, s, s, s, s, s, s, s) -* m. 

We allowed NEFCLASS-J to create 4 rules alto- 
gether and started the training process. Because 
rule RQ is not supported by the training data, it is 
deleted and replaced by Ro (1) during rule creation. 
Continuing the training process provides the same 
result as the second experiment. 

These experiments show that NEFCLASS is able 
to fuse expert rules and rules created from data. If 
the expert rules are supported by the data, the re- 
main in the rule base. During training of the mem- 
bership functions the rules are revised via modifi- 
cations of the fuzzy sets in order to improve the 
performance of the rule base. This can be seen 
as fusing information obtained from the data with 
the information provided by the initial membership 
functions. The pruning process of NEFCLASS op- 
timizes the rule further by deleting variables from 
the antecedents. 

If an expert rule is inappropriate and is not sup- 
ported by the training data, it is either deleted from 
the rule base or it is modified. If the antecedent is 
not supported by the training data, the rule will be 
deleted during selection of the final rule base or dur- 
ing pruning. If the antecedent does cover a certain 
number of cases, but its consequent is inappropri- 
ate, it will be replaced by a better consequent. 

Another example of information fusion by neuro- 
fuzzy methods in the context of stock prediction 
can be found in [16]. 
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6    Conclusions 

This paper discussed how the neuro-fuzzy classi- 
fication approach NEFCLASS can be used to im- 
plement some aspects of information fusion. NEF- 
CLASS is able to fuse expert rules with rules ob- 
tained from data during a learning process. This is 
currently done by deleting rules that are not sup- 
ported by training data and by modifying rules that 
are supported by data. Modification of supported 
rules is done by training the membership functions 
and by pruning. 

To improve the information fusion capabilities 
of NEFCLASS, our future work will focus on main- 
taining several rule bases at the same time and com- 
bining their results based on how well they are sup- 
ported by training data. By this it will be possible 
to fuse the results of several rule bases depending 
on their performance without fusing the rule sets 
itself. Only if the user wants to obtain a single rule 
base, the different rule bases will be fused by the 
techniques described in this paper. 

The tool NEFCLASS-J that was used to demon- 
strate the approaches discussed in this paper 
can be obtained from our WWW server at 
http://fuzzy.cs.uni-magdeburg.de. 
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Abstract 

A collision avoidance system is proposed to im- 
prove the efficiency and safety of marine trans- 
port, namely Maritime Avoidance Navigation, To- 
tally Integrated System (MANTIS). The princi- 
ple behind its operation is to remove the difficul- 
ties and uncertainties involved in marine naviga- 
tion through a system structure which makes ma- 
rine transport deterministic - reminiscent of Air 
Traffic Control. The key features of MANTIS in- 
volve; localisation of vessel states and its environ- 
ment (LVSE), Automatic Collision Avoidance Ad- 
visory Service (ACA AS), an Integrated Display Sys- 
tem (IDS), Path Planning and Scheduling Service 
(PPSS), and Automated Ship Guidance and Con- 
trol (ASGC). 

Keywords: marine navigation, fusion, adaptive, 
modelling, control, fuzzy, expert. 

1    Introduction 

Ship collisions have occurred from when the first 
ships were set afloat. The problem has escalated 
due to increases in traffic, speed and size of present 
day vessels. Unlike road traffic, there are generally 
no boundaries constraining what path a ship may 
take moving between any two points.  As a result 

there are situations where navigation schedules of 
two or more ships overlap - giving potential for col- 
lision. It is important to understand the process 
and demands required of the ship operator during 
navigation to establish the problem areas [5]. These 
areas need to be targeted and improved upon for 
safety and efficiency of ship operation. 

Information collection 

Navigators must collect information that is re- 
quired for navigation from sensory and data sources. 
The number of independent sources of information 
means it is difficult for operators to sustain contin- 
uous monitoring. This leads to slow response times 
and mistakes. There is a need to integrate all infor- 
mation which is delivered independently. 

'Supported by grants from RACAL Research and EPSRC 
t Department of Ship Science, Southampton University. 

Information analysis 

Most information is presented to the navigator in its 
raw form. Due to limitations in humans analysing 
ability it is impossible to analysis and digest all the 
available data. Consequently, navigators are more 
concerned with their immediate situation (i.e. the 
most dangerous ship) and pay insufficient atten- 
tion to the global surroundings or future potential 
predicament. There is a need to deliver the effective 
information in an easily understood way for rapid 
situation assessment to ease decision-making. 

Decision making 

Predictive analysis of the situation is very impor- 
tant, and is traditionally based on visual observa- 
tion which can often be difficult to extrapolate (e.g. 
in fog). Test results show that sea mariners re- 
sponse for any given situation are subject to a num- 
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ber of physical and psychological factors. Their in- 
consistency causes uncoordinated actions between 
mariners because neither can be certain of the 
other's intent. There is a need to automate or aid 
the decision making process deterministically and to 
display to the mariner the most appropriate colli- 
sion avoidance action. 

Execution of Collision Avoidance Action 

The collision avoidance action is a very complex one 
and causes a high work load for the navigator. He 
has to decide on the timing and operational qual- 
itities of the actuators and consider external envi- 
ronmental forces and the maneuverability of own 
ship. Throughout he has to pay attention to the be- 
haviour of other ships while deciding the timing to 
release the actuators. There is a need to automate 
or aid the collision avoidance action by controlling 
or advising the movement of actuators. 

1.1    The MANTIS solution 

The underlining cause of the majority of marine col- 
lisions can be put down to human error, and it has 
been shown that human error is directly related 
to work load [1]. Thus by minimising the human 
work load the room for error is reduced. Unfor- 
tunately, for economic reasons there is a continual 
reduction in the number of human operators, many 
of which are poorly trained [2]. To counter this ad- 
verse effect, the only viable solution is to increase 
the level of automation in all areas of ship opera- 
tion. From the above analysis, a system to improve 
marine safety can be identified and needs to consist 
of the following parts: 

• Localisation of Vessel States and its Environ- 
ment (LVSE). Provide accurate and robust 
navigational information (position, velocity) of 
all ships, and information on sea depth, cur- 
rent and wind states. Confidence intervals also 
needs to be given for each data value. 

• Path Planning and Scheduling Service (PPS). 
Safe and efficient navigational routes are gener- 
ated by considering other ship paths and envi- 
ronmental conditions before the journey starts; 
thus minimising journey time, and more impor- 
tantly, the event of close encounter situations. 

• Automatic Collision Avoidance Advisory Ser- 
vice (ACA AS). For unforeseen or dynamic 
events, potential risk situations are resolved 
using a knowledge base system which com- 
ply with Collision Regulations (COLREGs) [3]. 
The algorithm needs to be capable of dealing 
with complex multi-ship encounter situations 
in an intuitive and predictable manner. 

• Integrated Display System (IDS). These pro- 
vide decision support and visualisation of colli- 
sion avoidance advise. By superimposing dan- 
ger zones [4]and/or encounter on scheduled 
course line [5] on-top of an Electronic Chart 
Display Information System (ECDIS). 

• Automated Ship Guidance and Control 
(ASGC). Given the general collision avoidance 
advice from ACAAS, this subsystem calculates 
the precise trajectory via way-points for the 
ship to navigate, within the constraints of 
ship dynamics and environmental conditions. 
Automation and control of ship rudder and en- 
gine revolution can be made allowing the ship 
to smoothly interpolate between way-points. 

At present some of these areas are only partially 
satisfied via Vessel Traffic Services (VTS) and elec- 
tronic navigational aids. The contribution of VTS 
to navigational safety is in its ability to coordinate 
traffic flow to minimise traffic density in specific ar- 
eas [6]. Navigation aids such as Automatic Radar 
Plotting Aid (ARPA) and ECDIS at their present 
state allow efficient navigational support with re- 
gard to speed and accuracy of calculation and gives 
an effective graphical display of own-ship immedi- 
ate disposition in relation to target vessels, obsta- 
cles and land [4]. 

MANTIS is reminiscent of an Air Traffic Control 
system. The structure and deterministic approach 
to navigation provided by MANTIS minimises the 
uncertainties which causes uncoordinated vessel ac- 
tions. Even potential risk situations which are un- 
foreseen are made deterministic via collision avoid- 
ance advice. And if need be, automatic control of 
ships can be made. 

1.2    MANTIS architecture 

The system architecture is fundamental part of 
MANTIS. A range of distributed sensors are used to 
provide a rich data pool. The data is integrated in 
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Slips 

Figure 1: Diagram showing the communication be- 
tween the Vessel Traffic Centre and all operational 
ships. 

two stages - locally on-board the vessels giving local 
consensus features and global fusion at the Vessel 
Traffic Centre (VTC) giving global consensus fea- 
tures. Adaptive neurofuzzy sensor and ship mod- 
els are used for estimation and prediction [7]. The 
combination of these methods ensures that accurate 
and robust consensus information can be provided 
for picture compilation and collision avoidance com- 
putation. 

PPSS, AC A AS and the way-point guidance as- 
pect of AarbitrarySGC are functions of the VTC. 
IDS and ship control are handled by the on-board 
ship computer. Communication is made via satel- 
lite using ships-to-shore data exchange topology, 
figure 1. Data transmitted to the VTC consist of 
locally fused navigational data sent by each ves- 
sel or external marine sensor. The VTC transmits 
global consensus information to all ships and any 
way-point modifications to individual vessels. 

With reference to figure 2, consider any ar- 
bitrary ship j. On-board sensors on the ship 
gather data about the ship and its environment 
[y1)y2,...,ys]T. Sensor models transform these 
measurements into a set of common features 
[xx, x2, • • •, xs]T and compensates for noise compo- 
nents, this is combined with estimates from the ship 
model using the extended Kaiman filter to form lo- 
cal consensus features x,. The common feature set 
consist of ship states, wind, sea and current states. 

Input into the VTC consist of local consensus fea- 
tures from all vessels and external marine sensors 
[x1,x2,---,x„]T.  At the VTC, chart data is used 

to compliment depth and land features integration. 
The output from the global fusion process forms 
the global consensus feature set x. This informa- 
tion is fed back to all vessels to update their local 
feature states. The VTC also uses this informa- 
tion to assess whether any collision risk exists be- 
tween the ships and if necessary the collision avoid- 
ance action or decision d is generated prompting 
an alteration of vessel course via a subset of modi- 
fied way-points AP = [xuyuUi]^1, where xuy{ 

are the way-point absolute position and Ui is the 
traveling speed advised moving from the previous 
way-point to way-point i, nt is the initial way-point 
of the avoidance manoeuvre and m are the num- 
ber of way-points necessary to execute the avoid- 
ance manoeuvre. The guidance and control sub- 
system determines the course and velocity change 
required for the vessel to reach a designated way- 
point p = [x,y,U], the outputs u = [Sc,nc]T are 
rudder angle and shaft revolution commands to the 
ship actuators. 

Prior to the voyage, or when a complete route re- 
assessment is needed, given the vessel's present po- 
sition, the final destination point and journey time, 
J = [x0,yo,Xd,yd,t] the navigator formulates his 
navigation plan as a set of way-points for the whole 
journey, P = [xi,yi,Ui]$L0. To aid this process, 
the path planning and scheduling service which con- 
tains update information on the traffic situation and 
sea states can help advise navigators on this task. 
Data of all vessel routes (way-points) are actively 
stored in the Global way-point database. 

2    Local fusion 

2.1    Adaptive modelling 

To minimise errors and improve estimation of the 
ship states, on-line adaptive neurofuzzy models are 
used. These networks have been shown to be ca- 
pable of modelling any system within an arbitrary 
accuracy [7]. There generalisation ability to pre- 
viously unseen situations and their robustness to 
disturbances makes them ideal for this application. 

The ship controller, ship model and sensor models 
are implemented us Co-Active Neurofuzzy Inference 
System (CANFIS) networks which can be trained 
both off-line and in real-time, figure 3. CANFIS 
is an extension of the single output system ANFIS 
(Adaptive Neurofuzzy Inference System) to multi- 
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Figure 3: A two input, two output CANFIS network 
structure. The outputs share the same antecedents 
of fuzzy rules which allow correlations to be made 
between the outputs. In addition, the number of 
adjustable parameters are drastically less than the 
case if multiple ANFIS networks were employed for 
the same modelling problem. 

pie outputs. These networks uses first order Sugeno 
consequent output functions. 

For a general multi-input, multi-output system 

o(A)=f(i(*);0) (1) 

where o is the network outputs, i is its inputs and 
0 are the network parameter set. To train the 
network, input i and desired output d data pairs, 
Df = [i(k);d(k)] are required. The hybrid learning 
rule which combines least squares estimation and 
error back propagation is used to update the lin- 
ear and nonlinear network parameters, respectively. 
This is achieved through minimisation of an error 
function, typically 

E(k) = \\d(k)-{(k)\\2 (2) 

Sensor model 

Sensor modelling is needed for estimation of the 
ship states via the extended Kaiman filter where 
both its output and Jacobian is required. The su- 
periority of CANFIS over ANFIS is fully exploited 
in this application where a single network can be 
used to model all the sensors on-board the ship. 
From equ. 1 the sensor model can be written as 
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y(fc)=h(x(fc);0) (3) 

Where the inputs x into the network are the ship 
states and the outputs y are the sensor measure- 
ments. In the simplest case this can be viewed as 
a coordinate transformation from ship features to 
sensor coordinates, e.g. in the case of a radar sys- 
tem, from Cartesian to polar coordinates. However, 
should the sensor characteristics change during its 
operation (e.g. due to temperature effect, atmo- 
spheric effects), the network will adapt on-line to 
compensate for these changes and can therefore re- 
move bias effects. 

Ship model 

The ship model is required for state estimation via 
the extended Kaiman filter and its Jacobian is also 
needed to update the controller parameters. The 
inputs into the model, i = [x, u]T, consist of the 
ship states x and actuator control inputs u, and the 
output y are the updated ship states. The model is 
thus represented by 

x(* + l) = f(x(fc),u(*);6) (4) 

The ships states, x = [u, v, r, x, y, S, n]T consist of 
velocities in body fixed coordinates, its position in 
Cartesian coordinates, rudder angle and engine rev- 
olution, respectively. The inputs, u = [6c,nc,d\T, 
commanded rudder angle and engine revolution, 
and sea depth. 

The ship characteristics can change depending on 
its load, and changes in the sea state, thus the ben- 
efits of on-line adaptive networks are again of great 
asset in this application. 

Ship controller 

The ship controller is trained using specialised 
learning which is a direct method of minimising 
the system error by back propagating error signals 
through the ship model. Inverse learning can also be 
used, which has the advantage that the Jacobian of 
the ship dynamics are not required, however min- 
imisation of system error is not guaranteed. The 
controller network is as follows 

u(ifc)=F(xd(fc),x(fc);0) 

Substituting equ.4 

(5) 

u(*) = F[xd(k), f (x(*), u(fc); 0); 9]       (6) 

Given the desired states Xd(fc) and the current ship 
states x(fc) the task of the controller is to determine 
the control action u that would minimise a given 
criteria. The criteria or error measure stated below 
also penalises the amount of control action used, 

E(0) = eTQe + uTRu (7) 

where e = (xd - f), and f is the ship model out- 
put, given above. Two diagonal matrices Q and 
R are used to weigh the system states and control 
action. The back-propagation method is used to 
update the controller parameters 9 to minimise the 
error measure and to calculate the Jacobian of the 
ship model. 

2.2 Disturbances 

Disturbances effecting ship motion come from; 
wind, wave and sea current [10]. All are depen- 
dent on the local wind conditions. Wind and wave 
disturbances result in external forces acting on the 
ship. For slowly varying forces the ship actuators 
can compensate for these first order effects. The sea 
current can be treated as an additive term on the 
velocity of the ship. It remains to be seen whether 
on-line adaptive networks can compensate for these 
effects or whether additional input terms such as 
wind speed Uw and direction ßw are needed as in- 
puts into the network. 

2.3 Extended Kaiman filter 

The extended Kaiman filter is used for on-line state 
estimation of the ship's non-linear dynamics. The 
ship and sensor model outputs are combined with 
sensor measurements to predict future states. From 
equ. 4 and 3 the system and sensor models are 

x(Jfc + l)    =   f(x(*),u(*)) + w(A) 

y(*)    =    h(x(A:))+v(*) 

(8) 

where w(fc) ~ N(0, Q(fc)) is the system noise and 
ship modelling error, and v(k) ~ N(0, R(k)) is sen- 
sor noise and sensor modelling error. The noise co- 
variance matrices Q and R can be obtained from 
their respective network error residues E. 
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For robustness a prefilter should be used to re- 
move surplus measurements from sensor readings 
and to detect sensor failure. 

3    Vessel Traffic Centre 

3.1 Global fusion 

The fusion of local features £j from ships and ex- 
ternal sensors to form global consensus features is 
achieved using the standard Kaiman filter. The pro- 
cess combines similar features j optimally taking 
into account their error covariance Qj. Further- 
more, Qj is adjusted to take into account delays 
between feature extraction and the final fusion pro- 
cess. A simple linear system model is used for prop- 
agation of the states. 

Imaging sensors giving data on land and fixed 
objects are integrated with electronic chart data. 
Sea states such as current and wind velocities are 
measured, estimated and predicted for use by the 
Path Planning and Scheduling Service. 

3.2 Automatic   collision   avoidance 
advisory service 

In situations where there is potential for collision 
the VTC notifies the navigator and advises him of 
the avoidance procedure. The advise can be de- 
rived either from a human operator and/or expert 
system. The expert knowledge-base is constructed 
from collision avoidance regulations (COLREGs). 
The following highlights the importance of COL- 
REG for collision avoidance [8]: 

• There is worldwide acceptance and under- 
standing of its general procedures for avoiding 
collision. 

• The Regulations are acknowledged (in its for- 
mulation) to contain a distillation of historical 
navigational experience. With continual im- 
provements and specific guidance to reflect cur- 
rent state of development, thus the Regulations 
can be assumed to reflect the present optimum 
practice in the inexact art of marine naviga- 
tion. 

• The Regulations can be easily interpreted as 
a series of production rules (IF-THEN state- 
ments). 

A necessary requirement of a collision avoidance 
system is its predictability. Devising an avoidance 
route which optimises a mathematical function may 
produce time and spatially efficient paths but these 
paths may be non-intuitive and thus hard to foresee 
by other ships in the vicinity - causing uncoordi- 
nated ship manoeuvres. Here a number of heuris- 
tical stages are used making up the expert. The 
transparency (interpretability) of the knowledge- 
base allows the avoidance advise given by the expert 
to be validated. 

• Target ship classification [5]. Each target ship 
is classified with respect to own ship as being 
either; clear - no threat whatever alteration of 
course own ship makes, restricting - prevents 
own ship from performing specific manoeuvres, 
threat - collision potential if both ships main- 
tain their current speed and course. 

• Restriction on own ship movement. For re- 
stricting ships determine the constraint they 
impose on own ship movements. For example 
the restricting ship may prevent own ship from 
turning to starboard or port, and/or, changes 
in own ship speed may cause problems astern 
or ahead. 

• Encounter type. For restricting and threaten- 
ing ships classify the encounter type relative 
to own ship. e.g. own ship overtaking, target 
crossing starboard to port, head-on, etc. 

• Risk stage [9]. For threatening ships determine 
their current level of risk against own ship, i.e. 
developing, manoeuvring, critical. These cate- 
gories determines which actions are permitted 
in accordance with COLREGs. 

• Collision avoidance advice. Given the risk 
stage, encounter type and constraint imposed 
on own ship movements, the expert determines 
the most appropriate action to proceed, i.e. 
starboard, port alterations and/or speed alter- 
ations. The final avoidance advice is purpose- 
fully simple. 

3.3    Way-point modification 

Given the expert collision avoidance advice, the 
next task is to generate a subset of way-points in 
the general direction permitted.    Constraints on 
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ship manoeuvrability and environmental conditions 
are considered. Furthermore, rule 8 of COLREG 
states, any alteration of course and/or speed be large 
enough to be readily apparent to another vessel... 
(and) a succession of small alterations of course or 
speed should be avoided. 

3.4    Path   planning   and   scheduling 
service 

A major part of the VTC is to supply the navigator 
with information such as traffic density and weather 
conditions allowing them to best plan their journey. 
If the journey is planned correctly then potential 
hazardous situations are avoided and journey time 
and fuel will be minimised. The advisory service 
may also suggest a route if required, or on reflection, 
object to the navigator's planned route for safety 
reasons. 

3.5    Guidance law 

Given the set of way-points [xd(k),yd(k)]£=1, Line 
of Sight (LOS) guidance can be used to direct the 
ship in the desired direction of travel [10]: 

ipd = tan" 
Vd(k) - y(t) \ 

(9) ^xd(k) - x(t) J 

Once the ship lies within a circle of acceptance with 
radius p0 around the way-point [xd(k),yd(k)} the 
next way-point can be selected [xd(k+l), yd(k+1)]. 

4    Integrated display system 

An appropriate display of the current and predicted 
future situation is essential to help the navigator in 
the decision making process. Information should 
be delivered to the human operators with the aim 
of improving navigation safety, i.e. the display is 
easy to understand and interpret and is expressed 
in a manner consistent with the method used to 
navigate the ship. ECDIS have been shown to be 
an effect tool for understanding the ship current 
predicament. Evaluation and visualisation of fu- 
ture predicaments are possible using situation as- 
sessment displays, and by overlaying these displays 
on top of ECDIS gives an integrated display system. 

Two types of situation displays for integration in 
ECDIS are considered here; danger zones [4] and en- 
counter situation on the scheduled course line [5]. 

Collision 

avoidance 
route 

Own ship 

Figure 4: Danger zone situation assessment display 

The modified course as the result of the collision 
avoidance advise can be visualised and validated by 
either one of these display types which helps to reas- 
sure the navigator of the advice given by the system. 
To reduce clutter of the display a definable number 
of target ships purposing the greatest threat can be 
set. 

4.1    Danger zones 

Basically the task of collision avoidance is to keep a 
denned zone around own ship free. Traditionally a 
circle around own ship is used with radius equiva- 
lent to the permissible closest point of approach CA- 

The safety circle moving along with own ship gives 
no useful information for collision avoidance advise 
in ECDIS. A more initiative approach is to define 
boundaries in the marine environment where own 
ship should not encroach, known as 'danger zones' 

4.2    Encounter   situation   on   sched- 
uled course line 

The scheduled course line of own and target ship are 
drawn on the display. The target ship position at 
the distance of closest point of approach (DCPA) 
of the encounter situation is shown and the ship 
symbols are red when own ship crosses the bow of 
target ship, yellow when own ship crosses the stern 
of target ship, and white during passing or overtak- 
ing encounters. 
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Tu;et ship 

Figure 5: Encounter situation on scheduled course 
line assessment display. 

5    Summary 

The problems with the present situation in marine 
navigation have been discussed giving provocation 
for this research. In this paper a system has been 
proposed to improve the efficiency and safety of ma- 
rine transport by alleviating these identified prob- 
lem areas. An overview of the architecture and com- 
ponents of MANTIS have been given. 
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ABSTRACT- A fuzzy logic based resource manager 
(RM) that will allocate resources distributed across 
many platforms is under development. The platforms 
will consist of ships, aircraft, etc. The resources will 
be various sensors: ESM, RADAR, IFF, and 
communications. The RM will allow codification of 
military expertise in a simple mathematical 
formalism known as the fuzzy decision tree. The 
fuzzy decision tree will form what is known as a fuzzy 
linguistic description, i.e., a formal fuzzy if-then rule 
based representation of the system. Since the 
decision tree is fuzzy the uncertainty inherent in the 
root concepts propagates throughout the tree. The 
functional form of the fuzzy membership functions for 
the root concepts will be selected heuristically and 
will generally carry one or more free parameters. 
The free parameters in the root concepts will be 
determined by optimization both initially and later at 
non-critical times. A genetic algorithm will be used 
for optimization. 

Keywords: fuzzy logic, genetic algorithms, expert 
systems, multisensor data fusion, distributed AI 
algorithms 

1. Introduction 

Modern naval battleforces generally include 
many different platforms each with its own sensors, 
radar, ESM, and communications. The sharing of 
information measured by local sensors via 
communication links across the battiegroup should 
allow for optimal or near optimal decisions. The 
survival of the battiegroup or members of the group 
depends on the automatic real-time allocation of 
various resources. 

A fuzzy logic algorithm has been developed 
mat automatically allocates electronic attack (EA) 

resources in real-time. The particular approach to 
fuzzy logic that will be used is the fuzzy decision 
tree, a generalization of the standard artificial 
intelligence technique of decision trees [1]. 

The controller must be able to make 
decisions based on rules provided by experts. The 
fuzzy logic approach allows the direct codification of 
expertise forming a fuzzy linguistic description [2], 
i.e., a formal representation of the system in terms of 
fuzzy if-then rules. This will prove to be a flexible 
structure that can be extended or otherwise altered as 
doctrine sets, i.e., the expert rule sets change. 

The fuzzy linguistic description will build 
composite concepts from simple logical building 
blocks known as root concepts through various 
logical connectives: "not", "and", "or", etc. 
Optimization will be conducted to determine the form 
of the membership functions for the fuzzy root 
concepts. 

Section 2 gives a brief introduction to the 
ideas of fuzzy set theory, fuzzy logic, decision trees, 
root and composite concepts. Section 2 uses these 
concepts to develop the kinematic-ID subtree, which 
is an important component of the decision tree. 
Section 3 describes the optimization of the resource 
manager's performance. Section 4 provides an 
example of the algorithm's allocation of EA 
resources distributed over three platforms against an 
airborne targeting radar with uncertain ID. Section 5 
discusses association algorithms and points out the 
usefulness of a particular fuzzy logic based 
association algorithm. Section 6 discusses future 
developments. Finally, section 7 provides 
conclusions. 
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2. A Brief Introduction to Fuzzy 
Sets, Logic, and Decision Trees 

The resource manager (RM) must be able to 
deal with linguistically imprecise information 
provided by an expert. Also, the RM must control a 
number of assets and be flexible enough to rapidly 
adapt to change. The above requirements suggest an 
approach based on fuzzy logic. Fuzzy logic is a 
mathematical formalism that attempts to imitate the 
way humans make decisions. Through the concept of 
the grade of membership, fuzzy set theory and fuzzy 
logic allow a simple mathematical expression of 
uncertainty. The RM will require a mathematical 
representation of domain expertise. The decision tree 
of classical artificial intelligence provides a graphical 
representation of expertise that is easily adapted by 
adding or pruning limbs. Finally, the fuzzy decision 
tree, a fuzzy logic extension of this concept, allows 
easy incorporation of uncertainty as well as a 
graphical codification of expertise. 

This section will develop the basic concepts 
of fuzzy sets, fuzzy logic, and fuzzy decision trees. 
Examples from a primitive military doctrine set will 
be provided. 

2.1 Fuzzy Set Theory 

This subsection provides a basic 
introduction to the ideas of fuzzy set theory. Fuzzy 
set theory allows an object to have partial 
membership in more than one set. It does this 
through the introduction of a function known as the 
membership function, which maps from the complete 
set of objects X into a set known as membership 
space. More formally, the definition of a fuzzy set 
[3] is 

If X is a collection of objects denoted generically by x 
then a fuzzy set A in X is a set of ordered pairs: 

A = {(x,ßA(x))\xeX} 

ßA(x) is called the membership function or grade 
of membership (also degree of compatibility or 
degree of truth) of x in A which maps X to the 
membership space M. 

The logical connectives "and", "or", and 
"not" are defined as 

or: A u 5 -> ßAKjB (x) = maxt^ (x),ßB (x)] 

and:AnB^ ßAnB (x) = min[//A (x),ßB (x)] 

not   B:B -> ßB-(x) = l-ßB(x) 

2.2 Fuzzy Decision Trees and Root 
Concepts 

In this section methods of constructing 
classical and fuzzy decision trees are discussed. The 
fuzzy decision tree will provide a graphically 
intuitive way of propagating information from basic 
to complex concepts. 

A classical decision tree is a standard 
artificial intelligence technique for making decisions. 
It's graphical nature allows an easy intuitive 
representation of information. The method of 
constructing decision trees, both classical and fuzzy, 
is best illustrated through an example. Consider the 
following simple military doctrine set, i.e., a set of 
rules provided by an expert: 

Rl:   IF   target   is  Attacking   or  Bearing-in   or 
Maneuvering, THEN the target is Important 
R2: IF target is Close and not Friend, THEN the 
target is Attacking. 

These rules can be represented in a tree form 
which is given in Figure 1. 

Figure 1: Decision Tree for rules Rl and R2 

In Figure 1 the root concepts are "close", 
"friend", "bearing-in", and "maneuvering". The 
composite concepts are "attacking" and "important". 
The root and composite concepts are placed in their 
own boxes. The boxes are connected with lines. 
Vertices marked with a horizontal line are read as 
"and", unmarked vertices as "or", and lines marked 
by a circle indicate negation. 

The conversion from a classical decision 
tree to a fuzzy decision tree is carried out by 

-assigning each classical root concept, those 
boxes at the bottom-most level of the decision tree, 
membership functions and then 

-converting all classical "or", "and", and 
"not" operations to the analogous fuzzy operations. 
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So for track i, the following grades of 
membership associated with the corresponding root 
concepts must be defined: 

ßfriend >ßclose>ßbearing-in t311^ ß, maneuvering 

Pursuing the second component of the above 
description, i.e., the conversion of classical "and", 
"or", and "not" into ihe related fuzzy set-theoretic 
quantities, gives the following grades of membership 
for the composite concepts "attacking" and 
"important": 

ßattaddng (0 = ™™lßclo,e (0.1" ßfriend (01 

/^important VU — 

TÜ3X\ßamddng \l), ßbearing-üt v' '* ßmaneuvering V1 / J 

"importantw — 

max[min|Xtae (i),l - ßfriend (/)], 

ßbearaig-in \*)i /^maneuvering V1 'i 

The resulting grades of membership for composite 
concepts are used for establishing priorities for 
resource allocation. 

Figure 1 is referred to as the kinematic-ID 
subtree. It is a subtree of a larger fuzzy decision tree 
used by an isolated ship for allocation of its own EA 
resources. Each ship in the battlegroup has an 
isolated ship tree that allocates its EA resources. 
These isolated ship trees, when linked together by 
information from line of sight communication form a 
larger tree, known as the multi-platform tree. It is 
mis tree together with information sent over 
communications links, that determines allocation of 
EA resources over the entire battlegroup. The full 
isolated ship tree, communication models, and the 
multi-platform tree will not be discussed in detail 
here due to space limitations. A more detailed 
account of these concepts will be published in the 
near future [4]. 

2.3 Root Concept Membership Functions 

The next step required for implementation 
of the fuzzy linguistic description is defining 
membership functions for the root concepts. There is 
not an a priori best membership function so a 
reasonable mathematical form is selected. This 
subjective membership function will be given in 
terms of one or more parameters that must be 
determined. The parameters may be set initially by 

an expert or they may be the result of the application 
of an optimization algorithm. The possible use of a 
stochastic optimization algorithm to determine the 
unknown parameters in root concept membership 
functions is discussed in section 3. 

As a first example of a membership function 
definition consider the root concept "close." The 
concept "close" refers to how close the target/emitter 
on track i is to the ship, or more generally platform of 
interest. The universe of discourse will be the set of 
all possible tracks. Each track i has membership in 
the fuzzy set "close" based on its range R (nmi) and 
range rate dR/dt (ft/sec). An appropriate membership 
function might be 

1 

1 - (X I Ri - Ärnin I / max(- Ri, Rrmn ) 

The parameters to be determined by optimization are 

a,   /?min,   and   An*,. 

3.   Optimization 

There are many different types of 
optimization algorithms found in the literature. 
Many of these algorithms are known as greedy 
algorithms because they will find as a solution the 
first extremum encountered in a parameter space. 
Examples of this kind of algorithm are found in 
reference [5]. 

An algorithm that has the capability to 
explore parameter space before settling on a solution, 
intuitively would seem to have greater probability of 
selecting an optimal or near-optimal solution than a 
greedy algorithm. Examples of algorithms of this 
kind are stochastic optimization algorithms, which 
include simulated annealing [5] and genetic 
algorithms [6]. 

A genetic algorithm (GA) is an optimization 
method that manipulates a string of numbers in a 
manner similar to how chromosomes are changed in 
biological evolution. An initial population made up 
of strings of numbers is chosen at random or is 
specified by the user. Each string of numbers is 
called a "chromosome" or an "individual," where 
each number slot is referred to as a "gene." A set of 
chromosomes forms a population where each 
chromosome represents a given number of traits that 
are the actual parameters being varied to optimize the 
"fitness function". The fitness function is a 
performance index that we seek to maximize. 
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The operation of the genetic algorithm 
proceeds in steps. Beginning with the initial 
population, "selection" is used to choose which 
chromosomes should survive to form a "mating 
pool." Chromosomes are chosen based on how "fit" 
they are (as computed by the fitness function) relative 
to the other members of the population. More fit 
individuals retain more copies of themselves in the 
mating pool so that they will have greater 
representation in the next generation. Next, two 
operations are taken on the mating pool. First, 
"crossover" (which represents mating, the exchange 
of genetic material) occurs between parents. 

In crossover, a random spot is picked in the 
chromosome, and the genes after this spot are 
switched with the corresponding genes of the other 
parent. Following this, "mutation" occurs. Mutation 
represents the change of values of randomly selected 
genes in a chromosome. After the crossover and 
mutation operations occur, the resulting strings form 
the next generation and the process is repeated. A 
termination criterion is used to specify when the 
genetic algorithm should end (e.g., the maximum 
number of generations or until the maximum fitness 
exhibits little or no change over a certain number of 
generations). 

The following characteristics are also 
considered advantages of the genetic algorithm: 

the genetic algorithm works on a population of 
points, not a single point, 
they work directly with strings of characters 
representing the entire parameter set, not the 
individual parameters, 
the search is guided by probabilistic rules, not 
deterministic rules. The inherent randomness in 
this procedure allows the genetic algorithm to 
escape local maxima, 
genetic algorithms,  like simulated annealing 
represent a form of optimization that does not 
require derivatives. The genetic algorithm only 
requires information about how fit a given 
solution is, i.e., the effect of the solution on the 
fitness function. 

The construction of good fitness functions 
for this application requires insight in four areas, with 
the rules being derived from geometry, physics, 
engineering, and military doctrine. Several classes of 
fitness functions are being explored. The fitness 
functions tend to be highly nonlinear and non- 
differentiable at many points. For classical 
optimization algorithms, the non-differentiability 
might have posed a problem, but it offers no 
difficulty for a genetic algorithm. 

The fitness functions currently being 
explored are expressible mathematically as a linear 
combination of products of Heaviside step-functions 
[7]. The step function arises from the rule-based 
origin of the fitness functions. The arguments of the 
fitness functions are given by the difference of the 
membership function and a parameter characteristic 
of expertise. The linear combinations of products of 
the step functions are typically averaged over an 
ensemble of kinematic scenarios, where each element 
of the ensemble differs from the others in terms of 
initial conditions. For example, the ensemble used to 
optimize the membership function for the root 
concept "close" consists of elements with different 
initial values for range, and its first two derivatives 
with respect to time. From these initial values, the 
range and range rate are calculated as a function of 
time allowing the membership function for "close" to 
be optimized over many physical scenarios. This is 
referred to as a geometric-kinematic ensemble. 
Despite the complicated non-linear form that the 
fitness function takes because of the rules used in its 
construction, genetic algorithm based optimization 
has proven to be effective. 

The method described above for 
constructing fitness functions is only a first step. The 
fitness functions constructed in this manner, are most 
applicable to isolated platforms. The ultimate goal is 
to construct a resource manager/scheduler that is 
optimal in its performance when dealing with 
multiple dissimilar platforms. By pursuing the 
isolated platform model first, the region of parameter 
space that must be explored for the multi-platform 
problem is reduced. It would be expected, on 
intuitive grounds, that parameters for the multi- 
platform problems should lie within some 
neighborhood, of those solutions for the isolated 
platform model. The motivation for this assumption 
is that at any given time, each platform may be called 
upon to defend itself. Once the isolated platform 
parameters are selected for each root concept 
membership function, neighborhoods around these 
parameters can be defined, and a parameter space for 
the multi-platform problem formed by constructing a 
product space from the coordinate spaces defined by 
each isolated platform neighborhood. Therefore, the 
potentially large parameter space that must be 
explored for the multi-platform problem is 
constrained through the use of a priori information, 
significantly reducing the run-time of the genetic 
algorithm. This procedure has proven effective in 
producing very high quality multi-platform 
performance. The performance of the model and the 
potential risk of restricting parameter space in this 
way will be examined in a future paper [4]. 
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4.  An Example of Multi-platform 
Response 

In this section a specific example of the 
fuzzy RM's ability to optimally allocate electronic 
attack resources is examined. Input requirements and 
output characteristics are considered, and illustrated 
through the actual output of the current 
implementation of the RM. 

4.1 Input Scenario 

The fuzzy RM requires as input, the position 
and number of ally platforms, e.g., ships, planes, etc., 
also emitter range, bearing, heading, elevation, and 
an emitter ID with an uncertainty associated with the 
ID. The effect of the data is to stimulate the various 
kinematic concepts like "close" resulting in different 
"actions" by the algorithm. The emitter ID is used to 
determine the technique or techniques (for ID's with 
uncertainty) that the ally platform or platforms can 
execute against the emitter. 

■ ■ '.'"'■■■■ -    '■'.■'.:•■:'•.**'. 

 __ __  

■ ''■■■•■-■•                --—■—■- JmuEttBMiMtmiBiiKmrmnBMwmmMBnm 

Figure 2: The fuzzy RM allocates EA 
resources distributed over three ships 
against a targeting radar with uncertain 
ID. 

In Figure 2, there is a battleforce of three 
ships and also an incoming aircraft with targeting 
radar. However, in this scenario, the type of the 
threat emitter is not well-known. With the threat's 
classification not being well-known, and because the 
uncertainties indicate a foe of some type, all three 
ships conduct joint EA against the threat emitter. 

The ship acting as command ship sends 
communication over the network to other adjacent 
ships asking for joint EA and chooses the electronic 
counter measures (ECM) technique most likely to be 
effective against this type of threat. The adjacent 
ships choose two other ECM techniques based on the 
emitter's ID and its uncertainty. 

It should be noted, each ship has the same 
software aboard, and can act as a command ship. 
This significantly reduces the likelihood of the 
battlegroup being rendered ineffective by the loss of 
a single platform. 

4.2 Output of the Fuzzy RM 

In Figure 3, the algorithm's output for the 
scenario in Figure 2 is displayed. A polar plot with 
origin at the centroid of battlegroup is used to display 
the positions of the three ships (diamonds), the 
incoming emitter (triangle marked with designation 
"foe type"), and friendly aircraft (triangles marked 
with the designation "friend type"). Communications 
and electronic attack techniques used by each ship 
are listed to the side. The arrows running from the 
ships to the foe-type emitter indicate electronic 
attack. 

 IM, kW™ 5..,!. ,re.F  

Current icUe* 
CIHT.QU,  MM6UUB9  EA 

. laccniB, Coiuunicationa 
C*I-fl, BAI «claC, unu».tlt>a Joltrt U 
cc-JO caaairtuia Joint tee** mn CW-8J 
COO-91 csoaueutuj leUtc eiua «leb cyi-os 

ifertnpt*>4hrdMraem 

Figure 3: The algorithm's output 
showing how it allocates EA resources 
distributed over three platforms. 

The algorithm, during its real-time run, 
displays an image of this type every second. As 
indicated in the box in the right-hand corner of Figure 
3, the algorithm chooses the appropriate techniques 
for all three attacking ships. As consistent with 
military doctrine, all three ships are conducting joint 
EA. Finally, it should be noted there are two friendly 
aircraft in die scenario. The algorithm will not attack 
an emitter based on kinematic properties if the 
emitter has been clearly identified as a friend. 
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The algorithm has been determined to be 
effective by comparing its output to the judgement of 
human experts. Statistical evaluation of the 
algorithm's effectiveness will be published in the 
near future [4]. 

5. Dealing with Imperfect 
Association 

It is assumed that the data provided as input 
to the RM has already been associated, i.e., the 
appropriate ESM and radar data have already been 
perfectly assigned to the same emitter. Association 
of the ESM and radar data is valuable since radar 
provides range and bearing information for use in the 
root concept "close" and ESM can provide ID, 
bearing, RF and PRI of the emitter. Unfortunately, 
the association of ESM and radar is generally not 
perfect given the sparse, intermittent and noisy nature 
of data. 

The abilities of two different association 
algorithms to associate data as a function of the 
measured ESM points will be compared. These 
algorithms are the fuzzy association algorithm 
described in reference [8-12] and a Bayesian 
philosophy algorithm described in reference [13] and 
referred to here as the TW-algorithm. 

The two association algorithms are 
compared using the same simulated ESM and radar 
data. The emitter has a bearing of 0 degrees. This is 
absolute truth for this simulation. Radar has 
determined there are objects traveling with bearings 
of 0, 1, and -1 degrees. For simulation purposes 
zero mean Gaussian noise with 1 degree standard 
deviation is added to simulate noise in the ESM 
measurement process. This is a difficult association 
problem since mere are radar measurements not only 
at 0 degrees, but also radar measurements wimin one 
standard deviation of truth. 

Since the radar measurements contain truth 
it is expected that a good association algorithm will 
associate the zero degree radar track with the ESM 
data. A probability of association between each radar 
track and the ESM data is calculated as in references 
[8-13]. Both algorithms give rise to five hypothesis 
classes describing whether or not the ESM data is 
associated with a radar track. It is desirable that 
when radar contains "truth," i.e., in mis case the zero 
degree track, the track corresponding to truth, be 
firmly correlated with the ESM data. In this way the 
probability of making an inappropriate assignment of 
range is minimized. The notion of firm correlation is 
defined in detail in the references [8-13]. The other 
hypothesis classes will not be displayed, as they are 

not interesting for the example that follows and only 
serve to obscure the results. 

Both the fuzzy association and TW- 
algorithms can be used to associate noisy ESM and 
noisy radar measurements [8-12]. The radar 
measurements for radar track j at time U will have 
zero mean Gaussian noise added to them. The 
variance of the noise will be denoted as d\ for the/* 
radar track at the r* time. 

Figure 4 presents results for three radar 
tracks with the following bearings: 
ju = 0°, 1", -1° with o-„ =0.1° for all times tt 

and radar tracks j. The radar noise standard deviation 
is consistent with levels found in modern radar 
systems. Since the radar results contain truth, i.e., a 

target moving with constant bearing of 0° a good 
association algorithm will establish that there is a 
firm correlation between the ESM data and the 
0° bearing track. Figure 4 plots the probability the 
association algorithms establish a firm association 
between ESM data and the radar measurements. The 
fuzzy association algorithm results are given by the 
curve marked with o's and the TW results are 
indicated by the curve marked with + 's. The vertical 
axis indicates probability of firm correlation and the 
horizontal axis the number of data points necessary to 
establish that level of probability. 
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Figure 4: Fuzzy and Bayesian association 

The fuzzy association algorithm results are 
always superior to the TW-algorithm. At ten data 
points the fuzzy algorithm has established a 65% 
probability of firm correlation, between the ESM data 
and the 0° radar track. The TW-algorithm requires 
about 24 points to establish the same level of 
probability of FCT. The fuzzy algorithm establishes 
an 80% probability of FCT by the 12"1 data point, 
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whereas the TW-algorithm requires about 30 points 
to reach the same level of success. The fuzzy 
algorithm reaches 90% probability of FCT at 20 data 
points and the TW-algorithm at about the 38th point. 
Therefore, the fuzzy algorithm establishes high 
probabilities of firm correlation with between 1/3 to 
1/2 the data required by the TW-algorithm. In this 
sense the fuzzy algorithm is 2 to 3 times faster than 
the TW-algorithm. Also, this is a difficult example 
for any association algorithm since there are two 
additional radar measurements within one noise 
standard deviation. The results are only slightly 
inferior to the case where radar is simulated as 
noiseless as found in reference [11]. The ability of 
the fuzzy algorithm to make high quality decisions 
with much less data man (he TW-algorithm is 
significant since real data is frequently sparse and 
intermittent. 

The above examples are for the case where 
there is 100% detection of ESM and radar data. In 
reference [11] it is shown with a detection rate as low 
as 70% of the ESM points, the fuzzy association 
algorithm experiences little deterioration, whereas the 
TW-algorithm's performance is greatly degraded. 

The example in Figure 4 is for the case of a 
single emitter. In reference [11] it is shown that the 
fuzzy association algorithm gives a similar level of 
performance if there are one, four or 10 emitters, 
even when ESM detection rates drop down to 70%. 
In particular, for 10 emitters closely spaced in the 
RF-PRI plane the fuzzy association algorithm 
displays results like those found in Figure 4, but the 
TW-algorithm deteriorates more than 40% by the 48th 

data point. 
The use of the fuzzy association algorithm 

will allow association decisions to be made with 1/6 
to Yi. the data required by the Bayesian association 
algorithm. Faster association of ESM and radar 
tracks means better assignment of range and ID's to 
potential threats. As a final observation, the use of 
both a fuzzy RM and a fuzzy association algorithm 
would allow linguistic data to be shared between the 
two algorithms. This should increase the 
effectiveness of both algorithms. The easy sharing 
of linguistic rules and other linguistic data is not an 
option, if a non-fuzzy association algorithm like the 
TW algorithm were to be used for association. 

6. Future Developments 

There are several activities that will be 
conducted in the near future, which include: 
expansion of the rule set, research related to 
improved optimization, expansion of the technique 
library,   the   invention   of   new   multi-platform 

electronic attack techniques which make good use of 
the resources distributed over multiple platforms, and 
validation of the multi-platform resource manager. 

7. Conclusions 

A fuzzy logic based algorithm for optimal 
allocation and scheduling of electronic attack 
resources distributed over many platforms is under 
development. The kinematic-ID subtree that forms 
the core of the isolated ship model has been discussed 
and used to illustrate the mathematical concepts 
involved. Root concept membership function 
construction has been discussed. Optimal 
performance for the algorithm is obtained by 
selecting values of the free parameters in the root 
concept membership function using a genetic 
algorithm. The use of a genetic algorithm requires 
the construction of a fitness function. The fitness 
functions constructed for this task are based on 
insights obtained from geometry, physics, 
engineering, and military doctrine. The fitness 
functions are in general non-differentiable and highly 
non-linear, neither property providing an obstacle for 
a genetic algorithm. Finally, fuzzy logic based multi- 
sensor association should prove very effective both in 
its ability to form high quality conclusions faster than 
a standard Bayesian algorithm and because it allows 
linguistic data to be shared easily between the 
resource manager and the multi-sensor association 
algorithm. 
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Matching Segments in Stereoscopic 3D Reconstruction. 

Andre BIGAND (*), Thierry BOUWMANS (*), Jean Paul DUBUS (**) 
* LASL, Universite du Littoral, BP649, 62228 Calais Cedex, France 
** Laboratoire ID3, USTL, 59655 Villeneuve D'Ascq Cedex, France 

Abstract The importance of 3D data acqui- 
sition is widely recognized in robotics field. 
One approach is to measure the distance on 
the basis of triangulation principle from the 
disparity of two images. This stereo method 
has, however, a difficult problem that is to 
find correspondence of features between two 
images. This correspondence problem can be 
solved geometrically by adding one more ca- 
mera (trinocular vision) or dealing with the 
depth uncertainty using an adapted aggrega- 
tion operator. This paper presents the appli- 
cation of the fuzzy logic for the correspon- 
dence between features, for static and dyna- 
mic 3D structure in an industrial environ- 
ment. The aim of the work is to propose a 
fuzzy 3D sensor for metrology and multime- 
dia applications with manufactured objects. 
For recognition of 3D shape and measure- 
ment of 3D position it is important that a 
vision system can measure the 3D data of 
dense points in the scene. At first we remind 
the different stages of a multi-sensory sys- 
tem for 3D reconstruction, then we remind 
the problem of features matching. These ap- 
plications need to obtain a good precision of 
the 3D representation, so all the algorithms 
are treated in this way (camera calibration, 
...), and the use of fuzzy logic methods is 
generalised to obtain a good robustness of 
the algorithms. Results are presented, using 
standard cameras and comparating two fuzzy 
aggregation operators : OWA and fuzzy in- 
tegral. . 

Keywords : fuzzy logic, image fusion and machine 
vision, manufacturing. 

1    Introduction 

Information fusion is an important aspect 
of any decision system. Dealing with multiple 
input information sources is that the informar 
tion coming from individual source is either in- 
complete or noisy that is , uncertain or im- 
precise. Numerous image processing systems 
or computer vision systems (pattern recogni- 
tion, scene analysis, image processing, 3D re- 
construction,...) belong to this category of de- 
cision taking problems. This paper aims with 
the stereo matching problem, that is obtaining 
a correspondence between (linear) features in 
right and left images, and treated like a deci- 
sion problem , related with industrial images 
(polyhedric scene analysis). At the end of the 
low-level image treatment, we obtain linear pri- 
mitives (segments) known with some impre- 
cision on their geometric characterization, so 
existing matching methods (like dynamic pro- 
gramming,...) have to deal with uncertainty. 
Dynamic programming techniques have been 
used to handle this search efficiently. Neverthe- 
less, due to the nature of the problem and its 
uncertainty, we have verified an improvement 
by using a fuzzy decision tool by the mean of 
a hierarchical tree testing the attributes we de- 
fined previously. We first order the segments 
in the two images, then we test the similarity 
of these ordered segments by two attributes 
along the epipolar line (length and orientation), 
each attribute being scoring by a fuzzy mea- 
sure. We keep the best matched segments. We 
have compared fuzzy connectives (classical ave- 
rage operators, fuzzy integral) with a classical 
matching algorithm and we prove that in parti- 
cular fuzzy integral is better in matching noisy 
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segments by reducing uncertainty on this ope- 
ration. Indeed the decision (at each step of the 
algorithm) is a one shot-decision and the Cho- 
quet integral-based utility, a generalisation of 
expected utility that is sum-decomposable for 
such acts in numerical framework, is well adap- 
ted to improve existing strategies by conside- 
ring of approximate data (that gives uncertain 
decision). Fuzzy average operators method and 
classical method give about the same results in 
that case. 

2    Description of the method 

The different stages met in multivision are 
the following ones : calibration, localisation, 
segmentation, fuzzy extraction segment, es- 
tablishing correspondence, 3D reconstruction. 
The calibration method used is global. This 
method consists in determining a characte- 
ristic matrix of the camera called matrix of 
calibration. This method was developped in 
([3]). The segmentation (using a fuzzy cluste- 
ring method) used is develloped in Bezdek([l]), 
Bouwmans([3]). We just remember here the 
principles used and the advantages of the deve- 
lopped method. At first, from the initial image, 
we apply a fuzzy geometrical area extraction; 
This method permits to obtain the edges of 
fuzzy images, like fuzzy Hough methods, ([6]); 
But we know that these types of methods are 
sensitive to lightning variations, so we associate 
the geometrical area extraction with a fuzzy 
clustering method, up to increase the accuracy 
and the reliability of the segmentation. Once 
made the segmentation of the image (our me- 
thod doesn't need edge following), the different 
images are represented by multiple segments, 
primitives that we are able to match. Even if 
these primitives (linear segments) are well loca- 
ted, it remains some imprecision on the length 
and on other geometrical attributes. So we have 
to deal with this imprecision that makes the 
stereo correspondence problem uncertain . 

3    Feature matching method 

Many pattern recognition problems can be 
simplified as line pattern matching task. Once 
segmentation made (and movement detection 
if necessary), we have to match the 2 (or 3 
or n) images. This stereo correspondence pro- 
blem can be defined in terms of finding pairs 
(or more) of true matches between features 
(here edge segments) that satisfy some compe- 
ting constraints : ordering, similarity, smooth- 
ness, uniqueness, ([7]). Due to the uncertainty 
of traditionnal segment matching, we deci- 
ded to use fuzzy data fusion method, presen- 
ted by I.Bloch ([2]), for 3D reconstruction. A 
comparison of fuzzy operators, depending on 
their behaviour, and the dependence of these 
operators on conflict and on source reliabi- 
lity was presented in ([2]); ([8], ([4]) operate 
with these fuzzy operators to solve matching 
problems. Grabisch ([5]) shows that the Cho- 
quet integral, used with Sugeno measures, is 
sum-decomposable and is a generalisation of 
OWA operators in numerical frameworks. We 
present in this paper the results of fusion of 2 
(or 3) images using T-norms and T-conorms, 
for images taken in a factory under varying 
lightning, the choice of fuzzy operators being 
important to reduce traditionnal conflicts of 
matching, and then using fuzzy integral . We 
use for T-norms "sqrt(xy)" and for T-conorms 
"(x+y)/2". The choice of the operators are de- 
pending on the importance of the choosen attri- 
butes, for matching images with accuracy and 
robustness. These operators permit to compare 
a segment of left image with segments of right 
image (or inverse). 

3.1    Attributes 

Our stereo matching algorithm uses edge 
segments as primitives (features) and the 
problem is seen as a multistage (hierarchical) 
decision process. Prom 2 (or 3) images to 
match, left and right, a number of features 
are to be extracted. The segments are first 
ordering in each image using the epipolar 
constraint. Then the similarity is verified by 
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FIG. 1: Confidence measure on the attribute 
"length" 

FIG. 2: Confidence measure on the attribute 
"orientation" 

tion "then" the Kleene-Dienes implication, be- 
cause all the criteria bring redundancy on the 
information and we need a good coherence on 
the fuzzy rule base to keep the good candidates 
for matching. So the fuzzy rule base furnishes 
(from the primitives of each image) edge seg- 
ments with their 3D coordinates for the 3D re- 
construction that follows the matching opera- 
tion, using a hierarchical model : At first, we 
test length and orientation of the segments of 
the two (or three images), to obtain a set of can- 
didates for segment matching, and then we test 
the proximity, up to obtain only one pair of seg- 
ments to match. If the uniqueness is not respec- 
ted we pursue the treatment in the other sense 
( for instance we first test the right image with 
the left one and then the left one with the right 
one). And then we compared this method with 
a Choquet integral method associated with Su- 
geno measures obtained with an a-priori infor- 
mation. In the other hand, the Choquet Inte- 
gral method is a global method (All the attri- 
butes are tested at the same time) compared 
with a fuzzy rule base. 

three attributes for each edge segment (length, 
direction, and the proximity ), to optimize 
matching procedure. For each attribute, we 
associate a fuzzy measure on which we apply 
fuzzy operators. For the length, we use three 
clusters : little, medium, big (figure 1). For the 
direction, we use 36 clusters (from 0 to 360 
degrees), (figure 2). 

3.2    Fuzzy rule base 

For each attribute, we calculate a criteria for 
the matching of edge segment in the both (or 
3) images : criteria(i)= 1- S(mj-mk), with i the 
number of the attribute, mj the measure of the 
first attribute in the first image, mk the mea- 
sure of the first attribute in the second image,... 
Each criteria is integrated in a fuzzy rule base : 
If criteria(l) is A and criteria(2) is B and... then 
the choosen edge segment : length is A and di- 
rection is B and... 

We have choosen as sense for the implica- 

4    Results 

The images are taken in a noisy environment 
(real images). The algorithm of segmentation 
has found linear segments from a calibration 
feature that is difficult to reconstruct because 
all the segments are paralell. We present in 
the next pictures (figure 3, figure 4, figure 5 ), 
the 3D reconstruction of a classical frame from 
its right and left images, using only two attri- 
butes for these segments (length and direction). 
So we show the strength of this type of fuzzy 
rule base, in comparison with classical methods 
using these two attributes. The accuracy of the 
method is increasing by using a third camera 
and the other attibutes of each primitive in the 
image. 

To compare OWA operators and fuzzy inte- 
gral we show in the next figures, (figure 6) for 
OWA, (figure 7) for fuzzy integral, the mea- 
sures associated to ten segments in each image 
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FIG. 3: Right image 

at the beginning of the decision process, and 
figure (8) and figure(9) the same measures at 
the end of the decision process. We can explain 
these figures like the confidence degree function 
we associate to the imprecision we have along 
the decision process. We can notice that (figure 
7) the measures are non-additive (the sum is 
equal to 1.2). At the end of the process there 
is only one pair of segments matched. We can 
also notice that there is left more information 
at the end of the process using the fuzzy inte- 
gral. We have verified this fact in generating " 
noise " by adding one false segment in only one 
image. At the end of the first step (right image 
to left image), 90 per cent of the segments of 
the right image are well appaired by the OWA 
operators and 100 per cent by fuzzy integral. 

FIG. 4: Left image 

Results show that this method for matching 
homologous objects can be proposed. A good 
choice of fuzzy operators permit to reduce the 
matching conflicts of traditionnal matching me- 
thod. We have shown that OWA operators are 
effective as well as fuzzy integral to match li- 
near features but the fuzzy integral is more ef- 
fective when there is a great uncertainty for 
matching (see figure (9)). The interesting point 
here is the fact that we have got good precision 
relevant for industrial measure in productics, 
so it can be applied to 3D inspection. CPU's 
time is too reasonable (it is often a problem 
for fuzzy method). We are now optimizing the 
different procedures we used, up to propose an 
optimum tool for industry inspection. 

6    References 

5    Conclusion 

We have experimented with camera cali- 
bration, stereoscopic vision and reconstruction 
with standard hardware (cameras and image 
digitizer) on an industrial piece and fuzzy soft- 
ware in order to build a "3D fuzzy studio". 
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Estimating the Distance between two robot arms by fusing the 
views of uncalibrated cameras* 

Christian Scheering, Jianwei Zhang and Alois Knoll 
Faculty of Technology, 

University of Bielefeld, 33501 Bielefeld, Germany 

Abstract We propose an approach for es- 
timating the distance of two moving robot 
arms based on the fusion of vision data. The 
first component of the method is the projec- 
tion of high-dimensional input data into a 
subspace generated by a Principal Compo- 
nent Analysis (PCA). We show that complex 
sensor data can be efficiently compressed if 
robot movements are constrained to a local 
scenario. The second component is an adap- 
tive B-spline neuro-fuzzy controller whose 
input space is the subspace and whose out- 
puts are the estimated robot distances. The 
B-spline model is trained for smooth and 
correct interpolation. In the online applica- 
tion phase, through the cascaded two com- 
ponents, a sensor pattern can be mapped 
into the distance space. Our experimental 
setup consists of a two-arm robot system 
with an "overhead" and a camera looking at 
the scene from the side. Implementations 
with different motions show that the method 
works even if no robust geometric features 
can be extracted from the sensor readings. 

Keywords: uncalibrated vision, sensor fusion, 
learning neuro-fuzzy model, two arm distance es- 
timation, collision avoidance 

1    Introduction 

The estimation of distances between a robot 
and its environment provides the basis for de- 

"The work described in this paper is funded by the 
Deutsche Forschungsgemeinschaft in the project SFB 
360/D4. 

tecting potential collisions between two arms. 
We present a self-learning minimal distance es- 
timation scheme for a two-arm robot using two 
uncalibrated cameras for achieving this goal. 
Common approaches of collision detection em- 
ploy simplified geometric models of arms and 
the (reconstructed) environment. In [1] de- 
formable protection zones are used to detect 
the collision between the two robot arms. In 
[2] the geometry of a dual-arm robot is approx- 
imated by a set of spheres. A 2D geometric 
model is utilised in [3] by constraining the area 
in which a collision might occur. [4] presented 
an obstacle count independent method which 
is based upon voxel-map and spherical repre- 
sentation. 

These approaches rely on an a-priori 
modelling or reconstruction of the robots 
workspace. A different approach is to use 
sensors to detect collisions between the arms. 
In [5] a single arm is instrumented with in- 
frared proximity sensors, [6] describes a reac- 
tive approach to sensor-based collision avoid- 
ance and [7] presents a method for real-time 
collision avoidance for a whole-sensitive arm 
whose whole bodies are covered with a sensi- 
tive skin sensor to detect objects in its direct 
vicinity. 

Others [8, 9, 10, 11] extract geometrical 
meaning from images. The desired task is then 
performed by exploiting the obtained geomet- 
rical representation. A problem to be solved is 
how to model and extract meaningful informa- 
tion from multiple images such as characteris- 
tic points or objects. This makes some kind of 
target identification or prior marking of points 
necessary. 
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In our approach we use a trained hand-eye 
transformation to estimate distances. Learn- 
ing of vision-based positioning based on vi- 
sual appearance information was introduced in 
[12]. A parametric eigenspace representation is 
used for describing the different objects as well 
as object locations. The positioning problem 
is thus transformed into finding the minimum 
distance between a point and a manifold in the 
eigenspace. 

In this paper, we propose a multiple-view 
fusion-scheme by combining an adaptive fuzzy 
controller with principal component analysis as 
a dimension-reduction technique in order to es- 
timate the minimal distance between two robot 
manipulators. Images obtained by two uncal- 
ibrated cameras are represented as single vec- 
tors of very high dimension and are projected 
into a low-dimensional subspace without any 
further geometric feature extraction or three- 
dimensional reconstruction. In the off-line 
phase these projected images form the input to 
the fuzzy-controller which in turn learns the re- 
lationship between images and arm-positions. 

In the following section, we first introduce 
the employed model. In the experimental part 
we present and compare different results from 
a distance estimation during a complex rota- 
tional motion. 

2    Sensing-Estimation Model 

Our goal is to develop a supervised training- 
scheme, which enables an adaptive system to 
learn the relationship between two arbitrary 
camera-views and the two-arm distance. To 
achieve this we build a neuro-fuzzy controller 
with B-spline basis functions whose output 
control vertices are determined by training. It 
is well-known that general neural or fuzzy sys- 
tems with a large number of input variables 
suffer from the problem of the "curse of dimen- 
sionality". If no additional image processing 
is performed, then for grey-level images such 
as ours with a size of 192 x 144 pixels a con- 
trol system with more than 27,000 input vari- 
ables would have to be modelled. Therefore it 

is essential to reduce the number of inputs but 
with as little information loss as possible. A 
well-known technique for dealing with multi- 
variate problems in statistics is principal com- 
ponent analysis (PCA). Until now, it has been 
mainly applied to data compression and pat- 
tern recognition [13]. Our findings indicate, 
however, that this technique is also suitable for 
reducing the dimension of the input space of a 
general control problem. Depending on how 
"local" the measuring data are and therefore 
how similar the observed sensor patterns look 
like, a small number of eigenvectors can pro- 
vide a good "summary" of all input variables. 
It is possible that three or four eigenvectors 
supply the most information indices of the orig- 
inal input space. An efficient dimension reduc- 
tion can be achieved by projecting the original 
input space into the eigenspace. This step is 
illustrated in the left part of Fig. l(n «C m). 

pattern pattern rule firing 
coding matching & sythesis 

input      weight 
vector    vectors 

output 

Figure 1: The task-based mapping can be inter- 
preted as a neuro-fuzzy model. The input vector 
consists of pixels of a brightness image. Pattern 
coding is through PCA and projection. 

Partitioning of eigenvectors can be done by 
covering eigenvectors with linguistic terms as 
shown in the right part of Fig. 1. In the fol- 
lowing implementations, fuzzy controllers con- 
structed according to the B-spline model are 
used [14]. This model provides an ideal imple- 
mentation of CMAC as proposed by Albus [15]. 
We define linguistic terms for input variables 
with B-spline basis functions and for output 
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variables with singletons. Such a method re- 
quires fewer parameters than other set func- 
tions such as trapezoid, Gaussian function, etc. 
The output computation becomes very sim- 
ple and the interpolation process is transpar- 
ent. We also achieved a good approximation 
capability and rapid convergence of B-spline 
fuzzy controllers [14]. In the online applica- 
tion, the input data are first projected into the 
eigenspace and then mapped to output based 
on the fuzzy control model, Fig. 1. 

2.1    Dimension Reduction 

Let us assume k energy-normalised sample in- 
put vectors x1,..., xk with x1 = (x\,..., x%

m)T 

originating from a pattern-generating process. 
The PC A can be applied to them as fol- 
lows [12]: 

First the (approximate) mean value ß and 
the covariance matrix Q of these vectors are 
computed according to 

i=l i=l 

The eigenvectors and eigenvalues can then 
be computed by solving XjSj = QOJ, where 
Xj are the m eigenvalues and äj are the m- 
dimensional eigenvectors of Q. Since Q is pos- 
itive definite all eigenvalues are also positive. 
Extracting the most significant structural in- 
formation from the set of input vectors x1 is 
equal to isolating the first n (n <g.m) eigenvec- 
tors 3{ with the largest corresponding eigen- 
values Xj. If we now define a transformation 
matrix A = [a\... an]T we can reduce the di- 
mension of the normalised x1 by 

Pl A • (x1 — ß);     dimffi) &\ — n (1) 

The dimension n should be determined de- 
pending on the discrimination accuracy needed 
for further processing steps vs. the computa- 
tional complexity that can be afforded. 

Because of the high-input dimension using 
two camera-views we decided to calculate the 

salient eigenvectors using an iterative percep- 
tron approach [16]. To calculate the first eigen- 
vector the weights w of the single layer percep- 
tron are randomly initialised (w ^ 0) and a 
constant 7,0 < 7 < 1 is chosen. The update of 
w is calculated with a randomly chosen sample 
vector x1 as in [17]: 

Aw = 7 • wx1 • (x1 — wx1 ■ w) (2) 

This step is repeated several times with de- 
creasing 7. In order to calculate subsequent 
eigenvectors with this scheme, the projection 
of each sample x1 onto the found eigenvector is 
subtracted from the according sample. 

3    Image Fusion 

To obtain training images for the controller we 
move both robots to several different known 
positions, calculate and record the distances d 
as well as one image from each camera. Our 
idea of image fusion is then straightforward: 
we simply concatenate the images of the uncal- 
ibrated cameras and perform an overall PCA. 
With the concatenated and normalised images 
as x1 and the corresponding d a B-spline fuzzy 
controller is trained. We use third order splines 
as membership-functions and between 2 and 6 
knot points for each linguistic variable. The 
distribution of these points is equidistant and 
constant throughout the whole learning pro- 
cess. The coefficients of the B-splines are ini- 
tially zero. They are modified by the rapid gra- 
dient descent method during the training [14]. 
In the case of supervised learning, each learn- 
ing datum corresponds to a supporting point 
in the control space. If a sensor pattern is 
taken online and its eigenvalues are calculated, 
the computation of the controller outputs may 
then be regarded as the "blending" of all the 
firing rules. The following steps are necessary: 

1. Acquire new images. 

2. Pre-process the data: concatenate images, 
normalise and subtract mean. 

3. Project the input into the sub-eigenspace 

(Pir-- >Pn)- 
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4. Compute the output by feeding the pro- 
jection vector (principal components) into 
the trained fuzzy controller. 

4    Experimental Setup 

We used two 6 DOF Puma 260 controlled by 
RCCL [18]. Both are mounted up-side down as 
shown in Fig. 3 and their approach directions 
point towards each other. By defining an ad- 
ditional virtual third robot in between them it 
is very easy two move them both in a coherent 
fashion. The equations for the kinematic chain 
of both arms as depicted in Fig. 2 are: 

left   rrileft   q-ileft rpiejb     ml 
1base ' J6 •T4 tool 

Twirt   IT* 
R - J-l 

virt 

T right   rpright _ rpright      
base tool 

left 
rpvirt   rpvirt x6      ' x right 

(3) 

If the virtual robot is now moved (e.g. with 
a rotation around its roll-axis) than RCCL 

4eft right solves eq. (3) for T£Jl and 3J,£"" automati- 
cally.   The robots are observed by two cam- 

j-Ieft 
base 

p right 
base 

-left 

1 

rpvirt 

1 

-.right 

rpleft rpvirt  rpvirt 
1tool left      right 

rpright 

Figure 2: Kinematic chain of both arms. 

eras one viewing from above and one from the 
side (s. Fig.4). During learning grey-level im- 
ages with a size of 192 x 144 from each camera 
are obtained. The projection of the concate- 
nated images into the eigenspace together with 
the appropriate distance-value forms the in- 
put data-set for the supervised learning-scheme 
described above. Each of the controller con- 
structed for the experiments uses between four 
and six input dimensions (projection onto the 
eigenspace), one output (minimal distance), 
between three and six linguistic terms and B- 
splines with a degree of three. The appropriate 
combination of input dimensions and linguistic 
terms for each experiment were determined by 
exhaustive search over all possible controllers 
within the above intervals. 

Figure 3:   Global experimental setup view, 
camera distance was approx. lm. 

The 

Figure 4: Side (a) and top (b) view of the experi- 
mental setup. 

5    Experimental Results 

We performed four different types of experi- 
ments to show the performance of our proposed 
method. The goal is to learn the distance- 
relationship between the two arms. 

5.1    Experiment I 

The first experiment was to move both robots 
horizontally only but -with different distances 
between their tool tips. Since both motions 
were caused by moving the virtual robot, 
the arms maintained their relative position 
and therefore the minimal distance was sim- 
ply between the tool tips. The virtual robot 
was moved along its x axis from position 
Pstart = (-20,300,15G)

1
 to position pend = 

(10,300,150) within 20 equally spaced itera- 
tions. At each new position the distance be- 
tween the robots was changed from dmin = 
10mm to dmax = 90mm again in 20 equally 

'All positions are in mm. 
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(a) Horizontal move- 
ment (Exp. I). Top 
view, side view. 

(b)    Vertical    move- 
ment (Exp. II). 

Figure 5: Concatenated mean images of top and 
side camera for exp. I and II. The arrows indicate 
the motion direction. 

spaced iterations, resulting in 400 images for 
each camera. Fig. 5(a) shows the resulting 
mean image for this motion. To test the con- 
troller after learning we generated 20 positions 
(pseudo) randomly on the line between pstart 

and Pend- Additionally we set the distance to 
values between dmin and dmax randomly. As 
can be seen in the corresponding error plot 
(s. Fig. 6) the controller output is quite rea- 
sonable. Most of the samples are estimated 
near their true value yielding a mean error of 
e = 0.67mm. The largest absolute error in this 
experiment is e = 2.70mm measured at a tip- 
distance of d = 57.18mm. 

5.2    Experiment II 

The second experiment is orthogonal to the 
first one - the virtual robot is moved verti- 
cally along its z axis from position p$tart = 
(0,300,110) to position pend = (0,300,190). 
Again, at each position 20 images with differ- 
ent distance between 10 and 90mm are taken. 
Similar to the first experiment 20 random po- 
sitions are calculated to evaluate the perfor- 
mance of the controller. Fig. 5(b)) shows the 
resulting mean image of this motion. In com- 
parison to the former experiment the resulting 
error plot depicted in Fig. 7 shows larger de- 
viations from the true values. The reason for 

# Samples 

Figure 6: Error plot of exp. I. The dots indi- 
cate the real distance while the bars represent the 
estimation-error. The characteristic values are: the 
mean absolute error e = 0.85mm, the standard de- 
viation of the absolute error a = 0.67mm and the 
maximum absolute error e = 2.70mm. 

this is that now a larger distance between pstart 

and pend is possible (80mm compared to 30mm 
in the first experiment). On the other hand 
the interpolation is still good enough to check 
whether the robots are close to each other or 
far away. 
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Figure 7: Error plot of exp. II, e = 1.47mm, 
a = 1.13mm, e = 4.13mm. 

5.3    Experiment III 

In the third experiment we increased the de- 
grees of freedom of the motion by rotating 
the virtual robot around its roll- and pitch- 
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(a) Roll/Pitch angles 
(Exp. III). 

(b) Revolution 
(Exp. IV). 

Figure 8: Mean images of exp. Ill and IV. 

axis but maintaining its position. The ap- 
proach directions of both arms still face each 
other (s. Fig. 10) and the distance calcula- 
tion for training and evaluation purposes is 
still very easy. Again 400 training images were 
recorded. For 20 roll/pitch angle-pairs between 
froll = Vpitch — ±10deg, 20 different distances 
were measured (s. Fig. 8(a) for the correspond- 
ing mean image). To test the resulting con- 
troller, again 20 random-positions in between 
the training-interval were calculated.  The re- 

# Samples 

Figure 9:   Error plot of exp.   Ill, e = 1.29mm, 
a = 0.77mm, e = 2.80mm. 

suiting errors shown in Fig. 9 are better than 
those of the second experiment. The reason is 
that although the same distance interval as in 
the former experiment was used the position 

Figure 10: Although moving against each other 
the approach vectors of both arms maintain their 
relative orientation during the third experiment. 

of the virtual robot remained constant. There- 
fore the input images are more similar to each 
other allowing a smoother interpolation by the 
controller. 

5.4    Experiment IV 

Common to the first three experiments is that 
there were no images in which an overlapping 
and therefore partial occlusion of one arm oc- 
curred. That means that in turn it would be 
possible to use a single view only in order to es- 
timate the distance during these rather simple 
relative motions. 

Therefore we increased the complexity of the 
examined situation in our last experiment fur- 
ther in order to benefit from the two indepen- 
dent views. Both arms performed a circular 
motion around each other. This results in a 
periodical overlap of parts behind and includ- 
ing the wrist as shown exemplary in Fig. 12(b) 
for the top-view. In this case a monocular dis- 
tance estimation might be possible (e. g. using 
a model based approach) but rather difficult. 
But as will be seen in the following our image- 
fusion approach is capable to handle this prob- 
lem quite well. 

The training data-set was obtained by four 
circle-runs each sampled by 100 images.  The 
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circle-diameters were 100mm, 120mm, 140mm 
and finally 160mm. Due to the fact that both 
arms revolved each other the distance between 
them is equivalent to the appropriate diam- 
eter of the circular-motion (s. Fig. 8(b) for 
the mean image corresponding to this mo- 
tion). The test data-set consists of 30 random- 

# Samples 
10 15 20 25 30 

Figure 11:   Error plot of exp.   IV, e 
a = 0.92mm, e = 3.29mm. 

1.53mm, 

positions of both arms on a circle with a 
random-radius between 50mm and 80mm. Al- 
though the characteristic error values of this 
experiment are within the range of the (less 
complex) previous ones, the error plot (s. 
Fig. 11) shows larger deviations for a slightly 
larger number. Especially in cases where the 
arms overlap each other the error is larger 
(within the range of 1.00 and 3.29mm). Fig. 12 
shows such an example. From the top camera- 
view both wrists are merged while from the 
side camera both are still separated yielding 
a still reasonable absolute estimation error of 
1.35mm. 

6    Conclusions 

We have shown that high-dimensional prob- 
lems such as estimating robot distance using 
uncalibrated cameras can be solved with a 
neuro-fuzzy model. The B-spline model serves 
as an efficient interpolator which can be inter- 
preted as fuzzy control rules. The advantages 

(a) Side view. (b) Top view. 

Figure 12: Overlap during circular motion around 
each other. In this case the real distance is about 
145.22mm and is estimated as being 143.87mm (e = 
1.35mm). 

of this approach are: 

• By projecting the high-dimensional input 
space onto a reduced eigenspace, the most 
significant information for control is main- 
tained. A limited number of transformed 
inputs can be partitioned with the B- 
spline model and a sufficient precision can 
be obtained for determining the distance. 

• The statistical indices used in the ap- 
proach provide a suitable solution to de- 
scribe the information in images with a 
high degree of uncertainty. 

• A vector in the eigenspace is directly 
mapped onto the controller output based 
on the B-spline model. This makes real- 
time computation possible. 

• Training motion can be programmed so 
that representative images can be gener- 
ated automatically. 

If the observed scenarios are not "local" 
enough, i.e. the images possess less similarity 
it could happen that distance precision can- 
not be satisfied with too few (e.g. with four) 
eigenvectors. For these cases, we are investi- 
gating methods to classify the image sequence 
into more local scenarios by using some simple 
criteria. Additionally, the self-adaptation ca- 
pability of the controller in the case of slightly 
changed camera positions will be quantita- 
tively investigated. For testing the multisensor 
fusion, it is also an interesting work to incor- 
porate more than two cameras to study the 
performance/efficiency ratio. 
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Abstract 

Data fusion is a process that seeks to improve the ability to 

estimate the position, velocity, and identity/characteristics of 

entities by combining information from multiple sensors and 

sources. A rich legacy in data fusion technology exists, ranging 

from the Joint Directors of Laboratories (JDL) data fusion 

process model to taxonomies of algorithms and engineering 

guidelines for architecture selection and algorithm selection. To 

date, numerous data fusion systems have been developed, 

especially for department of defense (DoD) applications. 

Despite this history and legacy there remains a number of 

common misconceptions in data fusion, which can lead to 

pitfalls in system development. This paper provides a brief 

review of the state of practice in data fusion. Recommendations 

are provided on how to avoid these pitfalls and research needed 

to advance the state of data fusion system development 

1.    Introduction 

Data fusion is a process that seeks to improve the ability 

to estimate the position, velocity, and identity or 

characteristics of entities by combining information and 

data from multiple sensors and sources (Waltz and 

Llinas1, Hall2, and Hall and Llinas3). Applications of data 

fusion range from situation and threat assessment systems 

to smart weapons, automatic target recognition systems, 

identification-friend-foe-neutral (EFFN) systems, and 

intelligence applications. For these applications, multiple 

techniques are required for the fusion process. 

Techniques for fusion are drawn from disciplines such as 

signal and image processing (for characterization and 

processing of single sensor data), statistical estimation 

and pattern recognition, and decision-level processing 

methods from the domain of artificial intelligence. The 

selection of a processing architecture and specific 

algorithms is a systems engineering problem, dependent 

upon a number of factors such as the specific application, 

types of sensors, computing resources available, 

communication bandwidth available, and many other 

factors. 

In recent years there has been a rapid evolution of data 

fusion technology including: 

1) Development of a process model by the (JDL) 

data fusion working group4; 

2) Creation   of a  taxonomy  and  hierarchy  of 

processing algorithms5; 

3) Survey and assessment of data fusion systems6; 

4) Establishment  of engineering  guidelines   for 

algorithm selection7'8; 

5) Evaluation of data fusion technology9; and 

6) Development of a data fusion lexicon10. 

Numerous data fusion systems have been implemented6 

and some software tool kits are becoming available to 

support rapid prototyping and technique evaluation (e g, 

Hall and Linn11 and Hall and Kasmala12). Because of this 

legacy, it might appear mat data fusion is a mature 

technology, and that implementation of data fusion 

systems involves a routine exercise in systems 

engineering and software development. However, design 
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and implementation of fusion systems remains very 

challenging. 

It is beyond the scope of this paper to present a 

prescription for the successful implementation of these 

systems. However, we identify common problems 

(pitfalls) in data fusion and suggest how to avoid or 

mitigate these problems. The next section of this paper 

provides a framework by summarizing the JDL data 

fusion process model. Subsequently, we identify 

common problems or pitfalls and their effects on system 

implementation. In addition, advice is provided on how 

to mitigate or avoid these problems. Finally, 

recommendations are provided for research in data fusion. 

2.   JDL Data Fusion Process Model 

The JDL Data Fusion Working Group was established in 
1986 to assist in coordinating research in data fusion, and 

improving communications among different DoD 

research and development efforts. The JDL Data Fusion 

Working Group began an effort to codify the terminology 

related to data fusion. The result of that effort was the 

creation of a process model for data fusion4, and a data 

fusion lexicon10. The top level of the JDL data fusion 

process model is shown in Figure 1. 
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Figure 1: Top-Level JDL Data Fusion Process Model 

The JDL process model 4'13 is a functionally oriented 

model and is intended to be very general and useful across 

multiple applications. The intent of the model is to assist 

researchers and developers in communicating about basic 

data fusion functions, algorithms, and techniques. The 

model is a paper model, and not intended to be used as a 
blueprint for system design or software development. A 

brief summary of each component of the process model is 

presented below. 

Sources of information - The left side of Figure 1 

indicates that a number of sources of information may be 

available as input to a data fusion system. These include: 

1) local sensors physically associated with the data fusion 

system, 2) distributed sensors linked electronically to a 

fusion system, and 3) other data such as reference 

information, geographical information, etc. These input 

data may be in the form of scalar data (e.g., directional 
angles, range to target, range-rate, etc.), time series data 

(e.g., radar cross section versus aspect angle or acoustic 

spectra), images (e.g., an infrared image of a target) or 

textual data. 

Human Computer Interaction (HCI) - The right side of 

Figure 1 shows the HCI function for fusion systems. HCI 

allows human input such as commands, information 

requests, analyses of inferences and reports from human 

operators. The HCI is the mechanism by which a fusion 

system communicates results via alerts, displays, and 

dynamic overlays of positional and identity information 

on geographical displays. 

Source Preprocessing - Source preprocessing pre-screens 

data and reduces the data fusion system load by allocating 

data to appropriate processes (e.g., location and attribute 

data to Level 1, alerts to Level 3 processing, etc.). Source 

preprocessing may include advanced signal processing, 

image processing, and synthesis of complex array data to 

create synthetic information. 
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Level 1 Processing (Object Refinement) - This process 

combines location, parametric, and identity information to 

refine the representations of individual objects (e.g., 

emitters, platforms, weapons, or geographically 

constrained military units). Level 1 processing performs 

four key functions. First, it transforms sensor data into a 

consistent set of units and coordinates. Second, it refines 

and extends in time the estimates of an object's position, 

kinematics, or attributes. Third, it assigns data to objects 

to allow the application of statistical estimation 

techniques. Finally, it refines the estimation of an object's 

identity or classification. 

Level 2 Processing (Situation Refinement) - Level 2 

processing develops a description of the current 

relationships among objects and events in the context of 

their environment. Distributions of individual objects 

(defined by Level 1 processing) are examined to 

aggregate them into operationally meaningful combat 

units and weapon systems. In addition, situation 

refinement focuses on relational information (such as 

physical proximity, communications, causal, temporal, or 

other relations) to determine the meaning of a collection 

of entities. This analysis is performed in the context of 

environmental information about terrain, surrounding 

media, hydrology, weather, and other factors. 

Level 3 Processing (Threat Refinement) - Level 3 

processing projects the current situation into the future to 

draw inferences about enemy threats, friendly and enemy 

vulnerabilities, and opportunities for operations. Threat 

assessment is especially difficult because it deals not only 

with computing possible engagement outcomes, but also 

assessing an enemy's intent based on knowledge about 

enemy doctrine, level of training, political environment, 

and the current situation. The overall focus is on intent, 

lethality, and opportunity. Level 3 processing develops 

alternate hypotheses about an enemy's strategies and the 

effect on uncertain knowledge about enemy units, tactics, 

and the environment. 

Level 4 Processing (Process Refinement) - Level 4 

processing may be considered a meta-process, i.e., a 

process concerned about other processes. Level 4 

processing performs four key functions. First, the data 

fusion process performance is monitored to provide 

information about real-time control and long-term 

performance. Second, it identifies what information is 

needed to improve the multi-level fusion product 

(inferences, positions, identities, etc.). Third, it 

determines the source-specific requirements to collect 

relevant information (i.e., which sensor type, which 

specific sensor, which database, etc.). Finally, it allocates 

and directs the sources to achieve mission goals. This 

latter function may be outside the domain of specific data 

fusion functions. Hence, Level 4 processing is shown as 

partially inside and partially outside the data fusion 

process. 

Data Management - A major support function required 

for data fusion is data management14. This collection of 

functions provides access to, and management ofj data 

fusion databases, including data retrieval, storage, 

archiving, compression, relational queries, and data 

protection. Database management for data fusion systems 

is particularly difficult because of the large and varied 

data managed (i.e., images, signal data, vectors, textual 

data, procedural information, rules, etc). In addition, data 

management is challenging because of the data rates for 

ingestion of incoming sensor data, as well as the need for 

rapid retrieval of data using general Boolean queries. 

Antony14 provides an overview of database strategies for 

data fusion systems. 

Hall and Llinas3 provide a summary of the JDL data 

fusion process components and techniques. This paper 

also addresses the current state of the art for each 

processing function. Mathematical techniques for data 

fusion are provided by Hall2 and by Waltz and Llinas1. 

The JDL model identifies the processes, functions, and 

techniques applicable to data fusion as information flows 

from the sources to the human operator. 
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3.   Pitfalls in Data Fusion 

The JDL data fusion process model provides a unified 

framework for the development of data fusion systems. 

However, in practice there are several pitfalls mat can 

drastically affect the performance of the data fusion 

system. These pitfalls and their associated implications 

are summarized below. 

There is no substitute for a good sensor. No amount of 

fusion of bad sensors will substitute for a single accurate 

sensor that measures the phenomena that you want to 

observe. A common misconception is that the fusion of 

multiple poor sensors will substitute for an accurate 

sensor. Under some conditions the use of marginal, non- 

commensurate sensors (i.e., sensors that measure 

fundamentally different physical phenomena such as 

infrared sensor, acoustic sensors, and radar) can improve 
the robustness of the assessment of a situation. An 

example is the use of multiple sensors to defeat an 
enemy's attempt to use camouflage or information 

warfare. One might use a combination of an infrared 

camera to characterize the heat of a tank's diesel engine, 

an acoustic sensor to observe the sound of a tank's 

engine, radar to observe a radar-cross section, and a 

visible image to identify a tank's size and shape. Because 

of the broad physical baseline, the combination of these 

sensors is difficult to defeat by camouflage or information 

warfare. However, in general, multiple, marginal- 

performance sensors do not combine to produce an 

improved result. Without special processing, it can be 

shown that the fusion of multiple sensors, each having a 

probability of correct detection or identification of less 

than 50 per cent, actually yields worse results that any 

individual sensor 15. 

scalar data) must be processed to perform signal 

characterization and representation. Each stream of 

sensor data must be analyzed to determine what types of 

manipulations and canonical transformations will best 

characterize and represent the data. An example is the 

case of feature-based pattern recognition for target 

identification. Failure to select good features from the 

sensor data cannot be overcome by the concatenation of 

multiple sensor feature vectors input to complex pattern 

classifiers. Instead, care must be taken to obtain as much 

information as possible from each sensor stream prior to 

the fusion process (whether that fusion occurs at the data, 

feature, or decision level). 

Sensor fusion can result in poor performance if incorrect 

sensor information about sensor performance is used A 

common failure in data fusion is to characterize the sensor 

performance in an ad hoc or convenient way (typically 
using static, Gaussian, zero-mean probability distributions 

to represent sensor performance). In the real world, sensor 

performance is very dynamic and non-Gaussian. 

Environmental conditions can cause wide variations in 

sensor performance (e.g., effects of terrain, atmospheric 

conditions, the local environment, etc). It is well known 

for example that acoustic sensor performance can vary by 

a factor of 100 depending upon the time of day and 

atmospheric conditions16. It is perhaps less well known 

that near-earth atmospheric conditions can seriously affect 

radar performance. Ironically, as sensors become more 

sophisticated, environmental conditions may exert a 

greater impact on their dynamic performance. It is easy to 

demonstrate that the use of incorrect error statistics for 

sensor performance can greatly corrupt data fusion 

processes. Hence, care must be taken to properly model 

or calibrate the dynamic performance of sensors. 

Downstream processing cannot make up for errors (or 

failures) in upstream processing. Data fusion processing 

cannot correct for errors in processing (or lack of pre- 

processing) of individual sensor data. Each sensor data 

stream (whether it be imagery, time series data, vector or 

There is no such thing as a magic or golden data fusion 

algorithm. Despite claims to the contrary, especially by 

their authors, there is no perfect algorithm that is optimal 

under all conditions. While this statement may seem 

obvious,   there  continue  to  be  controversies  in  the 
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literature, and in the data fusion literature, about which 

algorithm is best, optimal, or robust. Consider, for 

example, the arguments between advocates of Bayesian 

methods versus Dempster-Shafer techniques, or advocates 

of multiple hypothesis tracking versus single hypothesis 

tracking. The reality is that for many practical 

applications, the mathematical assumptions upon which 

many of these methods are formulated are rarely satisfied. 

Sophisticated algorithms are easily corrupted and produce 

very poor results when the input data do not meet the 

requisite conditions17' 18 (e.g., conditionally dependent 

observations, incorrect a priori probabilities, etc.). Care 

must be taken to ensure that the data fusion techniques 

selected for applications are appropriate to the available a 

priori knowledge. This issue is rarely considered in the 

implementation of data fusion systems. 

There will never be enough training data. The 

development of algorithms for applications such as 

automatic target recognition (ATR) or identification- 

friend-foe-neutral (IFFN) processing often utilize implicit 

pattern recognition techniques such as neural networks or 

cluster algorithms. These algorithms are usually provided 

with examples of data (e.g., samples of the radar cross 

section or infrared signatures of known targets such as a 

tank). The algorithm is then trained to recognize the 

known targets based on the implicit patterns in the 

observed data (or features extracted from the data). For 

true generality these techniques require an enormous 

amount of training data. 

Hush and Home19 provide a complete discussion and 

indicate that, in general, if there are n features and m 

classes to be identified or recognized, then the required 

number of independent training test cases should exceed n 

x m x k, where k is a number that ranges between 10 and 

30. For realistic applications such as ATR the number of 

training cases needed would exceed several thousand. In 

practice of course, there is never enough data to satisfy 

this requirement for statistical significance. Despite a 

number of methods to provide a synthetic training 

population, other techniques must be used to obtain 

significance for the pattern recognizer. These include the 

use simulations and a special hybrid approach described 

by Hall and Garga20 that involves the combination of 

implicit pattern recognition with explicit information such 

as that obtained from domain experts via fuzzy logic 

rules. 

It is difficult to quantify the value of a data fusion system. 

One of the challenges of implementation of a fusion 

system is the ability to quantify the utility of the system. 

Waltz and Llinas1 point out that there is no such thing as 

requirements for a data fusion system, per se. Instead, 

data fusion requirements are derived from system or 

operational requirements. Conceptually, a fusion system 

improves the ability to sense information, which in turn 

improves the ability to perform accurate inferences. The 

utility of a data fusion system must be determined by the 

extent to which a system supports overall mission 

requirements. Waltz and Llinas1 suggest that the 

quantification of the value of a fusion system requires 

development of a hierarchy of measures of performance 

(MOP) and measures of effectiveness (MOE). These link 

quantities such as sensor performance (e.g., probability of 

correct identification and observation accuracy) to 

measures of overall mission success (e.g., quantities such 

as force effectiveness measures and probability of 

survival). The quantification of system effectiveness is a 

daunting task, but should be considered during system 

design and development to guide tradeoff analyses, and to 

establish realistic expectations concerning the utility of 

data fusion. 

Fusion is not a static process. The data fusion process 

is an iterative dynamic process that seeks to continually 

refine the estimates about an observed situation or threat 

environment. This is explicit in the basic JDL definition 

of data fusion4 and in the JDL process model. In the JDL 

process model described in the first part of this paper, a 

special level 4 process is aimed at recognizing these 

dynamics and adapting fusion algorithms and processing 
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to improve the evolving fusion products. In general, this 

adaptive control is an under-researched area in data 

fusion21,22. Hall and Garga22 suggest that the concept of 

Level 4 processing should be significantly extended to 

span the range from direct sensor management (e.g., 

computing of look angles for sensors and sensor controls) 

to adaptation to the information needs and styles of the 

human user of a data fusion system. This system level 

adaptation could provide significant improvements to the 

data fusion process and interpretation of results. 

4.   Avoiding the Pitfalls 

In order to avoid the pitfalls described in the previous 

section, the following are some general recommendations 

for system implementers and designers. These are not 

meant to be an exhaustive set of prescriptions, nor a 

substitute for fundamental system engineering (involving 

formal analysis of the data fusion architecture, algorithm 

selection, requirement analysis, etc.). Nevertheless, these 

may provide insights for system designers and 

implementers. 

Perform a thorough analysis of sensor technology and 

establish a map between observable phenomena and 

required inferences. In designing a data fusion system, a 

systematic analysis of underlying physical phenomena 

should be performed to determine what can be observed, 

and to link these observable quantities to required 

inferences (see for example the process suggested by 

Waltz and Llinas1, p. 351). This analysis should consider 
both theoretical models as well as test range data in order 

to establish realistic expectations on sensor performance 

under anticipated operational conditions. The dynamic 

effects of the local environment and countermeasures 

should be considered to accurately characterize the sensor 

performance. This information should be considered as a 

vital input to the fusion algorithms along with the sensor 

data itself. Consideration should be given to 

implementation of use of smart meta-sensors to perform 

dynamic self-calibration16.    Even if the sensor suite is 

pre-determined for a fusion application (e.g., the sensor 

suite on-board an aircraft), this sensor analysis should be 

performed. Steinberg23 provides an example of this type 

of analysis. 

Examine the information content of the sensor data and 

intelligently select algorithms for sensor pre-processing. 

Each sensor stream and type should be carefully analyzed 

to determine how to extract as much information as 

possible from the sensor data. Appropriate canonical 

transformations, filtering, feature extraction, and 

corrections should be made. Tradeoffs and comparisons 

should be made to systematically determine which 

algorithms are the most robust. Every step of the sensor 

processing flow should be analyzed and explicitly 

examined. Special care should be given to steps such as 

feature extraction and signal conditioning. 

Perform a systematic algorithm selection and use rapid 

prototyping tools to perform tradeoffs against real data 

sets. Selection of algorithms for data fusion should be 

performed without preconceived notions about perfect 

algorithms. Candidate algorithms should be identified 

and considered based on the realistic availability of 

requisite a priori data (such as prior probabilities, etc.). 

The performance of the algorithms should be evaluated 

against real sensor data and the available computing suite 

for the intended operational fusion system. Designers 

should be wary Of appeals for the use of mathematically 
sophisticated algorithms for which requisite information 

is not available. Designers may also consider the use of a 
hybrid approach in which multiple algorithms are used 

adaptively (viz., in which different algorithms are used in 

a dynamic sense based on the particular regime in which 

the fusion system is operating). Such an approach can 

also be used to adjudicate the use of different sensor data, 

based on the observational conditions15. 

Use hybrid pattern recognition methods to overcome the 

limitations posed by a lack of training data. For 

applications such as ATR or IFFN, in which insufficient 
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training data exists, designers should consider the use of 

hybrid pattern recognition techniques20. Rather than rely 

on ad hoc methods to artificially generate synthetic 

training data for a pattern classifier (e.g., a feed-forward 

neural network), designers should consider the approach 

developed by Hall and Garga20 in which both explicit and 

implicit information are used for training. In that 

approach, explicit information from a domain expert is 

combined with sample test data and simulated data to 

establish a robust test set for the classifier. Designers 

should also consider an augmented approach in which a 

pattern classifier is combined with an automated 

reasoning interpreter that interprets the results of the 

pattern classifier in the context of a particular operational 

mission or observing environment. An example is the use 

of an automated reasoning system to interpret IFFN 

results based on whether information warfare is expected 

or not. 

Measures of Performance QAOP) and Measures of 

Effectiveness ßdOE) should be defined and computed to 

assess the utility of a data fusion system. In order to 

develop effective data fusion systems that are useful to 

support real applications, it is advisable to define and 

compute MOE and MOP. These provide a focus to 

ensure that the developed system will actually be of use to 

support a human user to make more effective 

decisions24,25. This focus on utility ensures that systems 

level design decisions are motivated by the fusion 

application and operational requirements, rather than by 

the technology du jour. In addition, MOE and MOP are 

of use in improving the Level 4 processing. 

An intelligent Level 4 Process should be developed to 

monitor and improve the overall data fusion process. 

Significant thought and effort should be put into the Level 

4  meta-process. Development  of an  intelligent 

monitor/controller for the fusion process can be of 

significant value in improving the data fusion system 

performance and in adapting the fusion performance to 

meet changes in the operational environment.    This 

should be considered as an integral part of the fusion 

system. 

5.   Conclusions 

Data fusion is a rapidly maturing technology with an 

extensive legacy. The research community is beginning 

to adopt common models and terminology, while system 

developers are beginning to reach consensus on 

engineering guidelines. In addition, commercial tools are 

beginning to appear. Despite this maturity, the 

implementation of effective data fusion remains a 

challenge. This paper describes some common 

misconceptions and pitfalls related to data fusion. 

Recommendations are provided to avoid these pitfalls. 
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Abstract - Over the last two decades there have been 
several process models proposed (and used) for data 
and information fusion. A common theme of these 
models is the existence of multiple levels of processing 
within the data fusion process. In the 1980's three 
models were adopted: the intelligence cycle, the JDL 
model and the Boyd control. The 1990's saw the 
introduction of the Dasarathy model and the Waterfall 
model. However, each of these models has particular 
advantages and disadvantages. 

A new model for data and information fusion is 
proposed. This is the Omnibus model, which draws 
together each of the previous models and their 
associated advantages whilst managing to overcome 
some of the disadvantages. Where possible the 
terminology used within the Omnibus model is aimed 
at a general user of data fusion technology to allow 
use by a distributed audience. 

Keywords: Data fusion architectures and models. 

1. Introduction 

Data fusion is a diverse field encompassing many 
approaches, algorithms and applications. As with any 
such complex endeavour the communal knowledge 
needs to be structured and organised in order to be 
effective. Over the last two decades several process 
models have been proposed for data and information 
fusion [1]. In each case the motivation seems to have 
been a partitioning of knowledge into sub-tasks since a 
common theme of these models is the prescription of 
multiple levels of processing within the data fusion 
process itself. A multi-disciplinary, international data 
fusion community is now developing and the issue of 
standardisation is becoming important. The purpose of 

this paper is threefold. First we establish the 
nomenclature for data fusion models, architectures and 
frameworks. Secondly, we review the main existing 
data fusion models identifying the advantages and 
limitations of each. Armed with this information we 
describe a new model which may be regarded as 
subsuming the current models. We propose that this 
model form the basis of a new international standard. 

2. Models, Architectures and Frameworks 

The conceptual organisation of our collected 
knowledge regarding data fusion has taken many 
forms. As a result a potential confusion of terminology 
may arise. We shall therefore define a few terms to 
describe the way in which data fusion algorithms may 
be embedded in the context of a larger system. 

Three main organisational paradigms are currently in 
use for describing data fusion systems. These are: 
• Models 
• Architectures 
• Frameworks 

We shall describe each of these in turn, highlighting 
the main differences between them: 

Model - we define a model, or more specifically a 
process model, to be a description of a set of processes. 
This set of processes should be undertaken before the 
system may be regarded as fully operational. As such it 
highlights the component functions which the system 
has but makes no statement regarding their software 
implementation or physical instantiation. The study of 
process models forms the main thrust of the remainder 
of this paper. 
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Architecture - we define an architecture to be the 
physical structure of the system. We make particular 
reference to the way in which data or information is 
communicated. An architecture includes the 
arrangement of the component parts, their connectivity 
and the data flows between the them. The architectural 
description may be high level - data fusion systems 
which are described as centralised, hierarchical or 
distributed are classified by their architecture. It may 
also be specific - blackboard systems [2] and common 
object request brokering (CORBA) [3] are specific 
examples of distributed architectures. 

Framework - we define a framework to be a set of 
axioms and a reasoning system for manipulating 
entities based on those axioms. As such a framework 
provides us with a method of inferencing from a data- 
rich / information-poor source to produce abstract 
concepts which are information-rich Examples of 
frameworks currently used in data fusion are 
probabilistic reasoning, possibilistic reasoning and 
evidential reasoning. 

The remainder of the paper will concentrate on data 
fusion models. Architectures and frameworks are 
equally important but are left for future discussions. 

3. Review of Data Fusion Process Models 

Data fusion has its roots in the defence research 
community of the early 1980's. As a result the first 
data fusion models were either adapted from existing 
military oriented process models or were designed with 
a distinctly military flavour [4]. More recently the use 
of data fusion has broadened to include industrial, 
medical and commercial applications. More recent 
models have acknowledged this migration by reducing 
the military terminology. However, this still exists to 
some extent (and needs to be changed). 

3.1 The Intelligence Cycle 

Intelligence processing involves both information 
processing and information fusion. Although the 
information is often at a high level, the processes for 
handling intelligence products are broadly applicable 
to data fusion in general. There are a number of well- 
established principles of intelligence: 

•     central control (this  avoids the possibility  of 
duplication). The issue of central control is really 

an    architectural    issue.    The    avoidance    of 
duplication may be achieved in several ways; 
timeliness (this ensures that the intelligence is 
available fast enough to be useful); 
systematic   exploitation   (makes   sure   that   the 
outputs of the system are used appropriately); 
objectivity (of the sources and the manner in 
which  the  information  is  processed).  This  is 
perhaps the factor most relevant to data fusion; 
accessibility (of the information); 
responsiveness      (to      changing      intelligence 
requirements); 
source  protection   (to   guarantee   a   source   of 
information with increased longevity); 
continuous   review   (of the   process   and   the 
collection strategy). 

f X.    Collection ) 

Figure 1: The UK intelligence cycle. 

The UK intelligence community describes the 
intelligence process as a cycle, which lends itself to 
modeling the data fusion process [5]. The cycle itself is 
depicted in Figure 1. Related models exist outside the 
UK. The British model, unlike the American 
intelligence model, does not include a specific 
planning and direction phase that is subsumed in the 
dissemination process. The UK intelligence cycle 
comprises four phases: 

Collection - collection assets such as electronic 
sensors or human derived sources are deployed to 
obtain raw intelligence data. In the world of 
intelligence the data is often presented in the form of 
an intelligence report which is already at a high level 
of abstraction - either free form text or in a predefined 
report format. 
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Collation - associated intelligence reports are 
correlated and brought together. Some combination or 
compression may occur at this stage. Collated reports, 
however, may simply be packaged together ready for 
fusion at the next stage. 

Evaluation - the collated intelligence reports are fused 
and analysed. Historically, highly skilled human 
intelligence analysts have undertaken this process. The 
analysis may identify significant gaps in the 
intelligence collection. In this case, the analyst may be 
able to task a collection asset directly. More usually, 
however, this requirement is included in the 
disseminated information. 

Dissemination - the fused intelligence is distributed to 
the users (usually military commanders) who use the 
information to make decisions regarding their own 
actions and the required deployment of further 
collection assets. 

3.2 The JDL Model 

In the JDL model, proposed by the US Joint Directors 
of Laboratories Data Fusion Sub-Group in 1985 [6] 
and recently updated [7], the processing is divided into 
five levels as depicted in Figure 2. 

Source 
inputs 

Level 4 
Process 
refinement 

HCI 

Level 0 
pre-processing 
pre-detection 

Level 1 
Single object 
refinement 

Temporal 
registration 

Spatial 
registration 

Level 2 
Situation 
refinement 

Level 3 
Implication 
refinement 

Courses 
objects S: •'•... of action 

Situation       JritenU;.. 
mteipretationVuiierAjiitie« 

Figure 2: The JDL data fusion process model as 
recently updated. 

Level 0 - sub-object data assessment, is associated 
with pre-detection activities such as pixel or signal 
processing, spatial or temporal registration. 

Level 1 - object refinement is concerned with the 
estimation and prediction of continuous (e.g. location 
or kinematic) or discrete (e.g. behaviour or identity) 
states of objects. 

Level 2 - situation refinement introduces context by 
examining the relations among entities such as force 
structure and communication roles. By aggregating 
objects into meta-objects an interpretation may be 
placed on the situation. 

Level 3 - implication refinement delineates sets of 
possible courses of action and the effect they would 
have in the current situation. This level also introduces 
the concept that the data fusion system may be 
operating in an adversarial domain. 

Level 4 - process refinement is an element of resource 
management and used to close the loop by re-tasking 
resources (e.g. sensors, communications and 
processing) in order to support the objectives of the 
mission. 

This model has been widely used by the US data fusion 
community and can now be regarded as the de facto 
standard for defence data fusion systems, at least in the 
US. Partly because of its popularity it is applied in a 
variety of ways [8] and is not always used 
appropriately. The JDL model was never intended to 
prescribe a strict ordering on the data fusion levels. 
This was indicated diagrammatically by the use of an 
information bus rather than a flow structure. 
Nevertheless, data fusion system designers have 
consistently assumed this ordering. Clearly there is a 
need for users to have an ordering whilst the authors of 
the JDL model rightly defend the need for a model 
which admits systems of systems with different 
hierarchies at different levels. 

3.3 The Boyd Control Loop 

The Boyd control loop [9] was first used for modeling 
the military command process but has since been 
widely used for data fusion. The Boyd (or OODA) 
loop possesses four phases as shown in Figure 3. 

The Boyd and JDL models show distinct similarities, 
although the Boyd model makes the iterative nature of 
the problem more explicit. 
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Figure 3: The Boyd (or OODA) loop, which has 
been used as a data fusion process model. 

Observe - broadly comparable to the JDL level 0 and 
part of the collection phase of the intelligence cycle. 

Orient - encompasses the functions of JDL levels 1, 2 
and 3. It also includes the structured elements of 
collection and the collation phases of the intelligence 
cycle. 

Decide - includes JDL level 4 (process refinement and 
resource management) and the dissemination activities 
of the intelligence community. It also includes much 
more (such as logistics and planning). 

Act - has no direct analogue in the JDL model and is 
the only model that explicitly closes the loop by taking 
account of the effect of decisions in the real world. 

The PEMS loop (for Predict, Extract, Match and 
Search) can be regarded as a perceptual specialisation 
of the Boyd control loop. The PEMS model has 
recently attracted attention for automatic target 
recognition and data fusion [10]. 

3.4 The Waterfall Model 

The Waterfall model was proposed in [11] and 
endorsed by the UK Government Technology 
Foresight Data Fusion Working Party [12]. It places its 
main emphasis on the processing functions at the lower 
levels (see Figure 4). Again, similarities exist with the 
other models. Sensing and signal processing 
correspond to JDL level 0, feature extraction and 
pattern processing to JDL level 1, situation assessment 
to JDL level 2 and decision making to JDL level 3. In 
the Waterfall model the feedback is not explicitly 

depicted. This appears the major limitation of the 
Waterfall model which otherwise divides the data 
fusion process more finely than other models. The 
Waterfall model has been widely used in the UK 
defence data fusion community but has not been 
significantly adopted elsewhere. 
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Figure 4: The Waterfall data fusion process 
model. 

3.5 The Dasarathy Model 

Many researchers have identified the three main levels 
of abstraction during the data fusion process as being: 

• Decisions-symbols or belief values 
• Features - or intermediate-level information 
• Data - or more specifically sensor data 

As was pointed out by Dasarathy in [13], however, 
fusion may occur both within these levels and as a 
means of transforming between them. In the model 
proposed there are five possible categories of fusion as 
shown in Table 1 at the end of this paper. 

3.6 Model Comparison 

The five models described in the preceding sections 
can be compared and equivalencies identified where 
appropriate. Table 2 shows a comparison between the 
process models described thus far. In some cases the 
equivalence is approximate. Greyed out boxes are not 
addressed by the specific model. It can be seen that 
there is some overlap in the way that the different 
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models sub-divide the information flow from sensors 
to actions. The main differences correspond to the 
amount of detail with which particular processes are 
represented. This stems from the different uses of the 
various models and the emphasis they place on certain 
aspects of the information processing and fusion chain. 
As can be seen from Table 2, the Waterfall model 
contains the finest distinction between the lower levels 
of abstraction, the JDL model at the medium level and 
the Boyd loop at the higher levels. The intelligence 
cycle covers all levels but in somewhat compressed 
detail. The Dasarathy model is based on fusion 
functions rather than tasks and may therefore usefully 
be incorporated in each of the fusion activities. 

• defines the ordering of processing; 
• makes the cyclic nature of the system explicit; 
• admits representation from multiple viewpoints; 
• identifies the advantages and limitations of various 

fusion approaches; 
• facilitates the clarification of task-level measures 

of performance and system-level measures of 
effectiveness; 

• uses a general terminology which is widely 
accessible; 

• does not assume that applications are defence 
oriented. 

With these desires in mind we define a new process 
model. 

4. Requirements of a Process Model 

The design and implementation of a data fusion system 
may usefully be regarded as a problem-solving task. As 
such a standard approach to problem-solving [14] may 
be addressed. Of particular relevance are: 

• Has the problem been solved before? 
• Has the same problem appeared in a different form 

and is there an existing solution? 
• Is there a related problem with similar constraints? 
• Is   there   a   related   problem   with   the   same 

unknowns? 
• Can the problem be sub-divided into parts that are 

easier to solve? 
• Can the constraints be relaxed to transform the 

problem into a familiar one? 

A process model should facilitate answers to these 
questions by providing a sub-division of the problem 
which is rich enough (and detailed enough) to allow re- 
use of specific knowledge whilst being general enough 
to allow existing solutions to be deformed into new 
domains. In this way we may break the goal into sub- 
goals and those into smaller sub-goals until we reach a 
set of objectives which is attainable [15,16] 

The model should therefore not only represent the 
system under consideration but should also simplify it 
conceptually. The model will only be of practical use 
to system developers if this simplification facilitates 
calculations and predictions. 

The foregoing review indicates shortcomings of each 
of the existing models. Specifically we require a model 
which: 

5. The Omnibus Model 

A unified model, to be known as the Omnibus model, 
is proposed. It comprises a flow chart, a dual- 
perspective definition and a structured repository of 
accumulated expertise. 

The Omnibus flow chart shown in Figure 5 is based 
around the cyclic nature of the intelligence cycle and 
the Boyd control loop but uses the finer definitions of 
the Waterfall model, each of which can be associated 
with one of the levels in the JDL and Dasarathy 
models. In the Omnibus model feedback is explicit and 
the previously neglected concept of loops within loops 
is acknowledged. The cyclic nature of the data fusion 
process is made explicit by retaining the general 
structure of the Boyd loop. The fidelity of 
representation expressed by the Waterfall model is then 
easily incorporated into each of the four main process 
tasks. The points in the process where fusion may take 
place are explicitly located. 

Soft decision I 
fusionl 

Feature 
fusion 

Pattern processing 

Feature extraction 

Sensor data 
fusion 

Hard decision fusion 

Sensor 
Management 

Figure 5: The Omnibus model - a unified data 
fusion process model. 
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The model is used in two ways. Firstly, it characterises 
and sub-divides the overall system aims to provide an 
ordered list of tasks. Secondly, the same structure may 
be used to organise the functional objectives of each 
such task. Using this approach a data fusion solution is 
categorised using a dual perspective - both by its 
system aim and its task objective. 

The repository of communal knowledge should be 
structured in a top-down fashion so that analogies can 
be drawn at either abstract or specific levels. A part of 
this repository should be a list of advantages and 
limitations of fusion approaches and techniques. Table 
3 shows an example list. 

5.1 Omnibus Case Study 

A technique for fusing multiple uncertain detection 
reports of intruder aircraft is required for embedding 
within an air defence data fusion system. Using the 
Omnibus, dual-perspective, approach this problem is 
categorised as: 

System aim - orientation (information has been 
provided by the sources and the aim is to detect aircraft 
regardless of context) 

Task objective - soft decision fusion (the reports 
contain symbolic data from multi-sensor system). 

This indicates that the system level communication and 
processing bandwidth will be moderate whilst the task- 
level bandwidth will be low. We may also predict the 
likely performance at the task level (false alarm rate for 
example) and begin to analyse its impact on the 
system-level effectiveness (cost effective reduction in 
own-force casualties for instance). 

6. Conclusions 

A common disadvantage of existing data fusion models 
is that they are each specifically oriented towards a 
military domain (to some degree). This is 
understandable given the origins of data fusion. 
However, with the increasing use of fusion techniques 
for industrial and commercial problems it is necessary 
to define a model with which the extending fusion 
community is able to identify. 

The requirements of a process model have been re- 
examined and a new model, the Omnibus model, has 
been proposed. This comprises a process flow chart, a 
dual-perspective prescription for using it and a 
structured repository of fusion knowledge. The 
Omnibus model overcomes some of the main 
limitations of previous model whilst capitalising on 
their advantages. The nomenclature used is loosely 
based on existing notation to maximise familiarity but 
moves away from a defence-based scheme. 

task context 

Resource tasking 

system context 

Figure 6: A system within a system representation 
of the air defence case study example. 

7. Recommendations 

The fledgling data fusion community has now reached 
the maturity that warrants a re-examination of the 
organisation and structuring of the communal 
knowledge. The three main categorisation methods - 
models, architectures and frameworks - would lead to 
a less (unwarranted) duplication and substantial 
savings from reduced nugatory effort. Some degree of 
standardisation has to be a good thing in this respect. 

It is suggested that over the next 12 months an 
internationally agreed terminology for (and 
descriptions of) models, architectures and frameworks 
be put in place. We observed that several models are 
currently in use by different parts of the fusion 
community (largely characterised by their geographic 
location or their application domain). Some 
entrenchment of ideas is also evident and the inertia of 
certain models will make it difficult to inject change. 
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It was not originally our intention to invent yet another 
model since we feel there are already too many. 
However, the Omnibus model emerged as a montage 
of the best aspects of existing models and therefore 
represents a unification rather than something new. 

References 

[1] M. Kokar and K. Kim, "Review of Multisensor 
Data Fusion Architectures", Proceedings of IEEE 
(1993). 

[2] E. Shahbazian, E. Bosse and P. Valin, "Multi- 
Agent Data Fusion Workstation (MADFW) 
Architecture", Proceedings of AeroSense conference, 
SPIE Vol. 3376, pp. 60-68 (1998). 

[3] M. Balci and S. Kuru, "A CORBA Based 
Infrastructure (CORBIS) for Sensor Data Fusion 
Systems", Proceedings of AeroSense conference, SPIE 
Vol. 3179, pp. 220-229 (1999). 

[4] D. Hall and J. Llinas, "Data Fusion and Multisensor 
Correlation", Technology Training Corporation course 
(1985). 

[5] A. Shulsky, "Silent Warfare: Understanding the 
World of Intelliegnce", Brassey's (1993). 

[6] F. White, " A Model for Data Fusion", Proceedings 
1st National Symposium on Sensor Fusion (1988). 

[7] A. Steinberg, C. Bowman and F. White, "Revisions 
to the JDL Data Fusion Model", Proceedings of 
AeroSense conference, SPIE Vol. 3719, pp. 430-441 
(1999). 

[8] L. Klein, "Sensor and Data Fusion Concepts and 
Applications", SPIE Volume TT14 (1993). 

[9] J. Boyd, "A Discourse on Winning and Losing", 
Maxwell AFB lecture, (1987). 

[10] J. Gainey and E. Blasch, "Development of 
Emergent Processing Loops as a System of Systems 
Concept", Proceedings of AeroSense conference, SPIE 
Vol. 3179, pp. 186-195(1999). 

[11] M. Bedworth, "Probability Moderation for 
Multilevel Information Processing", DRA Technical 
Report DRA/CIS(SEl)/651/8/M94.AS03BP032/l 
(1994). 

[12] M. Markin, C. Harris, M. Bernhardt, J. Austin, M. 
Bedworth, P. Greenway, R. Johnston, A. Little and D. 
Lowe, "Technology Foresight on Data Fusion and Data 
Processing", Publication of The Royal Aeronautical 
Society, (1997). 

[13] B. Dasarathy, "Sensor Fusion Potential 
Exploitation - Innovative Architectures and Illustrative 
Applications", Proceedings of IEEE, Volume 85, 
Number l,pp 24-38 (1997). 

[14] G. Polya, "How to Solve It", Princeton University 
Press (1945). 

[15] R. Atkinson, R. Atkinson, E. Smith, D. Bern and 
E. Hilgard, "Introduction to Psychology", Harcourt 
Brace Jovanovich (1990). 

[16] J. Anderson, "Cognitive Psychology and its 
Implications", New York Freeman (1985). 

443 



Input 

Data 

Data 

Features 

Features 

Decisions 

Output 

Data 

Features 

Features 

Decisions 

Decisions 

Notation 

DAI-DAO 

DAI-FEO 

FEI-FEO 

FEI-DEO 

DEI-DEO 

Analogues 

Data-levelfusion 

Feature selection and feature extraction 

Feature-level fusion 

Pattern recognition and pattern processing 

Decision-level fusion 

Table 1: The five levels of fusion in the Dasarathy model. 

Intelligence Cycle 

Disseminate 

Evaluate 

Collate 

Table 2: A comparison between the data fusion process models described in this paper. 

Collect 

Fusion level 
Hard decisions 

Soft decisions 

Features 

Data 

Bandwidth 
Very low 

Low 

Moderate 

High->very high 

Performance 
Depends on system 

Often good 

Good->high 

Potentially optimal 

Advantages 
Simplicity for large 
systems      
Bandwidth / 
performance trade- 
off 

High performance 

Possibility of using 
physical models 

Limitations 
Poor performance 
for small systems 
Sophisticated 
algorithms needed 
for correlated 
sources 
Difficult to select 
correct features 
High bandwidth 
restricts use to 
single platform 
systems  

Table 3: The advantages and disadvantages of the four levels of data fusion. 

444 



DATA FUSION IN SUPPORT OF DYNAMIC HUMAN DECISION MAKING 
Stephane Paradis, Richard Breton and Jean Roy 

Decision Support Technology Section 
Defence Research Establishment Valcartier 

2459 Pie XI Blvd. North 
P.O.8800, Val-Belair, G3J 1X5 CANADA 

Abstract - Command and control can be characterised as a dynamic human decision making process. A technological 
perspective of command and control has led system designers to propose solutions such as data fusion to overcome many of the 
domain problems. This and the lack of knowledge in cognitive engineering have in the past jeopardised the design of helpful 
computerised aids aimed at complementing and supporting human cognitive tasks. Moreover, this lack of knowledge has most of 
the time created new trust problems in designed tools, and human in the loop concerns. Solving the command and control 
problem requires balancing the human factor perspective with the one of the system designer and coordinating the efforts in 
designing a cognitively fitted system to support the decision-makers. This paper presents a triad model establishing the 
relationship between the three elements required for the design of a system that support dynamic human decision making: the 
task, the human and the technology. 
Keywords:   Command and Control, Data Fusion, Situation Awareness, Decision Making, Cognitive Engineering. 

1.0  Introduction 
Command and control (C2) is defined, by the 

military community, as the process by which a 
commanding officer can plan, direct, control and 
monitor any operation for which he is responsible in 
order to fulfil his mission [Ref. 1]. Recently, a new 
definition has been proposed [Ref. 2] describing C2 as 
a dynamic human decision making process that 
establish the common intent and transform that 
common intent into a co-ordinated action. 

From a human factor perspective, the complexity 
of military operations highlight the critical role of 
human leadership in C2. To resolve adversity, C2 
systems (CCSs) require qualities inherent to humans 
such as decision-making abilities, initiative, creativity 
and the notion of responsibility and accountability. 
Although these qualities are essential, characteristics 
inherent to the environment in which C2 occurs, 
combined with the advancement in threat technology, 
significantly challenge the accomplishment of this 
process and therefore require the support of 
technology to complement human capabilities and 
limitations. 

A technological perspective of C2 has led system 
designers to propose solutions such as data fusion to 
overcome many of the domain problems by fitting 
warships with an efficient combat system featuring a 
real-time decision support system (DSS). The main 
role of such a DSS is to aid the operators to achieve 
the appropriate situation awareness (SA) state for their 
tactical decision-making activities, and to support the 
execution of the resulting actions. The lack of 
knowledge in cognitive engineering has in the past 
jeopardised the design of helpful computerised aids 
aimed at complementing and supporting human 
cognitive tasks. Moreover, this lack of knowledge has 
most of the time created new trust problems in 
designed tools, and human in the loop concerns. 

Solving the C2 problem thus requires balancing the 

human factor perspective with the one of the system 
designer and coordinating the efforts in designing a 
cognitively fitted system to support the decision- 
makers. This paper presents a triad model establishing 
the relationship between the three elements required 
for the design of a system that support humans: the 
task, the human and the technology. The concepts 
lying behind this model are currently being used for 
the design of a DSS that complement and support the 
human during his cognitive activities. The model 
allows the design of systems taking into account the 
human role in a dynamic decision making process 
such as C2. 
2.0  The command and control task 

C2 is the process by which commanders can plan, 
direct, control and monitor any operation for which 
they are responsible [Ref. 1]. C2 requires that the 
commander is aware of the tactical situation in order 
to make a timely decision about the best course of 
action to be implemented. In a naval context afloat, 
most tactical decisions taken within the ship's 
operations room are made after completing a number 
of perceptual, procedural and cognitive activities 
linked to the C2 process. The C2 process is indeed a 
suite of cyclic activities which mainly involves the 
perception of the environment and an assessment of 
the tactical situation, from which the decision making 
about a course of action and the implementation of the 
chosen plan will be based. 

The C2 activities are performed by either humans, 
machines (i.e., hardware and software computer 
systems), or a combination of both. Characteristics of 
this suite of activities are described in Ref. 3 and were 
captured through the Boyd's Observe-Orient-Decide- 
Act (OODA) loop illustrated in Figure 1. 

Although the OODA loop might give the 
impression that C2 activities are executed in a 
sequential way, in reality, the activities are concurrent 
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and hierarchically structured. The military community 
typically states that the dominant requirement to 
counter the threat and ensure the survivability of the 
ship is the ability to perform the C2 activities (i.e., the 
OODA loop) quicker and better than the adversary. 
Therefore, the speed of execution of the OODA loop 
and the degree of efficiency of its execution are the 
keys to success for shipboard tactical operations. 

Figure 1 - Boyd's OODA Loop 

C2 is characterised by ill-structured problems, 
changing and stressful conditions, technological 
advances in threat technology, the increasing tempo 
and diversity of open-ocean and littoral (i.e., near 
land) scenarios, the volume, rate, imperfect nature and 
complexity of the information. Most likely, the latter 
will be processed under time-critical conditions and, 
as a consequence, the risk of saturation in building the 
tactical picture and of making the wrong decision 
increases. 

These characteristics inherent of the C2 domain 
pose significant challenges to the C2 process, to the 
design of future shipboard CCSs and to the combat 
system operators responsible to conduct this process 
using these systems to defend their ship and fulfil their 
mission. 
3.0  Human factor perspective of C2 

The C2 process is seen as an instantiation or an 
example of a dynamic human decision making process 
that establishes the common intent and transforms that 
common intent into a co-ordinated action [Ref. 2]. The 
first half of Boyd's loop (Observe-Orient) gathers a 
number of processes that mainly perceives, interprets 
and projects the status of the entities included in the 
C2 environment. Yielding from these processes is the 
situation awareness required to complete the decision- 
making process. The latter process corresponds to the 
second half (Decide-Act) of the OODA loop. Given 
the tactical situation and the available onboard 
resources, it decides on the best course of action with 

respect   to   own   ship   mission   and   support   its 
implementation. 

Figure 2 illustrates a theoretical model derived by 
Endsley of situation awareness (SA) based on its role 
in dynamic human decision making. SA is defined 
[Ref. 4] as the perception of the elements in the 
environment, within a volume of time and space, the 
comprehension of their meaning, and the projection of 
their status in the near future. 

The first level of SA yields in the perception of the 
status, attributes and dynamics of relevant elements in 
the environment. If we look at our problem domain, 
maritime C2, the basic element relevant for the 
command team is any object in the environment (e.g., 
air, surface or subsurface targets). 

Endsley describes the comprehension process as 
follows: "Comprehension of the situation is based on a 
synthesis of disjoint level 1 elements". Level 2 of SA 
goes beyond simply being aware of the elements that 
are present, to include an understanding of the 
significance of those elements in light of pertinent 
operator goals. Based on knowledge of Level 1 
elements, particularly when some elements are put 
together to form patterns with other elements, the 
decision-maker forms a holistic picture of the 
environment, comprehending the significance of 
objects and events. 

The third and last step in achieving situation 
awareness is the projection of the future actions of the 
elements in the environment. This is achieved through 
knowledge of the status and dynamics of the perceived 
and comprehended situation elements. 

The situation awareness processes described by 
Endsley are initiated by the presence of an object in 
the perceiver's environment. However, processes 
related to situation awareness can also be triggered by 
a priori knowledge, feelings or intuitions. In these 
situations, the picture is understandable, and 
projections in the future are possible, if any event, 
which have not been perceived at this time, can be 
found in the environment. Hence, hypotheses related 
to the possible presence of an object are formulated. 
The perceiver then initiates search processes in the 
environment that confirm or invalidate these 
hypotheses. Note that this type of SA is possible only 
if mental models related to the possible objects are 
available. 

If one compares the OODA loop with the SA 
model of Endsley, one sees a close resemblance. In 
both models one finds a decision-making part and an 
action part. In Endsley's model, SA is one of the main 
inputs for decision-making. In the OODA loop, the 
processes Observe and Orient provide inputs for the 
decision making process. One should recall, however, 
that situation awareness in Endsley's model is a state 
of knowledge and not a process. 
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Figure 2 - SA Model in Dynamic Human Decision Making 

In her theory of SA, Endsley clearly presumes 
patterns and higher level elements to be present 
according to which the situation can be structured and 
expressed. SA can be interpreted as the operator's 
mental model of all pertinent aspects of the 
environment (processes, states, and relationships). 

There is a tight link between this mental model 
used to structure and express situation elements and 
the cognitive processes involved in achieving the 
levels of awareness. This link is known as the 
cognitive fit and requires an understanding of how the 
human perceives a task, what processes are involved, 
what are the human needs and what part of the task 
can be automated or supported. This understanding is 
crucial and only achieved via a number of specialised 
human factor investigations known as cognitive 
engineering analyses. 

Cognitive engineering analyses are generally 
conducted by the human factor engineering 
community. Human factor engineering can be seen as 
the US counterpart of the ergonomics. According to 
Preece [Ref. 5], the cognitive ergonomics is a 
discipline that focuses particularly on human 
information processing and computer systems. By 
definition, it aims to develop knowledge about the 
interaction between human information processing 
capacities and limitations, and technological 
information processing systems. 

The usefulness of a system is closely related to its 
compatibility with the human information processing. 
Thus, such a system must be developed according to 
the human information processing and human needs. 

A first step is the identification of the cognitive 
processes involved in the execution of the task. Many 
procedures have been developed to identify those 
processes. Jonassen, Hannum and Tessmer [Ref. 6] 
describe the task analysis as a process that is 
performed in many ways, in a variety of situations, 
and for multiple purposes. This analysis determines 
what the performers do, how they perform the task, 
how they think or how they apply a skill. 

Among the procedures developed to identify 
cognitive processes, there are the Cognitive Task 
Analysis (CTA) and the Cognitive Work Analysis 
(CWA). There are only subtle and ambiguous 
differences between these two procedures. Moreover, 
their labels are frequently used in an interchangeable 
manner in the literature. However, the CWA can be 
seen as a broader analysis than the CTA. According to 
Vicente [Ref. 7], traditional task analysis methods 
typically result in a single temporal sequence of overt 
behaviour. This description represents the normative 
way to perform the task. However, traditional methods 
cannot account for factors like changes in initial 
conditions, unpredictable disturbances and the use of 
multiple strategies. The use of the traditional task 
analysis brings an artefact that will only support one 
way to perform the task. 

Vicente proposes an ecological approach in which 
the three factors above are considered. The ecological 
approach, which can be seen as a CWA, takes its roots 
in psychological theories that were first advanced by 
Brunswick [Ref. 8] and Gibson [Refs.9-10]. These 
researchers   raised   the   importance   to   study   the 
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interaction between the human organism and its 
environment. The perception of an object in the 
environment is a direct process, in which information 
is simply detected rather than being constructed [Ref. 
10]. The human and the environment are coupled and 
cannot be studied in isolation. A central concept of 
this approach is the notion of affordance. The 
affordance is an aspect of an object that makes it 
obvious how the object is to be used. Examples are a 
panel on a door to indicate "push", and a vertical 
handle to indicate "pull" [Ref. 5]. When the 
affordance of an object is obvious, it is easy to know 
how to interact with it. The environment in which a 
task is performed has a direct influence in the overt 
behaviour. Hence, the ecological approach begins by 
studying the constraints in the environment that are 
relevant to the operator. These constraints influence 
the observed behaviour. Ref. 11]. 

The ecological approach is comparable to and 
compatible with Rasmussen's abstraction hierarchy 
framework. Rasmussen's framework is used for 
describing the functional landscape in which 
behaviour takes place in a goal-relevant manner. This 
abstraction hierarchy is represented by means-ends 
relations and is structured in several levels of 
abstraction that represent functional relationships 
between the work domain elements and their purposes. 
With the ecological approach, Rasmussen has 
developed a comprehensive methodology for CWA 
that overcomes the limitations of traditional CTA by 
taking into account the variability of performance in 
real-life, complex work domains. For these reasons, 
the CWA seems to be the best choice to answer 
questions related to understanding the C2 task. 

Within the design process of a system, the 
technological development has raised new issues and 
challenges. The type of issues and challenges has 
shifted from identifying the technological possibilities 
and limitations through determining how these 
systems must be designed to fit with the human 
information processing. This situation has brought the 
emergence of the human factor community and the 
development of CTA and CWA methods. 
4.0  Technology perspective of C2 

Command and. control has been, and still is, a 
challenging problem to address from a technological 
perspective. The complexity of the C2 task opens the 
door to a broad range of technological solutions. 
Bearing in mind the scope of this paper, only the 
technological aspects of C2 related to the 
transformation and the fusion of data are addressed. 

According to the Joint Directors of Laboratories 
(JDL)  [Refs.   12-13],  a complete DF  system can 
typically be decomposed into five levels: 
•     Level 0- Signal Data Refinement (source pre- 

processing); 

• Level 1 - Object Refinement (Multi-Source Data 
Fusion (MSDF)); 

• Level 2 - Situation Assessment (SA); 
• Level 3 - Threat Assessment (TA); and, 
• Level 4 - Process Refinement through Resource 

Management (RM). 
Each subsequent level of DF processing deals with 

a higher level of abstraction. Level 1 DF uses mostly 
numerical, statistical analysis methods, while levels 2, 
3, and 4 of DF use mostly symbolic or Artificial 
Intelligence methods. Note that RM in the context of 
level 4 fusion is mainly concerned with the refinement 
of the information gathering process (e.g., sensor 
management). 

For several years, research and development 
activities in DF concepts and algorithms have been 
conducted at the Defence Research Establishment 
Valcartier, leveraging from the JDL model. Lately, a 
number of R&D activities have been undertaken 
focusing on the application of DF to the design of a 
DSS for maritime C2 [Ref. 14]. All these efforts 
yielded in the derivation of two generic systems. 

First, a generic MSDF system (level 1 fusion) has 
been derived presenting the functionalities required for 
the fusion of data from dissimilar sources to 
accomplish the tracking and the identification of the 
objects sensed in the environment [Ref. 15]. Figure 3 
depicts the generic MSDF system. 

A first cut at another generic system, illustrated in 
Figure 4, has also been produced. It provides the high- 
level functional decomposition of a multilevel 
Situation and Threat Assessment process (levels 2-3 
fusion). This latter generic system has been derived 
taking into consideration some cognitive engineering 
and SA concepts. A detailed description of this generic 
system is given in [Ref. 16]. 
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Figure 3 - Generic MSDF System 
Ongoing efforts are now aiming at deriving an 

integrated version of these two generic systems while 
applying some cognitive engineering principles [Refs 
17-18]. Figure  5  illustrates a framework used to 
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investigate issues related to the integration of all DF 
levels [Refs. 19-20].  
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Figure 4 - Generic STA System 
The JDL model, with its process refinement 

capability, implicitly supposes that all levels of fusion 
are integrated within the same framework. The levels 
of fusion are linked together and cannot be considered 
independently, in an opened loop fashion, without 
missing functionalities and/or reducing the quality of 
their results. The functional decomposition of the DF 
process and the quality of its results are also different 
whether the process is implemented as an opened or a 
closed loop. 

Level 0 
 TT 
Level 1 

a 

Level 2 Level 3 

*0 

Level 4 

Figure 5 - Integrated Data Fusion Framework 
The closed loop implementation inherently uses 

the notion of process refinement. This means, for 
instance, that the level 1 fusion process will be refined 
and enhanced leveraging from the results of higher 
levels of DF. As a result, the level 1 fusion process 
then benefits indirectly of contextual information. This 
is a major difference from the opened loop 
implementation where the results of the level 1 fusion 
process are context-free. 

Clearly, the tight integration of all DF levels is 
essential to gain the maximum benefits from this 
process. Unfortunately, the R&D effort in the data 
fusion domain has generally been done in a 
fragmented way. Most of the time, the functionalities 
of one level of fusion have been studied independently 
from the other levels and, consequently, they have also 

been implemented on independent and opened loop 
test beds. 

The resulting framework, illustrated in Figure 5, 
provides the appropriate environment to any DF sub- 
process and therefore allows the integration of all DF 
levels, and the achievement of all states of SA. The 
framework, from now on referred to as the integrated 
DF framework, is composed of a number of 
interconnected DF sub-processes or agents within a 
closed loop environment. All DF agents within the 
framework are required to comply with the notions of 
process refinement. 
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Information Request 
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Process Control 

Figure 6 - Data Fusion Agent 
Any DF sub-process included in the framework 

can be defined as an agent according to Figure 6. A set 
of dynamic inputs is presented to the agent along with 
a priori knowledge. These inputs can originate from 
the results of prior stovepipe processes, the results of 
higher level processes, the results of additional or 
complementary processing or, from the environment 
sensing process. The agent can be managed, via a 
process control flow, for the tuning of the parameters 
of its current algorithms or for the selection of 
alternate algorithms. 

MSDF 

RM 

Figure 7 - Data Fusion & OODA Loop Mapping 
In addition to the actual results of the process, the 

DF agent can output a request for additional 
information that would eventually be used to refine 
itself. Finally, a Process Status flow indicates the 
current status of the Data Fusion agent. This status 

449 



may indicate, for example, how much time remains 
before a result is expected to be available at the output. 

Given the description of data fusion presented 
above, one can now appreciate its usefulness in 
support of the C2 process. Figure 7 presents the 
mapping of the DF process onto the OODA loop. This 
mapping can be seen as a system designers perspective 
of the C2 task. 

5.0 Meeting the C2 requirements 

5.1 Task-human interaction 
As mentioned earlier, it is crucial, for anyone who 

takes part of the design process of a system, to 
understand what the performers do, how they perform 
the task, how they think or how they apply a skill. 
Hence, a good understanding of human resources, 
skills and limitations is required within the context of 
the task. It is necessary to understand the interaction 
between the human and the task. A CWA can provides 
this understanding. The analysis is made in isolation of 
any system available and considers the constraints 
related to the task, such as the human resources, skills 
and limitations. From this analysis, shortfalls and 
needs are identified. Obviously, these needs are 
closely related to human limitations. 

Physical factors like stress and fatigue must also be 
considered when assessing human skills and 
limitations to perform a task. According to Proctor and 
Van Zandt [Ref. 21], stress refers to a physiological 
response to unpleasant or unusual conditions. These 
conditions may be imposed by the physical 
environment, the task performed, one's personality 
and social interactions. Stress situations are defined by 
a substantial imbalance between the demands imposed 
by the environment and the human's capability to 
successfully handle those demands. Stressful 
situations are created by overload and also by 
underload [Ref. 22]. The influence of physical factors 
on decision-making abilities have been investigated in 
the Tactical Decision Making Under Stress project 
(TADMUS) following the Vincennes incident [Ref. 
23]. 

The human has limited resources and these 
resources are generally related to the capacity of 
attention. It seems that the attention is divided in 
limited pools of resources. There is some multiplicity 
of non-overlapping reservoirs (see Wickens [Ref. 24]). 
The pools would be related to each specific sensory 
modality (for a review, see Pashler, [Ref. 25]). Hence, 
two different tasks can be performed simultaneously if 
they are referring to different pools. For instance, it is 
possible to drive a car and talk with someone at the 
same moment. However, it is impossible to sing and 
talk simultaneously. This affirmation brings the 
concept   of  serial   and   parallel   processing.   Two 

different tasks that refer to different pools can be 
processed in parallel. However, they must be 
processed serially if they refer to the same pool. In the 
latter situation, the workload related to the two 
different tasks determines the complexity of the 
situation. The workload can be defined by the demand 
required by the execution of a task in function of the 
resources available in the pools. The workload cannot 
be solely defined in terms of attentional resources. 

The working memory is also involved in any 
attentive activity. The working memory is the 
cognitive center responsible for problem solving, 
retrieval of information, language comprehension, and 
many other cognitive operations [Ref. 26]. To encode 
words in the long-term memory, the human must be 
attentive to these words, and the flow of presentation 
of the words cannot exceed the capacity of the 
working memory. Unfortunately, the storage and 
processing capacity of the working memory is limited. 
However, these limited resources can be expanded 
through practice. 

The workload related to a task is thus defined by 
the demands imposed by the task in terms of 
attentional and working memory resources needed. 
Moreover, the human performance is closely related 
the workload of the task. Tasks with high workload 
can be seen as more complexes than task with low 
workload. However, strategies, practice and training 
can reduce the workload to a level at which enough 
resources are available. The idea that mental events 
operate automatically after a certain amount of 
practice is a well-entrenched doctrine of folk 
psychology, and it has a long history in academic 
psychology [Ref. 25]. According to Schneider and 
Shiffrin [Ref. 27], mental operations that are trained 
sufficiently are performed more quickly and 
accurately. They also undergo qualitative changes. 
Trained operations impose less capacity demands, 
providing more resources for concurrent mental 
activities. Trained operations also are not subject to 
voluntary control or conscious awareness and require 
little or no mental effort. 

Rasmussen [Ref. 28] proposes a skill-rule- 
knowledge (SRK) framework including three different 
levels of performance in which the automation is 
different (see Fig. 8). At the skill-based level, human 
performance is governed by stored patterns of 
knowledge. This knowledge is acquired with practice. 
With a specific stimulation from the environment, a 
specific response is given. The link between the 
stimulation and the response can be seen as a reflex 
that requires no effort or conscious awareness. The 
second level is the rule-based level that is applicable to 
tackling familiar problems in which solutions are 
governed by rules (if-then-else). Processes related to 
this level are mainly automatics. With new situations, 
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the third level described by Rasmussen is involved. 
The knowledge-based level deals with unfamiliar 
situations for which actions must be planned on-line, 
using conscious analytical processes and stored 
knowledge. These processes are controlled and impose 
high mental workload. However, with practice and 
training, unfamiliar situations become familiar and can 
thus be solved at the rule-based level. Moreover, with 
extended practice, these knowledge can even become 
a reflex to the specific situations (skill-based level). 

Output Y 
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if (situation) then (action) 

Knowledge- 
based 

Relations more abstract 
between the information available 

_► 
•Inferential Diagnostic 

•formulation of solution 
•application of solution 

1     1 ** 
Subsequent trials 

Figure 8 - Rasmussen SRK Framework 
The SRK framework is compatible with the 

notions of bottom-up and top-down processing. The 
bottom-up stresses the importance of the stimulus in 
the environment. Data arrive from the sensory 
receptors and influence directly the perception of the 
information. The top-down processing stresses the 
importance of a person's knowledge and concepts in 
the perception process. The human knowledge about 
how the world is organised helps the human to 
perceive and understand the environment. Even if 
these two approaches of processing are opposite, they 
are not incompatible. In fact, it is probable that in any 
perceptual process of the environment, both are 
implicated. Since the top-down processing lays on the 
person's concepts and knowledge, this approach is 
compatible with the Rasmussen's theory of human 
performance. This processing approach is also related 
to the training and practice. The top-down processing 
happens if concepts and knowledge have been 
previously stored in the long-term memory. 

Dreyfus [Ref. 29] proposes 5 different stages to 
become and expert (novice, advanced beginner, 
competence, proficient and expertise). However with 

extended practice and the use of strategies, the human 
may require the support of systems. 

It is crucial that these systems be designed 
according to the human information processing. The 
CWA provides an understanding of how the human 
perceives the task and defines constraints of 
environment. From this analysis, it is important to 
identify which part of the task can be, and must be, 
automated, and which part of the task can and must be 
supported. Human shortfalls are translated as 
requirements for the technology community. 
5.2     Task-technology interaction 

As mentioned previously, C2 is a very complex 
and ill-defined problem within an uncooperative 
environment. With technological developments, it is 
appealing to tackle the C2 problem by providing 
humans with computer-based systems. 

Evidently, human and machines have different 
capabilities for performing various tasks [Ref. 30]. On 
one hand, in addition to number crunching 
capabilities, computer-based systems have great 
deductive capacities. However, they can hardly make 
inductive reasoning. On the other hand, the human can 
hardly deal with several hypotheses at the same time, 
but has the capacity to make inductive reasoning. 
According to Ballas [Ref. 31], inducing hypotheses is 
better accomplished by humans and the validation of 
these hypotheses is efficiently done by computer- 
based aids. 

According to Bainbridge [Ref. 32], the automation 
of processes may expand rather than eliminate 
problems with the human operator. Such 
developments may increase the complexity of the 
environment thereby imposing higher processing 
demands to the human. In such circumstances, the role 
of the human would shift from a controlling role 
toward a monitoring one. Hence, it seems that the 
technological development redefines the human 
contribution. In fact, Bainbridge suggests that the 
more advanced a system is, the more crucial may be 
the contribution of the human. 

Bainbridge also raises an important point with 
automated systems. One can only expect the operator 
to monitor the computer's decisions at some meta- 
level, to decide whether the computer's decisions are 
acceptable. If the computer is being used to make 
decisions because the human judgement and intuitive 
reasoning are not adequate in the context, then, which 
of the decisions are to be accepted? The human in a 
monitoring role cannot handle the information 
processing and decision loop anymore. Much likely 
the human will not cope with the system and, 
consequently, won't use it due to a lack of proper 
understanding and/or trust. 

Therefore, system designers are confronted to new 
challenges.   The  nature   of the  limitations  to  be 
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considered within the design process of a system is 
different. Limitations are more and more related to the 
human information processing. It is thus crucial to 
understand how the human perceive a task, Which 
processes are involved, what are the human needs and 
which part of the task can be automated or supported. 

These issues do not mean that decision support 
systems or automated systems are not useful. 
However, the way they are designed, their purposes 
and their interaction with the human are critical. 
Moreover, given the nature of the unpredictable 
events, it is crucial that the design process starts with a 
complete understanding of the environmental 
constraints and the human information processing. The 
technological perspective must be seen as the solution 
to human shortfalls. Hence, the design process must 
involve systems designers and human factors 
specialists. 
6.0  Task/human/technology triad model 

A triad approach has been proposed by Breton, 
Rousseau and Price [Ref. 33] to represent the 
collaboration between the systems designers and the 
human factors specialists. As illustrated in Figure 9, 
three elements compose the triad: the task, the 
technology and the human. In the C2 context, the 
OODA loop represents the task to be accomplished. 
The design process must start with the identification of 
the environmental constraints and possibilities by 
subject-matter experts within the context of a CWA. 

Systems designers are introduced via the 
technology element. Their main axis of interest is the 
link between the technology and the task. The general 
question related to this link is: "What systems must be 
designed to accomplish the task?" Systems designers 
are also considering the human. Their secondary axis 
of interest is thus the link between the technology and 
the human. The main question of this link is: " How 
must the system be designed to fit with the human"? 
However, systems designers have a hidden axis. The 
axis between the human and the task is usually not 
covered by their expertise. From their analyses, 
technological possibilities and limitations are 
identified. However, all environmental constraints 
may not be covered by the technological possibilities. 
These uncovered constraints, named thereafter 
deficiencies, are then addressed as statements of 
requirements to the human factor community (see Fig. 
10). These requirements lead to better training 
program, the reorganisation of work and the need for 
leadership, team communication, etc. 

Human Factor specialists are introduced via the 
human element of the triad. Their main axis is the link 
between the human and the task, which is the hidden 
axis of systems designers. With a CWA, they identify 
how the humans perceive the task, what they have to 
do  to  accomplish  the  task,   what  strategies   and 

resources are involved and what are the shortfalls and 
human limitations. Their secondary axis of interest is 
the same as the one for the system designers (i.e., 
human-technology), and their hidden axis is the link 
between the technology and the task, which is the 
main axis of the system designers. From their 
analyses, human possibilities and limitations are 
identified. However, all environmental constraints 
may not be covered by the human possibilities and 
resources. The uncovered deficiencies are then 
addressed as statements of requirements to the 
technological community (see Fig. 11). These 
statements become the specification of which part of 
the task needs support or must be automated, what the 
system must do, in which conditions, and how the 
system must interact with the operator. 

tOODA» 

Task 

REQUIREMENTS REQUIREMENTS 

Technology 

System Designers 

Principal Axis: (1) Technology -Task 
Secondaiy Axis: (3) Technology- Human 
Hidden Axis: (2) Human - Task 

Human 

Human Factor Specialists 

Principal Axis: (2) Human - Task 
Secondaiy Axis: (3) Technology- Human 
Hidden Axis: (1) Technology -Task 

Figure 9- Task/Human/Technology Triad Model 
Task 

DEFICIENCIES 

Technology Human 

Figure 10 - Human Factor Requirements 
In this context, everyone involved in the design 

process has its own field of intervention. The 
weakness of one is the strength of the other. The sets 
of statements of requirements produced by the systems 
designers and the human factor specialists are 
analysed within a multi-disciplinary team involving 
both communities. This analysis leads to one set of 
consolidated requirements that determines the nature 
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of the solution (see Fig. 12). It is very important that 
both types of specialists work in a close collaboration. 
Working in isolation would bring unrealisable 
requirements formulated by one part to the other. 

Task 

DEFICIENCIES 

Technology Human 

Figure 11 - Technological Requirements 
Task 

DEFICIENCIES DEFICIENCIES 

Technology Tradeoff 
Spectrum 

Human 

Figure 12 - Requirements Tradeoff Spectrum 
Within the context of a war or tactical operations, 

unpredictable events are expected more frequently and 
are caused mainly by intelligent sources. The 
inductive capacity of human is then required to deal 
with these events. Some part of the system can be 
automated, but the system must be mostly design to 
support the human in its activities. Hence, the solution 
cannot be found from a complete technological 
perspective or a complete human perspective. It must 
rather be amixture of both. 

Automation has changed the nature of the 
implication of the human. With automated systems, 
the human role is mainly related to the supervision of 
the situation. As mentioned earlier, this new role 
brings new problems and issues to be considerated. In 
particular, this situation raises the question about 
which part has the authority. There is no general 
answer to this question. A proposed approach is to 
delegate authority according to the situation. Chalmers 
[Ref. 34] proposes five modes of operator-system 
delegation. The human selects the mode, which 
applies until mode transition is triggered by a new 
selection. It is obvious that a good understanding of 
the situation is crucial to select the required mode. 
Each mode implies a fixed delegation of authority for 

all the various sub-processes for which automated 
support is available. Figure 13 presents these modes 
along with the variations in the level of work 
distribution and the synergy between the automation 
and the operator in these various modes. 
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Figure 13 - Operator-System Modes of Operation 

7.0  CONCLUSION 
This paper described command and control as a 

very complex and ill-defined dynamic human decision 
making process within a non-cooperative 
environment. Data fusion is seen as a promising 
technological solution to tackle the C2 problem, but it 
can't assure that it will support adequately the human 
cognitive requirements usually obtained through 
cognitive engineering analyses. The lack of knowledge 
in cognitive engineering can jeopardised the design of 
computerised aids and, most of the time, introduce 
new problems such as human in the loop concerns and 
trust. 

The paper presented a triad model establishing the 
relationship between the three elements required for 
the design of a system that supports dynamic human 
decision making: the task, the human and the 
technology. Solving the command and control 
problem requires balancing the human factor 
perspective with the one of the system designer and 
coordinating the efforts in designing a cognitively 
fitted system to support the decision-makers. 
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ABSTRACT: Data fusion is used today in many 
engineering and managerial applications to help 
resolve complex planning, control and optimisation 
problems. The purpose of this paper is to introduce 
practical and versatile tools and an environment for 

' implementing data fusion that also provides a reverse- 
engineering methodology to extract comprehensible 
rules developed from the data. The environment has 
two major tools (among several others) - a fuzzy 
neural network FuNN, and evolving fuzzy neural 
network EFuNN applicable for both off-line and on 
line adaptive learning and rule manipulation. The 
EFuNNs allow for on-line fusion of variables over 
time sequences of information through adaptive 
learning. Two case study time-series applications are 
presented and discussed: a water flow prediction and 
a provisional robot control example. 

Keywords: Decision-making, On-line Prediction, 
Fuzzy Neural Networks, Evolving Fuzzy Neural 
Networks, Rule Extraction. 

1. Introduction 

While artificial neural networks (ANN) per se 
can provide the ability to produce a model for the 
mechanisms underlying the information in 
sources data used in decision-making and time- 
series prediction processes, hybrid neuro-fuzzy 
systems that include both learning from data and 
fuzzy rules manipulation, add much more to this 
useful property [1, 8, 16, 17]. Many past data 
fusion applications have utilised ad hoc designs 
at some level in the decision-making process to 
include explicit information or a priori 
knowledge constraints, and a structure to assist in 
highly dynamic applications or poorly defined 

problem solutions. This capability has been made 
available in the fuzzy neural network structures 
and in the hybrid connectionist-based 
environments described here. 

One particular example for combining neural 
networks and fuzzy systems is the concept of 
fuzzy neural networks (FNN) [17, 8]. By 
fuzzifying a neural network, the quantisation of 
the inputs and outputs, through the application of 
membership functions, extra robustness is 
provided when used with redundant, noisy or 
incomplete input data. Further, this fuzzification 
technique can provide the means for extracting 
the information learnt in the form of rules. It is 
also now possible to add explicit information or a 
priori knowledge constraints to the network and 
thereby improve the interpretation of the rules 
learnt by the network, after training. 

Here, two types of FNNs are illustrated as part of 
a hybrid software environment: the fuzzy neural 
network FuNN [8-11], used for off-line learning 
rule manipulation, and the evolving fuzzy neural 
network EFuNN [12-14] used for on-line real 
time learning and prediction. 

Since the paradigm of hybrid connectionist-rule 
based systems was established [6] there are now 
several software environments that implement 
this paradigm. The first generation of such 
environments (see for example COPE [7]) 
implemented in a logical way, different types of 
ANN (such as multi-layer perceptions, Kohonen 
self-organising maps [15], adaptive-resonance 
theory  ANN  [1]),  to  be  combined   with  the 

ISIF © 1999 455 



CLIPS-based production systems. Here, an ANN 
could be called for training, or for recall of the 
action part of the production rules [6, 7]. The 
second generation of such environments included 
fuzzy rules and fuzzy neural networks. Such an 
environment was FuzzyCOPE [8]. This new data 
fusion environment further developed the main 
principles of COPE [7] through a combination of 
the Fuzzy-CLIPS (an extension of CLIPS) 
developed by the NRC in Canada in 1994, 
http://ai.iit.nrc.ca/fuzzv/fuzzy.html and fuzzy 
inference and fuzzy-neural network modules at 
htlp://divcom.otago.ac.nz/coiu/infosci/KEL/homü.htm. 

The latest development in the series of 
FuzzyCOPE environments, FuzzyCOPE/3, 
allows for the extraction of a more 
comprehensible interpretation of the underlying 
rules implicit in the data used in training. It also 
has a module (EFuNN) for on-line learning 
where the inputs (sources of information) are not 
pre-defined and can vary during the on-line 
learning process, thus allowing for "on the fly" 
fusion of different sources of information and 
fuzzy rules. 

2. The Fuzzy Neural Network 

Fuzzy neural networks (FNNs) are connectionist 
models for fuzzy rules implementation and 
inference [8-11, 17]. However, there are a wide 
variety of architectures and functionality, 
differing in the type of fuzzy rules, type of 
inference method, and modes of operation. In 
general the architecture of these FNNs consist of 
five layers, Fig. 1. These layers in order are: 
A. An input layer, where the neurones represent 

the linguistic variables of the input data; 
B. A fuzzification, or condition layer, where the 

neurones represent the fuzzy values; 
C. A rules layer, where the neurones represent 

the fuzzy rules; 
D. An action layer, where the neurones 

represent the fuzzy values of the output 
variables, and finally; 

E. An output layer, where the neurones 
represent the output linguistic variables. 

The example illustrated in Fig.l has two inputs, 
with two fuzzy membership functions (MF) each, 

two rule nodes, and two outputs, again with two 
MF each. 

Figure 1: A general structure of a fuzzy neural 
network 

FuNN is a FNN developed and presented in [8- 
11]. It is characterised by the following features: 
using weighted fuzzy rules [8]; modified back- 
propagation algorithms for training that include 
training with forgetting; using genetic algorithms, 
to improve and speed up training [2]; training 
with or without modifying the membership 
functions [11]; different types of rule extraction 
(e.g. simple fuzzy rules, weighted fuzzy rules, 
aggregated rules [10,11]); and rule insertion. 

FuNNs have four basic advantages over ANNs 
(and standard fuzzy systems): 
1. The FuNN structure is interpretable by fuzzy 

linguistic "if-then" rules - not so readily 
achieved for ANNs; 

2. A FuNN is more likely to converge to a 
global minimum in error-weight space under 
arbitrary conditions, than an ANN; 

3. FuNNs show a remarkable improvement in 
learning speed and accuracy compared to an 
equivalent ANN; 

4. A FuNN can learn to predict signal variation 
well, even if it is of a chaotic signal type. 

Usually, the FuNNs employ standard triangular 
membership functions and the number of rule 
nodes and rules are defined and fixed by the 
analyst prior to initialisation. However, FuNNs 
do have some difficulties when applied to on-line 
modelling and prediction [5], but these can be 
overcome by the evolving FuNNs as described 
below. 

456 



3. Evolving Fuzzy Neural Networks 

Evolving fuzzy neural networks (EfuNNs) were 
introduced in [12-14]. In this extension of the 
FuNN architecture, the network begins with an 
empty rule layer. As training patterns are 
presented to the network, examples that are not 
adequately represented by the rule layer, trigger 
the addition of nodes to represent these new 
examples. Each rule node, after training, 
therefore represents one or several training 
examples. 

EFuNNs have the following characteristics: 
• Memory-based learning where exemplars of 

data are stored as they arrive at the inputs; 
• Open structure - the number of the inputs 

and the outputs of the EFuNN can vary from 
example to example thus making fusion from 
an unknown number of sources possible in an 
on-line, "on the fly" mode, and; 

• Local tuning of connection weights [12-14]. 

EFuNNs also exhibit the following advantages 
over conventional FuNNs: 
• Rapid, one pass training; 
• Good generalisation capability, both local 

and global; 
• Robustness to forgetting, and; 
• Rapid adaptation to new data. 

4. The Hybrid Environment FuzzyCOPE/3 

FuzzyCOPE/3 is a suite of data processing and 
neural network tools for the Microsoft Windows 
environment. FuzzyCOPE was developed by the 
Knowledge Engineering Laboratory of the 
Department of Information Science at the 
University of Otago. It consists of a graphical 
user interface built on top of a computational 
engine. The engine, which is encapsulated within 
a dynamic link library (DLL), is actually a simple 
command interpreter capable of creating and 
manipulating multiple instances of various 
classes of objects. These include data sets, multi- 
layer perceptrons, self-organising maps, and 
different types of fuzzy neural networks. 
Communication between the interface and engine 
is via customised formatted commands and result 

strings. These strings are assembled and parsed 
by specially written Application Programming 
Interface (API) libraries. This approach was 
adopted for maximum flexibility: it eliminates 
problems with handling C++ style pointers, it 
avoids problems with passing data in proprietary 
formats, it simplifies use of the engine (only the 
API library functions need be considered at the 
application level) and it lends itself readily to 
future expansion, such as a possible client-server 
architecture, or even the implementation of a 
specialised programming language. The 
FuzzyCOPE/3 environment is currently being 
used by more than 35 universities from all over 
the world as a teaching environment for courses 
in computational intelligence. There are also 
more than 200 developers of intelligent 
information systems using it. The environment is 
available from the web site at 
hUp://kel.otago.ac.n/Vsoftware/Fu/./yCOPE3/ 

5. Case Study I - Water Flow Prediction 

5.1 The Problem 

This first example problem chosen for this paper 
was that of water flow prediction to a sewage 
plant (see also [8]). Given the time of day t, (0 - 
23), whether or not it is a holiday (0 or 1), and 
the water flow over the past few hours (t-1, t-2 
etc.), the task is to predict the water flow for the 
next hour. This is a time-series prediction 
problem useful for resource management. 
Accurate prediction of the water flow is 
necessary to allow for finer control of the sewage 
plant process. 

The data is highly variable, with large differences 
between the hourly water flow for a workday as 
compared to a holiday. An extract of the data, 
shown in Fig.2, demonstrates the typical 
difference between holiday (dotted line) and 
workday (solid line) flows. 

5.2 Experimental Data Sets 

Two data sets, a training set and a testing set, 
were prepared. Each data set contained four input 
variables and one output variable. The  input 
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variables represented the time of day, whether or 
not it was a holiday, and the water flow over each 
of the two preceding time intervals. There were 
503 examples in the training set, 176 examples in 
the test set. Due to the requirements of the FuNN 
and EFuNN architectures, each data set was 
linearly normalised so that the values all reside 
within the range [0, 1]. 
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Figure 2: Extract of water flow data for holiday and 
workday (see text). 

5.3 Off-line Training, Prediction and Rule 
Extraction with FuNNs 

A fuzzy neural network FuNN was created within 
the FuzzyCOPE/3 environment. It consisted of 
four inputs, one for each input variable described 
above in 5.2. The first input had four MF 
attached (representing early morning, morning, 
afternoon and evening). The second and third 
inputs each had three MF attached (representing 
low, medium and high water flow). The final 
input had two MF attached (either a holiday, or 
not). Ten rule nodes were used, and the single 
output had three MF (again representing low, 
medium and high water flow). 

This network was trained for 10,000 epochs 
using the backpropagation algorithm, and the 
results were recalled with the test data. The 
results of the recall are presented in Fig.3, where 
the actual (solid line) and predicted (dotted line) 
water flow are plotted. 

After recall, a set of fuzzy rules was extracted. 
These rules seem to explain well the relationship 
between the input variables and the expected 
water flow. A set of example rules is presented 
below. 

If <Time is EarlyMorning 4.63992> and 
<Flow_T-2 is Low 1.63653> and <Holiday is Is 
1.77835>, then <Flow is Medium 3.81119> 

If <Time is Morning 13.5842> and <Flow_T-l 
is High 13.8779> and <Flow_T-2 is Low 
5.44741>, then <Flow is Medium 1.86714> 

If <Time is Afternoon 19.1327> and <Flow_T-l 
is Low 24.77> and <Flow_T-2 is Medium 
7.791> and <Holiday is IsNot 5.04419>, then 
<Flow is Medium 1.58037> 

If <Time is Evening 6.96259> and <Flow_T-l is 
High 7.72363> and <Flow_T-2 is Medium 
3.65387>, then <Flow is Medium 0.955361> 

Actual and Predicated flow for 
FuNN 
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Figure 3: Plot of actual and predicted water flow for 
the trained FuNN. 

5.4 On-line Prediction with EFuNNs 

An evolving fuzzy neural network, EFuNN was 
first created with the same number of inputs and 
outputs (and input and output MFs). Because 
EFuNNs add rule nodes as required, the rule 
layer initially consisted of one node. 

This network was then trained in an on-line 
mode, so that after the first data input vector had 
been presented, the network was next tested to 
predict the new hourly flow value. Finally, when 
the actual flow value became known, the input - 
output association was added to the EFuNN 
through a one-epoch adaptive training. Then the 
cycle repeats and the EFuNN was used to predict 
the next new value, etc. After the presentation of 
the first 75 examples two new inputs were added 
to the EFuNN without re-training the  whole 
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system, these were the moving average 12 hours 
and the moving average 24 hours of the flow 
data. The EFuNN continued to grow. When the 
number of nodes reached 70 the EFuNN then 
started pruning the nodes as explained in [12-14]. 
A fuzzy rule for pruning was used based on the 
total activation of the rule nodes and the "age" 
(the time from creation). Fig. 4 presents the 
actual water flow (solid line) and the predicted 
(dotted line) on-line mode water flow. 

100   150  200   250  300  350  400   450  500 

Figure 4: The actual and the predicted EFuNN on-line 
mode water How. 

It is clear that at the beginning the EFuNN could 
not predict well, not having any training or a 
priori knowledge. The more it was trained on the 
incoming data the better the prediction became. 

EFuNN simulators are written in MATLAB and 
C++ and are part of the NZ-RICBIS - the New 
Zealand Repository for Intelligent Connectionist- 
based Information Systems. This is available at 
http:divcom.otago.ac.nz/infosci/kel/CBIIS.html 

The    water    flow    data    is 
http://kel.otago.ac.nz/softwarc. 

available    from 

5.5 Comparative Analysis of the Different 
Fusion Techniques for the Water Flow 
Prediction Problem 

Both the FuNN and EFuNN were able to 
approximate the data to a reasonable degree of 
accuracy. However, while the FuNN required 
10,000 training epochs (taking approximately 20 
minutes on a 233-Mhz Pentium II), the EFuNN 
required only one pass through the training data, 

taking less than 20 seconds. It is this rapid 
training capability that is one of the major 
advantages of EFuNNs. Rules from an EFuNN 
can also be extracted and inserted [12-14]. 

6. Case Study II - On-line Robot Control 

6.1 The Problem 

In a New Zealand meat-works, a sheep is valued 
for both its pelt and meat products. Lamb meat is 
an important export product and the fluffy 
sheepskins make great souvenirs for our tourist 
visitors. 

In order to remove the carcass pelt without 
damage to itself or the flesh underneath, extreme 
care is required in the initial cutting operation of 
the skin. For the purpose of this example, a new 
robot cutting path planner approach has been 
investigated. At present an algorithmic path 
planning robotics system has been developed and 
is being trialed in a New Zealand meat-works, so 
far showing great potential over the traditional 
manual butchering preparation. However, this 
current approach is somewhat limited by the 
rather restricted algorithmic method of the semi- 
automated implementation developed. 

We have started to explore use of the FuNN tool 
from FuzzyCOPE/3 to first develop a model of 
this current algorithmic planner. Then later, if the 
model demonstrates success, we propose to 
pursue and utilise the on-line adaptation 
properties of the EFuNN to continue learning to 
compensate for the highly variable sizes and 
shapes of this natural product (sheep). The 
present the algorithmic method allows for some 
on-line modification to the cutting path planning, 
when sheep variations demand it, but only by 
manual operator intervention through the 
adjustment of certain parameters which effect the 
two cut intersection point in the Y-Z plane. 

6.2 Experimental Data Sets 

The carcass de-pelting process starts with what is 
termed as a "Y-cut", performed on the sheep 
carcass while hanging upside down on a moving 
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conveyor chain, Fig. 5. This skin Y-cut, really 
two separate cuts, begins with one front leg at the 
hoof and follows down that leg and across the 
lower neck/chest region of the carcass (also 
known as the brisket), terminating just past the 
midline of the body. A second cut is then carried 
out following a similar path, but mirroring the 
first cut, beginning at the hoof of the second front 
leg, continuing down it to finish just past the 
point of intersection with the first cut. When the 
completed Y- cut is performed correctly, the pelt 
can be pulled off the carcass as a whole piece and 
with minimal damage. 

Ay 

Figure 5: An example of the carcass Y-cut path. 

For this second time-series study, the sheep 
carcass Y-cut sensor data was used, together with 
the algorithm path data, for training with a fixed 
parameter setting. Three sensors provide three- 
dimensional measurements of important points 
on the carcass so that the robotic skin cutting 
operation can be planned. These measurements 
are: the separation between the two front 
hooves; the highest point on the brisket; and 
finally the horizontal offset between the brisket 
and the trachea region of the neck. At present, the 
ad hoc algorithmic intersection point for the two 
cuts is determined by manual parameter settings. 
In a future development of an EFuNN multi- 
sensor data model to determine corrections to the 
algorithm calculations, we aim to fully automate 
this the path prediction despite the sheep 
variations by using the on-line learning and 
adaptation mode of the EFuNN. 

Because the carcass is hung from an overhead 
conveyor line from its hooves the starting points 
are easily identified and provide the [0, 0, 0] 
reference in space for the cut. However, the 
meeting point of the cuts and their paths down 
the front legs of the carcass in space are very 
much dependent on the size and breed of the 
animal. Also, because the carcass is continually 
moving along the conveyor line, the cut 
intersection point needs to be accurately 
determined and tracked, although cutting is 
assisted by design of the hook shaped knife. The 
shape pulls the skin away from the flesh and 
helps ensure the knife just cuts through it. 

6.3 Preliminary Results - Training Path 
Planning with FuNN 

An off-line fuzzy neural network cutting path 
planning model is being developed using FuNN 
to predict the next knife position for time, t. The 
input consists of 12 nodes, each having five 
membership functions (MFs) for fuzzification. 
The first three inputs are the X, Y, and Z carcass 
sensor measurements made on each sheep as 
described above. The next three inputs are the x, 
y, and z coordinates of the last (t-1) knife 
position. The final two sets of three inputs are the 

■ time lagged (t-2) and (t-3) coordinate positions. 
Three output nodes [x0, y0, z0] with 7 MFs each 
generate the 3-D predicted cutting path sequence. 

Data for the Y-cuts, taken from 83 sheep were 
used for this preliminary investigation - 50 for 
training and 33 for testing. The curent algorithm 
generated the time-series sequence of 100 cutting 
path positions, each sheep, which control the 
robot arm manipulation of the cutting knife. A 
limited range of animals sizes and shapes were 
included. Each carcass cutting path data set of 
100 vectors contained the 12 input data values 
(X, Y, Z measurements followed by the three 
time lags of the previous knife positions), and 
then the next [x0, y0, z0] predicted position for the 
knife, to be learnt. 

The best results obtained so far have been with a 
15 node rule layer and after only 100 training 
epochs.   Further  experimentation   is   obviously 
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required to refine the model. Figures 6 and 7 
display typical results of a single cut for one 
sheep, x versus y and z versus y respectively, 
with the actual (solid line) and the FuNN 
predicted (dotted line) cut paths superimposed. 
The average RMS differences are 4.6, 11.8 and 
8.5 (mm) for the x, y, and z directions 
respectively for 50 carcasses. 

Figure 6: Typical x-y cutting path (mm) from FuNN. 

Figure 7: Resultant z-y cutting path (mm) for Fig. 6. 

7. Discussion and Conclusions 

Connectionist-based algorithms are robust when 
the appropriate techniques are used. They allow 
the analyst to learn relationships between the 
input and output variables without making 
assumptions about the data distribution. Thus, 
improving the prediction or classification 
accuracy is based on updating the transfer 
function and not manipulating the incoming data 
flow. Also the fuzzified connectionist-based 
algorithms may now require fewer training 
examples than traditional sensor data fusion 
methods. The results of ANNs and FuNNs, over 
fuzzy   rules   and   more   traditional   statistical 

methods can be shown to have a distinct 
advantage [8]. For example, the adaptive learning 
algorithms enable the EFuNNs to learn 
relationships between input data and output data 
in an iterative way [12-14] and on-line. Finally, 
fuzzy rules may then be extracted and updated 
from all the classes of FuNN to help explain what 
the network has learned. 

When using FuNNs and EFuNNs one should 
always refer to traditional statistical methods and 
compare the results with them, if possible. 
However, there exist disadvantages in applying 
statistical algorithms to determine the input- 
output transfer function characteristics. First, this 
approach requires large amounts of sample data 
for processing. Second, it is not capable of 
handling conflicting information that can arise in 
the transfer function it is trying to model and this 
cannot be updated without changing the input 
data - there is no feedback process for statistical 
algorithms to learn from a posteriori knowledge. 
For example, they do not cope well where the 
data distribution is bimodal or very non-normal, 
which are the case here. Also, the sensitivity for 
the separation between output states is a function 
of all the inputs, so closely positioned states are 
not well distinguished. However, statistical 
methods can suit some models where the data is 
uni-modal and normal. Then this approach has 
the advantages of being computationally efficient 
and capable of producing highly accurate results. 

In the first study, two of the hybrid neuro-fuzzy 
modules of FuzzyCOPE/3, FuNNs and EFuNNs 
have been demonstrated and in the second case 
study a preliminary FuNN application looks 
promising. Work on this robotic path planning 
problem is to continue and it is expected that a 
fully automated solution can be developed. While 
the modules performed acceptably in both cases, 
it is expected that recurrent versions of these 
networks, scheduled to be included in the next 
version of FuzzyCOPE, will yield even better 
results. 

The objective of this paper has been to promote 
awareness of this new and versatile data fusion, 
FuzzyCOPE/3 environment, and to entice others 
to investigate and apply it to new real world 
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problems. The results presented here, hopefully 
demonstrate the potential of this fusion 
environment for providing solutions to previously 
difficult to-solve-problems. 
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Abstract - The processing of tactical information and 
the associated situation assessment of the tactical 
battlefield is a major task for military personnel. 
Significant effort has been made in countering this 
challenge with advances in sensor capabilities and 
enhancements in avionics, electronics and C4I (command, 
control, communications, computer and intelligence) 
systems. This rapid evolution must be met with concomitant 
advances in information fusion and situation assessment. 
Additionally, a rapid verifiable means is needed in situ for 
management of sensor and information assets. Here, an on- 
going effort to develop a hybrid artificial intelligence 
architecture for battlefield information fusion is described. 
The architecture incorporates three distinct modules: a 
low-level information fusion module incorporating a fuzzy 
expert system manager; a situation assessment module 
incorporating a fuzzy logic based event detector and a 
Bayesian belief network component for generating 
probability measures ofsituational state; and a fuzzy expert 
system based module for collection or sensor management. 

Keywords: Information Fusion, Situation 
Assessment, Belief Networks, Fuzzy Logic 

I. Introduction 

The analysis of intelligence data to generate a 
comprehensive understanding of all tactical elements 
within the battlespace and their likely evolution, i.e., 
to achieve situation awareness is a major task for 
military personnel. This task naturally overlaps with 
and benefits from the tasking and management of the 
sensor/collection assets themselves. Here, we develop 
a hybrid artificial intelligence (AI) architecture that 
provides an integrated framework for analysis of 
information in support of enhanced tactical 
awareness and needs-based sensor asset management 
to assist in battlefield intelligence processing. The 
architecture's flexibility stems from combining two 
AI techniques for model-based approximate 
reasoning: fuzzy logic and the Bayesian belief 
networks. 

Information fusion strives to combine information 
from multiple sources into information that has 

greater benefit than would have been derived from 
each of the contributing parts. An obvious analogy 
exists between fusion and human cognitive 
processing, in particular, the way humans process 
multi-sensory information (i.e., sight, sound, smell, 
etc.) to make inferences regarding the environment. 
Our hybrid AI battlefield information fusion system 
uses a coordinated application of two artificial 
intelligence technologies, fuzzy logic (FL) and 
Bayesian belief networks (BNs), to the problem of 
tactical fusion and collection management. Fuzzy 
logic [1] provides a means of converting low-level 
imprecise information in non-numerical format into 
mid-level knowledge units about individual 
battlespace entities. Belief networks [2] [3] provide a 
means for constructing and maintaining a 
hierarchical, probabilistic model linking multiple 
entities, at various levels, in the context of the overall 
mission goals, rules of engagement, etc. Evidence 
gathered incrementally and in real-time first 
undergoes FL filtering and is then applied to the 
appropriate node(s) of the BN. This evidence then 
automatically propagates throughout the BN resulting 
in revised probability estimates concerning the 
higher-level tactical situational hypotheses. 
Experiences from prior research efforts [4][5] have 
shown that this approach provides an effective 
solution to the problem and offers a natural 
framework for encoding complex tactical knowledge. 

n. System Description 

Figure 1 illustrates how the overall scope of the 
hybrid architecture for battlefield information fusion 
falls within the various levels of fusion [6] and other 
key components of tactical C4I systems. Information 
concerning the various entities present in the 
battlespace, are collected by a variety of sensor or 
collection assets (JSTARS, AWACS, etc.) and then 
fused (level one) within the architecture to generate 
individual target tracks and to classify and 
characterize targets. The situation assessment (SA) 
module of the architecture uses this fused track data 
to generate a probabilistic situational state hypothesis 
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from detected events. This SA information is then 
forwarded to level 3 impact or threat assessment and 
decision-aiding modules, currently outside this 
effort's scope. Finally, the SA information is used by 
the architecture's sensor or collection management 
module to assign, prioritize and communicate 
intelligence requests. 

schemes, etc. For correlation, the FL Manager also 
specifies algorithm selection and threshold levels 
with final oversight of assignment. For 
filtering/prediction management, the manager 
specifies algorithm type, filter parameters and model 
choice. For example, the FL Manager may inspect 
residuals from a bank of Kaiman filters to determine 
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Figure 1: Scope for Battlefield Information Fusion 

Figure 2 displays the overall architecture, 
incorporating all modules necessary to support 
management and control of level one fusion 
processing, situation assessment and enhanced 
collection management functionality. The system 
incorporates three specific and distinct modules: a 
fuzzy logic based level one fusion module 
responsible for management and control of 
observation-to-track gating and assignment, state 
estimation, and track database management; a 
combination fuzzy logic based event detection and 
belief network based level two situation assessment 
module responsible for generating probabilistic 
hypotheses for high-level situational state descriptors; 
and a fuzzy logic based level four collection 
management expert system responsible for mapping 
informational requirements and current state 
information into asset resource requests 

The architecture shown in figure 2 encompasses 
all aspects of level 1 object assessment fusion 
processing including data association, state 
estimation, identification and track management. The 
Fuzzy Logic Manager for level 1 has direct 
responsibility for management and oversight of these 
level 1 functions. Specifically, data association 
management provides gating technique selection, 
gating parameter modification (e.g. gating constant 
for rectangular gate),  use of multi-level  gating 

the most appropriate model or for target maneuver 
detection. It may also update measurement noise 
models based on target range (i.e. increased angular 
measurement accuracy with decreasing range for a 
radar sensor) or based on sensor confidence levels. 
The FL Manager also monitors and controls the track 
identification process. Here, again algorithm 
selection and output monitoring are its key functions. 
The final element of the level 1 FL Manager is track 
management. Responsibilities for track management 
include track initialization and confirmation (based 
on data association results), as well as track deletion. 
Specific items addressed in track management 
include, track initiation criteria, track confirmation 
logic including required number of assignments and 
time window, and specification of last update time 
threshold for track deletion. 

Level 2 processing within the hybrid architecture 
for battlefield information fusion of figure 2 has two 
primary functions: detection of key events and 
assessment of the current situation. Event detection is 
performed using FL reasoning in conjunction with a 
pre-defined library of domain-relevant events. This 
event library is of a broad enough nature to 
encompass typical tactical engagements. Event 
detection automatically translates information 
gleaned from incoming level 1 information into 
domain-relevant events (e.g. presence of specific 
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enemy units at a specific location), along with an 
associated measure of certainty of the event. Key 
events are then sent to a belief network that 
determines current situation. 

At the heart of level two processing is a belief 
network which is a probabilistic model of the 
battlefield tactical situation. The belief network 
allows uncertain evidence concerning any of the 
represented battlefield and unit features to be 
incorporated so as to consistently update any other 
contingent features of the model. The network, 
shown in figure 3, can be interpreted as representing 
causal relationships between the variables. For 
example, a particular enemy mission (E.Miss) 
combined  with  enemy  knowledge   about  where 

friendly forces are located (F.Loc) cause a rational 
enemy to choose a specific objective (E.Obj) which 
will maximize its utility. The possible values for 
variables E.Miss and F.Loc are shown next to the 
nodes. Similarly, the choice of a specific objective 
causes a rational enemy to choose a specific route or 
course of action (COA), denoted by the node 
E.COA, that maximizes its utility in prosecuting that 
objective. The bottom-most nodes (MC-1, MC-2, 
...etc.), represent the belief that the enemy is present 
within the specific regions of the battlefield termed 
mobility corridors (MC). While we interpret these 
relationships as causal, we represent the inherent 
uncertainty of the battlefield environment by 
encoding them probabilistically. Specifically, each 

•NAI-1 
•NA1-2 
• NAI-3 

•engage blue forces 
• secure terrain 
• deprive resources      f g 
•deceive or dvert 

• NAI-1 
Z"-"-^-'vNAI-2 
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Figure 3: Belief Network for Situation Assessment 
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link between nodes has a corresponding conditional 
probability table (CPT) which encodes the 
probability of the child variable given the parent 
variable. In the more general case in which a node 
may have more than one parent, the node's CPT 
encodes its probability given all of its parents. 

At level four, a Fuzzy Logic Collection Manager 
maps current situation Assessment State, and enemy 
track information, into sensor/INTEL requests. The 
mapping is performed using a repository knowledge 
of sensor/asset capabilities and enemy tactical 
doctrine. High-level event notifications and 
observations relating to asset requests are also 
relayed to the user. The mapping from situational 
state and track information to asset request is based 
on several appropriateness metrics including 
timeliness, desired classification level, availability, 
and geographic coverage. Timeliness refers to an 
asset's turnaround time to meet a given request. 
Classification level refers to the asset's classification 
capabilities, i.e., detection (find enemy units), 
classification (discriminate enemy units, tanks vs. 
APCs), and identification (type or model of tank). 
Availability refers to the time period in which the 
asset is accessible. 

III. Prototype Demonstration 

To assess feasibility and demonstrate the hybrid 
architecture for battlefield information fusion, a 
battlefield scenario was developed by subject matter 
experts covering a 24-hour period in which friendly 
ground forces, a mechanized infantry brigade, defend 
against a Soviet-like adversary consisting of a 
motorized rifle division (MRD). A 
terrain analysis/IPB stage results in a 
constrained set of possible enemy 
objectives, courses of action, and 
mobility corridors. Friendly 
intelligence-gathering assets include 
ground-based reconnaissance units, 
electronic support measures (ESM) 
equipment, reconnaissance aircraft 
and the multi-mode radar capabilities 
of the airborne J-STARS platform. 

The level one fusion simulation 
consists of: a) a main window (see 
Figure 4) which displays the 
evolution of the battle; and b) a track 
database window that displays the 
current associations of individual 
sensor reports to tracks. 

We tested three variations of our 
main scenario. The overall 
qualitative conclusions derived from 

these simulations can be summarized by the 
following [7]: a) fuzzy logic provides a natural 
human-like reasoning mechanism for handling 
uncertainty; and b) the level one Fuzzy Logic 
Manager was able to discriminate multi-level unit 
types, perform track generation and maintenance, and 
aggregate lower echelon units into higher echelons. 
In our scenario, the fusion manager was able to 
discriminate between battalion and regimental units. 
Gating and assignment control ensured reasonable 
track maintenance. Finally, the fusion manager could 
aggregate lower units into higher echelon units, e.g. 
battalion units into regiments. 

The level two demonstration entailed the 
sequential posting of sensor/INTEL evidence to the 
BN model of figure 3. The results showed that the 
model was able to maintain correct hypotheses 
regarding the higher-level (hidden) variables, e.g., 
enemy objective, for the range of scenarios. These 
results demonstrate the feasibility of the belief 
network framework for modeling causal battlefield 
relationships. A single, integrated model combines 
variables of differing scales and allows probabilistic 
inferencing of higher-level, hidden variables, e.g., 
enemy objective, intent, etc., based on evidence 
concerning lower-level variables, e.g., enemy unit 
locations, types, movements, etc. The belief network 
formalism simultaneously allows a consistent means 
for combining prior information, e.g., derived from 
terrain analysis/IPB, weather reports, and enemy 
doctrine and order of battle information, with 
evidence gathered in real-time from sensor assets and 
units deployed in the battlespace. 

 <*» 

Figure 4: Main Window for Level 1 Simulation 
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The level four demonstration tested the fuzzy 
rulebase for collection or sensor management. The 
system displayed basic capabilities for combining 
hypothesized unit locations and intents with friendly 
intelligence requirements and asset capabilities to 
produce asset requests sufficient to acquire the 
needed intelligence. The fuzzy expert system 
rulebase contains over 100 rules and assumes an asset 
suite consisting of the JSTARS platform, including 
both moving target indicator (MTI) radar and 
imaging synthetic aperture radar (SAR), and a 
generic electronic support measures (ESM) platform. 
The rulebase uses several fuzzy variables including 
sensor resolution, timeliness, availability, area 
coverage, and a user-specified information criticality 
level. 

Figure 5 shows the main interface window for the 
Fuzzy Logic Collection Manager prototype. As 
shown, the graphical user interface (GUI) has two 
sets of edit boxes, a listbox, a textbox, and two 
buttons. The two sets of edit boxes provide the means 
to directly input BN node values from level two 
processing. These values correspond to the presence 
of enemy units at the eleven mobility corridors or 
segments (refer to figure 3) and to the belief in the 
three possible enemy objectives (A, B, or C referring 
to NAI 1, 2, or 3, respectively). These sets of edit 
boxes are at the top left and top right of the main 
screen, respectively. Below, the set of edit boxes for 
segments (or mobility corridors) is a listbox in which 
the user can specify the criticality value for the asset 
request. The textbox below the label "Asset Request" 
is where the Fuzzy Logic Collection Manager output 
is displayed. Figure 5 shows the Fuzz Logic 
Collection Manager after inferencing. The results 
shown are for the case where we have ascertained 
(via BN belief network level two processing) enemy 
objective is A (or NAI 1), user criticality is low, and 
no substantial enemy location information. The 
results shown at the top of the "Asset Request" 
textbox map the inputs into the informational 
requirements. That is, the informational requirements 
specify the request priority level, the coverage area, 
and type of coverage required. As shown, since 
enemy objective is A, then we want enemy detection 
in segments or mobility corridors 9, 10, or 11. At the 
bottom of the textbox is listed the corresponding 
assets meeting the informational requirements. In this 
case both the MTI radar and the ESM meet the 
requirements. 

IV. Current Work 

Current  efforts  on  extending  the  hybrid  AI 

architecture for battlefield information fusion are 
focusing on: a) integration of the three major 
modules (for levels, 1, 2 and 4) to produce a full- 
scope system for enhanced battlefield information 
processing and situation assessment; b) incorporation 
of temporal/spatial aspects of battlefield information 
processing to enhance current situation assessment 
and to facilitate prediction of future enemy 
evolutions; c) evaluation of a full-scope prototype in 
an empirical study employing multiple tactical 
scenarios; d) system enhancement based on the 
evaluation findings; and e) specification of H/W and 
S/W requirements for follow-on development within 
fielded C4I-related information processing systems to 
enhance overall information fusion, situation 
assessment, and collection management. 
Additionally, a parallel effort is underway to develop 
a level 3 (impact assessment) component with the 
functionality to infer enemy intent, capabilities and 
vulnerabilities, and how that component could be 
integrated within the hybrid AI architecture. 
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Figure 5: Fuzzy Logic Collection Manager 

V. Conclusions 

We have designed and developed a limited-scope 
prototype hybrid AI system for battlefield 
information fusion incorporating three modules: a 
fuzzy logic-based level one fusion module for low- 
level fusion management; a belief network-based 
level two situation assessment module for generating 
probabilistic hypotheses for high-level situational 
state descriptors; and a fuzzy logic-based level four 
collection management system for mapping 
information requirements and state information into 
asset requests. Basic system feasibility was shown by 
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exercising the system using variations of a specified 
tactical battlefield scenario. 
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Abstract The objective of this work is the ability to 
track multiple objects in a wide outdoor area. Numer- 
ous fixed vision sensors have to be spatially distributed. 
In general, it is not possible to cover the whole scene, so 
the sensors are separated into blind zones, for which we 
do not have any observation. Our approach that we call 
'high level tracking' is based on the co-operation of sen- 
sors in order to obtain a global motion interpretation. 
The main difficulty is to ensure a robust matching of 
mobile objects perceived by several sensors from differ- 
ent locations at different moments. In order to model 
and take into account uncertainties, we have decided to 
use the Possibility Theory. Thus we use a measurement 
of necessity expressing the matching decision quality. 

Keywords: Distributed sensor, Co-operative vision sys- 
tem, Object tracking, Possibility Theory 

Figure 1: Envisaged application 

1    Introduction 

The development of distributed vision systems car- 
rying out sites monitoring is an interesting field 
of investigation. Indeed, motivations are multi- 
ple and concern various domains as monitoring 
of specific sites (nuclear thermal power ), con- 
trol and estimation of flows (airport, port, motor- 
way), continuous coverage over large battle field 
areas . Because of the rapid evolution in the 
field of data processing, communications and in- 
strumentation, such applications become possible. 
Vast research programs have been launched such 
as VS AM (Video Surveillance And Monitoring) fi- 
nanced by DARPA, SMART by the European 
Community, CDV (Cooperative Distributed Vision) 
in Japan.... 

Our approach that we call 'high level tracking' is 
based on the co-operation of sensors in order to ob- 
tain a global motion interpretation. The originality 
of this work is the handling of uncertainties and im- 

precisions related to the system. They have various 
origins and come essentially from predictions car- 
ried out in blinds zones, i.e. for which we do not 
have any observation, and from sensors which op- 
erate in outdoor scenes. In order to model and take 
into account uncertainties, we have decided to use 
the Possibility Theory. 

As we are interested in traffic monitoring in a ur- 
ban or motorway context, an application has been 
envisaged (figure 1). The configuration of each sen- 
sor is tuned in order to make objects recognition 
task easier. 

In this article, we present the multi-sensor track- 
ing architecture that we have envisaged. Then, we 
explain how predictions are carried out in blinds 
zones, i.e. which are located between sensors. Fi- 
nally, we show how data acquired by each sensor 
are combined in order to track mobile objects in 
the whole scene. 
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2    Architecture 

In order to track mobile objects over the scene, we 
have decided to use several sensors which are spa- 
tially distributed and have different fields of views. 
As it is not possible to cover visually all the scene, 
sensors are separated by blind zones, i.e. for which 
we do not have any observation. We can mention 
the works of Rombaut [1] and Hutber et al [2] in 
multisensor tracking with small blind zones. 

The use of multiple sensors gives rise to one prob- 
lem : how all the sensors could be connected to- 
gether (organization and architecture). 

First, the architecture that we have considered is 
presented, then we show how communications be- 
tween sensors are carried out and how the tracking 
is managed with this architecture. 

2.1 Envisaged architecture 

We have decided to use a fully decentralized archi- 
tecture. This architecture has no central processing 
facility, no centralized communications medium. 
The structure of this architecture is equivalent to 
a network of intelligent sensor nodes. Each sen- 
sor node is autonomous, it has its own process- 
ing element and its own communications facilities. 
Communication can take place between any two 
connected sensor nodes. Each node can assimilate 
and receive information independently from other 
nodes. 

This type of architecture has many advantages 
[3]. Among the principal ones, we can quote the 
facts that it is completely modular and also that it 
ensures the maximum benefit derived from the use 
of multiple sensors. In particular, it is robust to 
the loss of sensors. It can use different varieties of 
sensors working in parallel. 

2.2 Communication between sensors 

The co-operation between spatialy distributed sen- 
sors is based on message transmissions which 
present some specificities. 

First, it concerns messages content. We have 
decided that messages must contain only the nec- 
essary information for the tracking, thus their 
sizes are reduced. In our applications, information 
stored in the messages is visual primitives (color, 
size, texture), dynamic characteristics and tempo- 
ral predictions. 

Then, it concerns messages transmission. Only 
sensors, likely to perceive an object, can receive 

■ temporary track 
. validated track 

Figure 2: Tracks management 

messages. This approach allows an optimal man- 
agement of communications and a simplification of 
matching process by activating only the useful re- 
sources for the tracking. 

2.3    Tracks management 

Tracks associated with a mobile object (i.e. ini- 
tialization, maintenance and termination) are man- 
aged by the sensor which has initialized them. 

As soon as a mobile object is perceived (figure 
2.a) by a sensor, temporary tracks associated with 
possible trajectories of the object in blind zones 
are initialized (figure 2.b). If a close sensor recog- 
nizes the object (figure 2.c), then the sensor which 
has initialized temporary tracks is informed (figure 
2.d) in order to valid the current track connecting 
the two sensors and to remove the others (figure 
2.e). This management mode has been motivated 
to achieve efficient tracks termination. 

To realise this track management, it is essential 
that sensors are able firstly, to predict displacement 
of mobile objects in blind zones and secondly, to 
match perceived objects with ones which are likely 
to be perceived called "awaited objects ". 

Temporal      prediction 
blind zones 

in 

We have decided to use fuzzy temporal curves of 
events described by Dubois and Prade [4] [5](DOP: 
Domain Occurrence Possibility) (figure 3) in order 
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possibility 
measurement 

Figure 3: A fuzzy DOP 

Figure 4:    Transmission of possible predictions 
(DOP) associated to a mobile object 

to predict object motion in blind zones. This choice 
is motivated by the fact that we work in wide out- 
door scenes including blind zones. Under such con- 
ditions, we must be able to manage uncertainties 
related to the system. It is thus necessary to build 
rough models tolerating ranges of variation for the 
numerical parameters. 

The DOP(Oi,Sj,Sk) is the prediction generated 
by sensor Sj, explaining the appearance possibility 
of a recognized object Oi in the field of a specific 
sensor Sk (figure 3). They are then transmitted 
to the closest sensor likely to perceive the mobile 
object (cf. figure 4). 

The creation of a DOP depends on the context 
and dynamic characteristics of the mobile object 
[6]. We thus developed a method allowing auto- 
matic generation of DOP according to this knowl- 
edge. 

After defining the notion of context, we propose 
an approach for DOP generation. 

3.1    Contextual informations 

The definition of the context of a process depends 
on the process nature and is all the additional in- 
formation needed by the process to work efficiently. 
For our distributed interpretation system, contex- 
tual knowledge represents : 

Spatial and working configuration of the scene. 
We decided to use maps of the scene. In this case, 
the scene is broken up into zones. We associate a 
zone with the field of view of each sensor and also 
with each blind area. The zones are characterised 
by a certain number of information : 

• motion  object   areas  located   in  the   zone 
(lenght, intersection...) 

• topology (unevenness..) 

• rules of object movement (direction, priority) 

• possible obstacles 

These information are completed by the spa- 
tial relations knowledge existing between contigu- 
ous zones. 

Class information for moving objects. Each 
module of vision tries to classify the observations. 
An observation is associated with a class of ob- 
jects if it verifies a set of constraints. Those, on 
one hand, are imposed on the characteristic of each 
mobile object, e.g. independent of the scene, which 
are static (dimensions, size...) and also dynamic 
(speed, acceleration, possible behaviours...). On 
the other hand, the objects belonging to a class 
must verify geographical constraints related to the 
scene. This classification helps the tracking pro- 
cess first of all by reducing search areas and then 
by excluding abnormal situations. 

Image acquisition information. The purpose 
of this information is to calibrate the data ex- 
tracted from measurements. This information tries 
to transform measurements into invariant data ir- 
respective of sightings and ambient illumination. 
This operation is essential for the visual recognition 
of an object seen by various sensors. It includes : 

• camera characteristics (camera model, focal 
length) 

• image characteristics (image type and size) 

• sensor positioning (camera orientation, geo- 
location, ...). 

Dynamic environment. It concerns the informa- 
tion relative to the global motion of all mobile ob- 
jects located in the scene. This information can in- 
fluence the object prediction. In traffic monitoring 
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area, it can be represented by the traffic density or 
congestion level. These information are either ob- 
tained on-line or can be generated by a predictive 
off line model. The last case can be used only when 
some situations appear periodically depending on 
specific schedules (time, day, weekend, holidays...). 

3.2    DOP generation 

A DOP is represented by means of a possibility dis- 
tribution (IT). This is a function from a reference 
set, here the time scale, to the real interval [0,1] 
which restricts the more or less possible values of 
a number, here a date. To synchronise the sys- 
tem each sensor is equiped which its own clock, all 
clocks having the same time base. 

The width of the DOP support explains the im- 
precision of prediction associated to the mobile ob- 
ject. Indeed, this imprecision is strongly depending 
on the quality of knowledge resulting from the con- 
text and the dynamic characteristics of the tracked 
object. 

possibility measurement 

1 

/ 

,     6. 

N 

 L 
Un n -X "t 

L R 

Figure 5: DOP's parameters 

tmin represents the most optimistic time of ar- 
rival of object i in front of the sensor k from sensor 
j. This time depends on the maximum speed of the 
object by taking into account the spatial context 
between the two sensors. This speed is calculated 
thanks to the dynamic characteristics of the class 
of the object. This time does not take into account 
possible decelerations that can occur between the 
two sensors. The duration St is based on possible 
decelerations related to spatial and dynamic con- 
texts (traffic light, congestion...), as well as the con- 
straints of object classes (acceleration variation). 

In reality, as we work in an outdoor environment 
with many objects, and as we use a limited number 
of classes, these have to be roughly defined, (large 
/ small vehicle, bicycle, human being, ...). 

We know also that the various parameters re- 
lated to the context are badly defined and numerous 
situations can't be envisaged. Under these condi- 
tions it seems more natural to build a DOP toler- 
ating these incomplete information (c.f. figure 5). 
The slope L explains the approximation concerning 
the earliest date. It depends on the maximum speed 
variations within each object class. The slope R ex- 
presses all of the inaccuracies related to the spatial 
and dynamic contexts as well as the behaviour of 
the object class. 

Once displacements prediction in blind zones are 
carried out, each sensor will try to match its obser- 
vations with its awaited objects. 

4    Matching 

As soon as an observation is detected in front of a 
sensor, the latter tries to match it with its awaited 
objects. This operation breaks up into two stages : 

• first, estimation of compatibilities between the 
observation and each awaited object using 
matching possibility measurements. 

• then, the matching decision based on the 
knowledge of all the compatibilities. 

4.1    Matching possibilities measure- 
ments 

The matching process begins with the extraction of 
objects primitives (observations). The choice of dis- 
criminating primitives is important because objects 
matching is mainly based on them [7]. These primi- 
tives must be time invariant. A primitive extracted 
by a sensor must be logically found by another one. 

After the primitives extraction, compatibilities 
measurements associated with each primitive are 
computed. They concern visual as well as temporal 
primitives. 

Temporal compatibilities measurements take 
into account the observations date and the DOPs 
associated with awaited objects. The temporal 
compatibility measurement between an observation 
and an awaited object is equal to the value of the 
awaited object DOP when the observation appears 
in front of the sensor. 

We show in figure 6 an example of temporal pre- 
dictions carried out by the sensor Cl. The first 
observation perceived in front of the sensor C2 is 
temporally compatible with the object 01 because 
its temporal compatibility measurement has a value 
equal to 1. 
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Figure 6: Temporal predictions appearance at sen- 
sor C2 of objects detected by sensor Cl 

Note : In figure 6, temporal information does not 
allow the discrimination of objects, concerning the 
object 04, two observations are temporally com- 
patible. In this case, only visual compatibilities 
permit the matching. 

Visual primitives employed are color, compact- 
ness and size. Figure 4.1 illustrates compatibilities 
between isolated objects using color histogram (test 
of the x2 between histograms). The test of the x2, 
presented below, is used to determine the similarity 
between the histograms of images I and H. 

x2_^-frf)2 
^(h!-h?)* 

Once compatibilities measurements have been 
calculated, global degrees of compatibilities are 
computed between each perceived object and each 
awaited object. These degrees are the results of 
the combination of the various degrees of compati- 
bility associated with the primitives. Each of these 
degrees is estimated using the distance existing be- 
tween the values of the primitives of the perceived 
object and those of the awaited ones. Each degree 
takes a value ranging between 0 and 1, a value 1 
means a total compatibility. The combination is 
based on a possibilist approach by taking into ac- 
count the visual compatibilities and the temporal 
compatibility. 

We have tested several possibilistic operators. 
Our choice was directed towards a type of operator 
supporting compatibility measurements favourising 

3 «J%?3%# 
tea     ***#■ *■*      ^^ 

Figure 7: Visual compatibilities 

some specific situations, i.e. very strong compati- 
bilities and incompatibilities (for example "X.Y"). 
Global compatibility degrees , noted P(Oi), be- 
tween a perceived object and all the awaited ob- 
jects Oi represent some possibility measurements 
of association [8]. 

4.2    Matching decision 

The decision strategy for the matching between 
an observation and one possible awaited object 
exploits the global compatibilities degrees of the 
whole awaited objects. Two sets ft and ft' contain- 
ing the candidates for the matching are built, ft 
represents the set of awaited objects having a good 
compatibility with the observation. The subset ft' 
extracted from ft represents the set of dominant 
candidates (c.f. figure 8). 

We present in figure 9 two decision matching ex- 
amples. In the first example, the association pos- 
sibility of the awaited object 01 is high, so 01 is 
stored in the set ft. Moreover, as it presents a high 
necessity measurement (N= 0.65), 01 is also stored 
in the set ft'. The necessity measurement expresses 
the uniqueness of the solution. The necessity mea- 
surement is important when the possibility mea- 
surement of the object is important with respect to 
the other objects. As ft' contains only one object, 
then the association of this object can be realised 
with the observation. On the other hand in the 
second case, as two objects belong to ft', matching 
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Q = U (Oi) 
P(Oi) > s_comp 

with 
s_comp = good compatibility threshold's 

Q'= U (Oi) 
N(fl") > s_nece 

with _      ' -, 
necessity N(fl) = max <P(fl)) - P(fl) 
fl : complement of ri 

(s_nece = necessity threshold's) 

if card(fl) = (»then 'Track Initialisation' 

il'card(£i)>l 
if card(fi ) = 1 then 'Track maintenance' 

else 'Ambiguities management' 

Figure 8: Matching algorithm 
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Figure 9: Two examples of decision matching 

decision cannot be realised, decision is deferred. 
The various decisions of our tracking system are: 

4.2.1 initialisation of track 

When there is a low compatibility between a per- 
ceived object and awaited objects, visual as well as 
temporal level, a new object is created and its track 
is initialised. 

4.2.2 track maintenance 

When only one awaited object is compatible with 
the perceived object, then there is no ambiguity. In 
this case, the object is well recognized and its track 
is maintained. This matching decision quality is 
considered by a necessity measurement expressing 
the certainty associated with the decision. 

4.2.3 Ambiguous situations management 

In some applications, when traffic is dense, many 
mobile objects can present visual and behavioral 
similarities. It is then necessary to manage this 
type of situation as well as possible.   If a group 

of awaited objects presents a strong similarity de- 
gree, i.e. a high possibility measurement, then we 
decide, in order to avoid errors, to associate tem- 
porally the group fi' with the observation. As a 
significant doubt exists between these objects, the 
individual necessity measurement of each candidate 
is low and the matching decision is deferred thanks 
to a multiple hypotheses tracking (MHT) approach. 
This MHT is limited in time according to the appli- 
cation configuration in order to control the propa- 
gation of the ambiguities in the system. When one 
object belonging to the group Ü' is accuratly per- 
ceived by one of the sensors, it can be removed from 
ti\ The group's size reduction enables to reduce 
ambiguity of the matching decision. 

4.2.4    Tracks termination 

If an awaited object does not appear in a sensor 
observation zone after a given period, then thanks 
to the DOP associated with this object, which has 
its own lifespan, the track will be terminated. This 
termination operation is controlled by the sensor 
which has generated the associated DOP. 

5    Conclusion 

We have presented a tracking system in an ex- 
tended scene by a geographically distributed multi- 
sensors approach. The interpretation system must 
be able to manage the objects tracking on the whole 
scene in presence of blind zones. The originality of 
our approach is based on the co-operation of au- 
tonomous vision modules. The communication is 
carried out using messages containing useful infor- 
mation for the global tracking. This latter is pos- 
sible only if the system can match mobile objects 
by several sensors. The matching considered here 
is carried out by taking into account of temporal 
and visual compatibilities. Temporal compatibili- 
ties are controlled using DOP (Domain Occurrence 
Possibility) curves expressing the appearance pos- 
sibility of an object in front of a given sensor. The 
matching between objects is carried out within a 
possibilistic framework. It is based on the calcula- 
tion of global compatibility degrees between per- 
ceived objects and awaited one and followed by 
an estimation of necessity measurement taking into 
account of all the possible associations expressing 
matching quality. 
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Abstract 

Search theory is the discipline which treats the problem 
of how best to find the optimal distribution of the total 
search effort which maximizes the probability of detec- 
tion. Even if the general formalism of search theory 
will be of constant use subsequently, we shall consider 
now a radically different problem. In the "classical" 
search theory, the target is said detected if a detection 
occurs at any time of the time frame. Here, the target 
track will be said detected if elementary detections oc- 
cur at various times. That means that there is a test 
for acceptation (or detection) of a target track and that 
the problem is to optimize the allocation of the search 
effort for track detection. Keywords: Search theory, 
optimization, duality, detection 

1    Introduction 
Search theory is the discipline which treats the 
problem of how best to search for an object when 
the amount of searching efforts is limited and only 
probabilities of the object's possible position are 
given. An important literature has been devoted 
to this subject, including surveys [2] and books 
[3], [4], [5]. The situation is characterized by three 
data: (i) the probabilities of the searched object 
(the "target") being in various possible locations; 
(ii) the local detection probability that a particu- 
lar amount of local search effort should detect the 
target: (iii) the total amount of searching effort 
available. The problem is to find the optimal dis- 
tribution of this total effort, i.e. which maximizes 
the probability of detection. Major steps in the 
development of search theory have been summa- 
rized in a prospective form by Stone [1]. 
However, even if the general formalism of search 
theory will be of constant use subsequently, we 

shall consider now a radically different problem. 
The problem is to detect target tracks. In the 
"classical" search theory, the target is said de- 
tected if a detection occurs at any time of the 
time frame. Here, the target track will be said 
detected if elementary detections occur at vari- 
ous times, and this is the fundamental difference. 
That means that there is a test for acceptation 
(or detection) of a target track. Track detection is 
also associated with a spatio-temporal modelling 
of the target track. Moreover, we shall not con- 
sider (in general) bounds relative to the search ef- 
fort at each period. The bound is relative to the 
global search effort. 
The paper is organized as follows. In section 2, 
the optimization framework is presented; followed 
by the general formulation of the search problem 
(see section 3). In section 4, we deal with the 2- 
period search problem, for the "AND" detection 
rule. Then, the optimization problems are de- 
tailed and solved, while they are extended to the 
n-period search in section 5. Another detection 
rule is considered in section 6, the "MAJORITY" de- 
tection rule. Section 7 is of a different nature since 
we consider here the general problem of search for 
Markovian tracks. The two-sided search problem 
is considered in section 8. 

2    The optimization framework 

The major part of this paper is centered around 
the following (primal) optimization problem  : 

vl 

*This work has been supported by DCN/Ingenierie/Sud, 
(Dir. Const. Navales), Prance 

min -P   with : P = J2e F (xi,0ix2,e>'" 
where : 
F (xlt0,x2,e, ■■-, x„,e) = f (p(xi,e)p(x2,e) 
under the resource constraints : 
Ee xi,o + XW • ■ • + xnfl = $ , 
xi,0>O,x2,e>Q,---,xn,0>O V(0). 

-,xn,e) , 

■•P(xn,e)) 

(2.1) 
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In 2.1, Xkft represents a research effort, affected 
to the cell indexed by the parameter 0, at the 
search period k. The index k takes its values 
in the subset {1, • • •, n}. The parameter 0 takes 
its values in a multidimensional space, charac- 
terizing the target trajectory (e.g. initial posi- 
tion and velocity) and the n-dimensional vector 

X# = {x\ft,X2ft,-" >Bn,o)* represents the effort 
vector associated with the target trajectory (or 
track) indexed by 0. Furthermore, p{xkte) is the el- 
ementary probability of detection in the cell (k, 0), 
for a search effort Xk,e; while / is a given differen- 
tiable function. The following simple remarks are 
then fundamental : 

• the functional JF (zi,e, • • •, xn,o) is a differentiable 
functional of the variables Xk,e, 

• the constraints are qualified since they are linear, 

• the "hard constraint" is the equality constraint 
(i.e. Y,e XM +x2,e • • •+xn,e = $), the inequality 
constraints being implicitely taken into account. 

A fundamental assumption is made in all the 
search theory literature : the detection function- 
al F{x\fi,X2,g,-" ixnfi) are concave. In turn, 
the objective functional P is also concave. This 
assumption is central for proving the necessity 
of the "classical" optimality conditions for the 
search plan. Unfortunately, this assumption is 
not at all valid in our context. 

These considerations lead us to consider and use 
basically the dual formalism. The following dual 
function is considered : 

' V>(A) = infx!,,,-^«,, £(*) i 
<   where : 

£(A) = -P + A(Eö xifi + x2,e■■■+ xnfi - $) 
(2.2) 

We stress that, in our framework, the function 
ip(\) may be explicitely determined on the subset 
defined by the inequality constraints. The dual 
problem (V) then takes the following form : 

V : max> ?/>(A) . 

The decisive benefits of this approach are : 

(2.3) 

• the maximization of i/)(X) is an (unconstrained) 
monodimensional1 problem, 

• the function ^>(A) is differentiable, 

1In the case of a unique "hard" resource constraint 

from the solution A of the dual problem, the so- 
lution X of the primal problem V is deduced (say 
X(A)). The couple (A, X) is a saddle point of the 
primal-dual problem. 

3    Modelling and formulation of 
the problem 

In a large part of this article, we shall make the 
assumption that the target motion is rectilinear 
and uniform. So, in this case, the target trajec- 
tory is completely defined by its initial position 
vector (i) and a velocity vector (v), i.e. 0 = (i, v). 
Assumptions of our search problem are as follows : 

• A target moves in a search space consisting of a 
finite number of search cells Ct = {ce,t }e in dis- 
crete time T = {1,2, • • •, n}. We further assume 
that the sequence of (searched) cells {co,t}t is com- 
pletely defined by the parameter (Ö) [6] (condi- 
tionally deterministic motion). Thus, the map- 
ping C0,i -> cei2 • • • -» cg>n is a bijection. In the 
simpler case (rectilinear motion of the target), this 
function mapping is simply a translation of vector 
v . 

• The search effort applied to cell ce,t is denoted xt,e 
(xtfi > 0). 

• The conditional probability of detecting the tar- 
get given that the target is in the cell c$,t and 
that the search effort applied to this cell is xtß 
is p(xtte). This probability is a classical exponen- 
tial law, i.e. p(xt,e) = 1 - exp(-wt,6Xt,o)- The 
term wtß stands for the particular conditions of 
detection (visibility) for the cell cej ■ 

4    The  2-period  search  for the 
"AND" track detection rule 

First, we shall deal with the two period search 
problem (i.e. n = 2). More specifically, we shall 
say that the target track has been detected if the 
target has been detected at each (temporal) period 
of the search . We then have to solve the following 
search problem : 

{min -P   where: P = *£e 9i{0) P{x\,e) p{x2,e) , 
under the constraints : 
Ee («l.« + *2,e) = *   , xi,e > 0 , x2,g > 0 , V(0). 

(4.4) 
In the above equation xito (respectively X2,g) de- 

notes the search effort applied to the cell cgti (re- 
spectively cgp)- Then, we form the Lagrangian of 
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the primal problem 4.4, i.e. : 

C(\)    =   -5>(0)(l-e-«">.*)(l-e-«*».') , 
0 

\  0 0 ) 

-^2^1,0X1,0 -^2^2,0X2,0 , 
0 0 

1*1,0 > 0,      1*2,0 > 0 . 

In order to apply the Karush-Kuhn-Tucker 
conditions of optimality (KKT for the sequel), we 
must consider two cases. 

4.1    KKT   optimality   conditions   and 
their consequences 

case 1   (xifi > 0) 

In this case, the KKT condition {fiij x\j = 0} 
implies {ßi,g = 0}. Then, the KKT stationarity 
condition (for the Lagrangian) simply results in : 

^S- C{\) = -w 9l (6) e~w '*•• (1 - C-« «»••) + A = 0 . 
(4.5) 

Prom 4.5, we note that the assumption x\j > 0 
implies #2,0 > 0, otherwise the multiplier A should 
be zero. Indeed, if A = 0 then it is easily seen (see 
4.5) that the value of the dual function ^(A) = 
inf/      „   \ C(\) is — oo.  Since, we have to max- 

imize iß(\), we see that A is necessarily strictly 
positive (see 4.5 for the sign). Thus, 4.5 implies 
the validity of the following equation : 

3^ C(X) = -wgi(9) e-w*>.° (1 - e~w'^) + A = 0 . 
(4.6) 

By collecting 4.5 and 4.6, and denoting X\ß = 
e-wXl,e  x26 = e-

WX2><>, we obtain : 

Xi,e (1 - X2,o) = X2,0 (1 - Xi,e) , 
so, that : 
Xi,e = X2,0    i.e. xi,e = x2,o . 

(4.7) 

The above equality is fundamental for solving 
the problem. 

case 2   ( x^g = 0) 

Assume now that X2,e > 0, then the KKT condi- 
tion (relative to £2,0) should imply (see 4.6, with 
xifi = 0) : 

and, in turn, that the multiplier A should be 
zero. Under this assumption, the value of tZ'(A) 
is —00. Hence, we can restrict to the strictly posi- 
tive values of A, which means that the assumption 
xi,g = 0 implies x^fi = 0. Indeed, the hypothesis 
X2,e > 0 should imply the validity of 4.6 and, in 
turn, the multiplier A should be zero since we as- 
sume the nullity of xiß, which contradicts the fact 
that A is strictly positive. 

4.2    Solving the dual problem 

In conclusion, the following result has been 
stated : x\ß = 2:2,0. So that, we have now to 
deal with the following (simplified) optimization 
problem : 

' min -P   where : P = Ee9i(0) (pfrif))2 , 
V <   under the constraints : 

E^i,» = */2    ,si,0>O,V(0). 
(4.9) 

Again, we examine the necessary conditions in- 
duced by the KKT theorem. Now, we consider 
the reduced Lagrangian functional £(A) given by : 

AA) = ~1>(0) (1 - e-^.<f+ A (2 5>M - *J 
(4.10) 

This form of the Lagrangian corresponds to the 
relaxation of the positivity constraints relative to 
the search variables {^1,0}, which are implicitely 
taken into account by restricting our search to 
positive values of the variables X\,Q. Under the 
assumption that 0:1,0 is strictly positive and differ- 
entiating £(A) relatively to 0:1,0, we then obtain : 

H^J = -2wgi{6) e~wx^ (1 - e~wx^) + 2 A = 0 , 
or, equivalently : 
Xi,e (1 - Xi,e) = wgi(6) ■ 

(4.11) 

Equation 4.11 is a second order equation (in 
Xifi), allowing us to determine xl6, for a given 
value of A . Note that we restrict to the roots (0 
or 2) of 4.11 lying inside the interval [0,1], and 
select the root (denoted X_ie{\) ) which min- 
imizes the reduced Lagrangian functional £(A) 2). 

*fc*(A) = A = 0, (4.8) 

2Note that we must test and compare the value of C(X) 
not only for the roots of 4.11, but also for its lower bound 
(i.e. Xi,e = 1 ■«■ xi,e = 0 
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We have now to deal with the maximization of 
the dual functional defined by : 

1>W     =-£w+si(0)(i-£M(A))V 

Consider now the above system, dividing row (1) 

by row (p) and denoting Y\,e = 7i xi,e > 
7p Xp,0 , we obtain : 

,r*.= 

Si,eW 

+A (2Ew+xM(A)-#) , 
= -i In (Xhe(X)) if:xM(A)>0, 

(4.12) i.e. : Yna = QPyi,g 
(5.16) 

where the symbol (0)+ denotes the values of the 
index for which 4.11 has a root inside [0,1]. The 
maximization ofip{X) is rather easy since it corre- 
sponds to an unidimensional search for a concave 
and differentiable function. In turn, the is no du- 
ality gap. 

Notation 1 The (spatio-temporal) index (9,t) for 
which the research efforts are strictly positive are de- 
noted (9, t)+ (t : index of the search period); (9)+ for 
the first search period. 

5    The  n-period  search  for  the 
"AND" track detection rule 

Quite similarly to the 2-period search, we assume 
that the probability of detection of the track is 
the product of elementary detection probability of 
detection (i.e. at each period) and is thus given 
by3   : 

j P = Ee giiß) p{xifi)p{x2fi) ■ ■ -p(xn,e) , 
\ P(xk,e) = Tfc (1 - ^u""e *M)    * = V",n, 

(5.13) 
and the optimization problem is again : 

Pfi      Yi,e(ap-ai)+ai ' 

Consequently, xPio is deduced from xXft, itself 
given by: 

xi>e==b iln fe)l 
The problem is thus reduced to the determi- 

nation of x.ifi. Prom 5.16 we have 1 — XPt$ = 
[ai (1 - Xlj6)] I (Xh0(ap - cti) + ax). Inserting 
this equality in 5.15, we see that Xlfi is a root 
of the following n-th order polynomial equation : 

a-i n-2 
n 

xltt (i - Xi.fl)"""1-]! (Xi'e (a* -ai)+ai) = ° 
i=2 

(5.17) 
The value of X1>g(X) is the root of 5.17 which min- 
imizes the Lagrängian, deduced from 5.13; where 
Z.2,9 > * • • iX-nfi are determined (from xlfi) by 5.16. 
Tlie computation load is relatively modest. Prom 
xlö, the dual function ij)(X) is deduced, i.e. : 

v-(A) = - Y, n ik a - xk>e)+\   Y, Xk>e - * 
(»)+ *+ \(M)+ j 

(5.18) 
The problem is simply to determine the value of 

A which maximizes the concave function ip{X). 

So far, the problem has been considered in its 
full generality. To illustrate the previous cal- 
culations, assume now that the visibility coeffi- 
cients {wiß,---,wnß} are equal altogether, i.e. 
:p(xk,e) = 7 {l-e-wx«>°) k = l,---,n then 
the optimally equations 5.15 and 5.16 simply re- 
duce to Yift = • • • = Ynfi , so that Xite = • • ■ = 
Xnft and the probability of track detection as well 
as the dual function ip(X) become : 

= Ee9i(0)[l(l-e-w^'>))n. 
= -EW+Si(0)[7(l-2Ci,,(A))] 

+A (»E(«)+ £i,e(A)-*) • 
: (5.19) 
7„ X„i6 (1 - 7i X-i.fi) •••(!- 7n-i Xn-i,e) = Wn/9l(9) = an Again, we have to deal now with a simple 

V< 

min — P , 
under the constraints : 
£(>   [X\,B + ■■■ + Xnfi) = * , 

I *M > 0 ,-••,*„,« >O,V(0) 

(5.14) 

Assume 0:1,0 ^ 0, then by a reasoning strictly 
identical to the 2-period case, we deduce that 
X2,e + 0, • ■ •, xnfi ^ 0. The optimality equations 
deduced from the KKT conditions then yield the 
following (non-linear) system of n equations : 

' 71 Xi.fi (1 - 72 X2fi) • 

72 X2,e (1 - 71 -^1,»)' 

■(l-lnXnfi) = T-+m = a1 

■ (1 - 7„ Xnfi) = 
«>2,8 SI w = «2 

3The scalar Wk,e stands for the possibly changing visi- 
bility conditions from one period to another one 

(5.15)        monodimensional optimization problem, involving 
a concave functional. 
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Let us denote $(A) the optimal value of the (to- 
tal) search effort for a given A; then the following 
result holds : 

Proposition 1 <&(A) is a decreasing function of 
A . 

Proof : Denoting 0, the track parameter, 
the Lagrangian £(A) of the constrained prob- 
lem is £(A, 9) = -P + A (EiLi Xifl - $) {P = 

Eö 9i{G)p{xi,e)---p{xnfi) ); so, that : ^J = 
—lOF~ + ^ ' anc* consequently : 

A2 > Al =r> —T   ^  —   , 
OXifi OXifi 

(5.20) 

hence xi9{\i) > xitg(X2) (Vt, 0); and in turn 

*(A2) < *(Ai). 

6    The "MAJORITY" rule for track 
detection : 

Up to now, our analysis has been restricted to an 
"AND" rule for track detection. For numerous ap- 
plications, a MAJORITY rule is also quite realis- 
tic. This means that a track is said detected if a 
"sufficient" number of elementary detections occur 
"along" the track. We have now to face specific 
problems. First, it is difficult to give a general for- 
mulation (for the general n-period search) of the 
detection rule. Second, the optimization problems 
become far more intricated. 

6.1    The 3-period case and the "MAJOR- 

ITY" track detection rule 

The detection function is modified in order to take 
into account a majority rule ("MAJORITY") for de- 
cision [7]. More precisely, the track is said to be 
detected if the target is detected at least at 2 pe- 
riods. With this rule, the probability of detection 
becomes : 

P    =    £ 01W [00,2,3 P0,2,3, (6.21) 

+    01,2,0 P\,2fi + 01,0,3 Pl,0,3 + 01,2,3 P\,2,z] ■ 

In 6.21, the notation Po,2,3 corresponds to the 
following hypothesis:   no detection at period 1, 

detection at periods 2 and 3, idem for Pi ,2,0 
and Fi,o,3- The notation Pij2,3 corresponds to 
a detection at each period.   Finally, the weights 

0O2 3>"*)01,2,3 are re^ate(^ to *^e mf°rmati°n 

"gain" associated with an elementary event. This 
gain may be expressed in terms of quality of the 
estimated track, probability of correct associa- 
tion, etc. Thus, the elementary detection terms 
Po,2,3 ) •' • > -Pi ,2,3 have the following form : 

Po2 3= e'WXl's (l-e-WX2-e) (l-e-WX3'°) , 
Pi,2,o= e-wx*'° (l-e-WXl-°) (\ - e~w x*'°) , 
Pi,o,3 = e,' 
Pi,2,3= (l-e-^)(l 

-wx2,e   (\ _ g-«' zi,a\  (l_e-t»«3,«) 

(6.22) 
Defining the reduced Lagrangian as £(A) = -P+ 

A (£0 (xi,e + x2,e + x3je) - $), we adopt the fol- 
lowing notations for the sake of simplicity 4 : 

/  00,2,3 = Si, 01,2,0 = <*3, 01,0,3 = S2, 01,2,3 = S* , 
1  XXfi = e"wx^ =yi,---,X3ie = e~wx™ = y3 • 

(6.23) 
Assuming that yi,3/2,2/3 differ altogether from 

1, the KKT conditions yield : 

V3 = 
yx (S* - ft - 62) + Ö2-Ö* 
yi (S* -Si- S3) + S3-S* 

y2 .     (6.24) 

Then, inserting y3 = f(yi) y2 (see 6.24) in 6.22, 
we obtain the following 2-th order equation : 

(a-byi) yl+(c-dyl) y2+ (e y\ + f yi) = 0 , 

where the coefficients (a, b,c, d) are easily calcu- 
lated. In this case {xkte ^ 0 ; k = 1,2,3), the 
distribution of the search efforts is completely 
determined by the optimality equations. For 
instance, from 6.24 we obtain y3 = f(yi) y2 and 
y2 = f'(yi). The optimal value of yi is thus the 
value of yi, solution to the non-linear equation 
in yi deduced from 6.24 by replacing y2 and y3 

by their expressions in terms of yi only; ya is 
then the root of this non-linear equation which 
minimizes the Lagrangian. 

Also from the optimality equations, we see that 
the nullity of the search effort at two periods (i.e. 
yk = yk, = 1 for k ^ k') results in the nullity of 
the total search effort (i.e. yi = y2 = y3 = 1)- 
So, we must consider the cases where the search 
effort is null at one period.   In this case, only 

4The index of missed detection is the index of 5 
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two optimality equations are valid. Consider for 
instance (other cases are completely similar), the 

case X2 e = 0, then we obtain 62 y\ (1 — 2/3) = A 
91 

6.2    The n-period search and the "MA- 

JORITY" track detection rule 

We shall now restrict to the following track detec- 
tion rule. The track is said detected if, at least, 
(n — 1) elementary detections occur (for a n-period 
search). Thus, the probabilities of the following 
events are considered : 

Pi 
P2 

= Po,2,-,n 
= Pl,0,2,-,n =yi n?=il?42 (1 - vi)» 

plans is incrementally generated. For the sake of 
simplicity, our approach is restricted to the AND 
detection rule. 

The target is moving among a finite number of 
cells. Let the set of cells be C (at each time pe- 
riod). The target occupies one cell during each 
of the time periods so its path is decribed by 
u = (u>i,u>2, • • • ,u)n) € Cn so that the target be 
detected (for the AND detection detection rule) is : 

n 

P = 53 9(u) JJ t1 ~ exP (-wi^h i) x(u>i, i)) ] . 

(7.27) 
Thus, we have to deal with the following problem: 

V 

Pn     = Pl,2,-,n-l,0    = Vn Ui=l  (1 ~ Vi) , 

,   ft     =Pl,2,..,n =n2Tl1(l-W). 
(6.25) 

For the sake of simplicity, the following assump- 
tions are made: the (detection) coefficients (i.e. 
ßo,2,-,n, ßi,G,2,-,n,'' •, ßi,2,-,n, see 6.23) are equal 
5. Let us first assume that the search efforts are 
non-zero for all the periods (i.e. : x\ ^ 0, • • •, xn ^ 
0), then the KKT conditions result in : 

{min — P i 
under the c 
x(ci,i) > 0 

—P   where: P is given by 7.27 , 
constraints : 

> 0 and : £CieCj x(c»>0 ^ ^» 
(7.28) 

(j/2 - 2/3) n 
«^2,3 

2/1 
(l-2/i)      (1-2/4) 

+ ••• + ■ 
2/n 

(1-2/n) 

(6.26) 
Since the term between brackets is well defined 

and non-zero, we deduce from 6.26 that 2/2 = 
2/3, and more generally considering the difference 
equations obtained by substracting row (i + 1) 
to row i in the optimality equations , we have 

Vi — 2/2 = • • • = Vn- Moreover, we can prove 
that the search efforts (for a given track parame- 
ter {9}) is either zero for all the periods or zero 
for at most one period. The rest of the derivation 
is identical to the 3-period case. 

7    Search for Markovian tracks : 

We consider now search for a markovian target. 
The classical optimization framework we used 
previously is here useless, due to the complexity 
of elementary events. Instead, we shall use the 
Brown's approach [8], where a sequence of search 

= 0. 

Sufficient conditions may be derived from the re- 
sults of Stone (see [3]). However, a direct solution 
to the optimality conditions seems quite unfeasi- 
ble. It is then worthy considering the following 
factorization of P(X) (X: search plan) : 

P(X) = £c,iP(<^>x) [l-exp(-w(c,i)x(c,i))] , 
where : 

P(c,i,X) = £W€fi;u,,-=(c,i) 9(u)Tltfi [1 -eyLv{-w{uj,j)x{u)j,j)) 
(7.29) 

The problem is thus immersed in a station- 
ary framework, in which P(c, i, X) represents the 
probability that the search has been successful at 
all the periods different from i, for all the tar- 
get paths passing by the cell (c, i) at the period i. 
This corresponds to the reallocation problem [8]. 
So, the main problem then consists in effectively 
calculating P(c, i, X). For that aim, we consider 
the following recursion, rather similar in its spirit, 
to the Brown's one [8] : 

reach(c, i, X) 

surv(c,i,X) 

P(c,i,X) 

Y^ r(wi)*(wi>W2)-".<(wi_i>c) ,(7.30) 

«-1 

x JJ [1 - exp (-w(u>j,j) x(uj,j)) ] , 
3=1 

53 t(c,u>i+i) ■ ■ ■ .t(un-i,ujn) s(w„) , 
n 

x n t1 ~exp (_w(wi>J) 
x(uj'j)) ] > 

j=i+i 

reach(e, i, X) surv(c, i,X) . 

5As seen previously (see section 6.1), this assumption 
does not reduce the generality of our approach. 

Previously, fi was small enough to practically 
enumerate its elements (e.g. conditionallly de- 
terministic motion).    Here, this is not feasible 
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since we must consider all the (markovian) paths 
u) = (u>i,u;2,--- ,wn). The terms reach(c,i,X) 
and surv(c, i, X) are themselves determined by the 
Brown recursion [8]. 

8    Two-sided search 

Up to now, our efforts have been exclusively de- 
voted to the one-sided search, which means that 
decisions are only made by the searcher. For the 
two-sided search, game theory is generally used. 
Here, the following game is considered : the strat- 
egy for player 1 (target) is a distribution of g\{6), 
while for player 2 (searcher) it is the distribution 
of efforts (i.e. X^)6. Let us denote Gi the vector 
representing the distribution of gi(0), we are now 
considering the following problem : 

Determine the vectors GJ, X* such that : 
P(Gf,X) < P(Gf,X*) < P(Gx,X*) , V (X, Gx) . 

(8.31) 
The detection function P(Gi,X) being given by 
2.1. Equivalently X* and GJ are the solutions to 
the min-max problem maxx minci P- Restrict- 
ing, first, to the AND detection test, we have thus 
to deal with the following optimization problem : 

minGl minx {- £emiß) Yl"=l Ik (1 - e—*.»*•■■•) } 
under the constraints : 
£*E**M = *. {*M>O,V(M)} 

(8.32) 
If, furthermore, the following assumption is made 
('yfc=cst, Wkft = wo); then the above problem may 
be explicitely solved. 

Proposition 2 The elements of G\ and XJ are 
determined by the following equation: 

xi,e = ■•• = xnfi (V0 € 0) , andV6> G 0 , 

then the KKT conditions dc 

aim = °implies: 

0^=0 yield xljB = 
Furthermore,  the condition 

fi = (1 - Xlfi)
n -> we xlfi = cst, V0 € 0+7 . 

(8.35) 
The constant itself is determined by the constraint 
£e xXfi = $/n, yielding : 

n zi.* = -| E we wg1 , V0 € G+.   (8.36) 

Then from Sr- = 0, we deduce  : 

-we Xlfi (1 - Xlfi)
n~l + A = 0 , so, that : 

<7i (6) = cst wj1 (X^9 - l) , 6 e 9+. 

(8.37) 
The constant is determined by the constraint 
£0 9i(6) — 1 and the above expression (8.36) of 
xitg, yielding : 

-1 

91 w = ( E < 
<eee+ 

wg1 , V0 € 6+.   (8.38) 

Consider now G|, the vector formed with g\{6) = 

[J2eeewej we1 (*-e- ^ *n *ne whole set 0), 
as well as XJ the vector with components x\ß = 

* [Y,O£ew0j ■ Then the value of the elemen- 

tary detection term (i.e. (1—e~We Xl'e)) is indepen- 
dent of 0, hence P(GX,X*) = P(GJ,X*)' (V d). 
The second inequality is a consequence of the two 
following inequalities, themselves resulting from 
KKT conditions : 

g{{6) wlft X*}9(l - X^Y'1 < A , (1) 

w?ee xi,e A - gt(9) Wl,9 X^ (l - X*^1 ] = 0 ( 

x\,0 = *(£ö€eu;e1)     andgi{9) = (^eee^1)     wel Now,   there   exists   at   least 
(8.33) 

Proof Let us consider the reduced Lagrangian 
defined by : 

£(\,p) = -P+X fEExM - A+" (E^W - A ' 
(8.34) 

(8.39) 
one value of 

6 (say 60) such that x\ Oo be strictly posi- 
tive.      From  8.39,(2),   we  deduce  that   A   = 

gt(0o) wlte0 X*lfio (l - XfaY'1. Let d be the 

constant term W\te g$(9); then A is strictly infe- 
rior to d {X{g < 1) and, in turn, 8.39,1 yields : 

c' xt,e\} ~ x\,e) 
n-l 

<c' (8.40) 

6For the notations, we refer to section 2. 70+ is the subset of © corresponding to gi (0) > 0. 
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Therefore x* e is strictly positive, whatever 9, and 
0 = 0+. 

Thus, we note that, under the above assump- 
tion, the two-sided search problem has an ex- 
plicit and remarkably simple solution (see [9]). 
Furthermore, remark that the optimal searcher 
and target strategies are proportional. Quite in- 
tuitively, this strategy is such that the product 
Wßgi(9) remains constant. In the general case 
(i.e. p{xk,e) = 7fe (1 — e~Wk'eXk'9)), a direct reso- 
lution to the primal problem 8.32 is unfeasible; 
however the problem may be easily solved by the 
dual approach. More precisely, eqs 5.15, 5.16 are 
still valid. 

10    Conclusion 

The problem under consideration was the optimization 
of the search effort for detecting tracks. The prob- 
lem formulation is tightly related to the definition of 
the track detection criterion. Various definitions have 
been considered (namely AND and MAJORITY), as well 
as the corresponding optimization problem. In order 
to develop feasible methods, we focused on discrete 
(both in time and space) optimization . Under simple 
constraints (relative to the distribution of the search 
effort), the dual formalism appears as a feasible and 
versatile approach. 
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Abstract-The most important sensors for gathering target 
information onboard a submarine are passive sonars. Prob- 
lems concerning fusion of these passive sonars are dis- 
cussed. Three typical passive sonars - passive noise sonar, 
passive ranging sonar and acoustic pulse surveillance sonar 
- are supposed to constitute a passive sonar system for data 
fusion. This paper is concerned mainly with problems of 
significance in system development, such as tactical appli- 
cation background, special fusion techniques and own-ship 
maneuver considerations. 

Key Words: fusion, sonar, submarine, sensor, command and 
control. 

1.   Introduction 

For tactic reasons, passive sonars are considered to be 
the most important sensors onboard a modern subma- 
rine, for which stealth is vital. Basic submarine un- 
derwater operations, such as surveillance, search, de- 
tection and tracking, are usually guided by passive 
sonars. Almost all of modern passive sonars are capa- 
ble of processing multiple targets. They can detect, 
sort, track, record and display many targets simultane- 
ously. When several such passive sonars are intro- 
duced on the same platform to form a multisensor 
system, fusion techniques are needed to handle this 
multisensor multitarget problem. This is the task of a 
unit known as fusion center, which is part of the com- 
mand and control (C2) system. Fusion center receives 
and processes the multitarget information from the 
sensors. The information received is usually in large 
amount, of miscellaneous type, inaccurate and could 
even be misleading. The output of the center is more 
concise, more accurate and more meaningful tacti- 
cally. 

A modern submarine is usually equipped with many 
other sensors, e.g. radars and ESM, in addition to pas- 
sive sonars. Fusion center should handle all these sen- 
sors, not just passive sonars. For the fusion system to 
be effective, it is important to coordinate the passive 

sonars and the other sensors. In reference [1], a fusion 
framework of a hierarchic structure for all the subma- 
rine sensors is proposed. It is suitable for systems 
with special groups of sensors that need to be handled 
relatively independently. Because of the importance 
of passive sonars and the similarity of their informa- 
tion, they can be treated as a group. Fusion may be 
conducted among themselves at first, then with other 
sensors or groups. This structure, among other things, 
makes submarine sensor fusion unique. In this 
framework, it is evident that the passive sonar fusion 
system, which is the major topic of this paper, is one 
subsystem of the entire sensor fusion system. 

Meanwhile, special requirements and problems arise 
from the overwhelming importance of passive infor- 
mation and the passive property of the information 
itself, and need to be satisfied or treated specially 
when such a passive fusion subsystem is developed. 
These specialties are exactly what interest us in this 
paper. 

Suppose the passive sonar system is composed of 
three typical passive sonars onboard submarines: pas- 
sive noise sonar, passive ranging sonar and acoustic 
pulse surveillance sonar. Information collected by 
these sensors can basically be classified into two cate- 
gories: positional information and characteristic in- 
formation. Positional information reflects target posi- 
tion and motion, such as bearing, distance, course and 
velocity. Characteristic information includes target 
type and identity. The techniques to process them are 
quite different. This is concerned mainly with the 
former type of information. 

2.   Passive Sonar Systems and Tactical Back- 
ground 

There are plenty of common techniques, devices, 
software and systems that can be used to develop 
military systems. Adjustments have to be made, how- 
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ever, due to the special requirements of a particular 
system. These requirements are usually put forward 
by the system itself and the tactical environment to 
which the system is supposed to be exposed. Meeting 
these requirements is a basic prerequisite of system 
development. In fact, the importance of understanding 
the sensor system itself and its application back- 
ground, especially the tactical background, can never 
be overemphasized. System developers should bear 
this in mind in the entire process of system develop- 
ment. 

2.1   Passive Sonars 

Passive noise sonar is the fundamental sensor of a 
submarine. It serves both as search sensor and as at- 
tack sensor. For positional information, noise sonar 
provides the angle-of-arrival (azimuth angle, or bear- 
ing) measurement of an acoustic source. This bearing 
information is the basic information source for a sub- 
marine. Needless to say, a comprehensive modern 
passive noise sonar can provide much more informa- 
tion than bearing. The accuracy of bearing measure- 
ments is relatively good. Under some disadvanta- 
geous conditions, however, such as in shallow water, 
high water temperature, complex sea current, other 
sudden changes in the underwater acoustic transmis- 
sion media, the measurement error can grow signifi- 
cantly. 

The inability of the noise sonar to provide distance 
information is compensated by passive ranging sonar. 
Ranging sonar has three or four groups of hydrophone 
symmetrically mounted on both flanks of the subma- 
rine. It provides passively both bearing and distance 
information by processing the time-of-arrival differ- 
ences between the hydrophone groups. The problem 
is that the range measurement error is usually large, 
especially at the beginning of detection, and it is also 
geometrically correlated. Target distance and the 
relative bearing of the target to the submarine have a 
significant impact on the ranging error. The larger the 
distance, the larger the error. In addition, the error is 
the smallest when the target is on the beam of the 
submarine. The farther away the target is from the 
beam, the large the error. The ranging error some- 
times is so large that the detected distance information 
cannot be directly used for fire control purposes. 

Acoustic pulse surveillance sonar intercepts acoustic 
transmissions from active sonars. It can provide 
bearing information of the detected pulses. Other in- 
formation such as frequency, pulse length and pulse 
repetition frequency, is also available. The bearing 
measurement error is much larger than (usually several 
times of) its counterpart of the other two sonars. That 

is why its positional information plays a minor role in 
the fusion system. 

The detection regions of the three sonars are quite 
different. Acoustic pulse surveillance sonar is omnidi- 
rectional. Its detection range is the largest of the three. 
Passive noise sonar usually has a sector of blind zone 
around the stern of the submarine, because its array is 
usually located in the bow sonar dome. Its detection 
range is smaller than that of the acoustic pulse sur- 
veillance sonar, but larger than that of the passive 
ranging sonar. Passive ranging sonar has two sector 
blind zones around the stern and the bow, respectively. 
Its detection range is the smallest. Fig. 1 illustrates the 
detection zones of these sonars. 

Figure 1. Detection zones of the sonars 

Generally speaking, the ability of all these sonars to 
resolve or distinguish multiple targets is much weaker 
than their radar counterparts. This is also mainly due 
to the disadvantageous physical media. And the reso- 
lution is seriously affected by factors such as envi- 
ronment, geometry and signal intensity, other than 
sonar's own physical properties. All these factors 
should be considered and treated properly when the 
fusion system is developed. 

2.2  Tactical Background 

The most typical scenario of a multitarget engagement 
is a submarine versus military force formation (battle 
group) case. In this case, the targets are formatively 
scattered. Since the movability (speed) of a marine 
formation is limited and the separations between the 
targets are usually large enough (compared with air 
battle groups), it is quite often true that the first sensor 
contact involves only one target (and most likely made 
by the passive noise sonar). Gradually, as the forma- 
tion gets closer, other targets enter the sight of the 
sensors, also caught by noise sonar first. This is a 
picture quite different from that of an air engagement 
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with radars as major sensors. In an air battle engage- 
ment case, the speed of the aircraft formation is so 
high that the first radar contact is quite possibly the 
whole formation, which is a dense target problem. 
From this point of view, it seems much easier to han- 
dle the sonar problem than the radar one. Unfortu- 
nately, this is not true because the sonar case has its 
own problems. The number of targets may be smaller, 
the requirements on reaction time may be not so strin- 
gent, but the available information usually has much 
poorer quality, is inadequate and quite often is of only 
a passive type. 

In addition, when the real engagement begins, which 
means that the targets notice the existence of the sub- 
marine, the situation becomes complicated immedi- 
ately. Counter actions begin. The formation begins to 
change. Targets begin to maneuver. They begin to 
counter detect the submarine by using every possible 
measure. Before long, they may launch weapons, hard 
or soft. Only at this time, the real challenge for the 
sensor system as well as the fusion system comes. 

Of the three sonars, the operation of the acoustic pulse 
surveillance sonar is peculiar. It depends not only on 
the sonar itself but also on the operation of the active 
sonars onboard the targets. For the target warships to 
use active sonars, tactically it often means that they 
have noticed the submarine threat. If this is the case, 
the upcoming military actions will be hardly predict- 
able. Although it is very difficult to cope with such a 
situation, and it seems to be a task more suitable for 
human intelligence, the fusion system should at least 
has some measures for this situation. 

3.   Single-Sensor Multitarget Processing 

It is essential to the fusion system that each sensor 
processes its multitarget positional information effec- 
tively. The prerequisite of excellent performance of 
any fusion system is that each single sensor can pro- 
vide well-sorted multitarget information within its 
own domain. The most important positional informa- 
tion passive sonars can get is target bearing sequences. 
Therefore, the fusion problem is usually bearing-to- 
bearing fusion or bearing-to-track fusion. There is no 
ideal tool for such fusion problems, although many 
powerful techniques are available, which are, how- 
ever, more suitable for track-to-track fusion problems. 
In view of this, single-sensor processing is particularly 
important. 

According to the fusion structure proposed in [1], the 
main goal of single-sensor processing of positional 
information is to separate multitarget measurements 

into distinguishable measurement sequences or tracks. 
The original measurements might be incomplete, tan- 
gled with each other, and of course inaccurate, or 
might be simply false alarms. The basic procedure for 
such a multitarget processing problem for each sonar 
may be nothing special but the concrete techniques are 
not so common. Fig.2 illustrates the processing pro- 
cedure of single-sensor multitarget information. 

|     Initialization     | 

' 
|       Sampling       | 

A 
|     Association     | 

i 
[      Evaluation      | 

 i  
i      Smoothing      i 

zzzciz: 
!          TMA          I 

Fusion 
Center 

| Gate Adjustment j 

Figure 2. Single sensor processing procedures 

3.1   Initialization 

System initialization is very important in that it affects 
the effectiveness of the system significantly. A poorly 
initialized system can take much longer time to get the 
desired results than that of a well-initialized one. 
Sometimes a system could even collapse because of 
bad initializations. For this passive sonar fusion sys- 
tem, initializations mainly include two aspects. One is 
the determination of the initial gate size for the meas- 
urement association process. The other is the initiali- 
zation of the association algorithm itself, if the algo- 
rithm is a recursive one. Algorithm initialization is a 
widely studied problem (see, e.g., [2,3]), and thus will 
not be discussed here. 

Two types of measurements - bearings-only and bear- 
ings plus ranges - are involved in this system. Corre- 
spondingly there are two types of gates. For the bear- 
ings-only case, the shape and size of the gate are de- 
termined by the bearing gate, which is of a sector 
shape. For the bearings plus ranges case, the shape 
and size of the association gate are confined to the 
bearing gate and the range gate. The mostly widely 
adopted shape is a ring sector, although other shapes, 
such as rectangles, can also be used. 

Passive noise sonar and acoustic pulse surveillance 
sonar belong to the bearings-only category. The gate 
initialization - i.e., the determination of the initial 
bearing gate size - is not as easy as it appears. It is 
evident that an optimal size would depend upon many 
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factors, such as the sampling interval, the speeds and 
courses of and the distance between the target and the 
own-ship, the measurement error level and the resolu- 
tion capability of the corresponding sonar. Most of 
these factors are not obtainable and thus it is impossi- 
ble to get a perfect gate size. In practice, conservative 
measures are taken to get a larger gate. For example, 
the speeds of the target and the own-ship are replaced 
by their maximum possible values. 

For passive ranging sonar, the sizes of the initial 
bearing gate and range gate should be determined. 
Conservative measures are also needed in this case to 
account for the initial uncertainties. For example, at 
the beginning, the distance measurement error may be 
much higher than the normal level, for the distance 
processor of the sonar may be not yet stable. Factors 
like this have to be taken into account when deter- 
mining the gate size. Anyway, sector ring shaped gate 
is a very common gate. Its counterpart can be easily 
found in other sensor fusion (e.g., radar fusion) appli- 
cations. 

3.2 Association 

In each step, new measurements should be evaluated 
to determine if they could be associated with any ex- 
isting sequences or tracks, or simply a starting point of 
a new sequence or track. When the association gate is 
determined, this should not be a difficult problem, for 
which many algorithms are available (see, e.g., [3]). 
What is important is to develop an algorithm that is 
acceptable from an engineering point of view. A 
common approach is to modify an existing algorithm 
according to the particular requirements of the appli- 
cation. 

3.3 Evaluation of Track or Sequence Quality 

At the end of each step in the recursive process, each 
sequence or track should be evaluated in some way. 
The evaluation result is used to decide as to maintain, 
modify or abandon the existing sequences or tracks, or 
to initiate new sequences or tracks. Practically, some 
simple yet effective techniques are used in real system 
development. For example, a credit accumulator may 
be designed to serve as such an evaluator for each se- 
quence or track. For each step, if there is a new meas- 
urement that is successfully associated with a particu- 
lar sequence or track, a certain number of credits are 
added to the corresponding accumulator. Otherwise, 
the credits are lowered. Relying on the credit number, 
a sequence or track may be declared as a false one, a 
possible one, a conformed one, or discarded one, etc. 
The thresholds can be determined by offline simula- 
tions and underwater trial tests. 

3.4 Smoothing and TMA 

For a conformed sequence or track, further processing 
like measurement sequence smoothing and target mo- 
tion analysis (TMA) can be done to improve the asso- 
ciation result. However, it is not necessarily con- 
ducted at this stage. With more processed information 
available, smoothing and TMA may be done more 
effectively in the fusion center. The fact that bearings- 
only TMA is difficult and time consuming due to poor 
observability [4] makes it probably better to handle it 
in the fusion center. That is why the corresponding 
boxes of these two parts in Fig. 2 are drawn in dashed 
lines. 

3.5 Gate Adjustment 

With more and more information poured in, the pic- 
ture becomes clearer and clearer. It is very natural that 
the association gate, usually the gate size only, should 
be adjusted, although the shape also can be changed. 
The size can be reduced gradually, i.e., step by step. It 
can also be reduced periodically. Sometimes it needs 
to be enlarged when a normal association fails. Albeit 
seemingly easy, this problem can be troublesome. In 
practice, however, to determine when and how to ad- 
just the associate gate is a problem of more engineer- 
ing than theoretical. So engineering tools, such as 
simulation and trial and error, are always available and 
are powerful weapons for fighting against this prob- 
lem. 

4.   Multisensor Fusion 

Multisensor fusion is the fusion center's task. Because 
the input data from each sensor may be bearing se- 
quences or tracks, three possible fusion forms exist: 
bearing-to-bearing, bearing-to-track and track-to-track 
fusion. Which form the fusion center should take de- 
pends on the type of data it can get. If bearings-only 
TMA is not done at the sensor level, which means 
noise sonar and surveillance sonar can not provide 
track data, then track-to-track fusion is not possible in 
this case, because only ranging sonar can provide track 
data. Even if bearings-only TMA is conducted at the 
sensor level, track-to-track fusion is not the only fu- 
sion form. Bearings-only TMA sometimes can not 
provide a unique track solution (e.g., before an own- 
ship maneuver), or can only provide a poor solution 
(e.g., shortly after an own-ship maneuver, or more 
generally, under poor observability conditions) [4]. 
Bearing-to-bearing fusion or bearing-to-track fusion is 
still necessary in these cases.   Anyhow, bearing-to- 
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bearing fusion and bearing-to-track fusion are more 
fundamental in passive sonar fusion applications. 

Detailed techniques for the aforementioned fusion 
forms have been introduced in [1]. 

Fusion results can be sent back to sensor level proces- 
sors to improve their performances. This feedback 
channel can also be used by the sensors to help each 
other. The fact that the detection radius of noise sonar 
is usually larger than that of ranging sonar makes it 
quite possible that the multitarget information has al- 
ready been well processed (e.g., initiated, classified) 
by the noise sonar before the ranging sonar can detect 
the target. In this case, the ranging sonar information 
can be used to refine and enforce the results of the 
noise sonar. On the other hand, the result of the noise 
sonar can be used by the ranging sonar to improve its 
own multitarget information. The poor quality of the 
bearing measurements makes it very difficult for the 
surveillance sonar to finish the multitarget positional 
information processing by itself. The help from the 
other two sonars and the fusion center is very valu- 
able. 

5.   Own-Ship Maneuver 

Own-ship maneuver is very important in multisensor 
multitarget tracking. It is also a difficult problem be- 
cause many factors must be taken into account and not 
fewer requirements need to be considered. For exam- 
ple, at the initial phase, own-ship maneuver is mainly 
concerned with enhancing the sensors' capability to 
detect and distinguish multiple targets. The corre- 
sponding requirements, however, differ significantly 
for different sensors. 

Own-ship maneuver in a multitarget environment is 
quite different from that of a single target. In the sin- 
gle target case, the goal of maneuver is to maximize 
the degree of the system observability. From a more 
practical point of view, the criterion is to find maneu- 
ver strategies so that the solution of the system con- 
verges in the shortest period of time. This has been 
shown to be a difficult problem. It is further compli- 
cated when other basic practical considerations are 
taken into account, such as ensuring ideal observation 
of the tracking sensor and ideal target and own-ship 
geometry for the possible forthcoming attack or other 
tactical operations. 

The multitarget case is no doubt much more chal- 
lenging. Theoretically, the maneuver optimization 
criterion for a multitarget system can be defined as 
maximization of the so-called global degree of observ- 

ability of the tracking system, which is an index used 
to measure the comprehensive ability of the system to 
track all the targets as a whole. However, to use such 
a criterion to optimize own-ship maneuver strategies 
may be difficult. First, it is next to impossible to de- 
fine such a global degree of observability due to the 
complexity of the problem. As a matter of fact, even 
the degree of observability for the single target case is 
still not perfectly defined. Secondly, it would be very 
difficult to get precise and optimal results that are 
physically meaningful using this criterion. Thirdly, 
the implementation of such optimal maneuver strate- 
gies, if exist, is very difficult, if not impossible, in 
practical situations. 

Some compromise measures may be taken to cope 
with this problem. For example, instead of trying to 
maximize the global degree of observability of the 
system, a practical alternative is to maximize the de- 
gree of observability of a single-target system that 
involves only the most interesting target. Since it is 
almost impossible to obtain the states of all targets 
simultaneously, a surely reasonable solution would be 
to try to get the state of the most interesting target. 
How to select the most interesting target is a problem, 
but not a difficult one. In fact, there are several 
choices, including the one with the highest signal to 
noise (S/N) ratio, the one with the fastest rate of bear- 
ing changes, the one that exhibits the most serious 
potential threat, to mention a few. As such, the com- 
plicated problem of own-ship maneuver optimization 
for multitarget tracking is converted into the simpler 
problem of maneuver optimization for single-target 
tracking. While a really optimal solution to the single- 
target tracking problem is still difficult to obtain [5,6], 
there exist at minimum many rule-of-thumb maneuver 
strategies that are effective and can be easily imple- 
mented (see, e.g., [7]). 

Similar to the single-target case, observability is 
sometimes not the only concern. There might be 
many other things that should be considered. In prac- 
tice, the objective of own-ship maneuver in a multitar- 
get environment varies from case to case. For exam- 
ple, when targets are detected by the noise sonar only, 
which means they are still out of the reach of the 
ranging sonar. If the range information is needed ur- 
gently, the maneuver strategies should be those that 
get the targets into the detectable zone of the ranging 
sonar as soon as possible. The resultant maneuver 
strategies out of this requirement should be quite dif- 
ferent than those from the bearings-only observability 
approach. 

For the passive ranging sonar, the requirements are 
relatively simple.  The basic rule is that putting most 
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targets or the most interesting target on or around the 
beams of the submarine. In some cases, however, this 
is not enough. Sensor properties, application envi- 
ronment, and even tracking algorithms can affect own- 
ship maneuver strategies. For example, under some 
ideal conditions the detected distance information is 
highly reliable. Maneuver is not necessary if this is 
the case. When the detected distance is not so ideal, 
some algorithms weigh the detected bearing informa- 
tion much heavier than the detected distance informa- 
tion. These algorithms are relatively close to those 
bearings-only tracking algorithms and distance infor- 
mation plays a supplementary role. Own-ship maneu- 
ver strategies no doubt should be also close to those 
strategies for bearings-only tracking in such cases. 

Because the operation range of a passive ranging sonar 
is relatively small, maintaining stealth while maneu- 
vering is another important concern. 

Under some more complicated circumstances, e.g., the 
targets are also aware of the existence of the subma- 
rine, maneuver is not mere a fusion concern any more. 
It is more a tactical problem in this case. The real 
decision making burden is left for the commander of 
the submarine, although some maneuver strategies 
may be recommended. 

6. Some Further Considerations 

The corner stone of the hierarchic fusion structure 
recommended in [1] is distributed processing. It is 
well known that centralized systems have some ad- 
vantages over distributed systems, such as higher ac- 
curacy. The recommendation of the distributed in- 
stead of centralized structure has been justified in [1]. 
In fact, such a centralized system is very difficult, if 
not impossible, to realize. For a centralized sonar fu- 
sion to be really superior in aspects such as accuracy, 
the input information has to be directly from the hy- 
drophones of all the sonar arrays. This is almost im- 
possible, especially if the sonars and the fusion system 
are developed by different manufacturers. In addition, 
the complexity of underwater acoustic signal process- 
ing makes the task of fusing all this tremendous 
amount of information in a central fashion unbearably 
tough. Besides the fact they are easy to realize, dis- 
tributed fusion systems have many nice properties, 
such as more flexibility and better survivability, that 
are extremely important for military systems and can 
well compensate for the possible loss of accuracy. 

The coordination of the passive fusion system and the 
other related systems is another problem that needs 
attention.   Closely or loosely, directly or indirectly, 

passive sonar fusion system is connected to many 
other systems, such as other sensor systems, C2 sys- 
tem, navigation system, weapon system, steering sys- 
tem. The information flow between these systems is 
very complicated, especially during intensified en- 
gagements. The system might collapse if it is not 
well designed to handle this problem effectively. It is 
intrinsically a problem of information flow control and 
management. There are many commercial systems 
and techniques for this problem, but careful selection 
and adaptation is required. 

7. Conclusion 

Passive sonar fusion is the basic and key component of 
submarine sensor fusion. There are many distinctive 
features in such a fusion system that need to be prop- 
erly treated. Only some major aspects have been pre- 
sented. Several problem-solving principles for system 
development have also been discussed. It should be 
emphasized that a modern passive sonar system could 
be more complex than the model system used in this 
paper [8]. The system may include more passive so- 
nars, and they may be more diversified. The structure 
of the system itself may be quite different. In some 
systems, the sonars are completely independent. 
There is no information channel at the sensor level. 
Some other systems, however, are highly synthesized. 
All their component sonars are connected and organ- 
ized by data buses, which means the systems them- 
selves are distributed. While the realizations of these 
systems can be quite different, the basic principles and 
considerations should be similar. 
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Abstract Practical detection systems generally 
are operated using a fixed threshold, optimized to 
the Neyman-Pearson criterion. An alternative is 
Bayes detection, in which the threshold varies ac- 
cording to the ratio of prior probabilities. This prior 
information is available in a tracking situation, but 
appears little used. The effect here is of a depressed 
detection threshold near the predicted measurement. 
The PDAF must be modified if used with such a 
detector. We provide this modification and test: it 
is considerably better than that the PDAF both in 
terms of tracking accuracy and effort, and in the 
former offers only slight degradation relative to the 
PDAF using amplitude information. 

Keywords: Target tracking, PDAF, Detection 

1    Introduction 

Most target tracking systems work with the 
data they are given. By this is meant that 
measurements from a detection "front-end" 
processor are interrogated for threshold ex- 
ceedances, and these "hits" are delivered to 
the tracking algorithm. For the most part 
the threshold is set and fixed according to a 
false-alarm criterion, that there should be on 
average a specified number of false hits per 
unit volume. There have been studies relat- 
ing the tracking performance to this thresh- 
old, and suggesting threshold-settings for opti- 
mized performance for a given expected signal- 
to-noise ratio (SNR). Further, there has been 
some research indicating that considerably im- 
proved performance is achievable when some 
amplitude information (AI) is delivered to the 
tracker along with the measurements and their 

* willett@engr.uconn.edu 

locations [3, 4]. 
The above two points have largely been in- 

vestigated as they pertain to the probabilis- 
tic data association filter (PDAF) [1]. The 
PDAF is a particularly simple and successful 
target tracking algorithm: it is predicated on 
the assumptions that the best one-step esti- 
mation of the target's location should be suffi- 
cient, and that once this estimation is accom- 
plished the target's true location should be af- 
forded a Gaussian distribution about its esti- 
mated value. The key to this paper, as alluded 
to by the PDAF's Bayesian nature, is in this 
Gaussian "posterior" distribution on the tar- 
get's location.   - - 

Communication between the signal process- 
ing front-end and the PDAF is presently one- 
way. In this paper we allow two-way communi- 
cation; or, perhaps more appropriately, "feed- 
back" from the tracker to the detector. The 
form of this feedback is of the posterior dis- 
tribution on the target's location. From the 
detector's point of view this is "prior" informa- 
tion for its hypothesis tests (i.e. its matched fil- 
ters), as represented in figure 1. Thus, a detec- 
tor using this operation ceases to be used in a 
Neyman-Pearson mode and becomes Bayesian, 
and from a practical point of view this amounts 
to a threshold which is.depressed near where a 
target is expected to be and elevated where it 
is unexpected - this is illustrated in figure 2. 

In this new approach there are fewer false- 
alarms than previous, and these are no longer 
uniformly distributed in space. Thus, the 
PDAF must be modified accordingly, which 
we do in this paper. The performance of the 
PDAF so obtained is compared favorably to 
that of the original PDAF, and turns out to be 
essentially equivalent to that of the version of 

ISIF©1999 493 



pndctedpoiititt 

imontiauearnaece 

Figure 1: Representation of flow of data 
within proposed system. A signal return, from 
a known location is matched-filtered and its 
magnitude compared to a threshold - a thresh- 
old exceedance, along with its location, is 
passed to the tracker, a modified PDAF. The 
threshold itself is determined as a function of 
the predicted location of the target, the innova- 
tion covariance, and the location of the return. 

the PDAF which incorporates amplitude infor- 
mation (the PDAF-AI). 

Development 
PDAF-BD 

of  the   New 

At the outset let us note the informing fea- 
ture of the PDAF: it is entirely optimal except 
that after each scan its posterior track prob- 
ability density function - ideally a mixture of 
Gaussian pdf's - is converted to a single Gaus- 
sian mode having the same mean and variance. 
Thus, at each scan, estimation is built upon a 
Gaussian prior, converted to a Gaussian mix- 
ture posterior, which is then forced back to 
Gaussianity for the succeeding scan. 

Operation of the PDAF based on one scan 
of data (the kth) can be summarized as: 

1. Predict state at scan k from prior at scan 
Jfc-1. 

2. Form   "innovations"   (i/'s),   all measure- 
ments at scan k minus the predicted value. 

3. Gate the measurements according to the 
innovations and the innovations covari- 

y coordinate 

Figure 2: Illustration of the effect of a 
position-dependent threshold. The x and y 
coordinates are those of the innovation; that 
is of the one-step predicted measurement sub- 
tracted from the return location. The z coor- 
dinate shows the probability that a return of a 
given strength be missed, as a function of its 
normalized innovation. 

ance (S). 
the gate. 

Remove observations outside 

4. Calculate the association probabilities 
(/3's), meaning the posterior probabilities 
that each surviving measurement is the 
true one, or that none is. 

5. Use these ß's to form a synthetic "inno- 
vation" , and use the Kaiman gain formula 
to update the track. 

6. Use the ß's to calculate a modified estima- 
tion covariance (P). 

It has recently been shown [4] that the use 
of amplitude information can be of significant 
benefit to the PDAF. That is, instead of "mea- 
surements" consisting simply of the locations 
of threshold exceedances, these are augmented 
by information as to how much the threshold 
was exceeded. Thus, it may be expected that 
a strong target return would be more recogniz- 
able as such than if this confidence informa- 
tion were thrown away by the detector, and in 
fact this is so. It is interesting that the PDAF 
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structure is little altered by the presence of am- 
plitude information: the only change is to the 
calculation of the /5's. 

This extends to the PDAF-BD: although the 
signal-processing (meaning the thresholding) is 
different from either PDAF or PDAF-AI, the 
only variation is again in the calculation of the 
/3's. In the following we show how to form 
these. 

First, however, let us agree on the standard 
tracking terminology that 

xfc+i   =   Fxfc + vfc 

yk   =   Hxfc + wfc (1) 

in which x is the target state, y the measure- 
ment, and that the Gaussian noises are inde- 
pendent, white, and have 

^{vfcvH   =   Q 
-S{wfcw^}    =   R 

as their associated covariance matrices. 

2.1    The Statistical Testing 

We assume that a test of presence or absence 
of a target at location zk(l) is to be performed. 
The hypotheses are: 

H :       Pr(Ak(l) > a) = e~a 

K :       Pr(Ak(l) > a) = -±- 
J. "T* , 

(2) 
0-a/(l+p) 

in which Afc(Z) is the corresponding amplitude 
(magnitude-square output of a matched fil- 
ter, with a Swerling I target fluctuation model 
implicit), and p is the signal to noise ratio.1 

The usual implementation is according to the 
Neyman-Pearson criterion [5], that the prob- 
ability of detection be maximized subject to 
a constraint on the false alarm rate, and the 
resulting test can easily be shown to be a com- 
parison of Ajfc(Z) to a fixed threshold. From the 
Bayesian viewpoint, the appropriate test is 

/*(A*(Q) 
/*(A*(0) 

H 

K 

Pr(H)[cKH - cHH] 
Pr{K)[cHK - cKK] (3) 

1In the formulation given it is apparent that the re- 
turns are assumed perfectly pre-normalized such that 
the target-absent mean is unity. If some other target- 
model - such as a CA-CFAR distribution - is desir- 
able, then the succeeding development must be modi- 
fied. This modification is straightforward. 

in which Pr(j) denotes the hypothesis j (€ 
{H,K}), fj(-) is the pdf given hypothesis j, 
and Cij refers to the cost of making decision i 
when j is true. We note that these costs are 
not easily available. 

The "prior" probabilities Pr(H) and Pr(K) 
are not well-posed: the latter amounts to the 
probability that a target is located exactly at 
the test's coordinates zk{l) given the prior 
tracking information, and this is zero. If a 
sampling grid of resolution cells is available, 
then the quantity can be calculated; but since 
the answer is configuration-specific we prefer 
to avoid this, and simply note that 

Pr(K) 
Pr(H) 

oc e  2 i"fc(«)Ts-Vfc(0 

in which 

vk(l) = Zfc(Z)-HFxifc_1|fc_1 

(4) 

(5) 

is the spatial innovation of the Ith measurement 
at time k, and x^._1|^._1 is the estimate of the 
state given data up to scan k — 1. It should be 
noted that the prior probabilities are of isolated 
tests, meaning that each observation is tested 
separately, as is fair. 

At any rate, from (3,3,4) we have with ref- 
erence to figure 1 the test: 

Afc(Z)     <: 
H     P + l.. ,«rc-i 
> vk(iys^vk(i)+v (6) 
K        lp 

in which 77 is a tunable parameter. 
It is useful to calculate the resulting proba- 

bility of detection as 

Pd   =    I Protection | v)f{y)du (7) 

/' 

v/2HSJ 
e  2 /rs- vdv 

B-vM+p) /.-** 
T[^TS]-^ 1P+1 du 

nz/2 
-V/(P+I) 

in which nz is the dimension of the measure- 
ment. 
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2.2    The Probability of the Number 
of False Alarms 

In the PDAF (and PDAF-AI) the number of 
false alarms is assumed Poisson, and hence we 
have the probability mass function (pmf) of the 
number of false alarms in a "volume" V as 

,    N (^pdafVy -\dafV (8) 

in which Xpdaf is the average number of false 
alarms per unit volume. The expression for fi 
is necessary in the evaluation of the ß's. The 
above is so simple that it may seem strange 
to devote much space to it; but in the case of 
the PDAF-BD the number of false alarms is 
controlled by the detection thresholding, and 
hence the answer is not straightforward. 

We begin by assuming that there is an un- 
derlying Poisson process with parameter A, 
which produces "points" at which detection 
decisions can be made. (This A is in gen- 
eral not the same as Xpdaf, since not all points 
produce detections. In fact, assuming the hy- 
pothesis model (3) and that the basic PDAF 
uses a detection threshold Tpdaf, we have A = 
Xpdaf eTpdaf ■) Assume that the Poisson process 
has produced an event with an innovation v\ 
then we have as the probability of a false alarm 

Pfa Pr(ialse alarm|i/)/(i/)dz/   (9) 

'#^l)TS^vk(l)-vldu 
.£±1 

V 

= F'T" p+i 

if V is sufficiently large. 
Now, assume that the underlying Poisson 

process has generated n points in the volume 
V. The probability that there are m threshold 
exceedances (false alarms) is binomial with pa- 
rameter Pfa, provided that n > m. That is, we 
have for the probability that there are m false 
alarms 

H(m) 
n\ 

„4nC m\(n — m)\ 
(P/.H1 - PfaY 

_   (XVPfar -Avf(AF)' f 

=     (>VPfa)m C-XVP,. (10) 

in which Pfa is given in (9). Note that VPfa 

is independent of V, as expected. Our final 
result: the number of false alarms under the 
new detection model is again Poisson, but with 
a modified parameter. 

2.3    Calculation of the ß's 

Assuming that at the present scan we have m € 
{0,1,...} threshold exceedances, then accord- 
ing to [1] we define the events 6 £ {0,1,..., m} 
such that 0 = i means that the ith measure- 
ment is target-generated and the others are 
false-alarms; and 0 = 0 that all measurements 
are false. We denote by ß(6) the probability, 
conditioned on all measurements at scan k (and 
naturally, implicitly, on m), that 8 is true. 

We first require the conditional observation 
probabilities 

/(zfc(Z) \9 = l,m) =     ,_ 1._ ,e-Wt>JV'»(') 
V^W\ 

and for p ^ I 
(11) 

f(zk(l) \0=p,m) 
Pr(FA at zk(l)\zk(l))f(zk(l)) 

Pr(FA 

oc 

2TT ^+TS* 

(12) 

in which "FA" refers to a threshold exceedance 
by a realization from the underlying (facti- 
tious) Poisson point process. This is partic- 
ularly interesting: under the new detection 
model any randomly-chosen false-alarm has a 
Gaussian distribution. For the standard PDAF 
model, this probability is naturally uniform. 

Overall, then, we get (see [1, 2]) 

ß(0)   =   c1/({zfc(0}£1|Ö = 0,m)     (13) 
xP(0 = 0\m)n(m) 
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-iE£i«*(0TtfrSfc]-i.*(i) 
=     C2- 

(^H^i) 
x(l-Pd) m! 

-XVP, fa 

and for 0 ^ 0 

W   =   <*f({Mimi\6,™)P(6\mMrn) 

C2- 

(VHir^l) 
e-l^(örs-vfc(ö) 

m—1 

Pd(AyP/a)(m-l)    AVP,, 
(m - 1)! 

(14) 

771 

where Pd and P/a are given by (7) and (9) 
respectively. Since these add to unity, it is 
simpler and computationally more appealing 
to write them as 

0(0) C3 
+ iyz/21_pd 

Pd 

\e-iJ2ir 

and for 6 ^ 0 

ß{0) 

-2-S p+1* 

c^-^W«***) 

(15) 

(16) 

Since the ß are probabilities, we must have 

EW = 1 (17) 
0=0 

which suffices to specify the normalizing con- 
stant C3. 

An illustration is plotted in figure 3, a plot 
of ß versus normalized innovation I/S

_1
I/ in 

the case that there is but one threshold ex- 
ceedance. Two items are of note. The first 
is that ßi is relatively large; but this is as it 
should be, since in effect the detection model 
is "pre-screening" the detections. The sec- 
ond is that ß(l) actually increases with as 
the distance from the predicted measurement 
increases.   This may appear anomalous, but 

v'S-'v 

Figure 3: An example of the value of ß(l) 
(the posterior probability that a threshold ex- 
ceedance is target-generated) given that m = 
1, for various signal to noise ratios (p). 

in fact given the thresholding a measurement 
more spatially "surprising" must have had a 
larger amplitude to exceed its threshold, and 
hence is apparently more likely to have come 
from the target. The case of two threshold ex- 
ceedances is explored in figure 4. 

3    Comparison 

In this section we compare the PDAF, the 
PDAF-AI, and the PDAF-BD. For our simula- 
tions we choose a two-dimensionally kinematic 
model with direct discrete-time process noise. 
According to the kinematic model we have 

F = 

H = 

Q  = 

f 1 At   0    0   ) 

° 1    0    0 
0 0    1   At > 

lo 0    0     1   j 

f 1 0   0   0 \ 
0   10/ to 

.? 

f   At4     At3 

4£ At2 
0 
0 

0 
0 <v 0       0^ 

0       0^ 

it4 

2 

At3 

2 
At2 
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Figure 4: An example of the value of ß(0) 
(above) and 0(1) (below), given that m = 2 
and v(2)TS~1v(2) = 2, for various signal to 
noise ratios (p). 

R   = fl   0 
I o  1 (18) 

Measurements are of position-only, and the 
model is in all respects linear. True detec- 
tions are generated along with an associated 
amplitude; thresholding of this amplitude de- 
termines whether or not there is a miss. Some 
notes and parameter values: 

• We have chosen At = 30 seconds, a fast 
but not-unreasonable scan rate for active 
sonar. 

• We have crm = 10,100 meters, correspond- 
ing to a constant-frequency pulse with 
length of the order of one-tenth and one 
second, respectively. 

• We explore process noises ap = .1,.01 
meter/second2. 

• We explore signal to noise ratios p = 6 and 
l2dB. 

• We explore various clutter densities, A e 
{10~5-5,10"6,10"6-5,10~7}. 

• We choose a track length T = 100 scans 
of data. 

• Tracks are initialized by two-point differ- 
encing. 

Targets begin their trajectories at scan k = 0 
with position coordinates (0,0) and velocity co- 
ordinates (5,5) meters per second, correspond- 
ing to 13.8 knots. A typical, but somewhat 
self-serving, track output is given in figure 5. 

Most studies of tracking performance are pa- 
rameterized by Pd and by the clutter return 
density A. In this case we cannot use the for- 
mer, since for the new approach Pd is not con- 
stant; hence we use the signal to noise ratio p 
instead. Each of the schemes takes as a pa- 
rameter the detection threshold, given simply 
by r for the PDAF and PDAF-AI, but in a 
more implicit fashion by r\ in the PDAF-BD. 
We have no particular insight at present as to 
how 77 should be chosen, hence we adopt the 
simple expedient that the aggregate probabil- 
ities of detection for all three schemes be the 
same, meaning 

77 = -(1+p) log [Pd(pdaf)((p + l)/p)nz] (19) 

from (7), and in which Pd(pdaf) = e-
r/(1+^. 

The explicit appearance of r here amplifies the 
fact that independent specification of A may be 
incompatible with am - there is in fact through 
crm an implied resolution cell grid at which 
threshold-exceedances are interrogated, and, 
for example, A = 10~5m~2 and am = 100m 
makes very little sense indeed. Thus, we have 
adopted the convention that 

■log[l2^A] (20) 

with the intuition that resolution cells be 
square and of side \/l2(Tm. Since with the 
probabilities of detection the same in all 
schemes we must have 77 < r, and since the 
Poisson process assumed for the PDAF-BD 
must be more dense than that assumed for the 
PDAF and PDAF-AI, our simulations generate 
a Poisson process with spatial density XeT~'n. 
For each clutter point so generated we also 
form an amplitude variate with distribution 

/(«) 
eV-a 

0 
a > 77 

a < 7] 
(21) 

which is thresholded using r for the PDAF and 
PDAF-AI, and using (6) for the PDAF-BD. 
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Figure 5: Example of track with p = 4, 
A = 10~6m-2, ap = 0.1, am = 100. The 
PDÄF loses track early; the PDAF-AI some- 
what later. The PDAF-BD holds track for the 
full 100 scans. 

The results are given in tables 1 and 2, re- 
spectively the in-track percentage and track- 
ing RMSE. A simulation is judged "in-track" 
if at the end of 100 scans the true and esti- 
mated positions are less than \/2(4crm) apart. 
The tracking error is the RMSE over the whole 
track for those simulations which are in-track 
at their conclusion. What we notice from ta- 
ble 1 is that the PDAF-BD has essentially the 
same tracking performance as the PDAF-AI, 
that in general considerably better than the 
PDAF - this is true except for a few very diffi- 
cult situations. This is also true for the RMSE, 
although in this case, since the RMSE is only 
calculated for those tracks which are good, the 
"straight" PDAF appears to perform well. It 
is arguable that the PDAF-BD has a slight ad- 
vantage over the PDAF-AI. This at first seems 
impossible, since the information given to the 
PDAF-AI should be a super-set of that given 
to the PDAF-BD; but we assume this is due 
to the fact that the thresholds r and rj have 
in no sense been optimized, and that given to 
the PDAF-BD may happen to be a little more 
advantageous. 

| «m 1 "V 1 P WB) X PD 1 AI 1 BD'l 
10 0.1 6 io-°» 0 0 0 
10 0.1 6 io-6 0 1 0 
10 0.1 6 10-b.» 0 s 0 
10 0.1 6 lo-* 0 11 0 
10 0.1 12 10-o.a 0 65 30 
10 0.1 12 10-« 0 66 68 
10 0.1 12 IQ-O.B s 64 68 
10 0.1 12 10-* 36 61 66 
10 0.01 6 10-o.» 0 71 71 
10 0.01 6 lO-" 1 62 63 
10 0.01 6 IO-"" 3 67 69 
10 0.01 6 lO"' 5 47 50 
10 0.01 12 io-*s 

94 95 98 
10 0.01 12 lO-" 93 94 98 
10 0.01 12 10-t>.!> 93 93 96 
10 0.01 12 10-' 92 92 95 
100 0.1 6 10-!>.i> 0 39 11 
100 0.1 6 lO-6 0 74 77 
100 0.1 6 IO-"" 0 81 78 
100 0.1 6 10-' 0 78 75 
100 0.1 12 JQ-b.b 0 73 77 
100 0.1 12 lO-6 87 91 99 
100 0.1 12 10_<>!> 91 93 99 
100 0.1 12 10-' 93 95 99 
100 0.01 6 10-5.5 76 97 88 
100 0.01 6 10_t> 88 99 99 
100 0.01 6 10-b.s 91 99 99 
100 0.01 6 10-* 94 98 98 
100 0.01 12 jO-s.s 96 97 100 
100 0.01 12 10-"* 99 99 100 
100 0.01 12 10_,>!> 100 100 100 
100 0.01 12 lo-* 1 100 100 100 

Table 1: The in-track percentage for various 
situations. The latter three columns refer to 
the PDAF, the PDAF-AI and the new PDAF- 
BD. 

4    Summary 

The usual target tracking model is of sep- 
aration between detection and tracking sub- 
systems. In the absence of information from 
the latter, the former has little choice but to 
do the best job it can: it provides Neyman- 
Pearson optimal performance, the most power- 
ful test subject to a constraint on false-alarm 
rate. If there is some information flow from 
tracker to detector, particularly in terms of 
predicted measurement location and associa- 
tion confidence (innovations covariance), then 
a Bayesian detector is. appropriate: then dif- 
ference is not in the statistic tested, but rather 
in the threshold. In fact, assuming that the 
prior probability is Gaussian (which fits with 
the PDAF assumptions, hence our use of this 
model) the threshold is proportional to the nor- 
malized innovation, and hence is lowest near 
where a detection is expected, at the predicted 
measurement. 

In the paper the threshold shape has been 
derived, and appropriate modification to the 
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"m. ff» PMB) ' \ M5E„- M5E„ ■ MSEk- 
10 0.1 6 10-K- — 276 — 
10 0.1 6 io-B — 467 — 
10 0.1 6 io-»0 — 834 — 
10 0.1 6 10-' — 1355 — 
10 0.1 12 io-"" — 103 121 
10 0.1 12 io-6 — 129 127 
10 0.1 12 10-e.o 149 159 141 
10 0.1 12 IO"7 209 190 160 
10 0.01 6 io-"" 33 68 63 
10 0.01 6 10_t> 59 95 85 
10 0.01 6 10-b.s 87 127 108 
10 0.01 6 io-' 123 176 152 
10 0.01 12 10-s>.s> 21 21 19 
10 0.01 12 IO-6 23 23 21 
10 0.01 12 io-"" 26 26 24 
10 0.01 12 io-7 28 29 26 
100 0.1 6 10-s.s — 225 314 
100 0.1 6 IO-6 — 284 243 
100 0.1 6 10-o.s — 367 324 
100 0.1 6 IO"' — 500 450 
100 0.1 12 10-5.5 195 145 207 
100 0.1 12 IO-" 173 154 147 
100 0.1 12 j0-t..i> 181 169 159 
100 0.1 12 io-' 194 188 174 
100 0.01 6 10-s.t> 122 105 118 
100 0.01 6 10_b 123 115 111 
100 0.01 6 JQ-b.S 142 133 127 
100 0.01 6 io-' 163 155 148 
100 0.01 12 jQ-5.5 100 92 96 
100 0.01 12 IO-6 92 91 88 
100 0.01 12 JQ-b.S 85 84 82 
100 0.01 12 io-'' 88 88 86 

Table 2: The RMSE for various situations. 
The latter three columns refer to the PDAF, 
the PDAF-AI and the new PDAF-BD. 

PDAF (we call it the "PDAF-BD") made. 
Simulation has revealed that the performance 
is considerably better than that of the PDAF, 
and is only slightly degraded relative to the 
PDAF-AI - that version of the PDAF appro- 
priate to possession of full amplitude informa- 
tion for all returns. 

We note: 

• Since, in effect, only detections close to 
the predicted measurement are allowed, 
the PDAF-BD is less of a computational 
load than the others. In fact, our simula- 
tions have shown this to be only a small 
difference. 

• As far as we are aware there is at present 
no detection system which allows non- 
constant thresholding, at least not on the 
scale proposed here. Thus, this work, if at 
all useful, is several generations ahead of 
its platform. We have no intention of try- 
ing to "over-sell" the idea, and hope that 
we do not seem as if we are. 

• As future work we intend to explore ma- 

neuver, particular the IMM. This should 
prove interesting since the different ma- 
neuver models should ideally use different 
thresholds. 

• As future work we intend to explore mul- 
tiple targets and multiple sensors. 

As to the last bullet above, the new scheme 
may prove particularly useful for detection fu- 
sion, since the information required to be com- 
municated among platforms is quite abbrevi- 
ated, and is limited to location (no amplitude). 
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Abstract - Computational requirements represent the main 
drawback of the Multiple Hypothesis Tracking (MHT) data 
association algorithm. To reduce these requirements, the 
number of hypotheses must be limited through the use of 
pruning methods. This paper presents a depth control 
pruning mechanism making hard decisions on the origin of 
input data elements contained in the hypothesis tree. 
Inherently, the MHT uses later input data to aid in 
evaluating prior correlation decisions. Ultimately though, a 
final decision has to be made. The depth control mechanism 
is used to transfer the assignment of an input data element 
from the "hypothetical" section of the hypothesis tree to the 
"definitive decision" section. The waiting period is 
determined by the number of target observation attempts 
made that can be used to resolve a particular assignment. 
The occurrence, the duration, the quality and the result of a 
target observation attempt are concepts discussed in the 
paper. Some depth control pruning simulation results are 
also presented. 

Keywords:   multiple   hypothesis   tracking, 
association, pruning, hypothesis tree 

1.0 Introduction 

From the point of view of tracking multiple targets 
in a cluttered environment, the data association process 
can make either hard decisions or soft decisions about 
which of a number of hypotheses best describes the 
origin of input data elements received from a sensor. A 
hard decision is a definitive assignment to one and 
only one origin, while a soft decision allows the data to 
be assigned to multiple origins, with each candidate 
assignment having a measure of uncertainty. The soft 
decision approach typically results in multiple 
association hypotheses being maintained until 
additional input data elements have been collected and 
there is enough information data available to reduce 
the uncertainty and to substantiate or refute the prior 
hypothetical assignments. In principle, this approach 
should lead to the most accurate association results. 
However, the computational requirements necessitated 
to retain multiple interpretations of the situation 
represent the main drawback of the standard 
(hypothesis oriented) Multiple Hypothesis Tracking 
(MHT) data association algorithm (Refs. 1-8). 

To reduce these computational requirements, the 
number of data association hypotheses must be limited 

(sometime sacrificing optimal Bayesian inference) 
through the use of hypothesis pruning and combining 
methods. In terms of pruning, both the width and the 
depth of the hypothesis tree (i.e., the number of 
hypotheses maintained and the number of levels in the 
tree respectively) can be controlled. This paper 
presents a depth control pruning mechanism that forces 
hard (or definitive) decisions on the origin of input 
data elements contained in the hypothesis tree. 

The paper is organized as follows. Section 2.0 
discusses the hypothesis tree of the MHT and the 
dynamic data structure used to implement it. Section 
3.0 gives a brief introduction to width pruning while 
section 4.0 describes the depth control pruning 
mechanism in length. Section 5.0 discusses the concept 
of target observation attempts and, finally, section 6.0 
presents some depth control pruning simulation results. 

MHT,  data 2.0 The hypothesis tree 

Central to the MHT approach is the formation of a 
hypothesis tree. The discussion in this paper focuses 
on the standard MHT algorithm implementations (i.e., 
those that support explicit hypothesis propagation over 
time as in Refs. 1-2) as opposed to the 
implementations based on structured branching 
(SB/MHT, Refs. 3-8). 

When there is no limitation, all possibilities 
concerning the origin of received input data elements 
are enumerated as alternative hypotheses organized in 
a tree (Fig. 1). These hypotheses contain groupings of 
some input data elements into tracks, and the 
identification of other such elements to be false targets 
(Refs. 1-2). As a new set of input data elements is 
received, a new set of data association hypotheses is 
formed by extending the existing prior hypotheses of 
the tree with the feasible correlation hypotheses that 
account for all possible origins of the new input data 
elements. 

The growth of hypotheses must however be 
limited if the MHT implementation is to be feasible. 
Hence, before a new hypothesis is created, the 
candidate track must typically satisfy a set of 
conditions (e.g., require that an input data element 
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satisfies a gating relationship before an assignment to a 
track is made, etc.). 

»ata Set Data Set Data Set 
"k-2" "k-1" "k" 

ml m5 m6 

___—-EA—-— —• HO 
FA^-—-*" 

P6 —• H6 

FA/ 
P5~"~~--». 

P6          " 

—• H3 

—• H9 

FA. 

P1(T1) 

FA 

P6 

FA 

HI 

T1(T2) 

P5 

P6 

FA 

H10 

Figure 1. A typical hypothesis tree 

2.1 Dynamic data structure 

Figure 2 illustrates how a dynamic data structure 
using pointers and other software constructions can be 
used to represent the actual architecture of a typical 
hypothesis tree (such as the one presented in the 
previous subsection). 

Figure 2. Typical hypothesis tree implementation 

The data structure is made of three main types of 
data records: input data element, affectation and tree 
node. Each input data element record corresponds to 
one measurement. Each affectation data record is used 
to store one possibility for the interpretation of the 
origin of a measurement (i.e., false alarm, new target 
or track update). Considering Fig. 2 for example, 
measurement ml is "affected" to the potential track PI 
in hypothesis H7 while it is "affected" to a false alarm 
in hypothesis H9. 

There are three kinds of tree nodes: root, sub- 
interpretation and hypothesis. Since a data association 
hypothesis is indeed a unique interpretation of the 
origin of each measurement, the nodes Of the tree are 
considered to be sub-interpretations, each one being 
applicable to a specific measurement. Hence, a given 
hypothesis is represented in the data structure as one 
particular sequence of sub-interpretations (considered 
together as one possible global interpretation of the 
origin of all the received data) that are linked from the 
root node up to a special sub-interpretation node 
(called hypothesis) at the other end of the tree. 

Each input data element record is linked to one or 
more affectations representing the possibilities for this 
measurement. Each affectation is linked to only one 
input data element. However, an affectation can be 
linked to one or more tree nodes and one or more child 
affectations. A child affectation is an affectation of a 
measurement to the update of a previously established 
track. This concept of parent-child affectations is used 
to represent the different track families of the 
hypothesis tree. 

A level exists in the hypothesis tree for each input 
data element. Levels may also be created to 
accommodate targets whose existence is known a 
priori. Fake "input data elements" provided by the 
initialization procedure are then affected to these 
known targets. The level of each sub-interpretation in 
the tree is indicated between brackets (level 0 being 
the root level), and each sub-interpretation has also ä 
number that follows the hypothesis numbering scheme 
up to that level (Fig. 2). 

Note that the hypothesis numbering follows the 
scheme described in Refs. 1-2. One important aspect 
of the standard numbering scheme is that an internal 
system track, once created by the assignment of an 
input data element to it, can only progress towards its 
deletion by the track management system (as a result 
of a decrease in its quality, or because of the pruning 
of some relevant branches of the hypothesis tree). This 
is so because the track will keep its number (the one 
that has been used at its creation) only if it is not 
updated; the internal track number will change 
(thereby creating a "new" internal system track) as 
soon as the track is considered updated in any given 
hypothesis. 

3.0 Width pruning 

If implemented without severe limitation 
mechanisms, the MHT algorithm requires an ever- 
expanding memory as more data are received and 
processed. Hence, the growth of the hypothesis tree 
must clearly be limited for a feasible implementation 
on  a computer  (Refs.   1-2).  The goal  is  a data 
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association algorithm that requires a minimum amount 
of computer memory and execution time while 
retaining nearly all the accuracy of the optimal 
procedure. 

As discussed above, the hypotheses may be 
considered as branches of a tree. The hypothesis 
reduction techniques may thus be viewed as methods 
of either pruning or binding together these branches. In 
terms of pruning, both the width and the depth of the 
hypothesis tree (i.e., the number of hypotheses 
maintained and the number of levels in the tree 
respectively) can be controlled. Reference 2 describes 
four width-pruning approaches in details (i.e., 
probability, probability sum and ratio of probabilities 
thresholding, and fixed number). 

4.0 Depth control pruning 

Inherently, the MHT uses later input data to aid in 
evaluating difficult prior correlation decisions 
concerning prior input data. Hence, for each new input 
data element, the MHT generates soft association 
decisions and then waits (i.e., defers the final decision 
as to the right assignment) until further observations 
resolve the matter as best as possible. Based on this 
fundamental principle, one could be tempted to let the 
hypothesis tree grow forever (i.e., retain all 
hypotheses) with the conviction that the bigger the tree 
is (i.e., the longer the waiting period is), the better the 
information available is to make an educated decision 
on the origin of a particular input data element. 
Ultimately though, a final, hard decision has to be 
made for the system to be practical. This is the main 
consideration behind the depth control pruning 
mechanism discussed in this paper. That is, it is useless 
to accumulate evidences about the occurrence of an 
event if no decision is made about it at the end of the 
day. 

This hard/soft decision concept leads directly to 
the notion of hard and soft zones in the hypothesis 
tree. A particular tree level is thus said to be in the 
"soft decision zone" of the hypothesis tree when there 
are multiple alternatives for the interpretation of the 
origin of the corresponding input data element. When 
there is only one option left for the explanation of the 
origin of an element, then the corresponding level is 
said to be in the "hard decision zone" of the hypothesis 
tree. Figure 3 is a graphical illustration of this zone 
concept. Note, however, that the situation depicted in 
Fig. 3 (i.e., hard zone on the left and soft zone on the 
right) is purely academic. Plausibly, since an effort is 
made to keep the arrival sequence of the input data 
elements intact in the tree, the definitive assignments 
and the hypothetical affectations would be mixed and 
spread over the entire length of the data structure in a 

realistic example. This has no consequence on the 
results. 

Figure 3. The hard and soft zones concept 

In view of the considerations above, the depth 
control pruning mechanism is a set of rules used to 
transfer (logically only) the interpretation of the origin 
of an input data element from the hypothetical (or soft) 
decision zone of the hypothesis tree to the definitive 
(or hard) decision zone. One should note that, although 
the assignments attached to the hard decision zone are 
final, there is a reason to keep the input data elements, 
affectations and tree nodes in this zone for some time 
after they have been transferred by the depth control 
procedure. Any affectation must be kept in the 
hypothesis tree (whatever the zone it is in) for as long 
as the track it represents is still "reproductive". By 
definition, a reproductive track is one that can still be 
considered for association with new input data from 
the sources. Therefore, a reproductive track can 
eventually generate new tracks, which are considered 
as its "children", and the affectation matching such a 
track must thus be kept to ensure the consistency of the 
growth of the hypothesis tree. 

A track that is marked for deletion by the track 
management logic is not considered anymore for 
association with new input data from the sources; such 
a track is, by definition, a "sterile" track. Note that a 
track may become sterile as its quality falls below 
some minimum or as a result of a pruning operation on 
the hypothesis tree (i.e., when the only hypotheses left 
in the tree are the ones where the track has already 
been updated with an input data element). The rule for 
a sterile track is that it must be kept in the hypothesis 
tree if it is still in the soft decision zone of the tree 
(since a final decision about the best interpretation of 
the origin of the corresponding input data element has 
not been made yet). Hence, an affectation (and the 
related input data element and tree node) can be 
ultimately removed from the tree if 1) it is in the hard 
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decision zone and 2) the corresponding track becomes 
sterile. In a sense, this last pruning operation is the 
ultimate "depth control" step limiting the size of the 
overall tree (i.e., not only the size of the soft zone). 

The decision to transfer a tree level from the soft 
zone to the hard zone can be based on the monitoring 
of discrete or continuous parameters. For the discrete 
version, the waiting period for triggering the depth 
control pruning mechanism is determined by the 
number of target observation attempts made that can 
be used to resolve a particular assignment. That is, the 
waiting period is set by the observation attempt depth, 
not by the physical depth of the hypothesis tree. 

The physical depth is useless to settle a correlation 
conflict between different tracks for a given input data 
element if none of the other data elements has 
something to do with the one being resolved. With a 
scanning sensor for example, if 10 observations were 
received at the end of a given scan, then the hypothesis 
tree will be augmented with 10 hew levels. In such a 
case, although the tree may be considered as "deep", 
no truly educated decision can be made about any 
assignment of the 10 new observations. The 10th 

observation of the data set doesn't tell anything about 
how the Is' should be interpreted. And this is true of 
any of the 10 observations. However, if these 
observations were received in 10 distinct scans, then 
the reception of say the 6th observation could help with 
the resolution of the assignment of say the 1st. 
Similarly, the reception of say the 10th observation 
could help with the decision on the explanation of the 
origin of say the 6*. This is so because later scans 
constitute additional target observation attempts that 
have been made, each one producing some result (hit 
or miss), and that can thus be used to substantiate or 
refute prior data associations that are still considered 
hypothetical. 

With respect to the actual implementation, a hard 
decision is made at one level of the tree (i.e., for the 
explanation of the origin of a specific input data 
element) when all affectations at this level have 
received a prescribed number of target observation 
attempts (a configurable parameter). When this is the 
case, the affectation having the highest likelihood (as 
determined by the sum of the likelihood of all 
hypotheses ensuing from this affectation) is retained as 
the best, final assignment for the input data element. 
All hypotheses linked to the other affectations of the 
element are then pruned from the tree. This procedure 
greatly reduces the number of hypotheses to be 
maintained. 

The mechanism described above requires that a 
count be kept for an affectation (i.e., for the track 
created by the affectation) of the number of subsequent 
observation attempts that have been made and that are 

relevant to this affectation. The results of these 
attempts (hits or misses) are reflected in the hypothesis 
tree by the actual hypotheses following the affectation, 
and their likelihood. 

Obviously, the higher the number of sources 
reporting on a target is (i.e., the higher the observation 
attempt rate is), the faster hard decisions can be made 
on the affectations. This is an immediate benefit of 
sensor data fusion. 

5.0 Target observation attempts 

The notion of "target observation attempts" is at 
the heart of any track management system and it is also 
the key concept behind the depth control pruning 
mechanism. A target observation attempt is defined as 
an opportunity to acquire information for the 
maintenance of a track on a hypothesized target entity. 
The occurrence, the duration, the quality and the result 
of a target observation attempt are important concepts 
that are discussed next. 

5.1 Observation attempt occurrence 

Some logic must determine when target 
observation attempts will occur (or should have 
occurred). This is a very important issue that has 
multiple facets: the use of scanning type sensors (some 
potentially reporting data based on a spatial 
decomposition into sectors), the use of multiple 
sensors, the use of agile beam sensors (e.g., 
electronically scanned antennas), etc. Taking into 
account all of the aspects above, a mechanism is 
required to determine the observation opportunities for 
each individual track with respect to each individual 
source. A very accurate model could quickly become 
very complex. Note, however, that the complexity of 
this model must not be greater than the one of the 
MHT implementation that one is trying to simplify. 

5.2 Observation attempt duration 

Very often, there is a significant duration 
associated with any target observation attempt when 
using a scanning type of sensor. This time interval 
results from the uncertainty on the estimated 
kinematics properties of the targets. The scanning 
sensor must sweep the totality of the area of 
uncertainty for a target before an observation attempt 
occurrence is declared for this target. 

5.3 Observation attempt quality 

It is very important to assess the quality of an 
observation attempt in order to derive a meaningful 
interpretation of the result of this attempt. For 
example, one should not be surprised when a particular 
target is not detected if the observation conditions for 
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this target are really bad. Similarly, if the observation 
conditions for a particular target are really bad, then 
one should be surprised if this target is actually 
detected; the received input data element is probably a 
false alarm in this case. Finally, if the observation 
conditions for a particular target are really good, then 
one should question the existence of a hypothetical 
target if this target is not detected. 

Factors typically taken into account in the 
evaluation of the quality of observation attempts 
include: 

Sensor-Target Geometrical Factors: A target may 
be momentarily obscured by terrain obstacles (e.g., the 
earth curvature, a mountain, etc.) or it may have left 
the coverage of the sensor (e.g., the elevation 
coverage). If a sector based report grouping 
mechanism is used, it may happen that a target is not in 
the current sector of interest (e.g., the target may have 
already been observed in a previous sector, or it may 
eventually be observed in a subsequent sector). These 
factors have an impact on the probability of detection 
value (PD) and the density of new objects per attempt 
per unit of volume (i.e., ßOT and ßn-). Note that the 
uncertainty on the estimated kinematics properties of a 
target must be taken into account with the geometrical 
factors. 

Sensor System and Environmental Factors: Sensor 
configuration parameters (transmitter power, scan 
mode, blind zones, etc.) and environmental conditions 
(e.g., sea state, rain, etc.) affect sensor performance 
(i.e., PD). 

Track Duration/Length Factors: A target may have 
left the coverage of the sensor (e.g., a target with a 
radial outbound flight profile) or may have 
disappeared (e.g., the target has been destroyed). 

Hence, for each observation attempt that is made, 
some process must determine if the attempt is a good 
one or not. Note that the concepts of occurrence and 
quality of observation attempts are tightly coupled. 
Should the occurrence of an attempt with a null quality 
still be considered an occurrence? Once again, the 
complexity of the quality model must not be greater 
than the one of the MHT implementation that one is 
trying to improve. 

5.4 Observation attempt result 

Basically, there are two possibilities for the result 
of an attempt: 

No Detection: The observation attempt has been 
unsuccessful. This is called a "missed observation 
attempt", or, more simply, a miss. 

Sensor Data Available: The sensor has provided 
some data as a result of the attempt. Generally 
however, there is ambiguity as to the origin of the 
sensor data provided. An input data element may 

originate from a target that was already known and 
monitored (the element could thus be used to update 
the corresponding track), or it may originate from a 
new object (i.e., a new target previously undetected or 
a false alarm). 

In any case, one has to assess the result taking into 
account the quality of the attempt that has been made. 

6.0 Depth control simulation results 

Two simulation examples have been produced, 
using the CASE_ATTI (Concept Analysis and 
Simulation Environment for Automatic Target 
Tracking and Identification) test bed developed at 
Defence Research Establishment Valcartier (DREV), 
to illustrate the behavior of the depth control pruning 
mechanism. This test bed provides the algorithm-level 
test and replacement capability required to study and 
compare the technical feasibility, applicability and 
performance of advanced, state-of-the-art sensor 
fusion techniques (Ref. 9). 

6.1 First example: depth control impact 

The first example has been designed to illustrate 
the impact of the depth control pruning mechanism on 
the computer resources requirements for the MHT. A 
very simple target-tracking scenario has been defined 
for this example. The scenario features two targets that 
appear one after another to illustrate the growth and 
decay of the hypothesis tree. The first target appears 
after 50 s of simulation. Its initial position is x = - 
31.25 km, y = 25 km from the origin, at an altitude of 
1 km. The target then travels along the x-axis (positive 
direction) at a constant speed of 250 m/s for 100 s. It 
then disappears from the simulation. After another 50 s 
without a real target, the second target appears at t = 
200 s, x = 6.25 km, y = 25 km, at an altitude of 1 km. 
It also travels along the x-axis (positive direction) at a 
constant speed of 250 m/s for 100 s. The second target 
then disappears from the simulation. After another 50 s 
without a real target, the scenario ends at t = 350 s. 

During the whole scenario (i.e., from 0 to 350 s), a 
simulated scanning sensor, located at the origin, 
samples the environment at a rate of 60 RPM. This is 
an "academic" type of sensor simulation where the 
probability of detection for the targets has been set to a 
constant value of 1. Hence, when a target is present, it 
is detected and a measurement of the target position is 
produced once every second. The simulated sensor 
also generates false measurements, uniformly 
distributed in the overall coverage of the sensor, at an 
average rate of one per scan. 

The resulting simulated data, shown in Fig. 4, was 
used twice to feed a target tracking system running the 
MHT. The track confirmation logic was set to three 
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hits out of five attempts, while the track deletion 
criteria was set to 10 s without a track update. In the 
first run, the Depth Control Metric Threshold (DCMT) 
of the depth control pruning mechanism was set to 5 
observation attempts. In the second run, the same 
threshold was set to 1. In both cases, the tracking 
system successfully formed a firm, accurate track on 
each of the two targets, without generating any false 
track. However, the resources required by the MHT 
were not the same for the two runs. 

*               •                       .          •       •. 
"...■   '                         • " .   • 

Figure 4. Simulated data for the first example 

Three parameters, i.e., the depth of the hypothesis 
tree, the number of hypotheses maintained and the 
number of internal system tracks stored in the track 
database, were monitored for each run. Figure 5 shows 
the evolution of the depth of the hypothesis tree during 
the first run. Both the depth of the hard decision zone 
alone and the total depth of the tree (i.e., hard and soft 
zones) are shown. One can clearly identify on the 
graph the two time intervals where the real targets 
were present in the scenario (i.e., [50, 150] and [200, 
300]). The number of tree levels augmented 
significantly during these intervals when the tracking 
system was not fed with false measurements alone. 
The maximum number of tree levels attained during 
the run was 16 (the minimum was obviously 1), while 
the average number of levels was 8.44. 

Note that the number of levels in the hard decision 
zone was exactly 1 when a real target was present 
(indeed, it took 5 s after the appearance of the target to 
attain 1, and it took 10 s after its disappearance to go 
back to 0), while it is 0 when the tracking system 
processes only false measurements. This is in line with 
the fact that, in the MHT implementation used, when a 
false alarm affectation is selected (by the hard decision 
procedure) as the most likely interpretation of an input 
data element, then it is immediately removed from the 
tree instead of being transferred into the hard zone. It 
is also in line with the fact that an affectation to the 
real target becomes sterile as soon as all the branches 
of the tree where it could have a child (i.e., the 

subsequent branches with false alarms or assignments 
to other tracks) are pruned. Such an affectation is thus 
also removed from the tree as soon as it is transferred 
into the hard zone. 

""""HardDepth 
 TotalDepth 

100 200 300 

Time (sec) 

Figure 5. Tree depth (DCMT = 5) 

50   100   150   200   250   300   350   400 

Time (sec) 

Figure 6. Hypotheses maintained (DCMT = 5) 

Figure 7. Tracks stored (DCMT = 5) 

Figure 6 shows the evolution of the number of 
hypotheses maintained in the tree during the first run. 
Again, one can clearly identify on the graph the two 
time intervals where the real targets were present. The 
maximum number of hypotheses allowed in the tree (a 
configurable saturation parameter of the MHT) was set 
to 10,000. This maximum was reached a number of 
times during the intervals where the real targets were 
present. Note that the maximum allowed could have 
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been set to a much lower value without degrading the 
tracking performance. However, we wanted to 
illustrate how an uncontrolled MHT can be resource 
demanding. Hence, the maximum number of 
hypotheses attained during the run was 10,000 (the 
minimum was obviously 2), while the average number 
was around 2400. Note that during the portions of the 
simulation without a target, the number of hypotheses 
maintained was always a power of 2 (e.g., 16, 64, 
1024, etc.), which was not the case in the other 
segments. 

Finally, Fig. 7 shows the progress of the number 
of internal system tracks stored during the first run. 
The maximum number of tracks was 100 (the 
minimum was obviously 1, a new potential track), 
while the average number was around 32. During the 
intervals where the real targets were present, the 
average number of tracks was around 40. 

Figures 8 to 10 show the evolution of the same 
three parameters for the second run, with the DCMT 
set to 1 observation attempt. One can without a doubt 
see that the depth control pruning procedure greatly 
reduces the computer resources requirements for the 
MHT; the size of the hypothesis tree maintained has 
been significantly reduced. Figure 8 shows the 
progress of the depth of the hypothesis tree during the 
second run. It is not as easy to identify on the graph the 
two time intervals where the real targets were present. 
The maximum number of tree levels attained was 8 
(again the minimum was obviously 1), while the 
average number of levels was 3.33. Note that the 
number of levels in the hard decision zone of the tree 
fluctuated more than in the first run, reaching a peak 
value of 3 while maintaining an average value close to 
1. 

The number of hypotheses maintained (Fig. 9) has 
also been radically reduced, and no saturation 
condition was observed. The maximum number of 
hypotheses maintained during the second run was 96 
(again the minimum was obviously 2), while the 
average number was around 10. Note that during the 
portions of the simulation without a target, the number 
of hypotheses maintained was not always a power of 2, 
reflecting the higher difficulty of the MHT to maintain 
the data association accuracy. Finally, Fig. 10 shows 
the progress of the number of internal system tracks 
stored during the second run. The maximum number of 
tracks was 11 (the minimum was obviously 1, a new 
potential track), while the average number was around 
5. During the intervals where the real targets were 
present, the average number of tracks was around 6. 

As a final remark for the first example, note that 
the edge of the transitions from one interval to the 
other (target, no target) were not as sharp in the second 
run with the DCMT set to 1 as they were in the first 

run with the DCMT set to 5. In a sense, this reflects 
the association discrimination power of the MHT when 
it is allowed to keep more information to make the 
final decision. 
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Figure 8. Tree depth (DCMT = 1) 

Figure 9. Hypotheses maintained (DCMT =1) 
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Figure 10. Tracks stored (DCMT = 1) 

6.2 Second example: optimal DCMT setting 

The second example has been designed to 
illustrate the trade-off between the data association 
accuracy and the computer resources requirements for 
the MHT. Again, a very simple target-tracking 
scenario was defined for this example. The scenario 
features two closely spaced targets flying in parallel 
(with a separation of 600 m), along the x-axis (positive 
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direction), at about 25 km from the sensor. The two 
targets were observed during 100 s by a simulated 
scanning sensor located at the origin and having a scan 
rate of 60 RPM. The probability of detection was set 
to 0.8. The standard deviations of the measurement 
errors for the simulated sensor were 500 m in range 
and 0.02 radian in bearing. No false alarms were 
generated. 

Figure 11. Simulated data for the second example 

Figure 12. Tracking results: nearest neighbor 

Figure 13. Tracking results: MHT with DCMT = 1 

Figure 14. Tracking results: MHT with DCMT = 5 

The resulting simulated data shown in Fig. 11 
were used three times to feed a target tracking system 
running a nearest-neighbor (NN) data association 
algorithm for the first run, and the MHT for the last 
two runs (with the DCMT set to 1 and 5 respectively). 
The track confirmation logic was set to three hits out 
of five attempts, while the track deletion criteria was 
set to 10 s without a track update. 

Figures 12 to 14 show the tracking results for the 
three runs. One can see that the tracking system using 
the NN algorithm (JVC technique) had a hard time 
tracking the two targets (Fig. 12). Three firm tracks 

were established on the two targets. In the first half of 
the run, the tracks were very unstable. During the last 
portion of the run, two tracks followed the same target, 
while the third one diverged from the other target. 

Figure 13 shows the tracking results for the 
second run, with the DCMT set to 1 for the MHT. This 
time, two tracks were established. However, one of the 
tracks was only confirmed after about 50 s of 
simulation, while the other exhibited a track seduction 
behavior (i.e., the track initially followed one target, 
then the other target, then the first target again, etc.). 
The maximum number of tree levels attained during 
this run was 4 while the average number of levels was 
around 3. The maximum number of hypotheses 
attained was 20 while the average number was around 
9. The maximum number of internal tracks was 14 
while the average number was around 10. 

Finally, Fig. 14 shows the tracking results for the 
third run, with the DCMT set to 5 for the MHT. In this 
case, the tracking system successfully tracked the two 
targets for the whole duration of the run, without 
generating any false track. The maximum number of 
tree levels attained during the third run was 9 while the 
average number of levels was 6.6. The maximum 
number of hypotheses attained was 100 (i.e., the 
saturation condition set for this run) while the average 
number was around 58. The maximum number of 
tracks was 166 while the average number was around 
100. 

This example clearly demonstrated that there is a 
trade-off between the data association accuracy (and 
consequently the tracking stability and accuracy) and 
the computer resources requirements of the MHT. An 
optimal setting for the DCMT parameter remains to be 
found that would result in a balance between tracking 
performance and resources utilization. 

7.0 Conclusion 

To reduce the computational requirements of the 
MHT data association algorithm, the number of 
hypotheses must be limited through the use of pruning 
methods. This paper presented a depth control pruning 
mechanism making hard decisions on the origin of 
input data elements contained in the hypothesis tree. It 
is used to transfer the assignment of an input data 
element from the soft decision zone of the hypothesis 
tree to the hard decision zone. The waiting period is 
determined by the number of target observation 
attempts made that can be used to resolve a particular 
assignment. Obviously, the higher the number of 
sources reporting on a target is (i.e., the higher the 
observation attempt rate is), the faster hard decisions 
can be made on the affectations. This is an immediate 
benefit of sensor data fusion. The occurrence, the 

508 



duration, the quality and the result of a target 
observation attempt are concepts that were discussed 
in the paper. A model is required to determine the 
observation opportunities for each individual track 
with respect to each individual source, and to evaluate 
the quality of the attempts. However, a very accurate 
model could quickly become very complex. Clearly, 
the complexity of this model must not be greater than 
the one of the MHT implementation that one is trying 
to improve. 

Some depth control pruning simulation results 
were presented. Two simulation examples have been 
produced using the CASE_ATTI test bed developed at' 
DREV. The first example has been designed to 
illustrate the impact of the depth control pruning 
mechanism on the computer resources requirements 
for the MHT. Results showed without a doubt that it is 
possible to greatly reduce the computer resources 
requirements for the MHT with the depth control 
pruning procedure while, in some conditions, keeping 
the accuracy of the tracking process. In particular, it is 
manifest that if the depth of the tree is well controlled, 
then the width pruning mechanisms may never have to 
be used (i.e., the saturation conditions may potentially 
never be met). 

However, the second simulation example 
presented showed that a trade-off between the data 
association accuracy (and consequently the tracking 
stability and accuracy) and the computer resources 
requirements of the MHT has to be made when the 
situation portrays high potential for correlation 
ambiguities. 

Further work is required to better characterize the 
depth control pruning mechanism in order to find the 
optimal depth of observation attempts that would 
maximize the data association accuracy and minimize 
the resources requirements. The option to adaptively 
select the optimal depth for a given environment must 
also be investigated. 
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Abstract In this paper we present a fast 
multidimensional data association technique based 
on clustering and assignment algorithms for 
multisensor-multitarget tracking. An important 
part of a multisensor-multitarget tracking algorithm 
is data association and assignment-based methods 
have been shown to be very effective for this pur- 
pose. In assignment, candidate assignment tree 
building consumes 95%-99% of the CPU time. In 
this paper, we present the development of a fast data 
association algorithm, which partitions the problem 
into smaller sub-problems, resulting in significant 
computational savings. This hierarchical cluster- 
ing algorithm is illustrated on 2- and 3-dimensional 
full-position measurements (active sensors) and on 
angle-only measurements (passive sensors). Simu- 
lation results show that the computational load can 
be reduced by 20-80 times, depending on sensor type 
and problem sparsity, over the standard multidi- 
mensional assignment approach without clustering. 

Keywords: Multitarget tracking, data association, 
multidimensional assignment algorithms, cluster- 
ing, angle-only tracking. 

1    Introduction 

The problem of data association, that is, decid- 
ing which measurement came from which tar- 

•Supported by ONR Grant N00014-97-1-0502 and 
AFOSR Grant 49620-97-1-0198. 

get in a multitarget tracking problem in the 
presence of false alarms and missed detections, 
has been studied extensively. Some of the pro- 
posed solutions to this complex problem in- 
clude the Nearest Neighbor algorithm, Proba- 
bilistic Data Association (PDA), Multiple Hy- 
pothesis Tracking (MHT) and assignment [2]. 
These algorithms vary widely in their complex- 
ity and the resulting performance. 

Data association using a multidimensional 
algorithm, where the measurements in the last 
S scans are associated with the list of tracks (S 
lists — 5-dimensional association, denoted as 
S-D), has been shown to be a practical and fea- 
sible alternative to MHT without the exhaus- 
tive enumeration. In assignment, the associ- 
ation between the lists of measurements and 
the list of tracks is formulated as a global dis- 
crete optimization problem, subject to certain 
constraints, where the objective is to minimize 
the overall cost of association. While finding 
the optimal assignment is an NP-hard prob- 
lem for S > 2, a number of near-optimal modi- 
fications with (pseudo-) polynomial complexity 
have been proposed [3]. 

The major challenge to overcome in the S-D 
assignment for tracking is that of solving the 
ensuing NP-hard multidimensional assignment 
problem. In particular, an algorithm that de- 
termines the optimal solution is not only ardu- 
ous, but also impractical for even fairly small- 
sized problems.   A multistage Lagrangian re- 
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laxation approach can be used to solve the S-D 
assignment problem as a series of 2-D assign- 
ment problems, which are solvable in (pseudo-) 
polynomial time and is thus fast. However, for 
fairly large scenarios with many sensors and 
hundreds of targets, this too can become in- 
efficient. S-D assignment tree was also used 
in passive (angle-only) multisensor-multitarget 
direction finding problems [3, 5], where candi- 
date tree building took about 99% of the time. 
This provides the motivation for finding ways 
to build the candidate assignment tree more 
efficiently. 

In this paper, we present an efficient tech- 
nique based on clustering to significantly re- 
duce the CPU time of the S-D assignment algo- 
rithm by partitioning the assignment problem 
into smaller subproblems. A clustering tech- 
nique is used to screen for improbable candi- 
date associations and reject them while form- 
ing the candidate assignment tree resulting in a 
smaller candidate tree. Solutions based on the 
clustering approach are developed for different 
types of sensors, namely, for passive (angle- 
only) and active (full position) sensors in two 
and three dimensional space — different sen- 
sor configurations require different metrics for 
forming the clusters. 

This paper is organized as follows. In Sec- 
tion 2, the data association problem via mul- 
tidimensional assignment is discussed. In Sec- 
tion 3, the hierarchical clustering approach for 
active and passive sensors is presented. Simu- 
lation results for different target-sensor config- 
urations are given in Section 4. 

2    Assignment Algorithm 

In a multisensor-multitarget scenario, we have 
an unknown number of targets, which can be 
either mobile or stationary, in a surveillance 
region and a known number of sensors observ- 
ing different areas of this region at different 
times. The sensors, which typically have non- 
unity detection probabilities, can be on mov- 
ing platforms or fixed. In either case, it is as- 
sumed that their locations are known at any 

time. The sensors can be either active, i.e., full 
position measurements (polar or Cartesian) are 
available or passive, i.e., angle-only or line-of- 
sight (LOS) measurements are available. For 
data association with S-D assignment prob- 
lems, S synchronized scans (or frames or lists) 
of measurements are used in the static case, 
while for dynamic problems (S — 1) consecu- 
tive (most recent) scans of measurements are 
used together with the list of tracks — in both 
cases the association is among S lists of data. 

The goal is to associate the measurements 
and estimate the target states in terms of po- 
sition and possibly velocity and acceleration. 
In S-D assignment, the data association is for- 
mulated as an optimization problem where the 
objective is to minimize the total cost of as- 
sociating the measurements subject to certain 
feasibility constraints. The cost of each candi- 
date association is usually calculated based on 
the state-to-measurement relationship with the 
help of a state estimator [2]. The 5-D assign- 
ment algorithm finds the most likely set of S- 
tuples such that each measurement is assigned 
to at most one track (target), or declared false, 
and each track receives at most one measure- 
ment from each list. When a track is not asso- 
ciated with any of the received measurements 
in a scan, it is said to have been associated 
with the "dummy" measurement. For exam- 
ple, when a candidate association does not con- 
tain any measurement from a scan (list), it 
is associated with the "dummy" measurement 
from the list. 

Though finding the best candidate assign- 
ment is the most important phase of data asso- 
ciation, it typically takes only about 5% of the 
CPU time when compared with the time taken 
for forming the candidate assignment tree. For 
example in [3] and [5], where multisensor- 
multitarget angle-only tracking was consid- 
ered (using synchronized frame from several 
sensors1) the cost of each candidate associa- 

1This is a static association resulting in full position 
"composite measurements", which then have to be asso- 
ciated across time by the dynamic associator/estimator. 
This static association problem is the most difficult one 
because its dimension is the number of sensors (7 in 
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tion is obtained by solving a hypothesis test- 
ing problem and a generalized likelihood ratio 
is derived. 

Most of the computing time is spent on max- 
imizing the negative log-likelihood function op- 
timized via a Conjugate Gradient algorithm, 
such as the Fletcher-Reeves or Polak-Ribiere- 
Polyak Algorithm, which takes 95% of the com- 
putation time. Note that in order to evaluate 
the total cost of association, one needs to eval- 
uate the negative log-likelihood ratio and then 
maximize it for every possible candidate associ- 
ation, i.e., all combinations of measurements. 
Thus if we have a scenario with 3 lists with, 
say, 10 measurements each (including a dummy 
measurement to handle a missed detection), we 
need to compute 1000 (103) possible candidate 
associations and hence 1000 cost evaluations 
(1000 maximizations of the log-likelihood func- 
tions) . We can limit the number of Conjugate 
Gradient maximizations, and thus reduce the 
time complexity of the whole algorithm, by re- 
moving unlikely candidate associations using 
a gating method, for example. A chi-square 
validation test is used to reject candidate as- 
sociations that fall outside the validation gate. 
This test rejects those combinations which give 
goodness of fit inconsistent with the noise co- 
variances (acceptance interval space) [2]. In 
this paper, the idea of pruning the candidate 
association tree is taken a step further. A clus- 
tering algorithm is used to select only those 
candidate associations that are most likely to 
be matched together using a Euclidean dis- 
tance criterion. 

3    Clustering Algorithm 

The clustering technique used to prune the 
number of candidate associations is a hierarchi- 
cal algorithm which groups the measurements 
according to two parameters: a distance metric 
and the sensor-origin of the measurement. The 
distance metric, which can be the Euclidean 
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Each dotted ellipse 
represents one Supercluster 
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Figure 1: Cluster formation with multisensor- 
multitarget data 

distance between two points or two angles mea- 
surements, decides which set of measurements 
should be in the same cluster. 

Our definition of a cluster is the largest set 
of measurements, each coming from a different 
sensor, which satisfy the distance criterion — 
a cluster from S lists may contain fewer than 
S measurements. Each cluster is a candidate 
association with the largest number of received 
measurements. To reduce spurious clusters, a 
cluster is required to have a minimum cardi- 
nality, which can be defined by the user. With 
this definition of a cluster, note that measure- 
ments from a target (obtained with different 
sensors) may be placed in different clusters. 
Also, a measurement can be placed in different 
clusters — multiple candidate associations per 
measurement. In order to handle this, clusters 
are merged into superclusters when measure- 
ments in different clusters satisfy the distance 
criterion. Thus, a supercluster is the largest 
set of clusters with possible cross-associations 
across clusters. Now the measurements can be 
partitioned into a number of superclusters and 
the corresponding candidate assignment trees 
(smaller in size than the complete assignment 
tree) within each supercluster can be formed. 
Also note that measurements in a cluster may 
have come from different targets. This is han- 
dled automatically when the candidate tree is 
formed within a supercluster — all possible2 

[5]) while the dynamic one has, typically, a much lower 
dimension because time depth beyond 3 scans yields 
negligible marginal returns 

2 Note that each candidate association has to be part 
of a cluster. However, even with a cluster the candidate 
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Figure 3: Full candidate association tree (with- 
out clustering) 
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Figure 2: Candidate association tree with clus- 
tering corresponding to (a) supercluster 1 (b) 
supercluster 2 

candidate associations within a supercluster 
are considered. Instead of a full assignment 
tree consisting of all the measurements from 
all the sensors as in the case without clustering, 
one ends up with a number of smaller, sparser 
trees. 

To illustrate the clustering approach, con- 
sider a scenario with 3 sensors illustrated in 
Figure 1 where the measurements (full posi- 
tion in this case) from different sensors are de- 
noted by different symbols. There are 6 mea- 
surements in total, two from each sensor, but 
spread over the surveillance space of interest. If 
we require at least two measurements to iden- 
tify a target, then we have 6 possible candidate 
sets represented by the cluster ellipses in the 
figure. Note that 5 clusters contain two mea- 
surements (plus a dummy accounting for a pos- 
sible miss in each case) and one cluster contains 
3 measurements — the measurements (1,1), 

(2.1) and (3,1)3. The measurements (1,2),(2,1) 
and (3,1) and cannot form a 3-measurement 
cluster because measurements (1,2) and (3,1) 
axe far from each other (the distance between 
(1.2) and (3,1) is greater than the Euclidean 
decision threshold). Even though measure- 
ments (1,1) and (1,2) are close to each other, 
they do not form a cluster because they origi- 
nate from the same sensor. 

The candidate association trees correspond- 
ing to superclusters 1 and 2 are shown in Fig- 
ure 2. The full candidate association tree with- 
out clustering for the same scenario is shown 
in Figure 3. It can be seen that with clustering 
the number of possible candidate associations 
is only 6 whereas without clustering it would 
have been 20. Thus the total number of cost 
computations is only 6 and so is the number of 
expensive log-likelihood maximizations. This 
saving increases substantially as the number of 
sensors and targets increases. Although, the 
savings depend on the sparsity of the scenario, 
the complexity can never be greater than the 
original case. 

3.1    Clustering Solutions 

In the following section the above algorithm is 
applied to different scenarios. The algorithm 
is described for both passive (angle-only) and 
active (full position) cases (2-d and 3-d in both 

association is not full. 
The pair (i, j) denotes measurement j from sensor 
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cases4). The measurements used can be ei- 
ther in polar or Cartesian coordinates. Differ- 
ent clustering techniques are required for these 
cases. 

3.1.1    Active Sensors 

An active scenario is one in which the sensors 
measure all the coordinates of position, typi- 
cally in a 2-d scenario or a 3-d space. This is 
the easiest case to which the clustering tech- 
nique can be applied. The algorithm reduces 
to clustering points in 2-d or 3-d space. To 
do so, any one of the many existing cluster- 
ing algorithms can be used [4]. The algorithm 
proposed in [6] divides the space of interest it- 
eratively into smaller sections, until each point 
in the space is contained in one section. Dur- 
ing the division, the neighbors of the resulting 
segments are formed. This algorithm has com- 
plexity 0(n log n). In our case, however, in the 
formation of the clusters, we need to take care 
of the fact that at most only one measurement 
from a particular sensor can be placed in the 
same cluster. 

3.1.2    Passive Sensors 

A passive scenario is one in which only partial 
observations of a target position are available. 
That is, we might know only the direction in 
which the target lies, but not its position. In 
this case, it is more difficult to apply clustering 
techniques. We will consider the 2-d and 3-d 
cases separately. 

2-d scenarios. In this case, we have only one 
scalar for each measurement (since two scalars 
define the full position). Each target is defined 
as lying along a line in a certain direction. Note 
that in this case, given two sensors, we can find 
the potential position of the target by comput- 
ing the point of intersection of any two LOS 

To avoid ambiguity 2-d and 3-d indicate the dimen- 
sion of the physical space in which the targets are. In 
contrast, the S-D assignment is of dimension S since it 
associates'elements from S lists 

measurements (two lines) from different sen- 
sors. However, any two points of intersection 
are equally probable to be a valid target — 
this results in the well-known ghosting prob- 
lem (see, e.g., [2]). However, a third (or fourth, 
fifth, etc.) sensor will reduce the number of 
probable targets if we consider the intersection 
points of measurements from the third sensor 
and the first two sensors. Thus the whole prob- 
lem is reduced to first computing the points 
of intersection between the LOS measurements 
for any two sensors and then clustering the in- 
tersections. LOS measurements relating to the 
same target from different sensors will intersect 
in the same region (ideally at the same point in 
a no-measurement-noise scenario). Thus their 
points of intersection will lie in a close area. 
By first computing these points and then clus- 
tering them, we can identify the LOS measure- 
ments that potentially come from the same tar- 
get. 

However, the number of possible target po- 
sitions in this case is far larger than in the ac- 
tive case. If we have N sensors, for example, 
and each has m measurements, then the num- 
ber of possible target positions can be mN, as- 
suming no missed detections. In case we have 
missed detections and a target can be identified 
by fewer measurements than there are lists, we 
will have even more candidate sets. 

Another problem is that since each angle 
measurement is with respect to the correspond- 
ing sensor position, the density of lines close 
to the sensor is larger than that far from the 
sensor. Thus the possible intersection points 
near the sensor locations are relatively closer 
to each other than those far from the sensor. 
A solution to this problem is to use a variable 
cluster size in the clustering algorithm. A small 
gate is used closer to the sensor locations and 
the size is increased as we move away from the 
sensors. The size of this gate is inversely pro- 
portional to the proximity of the sensors. A 
heuristic function to define the size of such a 
variable gate is an absolute logarithmic func- 
tion, defining a wedge-type function. Note that 
if the sensors are spread around the targets, 
then the gate size needed will be almost the 
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same everywhere in the space of interest. We 
can still, however, define an approximate func- 
tion for the gate size, to fit each scenario by 
contour mapping the sensors. 

3-d scenarios. In a 3-d passive case, we as- 
sume that we have at least two parameters (out 
of three, which define the exact position) from 
a target — typically two angles that define the 
LOS. Thus each measurement again defines the 
target as lying along a line. The problem with 
such a case is that finding the points of inter- 
section between the measurements from differ- 
ent sensor lists does not help much. Due to 
noise, the measured LOS lines are off the true 
LOS and thus may never intersect. In this case, 
the clustering algorithm is modified as follows. 

Instead of clustering the measurements di- 
rectly, we do so indirectly. The dihedral angle 
of a plane is defined as the angle between this 
plane and a reference plane. Let us consider a 
scenario with two sensors with two LOS mea- 
surements for two different targets each. A 
plane, called the target plane, can be passed 
through the LOS measurement line and the 
line containing the two sensors. This plane is 
unique for each measurement. Now, the angle 
between this plane and the ground defines a 
unique dihedral angle, a\. However, the dihe- 
dral angle between one of the LOS measure- 
ments of the other sensor will lie in the prox- 
imity of Q.\ since this LOS measurement also 
defines the same target. As a result, cluster- 
ing the dihedral angles leads to clustering the 
respective LOS measurements. 

In the case where we have more than two 
sensors, the dihedral angles can be computed 
pairwise between any two sensors. The cost 
of computation increases, but we also get 
the added advantage that cross-associations Of 
pairs of dihedral angles improves the accuracy 
of the clustering algorithm. 

3.1.3    Polar Coordinate Systems 

The clustering algorithm described in [6] is an 
algorithm whereby points are clustered in the 
rectangular (Cartesian) coordinate system, by 

dividing the space of interest iteratively and 
keeping a list of neighbors of each subspace 
formed. A similar algorithm is used in the 
above case. It can be suitably modified to 
cluster points in polar coordinates too — this 
avoids the conversion of polar measurements to 
Cartesian. In this case, instead of breaking the 
space into rectangular boxes, we can divide the 
space into cones and sections of these. The re- 
spective sub-regions are thus delimited by the 
arcs and radii. 

4    Results 

The effectiveness of the clustering algorithm 
approach combined with multidimensional as- 
signment is demonstrated on a number of sce- 
narios with different number of targets and sen- 
sors. In all cases, significant improvement in 
CPU times is noticed. CPU times are obtained 
for the problems published in [3] and [5]. 

4.1    Active Sensors 

A 3-dimensional scenario in polar coordinates 
with 3 sensors and a variable number of targets 
is used to compare the performance with and 
without clustering. The measurement noise 
standard deviations were, for the elevation, 
OQ = 0.1 rad, and for the range, aT = 8 m. 
The probability of detection PJJ = 0.9 and false 
alarm density PFA = 0.0005, which gave about 
2 false alarms for a batch of 15 targets. 

The CPU times are presented in Table 1 
together with the improvement factors with 
clustering. From the table, we note that as 
the number of targets is increased, the im- 
provement factor is higher. This is because 
the algorithm without clustering has to pro- 
cess a larger number of potential candidate as- 
sociations. This increases non-linearly as ex- 
plained earlier. The computational load in the 
approach with clustering increases at a lower 
rate as a function of the number of targets. 
Also, the association results obtained in both 
cases are nearly identical. For larger num- 
bers, some minor differences appear because 
at higher density, measurements from different 
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No.    of CPU     times CPU         times 
Targets (clustering) (w/o clustering) 

10 0.05 1.05 
15 0.09 2.97 
20 0.19 6.90 
25 0.34 13.68 
50 1.16 71.68 
100 6.78 550.28 

Table 1: CPU times for an active scenario (3- 
sensors) in 3-d space 

No.    of CPU     times CPU         times 
Targets (clustering) (w/o clustering) 

10 0.06 1.04 
15 0.11 3.20 
20 0.20 5.90 
25 0.35 11.65 
50 1.86 123.24 
100 8.25 564.24 

Table 2: CPU times for a passive scenario (3 
sensors) in 2-d space 

targets end up in the same cluster. The clus- 
ter distance parameter can be varied to control 
this effect. 

No.    of CPU     times CPU          times 
Sensors (clustering) (w/o clustering) 

3 0.15 8.15 
4 0.94 28.76 
6 5.85 125.92 
8 17.39 320.84 

Table 3: CPU times a for passive scenario (2-d) 
with different number of sensors and 15 targets. 

ranged along perimeter of a circle, with radius 
2 km. The CPU times are listed in Table 3 for 
different number of sensors and 15 targets. 

The observations noted for the active case in 
Section 4.1 apply here as well. In addition, we 
note that the average time taken in the active 
case with (without) clustering is 0.09 (2.97) vs. 
the passive case of 0.15 (8.15). This is because, 
in the passive scenario, one has to process a 
larger number of possible candidate solutions 
because of the availability of only partial mea- 
surements. Also, as the number of passive sen- 
sors increase, the number of possible candidate 
associations increase, and there is a decrease in 
the improvement factor. For 3-d passive sen- 
sors, similar observations are made. 

4.2    Passive Sensors 

The 2-dimensional passive scenario is pre- 
sented in greater detail because it is a more 
complex (and common) situation. First, the 
number of targets is varied keeping the num- 
ber of sensors fixed, and then the number of 
sensors is varied keeping the number of targets 
fixed. 

The sensors measure only the azimuth of 
the target from the corresponding sensor. The 
standard deviations of the sensors used are 
erg = 0.1 rad, with a detection probability, Pp 
= 0.95 to 0.98 and false alarm density PFA = 
0.0001 . The number of targets is from 10 to 
100 and their positions are randomly placed in 
the space of surveillance. The CPU times are 
listed in Table 2 for different number of targets. 

Now consider the case where the number of 
sensors is varied while the number of targets is 
kept constant at 15.   The sensors are the ar- 

4.3    A Dynamic Problem 

An m-best S-D Data association algorithm to 
solve a dynamic (moving target) problem was 
considered in [5]. Here we make a compari- 
son to the CPU times obtained in [5] without 
clustering and demonstrate the advantages of 
our clustering technique. In [5] the dynamic 
estimation problem is preceded by solving a 
sequence of static problems at different points 
in time. The m-best S-D algorithm solves each 
static problem separately as an S-D problem, 
and finds the m-best assignment solutions. Us- 
ing a JPDA-like technique, a probability of be- 
ing correct is assigned to each solution (which 
consists of full position "composite" measure- 
ments). This information along with the ru- 
hest solutions are used with a state estimator 
in a dynamic 2-D assignment algorithm to es- 
timate the states of the moving targets over 
time. 
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In [5] this algorithm was applied to a 7- 
sensor, 5-target problem. The sensors record 
scans of measurements at 10 time instances. 
The detection probability is 0.9 and the false 
alarm rate is 0.8/radian. Thus with 5 tar- 
gets, the average number of detection per sen- 
sor scan is 7. To identify a target, a candidate 
association must include at least 4 non-dummy 
measurements (majority vote). This scenario 
results in a large number of candidate associa- 
tions to process. The LOS measurement error 
standard deviation, a$, was 2.0°. 

The clustering algorithm for passive cases 
was applied to the above mentioned problem. 
The clustering technique was used in forming 
the candidate associations prior to assignment 
in each of the static problems at the different 
time instances. An improvement of 7 times in 
the CPU times was noted, which represents a 
significant saving. 

5    Conclusions 

In this paper we presented an efficient ap- 
proach to multidimensional data association 
for multisensor-multitarget tracking. Data as- 
sociation via multidimensional assignment is a 
an NP-hard problem. Even with near-optimal 
approximations, the computation times can be 
very high. This is especially true for passive 
target tracking problems, where, due to target 
state-to-measurement nonlinearities, the nu- 
merous candidate cost evaluations are rather 
expensive. In this case, 95%-99% of the CPU 
time for data association is typically spent on 
forming the candidate assignment tree. The 
clustering approach, which breaks the whole 
assignment problem into smaller, more man- 
ageable subproblems, reduces the time taken to 
form the candidate assignments via a "divide- 
and-conquer" technique. By using the Eu- 
clidean distance as a measure to prescreen 
candidate assignments, the assignment tree is 
made sparser. Also, by grouping the measure- 
ments into clusters, a number smaller problems 
are solved instead of solving one big problem . 

A hierarchical clustering approach, in con- 

junction with an assignment algorithm, was de- 
veloped for tracking multiple targets using 2- 
dimensional and 3-dimensional active (full po- 
sition) and passive (angle-only) measurements. 
Simulation results on different target-sensor 
geometries and configurations showed signifi- 
cant improvement in computation time without 
altering the association or the estimation pro- 
cesses. Depending on the scenario, CPU time 
is reduced by about 20-80 times over the stan- 
dard multidimensional assignment approaches 
without clustering. 
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Abstract This paper presents the fusion of 
two independent systems, namely TSGR (Target 
Sequence Generation by Refinement) and D&H 

(DIPETT & HAIKU). The former is designed for 
translation purposes and can quickly compute the 
most probable meaning, in the target language, of 
multi-sense verbs appearing in the same paragraph. 
The later is a text analysis system which performs 
syntactic and case-based semantic analysis. The fu- 
sion is dictated by the fact that D&H can provide 
the type of information needed on input by TSGR, 
i.e. semantic cases associated to clauses. However, 
because both systems use different sets of semantic 
cases, this integration becomes an interesting and 
non-trivial problem. 

Keywords: Word sense disambiguation, Case- 
based semantic analysis, constraint, refinement, 
concept coherence. 

1    Introduction 

The discrimination of word senses, word sense 
disambiguation, is of prime importance for all 
areas involving computerized language anal- 
ysis, including corpus-based research, lexical 
studies, information retrieval, machine trans- 
lation, natural language processing, studies of 
style and theme, authorship attribution, and 
applications such as hypertext browsing. 

This paper outlines the fusion of two in- 
dependent systems, namely TSGR and D&H. 
TSGR is designed for translation purposes and 
can quickly compute the most probable mean- 
ing, in the target language, of multi-sense verbs 

appearing in the same paragraph. However, 
TSGR requires that the text be hand-coded 
in terms of semantic (case) relationships. On 
the other hand, D&H is a text analysis system 
which performs syntactic and case-based se- 
mantic analysis and greatly facilitates the iden- 
tification of semantic relationships that occur 
in the sentences of a text. 

Since both TSGR and D&H use different 
sets of semantic (case) relationships and since 
we also want these two systems to collaborate 
in a coherent way, finding a fusion method for 
the integration of both systems iis an impor- 
tant problem which happens frequently during 
the development of complex softwares. This is 
what we discuss in the following sections. 

The rest of the paper is organized as follows. 
Sections 2 and 3 describe the TSGR system 
and the D&H system, respectively. The fusion 
process will be explained through the exam- 
ples of section 4. We conclude in section 5 and 
identify further problems that we intend to in- 
vestigate in the future. 

2    The TSGR System 

TSGR is designed to determine the exact 
meaning in the target language of multi-sense 
verbs appearing in the same paragraph. Let us 
take the following example, called thereafter 
the Lake-Example, taken from "The Peasant 
and the Watterman" [9]: "A peasant was chop- 
ping a tree in the woods by the lake. He dropped his 
axe and it fell with a splash into the water. Quickly he 
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Table 1: Several senses of the verb 'chop' 
Description French Turkish 
vi to make a quick stroke or repeated strokes with a sharp instrument 
he has been chopping in the woods for an hour. 
vt to cut into or sever by repeated blows of a sharp instrument 
he was chopping a tree in the woods. 
vi to hit with a short downward stroke 
he chopped with his hand. 
vt to hit with a short downward stroke 
he chopped the ball with the club. 
vt to cut into bits, mince 
she chopped the meat with a robot. 
vi to change direction 
the wind is chopping about. 
vt to reduce 
t«e chopped more than USD 1,000 off the budget. 

couper 

couper 

kes 

kes 

frapper vur 

frapper vur 

hacher kiy 

changer direction yön degi§tir 

baisser azalt 

dove into the lake." 

In this example, there are at least 1848 pos- 
sible candidates to be considered as the global 
(paragraph) meaning. 

7(chop) x ll(drop) x 8(fall) x 3(dive) = 1848 

The aim here is to instantiate these four 
verbs in a target language without loosing their 
right meanings. Table 1 shows several senses of 
the verb chop, where vt and vi stand for tran- 
sitive verb and intransitive verb, respectively. 

Each particular sense of a verb may have a 
different corresponding translation in the pos- 
sible target language. Determining the correct 
instantiations of the verbs in the target lan- 
guage is carried out by TSGR (Fatholahzadeh 
& Giivenir [6]) which makes use of two sep- 
arate methods, namely, Concept Coherence 
(Alterman [1] ) and Refinement (Giivenir & 
Ernst [8]). 

In the above example, verbs 'drop', 'chop', 
and 'hold' are concept coherent because they 
mutually define one another. A part of 'chop- 
ping wood' is 'holding an axe', and in order 
to have 'dropped something' one must first 
have 'held it'. The couples (drop,chop) and 
(chop, hold) are called concept coherent in the 
theory of event/state concept coherence advo- 
cated by Alterman. According to this theory, 
the representation of a narrative text can be 

generated by a process of matching text against 
a dictionary of concepts, which are related by 
a small set of relation-types, and using the or- 
ganization of the concepts in the dictionary to 
organize the instances of event/state concepts 
which appear in the text. Event concept coher- 
ence is a property of the dictionary. It is de- 
termined as a function of the distance between 
two concepts. Two terms in the dictionary are 
event concept coherent if there exists a path 
between two concepts in the dictionary. 

All knowledge about the relationships be- 
tween two concepts in TSGR's dictionary 
is stored as a graph. The nodes of the 
graph represent the concepts (e.g. hold- 
ing, choping, etc.), and the arcs repre- 
sent the relations between concepts. Re- 
lations between nodes are stored in a 
quadruple, which has the following template: 
[Relation Event/State! Event/State2 (Constraints)] 

The first argument states the kind of rela- 
tionship that exits between two concepts. The 
second and the third arguments give the names 
of the two concepts being related, and the last 
argument is an optional list of constraints. The 
constraints specify the required matches be- 
tween the case arguments of the concepts, as 

in the following relation: 

[coor hop hold  ((match AGT1 AGT2) 
(match INS1 0BJ2))]. 
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Table 2: Concept coherence and its relations 
Relation Abbr.      Description 
Class-subclass sc 
Sequence-subsequence subseq 
Coordinate coor 
Antecedent ante 
Precedent prec 
Consequent conseq 
Sequel seq 

Property inheritance relation. 
One event is part of another, and it occurs for a subinterval time. 
One event has parts that co-occur over the same time interval. 
One event must necessarily occur before another event. 
One event with some regularity occurs before another event. 
One event always, necessarily, occurs immediately after the other. 
One event follows another with some regularity.  

The relational form given above roughly 
states that there exists a coordinate relation- 
ship between chopping and holding. To estab- 
lish this relationship, the instrument (i.e. INS) 
of 'chopping' must match the object (i.e. OBJ) 
of 'holding' and the agents (i.e. AGT) of both 
concepts must match. 

The instantiation of a concept is accom- 
plished by matching the associated case nota- 
tion of event against the dictionary. Hence, 
given a phrase such as the event "A peasant 
was chopping a tree in the woods by the lake", 
it is converted to a case notation which acts as 
the input to the TSGR system: 

(chop    AGT peasant    AE tree 
LOC woods-by-the-lake) 

The definition of the case arguments are 
given in Table 3. The cases are meant to ac- 
count for the fact that the concept 'chop' in- 
cludes 'an agent who performs the action', 'the 
entity affected by chopping' and, optionally, 'a 
place where chopping occurs'. 

Table 2 shows 7 relations that Alterman 
used in TSGR. There is one taxonomic re- 
lation: class/subclass (sc). For instance, a 
subclass of 'working' is 'chopping'. Two rela- 
tions are partonomics: sequence/subsequence 
(subseq) and coordinate (coor). For exam- 
ple, 'travel' has three subsequences: 'depart', 
'move', and 'arrive'. The corresponding event 
concepts between 'chopping' and 'holding' are 
in a coordinate relationship. 

Four of the relations are temporal: an- 
tecedent (ante), precedent (prec), consequent 
(cons), and sequel (seq). An antecedent of 
'dropping' is 'holding'. Sometimes before 
'drinking'  it  is  first  necessary  to open  the 

container. Then, a precedent of 'drinking' 
is 'opening'. A consequent of 'dropping' is 
'falling'. Sometimes when two objects 'hit' 
each other, one of them 'breaks'. Then, in the 
event "the cup hit the floor and broke", the re- 
lationship between 'hit' and 'break" is sequel. 

3    The D&H System 

Analysis in D&H consists of recognizing se- 
mantic relationships signalled by surface lin- 
guistic phenomena. The system uses as lit- 
tle a priori semantic knowledge as possible. 
Instead, it performs detailed syntactic analy- 
sis using publicly available part-of-speech lists 
and lexicons and produces a tentative semantic 
analysis. This analysis is proposed to a partic- 
ipating user who usually approves the system's 
proposal. In the case of an incorrect or incom- 
plete analysis, the user may also be required 
to supply elements of the semantic interpreta- 
tion. Such new elements will be learned by the 
system and will facilitate future processing of 
similar situations. 

3.1    The DIPETT Parser 

Syntactic analysis in D&H is performed by 
DIPETT (Domain Independent Parser of En- 
glish Technical Texts), a broad coverage Def- 
inite Clause Grammar parser whose rules are 
based primarily on Quirk et al. [10]. DIPETT 
takes an unedited, untagged text and automat- 
ically produces a single initial parse of each sen- 
tence. This first good parse tree is a detailed 
representation of the constituent structure of 
a sentence. If DIPETT is unable to produce 
a single complete parse of a sentence within a 
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Table 3: Case attributes used in TSGR 
Case Abbr.     Description 

the entity affected by an event. 
the entity which instigates the action. 
the entity on which the event has a secondary effect. 
the location of a thing at the end of a motion. 
the tool used in performing the action. 
the place where an event occurs. 
the thing moved or transferred. 
the location of a thing at the beginning of a motion. 
the receiver in a transfer of possession. 
the entity which the state describes. 
an event or a state embedded in a perception or communication. 
the time of an event. 

AffectedEntity AE 
Agent AGT 
Beneficiary BEN 
Destination DES 
Instrument INS 
Location LOC 
Object OBJ 
Source SRC 
Recipient REC 
StateOf SOF 
Theme THM 
Time TIM 

time limit imposed by the user, it will attempt 
to produce parses for fragments within the sen- 
tence, such as clauses and phrases. Delisle [4] 
presents a complete discussion of DIPETT and 
related parsing issues. 

3.2    The HAIKU Semantic Analyzer 

Given the parse trees produced by DIPETT, 
the HAIKU semantic analyzer [5] identifies 
the semantic relationships expressed by related 
syntactic constituents. The semantic relation- 
ships are expressed at three levels: between 
connected clauses, within clauses (between a 
verb and each of its arguments) and within 
noun phrases (between a head and each of 
its modifiers). The clause level relationships 
(CLRs) are assigned to connected clauses, the 
cases are assigned to verb-argument pairs and 
the noun modifier relationships (NMRs) are as- 
signed to modifier-noun pairs. The cases that 
HAIKU assigns to verb-argument pairs appear 
in Table 4: these are the semantic relationships 
we will be mostly concerned with in the rest of 
this paper. 

There are several observations to make 
about these semantic relationships. They con- 
stitute an amalgam of similar lists used by re- 
searchers in discourse analysis, case and va- 
lency theory. We identified an initial set of re- 
lationships and then did an extensive survey of 
the lexical items that mark them. This survey 
identified several omissions and redundancies 

in the lists. We further validated the relation- 
ships by checking their coverage on real English 
texts. Details of the construction process and 
validation of our list of cases appear in [3]. The 
next observation is that HAIKU does not de- 
pend on these particular lists of relationships. 
The techniques it uses at each level of anal- 
ysis would work with any other closed list of 
semantic relationships. 

HAIKU tries to assign semantic relation- 
ships with a minimum of a priori hand coded 
semantic knowledge. In the absence of such 
precoded semantics, HAIKU enlists the help of 
a cooperating user who oversees decisions dur- 
ing semantic analysis. To lessen the burden 
on the user, the system first attempts auto- 
matic analysis. It compares input structures 
to similar structures in the text for which se- 
mantic analyses have been stored. Since it does 
not have access to a large body of pre-analyzed 
text, HAIKU starts processing from scratch for 
a text (or a collection of texts) and acquires the 
needed data incrementally1. 

Clause level relationships are assigned when- 
ever there are two or more connected fi- 
nite clauses in a sentence. For each clause, 
DIPETT provides a complete syntactic analy- 

lAn alternative to starting analysis from scratch 
would be to accumulate the semantic analyses from 
session to session. The extent to which the acquired 
knowledge from one text (or domain) would be useful 
in the analysis of a different text is a consideration for 
future work. 
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Table 4: Semantic relationships in HAIKU 
Accompaniment Locationto Agent 
Cause Measure Content 
Effect Order Exclusion 
Frequency Recipient Instrument 

Manner Beneficiary Material 
Object Direction Opposition 
Orientation Experiencer Purpose 
Time_at Location_at Time_from 

Location-from        Time-through     Location-through     Time-to 

sis including tense, modality and polarity (pos- 
itive/negative) . It gives us the connective (usu- 
ally a conjunction) and the type of syntac- 
tic relationship between the clauses: coordi- 
nate, subordinate or correlative. The CLR an- 
alyzer looks up the connective in a dictionary 
that maps each connective to the CLRs that it 
might mark. Since the connectives are a small 
closed class, the construction of such a marker 
dictionary is not a large knowledge engineering 
task. Once constructed, it can be used for any 
text. Using the subset of CLRs, HAIKU holds 
competitions between each pair of relationships 
based on the syntactic features of the clauses. 
The CLR with the most points after all com- 
petitions is the one suggested to the user for 
approval. Within a clause, the parser iden- 
tifies the main verb and its arguments: sub- 
ject, direct and indirect objects, adverbials and 
prepositional phrases. Prom this information, 
the case analyzer builds a case marker pat- 
tern (CMP) made of the symbols psubj, pobj, 
piobj, adv and any prepositions attached to 
the verb. To assign cases to the arguments of 
a given verb, the system compares the given 
verb+CMP to other verb+CMP instances al- 
ready analyzed. It chooses the most simi- 
lar previous verb+CMP instances and suggests 
previously assigned cases for this verb+CMP. 
Delisle et al. [5] and Barker et al. [3] describe 
case analysis and the cases in detail. Within 
noun phrases, the parser identifies a flat list of 
premodifiers and any postmodifying preposi- 
tional phrases and appositives. The NMR an- 
alyzer ([2]) first brackets the flat list of premod- 
ifiers into modifier-modificand pairs and then 
assigns NMRs to each pair. NMRs are also as- 
signed to the relationships between the head 
noun of the noun phrase and each postmodify- 

ing phrase. To pick the best NMR, the system 
first finds the most similar modifier-modificand 
instances previously analyzed. Next, it finds 
the NMRs previously assigned to the most sim- 
ilar instances and selects one of these relation- 
ships to present to the user for approval. 

4    Fusion 

As we mentioned earlier, TSGR can quickly 
determine the exact meanings in the target 
language of multi-sense verb appearing in the 
same paragraph, provided that the input takes 
the form of hand-coded cases associated with 
the current (input) sentence. More precisely, 
the hand-coded representation of a sentence is 
a set of main verbs and their respective case- 
value pairs, one for each clause in the current 
sentence. D&H has the ability to produce ex- 
actly this kind of input. In its present ver- 
sion, human intervention may be necessary for 
clauses containing new syntaxico-semantic pat- 
terns but, for a good part, all the user has to 
do is approve the system's suggestions. There- 
fore, the integration of D&H with TSGR signif- 
icantly facilitates the user's task and, also, en- 
sures that case-based semantic analysis is per- 
formed in a more consistent and coherent fash- 
ion. 

The integration of D&H with TSGR involves 
taking the hand-coded input of TSGR associ- 
ated to a paragraph, and refining it into a se- 
quence of D&H cases, which collectively con- 
stitute a semantic representation for the given 
paragraph. Given a TSGR case, the task of re- 
finement requires finding one or more relevant 
cases among those of D&H. To keep the co- 
herence between both systems, the refinement 
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process should result in the same or a very 
similar sense. For instance, the combination 
of two 'location to' cases of D&H via a spa- 
tial proposition, namely 'by' is relevant to the 
LOC(ation) case of TSGR, because our fusion 
method produces such a result (see below). By 
contrast, if there is only one 'location to' case 
in the semantic representation at hand, its rel- 
evant case in TSGR is DES(tination). A set 
of rewriting rules is used in our fusion method 
for determining the relevant case to be used in 
TSGR's knowledge base (KB). A rewriting rule 
uses the familiar 'if-then' form, where the con- 

dition and conclusion parts correspond to the 
cases of D&H and TSGR, respectively. Here is 
an example of such a rewriting rule: 

IF Case{ = Lat and Case^ = Lat 
THEN apply Combining-Preposition 
rule. 

The purpose of Combining-Preposition is to 
allow the assignment of a collection of function- 
specific words to a generic information item. 
This can best be explained using the first 
phrase of the Lake-Example: 

(SI): A peasant was chopping a tree in 
the woods by the lake. 

Given (SI), how is the assignment of the four 
words (wood,by,the,lake) to the 'location in- 
formation' realized? This information can be 
determined by the derivation rules that are 
actually 'inverted Fillmorian transformations': 
starting from the syntactic function of a given 
noun phrase, the rules will derive a case as a 
semantic function of that noun phrase. Then, 
the combining rules, e.g., LOCI = wood and 
LOC2 = lake, via a spatial preposition (such 
as 'by') can give the new information: LOC = 
woods-by-the-lake. 

The reader may have noticed that this rule 
can help to determine the exact meaning of the 
word 'by' in the target language. According to 
the Webster English dictionary, the word 'by' 
has fourteen different usages. As a preposition, 
this word can be used for relating the following 
contexts: 'near', 'via', 'agency', 'mean', 'ac- 
cording to' (ex.  by my watch), 'in measuring 

number' (ex. by degrees), 'during', 'time', 'to 
the extent of, 'in oaths' (ex. by God), etc. 

It is interesting to see how we can integrate 
into TSGR the output of D&H for the above 
phrase, namely (SI). First of all, at the syn- 
tax level, (SI) is ambiguous because the prepo- 
sitional phrase (PP): "in the the woods by 
the lake" is ambiguous. Indeed, (PP) can ei- 
ther modify 'chopping' (verb) or 'tree' (noun). 
When submitted to HAIKU, after full syntac- 
tic analysis with the DIPETT parser, we ob- 
tain the following final (parsing) result: 

CURRENT SUBJECT 

CURRENT VERB 
CURRENT COMPL 

"a peasant" 

chop 
"a tree  in the woods 
by the lake" 

followed by this (partial, here) interaction be- 
tween the user and HAIKU for semantic inter- 
pretation. 

please enter the new CP (e.g. agt-obj- 
tat), or enter 'h' to see the current input 
string and CMP, or CR to abort ["new 
CP"/h/CR]? agt-obj-lat-lat 
CMP & CP will be paired as follows: 
psubj/agt pobj/obj in/lat by/lat; 

where, CP and CMP stand for Case Pattern 
(or, semantic pattern) and Case-Marker Pat- 
tern (or, syntactic pattern), respectively. Note 
that in the above interaction, HAIKU's request 
is dictated by the fact that it has no sugges- 
tions to offer. 

The output of HAIKU gives us four cases, 
i.e. Agt-Obj-Lat-Lat. By using the above 
third and fourth cases, both labeled LAT and 
the Combining-Preposition rule, we get 'LOC 
= woods-by-the-lake'. Since the AGT case in 
D&H and TSGR are used in the same sense, 
then we are allowed to write 'AGT = peasant'. 

A remaining question is how to assign the 
value of OBJ given by D&H, namely the word 
'tree', to an appropriate case in TSGR? This 
question can efficiently be answered using the 
restriction list for verbs. The restriction list 
has two parts: 'must exist' and 'must not ex- 
ist', respectively. This list helps us to ac- 
cept/reject those cases included in each part 
for the clause at hand. Note that the first part 
(e.g., 'must-exist') contains only the obligatory 
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Fusion ( SRP(c) = {SRSx(c), • • •, SRSn(c)}) 
n The number of sentences in a paragraph. 
SRP(c)     The semantic representation produced by HAIKU. 
SRSj(c)    The semantic representation of the ith sentence of the paragraph, where : 

SRSi(c) = {Verbi  ((Case* Valueu) • • • (Caseim Valueim))} 
Ouput: LRC i.e. List of relevant TSGR cases. 

1. Let the set of relevant cases be empty i.e. LRC = 0 

2. While the semantic representation of a paragraph is not empty (i.e. SRP(c) ^ 0) do: 

(a) Choose the first semantic representation i.e. SRSj(c) G SRP(c). 

(b) Collect the cases of SRS; into a list of case candidates and call it LCj. 

(c) While LCj is not empty do: 

i. Choose the first candidate, i.e. Casej. 
ii. If a relevant case has already been found with respect to the current case (e.g. Case; £ LRC), 

then do collect it into LRC and goto (v), else goto (iii). 

iii.  Apply the associated combination rule, if the case(s) of that rule satisfies the condition then 
goto (iv), else goto (v). 

iv. Select the conclusion part of the selected rule as the relevant case and insert it into LRC. 
v. Remove Casej from the list of candidates. 

(d) End of While. 

3. End of While. Return LRC 

case. Other optional cases, like time are also 
accepted by TSGR. If the verb has multiple- 
meanings, as is the case for 'chop', then for 
each sense a list is available in TSGR. For ex- 
ample, the restriction list associated to the first 
and second senses of the verb 'chop' (see Table 
1) is, respectively: 

[[AGT]   [OBJ,  AE,  SRC,  DES,  SOF]] 
[[AGT,  AE]   [SRC,  DES,  OBJ,  SOF]] 

Since HAIKU asserts the existence of four 
cases, then AE is assigned to 'tree'. All of the 
cases derived by D&H can be integrated into 
the cases representation. Therefore, we do not 
need anymore the hand-coded information as it 
was initially the case with the TSGR system. 

To further illustrate the fusion process, let 
us walk through the second sentence of our 
Lake-Example. 

(S2):   He dropped his axe and it fell 
with a splash into the water. 

HAIKU's output for (S2), in terms of case- 
relationships can be rewritten under the fol- 
lowing form: 

(HMC2)   [Drop (Agt    He)(Obj    axe)] 
(NMC2)   [Fall (Expr (his axe))(Manr splash) 

(Lto water)] 

where (HMC2) and (NMC2) stand for the head 
main clause (e.g. "He dropped his axe") and 
the next main clause (e.g. "It fell with splash 
into the water.") with respect to (S2). 

The cases Agt and Obj have the same behav- 
ior both in TSGR and D&H, therefore we do 
not need to make the conversion. By contrast, 
the cases Expr (Experiencer), Manner and Lto 
(Location to) are converted to AGT, Manner 
and DES, respectively. The formal description 
of the fusion algorithm is shown above. 

5    Discussion and Conclusion 

In this paper, we have described the fusion of 
two systems, namely TSGR and D&H for a 
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verb disambiguation task. Given an input sen- 
tence, D&H derives the syntactic and seman- 
tic representations. Once this is done, we take 
this output as the input to achieve the disam- 
biguation of the multi-sense verbs in the target 
language for translation purpose by TSGR, be- 
cause TSGR has the ability to quickly disam- 
biguate, in the target language, the multi-sense 
verbs appearing in the same paragraph. 

The contribution of this paper to the area 
of fusion is the following. The fusion of the 
two systems frees the user from the non-trivial 

task of providing TSGR with the hand-coded 

input. And because both systems complement 
one another, our work also shows that new use- 

ful systems can be produced via an appropriate 
fusion process. In the situation we presented 
here, the fusion process is materialized by an 
interface expressed under the form of a set of 
rewriting rules. 

Although we have considered only the anal- 
ysis side of natural language processing (NLP) 
here, it is also important to mention the ben- 
efit of the integration of D&H into TSGR for 
the generative side of NLP. The information 
provided by D&H is rich enough to help gen- 
erate the translation in the target language by 
TSGR because both syntactic and semantic in- 
formation of D&H contain required elements of 
the generation model, i.e. morphology, syn- 
tax, semantics, which are complementary to 
the knowledge available in TSGR. 

Another approach to fusion that we can use 
is to exclude totally the cases used in TSGR. 
That is to say, instead of expressing the argu- 
ments of the match function (section 2) with 
the cases of TSGR, we can directly use the ap- 
propriate cases of D&H. This could be done in 
the same spirit as the work presented here and 
is a good candidate for further investigation. 
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Abstract Despite their predominant application in 
robotics, the utility of methods for information fusion 
is not limited to sensor-based fusion tasks. The paper 
presents an information retrieval (IR) system for multi- 
media weather documents which makes use of linguistic 
fusion methods and a semantically rich retrieval model 
based on methods from fuzzy set theory. The computa- 
tional problem of how to efficiently organize the query 
evaluation process is solved by object-based mediation 
and asynchronous parallel invocations both of the doc- 
ument evaluation and fusion methods. 

Keywords: Information fusion, information retrieval, 
mediators, multimedia systems 

1    Introduction 

Today's information search services do not fully 
exploit the wealth of information offered. One of 
the reasons is that the mutual contribution of a doc- 
ument's parts to its content are not considered, nor 
are relationships of documents (e.g. hyperlinks). 

A number of attempts to utilize the rich docu- 
ment structure of hypertext documents for query- 
ing have been proposed, for example W3QL [1] 
and FLORID [2]. However, the structure (parti- 
tioning in sections etc.) of a document is only indi- 
rectly related to its content. In particular, users typ- 
ically know the precise structure of the individual 
documents satisfying their information need only 
after having found these documents. Web query 
languages like WebSQL [3] support the search for 
hypertext links. But again, users querying the IR 
system know the precise (hyperlink) structure of 
desired documents only after they have found the 
relevant documents. Therefore a gradual measure 
of a pair of documents being related could prove 

useful, supported by methods for processing im- 
precise information. 

Federated IR systems aim at providing uniform 
access to a number of networked and possibly het- 
erogeneous information sources. A typical archi- 
tecture for information integration is depicted in 
Fig. 1. It mediates access to a complex system 
of multiple and possibly very heterogeneous infor- 
mation sources through "wrappers" in such a way 
that the illusion of a local database with rich infor- 
mational content emerges. The results of the indi- 
vidual wrappers are merged by the mediator com- 
ponent [4] into a global logical view. Examples 
of such systems are HERMES [5], SIMS [6], and 
TSMMIS [7]. 

query interface 
(appears like a heal database 
with rich information contents) 

create integrated logical view 
global schema f 

- query transformation * 
- result conversion 
types of heterogenrty: 
■ communication protocols \ 
• query syntax \ 

.. - ^ « ™ ..■<..>...     programming Interfaces    % 

Figure 1: Information integration architecture 

In the evolving field of content-based image re- 
trieval [8, 9, 10], images are analysed for features 
like structure, color distribution (histograms orcor- 
relograms), texture etc., which all correspond to 
the signal level of the image (as opposed to the 
semantic level). Like string matching in text re- 
trieval, these methods are not restricted to specific 
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domains. However, the results obtained are not yet 
comparable to that of text retrieval. 

The low filter quality of today's generic tech- 
niques for multimedia retrieval suggests another 
strategy for building high-quality search services 
for multimedia documents, namely that of combin- 
ing a substrate of generic methods for document 
description and information fusion with domain- 
specific methods which are taylored to a chosen 
field of application. The current concept of broad- 
coverage search engines is thus contrasted with 
that of a search service specialized to a topic area 
of general interest, such as weather, geography, 
sports, or vacation, which in this area provides 
search facilities on a new level of quality. These 
considerations lead to the following profile of a 
high performance query server (HPQS): 

• natural language (NL) interface, to help oc- 
casional users formulate their search interest; 

• on-line search of the document base under the 
user query: the complex modes of NL query- 
ing may frequently not be anticipated through 
pre-computed descriptors and necessitate the 
application of direct-search methods; 

• scalability: acceptable response times must 
be ensured even for large data sets; 

• evaluation and combination of pieces of in- 
formation extracted from different sources, by 
applying methods for information fusion. 

In the following section, we shall briefly intro- 
duce the HPQS system, and then concentrate on 
aspects of information fusion and query mediation. 

2   The HPQS system 

Fig. 2 depicts the architecture of the HPQS sys- 
tem [11]. The user interacts with the system via a 
graphical user interface (Java applet); natural lan- 
guage queries are typed into a query mask using 
the keyboard.' The morphological and syntactical 
analyses are carried out by the natural language 
interface, which generates a semantical represen- 
tation of the query content. This representation is 
purely declarative, i.e. not directly executable. The 

subsequent retrieval module hence applies domain 
specific transformation rules which translate the 
declarative representation into a sequence of exe- 
cutable database queries. These trigger the generic 
evaluation and information fusion functionality as 
well as additional application methods. Execution 
of the generated database queries is controlled by 
the multimedia mediator which optimizes response 
times by maintaining a cache for storage and reuse 
of intermediate search results. The use of a parallel 
media server coupled with dedicated high-speed 
VLSI processors for image and text search ensures 
acceptable response times even when a computa- 
tionally expensive online analysis of the mass data 
has to be performed. 

Compute 
lexicon 

NohJföUonguage tnfeftotö i 
■;*:'Atoff*«1pgtcci:Arialvsfc:-; 

-forstog 
- COrtSJaiCtfon of Semantics 

RoraBel media server 

j     Document postprocessing 

Ttansfor j 

ISR 

Rettoval Module 

(lSR>FRR>OGlJ 
- tferafve Reddest Processing 

Server Gateway 

Generic 
methods 

Domgln- 
specttk: 
methods 

Query mediator 
• . ■ . 

- Metadata ^anaae-nd 
■ Result cacHng 
- System security 

'i.e. speech input is not yet supported. 

Figure 2: Architecture of the HPQS system 

As the prototypical application of HPQS, we 
have chosen meteorological (weather information) 
documents. The range of meteorological doc- 
uments used in our system comprises textual 
weather reports (ASCII and HTML), as well as 
satellite images and various weather maps (colour 
images). Query types in this application scenario 
include the following: 

• What is the weather like in Bielefeld? 
• Is it more often rainy on Crete than in south- 

ern Italy? 
• Show me pictures of cloud formation over 

Bavaria! 
• In which federal states of Germany has it 

been humid but warm last week? 
• There were how many sunny days in Berlin 

last month? 

The system accepts questions in exactly this form 
as text strings. 
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3   Formal retrieval representation 

The retrieval component of the HPQS system uti- 
lizes a formal retrieval representation (FRR) which 
combines generic FRR methods (search techniques 
for documents of all relevant media and methods 
for information fusion) and domain-specific meth- 
ods (which implement domain concepts). The FRR 
is syntactically identical to ODMG-OQL (Object 
Query Language); the FRR functionality is pro- 
vided by generic and application-specific classes 
in the object-oriented database schema of the me- 
diator. The generic part of FRR comprises: 

• an elaborate text-search component (based on 
the dedicated VLSI processors for approxi- 
mate full-text search); 

• image analysis primitives (partly imple- 
mented in VLSI hardware); 

• discrete and parametrized fuzzy sets and cor- 
responding connectives from fuzzy set theory; 

• fuzzy quantifiers which provide a numerical 
interpretation of quantifying expressions in 
NL queries. 

Fuzzy quantifiers also prove useful in weighted in- 
formation fusion tasks, i.e. for combining pieces of 
information according to numerical degrees of rel- 
evance (see below). 

The generic FRR can be extended by domain- 
specific methods, which provide an interpretation 
for NL domain concepts based on the raw doc- 
ument data. The HPQS prototype has been tay- 
lored to the meteorology domain by implementing 
cartographic projections of the considered image 
classes; objective ("more than 20 degrees") and 
subjective ("warm") classification of temperature 
readings; estimation of cloud-top height and cloud 
density in satellite images; determination of de- 
grees of cloudiness ("sunny"); and other domain 
concepts. In the same way that text-matching pro- 
vides only a very coarse, but often still useful, ap- 
proximation of text-understanding, we attempt to 
model only that portion of the domain concepts 
which must be captured to restrict the search to 
useful query results. 

Table 1 displays the FRR sequence generated 
for an example query. The results of the query are 

shown in Fig. 3. 
Generated FRR 
q-311:  element(select x.shape from x in Federalstates 
where x.name = "Bavaria") 
q_312:  select i from i in MeteoFrancelmages where 
i.date.ge(1997,8,l,0,0,0) and i.date.lower(1997,8,8,0,0,0) 
q_313:  select i.pred from i in q_312 where i.pred <> i 
q_314:  select ImageAndRelevance(image:i, 
relevance:q.311.rateGreaterEqual(0.7, i. cloudiness () . 
sunny 0.negation!).germanyProjectionO)) from i in q_312 
q_315:  select ImageAndRelevance(image:i, 
relevance: q_311. rateGreaterEqual (0.7, 
i.cloudiness().sunny{).germanyProjection())) 
from i in q-313 
q_316:  select ImageAndRelevance{image:i.image, 
relevance:!.relevance.min(j.relevance)) 
from i in q_314, j in q-315 
where j.image = ((HpqsMeteoFrancelmage)i.image).pred 
q_317:  select f.relevance from f in q-316 
q-318:  select f from f in in q_317 order by 1 
q-319:  HpqsGreyValSeqtgreyval-sequence: 
o2-list-GreyVal (q-318)) . determineThresholdf) 
q-320:  select ImagesAndRelevance(image:f.image, 
pred:((HpqsMeteoFrancelmage)f.image).pred, 
succ:((HpqsMeteoFrancelmage)f.image).succ, 
relevance:f.relevance) 
from f in q.316 where f.relevance.ge(q-319) = 1  

Table 1: FRR sequence generated for query: 
"Show me pictures of cloud formation over 
Bavaria in the first week of August 1997!" 

Figure 3: Result of example query 

2see [11] for a description of the search process. 
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4   Linguistic information fusion 

In [12], we have pointed out that providing natu- 
ral language access to a multimedia retrieval sys- 
tem cannot be accomplished merely by adding an 
NL frontend to an existing retrieval "core". This 
is because the modes of information combination 
expressible in natural language are not restricted to 
the Boolean connectives supported by traditional 
retrieval systems. In particular, vague quantifying 
expressions (fuzzy quantifiers) like most, almost 
everywhere, are often used in NL queries to express 
accumulative criteria such as "almost all of South- 
ern Germany is cloudy". In this example, we have 
a set E of pixel coordinates. Each pixel e G E 
has an associated relevance ßxi (e) € I = [0,1] 
with respect to the fusion task, which in this case 
expresses the degree to which pixel e E E be- 
longs to Southern Germany, and each pixel has 
an associated evaluation nx2(

e) £ I which ex- 
presses the degree to which the pixel is classi- 
fied as cloudy (see Figs. 4 and 5).      The map- 

Figure 4: A possible definition of X\ = 
southern_germany (Pixels with ßxAe) = 1 are de- 
picted white) 

pings nxi,l*>X2 '■ E —> I can be viewed as 
membership functions representing fuzzy subsets 
XUX2 £ V(E) of E, where V(E) is the fuzzy 
powerset of E. Our goal is to provide a mapping 
Q : V{E) x V(E) —> I which, for each con- 
sidered satellite image, combines these data to a 
numerical result Q(Xi,X2) 6 I as requested by 
the NL expression "almost all". 
Apparently, an operator which implements "al- 

Figure 5: Fuzzy image region X2 = cloudy (Pixels 
classified as cloudy are depicted white. The contours of 
Germany, split in southern, intermediate and northern 
part, have been added to facilitate interpretation) 

most all" yields adequate results only if it captures 
the meaning of "almost all". We have therefore 
decided to base our solution to the fusion prob- 
lem on (a) the Theory of Generalized Quantifiers 
(TGQ [13]), which has developed important lin- 
guistic concepts for describing the meaning of NL 
quantifiers; and (b), methods from fuzzy set the- 
ory, known as fuzzy linguistic quantifiers [14, 15], 
which are concerned with aspects of fuzziness in- 
volved, i.e. the use of concepts without sharply de- 
fined boundaries ("Southern Germany", "cloudy", 
"almost all"). Our investigation of existing ap- 
proaches to fuzzy quantification [14, 16, 17] based 
on criteria of TGQ has led us to reject these ap- 
proaches because of their inconsistency with lin- 
guistic facts. Building on TGQ, we have formu- 
lated a set of axioms which characterizes mathe- 
matically sound models of fuzzy quantification; in 
addition, we have presented a model of the axioms 
[18]. In [19], we have shown that this approach is 
computational by presenting a histogram-based al- 
gorithm for the efficient evaluation of the resulting 
operators. 

In our system, we are currently using these 
operators for the fusion of fuzzy sets of pixels 
(local quantification) or fuzzy sets of time points 
(temporal quantification), see Table 2. We are 
hence utilizing spatio-temporal relationships be- 
tween extracted pieces of information in order to 
compute a combined evaluation of the documents 
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Quantification over local regions 
few clouds over Italy 
many clouds over southern Germany 
more clouds over Spain than over Greece 
cloudy in Northrine-Westphalia (implicit) 

Quantification over regions in time 
almost always cold in the last weeks 
more often sunny in Portugal than in Greece 
hot in Berlin in the previous week (implicit) 

Table 2: Examples of fuzzy quantification in the 
meteorology domain 

of interest. This type of relationship might look 
different from those established by hypertext links, 
and from intra-document relationships (between 
parts of a composite document). However, all of 
these relationships can be deployed for retrieval 
purposes only if suitable methods for informa- 
tion fusion are available. Fuzzy quantifiers are 
promising in this respect because they are both 
human-understandable and sufficiently powerful 
to handle the required two-dimensional fusion 
problem (data to be combined plus weights of 
relevance). The basic aptitude of fuzzy quantifiers 
for combining search ratings of a document's 
parts to a global evaluation has recently been 
demonstrated by Bordogna&Pasi [20]. 

5   Mediation and query evaluation 

In the HPQS system, we have only one (but a very 
complex) information source, viz. the parallel me- 
dia server. The tasks of the HPQS mediator in- 
clude: 

• abstraction from details of the parallel media 
server, e.g. socket-based communication 
protocol and query syntax; 

• making optimal use of the parallelism avail- 
able in the external source; 

• establishing a well-structured view of the 
multimedia system, which to the retrieval 
module (the mediator's client) should appear 
like an object-oriented ODMG database; 

• maintenance of a proxy state of the external 
document base: method invocations can only 

be delegated to the parallel media server if 
the documents to which these methods should 
be applied are known to the mediator; 

• materialization of results of method invoca- 
tions, in order to avoid redundant compu- 
tations by reusing query results of a result 
cache. 

The efficient organisation of method invocations 
on the external source is of particular importance to 
the HPQS system because a large number of doc- 
uments (and hence of instances of document eval- 
uation and information fusion tasks) must be pro- 
cessed with acceptable response times. The prob- 
lem is that the database executes OQL queries se- 
quentially, and cannot directly benefit from the par- 
allel processing abilities of the media server. 

The first HPQS mediator, described in [21], 
makes use of blockwise request execution in 
order to benefit from the parallelism in the media 
server source. The transformation of ODMG-OQL 
queries to the mediator into simpler queries which 
can be executed in parallel will be illustrated by 
an example. The mediator might e.g. receive the 
query 

select ImageAndRelevance( image : I, 
relevance : 

BAY.rateGreaterEqual(0.7, 
I.cloudiness().sunny() 
.negation() 
.germanyProjection())) 

from I in g_18 

By means of query transformations, it decomposes 
the query in a sequence of elementary queries: 

Rl: select I.cloudiness() 
from I in q_18 

R2: select I.sunny() from I in Rl 

These simple queries are transformed into blocks 
of requests and transmitted to the media server, 
which executes them in parallel and returns the 
set of results to the mediator. Using such block- 
wise parallel calls, the example query is executed 
as depicted in Figs. 6 and 7. The nodes (circles) 
represent elementary requests (individual method 
invocation given on particular choice of parame- 
ters). The dependency structure of the requests is 
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represented by arcs (a complex expression depends 
on its subexpressions in the sense that it can only 
be evaluated once each of its subexpressions have 
been evaluated).3 

In the figures, we have assumed that nine images 
are to be processed and that eight processing nodes 
are available on the parallel server. With block- 
wise evaluation, execution starts which the block 
request to compute a;.cloudiness() for the nine 
images (requests A\... AQ), which is sent to the 
parallel server; the mediator then suspends pro- 
cessing until the parallel server returns the results 
for the whole block of requests. Having obtained 
the results of the first block, the mediator then ini- 
tiates processing of the second block Bi...,B$, 
to compute y. sunny() on all results y of the first 
block, etc.  As witnessed by Figs. 6 and  7, this 

iteGieatei£qual() 
(Blocks) 

termanyProjectionO 
(Block 4) 

processing 
completed 

Figure 6: Blockwise Parallel Execution A 

blockwise parallel evaluation does not make opti- 
mal use of the computing resources. Assuming that 
each request in the first block needs about 10s pro- 
cessing time, the parallel server will execute the re- 
quests A\... A$ in 10s. However, it needs another 
10s to process request Ag (Fig. 7). Only after 20s, 
the result of the block can be sent to the mediator, 
and processing of the second block can be initi- 
ated. This behaviour is suboptimal because when 
executing Ag, only one work node is active, and 
the other seven work nodes are idle, although the 
results of A\... A% are available so that execution 
of B\... Bs could be started. 

3In our example, the dependency structure is a chain, but 
with multiplace functions, it becomes a forest (set of trees). 
If intermediate results are re-used by a caching mechanism 
(as is done by the mediator), the structure becomes a directed 
acyclic graph. 

The blockwise evaluation approach requires the 
mediator to parse OQL queries and reformulate 
these into blocks of requests to the media server. 

iteGreateiEqualQ 
(Blocks) 

'eimanyPmjectbnO 
(Block 4) 

AiT*a i *»Y Ml *sT*«T*TY toft 

:unny() 
(Block 2) 

cloudinessQ 
1 Block 1 

Figure 7: Blockwise Parallel Execution B 

In order to avoid the intricacies of OQL analysis 
and translation, and to make better (i.e. more fine- 
grained) use of the parallel computing resources, 
we have decided to build an alternative media- 
tor for the HPQS system based on parallel asyn- 
chronous method invocations. This approach rests 
on the following considerations. We can leave the 
database application unchanged (i.e. still executing 
sequentially) and still profit from parallel execu- 
tion on the media server only if the act of initiat- 
ing or triggering a request is decoupled from the 
processing of the request. In the alternative medi- 

Retrieval 
Module 

HPQS Mediator 

»JtppllcatkMl 

ilMtifttk-« 

>a.-*v lookup 
cache rn.*»*>t$n*nc* 

C4CM ctosnup 

Parallel Media Server 

Figure 8: Asynchronous Execution Architecture 

ator (see Fig. 8), we have the database trigger the 
requests sequentially: triggering is a non-blocking 
call which immediately returns with a result key. If 
the request cannot be found by the materializer in 
its result cache, it is inserted into a request queue. 
The parallelizer makes use of a number of Re- 
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questWorkers (one for each processor node of 
the parallel server) which fetch requests from the 
queue and cater for their execution on the parallel 
server. 

It is sufficient for the database to know the re- 
sult key to initiate further requests. Only when 
direct access to the computed result is necessary 
(e.g. in order to display a result image), it performs 
a "fetch" call on the result key to obtain the com- 
puted data. These fetch calls are blocking and wait 
until the result is available. 

Snapshots of the parallel asynchronous execu- 
tion of the example query are presented in Figs. 9, 
and 10. The database executes the query (i.e. trig- 
gers requests) using its "normal" execution order, 
which respects the dependencies of the requests. 
The requests are hence triggered, and inserted into 
the request queue, as indicated by the small num- 
bers beneath the nodes in Fig. 9. The policy for ob- 

rateGreater£qual() 

germanyPro]ection() 

negattonO 

o wailing for 
execution 

| currently 
r executed 

processing 
completed 

Figure 9: Asynchronous Parallel Execution A 

taining the request to be executed from the queue 
is to select the "oldest" request all dependencies 
of which are satisfied (in the sense that the results 
for all arguments are available). The precise exe- 
cution order with the parallel asynchronous evalu- 
ation strategy is hence dependent both on the in- 
sertion order into the queue and on the termina- 
tion order of requests as processed by the parallel 
server. The initial configuration of processed re- 
quests as depicted in Fig. 9 is typical because the 
database triggers much faster than the requests can 
be executed. A later processing state is depicted in 
Fig. 10. 

When the processing of a request is completed, 
the corresponding RequestWorker immedi- 
ately selects the next request to be processed from 
the queue. We achieve a better utilisation of the 
parallel computing resources because it it avoided 
that processor nodes be idle. 

raleGreaterEqual() 

jermanyProjeclionQ 

negation!) 

sunny<) 

cloudinessQ 

Figure 10: Asynchronous Parallel Execution B 

6   Discussion 

We have presented a system architecture suitable 
for building high-quality multimedia search ser- 
vices for restricted (but in principle arbitrary) topic 
areas. By providing an NL interface, technical bar- 
riers in accessing the system are removed. The 
imprecision and vagueness of NL queries must be 
handled because an adequate system behaviour can 
only be achieved if these factors do not result in 
system failure or implausible results. We have 
therefore developed a semantically rich retrieval 
model based on methods methods from fuzzy set 
theory. Emphasis has been put on linguistic meth- 
ods for information fusion (viz. fuzzy quantifiers). 
Apart from our use of these methods to utilize 
spatio-temporal relationships, such methods are a 
prerequisite of combining the contents spread over 
the parts of a multimedia document, and of utiliz- 
ing relationships established by hypertext links in 
a broad range of other applications. 

HPQS supports online search and thus offers 
versatile ways of querying: there is no restriction to 
pre-computed descriptors and their Boolean com- 
binations. We have combined several techniques in 
order to ensure acceptable response times, in par- 
ticular parallelisation of method invocations, by 
utilizing a parallel asynchronous evaluation strat- 
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egy, and the use of materialization, which yields a 
speed-up for frequent queries (or subqueries) com- 
parible to that of traditional indexing. 

Although HPQS makes use of only one data 
source (the parallel media server), the information 
provided by the various document types is par- 
tially overlapping. For example, satellite images of 
different weather satellites (Meteosat, NOAA) or 
weather maps of different meteorological services 
can all be used to compute estimates of the degree 
of cloudiness at a given geographical location, and 
the results obtained can either support each others 
or contradict. Existing mediators like HERMES 
[5] have chosen to handle such cases by conflict 
resolution rules which specify a priority ordering 
on the sources, in order to select one of the 
conflicting pieces of information. We are currently 
working on the problem of combining (rather than 
selecting) such overlapping and possibly contra- 
dictory data, based on our linguistic methods of 
information fusion. 
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Abstract - This paper describes an approach to the 
design and implementation of an information retrieval 
capable of providing an search of users. Textual 
analysis is a part of information treatment systems. The 
access to digital data through WEB servers is 
facilitated by search engines. A number of Internet 
search engines provide classified search directories 
(alphabetical index, WEB guides, etc..). Following 
request, the user visualizes masses of the obtained 
WEB pages. However, the selection of documents 
becomes very difficulty due to no-relevant of the 
obtained documents. Generally, the user visualizes the 
first pages but he doesn't consult the hundred ones. It 
is a difficult to analyzing the pertinence of documents 
obtained. He has to have some tools that allow to filter 
the information of all web pages. The aim of the 
present paper is to suggest a method of filtering based 
only on the address URL, titles, abstracts. This filtering 
will allow to constitute a set of filtered solutions in 
order to improve the reformulation of the question 
(request). This step is a part of the user profile 
modeling as a tool in order to access to information. 
This filtering will allow to constitute a totality of 
solutions between the framework of the modeling of 
needs oriented of the user. The module is using 
classification algorithms to extract more relevant 
'terms' in titles and abstracts, given texts accepted and 
rejected interactively by the user in the process of 
filtering. The problem of information searching in texts 
is mainly a linguistic problem. The objective is to 
construct a system of automatic indexing that uses the 
model of Noun Phrases (NP). The couples intensional 
predicate/NP are used from retrieval, navigation and 
filtering the solutions captured from the WEB. The 
questions, that are asked now, are : Can they play the 
role of descriptors of textual databases? How to 
organize them in Documentary Indexing System for 
the future research of information? The     paper 
describes a simple method of selecting the 'good result' 
and proposes an algorithm for organizing future 
optimal search. 

analysis. WEB (search engine). User profile modeling. 
Competitive information 

1. Introduction 

Access to the information through the WEB 
servers is very extremely used by seekers. 
Following a request that is formulated by means of 
an exploitation engine, the user receives on this 
screen masses of WEB pages. The user visualizes 
tools that allow to filter the information of all pages 
WEB. With the widespread stored information in 
Web, it is becoming increasingly important to use 
automatic methods for filtering such information 
(Belkin & Croft 1992). The goal is to propose a 
method of filtering based on address URL1, titles 
and abstracts. The aim is to suggest: 

- It is about obtaining an environment to 
analyze the information produced during the 
process of cooperation or resulted from 
automatic treatment. 
- The linguistic approach of indexing 
indicates that the meaning is included in the 
document. 

This approach favors the textual analysis 
(reflection of the information producer) in order 
to end in a representation of meaning. This 
study is based on linguistic techniques to 
optimize the following aspects : 

- On improvement of automatic indexing 
based on an extraction of text references in 
order to make a good representation of its 
content. 

- On adequate analysis of the request users 
in order to satisfy its informational needs. 

Key Words - Process of Filtering. Natural language      „    _,        ,   , ,T   , , 
processing. Ways finding. Schema of interrogation.      2'   Natural   Language   Understanding   for 
Relationships   of  inclusion.   Noun   Phrases   (NP).      Information     Retrieval:     reference     and 
Intentional    predicate.     Algorithms.     Quantitative      indexing 
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2.1. Noun Phrase (NP) : Referential function 

The indexing of a document is a 
representation of the document so as to 
facilitate the obtaining of the included 
information. It is the passage from the textual 
document to internal representation (Blair, 
D.C., 1990). This representation has to have 
the semantic characteristics of this document. It 
has been shown that the NP2 can be defined as 
a continuation of free predicates (Larouk, 
1993a) that is constructed around a name. The 
NP makes a direct reference to an 
extralinguistic element in a fixed universe as 
like in the following example. 

</> /The station/<NP>=<The+station >=< 
quantifier + predicate > 

According to Le Guern, it has been seen that 
the NPS are the themes. Thus, it is possible to 
make a correspondence between extracted NP 
of a text by a system and the descriptors that 
result from a manual indexing (Le 
Guern, 1992). The extraction of NP is therefore 
determinate to be able to optimize an automatic 
indexing (Antoniadis & al., 1988), (Metzger, 
1988), (Smeaton & Van Rijsbergen 1988). 

2.2. Intentional predicate 

The quantifier and the central predicate are 
vital for obtaining the NP. Consequently, it is 
around a central predicate the other 
neighborhood elements organize. It is often 
represents by a name as in next examples: 

<2> / The policy economic / = / The 
(policy* economic) I 

<2> I The 
[intensional predicate] ' 

[quantifier]   policy [intensional predicate] economic 

consider it as an open intentional predicate in 
order to access to the NP after its referential 
closing down in a documentary research. In 
addition, the study of elements around 
intensional predicate can give interesting 
information on continuity of the analysis of the 
type of quantifier, at the proximity, can avoid 
to do false analysis. We have seen that the 
quantification allows the actualization of 
simples predicates or complex predicates 
(policy * economic) (Larouk, 1993a). 

2.3. Closing operation of complex predicate : 
Appurtenance relations in a NP 

The fooling example show that some 
information on the predicates around of 
syntagm center are possessed and also on that 
NP that are included in other (NP). 

<3>   < The policy economic of <France> NP 
> NP 

The   central   predicate    "policy"   is   an 
intentional element. However, it is possible to 

The    NP    <France>    is    included   in    the 
NP_sentence: 

<The policy*economic of France> NP 

This appurtenance relation determines some 
levels. It has been shown that it is possible to 
define several inclusion levels with set theory 
(Larouk, 1994). Therefore, it is possible to 
attribute to NP level I if it is simple, level 2 if 
it contains a simple NP, level 3 it contains a NP 
of level 2 and so on... (thus of continuation). On 
one hand, it can be thought that this process can 
be extended to other levels, on the other hand, it 
seems that this processes is limited in French 
(Le Guern, 1992). In the framework of 
management of answers, the information 
provides by the automatic system on the 
inclusions between NP can be useful for 
oriented interrogations. The advantage of this 
viewpoint, by grouping referential objects in 
textual set, is to illustrate the composition of 
intentional predicates. 

3. Linguistic representation of semantic hierarchy and Interrogation 
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3.1 Classic mode of interrogation 

Documentary research is the mode that seems to 
match better for the user. The users questions in 
natural language with will be explained by IRS3 in 
order to return the most relevant answers of 
system. In order to compare a question with the 
stocked documents in the database, the request will 

be analyzed according to the classical 
formalization (Salton (G), McGill (M.J), 1983), so 
that, its referential terms can be extracted. 
Therefore, the extraction of content can be carried 
out by logical representation. In this case, the 
provider solution to the user is that witch answers 
its       request       (and       only      this       one). 

•X- 
I                          Qwry 3 1         Collection of 

1              Documents 1 
X X 

Indexing 
representation 

p^^nalyse/indexmg of 
^^^^                  question! 

+ X 
Internal 

representation of 
question* ) 

Internal 
representation of 

Documents 

I 1  Comparaison | 

c  Feedback                                          _| J^                   Retrieved 
^^^^               Documents 

fig.l: Classical model of SRI [Salton-83, Smeaton-88, Blair-90, Belkin&Croft-92).] 

3.2. Schema of interrogation: Other 
mode of research based on appurtenance 
relations 

The  suggested  interrogation  schema are 
based on logical approach and was developed 
in previous work (Larouk,  1993  a and b, „, .. ., ,     . .  ,   . ■     , „. 
,„»..    T,,     J.JV, j    , The pertinence could be tried to relations 
1994).  The  difference was made between ,  A iL   T.™   r^,    ■ r ,     , 

'.     .     „ ,.   A J      i     J between the NP. The information levels are 
intensional    free    predicates    and    closed ,,,.,, _, i_    J  i_ .. ^ 

,.   A      __,,.    T^ r, ■    j- x. found in the appurtenance bonds between the 
predicates  (NP).  However,  this  distinction ,    »A  _.   , ,        ,  . 

properties without reference to a fixed 
universe (intensional logic) or are referential 
functions linked well linked to well defined 
with the true value (classic logic). 

3.2.1. Hierarchic informational levels 

allows to analyze the interrogation problem 
according as these elements are intentional 

words of textual sequence as shown below 

<4> /Les conditions de travail des salaries des entreprises de la capitale / 

<4> < /The/ conditions/ of/ / work / of/the /workers / of/ the/ enterprises /of/ the /capital / 

[  Les conditions de travail   des salaries des entreprises de  la capitale 

NPi \ la capitale  

NP?| les entreprises de la capitale 

NPn[ les salaries des entreprises de la capitale 

NP4 Les conditions de travail des salaries des entreprises de la capitale 

level 0 

level 1 

level 2 

level 3 

level 4 

We can see the following characteristics (Larouk, 1994) 
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- We call NP4 of level 4 : [macro_NP_final]. This final NP4 is the NP that contains all 
the other NP with low level. 
- NP3 et NP2 are called respectively [macro_NP] of level 3 and level 2; 

- NPi is called [micro_NP] of level 1 ; 
- The intentional predicates have of level 0. 

This gradual process of levels determine one inclusion between NP. This relation reflects 
the links between referential objects of textual structure. 

macro NP final 

3.2.2. Different schema of 
interrogation and retrieval: 

fig. 2: Inclusion relationships in macro NPJinal 
these documents do not answer to the needs of 
the user, then it is to possible to 
provide him all the NPs with upper lever (greater 
level ) which contains the intensional predicate 
as the center of NP. In the case, where this 
intensional predicate appears in the shape of 
complex word, at first the microNP which 
contains this intensional predicate is proposed (or 
prompted) in order to avoid noisy4 solutions. 

Documentary systems, that treat 
textual chains, are very formalized. 
However, these systems suit well to 
designers and formed users (Rich, 1984). 
But some problems subsist for no specialist 
even if they are helped by assistance systems 
of research that's why the possibility for 
questioning an information databases in 
natural language is the object of several 
studies (Copestake & Sparck-Jones, 1990), 
(Larouk & Bouche 1993).The next approach 
gives the choice between many research 
strategies. The notions of 
intensional_predicate, microNP, 
macro NP,  macro NPjitial are  used  to 
introduce the different navigation paths. 

3.2.2.1. Filtering Interrogation : Choice of 
navigation path 

•        Information    Retrieval by   intentional 
predicate : The database has to provide to the 
user all the NP, in priority, that contain the 
intensional predicate as the center of NP. If 

Information Retrieval by micro NP: The 
database must to provide to the user all the 
NP, in priority, that contain the microNP. If 
these documents do not reply to needs of the 
users, then we can provide him with the NP of 
upper level (macro NPJinal) that contains 
this micro NP or lower level 

(Information Retrieval by macro NP: The 
databases must to provide to the user all the 
NP, in priority, that contain the macro NP. If 
there are many documents that reply to the 
needs of users, it is possible to select the NP 
in this macroNP with lower level. This 
operation of information reduction can be 
continued until to micro NP of low level. 

Information Retrieval by macro_NP Jinal. 
The databases must to provide to the user all 
the   NP,   in   priority,   that   contain   the 
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macro_NPJinal. If these documents do not 
reply to needs of the users, it is possible to 
select the NP in this macroNP with lower 
level and thus of continuation. 

Filtering set: Schema of Filtering 
Interrogation 

The previous different interrogation manners are summarized in the following schema: 

Retrieved Documents 

macro_NP_final 

micro NP 

Intensional_predicate 

fig.3: Interrogation and Retrieval: Different path of navigation 

The schema illustrated a set of solution 
even of the most noisy and gives the choice to 
the user to satisfy his demand (request). The 
manner permits to user to mark the susceptible 
solutions of his demand. In order to achieve 
this marking , the user has to be able to move 
in the structure produced by different levels. 
This is what we call the filtering of answers in 
cooperative/collaborative mode. To measure 
the importance of NP relations in indexing 
documents by the search engines, next natural 
questions are tested on the web. 

3.2.1. Search engines 

Search engines have developed in order to 
look for information stored on the Web 
(Lardy, 1996). Two types of robots are apart 
(distinguished) : the indexes and the 
descriptors. 

- Indexes engines coves all web servers, and 
enrich automatically (enlarge) the directory by 
indexing the contents (titles, abstracts, texts) 

- Descriptors engines that have titles as basis 
or descriptions provided by the designer-web. 

Among search engines that combine the 
two techniques, it there has Francite, 
WebCrawler, Excite,... 
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3.2.2. Results of test5 on the WEB 

modes Questions 

intensional predicate Q> capitale 

micro NP Qr2 la capitale 

macro NPJinal Qs les conditions de travail des salaries des enterprises de la capitale 

predicates combined by (ET) Q-4 conditions ET travail ET salaries ET entreprises ET capitale 

predicates combined by (AND) Qs conditions AND travail AND salaries AND entreprises AND capitale 

Search engines Results ofinterro gation by: 

intensional 
predicate: Ql 

micro NP 
Q2 

macro NP final 
Q3 

ET AND 

0.5 

1. HotBot 439731 41401 

la=4306052 
capitale=43973 

217 (WEB Europe) 
108 (WEB North America) 

0 

336 (WEB Europe) 
108(WEB North America) 

7210546 

217 (WEB Europe) 
108 (WEB North America 

3807868 

2. InfoSeeK 13183 2168144 693294 1956916 19569J6 

3. 

4. 

ItaVista 04.12.97 

ItaVista 30.05.98 

12667 

172800 

12761 

172800 

418759 

2047037 

242238 

1875540 

138699 

1578770 

5. Lycos 4055 4055 0 0 0 

6. SwissSearch 2125 2125 11454 11454 11459 

7. Magellan 942 97153 177 681 60203 60203 

8. WebCrawler 765 107857 275 645 0 0 

9. ogpile 
(Thunderstone) 

320 71 0 0 0 

10 Ecila 200 200 200 0 0 

11 Nomade 67 67 55077 4924 133641 

12 geocities 66 66 0 0 0 

13 EUREKA 60 32 63 4 344 

14 Carrefour.net 58 59 0 0 0 

15 MetaCrawler 38 25 23 1 0 

16 Excite (dogpile) 10 10 10 0 0 

17 YelloWeb 6 6 0 0 0 

18 Yahoo (Fr) themes=3 
sites=42 

themes=3 
sites=42 

themes=3 
sites=42 

themes=3 
sites=42 

themes=3 
sites=42 

19 Lokace 10396 (la) = 530821 
capitale)=10396 

seeQ3 seeQ4 seeQS 

20 Francite* 656 656 seeQ3 seeQ4 seeQ5 
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Result for the question Q3 

Search 
engines 

les conditions (2) de travail (2) des salaries entreprises la capitate 

1. Lokace 434312 60036 643208 96116 491567 7651 85240 530821 10396 

2. Francite 0 1314 0 3443 0 242 4524 0 663 

Result for the question Q4 

ET conditions travail salaries entreprises capitate 

1. Lokace 502050 60036 96116 7651 85240 10396 

2. Francite 0 1314 3443 242 4524 663 

3. DejaNews 894744 72937 6397 525 1697 1428 

Result for the question Q5 

Search 
engines 

AND conditions travail salaries entreprises capitate 

1. Lokace 116433 60036 96116 7651 85240 10396 

2. Francite 0 1299 3391 236 4434 656 

The problem of interrogation in natural language can generated the no-pertinent information for the 
research. However, if the user uses an important textual sequence a very long sentence such as the 
question Q2, the system gives false information (HotBot gives 4306052 results for the quantifier iW) 
and AltaVista gives for the question Q3 : 

Questions Answers Dates 

1. les conditions de travail des salaries des enterprises de la capitale 2047037 in 30.05.98 

2. " les conditions de travail des salaries des enterprises de la capitale " 0 in 30.05.98 

This situation produces the ambiguities because of the number free predicates (the, of, each, etc. ) 
component of the request. We notices that the answers from search engines (Yahoo, Nomade, ...) presents 
a structure of metadata. This structure is constituted of categories: titles, under-titles, abstracts and 
URL. 

3. Quantitative measures and Oriented filtering of solutions issued by WEB 

4.1. Modeling of oriented needs of users in cooperative mode 
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user(s) Queries: 
Ql, Q2  Qn 

Answers: 
Ai, A2, ..., A„ 

WEB 

Yahoo, Excite, 
Infoseek,... 

Titles, Abstracts, URL 

By tapping the corresponding URL to question the WEB servers for the same question each, one will 
adopt a formulation that is proper to concerning the search engine, the serves, and the composition of his 
questions. The users has tendency to be oriented towards the server that he has already used although is 
competence on the other servers. Long since it's well known that the result of an indexing has to serve in an 
interrogation .The scheme of filtering the relations between queries and answers by the users is giving by : 

a) Choice of search engine 

b) Question(s) on search engine  • 

c) Obtained all solutions indexed of the questions 
d) Filtering of the solutions decided by the user in mode cooperative, (if failure) 

users-Queries system-Answers 

Qo 
Qi 

Q2 

Qk 

Qnl 
Qn 

Ao 
A, 

A2 

Ak 

A„-i 
An 

steps 

So 
Sl 

S2 

Sk 

Sn-1 

S„ ^ 

fig.4. Schema representing the process of filtering of queries by users. 

Ar is the filtered final answers with the oriented needs by steps : 

S= < Si, s2v. •5 Sk-1, Sk, Sk+l, ..., sn-i, sn>                  with A„ = an+ßn 

An = = Oln+ßn where ß„ is the set of no-pertinent solutions (rejected by users ßn = = 0) 

a„ is the set of pertinent solutions (accepted by users : Ctn* 0) 

The interrogation flexible consists to offering the user the possibility to eliminate the "parasite" 
solutions and to reformulate the request. The graduate process of filtering steps permits to reduce the 
set of solutions. The user constitute the database contains the solutions. However, at the present time, 
the result of a research on the WEB is not exploitable because of the great number of answers. It will 
be useful to find other tools to filter his information masses. In the present paper, we propose to use the 
an mathematical measurement linked to relations between the questions and the title, the abstract and 
URL address. The criteria permits to capture the reference of documents. 

4.2. Selection of the documents with quantitative implication 
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The aim is to limit the noise by analyzing the 
answers issued by web. The captures (under the 
shape) ASCII of a file that resulted from an 
interrogation that mainly present the following 
structures      :      titles,      abstracts, URL 
address (documents). The classification of the 
obtained answers leans on the quantitative 
measurements. However, it allows to reformulate 
the questions in cooperative mode by means of 
weighting. We only choose the search engines that 
index the abstract and the text of document. This 
The implications are: 

choice will permit the evaluation of, on the one 
hand the implication relation between the question 
and the title and, the implication between the 
question and the abstract, and the relation between 
the question and the document, on the other hand, 
the implication between the question and the all 
answers captured. However, it seems that the 
keywords of index files of the most robots are 
extracted from documentary databases and from 
the indexed servers. 

Af(Q -> t,a,d) = (At(Q -> 0 + Aa(Q -+ a) + Ad(Q -> d)) * N 

| where Af is the total frequency of predicate in all solutions (N answers captured from WEB) 

If Xf is great, so the implication of the question in the title, the abstract and the document URL 
address will be strong. This criterion will be used, in order to classify the answers and to permit to 
oriented requests, in priority, to URL address of WEB. 

Question Title Abstract Document 
(obtainedfrom URL address) 

all answers captured 
(N solutions) 

Intensional 
predicate 
ex: /capitale 

*n is the number of occurrence 

of predicate in the title 

At (Question -» title) 

A-a is the number of 

occurrence of predicate in 

the abstract 

^(Question -> abstract) 

^d is the number of occurrence of 

predicate in the document 

Ad (Question -> document) 

A*s is the number of occurrence of predicate 

in all documents captured (in N solutions) 

Af (Question —» all_answers) 

5.   Elaboration   of   Databases   with   Semi- 
Structured data stemming from WEB 

5.1.    Answers    Filtering    Process        Filtering 
algorithm 

The process consists of filtering the answers 
and presenting them in an order to facilitated the 
decisional choices of user in cooperative mode. 
The analysis of predicates in analyzed answers 
has permitted to notice, that a descriptors is 
shown at once in the title several times and in the 
abstract that has a strong probability to be a 
"good descriptor" during a new research. In the 
present process, the user intervenes after the 
sentence of statistic indexing to eliminate the 
parasite solutions and then to reorient this 
request on the set of solutions the following 
procedure: 

a) Choice of search engine. 

b) Question(s) on search engine. 

c) Obtained all solutions indexed of the 
questions. 

d) Downloading (files ASCII and HTML) 
with address URL, titles, abstracts, etc.. 

e) Typographic Filtering the texts 
downloading (ASCII and HTML) by user 
or/and automatic treatment. 

f) Distinction of parts of the file to process 
(titles, abstracts, URL) and parts to delete 
by user or/and automatic treatment. 

g) Calculation of the implication of the 
question Q in the title (kt) 

h) Calculation of the implication of the 
question Q in the abstracts (X,a) 
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i) Calculation of the implication of the 
question Q in the document downloading 
by URL (Xd) 

j)  Calculation    of   the    final    implication 
Af{Q -+1, a, d) = (MQ -> ') + MQ -> a) + Xd{Q -»■ d)) 

k) Presentation of solutions in an order (kf 
very great). 

1) Final classification: Database Semi- 
Structured (only URL address, titles, 
abstracts). 

m)New search strategies on the Database 
Semi-Structured (only URL address, titles, 
abstracts). 

n) Navigation of the users in the semi- 
structured documents. 

o) Relevant document downloading helps by 
the URL. 

p) Control the solutions by the user {if 
failure: question(s) on other search 
engines}. 

This one would orient the user towards the 
optimal request that would permit to capture the 
final document. The quantitative method that the 
relations between the questions and the captured 
elements (titles, abstracts, documents) will be 
used in order to construct hierarchic 
classification. 

This optic obliges the databases to provide to 
the user on all the NP that answers his question. 
This optic of marking the set of solution would 
permit to filter the information due to the 
existence of a mark. When the system produce 
different solutions, the user has to select the 

*best solutions and/or to call automatic analysis 
by agents of filtering (Foltz & Dumais 1992). 
To reaper the information, the strategies based 
on the algorithm of classification allows the 
filtering. It should be noted that the access to 
content of document is not obtained by such 
methods. The general process will be completed 
by a linguistic procedure of filtering : 

a) Filtering lexical of intensional predicates 
(simple or complex) of texts of Database 
Semi-Structured. 

b) Syntactical analysis on the texts of 
Database Semi-Structured (only URL 
address, titles, abstracts). 

c) Classification by order of NP in titles, in 
abstracts and in the documents. 

d) The user consults the list of NP titles in 
priority, {if failure then go to e)} 

e) Presentation of solutions in an order (kf 
very great). 

f) Constitution de databases of strategic 
information. 

g) Choice and Evaluation. 

h) Future queries tested on the Database 
Semi-Structured. 

5.2.  Constitution de databases  of strategic 
information (indexed databases) 

This modeling of users needs follows a preview 
process. A solution would be to present all answers 
(even de most noisy for intensional predicates) and 
to let the choice to user to satisfy his demand. 
Other solution would be to determine the NP of the 
question and he compare them to NP solutions of 
titles and abstracts in order to improve the 
filtering. 

The goal is to make an syntactical analysis 
on the contents of tittle, and downloaded 
abstracts and to represent the NP solutions in 
order to construct of database filtered an 
indexed databases for the information research. 

6. Conclusion : Perspective of this research 

This study propose two complementary 
methods to conceive documentary system. The data 
first one emphasis capturing textual data with 
quantitative algorithm of filtering based on the 
measure of implication between the question and 
the titles, abstracts and documents. The second one 
adopts a method that focuses on the role of the user 
and on his knowledge filter the relevant answers 
from the Web. 

Information Retrieval which is known as 
documents, is the process of locating and retrieving 
documents that are relevant to the user queries. 
The approach which allows the user to navigate 
and  inspect the  database  documents  captured 
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according his demand. The future search strategies 
proceed on the Database Semi-Structured (only 
URL address, titles, abstracts) to look for relevant 
document. The aim is to constitute de databases of 
strategic information. 

In the case of an IR, there is no correspondence 
between the set of reference (NP) that the user 
wants and the set of reference that the system is 
going to suggest to him. To limit the noisy/silence 
problem, we have to call the linguistic tools. We 
suggested some elements to study the different 
schema of interrogation The notions of 
intensional_predicate, microNP, macroNP, 
macro_NP_ßnal are used to introduce the different 
navigation paths. The research will be oriented 
toward complying of linguistics techniques with 
filtering tools. 

References 

Belkin, N.J; Croft, W.B. (1992/ Information 
Filtering and Information Retrieval: Two Sides 
of the Same Coin ? .In : Communication of the 
ACM. Vol.35, No. 12. pp. 29-38. 
Blair, D.C. (1990). Language and Representation 
in Information Retrieval. Elsevier. Amsterdam. 
Copestake, A., Sparck-Jones, K. (1990). Natural 
Language    Interfaces    To    Databases.    The 
Knowledge Engineering review. n°5, part 4. 
Foltz, P.W, Dumais, T. (1992/ Personalized 
Information     Delivery:     An     Analysis     of 
Information       Filtering       Methods.        In: 
Communication  of the  ACM.   Vol.35,   1992, 
No. 12, pp. 51-60. 
Grishman, R. (1984). Natural Language 
Interfaces. Journal of the ASIS , 35. Pp. 291- 
296. 
Lardy J-P. (1996). Les outils de recherche 
d 'informations sur Internet. Publications ADBS. 
Paris. 
Larouk O. (1997). Logico-semantic and 
Statistics applied to textual data in information 
retrieval: Quantitative Mathematics (Set theory, 
Logics, Statistics) and Algorithms applied on 
textual data in Information Retrieval, in the 
Third International Conference on Quantitative 
Linguistics. QUALICO' 97-IQLA; Research 
Institute for the Languages of Finland, pp. 135- 
143. 

Larouk O. (1994). Extraction de connaissances 
ä partir de documents  textuels:  Traitement 
automatique de la coordination (Connecteurs et 
Signes de ponctuation).    These de Doctorat, 
specialite   :   Informatique,   Universite   Claude 
Bernard Lyon 1 ; 359 p. 
Larouk O. (1993). Application of Non-Classical 
Logics    to    Optimize    Textual    Knowledge 
Representation   in   an  Information  Retrieval 
System, in HEURISTICS : THE JOURNAL of 
Knowledge Engineering. Volume 6, Number 1 
Spring 1993. Gaithersburg, MD- USA; pp. 25- 
37. 
Larouk O.  (1993). Linguistico-Statistical and 
Logics  Applied for  Documentary   System 
Algorithm  of Correction punctuations  signs^ 
ACM-SIGAPP'93 :    APPIED    COMPUTING: 
States of the Art and Practice. ACM Press-NY, 
Indianapolis, pp. 737-744. 
Larouk  O.   Bouche  R.   (1993).  Apports  des 
logiques et de la linguistique dans la conception 
d'interface de Bases de donnees textuelles.   in 
Pluridisciplinarite dans les Sciences Cognitives. 
HERMES. Paris, pp. 142-160. 
Le Guern M. (1992). Un analyseur morpho- 
syntaxique pour I'indexation automatique. Le 
Francais Moderne; tome LIX; n° 1. pp. 22-35. 
Metzger J.P. (1988). Syntagmes Nominaux et 
Information Textuelle.  These d'Etat es sciences. 
Universite C. Bernard Lyon I. 
Rich, E. (1984). Natural Language Interfaces. 
Computer. September. 
Salton G, Mc Gill M.J. (1983). Introduction to 
modern information retrieval. Mc Graw-Hill; 
New York. 
Smeaton  A.F,   Van   Rijsbergen   C.J.   (1988/ 
Experiments     on     Incorporating     syntactic 
processing of User Queries into a Document 
Retrieval Strategy. ACM-SIGIR'88; Grenoble; 
June 13-15. pp. 31-51. 

URL (Uniform Resource Locator) 
NP (Noun Phrase) 
IRS (Information Retrieval System) 
In IRS, Noise is represented by the selection of inappropriate 
documents. Silence is represented by relevant documents which have 
been not selected. 
This test was realized le 4 December 1997 on the WEB. 

547 



Session WB1 
Knowledge-Based Techniques for Information 

Fusion and Discovery 
Chairs: Ray Liuzzi and Craig Anken 
Air Force Research Laboratory, USA 

549 



Domain specific document retrieval using n-word combination 
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Abstract Traditional text based information retrieval 
is based on isolated keywords or word stems. With- 
out a context, words are frequently ambiguous. The 
ambiguity of isolated words decreases the precision of 
information retrieval tasks and additional contextual 
words may increase precision. This motivated us to 
develop a method to extract word combinations from 
text documents. We define an "n-word combination" 
as n words that co-occur in the same context. Brute 
force methods to calculate n-word combinations are 
limited to small documents. Our technique uses the 
structure (e.g., sentences) of the document to limit the 
search for the word combinations, thus it can scale to 
large documents. 

The n-word combinations can be used to represent 
documents via a vector space model. We have used the 
resulting model to perform document retrieval tasks. 
We have compared the precision and recall of the n- 
word combination model with that of the traditional 
isolated keyword or word stem vector space models. 
Our results reveal that using n-word combinations to 
model documents can significantly improve the preci- 
sion of query results. 

Keywords: Domain-specific information retrieval, text 
data mining, medical application 

1   Introduction 

Information retrieval systems index free text docu- 
ments using keywords. These systems have been 
shown to be useful to access general document 
spaces most recently for indexing and accessing 
the World Wide Web. We are exploring the in- 
dexing and access of domain specific information 
sources where additional information may be avail- 
able that could be used to improve the information 
retrieval process. 

The field of medicine provides a vast set of text 

documentation, including medical literature and a 
variety of patient medical documents. Medical 
specialties are well-defined, often with their own 
specialized vocabulary. These specialties provide 
a test-bed for the exploration of domain specific 
information retrieval. 

In a medical teaching facility, on-demand and 
interactive teaching material based on real patient 
population data can significantly enhance the abil- 
ity of instructors to teach students, house-staff, and 
other colleagues. Currently, these teaching files 
are manually indexed by anatomical site and dis- 
ease process. However, it may be difficult to lo- 
cate different kinds of a particular disease. Further- 
more, the static nature of these teaching files do not 
facilitate the incorporation of recent medical cases 
nor do they enable automated cross referencing of 
patient files with existing teaching cases. 

This paper describes a method to select and use 
multi-word combinations as indexing terms. A set 
of thoracic radiology medical reports was selected 
for our test domain. 

2   Related Work 

Automated information retrieval follows three gen- 
eral steps: 

1. Index term selection 

2. Encoding documents 

3. User query processing 

An indexing term is defined as a set of unique 
words that characterize some feature found in the 
document set. Documents are encoded or modeled 
using the indexing terms that appear in them. User 
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queries are processed by mapping the query to the 
indexing terms previously extracted from the docu- 
ment set and then matching the query to individual 
documents. 

Term selection is also important in text-based 
knowledge discovery systems [1]. These systems 
data mine text documents to discover patterns 
which hold across many documents. Patterns can 
take the form of one term or phrase that co-occurs 
with a second term or phrase [1]. The frequency 
of word or word n-gram occurrence can also be 
used by experts to find useful information as well 
as anomalies in data sets [5]. 

Index term selection Automatic information re- 
trieval systems often select indexing terms based 
on their ability to differentiate documents rather 
than content. Typically, indexing terms are select- 
ed based on their frequency of use in the corpus. 
Intuitively, words which are used frequently do not 
differentiate documents well, as they appear in a 
large subset of the corpus. Experimental results 
have shown that neither high nor low frequency 
words work well for indexing documents [15]. 

Various methods exist for selecting or normal- 
izing indexing terms. Stop word lists are used to 
eliminate frequent words. Stemming is used to 
normalize words with similar meaning to a com- 
mon prefix (e.g., the word "masses" is stemmed 
to "mass"). Using statistics derived from the doc- 
ument set, weights can be added to the index- 
ing terms to reflect their individual classification 
power. 

Encoding documents For indexing purposes, 
documents can be represented by the set of in- 
dexing terms found in them. Each indexing term 
can be considered a character of the document set, 
where each character has a single well-delineated 
meaning or definition. 

Individual documents can be represented as an 
n-dimensional document vector, where each vector 
term represents one of the indexing terms selected 
from the corpus. Documents are encoded using the 
n-dimensional document vector by assigning posi- 
tive values to those vector terms which correspond 
to indexing terms found in the document.   Vec- 

tor terms corresponding to indexing terms which 
do not appear in the document are assigned a null 
value [14]. 

The similarity of two documents can be mea- 
sured using a variety of methods. In retrieval sys- 
tems utilizing a vector space model, one frequent- 
ly used measure is the cosine of the angle between 
two vectors (i.e., query vector and document vec- 
tor). The cosine of the angle between vectors has 
been shown to perform better than using the Eu- 
clidean distance between two vectors as a measure 
of similarity between document vectors [15]. 

Query processing can be performed by trans- 
forming the query terms into the n-dimensional 
vector used to model the documents, forming a 
query vector. The query vector is compared to each 
of the document vectors, forming a list of similari- 
ty measures. Using the list of similarity measures, 
documents can be ranked and returned to the user. 

In many systems, the indexing terms used to 
represent documents consist of individual word 
stems. The word stems, isolated from other words, 
may be ambiguous, thus are not well suited to serve 
as well-delineated characters of the document set. 
For example, the isolated word "mass" may refer 
to any mass and is not specific to any anatomical 
location. Using "mass" as a character of the docu- 
ment set, while separating reports with the "mass" 
character from those that do not contain this char- 
acter, does not differentiate between specific mass 
lesions (e.g., right upper lobe mass). 

This is especially true in radiology reports 
where frequently all anatomy examined in the 
study is described. Using isolated word stems, it 
is frequently impossible to fully classify particu- 
lar medical findings. For example the following 
six words refer to a hypothetical patient's lungs 
{clear, left, lobe, lung, mass, right}. In this ex- 
ample, words are isolated and word order does not 
effect the "meaning" of the set. Using no other in- 
formation it may be possible to infer that one lung 
is clear and the other contains a mass. The ambigu- 
ities introduced by isolated word stems decreases 
our ability to interpret the individual findings. 

To accurately index and access patient reports 
by disease and anatomy, a system should be able 
to differentiate between various anatomical struc- 
tures and involved findings. Research has provided 
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evidence that multi-word or phrase indexing terms 
may improve retrieval performance [2,10,3]. 

Previous research has focused on short phrases 
(i.e., 2-words) applied to general information re- 
trieval test beds. The results from this research was 
limited in that phrases were calculated by combin- 
ing terms taken from anywhere in the documen- 
t [2]. As the size of a document can be large (e.g., 
100s to 1000s of words), brute force calculation of 
all word combinations in the document can not be 
easily managed. 

A system called INDEX used n-grams to extract 
content from legal documents [10]. The develop- 
ers of INDEX noted that the number of potential 
n-grams is large, and may include many "meaning- 
less" phrases. To solve this problem, they used hu- 
man experts to eliminate useless phrases. Recog- 
nizing that this solution does not scale well, a sec- 
ond system (INDEXD) was developed. Instead of 
human experts, INDEXD used a dictionary associ- 
ating word stems with a list of similar terms. Asso- 
ciated terms were normalized to a common term, 
thus increasing the frequency of common "mean- 
ingfull" phrases [10]. 

These results are promising, showing that mul- 
tiple word indexing terms may provide important 
contextual information, thus improving retrieval 
performance. Still the data sets used were gener- 
al in nature, making text mining difficult. We are 
using domain specific data sets, which may enable 
the extraction of common patterns which can be 
used to improve retrieval. This additional infor- 
mation will enable the system to more accurate- 
ly model the content of the individual documents, 
without the use of external knowledge sources such 
as a dictionary of associated terms. 

3   Method 

Several methods exist for defining multi-word in- 
dexing terms. An n-gram is defined as an ordered 
sequence of n words taken from a document. For 
example, "several methods" and "methods exist" 
are the first two bi-grams of the last sentence. Giv- 
en a document d of length I there are (I — n) n- 
grams in d. By providing context lacking from iso- 
lated words, n-grams may more accurately model 

the content of documents. 
Two other factors may influence the effective- 

ness of n-grams as indexing terms. First, n-grams 
are dependent on word order, thus "right upper 
lobe mass" is not equivalent to "mass right upper 
lobe." Second, n-grams are limited by word prox- 
imity, requiring that words appear next to one an- 
other in the original text. For example, in the text 
sample: "a mass is seen in the right upper lobe," 
here, "mass" and "right upper lobe" will only ap- 
pear together if a 8-gram is used to model the text. 
Removing typical stop words from the sample re- 
sults in "mass seen right upper lobe," still for the 
finding and anatomy descriptions to appear togeth- 
er requires an n-gram with a minimum length of 5 
terms. 

N-grams may improve retrieval precision by 
providing additional context over isolated words. 
However, reliance on the original document's word 
order as well as word proximity may decrease re- 
trieval recall and may require longer n-grams to be 
used to model documents. 

We define an n-word combination as an un- 
ordered collection of n words taken from a doc- 
ument. Given the text sample: "right upper lobe 
mass," there are 6 different 2-word combinations, 
including "right upper" and "upper mass." Unlike 
n-grams, n-word combinations (n-combos) do not 
depend on word order or proximity. Any set of n 
words can form an n-combo. 

Removing the restriction on word order and 
proximity dramatically increases the number of po- 
tential n-combos. Given a document d of length I, 
there are l\/(n\(l — n)!) n-word combinations in 
d. As the length of the document grows, the num- 
ber of n-combos grows dramatically (e.g., a 100 
word document has the potential of 3,921,225 4- 
combos, a 200 word document has 64,684,950). 
Brute force calculation of all possible n-word com- 
binations in a document, even for relatively small 
n, is too time and space expensive. In order to 
use n-word combinations, some method of limit- 
ing the search space must be defined. Furthermore, 
a method to select which n-combos should be used 
as indexing terms must be developed. 

Although each document has a central theme 
(e.g., a medical report describes an individu- 
al patient),   the concepts  useful  for indexing 
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are described in the individual sentences of the 
document. Limiting the search scope to individual 
sentences will dramatically decrease the time and 
space required to calculate n-word combinations, 
while focusing on relevant indexing terms. Fur- 
thermore, stop word lists can be employed to fac- 
tor out those words that do not carry any semantic 
significance, further reducing the search space. Fi- 
nally, statistical information concerning n-combos 
can be used to focus the search for subsequent 
(n+l)-word combinations, such that if the n-word 
combination is infrequent, the (n +1)-combo is al- 
so infrequent. 

4   Implementation 

Indexing term selection While indexing terms 
must distinguish different documents, the terms 
must, more importantly, distinguish between dif- 
ferent meaning or content. Although some n-word 
combinations may provide key information allow- 
ing better modeling of documents, other combina- 
tions will not be useful for document retrieval. For 
example in the sentence: 

A 3cm right upper lobe mass is noted. 

"right upper mass" is a useful indexing term, while 
"right upper noted" will generally not be useful. 
Clearly, the number of possible n-word combina- 
tions in each document is large. To decrease the 
storage requirements necessary to model each doc- 
ument, methods to filter and select word combina- 
tions are necessary. 

Several standard methods are used to normal- 
ize the terms used for indexing. First, a short 
list of stop words is utilized to remove common 
words. Second a stemming algorithm, as imple- 
mented by the SMART system, is used to normal- 
ize each word to a common stem [14]. 

In order to limit calculations, only words found 
together in a single sentence will be combined. Us- 
ing this rule, the system will not combine a word 
found only in one sentence (e.g., first sentence) 
with a word found only in another sentence (e.g., 
second sentence). This single rule dramatically de- 
creases the space and time requirements of the sys- 
tem. 

In each document, indexing terms are extract- 
ed by first identifying sentences and words in the 
document. A pre-processor transforms documents 
into sentences. A set of rules are used to define 
sentence boundaries. The rules define a sentence 
as a set of words followed by a period. Other rules 
account for other uses of the period, for example 
in numerical measurements, or general formating 
(such as lists). These rules attempt to minimize 
false sentence partitioning. 

Each sentence is processed sequentially. First, 
individual words are extracted from the sentence. 
Next, stop words are removed and each word is 
stemmed [13]. Individual word statistics, as pro- 
cessed by an earlier stage, are used to filter out in- 
frequent words. Words that appear more than once 
in the sentence are combined. Finally, the remain- 
ing words are sorted in alphabetical order, forming 
a sentence word list. 

Word combinations are calculated using the sen- 
tence word list. Although the earlier stages de- 
crease the number of possible word combinations, 
we have found that space considerations are much 
more of a problem than time issues. Although rare, 
long sentences can result in a large number of n- 
combinations. In these cases, many of the result- 
ing n-combinations only appear once, thus they are 
not useful for indexing. To filter out these word 
combinations, each combination is evaluated be- 
fore storage. 

Each n-word combination is evaluated for stor- 
age by examining each of its "child" word combi- 
nations. A "child" combination for a n-word com- 
bination is defined as any of the (n — 1 )-word com- 
binations that can be derived from the n-word com- 
bination. For an n-word combination, there are n 
(n — l)-word combinations. Frequency statistics 
are maintained for each set of word combinations. 
If any one of the (n — l)-word combinations does 
not meet a frequency threshold, the n-word combi- 
nation is discarded. Each remaining n-word com- 
bination is considered an indexing term. 

Table 1 shows the most frequent 2- and 3-word 
combinations extracted from a set of thoracic radi- 
ology reports. As can be seen from the list, disease 
(e.g., mass) and anatomy (e.g., upper lobe) can be 
linked by word combinations. 
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2-word combo 3-word combo 
lobe upper 
lobe right 
right upper 
left lobe 
lobe lower 

lobe right upper 
lobe mass upper 
left lobe upper 
lobe lower right 
left lobe lower 

Table 1: Frequent 2- and 3-word combinations 

Encoding documents Documents are modeled 
using a vector space model, where each vector term 
corresponds to a single indexing term. Indexing 
terms in a vector space are of the same length. The 
system uses multiple vector spaces, or models, to 
encode each document, each vector space corre- 
sponding to a different length indexing term. 

In general, we are use three models to encode 
and represent documents: single word index terms, 
two word index terms and three word index terms. 

Query processing Similar to existing informa- 
tion retrieval systems, queries can take the form of 
free-text natural language queries, or may include a 
sample document. The query is processed by trans- 
forming the query text using the vector space mod- 
els which have been used to encode the document 
set. As each document is encoded using multiple 
models, the query is similarly modeled. 

For each document in the corpus, a similarity 
value is calculated comparing the document to the 
user's query. For a corpus of size n documents 
with each document encoded using m vector space 
models, n ■ m similarity values are calculated. A 
combined similarity between each document and 
the query can be calculated by summing the simi- 
larity measures from each representation. 

5   Evaluation 

Traditional information retrieval evaluation has a 
number of well documented problems [7]. One 
problem is associated with the determination of 
relevance [4, 8]. Traditionally, a set of experts de- 
fine queries and the set of relevant documents that 
match each query. It has been described that a us- 
er's criteria for relevance is much more difficult to 
describe and often does not match those of the ex- 
perts [12]. 

To evaluate n-word combinations we have de- 
veloped a simple definition of relevance based on 
the absence or presence of medical findings. Med- 
ical documents often describe abnormal anatomy 
or medical findings. These descriptions often in- 
clude the anatomy involved and the type of find- 
ing. In creating medical teaching files it would be 
useful to specify the anatomy involved and the type 
of finding, for example the query "right upper lobe 
mass" would return all patient reports that describe 
a right upper lobe cancer mass. Using these queries 
it is simple to determine if a particular document is 
relevant or not. Only those documents specifically 
describing the anatomy and finding in question are 
considered relevant. 

Thoracic radiology reports frequently describe 
abnormal lung anatomy (e.g., cancer) and enlarged 
lymph nodes. The text descriptions used to de- 
scribe medical findings are often similar. The two 
lungs are referred to as the right and left lungs. 
Each lung has an upper and lower lobe, with the 
right lung having a middle lobe. Medical findings 
are frequently described in proximity to surround- 
ing anatomy or other findings, thus each document 
may contain descriptions referring to both lungs 
and several lobes. Indexing using single word 
terms may be easily confused by other descriptions 
in the document. 

We have used two methods to compare the re- 
sults of the four methods. Retrieval performance 
is traditionally measured using recall and precision 
metrics. Recall is the ratio of the number of rele- 
vant documents returned over the total number of 
relevant documents. Precision is the ratio of the 
number of relevant documents returned over the to- 
tal number of documents returned [3]. To compare 
the recall and precision of each technique, we use 
an 11-point precision / recall graph [15]. Also, we 
compare the retrieval effectiveness (E), defined as 
the harmonic mean of recall (R) and precision (P) 
for each of the techniques and term size [16]. Re- 
trieval effectiveness (E) is defined as: 

E = 
-i + i R^ P 

(1) 

The value of E ranges from 0 to 1. E = 0 when 
no relevant documents are retrieved and E = 1 
when only all relevant documents are retrieved. 
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For a given query and retrieved document set, a 
maximum value of E can be found, representing 
the optimal combination of precision and recall. 
The value of E increases as both recall and pre- 
cision increase [16]. 

-4-word terms ■'» " 3-w ord terms —A—2-word terms -fl— 1-word terms "»»"'SMART 

4-wcrd terms     »   3-word terms    A ' 2-word terms —B— 1-word terms    X   SMART 

Figure 1: Query - "right upper lobe mass" 

-4-word terms —♦—3-w ordterrrs     it    2-word terms -OIIMI 1-word terms —H— SMART 

Figure 2: Query - "left upper lobe mass" 

To evaluate the system, 178 thoracic radiology 
reports were processed. The data set was origi- 
nally used as a test-bed for extracting key features 
using natural language processing techniques [9]. 
Recently, the data has been used for text data min- 
ing experiments [5]. Within the document set, the 
average document length is 11.2 sentences with an 
average sentence length of 13 words. In total 1988 
sentences were processed. Each document was en- 
coded using 1-word, 2-word, 3-word and 4-word 
combinations. Each document was also processed 
and indexed using the SMART system [14]. 

^ 

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1 

Recall 

Figure 3: Query - "upper lobe mass" 

To explore the retrieval performance of both 
systems given the bilateral similarity of the two 
lungs, two queries differing only by the lung of in- 
terest were selected, a third query combining the 
results of the other two queries was also processed. 
The queries both request documents describing up- 
per lobe cancers, one for the right lung the sec- 
ond for the left. These queries expose some of the 
difficulties to accurately retrieve documents where 
single word indexing terms are used to describe 
several different medical findings (e.g., upper - 
can refer to either lung). In radiology images, tu- 
mors are seen as large opaque regions and are of- 
ten described in the resulting radiology report as a 
"mass." To reflect the domain the following three 
queries were processed and indexed by each sys- 
tem: 

Ql "right upper lobe mass" 

Q2 "left upper lobe mass" 

Q3 "upper lobe mass" 

Figures 1, 2, and 3 compares the precision and 
recall for each of the three models. The results 
show that multi-word indexing terms (2 and 3- 
word indexing terms in Figures 1, 2, and 3) can 
improve retrieval results over isolated single word 
indexing terms (i.e., SMART system and 1-word 
indexing terms). 

Table 2 shows the retrieval effectiveness for 
each of the techniques used.   The results show 
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that multi-word indexing terms improve effective- 
ness compared to the single-word methods (i.e., 
SMART system and 1-word indexing). 

The prototype is implemented using the Java 
programming language [6]. Initial indexing of the 
test set of 178 reports calculating 1-word, 2-word 
and 3-word combinations and encoding each of the 
documents completes in less than 5 minutes using 
standard PC hardware. Response time for subse- 
quent queries, where queries are processed and dis- 
played to the user, is under 2 seconds. The evalu- 
ation runs were performed using a 200 Mhz AMD 
K6 processor, running Windows NT, using the Java 
2 developer's kit [11]. 

6   Discussion 

Our prelimiary evaluation reveals that n-word 
combinations can be effectively used for index- 
ing and providing access to medical documents. 
The results show that multiple word combinations, 
within the context of a well defined domain, pro- 
vides better retrieval performance for some queries 
than isolated word stems. Although the number of 
possible word combinations that can be calculat- 
ed and used as indexing terms can be very large, 
the experiments have shown that within a well- 
delinated domain the number is manageable using 
the filtering techniques described here. Further- 
more, while it is not possible to model complex 
concepts using isolated words, word combination- 
s allow certain concepts to naturally appear (e.g., 
"left lobe mass"). 

For a specific subject area (e.g., thoracic radi- 
ology) with a uniform vocabulary, word combina- 
tions appear to capture the semantics of the doc- 
ument better than isolated word stems, thus may 
better model the content of the document. By join- 
ing multiple words as indexing terms, the mod- 
el may decrease ambiguities that exist in isolated 
word stems, thus better serving as characters for 
the document set. 

While our preliminary results are promising, 
further evaluation is necessary. First, a wider set 
of queries must be tested to better understand the 
strengths of this form of indexing. Also methods 
must be developed extending the retrieval improve- 

ments found in domain specific document sets to 
more general document sets. Furthermore, using 
external knowledge sources (e.g., UMLS Meta- 
thesaurus, SNOMED) to assist filtering the word 
combinations extracted by the system may further 
improve performance. 

While partitioning documents by sentences 
works well in most cases, long sentences can im- 
pact the run time of the system. We would like 
to perform further studies of document partition- 
ing to determine its influence on retrieval perfor- 
mance. One partitioning scheme would use a mov- 
ing fixed-sized window to segment the document 
currently being processed. This method would not 
rely on sentence partitioning, thus would not be af- 
fected by long sentences. Furthermore, as the win- 
dow would have a fixed size, calculating maximum 
run-time and space requirements would be simpli- 
fied. 

While we have run the system to calculate up to 
8-word combinations, these combinations do not 
appear to be useful for indexing. First, user queries 
are often limited to a few words, thus large word 
combinations are not useful for short queries. An 
example of this can be seen in processing query 
Q3 (see Figure 3 and Table 2). Furthermore, word 
combinations may expose specific concepts (e.g., 
right upper lobe mass), however adding words to 
these combinations may not necessarily increase 
meaning. 

7   Conclusion 

Information retrieval systems can be used to auto- 
matically index free text reports, thus providing ac- 
cess to associated data such as patient images. The 
type of indexing term used can have a significant 
impact on retrieval. 

While, traditional methods use isolated word 
stems to model documents, we have developed a 
prototype system that uses word combinations au- 
tomatically extracted from documents to index the 
document set. Multiple vector space models are 
used to allow ranked retrieval of patient reports. 

Preliminary evaluation results of the method is 
promising, showing that multi-word combinations 
provide better retrieval performance than isolated 
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Indexing method 
Retrieval Effectiveness (F) 

Qi Q2 Q3 
SMART 

1-word terms 
2-word terms 
3-word terms 
4-word terms 

.6087 

.6667 

.7458 

.7879 

.7500 

.6296 

.6154 

.6916 

.7579 

.7857 

.7512 

.7895 

.8587 

.8199 
NA 

Table 2: Retrieval effectiveness (F) 

word stems. While isolated word stems may be 
ambiguous, word combinations may better capture 
the content of the document, thus improving per- 
formance. 
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Abstract 

We present the IMPACT system - Intelligent Mining 

Platform for the Analysis of Counter Terrorism. IMPACT 

is a knowledge discovery system designed to provide new 

methodologies for the identification and detection of 

terrorist related events. Unlike conventional data mining 

and knowledge discovery systems, the tracking and 

targeting of terrorist related events is much more complex. 

For example, the event associated with an individual 

purchasing fertilizer and renting a truck in the same day 

does not qualify that individual as a terrorist, yet other 

factors related to that individual could significantly raise 

the chances of the likelihood that event being a terrorist 

related. The goal of IMPACT, therefore, is to filter out and 

identify events from diverse and heterogeneous data 

sources in order to identify potential terrorist event. 

I. Introduction 

The first component of IMPACT is an agent based 

Terrorist Profile Generation Facility that aggregates 

and pre-computes key quantitative or qualitative data 

indices multi-dimensionally to dynamically generate 

an N-dimensional OLAP data cube for analysis. 

Profiles are defined by the analyst using a JAVA- 

compliant Web browser. Once the profile is 

submitted, the appropriate OLAP analyses are 

continually computed and appropriate notifications 

are sent to the analyst. 

The second component of IMPACT, the Dynamic 

Data Miner, provides data mining capabilities that 

could not be identified solely by the OLAP data cube. 

The Dynamic Data Miner uses case based, predictive, 

and inference based reasoning to identify new links 

and relationships. Clustering methods are deployed 

where applicable. In addition, we develop a special 

facility that identifies and links suspicious names, 

identification numbers, and organizations. 

The third component of IMPACT is the Terrorist 

Network Identification Facility that identifies new 

relationships by linking disjoint (or seemingly 

unconnected) subnetworks. This component uses 

singular value decomposition (SVD), and a variety of 

graph theoretic related algorithms to prune and 

identify relevant subnetworks of information. 

Finally, the Temporal Link Finder identifies terrorist 

related events that many somehow be linked by time. 

We demonstrate temporal reasoning algorithms that 

can identify and link complex relationships about 

time. 

n. Terrorist Profile Generation Facility 

The purpose of a profile is to provide the analyst with 

the capability to define within a browser a suspicious 

activity (or modus operandi) within the terrorist 

domain. Figure 1 provides a rudimentary example of 

this generation. In figure 1, a basic profile has been 

defined that states, an entity is suspicious if that 

entity has all the components required to build a 

certain class of bombs and if that entity has 

purchased paramilitary weapons. 
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Fig.l: Example of Terrorist Profile 

In figure 1, "entity" can be a person, organization, 

corporation, etc. that has been entered by the analyst 

or is currently within a profile that is being tracked 

and is "similar" to the profile that has been 

submitted. In addition, any entity that is manually 

entered by the analyst is tracked as "suspicious" 

within that analyst's profile. In other browser 

windows, it is possible for the analyst to generate 

new profiles on the fly. 

The code segments below describe the query 

language used in the implementation of profiles. 

These rules specify that an entity is deemed a 

suspicious electronic site if the number of 

"suspicious" people above that use it exceeds a given 

threshold, and the site is owned by Group X. This 

can be expressed in our language as follows: 

corporate-db   WHERE company-name like Group 

X.) 

Rogue(Country)   =   (SELECT   Country   FROM 

rogue-countries). 

Once an analyst has specified the profiles and 

modifications, IMPACT will automatically generate a 

set of instantiated knowledge based rules, cases, and 

relations specifying both the users explicit interests 

(represented by the profiles) as well as the user's 

implicit interests (represented by the various 

modified versions of the profiles). This information 

will then be used as input for additional data mining 

activities. 

The process of expanding a profile involves the 

following steps: 

1. Each profile gives rise to a tree with that profile 

as the root of the tree. 

2. Each node in any such tree is labeled with a 

query. 

3. If we consider a partial tree T of this form, the 

leaves of T may be "expanded" by making one 

modification to the query labeling the leaf. 

4. Each link in the tree also has an associated 

"cost." The higher the cost of the path from a 

root node to a query node, the less interesting the 

query is. 

More-surv-site(S) if suspicious-user-count(S)=N & 

N >= threshold & Owner(S)=Company & 

From(Company.Country)  Rogue(Country). 

Suspicious-user-count(S)=COUNT(SELECT 

DISTINCT S.Name FROM suspicious S, site-users 

U WHERE S.name = U.name) 

In short, the search space may be described by 

iteratively performing the following steps. First, 

create one tree for each seed query with that seed 

query as the root. For now, the root of each tree is 

also a leaf. Now expand each leaf to create children. 

Repeat this process, ignoring leaves whose cost 

exceeds a threshold cost. 

Owner(S)   =      (SELECT      Owner-id      FROM 

corporate-db WHERE company-name = S). 

From(Company)   =   (SELECT   Country   FROM 

In general, though it is useful to view the relaxation 

process in terms of tree expansions, it is not wise to 

implement them this way. One reason for this is that 

the same query may end up occurring in multiple 
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trees, and expanding the same query many times over 

is wasted effort. We will build upon the well known 

A* algorithm in the construction of such trees so that 

we can efficiently support two operations: 

1. Find all relaxations of the seed queries whose 

cost lies below a given threshold cost. 

2. Find the top k-relaxations of the seed queries (in 

terms of lowest cost). 

Based on these approximations, we shall be able to 

represent profiles based on certain major dimensional 

features that maximize the aggregate to be computed 

and apply OLAP data cube methods and 

computations. 

DDL Dynamic Data Mining 

Each profile shall be managed as a "case" within the 

case base. The "case-base" used by this module 

consists of a set of past profiles that were deemed 

suspicious. As new cases rarely match existing cases 

exactly, this module will attempt to use profile- 

modification rules to convert a set of submitted 

profiles into an existing suspicious case. Each profile 

modification rule has a cost. Suppose we apply rule 

rl to a set of profiles PL The result of this 

application is a new set of profiles P2. The smaller 

the cost of r, the more "similar" P2 is to PI. Of 

course, we may now apply another conversion rule, 

r2 to P2, to get a new profile P3. The case-based 

reasoning module will attempt to determine the 

similarity between a submitted profile and an existing 

profile by converting a set SubP of submitted profiles 

into an existing set of profiles, ExP, in the case base. 

> Similar Object Replacement: The submitted 

profile is deemed similar to an existing profile if 

a substitution of an appropriate object in the 

submitted profile yields the known profile. 

> Case Instantiation: The submitted profile may 

correspond to be a "part" of an existing profile. 

> Case Merging: As stated above, a set of 

submitted profiles may jointly correspond to a 

profile in the case base (or the other way 

around). Similarity based profile retrieval and 

matching methods must be able to dynamically 

determine which profiles will be merged. This 

will expand the range of possible database fields 

which are relevant to a specific query. 

> Link Addition: A submitted profile is similar to 

an existing profile if inserting a valid link causes 

the profiles to become similar. 

IV: Terrorist Network Identification Facility 

We will start this section with a scenario that this tool 

is designed to solve. If all the electronic data that that 

identifies all the known members of Group X, their 

relationships with other individuals and 

organizations, their travel, their purchases (and so on) 

were described graphically, the result would look like 

a messy tangled network of links and nodes that 

would appear nonsensical to the keenest of analysts. 

Some of the nodes on the network may be innocent 

individuals, others may be cutout companies, while 

yet others might be legitimate businesses that have no 

knowledge of any illegal/suspect activity, but are 

being used (unbeknownst to them). 

The Graph Theoretical Path Generation and 

Validation Tool provides an environment within 

which the network connections between all these 

disparate entities may become untangled, validated, 

queried, and browsed. In addition, sub-networks that 

are apparently unconnected will be hypothesized, 

based on data mining utilities, to be connected. Thus, 

the objective of this tool is to (1) identify the critical 

links that exist and (2) hypothesize the existence of 

new links based on unconnected sub-networks. 

The Graph Creation and Update Module component 

of this tool is responsible for two tasks. First, it will 
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examine external databases and data sources, and 

determine which entities are linked to which other 

entities. Figure 2 below is as an example of such a 

network and linkage between entities on a network. A 

pointer back to the original document that generated 

the link must validate each link on the graph. 
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Figure 2: Domain Example of Indirect Linkage 

This module will be responsible for managing 

updates to the network, as new data becomes 

available. As there may be numerous different links 

between two entities, and as a single investigation 

may involve thousands of entities, with millions of 

connecting links, the task of designing efficient, 

scalable data structures becomes a formidable one. 

We approach the task of generating such graphs 

using the well known mathematical concept of 

Singular Valued Decompositions (SVDs). SVDs 

have been used extensively for clustering where one 

may want "similar" entities to be clustered together. 

Based on this clustering method, links between 

clusters can then be hypothesized. We will outline the 

approach in the next few paragraphs. 

Associated with our graph G representing 

transactions is a massive, implicit matrix M_G. If 

graph G has k nodes in it, then M_G is a (K x K) 

matrix. The (ij)'th entry of this matrix is set to 0 

when the i'th entity in the graph G and the j'th entity 

in the graph G are not directly linked together. If the 

i'th entity in the graph G and the j'th entity in the 

graph G are linked together, then this implicit matrix 

contains the number of direct edges in G between the 

i'th and j'th entities. For example, suppose the i'th 

entity in graph G represents John Smith and the j'th 

entity is Mohamed Hashimi. Then the (ij)'th entry 

of this matrix M_G is the number of direct links 

between John Smith and Mohamed Hashimi. 

The technique of singular valued decomposition 

takes the matrix M_G and splits it into three matrices. 

That is, it rewrites the (K x K) matrix M_G as a 

product of three matrices of size (K x R), (R x R) and 

(R x K) such that: 

♦ The product of these three matrices is identical to 

M_G and 

♦ The (R x R) matrix is a non-increasing diagonal 

matrix, i.e. all its entries are zero except for the 

diagonal entries, and those entries are in 

descending order. 

Figure 3 below shows this situation. The diagonal 

matrix produced by the SVD contains the R most 

significant links within the network. As one walks 

down the diagonal, the strengths of the links between 

the entities involve decreases. Thus, we can capture 

the most important links and clusters by breaking the 

large "K x K" matrix into a smaller "R x R" matrix 

and using the values within the R x R matrix and the 

rows in the K x R matrix to identify the highly 

relevant links. 

There is a plethora of well-known techniques to 

efficiently compute singular valued decompositions 

of massive matrices. In the case when the matrices 

are sparse, a variant of the SVD called the semi- 

discrete decomposition may also be used. Once this is 

done, we may as we have described above, the SVD 

technique (and its variants) have been successfully 

applied to a wide variety of applications where 

different entities need to be "linked" together. These 

include: 
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The well known Latent Semantic Indexing 

technique developed by Bellcore for indexing 

and retrieval of massive collections of textual 

documents - in this application, the goal was to 

consider that two documents are "linked" if they 

are on the same topic. 

The organization of multimedia data stores 

where different multimedia objects need to be 

clustered together based on "similarity" - here, 

two media objects are considered to be linked 

together if they satisfy a similarity requirement. 

through C. Using graphical user interface, he can 

generate the following query. 

SELECT MAX(10)PATH P BY COST FROM 

GRAPH G WHERE P CONTAINS C. 

Or suppose the analyst wants to find the ten highest 

cost paths linking A and B that go through C, but 

which do not contain D (e.g. D may be a hardware 

chain that has been investigated and that may have 

been completely exonerated). He may express this 

via the following query. 

KxK 
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KxR 
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Figure 3: Singular Value Decomposition. 
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Figure 4: Querying a Singular Value 

Decomposition Matrix for Link Hypothesis 

Generation 

Suppose, for example, an analyst wants to find 

the ten "highest cost" paths linking A and B that go 

SELECT MAX(10)PATH P BY COST FROM 

GRAPH G WHERE P CONTAINS C and NOT(P 

CONTAINS D). 

Cost, in this scenario may be set by ranking the types 

of edges within the graphs based on their type. (Such 

as e-mail, relationship, purchase, or similar link.) The 

implementation of these queries on top of the 

underlying graphs rather than on top of a set of 

relations (as in classical SQL) requirse: 

The identification of a core set of operations on 

the graph. These core operations include: 

♦ Given a node N in the graph, find all its 

immediate neighbors. 

♦ Given nodes N1.N2 in the graph, and an integer 

k, find the k cheapest paths between Nl, and N2. 

♦ Given nodes N1.N2 in the graph, and an integer 

k, find the k most expensive paths between Nl, 

andN2. 

♦ Given nodes N1,N2 in the graph, and a cost c, 

find all paths between Nl and N2 in the graph 

with cost less than c. 

♦ Given nodes N1,N2 in the graph, and a cost c, 

find all paths between Nl and N2 in the graph 

with cost greater than or equal to c. 

♦ Given nodes N1,N2 in the graph, and a database 

query condition  C  on paths,  find  all  paths 
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between Nl and N2 that satisfy condition C. 

It is important to note that using this set of core 

operations, we can express extremely powerful 

queries through Boolean combinations of the above. 

Fortunately, each of the above graph theoretical 

operations is amenable to implementation through 

well studied techniques in graph algorithms. 

The Graph Browsing Module will allow the analyst, 

to browse the initial graph G and/or its 

decompositions (G_A,G_S,G_C), effectively. For 

example, the analyst may wish to zoom in on one 

section of the graph, and/or view all attributes 

associated with one or more links. He may also want 

to merely browse all paths in the graph connecting 

entities A and B. These types of browsing operations 

are scalably supported by this module. 

•     Link Hypothesis Generation Tool 

In many cases, two or more "clusters" or "groups" or 

"subnetworks" within a network, detected by the 

singular valued decomposition (SVD) analysis, may 

be linked together in some way, unbeknownst to the 

analyst. The analyst may wish to explore alternative 

possible groupings (to those produced by the SVD) in 

one of two modes: 

1. He merely asks the SVD to generate other 

potential groupings that he can browse or 

2. He can request an evaluation of the possibility 

that certain disparate groups are in fact strongly 

linked. 

The task of the Link Hypothesis Generation Tool is 

to facilitate such explorations by the analyst. 

Proximity of clustered networks represents how 

closely related the SVD algorithm believes they are 

to each other. 

When evaluating the possibility of a link between 

two groups (sub-networks within a graph), the Link 

Hypothesis Generation Tool will generate different 

hypotheses to support such linkages, and present 

these to the user. Hypothesizing that two "groups" 

(as determined by SVD) are linked is equivalent to 

saying that SVD should have "merged" these two 

groups. Generally, speaking, two entities are in the 

same group (w.r.t. SVD splits) if the distance 

between the row-vectors in the matrix A described 

earlier in this proposal is below some threshold value. 

Given a set of entities, SVD attempts to group them 

together so that for any two entities in a given group, 

this property is satisfied. However, such a split may 

be made in many ways, and SVD may arbitrarily 

choose one. When the analyst asks that the 

possibility that two disparate groups are actually one 

be investigated, it is possible to adapt the SVD to 

merge these groups together - however, to 

accomplish the merge, one of two things needs to 

happen: 

• Some new links should be hypothesized. This 

tells the analyst that these new, hypothesized 

links are potential new areas of investigation (to 

see if the links hypothesized really can be 

substantiated through physical evidence), or 

• Some existing links are stronger than they were 

thought to be. In terms of SVDs, this means that 

some existing links were thought to be less 

strong than they really are. In other words, two 

entities may have been placed in different groups 

because they were not thought to be well linked, 

but further investigation (and further evidence) 

may prove a more solid link. 

In the first case, our Link Hypothesis Generation 

Tool will hypothesize different sets of links that 

cause the two groups to be merged, and rank these 

new link sets in descending order of plausibility - of 

course, the analyst can change this ranking. In the 

second case, the Link Hypothesis Generation Tool 

will identify entities in the two groups that caused the 
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two groups to be split apart in the SVD. Typically, 

these two entities will have a relatively low-strength 

link between them (though not too low). It will then 

hypothesize that these link strengths are higher than 

predicted by the original data. 

V: Temporal Link Finder 

Hashim to Carlos Orojuelo. 

2. John Smith works for Mohammed Hashim of 

Group X. 

3. Vladimir Zhirovski works for Carlos Orojuelo. 

4. Account #91728292 in the Bank of Qatar is 

somehow linked to either Vladimir Zhirovski or 

to Carlos Orojuelo. 

One of the fundamental parameters that must be 

taken into account by any serious effort at identifying 

links between multiple entities is the temporal 

dependencies   between   events. For   example, 

consider the following sequence of events: 

1. John Smith and Mohammed Hashim, known 

member of Group X engage in a "chat" session 

in an MCI chat room at 10:30pm EST on July 

27, 1997. 

2. An electronic funds transfer of $20,000 is made 

from account #277789018 in the Grand Cayman 

Bank to account #81910182 of ABC Corp, a 

major arms dealer and supplier to Group X. 

Intelligence data indicates that the former bank 

account belongs to John Smith and the latter to 

an unidentified individual. This is done on July 

29, 1997, at 11:00am EST. 

3. An international funds transfer is made from 

account #81910182 of ABC Inc in Switzerland, 

to account #91728292 in the Bank of Qatar to 

another unknown individual. This is done on 

August 1, 1997, at 9:00am. 

4. On August 2, 1997, John Smith and Vladimir 

Zhirovski exchange email in which Zhirovski 

reports that Carlos Orojuelo has received 

payment for the goods. 

Examining the above temporal sequence of events in 

the  above  scenario,   we  may  lean   towards  the 

following hypothesis that the four events jointly 

indicate a payment (for some unspecified goods). 

1.   The payment is being made by Mohammed 

The Temporal View Tool allows one to "zero in" on 

certain temporal patterns or intervals that he is 

interested in analyzing further. For example, the 

analyst may request that the SVD network be 

restricted only to events that occurred between July 

25, 1997, and August 5, 1997 and that all sequences 

involving a payment (direct or indirect) between two 

people be reported, where the payment exceeds 

$5,000, and where at least one "questionable" bank is 

involved in the transaction. 

In effect, this analyst specifies a temporal view - this 

view reflects those aspects of the Terrorist Network 

Identification Facility that she is interested in 

examining more closely. Temporal views, in effect, 

allow the analyst to provide logical specifications 

reflecting his expertise in the domain of investigation 

- in response, she expects the Temporal View Tool to 

effectively group together sequences of such events 

into "groups" or "clusters" that reflect possible 

transactions of the sort she is interested. 

In order to implement temporal views, we enhance 

the well known view mechanism in commercial 

database systems to accommodate viewing networks. 

In commercial databases, views are specified by 

conditions over relational data. However, in our 

case, the conditions must be evaluated over a SVD 

network, not over relational databases, because all 

interactions being monitored during the investigation 

are stored largely within the SVD network we have 

described earlier. We use a graphical user interface 

through   which   the   analyst   may   specify   her 
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constraints. For example, the criteria articulated in 

the proceeding example may be specified as follows: 

SET VIEW VI TO SVD-Net(A) REFINE BY 

Time > July 25, 1997 AND Time < Aug. 5, 1997. 

This causes VI to be a view that reflects all 

transactions in the SVD network that occurred 

between the stated dates. To further focus on 

transactions involving transfers over $5,000 and 

involving "questionable" banks or organizations, this 

definition may be further refined as follows: 

SET VIEW V2TO GROUPS GWHERE G 

HAS PATH PAND P HAS LINK LAND 

Transaction(L)=electronic transfer AND 

Amount(L) > 5000 USD AND G HAS NODE N 

AND Questionable(N). 

In the above specification, the predicate 

Questionable(N) may be defined as a standard view 

on a relational database system such as the Oracle 

Web Server on which our Phase I development has 

been carried out. 

[2] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. 

Landauer andR.  Harshman.  (1990)  "Indexing by 

Latent Semantic Analysis", Journal of the American 

Society for Information Science, 

Vol. 41, pages 391-407 

[3] Sylvain L6tourneau; Proceedings of the fifteenth 

national/tenth conference on Artificial 

intelligence/Innovative applications of artificial 

intelligence , 1998, Page 1178 

[4] Shian-Hua Lin, Chi-Sheng Shih, Meng 

ChangChen, Jan-Ming Ho, Ming-Tat Ko, and Yueh- 

Ming Huang; Proceedings of the 21st annual 

international ACM SIGIR conference on Research 

and development in information retrieval , 1998, 

Pages 241-249 

[5]Sunita Sarawagi, Shiby Thomas, and Rakesh 

Agrawal; Proceedings of ACM SIGMOD 

international conference on Management of data , 

1998, Pages 343 - 354 
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IV. Conclusions 

This paper identifies some of the key technologies 

that can be deployed in the knowledge discovery and 

data mining process with respect to the data mining 

domain. Such a task is complicated due to the nature 

of the domain. However, with the vast increase of 

integrated database systems, much work can be 

accomplished through the deployment of on-line 

profiles or modus operandi. 
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Abstract 
Much of the research in the area of Knowledge Discovery 
in Databases (KDD) has focused on the development of 
more efficient and effective data mining algorithms, but 
recently issues related to Human-Computer Interaction 
(HCI) have drawn significant attention. One very 
promising set of work seeks to improve system usability 
through the use of direct manipulation techniques to 
provide for the flexible utilization of data and tools. In this 
paper we describe our efforts to compliment this work by 
developing result visualization techniques for a variety of 
classes of data mining algorithms that act not only as end 
products, but provide direct inputs to future iterations in the 
KDD process. By building this feature on top of a unified, 
persistent, and visualizable knowledge and workflow 
representation system, we provide users with a high degree 
of flexibility while simultaneously permitting thorough and 
systematic knowledge discovery processes. 

Key Words: knowledge discovery, human- 
computer interaction, visualization. 

I. Introduction 

Massive datasets arise naturally as a result of 
automated monitoring and transaction archival. 
Military intelligence data, stock trades, bank account 
deposits and withdrawals, retail purchases, medical 
and scientific observations, and spacecraft sensor 
data are all examples of data streams continuously 
logged and stored in extremely large volumes. 
Unfortunately, the sheer magnitude and complexity 
of data being stored acts to conceal valuable 
information that may lie below the surface, making 
manual analysis infeasible. Even computer-aided 
statistical analysis techniques are currently of limited 
practicality in fusing data from such vast resources. 
However, over the past decade, researchers have 
responded by developing KDD (Knowledge 
Discovery in Databases) tools that can greatly 
improve prospects for uncovering interesting and 
useful patterns from such large data collections. 

In recent years, substantial progress has been made in 
developing highly efficient and effective data mining 
algorithms and information rich data visualization 
techniques. These techniques can yield important 
information about hidden patterns in very large 
datasets, but, in the end, a user's ability to uncover 
interesting and useful patterns remains limited by 
human cognitive capacity, and that capacity remains 
easy to overwhelm with today's KDD tools. 

The need for more attention to the human-computer 
interaction aspects of KDD has not gone unnoticed. 
A review of the recent research literature reveals a 
number of efforts to improve the usability of 
knowledge discovery and data mining systems, 
including providing: access to numerous KDD tools 
through a single interface, data mining algorithm 
selection advice, user guidance through automated 
planning, and impressive exploratory data 
visualizations. In this paper we describe our efforts 
to compliment these previous efforts by making 
iterative and interactive KDD processes more 
intuitive through the use of data-aware visualizations 
that enable a set of novel exploratory operations. The 
primary goal of our investigation is to reduce 
cognitive load on the users, and free them to explore 
their data in an efficient, systematic and thorough 
manner. 

Of particular interest to us is improving the 
usefulness of integrated systems that seek to support 
the entire knowledge discovery process: target 
dataset creation, data cleaning and preprocessing, 
data mining, and results reporting. Since the 
exploratory process associated with KDD proceeds in 
a data-driven manner, it is crucial that these tools are 
seamlessly integrated so as to allow flexible 
utilization of tools and operation chaining. 
Especially useful to intensive knowledge discovery 
processes is the ability to intuitively utilize the results 
of data mining operations in subsequent exploration 
steps.   To date, such capabilities have largely been 
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neglected to the significant detriment of users. 

IKODA (Intelligent KnOwledge Discovery 
Assistant) utilizes "data aware" visualization 
techniques that lie atop a unified and persistent 
knowledge representation and provide a mapping 
between graphical objects and the underlying data 
resources. This approach results in the ability to 
perform direct manipulation operations such as drag- 
and-drop transfer of data between tools and a unique 
capability to explore data mining results. Unlike 
previous integrated KDD systems, our IKODA's 
visualizations act as interactive tools rather than 
simple information displays. More specifically, 
IKODA's visualizations of data mining results (e.g., 
decision trees and automatically created data 
clusters), can be manipulated and used directly to 
form new datasets that feed future data mining 
operations. The resulting "recursive" knowledge 
discovery capability represents a substantial step 
forward in reducing KDD tool complexity while 
simultaneously increasing flexibility and efficacy. 

In this paper we describe how the HCI techniques 
being developed for IKODA compliment existing 
interactive visualization techniques to provide for a 
very flexible KDD capability. Further, we will 
describe how IKODA's extensible and persistent 
knowledge representation supports thorough 
exploration by allowing the user to label, organize, 
and utilize meaningful data models throughout future 
knowledge discovery sessions. 

II. Exploratory Data Visualization 

Task oriented data mining is an important capability, 
and has received a significant level of attention in the 
research community. However, it has been 
recognized that the formation of precise knowledge 
discovery goals is often difficult and time-consuming 
[1]. For this reason, it is important to support data- 
driven exploration that can provide users with the 
basis for subsequent goal-driven data mining. To 
accomplish this, it is useful to exploit the human's 
unmatched perception and reasoning abilities in 
detecting patterns through the utilization of 
exploratory data visualization techniques [2]. 

The objective of data visualization techniques is to 
represent very large numbers of data items in a way 
that facilitates the detection of interesting and 
potentially useful patterns. Exploratory visualization 
techniques take many different forms including 
scatter plots [3], parallel coordinates [4], icon-based 
techniques (e.g., [5]), hierarchical techniques (e.g., 
[6]), and distortion-based techniques (e.g., [7]). 

Another class of these visualization techniques, and 
the one most related to our effort, are those that are 
dynamic and interactive (e.g., filtering (see [8] and 
brushing [3]). Derthick [9] presents an interactive 
visualization environment called Visage that has 
provided significant inspiration for our work on 
IKODA. Visage makes pervasive use of direct- 
manipulation techniques to provide the user with the 
means to explore data via several tightly coupled and 
customizable visualization tools. 

Figure la & lb. Figure la shows a "data" visualization technique that would be compatible with techniques such 
as brushing, where the control on the display of particular points depends on user set threshold values on attribute 
values. Figure lb shows an example of a parallel coordinates visualization of data points. In this display, the lines 
correspond to attribute values for individual data points. 
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While we share the goal of utilizing direct 
manipulation pervasively in IKODA to provide an 
intuitive means of interacting with multiple tools and 
visualizations, we augment data visualization with 
"data mining result" visualization (henceforth "result 
visualization") and exploration. Figures la and lb 
clarify this distinction. Whereas data visualization 
techniques are used to explore the relationships 
between large volumes of data points, result 
visualization techniques enable exploration of the 
data models output by data mining algorithms. 

III. Usable Data Mining Result Visualizations 

The primary focus of our research effort has been to 
compliment the excellent previous work done in 
developing interactive data visualizations, by creating 
interactive data result visualizations. Traditional data 
mining result visualizations are largely static and act 
much more as a fixed end result of an autonomous 
procedure, than as intermediate steps within an 
ongoing knowledge discovery process. Integrating 
interactive result visualizations is a crucial step in 
creating a truly exploratory environment. 

We separate interactive functions into two classes; 
recursive data mining operations, and result 
manipulation operations. Recursive data mining 
refers to the process of building deriving models such 
as decision trees, and then using the natural data 
partitions that are described by these models as the 
input for the next round of knowledge discovery 
operations. Result manipulation operations refer to 
actions that change the nature of a particular result in 
order to develop a deeper understanding of its nature. 
We discuss these two classes of operations in detail 
below. 

IV. Recursive Data Mining 

Wet 
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JF /   \ T  

Dry          Wet 

Figure 2. Decision Tree "result" visualization where 
the gray regions represent the underlying data 
partitions. 

Figure 3.    Three identified clusters represent an 
obvious opportunity for recursive data mining. 

Figure 4. This visual representation of 2-term 
association rules offers three types of data sets. 
These are associated with a rule's antecedent, 
conclusion, and the intersection of the two. 

Figures 2, 3 and 4 demonstrate the data partitions 
created by different types of data mining algorithms. 
In each case, the derived models provide a useful 
means for directed search in smaller subsets of the 
original dataset. Decision trees, for example, are 
developed by repeatedly dividing the training set 
based on differences in selected attributes. Clearly, 
parts of a generated decision tree may be particularly 
interesting to a user and therefore deserve further 
examination. IKODA makes the utilization of the 
generated data partitions easy by allowing the user to 
select, drag, and drop collections of internal nodes of 
a decision tree (representing the underlying data 
subsets) into other tools (e.g., data visualization and 
data mining tools). In fact, the range of recursive 
data mining operations that may be useful in a given 
search is very broad. Some of these include: 

• Labeling identified data clusters and 
utilizing them to form decision trees in order 
to develop a concise description of how 
those clusters differ 
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• Examining subcluster structure by rerunning 
the clustering algorithm on particular 
clusters or unions of clusters 

• Uncovering data clusters in the data behind 
high confidence association rules 

Obviously, a user could accomplish these operations 
by other means, but providing the capability to 
flexibly explore the derived data mining results 
through direct manipulation leads to substantial time 
savings and therefore an improved ability to conduct 
thorough investigations. We will discuss the 
chaining of recursive data mining operations further 
after the next section in which we describe the second 
class of interactive result visualization operations. 

V. Result Manipulation 

Another natural class of exploratory operations on 
our result visualizations are those that manipulate the 
nature of the derived data model. For example, the 
data partitioning nature of decision trees makes them 
malleable in a number of different exploratory ways. 
A user might select a particular interior node and 
change its characteristics to determine how it would 
change the structure of the subtree. In particular, one 
might conduct the following operations before 
reconstructing the subtree: 

• Alter the split attribute at the root of the subtree 
• Manually re-discretize variables 
• Remove attributes from the data subset 
• Form new composite attributes 

A second group of manipulation operators under 
development will work with IKODA's K-means 
clustering algorithm. In particular, the user will be 
able to merge and/or divide clusters through direct 

manipulation. These operations would act to alter the 
similarity measures used to conduct our clustering 
and therefore provide the user with the ability to 
provide IKODA with feedback as to the quality of the 
developed clusters. 

VI. Workflow Management Support 

In order to succeed at our goal of providing users 
with both a highly flexible and usable exploratory 
KDD tool, it is necessary that we provide some 
means for tracking the many paths a user may follow 
in pursuit of thoroughly understanding his data. For 
this reason we have incorporated a data-aware 
process monitoring system that allows users to keep 
track of their search paths and avoid repeating 
operations unnecessarily. 

Figure 5 shows how a particular exploratory path can 
be represented and reused in IKODA. Here the user 
forms an initial dataset from which he generates 2- 
item association rules. The user identifies what 
appears to be some interesting clustering of high 
confidence rules and decides to examine the 
associated data points in an alternative manner, so he 
selects a collection of rules and drops them into 
IKODA's K-means clustering tool. This step creates 
a number of clusters, two of which are worth further 
exploration. At this point the user seeks to 
understand how the two classes differ, so he drags 
those clusters to our decision tree algorithm. The 
user can then manipulate the structure of the tree, and 
thereby create new tree instances, in order to better 
understand how the clusters differ. Note that through 
our workflow management diagram the user can also 
return to previous steps and continue his exploration 
from there. 

\<- 

Assoc. Rules - I 

Decision Tree 

Figure 5. IKODA's workflow monitoring system follows the same direct manipulation principles used elsewhere. 
This display allows users to keep track of their search path. Note that data sets 2, 3 and 4 are created implicitly by 
the user's actions. 
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VII. Future Directions 

The development of IKODA is still in an early stage 
and much remains to be done. SHAI is currently 
working to expand IKODA's set of data mining 
algorithms and result visualization techniques. We 
expect that for each data mining algorithm class there 
will be a number of visualization styles that can be 
utilized to facilitate interactive exploration. We are 
also seeking to expand the range of result 
manipulation operations that are supported by 
IKODA. In addition, SHAI is examining the range of 
classes of data mining algorithms whose results can 
be fruitfully explored via visualization. It is clear at 
this point that certain classes of algorithms are more 
amenable to direct interaction than others. Finally, 
we hope to further improve IKODA's interaction 
with the user by integrating techniques that will allow 
users to provide the resident data mining algorithms 
with domain knowledge in order to guide their search 
and improve utility (see [10] & [11]). 

VIII. Conclusions 

In this paper, we have argued that KDD is an 
interactive process that can benefit greatly from the 
better exploitation of the perception and reasoning 
capabilities of the human user. In particular, we 
showed how data visualization techniques can be 
complimented by the use of interactive data mining 
result visualization techniques. The described 
techniques provide users with an efficient means of 
exploring derived data models that therefore allows 
for an improved understanding of identified patterns. 
Finally, we illustrated how several data mining tools 
and visualization techniques can be used together to 
explore data for useful patterns. 
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Abstract Integration of knowledge from 

multiple independent sources presents prob- 

lems due to their semantic heterogeneity. 

Careful handling of semantics is import- 
ant for reliable interaction with autonomous 

sources. This paper highlights some of the 
issues involved in automating the process 
of selective integration and details the tech- 
niques to deal with them. The approach 
taken is semi-automatic in nature focusing 
on identifying the articulation over two on- 
tologies, i.e., the terms where linkage occurs 
among the sources. A semantic knowledge 
articulation tool (SKAT) based on simple 

lexical and structural matching works well in 
our experiments and semi-automatically de- 
tects the intersection of two web sources. An 
expert can initially provide both positive and 

negative matching rules on the basis of which 
the articulation is to be determined and then 
override the automatically generated articu- 
lation before it is finalized. The articulation 
may be stored or generated on demand and is 
used to answer customer queries efficiently. 

Keywords: 
discovery 

information integration,   knowledge 

1    Introduction 

1.1    Need for an Ontology Algebra 

Queries posed by end-users can, often, not 
be answered from a single knowledge source 
but require consulting multiple sources. When 
those sources are independent, the terms they 

use are not constrained to be mutually con- 

sistent. The semantic heterogeniety of these 

sources must be resolved in order to present a 

reliable and consistent view of the world. 
The traditional approach to dealing with 

multiple knowledge sources is to create a uni- 
fied schema or to merge the contents of these 
sources into an unified knowledge base [1], [2], 
[3]. Such an effort has two phases, first merging 
all the entries based on identical spelling and 
then manually resolving any recognized seman- 
tic mismatches. For instance, the erroneous 
match of nail, used in a human anatomy, with 
its use in carpentry must be undone. More 
complex are cases where definitions change 
over time, for instance types of cholesterol as 
disease-causing agents. 

The merging approach of creating an unified 
source is not scalable and is costly. The process 
must be repeated when the sources change [4]. 
Furthermore, in certain cases a complete uni- 
fication of a large number of widely disparate 
knowledge sources into one monolithic knowl- 
edge base is not feasible due to unresolvable 
inconsistencies between them that are irrele- 
vant to the application. For a particular appli- 
cation, resolution of inconsistencies between a 
pair of knowledge sources is typically feasible, 
but it becomes nearly impossible when the ob- 
jective is undefined and the number of sources 
is large. 

Due to the complexity of achieving and 
maintaining global semantic integration, the 
merging approach is not scalable. We have 
adopted a distributed approach which allows 
the sources to be updated and maintained in- 
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dependent of each other. Articulations are gen- 
erated between the sources that serve specific 
application objectives. Only the related artic- 
ulations need to be updated when a term in the 
intersection of sources are changed and other 
articulations will remain as they were. 

1.2 The Ontology Algebra 

An algebra has been defined to enable interop- 
eration between ontologies [5]. Ontologies are 
knowledge structures which explain the nature 
and essential properties and relations between 
terms present in a knowledge source. The op- 
erators in the algebra operate on selected por- 
tions of the ontologies. Unary operators like 
filter and extract work on a single ontology and 
are analogous to the select and project opera- 
tions in relational algebra. They help us define 
the interesting areas of the ontology that we 
want to further explore. Binary operators that 
take as input two ontologies and outputs an- 
other ontology include union, intersection and 
difference. Intersection is the most crucial op- 
eration since it identifies the articulation over 
two ontologies. 

1.3 Model of Articulation 

In our model of articulation there are the 
sources, maintained autonomously by their ex- 
perts, and applications, which need to use 
these sources. Linkages between sources are 
achieved through articulation contexts, which 
contain the terms that are needed to reach the 
sources and the rules which resolve semantic 
differences among them. The articulation con- 
texts are created and maintained by articula- 
tion experts. For example, if an application has 
to access information from city maps, using lo- 
cal coordinates ranging from Al to M19, and 
information from images, using latitude and 
longitude, the expert will provide the matching 
rules. When local maps are reissued, the coor- 
dinates will change if the city has grown, and 
these rules must be updated. Since the sources, 
say the local map, can be accessed remotely, we 
do not need to move all of the map detail into 

a knowledge base, as long as we can refer to its 
contents reliably. That means we do not need 
to update the coordinate mapping when the 
map is updated, say to indicate new buildings, 
but only when a major revision which changes 
its coordinates is made. 

We find similar cases of interoperation re- 
quirements in purchasing of goods from multi- 
ple sources, in shipping, in genomics, etc. In 
all these instances we can also identify experts 
who must handle the interoperation of the di- 
verse sources, although they have not been pro- 
vided with specific tools for their task. 

1.4    Organization 

Section 2 discusses a tool (SKAT) that com- 
putes the articulation and introduces an exam- 
ple application based on government websites 
of NATO countries. Section 3 discusses the 
issues involved in computing the intersection 
and the techniques used in matching. Section 
4 highlights the results obtained by matching 
two example NATO graphs. Section 5 points 
out the other uses of the matching tool. The 
last two sections conclude the paper and ac- 
knowledge other contributors to the work. 

2    The   Semantic   Knowledge 
Articulation Tool 

The articulation between two ontologies is de- 
termined using a semi-automatic articulation 
tooZ(SKAT). We use a subset of KIF [6], a 
simple first order logic notation to specify the 
declarative rules. The steps involved in com- 
puting the articulation are as follows: 

1. The expert supplies SKAT with a few ini- 
tial rules which indicate the terms that 
need to be matched and ones that must 
not be matched. For example, a rule 

(Match US.President FRG.Chancellor) 

would indicate that we want the US Pres- 
ident to be matched with the German 
Chancellor. Similarly, a rule like 
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(Mismatch Human.nail Factory.nail) 

would indicate that we do not want the 
term nail from the Human ontology match 
with the term nail in the Factory ontol- 
ogy. Apart from declarative rules, the ex- 
pert has the option of supplying matching 
procedures that can be used to generate 
matches. 

2. SKAT suggests matches and the articula- 
tion based on the supplied matching rules 
and the matching procedures approved of 
by the expert. 

3. The articulation expert a) approves, b) re- 
jects, or c) marks as irrelevant the sug- 
gested match or the rule used to compute 
the match. 

4. SKAT now creates the correct rules and 
computes an updated articulation. The 
knowledge gained from the rejected or ir- 
relevant rules and matches is stored by 
SKAT so as to avoid suggesting the same 
matches later. 

2.1    An example: NATO websites 

In order to demonstrate the concepts we have 
built a SKAT prototype that can be used by an 
application to identify the articulation between 
multiple web sources. Websites can be thought 
of as structured as a graph with a root page 
which has links to other related pages. Each 
website is structured differently and loosely 
represents an ontology. Initially the labelled 
graph structure of each website is constructed 
where each page is a node and all the links 
found on the page are modelled as outgoing 
arcs. A label is constructed for each arc from 
the title of the page that it points to and the 
anchor text found along with the link. We will 
illustrate our algorithm using examples that 
have been extracted from the government web- 
sites of NATO countries and show the matched 
nodes of the graph that constitute the articu- 
lation. (Figures   1,  2). 

3    Intersection  and   Matching 
of Ontologies 

The Intersection operator takes two ontologies 
and finds the correspondence of terms obtained 
from one ontology with that obtained from the 
other based on a set of rules. A major process 
in determining the intersection is to find this 
correspondence or matching. We will highlight 
the issues in matching and their solutions us- 
ing object graphs obtained from the websites 
of NATO countries. It might be worthwhile to 
explore the types of mismatches that exist be- 
tween ontologies that need merging. The typi- 
cal mismatches that exist in such object graphs 
are as follows: 

• Term Semantic Mismatches: these types 
of mismatches occur because two terms 
from two different ontologies refer to diffe- 
rent concepts. Alternately, two different 
terms obtained from different ontologies 
might refer to the same concept. For the 
purposes of this work, we assume that 
within one particular ontology the same 
term consistently refers to the same con- 
cept. 

• Structural Mismatches: these types of mis- 
matches occur because the same term in 
one source matches multiple terms in an- 
other and causes one node in a graph 
match with many in the other. For ex- 
ample, the Prime Minister of a country 
might be holding the defence ministry 
too, whereas, in some other country the 
Prime Minister and the defence minister 
are different. In this case the node in the 
first graph will match against two nodes 
in the second. In order to allow for such 
mismatches between ontologies we allow a 
node in one graph to match multiple nodes 
in the second. 

• Instance Mismatches: these mismatches 
occur because in an instance of a class 
in one source is not an instance of the 
same class in the second source. For ex- 
ample, one university considers its grad- 
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Republic    } parliament 

Figure 1: Partial Graph of Finland 

Information about the House of Commons and Members of Parliament   I The UK Parliamentary Syttem: a brief guide   \ Information about the bouse of Lords 

Figure 2: Partial Graph of UK 
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uate students who hold assistantships as 
its employees, whereas another one does 
not. The US President is a part of the the 
government, however, the Finnish Presi- 
dent is not. The Finnish Prime Minister is 
the head of the government and the Pres- 
ident is a ceremonial head of state. The 
articulation rules should explicitly specify 
what matches we want to generate in such 
cases. In the absence of articulation rules, 
no matches will be generated. 

• Granularity Mismatches: these occur 
when we have two matching nodes and the 
great grandchild of a node matches with 
the grandchild of the other node. This re- 
sults because in the first graph a concept 
has been organized into a more elaborate 
hierarchy than in the second one. The ex- 
pert can conservatively choose not gener- 
ate any match between the intermediate 
nodes in the two graphs or decide to allow 
matching both the child and grandchild of 
the node in the first graph with the child 
node in the second one. 

3.1    Expert Aided Matching 

To generate the articulation the two ontologies 
need to be matched based on a set of matching 
rules specified by the expert. We do not auto- 
matically assume that terms from two different 
contexts match. This is necessary to avoid er- 
rors that occur due to the simplistic assump- 
tion that similarly spelled words have precisely 
matched meanings. If the expert believes that 
terms occurring in two different contexts are 
the same and relevant to the application, the 
expert can indicate that these terms mean the 
same across ontologies. The system will then 
generate the required matching rules. It is, 
however, our intent to generate an intersection 
that is minimal, i.e., it should contain only as 
much information as is necessary to compose 
knowledge from the two sources and answer 
queries posed by a particular application. We 
believe this approach will increase the precision 
of answers and reduce subsequent maintenance 

cost. 
However, in cases where the ontologies are 

very closely related, most terms spelled the 
same might be referring to the same concept. 
In such a case, as an optimization, the expert 
might initially point out those terms spelled 
the same but are semantically different and 
then write a rule saying that whetever has 
not been indicated as mismatches till now are 
matches. In our example with NATO graphs 
we use the latter optimization. 

3.2      Rule Based Semantic Mismatch 
Resolution 

We envisage our higher-level rules to prepro- 
cess the terms in the labels and to determine 
the similarity of the terms. Such rules can de- 
clare global matching operations, as matching 
specified terms, requiring a dictionary or ta- 
ble lookup, or the use of a procedural func- 
tion which matches terms. Such resources can 
be designed by the expert to satisfy recurring 
needs. However, rules that are sufficiently gen- 
eral in nature, especially procedural functions, 
can generate specific false matches which must 
be rejected or marked as irrelevant by the ex- 
pert. If the rules are tuned towards the specific 
application contexts, fewer false matches will 
be generated. 

3.2.1     Preprocessing Rules 

SKAT initially attempts to match nodes in the 
two graphs based on their labels. Certain erro- 
neous labels, especially, in the case of a single 
node having multiple labels, may be weeded 
out. In the graph for Canada, which has not 
been included due to space constraints, we had 
a node labelled 'Parliamentary System' twice 
and 'Senate' once and hence the former label 
was selected using a simple voting scheme. A 
better way is to analyze the document using IR 
techniques and determine what the referenced 
document contains. For most cases keeping 
both labels and matching with either to de- 
tect a correspondence does not generate too 
many false matches.   Once again, the expert 
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indicates whether we take the more conserva- 
tive voting approach or the more generous ap- 
proach of keeping all labels. 

Another important preprocessing step is the 
removal of stopwords and stemming of words 
to their root words. The expert can choose 
and edit a list of stopwords and either provide 
a stemming procedure or specify a table (or 
individual rules) of root words. 

SKAT uses rules specified by the expert to 
resolve semantic mismatches between two on- 
tologies. In our example, the expert provided a 
matching procedure that simply matches terms 
from two ontologies if they are spelled sim- 
ilarly. However, before such a procedure is 
called, the expert had to take care of certain 
issues which otherwise would have produced 
false matches. 

3.2.2 Context Identifier Tagging Rules 

For the instance-level semantic mismatches as 
discussed above, we require to differentiate be- 
tween the President of the US and that of 
Finland since, they are semantically different, 
yet the same term 'President' might have been 
used for both in the two graphs. This is 
achieved by a set of preprocessing rules, that 
simply indicate which terms need to be labelled 
with the context identifier tag. The labels of 
the nodes that pertain to the presidents of the 
two countries in the two graphs are tagged with 
the name of the contexts, i.e., they now become 
US.President and Finnish.President. 

3.2.3 Context Identifier Removal Rules 

The matching is performed based on a certain 
criteria. In our example graphs while match- 
ing between countries the expert might want 
to match the parliament nodes of two coun- 
tries e.g., we want to match the node labelled 
'Finnish Parliamentary System' with that la- 
belled 'The UK Parliamentary System' in the 
graph pertaining to Finland. Therefore, a set 
of preprocessing rules can be supplied that re- 
duce the labels such as 'Finnish Parliamen- 
tary System' to 'Parliamentary System' and 

thereby enable the matching. 

3.2.4 Term Based Matching Rules 

In our example an on-line dictionary or ta- 
ble specified by the expert can be searched 
to find matches among the terms. The terms 
that match in the two labels are given weights 
based upon their frequency of occurrence in the 
sources and other heuristics. A similarity score 
between two labels is calculated based on the 
match between terms in the labels. If the simi- 
larity score is above a threshold then the labels 
are matched. 

Apart from the simple rules that simply 
mention the two terms that should be matched, 
the expert can supply more complex rules. 

(Instance-Of Country UK) 
(Instance-Of Country Finland) 
(=>  (and (Instance-Of Country ?Countryi) 

(Instance-Of Country ?Country2)) 
(Match ?Countryl ?Country2)) 

The first two sentences indicate that UK and 
Finland are countries and then provides a gen- 
eral purpose rule to match two countries. This 
has the added advantage that in order to match 
all countries to each other we do not have to 
list all combinations of matching rules. When 
we want to add another country all we need to 
do later on is to add the information that that 
country is an instance of Country. 

3.2.5 Structure Based Matching Rules 

Matching rules can also be based upon the 
structural similarity of the graphs. Parts of 
ontologies, represented by sub-graphs, can be 
matched based upon the similarity of their hi- 
erarchical structure. The matching rules are 
expressed as functions which take in the en- 
tire graphs and generate the correspondence 
between nodes of the two graphs. 

Matching based solely upon structural sim- 
ilarity works well for sources that are struc- 
turally very similar. However, between most 
ontologies there is a fair degree of structural 
dissimilarity. Thus matching rules based only 
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on the structure of the ontologies produce a va- 
riety of false matches. Therefore, the match- 
ing procedure first matches the nodes based on 
their labels and using this set of matches and 
the structural similarity, it generates further 
matches. In the strictest version, two nodes 
are matched if all their parent nodes and chil- 
dren nodes match and such a perfect match is 
given more weight. 

The expert can specify the number of 
matches she is interested in generating and if 
the perfect structure match is not sufficient to 
identify the articulation then it is progressively 
relaxed. Nodes that do not match perfectly 
but have a low weight (i.e., a few of the par- 
ents and/or children match) are then accepted 
as being matched. 

3.3    Other Matching Rules 

In our example, instead of basing the match- 
ing only on the labels, SKAT can analyze the 
entire documents (i.e., web pages) and try to 
detect the similarity of the pages based on the 
words occurring in the page. A standard In- 
formation Retrieval algorithm can be used to 
generate such matches. 

3.3.1    Spurious Match Resolution Rules 

Techniques, such as automatic stemming, that 
were used previously can generate spurious 
matches. Words such as 'minister' and 'min- 
istry' might have been preprocessed to be re- 
duced to 'minister' and therefore, will match. 
However, for our government articulation we 
want to preserve the difference between the 
two. These sanity checking rules can be ex- 
plicit statements of mismatches like 

(Mismatch Minister Ministry) 

provided by the expert that would indicate 
that we do not want certain matches. The 
expert can also indicate that certain phrases 
should not be preprocessed. Sanity checking 
rules like 

(=> (and (Instance-of Person ?X) 

(Instance-of Office ?Y)) 

(Mismatch ?X ?Y)) 

can also be used. 

3.4    Performance Issues 

Due to the more complex general purpose pro- 
cessing rules (the ones shown above that in- 
volve implication and logical inference), the 
performance of a system like SKAT can be re- 
ally slow. Therefore, our prototype implemen- 
tation of SKAT does not use those types of 
rules. 

The structural matching procedures men- 
tioned above are quadratic in complexity with 
respect to the number of nodes being matched. 
In case of very large graphs where such a com- 
plexity is unacceptable, structural slices of the 
graphs are matched against each other. It is 
expected that terms near the root of one ontol- 
ogy will match terms near the root of another 
and so on. Thus slicing the graphs should still 
generate an adequate articulation. The lexical 
matching is done by sorting all the terms in the 
labels in each graph and then matching is done 
in linear time. However, if sorting the terms in 
the entire set of labels is unacceptably slow for 
very large graphs, they too can be sliced and 
then matched. 

4    Results 

For the example graphs of Finland and UK the 
following is the match generated by SKAT us- 
ing a simple lexical and term matching algo- 
rithm: 

"Finnish Parliamentary System" 
->  "The UK Parliament" 
"Ministers" 
-> "Lists of .. Ministers .." 

"Government" 

-> "Her Majesty's Government" 

"Government" 

-> "The Government" 

"Ministers" 

-> "Departments .. Ministers" 

"Prime Minister" 

-> "Prime Minister, .. Service" 
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"Ministry of Defence" 

-> "Defence (Ministry of" 

"Parliament" 

-> "The UK Parliament" 

where the first label refers to a node in the Fin- 
land graph and the second to that in the UK 
graph. As we can see, most matches are correct 
and intuitive. Using the structural matching 
algorithm we are able to generate the matches 
between 

"Ministries" 

-> "Departments" 

"Ministries" 

-> "Desc. of Ministry of Defense" 

This was after the requirement for perfect 
structural match was relaxed and granular- 
ity mismatches were not resolved conserva- 
tively. Since the Government sites and the De- 
partment of Defence sites in both the graphs 
matches, the nodes in the paths between these 
two nodes i.e. 'Ministries' and 'Departments' 
were matched. The unwanted match generated 
'Ministries' with 'Desc. of Ministry of Defence' 
is the price we pay for relaxing the perfect 
match requirement. A more conservative ap- 
proach would generate no structural match. 

5    Other Uses of the Matching 
Tool 

For our examples, the generated articulation 
consisted of extracted structural information 
from the government sites of the NATO coun- 
tries, and the important nodes selected from 
them. The result is a partial skeleton of the en- 
tire website, providing a taxonomy of the site, 
as well as of governmental structure. 

The government websites were laid out in 
a hierarchical fashion and the portions of the 
hierarchy that were common across sites were 
extracted out. The common portion of the sec- 
ond graph can be restructured so that the no- 
des are arranged according to the hierarchical 
structure of the common portion of the first 
graph.   This restructuring, creates a view of 

the second graph on the lines of the first and 
can be stored. It is now easier to answer user 
queries that require searching multiple web- 
sites since we have reformatted the articulation 
of the sites into one common structure. 

SKAT can be used to extract information 
from a website by supplying a template graph 
whose nodes are labelled with terms of interest. 
For example, a graph constructed from one of 
the existing government ontologies can be used 
as a template graph and its articulation with 
the Finland graph will give us the nodes in the 
Finland graph that correspond to the terms in 
the template graph. A simple adaptation of 
SKAT can thus be used as a template-based 
querying tool wherein the answer will be struc- 
tured according to the provided template. 

Since SKAT extracts structural information 
from an ontology it can be used to create a new 
ontology. If a graph has little structure we can 
compute the articulation of this graph with an 
already existing structured graph. Using the 
articulation we can structure portions of the 
first graph. Given the huge amount of infor- 
mation present in today's World Wide Web, 
one can just supply SKAT the root node of a 
country's graph or a reference ontology and a 
set of webpages and those pages will be auto- 
matically structured. 

Once web pages from distinct sources are 
consistently structured, queries by end-users 
will be reliably answered. Misleading matches 
will be avoided and many new matches, that 
are now based on verified semantic identities 
will be created. 

6    Conclusion 

Applications and their decision-makers benefit 
from broad access to information, but the in- 
formation is widely dispersed and difficult to 
integrate reliably. 

We are addressing an important problem in 
the use of the many diverse knowledge sources 
that are available to our applications. 

By keeping the intersection as small as feasi- 
ble we reduce the maintenance costs for the ap- 

579 



plications and maximize the autonomy of the 
sources. By allowing sources to remain au- 
tonomous we can take advantage of the mainte- 
nance efforts made by independent, specialized 
experts. 

Tools, as SKAT, to create modest and man- 
agable articulations of these sources for well- 
understood applications allow application ex- 
perts to maintain the linkages needed for re- 
liable interoperation. Such reliability is a re- 
quirement for business-transactions, since we 
cannot expect human filtering and matching to 
occur with regular, repeated operations. The 
investment made once, by the articulation ex- 
pert, will pay off every time disjoint domains 
are used to process an order or make a business 
decision. 
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Abstract 
In this research we postulated an Electro-Optical 

Computer Architecture (EOCA) that could be used t o 
evaluate the potential for increased performance and 
functionality of knowledge discovery and data mining 
systems that deal with very large multimedia 
data/knowledge bases. The postulated EOCA is composed 
of a number of individual holographic associative 
processors that could perform operations in parallel and 
could house terabytes of data. With regard to text and 
numeric data mining, we concentrated on association rules 
and a number of their variations since many of their 
operations can be common to other data mining techniques 
such as classification and clustering. We described these 
techniques mathematically as timing equations. Utilizing 
these equations as well as the equations that described the 
EOCA, we assessed the feasibility of implementing such 
data mining techniques on the electro-optical architecture. 
We concluded that great potential exists for orders of 
magnitude speedup in the data mining of very large text 
and numeric databases. In fact, some of our results indicate 
that the association rules algorithm can be evaluated in a 
matter of a few seconds for a terabyte database. In addition, 
we investigated the feasibility of the execution of image 
data mining on the postulated architecture. The results were 
comparable to those discussed above and therefore quite 
encouraging. While great potential exists, further research 
and development is required. 

Introduction 
In recent years considerable demand has 

developed for user oriented distributed multimedia 
management information systems that are able to 
manage terabytes of data. These systems must 
provide rich and extended functionality so that new, 
complex, and interesting applications can be 
addressed. The need for these systems exists in a 
multitude of fields including medicine, education and 
training, defense, business, manufacturing, arts and 
entertainment, space, as well as a number of other 
important areas. These applications place 
considerable importance on the management of 
diverse data types including text, images, audio and 
video. As these systems have developed, a wealth of 

data, information and knowledge has become resident 
within these vast repositories. This has given rise to a 
variety of new techniques that have as their objective 
the extraction of knowledge and information from 
these repositories [THU97]. 

Knowledge Discovery and Data Mining 
(KDDM) is the iterative process of efficiently and 
effectively finding patterns in data which are relevant 
to end users. The KDDM process incorporates many 
methods, tools and techniques from multiple fields to 
produce effective and usable results, ranging from 
machine learning techniques from the artificial 
intelligence field to visualization methods from the 
human computer interaction field to data 
warehousing techniques from the database world to 
provide multi-dimensional data analysis. Data mining 
is the major computational part of the process that 
provides algorithms for finding these patterns. There 
are a number of approaches to data mining including 
association rules, general characteristics and 
summaries, classification, clustering, temporal or 
spatial temporal and path traversal patterns [CHE96]. 

Optics may be able to help solve some of the 
very large multimedia data/knowledge base 
problems. Photons, which have some very attractive 
properties, such as high speed, non-interference, and 
a high degree of inherent parallelism can 
advantageously replace electrons in some processing 
operations. Optical systems can accommodate a large 
number of parallel, high-bandwidth channels, thus 
providing solutions to various interconnection 
problems. In addition, optical storage devices have 
very high storage densities and considerable research 
and development activities are underway to develop 
devices with read rates in the hundreds of megabytes 
per second range [MIT98a]. 

In the research reported here we postulated 
an Electro-Optical Computer Architecture (EOCA) 
that could be used to evaluate the potential for 
increased performance and functionality of 
knowledge discovery and data mining systems that 
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deal with very large multimedia data/knowledge 
bases. The postulated EOCA is composed of a 
number of individual holographic associative 
processors that could perform operations in parallel 
and could house terabytes of data. This system was 
used to assess the feasibility of implementing such 
data mining techniques on the electro-optical 
architecture and to obtain order of magnitude 
performance data. 

Optical Storage, Interconnection and Processing 
The state of the art of electronic computing 

enjoys considerable maturity. In contrast, optics as 
applied to digital computing is very young and has 
yet to make its mark. One of the objectives of digital 
optics is to replace electrons with photons whenever 
appropriate in a computing environment. As 
discussed above, the motivation for this is that optics 
possesses some very attractive properties including 
massive parallelism, high speed, low power 
consumption and noninterference of light beams 
[BER89,90, GUI96]. 

In terms of storage, optical disks of various 
types are in wide use because of their large storage 
densities even though their access times are slower 
than magnetic disks. However, with suitable 
modification to read multiple tracks simultaneously, 
data rates on the order of hundreds of Mbytes/s are 
possible [PSA90]. Since electronic computers are 
designed to deal with magnetic disk transfer rates, 
they will have difficulty with these increased rates. 
This dictates that we keep the data in optical form 
and process them to the fullest extent possible so that, 
on conversion to electronics, the data rate will be 
within the capabilities of the electronic computer but 
more content rich. In this way we hope to increase 
the performance of the system without disturbing the 
large investment in systems and user software. 

The continuing interest in optical memories 
is well justified by the potential for high-density 
storage and for parallel access to two-dimensional 
pages of data. Optical memories can store as much 
as 8 terabits/cm3, (i.e., approximately 931 GBytes of 
information). Using wavelength domain 
multiplexing this figure can be increased by 2-3 
orders of magnitude. 

Volume Holographic Memories 
Most ultra large database and 

knowledgebase systems used in knowledge discovery 
and data mining store data on magnetic or optical 
disks and employ indexing techniques to avoid or 
minimize disk accesses. Various clustering and 
accessing techniques are used to reduce response 
time. Even so, when the joint requirements of ultra 
large databases and very short response times are 

imposed, existing technologies degrade rapidly. In 
these cases, the ability to call forth and operate on 
large pages of data in parallel from a page-oriented 
holographic memory (POHM) would offer a 
profound advantage over serial operation. The basic 
concept of page-oriented holographic memory is 
quite simple. Many small spatially discrete 
holograms are recorded on a single substrate in a 
page format that can hold millions of bits per page. 
They are constructed in such a way that whenever a 
laser beam illuminates one of these small holograms, 
the data are read out in parallel in two dimensions. 
Volume holographic memories can store hundreds of 
thousands of these pages in photorefractive crystals 
using a combination of spatial, angular, peristrophic 
or wavelength multiplexing techniques [HON95, 
PSA95, PSA98]. An electrooptic or acoustooptic 
deflector can be used to address any of these stored 
pages within microseconds. 

Since volume holographic memories have 
large storage capacities they are prime candidates for 
the storage of large amounts of data and information 
including multimedia as well as relational databases. 
Because of their associative nature [MIT94] they are 
well suited for accessing data at high speeds. The 
associative mode provides the ability to search the 
entire contents of the memory by presenting a search 
argument and receiving the location of the matching 
elements 

It is safe to assume that optical memories 
and especially holographic memories represent a 
promising solution for applications requiring high 
volume storage, such as: knowledge discovery, 
relational databases, image processing and in general, 
a number of research issues currently under 
consideration in the multimedia field. These 
applications typically require a high degree of 
parallelism for processing data. Most of the data 
operations required by these applications are single- 
instruction, multiple-data (SIMD) operations. Thus, 
optical memories and parallel computing have a 
common characteristic, namely parallelism. 

In most conventional computer architectures 
the processing elements are separated from the data 
store. Usually a storage hierarchy is employed to 
move the desired data up the hierarchy to ultimate 
use by the processor. However, in data intensive 
processes fast memory is generally not available in 
abundant supply and large data transfer overhead is 
incurred. In order to mitigate these effects the 
processor in memory model offers considerable 
advantage. In this case processors are integrated with 
the memory and operations are performed in situ with 
results being the only data transferred out of memory. 
While this model is very desirable, it has not been 
fully realized primarily because of the high cost 
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involved. Examples of systems that move in the 
direction of this model generally move multiple 
processors closer to the memory and employ some 
form of parallel processing. They do not, however, 
actually integrate processing capabilities with 
memory. In the case of holographic memory at least 
part of the desirable attributes of the processor in 
memory model are realized. That is, the memory 
tends to be very large which is very desirable for 
large data/knowledge base applications. In addition, 
the associative processing capabilities allow for some 
processing of data in memory; namely searching for 
data that match given search arguments exactly or, in 
some cases, finding the best match of images. 

In order for holographic memory to 
completely meet the requirements of the processor in 
memory model considerable additional capability 
must be added so that arithmetic as well as logical 
operations can be performed. However, an 
intermediate system with a broad range of search 
capabilities would find wide application in the 
data/knowledge base field. And even with just the 
exact match capability many applications can be 
enhanced. For instance, many complex queries have 
exact match components that, with some query 
optimization, can be performed first thus reducing the 
size of the data/knowledge base needed for further 
processing. It is certainly true that one can construct 
queries that are void of exact match components, but 
the vast majority of queries do have one or more 
exact match components. And in the case of 
knowledge discovery and data mining many of the 
algorithms can be enhanced through the use of count 
data. 

Significant advances in the field of page- 
oriented holographic memories have taken place over 
the last five years and several prototypes have been 
demonstrated. Companies such as IBM, Lucent 
Technologies, Rockwell, and others have pursued the 
technology, even though Universities continue to 
play a crucial role in new developments and 
innovations. 

The team at IBM Almaden is heading the 
NSIC/DARPA/University/Industry Photorefractive 
Information Storage Materials (PRISM) and 
Holographic Data Storage Systems (HDSS) 
consortium. During the past five years a large variety 
of materials and system configurations have been 
tested in a specially designed holographic memory 
tester [BUR98]. Up to 10,000 data pages have been 
stored in a volume of 1 cm3. At resolutions of up to 
1,000 x 1,000 (1 Mbit) per page, the total storage 
density reaches a significant 10 Gbits/cm3. A system 
that will employ spatial multiplexing may raise this 
capacity 50-100 times (with some increase in 
volume).   Even more impressive are the data rates 

that have been demonstrated: 1 Tbit/sec burst and 
100 Gbits/sec sustained. For 1 Mbit pages, the frame 
rate, that includes the (non-mechanical) access time, 
must range between 100 kHz and 1 MHz. At these 
rates, the detector array that receives the holographic 
memory output becomes the bottleneck. Charge- 
coupled devices (CCD) designed for display 
applications are a totally inadequate interface. 
Schaffer and Mitkas at Colorado State University 
have explored the use of CMOS smart photodetector 
arrays that can combine light detection and 
conversion with some preprocessing, such as 
demodulation, error control, and even some form of 
data selection [SCH98a]. A prototype chip was 
fabricated capable of performing parallel error 
detection and correction of 2x2 cluster errors at frame 
rates of 5 MHz [SCH98b]. A full size chip should be 
able to output corrected data at up to 100 Gbits/sec. 
Other research teams have considered and 
implemented CMOS arrays of active pixel sensors. 

The media used most frequently include 
photorefractive crystals (iron-doped lithium niobate, 
barium titanate, stoichiometric lithium niobate, etc.) 
or photopolymers. Crystals can be used in a 
volumetric form while both crystals and polymers 
can be arranged on a disk form. Companies such as 
Holoplex, Rockwell, Optitek, and Lucent 
Technologies have all demonstrated working 
prototypes at small form-factors (down to a 3x4x5 " 
black box). 

Recording data holographically is invariably 
slower than reading them. In fact, writing cycles may 
be several times longer than readout cycles 
depending on the material and the available optical 
power. 

The main advantage of holographic 
memories, that is, their ability to perform associative 
searches, has not been fully explored as yet. We 
know that associative recall with analog data works 
nicely and that recent experiments have demonstrated 
good associative recall when binary and other digital 
data are used. It is not known, however, to what 
extent, in terms of total capacity and search argument 
size, holographic associative processing is effective 
and reliable. In this work we have taken some small 
positive steps in the direction of showing that 
holographic associative processing can be effective. 

Volume Holographic Database System 
A computer-controlled angular-multiplexing 

photorefractive-based volume holographic memory 
has been used to store database records, search 
through the records, and recall the information stored 
in the memory [GOE96]. Figure 1 depicts the 
Volume Holographic Database System (VHDS) that 
was used in the experiments.  To record information 
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we load the data into the spatial light modulator 
(SLM), create a unique reference angle through the 
reference beam generation arm, and then open 
shutters SHI and SH2. After a predetermined time 
the shutters are closed, at which point the interference 
pattern of the two beams has been successfully 
recorded in the photorefractive crystal. This process 
is repeated until all the information has been stored. 
To recall pages we generate a unique reference angle, 

Reference Beam 
Generation 

Variable 
Beam 

Splitter    SH2 

*v Cfysta| j! 

2^        W { CCD2   ^       w~   CCD1 
Figure 1. Volume Holographic Database System (VHDS) 

open shutter SHI, and then capture the data on the 
camera CCD1. This process can be repeated as 
needed. The most important aspect of this system is 
its ability to search every record stored in the 
memory in a single step; the associative property. To 
perform searching, we must first have multiple pages 
of data stored within the memory. With the data in 
place, we load the SLM with a search argument, open 
shutter SH2, and capture an image of the reference 
beam plane on CCD2. Using this image we can 
determine the angular "address" of the desired 
information. The search argument that is presented 
to the VHDS can range in size from an entire page of 
data to just a small section of a page. This gives us 
the ability to search for a very specific record, or to 
search for multiple records that contain similar 
information. 

In this work up to 800 pages were 
successfully recorded in one cm3 of FerLiNbO3 with 
each page comprising one record of a relation with 
data fields containing: last name, first name, 
affiliation, address, city, zip code, and telephone 
number. Records ranged in length from 98 to 210 
characters. These characters were modulated to a 
binary format using a 2-out-of-15 encoding scheme 
and a multiblock row and column parity code. Tests 
were successfully performed on both modes of 
operation; addressed recall and associative recall. To 

test addressed recall the VHDS was presented with 
angles that corresponded to specific pages and then 
the output of the memory at CCD1 was examined to 
determine if the correct image was indeed recovered. 
The results showed that the 800 holograms were 
successfully recorded and that any page could be 
reconstructed. 

In testing the associative recall they 
explored how both the search argument and the data 
stored in the memory affect reconstruction of 
reference beam planes [MIT98b]. How the number 
of characters in the search argument, the number of 
matches, the position, the orientation, and size of the 
search argument affect recall were also examined. It 
was determined that when the number of characters 
in the search argument decreased, the intensity of the 
correct hit dropped thereby setting a lower bound on 
the number of characters that are required in the 
search argument. However, this lower bound is well 
within the operational limits of the system. It was 
also shown that it is possible to find multiple pages 
containing similar data. 

Electro-Optical Computer Architecture 
Since we are interested in data mining 

applications, which are heavily based on content- 
based searches, a system similar to the VHDS forms 
the basic building block of the proposed Electro- 
Optical Computer Architecture (EOCA).   We call 

this block a holographic associative processor (HAP) 
since it is an improved VHDS. The EOCA employs 
many HAP blocks arranged in groups.   Each group 
will store related data (i.e., relations of the same 
database, images of the same collection, or video 
sequences).   Certain HAP blocks are reserved for 
storing and searching index files for faster data 
access   and   more   efficient  data  manipulation. 
Different data types can be stored in the pages of the 
same recording.    For example, pages of binary 
alphanumeric data can be interleaved with pages of 
digitally encoded imagery or gray-scale images. 

The need for data modulation and error 
coding to ensure industry acceptable corrected bit 
error rates (<10"14) will reduce the user capacity of 
the system. A 1 Mbit page with a 40% overhead for 
modulation and error control will be able to 
accommodate roughly 75,000 ASCII characters. This 
number can be contrasted with typical page sizes in 
electronic systems of .5, 1 and 2 Kbytes. Thus, with 
75 Kbytes/page a variety of combinations can be 
accommodated from all tuples of the same relation to 
interesting mixes of various types of data. 

In our analysis of the potential of EOCA, we 
select parameter values from the ranges given below. 
Other parameters are defined as needed. 
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Number of Pages / Spatial Location:    1,000 - 10,000 
Number of Spatial Locations: 1-100 
Page Resolution: 1000x1000 (1 Mbit) 
Access Time (page to page): 1 - 10 us 
Access Time (location to location):        100 us -1 ms 
Frame Readout Time: 1 us -1 ms 
Reference Beam Profile Readout Time:        1 -10 us 
Frame Recording Time 1 ms -1 sec 

Structure of the EOCA 
Shown in Figure 2 is an overall block 

diagram of an Electro-Optical Computer 
Architecture. This architecture serves as the basis of 
our evaluation of the potential performance 

Search Argument 

Data 
Loading 

Holographic Memory System 

Figure 2. Electro-Optical Computer Architecture 

and functionality improvement that such a system can 
bring to the knowledge discovery and data mining 
environment. The optical system consists of many 
HAP blocks. These blocks are connected together in 
order to form an ultra large multimedia data 
warehouse that can house terabytes of data. In this 
section we characterize the system in terms of 
memory sizes, bandwidths; speeds, scalability, degree 
of parallelism, etc. 

Holographic Memory System (HMS) Response 
Time 

For the holographic system considered here 
the total storage capacity per module is determined 
from the following equation: 

Stotal ~ Nbils/char. X Nchar/page * ^pages * ^SL 

where Nbils/char is the number of bits that it takes to 
represent a character, Nchar/page is  the  number of 

characters that can be placed on a page, Npage is the 
number of pages that can be placed in a spatial 
location, and NSL is the number of spatial locations. 
S,olal represents the total capacity of the memory. 
However, the effective capacity is smaller since it 
will require more than 8 bits to store a character 
(byte) of data. Since we are most interested in very 
large data/knowledge bases we will assume a large 
system. Thus, if we assume 10,000 pages per spatial 
location, two spatial locations, 1000 HAP's operating 
in parallel and one megabit/page, we will have a 20- 
terabit system. Allowing bits (40%) for parity and 
error correction and converting to bytes we would 
have a 1.5-terabyte capacity system. As with any 
system, design tradeoffs are required. For instance, in 
the case of increased spatial locations, we would be 
able to have fewer storage elements but search times 
would be increased. 

Knowing that most operations in a database 
environment involve the retrieval of a record or 
group of records per request, it is more useful to 
discuss the response time of the system than the data 
rate, which is a commonly used performance metric. 
We define the response time here as the time between 
the point a request for data is made and the point 
when the desired information becomes available. 
This is directly affected by the system components, 
the type of data access (addressed or associative), and 
the possibility of having to reread a page of 
information due to double errors. 

The response times of the system 
components are defined as Tshuller, Tmgie, TSLM, TCCa 
and Tdecode for the shutter, generation of the angularly- 
encoded reference beam, SLM, CCD detector array, 
and decoder, respectively. TCCD is the total response 
time of the CCD array which includes both the 
integration time (the time over which optical power is 
integrated on the array) and the time to read all pixels 
from the detector. 

Address-based retrieval is performed by 
generating the reference beam (i.e. deflecting to the 
desired angle), illuminating the crystal, and then 
detecting and decoding the output. Thus, the 
addressed retrieval response time, TAddn is 

TAddr — Tangle + Tshuller, + TcCD + Trfecorfe 

A fast deflector (such as an acoustooptic 
device) can be set in only a few microseconds and 
decoding can be done in a parallel fashion within 
microseconds. The shutter, SLM, and CCD, 
however, have response times on the order of 
milliseconds. Thus, Ta„gie and Tdecode can be 
eliminated from the equation and the equation for 
TAddr is approximated by 
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LAW ' shutter* + T< CCD 

For associative retrieval, the search argument must 
first be generated on the SLM, the output reference 
beams must be detected, and finally each matching 
page retrieved by address. Thus, TAssoc, the 
associative retrieval response time, is the time to load 
the SLM with the search argument plus the time to 
detect the location(s) of the matching page(s) plus the 
time to retrieve and process those pages. Again 
ignoring, Tangle and Tdecode we have 

TASSOC ~ 2 Tsfmiier + T$LM + TcCD + k Njfec {TQCD + Tposl) 

where k is the selectivity factor equal to the 
percentage of records which match the selection 
criterion (£<1), NRec is the total number of records in 
the database, and Tpos, is the time required to do any 
necessary post-retrieval processing to determine an 
exact match with the search argument. 

This analysis is valid only for purely angularly 
multiplexed systems. If spatial multiplexing is also 
employed to increase capacity, the address based 
retrieval response time does not change, but the 
associative retrieval response time is directly 
affected. For spatio-angular multiplexed systems, the 
search process must be carried out for each of NSL 

locations. Thus, TAssoc becomes: 

1 Assoc      ^ *s 

Ipost) 

^shutter + TsiM + ^SL TQCD + k N/{ec (TcCD + 

where we have assumed that the response time of the 
deflector used to direct the search argument to the 
next location is on the order of Ta„g!e and have 
neglected it in the third term. 

The majority of retrievals in a database 
environment are content-based, so we are primarily 
interested in TAssoc. It is important to note that the 
search time in the HAP does not vary with the 
number of search criteria, unlike electronic database 
machines. That is, a search for the name 'Smith' and 
a search for both the name 'Smith' and the zip-code 
'68405' are performed equally fast since all records 
and attributes are searched simultaneously. 

In order to generate some insight into the 
capabilities of the HAP we assume some values for 
the terms in TAssoc. In the following calculations we 
will assume that Tshu„er = 3 msec, Tsm = 3 msec, TCCD 

= 1 msec and Tpos, = 1 msec. In the case of 
performing any complex query for a count of the 
number of hits as described above TAssoc = 11 msec. It 
is important to note that what is retrieved at this point 
are hologram locations that represent the pages that 
contain the search argument(s). The number of hits 
will yield the number of qualifying pages. In the 

association rules data mining technique, the 
algorithm can be executed by just counting the 
number of hits. We expect that this approach will 
yield two to five orders of magnitude reduction in 
time. 

If we then desire the pages, we can estimate 
the time to retrieve them from the HAP by selecting a 
value for the selectivity factor k and knowing the 
number of records in the system. If we assume that 
the number of records is one per page then there are 
20,000 records per HAP. With a selectivity factor of 
k =0.01 then TAssoc = 411 msec. With 75,000 
characters per page this is an effective transfer rate of 
36 megabytes per second. Standard magnetic disks 
have transfer rates on the order of five megabytes per 
second. It is important to note that with improved 
optical components the read out rate of the HAP can 
be increased considerably. 

Electro-Optical Computer Architecture Response 
Time 

The main strength of the EOCA is 
associative access. That is, we can search all pages in 
memory for responders to an arbitrarily complex 
query and determine page positions in one scan of the 
memory. Thus, we can search a terabyte database in a 
matter of milliseconds. From the mirror angles we 
can obtain the number of responses to the query and 
with multiple scans of the EOCA we can obtain all of 
the data we need to execute the association rules 
algorithm. With the EOCA the potential exists to 
render the time to execute the association rules 
algorithm negligible. From the peaks in the reference 
beam profile we can determine the pages in memory 
that have produced hits and they can be read out if 
needed or they can be accessed from secondary 
storage on the sequential front end computer and 
further processing performed. 

Referring to Figure 2 note that all HAP units 
operate in parallel. Thus, for an arbitrarily complex 
query the electronic computer would broadcast the 
search argument to all HAP's via the system bus. 
They would execute in parallel and collect the 
responding hologram position data at each HAP. The 
count could be determined at each HAP with a local 
processor or the hologram positions could be 
transferred to the electronic computer for 
determination of the count. In executing association 
rules, a local processor could collect the results of 
many passes and do some preprocessing prior to 
sending the results to the electronic computer. 

The timing equation for executing a single 
search, Ts, on the EOCA for a complex query is 
composed of a) a query broadcast time, TB, b) a 
search, TAssoc, without readout (the first three terms), 
and c) a collection of the hologram positions from the 
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HAP's and their transfer to the electronic computer 
for further processing Tlram. Thus, 

Ts= 7fl + Tjfssoc + Ttrans 

TB takes a few microseconds and TAss0c, based on 
previous calculations, is 11 msec. Tlrans will depend 
upon how many HAP's have registered hits. 
However, suppose they all do. To transfer the 
hologram positions from a single HAP would require 
a few microseconds. Since there are 1,000 HAP's in 
the EOCA we would expect the transfer time to take 
a few msec. Thus, the entire process would only take 
order of milliseconds to complete. For association 
rules, depending upon the number of queries to the 
EOCA that would be required, the algorithm could be 
executed in a matter of seconds. 

Database of Transactions  Determine Relationships 
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Figure 3. Association Rule Example 
Shown in Figure 3 is an example database of 

transactions that is used to illustrate the capabilities 
of the EOCA in solving the association rules 
problem. There are ten transactions that have A, B, C 
and D as possible values. In relational database 
parlance we have a single relation with the 
transaction number as primary key and the presence 
or absence of the values A, B, C and D in the four 
domains. One can view this in a commercial 
application as the fact that the customer purchased A, 
B, and C in transaction 1, another customer 
purchased B and D in transaction 2, and so on. In 
mining for association rules we would like to know 
the strength of the relationship between and among 
the items purchased in all of the transactions. 

We first set the level of support or strength 
of relationship that we are interested in. Here we 
choose 50%. That is, if the percentage of 
transactions that include an item is 50% or greater, 
then we look further for associations between and 
among all of those items. In this case we see that A, 
B and D meet our criteria. We now look for 
associations between products and find that AD and 

BD  qualify,  but AD  does  not.     Finally,  the 
relationship ABD does not qualify. 

In executing this algorithm using sequential 
computing, the database would have to be accessed 
many times or multiple indexes would have to be 
established depending upon the approach taken to 
solving the problem. Using the EOCA, the timing 
equation given below would determine the time to 
produce all of the necessary count data and then it 
would be a simple matter to determine all possible 
associations. 

n 

i=l 

+ T assoc   '   ■* trans. ) + T( Calc 

In this equation k is the number of tuples per page 
since we will have to perform multiple searches if we 
have more than one tuple per page; n is the number of 
domains in the transactions (four in the above 
example), while the sum of combinations gives all 
possible combinations of the domain values (A, B, C, 
D, AB, AC, ..., ABCD). Tassoc is as before and Ttram 

is the transfer time from each HAP to the sequential 
computer under the assumption that results are 
transferred after each search of the EOCA. If the 
results are all collected first and then transferred this 
term would be larger but outside the parenthesis 
yielding a smaller value overall. However, the 
calculation of the associations TCak would be 
impacted since this operation could not commence 
until all the data in the EOCA were collected and 
transferred. In the above equation it is assumed that 
the transfer of the partial results will be provided to 
the sequential computer for processing as they 
become available and the transfer time and 
calculation time can be overlapped. Thus, the time 
required for Tcaic is just the time to process the results 
from a single interrogation of the EOCA. 

If we assume that there are four domains, 
1.5 terabytes in the EOCA, 10 tuples per page and 
Tcaic is 10 msec, then Ttram is 10 msec. TAR for this 
example is about 3.6 seconds. Although not a valid 
comparison, just to transfer 1.5 terabytes of data from 
magnetic disks would take days. 

Thus, it is clear that the use of the 
associative property in the EOCA has great potential 
for speeding up association rule processing. 
However, we must still bear in mind that holographic 
memories are not yet widely available, they take a 
long time to load, and, of course, have other 
problems that must be solved before they can become 
a main stream computer system reality. But, 
nonetheless, great potential exists which clearly 
warrants continued investigation. 

587 



Similar difficulties arise with clustering, so 
additional research needs to be performed to more 
completely measure the effectiveness of the HAP in 
executing these data mining algorithms. 
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Knowledge bases (KBs) can enable Knowl- 
edge Discovery from Databases (KDD) by pro- 
viding a natural, object-oriented representa- 
tion of an application domain, a powerful query 
language that can manipulate schema as well 
as the ground facts, and an easy to use graph- 
ical interface that can support interactive ex- 
ploration [1, 2, 3] KDD, in turn, can enable 
the construction of a KB by semiautomated 
derivation of rules of domain knowledge or by 
starting from a KB and refining it based on the 
data in a database. This two-way interaction 
presents a multitude of opportunities, and we 
attempt to address some of them. 

Many KDD engines use automatic statisti- 
cal or machine-learning mechanisms to search 
for implicit patterns in data. The overall KDD 
task faced by an analyst, however, involves 
many other activities in addition to what is 
offered by the core KDD engine. The input 
necessary for a KDD engine is not usually avail- 
able in the required format, and in most cases, 
has to be prepared by processing the data in 
an existing database. For example, while an- 
alyzing the commodities exported by a coun- 
try, the export data may be available for each 
product (such as beef, chicken, etc.), but the 
input to the KDD engine needs to be repre- 
sented in terms of abstract categories of prod- 
ucts (such as animal products). In such a sit- 
uation, an ontology categorizing commodities 
can significantly aid an analyst in preparing the 
data for input to the KDD engine. KDD tasks 
are usually iterative and involve experimenting 

with categories at different levels of abstrac- 
tion. Frame Representation Systems, such as 
Ocelot, and graphical browsing and editing 
tools, such as the GKB-Editor [KCP99], are 
natural tools for hierarchical representation, 
display, and selection of knowledge. Their util- 
ity is significantly enhanced with an interface 
to a commercial database management system 
supported by a system such as PERK (Persis- 
tent Knowledge) [2]. 

Large knowledge bases (KBs), such as the 
Cyc KB, the Sensus ontology, or the Ontolin- 
gua ontology library, are expensive to build 
[4, 5, 6]. The output of a KDD task can con- 
tribute significantly to KB development. Many 
KDD tasks extract association rules from data, 
which can be integrated directly into a KB. If 
these newly learned rules are determined to be 
inconsistent with existing rules in the KB, this 
serves as an indicator of potential errors in the 
existing rules, or in the data that was used to 
generate the new rules. In other cases, a KB 
may contain causal rules that do not have as- 
sociated probabilities indicating the strength 
of causation. Probabilistic KDD tools can use 
empirical data to assign probabilities to these 
rules. 

In summary, leveraging KB systems with 
KDD tools will permit more effective knowl- 
edge understanding by providing KB support 
to prepare data for the KDD process, and us- 
ing the output of the KDD tools to refine the 
contents of the KB. 
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Abstract In spacecraft telemetry, expert systems 
technology is being used to manage the complexity 
generated by the greater number of complex measurands. 
The telemetry subsystems usually have multiple 
configurable roles; hence, there are similar rule bases in 
existence for different subsystems. There is a need to extract 
reusable components from such systems so that they can be 
adapted and integrated for newer missions. A semi- 
automated tool, such as Pragati's MVP-CA (Multi- 
ViewPoint Clustering Analysis) tool, can provide a valuable 
aid for comprehension, maintenance, integration and 
evolution of these expert systems by structuring a large 
knowledge base in various meaningful ways. The similarity 
in existing telemetry rule bases is exploited by applying the 
MVP-CA tool to "mine" the knowledge existent in them. 
This knowledge can serve as a handle to fuse information 
from different rule sets and formulate new rule sets for 
further mission planning activities. We will discuss issues 
about indexing, retrieval and adaptation of the rule sets by 
describing a support architecture needed in the MVP-CA 
tool for investigating the identification of potentially 
reusable clusters and linking it with case-based reasoning 
technology. 

Key Words: expert systems, clustering, reusability, 
case-based reasoning 

1. Introduction 

The increased number and complexity of spacecraft 
mission measurands and the evolution of ground 
systems architectures that support multiple 
configurable roles have emphasized the need to 
alleviate the mission operator workload. Rule-based 
expert systems are a common technology used to 
manage this complexity; yet a rule set created for a 
particular mission is often developed in a stand-alone, 
ad hoc manner. The consequence of this practice is 
that rule-based systems are redeveloped each time the 
system changes [1]. Moreover, due to the critical 
nature of these applications, much more stringent 
standards have to be imposed now on their ability to 
provide reliable decisions in a timely and accurate 
manner.       Pragati's       Multi-ViewPoint-Clustering 

Analysis (MVP-CA) tool provides a framework for 
clustering large, homogeneous knowledge-based 
systems from multiple perspectives [8]. It is a semi- 
automated tool allowing the user to focus attention on 
different aspects of the problem, thus providing a 
valuable aid for comprehension, maintenance, 
verification and validation (V&V), integration and 
evolution of knowledge-based systems. 

The MVP-CA tool has recently been adapted for 
clustering telemetry knowledge bases. We present here 
some preliminary results of applying the MVP-CA 
tool on some telemetry expert systems. In particular, 
results exposing verification and validation (V&V) 
problems in the rule bases have been discussed in 
[11,12]. We will briefly discuss here our next step of 
extracting reusable components in a systematic 
manner by proposing an integration of the MVP-CA 
tool with case-based reasoning (CBR) technology. 
Issues relating to indexing, retrieval and adaptation of 
the rule sets can be addressed effectively when the two 
technologies are integrated. 

2. Motivation 

Expert systems are increasingly being used as 
intelligent information specialists in cyberspace, both 
for civilian and military applications. In spacecraft 
telemetry, expert systems technology is used to 
manage the complexity generated by the greater 
number of complex measurands [7]. Spacecraft 
satellite telemetry (sub) systems have a unique 
characteristic in that they usually have multiple 
configurable roles; hence, there are similar rule bases 
in existence for different subsystems. As new missions 
get planned the number of such rule bases with similar 
structures keeps growing. Also, as new knowledge 
evolves due to new technology in the market, these 
systems have to be adapted to incorporate/reflect the 
changes in technology. Each mission has its own rule 
set to be applied and each one of them has the 
potential to grow into a monolithically large 
unmanageable system. The phenomenon of "add a 
rule each time" to take care of different situations in 
any expert system, leads very quickly to an 
uncontrolled  proliferation  of rules   in  the  expert 
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system. Due to the data-driven nature of expert 
systems, as the number of rules of an expert system 
increase, the number of possible interactions between 
the rules increases exponentially. The complexity of 
each pattern in a rule compounds the problem of 
management of rules even further. Documentation has 
the danger of becoming obsolete very quickly, as 
software developers do not always have the necessary 
discipline to keep updating their documentation. 
Furthermore, defining any requirements or 
specifications up front in such a rapid prototyping and 
iterative development environment, even though they 
are desirable, becomes an impractical and moot 
question. Even if they were specified, as any software, 
conventional or knowledge-based becomes more 
complex, common errors are bound to occur through 
misunderstandings of specifications and requirements 
[2]. 

It is therefore desirable to have an analysis 
tool that exposes a developer to the current software 
architecture and semantics of the knowledge base in 
such a dynamically changing development 
environment, so that the knowledge base can be 
comprehended at various levels of detail. To achieve 
this goal, the knowledge in the system has to be 
suitably abstracted, structured, and otherwise clustered 
in a manner that facilitates software engineering 
activities [5,6]. Hence, by exposing the knowledge 
contained in the knowledge-based system through 
the Multi-ViewPoint Clustering Analysis tool, we 
formulate a basis for addressing reusability, 
maintainability, and reliability issues for such systems. 

3. Multi-ViewPoint Cluster Analysis 
(MVP-CA) Technology 

Existing approaches to structuring systems are limited 
in a major way. They only provide a single viewpoint 
of a system. We believe that no one single 
structuring viewpoint is sufficient to comprehend a 
complex system. In this paper we show the feasibility 
of applying Pragati's Multi-ViewPoint-Clustering 
Analysis (MVP-CA) methodology on satellite 
telemetry rule-based systems for reusability. MVP-CA 
framework has the potential to be extended to 
incorporate case-based retrieval and adaptation 
technology for reusability of clusters generated 
through the MVP-CA tool. 

Our approach hinges on generating clusters 
of rules in a large rule base, which are suggestive of 
mini-models related to the various sub domains being 
modeled by the expert system. These clusters can then 
form a basis for understanding the system both 
hierarchically (from detail to abstract) and 
orthogonally    (from    different    perspectives).    An 

assessment can be made of the depth of 
knowledge/reasoning being modeled by the system 
which can pave the way for adapting the clusters for 
new specifications in new systems. 

3.1 Overview of the MVP-CA Tool 

Pragati's Multi-ViewPoint-Clustering Analysis (MVP- 
CA) tool provides such a framework for clustering 
large, homogeneous knowledge-based systems from 
multiple perspectives. It is a semi-automated tool 
allowing the user to focus attention on different 
aspects of the problem, thus providing a valuable aid 
for comprehension, maintenance, integration and 
evolution of knowledge-based systems. The 
generation of clusters to capture significant concepts 
in the domain seems more feasible in knowledge- 
based systems than in procedural software as the 
control aspects are abstracted away in the inference 
engine. It is our contention that the MVP-CA tool can 
form a valuable aid in exposing the conceptual 
software structures in such systems, so that various 
software engineering efforts can be carried out 
meaningfully, instead of in a brute-force or ad-hoc 
manner [2,10]. In addition, insight can be obtained for 
better reengineering of the software, to achieve run- 
time efficiency as well as reduce long-term 
maintenance costs. It is our intention to provide a 
comprehension aid base first, through our MVP-CA 
tool, for supporting all these software engineering 
activities. The MVP-CA tool consists of a Cluster 
Generation and a Cluster Analysis Phase. Together 
they help analyze the clusters so that these clusters 
can form the basis for any software engineering 
activities. 

The multi-viewpoint approach utilizes 
clustering analysis techniques to group rules that share 
significant common properties and then it helps 
identify the concepts that underlie these groups. In the 
Cluster Generation Phase the focus is on generating 
meaningful clusters through clustering analysis 
techniques augmented with semantics-based 
measures. In this phase, the existing rule base along 
with a concept focus list feeds into a front end 
interpreter. The interpreter parses the rule base and 
transforms it into an internal form required by the 
clustering tool. The clustering algorithm starts with 
each rule as a cluster. At each step of the algorithm, 
two clusters which are the most "similar" are merged 
together to form a new cluster. This pattern of 
mergings forms a hierarchy of clusters from the 
single-member rule clusters to a cluster containing all 
the rules. "Similarity" of rules is defined by a set of 
heuristic distance metrics for defining the distance 
between rules. 
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Figure 1: Using MVP-CA technology and CBR tools for management of telemetry rule sets 

One of the most significant ways a user can 
effect the clustering process is through his choice of a 
distance metric. Distance Metric measures the 
relatedness of two rules in a rule base by capturing 
different types of information for different classes of 
expert systems [3,4]. There are five different distance 
metrics that we have implemented so far. 
Classification systems yield easily to a data-flow 
grouping and hence information is captured from the 
consequent of one rule to antecedent of other rules. 
This defines our data-flow metric. In a monitoring 
system since the bulk of domain information required 
for grouping is present in the antecedents of rules, the 
antecedent distance metric captures information only 
from the antecedents of rules. Alternatively, grouping 
the rule base on information from the consequents 
alone, gives rise to the consequent metric. The total 
metric is general enough and captures information 
from both sides of rules to take care of systems where 
a combination of the above programming 
methodologies exists. 

4. Reusability of Rule Sets 

In the MVP-CA-based environment, it is envisioned 
that legacy expert systems can be clustered into rule 
sets of semantically related rules as shown in Figure 1. 
Once we have a mechanism for decomposing the 
expert systems in various meaningful ways, relevant 
rule sets from different expert systems can be retrieved 
and assimilated through case-based retrieval (CBR) 
and analogical reasoning techniques [14]. In fact, the 
sets of rules could be "wrapped" in such a manner that 
commercial CBR tools could be used to retrieve the 
relevant rule sets as and when required. Once the 

appropriate rule set has been retrieved through the 
Cluster Interface Definition (CID), they can be 
adapted for the new mission's functionality as needed. 
For the new evolving prototypes, providing insight 
into the continually changing models through the 
MVP-CA tool can prove to be a valuable aid in their 
transition to an operational stage. Such an 
environment could then support the orderly and 
reliable transition of evolving, complex, knowledge- 
based system software in the satellite telemetry 
domain, so that such systems can be reused for new 
scenarios. 

This environment will focus on the issues of long- 
term maintenance, reusability and evolution of 
mission-specific rule sets in spacecraft telemetry 
systems. Preliminary investigation is currently under 
way to study how case-based retrieval and storage 
techniques could be used effectively for storing and 
retrieving such CDDs defining the rule clusters. Our 
research efforts address the possibility of providing a 
software environment which enables semi-automatic 
detection, storage, retrieval and adaptation of these 
rule sets so that reusability of existing rule sets can be 
addressed across missions in a systematic and 
disciplined manner [13]. It is envisioned that some 
form of case-based storage and retrieval techniques 
will be incorporated into the MVP-CA methodology 
for reuse of rule sets, so that a full-scale prototype 
environment can be built. Such an environment will 
alleviate the developer from the tedious burden of 
manually inspecting large and complex legacy rule 
bases before building a new rule base for the next 
similar mission. 
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Rule#    Rule Description 
* 138 INCL BT -5 5 => INCLIN = EQTRL 
* 139 INCL BT 5 30 V INCL BT -5 -30 => INCLIN = LJNCLIN 
* 140 INCL BT 30 60 V INCL BT -30 -60 => INCLIN = IJNCLIN 
* 141 INCL BT 60 80 V INCL BT -60 -80 => INCLIN = HJNCLIN 
* 142 INCL BT 80 90 V INCL BT -80 -90 => INCLIN = PLR 
* 173 PERIGEE BT 96 145 A APOGEE BT 320 480 A INCL BT 80 100 => ORBIT = LOW1 
* 175 PERIGEE BT 200 300 A APOGEE BT 200 300 A INCL BT 45 70 => ORBIT = STS57L 
* 177 PERIGEE BT 280 420 A APOGEE BT 280 420 A INCL BT 45 70 => ORBIT = STS57H 
* 179 PERIGEE BT 480 720 A APOGEE BT 480 720 A INCL BT 45 70 => ORBIT = ERBS 
* 174 PERIGEE BT 135 205 A APOGEE BT 185 276 A INCL BT 85 105 => ORBIT = LOW2 
* 180 PERIGEE BT 630 770 A APOGEE BT 630 770 A INCL BT 90 105 => ORBIT = LASAT 
* 181 PERIGEE BT 735 900 A APOGEE BT 750 920 A INCL BT 90 110 => ORBIT = DMSP 
* 183 PERIGEE BT 800 980 A APOGEE BT 820 1000 A INCL BT 90 110 => ORBIT = IRAS 
* 176 PERIGEE BT 240 360 A APOGEE BT 240 360 A INCL BT 20 35 => ORBIT = STS28L 
* 178 PERIGEE BT 400 600 A APOGEE BT 400 600 A INCL BT 20 35 => ORBIT = STS28H 
* 185 PERIGEE BT 400 600 A APOGEE BT 31600 47500 A INCL BT 52 78 => ORBIT = MOLNIYA 
* 182 PERIGEE BT 700 860 A APOGEE BT 700 860 A INCL BT 95 120 => ORBIT = GEOSAT 
* 184 PERIGEE BT 1035 1265 A APOGEE BT 1080 1320 A INCL BT 81 99 => ORBIT = NOVA 
* 186 PERIGEE BT 15900 23800 A APOGEE BT 16300 24600 A INCL BT 50 75 => ORBIT = GPS 
* 187 PERIGEE BT 28600 43000 A APOGEE BT 28600 43000 A INCL BT 0 10 => ORBIT = GEOSYNC 

Figure 2: Candidate reusable SEAS rule group 

Even though our ideas are being applied to 
telemetry applications primarily, the methodology for 
reusability being advocated here can be transitioned to 
other knowledge-based applications areas such as, 
medical, forensics, civil engineering and others. Also 
the clustering methodology in the MVP-CA 
technology is not dependent on any particular 
knowledge representation scheme or the language of 
the knowledge-based system; hence, the MVP-CA 
methodology can be integrated into any environment 
that encapsulates domain knowledge in a regular form. 

4.1 Reusable Rule Sets in Telemetry 
Systems 

In our preliminary study we have manually identified 
several rule sets from telemetry systems that could be 
viable candidates for reusability. Informal discussions 
with some domain experts in telemetry systems have 
corroborated our results. Currently, from the MVP-CA 
tool we aid the user in detecting potentially reusable 
clusters and then provide him with an infrastructure to 
first describe the cluster in free-form text and then ask 
him to describe it with a few keywords. We also ask of 
the expert how he/she envisions retrieving it. In other 
words, what is the most likely manner in which 
another domain expert may want to recall this cluster 
in future. 

A representative stable group for the concept 
of inclination (INCL) from Aerospace's SEAS rule 
base is presented in Figure 2. Spacecraft 
Environmental Anomalies  (SEA-ES)  is   an  expert 

system developed by The Aerospace Corporation, 
Space and Environment Technology Center for use in 
the diagnosis of satellite anomalies caused by the 
space environment. The satellite anomalies to be 
detected by the rule base ranges from surface 
charging, bulk charging, single-event effects, total 
radiation dose, and space-plasma effects. Various 
parameters play a role in the determination of these 
anomalies such as, orbit of the satellite, the local 
plasma and radiation environment, satellite-exposure 
time, hardness of the circuits and their components 
etc. 

The cluster in Figure 2 shows the relationship 
between different orbit types, inclination types, 
perigee and apogee. Concepts such as inclination are a 
supporting domain concept in this rule base, that the 
MVP-CA tool allows us to identify through the 
clustering of rules. The key features for indexing for 
such a cluster will be INCL, INCLIN, PERIGEE, 
APOGEE and ORBIT. The interrelationships across 
these concepts could be documented in an annotations 
window, and their various possible values or value 
ranges could get represented through templating, 
discussed in the next section. These rule sets can thus 
become viable candidates for potential reuse. In future 
if another type of orbit needs to be specified, the 
developer needs to retrieve this cluster, and be careful 
of not infringing one of the already specified ranges 
for the various orbit types. 

XTE knowledge base from NASA provided a very 
rich environment for finding reusable rule clusters. X- 
Ray Timing Explorer (XTE) is an expert system 
written  in  GenSAA  (Generic   Spacecraft  Analyst 
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76 rcvr-1 lock2search 
77 rcvr-1- -search21ock 
78 rcvr-2- -lock2search 
79 rcvr-2- -search21ock 

(defrule rcvr-l-lock2search "" 
(Mission XA1CARLK#XTE_DEC0M 

?rl&:(neq ?rl LOCK)) 
?xl <- (Inferred SC-Rcvr-1-Lock 

?r3&:(neq ?r3 Search)) 
=>  ... 

(SendMessage "MessageWindow" Status 
"Reciever 1 went from Locked to Search")) 

(defrule rcvr-l-search21ock "" 
(Mission XA1CARLK#XTE_DEC0M LOCK) 
(Mission XA1RCVLK#XTE_DEC0M LOCK) 
?xl <- (Inferred SC-Rcvr-1-Lock Search) 
(Inferred valid-telemetry valid) 

=>  .. . 
(SendMessage "MessageWindow" Status 

Figure 3: Reusable Cluster from XTE rule base for Receiver Lock and Search 

Assistant), which is a superset of Clips. GenSAA was 
built by NASA to serve as a development and 
application environment for building expert systems at 
various NASA control centers. XTE is a health and 
safety monitoring rule base, checking the various 
onboard subsystems on the satellite, such as attitude 
and control system, power subsystem, thermal 
subsystem, solar array subsystem, spacecraft data 
subsystem, transponder subsystem, and many others. 

A couple of representative clusters from this 
knowledge base are presented below. In Figure 3, we 
present a group of rules, which set the Receiver in one 
of two modes, lock or search. Contents of this group 
of rules for Receiver 1 is presented in an abbreviated 
form. Receiver 2 had the same set of rules for the 
different mode switches as well. By highlighting the 
similarity across the rules in this set, the MVP-CA tool 
brings to our attention, the high level functionality of 
the rule set. If this functionality can be captured in a 
template form we can generate more such sets of rules 
for different receivers. 

In Figure 4 we present another representative 
cluster from the XTE knowledge base which watches 
the telemetry and statistics monitor (TSM). A close 
inspection of the rules themselves in Figure 4 reveals 
the potential reuse capability of such a rule set. The 
CID definition for this rule set would have to 
incorporate a general name, for example, 'TSM 
watch" rules for indexing purposes. (Notice a possible 
anomaly in rule tsm-0-22-watch that is really watching 
the range, 0 through 16 instead of 0 through 22, as 
suggested by the rule name.) We would like to match 
up the CID definitions obtained from domain experts, 
with features to be utilized for our case-based indexing 
scheme for the clusters. 

MVP-CA tool's contribution, in the context 
of reusability of software systems, is to ease the 
process   of   populating   repositories   of   reusable 

components by semi-automatically flagging rule sets 
in existing knowledge bases. 

4.2 Adaptability of Telemetry Rule Sets 

The overall environment for reuse as envisioned in the 
MVP-CA tool is conceptualized as a problem space, 
which is indexable by CIDs and a solution space, 
which stores the adaptable and reusable clusters. As a 
new specification comes in, the CBR technology 
enables us to pull out the relevant clusters through 
retrieval algorithms. The adaptable cluster is then 
pulled out and a new rule cluster for the new mission 
is formulated. 

In our case of adapting the rule clusters to the 
problem at hand, we would have to identify the 
parameters, which will take on different values for 
different missions. We illustrate this aspect by 
hand working through a rule set, shown in Figure 5, 
which we obtained during our interactions with the 
NASA flight engineers. Since they were 
contemplating on putting it in their reuse repository, 
we chose to work with them on templating such a 
cluster. This set of rules is part of a background 
monitoring system and its functionality is to basically 
infer the telemetry data quality from the main-frame 
data quality (MF-QUALITY). These rules are a part of 
TPOCC (Transportable Payload Operations Control 
Center) where the process XTE_DECOM is defined 
and active. Each of the rules in the set basically checks 
if the frame synchronization is in place, and what 
types of data-quality are being obtained from the main 
frame. It then asserts the deduced fact and sends the 
appropriate message. Thus, there are certain portions 
of the code, which are, like the constants of an 
equation; the rest are the variable parameters. 
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2 tsm-0-22-watch 
65 tsm-62-64-watch 
12 tsm-24-watch 
13 tsm-25-watch 
39 tsm-68-watch 
14 tsm-26-32-watch 
17 tsm-65-66-watch 

(defrule tsm-0-22-watch *"' 
?ol <- (TSM-FAIL ?etime "ACS" ?id&:(and (>= ?id 0) (<= ?id 16)) ?thresh) 
?o2 <- (acs-tsm-status ?) 
?o3 <- (Inferred POWER-TSM-STATUS ?) 

(defrule tsm-24- watch"" 
?ol <- (TSM-FAIL ?etime "SC" 24 ?thresh) 
?o2 <- (Inferred POWER-TSM-STATUS ?) 

.if********************************************************************* » 
(defrule tsm-25-watch"" 

?ol <- (TSM-FAIL ?etime "SC" 25 ?thresh) 
?o2 <- (Inferred POWER-TSM-STATUS ?) 

.MX******************************************************************* 

(defrule tsm-26-32-watch"" 
?ol <- (TSM-FAIL ?etime "SC" ?id&:(and (> ?id 25) (< ?id 33)) ?thresh) 
?o2 <- (Inferred POWER-TSM-STATUS ?) 

Figure 4: Telemetry and Status Monitoring Reusable Cluster from the XTE rule base 

One of the most practical ways in which such 
information about a cluster can be captured is through 
the generation of a template for the cluster [13]. Since 
the underpinnings of a reusable cluster will necessarily 
be the degree of similarity of rules within that cluster, 
trying to encapsulate this knowledge in a template 
form is a first step towards making the cluster 
reusable. 

The challenge in this situation was to locate 
the static or constant portions of the code and set it off 
from the parameterizable or variable portion of the 
code. In other words, when two rules are deemed 
similar to a certain degree, one would like to know to 
what extent and what type of similarity it is. It is 
postulated that given such a group, it is feasible to 
create a template, which would look like the one 
shown in Figure 6. A new <name-of-rule> is 
generated for each of the different rule cases for 
checking data quality. For this set of rules the Mission 
name, MF_QUALITY and process name, 
XTE_DECOM, is fixed; hence we did not 
parameterize it. However, in building the indexing 
scheme for such a representative cluster we may want 
this to be filled in as a slot in the attribute fields as 
shown in Figure 7. Thus, Figure 7 represents a higher 
level of abstraction for the cluster, than Figure 6. The 
former is a means of storing and retrieving the cluster 
templates. Once retrieved, the necessary open slots can 
be instantiated with the new mission needs and names. 
Thus we can build a case library of such rule sets, 
indexable through the CIDs, such as given in Figure 7, 
and  we can then,  retrieve for the user, relevant 

parameterizable templates which could be adapted for 
the situation at hand. Such templates would abstract 
the structure of the rule set and can be used for 
generation of new rule sets. A possible set of cluster- 
identification parameters is shown in Figure 7. 

M. Wolverton and B. Hayes Roth's [14] work 
on Knowledge-Directed Spreading Activation seems 
to be a very applicable technology in our context for 
case retrieval in the following manner. It retrieves 
analogical cases stored in a large semantic network by 
using task-specific knowledge to guide a spreading 
activation search to a case or concept in memory that 
meets a desired similarity criterion. Both similarities 
and dissimilarities guide the search process. Thus, if 
knowledge about clusters and their (dis) similarities 
with each other could be stored in an appropriate 
fashion in the CID, this technology could be overlaid 
on the CBR commercial tool's functionality so as to 
make it applicable for retrieval of rule sets generated 
from large multi-use knowledge-base systems through 
the MVP-CA tool. 

We showed the feasibility of taking a CID for 
a representative cluster such as specified above, and 
populating the case base with the appropriate features 
to index into the clusters. An index is really a piece of 
information about the cluster that can be stored in a 
computational data structure so that it can be searched 
and retrieved quickly. We do provide a mechanism in 
our interface to store unindexed information as well 
with each cluster, because it may provide contextual 
information that could be of value to the user, but 
which may not play a role in the retrieval process. 
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CONTINUOUS BGM RULE DESCRIPTION: Trigger when MF_QUALITY is Good 
(defrule tlm_quall 

(bgm-rule tlm_quall on) 
(Mission MF_QUALITY#XTE_DECOM -Nodata) 
(Inferred fsync_lock_occurred yes) 
=> 
(AssertFact "Inferred Telem_Quality Good") 
(SendMessage "MessageWindow" Status "MF_QUALITY indicates Telem quality is Good.")) 

CONTINUOUS BGM RULE DESCRIPTION: Trigger when MF_QUALITY is Bad 
(defrule tlm_qual2 

(bgm-rule tlm_qual2 on) 
(Mission MF_QUALITY#XTE_DECOM -Good) 
(Inferred fsync_lock_occurred -yes) 
=> 
(AssertFact "Inferred Telem_Quality Bad") 
(SendMessage "MessageWindow" Warning "MF_QUALITY indicates Telem quality is not Good.") 

.CONTINUOUS BGM RULE DESCRIPTION: Trigger when MF_QUALITY drops out 
(defrule tlm_qual3 

(bgm-rule tlm_qual3 on) 
(Mission MF_QUALITY#XTE_DECOM -Good) 
(Inferred fsync_lock_occurred -yes) 
(Inferred Telem_Quality Good) 
=> 
(AssertFact "Inferred Telem_Quality Bad") 
(SendMessage "MessageWindow" Warning "MF_QUALITY indicates Telemetry has dropped out.") 

Figure 5: Reusable Rule Set in XTE Rulebase 

5. Conclusions 

We have shown that the MVP-CA prototype tool is 
able to extract various views of expert systems 
through the clustering of rules. The rule clusters form 
a basis for understanding the system for various 
software engineering activities because they are 
suggestive of various rule-models inherent in the 
software system. Information can be fused from 
various reusable clusters to develop new mission 
systems. Even though the technolgy has been applied 
to expert systems, it is applicable to any information 
system which has a regular grammar. 

Given the successful development of the MVP-CA 
tool, software developers will be in the position to 
leverage the knowledge of existent systems in building 
new ones in a reliable and efficient manner. 
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Abstract The diversity and availability of 
information sources on the World Wide 
Web has set the stage for integration and 
reuse at an unparalleled scale. There remain 
significant hurdles to exploiting the extent 
of the Web's resources in a consistent, scal- 
able and maintainable fashion. The auton- 
omy and volatility of Web sources compli- 
cates maintaining wrappers consistent with 
the requirements of the data's target appli- 
cation. This paper describes the ArcRank 
model of relationships between nodes in a di- 
rected labeled graph, such as hypertext. The 
paper presents a ranking algorithm for di- 
rected arcs, and the algorithm for extraction 
of hierarchical relationships between words 
in a dictionary. Using ArcRank we create a 
thesaurus style tool to aid in the integration 
of texts and databases whose content is simi- 
lar but whose terms are different. These al- 
gorithms complement handcrafted thesauri, 
by determining more complete relationships 
between words, although they are less spe- 
cific. Exploiting hierarchies of relationships 
between words paves the way for broadening 
and related term queries in web-based repos- 
itories. 

Keywords: relationship rank, semantic hetero- 
geneity, thesaurus, extraction 

* This work was supported by a grant from the Air 
Force Office of Scientific Research (AFOSR). 

1    Introduction 

The principal obstacle in integrating infor- 
mation from multiple sources is their seman- 
tic heterogeneity. The most easily recognized 
form of heterogeneity is when different terms 
are used to mean the same thing: lexical het- 
erogeneity. Even so, there is no algorithmic 
procedure to authoritatively resolve problems 
of lexical heterogeneity. However, we still de- 
sire assistance in determining semantically re- 
lated terms. 

Our experiments use an on-line version of 
the 1913 Webster's dictionary that is available 
through the Gutenberg Project [1]. The origi- 
nal dictionary is a corpus of over 50 MB con- 
taining some 112,000 terms, and over 2,000,000 
words in the definitions alone. We have been 
working on the problem of automatically ex- 
tracting thesaurus entries, using the following 
graph structure: each head word and definition 
grouping is a node, each word in a definition 
node is an arc to the node having that head 
word. 

After accounting for the most common prob- 
lems in constructing the graph, a naive script 
mis-assigns over five percent of the words, be- 
cause of differences between the actual data in 
the dictionary and its assumed structure. Er- 
rors in the computation of the graph would 
affect any subsequent computation of related 
terms for the thesaurus application. Therefore, 
we set a goal of 99% accuracy in the conversion 
of the dictionary data to a graph structure. 
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Using a novel algebraic extraction technique 
we were able to generate such a graph struc- 
ture and then use it to create thesaurus entries 
for all words defined in the structure including 
stop words such as 'the', 'a', 'and' that most 
sytems specifically list so as to ignore. The the- 
saurus engine, based on our relationship rank- 
ing technique, constructs more complete repos- 
itories than manually constructed thesauri, al- 
though they are less specific. It is a potentially 
important tool for systems integration experts. 

1.1 Related work 

Some early work on constructing taxonomies [2] 
and extracting semantic primitives [3] used 
a graph generated from the dictionary 
definitions. Examples of lexical knowledge 
bases that relate terms according to some two 
dozen relationships, are the handcrafted Word- 
Net [4], and MindNet [5]. MindNet is generat- 
ed by phrase parsing in the dictionary. 

PageRank[6] is the algorithm that underlies 
the material in this paper. Algorithms that 
operate on a matrix representation of word 
graphs include LSI [7] and hubs and authori- 
ties [8]. WHIRL [9] attempts database inte- 
gration using novel IR based textual similarity 
queries. 

1.2 Motivation 

The starting point for this work is the hypothe- 
sis that structural relationships between terms 
are relevant to their meaning. These relation- 
ships become interesting when all items in the 
domain of interest contain them, and are or- 
ganized according to them. Dictionary defini- 
tions form a closed domain in the sense that the 
set of words used in definitions are defined else- 
where in the dictionary. This property leads to 
a directed labeled graph representation of the 
dictionary. Nodes of the graph model defini- 
tions, head words are labels for the nodes, and 
a word in a definition represents an arc to the 
node having that word as a label. Notable col- 
lections which are not closed include encyclo- 
pedias, which cover a set of terms equivalent 

to the dictionary nouns, and search engines, 
which return documents for all but stop words. 

At first glance, the PageRank model of Web 
structure does not lend itself to direct appli- 
cation in non-hypertextual domains. How- 
ever, we have found that a related model, 
which we call ArcRank, is useful for extract- 
ing relationships between words in a dictio- 
nary. This model expresses the importance of 
a word when used in the definition of anoth- 
er. The attraction of using the dictionary as 
a structuring tool is precisely that head words 
are distinguished terms for the definition text. 
This extra information allows types of analysis 
that are not currently performed in traditional 
data mining, and IR, where no term is assigned 
as 'head word' of a document. Interestingly, 
we now find that this new analysis may also 
be applied to document classification and the 
ranking of results of mining queries. 

2    Background 

In this section we present the basis of our dic- 
tionary structuring techniques. Before pre- 
senting the ArcRank measure, we present the 
PageRank algorithm, and the variants we have 
used in our experiments. 

2.1    Graph Extraction 

Substantial manipulation is required to bring 
the dictionary data into a format ready for gen- 
erating a graph [10]. Head words and defini- 
tions are in a many to many relationship s- 
ince head words have variant spellings and def- 
initions have multiple differing senses. Oth- 
er problems in the transformation process are 
listed below. 

• syllable and accent markers in head words 
• misspelled head words 
• accents and special characters 
• mis-tagged fields 
• common abbreviations in definitions (etc.) 
• stemming and irregular verbs (Hopelessness) 
• multi-word head words (Water Buffalo) 
• undefined words with common prefixes (Un-) 
• undefined hyphenated and compound words 

(Sea-dog) 
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Table 1: PageRank 
input: directed graph, output: scored node list 

1. Make adjacency list representation of directed 
graph 

2. Make rank array of size \n\ for graph nodes 

3. Set (round 0) rank poS = 1/n for all nodes s 

4. While rankchange > threshold (round i) 

5. For nodes s in {1- • -|n|} (ranking step) 

6. For arcs a3tt in s's adjacency list as 

7. Transfer rank p,s/|as| from source s to 
target t 

8. For nodes s in {1- • -\n\} (adjustment step) 

9. Normalize, if needed, rank piS wrt to total 
rank 

10. Compute rankchange from previous itera- 
tion 

11. Return final values from rank array 

For example, when a conjugated verb form 
appears as a head word we use it for generat- 
ing graph arcs. Otherwise we stem definition 
words until we find a head word that matches. 
Also, whenever we find instances of a multi- 
word head word in the definitions, we prefer 
it over the individual words for generating a 
graph arc. Since words often appear multiple 
times in a single definition we allow multiple 
arcs between graph nodes. Dealing with un- 
defined terms and spelling errors is the most 
complex issue in the graph generation, and ac- 
counts for the quasi-totality of the structural 
errors in the graph. In the following we define 
the algorithms that run on the graph structure. 

2.2    PageRank 

The PageRank algorithm forms the basis of 
the ranking technique described in this paper, 
and is important to define before discussing the 
ranking of arcs. Table 1 below is a pseudocode 
description of the algorithm: 

This algorithm is a flow algorithm which as- 
sumes no capacity constraints on the arcs be- 
tween nodes.   All nodes begin with an initial 

ranking, in our case a constant l/|n|, where 
|n| is the number of nodes in the graph. At 
each iteration, nodes distribute their rank to 
their neighbors on outgoing arcs, and receive 
rank from neighbors on incoming arcs. The to- 
tal outgoing flow from a node is never greater 
than its rank, Yl,tas,t 5: Ps, nor is any indi- 
vidual aSit ever less than zero. The intuition 
behind the flow is that more richly connected 
areas of the graph carry larger capacity, and 
therefore nodes in these areas maintain a high- 
er rank. The rank flow of nodes in strongly 
connected aperiodic graphs is shown to con- 
verge to a steady state [11]. Steady state flow 
is desirable, because it allows us to assert sta- 
ble relationships between nodes in the graph. 
In practice, we accept variability in the flow 
between nodes, so long as the total variability 
over the entire graph lies below a threshold. 

In general graphs, nodes and clusters of 
nodes with only outgoing arcs act as sources 
which lose all of their rank. Likewise, nodes 
with incoming arcs only act as sinks for the 
rank of their neighbors. The dictionary graph 
contains both source and sink nodes: sources 
are words which are never used in other words' 
definitions, sinks are words whose definitions 
are not found in the dictionary. In our applica- 
tion sinks consist of misspellings, proper nouns 
such as geographical and Latin species names, 
and scientific formulae, which we do not con- 
sider. In PageRank the rank of sources, sinks 
and weakly connected clusters do not reflect 
their structural differences well. In our algo- 
rithm the final rank of a node should be defined 
in such a way that when any two nodes have a 
distinct pattern of connections, then their rank 
will differ. We adapt the algorithm from Ta- 
ble 1 in one of the following three ways so that 
sources and weakly connected clusters preserve 
some rank at each iteration. 

1. redistribute 6%(&/100) of total graph rank be- 
fore each iteration 

2. limit rank transfer to a fraction 1/c of a node's 
rank 

3. add a self-arc a^t (node t is both source and 
target) to nodes 
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By selecting a non zero threshold for ter- 
mination of PageRank, and one of the above 
adaptations, we ensure that all graph nodes 
preserve a non zero rank. We show here that, 
given a node t, at iteration i with rank ptt, the 
following holds: 

Theorem 1   V< € G,pit > 0 
Proceeding by induction, we have: by defini- 

tion, at the initial iteration, p0t = 1/n > 0. 
Assuming the property holds at iteration i, the 
following holds: 

Pi+it = {6/100, l/c,pit/(\at\ + 1)} + £ av,t 

Since, by definition all quantities on the right 
hand side are positive and greater than zero, 
Pi+it is greater than zero. As indicated by the 
equation, this property holds for each PageR- 
ank variant enumerated above. 

We see that PageRank for dictionary terms 
represents the transitive contribution of each 
term to the definitions of all of the dictionary 
terms. We capitalize on this property to com- 
pute the relative importance of terms with re- 
spect to each other. This measure is a feature 
of the arcs between nodes, or equivalently in 
the dictionary, the usage of terms in the defi- 
nitions of others. 

2.3    Relative Arc Importance 

In the dictionary application, PageRank suf- 
fers from some inherent limitations. First of 
all, PageRank is inherently a node oriented al- 
gorithm. The top ranked nodes are the com- 
mon conjunctions and prepositions, which con- 
vey little conceptual meaning, and are com- 
monly considered stop words by other applica- 
tions. It is clear that on its own, PageRank 
is insufficient to conceptually organize the dic- 
tionary structure. We may consider an exten- 
sion to PageRank which assigns to each arc the 
amount of rank that flows across it at each it- 
eration. As an absolute measure, this exten- 
sion is also unsatisfactory, because it favors 
flows between the most highly ranked terms, 

that is, between stop words. Besides this ob- 
vious extension, there appears to be no self- 
evident technique to extract an absolute arc- 
based measure from PageRank. 

However, our original goal is to identify the 
most important arcs for a given individual 
node. By casting our ranking problem in terms 
of our original goal we see that rather than an 
absolute measure, a relative measure between 
nodes is preferable. For any term in the dictio- 
nary, the words that signify the most in their 
definition should correspond to the arcs in the 
graph which are most significant in a ranking 
of arcs. Hence we arrive at the relative mea- 
sure of arc relevance. Given an edge e, having 
source node s with rank ps, target node t with 
rank pt, and given \as\ outgoing arcs from s, 
the arc relevance r for e is defined as: 

rP_ = Ps/\as 

Pt 

When s and t share several (m) edges 
e\... em, we sum the arc ranks to compute the 
importance of t in the definition of s: 

m        /i 
EPs/\as 

e=l Pt 

rsj measures the relative contribution of the 
rank of s to the rank of t which we show has 
desirable properties, such as: 

Theorem 2   0 < rSjt < 1 
This follows directly from Theorem 1 and 

the definition of pt, since both numerator 
and denominator must be positive and p% = 

HvVvl\<h>\ = Ps/\as\ + T,v^sPv/\av\ => Pt > 
Ps/\as\. 

Note that the arc importance measure is 
an indicator valid only in the immediate local 
vicinity of the end points of the arc. There is 
no reason to expect it to be globally commen- 
surate. Having established an arc importance 
measure we are ready to present the ArcRank 
algorithm, and walk through a hierarchical set 
of relationships the algorithm uncovers. 
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3    ArcRank 

In the previous section, we have computed a 
relative measure of arc importance. Here we 
show how to rank it with respect to both the 
source and target nodes, to promote arcs which 
are important to both endpoints. We discuss 
the repository we construct using ArcRank, 
and compare it to other systems. 

3.1    ArcRank Algorithm overview 

The ranking of an arc according to the arc im- 
portance metric defined above is typically dif- 
ferent at the source and the target node. In- 
deed, it is possible for the highest arc impor- 
tance value of arcs from a source node to be 
the lowest value for arcs coming into the tar- 
get node. ArcRank, defined in Table 2 below, 
computes a mean of the ranked importance of 
arcs, so as to promote arcs which are impor- 
tant both to the source nodes and to the target 
nodes. 

Table 2: ArcRank 
input: triples (source s, target t, arc importance 

1. given source s and target t nodes 

2. at s, sort vs>tj and rank arcs rs(v8it.) 

3. at t, sort vSi,t and rank arcs rt(vSitt) 

4. compute ArcRank: mea,n(rs(vs,t),rt(vs>t)) 

5. Rank Arcs input: sorted arc importance 

• sample values 
{0.9,0.75,0.75,0.75,0.6,0.5,..., 0.1} 

• equal      values      take      same      rank 
{1,2,2,2,...} 

• number ranks consecutively 
{1,2,2,2,3,...} 

Other rank numbering techniques resulted 
in skewed output. Competition style ranking, 
which counts equal values equally, but order- 
s subsequent values differently, disadvantages 
arcs to nodes with many in-arcs. Given the 
same sample values from the above, the bold- 
face value in the list here shows where this 

ranking differs: {1,2,2,2,5,6,...}. Also, com- 
puting rank as a fraction of the total number 
of ranks: {1/n,2/n,... ,n/n} favors arcs to 
nodes with a larger number of distinct ranks. 

The ArcRank algorithm is more space in- 
tensive than PageRank, because it is arc ori- 
ented, but is fast and easily made into a disk 
based version. It essentially requires two pass- 
es through the data, and storage for twice the 
number of arcs. In the course of develop- 
ing ArcRank, we derived a further extension 
to PageRank. The idea is to vary according 
to the arc importance ratio the amount of a 
source node's rank transfered to the targets. 
Tuning this optimization properly strengthen- 
s strong relationships, weakens less importan- 
t ones. The additional cost is minimal, and 
requires ranking arcs and summing ranks per 
node, before pushing value across arcs. 

3.2    The Webster's Repository 

The repository we have built [12] has a very 
general structure, and it is defined by usage 
alone. There are no preimposed limitations, 
based on grammatical models, as to how terms 
relate. As it is very general, the structure also 
sidesteps problems of parsing the part of speech 
for each term and handling general negation. 
This repository is the only one which does not 
exclude stop words, and as a result we are able 
to find that stop words most strongly relate 
to each other. On the down side, the type 
of relationship expressed in the repository is 
not always self evident, especially since many 
definitions and terms are now obsolete. Also, 
the accuracy of the ArkRank measure increases 
with the amount of data, and much of the dic- 
tionary contains very sparse definitions. Due 
to this sparseness we often find that ArcRank 
will promote arcs to lower ranked targets. Al- 
so, misleadingly, the sparseness of data makes a 
simple metric of ranking sources by the pauci- 
ty of arcs work well, when it would otherwise 
fail. 
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3.3    Comparison to Other Systems 

MindNet is not publicly available, but its scale 
is 159,000 head words and 713,000 relation- 
ships between head words. Its development 
began in 1992, and it supports 24 different re- 
lationships between terms. It appears that it 
suffers from problems, both in terms of accu- 
racy and completeness of extraction. 

WordNet has been in development since 
1990, and its design has been elaborated since 
1986. Its current revision, WordNet 1.6 was 
released in 1998, and includes four principal 
data files, and a number of executables to aid 
in searching and displaying the data. Of the 
existing electronic lexical tools. WordNet is the 
one that most closely resembles the Webster's 
repository. 

The relationships WordNet defines between 
terms are more precise, as they were manual- 
ly entered, however there are necessarily few- 
er of them, and they are far from exhaustive. 
Also, since the design of WordNet long pre- 
ceded its implementation, artificial concepts, 
such as non-existant words, and artificial cat- 
egorizations, , such as non-conforming adjec- 
tives, were introduced when the repository was 
built. These constructs are a valid ad hoc ap- 
proach to make the terms conform to the de- 
sign, but they do not arise out of the usage of 
the language. WordNet carefully distinguishes 
between senses of a term, and separates a term 
into multiple entries when it may be used as 
different parts of speech, i.e., to run vs. a com- 
puter run vs. a run salmon. The Webster's 
repository only distinguishes senses of a term 
based on usage, not on grammar. Another sig- 
nificant difference between the two structures 
is that the data in WordNet is separated by 
lexical categories, whereas the Webster's repos- 
itory allows any relationship between terms to 
exist. Table 3 makes some simple numerical 
comparisons between the two systems. 

Having compared the repositories numeri- 
cally, it is necessary to illustrate with an ex- 
ample what the Webster's repository provides. 
Specifically, it relates terms without defining 
the type of relationship, just the importance 

of the relationship. The following section gives 
an example of terms relating to transportation. 

4    Word Relationships 

In this section we examine some subgraphs 
that emerge from the repository data after ap- 
plying the ArcRank measure. For lack of space 
we can not cover the full array of relationships 
present in the dictionary, which extend even to 
stop words for the other repositories. 

4.1    Browsing the Webster's Reposi- 
tory 

It is instructive to browse through the reposito- 
ry to get an idea of how it organizes the dictio- 
nary terms. The example below is prompted 
by an interest in developing a transportation 
ontology to support logistics applications. We 
start at the term Transport as shown below in 
Figure 1. The general form of graphs generat- 
ed using the repository, such as Figure 5, frame 
a term by terms used in its definition above 
and terms that use it in their definition be- 
low. These terms are placed from left to right 
in order of their ArcRank measure. No more 
than the two dozen most significant associated 
terms are displayed: the label for the central 
term contains a count of incoming and outgo- 
ing arcs of the form < outgoing, incoming>. In 
addition to the ArcRank measure on arcs, each 
term has an associated PageRank value. Arcs 
and Term borders are dotted when the arc's di- 
rection is the reverse of the PageRank ordering 
of its end points. 

In Figure 1, which has been further pruned 
for clarity, we see that the term Convey is 
used in transport's definition. When we next 
examine the term graph for convey, Figure 2, 
we find transport, along with transported, and 
cargo which are also significant for the logistics 
ontology. Other terms in the set illustrate the 
more general nature of convey as compared to 
transport. 

Further browsing in the repository takes us 
to the graph for Carry in Figure 3. Note how 
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Table 3: Comparison of Webster Repository and WordNet 1.6 
Name Size Comment 

Webster 96,800 terms ~ four man months of effort 
112,897 distinct words (including variant spellings) 

error rates 
<1% of original input (spelling errors, etc.) 
<0.05% incorrect arcs (hyphenation) 
<0.05% incorrect terms (spelling) 
0% artificial terms 

WordNet 1.6 99,642 terms 2 profs, students, volunteers, 8-12 years 
173,941 word senses (including numbers, repetition of terms) 
66,025 nouns disjoint files 
12,127 verbs 
17,915 adj. 
3,575 adv. 

error rates 
~0.1% inappropriate classifications 
~1-10% artificial & repeated terms 

Figure 1: Terms Relating to Transport Figure 2: Convey Generalizes Transport 

carry subsumes convey in the sense of trans- 
port, and that the term transported is also in 
its set of terms. We expect too that Hold ex- 
presses a more general notion relating to carry. 

Starting from transport in the other direc- 
tion, we select Wagon and consider Figure 4. 
Wagon is not a specialization of transport, al- 
though transport does subsume it: a wagon is 
one of a number of forms of transport. We 
see that terms such as Car and Vehicle also 
shown in Figure 4 represent the generalization 
relationship for wagon. Also, terms such as 
Charioteer, Caravan and Wheelwright re- 
late to wagon without being specializations, bf 

Locomotive is however a specialization, and we 
next consider the graph in Figure 5. 

The graph for locomotive illustrates a spec- 
trum of relationships between terms, some of 
which are altogether unexpected, such as loco- 
motive's relationship to the term Appendix. 
A glance at the definition of locomotive reveal- 
s that a reference to an illustration in the ap- 
pendix of the dictionary appears inappropri- 
ately in the definition field of the term. The 
other associated terms all respect some sub- 
suming or entailment relationship to locomo- 
tive. 

Having traveled through a very small sam- 
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Figure 3: Carry Subsumes Convey 

Figure 4: Wagon as a Means of Transport 

Figure 5: Locomotive Specializes Wagon 

pie of the structure of the repository, it be- 
comes clear that the ordering itself is not suf- 

ficient to automatically extract the significant 
terms relating to a given term. The algorithm 
to achieve this is the basis for the application 
we are building on top of the repository, and 
discussed in the following section. As it turn- 
s out the rankings provided by PageRank and 
ArcRank enable an efficient extraction proce- 
dure to maintain structure that is confirmed 
by relationships with other terms. 

5    Applications 

In this section we discuss applications of these 
new algorithms, and current directions of our 
research. 

5.1    Relation Extraction 

Having a repository with rank relationships be- 
tween terms, it becomes possible to extract 
groups of related terms based on the strengths 
of their relationships. In particular, we are in- 
terested in extracting three relationships: sub- 
suming, specializing and kinship. The kinship 
relationship is a similarity relationship broader 
than synonymy. We are able to achieve this ex- 
traction using a new iterative algorithm, based 
on the Pattern/Relation extraction algorith- 
m [13], as follows in Table 4. 

Table 4: Extract Relation 
input graph with ArcRank computed, k, seed arc 
set, output local hierarchy based on seed arc set 

1. Compute set of nodes that contain arcs com- 
parable to seed arc set 

2. Threshold them according to ArcRank value 

3. Extend seed arc set, when nodes contain fur- 
ther commonality 

4. If node set increased in size repeat from 1. 

The output of the algorithm computes a set 
of terms that are related by the strength of 
the associations in the arcs that they contain. 
These associations correspond to local hierar- 
chies of subsuming and specializing relation- 
ships, and the set of terms are related by a 
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kinship relationship. The algorithm is natural- 
ly self-limiting via the thresholds. 

This approach allows us to distinguish sens- 
es of terms when they engender different struc- 
tures according to the algorithm. Indeed, the 
senses of a word such as hard, are distinguished 
by the choice of association with tough and se- 
vere. Also, ranking the different senses of a 
term by the strength of its associations with 
other terms allows us to uncover the principal 
senses of a term. 

We are currently investigating the utility of 
the ArcRank algorithm for traditional docu- 
ment classification applications, as well as to 
rank the association rules resulting from data 
mining queries. We are also using the results 
of the relation extraction algorithm to aid in 
the resolution of semantic heterogeneity in our 
ontology algebra research. 

6    Conclusion 

In this paper we have presented algorithms for 
ranking relationships represented in a graph 
structure. We have applied these algorithm- 
s to a graph extracted from an on-line dic- 
tionary to uncover the strongest relationship- 
s between dictionary terms, as given by ter- 
m usage, rather than grammatical categoriza- 
tion. We consider this repository an adjunct, 
not a replacement, for handcrafted thesauri, to 
aid in the integration of disparate information 
sources, by reducing the effects of their lexical 
heterogeneity. 
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Abstract - The paper presents the hardware 
implementation and initial tests from a low-power, high- 
speed reconfigurable sensor fusion processor. The Extended 
Logic Intelligent Processing System (ELIPS) is described, 
which combines rule-based systems, fuzzy logic, and neural 
networks to achieve parallel fusion of sensor signals in 
compact low power VLSI. The development of the ELIPS 
concept is being done to demonstrate the interceptor 
functionality, which particularly underlines the high speed 
and low power requirements. The hardware programmability 
allows the processor to reconfigure into different machines, 
taking the most efficient hardware implementation during 
each phase of information processing. Processing speeds of 
microseconds have been demonstrated using our test 
hardware. 

Keywords: sensor, fusion, processor, hardware, fuzzy, 
expert, neural, networks, reconfigurable. 

1. Introduction: 

1.1. A general need for sensor fusion processors: 
With the advent of high-performance sensors and 

increased processing power more real time 
applications are now possible. Novel architectures, 
algorithms, and hardware are required to address the 
challenges of high sensor bandwidth and the often 
noisy, sometimes contradictory data present in these 
new applications. The problem of using more sensors 
with higher data rates is combined with the need for 
faster response in real time scenarios, which demands 
higher levels of computational power. The traditional 
approach is to build/use increasingly powerful 
general-purpose processors. Yet, classical algorithms 
for fusing data (originating in preponderant Bayesian 
approaches) face challenges in addressing the sensor- 
fusion problem and more novel approaches, such as 
the ones coming from the computational intelligence 
research, can complement or replace the traditional 
schemes. 

Computational intelligence techniques, such as 
fuzzy logic and neural networks combined with the 
more traditional Artificial Intelligence paradigm of 
expert systems proved efficient in solving a category 
of problems for which an accurate mathematical 
formulation of models was either not feasible or 
practically impossible to compute in useful time. The 
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most pertinent examples of such problems are in 
pattern recognition and decision-making applications. 
These techniques are essentially parallel, and thus it is 
natural to build dedicated processors efficient for these 
types of operations, which would function in stand- 
alone mode or as co-processors to provide high-speed 
computation on massive amounts of data in parallel 
mode. While these processors can be built both in 
digital or analog hardware, the massive amount of 
interconnection lines of a parallel implementation and 
the power requirements encountered in certain space, 
military or commercial applications such as hand-held 
devices make the idea of an analog ASIC processor 
preferable. An example of such an application 
requiring low power and fast processing of sensor data 
is associated with the discrimination performed 
onboard interceptors. 

1.2. Discriminating Interceptor Technology require- 
ments for an on-board sensor fusion processor: 

The Ballistic Missile Defense Organization 
(BMDO) is conducting the Discriminating Interceptor 
Technology Program (DITP) for the development of 
advanced and enabling fast frame seeker capabilities. 
The challenge for the technology is to combat more 
complex future threats facing the National and Theater 
Missile Defense (NMD/TMD). The objective is to 
develop miniaturized interceptor components and 
subsystems to meet serious space, weight, and power 
constraints [1]. In this regard, part of a major effort is 
directed towards the development of new sensor data 
fusion processing technology that will particularly 
address high speed and on-board autonomy. This 
capability can achieve earlier target acquisition, 
thereby extending the time-to-engage and reducing the 
dependence on the external battle management and 
off-board surveillance assetsfl]. 

Once the initially required off-board battle 
management intelligence is provided to the seeker, the 
primary goal of the DITP is to exploit the multi- 
phenomenological sensor data obtained from on-board 
LADAR and infrared detector arrays for threat 
engagement via development and integration of real- 
time sensor fusion algorithms and processors. The 
overriding hypothesis is that sensor data fusion at 
three levels (i.e., signal, feature, and decision) is 
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necessary to improve its capability and to 
accommodate a wide variety of missions and targets. 

In order to meet the challenge of compact, low 
power, and high-speed on-board data processing, a 
novel intelligent sensor data fusion processing 
architecture, termed the Extended Logic Intelligent 
Processing System (ELIPS), has been developed. 
ELIPS integrates the analog hardware technology of 
neural networks, fuz2y logic, and expert rule 
processing with the conventional digital processing 
using a host computer. The individual modules are 
designed to be reconfigurable and cascadable. In 
addition, the overall architecture has been developed 
to be flexible enough for rerouting of signals to any 
required processing module by having an 
interconnecting network with switching arrays. 

This paper briefly describes the ELIPS concept 
and architecture, focusing more on the hardware 
implementation of the individual ELIPS component 
modules. Experiments with test chips implementing 
ELIPS modules illustrate the performance of the 
analog ASIC implementation. 

2. Fuzzy, Expert, And Neural Computation: 
Expert systems have been employed in a variety 

of sensor fusion applications; a recent example is 
detailed for guiding the user in defining the 
architecture for the sensor fusion system[2]. Fuzzy 
logic and neural networks are also becoming widely 
accepted in the sensor fusion community as techniques 
with proven capabilities in sensor fusion 
applications[3-4]. 

Conditional rule-based systems are using rules of 
the form "IF a is A AND b is B THEN y is Y' where 
a, b, and y are the input and output variables 
respectively, and A, B, Y are classes - in particular 
fuzzy classes/sets. Thus, a rule-base system can be 
seen as accepting input data from measurements or 
preprocessing and providing outputs as transformed by 
the rules. In particular the outputs could be associated 
with classes to which the inputs cluster and the 
magnitude of the outputs associated to the degree of 
membership to these classes. (Another possible 
interpretation is that the numbers represent the 
confidence in the classification, e.g. 70% confidence 
that the object is target 1, 20% that it is target 2, 10% 
confidence that it is a decoy.) 

New concepts from fuzzy set theory have 
revitalized the use of rule-base systems, which can 
cope with the imprecision in matching antecedent 
clauses. The main operations of fuzzy reasoning are 
fuzzification, rule evaluations and defuzzification. 
Fuzzification transforms a crisp input to a degree of 
membership to a fuzzy set and certain rules are 
evaluated depending on which fuzzy sets are matched. 
For certain problems such as classification, this is the 

end of fuzzy reasoning - the output results are fuzzy 
sets and degrees to which they are matched For 
example, the output result can be that input signals 
match the characteristics of target A to 0.8 extent, 
targets B in degree 0.4 and decoys in degree 0.3; 
sometimes this can be (improperly) expressed as 
probabilities, i.e., there is 80% chance/probability/ 
confidence that object is target A etc. If the desired 
output is a crisp one, for example an output control 
signal - the output sets and the associated degrees of 
memberships are transformed by a defuzzifier into a 
crisp value. Amongst the most popular methods for 
defuzzification is the center of gravity method, which 
requires mainly additions and multiplication. 

Neural networks are parallel computation 
structures characterized by somatic operation between 
inputs and weights and somatic operations aggregating 
the weighted inputs and usually passing them through 
a nonlinear function. Different neural architectures 
were explored, with different ways of interconnecting 
the neurons in feed-forward only or in recurrent mode 
as well, and with a variety of learning rules. 

Requirements for fast processing, compact or low 
power implementation lead to efforts for developing 
various hardware implementations. The nature of 
computations involved in fuzzy reasoning is 
essentially parallel (for example, rule evaluations are 
independent of each other and can be calculated 
concurrently). Therefore, a dedicated parallel H/W 
solution is preferable to a S/W solution on a general- 
purpose processor and even to a RISC processor with 
fuzzy-oriented instructions such as VY86C570 (70- 
microsecond inference speed)[5] or Motorola's 
68HC12 (the 1st standard microcontroller family with 
a comprehensive fuzzy logic instruction set, and the 1st 

16-bit engine for fuzzy logjc)[6]. Ideally one would 
want to preserve high versatility of general-purpose 
processors while reaching low-power high-speed 
operation. Analog offers the advantage of lower power 
consumption. While better precision can be obtained 
in digital implementations, precise computations are 
not required for fuzzy processing; usually 8 bits are 
considered sufficient for most applications. (This is 
because membership functions representing fuzzy 
classes are usually defined by humans, who can not 
and do not specify fuzzy set borders with high 
precision - usually with less than 8 bits). Specific 
implementations of fuzzy processors are described in 
theliterature[7-ll]. 

The same parallelism is true for neural processing, 
and ideally H/W implementations should be parallel 
for maximum efficiency. Similarly for fuzzy expert 
systems, large number of interconnections and low 
power justify analog VLSI neural processors. A 
detailed justification of analog neural processors is 
presented in Ref. [12]. 
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3. ELIPS Concept And Architecture: 
The main assumption behind ELIPS is that fuzzy, rule- 
based and neural forms of computation can serve as 
the main primitives of an "intelligent" processor. 
Thus, in the same way as classic processors are 
designed to optimize the hardware implementation of 
a set of fundamental operations, ELIPS is developed 
as an efficient implementation of computational 
intelligence primitives, and relies on a set of fuzzy set, 
fuzzy inference and neural modules, built in 
programmable analog hardware. The hardware 
programmabihty allows the processor to be 
reconfigured into different machines, taking the most 
efficient hardware implementation during each phase 
of information processing. 

The ELIPS architecture (Figure 1) is designed to 
accomplish, for the first time, a fully parallel 
implementation and seamless integration of three 
artificial/computational intelligence technologies[13]: 
(1) membership-function-based fuzzy logic; (2) rule- 
based expert systems; and (3) massively parallel 
artificial neural networks. In its initial demonstration, 
ELIPS will perform functions of discrimination, 
recognition, tracking, and homing [1]. It is necessary 
to develop a design that is hardware-implementable 
using very large scale integration (VLSI) technology. 
Additionally, it should provide an ultra low power 
embodiment in a compact package, with an 
unprecedented signal processing speed (10 to 15 
microseconds for each operation), at least three orders 
of magnitude faster compared to a conventional digital 
machine (e.g. several milliseconds on a personal 
computer, PC). 

ELIPS is envisaged as a synergjstic processor 
incorporating four processing modules illustrated in 
Figure 1. PFN and PRN refer to Programmable Feed- 
forward and Recurrent (feedback) Neural networks, 
respectively, FSP is a Fuzzy Set Processor, and 
MERP stands for Multistage Expert Rule Processor. 
ELIPS modules are destined to work cooperatively in 
a variety of configuration sequences. For example, to 
implement fuzzy expert reasoning as a processing 
sequence of PFN, FSP, and MERP modules, 
fuzzification is performed by FSP, rule evaluation is 
done by MERP, while defuzzification (when needed) 
is done using the PFN. 

4. Elips Building Blocks And Their Hardware 
Implementations: 

4.1. The neural (PFN and PRN) modules: 
Neural network modules are implemented around 

a neural chip-architecture developed at JPL[12,14]. 
The chip, termed NN64, consists of a 64 x 64 array of 
8-bit synapses with 8-bit local static memory, 64 

neurons, and registers for data and control. The chip is 
designed to implement a feed-forward or a recurrent 
neural network with various network topologies with 
up to 64 neurons. 

4.1.1 Functional description of analog processing in 
NN64: The 64 analog voltage inputs first get 
converted to currents by a row of V-I converters at the 
top of the 64 x 64 synaptic array. Each V-I circuit 
actually produces two currents: I and 16 x I. These 
signals are then broadcast down each column for each 
of the 64 inputs so that all the synapses in a column 
receive the same input 

The building block for the NN64 array is a 
current-mode multiplying analog to digital converter 
(MDAC) which forms the basis of the synapse (Figure 
2). A byte, which controls switches Dl to D7 to scale 
current copies of the input, is stored in a local static 
memory (SRAM) for each synapse. By switching in 
different multiples of the input current and adding 
them together, the input current is effectively 
multiplied by the digital weight stored in the local 
SRAM. The most significant bit (MSB) of the digital 
weight (D8+/D8-) controls the sign of the product by 
steering the synapse output current so that it is either 
sunk or sourced through the output node. Synapses on 
the same row have their outputs summed by attaching 
them all to the same wire. These 64 signals, one for 
each row of the array, are then sent to 64 separate 
neurons where they are either processed through the 
neuron or sent directly out, depending on how the 
neurons are programmed. If the neuron is on, the 
current is converted to a voltage through a small 
resistor and applied to a small differential amplifier 
that outputs a voltage. Should the neuron be off, the 
output current is routed directly out off the chip as a 
current 

4.1.2. Digital programming of NN6: The synapses 
are loaded single row at a time. The data for a given 
row is clocked into a 64 long 8-bit wide shift register, 
one byte at a time. After 64 clock cycles, the data for 
an entire row of synapses is ready to be loaded into the 
local memory of each MDAC. A 6-bit row address is 
supplied and an active-low load signal is asserted, 
which dumps the data into the synapses on the row 
specified. Alternatively, a synchronous loading 
scheme may be used. This method employs a single 
bit shift register to act as a token ring and specify 
consecutive rows for loading. When reset is asserted, 
the top of the token ring corresponding to row 1 is set 
while the rest of the shift register is reset. As data is 
clocked in, a 6-bit counter keeps track of how many 
bytes have been loaded. When the carry-out of the 
counter indicates that the entire data has been loaded, 
a load signal is automatically generated that activates 
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the row on its rising edge and passes the token to the 
next row on its falling edge. In this way the entire 
array of synapses can be loaded from the top row 
down by simply clocking in 4096 bytes of data. 
Neurons are also programmed with a single bit shift 
register. If a control signal is asserted, all neurons are 
automatically bypassed since the entire register is 
reset Otherwise, a single bit is clocked 64 times by a 
special clock. The register loads from the bottom up so 
that the first data loaded corresponds to the first row 
neuron. More details on the NN64, including its 
configuration as a recurrent neural network can be 
found in the literature[14]. The chip was tested in a 
variety of applications where neural networks proved 
efficient A particular application was interpretation of 
visual input data for automatic tracking of a path by a 
mobile robot[13]. 

4.2. The fuzzy set processor (FSP) module: 
The main function of a fuzzy set processor is 

signal transformation, which can be interpreted as, 
• fuzzification - i.e. association between an input 

crisp signal and a degree of membership to a 
fuzzy set/class, or 

• signal conditioning/ non-linear transformation, 
coordinate transformation. 

The FSP was designed as a processing 
module with 16 inputs of 5 membership classes each. 
The chip has 16 analog voltage inputs and 16x5 
outputs, and allows digital programmability of the 
membership functions for each input variable. The 
membership functions have trapezoidal shape, with 
programmable parameters for the legs and slopes as 
illustrated in Figure 3. The position of the legs can be 
specified with 8-bit resolution and the slope with 5-bit 
resolution. The equations that describe the output of a 
trapezoidal membership function are: 

IfX< = A,Y = Low 
If A < X = < (CEH-AB)/(B+C), Y=MIN(BX-AB + 
Low, High) 
If (CEM-AB)/(B+C) < X < D, Y=MIN(-CX + CD 
+ Low, High) 
IfX> = D,Y=Low, 

where A is the location of the left leg, B is the 
unsigned slope of the left leg, C is the unsigned slope 
of the right leg, and D is the location of the right leg. 
The chip design currently uses Low = 1 volt and High 
= 4 volts with Vdd = 5 volts. 

The schematic diagram in Figure 3 details the 
processing path of a single membership function 
circuit (MFC). While inputs and outputs are in voltage 
mode for external compatibility, the internal MFC 
implementation is in current-mode. The input voltage 
enters the first processing block, which is a Voltage to 
Current (V/I) converter. Currents proportional to the 
digital values of the legs, A and D, are generated in 

Multiplying Digital to Analog Converters (MDACs). 
The current corresponding to the left leg gets 
subtracted from a copy of the input current while a 
different copy of the input current gets subtracted from 
the right leg current The resulting currents, which 
correspond to the left and right sides of the trapezoid, 
enter their appropriate Dividing Digital to Analog 
Converter (divDAC) where the signals are divided by 
5-bit digital values to scale the slopes. The minimum 
of the two resulting values is then selected which 
chooses the side that is along the trapezoid. The top of 
the trapezoid is achieved by taking the rninimum of 
the resulting current and the full-scale current, and this 
result is converted to the voltage output of the MFC. A 
test chip for 2 input variables with 5 membership 
functions calculating the degree of membership has 
been implemented and tested A variety of 
membership functions generated by the chip is 
illustrated in Figure 4. 

Signals obtained from the chip are also illustrated 
below in a discrimination task. The results are 
compared with the software implementation and show 
accurate reproduction in hardware of the results 
obtained by simulation. Figure 5 shows an example of 
how the membership functions are used to separate the 
spaces containing targets and decoys. The software 
simulated membership function shapes are compared 
with the programmed hardware output of the 
membership as shown in the lower graph in Fig. 5. 
The variables are transformations of some measured 
parameters characterizing target and decoy signals. 
The software results show that signals processed using 
these membership functions would result in 
discrimination of targets and decoys, as well as targets 
of different types based on available DITP data. Figure 
5 shows discrimination between two targets. 
Similarly, discrimination distinguishing targets from 
decoys was also performed successfully by 
programming the chip. The hardware tests show that 
the fuzzification/discrimination of this type would take 
less than a microsecond 

4.3. The multistage expert-rule processor (MERP) 
module: 

The main function of a rule processor is to 
evaluate matches between input data and classes of 
knowledge (the satisfaction of certain conditions by 
the input) and prescribe the implications for such 
cases. The general structure of processing in MERP is 
by inference on a collection of rules of the form: 

Rule 1. IF ai is An AND a2 is A12 AND ...am is 
AimTHENyisYi 

Rule n. IF &i is Aii AND a2 is Atf AND ...am is 
A^THENyisYn 
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where Ay are fuzzy sets or their complements, i.e. if 
Aim is a predetermined trapezoidal membership 
function/fuzzy set and A^ is its complement then A'a = 
NOT(Ain,). Consider the degree of membership/ 
matching a fuzzy set/class being calculated by the 
FSP, and thus "a is A" being replaced with u, which is 
the degree to which "a is A". The complement is 
commonly calculated either as the difference to unity, 
i.e. NOT(u) = 1-u, or as the maximum of all other 
classes except the one to be complemented, i.e. if 
classes covering input space are ul,u2,u3,u4 then the 
complement is NOT(u3) = MAX(ul,u2,u4). We built 
test circuitry to calculate the complement in both ways 
but only the second version was so far integrated 
within a rule-system chip. The conjunction AND is . 
treated as the MIN operator. Thus, the antecedent % 
is A„i AND a2 is A„2 AND ...am is A™," can be read 
after fuzzification as (u„i AND u„2 AND u™,)     and 
calculated as u„ = MIN(u„i, u„2 Um,). The collection 
of rules in the rules base can be read as Rulel OR 
Rule 2 OR...Rulen; several rules may refer to the same 
conclusion/class. The logical connective OR is 
calculated as MAX, thus the degree of supporting an 
output class is the maximum of all the degrees of 
supporting that class coming from different rules in 
the rule-base. 

The processing stages calculating complement, .. 
conjunction and disjunction are reflected directly in 
the MERP architecture presented schematically in 
Figure 6. Stage 1 calculates the complement by MAX 
operation; Stage 2 calculates the conjunction within 
the same rule by MIN operator; Stage 3 calculates the 
disjunction of all rules that refer to the same 
conclusion by MAX operator. The controls specify 
which components are selected for MTN and MAX in 
different rules. 

The MERP module is designed as a processing 
module with 16 inputs with 5 membership classes 
each; a complement is calculated for each membership 
class inside the module. The module supports rules 
with up to 64 conjunctions; up to 128 rules can be 
programmed in the module and 32 decisions can be 
obtained as outputs. The implementation of the MERP 
module is performed in four development phases 
allowing testing of various circuits (such as analog 
MIN and MAX circuits) and system/integration 
solutions before a full-scale more expensive chip is 
attempted. Figure 7 shows test results from a 
fabricated MIN circuit (the upper waveforms are the 
input and the lower one is the output, which is the 
minimum of the two). 

A smaller version of MERP (called miniMERP) 
with 2 inputs and 4 rules was laid out on a test chip. 
The chip was fabricated and tested successfully. The 
propagation time of a signal from inputs to output was 
around two microseconds. Phase 3 of development 

consists in integrating 8 analog inputs, 40 membership 
functions and 9 rules circuits on the same Fuzzy 
Expert System (FES) chip. The membership functions 
are digitally programmable trapezoids. The rules are 
digitally programmed to select from various 
membership functions for each input variable, 
including membership function complements. Each 
rule performs a conjunction amongst selected 
membership functions and their complements (one per 
variable). All analog circuitry is current-mode and the 
rule output currents are available in parallel on nine 
separate lines. The chip was fabricated and is 
currently under test 

4.4. Integration of ELIPS components 
Efforts are ongoing for testing the synergistic 

operation of ELIPS components before the final cut- 
off design. In this sense a board is prepared to test a 
Hybrid Neuro Fuzzy Expert System (NFES). 

4.4.1 Hybrid Neuro Fuzzy Expert System (NFES): 
A new test chip, termed ELIPS3, contains the second 
generation Membership Function Circuit (MFC) 
which is a voltage input/output circuit that uses 
current-mode processing and is digitally 
programmable with a generic trapezoidal shape 
membership function. EL1PS3 contains ten MFCs, 
five of which are associated with each of the two input 
variables. Another test chip, termed FES1, contains a 
similar circuit for the membership function processing 
but the I/V output conversion is eliminated and the 
current is directly passed to the rule circuits, which are 
part of the MERP. Current-mode rule circuits process 
the membership function information on the same chip 
before creating as output the conclusions of nine 
different digitally programmed rules. The rules are 
conjunctive (AND) and complemented or non- 
complemented membership function values may be 
used for processing. FES1 contains forty membership 
function circuits with five associated with each of 
eight input variables. Each of the nine rules may be 
configured to process any combination of 
complemented or non-complemented membership 
values from any of the eight input variables. 

4.4.2 FANN Board: The Fuzzy-Artificial Neural 
Networks (FANN) test-board was designed to test the 
FES1 fuzzy-expert chip as well as to allow 
configurations of neural and fuzzy systems that 
combine two NN64 chips and four FES1 chips. The 
board also includes four analog multifunction 
converters capable of performing defuzzification 
processing and enabling a fuzzy system entirely in 
hardware. A photograph of the test-board is shown in 
Figure 8. The different system architecture 
configurations are achieved by setting the appropriate 
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jumper blocks, while the membership function shapes, 
rules, and neural network weights can be programmed 
through the computer interface. LabVIEW Full 
Development System 5.1 software is used to program 
the FANN via National Instruments ATMI064E-3, 
PCI-DIO-96, and AT-AO-10 interface boards, which 
provide the required analog and digital I/O. The 
LabVIEW Fuzzy Toolbox is used to provide a high- 
level user interface for programming the FES1 chips, 
allowing the user to specify a high-level fuzzy system 
that then gets translated and downloaded to the fuzzy 
hardware on the FANN board. 

The board allows 4 FES chips to be mounted on 
it, such that up to 36 rules can be programmed In 
addition, the board incorporates the design for testing 
of the neural network chips, with 2 NN64 chips and a 
group of 16 quad - A/D chips. The board aims to play 
multiple roles, allowing: 
• the test of the FES and NN64 chips individually, 
• the test of the chips in tandem configuration, e.g. 

FES followed by NN64, etc. 
• the test of the fusion algorithm in hardware, using 

the neural chips. 

5. Conclusions: 
Current technology allows the realization of a 

sensor fusion processor as a multi-chip module 
(MCM). A trade-off is to be made between the 
performance and cost of such a processor. 
Computational intelligence elements such as fuzzy 
reasoning and neural networks technology are 
considered fundamental for a sensor fusion chip. 
Several test chips implementing components of the 
ELIPS sensor fusion architecture have been fabricated 
in analog VLSI hardware and demonstrated processing 
times of the order of microsecond for a variety of 
tasks, such as target classification from preprocessed 
data. 

6. Acknowledgment: 
The research described in this paper was carried 

out by the Jet Propulsion Laboratory, California 
Institute of Technology, and was sponsored by the 
Ballistic Missile Defense Organization through an 
agreement with the National Aeronautics and Space 
Administration. Reference herein to any specific 
commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not 
constitute or imply its endorsement by the United 
States Government or the Jet Propulsion Laboratory, 
California Institute of Technology. 

7.   References: 

1. B. Figie, et al., "Discriminating Interceptor Technology 
Program (DITP): Sensor Fusion for Improved 
Interceptor Seekers," AIAA/BMDO Missile Sciences 
Conference, Session 8: Ballistic Missile Defense 
Interceptor Technology, 1996. 

2. B. V. Dasarathy and S. D. Townsend, "GIFTS - A 
Guide to Intelligent Technology Selection", Proc. 
International Conf. on Multisource-Multisensor 
Information Fusion, H. Arabnia and D. Zhu (Eds) Las 
Vegas NV, July 6-9,1998, CSREA Press, pp. 65-72. 

3. Y. Xia and J. Wang, "Recurrent Neural Networks for 
Shortest-Path Routing" International Conf. on 
Multisource-Multisensor Information Fusion, H. 
Arabnia and D. Zhu (Eds) Las Vegas NV, July 6-9, 
1998, CSREA Press, pp. 237-244. 

4. D. Zhu and B. Zhang, "Fuzzy Sensor Data Fusion in 
GPS Vehicle Positioning", International Conf. on 
Multisource-Multisensor Information Fusion, H. 
Arabnia and D. Zhu (Eds) Las Vegas NV, July 6.-9, 
1998, CSREA Press, pp. 259-266. 

5. Togai InfraLogic, Inc., "FCA Chip", 
http://www.ortech-engr.com/fuzzy/fcachip.html. 

6. C. von Altrock, "Motorola Semiconductor and Inform 
Software Corp. release fuzzy logic tools for 68HC11 
and 68HC12 families" 
http://www.fuzzytech.eom/e presmo.htm, 1997. 

7. S. Guo, and L. Peters, "A High-Speed, Reconfigurable 
Fuzzy Logic Controller," IEEE Micro, 15: (6) 65-65, 
1995. 

8. H. Huertas, et al., "Integrated Circuit Implementa-tion 
of Fuzzy Controllers," IEEE J. Solid-State Circuits, 31: 
(7) 1051-1058,1996. 

9. J. Fattaruso, et al., "A Fuzzy Logic Inference 
Processor," IEICE Trans. Electron., E77C: (5) 727-732, 
1994. 

10. M. Sasaki, et al., "Current-Mode Analog Fuzzy 
Hardware with Voltage Input Interface and 
Normalization Locked Loop," IEICE Trans. 
Fundamentals, E75-A: (6) 650-654 June 1992 

11. A. Kandel and G. Langholz, "Fuzzy Hardware: 
Architecture and Applications", Kluwer Academic 
Pub., Jan 1998. 

12. S. Eberhardt,. et al, "Analog VLSI Neural Networks: 
Implementation Issues and Examples in Optimization 
and Supervised Learning," IEEE Trans. Indust. 
Electron. v39 (6):p. 552-564,1992. 

13. T. Daud, et al., "ELIPS: Toward a sensor fusion 
processor on a chip," Proc. SPIE/AeroSense Conf., vol. 
3719,1999, Orlando, FL, pp 209-219. 

14. T. Duong, et al., "Learning in Neural Networks: VLSI 
Implementation Strategies", In Fuzzy Logic and Neural 
Networks Handbook, Ed: C.H Chen, McGraw-Hill, 
1996, pp. 27.1-27.48 

616 



LAD AR 
Image 

I 
¥ 

m 
Image 

Local 
Controller 

UaiKlBm 

T 

FS] 

* .«* Anlog Data B» 

"n/A    »;""r   Local  fed 
££k Memory]^ 

Bridge 

T 
MERP   PFN    PRN 

Figure 1. ELIPS architecture with modules 

Figure 4. A variety of membership function shapes 
generated on the MFC test chip 

Figure 2. Circuit for the 8-bit synapse 

Figure 5 (a). A simulation result showing the required 
trapezoidal membership functions for discrimination 
of two targets rl and r2. 

LEFT LEG 

LEFT SLOPE (B) 

FULL-SCALE VALUE 
OUTPUT (Y) 

RIGHT SLOPE (C; 

RIGHT LEG (D) 

ANALOG INPUT 

(B). 

INPUT (X) u 
JL 

OV-OAC 
-   B 

V,„tol 

(D) 

OUTPUT 

S^SfWPp 

.   MDWI 

m 

(C) 

I FULL-SCALE Figure 5 (b).  Membership function circuit test result 
showing identical membership functions. 

Figure 3. Block diagram of HW implementation for a 
MFC. 

617 



muxll control 

fHEHSORS, 
I» CLAIMS EACH COWJUWCTIOII« 

32 DECISIONS 

Figure 6. A schematic of the MERP architecture 
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Abstract - Computationally speaking, sensor fusion 
problems can be characterized by three properties: 
(1) extraordinarily large I/O requirements, (2) 
repetitive operations on huge data sets, and (3) a 
large number of computational operations per point 
~ far beyond the capabilities of general purpose 
and digital signal processors. Configurable 
computing machines (CCMs) are emerging as a 
technology capable of providing high computational 
performance on a diversity of applications, 
including multidimensional signal processing, 
simulation acceleration, and computer graphics. 
High performance is achieved by rapidly 
reconfiguring the functionality and interconnectivity 
of the computing resources to match the 
computational requirements of specific applications. 
With this approach, specific application properties 
such as parallelism, locality, and data resolution 
can be exploited by creating custom operators, 
pipelines, and interconnection pathways. This 
paper illustrates these properties with an 
application in wireless communications. 

1 Introduction 
Characteristics of the signal processing tasks 
associated with an advanced wireless receiver 
are well matched to the capabilities offered by 
CCM technology. Collectively, digital receiver 
algorithms seem to share the following 
properties: (a) repetitive operations are 
performed on huge data sets, (b) the dominant 
computations are conducive to very deep 
computational pipelines, (c) a moderate amount 
of latency can be tolerated, and (d) different 
environmental conditions require different 
signal processing, which in turn require distinct 
computational structures (time-varying 
computation). This paper presents an 
embedded solution for high-performance signal 
processing using configurable computing 
technology. Emphasis is placed on the design 
methodology for implementing large and 
intricate stream oriented signal processing 
tasks. 

1.1 Embedded Computing in Soft Radios 
The superior qualities of digital hardware over 
its analog counterparts, in terms of precision, 
stability, and flexibility, has led to the transition 
of communication systems from an analog 
implementation to a digital implementation. An 
extension of this trend is the software radio in 
which the major functions can be altered through 
software. A "soft" radio can not only be 
programmed, but can also alter the hardware. 

The software radio has numerous 
advantages [2]. It is possible to have multimode 
terminals that can handle more than one 
standard. Traditionally, dual mode operation 
requires multiple sets of hardware, increasing 
the size and cost of the radio, an approach 
referred to as the "velcro radio." However, a 
software radio could change the modes on the 
same piece of hardware simply by altering the 
algorithms implemented on the radio. The 
number of discrete components are reduced 
since many of the traditional radio functions, 
like synchronization, modulation, and coding, 
can be integrated into one chip. 

Software radios also reduce the cost 
associated with manufacturing and testing the 
radios. It is possible to precisely predict the 
performance of digital hardware unlike analog 
hardware. Furthermore, analog components 
frequently show a drift over time in 
characteristics. 

Once the radio is fabricated, the time of 
the design cycle is reduced, since most of the 
existing hardware can be used. Total software 
reconfigurability also makes it possible to 
transmit upgrades to the mobile receiver over the 
air. The radio should have the capability to 
perform self-diagnosis, thus reducing the need 
for human intervention and increasing 
reliability. 
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Figure 1: Adaptive receiver radio structure. 

Recently software radio designers have 
begun to explore the use of reconfigurable 
computing in implementing the radios. FPGA 
based hardware has been used in the Speakeasy 
radios. The     Modular     Multifunction 
Information Transfer System (MMITS) Forum 
extends the concept of the Speakeasy program 
to build every generic communication using an 
open architecture [5]. The Spectrum Ware 
project [9] applies a software-oriented approach 
to wireless communication and distributed 
signal    processing. Virtual    radios    are 
implemented that directly sample wide bands of 
the downconverted RF spectrum and process 
these samples in application software that runs 
on generic PCs. 

1.2 Use of FPGAs in Software Radios 
Software radios require complex signal 
processing at very high speeds. While DSPs 
provide the maximum flexibility and a quick 
design cycle, they are not efficient in terms of 
power consumption and system area. Multi- 
DSP computing platforms are quite common, 
but achieving inter-processor communication is 
often complicated, which reduces the 
scalability of the system when dealing with the 
already limited I/O bandwidth and high sample 
rates associated with wideband signals. ASICs, 
on the other hand, give the most efficient 
implementation of a given circuit. However, 
they have little flexibility, high cost, and a long 
design cycle. 

A good design is obtained by matching 
the available resources to the needs of the 
system. FPGAs help in achieving this match 
while retaining flexibility in the final product. 
FPGAs at times can also help conserve silicon 
area since one chip can be configured to 
perform   more  than   one   function   and   the 

configurations can be changed on the fly. 
Situations where the use of FPGAs in digital 
signal processing applications is most beneficial 
are in systems with high sample rates, short 
word length, large data sets, easy pipelining and 
simple control requirements. FPGA based DSP 
designs run faster as the word width decreases 
since the word length on the FPGA can be set 
exactly to the required length. In very high 
order FIR filters, the algorithm can be 
implemented in parallel decreasing the time 
required for the operation. The lookup table 
architecture of FPGAs provides a fast and 
efficient way to build correlators. The property 
that distinguishes configurable computing from 
rapid prototyping is the capability of a 
configurable computing application to change 
functionality during execution, or run-time 
reconfiguration. Rapid reconfiguration provides 
the illusion of having a much larger (virtual) 
hardware platform. A good overview of the 
implementation and performance of DSP 
algorithms on Xilinx FPGAs, using different 
word lengths and different amounts of 
parallelism, is given in [8]. 

1.3 Stream Based Modular Design 
The software radio prototype illustrated here is 
based on a concept called the stream based 
modular design process. The stream based 
design process provides a means to exploit the 
processing power attainable through deep 
pipelining while still maintaining some degree 
of flexibility. The algorithm to be implemented 
is first represented as a data flow graph. The 
data flow graph is then decomposed into smaller 
computational primitives called modules. Each 
module performs a unique subset of the overall 
processing on the data and passes the data and 
control information to the next module.    An 
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analogy can be drawn to the assembly line 
process where each module performs a specific 
task as the component moves forward in the 
assembly line. 

The overall architecture of the soft 
radio is shown in Figure 1. Once the signal is 
digitized to an intermediate frequency, the rest 
of the processing is performed on a 
reconfigurable platform. The bits are packed 
into packets ready for stream processing. Each 
of the reconfigurable processing modules has a 
similar structure and is designed to decode and 
act on the incoming data stream packets, as 
defined by the configuration of that particular 
module. The level of reconfiguration can vary 
from changing the high-level parameters of a 
unit with static functionality to reconfiguring 
the device at a primitive logic level. 

A stream is comprised of both 
programming information and data to be 
processed. When a module encounters 
programming information, it is extracted and 
stored locally, and the module's parameters and 
operation are changed accordingly. This 
feature makes it possible to modify the low 
level parameters and functionality through high 
level software and also enables inter-module 
communication. 

Valid data entering the system has a 
program header that provides program flow 
information, i.e., information about the 
operations to be performed on the data, and 
about how the data is linked together. The 
header of a stream packet also contains 
information indicating whether the bits are 
valid and whether the packet contains data or 
program information. When the system is idle 
or if there are no users in the system, then the 

SanpleRate 

valid bit in the header is not set. 
Running on each module are three sets 

of pipelines and a state machine, which 
interprets how the packet is channeled through 
the pipelines as shown in Figure 3. If the valid 
bit and the program bit are set, the information is 
sent to the configuration pipeline to configure 
the module for the following data. The modules 
maintain the configuration to which they are set 
and act accordingly on valid data until the 
configuration is changed. The bypass pipeline is 
present to ensure that data is not corrupted by 
the module. It is important that each of these 
pipelines have the same amount of delay. At the 
end of the pipeline, the stream packet is 
reconstructed with the updated header and 
routed to the next module. 

2 CCM-based Soft Radio 
The radio presented here is intended for direct 
sequence CDMA systems. Adaptive algorithms 
including variants of clipped LMS (Least Mean 
Square) algorithms have been selected for the 
equalizer module. The approach adopted is to 
divide the system into several sub-modules, each 
of which performs a specific and well-defined 
task. The block diagram of the prototype 
software radio being is shown in Figure 1, where 
each of the functions are entirely configurable. 
The first module is the INPUT module, which is 
responsible for buffering sampled data, 
constructing packets, and controlling the system. 
This module can receive samples from the 
receiver front-end, or the control signals from 
the host PC. 

When  data  is  received,  the  module 
constructs data packets and sends them to the 

training 
mode 

Figure 2: Complex-weight fractionally-spaced linear adaptive receiver. 
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next, FILTER, module, which performs the 
adaptive filter operation according to the type 
of packets received. 

The third module, TRACKING module, 
is responsible for timing-recovery. After the 
timing is recovered, the module sends data back 
to the INPUT module to properly control the 
coefficient adaptation operation. 

The OUTPUT module, the last module, 
buffers the estimated data and sends this data to 
the host PC. 

This paper focuses on the signal 
processing aspects of the radio application, 
which are primarily embodied in the FILTER 
and TRACKING modules. The remainder of 
this section focuses on these two modules. 

2.1 Adaptive LMS Equalizer Receiver 
The modified model, which has lower 
complexity, seems to give us more favor. The 
structure of the new model is shown in Figure 
2. 

The received signal is converted to 
baseband and sampled at the front-end of the 
receiver. This sampled received signal, r(n), is 
then passed to the fractionally-spaced 
transversal filter. 
The length of this filter has to be enough to 
keep one full symbol of signal. That is, if the 
process gain is N, and there are p samples per 
chip, the length of the filter has to be more than 
tip. 

The filter operation is computed as, 

y{n) = wT{nJr(n) 
where the received signal vector is, 

rW= 
Re{r0(«) 

Im{r0(«) 
'Np 

'Np 

(41 
(4 

and the coefficient vector is, 

w(n) = 
Re{w0(n)   w,(i») 

lm{w0(n)   w,(/i) 

w Np 

W; Np 

(4 
(4 

The output, y~(n), is then passed to the decision 
device. The estimated data for the n* symbol is 
equal to d*(n) = sign{Re[y~(n)]}. 

The filter weights adapt to the properties 
of   the    communications    channel. The 
coefficients are updated every symbols to 
minimize the difference (error) between the 
output of the filter and the reference signal, d(n), 
or as 

e(n) = d(n)-y(n). 

This mode of operation is called training 
mode. The other mode, decision-directed mode, 
perform a similar task except that in this mode 
the error is computed from the estimated data, 
dA(n), instead of the reference signal. The 
coefficient adaptation algorithm is summarized 
simply by the relationship, 

w(n +1) = w(n)+ ue(n)r(n), 

where |j. is a step-size, which define how fast the 
coefficients can adapt. 

2.1.1 System-Level Architecture 
There are some parameters of the adaptive filter 
that can be changed in real-time to improve the 
overall performance. This implies incorporating 
some form of flexibility of the system. In this 
example, it is done using a stream-based 
approach. In this system, there are three types of 
packets; data, control, or configuration packets. 

The data packets contain the samples of 
the received signal (from the A/D converter), 
which will undergo normal filter operations. 

The control packets govern specific 
operations of the filter. From the previous 
section the filter operation consists of two basic 
tasks. The first task is filter output calculation, 
which is common for every type of digital 
filters. The second task is the coefficient 
adaptation operation, which is an operation that 
applies only for adaptive filters, and happens 
every symbol period, while the first operation 
occur every sample. Since the filter consists of 
two operations, we define the more-often 
operation, the filter output operation, as a default 
operation. This makes the second one, 
coefficient adaptation, a special operation - 
whenever the filter receives data packet, it 
performs the filter output calculation, the default 
operation. However, if the control packet is 
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VALID 

received, the system switches to coefficient 
adaptation operation, the special operation. 

Note that the implemented filter 
calculates the output every sample even though 
it is theoretically enough to do so once every 
symbol period. This is because it is assumed 
that the system is asynchronous, and a tracking 
module is needed to perform timing-recovery. 
This tracking system, in turn, needs input, 
which is the output of filter, every sample. 

The last type of packet, the 
configuration packet, defines the parameters, 
e.g. filter-length and step-size, of the filter. 

The packet format adopted in the 
adaptive radio is shown in Figure 3. The 
packet contains four fields: VALID, TYPE, 
ADDRESS, and PAYLOAD. These fields 
are defined as follows: 
■ VALID field (1 bit): defines the validity of 

this packet when it is set to ' 1'. 
■ TYPE field (1 to 
4 bits): defines the 
type of packets, data, 
control or 
configuration packets. 
- ADDRESS field 
(4 bits): Identifies the 
module to be 
configured. Applies 
only to configuration 
packets. 
■ The PAYLOAD 
field (10 bits): 
contains samples of 
the received signal for 
data      packet,      or 

configuration 
information for 
configuration packet. 
The PAYLOAD field 
does not apply for the 
control packets. 

The implemented system is built on an 
FPGA-based platform. The platform is 
accessible via PCI bus and controlled through 
the API functions provided by the vendor. 
There are 32 XC4028, XILENX 4000 series, on 
the platform. 

PROGRAM 

ADDRESS 

PAYLOAD 

STREAM 
DATA 

Figure 3: Stream 
format for 
programming 
signal processing 
modules. 

2.2 Acquisition and Tracking 
The Acquisition and Tracking (A/T) module 
performs spread spectrum symbol 
synchronization; as the module's name suggests, 
it does so using two distinct functions. 
Acquisition detects the presence of a user's 
signal and assesses this signal's initial code 
phase. Due to such phenomena as clock drift 
between transmitter and receiver, this code 
phase may not be constant; tracking updates the 
assessment of the signal's slowly changing code 
phase. Prior to user detection, only the 
acquisition function operates. However, when 
the module detects a user the acquisition sub- 
module continues to process the incoming data; 
it operates in parallel with the tracking sub- 
module to validate the user's continued presence 
— should the user disappear, tracking halts and 
the acquisition sub-module restarts, waiting for 
the user's reemergence. 

The A/T module takes the full output of 
the LMS equalizer as its input; this data will 
peak when user data is in phase with the 
despreading code. Also, the A/T module is 
notified when the LMS equalizer calculates its 
error and updates its weights—i.e. when the 
Input Module believes the user is in phase. The 
A/T module uses this information as a reference 
for its phase corrections; it returns a signal 
indicating the relative offset of the Input 
Module's code phase estimate with the actual 
code phase as calculated by the A/T module. 
The A/T module provides the despread user data 
as its output. 

The acquisition sub-module 
encompasses two functions: user detection and 
estimation of the user's initial code phase. For 
user detection, the module supports two 
configurable algorithms: a signal magnitude 
threshold and a maximum search for a persistent 
peak. To detect a user through thresholding, the 
module sums the absolute value of me incoming 
data over one symbol period. The module 
compares this sum to a threshold: if the signal is 
purely noise, the sum will be below the 
threshold; if a user is present, the power of the 
added signal will produce a higher sum, 
exceeding the threshold. This user detection 
scheme is very simple to implement, but setting 
the level of the threshold is problematic. In a 
fading channel, the sum of one symbol period 
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could drop below the threshold even when a 
user is present. Similarly, in a high noise 
environment, a threshold that is too low could 
result in false positives—indicating the 
presence of a user when there is none. These 
problems can be addressed through the use of a 
maximum search for a persistent peak, as this 
technique does not require a threshold. This 
technique searches over one symbol period for 
largest magnitude peak; if mis peak occurs 
consistently at the same phase for several 
symbol periods, a user is present, while 
irregular maximum peak locations indicate the 
user's absence. Although this technique is 
immune from the problems of thresholding, it 
assumes that the largest magnitude peak will 
always correspond to the code phase; 
depending on channel noise characteristics, this 
may not always be the case. A peak would 
always occur at the user's phase, but higher 
peaks could sporadically occur at other phases. 

In order to address the shortcomings of 
these techniques, both described methods are 
available in the A/T module as crucibles of user 
presence. The persistent peak test is relaxed 
such that a small number of nonmaximum 
peaks at the current phase location do not 
invalidate the user's position. Such a persistent 
peak test in combination with a low threshold 
will permit very few detection errors. 
Alternately, either method can be disabled to 
adjust as channel conditions dictate. 

The second function of acquisition— 
the initial estimation of the user's phase— 
extends naturally from the use of a maximum 
search for a persistent peak. To assess peak 
persistence, the algorithm must store the 
location of this peak. If the algorithm detects a 
peak, this location is considered the initial code 
phase. The A/T module subsequently notifies 
the Input Module of the appropriate phase. If 
the acquisition sub-module's configuration only 
considers a threshold for user detection, the 
module still needs to search for a maximum 
peak to determine the initial code phase—even 
though this data does not affect user detection. 

Once the acquisition sub-module 
detects a user and assesses its initial code 
phase, the tracking sub-module initiates 
operation. The drift of the user's code phase 
should be quite slow compared to the symbol 

rate; therefore, the phase should change by no 
more than one chip per symbol following 
acquisition. Unlike the acquisition sub-module, 
the tracking module does not need to search the 
entire symbol period for the maximum. Rather, 
it only needs to consider the samples 
immediately preceding and following the current 
code phase. These are the early and late 
samples, respectively; the attention paid to these 
symbols dubs this tracking algorithm early-late 
tracking. Should the peak occur at the early 
sample, the tracking algorithm indicates to the 
Input Module that the LMS Equalizer's calculate 
error/update weights should be advanced by one 
sample; similarly, a peak at the late sample 
indicates that the update should be delayed by 
one sample. 

In order to compensate for phase drift, a 
modification to the acquisition algorithm is 
necessary: when assessing the most persistent 
peak, it should consider a peak persistent even if 
it drifts by one sample per symbol. Otherwise, 
the peak will be properly tracked, but the 
acquisition algorithm will falsely indicate that 
the user is no longer transmitting because of the 
peak drift. Should the tracking sub-module 
detect a phase drift, it will update the acquisition 
module's estimate of the peak's location. 

The implementation of the A/T module 
is straightforward. For the acquisition sub- 
module, a register maintains a sum of the 
samples of the present symbol for threshholding. 
An additional pair of registers maintains the 
value and location of the maximum value in the 
present symbol; the location is compared to the 
location of previous maximum, and if the peak is 
persistent, a counter is incremented to assess its 
persistence level. For the tracking sub-module, 
the magnitudes at the current codes phases, as 
well as the early and late magnitudes, are 
registered and compared to each other to 
indicate any present symbol drift. 

3 Conclusions and Future Research 
The soft radio architecture can be implemented 
with various reconfigurable device technologies. 
Virginia Tech has fabricated ä customized 
FPGA-like devices called Colt and Stallion, 
which are suited for the signal processing tasks 
of software radios [7]. The Colt/Stallion is an 
experimental run-time reconfigurable device and 
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utilizes self-directing streams that allocate and 
configure device resources to accomplish a 
given task. The streams contain a program 
header that contains the necessary 
configuration information for each resource 
required. The Colt/Stallion FPGA is capable of 
reconfiguring all or portions of the chip in a 
fraction of a microsecond. This will allow for 
more effective computation per area of silicon. 
The prototype designs on the FPGA testbed 
will be migrated in parts to the Colt/Stallion 
processors. 

References 
[1] Joe Mitola, "The software radio 

architecture," IEEE Communication 
Magazine, pp. 26-38, May 1995. 

[2] Peter M Athanas, J. H. Reed and W. H. 
Tranter, "A prototype software radio based 
on configurable computing," Advancing 
Microelectronics, pp. 34-39,1998. 

[3]   R. Michael Buehrer, The application of 
multiuser detection to cellular CDMA, 
Ph.D. Dissertation, Virginia Polytechnic 
Institute and State University, June 1996. 

[4] John J. Proakis, Digital communications, 
McGraw-Hill, 3rd edition, 1996. 

[5] Andy Ivers and Dave Smith, "A practical 
approach to the implementation of 
multiple radio connfigurations utilizing 
reconfigurable   hardware   and   software 

building blocks," Proceedings MLCOM, 
vol. 3, pp. 1327-1332,1997. 

[6] Steve Swanchara, "An FPGA based 
multiuser receiver employing parallel 
interference cancellation," Master's Thesis, 
Aug 1998. 

[7] R. Bittner and P. Athanas, "Wormhole 
Run-time reconfiguration," ACM/SIGDA 
International Symposium on FPGAs, 
Monterey, CA, pp. 79-85, Feb. 1997. 

[8] Chris Dick, "High performance 
communications using FPGAs," 
International Symposium on Advanced 
Radio Technologies, Chapter 11, Sept. 
1998. 

[9]   Spectrum ware home page, 
http://www.tns.lcs. 
mit.edu/SpectrumWare/home.html 

[10] M. Valenti and B. D. Woemer, 
"Performance of Turbo Codes in 
Interleaved Flat Fading Channels with 
Estimated Channel State Information," 
Vehicular Technology Conference, Ottawa, 
Ontario, Canada, May 18-21, pp. 66-70, 
1998. 

[11] William H. Tranter and Kurt L. Kosbar, 
"Simulation of communication systems," 
IEEE Communications Magazine, Vol. 32, 
No. 7, pp. 26-35, July 1994. 

625 



Wavelet Neuron Filter with the Local Statistics 
Oriented to the Pre-processor for the Image Signals 

Noriaki Suetake    Naoki Yamauchi *  Takeshi Yamakawa t 

Department of Control Engineering and Science 

Kyushu Institute of Technology 

Iizuka, Fukuoka, 820-8502 Japan 
{suetake, yuchi}@tsuge.ces.kyutech.ac.jp, yamakawa@ces.kyutech.ac.jp 

Abstract We propose a novel nonlinear filter 

which is based on a framework of a linear FIR fil- 

ter and the wavelet neuron (WN) model, and em- 

ploys the local statistics such as a variance of signal 
levels in the filter window. The proposed filter is 

synthesized by a learning method which guarantees 
optimal design caused by employing the WN model. 
The proposed filter is effective for the various ap- 
plications such as the noise elimination, sharpening 
and so on, because their functions are determined 
by the pairs of target and input signals in the learn- 
ing. The effectiveness and validity of the proposed 
filter is verified by applying it to the preprocessing 
of the image signals. 

Keywords: wavelet neuron, nonlinear filter, linear 
FIR filter, noise elimination, sharpening, image sig- 
nal preprocessing. 

1    Introduction 

Linear filters have been the primary tools for 
signal processing. They are easy to design, and 
they offer excellent performance in many cases. 
This is particularly the case for spectral separa- 
tion where the desired signal spectrum is signif- 
icantly different from that of the interference. 
In many situations, however, it is necessary 
to process signals with sharp edges and thus 

"The author is presently working at Kyusyu Mat- 
sushita Electric Co,. Ltd., Minoshima, Hakata-ku, 812- 
0017, Fukuoka, Japan. 

'The author is also with the Fuzzy Logic System 
Institute (FLSI), Kawatsu, Iizuka, 820-0067, Japan. 

wide spectrums. Unfortunately, linear smooth- 

ing niters also smooth signal edges. Further- 
more, a linear filter can not totally eliminate 

impulse noise. A median filtering has been rec- 
ognized as an effective alternative to the linear 
smoother in some applications]!]. In particu- 
lar, the moving median of a time or spatial se- 
ries has been shown to preserve edges or mono- 
tonic changes in trend, while eliminating im- 
pulse noise. A median filter is included in the 
class of order statistic (OS) filters, as well as a 
a-trimmed filter and a midrange filter and so 
on[2][3]. These filters achieve noise elimination 
well by using information of the noise distribu- 
tion, although they are effective only for spe- 
cific types of noise. However, OS filters have a 
disadvantage with respect to the preservation 
of the signals, because they lose information of 
signal patterns by sorting signal levels in the 
filter window. For the realization of both of 
restoration of the signal and noise elimination, 
both of pattern and statistical information in 
the filter window should be reflected to a de- 
sign of a filter. 

From this point of the view, we propose a 
novel nonlinear filter named the local statis- 
tics employed wavelet neuron (LSWN) filter. 
The LSWN filter is based on the WN model [4] 
and a framework of a linear finite impulse 
response (FIR) filter, and employs the local 
statistics in the filter window. The LSWN fil- 
ter achieves both of the elimination of noise 
and high restoration of the signal simultane- 
ously. Moreover, it is effective not only for the 
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elimination of noise but also other functions 
such as sharpening of the image. In this pa- 
per, we verify the effectiveness and the validity 
of the LSWN filter by applying it to the pre- 
processing of the image signals. 

2 The Local Statistics Em- 
ployed Wavelet Neuron Fil- 
ter (LSWN) 

In this section, the LSWN filter is discussed. 
Consider the following observation mechanism: 

Vk = Xk + Vk, (1) 

where y^ is a noisy observation, Xk an origi- 
nal signal, and Vk an observation noise of an 
arbitrary distribution type. 

2.1    Extension of a FIR Linear Filter 
by the WN Model 

Here, we extend a linear FIR filter by applying 
the WN model to its framework. This exten- 
sion is referred to as the WN filter. The WN 
model has been proposed by one of the authors 
in 1994[4]. This WN the synaptic characteris- 
tics of which is nonlinear and represented by a 
set of wavelets and the weight corresponding to 
each wavelet has high ability of generalization 
with a guarantee of the global minimum. 

Fig.l shows the structures of the WN filter 
and the wavelet synapse (WS) model. The out- 
put of the WN filter of length N operating on 
a sequence {yk} for N odd is given by: 

N 

*wnk = 53/t(y*(*)) (2) 

with 

i=l 

V      a 

MVki*)) = E E*^(^W)^0,6.     (3) 
a=06=0 

where (•) represents time/space sequence in the 
filer window. y*(l),'",yjfc(iV) correspond to 
Vk-M, ■ ■ -,Vk+M, respectively, and M = (N - 

l)/2.  tyatb(u) are wavelets that are generated 
by the mother wavelet $(w) as follows: 

*a,b(«) = 
1 a = 0 and 6 = 0, 
^(au — b)   otherwise. 

(4) 
where a is a scaling parameter, and b is a shift- 
ing parameter. And this WS employs the the 
compactly supported wavelet shown in Fig.2 
as the mother wavelet. It is represented by the 
following equation: 

*(«) = 
COS7TW   —0.5 < u < 0.5, 

0 otherwise, (5) 

The wavelet distribution is illustrated in Fig.3, 
where the level p stands for a reciprocal scaling 
parameter. 

The learning of the weights W{a b is 
achieved so that the following error function 
Ewn(xwnk,tk) becomes minimum: 

EJwn\%wnki'>k) 

1   K 

= r / AX,wnk — tk) 
1 k=l 

= \ E E E E(*.,6(y*(0) • ".•„* - tk)\ 
k=l t'=l a=0 6=0 

(6) 
where tk is a target signal and K is the length 
of target signal. The gradient descent method 
is employed here. Eq.(6) is unimodal function, 
because it is parabolic with respect to weights 
Wiab, that is, this WN filter guarantees the 
global minimum[4]. 

After the learning is completed, the set of 
weights of the WN filter is optimized where the 
filtering output is as close to the ideal signal as 
possible. 

2.2    LSWN Filter 

The proposed LSWN filter is shown in Fig.4, 
where the outputs from the WN filter and the 
local statistics calculator are fed to the Input- 
Correlated WS model. In this case, the output 
of the filter is obtained as an output of the 
Input-Correlated WS model. Fig.5 shows the 
structure of the Input-Correlated WS model. 
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In the proposed filter, the estimation of an 
original signal &iswnk is given by: 

•Klswnk — J\.%wnkiO~k) (7) 

with 
q      r 

f(Xvmk,<Tk) =£2*cI<*(£tim*,ffAK,d,    (8) 
c=0 d=0 

where xwnk is given by Eq.(2). a\ is a variance 
of the signal levels in the filter window and 
calculated by following equation: 

^ = ^E^w-^E^(i))2-   (9) N N 

a\ is employed as the information of the local 
statistics in the LSWN filter. ^c,d{ui,u2) are 
wavelets in two dimensional space (t*i, «2) that 
are generated by the mother wavelet \P(«i, «2) 
shown in Fig.6. It is a compactly supported 
wavelet and represented by the following equa- 
tion: 

W(ui,u2) = 
COS 1TU\ COS TTU2     — 0.5 < «i, u2 < 0.5, 

0 otherwise. 
(10) 

The wavelet distribution is illustrated in Fig.7, 
where (a) level 0, (b) level 1 and (c) level 2 are 
shown for examples. In Eq.(8), the level q 
stands for a reciprocal scaling parameter and 
r = (<7 + l)2 a shifting parameter in two dimen- 
sional space («1,^2). 

The learning of the LSWN filter is achieved 
so that each of error function of WN fil- 
ter Ewnk(xwnk,tk) (Eq.6) and the follow- 
ing error function of Input-Correlated WS 
Elswn(xiswnk,tk) becomes minimum simultane- 
ously: 

^Iswn\%lswnk > ^k) X)(^«m* -tk)2-    (11) 
k=l 

The same target signal tk is employed for both 
learning processes of the WN filter and Input- 
Correlated WS here. From Eq.ll, it is also 
easily understood that the global minimum is 
reached in the learning of the Input-Correlated 
WS. 

3    Experimental Results 

The attempt is made to verify the effectiveness 
and the validity of the LSWN filter by applying 
it to the noise elimination and the sharpening 
of the images. In the experiments, the signals 
in the filter window are numbered and fed to a 
filter as shown in Fig.8. Here, the filter window 
size N is 25 (=5x5 pixels). All of p, q and r 
are 12. 

3.1    Noise elimination 

Here, the LSWN filter is applied to the noise 
elimination for the images of machine printed 
capital characters and human faces. 

3.1.1    Machine printed capital charac- 
ters 

Learning process In this experiment, we em- 
ployed the images of machine printed capital 
character 'F' shown in Fig.9(a) and (b), which 
are constructed with 50x50 pixels and the res- 
olution is 8 bits/pixel gray-level, as a target 
image and the input image for the learning pro- 
cess of the LSWN filter, respectively. The in- 
put image shown in Fig.9(b) is the target image 
corrupted by both of a Gaussian noise N(0,200) 
and an impulsive noise (5%), the elimination of 
which is very difficult for the conventional fil- 
ters. 
Testing process After the learning has been 
completed, the performance of the LSWN fil- 
ter is tested for the images of machine printed 
capital characters. For example, we show the 
results of noise elimination for the images of 
machine printed capital character 'E' (50x50 
pixels, 8 bits/pixel gray-level). Fig.9(c) shows 
an original image 'E'. Fig.9(d) shows the input 
image which is the original image corrupted by 
both of a Gaussian noise N (0,200) and an im- 
pulsive noise (5%), similar to Fig.9(b). The 
root mean square error (RMSE) of the input 
image shown in Fig.9(d) is 39.21. The RMSE 
is calculated by the following equation: 

RMSE 
PxQ 

\ 

P   Q 

X^(y(«,j)-z(*',i))2, 
i=ij=i 

(12) 
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where P x Q is an image size, y(i,j) the input 
image and x(i, j) the original image. Fig. 10(a) 
shows the result of filtering by the LSWN fil- 
ter. The RMSE of the LSWN filter is 1.23. 
For comparison, an optimized linear FIR fil- 
ter, an optimized OS filter and the WN fil- 
ter are examined and the results of filtering by 
them are shown in Fig.l0(b),(c) and (d), re- 
spectively. The RMSE of an optimized linear 
FIR, an OS filter and the WN filter are 11.22, 
5.47 and 4.53, respectively. The superiority of 
the LSWN filter to other filters is easily under- 
stood. 

3.1.2    Human facial image 

In order to verify the effectiveness of the LSWN 
for the images which include complicated sig- 
nal patterns, we employ the facial images in 
this experiment. Here, we employed the images 
(120x160 pixels, 8bits/pixel gray-level) shown 
in Fig.ll(a) and (b), as a common target image 
and the input image for the learning process 
of the LSWN filter. The input image shown in 
Fig. 11(b) is the target image corrupted by both 
of a Gaussian noise N(0,100) and an impulsive 
noise (1%). 

After each learning has been completed, 
the performance of the proposed filters is 
tested for the facial image. We show the re- 
sults of noise elimination for the facial im- 
age. Fig.ll(c) shows an original facial image 
(120x160, 8 bits/pixel gray-level). Fig.ll(d) 
shows the input image which is the original 
image corrupted by both of a Gaussian noise 
N(0,100) and an impulsive noise (1%), sim- 
ilar to Fig. 11(b). The RMSE of the input 
image shown in Fig.ll(d) is 14.18. Fig.12(a) 
shows the result of filtering by the LSWN fil- 
ter. The RMSE of the LSWN filter is 6.03. 
For comparison, an optimized linear filter, an 
optimized OS filter and the WN filter are ex- 
amined and the results of filtering by them are 
shown in Fig.12(b), (c) and (d), respectively. 
The RMSE of the an optimized linear FIR fil- 
ter, an optimized OS filter and the WN filter 
are 7.23, 6.92 and 6.67, respectively. The result 
of the LSWN filter is superior to other filters. 

3.2    Sharpening of images 

In this experiment, we employed the images 
of machine printed capital character 'F' shown 
Fig.l3(a) and (b) (50x50 pixels, 8 bits/pixel 
gray-level), as a target image and the input 
image in the learning process of the LSWN fil- 
ter. The input image shown in Fig. 13(b) is the 
target image corrupted by both of a Gaussian 
noise N(0,200) and an impulsive noise (5%) af- 
ter smoothing by a mean filter, widow size of 
which is 25 (5x5). 

After the learning has been completed, the 
performance of the LSWN filter is tested 
for the machine printed capital characters. 
For example, the results of the sharpening 
for the capital character image 'E' (50x50 
pixels, 8bit/pixel gray-level) are shown here. 
Fig. 13(c) and (d) show an original image and 
an input image which is the original image cor- 
rupted by both of a Gaussian noise N(0,200) 
and an impulsive noise (5%) after smoothing 
it by a mean filter, window size of which is 
25 (5 x 5) pixels, similar to Fig. 13(b). The 
RMSE of the input image shown in Fig.11(d) is 
40.18. The results of sharpening by the LSWN 
filter is shown in Fig.14(a) where the RMSE 
of the LSWN filter is 6.59. For comparison, 
the WN filter are examined and the results 
of sharpening by it are shown in Fig.l4(b). 
The RMSE of the WN filter is 8.48. From 
Figs.14(a), it is clear that the sharpening of 
the image is achieved well. The conventional 
filters are much less effective than the WN fil- 
ter and the LSWN filter, because they don't 
have high mapping ability between input and 
output, like the WN model. 

4    Conclusions 

In this paper, we propose a novel nonlinear fil- 
ter which is based on a framework of a linear 
FIR filter and the wavelet neuron (WN) model, 
and employs the local statistics such as a vari- 
ance of signal levels in the filter window. The 
LSWN filter is optimally designed and imple- 
mented by learning which guarantees conver- 
gence to the global minimum. 
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Through the experiments of the noise elim- 
ination and the sharpening of images, we 
confirmed that the LSWN filter significantly 
achieves both of high noise elimination and 
high restoration of the signal, simultaneously. 

One of main characteristics of the proposed 
filter is that it is applicable to arbitrary image 
signal preprocessing. Many of traditional fil- 
ters are confined to specific use. On the other 
hand, our filter proposed here is effective not 
only for noise elimination but also for sharp- 
ening and other various applications. This fea- 
ture of the proposed filer is derived from that 
its function is determined by the pairs of tar- 
get and input signals in the training. If we pre- 
pare a typical training set of images for some 
practical purposes, we can tune the filter to be 
suitable for the purposes. 

Furthermore, the proposed filter does not re- 
quire a complicated algorithm, and it architec- 
ture is very simple. It has highly potential ap- 
plications to a wide range of practical signal 
processing. 
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Fig. 1 The structures of the WN filter and the 
WS model. (a)The structure of WN filter. (b)The 
Structure of the WS model. 

Fig. 2    The shape of a mother wavelet. 
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Fig. 3    The shape of a mother wavelet. 
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output 

Fig. 8    How to input the image data to the filters. 

Fig. 10 The results of the filtering for the ma- 
chine printed character 'E'. (a) The LSWN filter, 
(b) An optimized linear FIR filter, (c) An optimized 
OS filter. (d)The WN filter. 

Fig. 9 The images employed in the filtering of 
machine printed capital characters, (a) A target 
image in the learning. (b)An input image in the 
learning, (c) An original image in the filtering. 
(d)An input image in the filtering. 

Fig. 11 The images employed in the filtering of 
the the facial image, (a) A target image in the 
learning. (b)An input image in the learning, (c) An 
original image in the filtering. (d)An input image 
in the filtering. 
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Fig. 12 The filtering results for the facial image, 
(a) The LSWN filter, (b) An optimized linear FIR 
filter, (c) An optimized OS filter, (d) The WN 
filter. 

Fig. 14 The results of the sharpening for the ma- 
chine printed character 'E\ (a) The LSWN filter. 
(b)An optimized linear FIR filter, (c) An optimized 
OS filter, (d) The WN filter. 

Fig. 13 The images employed in the sharpening 
of machine printed capital characters, (a) A target 
image in the learning, (b) An input image in the 
learning, (c) An original image in the sharpening. 
(d)An input image in the sharpening. 
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Abstract A novel system architecture that 
exploits the spatial locality in memory ac- 
cess that is found in most low-level vision 
algorithms is presented. A real-time fea- 
ture selection system is used to exemplify 
the underlying ideas, and an implementa- 
tion based on commercially available Field 
Programmable Gate Arrays (FPGA 's) and 
synchronous SRAM memory devices is pro- 
posed. The peak memory access rate of a 
system based on this architecture is esti- 
mated at 2.88 G-Bytes/s, which represents a 
four to five times improvement with respect 
to existing reconfigurable computers. 

Keywords: Low-level vision, Reconfigurable archi- 
tectures, Tracking. 

1    Introduction 

It is well known that real-time processing of 
video streams is a most expensive task from 
a computational point of view, due to the 
high amount of information to be processed. 
At a resolution of 640 x 480 pixels and 30 
frames/sec, for example, the bandwidth of a 
single monochrome NTSC video stream is 9.2 
M-Bytes/sec. The bandwidth of a color video 
signal is three times as much. Even when sim- 
ple operations on pixel neighborhoods need to 
be carried out on such a data stream, the high 
bandwidth requirements rule out the use of 
conventional processors. For this reason, gen- 
eral purpose or dedicated massively parallel 
supercomputers based on the Single Instruc- 

tion Multiple Data (SIMD) paradigm have 
long been advocated as a cure to this prob- 
lem [1]. Massively parallel systems, however, 
have failed so far to provide a cost effective 
and flexible solution to the development and 
widespread use of vision systems, due to the 
physical constraints preventing their use on the 
field and their million-dollar price tags. Ap- 
plication Specific Integrated Circuits (ASIC's) 
have been widely used to implement low-level 
vision systems. Although they offer good per- 
formance, ASIC's do not lend themselves to 
rapid prototyping of systems and their develop- 
ment has high non-recurring engineering costs. 
Field Programmable Gate Arrays (FPGA's) 
emerged as a new technology for the implemen- 
tation of digital logic circuits during the mid 
80's. The basic architecture of an FPGA con- 
sists of a large number of Configurable Logic 
Blocks (CLB's) and a programmable mesh of 
interconnections [2]. Both the function per- 
formed by the logic blocks and the intercon- 
nection pattern are specified by a configura- 
tion stored in Static RAM (SRAM) memory 
cells scattered across the chip. This configu- 
ration can be specified by the circuit designer 
and easily changed at any time. In the be- 
ginning FPGA's were mostly viewed as large 
Programmable Logic Devices, thus they were 
usually employed for the implementation of 
the "glue-logic" used to tie together complex 
VLSI chips like microprocessors and memories 
used to build general purpose computer sys- 
tems. In the late 80's and early 90's it became 
clear that the ability to change electrically the 
logic functions of FPGA's at almost any point 
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during operation could open an entirely new 
spectrum of applications in the field of high 
performance computing. Accelerators built us- 
ing arrays of reconfigurable devices proved to 
boost the speed of several applications by up 
to three orders of magnitude, comparing fa- 
vorably with supercomputers [3]. Recently, we 
have designed and demonstrated a 2-D fea- 
ture selection system implemented on a com- 
mercially available FPGA-based reconfigurable 
computer [4]. This system is composed of a 
camera, a video decoder, an array of 6 Xilinx 
FPGA's and an interface to a host PC. This 
system is, to the best of our knowledge, the 
only feature selection system developed using 
reconfigurable devices. During this process we 
have learned several lessons: 

• The use of an array of FPGA's to accom- 
plish a given task adds a level of complex- 
ity to the design process, due to the need 
of manually partitioning the system across 
several chips. Moreover, signals crossing 
the boundary between neighboring chips 
incur additional latency, degrading system 
performance. 

• Most low-level vision tasks can be accom- 
plished by simple local operations per- 
formed across the image, which for the 
most part map nicely onto FPGA archi- 
tectures. Although FPGA's lack native 
floating-point support, by carefully im- 
plementing these algorithms floating-point 
operations can generally be avoided. 

• The majority of low-level vision algo- 
rithms process the image through a series 
of independent pipelined stages operating 
on local pixel neighborhoods of similar size 
(e.g. gradient computation, followed by 
nonlinear operations). 

• Performance of real-time image processing 
systems is limited by the throughput of 
memory and I/O channels. 

Based on these motivations, and the need felt 
by many practitioners in the computer vision 

community, we have designed a novel system 
level architecture tuned to real-time process- 
ing of video streams. This architecture exploits 
the locality of data access found in low-level 
vision algorithms and the recent availability of 
high pin count FPGA devices to partition in 
an optimal way memory and computation re- 
sources. The system that we envision is a PCI 
expansion board for a PC featuring a high den- 
sity reconfigurable device, several synchronous 
SRAM memories and a digital interface for a 
high resolution progressive-scan video camera. 
A conservative estimate of the memory band- 
width that we will be able to achieve using 
off-the-shelf synchronous SRAM memory de- 
vices is 2.88 G-Bytes/s at a 60 MHz memory 
clock rate, which represents a four to five times 
improvement with respect to existing reconfig- 
urable computers [5]. 

2    Requirements   of  real-time 
image processing systems 

Image processing tasks carried out by low- 
level vision systems require both memory and 
computation resources. Memory resources are 
needed to feed the data to be processed to com- 
putation resources in a steady flow, and vary 
according to the nature of the space where the 
operation is defined. Spatial operations take 
into account every pixel of the image and re- 
quire the availability of the pixel values be- 
longing to a neighborhood defined by some ge- 
ometric shape. Suppose that a pixel stream 
is transmitted in raster scan order by a video 
decoder, and that at every clock cycle a new 
pixel is available. The simple structure pre- 
sented in Fig. 1 will make the values of the 
pixels belonging to a 3 x 3 square window 
available to computing resources. This win- 
dow will slide across the entire image, cov- 
ering a different pixel neighborhood at every 
clock cycle. This structure is composed of sev- 
eral First In First Out (FIFO) memories and 
registers synchronized with the video decoder. 
For a k x k square neighborhood the length 
of the FIFO is M - k + 1, where M is the 

635 



Input stream 

J(i + l,j + l)   I{i + l,j)   I{i + l,j-l) 

M-k + 1 
 ^  

  Delay lines   

/(i-lj + i)   I(i-l,j)   I(i-i,j-l) 

Figure 1: Formation of a 3 x 3 pixel neighborhood. 

width of the image and usually k < M. In 
most FPGA architectures registers are abun- 
dant, and their implementation does not re- 
quire excessive area. FIFO memories, however, 
require an excessive amount of CLB's when 
implemented as long shift register chains. In 
the Xilinx XC4000 FPGA architecture, for in- 
stance, each CLB contains two flip flops. At 
NTSC resolution, forming a 3 x 3 neighbor- 
hood would require six 8 bit registers and two 
8 bits wide and 638 stages deep FIFO's, for a 
total of 5128 CLB's. On the other hand, the 
configurable logic blocks found in the XC4000 
architecture can be configured as 34 bit SRAM 
cells, thus bringing the the number of required 
CLB's down to 302. However, when we con- 
sider operations requiring the pixel values of 
several frames, like filtering a video signal in 
the time domain, even last generation FPGA 
devices are not able to provide enough mem- 
ory resources. The mechanism for neighbor- 
hood generation presented in Fig. 1 is easily 
adapted to the scheme employing an external 
RAM memory, as exemplified in Fig. 2. The 
two delay lines are here implemented by writ- 
ing to the external RAM the pixel value enter- 
ing the first FIFO memory and reading the val- 
ues corresponding to the output of the FIFO's. 
The read addresses are obtained by decrement- 

ing the write address by M - k + 1, and after 
each pixel clock cycle they are incremented ac- 
cording to 

lw 

IRI 

IR2 

= (lw + l) mod29, 

= (lRl + l) mod 2«, 

=    (lR2 + l)    mod 2«, 

IR*.!    =    fe-x+1)    mod 2", 

where q is the number of address lines of the 
memory device. Obviously, 2q > (k — 1)(M — 
k + 1) must hold. According to this scheme, 
for every pixel clock cycle one memory write 
and k — 1 memory read cycles are issued. Typ- 
ical values for the pixel clock frequency are in 
the 12-=-40 MHz range, while off-the-shelf syn- 
chronous SRAM's are usually clocked at 100 
MHz. This means that, according to image 
resolution, two or three cascaded delay lines 
will usually fit into a single external memory 
device. 

3    A   reconfigurable   architec- 
ture for low-level vision 

The data flow of many image processing sys- 
tems can be decomposed as a sequence of op- 
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Figure 2: Building 3x3 pixel neighborhoods by external SRAM memory and internal CLB memory. 

erations on sets of data whose organization re- 
sembles that of the initial image. The first 
stage of the feature selection system [4] de- 
picted in Fig. 3, for example, computes the 
image gradient components Ix and Iy by con- 
volving the input image respectively with the 

" -0.5 " 
kernels [ -0.5   0   0.5 ] and 0 

0.5 
The 

next operation is the calculation of (Ix)
2, {Iy)2 

and Ix- Iy, which are defined for every pixel in 
the image.   Then a, b and c, defined by a = 

where the sum is extended over the pixels of a 
3x3 neighborhood, are computed in parallel 
by three chains of adders interleaved with pixel 
and line delay elements in order to build a 3 x 3 
mask in the (Jx)

2, Ixxly and (Iy)
2 planes. The 

rest of the system presented in Fig. 3 calculates 
the value of P{Xt) = (a - Xt)(c - Xt) - b2 by 
time-multiplexing a signed multiplier and per- 
forms the test expressed by 

P(Xt) > 0   and    a > Xt. 

If the current 3x3 window passes the test, a 
red pixel is sent to the video encoder, meaning 
that that the window contains a "good" fea- 

ture, otherwise the pixel value from the input 
stream is transmitted to the video encoder un- 
changed. For each intermediate operation of 
the algorithm, like the calculation of the gra- 
dients Ix and Iy and the coefficients a, b, c, 
memory resources are necessary to build the 
pixel neighborhood, whose content is shifted 
across the "images" associated with the in- 
put variables. For the sake of clarity, we will 
consider a k x k pixels square neighborhood, 
and will later relax this assumption. At ev- 
ery clock cycle the current values associated 
with the neighborhood feed a pipelined func- 
tion block, computing some (arithmetic) func- 
tion of the input data. The only constraint 
imposed on this block is that, after an initial 
latency of one or more clock cycles, it must gen- 
erate an output data stream synchronous with 
the input data stream. The total latency intro- 
duced by this stage is thus given by the sum of 
the latency of the pipelined function block and 
the number of cycles needed to fill the delay 
lines so that the central pixel of the neighbor- 
hood corresponds to the first pixel of the input 
stream. Due to these latency periods, the out- 
put stream will be delayed with respect to the 
input stream. It is convenient to express this 
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Figure 3: Schematic logic diagram of the real-time feature selection system. 

phase shift in terms of an horizontal and a ver- 
tical components, which represent respectively 
the number of vertical pixel columns and hor- 
izontal scan lines by which the output stream 
has to shifted in order to be aligned with the in- 
put stream. Some processing stages, like those 
computing (Ix)

2, Ix x ly and (Iy)
2, do not need 

memory resources since they compute num- 
bers that are associated with individual pixels. 
Most stages, however, process pixel neighbor- 
hoods, thus a modular and efficient scheme for 
their generation is of the utmost importance 
for real-time video processing. In the archi- 
tecture that we propose, the memory resources 
used to build pixel neighborhoods are provided 
by external synchronous SRAM memory de- 
vices, addressed according to the scheme pre- 
sented in Fig. 2. The use of external memory 
devices has several important impacts on the 
design of the system. The most critical sec- 
tion of the system in terms of timing require- 
ments is the FPGA to memory interface, which 
is clocked at up to 100 MHz, the maximum sys- 
tem clock frequency supported by most current 
generation FPGA's. The rest of FPGA logic 
can run at the slower pixel clock rate, usually 

in the 12 -i- 40 MHz range. In addition, the 
FPGA to memory interface can be easily gen- 
erated from a high level specification of the al- 
gorithm that is being mapped. There is an ad- 
ditional key observation that can be exploited 
to further increase the memory bandwidth of 
a system based on this architecture. As shown 
in Fig. 2, the SRAM addresses are generated 
according to a fixed pattern, and their offset is 
M - k + 1, where M is the width of the image 
in pixel units and k is the size of the neighbor- 
hood. Different neighborhood sizes, denoted 
by km, may be used at the different P stages 
of the algorithm by taking 

m=l,...,P 

and adjusting the length of the FIFO's used in 
each processing stage by inserting k — km ad- 
ditional registers inside the FPGA. Using this 
strategy, the address increment is fixed indeed, 
and this property can be exploited to increase 
the memory bandwidth of the system as fol- 
lows. First, we observe that memory devices 
are addressed according to a fixed and repeat- 
ing pattern: 

1. FPGA writes data to memory location 
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Iwu 4    Conclusions 

2. FPGA reads from memory location lm = 
lWi-(M-k + l), 

3. FPGA reads data from memory location 
lR2 = lß2-(M-k + l), 

5. FPGA reads data from memory location 
/«*_! = lRk-2 -(M-k + 1), 

6. Increment pointers to read and write loca- 
tions, 

7. Go to 1. 

This property allows us to share the q address 
lines driving the memory devices. Let us put 
our attention to a high density and high pin 
count re-programmable device recently devel- 
oped by Xilinx, the XC40125XV FPGA. The 
total number of I/O pins available to the user 
of this device is 448. If we dedicate 32 of these 
pins to communication with the digital camera 
and video monitor and 32 pins to communica- 
tion with the PCI bus interface chip, the re- 
maining 384 are available for interfacing with 
external memory chips. Up to 12 128K x 32 
bit memory devices can be connected to the 
main FPGA. The number of FIFO memories 
that we will be able to fit in a single memory 
device depends on the widths of the data paths 
and on the constraint given by the fact that the 
delay lines implemented in the same device are 
necessarily cascaded. An estimate of the mem- 
ory bandwidth that we will be able to achieve 
using this architecture, accessing the memory 
at a conservative 60 MHz clock rate, is thus 
2.88 G-Bytes/s. This rate, represents a four to 
five times improvement with respect to exist- 
ing reconfigurable computers. We emphasize 
that sharing the address lines is instrumental 
to achieve such a bandwidth. In fact, without 
sharing the address lines the maximum number 
of memory devices that we can connect to the 
FPGA drops from 12 to 7, and the bandwidth 
decreases by the same factor. 

We have presented a novel reconfigurable ar- 
chitecture dedicated to fast prototyping of real- 
time low-level vision systems. An observation 
related to the mechanics of pixel neighborhood 
generation permits to increase almost by a fac- 
tor of two the bandwidth of the communication 
channel between computation and memory re- 
sources. By exploiting this idea, an improve- 
ment of four to five times with respect to exist- 
ing reconfigurable computers is achieved. We 
foresee the application of this architecture in 
general real-time signal-processing tasks, con- 
trol systems for autonomous vehicle guidance, 
vision-based human-machine interfaces as well 
as in other applications not related to com- 
puter vision. 
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Abstract There is a growing interest in sensory- 

motor integration for realizing new behavior of in- 

telligent robots and there must be some processing 

architectures integrated with the detection function. 

When viewed from the system as a whole, a parallel 
processing architecture is produced in which a part 

of the processing is distributed among the sensors. 
As a result of this, it is strongly required that a new 
hierarchical parallel distributed processing be intro- 
duced, corresponding to such a processing architec- 
ture. From such a viewpoint, this paper considers 
mainly the processing architecture for sensory in- 
formation in robotics from new viewpoints such as 
massively parallel processing vision, high speed vi- 
sion, active vision, and sensory-motor fusion. In 
addition, some demonstrations of grasping are pre- 
sented as applications, and the perspectives of fu- 
ture sensor technology are discussed. 

Keywords: hierarchical parallel processing archi- 
tecture, sensory-motor fusion, vision chip, grasping 

1    Introduction 

There is a growing interest in sensory-motor 
integration for realizing novel behavior of intel- 
ligent robots and mechanical systems. The key 
to the realization of high-level behaviors is sen- 
sory information processing technology such 
as sensor data fusion and hierarchical parallel 
processing architecture. With recent progress 
of the integration of electronic circuits, great 

changes will occur in the role and the tech- 

niques of the sensor and sensory information 
processing. 

The most important point to be noted is 
that with the progress of such integration the 
computation cost is exceeded by the commu- 
nication cost. In other words, the sensor is no 
longer considered simply as a hardware device 
for transforming a physical value to an electri- 
cal value, as in conventional sensors, but rather 
as an information processing module including 
sensory information processing. 

In such a design, there must be some pro- 
cessing architectures integrated with the detec- 
tion function. When viewed from the system 
as a whole, a parallel processing architecture 
should be necessarily introduced into the sys- 
tem in which a part of the processing is dis- 
tributed among the sensors [1]. From such a 
viewpoint, this paper considers mainly the pro- 
cessing architecture for sensory information in 
robotics based on massively parallel processing 
vision, high speed active vision, and high speed 
sensor fusion. 

New theory for constructing high speed 
sensory-motor fusion system using hierarchical 
parallel processing is proposed on high-speed 
sensory feedback. In addition, a 23 degrees of 
freedom robot system with high speed vision, 
force sensors is shown as an experimental plat- 
form. 

By using the system, some demonstrations 
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of high speed grasping, tracking, and some 
applications such as robotics, human inter- 
face and virtual reality, are presented. In 
the demonstration, tracking, reaching grasping 
impedance control, and some application tasks 
are integrated into a unified algorithm. 

Lastly, the perspectives of future sensory in- 
formation processing and fusion technology are 
discussed. 

2    Hierarchical   parallel   pro- 
cessing architecture 

In this section a system architecture suitable 
to fuse sensor information is discussed by an- 
alyzing the real world environment. There are 
two important features in the real world, as 
follows: 

(A) Flexibility under multiple conditions 
A system should have flexibility to complete 

various tasks under various conditions. The 
process should be suitably changed according 
to the condition, for example an object's posi- 
tion, an object's shape and an object's motion. 

To implement this, a hierarchical parallel 
processing architecture with several types of 
sensor is valid. Multiple types of sensory-motor 
fusion processing coexist in one system based 
on it. As a result, flexibility in multiple envi- 
ronments is realized. 

(B) Responsiveness to dynamic changes 
In the real world, the environment changes 

dynamically and is possible that the object 
moves at high speed and sudden accidents hap- 
pen. 

To overcome this, motion control based on 
high-speed sensory feedback is effective. High- 
speed sensory feedback means to return feed- 
back of external sensor information at a rate 
higher than the rate of control. Because 
the system can recognize an external environ- 
ment in real time, responsiveness to dynamic 
changes in the real world environment is real- 
ized. 

We adopt an architecture in which both flex- 
ibility and responsiveness are realized.   This 

is a hierarchical parallel architecture in which 
each element consists of high-speed sensory 
feedback within 1ms as shown in Figure.1. 
Because each feedback process is completed 
within 1ms, adjustment to various conditions 
is realized at high speed. 

Planning Layer. - 

Control Lf yi 

Actualor3 
Actuator4 

Actuators 

Processing Element 

Figure 1. Hierarchical parallel processing ar- 
chitecture based on high-speed sensory feed- 
back 

In general the cycle time of 1ms is necessary 
to prevent mechanical resonance in robotic 
control. In our architecture we decided that 
the cycle time of each sensory feedback should 
be 1ms to ensure stable motion control. 

As a related research Albus proposed a hi- 
erarchical parallel architecture based on the 
model of humans [2], and Brooks proposed a 
behavior-based hierarchical architecture con- 
sisting of layered sensory feedback modules [3]. 
We adopt a similar hierarchical parallel ar- 
chitecture, but responsiveness based on high- 
speed sensory feedback is not considered in 
these architectures. 

3     1ms   sensory-motor   fusion 
system 

Using the idea of a hierarchical parallel archi- 
tecture, we have developed a system called the 
"lms Sensory-Motor Fusion System" to real- 
ize high-speed sensory feedback and fusion of 
sensory information. This system exhibits high 
performance processing of all sensory feedback, 
including visual feedback, with a cycle time of 
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Figure 2. Architecture of 1ms sensory-motor fusion system 

lms. Because the processing result is directly 
used to control the manipulator, each task is 
realized with high responsiveness. Figure 2 
shows the system components and Figure 3 
shows a photograph of the system. 

3.1    DSP parallel processing system 

The DSP subsystem is the main part for fusion 
processing of sensory feedback within lms. It 
has a hierarchical parallel architecture consist- 
ing of 7 DSPs connected to each other, and 
many I/O ports are installed for inputing vari- 
ous types of information in parallel. In this sys- 
tem we use a floating-point DSP TMS320C40 
which has high performance (275 MOPS) and 
6 I/O ports (20 Mbytes/sec). By connecting 
several C40 processors, a low bottle-neck hier- 
archical parallel architecture is realized. 

And In DSP system the following I/O ports 
are prepared; ADC (12 bit, 64 CH), DAC (12 
bit, 24 CH), and Digital I/O (8 bit, 8 ports). 

These I/O ports are distributed on several 
DSPs to minimize the I/O bottleneck so that 
sensor signals are input in parallel. 

A parallel programming development envi- 
ronment has been prepared in which multi- 
process and multi-thread programming is eas- 
ily realized. This function is useful to program 
parallel sensory feedback. 

3.2    High-speed active vision 

The active vision subsystem consists of a vision 
chip system called SPE-256 and a 2-axis actu- 
ator moved by DC servo motors. SPE-256 con- 
sists of a 16 x 16 array of processing elements 
(PE) and PIN photo-diodes (PD). The output 
of each PD is connected with a correspond- 
ing PE. Each PE is a 4-neighbor connected 
SIMD based processor which has a 24 bit reg- 
ister and a bit-serial arithmetic logic unit ca- 
pable of AND, OR, and XOR operations etc. 
Because the visual processing is perfectly exe- 

642 



cuted in parallel, high-speed visual feedback is 
realized within 1ms [6]. 

The actuator part of the active vision sub- 
system has two degrees of freedom; pan and 
tilt. This is used to move the sensor platform 
and this is controlled by a DSP assigned for 
active vision control. 

Figure 3. 1ms sensory-motor fusion system 

3.3    Multi-fingered   dextrous   hand- 
arm 

The hand-arm subsystem is a 7-axis manipula- 
tor with a dextrous multi-fingered hand. The 
multi-fingered hand has 4 fingers and 14 joints. 
Its structure is similar to a human hand, in 
which a thumb finger is installed opposite to 
the other three fingers. Each joint is controlled 
by DC servo motors in a remote place using a 
control cable consisting of an outer casing and 
an inner wire. Each joint of the hand has a 
potentiometer for position control and a strain 
gage for force control. 

The arm has 7 joints controlled by AC servo 
motors. An encoder is installed in each joint 
and a 6-axis force/torque sensor is installed at 
the wrist. 

4    Vision chip 

For real-time machine vision such as robot con- 
trol using high speed visual feedback, tradi- 
tional vision systems have an I/O bottleneck 
problem due to scanning and transmitting a 

large amount of image data, and the sampling 
rate is limited to video rates (NTSC 30 Hz / 
PAL 25 Hz). To solve this problem, we have 
developed the SPE-256. But this is a prototype 
scale-up model and an integrated architecture 
in one chip is needed. 

For this reason we have developed a next 
generation vision chip architecture called S3PE 
(Simple and Smart Sensory Processing Ele- 
ments) [4]. In the vision chip architecture, 
photo detectors (PDs) and parallel processing 
elements (PEs) are integrated in a single chip 
without the I/O bottleneck, and the parallel 
PEs have general-purpose processing capabil- 
ity and are controlled by programs using digital 
circuits for real-time machine vision in robot 
control. 

Processing 
. Photo Detector Element 

Decoder 

(a) the whole chip 

II i ,  " a   |n -" 
Z_en 

4-neighbours 
output    down     right 

(b) PE 

Figure 4.    Block diagram of vision chip archi- 
tecture S3PE 

The block diagram of the whole chip is 
shown in Figure 4(a). General-purpose PEs are 
arranged in a massively parallel 2D array. Each 
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PE is directly connected to a PD, an output 
circuit, and its four neighboring PEs. Image 
signals from the PDs are A/D converted and 
transmitted in parallel to all the PEs. Instruc- 
tion codes are decoded, transmitted to all the 
PEs, and executed simultaneously (SIMD type 
processing). The calculated result is transmit- 
ted to the output circuit and feature values 
such as moments are extracted and transmit- 
ted to an external system. 

Table 1. Number of steps and time of sample 
programs on S3PE 

algorithm steps (time1) 

4-neighbor edge detection (binary) 11 (0.72 /is) 
4-neighbor smoothing (binary) 14 (1.0 n&) 

4-neighbor edge detection (8bit) 70 (5.6 /xs) 
4-neighbor smoothing (8bit) 96 (7.7 ps) 

4-neighbor thinning (binary) 2 23 (1.9 (is) 
Convolution (3x3, binary input) 40 (3.2 fis) 
Convolution (3x3, 4-bit input) 372 (30 ßs) 

Poisson equation (4-neighbor, 4-bit) 3 63 (5.0 us) 

Calculated regarding an instruction cycle of 80 ns 
The process is repeated 10 times 
The process is repeated 200 times 

Figure 5. Photograph of the test chip 

The block diagram of the PE is shown in 
Figure 4(b). Each PE has an ALU, a local 
memory, and three registers. The ALU con- 
sists of a full adder, four multiplexers and a D- 
flipflop for holding a carry bit and can execute 
10 logical and 8 arithmetic binary operations. 
Multi-bit operations are implemented by re- 
peating single operations serially (bit serial op- 

eration). The local memory has a 5-bit address 
space and consists of a 24-bit RAM and an 8- 
bit memory-mapped I/O which is connected to 
a PD, the output circuit, and four-neighboring 
PEs. Each bit can be randomly accessed. 

In the vision chip, the main operation of the 
PEs is 2D pattern processing. In other words, 
2D to 2D pattern transformations can be done 
in the PEs. Therefore, the total amount of 
data is still large. If the 2D pattern data were 
directly output to external pins, we would face 
the I/O bottleneck problem again. To avoid 
this problem, we introduced an output circuit 
which extracts feature values such as moments. 
To integrate the circuit together with PEs, a 
compact and homogeneous circuit design using 
digital circuits is required. 

As shown above, the vision chip with the 
S3PE architecture has general-purpose pro- 
cessing capabilities and can implement various 
algorithms. We developed some sample pro- 
grams for the S3PE and simulated them using 
a vision chip simulator we developed. The sam- 
ple programs and the results of simulations are 
shown in Table 1. Assuming an instruction cy- 
cle of 80 ns, all of these programs are executed 
in much less than 1 ms, which is enough for 
robot control. 

For the requirement to integrate digital PEs 
and analog PDs together on a single chip, and 
also to make the total area of the circuit as 
small as possible, a full custom design is neces- 
sary. The test chip fabricated in 1997 has 8x8 
PEs and PDs in an area of 4.1 mmx3.7mm us- 
ing a 0.8^m CMOS process. An SRAM tech- 
nology is used in the local memory in this de- 
sign. The number of transistors for the PE is 
437 per pixel. Figure 5 shows a photograph of 
the chip. 

It is estimated that 32x32 pixels can be in- 
tegrated in 9.1 mmx 7.9 mm using the same 
process. More than 64x64 pixels will be inte- 
grated using more recent processes. We have 
developed a test chip using a 0.35/im CMOS 
process. 

We have already realized many applications 
such as target tracking, human interface us- 
ing high speed vision system using vision chip 
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architecture[5, 6, 7, 8, 9, 10]. 

5    High speed grasping using 
visual and force feedback 

We have realized grasping as an application of 
the 1ms sensory-motor fusion system[9]. The 
main aim is to realize high responsiveness to 
dynamical motion of a manipulated object by 
high speed visual feedback and force feedback 
with contact. 

Figure 6 shows the block diagram of the 
grasping algorithm and Figure 7 shows a sys- 
tem configuration in high speed grasping. The 
manipulator with the dextrous hand and the 
active vision system are located face-to-face. 
Manipulated object moves between the manip- 
ulator and the active vision system, and the 
hand catches it by observing its position. Here 
we use two dimensional image features for the 
X-Z plane as visual feedback information. 
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Figure 6. Algorithm of high speed grasping 

Four feedback loops are executed in parallel 
to realize high performance processing in the 
high speed grasping system. 

(a) Tracking (Active Vision): Tracking is done 
to acquire reliable object information. The ac- 
tive vision system is controlled so that the cen- 

Constraint Plane 

(a) Motion of the arm and the active vision 

Grasping Preshaping 

(b) Motion of the hand 

Figure 7. Motion of High Speed Grasping 

ter of the observed object is always kept in the 
center of the image plane. 

(b) Tracking (Arm): By canceling the object 
motion,tracking of the arm is done to keep the 
arm in a position suitable for grasping. In the 
algorithm, the relative position errors and the 
relative orientation error between the hand and 
the object observed by active vision are main- 
tained at zero on the Y-Z plane. 

(c) Reaching (Arm): Reaching of the arm is 
done to control the relative position between 
the hand and the object. In the algorithm, 
the arm moves from the initial position to the 
grasping position along the X axis. The initial 
position and the trajectory along the X axis 
can be given beforehand because the motion 
along the X axis is orthogonal to the tracking 
motion of the arm using visual information. 

(d) Grasping (Hand): Grasping of the hand 
is done according to the relative distance be- 
tween the object and the end-effector. Force 
sensor compliance control is used to realize sta- 
ble grasping at each joint. The hand shape can 
be suitably adjusted for grasping according to 
the object shape obtained by visual informa- 
tion. 
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Figure 8.    Experimental result: grasping of a 
hexahedron 

These four feedback controls are executed in 
parallel. Each cycle time of the feedback loops 
is less than 1.5ms, and adequate responsiveness 
to the real world is achieved without using pre- 
diction. 

The experimental result is shown in Figure 
8 as a continuous sequence of pictures[10, 11]. 
All sensory feedback is executed in parallel ac- 
cording to the object motion at high speed: 
tracking motion of the active vision, tracking 
and reaching motion of the arm, and grasping 
motion of the hand. In Figure 9 a close-up 
view of the same motion is shown. In this fig- 
ure tracking is executed from 0.0ms to 0.5ms 
and both reaching and grasping motion start 
at 0.5ms and all motion is completed at 0.8ms. 
Then in Figure 10 a close-up view of the grasp- 
ing motion of a spherical object is shown. It is 
shown that the shape of the hand is changed 
to a suitable shape for grasping of a sphere. 

In Figure 11 the trajectory of the hand is 
shown when grasping and releasing are alter- 
nately executed. In this figure, the Y axis po- 
sition of the hand and the object show the 
tracking motion, and the X axis position of 
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Figure 9. Experimental result: grasping of a 

hexahedron 

the hand and objective trajectory for reaching 
motion show the reaching motion. This figure 
shows that both responsive tracking by visual 
feedback during the releasing phase and stable 
grasping by visual and force feedback during 
the grasping phase are realized. 

In these experiments, because the object is 
moved by a human hand, its trajectory is irreg- 
ular and difficult to predict. Using the speed 
of the sensory feedback this problem is solved. 

6     Conclusion 

This paper is based on the idea that parallel 
processing and high speed sensory information 
processing should be positively introduced into 
sensor feedback systems and an architecture is 
discussed using some applications. 
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Figure 10.   Experimental result: grasping of a 
sphere 
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Abstract- Despite the enormous power of present-day com- 
puters, digital systems can not respond to real-world events 
in real time. Biological systems, while being built with very 
slow chemical transistors, are very fast in such tasks like 
seeing, recognizing, and taking immediate actions. This 
paper deals with the issues of how we can build real-time 
intelligent systems directly on silicon. An intelligent LSI 
system based on the psychological model of a brain is pro- 
posed. The system stores the past experience in the non- 
volatile analog vast memory and recalls the maximum likeli- 
hood event to the current input using the association proces- 
sor architecture, where circuits are working in the ana- 
log/digital-merged decision making principle. Hardware- 
friendly algorithms have been developed to deal with real- 
time image recognition problems based on the association 
processor archiotecture. 

Key Words: Association, neuron MOS, recognition, vector 
quantization. 

1. Introduction 

Over the past decade, we have witnessed a phe- 
nomenal progress in the computer technology. It is 
now possible to enjoy the super computer performance 
of some 15 years ago with our laptop PC's. With such 
overwhelming computational powers of present-day 
digital systems, however, it is not possible to respond 
to real-world events in real time. Namely, seeing, rec- 
ognizing, and taking immediate actions are almost 
impossible for digital computers, while they are just 
effortless tasks for human beings, or biological sys- 
tems in general. It is worth pointing out that biological 
systems are built with very slow chemical transistors, 
typically operating nine to ten orders of magnitude 

Vl   V2 

11 i 
Floating Gate 

C,v,+C2v2+---+C„V„ 

I 
Transistor Turns ON" 

Source Drain 

Fig.  1. Concept of neuron MOSFET (neuMOS or 
DMOS for short). 

slower than short channel transistors available in cur- 
rent VLSI technology. We are missing something es- 
sential. 

The strategy of our tackling the subject is in 
three folds. Firstly, the functionality of an elemental 
transistor is enhanced. Namely, the conventional MOS 
transistor working as a simple switch in digital circuits 
is replaced by a functional device and assigned more 
jobs to carry out at the very elemental transistor level. 
The subject is described in § 2. Secondly an associa- 
tion processor architecture has been developed as the 
hardware core of intelligent data processing. This is 
the realization of our very naive model of a brain that 
recalling of the maximum likelihood event in the past 
memory is the bases of recognition [15,16]. The hard- 
ware model and its application to some practical prob- 
lems are discussed in § 3 and § 4, respectively. In § 5, 
the third part of our strategy is presented, concerning 
the development of hardware-friendly algorithms, i.e., 
the algorithms for recognition that are most efficiently 
conducted in the association processor architecture. We 
have developed a very versatile method of extracting 
characteristic vectors from image data. The new vector 
representation has been applied to medical X-ray im- 
age diagnosis as well as to the recognition of hand- 
written patterns. Some preliminary results are pre- 
sented. 

2. Functionality Enhancement in Elementary 
Device 

The concept of Neuron MOS Transistor (neu- 
MOS or vMOS for short) [1] is shown in Fig. 1. The 
floating gate potential is determined by the multiple 
input signals via capacitance coupling and controls the 
on and off states of the transistor. Due to its functional 
similarity to the neuron model [2], the device bears the 
name. Applications of vMOS to binary digital circuits 
[3-7], real-time reconfigurable logic gates [3,5], self- 
learning neural networks [8], image processing [9,10], 
and analog multipliers [11] have been demonstrated. 

Usually vMOS' are utilized in a CMOS inverter 
configuration to form a logic gate[3,4]. The accuracy 
of multivalue logic computation as well as the reduc- 
tion in the power dissipation has been achieved by the 
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Fig. 2 "Seeing" is not objects imaging onto the retina 
but recalling of past memory triggered by the stimuli on 
the retina. 

introduction of clocked vMOS schemes [12-14]. 

3.  Association Processor Architecture  and 
vMOS Circuits Implementation 

3.1 Right Brain Computing Model 
What are the intelligent functions to be imple- 

mented on integrated circuits? See Fig. 2. "Seeing and 
recognizing objects" is a very intelligent function of 
our brains. Then, what does "seeing" mean? "Seeing" 
is not mere optical imaging of objects onto the retina 
but that memorized images in the brain are recalled 
with their full richness of details triggered by the 
stimuli produced on the retina. Recalling past memory 
in immediate response to the current sensory inputs is 
the very bases of recognition. Based on this postulate, 
or so to speak a psychological brain model, we are 
tackling the subject of building "intelligent" electronic 
systems on silicon [15]. 

Our hardware recognition model is schematically 
illustrated in Fig. 3 [16]. An image captured on a two- 
dimensional pixel array is compressed into a charac- 
teristic vector consisting of a relatively small number 

A 
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i —EH _. 
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Fig. 4. Basic architecture of vMOS associator. 

Fig. 3. Hardware recognition model. 

of analog/mulitival'ued variables each representing one 
of the salient features of the image by a respective 
code number. Then the association processor performs 
a parallel search for the most similar code vector in the 
vast memory where past experience is stored as tem- 
plate vectors. The association is conducted by calcu- 
lating the distances between the input code vector and 
the stored template vectors and searching for the 
minimum distance vector by the winner-take-all 
(WTA) circuitry [17]. In building such systems, the 
analog/digital merged computation scheme using 
vMOS circuitry is utilized as a guiding principle. 

3.2   vMOS Association Processor 
The architecture of the vMOS association proc- 

essor is shown in Fig. 4 where X is an input vector and 
A-Z template vectors down loaded from the vast mem- 
ory. At each matching cell, the absolute value of differ- 
ence IX j - Z jl is calculated and transferred to the float- 
ing gate of a vMOS source follower and accumulated. 
Therefore the output of thevMOS source follower 
yields the Manhattan distance, the dissimilarity meas- 
ure between the input vector and the template vector. 
The WTA is composed of vMOS inverters having two- 
equally weighted inputs. At time t - 0, all vMOS in- 
verters are in on state. This is because VDD is fed to one 
of the inputs and a non-zero distance value to the other, 
thus biasing the inverter above the threshold of V'DD/2. 
When the common voltage is ramped down, the vMOS 
inverter receiving the smallest distance value turns off 
firstly. At this moment, the feedback loop in each in- 
verter is closed and the state of the inverter is frozen. 
The location of the smallest distance vector is identi- 
fied by a flag appearing at the off-state inverter. Sub- 
stantial computation is conducted by analog processing 
which is immediately followed by binary decision. 
This analog/digital-merged decision making operation 
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Fig. 5. Vector quantization (VQ) algorithm for 
image compression. 

is an essential feature of the vMOS circuitry. 
The absolute value circuit is simply composed of 

two floating-gate NMOS' connected at their source 
terminals [18,19] to form a source-follower MAX 
circuit. In order to achieve a mass storage of knowl- 
edge in the form of analog template vectors, a high- 
precision analog EEPROM technology has been de- 
veloped [20]. The chip does not require time- 
consuming write/verify cycles [21] to write mulitivalue 
or analog data in the cell. 

4. Applications of Association Processor Archi- 
tecture 

4.1 Vector Quantiation (VQ) Processor for Motion 
Picture Compression 

As a straightforward application of the association 
processor architecture, the vector quantization (VQ) 
chips have been developed for motion picture com- 
pression and about three orders of magnitude faster 
performance has been demonstrated as compared to 
typical CISC processors. The VQ chips were imple- 
mented in conventional CMOS digital circuitry em- 
ploying a fully parallel SIMD architecture [22,23] as 
well as in the vMOS circuitry [24], resulting in the 
eight times higher integration density in the vMOS 
implementation. This is briefly described in the fol- 
lowing. 

4.2 VQ Algorithm 
The vector quantization (VQ) [25] algorithm 

employed in the system is explained in Fig. 5. A frag- 
ment taken from the original picture (4x4 pixels for 
instance) is an abstract pattern of gray patches, which 
can be approximated by one of the template patterns 
stored in the code book. Thus the pixel data are com- 
pressed to the code number of the template. Although 
the algorithm is straightforward, the template matching 
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Fig. 7. Digital VQ processor for 256-template- 
vector parallel matching. 

is an extremely expensive computation. However, this 
is what the association processor can carry out most 
efficiently. 

4.3 Digital VQ processor 
In order to prove the VQ algorithm is effective 

for motion picture compression, we first implemented 
a VQ processor in a pure digital CMOS technology. 
The most important concern of the system is the real- 
time encoding of motion pictures. In order to encode a 
640X480 full color picture in a 4:1:1 format within 33 
msec, a single VQ operation must be completed within 
1.1 u.sec. Our strategy toward this end is as follows. 
Firstly a fully parallel SIMD architecture has been 
employed. Secondly a single VQ operation is conduct- 
ed in two pipeline stages, each pipeline segment con- 
sisting of 19 cycles. As a result, a single VQ operation 
is finished in every 1.1 |xsec at a clock frequency of 17 
MHz. Thirdly the chip is extendible to 8-chip master- 
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Fig. 9. Photomicrograph of vMOS VQ chip. 

slave configuration, enabling us to perform a fully 
parallel search for maximum 2048 template vectors in 
1.1 (isec. 

Fig. 6 shows the block diagram of the VQ chip 
module, which is composed of eight VQ chips, namely 
one master chip and seven slave chips. Each VQ chip 
stores 256 template vectors in the embedded SRAM. 
The input vector is given to all the chips at the same 
time and the parallel search for the minimum-distance 
template vector is carried out in three stages of com- 
petition using digital winner-take-all (WTA) circuits. 

Fig. 7 shows a photomicrograph of the chip 
fabricated in a 0.6-^m single-poly triple-metal CMOS 
technology. A single VQ operation for 2K template 
vectors on typical CISC processors requires roughly 
1.2 M operations. This number was derived from the 
estimation: (38 operations/element) X (16 ele- 
ments/vector) X (2048 vectors/VQ) = 1.2 M opera- 
tions/VQ. The present VQ system in the eight-chip 
configuration can do this job in 1.1 usec, which is 
equivalent to a CISC processor performance of about 
1000 GOPS (1.2M operations/ 1.1 u.sec). 

4.4 vMOS VQ Processor 
An analog vector quantization processor has 

been also developed using the neuron-MOS (vMOS) 
technology [24]. In order to achieve a high integrating 
density, the template-merged matched cell [19] is em- 
ployed in the absolute value circuitry. A new- 
architecture vMOS winner-take-all (WTA) circuit has 
been developed to resolve the trade-offs between the 
search speed and the discrimination accuracy. 

In Fig. 8, the WTA architecture is illustrated. All 
256 comparator outputs are fed to an OR gate and its 
output is fed back to the reference voltage terminal of 
each comparator, thus forming a multiple-loop ring 

oscillator. The loop gain is controlled by the variable 
resistance inserted in the loop. At the start of WTA 
activation, all the vMOS comparators turn on and the 
OR output starts an l-to-0 transition. This transition is 
fed back to all comparators and provide them with a 
descending reference voltage. If one of the compara- 
tors upsets, the OR gate upsets also and starts a 0-to-l 
transition. Detecting this transition, the controller in- 
creases the value of the variable resistance. In this 
manner the feed back gain is step-by-step reduced and 
the winner search accuracy is gradually increased from 
the coarse search with a low scan rate to the fine 
search with a high scan rate. As a result, the discrimi- 
nation accuracy of 5mV has been achieved in five scan 
steps. 

A photomicrograph of the analog VQ processor 
chip is shown in Fig. 9. The chip was built in a 1.5-um 
double-polysilicon CMOS technology and has the chip 
size of 7.2mm X 7.2mm. A single chip contains 256 16- 
element template vectors. This is equivalent to one 
eighth of the chip size of our previous digital CMOS 
implementation (built in a 0.6-um CMOS technology) 
when the same design rules are assumed for both 
chips. 

4.5    CDMA Matched Filter 
The fully-parallel self-correlation matching 

technique based on the vMOS association processor 
architecture was first developed for the motion vector 
detection [16]. This principle has been extended to 
build a CDMA matched filter, one of the key compo- 
nents in the next-generation WB-CDMA wireless 
communication systems [26]. In this application the 
templates are binary vectors representing the short PN 
(pseudorandom noise) codes with varying phase shifts. 

The chip architecture is shown in Fig. 10. An 
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Fig. 10.   Block diagram of vMOS matched filter. 

input signal train captured by sample and hold circuits 
is simultaneously matched with a group of templates 
having all possible shifts in the phase of an identical 
PN (pseudorandom noise) code. The maximum corre- 
lation is detected by fully parallel comparison using 
the binary-search vMOS winner-take-all circuit. Such 
a parellel architecture enables us to perform very fast 
peak detection as well as the detection of second or 
third correlation peaks arising from multi-path delays. 
A photomicrograph of the test chip fabricated in a 0.6- 
u.m double-poly triple-metal CMOS technology is 
shown in Fig. 11. 

5. Characteristic Vector Extraction from Im- 
ages 

So far we have been discussing the hardware 
implementation issues of the association processor 
architecture and have demonstrated its powerful nature 
in several practical applications. In the following the 

Fig. 11. Photomicrograph of a test chip of the vMOS 
MF fabricated in a 0.6-um double-polysilicon triple- 
metal CMOS technology. 

application of the architecture to image recognition 
problems is presented. 

5.1 Linear Vector Formation 
Image data are usually represented by a two- 

dimensional array of pixel data, i.e., by a matrix, con- 
taining voluminous data. Effective dimensionality 
reduction in the input image while retaining the char- 
acteristic features is the most important concern. In 
order to fit the problem to the association processor 
architecture in Fig. 3, we must generate a one- 
dimensional array of numerals, which we call hereafter 
"a linear vector." The two linear vectors representing 
two resembling images must be closer in the vector 
space. A new linear vector representation method we 
have developed is described in the following. 

An image of 64 X 64 pixels was first subjected to 
pixel-by-pixel spatial filtering to extract four-direction 
edges, i.e., horizontal, vertical and ±45° . The de- 
tected edges are indicated by digital flags at their loca- 

ojUAj^qp^ 
o Aiji A J_i 

o 

□ □ 
A A b±A 

9             10            11               12 

x x x \ 
13             14             15             16 

Fig. 12. Linear vectors representing circles and letter A's.     pjg 13 Template patterns memorized for pat- 
tern matching. 
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Fig. 14. Manhattan distance between presented pattern and 
each template vector. 
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Fig. 15. Separation of overlapping patterns. When unknown pat- 
tern is presented, O and O are recalled as the 1st and 2nd candi- 
dates. When the template of the recalled D is subtracted from the 
input, O shows the strongest response. When O is subtracted, 
D shows the strongest response. 

tions, thus generating four feature maps from an origi- 
nal image. However, the representation is still two- 
dimensional and needs to be reduced to one- 
dimensional representation. For this purpose, we have 
introduced a new technique called "Principal Axis 
Projection." By Principal Axis Projection (PAP), we 
mean the flag bits are accumulated in the direction 
normal to the edge detection gradient, namely the hori- 
zontal edge flags are projected onto vertical axis, the 
vertical edges to horizontal axis, and ±45° edges to 
respective 45° -direction axes parallel to their edge 
detection gradients. The projection data obtained in 
each direction are reduced to a 16-element vector after 
merging and spatial averaging of the sum results. The 
four 16-element vectors obtained from four directions 
are cascade-connected to form a 64-element vector in 
the order of horizontal, +45° , vertical, -45° , which 
we call a characteristic vector of the image. 

5.2 Recognition of Simple Patterns 
The powerful nature of the vector 

representation obtained by the PAP method 
is exemplified in Fig. 12, where the repre- 
sentations for hand-written patterns and 
characters are shown. The vectors repre- 
senting the same pattern, i.e., letter A's or 
circles, all look alike. It is worth noting that 
one of the two hand-written A's is drawn in 
thick lines while the other is in thin lines, 
but resultant vectors look almost the same. 
This is due to the procedure of retaining 
only edge information by flag bits and 
summing and averaging them. 

In order to test the performance in the 
pattern matching, linear vectors are formed 
from 16 simple patterns as shown in Fig. 13, 
and used as templates. The matching results 
are shown in Fig. 14 where the Manhattan 
distance between the input image and the 
templates are shown. Even with such dis- 
tortions in the presented images, correct 
patterns are recalled as the shortest-distance 
vectors. So far the recognition of overlap- 
ping patterns is a very difficult problem. 
However, the present linear-vector forming 
technique has been successfully applied to 
such a difficult recognition problem as is 
demonstrated in the following. 

Fig. 15 shows what happens when the 
system was presented with two hand- 
written patterns overlapping each other. The 
top row represents the distance between the 
input image and each template vector. The 
shortest and the second shortest indicated 
by arrows are a circle and a square, thus 
recalling correct candidates contained in the 

original image. How can such candidates be separated? 
In the middle row, the template vector of the square is 
subtracted from the vector of the input image and the 
residue is again matched with templates. Then the 
circle is recalled as the most similar. When the tem- 
plate vector of the circle is subtracted in the vector 
space, the square becomes the most similar template. 
From such observations we can infer that the original 
image presented is an overlapping of circle and square 
patterns. 

5.3 Application to Medical X-ray Image Analysis 
Automatic cephalometric landmark identifica- 

tion on radiographs is an important subject in estab- 
lishing a fully computerized cephalometric analysis. 
The linear-vector formation technique developed in 
this work has been applied to this subject. In the fol- 
lowing the preliminary results are presented. 
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Fig. 16. Linear vector formation from radiograph of Sella 
(pituitary grand). 

Fig. 17. Vector representation of pituitary grand images. 

Fig. 16 represents the procedure of forming a 
linear vector from the image of Sella (pituitary gland). 
Since the image is not a simple binary but a delicate 
gray scale image, the threshold value in the edge de- 
tection filtering process was determined taking the 
local intensity distribution into account. In Fig. 17, are 
shown the linear vectors formed from Sella images of 
three different patients. Evidently the vectors look very 
similar in shape and seem to work for identification by 
vector matching. In order to investigate the perform- 
ance, the landmark identification experiments were 
carried out based on the vector formation method de- 
veloped here. 

Eight samples of cephalometric radiographs 
obtained by digital roentgen were prepared for experi- 
ments. One of the samples was selected as an input 
image for identification and the others were used as 
templates. Template vectors were generated by taking 
a 64 X 64 pixel block containing the image of Sella and 
transformed to a 64-diensional linear vector according 
to the procedure illustrated in Fig. 16. Using the seven 
template vectors as a template group, the position of 

Sella in an input image was detected by scanning 
the template group over the search area of 320 X 
240 pixels. Namely, at each point in the search 
area, the 64 X 64 pixel block is converted to a 64- 
dimensional linear vector and matched with the 
template group, and the highest score (the shortest 
distance) within the template group was recorded. 
The top 50 highest-ranking points were selected as 
candidates and indicated on the radiograph as 
shown in Fig. 18. The top 25 are indicated by 
white dots and the next 25 are by black dots. The 
procedure was repeated for all of the eight sam- 
ples. The results are shown in Fig. 18. 

Except for samples #8 and #11, nearly 
correct locations are identified. In sample #8, in 
addition to the correct location, false positions are 
also identified with higher rankings. After exam- 
ining the matching results, it was found that the 
false identification is due to the similarity between 
the image at the false position and the template 
generated using the image of sample #4. We feel 
their similarity is acceptable to our eyes. This 
indicates that the pattern recognition based on the 
present vector representation is in some sense very 
analogous to our human processing and is likely to 
make mistakes like humans. In sample #11, the 
results are totally false. This is due to the fact that 
the sample itself is very different from others. 
Certainly we need more samples for templates and 
appropriate statistical manipulations on template 
vectors. The study on the subject is in progress. 

The same procedure was conducted for 
identification of Nasion and the results are pre- 
sented in Fig. 19. The results are much better than 

for Sella identification. It is interesting to note Nasion 
is characterized by its unique feature that clear curved 
lines running vertically and dark less-structured images 
on the right. It seems that this fact contributed to fa- 
cilitating the vector-matching search. 

Although the experiments are still in a prelimi- 
nary stage, the present results are not very bad and 
seem promising. At present, these experiments are 
carried out by simulation on workstation and it takes a 
lot of time. The computation time for forming a single 
linear vector takes several minutes and the matching 
with a large number of templates takes much longer 
time. The design of a special hardware engine for fea- 
ture map generation is in progress now using the 
vMOS technology. Our target is to finish the vector 
formation within a 1 msec. 

6.   Conclusions 

The association processor architecture has been 
developed as a hardware core conducting the right- 
brain computation on silicon integrated circuits. The 
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Fig. 18. Cephalometric landmark identification on 
radiographs by vector matching. Top 25 candidates for 
Sella (pituitary grand) are marked by black dots and 
second 25 by white dots. 

4   W' 8 

12 

Fig. 19. Cephalometric landmark identification on 
radiographs by vector matching. Top 25 candidates for 
Nasion are marked by black dots and second 25 by 
white dots. 

architecture has been applied to image recognition 
problems as well as to a number of practical applica- 
tions and its powerful nature has been demonstrated. 
The architecture we have developed here will work for 
a general-purpose system and the specific application 
will be implemented in the system by installing tem- 
plate vectors deliberately prepared for each applica- 
tion. 
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Abstract In this paper, we propose the new net- 
work which obtains the input/output relationship 
based on the user intuition. The intuitive eval- 
uation of user is very important to evaluate the 
performance of human friendly information fusion 
systems. The self-organizing relationship (SOR) 
network proposed by the authors can extract the 
input/output relationship based on the evaluation 
function by unsupervised learning. By employing 
user intuition instead of the evaluation function of 
SOR network, the input/output relationship based 

on the intuitive evaluation of the user can be con- 
structed. The effectiveness and validity of the pro- 
posed intuitive evaluation based SOR network by 
applying to the image enhancement. 

Keywords: intuitive evaluation, input/output re- 
lationship, self-organizing relationship network, im- 
age enhancement 

1    Introduction 

In the field of the engineering, the objectivity 
of information has been emphasized, and the 
information including the intuition or subjec- 
tivity has not been treated, because it has been 
the ones which lacks the generality. In recent 
years, increasing necessity of treating the sys- 
tem which relates to human, reduction of the 
intuition or subjectivity looks for the inconsis- 
tency between the knowledge of the theories 
and the real condition, and narrows the range 
of application of the theories[l]. 

On the other hand, the contrast of an im- 

age has an impact upon the intuitive impres- 
sion of the user. In order to enhance images, 
many methods are proposed[2]-[4]. In almost 
all of these methods, the contrast of an image 
is represented as the evaluation function, and 
the original image is transformed to satisfy the 
evaluation function. However it is very diffi- 
cult to represent the contrast of an image by 
discursive evaluation function, thus the trans- 
formed images sometimes do not accord with 
the user intuition. 

In this paper, the new image enhance- 
ment method, in which the user intuition is 
employed as the evaluation function, is pro- 
posed. The self-organizing relationship (SOR) 
network, which is proposed by the authors and 
can construct the desired input/output rela- 
tionship using the arbitrary evaluation func- 
tion such as preference of users, is employed in 
order to realize the transformation correspond- 
ing to the user intuition. 

The proposed method is applied to enhance 
the contrast of the images in accordance with 
the user intuition and evaluated. When this 
image enhancement method is implemented by 
hardware, it should be very useful system for 
applying to sensor devices. 

2    SOR Network 

The structure of the self-organizing relation- 
ship (SOR) network proposed by the authors 
is shown in Fig.l. The SOR network possesses 
the input layer, the output layer and the com- 
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Fig. 1. The structure of the self-organizing rela- 
tionship (SOR) network. (a)The learning mode. 
(b)The execution mode. 

petitive layer containing n, m and N units, re- 
spectively. The i-th unit in the competitive 
layer connects to all units in the input layer 
and the output layer through the weight vec- 
tor w; and v,-, respectively. There are two pro- 
cesses in the algorithm of the SOR network, 
the one is the learning mode, the other is the 
execution mode. 

In the learning mode, random input/output 
pair (x, y) is applied, as the learning vector, to 
the input and the output layer together with 
the evaluation E for the learning vector. The 
evaluation E may be assigned by the network 
designer, given by the intuition of the user or 
obtained by examining the system under test. 
The positive E or negative E mean the good 
or bad relationship between the input vector 
and the output vector. The c-th unit in the 
competitive layer, which has the closest weight 
vector vc = (wc, uc) to the learning vector I = 
(x, y), is defined as the winner unit. The units 
that are located within the neighborhood of 

the winner unit are defined as the neighboring 
units. Av, calculated by Eq.l is added to the 
old weight vectors v8- of the winner unit and 
neighboring units in order to obtain the new 
weight: 

Ay, 
a(t) -E-ß-Vi)      E>0 
JSgjy. £ . (I - Vl.)   E<0, (1) 

where a(t) and ß(t) are learning rate which 
decreases with time. In other words, when the 
evaluation E is positive or negative, the weight 
vectors of the winner unit and the neighbor- 
ing units are attracted to or repulsed from the 
learning vector I, respectively. The evaluation 
E is given by the user with intuition, the SOR 
network can construct the relationship between 
input vector and output vector based on the 
user intuition. 

After the learning, the SOR network is ready 
to use as the I/O relationship generator. This 
operation is referred to as the execution mode 
and it is illustrated in Fig. 1(b). The actual 
input vector x° is applied to the input layer, 
and the output Zi of the i-th unit in the com- 
petitive layer is calculated by: 

Zi = exp(- 
ß 

[), (2) 

where ß is a constant representing fuzziness of 
similarity, z, represents the similarity measure 
between the weight vector w,- and the actual 
input vector x°. The output y% of the k-th 
unit in the output layer is calculated by: 

N N 

(3) 
;=i i=i 

where «&,- is a weight from the i-th unit in 
the competitive layer to &-th unit in the out- 
put layer and it is equal to u,k obtained in 
the learning mode. The output of the net- 
work y° = (yf, • • •, y£, • • •, y°m) represents the 
weighted average of u; by similarity measure 
Zi. The relationship between actual input vec- 
tor x° and the output vector of the network y° 
accords with the user intuition. 

658 



wo j 
1600 1 
1400 n 

fr 1200 Hi 
1 1000 Ml ihililii JI 
£ *00 ■liilllljljl if if 

MO JRH El lljl|l||||||| 
400 iilllll ilhiih'    P i 
ao ii in-,  

(b) 

Fig. 2. Original Image (girl). (a)Image. 
(b)Intensity Histogram of the Image 

3    Image Enhancement Using 
SOR Network 

The new contrast enhancement method based 
on the user intuition is proposed. The method 
is realized employing the SOR network. 

3.1    Conventional Method 
In the image processing, the contrast enhance- 
ment is used to enhance or restrain the infor- 
mation of the original image in order to let 
the image easy to see for the user. As the 
conventional method of the contrast enhance- 
ment, there is the linear transformation (LT) 
and histogram equalization (HE). Both meth- 
ods are known as the methods which are easy 
and powerful to enhance an image. Consider 
that the image shown in Fig.2(a) is enhanced. 
The intensity histogram of the image is shown 
in Fig.2(b). The levels of intensity of all im- 
ages in this paper are 256. In the LT, the in- 
tensity mapping curve which extend the range 
of the intensity histogram of the original im- 
age from [Gmin,Gmax] to [0,255], which Gmin 

and Gmax are the minimum and the maximum 
intensity in the image, respectively. The inten- ' 
sity of the original image is transformed by us- 
ing the intensity mapping curve. Fig.2(a),(b) 
show the intensity mapping curve and the im- 
age enhanced by the LT, respectively. The 
original image is enhanced naturally by this 
method, but if the range of the histogram of 
the original image is very wide, the method 
has no effectiveness. In the HE, the integrated 
function of the intensity histogram is employed 

as the mapping curve as shown in Fig.3(c). 
Fig.3(d) shows the image enhanced by the HE. 
The contrast enhanced image is obtained by 
this method. But the enhanced images some- 
times have so strong contrast that the images 
are unnatural for users. 

Fig. 3. The mapping curve for the image shown 
Fig.2 by each method and the enhanced image 
(a) Linear transformation (b) Histogram Equal- 
ization 

In order to obtain natural images which 
have strong contrast, the methods using the 
local information of original images or the 
methods based on the if-then rules have been 
proposed[2]-[4]. In these methods, the contrast 
of an image is represented as an evaluation 
function, and an original image is enhanced to 
satisfy the evaluation function. Thus the deci- 
sion of the evaluation function is very impor- 
tant. However it is very difficult to design the 
evaluation function corresponding to the user 
intuition. The enhancement method which re- 
flects the user intuition is very useful. 

The new image enhancement method, which 
generates the intensity mapping curve corre- 
sponding to the user intuition as shown in 
Fig.4, is proposed in this paper. In this 
method, the relationship, which is based on the 
intuitive evaluation, between the intensity his- 
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togram of the original image and the mapping 
curve is obtained by the learning. 

3.2    Proposed Method 
In the proposed method, the relationship be- 
tween the histogram of the original image and 
the intensity mapping curve is approximated 
by the SOR network. The input vector is the 
intensity histogram of the original image. It is 
represented by the 256-dimensional vector x = 
(zi,3;2,---,Z256), where Xi is the number of 
pixels whose intensity is i. The output vector is 
the intensity mapping curve which transforms 
the original image. It is represented by the 

■256-dimensional vector y = (2/1,2/2, ■ ■ • ,2/256), 
where y\. is the output intensity for the input 
intensity k. x and y are employed as the in- 
put vector and the output vector of the SOR 
network, respectively. The evaluation of the 
relationship between x and y is given by the 
user who watches the image obtained by the 
intensity mapping curve y. The learning of 
SOR network is achieved using these learning 
vectors and their evaluations. After the learn- 
ing, the SOR network exhibits the desired re- 
lationship between intensity histogram and in- 
tensity mapping curve based on the user intu- 
ition. The intensity histogram of the image 
which should be enhanced is applied to the 
SOR network, and the desired intensity map- 
ping curve is generated by execution mode of 
SOR network. 

4    Experimental Results 

The learning vectors (x,y) and their evalua- 
tions E for the learning of the SOR network 
should be obtained from subject at first. Fif- 
teen images (Image 1 to Image 15) are pre- 
pared, and each image is transformed by fifteen 
mapping curves generated randomly, as shown 
in Fig.5. 225 transformed images (Image 1-1 to 
Image 15-15) are obtained and intuitively eval- 
uated by the subject. In Fig.5, the evaluation 
of the Image p-q is 0.2, i.e., the relationship be- 
tween Hp and MCp~q is given the score 0.2 by 
the subject. The learning of the SOR network 

«rtSSy, •* 

Original Image 

Input Intensity 

Mapping Curve Enhanced Image 

SOR 
Network 

Intensity 

Histogram 0 
Intuition 

Fig. 4. Proposed image enhancement method. 
The intensity mapping curve for the intensity 
histogram of the original image is generated in 
accordance with the user intuition. 

is achieved by using these 225 learning vectors 
and their evaluations. 

In the learning, one learning vector is ap- 
plied to the SOR network, and the weight vec- 
tors are updated in accordance with its eval- 
uation. Applying all the learning vectors to 
the SOR network is defined as one iteration. 
In this experiments, the number of iteration 
is 300, the number of units in the competi- 
tive layer is 100(10x10), the initial value of the 
learning rate a(0) is 0.5, and the initial values 
of the weight vectors are random. 

Consider that the test image 1 shown in 
Fig. 6(l-a) should be transformed appropri- 
ately. The histogram of the test image 1 is 
applied to the input layer of the SOR network 
after the learning, and the SOR network pro- 
vides the intensity mapping curve in its exe- 
cution mode. Here, the fuzziness parameter ß 
shown in Eq.(2) is 1.0. Fig. 6(l-d) shows the 
image transformed by the intensity mapping- 
curve which is generated by the SOR network. 
Fig. 6(l-b) and (1-c) indicate the images trans- 
formed by the LT and the HE, respectively. 
When these four images shown in Fig. 6(1- 
a),(l-b),(l-c) and (1-d) are presented to the 
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Fig. 5. How to obtain the learning vector (x, y) 
and to decide the evaluation E. 

subject, it answers that it prefers the image 
transformed by the proposed method to other 
three images, because the'image transformed 
by the LT has too poor contrast, and the im- 
age transformed by the HE has too strong con- 
trast. Other four test images are transformed 
by the LT, the HE and the proposed method, 
and the transformed images are presented to 
the subject. It answers that it prefers the im- 
ages transformed by the proposed method to 
other three images for all four test images. 

The experiment above is achieved for seven 
subjects. For each test image, the original im- 
age and ones enhanced by three methods are 
ordered by the subjects according to their in- 
tuition. Table 1 shows the average of ranking 
for each test image. It is known that many 
subjects prefer the images by the proposed 
method to ones by other methods, and that 
the SOR network can construct the relation- 
ship between intensity histogram and intensity 
mapping curve based on the intuition of the 
subject. 

(1-a)        (1-b)        (1-c)        (1-d) 

(2-a)        (2-b) 

(3-a)        (3-b) 

k 
(4-a)        (4-b)        (4-c)        (4-d) 

(5-a)        (5-b)        (5-c)        (5-d) 

Fig. 6. Five test images and enhanced im- 
ages. (-a)Original image. (-b)The image 
transformed by the LT. (-c)The image trans- 
formed by the HE. (-d)The image transformed 
by the proposed method. 

5    Conclusions 

In this paper, the new image enhancement 
method, which is based on the intuitive evalu- 
ation, is proposed. It is very important to con- 
sider the user intuition when images should be 
enhanced. Employing the user intuition as the 
evaluation function of the SOR network, the 
input/output relationship which is constructed 
by the SOR network accords with the intuitive 
evaluation of user. 

It is applied to the image enhancement. 
The experimental results show that images en- 
hanced by the proposed method accord with 
user intuition more than the images enhanced 
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Table 1. The average of the ranking for each 
image. 

original LT HE proposed 
image method 

image 1 2.71 3.29 2.29 1.71 
image 2 2.29 3.14 2.71 1.86 
image 3 2.42 2.57 3.86 1.43 
image 4 3.00 3.43 2.43 1.43 
image 5 2.43 3.71 2.57 1.29 

[7] T. Yamakawa and K. Horio, "New de- 
sign method of fuzzy logic controller us- 
ing self-organizing relationship," Method- 
ologies for the Conception, Design and Ap- 
plication of Soft Computing Proceedings of 
IIZUKA'98, pp.155-158, 1998. 

by the other method. 
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ABSTRACT 

This paper gives an overview of hardware implementation techniques employed in 
solving real-time classification problems using Neural Network, Principle Component Analysis 
(PCA), and Independent Component Analysis (ICA) techniques. The first part of the paper reviews 
digital, analog, and hybrid strategies for hardware implementation, outlining their advantages 
and disadvantages. The second part focuses on dedicated VLSI chips developed at the Jet 
Propulsion Laboratory (JPL). 

A flexible neural network chip with 64 neurons and a 64x64 synoptic weight array with 
8-bit resolution is first presented. This chip can be theoretically cascaded to form a larger 
network, connected in parallel to improve dynamic range or resolution, or connected in a loop to 
create a feedback neural network. A second neural network chip is presented that was fabricated 
using Silicon-On-Insulator (SOI) technology. This second chip operates at 1.5V, has neurons with 
variable transfer functions, and has completely compatible inputs and outputs, allowing simple 
and direct cascading and feedback. A 64x64 synoptic weight array chip is then introduced that 
has 8-bit resolution and a time response of less than 250ns. This chip was stacked to obtain a 
cube of 64 chips with an estimated data processing speed of 10   operations per second. 

A data input chip called the Column Loading Input Chip (CLIC) was designed, fabricated 
in 1. Ojum CMOS technology, and tested. The chip can take 64x64 digital bytes and convert them 
into 64x64 analog inputs to a 3-D parallel processing cube. The CLIC was designed to raster 
through a large image window, taking a new 64-byte column or row of data from the main image 
every 250ns. The cube processes this data using PCA or ICA techniques and passes its output to a 
neural network classifier. 

In the cube architecture, power consumption is one of the most important concerns and 
has, so far, inhibited designs of larger arrays. However, recent SOI technology seems capable of 
improving major aspects of performance by providing power consumption reduction, latch-up 
avoidance, and mixed signal noise reduction. A new 3-D architecture is proposed which is similar 
to the original cube but is more robust for stacking and easier to test, and its application to a 
hyperspectral sub-pixel classification problem is discussed. 
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I. INTRODUCTION 

At JPL, we have developed a variety 
of chips that can be used as building blocks 
for hardware computation of general- 
purpose algorithms germane to sensor 
fusion. Our building block chips are 
cascadable to create larger networks that 
were necessary for some of our recent 
applications [1,2]. In addition, many of the 
chips are stackable in a third dimension to 
achieve increased parallelism, providing the 
computational power necessary to solve 
problems such as real-time spatio-temporal 
target recognition and Hyperspectral sub- 
pixel classification. Our latest 3-D chip 
stacks have been designed to provide 
computational power on the order of 10]2 

operations per second [3-5]. 
Section II discusses the hardware 

implementation strategy used in most of our 
chips, and explains why our approach is 
superior to the alternatives. Section III is an 
overview of the latest building block chips 
that we are currently using to create 
powerful prototype 3-D architectures. 
Section IV will show how the 3-D 
computational architectures created using 
our building block chips might be used to 
solve hyperspectral sub-pixel classification 
problems. The architecture presented uses 
Principal Component Analysis (PCA) [6] or 
Independent Component Analysis (ICA) [7- 
10] techniques to estimate end members, 
and then classifies these estimated end 
members using an artificial neural network. 

II. IMPLEMENTATION STRATEGY 

In order to accomplish real-time 
sensor fusion, fundamental operations such 
as addition, subtraction, and multiplication 
must be implemented in hardware. If 
artificial neural networks are to be used, the 
neuron   transfer   function   must   also   be 

realized in hardware to achieve adequate 
speed. These operations have traditionally 
been implemented in primarily digital or 
primarily analog hardware [11,16-18], but 
we have developed hybrid implementations 
that retain the advantages of each approach 
while eliminating or minimizing their 
weaknesses [1,3]. 

Fully digital implementations such as 
the CNAPS board by Adaptive Solutions 
[11] are attractive for a number of reasons. 
First of all, digital memory allows for very 
robust Jong-term storage of synaptic 
weights, while digital computation has 
extremely high noise immunity. In addition, 
because of the binary nature of digital 
signals, very fast devices can be used 
without consideration for their linearity or 
accuracy. There is also a large amount of 
flexibility inherent in digital processing, 
allowing the implementation of nearly any 
desired architecture with as much precision 
as is required. This flexibility, however, 
does not usually include massively parallel 
implementations, especially those that are 
scalable. Digital implementations typically 
occupy a large amount of active die area as 
well, and have fairly high dynamic power 
consumption. The architectural limitations 
coupled with increased power consumption 
at high clock rates actually limit most digital 
implementations to relatively slow overall 
throughput, in spite of the high operational 
speed of the individual devices. 

In contrast to digital 
implementations, analog techniques can be 
used to implement fully parallel 
architectures that are easily scalable. They 
are also capable of achieving higher 
throughput with lower power consumption 
and less die area than digital 
implementations. Unfortunately, they suffer 
from low noise immunity and their weight 
storage mechanism often requires refresh 
circuitry to maintain accurate values over 
long   periods   of  time   [12].   Alternative 

664 



approaches to analog memory, such as 
floating gate technology [19], eliminate the 
need for refresh circuitry, but they do not 
have arbitrary precision and cannot be 
updated with sufficient speed [13]. After 
learning, however, neural networks can 
tolerate relatively poor accuracy [14], so the 
noise and precision limits of analog 
computation may not be critical. In general, 
analog circuitry appears to be much more 
suitable than digital circuitry for high- 
density 3-D applications, but the difficulty 
of realizing refresh circuits across a 3-D 
chip stack is significant enough to warrant 
the use of an alternative approach. 

In order to capitalize on the 
suitability of analog circuitry for 3-D 
architectures while maintaining the stability 
and accuracy of digital weight storage, JPL 
has adopted a hybrid approach. Synaptic 
weights are stored digitally, thereby 
eliminating the need for refresh circuitry 
while ensuring adequate time response 
during learning. Synaptic outputs are 
represented as analog current signals that 
can be easily combined with any number of 
other outputs using only a common wire. 
This leads to an architecture in which 
multiplication is performed by Multiplying 
Digital to Analog Converters (MDACs); 
addition/subtraction is the result of KCL 
along the output wire; and neurons are 
implemented as non-linear I-to-V 
converters. The overall result is more 
compact and faster than digital circuitry, but 
without the noise sensitivity and long-term 
instability of analog weight storage. 

III. JPL HARDWARE 

This section outlines the integrated 
circuit building blocks developed at JPL for 
hardware artificial neural networks and 3-D 
parallel data processing architectures. It also 
outlines  some   specific   3-D  architectures 

designed to solve real-time spatio-temporal 
problems. 

Neural Network Building Blocks 

NN64 Chip: 
In our early work, we fabricated a 

flexible neural network chip in 0.8um 
CMOS called the NN64, whose architecture 
is depicted in Fig. 1. This chip contains: 

• 64 voltage inputs ranging from 2.0 V to 
3.0 V 

• a 64x64 array of 8-bit bipolar synapses 
(+/-127) 

• 64 variable gain neurons 
• programmable bypass switches to select 

the summed current or neuron voltage 
output 

8-bit bipolar 
synapse 

Variable gain neuron 

Neuron 
Gain Vout64 
control 

Fig. 1: Block diagram of the NN64 architecture. 

The NN64 chip can be used as a 
basic neural building block in either a 
feedforward or feedback configuration. It is 
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potentially expandable horizontally and 
vertically, allowing for a much larger 
network to be created if necessary. It can 
also be connected as if it were stacked in a 
third dimension, which effectively increases 
the weight resolution and dynamic range of 
the network's synapses. Cascading in the 
third dimension also allows for multiple sub- 
networks to process the same input data. 3-D 
architectures are discussed later in the 
section. 

SOICANN Chip: 
We recently fabricated a Silicon-on- 

Insulator Cascadable Artificial Neural 
Network (SOICANN) using MIT Lincoln 
Labs' 0.25um CMOS process, under 
sponsorship from DARPA's Low Power 
Electronics Program. Although this chip is 
not as large as NN64, it was designed to be 
immediately cascadable without the need for 
interface circuitry. This allows multiple 
chips to implement an arbitrarily large 
feedforward or feedback network. Each chip 
accepts 8 inputs, has 8 hidden units, has 8 
output neurons, and implements a 
constructive network architecture based on 
Cascade Error Projection [21-24]. Each 
hidden unit can be viewed as a single neuron 
hidden layer with complete connection to all 
previous hidden layers as well as to all 
inputs. All neurons are programmable so as 
to exhibit a logistic transfer function, a 
gaussian transfer function, or to be; bypassed 
completely. In addition, the output of each 
neuron can be either voltage or current, 
making the chip completely cascadable 
without limitation. SOICANN uses a 1.5V 
power supply and simulations show an input 
step response of less than 200 nS through a 
single chip. As of this writing, the 
SOICANN die are being shipped back to 
JPL and have not yet been tested. 

3-D Building Blocks 

Syn64 Chip: 
In [2] and [3], we reported a 64x64 

synaptic weight array with 8-bit resolution 
that was fabricated in l.Oum AMI CMOS 
technology. This chip was intended to be a 
stackable building block for a 3-D 
architecture. It uses a 5V power supply and 
requires 64 analog voltage inputs that range 
from 2.0 to 3.0 volts. These inputs are then 
multiplied fully in parallel with 64 weight 
vectors that are stored digitally using an 8- 
bit bipolar format (+/- 127). The result of 
each multiplication is a current signal that is 
summed along one of 64 different lines. The 
details of this chip can be found in [2]. 

Column Loading Input Chip: 
3-D architectures require large arrays 

of parallel data as input. To achieve this, the 
"Column Loading Input Chip" (CLIC) was 
designed. The CLIC receives a 64x64 array 
of 8-bit digital data and converts it into a 
64x64 analog voltage array in 250ns [5] 
using a large array of compact digital to 
analog converters (DACs). The digital input 
array usually corresponds to an input sub- 
image of a larger main digital image that is 
being processed. Inside the CLIC, the sub- 
image can be shifted up, down, or right one 
position 'while a new column or row is 
loaded from the main image. This allows 
the sub-window to be moved around inside 
the main image without having to reload the 
entire CLIC. The CLIC was fabricated in a 
0.8um HP CMOS process. Its voltage 
output array is available on 4,096 meta!3 
pads, each of which measures 66x66um . 
Each DAC cell in the CLIC array is 
101.6xl01.6um2. 

3-D Architectures 
Our first cube was created using a 

vertical stack of sixty-four Syn64 chips 
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NPM CUBE 

one column 
(64 analog 

values) loaded 
every ~250 ns 

digital 
weight 
loading 

Fig. 2: 3-Dimensional Artificial Neural Network-M (3- 
DANN-M). In this figure, CLIC provides 64x64 fully 
parallel analog inputs with a new column (64-bytes) in 
every 250ns while the NPM performs parallel template 
matching. 

forming a 3-D Neural Processing Module 
(NPM) intended for massively parallel real- 
time template matching for spatio-temporal 
problems [3]. At first an IR focal plane array, 
which required operation at 77K[4], was 
mated to the top of the NPM to provide 
direct parallel analog input. Later the IR 
focal plane array was replaced with the 
CLIC in order to exploit the full 
computational power of the NPM cube with 
more versatility. Fig. 2 shows a particular 
implementation called 3-DANN-M where 
the CLIC obtains a 64x64 sub-window from 
a 256x256 digital image and sends this sub- 
image to the NPM cube in a fully parallel 
fashion. The sub-image is multiplied with 
sixty-four templates in the cube where each 
template is a 64x64 array of 8-bit bipolar 
weights. All multiplications are performed 
in parallel every 250ns making the cube 

theoretically capable of 1012 operations per 
second. Fig. 3 shows a photo of the 3- 
DANN-M. 

Current work is focused on 
combining the Syn64 and the CLIC 
functionality into a new stackable building 
block for the next generation 3-DANN-R. 
This will eliminate the difficult task of 
bonding the CLIC to the top of the NPM, 
which greatly simplifies the cube production 
process while enhancing testability and 
observability. 

Several challenging problems 
surfaced during the design of the NPM and 
the CLIC. Specifically, power consumption 

Fig. 3: 3-DANN-M. This photo shows the 
CLIC on top of the 3-DNPM cube sitting on the 
motherboard. 

and mixed signal noise are so critical that 
they may prevent us from thinking ahead to 
larger arrays and bigger chip stacks. 
Fortunately, Silicon-On-Insulator (SOI) 
technology is an attractive option that has 
the potential to neutralize both issues. SOI 
technology allows us to reduce power 
consumption drastically by reducing the 
supply voltage from 5 V to 1.5 V. It also 
reduces mixed signal noise by eliminating 
the substrate coupling of digital switching 
noise to analog components. Since Si02 is a 
good    heat    conductor    it    should    also 
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ameliorate thermal management within a 3- 
D chip structure. The SOICANN chip was 
designed in SOI in part to evaluate these 
potential advantages. We have also 
fabricated Winner-Take-All (WTA) circuits 
using the same SOI process as SOICANN 
and the test results are very encouraging 
[15]. 

IV. APPLICATION 

A lot of interest has recently been 
generated by research on Hyperspectral 
Sensor Imaging (HSI), which can be 
considered as a special case data fusion 
problem. Real-time classification of 
hyperspectral data can be extremely useful 
for certain types of target recognition and 
terrain or composition identification. In 
addition, NASA has recently expressed 
interest in a space-based, low power, 
miniature system that is capable of 
classifying hyperspectral data. * 

The majority of current research on 
HSI focuses on sub-pixel detection. 
Unfortunately, the raw sensor data tends to 
be very noisy and inconsistent which makes 
the classification problem more difficult. 
PCA combined with neural networks has 
already demonstrated some success in sub- 
pixel detection [20]. Since each pixel 
contains data from multiple bands, all of 
which is available in parallel, there is a big 
advantage to massively parallel processing. 

In our application, each pixel 
contains data from 224 bands of differing 
wavelengths. In the 3-DANN architecture it 
takes 4 columns, each containing 64 bands, 
to process a single pixel. Since neighboring 
pixels may have relevant information for 
detecting a particular sub-pixel, a 3x3 
window of pixels (see Fig, 4) can be 
analyzed in parallel, requiring 36 columns of 
input data. Let the number of desired end 
members be N, and let WI,W2,...,WN be the 

orthogonal vectors for PCA or independent 
vectors for ICA that are to be used for 
separating the end members. After 
processing by the 3-DANN cube, the results 
can be described as follows: 

Y = 

W! 

W, 

X 

X is an input vector representing one pixel 
(224x1). This input vector can be physically 
stored in 4 columns of the CLIC. Wj is a 
weight vector stored in the columns of 3- 
DANN. The output vector Y, which is an 
estimated decoding of the end members, is 
then sent to the NN64, which can be used as 
a neural network classifier. This procedure 
improves detection rates by exploiting the 
neural network's ability to learn and 
generalize. Finally a WTA can select the 
best classification match. Fig. 5 shows the 
system architecture. 

Band 1 

Bandn 

m 

Center pixel 

/ A 

VfB« 

/ 

Fig. 4: Structure of hyperspectral data. In this figure, 
hyperspectral data consists of n=224 bands per pixel. A 
3x3 sub-window is analyzed to classify the center pixel. 
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From hardware designed at JPL, we 
are able to construct a discrete system for 
HSI analysis. Even though it is a discrete 
system, it is still extremely compact and low 
power in comparison to other state of the art 
systems capable of performing hyperspectral 
analysis; e.g. banks of Super Harvard 
Architecture RISC Computer (SHARC) 
DSP processors [25]. 

/ / 

*+/    > 
A A 

3-DANN 
preprocessing 

Neural 
Network 

> output 

Winner-Take- 
All 

Fig. 5: Full 3-D architecture for real-time HSI sub- 
pixel classification problem. 3-DANN operates as a 
linear pre-processor to separate end members, NN64 is 
the neural network processor to enhance classification, 
and WTA selects the best match. 

V.   CONCLUSION 

A number of powerful chips 
developed at JPL for use as building blocks 
in 3-D systems were presented briefly, along 
with a description of the 3-D architectures 
themselves. We also discussed the potential 
of using SOI technology to overcome two of 
the most difficult challenges inherent in 3-D 
chip stacks. Finally, we showed how our 3- 
D architecture might be applied to solve a 
hyperspectral sub-pixel classification 
problem. 

Our proposed 3-D architecture is 
extremely compact and features very high- 
speed operation with a power consumption 
of less than 5 Watts. Such a system should 
satisfy NASA's requirements for high- 
density,  low power,  space-based  systems 

capable of synthesizing large amounts of 
varied sensor data. 
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